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Abstract

One of the most important steps in the clinical workflow is the segmentation of
medical imaging, which can be used for a variety of clinical decision-making tasks
such as disease diagnosis and treatment response evaluation. Manual segmentation
of 3D medical imaging (such as computed tomography (CT) or magnetic resonance
imaging (MRI)) by a clinical expert can be too time-consuming to be feasible in
a routine clinical workflow, and can moreover be susceptible to human errors and
inconsistencies. In recent years, deep learning (DL) based methods have exhibited
human-level performance for a variety of computer vision tasks, making them an
attractive choice for researchers aiming to automate the segmentation of medical
imaging. This thesis considers two medical imaging scenarios and examines how fully
automatic image segmentation via DL can enhance downstream clinical tasks.

The first scenario evaluates the clinical workflow for diagnosing incidental adrenal
masses on CT. Despite standardized reporting systems and strict guidelines for defining
an adrenal mass, there exists significant inter-rater variability for this task. To enable
objective and reproducible characterization of the adrenal gland, this thesis develops
the first DL method for segmentation and classification on CT. Using a large-scale
retrospectively acquired dataset, this method is used to identify potential missed
detections by radiologists and discuss the clinical implications of this.

The second scenario focuses on the treatment response assessment of metastatic
brain tumor patients on MRI. Due to the large number of metastases a patient can have,
standard radiographic analyses track only a select few target lesions through the course
of therapy in order to assess the efficacy of a treatment. With this paradigm, smaller
non-target lesions may be neglected or even missed due to the lack of quantitative
emphasis. To that end, a pipeline is developed to automatically segment brain tumor
metastases on MRI and output standard response assessment metrics. With the
prevalence of longitudinal imaging data available for brain metastases patients, a
secondary model is formulated to improve the detection and segmentation of micro-
metastases by utilizing known prior time point information.
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Chapter 1

Introduction

1.1 Medical Imaging

The first medical image ever acquired was taken on November 8th 1895, when Conrad

Roentgen took the world’s first x-ray of his wife’s hand. This discovery was met with

immediate amazement and wonder by medical professionals, who went on to publish

over 1, 000 scientific articles on x-rays within the next year [1]. By 1956, advances

in physics and electrical engineering led to the first ultrasound, and by the late

1970’s, the first 3D images were being generated via computed tomography (CT) and

magnetic resonance imaging (MRI). Since then, medical imaging has revolutionized

the field of healthcare, enabling accurate and completely non-invasive diagnosis for

a wide spectrum of diseases. It is thus not surprising that healthcare professionals

are acquiring an exponentially growing number of medical images every year. Indeed,

the world health organization (WHO) estimates that an approximate 3.6 billion

examinations are now being performed worldwide per year [2].

Historically, the interpretation of medical imaging by radiologists and other clini-

cians has been mostly qualitative [3]. When given a new examination to interpret,

the radiologist would identify abnormalities such as tumors, fractures, diseases, etc.

based on their subjective assessment of the shape, size, and image intensity of different

anatomical regions of interest (ROI). However, it is important to note that qualitative

interpretation of imaging can be influenced by a variety of factors, including the
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expertise, personal experience, and expectations of the interpreter. This can lead

to significant inter- and intra-rater variability between different clinicians and can

potentially affect the accuracy of the diagnosis. One way to reduce the impact of

bias in subjective interpretation is through the use of standardized reporting systems

and guidelines, which can help to encourage that all clinicians are interpreting the

images in a consistent and objective manner. However, even with firm guidelines in

place, many studies still report significant amounts of inter-rater variability for certain

tasks such as the interpretation of chest x-rays [4, 5, 6] and detection of primary and

metastatic tumors [7, 8, 9].

1.2 Medical Image Segmentation

With a desire to make the interpretation of medical imaging more objective and

reproducible, clinicians have begun to switch towards using a more quantitative

approach. One of the most common ways to do this is via segmentation, wherein

specific anatomical structures or abnormalities are delineated within the image [10].

The goal is to identify certain ROIs which can be used to guide disease diagnosis, aid

in surgical planning, enhance treatment response evaluation, and/or help in other

aspects of clinical decision-making. For example, a clinician may segment a patient’s

tumor on a pre-treatment and post-treatment MRI. If the tumor volume has not

significantly shrunk after application of the treatment, the clinician may decide to

switch treatment plans in order to find something that more efficacious.

With an ever-increasing number of high resolution imaging sequences being ac-

quired, it can often be infeasible in a routine clinical workflow to manually segment

all imaging. Moreover, even when manual segmentations are possible, there are a host

of associated issues [11]. First, segmentation can be a challenging task that requires

a high degree of expertise and precision [12]. While this may not be a problem at a

major hospital system, the level of specialization required to interpret and segment

all different types of imaging sequences may not be available for smaller, more rural

clinical settings. Second, many anatomical structures can blend together on macro-
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scopic imaging such as CT due to issues stemming from image resolution and image

contrast, leading to subjectivity and variability in how different interpreters identify

and segment certain ROIs. This issue can be exacerbated further due to poor image

quality, which may result from things like motion and aliasing artifacts [13]. Finally,

even when image quality is perfect, manual segmentation is susceptible to human

errors and inconsistencies [14].

1.3 Deep Learning for Medical Imaging

To combat the issues surrounding manual image segmentation and to alleviate the

workload for healthcare professionals, deep learning (DL) based solutions for image

segmentation are becoming increasingly common [10, 15, 16]. Unlike classical machine

learning (ML) approaches which require considerable feature engineering and domain

expertise in order to design relevant hand-crafted imaging features, data-driven DL

methods can learn salient features directly from the training data [17]. This data-driven

approach has been proven fruitful, having reached (and sometimes surpassed) human

level performance on a plethora of tasks including primary brain tumor segmentation

[18].

With that being stated, there are still many challenges hindering the successful

deployment and utilization of DL based models in the clinical workflow. In this thesis,

we consider two medical imaging scenarios and examine how fully automatic image

segmentation via DL can enhance associated downstream clinical tasks. Specifically,

we consider the scenarios of 1) adrenal gland segmentation and classification on CT

and 2) metastatic tumor segmentation on MRI.

1.4 Thesis Organization

This thesis is structured as follows:

Chapter 2 introduces prerequiste background material that is necessary to under-

standing the work presented in this thesis. We provide a brief overview of DL using
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convolutional neural networks, explaining relevant topics such as data augmentation

and loss functions. We also provide summaries of selected classical and DL based

methods for image segmentation and image registration.

In chapter 3, we present a novel two-stage DL based pipeline for adrenal gland

segmentation and classification, which we validate on a real-world consecutively

acquired dataset. We also present an exploratory analysis on the inter-rater variability

between expert radiologists for the task of adrenal gland classification, as well as

use our model to identify potential missed detections on a large-scale retrospective

dataset.

In chapter 4, we train a DL model for segmentation of metastatic brain tumors

and validate on two independent datasets. We also generate voxel-wise segmentation

uncertainty maps, using them to automatically flag potential false positives. Using

our model outputs, we automate longitudinal volumetric tracking of metastases and

present an algorithm to automate current uni-dimensional response assessment criteria.

Finally, we conclude with a short analysis about the differences between true volumetric

tumor burden and proxy uni-dimensional measures.

In chapter 5, we aim to further improve our work on metastatic tumor segmentation.

Namely, to improve the sensitivity of detection for micro-metastatic lesions, we develop

a novel DL based approach for joint image registration and segmentation. As prior

time-point imaging (and prior time-point segmentations) are readily available in

a routine clinical setting, we devise a method which can incorporate this known

prior information to improve the segmentation of the new time-point. Using our

model, we show promising results, noting a significant increase in the detection rate

of micro-metastatic lesions.
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Chapter 2

Background

In this chapter, we review some necessary background information that will aid the

reader in understanding the rest of this thesis. First, we provide a light overview

of what a neural network is and some associated terminology (e.g. loss functions,

optimization, overfitting, etc.) in sections 2.1 and 2.2. Second, we describe common

image segmentation approaches in the context of medical imaging in section 2.3. Third,

we provide a review of classical and DL based registration methodologies in section 2.4.

Finally, we provide brief clinical insights into the tasks of adrenal gland segmentation

in section 2.5 and brain metastases segmentation in section 2.6.

2.1 Neural Networks and Deep Learning

A neural network is a model that takes a raw image as input and applies many

layers of learned transformations to calculate some desired output [19]. Each layer

in the network is comprised of nodes, known as neurons. The value at each neuron

is calculated by taking a linear combination of neurons in the previous layer, and

applying some non-linearity known as the activation function [20]. Generally speaking,

the representational power (or expressiveness) of neural networks comes from the

repeated chaining of activation functions, which allow the network to learn complicated

concepts by building them out of simpler ones [19]. This hierarchy of concepts forms

the basis for deep learning, which states that as a network’s depth (i.e. layers), width
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(i.e. neurons per layer), or connectivity (i.e. number of connections between neurons

in different layers) increases, the network is able to approximate a larger family of

functions, an axiom loosely encapsulated in the universal approximation theorem

[21, 22].

There are three main ways to train a neural network: supervised learning, semi-

supervised learning, and unsupervised learning. In supervised learning, we create

paired input-output data (known as labeled data) [23]. What comprises these input-

output pairs will change depending on the intended task. For example, for the task of

image classification, input would refer to a sample image and output would refer to

what ground truth category it was (e.g. cat, etc.). For the task of image segmentation,

the input would once again refer to a sample image and output would be the ground

truth segmentation (e.g. the cat delineated from the rest of the image). Once we have

curated a paired dataset, we can train our network to learn directly from this cohort.

It is important to note that paired data can be expensive and difficult to curate. To

combat this issue, semi-supervised approaches can be used [24]. In this paradigm,

large quantities of unlabeled input data can be used simultaneously with a small

fraction of labeled cases to improve the quality of the output. Indeed, several studies

have shown that leveraging this unlabeled data can improve model performance by

non-trivial amounts [25, 26]. Finally, fully unsupervised (or sometimes self-supervised)

approaches require no ground truth labels whatsoever. While this may simplify the

task of data collection and curation, it can make learning relevant information more

difficult, especially if one has a niche task. Nonetheless, unsupervised learning has

been used to generate state-of-the-art results on image classification tasks [27, 28]. A

diagram illustrating simple examples of each of the three learning paradigms is shown

in figure 2-1.

While fully connected neural networks tend to perform better than what is capable

via traditional machine learning techniques, it was the development of convolutional

neural networks (CNN) that pushed the envelope of artificial intelligence to where it

is today [29, 30]. CNNs, as the name implies, use kernels which are convolved (though

in actuality they are cross-correlated) with an input signal. These kernels are usually
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Figure 2-1: Different types of learning paradigms. A) Due to the difficulty in
collecting large amounts of labeled data, fully supervised learning approaches tend
to have only a limited number of labeled samples. B) By using unlabeled data, we
can leverage semi-supervised approaches to find a more likely decision boundary. C)
Unsupervised approaches can be used to find decision boundaries, but they may
partition the dataset incorrectly or in an undesirable manner

chosen to be significantly smaller than the input signal, which means that the output

at each point depends only on the neurons which are within the window size of the

kernel. This local window size that the kernel can see is known as the receptive field

(RF) of the kernel, and it is important because it determines the size and complexity

of the features that the kernel can detect. Larger kernels have larger receptive fields,

allowing them to capture more global features of the input image, while smaller kernels

can capture more local features [31]. CNNs perform much better than fully connected

networks on standard computer vision tasks because they are designed to exploit the

spatial structure of images and capture local patterns and features between nearby

pixels. Moreover, CNNs have been shown to learn very hierarchal representations.

In the initial layers, learned kernels typically detect simple patterns such as edges

and colors. These low-level features are combined in subsequent layers to form more

complex patterns, such as shapes and textures. As the input image is processed

through deeper layers of the network, the effective receptive field (ERF) of the network

increases, allowing the kernels to capture increasingly more complex and abstract

concepts [32].

31



Presently, CNNs exhibit state-of-the-art performance on a wide range of computer

vision tasks such as image classification [33, 34, 35, 36], semantic segmentation

[37, 38, 39], image enhancement [40, 41], etc. More recently, these methods have also

been applied to the medical imaging sector, where they have been used successfully for

tasks such as tumor segmentation [42, 43, 44, 45, 46], prediction of mutation status

for gliomas [47], and automatic grading of gliomas [48].

2.2 Training Deep Learning Models for Medical Imag-

ing

2.2.1 The Risk of Overfitting

When training a neural network, it is common practice to monitor both the training

and validation performance. The inflection point where training performance still

improves but validation performance starts to decrease is the beginning of model

overfitting. For a neural network to generalize well to unseen data, it is generally

agreed upon that the training set must be large and diverse in order to allow the neural

network to effectively model the entire distribution [49]. This is especially important

when there exists only subtle differences between imaging phenotypes, as one might

see on non-contrast imaging, or if there exists significant heterogeneity in the input

data, as one might see when utilizing multi-institutional datasets. Unfortunately, large

quantities of high quality ground truth annotations for medical image segmentation

tasks do not always exist, resulting in small sample sizes which will adversely affect

the generalizability of the model [50, 51, 52].

Improving the generalizability of a neural network (which can be approximately

framed as reducing the amount of overfitting on the training set) is a well-studied

problem and many solutions have been proposed with varying degrees of success. The

first class of solutions involves changes to the model itself. For example, overfitting

can be mitigated by reducing the overall capacity of the model (which is accomplished

by decreasing the depth, width, or connectivity of the network) [53]. Other techniques
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include the addition of dropout layers or explicit constraints on the kernel weights of

the network through weight decay or L1/L2 regularization [54, 55, 56]. While these

generic approaches can yield expressive networks that are satisfactorily generalizable,

they are not necessarily optimal because they are not tailored towards any specific

task or input dataset.

2.2.2 Data Augmentation

Data augmentation is the process of increasing the diversity of inputs seen by a

neural network by generating randomly transformed versions of the given training

set. Augmentation methods can be broadly stratified into two categories: spatial and

intensity transformations. Spatial augmentations include random cropping, flipping,

rotations, scaling, shearing, aspect ratio modifications, and elastic deformations;

intensity augmentations include random shifts in brightness, contrast, saturation, and

hue. Recent results have shown that correct use of data augmentation can significantly

improve performance on both the training and validation sets [57, 58, 59]. However,

data augmentation methods require expertise and manual work to design policies

that capture prior knowledge in each domain. A simple example can be seen in digit

recognition, where large rotations can potentially be non-label preserving (e.g. a 180°

rotation of a “6” will create a “9”, thus creating false training examples). Unsurprisingly,

it follows that incorrect data augmentation may in fact lead to worse performance, as

highly distorted/corrupted generated samples lower the signal-to-noise ratio and force

the network to learn representations not indicative of the true data distribution [60].

To address this shortfall, learned augmentation policies such as AutoAugment and

RandAugment have emerged and have shown remarkable success in classic computer

vision tasks [61, 62]. A key insight from these studies is that the optimal amount of

augmentation is dependent on both the model and input dataset size, with smaller

models and smaller datasets requiring weaker augmentation policies.

Unfortunately, many of these studies focus solely on 2D image classification

problems, ignoring the unique challenges faced in 3D segmentation tasks. For instance,

many intensity augmentations that have shown efficacy in RGB imaging cannot be
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applied to grayscale MR. Moreover, due to data constraints, even the largest datasets

for medical image segmentation would be considered extremely small in the computer

vision sector. Some studies have looked at augmentation on medical imaging, but are

generally not comprehensive. Specifically, these studies tend only to look at the effects

of simple transformations utilized in isolation instead of assessing the effect of policies

that combine multiple spatial and intensity transformations together [63, 64, 65, 66].

2.2.3 Utilization of Other Datasets to Improve Performance

The goal of supervised machine learning is to learn highly robust and generalizable

representations of the input data. When human-annotated labels are scarce, models

are unable to learn robust representations, leading to brittle solutions. In the absence

of the ability to learn high-quality representations due to dataset size, three main

approaches exist: pre-training, self-supervised training, and self-training.

Since many computer vision tasks are similar in nature, it is expected that repre-

sentations learned on one dataset are transferable to another. Under this assumption,

pre-training is the action of training on a large, diverse dataset in order to learn

representations which can then be fine-tuned on the dataset of interest [67]. In

contrast, self-supervised learning relies only on unlabeled data to learn visual rep-

resentation. Trivially generated labels are created through a pretext task, and a

network is trained on these automatically acquired labels [27]. Pretext tasks can be

as simple as predicting the amount of rotation applied to an image, or predicting

the relative positioning between two patches from an image. The best approaches

leverage data in a task-agnostic way, so as to ensure learned representations are not

tailored to any specific task. To that end, current state-of-the-art methods focus on

contrastive learning, where the network is simply tasked with distinguishing whether

two images are augmented versions of each other [68]. The final paradigm is known

as self-training, where a network trained on the task of interest is used to generate

pseudo-labels on a separate set of unlabeled data. Following this, a new network is

trained from scratch using both the pseudo-labels on the auxiliary dataset and the

true labels on the original dataset [69].
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While it is well-known that pre-training can produce impressive performance gains

in situations where collecting sufficient labeled data is difficult, less is known about how

it interacts in the presence of data augmentation [69, 70]. Furthermore, more recent

research calls into question the utility of pre-training across domains (i.e. pre-train

on classification task, fine-tune on object detection), showing that pre-training across

domains confers no advantage (and may in fact be disadvantageous) [67]. Similar

issues have been brought up regarding self-supervised learning. Moreover, all state-

of-the-art self-supervised methods require millions of unlabeled images in order to

effectively learn visual representations, an intractable hurdle in medical imaging[68, 28].

Self-training on the other hand has been shown to be beneficial across dataset sizes

and augmentation strengths, and is additive on top of pre-training [69]. To the best

of our knowledge, only pre-training has been extensively studied with regards to

medical imaging, and the potential benefits stemming from proper application of joint

pre-training and self-training has not been explored.

2.2.4 Loss Functions

A loss function is some quantitative measure of the compatibility/similarity between

a prediction (what the network outputs) and the ground truth label [19]. During the

training process, the weights of the neurons in the network are updated based on

the value of the loss function. A large loss implies that the output of the network

is very different from what is desired, and as such, the weights of the neurons will

change dramatically. Over time, we expect the average loss to go down as the network

converges towards the desired result. There are many reasons why a network may not

converge (including too high or low of a learning rate for gradient descent, too few

parameters, too much regularization, etc.), but often the simplest explanation is that

an improper loss function was used. In fact, two dissimilar loss functions can cause

otherwise identical networks to have very stark differences in performance.

In general, different tasks require different loss functions (cross-entropy for classi-

fication, mean squared error for regression, dice loss for segmentation, etc.). Cross

entropy is given by the following equation:
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𝐻(𝑝, 𝑞) = −𝐸𝑝[𝑙𝑜𝑔(𝑞)] (2.1)

where p is the true distribution (i.e. ground truth) and q is the predicted distribu-

tion. Dice score coefficient (DSC) is an intersection over union metric given by the

following equation:

𝐷𝑆𝐶(𝑝, 𝑞) =
2
∑︀

𝑝𝑞∑︀
𝑝+

∑︀
𝑞

(2.2)

which measures the degree of overlap between the ground truth shape and predicted

shape [71]. DSC ranges from 0 to 1, with 1 representing a perfect overlap. To use

as a loss function, we subtract the DSC from 1. For most binary (or multi-class)

segmentation tasks, dice loss is the preferred loss function since it exhibits fast

convergence and very high accuracy in practice. For example, high precision automatic

brain tumor segmentation has been accomplished using dice loss [72].

However, it is important to note that dice loss is an aggregate measure (i.e. for

each patient we receive a single loss value), as opposed to a per-pixel loss (such

as cross-entropy). This means that as the structure of interest grows larger, small

mistakes matter less as they are averaged out across the patient. Overall, this implies

that while dice loss handles singular, compact structures such as large tumors very

well, it does not provide the accuracy nor the resolution to segment large, intricate

structures such as vessel trees. Furthermore, it is not equipped to handle small objects

well, since DSC is an unstable metric for small objects. In lieu of using dice loss,

performance gains can be realized via the use of specialized loss functions, such as

focal loss or boundary-weighted loss, which work by down-weighting easily classified

examples [73, 74].

Indeed, the optimization of neural networks in the setting of highly imbalanced data

is a challenging task and area of active research. Consider an MRI of a patient with

metastatic brain lesions. After applying skull-stripping to remove all but brain tissue,

the average size of the volume is about 135 x 165 x 135. Out of these approximately

three million voxels, only between 100 and 10000 are tumor. This extreme class
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imbalance makes training of large models impossible without the use of dedicated

sampling heuristics, complex model architectures, or custom loss functions [75, 76, 73].

2.3 Image Segmentation Methods

Image segmentation can be broadly split into two categories: semantic segmentation

and instance segmentation [77, 78]. In semantic segmentation, each pixel in the image

is given a unique class label. For most medical tasks such as tumor segmentation,

this tends to be binary decision between labeling pixels as normal and abnormal. In

instance segmentation, each detected object receives its own unique label. In our

previous example, this would mean each individual tumor in the image would receive

a different class label. An example of semantic vs. instance segmentation for a patient

with brain metastases is shown in figure 2-2. Most common methods for segmentation

provide only semantic level outputs, and the majority of the work in this thesis does

indeed surround semantic segmentation. For this purpose, the following review will

focus mainly on such methods, but it is important to note that instance segmentation

methods do exist and are becoming more popular with advances in DL.

2.3.1 Classical Approaches

There are a variety of historical approaches to image segmentation and we can loosely

categorize them as thresholding based, clustering based, region based, and atlas based.

While some of these are now out-dated, many are still actively used and can still

provide near state-of-the-art results.

Thresholding Based Approaches

The simplest method for binary segmentation involves splitting the image into two

parts at a predefined intensity value, with the goal being to separate the background

and foreground classes. One can choose this threshold manually or automatically.

Otsu’s method is a simple approach to automatically choosing this intensity threshold,

whereby if we assume the distribution of background and foreground classes is bimodal,
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Figure 2-2: Semantic vs. instance segmentation. A) We show an example of
semantic segmentation of a patient with brain metastases. The three distinct lesions
are all given the same label (shown in green in this figure). B) We show an example
of instance segmentation for the same patient. Now, each of the three lesions is
delineated with a unique label, allowing us to more easily identify the distinct objects
(e.g. metastases) for this patient.

we can choose a threshold such that we minimize intra-class intensity variance (or

equivalently maximize inter-class intensity variance) [79]. In cases where there is

some non-uniform lighting across the image, a global threshold may not work well,

necessitating the use of locally adaptive methods [80].

Clustering Based Approaches

Clustering based approaches, such as k-means and Gaussian mixture models (GMM),

can be used to split an image into more than two classes [81]. To use a GMM, one

begins by randomly initializing 𝑛 Gaussians, where 𝑛 refers to the number of desired

classes. These randomly initialized Gaussians are then iteratively updated via the

expectation maximization (EM) algorithm which finds the maximum a posteriori

(MAP) estimates of the Gaussian parameters [82]. For example, this approach can be
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used to quickly and efficiently segment a brain into three compartments (white matter,

gray matter, and CSF). Since clustering based approaches use only the underlying

intensity and do not incorporate spatial information, it is often prudent to apply a

conditional Markov random fields (cMRF) to spatially smooth the segmentations [83].

Region Based Approaches

Region based approaches utilize both the underlying image intensities as well as taking

into account the spatial relationship of nearby pixels. When objects are a known,

fairly smooth shape, active contour models (also known as "snakes") are popular [84].

A contour is initialized loosely about the region that needs to be segmented. This

contour is then acted upon by internal and external forces that seek to balance how

much curvature is allowed in the contour against the intensity gradients in the image.

Graph cut based approaches are equally popular, and can be used to segment an

image into any predesignated number of classes [85]. By marking down "seed" pixels

for each class, the model seeks to find the boundary that maximizes the inter-class

intensity gradient. By taking advantage of optimized graph network algorithms, these

approaches can be extremely fast in practice [86].

Atlas Based Approaches

If a representative template case exists with all desired classes already segmentated,

atlas-based approaches can be used to map the segmentation from the template onto

the new image. This mapping can be done in numerous ways, with the most common

being via a fully derformable transformation. The Advanced Normalization Tools

(ANTs) package [87], has a popular (and highly effective) implementation of atlas

based segmentation in the form of the Atropos algorithm [88].

2.3.2 Deep Learning Approaches

There is a wealth of research in DL based image segmentation of natural images

[89, 90, 91, 92]. We note that the majority of these methods are designed for 2D
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images, with relatively less research being done for 3D cases [93]. For the purpose of

this background section, we will focus mainly DL based approaches for 3D medical

imaging.

Figure 2-3: Schematic of a U-Net. This sample U-Net is composed of 5 levels,
with each layer having 2 convolutional blocks. Layers are seperated by downsampling
operations (i.e. max pooling, average pooling, strided convolution ), or upsampling
operations (i.e. trilinear interpolation, deconvolution). Skip connections between the
two arms of the network helps propagate gradients and allows the network to shortcut
deeper layers as needed.

Perhaps the largest body of segmentation literature as it relates to medical imaging

is that for primary brain tumors. This is mainly due to the availability of the large

multi-institutional publicly available BraTS dataset [94, 95, 96, 97, 98]. In recent years,

3D U-Net architectures [99] have consistently dominated the BraTS leaderboards and

are the current state-of-the-art method for brain tumor segmentation [100, 101, 102].

Briefly, a U-Net is composed of an encoder, which contracts the input image

down to a lower-dimensional representation, and a decoder, which expands the lower-

dimensional representation back to the original input image size. The encoder is

composed of a series of blocks separated by downsampling operations. Each block is

composed of one or more convolution operations (along with associated normalization

and activation). The decoder is composed in an identical manner, with upsampling
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operations used in lieu of the downsampling. The difference between a U-Net and a

standard encoder-decoder set-up is the addition of skip connections, which allows the

network to backpropagate gradients more easily. An example of a U-Net is shown in

figure 2-3.

Myronenko won the 2018 BRATS challenge utilizing an asymmetrical residual

U-Net, where most of the trainable parameters of the model resided in the encoder.

Furthermore, in contrast to the standard U-Net framework which uses four or five

downsampling operations in the encoder, he applied only three in order to preserve

spatial context [45]. Other modifications to the U-Net structure have also been

used with success. Jiang et al. won the 2019 challenge using a two-stage cascaded

asymmetrical residual U-Net, where the second stage of their cascade was used to

refine the coarse segmentation maps generated by the first stage [103]. The second

place that year was awarded to Zhao et al., who utilized dense blocks along with

various optimization strategies such as variable patch/batch size training, heuristic

sampling, and semi-supervised learning [104]. It is important to note that while

architectural modifications to the U-Net can provide performance boosts, they are not

always necessary. Indeed, Isensee et al. won the 2020 challenge with their architecture

coined ”No New-Net”, highlighting that a vanilla U-Net coupled with excellent training

and optimization strategies can still achieve state-of-the-art results. Moreover, they

achieved an average testing set dice score of 88.95% for whole tumor segmentation,

achieving segmentation performance indistinguishable from human experts [101]. in

2021, a team from Nvidia took this one step further by running a large set of ablation

studies to figure out which components of the U-Net architecture were most important

for segmentation. Notably, while most networks use 5 or at most 6 levels, they find

that going deeper to 7 levels improved performance [102]. Nvidia also took the second

spot in 2021, with a similar U-Net based approach [105].

With such strong competition results, it is thus unsurprising that U-Nets are used

for most medical image segmentation projects [106]. For these reasons, all of the

segmentation work in this thesis use 3D U-Nets as well.
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2.4 Image Registration Methods

There is extensive literature in image registration and it can be broadly be split into

two categories: non-learning based and learning-based. We begin by explaining some

terminology and then provide a brief overview of relevant methodology.

2.4.1 Registration Problem

Given a fixed and a moving image, the goal of image registration is to find a mapping

such that the moving image is transformed into the fixed image [107]. This mapping

can be parameterized as either a linear or non-linear transformation, and can be done

in either 2D or 3D. Registration can be uni-modal (MRI to MRI), multi-sequence

(T1-post to FLAIR), or multi-modal (PET to CT).

2.4.2 Linear Transformations

A linear transformation (also known as an affine transformation) is composed of a set

of rotations, translations, scales, and shears [108]. For 2D registration, there are 7

parameters total: one rotation parameter 𝑟𝑜𝑡, 2 translation parameters 𝑡𝑟𝑎𝑛𝑠𝑥 and

𝑡𝑟𝑎𝑛𝑠𝑦, 2 scale parameters 𝑠𝑐𝑎𝑙𝑒𝑥 and 𝑠𝑐𝑎𝑙𝑒𝑦, and 2 shear parameters 𝑠ℎ𝑒𝑎𝑟𝑥 and

𝑠ℎ𝑒𝑎𝑟𝑦. These parameters can be combined together into a single transformation as

follows:

𝐴𝑓𝑓𝑖𝑛𝑒2𝐷 =

⎡⎢⎢⎢⎣
cos(𝑟𝑜𝑡) − sin(𝑟𝑜𝑡) 0

sin(𝑟𝑜𝑡) cos(𝑟𝑜𝑡) 0

0 0 1

⎤⎥⎥⎥⎦ *

⎡⎢⎢⎢⎣
𝑠𝑐𝑎𝑙𝑒𝑥 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦

*

⎡⎢⎢⎢⎣
1 0 0

0 𝑠𝑐𝑎𝑙𝑒𝑦 0

0 0 1

⎤⎥⎥⎥⎦ *

⎡⎢⎢⎢⎣
1 𝑠ℎ𝑒𝑎𝑟𝑥 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦ *

⎡⎢⎢⎢⎣
1 0 0

𝑠ℎ𝑒𝑎𝑟𝑦 1 0

0 0 1

⎤⎥⎥⎥⎦

*

⎡⎢⎢⎢⎣
1 0 𝑡𝑟𝑎𝑛𝑠𝑥

0 1 0

0 0 1

⎤⎥⎥⎥⎦ *

⎡⎢⎢⎢⎣
1 0 0

0 1 𝑡𝑟𝑎𝑛𝑠𝑦

0 0 1

⎤⎥⎥⎥⎦

(2.3)
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We note that because matrix multiplication is not commutative, the order which

we apply the individual transformations matters. For example, a rotation followed

by a translation is not the same as a translation followed by a rotation. For 3D

registration, there are 15 parameters total: three rotation parameter 𝑟𝑜𝑡𝑥, 𝑟𝑜𝑡𝑦, and

𝑟𝑜𝑡𝑧, 3 translation parameters 𝑡𝑟𝑎𝑛𝑠𝑥, 𝑡𝑟𝑎𝑛𝑠𝑦, and 𝑡𝑟𝑎𝑛𝑠𝑧, 3 scale parameters 𝑠𝑐𝑎𝑙𝑒𝑥,

𝑠𝑐𝑎𝑙𝑒𝑦, and 𝑠𝑐𝑎𝑙𝑒𝑧, and 6 shear parameters 𝑠ℎ𝑒𝑎𝑟𝑥𝑦, 𝑠ℎ𝑒𝑎𝑟𝑥𝑧, 𝑠ℎ𝑒𝑎𝑟𝑦𝑥, 𝑠ℎ𝑒𝑎𝑟𝑦𝑧, 𝑠ℎ𝑒𝑎𝑟𝑧𝑥,

and 𝑠ℎ𝑒𝑎𝑟𝑧𝑦. Combining the individual transforms into a 3D affine matrix follows

similarly to the 2D case.

In order to apply an affine transformation matrix to an image, it is first converted

into a dense displacement vector field (DVF). Letting 𝑛 be the number of dimensions

in your image, at each coordinate in the vector field, a vector of length 𝑛 defines

how far the pixel at that point will move. An interpolation algorithm is used to

interpolate the resultant grid points, giving the newly transformed image. An example

of various affine transformations (along with the associated DVFs) is shown in figure

2-4. Grid lines are overlaid on each image in the figure. Since affine transforms are

purely linear, all gridlines remain straight and parallel with each other. We note that

translation, rotation, and shearing are area preserving transforms. More specifically,

the determinant of the matrix representing those transforms is 1, indicating no volume

change. This is of course not the case for scale transforms, which are the only affine

component that can change a structures volume. This can be visualized in the figure

by noting that that the area of each gridline box in the scale transformed image is

larger than it is in the other three.

Linear registration is a necessary part of the medical imaging pipeline [109, 110].

The most common use cases are to co-register images acquired at different patient

timepoints (e.g. baseline to follow-up) or different viewpoints (e.g. the same patient

images at slightly different positions or using different modalities, scanners, or proto-

cols). For instance, for brain tumor imaging, it is routine to acquire T1-post contrast,

T1-pre contrast, T2, and FLAIR imaging sequences, as they provide different, but

complementary information about the tumor.
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Figure 2-4: 2D affine transformations with displacement vector fields. A) A
sample brain image is shown with an identity DVF. Grid lines are overlaid on top to
visualize how the transform affects the underlying grid. B) An example of translation
in the positive 𝑥 and 𝑦 directions. C) An example of counterclockwise rotation about
the origin. D) An example of scaling up the image anisotropically. E) An example of
shearing along the 𝑥 axis.

2.4.3 Non-linear Transformations

While a linear transformation can be represented as an affine matrix (or a DVF),

a non-linear transformation (also known as a deformable transformation) can only

be represented as a DVF [111]. This is because deformable transforms can move

pixels independently of each other, meaning there is no global transform being applied.

While deformable transformations can represent any type of one-to-one mapping,

they are often constrained in certain ways to ensure that the output image remains

recognizable after being deformed. Spatial smoothness constraints on the DVF can

prevent physiologically impossible transformations such as folding or creasing. To

quantify this, the jacobian, which is a vector of the 𝑛 first-order partial derivatives

of the DVF, can be calculated, with the determinant of the jacobian at each point

defining the local volume change [112]. A negative jacobian determinant at a specific

point indicates that the transformation locally at this point resulted in a fold. An

example of a deformable transformation (along with the associated DVF) is shown in

figure 2-5. Looking at the deformably moved image, it is clear to see that the gridlines
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are no longer straight and parallel to each other, with some areas experiencing volume

growth and others volume shrinkage. Because of our DVF is spatially smooth, the

jacobian determinant is non-negative everywhere.

Figure 2-5: 2D deformable transformation with displacement vector field. A)
A sample brain image is shown. Grid lines are overlaid on top to visualize how the
transform affects the underlying grid. B) An example of a deformably transformed
image. The gridlines are no longer straight and parallel to each other, showing how
different parts of the image are experiencing different local volume changes. C) The
associated DVF of the deformable transformation.

Non-linear registration has many use-cases in medical imaging, especially when

large deviations are expected between images [113]. For instance, aligning images from

different patients in order to create a template atlas requires deformable methods. Even

for intra-patient registration, large deviations can be seen due to disease progression,

respiratory effects, and/or weight gain/loss, among other things.

2.4.4 Sequential Image Registration

Sequential refers to solving lower complexity transforms before higher complexity

transforms. In other words, a purely affine transformation is computed first before

solving for the deformable transformation. While the deformable registration can

in theory represent both linear and non-linear transformations simultaneously, the

optimization problem becomes significantly more difficult and may even become

intractable. An example of sequential image registration is shown in figure 2-6. In
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this example, a fixed and moving image are separated by some unknown linear and

non-linear transformation. First, we find the purely linear transformation separating

these two cases. As we can see in the figure, some combination of rotation and

translation (with a small bit of anisotropic scaling) is enough to approximately match

the two images. Using this affinely aligned image as initialization, we subsequently

run deformable registration. The final output image exactly matches the fixed image,

indicating a high quality registration. While perfect deformable registration may be

possible with synthetically shifted images, it is less likely on real-world data. This is

especially true when there are large differences between images, such as those stemming

from anatomical abnormalities (i.e. tumors, diseases, surgical insertions/removals,

etc.).

2.4.5 Non-Learning Based Registration

Given a fixed and a moving image, classical registration approaches perform a gradient

descent based numerical optimization to iteratively align pixels from the moving

image onto the fixed image to improve a chosen similarity metric (e.g. mean squared

error (MSE), normalized cross correlation (NCC), etc.). The learned transformation

can be either linear or non-linear, depending on one’s use case. To alleviate this

numerical optimization problem (which even for linear transforms can get stuck

at poor local minimas for anatomically complex images), classical methods often

employ a sequential and pyramidal hierarchy. Pyramidal refers to a multi-scale

approach wherein the transformation is first computed at a coarser image scale and is

progressively updated at finer image scales [114]. We note that due to the iterative

nature of these classical algorithms, they can be quite computationally intensive.

Indeed, deformable registration of 3D brain MR imaging can take upwards of one to

two hours on CPU per image pair. There are many classical registration algorithms

for deformable registration, including but not limited to B-splines [115], Demons

[116], Large Diffeomorphic Distance Metric Mapping (LDDMM) [117], and Symmetric

Normalization (SyN) [118]. The SyN algorithm from the ANTs package [119] is the

current gold standard as it is generally regarded as the best classical deformable
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Figure 2-6: Affine and deformable image registration example. Our goal is to
register the moving image to the fixed image. We solve this sequentially, starting with
a purely affine registration. We then use the affinely moved image as initialization
for the deformable registration algorithm, which computes the final registration and
associated DVF.

registration algorithm [120].

2.4.6 Learning Based Registration

Newer methods utilize neural networks to learn a function for (affine and/or deformable)

registration. This can be advantageous because each image pair can be fully registered

with one forward pass of the network, which will take only a few seconds on GPU. DL

based affine registration networks are usually formulated as a supervised regression

problem. Chee et al. use a Siamese style encoder to directly predict the affine

transform matrix [121]. Islam et al. uses a similar regression approach, but focuses

on cross-modality registration [122]. DL based deformable registration networks can
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either be trained in a supervised or unsupervised manner. While earlier approaches

like that from Sokooti et al. required ground truth DVFs to train the network [123],

newer approaches tend to be fully unsupervised. Dalca et al. proposed a U-Net based

diffeomorphic registration model they named VoxelMorph (VXM) [124]. Building off

this approach, Mok et al. utilized a pyramidal architecture to improve the quality

of the registration [125]. However, they did not incorporate feature sharing at the

different levels of the pyramid, resulting in redundant parameters. de Vos et al.

devised a network to sequentially perform affine and deformable registration, but their

deformable registration was based only on b-spline grids [126]. Christodoulidis et al.

also performed both affine and deformable registration, but their approach was neither

sequential nor pyramidal [127].

2.5 Adrenal Gland Segmentation

Incidental adrenal masses are common in adults, with an estimated prevalence ranging

from 3% to 7% [128, 129, 130]. Abnormalities of the adrenal gland can generally

be categorized as either hyperfunctioning or nonfunctioning masses [130]. Hyper-

functioning lesions produce an excess of hormones (cortisol, aldosterone, epinephrine,

etc. depending on the specific abnormality), causing chemical imbalance in the body.

Conversely, nonfunctioning masses produce no significant change in hormone levels,

but cause visible enlargement of the gland. It is important to note that the lack of

function does not immediately rule out malignancy. For patients with some form of

adrenal abnormality, an estimated 80% are benign and non-functioning, thus never

affecting the patient over the course of their lifetime [131]. Insufficient attempt to

separate clinically relevant from insignificant disease leads to over-diagnosis, which

can lead to increased stress and anxiety, potential harm stemming from unnecessary

diagnostic procedures, and substantial financial burden to the patients [132]. Thus,

the primary goal of management of incidentally found adrenal masses is to correctly

identify the masses that are either 1) malignant or 2) hyperfunctioning in order to

spare the majority of patients from requiring further treatment [132].
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Identification of potentially suspicious lesions can be done by assessing various

radiographic and clinical features in tandem. Briefly, lesions that are large (>4cm),

growing (compared to previous time points), have irregular boundaries, and exhibit

contrast enhancement are more likely to be malignant. Clinical information including

previous/current history of cancer can inform decision making as well. Qualitative

assessment of features such as boundary irregularity is highly subjective, leading to

inconsistent decision making. Literature regarding robust automated quantitative

assessment of adrenal masses is sparse, and to the best of our knowledge, only one

study has looked at automated adrenal mass segmentation (and it utilized MR instead

of the much more commonly acquired CT) [133].

2.6 Brain Metastases Segmentation

Brain metastases are among the most common intracranial lesion in adults, with an

estimated 170,000 new cases diagnosed in the US every year [134, 135]. Historically,

overall survival for patients was low, but recent advances in systemic and targeted

therapeutics has improved prognosis and prolonged time to neurologic dysfunction

[134]. In this context, effective analysis of longitudinal MR is one of the backbones for

assessing tumor response in patients with brain metastases [136]. In current clinical

practice, patients receive surgery, radiation, and/or chemotherapy, and undergo MR

scans at regular intervals throughout their therapy. To assess efficacy of the current

treatment regimen, neuroradiologists track individual lesion sizes across time points

[137]. If non-negligible enlargement of metastatic lesions is noticed overtime, a different

treatment option may be needed. However, as many patients can have more than 10

lesions, manual delineation of all metastatic lesions is prohibitively time-consuming.

As a result, most radiographic response criteria, including the RANO-BM, restrict

response assessment to a select number of target lesions [136]. This fails to capture

the full extent of the disease burden and can miss changes over time in non-target

tumors. In addition, manual segmentation is subject to large amounts of inter-rater

variability and metastases can range from less than 0.1 mL (i.e. micro-metastases) to
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greater than 10.0 mL while having varied shapes/structures (from spherical to highly

irregular), making consistent outlining challenging [138]. To better capture the full

intracranial disease burden, automatic segmentation approaches can be used. Due to

the aforementioned variability in size and shape of lesions, current automatic methods

suffer from either poor detection of micro-metastatic lesions or high false positive rates

(in order to capture micro-metastatic lesions) [139, 140].
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Chapter 3

Adrenal Gland Segmentation and

Classification

Incidental adrenal masses are common in adults, with an estimated prevalence of about

6%. Despite standardized reporting systems and strict guidelines for the definition of

an adrenal mass, there exists significant inter-rater variability for this task. While

over-diagnosis can lead to unnecessary clinical workups and follow-up examinations,

under-diagnosis risks missed detections of clinically significant disease. In this chapter,

we discuss a novel deep learning algorithm that segments adrenal glands on contrast-

enhanced CT images and classifies them as either normal or mass-containing. We

assess both automated segmentation and classification performance, and present an

exploratory analysis on the amount of inter-rater variability present in clinical practice.

3.1 Introduction

Adrenal masses are common, occurring in 6% of the population in an autopsy series and

approximately 4% of all abdominal CT examinations [141, 142]. In patients without a

history of cancer, the vast majority of adrenal masses that are detected incidentally

at cross-sectional examinations are benign [143, 144]. However, some masses may

require additional characterization with use of imaging (adrenal mass protocol CT,

MRI, PET/CT, or follow-up examinations), biochemical evaluation, biopsy, or surgical
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excision depending on the size, imaging features, and hormonal activity [132, 145, 146].

When an adrenal mass is detected, subsequent recommendations on whether additional

testing is needed is often determined by whether the mass is new, enlarging, or stable

compared with prior imaging. Given that management is dependent on accurate

interpretation of prior imaging, decreasing radiologist variability for adrenal mass

detection may reduce ambiguity and unnecessary follow-up.

Machine learning has been proposed as a strategy to help automate image analysis

and improve diagnostic performance [147]. Supervised machine learning algorithms

require accurate annotation by labeling and/or contouring of the anatomic structure

of interest. To reduce the substantial interreader variation in manual contouring

of anatomic structures, automated segmentation approaches are becoming more

commonplace for medical tasks. There have been recent machine learning methods

to automate segmentation of abdominal organs at both CT and MRI [148, 149,

150, 151, 152, 153]. However, there has been less research performed specifically on

adrenal segmentation methods [154, 155]. Additionally, only a few studies have used

machine learning approaches for adrenal mass characterization [156, 157]. Therefore,

there is a need for greater standardization regarding adrenal gland segmentation and

classification.

The purpose of this study was to create a machine learning algorithm that accurately

segments and differentiates normal glands from those containing masses at contrast-

enhanced CT and to assess algorithm performance. Examples of adrenal glands are

shown in figure 3-1. As can be seen, glands can present with many different shapes

and sizes, making the differentiation of normal from mass a difficult task.

3.2 Materials and Methods

This retrospective study was compliant with the Health Insurance Portability and

Accountability Act and was approved by our institutional review board; the need for

informed consent was waived.
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Figure 3-1: Examples of adrenal glands on CT imaging. Adrenal glands can
take on many different shapes and sizes, with some examples shown here.

3.2.1 Development, Secondary, and Tertiary Test Data Sets

This study included two groups of patients who underwent portal venous phase

abdominal CT at Massachusetts General Brigham (MGB), a large academic health

system that performs nearly 2 million radiology examinations annually. The first

group (hereafter referred to as the development data set) comprised consecutive portal

venous phase contrast-enhanced CT examinations from January 1 to January 5, 2012

(figure 3-2). Patients with an adrenal mass were excluded. The development data set

was intentionally enriched with additional CT examinations that depicted adrenal

masses to increase the proportion of adrenal masses in the training data set. These

additional examinations were identified with use of a natural language processing

tool (NLP) to search for the word “adrenal” in the Impression section of contrast-

enhanced abdominal CT reports from January 1 to December 31, 2012. These reports

were manually reviewed and the corresponding images were verified to confirm the

presence of an adrenal mass larger than 10 mm in the short axis. The study sample

selection strategy was based on prior experience training segmentation neural networks.

Specifically, a training sample of at least 200 examinations was desired to ensure

a robust and generalizable network, with an additional 25 examinations apiece for

validation and testing. In addition, a large number of examinations with adrenal

masses were required to ensure good performance of the model. Thus, the development
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data set included 170 normal examinations and 104 examinations depicting an adrenal

mass.

Figure 3-2: Inclusion and exclusion criteria flowchart. A) Development data set
flowchart. Three images were excluded due to annotation issues. B) Secondary test
set flowchart. Fifty images were excluded due to series selection issues, and 25 images
were excluded due to being follow-up imaging.

The second group (hereafter referred to as the secondary test set) consisted of

consecutive portal venous phase contrast-enhanced CT examinations performed from

November 1 to December 31, 2019. Duplicate patients were excluded from this group.

Basic demographic data were collected from the electronic health record (Hyperspace,

Epic). Including both the development and secondary test group, 251 of 1242 patients

have been previously reported in a prior study [158].

A final group (hereafter referred to as the tertiary test set) consisted of consecutively

acquired imaging with no exclusions. This dataset was mainly used to assess interreader

classification variability during routine clinical practice.

3.2.2 CT Acquisition

Examinations were performed on a variety of different multi–detector row CT scanners

(Siemens Somatom Definition AS, Somatom Definition AS+, Somatom Force, and

Somatom Perspective and Toshiba Aquilion One) during the study period. All
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examinations used a fixed delay of 70 seconds following intravenous contrast material

administration, and the series selected were typically acquired with a kilovoltage

peak of 120 at inspiration. Tube current modulation was used, and axial section

reconstruction was 5 mm. The intravenous contrast agent was iohexol (Omnipaque,

GE Healthcare). Patients weighing less than 150 pounds (68 kg) received 75 mL, and

patients weighing 150 pounds or more received 100 mL.

3.2.3 Image Annotation

All CT examinations were viewed and annotated in a commercially available picture

archiving and communications system (Visage Imaging, version 7.1.15). Radiologists

were blinded to clinical history and patient information. For 264 examinations from the

development set, adrenal gland segmentation was performed by one of five radiologists

(one resident [B.D.], one abdominal imaging fellow [C.R.W.], and three fellowship-

trained radiologists [D.I.G., B.C.B., and W.W.M-S., with 6, 12, and 28 years of

experience, respectively]). On the remaining 10 examinations, all five radiologists

performed adrenal segmentation of 19 glands (one surgically absent) to measure

interreader variability.

3.2.4 Adrenal Classification

Masses were defined by the radiologists as space-occupying lesions not conforming to

the normal shape of the adrenal gland and measuring 10 mm or greater in the short

axis, an example of which is shown in figure 3-3 [132]. If the patient had undergone

an adrenalectomy, the side was marked as “resected” and was not segmented. Adrenal

classification (normal or mass) for the development set was provided by one of five

radiologists. Classification for the secondary set was provided by one of two board-

certified, fellowship-trained abdominal radiologists (D.I.G. or W.W.M-S.) to serve as

a reference standard. The largest-diameter circle that would fit completely within the

ground truth segmentation was calculated for the development set of 274 examinations.

This automatic diameter measurement was compared with the radiologist classification,
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noting the percentage of radiologist-classified normal adrenal glands with diameter

measurements 10 mm or greater and masses less than 10 mm.

Figure 3-3: Examples of adrenal masses. A) Adrenal masses must not conform
to the normal shape of the adrenal gland. In this example, a nodule is visible on the
lateral limb of the gland. B) Adrenal masses should measure 10 mm or greater in
short axis. In this example, a large mass is visible.

3.2.5 Machine Learning Algorithm

Our adrenal mass detection and classification pipeline included two stages. First, a

three-dimensional segmentation convolutional neural network U-Net [99] was used to

identify the pixels in the full CT examination volume that represented the adrenal

glands. Second, a cropped area around each adrenal gland was passed to a three-

dimensional classification convolutional neural network, DenseNet [159], which pre-

dicted whether or not the input image contained an adrenal mass. An overview

of the full process is shown in Figure 3-4. The source code for this study can be

found at https://github.com/QTIM-Lab/AdrenalMGB-Version-1. The code identifier

is AdrenalMGB-Version-1. Full details about the machine learning algorithm follow in

the subsequent sections.
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Figure 3-4: Overview of the adrenal segmentation and classification process.
An axial CT series is preprocessed and passed to a U-Net for segmentation of the
adrenal glands. Regions of interest (ROIs) are cropped around the adrenal glands,
extracted, and passed to a classification network to determine whether the gland
contains a mass.

Image Preprocessing

To mitigate variability between patients stemming from differences in imaging protocols,

we apply the following preprocessing steps. First, to reduce the field of view, space was

cropped from around the body in all images by thresholding the CT image at −500

Hounsfield Units (HU), followed by a series of morphologic hole-filling operations to

extract a smooth contour of the body. The body cropped series was then resampled

to a fixed voxel spacing of 1× 1× 5mm, and finally windowed using the level/width

setting of 70/370 HU, a setting that visualizes soft tissue well. Window level setting

is an important step in CT interpretation and is used by radiologists to enhance the

visualization of certain pathologies [160, 161]. In figure 3-5, we show an example CT

with and without soft-tissue windowing. It is significantly harder to discern boundaries

between different soft-tissue structures in this image than it is in the windowed image.

The left adrenal gland in particular is difficult to visualize when no windowing is

applied.

Segmentation CNN Architecture

We used a five-level 3D U-Net [99] which takes the windowed CT image as input and

outputs a binary map delineating the adrenal glands. Each level in the down-sampling

and up-sampling paths of the network is composed of two convolution blocks defined

as follows: 3× 3× 3 convolution -> group normalization operation [162] -> nonlinear
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Figure 3-5: Example of CT image with and without windowing. (A) A non-
windowed CT image. While it is possible to make out the major anatomical organs
such as the liver, the difference in contrast between soft-tissue structures is low. (B)
After applying a level/width setting of 70/370 Hounsfield Units (HU), we can discern
anatomical boundaries much better. Indeed, the adrenal glands in particular are easier
to identify.

activation function (ReLU) [163]. Feature map down-sampling and up-sampling is

accomplished through strided convolution (with stride of 2) and trilinear interpolation,

respectively. To ensure our model learns sufficient anatomic context to correctly

localize the adrenal glands, we train our network on patches of size 224× 224× 32

voxels (the median size of the preprocessed CT images is 392.5 × 283 × 90 voxels).

Our network uses 32 filters in the convolutions in the first level, and we double the

number of filters in each level as we go deeper into the network. Group Normalization

(with group size of 16) [162] was used in lieu of Batch Normalization (BN) [164] to

alleviate the effects of the small batch size necessary to train a 3D model on large

patches. To encourage faster convergence and ensure that deeper layers of the decoder

are learning semantically useful features, we employ deep supervision by integrating

segmentation outputs from different levels of the network [165, 104].

Segmentation CNN Optimization

Due to the significant class imbalance present in the dataset (the ratio of segmented

adrenal gland voxels to background is ≈ 0.02%), we use biased sampling procedures

during training. Specifically, we sample patches from the series such that 50% of
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patches contain segmented adrenals, and force all batches to contain at least one

adrenal patch. Training was performed with a batch size of 2 using the stochastic

gradient descent optimizer with decoupled weight decay and momentum set to 0.9 [56].

We progressively decrease the learning rate and weight decay using a cosine anneal

schedule with an initial learning rate and weight decay of 0.2 and 0.00002, respectively.

These values are decreased by a factor of 200 over the course of approximately 500

epochs. The loss function is the unweighted sum of the DSC loss and cross-entropy

loss. To mitigate overfitting, we apply real-time data augmentation during the training

process. Specifically, spatial transformations included random anisotropic scaling (0.75

to 1.35), rotations (−20∘ to 20∘), shearing (−0.20 to 0.20), and translations (−20 to

20 pixels) around all three axes, as well as random elastic deformations. Intensity

augmentation in the form of gamma correction (.85 to 1.15) was also used, after HU

intensity windowing. All augmentations were applied with probability of 0.5, with the

exception of elastic deformations, which were applied with probability of 0.1.

Segmentation CNN Inference

We trained a total of 5 segmentation networks as detailed above and used these 5

networks as an ensemble. Since the CT volumes are significantly larger than our

training patch size, we adopt a sliding window approach, where each tile is equal

to our training patch size (224 × 224 × 32) and adjacent tiles overlap by a certain

amount. Greater patch overlap improves segmentation quality at the cost of greater

computational burden. Since the adrenals cover only a very small portion of the CT

volume, we first run a coarse segmentation with a patch overlap of 10% to localize the

adrenal glands. A high patch overlap of 85% in that small region of interest is then

used to refine the predicted segmentation. On average, inference for the ensemble

using this approach takes 3 minutes per patient.

Segmentation CNN Postprocessing

Simple postprocessing was applied to ensure that only the two largest connected

components remain, which were then split into separate right and left adrenal masks.
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These masks were subsequently centered and cropped to an 80× 80× 24 bounding

box and then passed into the classification CNN detailed below.

Classification CNN Architecture

We used a modified 3D DenseNet architecture [159] which takes a windowed CT image

and the predicted segmentation mask from the previous network of size 64× 64× 16

as input and outputs a probability that the adrenal gland contains a mass. A layer

in the network was defined as follows: 1× 1× 1 convolution -> BN [164] -> ReLU

[163] -> 3× 3× 3 convolution -> BN -> ReLU. The full network is comprised of 4

dense bottleneck blocks, with 8, 8, 16, and 32 layers in the first, second, third, and

last block, respectively. The growth rate 𝑘 of all layers in the network was 32 and

the bottleneck convolution reduces the number of input feature maps to 4𝑘 maps.

Transition layers between the blocks used max pooling [166].

Classification CNN Optimization

A class imbalance was also present for this task, with the ratio of masses to normal

glands being approximately 22:100. To mitigate this effect, we oversample from

the positive class each epoch, reducing the class imbalance to approximately 38:100.

Training was performed with a batch size of 16 using the stochastic gradient descent

optimizer with decoupled weight decay [56] and momentum set to 0.9. We progressively

decreased the learning rate and weight decay using a cosine anneal schedule with an

initial learning rate and weight decay of 0.1 and 0.0005, respectively. These values

were decreased by a factor of 250 over the course of approximately 250 epochs. The

loss function was the weighted binary cross-entropy loss, where the relative weight of

the positive class to the negative class was 4. The same data augmentations used to

train the segmentation network were used here.

Classification CNN Inference

We trained a total of five classification networks as detailed above and use these five

networks as an ensemble. Test time augmentation is applied by generating 32 distinct
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patches of size 64× 64× 16 from the 80× 80× 24 input images, and averaging across

the network outputs. On average, inference for the ensemble using this approach takes

about 4 seconds per adrenal gland for each patient.

3.2.6 Image Mosaics

To more quickly visualize model outputs, we create mosaic images. Specifically, after

running both the segmentation and classification models, we take the centered and

cropped bounding boxes of size 80× 80× 24 and plot each z-slice of the image into

a rectangular montage image. We also draw an automatically computed maximum

diameter measurement onto the mosaic image. To calculate this maximal diameter

measurement, we start by taking the euclidean distance transform (EDT) [167] of the

2D segmentation on each z-slice of the mosaic, given by:

𝐸𝐷𝑇 (𝑥) = min
𝑦∈𝑌

‖𝑥− 𝑦‖22 (3.1)

where 𝑌 is the set of all points on the boundary of the segmentation mask, and

𝑥 ∈ 𝑋, where 𝑋 is the set of all points inside the boundary of the segmentation

mask. The maximal value of 𝐸𝐷𝑇 (𝑥) indicates the radius of the largest circle that

can be inscribed into the shape. We find the largest such circle across all 24 z-slices

of the mosaic, and draw that onto the mosaic. These diameter measurements are

important since size is correlated with abnormality. Glands with maximal diameters

greater than 10mm are more likely to be a mass than glands with diameters less than

10mm. Example mosaics are shown in figure 3-6. Panel (A) shows a right sided normal

adrenal gland (with maximal diameter measurement of 8.9mm) and panel (B) shows

a left sided adrenal mass (with maximal diameter measurement of 15.6mm).

3.2.7 Statistical Analysis

The primary outcomes were (a) agreement of the algorithm segmentation of the adrenal

glands compared with radiologist-generated contours and (b) ability of the algorithm to

classify adrenal glands as normal or mass-containing. Model segmentation performance
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Figure 3-6: Example mosaic images of a normal gland and an adrenal mass.
(A) Right sided normal adrenal gland. (B) Left sided adrenal mass of approximately
15.6mm. Adrenal glands are contoured in yellow. Largest diameter measurement
(which if greater than 10mm is indicative of an adrenal mass) is contoured in red.

was evaluated with use of the Dice similarity coefficient (DSC) [71]. A two-sample t

test was used to compare interreader DSC with model DSC. A DSC of 1.0 represents

complete overlap between the ground truth and model segmentations, and a DSC of

0.0 represents no overlap. Model classification performance was evaluated with use of

sensitivity and specificity, with radiologist categorization as the reference standard.

Cohen 𝜅 was used to measure agreement between the radiologist and model while

accounting for the possibility of agreement occurring by chance [168]. All statistical

analyses were performed using Python 3.6.9 [169]. Statistically significant difference

was set at P ≤ .05.

3.3 Results

3.3.1 Patient and Data Set Characteristics

Patient demographics and data set characteristics are summarized in Table 3.1.

The development set consisted of 170 consecutive contrast-enhanced abdominal CT
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examinations without adrenal masses performed at MGB. This group was then enriched

with an additional 107 examinations that depicted adrenal masses identified using NLP,

excluding cases with adrenalectomy, nephrectomy, significant anatomic or post-surgical

changes, and/or extreme imaging artifact. Three examinations identified with use

of natural language processing were excluded for importation issues. This results in

a final development set of 274 non-consecutive contrast-enhanced CT examinations

acquired as 5 mm thick axial slices in 251 patients from 1/1/2012 to 3/7/2017. This

development dataset was intentionally enriched with CT examinations that contained

adrenal masses to increase the proportion of adrenal masses in the training dataset

above the relatively low population incidence of 4 − 6%. This development cohort

included 433 normal adrenal glands (208 left and 225 right) and 104 masses (59 left

and 45 right). Eleven glands were surgically absent (7 left and 4 right), and 12 patients

had bilateral adrenal masses. The 274 CT examinations were divided into a training

set of 214 CT examinations (78.1%), validation set of 25 CT examinations (9.1%),

test set of 25 CT examinations (9.1%), and separate interreader test set of 10 CT

examinations (3.6%) (figure 3-2). This patient cohort was drawn from a prior machine

learning study performed to evaluate a different set of parameters [158]. To ensure

that there was no artificial inflation of performance metrics due to data leakage, the set

was split at the patient level. Specifically, if a patient had more than one examination,

they were included only in a single data set (i.e., the training, validation, or test data

sets) and not multiple data sets.

A total of 1066 consecutively acquired examinations performed at MGB from

11/1/2019 to 12/31/2019 were extracted for use as the secondary test set. Fifty

examinations were subsequently excluded for incorrect axial section thickness (other

than 5 mm) or dual-energy CT technique. This set consisted of 427 males and 589

females, with a median age of 62 years (IQR 50−72 years). In this set, there were 1,951

normal adrenal glands (967 left and 984 right), and 76 masses (45 left and 31 right).

Five glands were surgically absent (4 left and 1 right), and 9 patients had bilateral

adrenal masses. In the resulting data set, 25 examinations were performed in duplicate

patients, so the second examination was deleted, resulting in 991 examinations in
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991 unique patients. As this set was not enriched with adrenal masses, incidence of

adrenal masses was 3.8%, compared with 19.1% in the development set.

Table 3.1: Patient demographics and adrenal mass parameters in the development set
and secondary test set.

Development Development Development Development Secondary
Characteristic Training Set Validation Set Test Set Interreader Set Test Set

Patient Characteristics

No. of patients 196 23 24 8 991
No. of women* 105 (54) 14 (61) 10 (42) 4 (50) 578 (58)
Median age† 61 (52 - 69) 59 (51 - 73) 64 (53 - 75) 54 (46 - 64) 62 (72)

Examination Characteristics

No. of CT examinations 214 25 25 10 991
No. of normal adrenal glands 343 37 37 16 1902
No. of adrenal masses 78 11 12 3 75
No. of adrenal resections 7 2 1 1 5

Gland Characteristics

Left mass 46 6 6 1 44
Left normal 164 18 18 8 943
Left resected 4 1 1 1 4
Right mass 32 5 6 2 31
Right normal 179 19 19 8 959
Right resected 3 1 0 0 1
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

A final tertiary dataset of 3064 consecutively acquired examinations (with no

exclusions) was extracted. This dataset was also not enriched with adrenal masses,

resulting in an incidence rate of 4.5%.

3.3.2 Segmentation Results

On the development test set of 25 CT examinations, the median DSC was 0.81 (IQR,

0.76− 0.90) for left masses and 0.80 (IQR, 0.78− 0.88) for left normal glands. The

median DSC was 0.85 (IQR, 0.83− 0.88) for right masses and 0.82 (IQR, 0.78− 0.89)

for right normal glands. Combining left and right, the median model DSC was 0.80

(IQR, 0.78 − 0.89) for the 37 normal glands and 0.84 (IQR, 0.79 − 0.90) for the 12

adrenal masses. Among the 10 CT examinations segmented by all five radiologists,

the segmentations created by the different radiologists were shown to be similar.

Annotations of an example case are shown in figure 3-7. Median interreader DSC
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ranged from 0.77 to 0.94 for all CT examinations (table 3.2), with a median of 0.89

(IQR, 0.78− 0.93) for normal adrenal glands and 0.89 (IQR, 0.85− 0.97) for adrenal

masses. Median model-reader DSC ranged from 0.81 to 0.88 for all scans, with a

median of 0.87 (IQR, 0.82−0.89) for normal adrenal glands and 0.85 (IQR, 0.85−0.93)

for adrenal masses. The interreader DSC was not different than the model-reader

DSC (𝑃 = .35), indicating that the segmentation performance of the machine learning

algorithm did not differ significantly from that of the radiologists.

We note rater specific bias for segmentation on this development interreader dataset.

Specifically, we observe that certain raters tend to either always under- or over-segment

relative to the others. In figure 3-8, we see that rater W.W.M-S. generally under-

segments while rater C.R.W. generally over-segments. We hypothesize that differences

in experience level and training between raters can lead to such internal biases. We

also observe that the model segments near the mean of the group, indicating that it

learned to perform within the bounds of radiologist ground truth.

Table 3.2: Median interreader and reader-model DSCs for 19 adrenal glands in the
development interreader set.

Reader No. Reader 2 Reader 3 Reader 4 Reader 5 Model

0.89 0.82 0.91 0.90 0.87Reader 1 (0.58− 0.98) (0.67− 0.97) (0.80− 0.97) (0.75− 0.99) (0.77− 0.94)
1 0.77 0.94 0.91 0.87Reader 2 (0.52− 1.00) (0.59− 0.99) (0.61− 1.00) (0.55− 0.93)

1 0.80 0.79 0.81Reader 3 (0.67− 0.99) (0.60− 0.99) (0.74− 0.93)
1 0.92 0.88Reader 4 (0.74− 0.99) (0.74− 0.93)

1 0.88Reader 5 (0.66− 0.93)
Note — Data are DSCs, with minimum and maximum values in parentheses.

3.3.3 Classification Results

With use of the enriched development test set of 25 CT examinations, the optimal

binarization threshold (the threshold at which the distinction between mass and no
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Figure 3-7: Example interreader variability in adrenal gland segmentation
compared with the model. Contrast-enhanced axial CT images show the normal
left adrenal gland of a 45-year-old woman. (A-E) Segmentations of the same adrenal
gland as created by the five radiologists. (F) Segmentation created by the model.
Some variability was observed across the segmentations, with reader 3 producing the
largest segmentation and reader 2 the smallest.

mass is made) was determined to be 0.189, which was the operating point at which the

model made the fewest errors in predicting if a gland was normal or mass-containing.

At this threshold, the model correctly classified four of six left masses, 15 of 18 left

normal glands, six of six right masses, and 18 of 19 right normal glands. In total,

10 of 12 masses were correctly classified, and 33 of 37 normal glands were correctly

classified, yielding an overall sensitivity and specificity of 83% (95% CI: 55, 95) and

89% (95% CI: 75, 96), respectively. The area under receiver operating characteristic

curve (AUROC) was 0.94.

AUROC and area under precision-recall curve (AUPRC) metrics for the secondary
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Figure 3-8: Radiologists exhibit internally consistent biases for segmentation
of adrenal glands. This scatter plot shows five expert radiologists segmenting the
same set of 19 adrenal glands. Raters exhibit internal consistency in under- and over-
segmentation, with B.D. and W.W.M-S. having the smallest segmentation volumes
and B.C.B and C.R.W having the largest. D.I.G. and the model both produced
segmentations with volumes near the mean.

test set were 0.89 and 0.41, respectively (figure 3-9). Using the aforementioned optimal

binarization threshold for the enriched development set on the secondary test set, the

model correctly classified 33 of 44 left masses, 810 of 943 left normal glands, 19 of

31 right masses, and 924 of 959 right normal glands. In total, 52 of 75 masses were

correctly classified, and 1734 of 1902 normal glands were correctly classified, yielding

an overall sensitivity and specificity of 69% (95% CI: 58, 79) and 91% (95% CI: 90, 92),

respectively. The 𝜅 was 0.31, indicating fair agreement. Model performance metrics

at different operating points are presented in table 3.3, with the observation that as

the binarization threshold approached 0.0, the model sensitivity became higher at the
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expense of specificity and model-reader agreement. Examples of model segmentation

and classification successes and failures are shown in figures 3-10 and 3-11.

Figure 3-9: Receiver operating characteristic curve and precision-recall curve
for the secondary test set of 991 CT examinations. The dots indicate the
thresholds chosen to showcase sensitivity-specificity trade-off for our classification
model. AUPRC = area under the precision-recall curve, AUROC = area under the
receiver operating characteristic curve.

Table 3.3: Classification model performance on the secondary test set of 991 CT
examinations with use of varying thresholds.

Threshold Sensitivity (%) Specificity (%) Precision Cohen 𝜅

0.050 77 (58/75) 81 (1546/1902) 0.14 0.18
0.100 73 (55/75) 87 (1661/1902) 0.19 0.25
0.150 72 (54/75) 90 (1703/1902) 0.21 0.29
0.189 69 (52/75) 91 (1734/1902) 0.24 0.31
0.250 60 (45/75) 93 (1777/1902) 0.26 0.33
0.300 59 (44/75) 95 (1800/1902) 0.30 0.37
Note — Data in parentheses are number of CT examinations.

The results comparing the radiologist classification of masses with the automatic

diameter measurements of the same 274 examinations using radiologist ground truth

segmentations is shown in figure 3-12. These results show that automatic diameter

measurements from the radiologist segmentations measured a mass (≤ 10mm) in 119
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Figure 3-10: Segmentation and classification examples. (A-B) Segmentation
example shows contrast-enhanced axial CT images in a patient from the development
test set with a normal right adrenal gland and a left adrenal mass. (A) shows
the ground truth radiologist segmentation, and (B) shows the model segmentation
prediction of the glands. For this examination, the model achieved a Dice score of
0.90 for the normal right gland and 0.94 for the left adrenal mass. (C-F) Classification
example shows contrast-enhanced axial CT images of four different left adrenal glands
classified by a radiologist: two normal and two containing a mass. The red outline
demonstrates the model segmentation, and the yellow circle represents an automated
diameter measurement in millimeters of the potential mass. The segmentations in (C)
and (E) show correct model inferences for a mass and a normal gland, respectively.
The segmentation in (D) shows a false-negative result wherein the model predicted
no mass, but the radiologist classified it as a mass. The segmentation in F shows a
false-positive result wherein the model predicted a mass, but the radiologist classified
it as no mass.

of 414 adrenal glands (29%) classified as normal by the radiologists. Conversely, two

adrenal glands classified as having a mass by the radiologists did not exceed 10 mm

according to the radiologist segmentations.
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Figure 3-11: Extra examples of model segmentation and classification. (A-B)
show examples of true positives. (F-G) show examples of true negatives. (C-D, H-I)
show examples of false negatives. (E, J) show examples of false positives.

Figure 3-12: True diameter measurements of normals and masses. Bar graph
shows ground truth diameter measurement versus true class label (normal vs adrenal
mass) defined by the radiologists and distribution of adrenal glands according to the
automated diameter measurements. Adrenal glands that were labeled as normal by the
radiologists are in blue, whereas those labeled as containing a mass by the radiologists
are in red. Note the overlap of the distributions, suggesting that classification of
adrenal mass by size alone is inadequate.
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3.3.4 Interreader Analysis

We further assess interreader variability for segmentation and classification on a small

subset of the primary dataset. In particular, raters W.W.M-S. (who is an attending

radiologist) and C.R.W. (who was a resident when performing this study for us)

both segmented and classified 42 examinations (84 adrenals). For this subset, we

note significant variability in both segmentation volumes (p<0.001) and detection

of adrenal masses (p<0.001), with rater C.R.W. over-segmenting and over-calling

masses compared to rater W.W.M-S (figure 3-13). Two example adrenal glands are

shown in figure 3-14. Here, rater C.R.W. (in blue) over-segments compared to rater

W.W.M-S. (in orange). Moreoever, C.R.W. classifies both as adrenal masses compared

to W.W.M-S. who classifies them as normal. This is a well-known phenomena in

medicine, where newer doctors tend to make more mistakes than more established

and experienced doctors [170].

The sensitivity for mass detection on the secondary dataset is relatively low (only

69%). Our ground truth for this dataset was generated by two attending radiologists

who interpreted the imaging specifically for this study. As all our data comes from

clinical imaging at MGB, these images were already interpreted by a radiologist

in the past, with the prior radiologist’s read of the image stored in a structured

patient radiology report. We manually collected this prior read of the image in order

to compare it with our fresh read of the image. We find that there is significant

variability in the reporting of adrenal masses (p<0.001). In total, either one or

both radiologists classified a gland as a mass in 104 of 1982 glands. However, both

radiologists only agreed in 53 of 104 (51%) of cases that a mass was present. In the

remaining 51 of 104 (49%) of cases, only one of the two radiologists reported the

presence of an adrenal mass. Examples of disputed adrenals are shown in figure 3-15.

3.3.5 Tertiary Dataset Analysis

There is significant cost involved in manually curating ground truth class labels for

large-scale datasets, especially in the setting of low-prevalence diseases. In routine
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Figure 3-13: Interreader variability in segmentation and classification of
adrenal glands. Two readers segmented and classified a set of 84 adrenals. Reader
1 (in blue) is a resident and reader 2 (in orange) is an attending doctor. This plot
shows the volume of the segmented adrenals and the classification provided by the two
readers. Reader 1 over-called 8 masses compared to reader 2, indicating substantial
variability for the detection of adrenal masses.

clinical care, radiologists interpret medical imaging and write findings into a structured

radiology report. In lieu of manually extracting class labels from radiology reports (or

making a fresh read of the imaging), natural language processing (NLP) algorithms

trained to read reports can be used to cheaply provide weak class labels. For our

tertiary dataset, non-resected adrenal glands were weakly classified as normal or mass

by the AdrenoBERT NLP model. If there was a discrepancy in the class label between

the NLP read of the radiology report and the prediction by our classification model,

an expert radiologist adjudicated the case, verifying that the AdrenoBERT correctly

interpreted the report as well as making a fresh read of the CT. This fresh, adjudicated

read was used as the gold-standard ground truth.

The AdrenoBERT and image classification models produced discrepant results on

686 of 6128 (11.2%) adrenals, which were henceforth adjudicate manually. Against
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Figure 3-14: Example of interreader variability between two expert radiolo-
gists. Reader 1 (in blue) is a resident and reader 2 (in orange) is an attending doctor.
Reader 1 over-segments these two adrenals compared to reader 2. Moreover, reader 1
calls both of these adrenals as mass whereas reader 2 calls both of these as normal.

the gold-standard, our imaging classification model had a sensitivity, specificity, and

precision of 86%, 90%, and 30%, respectively. We also report an AUROC of 0.93 and

an AUPRC of 0.65, visualized in figure 3-16.

Against the original radiology report, we report rates of 81%, 90%, and 25%,

respectively. The difference in reported sensitivity and precision is indicative of

significant interreader variability for the task of adrenal gland classification (p<0.001).

73



Figure 3-15: Interreader variability for the classification of adrenal masses.
Detecting adrenal masses in clinical practice can be challenging. We note only 51%
agreement for the presence of an adrenal mass. Examples of disputed masses is shown
in the right panel of the figure.

Figure 3-16: ROC and PRC for the tertiary dataset. Against the gold standard,
our image classification model shows an AUROC and AUPRC of 0.93 and 0.65,
respectively.

Against weak NLP labels, we report rates of 71%, 90%, and 23%, respectively. The

estimate of imaging model performance when using weak NLP labels is moderately
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lower than when using gold-standard labels, indicating that there is scope to refine

the AdrenoBERT model in future studies.

3.4 Discussion

Adrenal masses are common, but radiology reporting and recommendations for manage-

ment can be variable. This study demonstrated that a machine learning algorithm can

accurately segment adrenal glands and differentiate between normal glands and those

containing masses. The segmentation model was able to reliably segment images of the

adrenal glands, with performance similar to manual segmentations from radiologists,

as evaluated with use of the Dice similarity coefficient (DSC). There was moderate

interreader agreement between the five radiologists performing segmentations, with

DSC ranging from 0.77 to 0.94 on the same 19 adrenal glands. The model DSC fit

within this variation, ranging from 0.81 to 0.88.

For the classification task of differentiating normal adrenal glands from masses, the

model reached a sensitivity of 69% and a specificity of 91% on the secondary test set

of 991 CT examinations. Qualitative assessment of the glands that were not classified

correctly revealed that most of the errors were due to a failure of the classification

model (presence or absence of an adrenal mass) rather than failure in the segmentation

model (outlining the adrenal gland). For example, only six of 23 false-negative results

(algorithm reports no mass, but the radiologist classified an adrenal mass) in the

consecutive test were attributed to segmentation failures (i.e., the adrenal mass was

not correctly outlined, resulting in downstream classification errors).

Comparison of radiologist classification of a mass with the automatic diameter

measurements shows the nuance and variability of radiologists defining an adrenal

mass. These measurements were made on the same images, using radiologist manual

segmentations as the reference standard. A total of 119 of 414 examinations (29%)

classified as normal by the radiologists had diameters of 10mm or greater, highlighting

the complexity in determining what is and is not a mass, and that solely relying on

a deterministic 10mm diameter decision boundary is insufficient. Alternatively, it is
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possible that radiologists themselves demonstrate great variability in defining masses

and could benefit by having assistance from a more standardized algorithm [171].

Given how much variability exists between radiologists in differentiating small masses

from normal glands, it is not surprising that our classification model produced errors

even in instances of highly accurate automatic segmentation.

Our results are promising given that the adrenal gland is an inherently challenging

organ to segment compared with larger organs (such as the liver and kidneys), as these

glands are small and change in position due to respiration, and their shape, size, and

location can vary by laterality and patient. In addition, adrenal glands have soft-tissue

attenuation at CT that is similar to that of adjacent structures, including the liver,

pancreas, kidneys, and vasculature. In patients with a paucity of intra-abdominal fat,

the adrenal glands may be even more challenging to delineate from adjacent structures

without the contrasting fat around the glands to separate them from other structures.

Finally, there may be external mass effect on the glands, for example from an adjacent

liver cyst or mass.

There have been several prior studies investigating the ability of a machine learning

algorithm to automatically segment adrenal masses [133, 155, 172, 173]. Saiprasad

et al. [155] reported an initial effort to use random forest classification to detect the

adrenal glands and determine if an adrenal abnormality was present. This small study

consisted of 20 adrenal glands in 10 patients and demonstrated a 79.9% sensitivity and

99% specificity for classifying the adrenal glands compared with manual segmentation.

Building upon this approach, Koyuncu et al. [133] used an automated pipeline in 32

adrenal tumors and achieved a sensitivity of 86% and a specificity of 99%. Both of

these studies evaluated substantially smaller patient samples than our study and used

different machine learning methods.

3.5 Limitations

Our study has limitations. First, this was a single-center retrospective study, and

model performance at other sites or when the model is used in a prospective manner is
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uncertain. Second, images of adrenal glands in the development set were segmented by

one of five different radiologists, including trainees, which may have led to increased

variation in manual segmentation compared with expert annotation and/or consensus

of multiple radiologist segmentations of the same scan. Third, we used an overall

definition of an adrenal mass as being 10 mm or greater in the short axis. Although

this is the accepted definition for incidental adrenal nodules, functional masses or

metastases may be smaller than 10 mm. In figure 3-17, an example of two very

similar adrenal glands is shown. However, the adrenal on the right is an example of

a hyperfunctioning adrenal mass that is smaller than 10 mm. Our model was not

trained to identify and classify such cases, thus accidently mis-classifying it as normal.

Fourth, although we evaluated the performance of the model at the level of individual

glands, adrenal glands are almost always paired structures. This may have introduced

bias. Our study did not have histopathologic examination as a reference standard,

and it is possible that what was considered a mass at imaging was actually normal

and vice versa. Last, the impact of imaging characteristics, such as CT attenuation,

on mass identification were not assessed.

Figure 3-17: Example of a small hyperfunctioning adrenal mass. Our model
was not trained to detect small hyperfunctioning adrenal masses, which can often be
smaller than 10 mm. Even though both adrenals in the figure are similar, the adrenal
on the left is normal while the adrenal on the right is hyperfunctioning.
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3.6 Conclusion

In conclusion, we propose a two-stage machine learning pipeline to automatically

segment the adrenal glands at contrast-enhanced CT and then classify the glands as

normal or mass-containing. This tool may be used to assist radiologists in accurate

and expedient image interpretation and potentially decrease interreader variability.

Future work is needed to improve the classification stage of our model, as well as

expand on the scope of the classification task by reviewing prior imaging and assessing

for mass stability or growth.
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Chapter 4

Metastatic Brain Tumor Segmentation

and Longitudinal Tracking

Effective analysis of longitudinal MR is one of the backbones for assessing tumor

response in patients with brain metastases. Currently, manual delineation of all

metastases is not only prohibitively time-consuming, but subject to significant inter-

rater variability. As a result, most radiographic response criteria, including the

Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria,

restrict response assessment to a select number of target lesions, failing to capture

the full extent of the disease burden and potentially missing longitudinal changes in

non-target tumors. In this chapter, we discuss a deep learning based approach for

brain metastases segmentation on MRI, and validate model performance across lesion

sizes. Moreover, we automate standard response assessment classification and quantify

model uncertainty, highlighting a potential method to automatically identify false

positives and other mistakes.

4.1 Introduction

Brain metastases (BM) are the most common form of intracranial tumors in adults,

affecting around 20% of all cancer patients [174, 175, 176]. This number is expected

to increase as systemic treatments for primary tumors improve [134, 177, 178]. Even
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following standard treatment regimen of surgery and/or stereotactic radiation, median

survival post diagnosis of BM ranges from 2.7 to 24 months [134]. The current standard

to determine treatment response and assess tumor progression in clinical trials is

the Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria,

which is based on (i) uni-dimensional measurements of a specific number of target

lesions (enhancing lesions with diameter ≤ 10 mm), and (ii) qualitative assessment of

non-target lesions from contrast-enhanced magnetic resonance imaging (MRI) [179].

However, the manual determination of tumor boundaries needed for uni-dimensional

measurements can be challenging when there is heterogeneous contrast enhancement,

tumor boundaries are diffuse, or when contrast relative to surrounding normal brain

parenchyma is blunted due to treatment effects, resulting in significant inter- and

intra-rater variability [180]. As such, there has been interest in developing automated

methods for segmentation and response assessment to improve reproducibility and

reduce provider burden in performing RANO-BM measurements.

Although uni-dimensional measurements are currently used as a measure of tumor

burden, they may represent an incomplete measure when tumors are irregularly shaped.

Furthermore, because only qualitative evaluation is made of non-target lesions, there is

inherent subjectivity in their assessment. Smaller, non-target lesions may be neglected

or missed due to the lack of quantitative emphasis. Thus, volumetric assessment of

both target and non-target lesions represents a more comprehensive measure of tumor

burden. This is reflected in a recent consensus paper on brain tumor imaging in clinical

trials, which noted volumetric analysis as an important mode of improvement [181].

However, this has not been adopted in routine practice due to the labor intensive task

of manual segmentation, especially when brain metastases are numerous. Indeed, 47%

of patients have more than one BM, with 41% of patients having 4 or more metastases

[182, 183]. Examples of brain metastases of different sizes and number is shown in

figure 4-1. An automated tool for longitudinal volumetric tracking of brain metastases

that is integrated into the radiographic analysis pipeline could help facilitate the use of

tumor volume as a response endpoint in clinical trials. Furthermore, integration into

the clinical workflow can assist physicians with real-time treatment decision-making.
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Figure 4-1: Examples of brain metastases. Brain metastases can present with a
wide range of shapes and sizes. Panels A, B, and C show examples of large, medium,
and small metastases, respectively.

With advances in machine learning techniques, deep learning has become the state-

of-the-art approach for lesion segmentation within medical imaging [184, 185, 186,

100]. Recent work has shown the potential of deep learning for volumetric response

assessment in primary gliomas [187, 188] and other studies have used deep learning to

automatically segment brain metastases [140, 189, 190, 191, 192, 193, 194]. A major

limitation of these prior studies on brain metastases is that they were performed on a

single patient visit without comparison to subsequent visits. In the setting of single

tumors, this approach works but in the setting of multiple BM, being able to track

multiple unique tumors longitudinally is critical.

In this study, we developed a pipeline for automatic segmentation of brain tu-

mor metastases, with validation on two independent patient cohorts. Notably, we

modify the neural network loss function to emphasize tumor boundaries, improving

segmentation performance. Using an ensemble of networks, we also derive voxel-wise

and lesion-wise uncertainties, enabling us to identify potential model mistakes. We

also automate the quantification of measurable tumor burden as given by the RANO-

BM criteria. Finally, we developed an algorithm to perform longitudinal tracking of

individual lesions and automatic growth rate characterization.

81



4.2 Materials and Methods

4.2.1 Primary and Secondary Patient Cohorts

This study was conducted following approval from the Partners Institutional Review

Board. All patients met the following criteria: i) histopathologically or clinically

confirmed BM and ii) available MPRAGE-post imaging sequence with mild to no

motion/ringing artifacts. A primary dataset was constructed from a set of 46 pa-

tients (118 timepoints total) participating in a clinical trial of pembrolizumab from

Massachusetts General Hospital (MGH) (NIH clinical trial ID: NCT02886585 [195])

and 36 patients (64 timepoints) participating in a clinical trial of cabozantinib from

MGH (NIH clinical trial ID: NCT02260531 [196]). Pembrolizumab patients were

used as the training set, with cabozantinib patients equally split into validation and

testing cohorts. A secondary dataset comprised of 148 patients (885 timepoints to-

tal) from Brigham and Women’s Hospital (BWH) who were undergoing stereotactic

radiosurgery treatment was retrospectively acquired from April 2004 to November

2014. This dataset was not used for model development and served as an independent

testing set. All patient examinations were viewed and annotated in Slicer3D [197].

For the primary dataset, manual segmentations of the contrast-enhancing lesions were

performed by a board-certified neuro-oncologist with 10+ years’ experience. For the

secondary dataset, segmentations were first manually segmented by a neuro-oncologist

and then manually edited by a board-certified neuro-radiologist with 16 years’ experi-

ence. To better understand how model performance varied as a function of metastasis

volume, each dataset was sub-divided into groups of consisting of small (< 125mm3),

medium (≥ 125mm3 and < 1000mm3), and large (≥ 1000mm3) metastases. To better

understand how model performance varied as a function of number of metastases,

each dataset was sub-divided into groups of consisting of few (< 4), multiple (≥ 4 and

< 10), and many (≥ 10) metastases. Full dataset characteristics are found in Table

4.1.
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Table 4.1: Patient demographics and metastatic lesion characteristics for primary and
second cohorts.

Primary Primary Primary Secondary
Characteristic Training Set Validation Set Test Set Test Set

Patient Characteristics

No. of patients 46 18 18 148
No. of women* 40 (N/A) 18 (100) 18 (100) 94 (64)
Median age† 59 (N/A) 50 (N/A) 50 (N/A) 61 (54 - 68)

Examination Characteristics

No. of MR examinations 118 32 32 885
No. of small lesions 604 154 258 3161
No. of medium lesions 385 172 247 1367
No. of large lesions 182 53 43 722
No. with few lesions 44 6 5 546
No. with multiple lesions 34 14 9 235
No. with many lesions 40 12 18 104

Primary Cancer Type

Lung* 7 (N/A) 0 (0) 0 (0) 77 (52)
Breast* 20 (N/A) 18 (100) 18 (100) 28 (19)
Melanoma* 5 (N/A) 0 (0) 0 (0) 27 (18)
Gastrointestinal* 0 (N/A) 0 (0) 0 (0) 6 (4)
Renal* 1 (N/A) 0 (0) 0 (0) 5 (3)
Other/Unknown* 7 (N/A) 0 (0) 0 (0) 5 (3)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.
(N/A) means data was not available.

4.2.2 Deep Learning Segmentation Algorithm

Our segmentation model is a 3D U-Net [99] which takes a high-resolution T1-weighted

contrast-enhanced (T1-CE) sequence image as input and outputs a probability map of

the likely brain metastases. Full details about the network architecture and training

optimization is described below.

Pre-processing

To mitigate variability between patients stemming from potential differences in imaging

protocols, we apply the following pre-processing steps. First, we resample all data
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to 1mm isotropic resolution and skull strip using ROBEX [198]. To compensate for

intensity inhomogeneity, we apply N4 bias correction [199] and normalize the image

intensities to have zero mean, unit variance (based on non-zero intensity voxels only).

Finally, all volumes are tightly cropped to remove empty voxels (background intensity)

outside the brain region.

Network Architecture

Guided by successful approaches from previous brain tumor segmentation work [101],

we utilize a symmetrical 3D U-Net [99] architecture as the backbone for our model.

A schematic of this architecture is shown in figure 4-2. We devise a 6 level U-Net

which takes a T1-weighted contrast-enhanced (T1-CE) sequence image as input and

outputs a probability map of the likely brain metastases. This probability map is then

binarized to create a label map using a threshold of 0.5. To ensure our model learns

both adequate anatomic context and rich representations under the constraints of GPU

memory, we use 32 filters in the 3x3x3 convolutions in the first layer, and double this

number of filters as we go deeper into the network. Feature map downsampling and

upsampling is accomplished through strided convolution and trilinear interpolation,

respectively. Instance Normalization [200] in lieu of Batch Normalization [164] is used

in order to accommodate the smaller batch size necessary to train a large patch 3D

model [101]. Rectified linear unit (ReLU) [163] activation was used in all layers, with

the exception of the final sigmoid output. And to encourage faster convergence and

ensure that deeper layers of the decoder are learning semantically useful features, we

employ deep supervision [165] by integrating segmentation outputs from all but the

two deepest levels of the network.

Loss Function

In order to maximize the Dice Similarity Coefficient (DSC) [71] between the ground

truth label map p and predicted label map q, we use the following implementation of

soft dice loss:
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Figure 4-2: Schematic of U-net architecture. We devise a 6 level U-net which
takes a T1-weighted contrast-enhanced (T1-CE) sequence image as input and outputs
a probability map of the likely brain metastases.

ℒ𝐷𝑆𝐶(p, q) = 1− 2
∑︀

𝑝𝑞 + 𝜖∑︀
𝑝+

∑︀
𝑞 + 𝜖

(4.1)

where 𝜖 is used to prevent floating point instability when the magnitude of the

denominator is small (set to 1).

We complement the soft dice loss with cross-entropy loss, which we find enables

more refined segmentation outputs. To handle the large class imbalance present in this

segmentation task, we apply a boundary-reweighting term to the cross-entropy loss

[201]. This reweighting map is created as follows. First, all ground truth label maps

are binarized and converted into edge images. Next, the euclidean distance transform

(a simple example of which is shown in figure 4-3) of these edge images is computed to

produce a raw distance map, where the value at each voxel quantifies how far it is from

the boundary of a metastasis. This map is subsequently inverted and rescaled such

that voxels on the boundary are weighted 6 times more than voxels far away from the

boundary. This ensures that easily classified voxels (such as those containing normal

tissue distal to the tumor) are given less importance than the difficult to classify voxels
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(both foreground and background) near the peripheries of the metastases. An example

of a reweighting map is shown in figure 4-4. This boundary-weighted cross-entropy

loss ℒ𝐶𝐸𝐵𝑊
is implemented as follows:

ℒ𝐶𝐸𝐵𝑊
(p, q) = −𝐵𝑊

∑︁
𝑝 log 𝑞 (4.2)

where 𝐵𝑊 is the boundary-reweighting map. The total loss for our network is the

unweighted sum of the two losses:

ℒ𝑡𝑜𝑡𝑎𝑙(p, q) = ℒ𝐷𝑆𝐶(p, q) + ℒ𝐶𝐸𝐵𝑊
(p, q) (4.3)

Figure 4-3: Simple explanation of a one sided distance transform. To convert
a binary label map into a distance transform, each point inside the region of interest is
given the value of the distance to the closest edge pixel. For instance, a point already
on the edge is given a value of 0, whereas a point two pixels away from the edge is
given a value of 2.

Optimization

We train our network on patches of size 128 × 128 × 128 voxels with batch size 1.

As patches of this size cover most of the brain region already, we sample patches at

random during training, seeing no performance change from using special sampling

heuristics. Training is done using the SGD optimizer with decoupled weight decay
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Figure 4-4: Example of a reweighting map. A) An MRI of a patient with ground
truth segmentation overlaid. B) The reweighting map is overlaid onto the image,
showing that the network is encouraged to focus on the boundaries of tumors more
than other regions.

[56] and we progressively decrease the learning rate via the following cosine decay

schedule:

𝜂𝑡 = 𝜂𝑚𝑖𝑛 + 0.5(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛)(1 + 𝑐𝑜𝑠(𝜋𝑇𝑐𝑢𝑟𝑟/𝑇 )) (4.4)

where 𝜂𝑚𝑎𝑥 is our initial learning rate (set to 0.1), 𝜂𝑚𝑖𝑛 is our final learning rate

(set to 0.0001), 𝑇𝑐𝑢𝑟𝑟 is the current iteration counter, and 𝑇 is the total number of

iterations to train for (set to 150 epochs). To mitigate overfitting, we apply weight

decay of 0.00002 to all convolutional kernel parameters, leaving biases and scales un-

regularized. Furthermore, we apply real-time data augmentation during the training

process. Specifically, we utilize random mirror axis flips about all three axes along

with anisotropic scaling (0.75 to 1.25), rotations (−15∘ to 15∘), shearing (−0.15 to

0.15), and translations (−5 to 5 pixels). Intensity augmentation in the form of gamma

correction (.75 to 1.25) is used as well. All augmentations are applied with probability

87



0.5.

Training a single model using the labeled primary training cohort of 118 examina-

tions took around 10 hours on a NVIDIA Tesla V100 32GB GPU.

Inference

At test time, we pass the entire image into the network to be segmented in one pass,

as opposed to using a sliding window of patch size 128× 128× 128. We find that this

is both more efficient and also leads to better segmentation quality, presumably due to

less edge effects stemming from the use of zero-padded convolutions. We apply simple

test-time augmentation by averaging the results from 8 mirror axis-flipped versions

of the input volumes. To further boost performance, we average the results from an

ensemble of five models (all trained from scratch).

4.2.3 AutoRANO-BM

We adapt the AutoRANO algorithm [187] used to automatically derive RANO mea-

surements for primary gliomas towards RANO-BM measurements for metastatic

tumors. For each metastasis in the patient timepoint, the AutoRANO-BM algorithm

searches for the axial slice with the largest lesion area and determines if the lesion

is measurable. A measurable lesion is defined as having a minimum length of both

perpendicular measurements ≥ 10mm. If the lesion is measurable, the maximum

uni-directional diameter is automatically calculated. Finally, an automatic RANO-BM

measure is derived by summing the maximum uni-directional diameters of up to the

five largest measurable lesions. An example is shown in figure 4-5.

4.2.4 Response Assessment Classification

After AutoRANO-BM measures are computed for all timepoints, each timepoint

following the baseline visit is categorized as progressive disease (PD), stable disease

(SD), partial response (PR), or complete response (CR) as outlined by the RANO-BM

working group [179]. Briefly, PD is categorized by a greater than 20% increase in
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Figure 4-5: AutoRANO-BM example for a brain metastases patient. A patient
presents with three distinct lesions (colored blue, orange, and purple). The maximal
uni-dimensional diameter is automatically calculated for each metastasis. Since the
orange lesion is too small (i.e. it has a diameter less than 10 mm), we ignore it per
the RANO-BM criteria. The RANO-BM measure for this patient is then the sum of
the diameters of the blue and purple metastases. We note that this example shows
a simplification of the real procedure, which would be done in 3D for all metastases
that this patient may have (not just those visible on this slice).

RANO-BM measure relative to the nadir timepoint. SD is categorized by a less than

20% increase relative to the nadir timepoint and a less than 30% decrease relative

to the baseline. PR is categorized by a greater than 30% decrease relative to the

baseline. And CR is categorized by complete disappearance of all lesions. An schematic

presenting this is shown in figure 4-6.

4.2.5 Longitudinal Tracking

For a given patient, all timepoints are affinely co-registered to the baseline visit.

Using connected components analysis, every metastasis in the baseline scan is given a

unique numeric identifier. For a subsequent timepoint, every metastasis in that scan

is cross-referenced with every prior scan to determine if the metastasis is unique or
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Figure 4-6: Response assessment categorization based on RANO-BM. Given
a RANO-BM measure for the baseline and new timepoint scan, we can ascertain the
response assessment.

not. Metastases that are present in prior scans are given the same identifier to enable

individual lesion tracking across time. New metastases not present in prior scans

are given an unused numeric identifier. Absolute change in volume per metastasis is

then calculated. An example showing volumetric longitudinal tracking, along with

AutoRANO-BM and response assessment categorization, is shown in figure 4-7. Briefly,

we note subtle differences between the volumetric curves and the AutoRANO-BM
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curve for this example patient. The volumes curves change smoothly over time and

depict that this patient is slowly progressing. Conversely, a sharp discontinuity is

noted in the AutoRANO-BM curve due to the fact that lesions under 10 mm are

not measured. In this specific case, the orange lesion is too small to be considered

a target lesion as per the RANO-BM criteria up to the visit 2 scan. By the visit 3

scan, the lesion has now grown above the 10 mm threshold, allowing it to be measured

and included in the sum total diameter measure. This discontinuity can lead to an

alternative (and perhaps incorrect) interpretation that the patient is stable for most

of the treatment course except for in between visits 2 and 3.

Figure 4-7: Longitudinal tracking of metastases across time. BM at each
timepoint are automatically segmented. After co-registration to the baseline, each
lesion is given a unique identifier to allow it to be tracked across timepoints. In this
case, the three distinct lesions are color coded blue, orange, and purple. Solid colored
lines show the absolute change in volume from baseline, showing that lesions can
exhibit significantly different growth rates over time. The dashed black line shows the
AutoRANO-BM measure for each timepoint. Response assessment categorization is
shown above each timepoint image.

4.2.6 Uncertainty Estimation

We compute voxel-wise segmentation uncertainty [202] 𝑈𝑣(𝑥) ≈ 0 by taking the mean

entropy over the output from each of the 𝑁 = 5 models in our ensemble, implemented
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as follows:

𝑈𝑣(𝑥) = − 1

𝑁

𝑁∑︁
𝑖=1

𝑝𝑖(𝑥) log2 𝑝𝑖(𝑥) (4.5)

𝑈𝑣(𝑥) ranges from 0 to 0.5, where a voxel with high certainty will have 𝑈𝑣(𝑥) ≈ 0

and a voxel with high uncertainty will have 𝑈𝑣(𝑥) ≈ 0.5. Lesion-wise uncertainty 𝑈𝑙(𝑥)

is computed by taking the median voxel-wise uncertainty over voxels in each unique

tracked lesion.

4.2.7 Statistical Analysis

Neural network segmentation performance was evaluated using DSC and 95th percentile

of Hausdorff distance (HD95). A Wilcoxon signed-rank test was used to evaluate

significant pairwise differences in these metrics. Due to the difficulty in detecting and

segmenting brain metastases, with specific regards to micro-metastatic lesions, we

compute statistics on both the examination level (i.e. DSC over entire image) and the

lesion level (i.e. DSC of each lesion in the image separately). Additionally, per lesion

sensitivity was used to measure the detection rate of metastases. McNemar’s test

was used to compare lesion sensitivities. For longitudinal comparison of volume and

AutoRANO-BM measures, both Pearson’s correlation coefficient 𝜌 and the two-way

mixed, single measure intra-class correlation coefficient (ICC) were used [203]. To

quantify the relationship between lesion size and detection classification (true positive

(TP), false positive (FP), false negative (FN)), a two-way ANOVA with multiple

pairwise comparisons using Tukey’s HSD test was used. All statistical analyses were

performed using python 3.6.9 [169].
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4.3 Results

4.3.1 Deep Learning Based Segmentation

To assess the efficacy of our boundary-weighted cross-entropy loss, we compare seg-

mentation performance when using different loss functions on the primary validation

set, with examination level results and metastasis level results presented in tables 4.2

and 4.3, respectively. Specifically, we compare against dice loss, weighted cross entropy

(with 𝛼 = 0.25), and focal loss [73] (with 𝛼 = 0.25 and 𝛾 = 2). Examination level DSC

for boundary loss was significantly larger than that for cross entropy (𝑝 < 0.01) and

focal loss (𝑝 < 0.01), but not for dice loss (𝑝 = 0.09). Examination level HD95 was

not significantly smaller than that for any of the three other losses. Lesion level DSC

was significantly larger and HD95 significantly smaller than that for all three other

losses (𝑝 < 0.001). Sensitivity of lesion detection for boundary loss was significantly

higher than that of all three other losses (𝑝 < 0.01).

Table 4.2: Comparison of examination level segmentation performance for different
loss functions on the primary validation set of 32 cases.

Loss Functions DSC† HD95†

Dice Loss 0.81 (0.67 - 0.87) 1.73 (1.0 - 3.16)
Weighted Cross Entropy Loss 0.81 (0.68 - 0.86) 2.34 (1.41 - 4.79)
Focal Loss 0.80 (0.66 - 0.87) 2.24 (1.41 - 4.70)
Boundary Loss 0.82 (0.70 - 0.88) 1.87 (1.0 - 3.64)
† Data in parantheses are IQRs.

Full performance metrics for automatic segmentation of BM on the primary training,

primary validation, primary testing, and secondary testing cohorts were computed at

the examination level (table 4.4) and at the metastasis level (table 4.5). Additionally,

metrics were computed at different metastasis size thresholds (table 4.6). An example

showing manual and automatic segmentation is shown in figure 4-8. Importantly,

manual segmentation is not always perfect, mainly because human annotators often

make small mistakes. For instance, a human annotator might not perfectly outline

the contrast enhancing portion of a tumor (perhaps due to fatigue), whereas a neural
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Table 4.3: Comparison of metastasis level segmentation performance for different loss
functions on the primary validation set of 379 metastases.

Loss Functions DSC† HD95† Sensitivity*

Dice Loss 0.75 (0.52 - 0.85) 1.0 (1.0 - 3.0) 83 (79 - 87)
Weighted Cross Entropy Loss 0.77 (0.59 - 0.85) 1.0 (1.0 - 2.45) 84 (80 - 88)
Focal Loss 0.75 (0.56 - 0.84) 1.41 (1.0 - 2.45) 84 (80 - 87)
Boundary Loss 0.77 (0.63 - 0.86) 1.0 (1.0 - 2.24) 86 (82 - 89)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

network can consistently and accurately perform the same task repeatedly without

variability in performance.

Table 4.4: Examination level segmentation performance on the four datasets.

Dataset N DSC† HD95†

Primary Train 118 0.83 (0.78 - 0.87) 1.41 (1.0 - 3.0)
Primary Validation 32 0.81 (0.68 - 0.87) 1.73 (1.31 - 3.48)
Primary Test 32 0.80 (0.71 - 0.86) 1.57 (1.41 - 2.38)
Secondary Test 885 0.80 (0.70 - 0.86) 1.73 (1.41 - 11.41)
† Data in parantheses are IQRs.

Table 4.5: Metastasis level segmentation performance on the four datasets.

Dataset N DSC† HD95† Sensitivity*

Primary Train 1171 0.76 (0.45 - 0.84) 1.0 (1.0 - 4.0) 78 (76 - 81)
Primary Validation 379 0.78 (0.63 - 0.86) 1.0 (1.0 - 2.24) 84 (80 - 87)
Primary Test 548 0.76 (0.61 - 0.84) 1.0 (1.0 - 2.0) 86 (83 - 89)
Secondary Test 5250 0.64 (0.0 - 0.79) 1.41 (1.0 - inf) 73 (72 - 74)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

4.3.2 Longitudinal Tracking

To measure the quality of longitudinal lesion tracking, we compared ground truth

and predicted volumes for all detected TP lesions in the secondary test set. Directly
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Table 4.6: Metastasis level segmentation performance on the four datasets, split by
volumetric size.

Dataset Size N DSC† HD95† Sensitivity*

small 604 0.61 (0.0 - 0.75) 1.41 (1.0 - inf) 61 (57 - 65)
medium 385 0.81 (0.75 - 0.86) 1.0 (1.0 - 1.41) 96 (93 - 97)Primary

Train large 182 0.88 (0.82 - 0.92) 1.0 (1.0 - 2.0) 98 (94 - 99)

small 154 0.62 (0.0 - 0.76) 1.41 (1.0 - inf) 62 (54 - 70)
medium 172 0.83 (0.77 - 0.87) 1.0 (1.0 - 1.41) 98 (95 - 99)Primary

Validation large 53 0.89 (0.85 - 0.92) 1.0 (1.0 - 1.73) 100 (93 - 100)

small 258 0.64 (0.0 - 0.74) 1.38 (1.0 - inf) 71 (66 - 76)
medium 247 0.81 (0.75 - 0.87) 1.0 (1.0 - 1.41) 99 (96 - 100)Primary

Test large 43 0.88 (0.81 - 0.93) 1.41 (1.0 - 1.57) 100 (92 - 100)

small 3161 0.45 (0.0 - 0.66) 2.0 (1.06 - inf) 59 (58 - 61)
medium 1367 0.78 (0.70 - 0.83) 1.25 (1.0 - 1.73) 92 (90 - 93)Secondary

Test large 722 0.87 (0.83 - 0.90) 1.41 (1.0 - 2.24) 98 (96 - 98)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

comparing between ground truth and predicted lesion volume, the ICC was 0.92 (95%

CI: 0.91 – 0.92) and the Pearson correlation 𝜌 was 0.92. Comparing the absolute

change in lesion volume across consecutive patient timepoints between ground truth

and predicted segmentations, the ICC was 0.88 (95% CI: 0.87 – 0.88) and the Pearson

correlation 𝜌 was 0.88 (figure 4-9).

4.3.3 RANO-BM

In assessing agreement between manual and automatic measurements for total tumor

volumetric burden, the ICC was 0.91 (95% CI: 0.89 – 0.92) and the Pearson correlation

𝜌 was 0.91. When assessing agreement for target tumor volume, the ICC was 0.92 (95%

CI: 0.91 – 0.93) and the Pearson correlation 𝜌 was 0.92. Direct comparison between

AutoRANO-BM measures computed from ground truth segmentations and from

predicted segmentations yielded an ICC of 0.92 (95% CI: 0.91 – 0.93) and the Pearson

correlation 𝜌 was 0.92 (figure 4-10). Example segmentations and AutoRANO-BM

diameter measurements shown in figure 4-11.
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Figure 4-8: Manual vs automatic segmentation of brain metastases patient.
Our automatic segmentation method does make mistakes, and can often miss small
micro-metastases. However, we note that automatic segmentation can in fact be more
accurate than manual segmentation in some cases, as can be seen here where the
manual segmentation is not completely encircling the contrast enhancing portion of
the tumor.

4.3.4 Response Assessment Classification

Response assessment classification based on AutoRANO-BM measures was computed

and agreement is shown in the confusion matrix in figure 4-12. Response assessment

was computed for all timepoints excluding the baseline, resulting in 737 data points.

Forty-eight of 67 (72%) were correctly categorized as PR, 72 of 112 (64%) were

correctly categorized as SD, and 506 of 558 (91%) were correctly categorized as PD.

No examinations had a true or predicted class of CR.

4.3.5 Uncertainty Estimation

Lesion-wise uncertainty was calculated and then stratified by lesion size and detection

classification (shown in figure 4-13). We conclude that lesion size (𝑝 < 0.001), detection
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Figure 4-9: Volumetric comparison between ground truth and predicted
segmentations. (a) We plot ground truth vs. predicted metastases volume. (b)
The absolute change in ground truth lesion volume across consecutive timepoints was
calculated and plotted against the change in predicted lesion volume. Line of identity
(x = y) is shown in all plots.

Figure 4-10: Comparison between AutoRANO measurements from ground
truth and predicted segmentations. (a) Scatter plot showing total metastases
volume for ground truth and automatic segmentations. (b) Scatter plot showing target
metastases volume for ground truth and automatic segmentations. (c) Scatter plot
showing AutoRANO-BM measure for ground truth and automatic segmentations.
Line of identity (x = y) is shown in all plots.

classification (𝑝 < 0.001), and the interaction between the two (𝑝 < 0.001) significantly

affects lesion-wise uncertainty. Moreover, we note that while there is a significant

difference in the uncertainty between FP and TP lesions ((𝑝 < 0.001)) and FP and TN
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Figure 4-11: Examples of automatic segmentation and AutoRANO-BM. (a)
Examples of manual vs automatic segmentation of BM. (b) Examples of an auto-
matically segmented lesion with the automatically calculated longest uni-dimensional
diameter drawn through it.

lesions (𝑝 < 0.001), we fail to find a significant difference between TP and FN lesions

(𝑝 = 0.51). An example of a low uncertainty and a high uncertainty lesion is shown in

figure 4-14. In the second column of this figure, our segmentation model accidentally

segments a non-tumor abnormality (most likely a central pontine myelinolysis). We

note that our lesion-wise uncertainty model can automatically flag this case as a

potential false positive.
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Figure 4-12: Confusion matrix for response assessment classification. Classifi-
cation of Partial Response (PR), Stable Disease (SD), and Progressive Disease (PD)
using AutoRANO-BM measures from the ground truth segmentations and predicted
segmentations.

4.4 Discussion

Given the difficulty in manually annotating brain metastases, the goal of this study was

to create a tool that could aid clinicians by providing high quality 3D segmentations for

use in calculation of individual tumor volumes across time and automated RANO-BM

measures. To demonstrate model performance, we evaluated our model on a large

and diverse secondary dataset obtained retrospectively for adult patients with newly

diagnosed brain metastases. This set contained examinations which ranged from

having anywhere from only 1 to up to 445 unique lesions and contained lesions which

varied in volume from as small as a few mm3 to greater than 50000mm3. Moreover,
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Figure 4-13: Lesion-wise uncertainty split by lesion size and detection classi-
fication. We note that FP lesions exhibit significantly higher uncertainty than either
TP or FN lesions.

lesions exhibited varied shapes/structures (from spherical to highly irregular), were

situated across every region of the brain parenchyma, and originated from several

types of primary cancers. Thus, this dataset spans the variability in number, size,

shape, and location of brain metastases seen in clinical practice, and as such provides

an excellent dataset by which to robustly judge the clinical utility of our model.

We tested a few common segmentation loss functions and evaluated their perfor-

mance at both the examination level and lesion level. We note that boundary-weighted

cross-entropy significantly improves sensitivity of lesion detection, indicating that it is

better suited to identifying and segmenting hard to detect lesions compared to other

standard loss functions such as dice, weighted cross-entropy, or focal loss.

While we note that the segmentation model was highly performant for medium
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and large sized lesions as evidenced by high sensitivity and DSC, its performance

suffered for small lesions. This drop in performance is attributed to a couple of factors.

First, brain micro-metastases (especially dural lesions located at the peripheries of

the brain) can share similarity in shape, size, and MR intensity to small blood vessels.

In such cases, it can be challenging to confidently label a small focus of enhancement

as a metastasis until it grows on a subsequent timepoint. In other cases, micro-

metastases can present with little to no contrast enhancement, especially in the setting

of lower quality scans, and can be missed entirely on lower resolution scans. This

annotation challenge can lead to missed micro-metastases in the ground truth, which

can negatively affect the training of the neural network. While the detection rate

for micro-metastases is low, we note that these small lesions are potentially of less

clinical importance. As per the RANO-BM guidelines, a target lesion is defined as any

contrast enhancing lesion with at least a 10mm diameter visible on two or more axial

slices. Thus, smaller lesions are generally not tracked for the purposes of response

assessment. Moreover, since micro-metastases usually represent a small fraction of

a patient’s full volumetric tumor burden, patient treatment plans may not change

due to some missed detections. For instance, our model detected 26% (39 of 149)

unique lesions for a patient examination, and these detected lesions accounted for 72%

(1494mm3 of 2074mm3) of the full tumor burden. Indeed, the treatment for a patient

with 39 lesions or 149 lesions is the same - whole brain radiation.

Our model is capable of not only tracking total tumor volumetric burden across

time, but also individual lesion volume across time. High correlation was seen when

comparing absolute volumetric change per lesion across time for manual and automatic

segmentations. This indicates that we can track the growth rates of individual brain

metastases over time with sufficiently reasonable accuracy.

There was high agreement between manual and automatic measures with regard

to changes in tumor burden (AutoRANO-BM, target tumor volume, and total tumor

volume). While all three objectively exhibit almost the same ICC and Pearson

correlation values, we note that subjectively, RANO-BM measures are clustered less

tightly along the identity line than are the two volumetric measures. The reason
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for the unexpectedly similar correlation is due to the effect of two outlier lesions in

our dataset. The first was a large cystic lesion (the biggest individual lesion in our

dataset) and the second was a highly heterogeneous tumor with complicated and

blurred boundaries. Due to not having any training data examples similar to these

two rare cases, our model was not capable of segmenting them properly. While these

types of large cystic lesions are clinically meaningful treatment targets, as per the

RANO-BM criteria, they are considered not measurable for clinical trial purposes

due to the extensive necrotic regions present. Nevertheless, the overall trend suggests

that when comparing manual and automatic measures, volumetric analysis allows for

greater agreement than the RANO-BM measure.

There was high accuracy for the classification of each patient timepoint as non-

progressive disease (CR, PR, and SD) and progressive disease (PD) according to the

RANO-BM criteria using our automatically computed RANO-BM measures. This

further serves to indicate that the relatively low detection rate of micro-metastases

does not significantly affect radiographic response assessment.

Due to the fact that RANO-BM is the sum of up to five uni-dimensional diameter

measurements, it can be an imperfect proxy for true volumetric tumor burden. An

example with four patients, each with a very similar total volumetric tumor burden,

is shown in figure 4-15. Due to the fact that these patients have a different number

of metastases each, ranging from 1 to 15, the RANO-BM measures are completely

different from each other. The patient with 15 micro-metastases has a RANO-BM

measure of 0 even though the total tumor burden is similar to the other patients.

Consideration should be made about whether RANO-BM is truly the best metric on

which to base treatment response assessment, seeing that it is a potentially incomplete

view tumor burden.

One concern of deep learning based models when used in clinical care settings is that

they tend to be un-explainable and can often generate outputs that are overconfident

of incorrect results. To mitigate this issue, we study the lesion-wise segmentation

uncertainty of our model and show that predicted lesions that are actually FPs

exhibit higher median uncertainty than do TPs and FNs. By producing a lesion-wise
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uncertainty map of the image, this may serve as an automatic way of flagging specific

lesions for manual expert review.

There have been several prior studies investigating the ability of deep learning

algorithms to automatically segment metastatic brain tumors. Grovik et al. [140]

trained a modified GoogLeNet architecture, which took four distinct MR sequences

as input, on a single-center set of 156 patients. This study reported a sensitivity

of 50% of lesions smaller than 7 mm. Ottesen et al. [189] expanded on the prior

study from Grovik et al. [140] by utilizing a secondary dataset of 65 patients in

addition to the primary set of 156 patients. They test both 2.5D and fully 3D

approaches and investigate model detection and false positive rates. While they do

not share quantitative results split by lesion size, they do note reduced segmentation

performance for smaller metastases, especially in their secondary test set. Rudie et

al. [190] ensembled models using different inputs and different loss functions together

to boost overall performance. On a test set of 100 patients, they show an overall

sensitivity of 70%, with a sensitivity of 50.9% for lesions less than 5mm. While direct

comparison between our work and previous studies is confounded by factors such as

the relative proportions of small, medium, and large lesions changing between different

private datasets, our model achieves segmentation performance equivalent or better

than that of networks in recently published literature. Moreover, our independent

secondary testing set is one of the largest datasets used for this task, and we go beyond

simply reporting model detection rates by proposing a method to capture lesion-wise

uncertainty to automatically identify FPs.

4.5 Limitations

Our study has limitations. First, our primary dataset was segmented by a single

rater, which limits our ability to assess interrater variability and may cause the neural

network to learn certain biases specific to that rater. Moreover, the training set was

comprised of single-center data acquired under strict criteria for clinical trials. Future

work could entail utilizing a larger, multi-institutional cohort for training to improve
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model generalizability and robustness. Secondly, our model was trained to segment

contrast enhancing disease and some BM can be cystic or hemorrhagic without clear

additional enhancement. These cases would not be captured with our model but

could be explored in future model optimizations. Finally, we did not have any manual

RANO-BM measures to compare our AutoRANO-BM measures against. Chang

et al. [187] did an in depth analysis of RANO for primary gliomas and concluded

that AutoRANO was significantly more reliable and consistent then were manual

RANO measurements calculated by expert neuro-oncologists and that it was more

correlated to total tumor volumetric burden. Peng et al. [204] noted a similar trend

when comparing manual and automatic measurements for pediatric gliomas. Still,

future studies could explore the correlation between manual and automatic RANO

measurements in the setting of brain metastases.

4.6 Conclusion

In conclusion, we developed a fully automatic pipeline that segments BM, computes

lesion uncertainty, longitudinally tracks individual lesions across time, and computes

an automatic RANO-BM measure. Moreover, we show high agreement between the

AutoRANO-BM measure computed from the ground truth segmentations and the

predicted segmentations, demonstrating the clinical utility of our automated method

to quantify measurable tumor burden.
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Figure 4-14: Low vs high uncertainty example images. Uncertainty is represented
by color, with yellow indicting low uncertainty and red indicating high uncertainty.
The first column shows an examination with a clear metastasis, which the model
correctly identifies and segments with little uncertainty. The second column shows an
examination with a non-tumor abnormality. Our model accidentally segments this
abnormality, but is highly uncertain of its prediction.
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Figure 4-15: Volume vs RANO-BM measurements. RANO-BM is a potentially
incomplete view tumor burden, seeing that patients with similar total tumors volume
can have drastically different RANO-BM measurements.
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Chapter 5

Joint Image Registration and

Segmentation

Manual segmentation of medical imaging is a laborious and time-consuming task for

expert clinicians, especially in the setting of longitudinal patient data. Deep learning

(DL) based segmentation approaches are becoming increasingly common as researchers

push the boundaries of artificial intelligence (AI) systems in healthcare applications.

Indeed, many algorithms now boast human or super-human performance on a wide

range of segmentation tasks [205, 206, 207, 208]. However, these approaches tend to

segment all patient imaging independently of each other, ignoring relevant information

from prior time-points. In order to utilize prior time-point information, we propose a

joint image registration and segmentation method. Given a prior time-point image and

segmentation mask (which are readily available in a routine clinical environment), we

affinely and deformably register these to a new time-point image. This warped prior

image and mask are then used to enhance and improve the segmentation of the new

time-point. In this chapter, we develop a novel deep learning based framework for joint

image registration and segmentation and apply it to brain metastases segmentation,

aiming to improve segmentation performance for micro-metastatic lesions.
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5.1 Introduction

Brain metastases (BM) are the most common form of intracranial tumors in adults

with an annual incidence of 170,000 in the United States [209], which is expected

to increase as systemic treatments for primary tumors improve [177, 210]. Given

rising incidence and limited treatment, BM are an unmet need in modern oncology,

with median survival post diagnosis of ranging from only 2.7 to 24 months [211, 212].

Alongside monitoring changes in clinical metrics such as performance status and

cognitive function, neuroradiologists can assess the efficacy of a given treatment

regimen by tracking individual lesion sizes across T1-weighted contrast-enhanced

(T1-CE) magnetic resonance (MR) imaging time-points, noting whether tumor burden

is decreasing, stable, or increasing [213]. If BM enlarge or new BM appear over

time, a different treatment option may be necessary. However, manual determination

of tumor boundaries needed for lesion tracking can be challenging in the presence

of heterogeneous contrast enhancement, diffuse tumor boundaries from surrounding

edema, or blunted contrast relative to surrounding normal brain due to treatment

effects. Moreover, patients can present with anywhere from a single lesion to upwards

of one hundred lesions, varying in volume from as small as a few mm3 to as large

as 10000mm3. These lesions can exhibit varied shapes/structures (from spherical to

highly irregular) and can be situated across every region of the brain parenchyma. In

addition to being a highly time-consuming and costly task, manual segmentation is

subject to significant inter- and intra-rater variability for the aforementioned factors

[180]. As such, there has been much interest in developing reproducible automated

methods for segmentation.

While there is minimal work published in the automated segmentation of metastatic

brain tumors, the segmentation of primary brain tumors is a well-researched field,

mainly due to the availability of the large multi-institutional publicly available BraTS

dataset [94, 214, 215]. In recent years, 3D U-Net architectures [99] have consistently

dominated the BraTS leaderboards and are the current state-of-the-art method

for brain tumor segmentation [100, 101, 102]. Guided by these approaches, most
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researchers also choose to use 3D U-Nets for BM segmentation. Due to the fact that

BM can vary in size and number of lesions, metastatic brain tumor segmentation is

a more difficult task than primary brain tumor segmentation. More specifically, the

difficulty is attributed to the presence of micro-metastases, which are lesions with a

diameter no greater than 5mm [216, 217]. These brain micro-metastases (especially

dural lesions located at the peripheries of the brain) can share similarity in shape,

size, and MR intensity to small blood vessels. In such cases, it can be challenging to

confidently label a small focus of enhancement as a metastases or a blood vessel until

it grows on a subsequent time-point. In other cases, micro-metastases can present with

little to no contrast enhancement, especially in the setting of lower quality scans. These

factors together make the automated detection and segmentation of micro-metastatic

brain lesions a challenging machine learning problem.

Past approaches in published literature on the automated segmentation of BM

have included a variety of architectural modifications and different loss functions,

but they all report a sensitivity of detection of micro-metastases well under 50%

[218, 189, 190]. Studies that have looked at the inter-rater variability for detection of

micro-metastases have concluded that current deep learning (DL) based approaches

are inferior to that of expert neuroradiologists and might not be ready for clinical

deployment just yet [190]. That being said, even though current models are imperfect,

especially for detection of small lesions, they have the potential to improve workflow

efficiency for radiologists by reducing the amount of manual segmentation that must

be done by a clinician. Specifically, a clinician can now simply correct a label map

by adding in missed detections or removing false positives, a process that can save

significant amounts of time relative to needing to segment the whole volume from

scratch.

While the process of correcting mistakes is acceptable in the setting of single

patient visits, it can become cumbersome and tedious to the clinician in the setting of

longitudinal patient data. For instance, a metastasis that is missed in the baseline scan

is likely to be missed again in all future time-points assuming it does not substantially

change in size or appearance. Such a scenario requires the clinician to manually fix the
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same mistake repeatedly on all time-points, creating unnecessary annotation burden

for the clinician. A better system would entail the clinician fixing the mistake only

once on the first time-point, with the neural network carrying forward that prior

information to subsequent time-points. An schematic of this concept is shown in figure

5-1. To the best of our knowledge, no published work has assessed the utility of using

longitudinal imaging data for the purpose of improving BM segmentation quality.

Figure 5-1: System where clinician only needs to fix the mistake once. In
this schematic, the clinician manually corrects the baseline scan, adding in a missed
micro-metastasis in red. The next timepoint for this patient is then jointly segmented
with this prior corrected label mask to ensure that the model does not miss the
micro-metastasis again on the new timepoint.

In this work, we propose a novel DL based approach to jointly register and segment

BM on T1-CE MR imaging, a method we call Sequential and Pyramidal Image

Registration and Segmentation (SPIRS). More specifically, given a prior time-point

and a new time-point image, we train a Siamese style convolutional neural network

(CNN) to first affinely (i.e. linearly) and then deformably (i.e. non-linearly) register the

pair of images. This registration transform is parameterized as a dense displacement

vector field (DVF), and it maps the offset from the prior time-point onto the new

time-point image. Assuming we already have a prior time-point segmentation mask

that has been manually edited by a clinician (which will be the case in a routine clinical

environment), we can then use the found DVF to transform this prior segmentation

110



mask onto the new time-point. This warped prior mask can then be used to enhance

and improve the segmentation of the new time-point (figure 5-2).

Figure 5-2: Example outputs of our joint registration and segmentation
model. An example prior time-point image 𝐼𝑚 and tumor mask 𝑆𝑚 outlined in red
(A) and new time-point image 𝐼𝑓 (without tumor mask) (B). The priors are first affinely
registered (creating 𝐼𝑤𝐴

and 𝑆𝑤𝐴
) (C) and then deformably registered (creating 𝐼𝑤𝐷

and 𝑆𝑤𝐷
) (D) to the new time-point. Note how the prior time-point tumor is warped

to match the location and size of the new time-point tumor. These warped priors 𝐼𝑤𝐷

and 𝑆𝑤𝐷
are used to aid and improve the segmentation of the new time-point (E).

5.2 Generalizable Insights about Machine Learning

in the Context of Healthcare

• We show that SPIRS outperforms other methods for the specific task

of registration of MR imaging with BM. Many registration methods exist,

but they are trained and validated on normal brain anatomy. Not only do we

develop a novel architecture for combined affine and deformable registration, we

show that by training a task specific model, we can improve performance over

current baseline methods.

• Our approach utilizes readily available prior time-point information in

order to improve the segmentation of micro-metastases. Despite the fact

that longitudinal imaging data is readily available, most approaches segment

scans independently of each other. Our method shows that using prior time-point

information can significantly improve the detection rate of micro-metastases
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on follow-up imaging, which will reduce annotation burden for clinicians and

improve performance of downstream clinical tasks.

• Our model architecture is generalizable to other clinical applications

with longitudinal data. While we focus on BM for this manuscript, we

emphasize that this approach can be applied to other challenging medical

imaging segmentation problems where longitudinal imaging data is present.

For instance, other tumor applications include brain meningiomas and other

non-tumor applications include cardiac segmentation for congenital heart disease

patients.

5.3 Related Work

There is extensive literature in medical image registration and it can be broadly be

split into two categories: non-learning based and learning-based. An in-depth overview

is provided in section 2.4. An abridged overview of relevant methodology is provided

below.

5.3.1 Image Registration Approaches

Non-Learning Based Registration

Given a fixed and a moving image, classical registration approaches perform a gradient

descent based numerical optimization to iteratively align pixels from the moving image

onto the fixed image to improve a chosen similarity metric (e.g. mean squared error

(MSE), normalized cross correlation (NCC)). The learned transformation can be either

linear or non-linear, depending on one’s use case. If the transform is non-linear, certain

constraints can be placed on the outputted DVF to encourage a spatially smooth

transform. To alleviate this numerical optimization problem (which even for linear

transforms can get stuck at poor local minimas for anatomically complex images),

classical methods often employ a sequential and pyramidal hierarchy. Sequential

refers to solving lower complexity transforms before higher complexity transforms. In
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other words, a purely affine transformation is computed first before solving for the

deformable transformation. Pyramidal refers to a multi-scale approach wherein the

transformation is first computed at a coarser image scale and is progressively updated

at finer image scales [114]. An example image pyramids are shown in figure 5-3. We

note that due to the iterative nature of these classical algorithms, they can be quite

computationally intensive. Indeed, deformable registration of 3D brain MR imaging

can take upwards of one to two hours on CPU per image pair. While there are many

classical registration algorithms for deformable registration, including but not limited

to B-splines [115], Demons [116], and Large Diffeomorphic Distance Metric Mapping

(LDDMM) [117], the current gold standard is generally accepted to be Symmetric

Normalization (SyN) [118] from the Advanced Normalization Tools (ANTs) package

[119, 120]. ANTs can also be used for highly performant affine registration of imaging.

Figure 5-3: Image Pyramids. Image pyramids for the baseline and visit scan are
created by stacking images with different resolutions and sizes. The registration is
first run on the first level of the pyramid (the coarsest scale), and then iteratively
updated at finer scales.

Learning Based Registration

Newer methods utilize neural networks to learn a function for (affine and/or de-

formable) registration. This can be advantageous because each image pair can be

fully registered with one forward pass of the network, which will take only a few

seconds on GPU. DL based affine registration networks are usually formulated as a
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supervised regression problem. [121] use a Siamese style encoder to directly predict

the affine transform matrix. [122] uses a similar regression approach, but focuses on

cross-modality registration. DL based deformable registration networks can either be

trained in a supervised or unsupervised manner. While earlier approaches like that

from [123] required ground truth DVFs to train the network, newer approaches tend

to be fully unsupervised. [124] proposed a U-Net based diffeomorphic registration

model they named VoxelMorph (VXM). Building off this approach, [125] utilized a

pyramidal architecture to improve the quality of the registration. However, they did

not incorporate feature sharing at the different levels of the pyramid, resulting in

redundant parameters. [126] devised a network to sequentially perform affine and

deformable registration, but their deformable registration was based only on b-spline

grids. [127] also performed both affine and deformable registration, however their

approach was neither sequential nor pyramidal.

5.3.2 Joint Frameworks for Registration and Segmentation

While registration and segmentation are two of the largest and most researched areas

of computer vision for medical applications, there is significantly less research in how

the coupling of these two tasks may improve one or both tasks. Such joint methods

are mainly used in areas where longitudinal imaging data is widely available. For

instance, segmentation of cardiac MR imaging is usually done only on end-diastolic and

end-systolic frames, with information from other frames not exploited. By using a joint

framework, more data may be incorporated during model training and can improve

performance of both cardiac motion estimation and atrial/ventricular segmentation

[219, 220]. Joint approaches have also been shown to be effective in low-annotation

settings, where only a fraction of the whole dataset has ground truth segmentations

[221]. When compared to the baseline of not having any annotated data, weak

supervision from a small sample of ground truth annotations can improve registration

performance due to the incorporation of an anatomy similarity loss. Indeed, joint

methodological approaches have been shown to outperform independently optimized

networks on tasks such as cardiac, knee, and brain [221, 222]. While these existing
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works have applied their respective methods to normal anatomy, to the best of our

knowledge no work has focused specifically on improving the registration quality and

segmentation performance of BM on T1-CE MR.

5.4 Methods

We let 𝐼𝑓 , 𝐼𝑚, 𝑆𝑓 , 𝑆𝑚 denote the fixed image, moving image, fixed segmentation,

and moving segmentation, respectively. 𝑇𝐴 and 𝑇𝐷 denote the predicted affine and

deformable registration transforms, respectively. Here, 𝑇𝐴 and 𝑇𝐷 are mappings such

that 𝐼𝑚 ∘ 𝑇 = 𝐼𝑤 ≈ 𝐼𝑓 . To warp image 𝐼𝑚 with transformation 𝑇 , we use a fully

differentiable spatial transformer module, which allows for gradient backpropagation

during network optimization [223]. Our proposed architecture consists of three suc-

cessive blocks: 1) the affine registration network ℱ𝐴, 2) the deformable registration

network ℱ𝐷, and 3) the segmentation network ℱ𝑆. A diagram showing this sequential

structure is visualized in figure 5-4. We note that these three blocks all share the joint

Siamese style feature encoder, which helps prevent overfitting towards any one task,

since the model must learn encoded feature representations that are useful for all three

tasks. We describe in detail the full CNN architecture and the training optimization

strategies in the following sections.

5.4.1 Shared Encoder Architecture

In lieu of training three separate task specific encoders for each of the sub-networks,

we instead train a single encoder which is shared between the tasks. This encoder is

composed of 5 blocks, where each block consists of a batch normalization operation

[164], ReLU activation [163], and kernel size 3 convolution with a stride of 1. To

ensure our encoder learns robust yet powerful representations of the input data, we

use 64 filters for the convolution in the first block, and double this number of filters

as we go deeper into the network. Feature map downsampling occurs after each block

and is accomplished through a max pooling operation [166] with a kernel size and

stride both equal to 2.
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Figure 5-4: Schematic showing the sequential structure of our proposed
framework for joint image registration and segmentation. First, the fixed
image 𝐼𝑓 , moving image 𝐼𝑚, and moving label 𝑆𝑚 are passed to the affine registration
network ℱ𝐴, which outputs the affinely warped image 𝐼𝑤𝐴

and label 𝑆𝑤𝐴
. Next, the

fixed image 𝐼𝑓 , affinely warped image 𝐼𝑤𝐴
, and affinely warped label 𝑆𝑤𝐴

are passed
to the deformable registration network ℱ𝐷, which outputs the deformably warped
image 𝐼𝑤𝐷

and label 𝑆𝑤𝐷
. Finally, the segmentation network ℱ𝑆 is used to segment

𝐼𝑓 with the help of 𝐼𝑤𝐷
and label 𝑆𝑤𝐷

to output predicted segmentations 𝑃1 (which
does not use any prior time-point information) and 𝑃2 (which uses prior time-point
information). The encoder, which is shared between all three sub-networks, is shown
in the dotted box. Light blue, blue, and dark blue are used to differentiate the three
arms of the network.

5.4.2 Affine Registration Network ℱ𝐴 Architecture

Given input images 𝐼𝑓 , 𝐼𝑚 and 𝑆𝑚, the affine registration network ℱ𝐴 outputs 𝑇𝐴,

𝐼𝑤𝐴
, 𝑆𝑤𝐴

= ℱ𝐴(𝐼𝑓 , 𝐼𝑚, 𝑆𝑚), where 𝑇𝐴 ∈ R3×4 represents the 3D affine transformation

and 𝐼𝑤𝐴
= 𝐼𝑚 ∘ 𝑇𝐴 and 𝑆𝑤𝐴

= 𝑆𝑚 ∘ 𝑇𝐴 are the affinely warped moving image and

label, respectively. ℱ𝐴 is composed of an opening convolution operation, the shared
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encoder, and a specialized affine transform decoding module. 𝐼𝑓 and 𝐼𝑚 are passed

to the opening convolution, which uses a kernel size 7 with stride of 1. Increasing

the kernel size from 3 to 7 for this opening convolution helps increase the effective

receptive field (ERF) of the network, allowing for larger transformations to be learned.

The decoding module is composed of two fully connected layers with dropout [224] of

0.15.

To train ℱ𝐴, we use a combination of two losses. First, we take the MSE loss

between the true affine matrix 𝑇𝐴 and the predicted affine matrix 𝑇𝐴.

ℒ𝑀𝑆𝐸(𝑇𝐴, 𝑇𝐴) = ‖𝑇𝐴 − 𝑇𝐴‖22 (5.1)

Second, we utilize the unsigned local normalized cross correlation (LNCC) to

measure the similarity between 𝐼𝑓 and 𝐼𝑤𝐴
[118, 124]. We define the local mean

centered image 𝐼𝑓 = 𝐼𝑓 − 𝜇𝐼𝑓 , where 𝜇𝐼𝑓 is the convolved output of 𝐼𝑓 and a kernel

size 9 box filter. 𝐼𝑤𝐴
is defined similarly. The LNCC is then given by:

𝐿𝑁𝐶𝐶(𝐼𝑓 , 𝐼𝑤𝐴
) =

⟨𝐼𝑓 − 𝜇𝐼𝑓 , 𝐼𝑤𝐴
− 𝜇𝐼𝑤𝐴

⟩2

⟨𝐼𝑓 − 𝜇𝐼𝑓 , 𝐼𝑓 − 𝜇𝐼𝑓 ⟩⟨𝐼𝑤𝐴
− 𝜇𝐼𝑤𝐴

, 𝐼𝑤𝐴
− 𝜇𝐼𝑤𝐴

⟩
=

⟨𝐼𝑓 , 𝐼𝑤𝐴
⟩2

⟨𝐼𝑓 , 𝐼𝑓⟩⟨𝐼𝑤𝐴
, 𝐼𝑤𝐴

⟩
(5.2)

where ⟨·, ·⟩ is the Frobenius inner product. LNCC ranges from 0 to 1, with 1

representing perfectly aligned images. To use as a loss function, we take the negative

of the value.

ℒ𝐿𝑁𝐶𝐶𝐴
(𝐼𝑓 , 𝐼𝑤𝐴

) = −𝐿𝑁𝐶𝐶(𝐼𝑓 , 𝐼𝑤𝐴
) (5.3)

5.4.3 Deformable Registration Network ℱ𝐷 Architecture

Given input images 𝐼𝑓 , 𝐼𝑤𝐴
, and 𝑆𝑤𝐴

, the deformable registration network ℱ𝐷 outputs

𝑇𝐷, 𝐼𝑤𝐷
, 𝑆𝑤𝐷

= ℱ𝐷(𝐼𝑓 , 𝐼𝑤𝐴
, 𝑆𝑤𝐴

), where 𝑇𝐷 ∈ Rℎ×𝑤×𝑑×3 represents the deformable

transformation and 𝐼𝑤𝐷
= 𝐼𝑤𝐴

∘ 𝑇𝐷 and 𝑆𝑤𝐷
= 𝑆𝑤𝐴

∘ 𝑇𝐷 are the (affinely and)

deformably warped moving image and label, respectively. ℱ𝐷 is composed of an
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opening convolution operation, the shared encoder, and a specialized deformable

transform decoding module. The decoding module is the inverse of the shared encoder,

with trilinear upsampling layers in lieu of max pooling. Following standard U-Net

approaches, we interleave skip connections from the encoder to the decoder.

To train ℱ𝐷, we use a combination of three losses. First, we measure the similarity

between 𝐼𝑓 and 𝐼𝑤𝐷
as follows:

ℒ𝐿𝑁𝐶𝐶𝐷
(𝐼𝑓 , 𝐼𝑤𝐷

) = −𝐿𝑁𝐶𝐶(𝐼𝑓 , 𝐼𝑤𝐷
) (5.4)

Next, to encourage the predicted DVF to be spatially smooth, we use the following

second order bending energy penalty [115]:

ℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝑇𝐷) =

∑︁(︂ ⃦⃦⃦⃦
⃦𝜕2𝑇𝐷

𝜕𝑥
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⃦⃦⃦⃦
⃦𝜕2𝑇𝐷

𝜕𝑦𝑧

⃦⃦⃦⃦
⃦
2

2

)︂ (5.5)

where spatial gradients are approximated via a second order finite difference. If we

place too much weight on this penalty, the predicted DVF will be over-smoothed and

will not adequately align 𝐼𝑓 and 𝐼𝑤𝐷
. Conversely, if we do not penalize enough, we may

see physiologically unrealistic transformations such as folding or other discontinuities.

Finally, to add extra incentive to the network to learn how to accurately shrink or

enlarge tumors (which will improve our downstream segmentation performance), we

utilize the Dice Score Coefficient (DSC) [71]. Given two label maps p and q, the DSC

measures how well they overlap as follows:

𝐷𝑆𝐶(p, q) =
2
∑︀

𝑝𝑞∑︀
𝑝+

∑︀
𝑞

(5.6)

DSC ranges from 0 to 1, with 1 representing perfect overlap. To use as a loss

function, we take the negative of the value.

ℒ𝐷𝑆𝐶𝐷
(𝑆𝑓 , 𝑆𝑤𝐷

) = −𝐷𝑆𝐶(𝑆𝑓 , 𝑆𝑤𝐷
) (5.7)
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5.4.4 Segmentation Network ℱ𝑆 Architecture

Given input images 𝐼𝑓 , 𝐼𝑤𝐷
, and 𝑆𝑤𝐷

, the segmentation network ℱ𝑆 outputs 𝑃1, 𝑃2

= ℱ𝑆(𝐼𝑓 , 𝐼𝑤𝐷
, 𝑆𝑤𝐷

), where 𝑃1 and 𝑃2 are pixelwise probability maps for likely brain

metastases. ℱ𝑆 is composed of an opening convolution operation, the shared encoder,

and a specialized segmentation module. This module works slightly differently from

the prior two in that the input to the opening convolution is solely the fixed image.

The output of the segmentation decoding module, which follows the same structure as

the deformable decoding module, is 𝑃1. As this part of the segmentation module is run

solely using the fixed image, it does not incorporate any prior time-point information

at this point. The second part of the segmentation module is a residual block [33]

which fuses information from the current time-point (𝐼𝑓 and 𝑃1) with information

from the prior time-point (𝐼𝑤𝐷
and 𝑆𝑤𝐷

) to output the final enhanced segmentation

𝑃2.

To train ℱ𝑆, we apply DSC loss to both 𝑃1 and 𝑃2 as follows:

ℒ𝐷𝑆𝐶𝑆1
(𝑆𝑓 , 𝑃1) = −𝐷𝑆𝐶(𝑆𝑓 , 𝑃1) (5.8)

ℒ𝐷𝑆𝐶𝑆2
(𝑆𝑓 , 𝑃2) = −𝐷𝑆𝐶(𝑆𝑓 , 𝑃2) (5.9)

5.4.5 Pyramidal Architecture

In this section, we will briefly describe the pyramidal structure of our network ar-

chitecture, a schematic of which is shown in figure 5-5. To begin, we use a 𝐿-level

pyramid framework for both our affine and deformable registration networks, where

we set 𝐿 = 3 for this paper. For level 𝑖 ∈ {1, 2, 3} in the pyramid, the input images

are downsampled by a factor 0.5𝐿−𝑖. A forward pass through the pyramidal structure

entails iteratively registering the images at from the coarsest scale (level 𝑖 = 1) to the

finest scale (level 𝑖 = 3). More specifically, at pyramid level 𝑖 = 1, we downsample

images 𝐼𝑓 and 𝐼𝑚 by a factor of 0.5𝐿−𝑖 = 4 to obtain coarse images 𝐼𝑓1 and 𝐼𝑚1 . These

are passed through ℱ𝐴1 to output a coarse affine transformation 𝑇𝐴1 . At pyramid

119



Figure 5-5: Schematic showing the pyramidal structure of our proposed
framework for affine image registration. The predicted affine transformation
𝑇𝐴 is iteratively refined by registering the images from the coarsest scale (level 𝑖 = 1)
to the finest scale (level 𝑖 = 3). The pyramidal structure for deformable registration
follows the same approach. Light red, red, and dark red are used to differentiate the
three levels of the pyramid.

levels 𝑖 > 1, we downsample images 𝐼𝑓 and 𝐼𝑚 by the appropriate scale factor to

obtain images 𝐼𝑓𝑖 and 𝐼𝑚𝑖
and we warp 𝐼𝑚𝑖

with the previously computed transform

𝑇𝐴𝑖−1
to make 𝐼𝑤𝐴𝑖−1

. 𝐼𝑓 and 𝐼𝑤𝐴𝑖−1
are passed through ℱ𝐴𝑖

to output a refined affine

transformation 𝑇𝐴𝑖
. The pyramidal structure for deformable registration follows the

same approach.

As stated previously, the pyramidal sub-networks ℱ𝐴𝑖
and ℱ𝐷𝑖

for 𝑖 ∈ {1, 2, 3}

share the same trainable parameters. The only difference between sub-networks is

that level 𝑖 = 1 uses two fewer and level 𝑖 = 2 uses one fewer non-trainable max

pooling and trilinear upsampling layer than does level 𝑖 = 3, respectively. By carefully

removing down-sampling and up-sampling layers for the coarser image resolutions, we

ensure that all input and output dimensions match up.

5.4.6 Total Pyramidal Loss Function

To balance losses coming from different levels in the pyramid, we use the following

formulation:
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ℒ𝑡𝑜𝑡𝑎𝑙(𝑇𝐴, 𝑇𝐴, 𝐼𝑓 , 𝐼𝑤𝐴
, 𝐼𝑤𝐷

, 𝑇𝐷, 𝑆𝑓 , 𝑆𝑤𝐷
, 𝑃1, 𝑃2) =

𝐿∑︁
𝑖=1

0.5𝐿−𝑖(ℒ𝑀𝑆𝐸(𝑇𝐴, 𝑇𝐴) + ℒ𝐿𝑁𝐶𝐶𝐴
(𝐼𝑓 , 𝐼𝑤𝐴

) + ℒ𝐿𝑁𝐶𝐶𝐷
(𝐼𝑓 , 𝐼𝑤𝐷

)

+ ℒ𝑠𝑚𝑜𝑜𝑡ℎ(𝑇𝐷) + ℒ𝐷𝑆𝐶𝐷
(𝑆𝑓 , 𝑆𝑤𝐷

) + ℒ𝐷𝑆𝐶𝑆1
(𝑆𝑓 , 𝑃1) + ℒ𝐷𝑆𝐶𝑆2

(𝑆𝑓 , 𝑃2))

(5.10)

where 𝛾 controls how much to decrease the loss at coarser image scales, 𝜆1 controls

the strength of ℒ𝑠𝑚𝑜𝑜𝑡ℎ, and 𝜆2 is a weighting hyperparameter to prevent ℒ𝐷𝑆𝐶𝐷
from

overpowering ℒ𝑠𝑚𝑜𝑜𝑡ℎ and resulting in spatially discontinuous deformations at tumor

boundaries.

5.5 Cohort

We acquired a cohort of patients with clinically diagnosed BM from a retrospective

database from Brigham and Women’s Hospital (BWH). We selected adult patients

with newly diagnosed BM who were undergoing stereotactic radiosurgery treatment

from April 2004 to November 2014. This yields 148 patients with 885 time-points

total. To train our registration and segmentation model, we divided this cohort on the

patient level into training (100 patients; 617 time-points), validation (25 patients; 139

time-points), and testing (23 patients; 129 time-points) sets. To better understand how

model performance varies as a function of lesion volume, each set was sub-divided into

groups of consisting of micro (< 25mm3), small (≥ 25mm3 and < 125mm3), medium

(≥ 125mm3 and < 1000mm3), and large (≥ 1000mm3) lesions. Table 5.1 details

demographical statistics of these selected cohorts. All patient examinations were

viewed and annotated in Slicer3D [197]. Segmentations were first manually segmented

by a neuro-oncologist and then manually edited by a board-certified neuro-radiologist

with 16 years’ experience. These segmentations serve as the ground truth for our

experiments.
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Table 5.1: Patient demographic information for the selected brain metastases cohort.

Characteristic Training Set Validation Set Test Set

Patient Characteristics

No. of patients 100 25 23
No. of women* 68 (68) 13 (52) 13 (57)
Median age† 60 (52 - 66) 61 (54 - 71) 67 (60 - 73)

Examination Characteristics

No. of MR examinations 617 139 129
No. of micro lesions 594 82 637
No. of small lesions 1245 138 465
No. of medium lesions 1070 141 156
No. of large lesions 522 128 72

Primary Cancer Type

Lung* 51 (51) 10 (40) 16 (70)
Breast* 21 (21) 6 (24) 1 (4)
Melanoma* 17 (17) 7 (28) 3 (13)
Gastrointestinal* 3 (3) 1 (4) 2 (9)
Renal* 4 (4) 1 (4) 0 (0)
Other/Unknown* 4 (4) 0 (0) 1 (4)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

5.6 Results

Our goal is A) to accurately and efficiently compute affine and deformable registrations

for brain tumor imaging data, and B) to improve segmentation of brain metastases by

using prior time-point information. In this section, we quantitatively evaluate these

goals.

5.6.1 Evaluation Approach/Study Design

We will evaluate registration performance as follows:

1. By computing LNCC between the fixed image 𝐼𝑓 and the moved images 𝐼𝑤𝐴

and 𝐼𝑤𝐷
.

2. By computing DSC between the fixed label 𝑆𝑓 and the moved labels 𝑆𝑤𝐴
and
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𝑆𝑤𝐷
.

Since ANTS and VXM are the most well-known and most rigorously validated

classical and deep learning based registration methods, respectively, we will compare

our method SPIRS to these two baselines. Namely, we will employ the Wilcoxon

signed-rank test [225], the non-parametric analog to the paired t-test. Following

recommendation from [124], we change the ANTS default parameters to use a step

size of 0.25, Gaussian parameters of (9.0, 0.2), and three levels in the pyramid with at

most 201 iterations each.

We will evaluate segmentation performance as follows:

1. By computing DSC, 95th percentile of Hausdorff distance (HD95) [226], and

sensitivity of lesion detection between the fixed label 𝐼𝑓 and the predicted

segmentations 𝑃1 and 𝑃2.

For two arbitrary segmentations, Hausdorff distance is a distance metric which

measures the furthest distance from any point on one boundary to its closest point on

the other boundary. This is formulated as

𝐻𝐷(𝐴,𝐵) = max

{︂
sup
𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎− 𝑏‖, sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑎− 𝑏‖
}︂

(5.11)

where the 95th percentile of the HD is often used as it is a more robust metric

unaffected by outliers.

We also assess sensitivity of lesion detection, which is given by:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.12)

where 𝑇𝑃 and 𝐹𝑁 are the number of true positives and false negatives, respectively.

We hypothesize that using segmentation labels generated using prior time-point

information (𝑃2) will significantly improve sensitivity of lesion detection when compared

to using segmentation labels generated without any prior time-point information (𝑃1).

To verify this, we will employ McNemar’s test, a type of chi-squared test for paired

data.
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Statistical analyses were performed using Python 3.6.9 [169] and Matlab 2018b

[227]. Statistically significant difference was set at p ≤ .05.

5.6.2 Data Preprocessing

To mitigate variability between examinations stemming from potential differences in

imaging protocols, we apply the following preprocessing steps. First, we resample all

data to 1mm isotropic resolution and skull strip using antsBrainExtraction.sh (ANTs

2.3.1), using the OASIS atlas as the target template. To compensate for intensity

inhomogeneity, we apply N4 bias correction [199] and normalize the image intensities

to have zero mean, unit variance (based on non-zero intensity voxels only). Next, all

volumes are tightly cropped to remove empty voxels outside the brain region. Finally,

we affinely align all imaging time-points to their respective baseline scans via ANTS.

In other words, all intra-patient imaging is affinely registered into the same space,

allowing us to utilize a supervised training loss for the affine network. Individual

images may have slightly varying sizes post skull-stripping and cropping. Indeed, while

the median image size is 136 × 169 × 134 voxels, the minimum size and maximum

sizes are 121 × 148 × 116 voxels and 160 × 201 × 159 voxels, respectively. That is

almost a factor of two more voxels in the maximum image size than the minimum. To

account for these different image sizes and to ensure that our network architecture will

fit into GPU memory, we resize all imaging to a uniform size of 128× 128× 128 voxels.

This resized image is approximately two thirds the volume of an image of median size.

While this decrease may seem relatively large, qualitative evaluation indicates minimal

loss in detail between the non-resized and resized images. Thus during training, the

three levels of our pyramid correspond to images of size 32×32×32 voxels, 64×64×64

voxels, and 128× 128× 128 voxels.

5.6.3 Implementation and Training Details

Our model SPIRS was implemented in DeepNeuro [228] with Tensorflow 2.10 backend

[229]. The three hyperparameters 𝛾, 𝜆1, and 𝜆2 in our total pyramidal loss function
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ℒ𝑡𝑜𝑡𝑎𝑙 are set to 0.5, 0.5, and 0.1, respectively. These hyperparameter choices were

determined experimentally. Full training details are described below.

Training is done using the SGD optimizer with decoupled weight decay [230] and

we progressively decrease the learning rate via the following cosine decay schedule:

𝜂𝑡 = 𝜂𝑚𝑖𝑛 + 0.5(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛)(1 + 𝑐𝑜𝑠(𝜋𝑇𝑐𝑢𝑟𝑟/𝑇 )) (5.13)

where 𝜂𝑚𝑎𝑥 is our initial learning rate (set to 1e-2), 𝜂𝑚𝑖𝑛 is our final learning rate

(set to 4e-5), 𝑇𝑐𝑢𝑟𝑟 is the current iteration counter, and 𝑇 is the total number of

iterations to train for (set to 250 epochs).

To mitigate overfitting, we apply weight decay of 4e-5 to all convolutional kernel

parameters, leaving biases and scales un-regularized. The same cosine decay schedule

is applied, where we set the final weight decay to be 2e-7. Furthermore, we apply

real-time data augmentation during the training process. Specifically, we utilize

random mirror axis flips about all three axes along with anisotropic scaling (0.9 to

1.1), rotations (−20∘ to 20∘), shearing (−0.05 to 0.05), and translations (−20 to 20

pixels). Intensity augmentation in the form of gamma correction (.75 to 1.25) is used

as well.

End-to-end training for our network is unstable due to the difficulty in balancing

losses computed at different levels in the pyramid. To overcome this issue, we use

a coarse-to-fine training approach. Since network parameters are shared between

all levels in the pyramid, we instead begin by training only the coarsest level and

successively add the other levels each time the model converges. In particular, we

start by training the affine, deformable, and segmentation modules only at level 𝑖 = 1.

Since our 3D images are downsampled by a factor of 4 at this scale, we can fit a batch

size of 32 into GPU memory, which allows us to train with batch normalization. After

convergence, we fine-tune this model with levels 𝑖 = 1 and 𝑖 = 2 together. Since our

images are now larger (only downsampled by a factor of 2 at this scale), we drop the

batch size to 2 to ensure our model still fits into memory and we freeze batch statistics.

This process is repeated one more time at the final level of the pyramid. A simple
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flowchart showing how SPIRS registers and segments a fixed and moving image is

shown in figure 5-6. This training process took around 48 hours on a NVIDIA Tesla

V100 32GB GPU.

Figure 5-6: Flowchart showing the path through the SPIRS network. Both
the affine and deformable registration network is run at three levels. The segmentation
network is only run at the finest level, since micro-metastases are down-sampled away
at coarser image resolutions. Color coding follows from previous figures, with shades
of blue representing different arms of the network and shades of red representing
different levels of the pyramid.

5.6.4 Inference

Even though model training is done on resized images, inference is mainly done at the

original resolution. There are two ways to perform inference at full resolution when a

model is trained on smaller images.

First, a patch-based sliding-window approach can be adopted. In this method,

patches the same size as the training patch (i.e. 128× 128× 128 voxels) are passed

to the network. These patches overlap the prior patch by a chosen amount, usually

anywhere from 50% to 80%. We use a non-uniform averaging where more weight is

given to the center of a patch than the extremities of a patch. At the end, all the

patches are stitched and averaged together to produce a final full-size registration map.

This process is extremely computationally expensive, since it requires many hundreds

of forward passes through the network to get a full-size prediction out. The number of
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forward passes is a function of the patch overlap value. The higher the chosen patch

overlap, the more time it will take to do a registration with the network. Lowering the

patch overlap will expedite the process, but at the expense of registration accuracy.

The second way involves taking advantage of the convolutional nature of our

network. The affine registration network contains two fully-connected layers at the end

which output the 15 affine registration parameters. While convolutional layers do not

require a fixed image size and can generate feature maps of any sizes, fully-connected

layers on the other hand need to have fixed size/length input[231]. Due to the use of

fully-connected layers in the affine registration network, we must run this component

of the network with the same input resolution as during training (i.e. 128× 128× 128

voxels). In order to utilize the predicted affine matrix 𝑇𝐴 on full sized images, we

must properly scale the affine transformation. Let ℎ, 𝑤, and 𝑑 refer to the height,

width, and depth of a full sized image. The scaled affine transform is then given by:

𝐴𝑓𝑓𝑖𝑛𝑒𝐹𝑢𝑙𝑙_𝑆𝑖𝑧𝑒 =

⎡⎢⎢⎢⎣
ℎ
128

0 0

0 𝑤
128

0

0 0 𝑑
128

⎤⎥⎥⎥⎦ * 𝑇𝐴 *

⎡⎢⎢⎢⎣
128
ℎ

0 0

0 128
𝑤

0

0 0 128
𝑑

⎤⎥⎥⎥⎦ (5.14)

where the first scale transform matrix is resizing the full size image to 128×128×128

voxels and the second scale transform matrix is resizing back to the full size of ℎ×𝑤×𝑑

voxels. This corrected affine matrix is used to warp the full size image, which can

then be used in the deformable registration and segmentation networks, which are

fully convolutional. As such, at test time we do not need to resize the images for

these two sub-networks. Instead, we simply pass the full resolution images entirely at

once to the networks. This process is highly efficient, taking less than 10 seconds per

registration on GPU.

Test time augmentation (TTA) is a common practice for image classification

and segmentation networks [232, 233, 234]. By applying certain transformations

(such as flipping, translations, scaling, etc.) to the image at test time and then

averaging network outputs across those different transformations, one can improve

model performance by non-negligible amounts. As this practice has not been applied
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to image registration methods, we assess performance gain from using mirror axis

flipped versions of the input. Specifically, we pass all eight mirror axis flipped versions

of the fixed and moving images through the first level of our affine registration network.

The resultant DVFs are un-flipped accordingly and averaged together. This averaged

DVF is then used to warp the moving image for the second level of the affine pyramid.

We note that during the training process, all warps are done via linear interpolation

for simplicity. At test time, we replace linear interpolation with tri-cubic interpolation,

which results in higher quality warped images. This process of collecting eight mirror

axis flipped DVFs and averaging together is repeated a total of six times (three for

the affine network and three for the deformable network). We note that this adds

some additional computational burden as the full network is now run eight times.

5.6.5 Image Registration Results

Comparison Between Types of Inference

We begin by comparing inference using a patch-based sliding-window approach with a

more simple approach wherein the full image is directly passed to the network. We

report results for deformable registration in table 5.2.

Table 5.2: Comparing two different approaches to inference via SPIRS.

Method LNCC‡ DSC‡ Mean |𝐽 |‡ |𝐽 | ≤ 0‡

Patch 0.76± 0.05 0.71± 0.21 1.0021± 0.015 98.32± 296.24
Full 0.76± 0.06 0.70± 0.21 1.0± 0.015 185.06± 366.21

‡ Data after ± is standard deviation.

We observe a slight, but not statistically significant, drop in mean LNCC and DSC

when switching away from a patch-based approach. To quantify the smoothness of

the deformation field, we compute the jacobian determinant of the predicted DVF.

Negative values of the jacobian determinant indicate folding or other discontinuities

that are physiologically impossible. We note an almost factor of two increase in this

metric when switching from a patch-based approach (𝑝 < 0.0001). While this could
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be seen as worrisome, we note that an average of 185 voxels with negative jacobian

determinant values accounts for less than 0.001% of all voxels in a 3D brain volume

(which can have anywhere from two to five million voxels total). Due to the significant

additional computation burden that the patch-based approach requires and the fact

that LNCC and DSC are approximately unchanged, we utilize the full-scale inference

technique for the rest of the analyses in this manuscript.

Test Time Augmentation Effects

We assess the performance gain of using TTA (i.e. averaging the outputs of eight

mirror axis flipped versions of the input images). Specifically, we calculate the MSE

between the true and predicted affine matrices, the LNCC between the fixed and

moved images, and the MSE between fixed and moved images. These results are

visualized in figure 5-7.

We observe that TTA provides better performance at almost every level of our

pyramid. Specifically, the MSE between true and predicted affine matrix is lower when

we use TTA at levels 𝑖 = 1 (𝑝 < 0.0001), 𝑖 = 2 (𝑝 < 0.0001), and 𝑖 = 3 (𝑝 < 0.01).

Similarly, the LNCC between the fixed and affinely moved images is higher when we

use TTA at levels 𝑖 = 1 (𝑝 < 0.0001) and 𝑖 = 2 (𝑝 < 0.01), but not 𝑖 = 3 (𝑝 = 0.15).

This trend is reversed when comparing LNCC between the fixed and deformably moved

images, where we do not find statistical significance for levels 𝑖 = 1 (𝑝 = 0.25) or 𝑖 = 2

(𝑝 = 0.10), but we do at 𝑖 = 3 (𝑝 < 0.01). We note similar trends for when comparing

MSE between fixed and moved images. Namely, we see that MSE is significantly lower

for levels 𝑖 = 1 (𝑝 < 0.0001) and 𝑖 = 2 (𝑝 < 0.05) for the affine registration network,

and for levels 𝑖 = 2 (𝑝 < 0.0001) and 𝑖 = 3 (𝑝 < 0.01) for the deformable registration

network.

These results make intuitive sense. Affine registration is mainly accomplished at

the coarser image scales, with very limited fine-tuning occurring at the finest image

scale. Since the affine transform is unlikely to change drastically going from the second

to the third level in the pyramid, we would expect to see little to no benefit to TTA at

the third level. Conversely, deformable registration is used to align the high frequency
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Figure 5-7: SPIRS performance with and without test time augmentation.
(A) MSE between the true and predicted affine matrix. (B, C) LNCC between the
fixed and affinely moved and deformably moved images, respectively. (D, E) MSE
between the fixed and affinely moved and deformably moved images, respectively.
We observe that test time augmentation (TTA) can provide minor, but noticeable
improvements in both affine and deformable registration performance at each level in
the pyramid.

components of an image. Thus the biggest deformations occur at the finest scale. Our

results match this intuition, showing that TTA helps most at the finest level. This

knowledge can be used to optimize computational burden by only applying TTA at

select image scales where the benefit will be most appreciable.

For simplicity’s sake and to ensure fair comparison to baseline methods, we will

not be performing TTA for any of the analyses below.

Pyramidal Results

At each level 𝑖 ∈ {1, 2, 3} in the pyramid, we compute the LNCC between the fixed

image 𝐼𝑓𝑖 and the moved images 𝐼𝑤𝐴𝑖
and 𝐼𝑤𝐷𝑖

. We find that LNCC markedly improves
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as we pass through the pyramid structures for both ℱ𝐴𝑖
and ℱ𝐷𝑖

(figure 5-8).

Figure 5-8: Local normalized cross correlation at each level of the pyramid.
LNCC is computed for all intra-patient pairs of test set examinations at each level of
the pyramid for affine and deformable registration. We observe that LNCC increases
monotonically as we first go through the affine network and second go through the
deformable network.

An example registration between two test set images is shown in figure 5-9 (A-H).

Panel (A) shows the fixed image 𝐼𝑓 and panel (B) shows the initially misaligned moving

image 𝐼𝑚, which have an initial LNCC of 0.064. We note that the affine misalignment

is purely 2D for the purpose of this figure, but emphasize that our network can register

images fully in 3D. Panels (C-E) show the results of affine registration from the

coarsest to the finest resolution along with the predicted transformations (which are

visualized as a DVF). Due to the size of the figure, it is difficult to see the minute

differences between 𝑇𝐴1 , 𝑇𝐴2 , and 𝑇𝐴3 . Nevertheless, we note that the registration

quality improved as evidenced by the LNCC, which rises to 0.110, 0.160, and 0.163 at

levels 1, 2, and 3, respectively. Panels (F-H) show the results of deformable registration.

Here, we can see striking differences between 𝑇𝐷1 , 𝑇𝐷2 , and 𝑇𝐷3 , with LNCC rising to

0.398, 0.525, and 0.614, respectively. Qualitative analysis of this example registration
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confirms our quantitative analysis. We can see two major deformations that occur in

the moving image. First, we notice that the tumor is significantly grown. Second, we

notice that the right ventricle is shrunk to better match the appearance in the fixed

image (and to better simulate the mass effect of the grown tumor). As this tumor

located entirely in the right hemisphere of the brain, there is less deformation due

to mass effect on the left side. This is visualized in our DVFs, which show much less

deformation in the left hemisphere of the brain.

Comparison to Baselines

Next, we compare our method SPIRS against baseline registration methods ANTS

and VXM (figure 5-10). Panels (A, C) compare LNCC and DSC between ANTS and

SPIRS for affine registration; panels (B, D) compare LNCC and DSC between VXM,

ANTS, and SPIRS for deformable registration. Since VXM only performs deformable

registration (thus requiring images to be affinely aligned as a pre-processessing step),

we affinely align all images via SPIRS before testing the three deformable registration

algorithms to ensure fair comparison. Using LNCC and DSC as our metrics, we

observe that SPIRS performs similarly to ANTS for affine registration (𝑝 > 0.1), and

performs better than VXM and ANTS for deformable registration (𝑝 < 0.0001).

In figure 5-11, we show example deformable registrations between two pairs of

test set images using VXM, ANTS, and SPIRS. SPIRS performs both qualitatively

and quantitatively better than the other two methods. While all three methods can

deformably register the large metastasis in the first row fairly well (though SPIRS

subjectively does the best), we can see that only SPIRS can correctly deformably warp

the smaller metastasis in the second row. In particular, VXM squeezes the metastasis

into the midline, whereas ANTS does not warp it at all.

Ablation Study

Finally, to understand the effect of the pyramidal component of our registration

network, we ran a small ablation study (table 5.3). When removing the pyramidal

component of the network, we observe a decrease in median LNCC of 0.45 (𝑝 < 0.0001)
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Figure 5-9: An example affine and deformable registration via SPIRS. A fixed
image 𝐼𝑓 (A) and a moving image 𝐼𝑚 (B) from the test set are registered together via
SPIRS. (C-E) show the results of pyramidal affine registration and (F-H) shows the
results of pyramidal deformable registration.

and 0.04 (𝑝 < 0.0001) for affine and deformable registration, respectively. Similarly,

we observe a decrease in median DSC of 0.25 (𝑝 < 0.0001) and 0.02 (𝑝 < 0.0001) for

affine and deformable registration, respectively. This highlights the importance of

using a multi-scale approach in order to guarantee optimal results, especially in the

case of affine registration.
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Figure 5-10: Quantitative comparison between our method SPIRS and
baseline methods VXM and ANTS. (A, B) LNCC for affine and deformable
registration. (C, D) DSC for affine and deformable registration.
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Figure 5-11: Comparison of deformable registration quality between SPIRS,
VXM, and ANTS. (A) Moving image and moving label. (B) Fixed image and fixed
label. (C-E) show deformable registration via VXM, ANTS, and SPIRS, respectively.
We observe that SPIRS qualitatively and quantitatively performs the best, especially
for smaller metastases.

Table 5.3: Ablation study to assess effect of pyramidal registration scheme on median
LNCC and DSC.

Pyramidal Transformation Type LNCC† DSC†

Affine 0.14 (0.11 – 0.17) 0.26 (0.11 – 0.44)
✓ Affine 0.59 (0.52 – 0.65) 0.51 (0.32 – 0.69)

Deformable 0.68 (0.64 – 0.71) 0.76 (0.72 – 0.79)
✓ Deformable 0.72 (0.53 – 0.82) 0.78 (0.61 – 0.85)

† Data in parantheses are IQRs.

5.6.6 Image Segmentation Results

We report results for the segmentation of BM split on the examination and lesion

level with and without using prior time-point information in table 5.4 and is shown in

figure 5-12. We observe minor improvements in DSC and HD95 at the examination

level (but these are not statistically significant). Indeed, looking at figure 5-12(C), the

two boxplots seem almost identical. When checking the difference in DSC between a
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predicted segmentation that uses prior information and one that does not in panel

(A), we note two things. First, we observe that using prior information almost never

reduces DSC. In other words, our model does not harm performance. Second, we

observe that that any large increase in examination level DSC is concentrated in

a small fraction of cases. Such results may imply that our method does not work

as expected, but examination level data does not tell the full story. When looking

at lesion level statistics, we observe a large increase in DSC (and accordingly large

decrease in HD95), which are both statistically significant (𝑝 < 0.0001). Lesion level

sensitivity also rises by 11% (𝑝 < 0.0001).

Table 5.4: Examination and lesion level median DSC, HD95, and sensitivity with and
without using prior time-point information.

Level Prior Info DSC† HD95† Sensitivity*

Examination Level 0.84 (0.75 - 0.90) 1.41 (1.0 – 2.73) N/A
Examination Level ✓ 0.85 (0.75 - 0.90) 1.21 (1.0 – 1.93) N/A

Lesion Level 0.17 (0.0 – 0.67) 3.64 (1.17 – inf) 53 (50 - 55)
Lesion Level ✓ 0.4 (0.0 – 0.69) 1.97 (1.0 – inf) 64 (61 - 66)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

To identify where the improvement is coming from, we report results further

subdivided by lesion size in table 5.5. We observe significant improvement in sensitivity

of lesion detection for micro and small sized lesions when incorporating prior time-point

information (𝑝 < 0.0001). Specifically, we detect 15% more micro-lesions (amounting

to 92 fewer missed detections), and we detect 10% more small-lesions (amounting

to 45 fewer missed detections). The sensitivity for medium and large sized lesions

remains unchanged. Since we only detect 27% of micro-metastases without using prior

information and 42% with using prior information, median DSC and HD95 are 0.0

and inf, respectively. Nonetheless, the 15% increase in sensitivity leads to significant

improvement in these two metrics (𝑝 < 0.0001). We note a similar trend in DSC and

HD95 for small metastases (𝑝 < 0.0001).

Examples of newly detected micro-metastatic lesions (all with ground truth volume
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Figure 5-12: Difference in segmentation performance of SPIRS with and
without using prior time-point information. (A) Difference in DSC with and
without using prior time-point information. This shows that using prior information
does not harm segmentation performance. Rather, for a small fraction of cases it can
be highly beneficial. (B) Shows the same information but in the form of a paired
scatter plot. (C) Shows the same information but in the form of a paired box plot.

Table 5.5: Median DSC, HD95, and sensitivity with and without using prior time-point
information split by lesion size.

Lesion Size Prior Info DSC† HD95† Sensitivity*

micro 0.0 (0.0 - 0.21) inf (2.12 – inf) 27 (24 - 31)
micro ✓ 0.0 (0.0 - 0.44) inf (1.41 – inf) 42 (38 - 46)

small 0.53 (0.0 – 0.68) 1.78 (1.0 – inf) 70 (66 - 74)
small ✓ 0.57 (0.16 – 0.69) 1.41 (1.0 – 3.98) 80 (76 - 84)

medium 0.78 (0.74 – 0.84) 1.0 (1.0 – 1.41) 97 (92 - 99)
medium ✓ 0.79 (0.74 – 0.85) 1.0 (1.0 – 1.41) 97 (92 - 99)

large 0.90 (0.88 – 0.92) 1.0 (1.0 – 1.41) 100 (93 - 100)
large ✓ 0.91 (0.89 – 0.92) 1.0 (1.0 – 1.41) 100 (93 - 100)
* Data in parantheses are percentages.
† Data in parantheses are IQRs.

< 10mm3) are shown in figure 5-13. Panel (A) shows an example of a patient with

only one metastasis. In this case, this lesion is missed completely when not using

prior time-point information, leading to an examination (and lesion) level DSC of

0.0. Even when using prior time-point information, we note that DSC only reaches

slightly above 0.60. The segmentation is subjectively perfect, but minor differences
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between the ground truth and predicted labels can lead to big changes in DSC for

small regions. In this case, a few voxel difference between the ground truth and

predicted labels leads to a DSC of 0.60, even though the predicted segmentation label

is subjectively better than the ground truth. Panels (B) and (C) show examples of

cases with multiple metastases of different sizes. In these cases, due to the fact that

there exists at least one more significantly larger metastasis which can be detected

without prior information, the difference in examination level DSC is close to negligible

(< 2%). Cases like this highlight the need to look at lesion level statistics when there

exist variability in metastases sizes.

Figure 5-13: Examples of SPIRS segmentation of brain micro-metastases.
Three different test set patients with automatically segmented micro-metastases
(outlined in red) that are missed if not using prior time-point information.

5.7 Discussion

Automated segmentation of BM is challenging machine learning task, with current

segmentation algorithms exhibiting poor performance for micro-metastatic lesions.

Patients undergoing active treatment will require regular follow-up imaging scans for

the purpose of treatment response assessment, and current segmentation approaches

are likely to make the same mistakes repeatedly (e.g. micro-metastatic lesion missed

at baseline is missed again at time-point 1). Instead of segmenting each image
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independently of each other, we propose to utilize the prior time-point imaging as a

means to improve segmentation of the new time-point. To that end, we developed

SPIRS, a method to affinely and deformably register a prior time-point image (with

known ground truth segmentation) to a new time-point image for the purpose of

improving segmentation performance on this new image. While we focus on BM

for this paper, we emphasize that our model architecture is generalizable to other

challenging medical segmentation problems where longitudinal imaging data is present.

In our experimental studies, we compare registration via SPIRS to registration

via ANTS and VXM and the comparative analysis indicates that SPIRS performs

equivalently for affine registration and performs better for deformable registration.

We attribute this improvement in performance to the fact that most algorithms

are developed for normal anatomy and are not well equipped to model large radial

deformations like we see for tumor growth/shrinkage. Indeed, VXM performed the

worst since none of the data it was trained on had any tumors. Using our method, we

subsequently show that we can drastically decrease the number of missed detections

of BM when we utilize prior time-point information. This has numerous clinical

implications.

First, we can reduce the annotation burden on clinicians by decreasing the number

of mistakes that must be corrected each time a patient comes in for follow-up imaging.

This will help streamline clinical workflows and enable the clinician to spend more

time working on important downstream tasks such as treatment response assessment.

Next, our approach can help make longitudinal patient analysis more consistent.

Due to a multitude of factors, patient follow-up imaging will occasionally be read

and interpreted by a different radiologist. Not only can this can lead to inter-rater

variability, where a lesion may be identified on one visit but not the other, but it

may also have significant effects on the categorization of treatment response (e.g.

accidentally assigning partial response (PR) instead of stable disease (SD)). Our

method can help prevent such issues by ensuring that lesions that were identified in

prior time-points are correctly carried forwards to new time-points. Third, many BM

specific clinical trials are run independently at differing institutions ([235, 236, 237]).
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In order to accurately assess treatment efficacy across multiple institutions and clinical

trials, a standardized non-volumetric measurement system known as the response

assessment in neuro-oncology (RANO) criteria is used ([179]). The RANO criteria

has been shown to lead to higher amounts of inter- and intra-rater variability and

has significantly poorer repeatability and consistency compared to true volumetric

measurements ([187, 204]). Showing promising results for segmentation of BM, our

approach is a step towards replacing RANO with volumetric tumor burden.

There are also certain interesting future directions in tumor growth modeling.

Biologically inspired models of cell diffusion can be used to mathematically predict

the dynamics of tumor growth [238, 239, 240]. As mentioned, our model not only

warped the tumors properly, but was able to accurately warp the ventricles and other

nearby structures to account for the tumor growth. These predicted DVFs could be

used to model future tumor growth for a patient directly from imaging data without

the need for an underlying model of tumor biology.

5.8 Limitations

There are a few limitations of our work. First, our dataset was collected retrospectively

from a single institution. Model performance when used in a prospective manner is

currently uncertain. Moreover, variations in scanner settings and MRI parameters

between institutions can affect performance, and future work will entail validating our

approach on a larger multi-site dataset. Second, our approach relies on the existence

of high quality prior time-point segmentations. If the radiologist that interpreted the

prior time-point missed a lesion or segmented a false positive, these mistakes will

most likely be inadvertently carried through to the new time-point. Third, we did not

run any exhaustive grid searches for the hyper-parameters in our approach. Minor

improvements to both the registration and segmentation may be achieved through

sophisticated hyper-parameter tuning. We also did not assess the effect of using higher

resolution imaging during the training process, instead using resized images of size

128 × 128 × 128 voxels. Further improvements may be realized by working at full
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resolution. Finally, we note that our algorithm could be susceptible to severe imaging

artifacts. A human radiologist can easily account for image artifacts such as those

stemming from patient motion and choose to throw away unreasonable data. On the

other hand, our algorithm may fail catastrophically without any warning.

5.9 Future Directions

Deformable registration methods like VXM require that images be affinely aligned

as a pre-processing step. In this manuscript, we developed a method for joint affine

and deformable image registration, removing the need to initially co-register images.

To the best of our knowledge, this is the first modern attempt to tackle this problem,

with prior approaches being out-of-date and sub-optimal in different ways.

Looking to the future, we will apply our method to normal anatomy imaging,

rigorously and fairly comparing to a wide range of classical [241, 119] and baseline DL

based registration methods [124, 125, 242, 243]. To ensure optimal performance of

our new model, we will make a few changes to our current model.

First, we will change the affine registration network to directly predict an affine

matrix as opposed to predicting a set of affine parameters and converting those into

an affine matrix. As matrix multiplication is not commutative, switching the order

of transforms will affect the end result. Our current model is trained to sequentially

apply rotation, scale, shear, and translation, in that order. As such, it is not able

to model a transformation that might perform shearing before rotation. By directly

regressing the affine matrix, this will enable us to learn a less constrained set of

affine transforms. We will also increase the data augmentation we use so that our

model learns more intense affine transforms. Specifically, we plan to utilize random

mirror axis flips about all three axes along with anisotropic scaling (0.75 to 1.25),

rotations (−45∘ to 45∘), shearing (−0.20 to 0.20), and translations (−30 to 30 pixels).

Heavier intensity augmentation in the form of gamma correction (.65 to 1.35) and

random bias field addition will be used as well. For our previous model, we did not

apply random elastic augmentations during training, but we will experiment with
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these types of augmentations in the future. Additionally, we will modify the affine

registration architecture to remove the flattening layer that occurs right before the

fully-connected layers. The flatten layer (along with the fully-connected layers) lock

the image input size of the model, which is sub-optimal for our purposes. We will

instead re-parameterize the fully-connected layers as convolutional layers. Note that

a fully-connected layer is the same as a convolution with kernel size equal to the

image size and valid padding (i.e. the kernel does not move). By applying this

re-parameterization, our network can accept any input image size as input, allowing

our affine registration network to run at full-scale resolution.

Besides making modifications to the affine network, there are also a host of other

modifications to the training procedure. First, we will modify the LNCC loss function

to use different window sizes at different levels in the pyramid. This will ensure that the

local cross-correlation is dependent on window sizes that are proportionally equivalent

to the image size at that level. Second, while the convolutional layers in the encoder

will remain shared across networks and levels, we will make batch normalization

distinct between the affine and deformable registration networks. Batch normalization

is extremely dataset and task dependent, and we expect better performance when

train batch statistics separately on the affine and deformable networks. Third, we will

update the smoothing loss on the deformation field. As noted previously, our network

produces a small, but non-zero, number of areas with negative jacobian determinant

values. A common idea in machine learning is to optimize for the metric you want to

maximize (or minimize). In this case, adopting a first derivative or second derivative

smoothing penalty on the deformation field is a proxy for reducing negative jacobian

determinant values. Instead of using these proxy methods, we will instead directly

penalize the jacobian determinant, which we expect will remove all discontinuities

in the predicted deformation field. Fourth, we will update our training procedure to

include a consistency loss. Specifically, we will train the model to predict both the

forwards and backwards transforms, and enforce that the composition of the forwards

and backwards transforms are identity. This has the added benefit of allowing us to

output both transforms simultaneously. Finally, since we are going to be training on
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normal anatomy imaging, we can use anatomical labels to improve registration quality.

VXM has shown up to a 3% dice score improvement when using label masks, and we

expect similar performance benefits.

5.10 Conclusion

In conclusion, we propose a novel DL based framework for joint image registration

and segmentation of brain metastases on MRI. Our approach can be used to affinely

and deformably co-register two intra-patient examinations and segment the metastatic

lesions on the newer time-point. This tool may be used to reduce annotation burden

for the clinician and improve sensitivity of detection of micro-metastatic brain lesions.

Future work includes further improving the registration method and the initial seg-

mentation network. We may also consider applying this approach to other relevant

medical applications.
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Chapter 6

Conclusion

Image segmentation plays a vital role in the clinical workflow, but a plethora of

challenges prevents its widespread adoption and use. The research presented in this

thesis presents methods to automate image segmentation and shows how having highly

accurate automated segmentations can improve downstream clinical tasks.

In chapter 3, I developed the first fully automated deep learning based system for

adrenal gland segmentation and classification. With the high inter-reader variability

present for manual detection of adrenal masses, there is risk of accidentally missing

clinically relevant disease. I envision that this model will inform radiologists, providing

pre-reads of all imaging and thus, enabling more reproducible and repeatable detection.

In chapter 4, I developed a pipeline for longitudinal response assessment for brain

metastases patients. Since the RANO-BM criteria does not quantify lesions below 10

mm, it is providing potentially incomplete depictions of tumor progression. I envision

my pipeline for automatic volumetric quantification to enable radiologists to focus

on more complex and important patient management tasks, rather than segmenting

images all day long.

In chapter 5, I developed a novel joint image registration and segmentation

framework to improve the segmentation of micro-metastases. By using prior time-

point information, we can reduce future annotation burden for the clinician. In the

prior two chapters, neural network based models were informing the radiologist. In

this scenario, the causation is reversed, with the radiologist informing the neural
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network.

And that leads me to the final takeaway point of this dissertation. There has to be

synergy between healthcare professions and deep learning based models. Specifically,

there has to be an understanding of when models fails and why they fail. And if there

is that understanding, then a positive feedback cycle is generated, where radiologists

can improve the models, and the models can improve radiology.
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