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Abstract

We introduce a framework for interpreting black-box machine learning (ML) models,
discover overinterpretation as a failure mode of deep neural networks, and discuss how
ML methods can be applied for therapeutic design, including a pan-variant COVID-
19 vaccine. While ML models are widely deployed and often attain superior accuracy
compared to traditional approaches, deep learning models are functionally complex
and difficult to interpret, limiting their adoption in high-stakes environments. In
addition to safer deployment, model interpretation also aids scientific discovery, where
validated ML models trained on experimental data can be used to uncover biological
mechanisms or to design therapeutics through biologically faithful objective functions,
such as vaccine population coverage.

For interpretation of black-box ML models, we introduce the Sufficient Input
Subsets (SIS) method that is model-agnostic, faithful to underlying functions, and
conceptually straightforward. We demonstrate ML model interpretation with SIS
in natural language, computer vision, and computational biological settings. Using
the SIS framework, we discover overinterpretation, a novel failure mode of deep neu-
ral networks that can hinder generalizability in real-world environments. We posit
that overinterpretation results from degenerate signals present in training datasets.
Next, using ML models that have been calibrated with experimental immunogenicity
data, we develop a flexible framework for the computational design of robust peptide
vaccines. Our framework optimizes the 𝑛-times coverage of each individual in the
population to activate broader T cell immune responses, account for differences in
peptide immunogenicity across individuals, and reduce the chance of vaccine escape
by mutations. Using this framework, we design vaccines for SARS-CoV-2 that have
superior population coverage to published baselines and are conserved across variants
of concern. We validate this approach in vivo through a COVID-19 animal challenge
study of our vaccine. This thesis demonstrates distinct ways model interpretation
enables ML methods to be faithfully deployed in biological settings.
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Chapter 1

Introduction

Recent progress in machine learning (ML) has led to rapid deployment of machine

learning models in many domains. ML methods are employed to understand natural

language, speech, and images, to make medical diagnoses and propose treatment

interventions, and as tools in basic scientific research. Machine learning algorithms

are capable of extracting the potentially complex patterns present in observed data to

make predictions about data that have not yet been observed. Deep learning methods

(e.g., neural networks) are particularly expressive and flexible models because they act

hierarchically — latent representations of the data are expressed in terms of simpler

primitive representations that are also learned by the models. As a consequence, deep

learning models often achieve state-of-the-art performance over traditional learning

algorithms and are widely deployed. A common supervised ML pipeline involves

training a model and measuring accuracy on held-out test data to evaluate whether

the model can adequately generalize to unseen data. If the model is found to have high

test accuracy, it may be deployed. However, to permit their functional expressivity,

neural networks typically contain a large number of parameters representing complex

and nonlinear functions. Thus, deep learning models are generally poorly understood

and have earned reputations as opaque “black-boxes.” Performance gains often come

at the cost of interpretability, a trade-off that is concerning as we demonstrate that

models may attain high test accuracy but still rely upon spurious features present in

the training data.
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Interpretability plays an important role in the development and deployment of

ML models and in building trust among stakeholders in the ML process (Hong et al.,

2020). The lack of interpretability of ML models is concerning because it means

practitioners cannot understand how their models make decisions. In many settings, it

is crucial that decisions made by ML models can be explained. For example, consider

ML models used by physicians to screen patients for a disease. Given patient data, a

black-box model simply outputs Disease or No Disease, but without also providing an

explanation for this decision, the model cannot be trusted. Indeed, machine learning

methods have been known to make erroneous predictions in such settings (Zech et al.,

2018; Patel, 2017). Without transparency in how models make decisions, humans may

lack trust in model outputs. Interpretability is necessary to ensure that a prediction

was not made as a result of spurious correlations or biases present in training data.

In addition to making complex model decision-making more transparent to users

prior to or during model deployment, interpretability has other use cases in ML and

in scientific applications as illustrated in Figure 1-1. Prior to real world deployment,

model interpretation can be a useful tool for debugging, where an understanding of

why a model makes certain misclassifications may permit users to revise the training

procedure or model architecture design to improve predictive accuracy. Interpretation

can also expose idiosyncratic behaviors of individual models and be used as part of a

model selection pipeline: which model to select from a series of models trained for the

same task. An understanding of the features learned by each model may help expose

how the models differ to decide which is best suited for adoption in a particular system.

Additionally, interpretability can be adopted in scientific settings, where accurate

predictive models trained on experimental data can be interpreted to extract the

scientific mechanisms underlying the observed data (Greener et al., 2022; Azodi et al.,

2020). The resulting principles can serve as hypotheses in follow-up experiments that

can generate new data or be used to refine the training procedure to produce models

whose decision-making criteria are more aligned with the ground-truth mechanisms.

Finally, interpretation can be a tool to validate ML models prior to integration of

the model into a downstream task, such as therapeutic design. In this setting, the
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Figure 1-1: Overview of the roles of model interpretation in a machine learning
pipeline. Model interpretation provides a mechanism to validate ML model behavior
prior to or during real world deployment, extract underlying mechanisms behind the
training data (e.g., in scientific settings), or permit integration of ML models into
downstream tasks (e.g., therapeutic design). This thesis develops methods for inter-
pretation of ML models and the application of validated ML models, including to the
downstream task of vaccine design.

ML model can be adopted an one input to a task-specific objective function, whose

output (e.g., a vaccine) can be validated through a separate experiment, and the

results potentially used to evaluate or refine the ML model or objective function. In

this thesis, we develop methods for interpretation of black-box ML models and the

application of validated ML models to vaccine design.

One application requiring accurate and robust machine learning models is the

computational design of therapeutic molecules, an advance enabled by the curation

of biological experimental data into publicly available repositories. For instance,

high-capacity machine learning models can be trained on large repositories of bio-
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logical data and used to design new antibodies with superior properties (Liu et al.,

2020b) or as part of a pipeline to design personalized cancer vaccines (Hu et al.,

2018). Deep learning methods offer advantages over traditional bioinformatic ap-

proaches as a result of their expressive power and ability to efficiently learn complex

patterns that may be unknown to scientists a priori. Machine learning models can

also guide or replace expensive or time-consuming laboratory experiments to identify

novel molecules (Stokes et al., 2020). Given this role, robust behavior of machine

learning models and an understanding of their decision-making are crucial in biolog-

ical settings.

In the computational vaccine design setting, deep learning models can now ac-

curately predict the binding between peptide ligands and major histocompatibility

complex (MHC) molecules, a prerequisite for eliciting a cellular immune response

against the peptide (Reynisson et al., 2020a; Zeng and Gifford, 2019). These models

are trained and validated on experimental data in curated repositories, including the

Immune Epitope Database (IEDB) (Vita et al., 2019), and can be further calibrated

with clinical data. The trained and validated models can then be used to rapidly

predict the presentation of many peptides by a diverse range of MHC alleles in silico.

However, there is a need for vaccine design frameworks that can use the ML pre-

dictions to do principled selection among potentially thousands of candidate peptides

to design effective peptide vaccines with broad population coverage. In particular,

a flexible and robust vaccine design framework should consider the distribution of

MHC haplotypes across human populations to more accurately estimate population

coverage, provide redundancy for a stronger immune response in each individual, and

select optimal peptide candidates based upon criteria including mutation rate across

pathogenic variants. The framework should also ensure that each individual is cov-

ered by multiple peptide-HLA “hits” to allow for variation in T cell repertoire and

peptide immunogenicity across individuals. We define a peptide-HLA hit as a pair of

peptide and HLA allele where the peptide is predicted to be displayed by the HLA

and immunogenic in the individual. If these criteria are not met, a vaccine design may

have limited population coverage and vaccine protection may be more easily escaped
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by pathogenic drift.

This thesis contributes methods to multiple stages of the ML pipeline to demon-

strate applications of model interpretation as described by Figure 1-1. We contribute

and validate frameworks for interpretation of black-box ML models, including models

trained on biological data, and for principled design of vaccines with broad population

coverage that incorporates ML model predictions into a vaccine design objective. Our

framework designs have objectives that faithfully reflect their underlying systems, are

flexible, and are conceptually straightforward to facilitate adoption by users who may

not be ML experts.

1.1 Thesis Outline

We first introduce the Sufficient Input Subsets (SIS) method for machine learning

model interpretability (Chapter 2). The SIS approach is model-agnostic, faithful to

underlying model functions, and the outputs can be easily understood by humans. SIS

can be used to interpret model decisions locally on individual inputs, or rationales

can be clustered across many inputs to gain global insights into general principles

governing the model’s behavior.

Second, we introduce Batched Gradient SIS to efficiently scale the SIS framework

to high-dimensional data and discover a novel failure mode of deep learning models

— overinterpretation (Chapter 3). We find that models trained on the popular

ImageNet benchmark often rely solely on border pixels rather than salient objects.

While these features may lead to fragility of models in real world deployment, we

find that they are in fact valid statistical patterns in the benchmark datasets that

suffice to attain high test accuracy, and thus future training datasets may need to be

carefully curated to eliminate such artifacts.

Third, we introduce a flexible and robust framework for peptide vaccine design

with 𝑛-times coverage (Chapter 4). We develop computational tools to predict the

population coverage of peptide vaccine designs based upon human HLA haplotype

frequencies. Our framework requires predicted HLA display of multiple peptides
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per individual to strengthen the expected immune response by engaging a diverse

set of T cell clonotypes and to permit differences in peptide immunogenicity across

individuals. This redundancy also reduces the chance of the pathogen mutating and

escaping immune protection. Our method permits incorporation of experimental

immunogenicity data and design of vaccines against different target populations of

interest. Vaccine peptide candidates can stem from specific proteins of interest and

be filtered by multiple criteria, including mutation rate across pathogenic variants.

We introduce a combinatorial optimization procedure (OptiVax) to design peptide

vaccines against the 𝑛-times coverage objective. We find our vaccine designs are

superior in population coverage to published baseline vaccine designs for COVID-19.

Finally, we validate the OptiVax framework through an animal challenge study

with a COVID-19 variant of concern (Chapter 5). We show that an mRNA-LNP

vaccine consisting of short, conserved epitopes derived from SARS-CoV-2 prevented

mortality in HLA transgenic mice challenged with the SARS-CoV-2 Beta variant of

concern. Our vaccine activated a robust cellular immune response and expanded

both CD8+ and CD4+ T cells. The vaccine caused significantly more CD8+ and

CD4+ T lymphocytic infiltration of the lungs compared to Pfizer-BioNTech and PBS

controls. Our results demonstrate in vivo that the OptiVax framework can be used to

design effective pan-variant peptide vaccines and highlight the importance of 𝑛-times

coverage.

1.2 Prior Publications

The work presented in this thesis was done in collaboration with a number of coau-

thors who were key in shaping the research. The material of Chapters 2, 3, 4, and 5

has appeared in the following joint publications:

Carter, B., Mueller, J., Jain, S., and Gifford, D. (2019). What made you do this?

Understanding black-box decisions with sufficient input subsets. In The 22nd Inter-

national Conference on Artificial Intelligence and Statistics, pages 567–576
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Carter, B., Jain, S., Mueller, J. W., and Gifford, D. (2021). Overinterpretation reveals

image classification model pathologies. Advances in Neural Information Processing

Systems, 34:15395–15407

Liu, G., Carter, B., Bricken, T., Jain, S., Viard, M., Carrington, M., and Gifford,

D. K. (2020a). Computationally optimized SARS-CoV-2 MHC class I and II vac-

cine formulations predicted to target human haplotype distributions. Cell Systems,

11(2):131–144

Liu, G., Carter, B., and Gifford, D. K. (2021). Predicted cellular immunity population

coverage gaps for SARS-CoV-2 subunit vaccines and their augmentation by compact

peptide sets. Cell Systems, 12(1):102–107

Liu, G., Dimitrakakis, A., Carter, B., and Gifford, D. (2022). Maximum n-times cov-

erage for vaccine design. In International Conference on Learning Representations

Carter, B., Huang, P., Liu, G., Liang, Y., Lin, P. J. C., Peng, B.-H., McKay, L. G. A.,

Dimitrakakis, A., Hsu, J., Tat, V., Saenkham-Huntsinger, P., Chen, J., Kaseke, C.,

Gaiha, G. D., Xu, Q., Griffiths, A., Tam, Y. K., Tseng, C.-T. K., and Gifford, D. K.

(2023). A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice

from mortality after infection with SARS-CoV-2 Beta. Frontiers in Immunology,

14:1135815
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Chapter 2

Sufficient Input Subsets for

Interpretability

The rise of neural networks and nonparametric methods in machine learning (ML) has

driven enormous improvements in prediction capabilities, while simultaneously earn-

ing the field a reputation of producing complex black-box models. Vital applications,

which could benefit most from improved prediction, are often deemed too sensitive

for opaque learning systems. Such applications include the use of ML models to re-

ject loan applicants (Sirignano et al., 2018), deny defendants’ bail (Kleinberg et al.,

2018), or diagnose disease (Gulshan et al., 2016). For ML models to be used in these

systems, it is imperative that the decisions they make can be interpretably rational-

ized. Interpretability is also crucial in scientific applications, where it is hoped that

underlying principles may be extracted from accurate predictive models (Doshi-Velez

and Kim, 2017; Lipton, 2016).

One simple explanation for why a particular black-box decision is reached may be

obtained via a sparse subset of the input features whose values form the basis for the

model’s decision – a rationale. For text (or image) data, a rationale might consist of

a subset of positions in the document (or image) together with the words (or pixel-

values) occurring at these positions (examples shown in Figures 2-3 and 2-17). Here,

we consider rationales that do not attempt to summarize the (potentially complex)

operations carried out within a black-box model, but instead point to the relevant
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features used by the model to arrive at a decision on that particular input. This

property ensures that the interpretations remain faithful to any arbitrary model.

Additionally, we desire that rationales are sparse, which facilitates interpretability

when inputs are high-dimensional (Lei et al., 2016).

Here, we develop a local explanation framework to produce rationales for a learned

model that has been trained to map inputs x ∈ 𝒳 via some arbitrary learned function

𝑓 : 𝒳 → R. Unlike many other interpretability techniques, our approach is not

restricted to vector-valued data and does not require gradients or differentiability of

𝑓 . Rather, each input example is solely presumed to have a set of indexable features

x = [𝑥1, . . . , 𝑥𝑝], where each 𝑥𝑖 ∈ R𝑑 for 𝑖 ∈ [𝑝] = {1, . . . , 𝑝}. Our method can

be applied to interpret decisions made on inputs x whose features are unordered

(set-valued inputs) or for which the number of features 𝑝 can vary (e.g., variable-

length sequences). A rationale corresponds to a sparse subset of these indices 𝑆 ⊆ [𝑝]

together with the specific values of the features in this subset.

To understand why a certain decision was made for a given input x, we propose a

particular rationale called a sufficient input subset (SIS). Each SIS consists of a mini-

mal input pattern present in x that alone suffices for 𝑓 to produce the same decision,

even if provided no other information about the rest of x. Presuming the decision

is based on 𝑓(x) exceeding some prespecified threshold 𝜏 ∈ R, we seek to find a

minimal-cardinality subset 𝑆 of the input features such that 𝑓(x𝑆) ≥ 𝜏 . Throughout,

we use x𝑆 ∈ 𝒳 to denote a modified input example in which all information about

the values of features outside subset 𝑆 has been masked, with features in 𝑆 remaining

at their original values. Thus, each SIS characterizes a particular standalone input

pattern that drives the model toward the decision, providing sufficient justification

for this choice from the model’s perspective, even without any information about the

values of the other features in x.

In classification settings, 𝑓 might represent the predicted probability of class 𝐶

where we decide to assign the input to class 𝐶 if 𝑓(x) ≥ 𝜏 , where 𝜏 can be chosen

based on precision/recall considerations. Each SIS in such an application corresponds

to a small input pattern that on its own is highly indicative of class 𝐶, according to the
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model. Note that by suitably defining 𝑓 and 𝜏 with respect to the predictor outputs,

any particular decision for input x can be precisely identified with the occurrence of

𝑓(x) ≥ 𝜏 , such that greater values of 𝑓 are associated with greater confidence in the

decision.

For a given input x that satisfies 𝑓(x) ≥ 𝜏 , this work presents a simple method

to find a complete collection of sufficient input subsets, each satisfying 𝑓(x𝑆) ≥ 𝜏 ,

such that there exists no additional SIS outside of this collection. Each SIS may be

understood as a disjoint piece of evidence that would lead the model to reach the same

decision, and why this decision was reached for x can be unequivocally attributed to

the SIS-collection. Furthermore, global insight on the general principles underlying

the model’s decision-making process may be gleaned by clustering the types of SIS

extracted across different data points (Section 2.7). Such insights allow us to compare

models based not only on their accuracy, but also on human-determined relevance of

the concepts they target. Our method’s simplicity facilitates its utilization by non-

experts who may know little about the models they wish to interrogate.

Code for the experiments in this chapter is available at: https://github.com/

b-carter/SufficientInputSubsets.

2.1 Related Work

Certain neural network variants such as attention mechanisms (Sha and Wang, 2017)

and the generator-encoder of Lei et al. (2016) have been proposed as powerful yet

human-interpretable learners. Other interpretability efforts have tailored decomposi-

tions to certain convolutional/recurrent networks (Murdoch et al., 2018; Olah et al.,

2017, 2018; Strobelt et al., 2018), but these approaches are model-specific and only

suited for ML experts. Many applications necessitate a model outside of these fam-

ilies, either to ensure supreme accuracy, or if training is done separately with access

restricted to a black-box API (Caruana et al., 2015; Tramer et al., 2016). Thus, much

recent research aims to address the critical need for methods which enable non-ML

experts to rationalize the predictions of any type of model. One general approach
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entails fitting a separate explanation model to the outputs of 𝑓 over the same training

data, for example a feature-selector (Li et al., 2017) or surrogate decision tree (Frosst

and Hinton, 2017; Zhang et al., 2018; Wu et al., 2017). However, such a strategy may

not be generalizable to out of sample examples (which are crucial for understanding

how 𝑓 would behave in certain counterfactual settings).

An alternative model-agnostic approach to interpretability produces local expla-

nations of 𝑓 for a particular input x. Local explanation often relies on attribution

methods that quantify how much each feature influences the output of 𝑓 at x. Ex-

amples include LIME, which locally approximates 𝑓 (Ribeiro et al., 2016), saliency

maps based on gradients of 𝑓 (Baehrens et al., 2010; Simonyan et al., 2014), Layer-

wise Relevance Propagation (Bach et al., 2015), as well as the discrete DeepLIFT

approach (Shrikumar et al., 2017) and its continuous variant, Integrated Gradients

(IG) (Sundararajan et al., 2017), developed to ensure attributions reflect the cumula-

tive difference in 𝑓 at x vs. a reference input. A separate class of input-signal-based

explanation techniques such as DeConvNet (Zeiler and Fergus, 2014), Guided Back-

prop (Springenberg et al., 2015), and PatternNet (Kindermans et al., 2018) employ

gradients of 𝑓 in order to identify input patterns that cause 𝑓 to output large val-

ues. However, many gradient-based saliency methods have been deemed unreliable,

depending not only on the learned function 𝑓 , but also on its specific architectural

implementation and how inputs are scaled (Kindermans et al., 2019, 2018). More like

our approach, recent techniques from Dabkowski and Gal (2017); Kim et al. (2018);

Chen et al. (2018) also aim to identify input patterns that best explain certain deci-

sions, but additionally require either a predefined set of such patterns or an auxiliary

neural network trained to identify them. The principle of Shapley values, which are

approximated by existing feature attribution methods (Lundberg and Lee, 2017), as-

serts that to assess the effect of a feature, its presence/absence should be considered

in the context of all other possible feature subsets. In contrast, our backward selec-

tion approach only evaluates the effect of a feature in the context of the remaining

not-yet-masked features, as our focus is identifying feature subsets that meet the SIS

sufficiency criterion (Section 2.2), as opposed to feature attribution.
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In comparison with the aforementioned methods, our SIS approach is: conceptu-

ally simple, entirely faithful to any type of model, and requires neither gradients of

𝑓 nor auxiliary training of the underlying model 𝑓 or a surrogate explanation model.

Also related to our subset-selection methodology are the ideas of Li et al. (2017) and

Fong and Vedaldi (2017), which for a particular input seek a small feature subset

whose omission causes a substantial drop in 𝑓 such that a different decision would be

reached. However, this objective can produce adversarial artifacts that are hard to

interpret. In contrast, we focus on identifying small subsets of input features whose

values suffice to ensure 𝑓 outputs significantly positive predictions, even in the ab-

sence of any other information about the rest of the input. While the techniques of

Li et al. (2017) and Fong and Vedaldi (2017) produce rationales that remain highly

dependent on the rest of the input outside of the selected feature subset, each ratio-

nale identified by our SIS approach is independently considered by 𝑓 as an entirely

sufficient justification for a particular decision in the absence of other information.

More broadly, our approach aims to interpret model behavior on a particular

instance by identifying the input features that provide the basis for the model’s deci-

sion on that input. Another class of model interpretation methods instead explains a

model’s behavior through the influence of instances in training data and measures the

effects of deleting entire training instances on the model’s predictions (Cook, 1977).

The approach by Koh and Liang (2017) adopts influence functions that measure the

sensitivity of the model to an infinitesimal upweighting of each training instance. In

contrast, our SIS method perturbs the features within a particular instance to ratio-

nalize the model’s prediction on that input. However, one parallel between our ap-

proach and the approach of deletion diagnostics and influence functions is the strategy

of deleting a feature (or training instance) to estimate its importance. Given SIS can

be applied to any black-box function, one can frame computing influential instances

as applying SIS to a function that takes as input a dataset (where “features” specify

which training instances are to be included) and outputs a model performance metric

of interest, and SIS would return a minimal set of input features (training instances)

that suffice for the model to attain performance at a specified threshold.
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2.2 Sufficient Input Subsets Method

Our approach to rationalizing why a particular black-box decision is reached only

applies to input examples x ∈ 𝒳 that meet the decision criterion 𝑓(x) ≥ 𝜏 . For such

an input x, we aim to identify a SIS-collection of disjoint feature subsets 𝑆1, . . . , 𝑆𝐾 ⊆

[𝑝] that satisfy the following criteria:

(1) 𝑓(x𝑆𝑘
) ≥ 𝜏 for each 𝑘 = 1, . . . , 𝐾

(2) There exists no feature subset 𝑆 ′ ⊂ 𝑆𝑘 for some 𝑘 = 1, . . . , 𝐾 such that 𝑓(x𝑆′) ≥

𝜏

(3) 𝑓(x𝑅) < 𝜏 for 𝑅 = [𝑝] ∖
⋃︀𝐾

𝑘=1 𝑆𝑘 (the remaining features outside of the SIS-

collection)

Criterion (1) ensures that for any SIS 𝑆𝑘, the values of the features in this subset

alone suffice to justify the decision in the absence of any information regarding the

values of the other features. To ensure information that is not vital to reach the

decision is not included within the SIS, criterion (2) encourages each SIS to contain a

minimal number of features, which facilitates interpretability. Finally, we require that

our SIS-collection satisfies a notion of completeness via criterion (3), which states that

the same decision is no longer reached for the input after the entire SIS-collection has

been masked. This implies the remaining feature values of the input no longer contain

sufficient evidence for the same decision. Figures 2-4 and 2-17 show SIS-collections

found in text and image inputs, respectively.

Recall that x𝑆 ∈ 𝒳 denotes a modified input in which the information about the

values of features outside subset 𝑆 is considered to be missing. We construct x𝑆 as

new input whose values on features in 𝑆 are identical to those in the original x, and

whose remaining features 𝑥𝑖 ∈ [𝑝] ∖ 𝑆 are each replaced by a special mask 𝑧𝑖 ∈ R𝑑𝑖

used to represent a missing observation. While certain models are specially adapted

to handle inputs with missing observations (Smola et al., 2005), this is generally not

the case. To ensure our approach is applicable to all models, we draw inspiration
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from data imputation techniques which are a common way to represent missing data

(Rubin, 1976).

Two popular strategies include hot-deck imputation, in which unobserved values

are sampled from their marginal feature distribution, and mean imputation, in which

each 𝑧𝑖 is simply fixed to the average value of feature 𝑖 in the data. Note that for a

linear model, these two strategies are expected to produce an identical change in pre-

diction 𝑓(x)− 𝑓(x𝑆). We find in practice that the change in predictions resulting from

either masking strategy is roughly equivalent even for nonlinear models such as neural

networks (Appendix A.1.1, Figure A-1). In this work, we favor the mean-imputation

approach over sampling-based imputation, which would be computationally expen-

sive and nondeterministic (undesirable for facilitating interpretability). One may also

view z as the baseline input value used by feature attribution methods (Sundararajan

et al., 2017; Shrikumar et al., 2017), a value which should not lead to particularly

noteworthy decisions. Since our interests primarily lie in rationalizing atypical deci-

sions, the average input arising from mean imputation serves as a suitable baseline.

Zeros have also been used to mask image and categorical data (Li et al., 2017), but

empirically, this mask appears undesirably more informative than the mean (predic-

tions more affected by zero-masking).

For an arbitrarily complex function 𝑓 over inputs with many features 𝑝, the com-

binatorial search to identify sets which satisfy objectives (1)–(3) is computationally

infeasible. To find a SIS-collection in practice, we employ a straightforward backward

selection strategy, which is here applied separately on an example-by-example basis

(unlike standard statistical tools which perform backward selection globally to find a

fixed set of features for all inputs). The SIScollection algorithm details our straight-

forward procedure to identify disjoint SIS subsets that satisfy (1)–(3) approximately

for an input x ∈ 𝒳 where 𝑓(x) ≥ 𝜏 . Disjointness of the sufficient input subsets in

a SIS-collection is crucial to ensure computational tractability and that the number

of SIS per example does not grow huge and hard to interpret. For a more rigorous

evaluation of the properties of SIS, see Section 3.1 of Carter et al. (2019).

Our overall strategy is to find a SIS subset 𝑆𝑘 (via BackSelect and FindSIS),
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SIScollection(𝑓 , x, 𝜏)

1 𝑆 = [𝑝]

2 for 𝑘 = 1, 2, . . . do

3 𝑅 = BackSelect(𝑓,x, 𝑆)

4 𝑆𝑘 = FindSIS(𝑓,x, 𝜏, 𝑅)

5 𝑆 ← 𝑆 ∖ 𝑆𝑘

6 if 𝑓(x𝑆) < 𝜏 : return 𝑆1,...,𝑆𝑘−1

BackSelect(𝑓 , x, 𝑆)

1 𝑅 = empty stack

2 while 𝑆 ̸= ∅ do

3 𝑖* = argmax𝑖∈𝑆 𝑓(x𝑆∖{𝑖})

4 Update 𝑆 ← 𝑆 ∖ {𝑖*}

5 Push 𝑖* onto top of 𝑅

6 return 𝑅

FindSIS(𝑓 , x, 𝜏 , 𝑅)

1 𝑆 = ∅

2 while 𝑓(x𝑆) < 𝜏 do

3 Pop 𝑖 from top of 𝑅

4 Update 𝑆 ← 𝑆 ∪ {𝑖}
5 if 𝑓(x𝑆) ≥ 𝜏 : return 𝑆

6 else: return None

mask it out, and then repeat these two steps restricting each search for the next SIS

solely to features disjoint from the currently found SIS-collection 𝑆1, . . . , 𝑆𝑘, until the

decision of interest is no longer supported by the remaining feature values. In the

BackSelect procedure, 𝑆 ⊂ [𝑝] denotes the set of remaining unmasked features that

are to be considered during backward selection. For the current subset 𝑆, step 3 in

BackSelect identifies which remaining feature 𝑖 ∈ 𝑆 produces the minimal reduction
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in 𝑓(x𝑆)−𝑓(x𝑆∖{𝑖}) (meaning it least reduces the output of 𝑓 if additionally masked),

a question trivially answered by running each of the remaining possibilities through

the model. This strategy aims to gradually mask out the least important features

in order to reveal the core input pattern that is perceived by the model as sufficient

evidence for its decision. Finally, we build our SIS up from the last ℓ features omitted

during the backward selection, selecting a ℓ value just large enough to meet our

sufficiency criterion (1). Because we desire minimality of the SIS as specified by (2),

it is not appropriate to terminate the backward elimination in BackSelect as soon

as the sufficiency condition 𝑓(x𝑆) ≥ 𝜏 is violated, due to the possible presence of

local minima in 𝑓 along the path of subsets encountered during backward selection

(as shown in Figure 2-19).

Because this approach always queries a prediction over the joint set of remaining

features 𝑆, it is better suited to account for interactions between these features and

ensure their sufficiency (i.e., that 𝑓(x𝑆) ≥ 𝜏) compared to a forward selection in

the opposite direction which builds the SIS upwards one feature at a time by greed-

ily maximizing marginal gains. Throughout its execution, BackSelect attempts to

maintain the sufficiency of x𝑆 as the set 𝑆 shrinks. Given 𝑝 input features, our algo-

rithm requires 𝒪(𝑝2𝑘) evaluations of 𝑓 to identify 𝑘 SIS, but we can achieve 𝒪(𝑝𝑘)

by parallelizing each argmax in BackSelect (for example, by batching on GPU).

2.3 Experimental Overview

In the following sections, we apply our SIS method to analyze neural networks in three

settings: (1) a natural language task involving multi-aspect sentiment analysis on beer

reviews, (2) predicting transcription factor binding in biological data, and (3) image

classification on handwritten digits. SIScollection is compared with alternative

methods for producing rationales (details in Section 2.3.1). Note that our BackSelect

procedure determines an ordering of elements, 𝑅, subsequently used to construct the

SIS. Depictions of each SIS are shaded based on the feature order in 𝑅 (darker =

later), which can indicate relative feature importance within the SIS.
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In the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.” (sufficiency constrained)

methods, we instead compute the ordering of elements 𝑅 according to the feature

attribution values output by integrated gradients (Sundararajan et al., 2017), LIME

(Ribeiro et al., 2016), or a perturbative approach that measures the change in predic-

tion when individually masking each feature (see Section 2.3.1). The rationale subset

𝑆 produced under each method is subsequently assembled using FindSIS exactly as

in our approach and thus is guaranteed to satisfy 𝑓(x𝑆) ≥ 𝜏 . In the “IG,” “LIME,”

and “Perturb.” (length constrained) methods, we use the same previously described

ordering 𝑅, but always select the same number of features in the rationale as in the

SIS produced by our method (per example). We also compare against the additional

“Top IG” method, in which top features from 𝑅 are added into the rationale until sum

of integrated gradients attributions suggests that the rationale has met our sufficiency

criterion (see Section 2.3.1).

2.3.1 Details of Baseline Methods

Throughout this chapter, we employ a number of alternative methods for identify-

ing rationales for comparison with SIS. Here, we provide detailed descriptions and

implementation details of these baseline methods.

We use methods based on integrated gradients (Sundararajan et al., 2017), LIME

(Ribeiro et al., 2016), and feature perturbation. Note that integrated gradients is

an attribution method which assigns a numerical score to each input feature. LIME

likewise assigns a weight to each feature using a local linear regression model for 𝑓

around x. In the perturbative approach, we compute the change in prediction when

each feature is individually masked, as in Equation 2.1 (of Section 2.4.3). Each of

these feature orderings 𝑅 is used to construct a rationale using the FindSIS procedure

(Section 2.2) for the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.” (sufficiency

constrained) methods.

Note that our text classification architecture (described in Section 2.4.1) encodes

discrete words as 100-dimensional continuous word embeddings. The integrated gra-

dients method returns attribution scores for each coordinate of each word embedding.
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For each word embedding 𝑥𝑖 ∈ x (where each 𝑥𝑖 ∈ R100), we summarize the attri-

butions along the corresponding embedding into a single score 𝑦𝑖 using the 𝐿1 norm:

𝑦𝑖 =
∑︀

𝑑 |𝑥𝑖𝑑| and compute the ordering 𝑅 by sorting the 𝑦𝑖 values.

We use an implementation of integrated gradients for Keras-based models from

https://github.com/hiranumn/IntegratedGradients. In the case of the beer re-

view dataset (Section 2.4), we use the mean embedding vector as a baseline for com-

puting integrated gradients. In the case of TF binding (Section 2.5), we use the

[0.25, 0.25, 0.25, 0.25] uniform mean vector as the baseline reference value. As sug-

gested in Sundararajan et al. (2017), we verified that the prediction at the baseline

and the integrated gradients sum to approximately the prediction of the input.

For LIME and our beer reviews dataset, we use the approach described in Ribeiro

et al. (2016) for textual data, where individual words are removed entirely from

the input sequence. In our TF binding dataset, LIME replaces bases with the un-

known N base (represented as the uniform-distribution [0.25, 0.25, 0.25, 0.25]). We

use the implementation of LIME at: https://github.com/marcotcr/lime. The

LimeTextExplainer module is used with default parameters, except we set the max-

imal number of features used in the regression to be the full input length so we can

order all input features.

Additionally, we explore methods in which we use the same ordering 𝑅 by these

alternative methods but select the same number of input features in the rationale

to be the median SIS length in the SIS-collection computed by our method on each

example: the “IG,” “LIME,” and “Perturb.” (length constrained) methods. In the TF

binding models, we use a baseline of zero vectors such that the integrated gradients

result along the encoded sequence is also one-hot. We compute the feature ordering

based on the absolute value of the non-zero integrated gradient attributions.

In TF binding data (Section 2.5), we add an additional method, “Top IG,” in

which we compute integrated gradients using an all-zeros baseline and order features

by attribution magnitude (as in the length constrained IG method). But, we select

elements for the rationale by finding the minimum number of elements necessary such

that the sum of integrated gradients of those features equals 𝜏 − 𝑓(0), where 0 is the
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all-zeros baseline for integrated gradients. Note that for the length constrained and

Top IG methods, there is no guarantee of sufficiency 𝑓(x𝑆) ≥ 𝜏 for any input subset

𝑆.

2.4 Sentiment Analysis of Reviews

We first consider a dataset of beer reviews from McAuley et al. (2012) where beers re-

ceive text reviews along with numerical ratings of aspects like aroma, appearance, and

palate. Taking the text of the review as input, three different LSTM recurrent neural

networks (Hochreiter and Schmidhuber, 1997) are trained to predict the continuous-

valued sentiment toward each aspect. We apply our SIS method to interpret and

validate the decisions made by these LSTMs.

In this section, we present results interpreting the LSTM trained to predict sen-

timent toward the aroma aspect in particular. Results for the appearance and palate

aspects are similar and can be found in the Supplementary Material of Carter et al.

(2019).

2.4.1 Dataset and Model Details

Following Lei et al. (2016), we use a preprocessed version of the BeerAdvocate1

dataset2 which contains decorrelated numerical ratings toward three aspects: aroma,

appearance, and palate (each normalized to [0, 1]). Dataset statistics can be found

in Table 2.1. Reviews are tokenized by converting to lowercase and filtering punc-

tuation, and we use a vocabulary containing the top 10,000 most common words.

McAuley et al. (2012) also provide a subset of human-annotated reviews, in which

humans manually selected full sentences in each review that describe the relevant

aspects. This annotated set is never seen during training and used solely as part of

our evaluation.

Long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)

1https://www.beeradvocate.com/
2http://snap.stanford.edu/data/web-BeerAdvocate.html
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are commonly employed for natural language tasks such as sentiment analysis (Wang

et al., 2016; Radford et al., 2017). In these experiments, we use a recurrent neural

network (RNN) architecture with two stacked LSTMs as follows:

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each

timestep is represented by a (learned) 100-dimensional embedding

2. LSTM Layer 1: 200-unit recurrent layer with LSTM (forward direction only)

3. LSTM Layer 2: 200-unit recurrent layer with LSTM (forward direction only)

4. Dense: 1 neuron (sentiment output), sigmoid activation

Taking the text of a review as input, different LSTM networks are trained to

predict user-provided numerical ratings of each aspect. We train the models using

the Adam optimizer (Kingma and Ba, 2015) to minimize mean squared error (MSE)

on the training set. We use a held-out set of 3,000 examples for validation (sampled

at random from the pre-defined test set from Lei et al. (2016)). Our test set consists

of the remaining 7,000 test examples. Training results are shown in Table 2.1.

2.4.2 Applying SIS to Interpret Sentiment Predictors

We apply SIS to interpret the LSTM’s decisions on the set of reviews containing

sentence-level annotations (Annotation fold in Table 2.1). Note that these reviews

(and the human annotations) were not seen during training. Tokens in the input

sequence are masked by replacement with a mean embedding taken over the learned

vocabulary (see Appendix A.1.1 for further discussion of our mean imputation ap-

proach). In our formulation (Section 2.2), we apply the SIS method to inputs x for

which 𝑓(x) ≥ 𝜏 . For the sentiment analysis task, we analogously apply our method

for both 𝑓(x) ≥ 𝜏+ and −𝑓(x) ≥ −𝜏−, where the model predicts either strong pos-

itive or strong negative sentiment, respectively. We choose thresholds 𝜏+ = 0.85,

𝜏− = 0.45 and extract the complete set of sufficient input subsets using our method.

These thresholds were set empirically such that they were sufficiently apart, based on

the predictive distribution on the held-out annotated set (shown in Figure 2-1). For
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Table 2.1: Summary and performance statistics (mean squared error (MSE) and
Pearson correlation coefficient 𝜌) for LSTM models on beer reviews data.

Aspect Fold Size MSE Pearson 𝜌

Appearance

Train 80,000 0.016 0.864

Validation 3,000 0.024 0.783

Test 7,000 0.023 0.801

Annotation 994 0.020 0.563

Aroma

Train 70,000 0.014 0.873

Validation 3,000 0.024 0.767

Test 7,000 0.025 0.756

Annotation 994 0.021 0.598

Palate

Train 70,000 0.016 0.835

Validation 3,000 0.029 0.680

Test 7,000 0.028 0.694

Annotation 994 0.016 0.592



Figure 2-1: Predictive distribution on the annotation set (held-out) using the LSTM
model for aroma. Vertical lines indicate decision thresholds (𝜏+ = 0.85, 𝜏− = 0.45)
selected for SIScollection.

most reviews, SIScollection outputs a collection containing just one or two sufficient

input subsets (Figure 2-2).

Figure 2-3 shows a sample beer review in which we highlight the SIS identified

for the LSTMs that predict each aspect. In this example, the SIS-collection for each

of the three LSTMs only contained a single sufficient input subset. We see that each

SIS only captures sentiment toward the relevant aspect (as compared to just general

positive sentiment), revealing that the LSTMs have learned to make predictions based

on context-specific features.

Figure 2-4 depicts the SIS-collection identified from a review the LSTM decided

to flag for positive aroma. Here, the SIS-collection for this review is comprised of

three sufficient input subsets. From this example, we can see that the aroma LSTM is

generally making predictions based on disjoint pieces of evidence in the text suggesting

positive sentiment toward the aroma aspect. However, the example also shows how

this type of analysis may be used to debug or improve the model. While the rationales

generally seem sound, a practitioner may desire that the models not include tokens

such as “t” or “s” (which are likely artifacts of tokenization) in the rationales for its

decisions.

To gain further insight into the behavior of the LSTM models, we next analyze
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Figure 2-2: Number of sufficient input subsets for aroma identified by SIScollection
per example.

Figure 2-3: Beer review with one sufficient input subset identified for the prediction
of each aspect.

Figure 2-4: Beer review with three disjoint SIS 𝑆1, 𝑆2, 𝑆3 identified for a positive
aroma prediction. Underlined are sentences that human labelers manually annotated
as capturing the aroma sentiment.



Figure 2-5: Prediction history on remaining (unmasked) text at each step of the
BackSelect procedure, for examples where aroma sentiment is predicted.

the predictor model’s output following the elimination of each feature in the BackS-

elect procedure (Section 2.2). Figure 2-5 shows the LSTM output on the remaining

unmasked text 𝑓(x𝑆∖{𝑖*}) at each iteration of BackSelect, for all examples. This

figure reveals that only a small number of features are needed by the model in or-

der to make a strong prediction (most features can be removed without changing

the prediction). We observe that as the final features are removed, there is a rapid,

monotonic decrease in output values. Finally, we see that the first features to be

removed by BackSelect are those which generally provide negative evidence against

the decision. The prediction becomes more positive (or negative in the case of strong

negative sentiment reviews [red]) as the first features are eliminated. Note, however,

that BackSelect may exhibit different behavior when applied to other models or

architectures (see Figure 2-19 for one such example).

2.4.3 Comparing SIS to Baseline Methods

We next compare rationales produced by SIScollection to those from the baseline

methods described in Section 2.3.1. Figure 2-6 shows the prediction on the rationale

only (all other words masked) vs. length of rationale for the rationales produced by

these various methods on the same set of beer reviews on which the LSTM predicts
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Figure 2-6: Prediction on rationales only vs. rationale length for various methods in
reviews with positive aroma prediction (𝜏 = 0.85).

positive aroma. From this figure, we see that when the alternative methods are

length constrained, the rationales they produce often badly fail to meet our sufficiency

criterion. Thus, even though the same number of feature values are preserved in the

rationale and these alternative methods select the features to which they have assigned

the largest attribution values, their rationales lead to significantly reduced 𝑓 outputs

compared to our SIS subsets. When the lengths of these alternative rationales is

allowed to grow large enough to ensure our sufficiency criterion is met, the rationales

become unnecessarily long. If the sufficiency constraint is instead enforced for these

alternative methods, the rationales they identify become significantly larger than

those produced by SIScollection, and they also tend to contain a larger number of

unimportant features (as shown in Table 2.2 and Figures 2-7 and 2-8, detailed below).

Thus, our SIS method effectively extracts rationales that are sparse yet suffice for a

strong prediction by the model.

We also compare the rationales from our SIS method those from the baseline meth-

ods by comparing the importance of features that comprise the rationales. For each

word 𝑖 in an input sequence x, we quantify its marginal importance by individually

perturbing only this word:

Feature Importance(𝑖) = 𝑓(x)− 𝑓(x ∖ {𝑖}) (2.1)
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Table 2.2: Statistics for rationale length and feature importance in aroma prediction.
For rationale length, median and max indicate percentage of input text in the ratio-
nale. For marginal perturbed feature importance, we indicate the median importance
of features in rationales and features from the other (non-rationale) text. 𝑝-values
are computed using a Wilcoxon rank-sum test (comparing each distribution to that
from SIS).

Method
Rationale Length (% of text) Marg. Perturbed Feat. Import.

Med. Max 𝑝 Rationale Other 𝑝

SIS 3.9% 17.3% – 0.0112 1.50e-05 –

Suff. IG 7.7% 89.7% 5e-26 0.0068 1.85e-05 3e-42

Suff. LIME 7.2% 84.0% 4e-23 0.0075 1.87e-05 1e-35

Suff. Perturb. 5.1% 18.3% 1e-06 0.0209 1.90e-05 1e-72

Note that these marginal Feature Importance scores are identical to those of the

Perturb. method described in Section 2.3.1.

For rationales computed by the various methods on these beer reviews, we compute

the marginal Feature Importance of features in the rationales, which are summarized

in Table 2.2 and Figure 2-7. Compared to the Suff. IG and Suff. LIME methods,

our SIScollection technique produces rationales that are much shorter and contain

fewer irrelevant (i.e., not marginally important) features (Table 2.2, Figures 2-7 and 2-

8). Note that by construction, the rationales of the Suff. Perturb. method contain

features with the greatest Feature Importance, since this precisely how the ranking

in Suff. Perturb. is defined.

2.4.4 Evaluation of SIS Rationales

Benchmarking interpretability methods is difficult because a learned 𝑓 may behave

counterintuitively such that seemingly unreasonable model explanations are in fact

faithful descriptions of a model’s decision-making process. For some reviews in our

dataset, a human annotator has manually selected which sentences carry the relevant

sentiment for the aspect of interest (Section 2.4.1, see examples in the underlined text

of Figures 2-4 and 2-10), so we treat these annotations as an alternative rationale
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Figure 2-7: Importance of individual features in the rationales for aroma prediction
in beer reviews.

Figure 2-8: Length of rationales for aroma prediction.



for the LSTM prediction. For a review x whose true and predicted aroma exceed

our decision threshold, we define the quality of human-selected sentences for model

explanation (QHS) as

QHS = 𝑓(x𝑆)− 𝑓(x) (2.2)

where 𝑆 here is the human-selected-subset of words in the review (as opposed to a

sufficient input subset).

Figure 2-9 shows the relationship between QHS and the fraction of the SIS that

falls inside the human-selected sentences. There is a positive correlation between

the two variables (Pearson 𝜌 = 0.491, 𝑝 = 1.5e−25). High variability of QHS in the

annotated reviews indicates the human rationales often do not contain sufficient infor-

mation to preserve the LSTM’s decision. As the model diverges from alignment with

the human-selected sentences (and those sentences are not necessary for prediction),

fewer words in the sufficient input subsets lie within those sentences (lower left of

Figure 2-9). Additionally, as the human-selected sentences become more sufficient for

prediction (QHS→ 0), almost the entirety of the sufficient input subsets identified by

our method end up lying within those sentences (upper right of Figure 2-9). Figure 2-

10 provides examples from both extremes of alignment (SIS has good alignment with

human-selected sentences, where QHS ≈ 0, and SIS and human-selected sentences

have poor alignment, where QHS < 0). The bottom panel of Figure 2-10 illustrates

an example where the LSTM is able to predict positive sentiment from features that

diverge from what a human would expect, which may suggest overfitting.

2.5 Transcription Factor Binding

We next analyze SIS in the context of convolutional neural networks (CNNs) trained

to classify whether a given transcription factor (TF) will bind to a specific DNA

sequence (Zeng et al., 2016). This setting also provides us with ground truth motifs

containing known binding sites, which we use to evaluate the ability of SIS to recover

such motifs (Section 2.5.3).
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Figure 2-9: QHS (Equation 2.2) vs. similarity between SIS and annotation in the
reviews with positive aroma sentiment (Pearson 𝜌 = 0.491, 𝑝-value = 1.5e−25).

Figure 2-10: Beer reviews (aroma) in which human-selected sentences (underlined) are
aligned well (top) and poorly (bottom) with predictive model. Fraction of SIS in the
human sentences corresponds accordingly. In the bottom example (poor alignment
between human-selection and predictive model), our procedure has surfaced a case
where the LSTM has learned features that diverge from what a human would expect
(and may suggest overfitting).



2.5.1 Dataset and Model Details

We use the motif occupancy datasets3 from Zeng et al. (2016), where each dataset

originates from a ChIP-seq experiment from the ENCODE project (Consortium et al.,

2012). Each of the 422 datasets studies a particular transcription factor, containing

between 600 and 700,000 (median 50,000) 101 base-pair DNA sequences (inputs) each

associated with a binary label based on whether the sequence is bound by the TF or

not. Each dataset also contains a test set ranging between 150 and 170,000 sequences

(median 12,000). Here, the positive and negative classes in each dataset are balanced,

and we filter out all sequences containing the unknown base (N). The nucleotide

occurring at base position (A, C, G, T) is encoded as a one-hot representation which

is fed into the CNN. Zeng et al. (2016) showed that convolutional neural network

architectures outperform other models for this TF binding prediction task.

For each of the 422 prediction tasks, we employ the optimal “1layer_128motif”

architecture from Zeng et al. (2016), defined as follows:

1. Input: (101 x 4) sequence encoding

2. Convolutional Layer 1: Applies 128 kernels of window size 24, with ReLU

activation

3. Global Max Pooling Layer 1: Performs global max pooling

4. Dense Layer 1: 32 neurons, with ReLU activation and dropout probability

0.5

5. Dense Layer 2: 1 neuron (output probability), with sigmoid activation

We hold out 1/8 of each train set for validation and minimize binary cross-entropy us-

ing the Adadelta optimizer (Zeiler, 2012) with default parameter settings in Keras (Chol-

let et al., 2015). We train each model on each of the 422 datasets for 10 epochs (using

batch size 128) with early-stopping based on validation loss. Figure 2-11 shows the

area under the receiver operating curve (AUC) over the 422 datasets, and we note

that the performance of our models closely resembles that in Zeng et al. (2016).
3available at http://cnn.csail.mit.edu

49

http://cnn.csail.mit.edu


Figure 2-11: Median area under the receiver operating curve (AUC) for all 422 tran-
scription factor binding motif occupancy datasets. The validation set is held-out at
training but used to choose model parameters; the test set is not seen until after
training.

2.5.2 Applying SIS to Interpret TF Binding Classifiers

From each of the 422 different datasets of DNA sequences bound-or-not by different

TFs (and 422 different CNN models, see Section 2.5.1), we extract SIS-collections

from sequences in the test set with high (top 10%) predicted binding affinity for the

TF profiled in each dataset. The distribution of threshold 𝜏 over the 422 datasets is

shown in Figure 2-12. Since A, C, G, T nucleotides all occur with similar frequency

in this data, our SIS analysis simply masks each base using a uniform embedding

([0.25, 0.25, 0.25, 0.25]). This is also the standard strategy to represent unknown N

nucleotides in DNA sequences that typically arise from issues in read quality. We

generally find that there is only a single SIS per example for the sequences in these

datasets. Figure 2-13 depicts two examples of input DNA sequences and the corre-

sponding sufficient input subsets identified by our SIScollection procedure.

We evaluate the minimality and sufficiency of the rationales produced by SIS to

those produced by the alternative baseline methods we explored (see Section 2.3.1).

On each dataset, we compute the median rationale length (as number of bases in

the rationale). The distribution of median rationale length over all datasets by the

various methods is shown in Figure 2-14. Note that for the IG, LIME, and Perturb.

methods, rationale length was constrained to the length of the rationales produced by

our method, as described in Section 2.3.1. For the Top IG method, neither sufficiency
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Figure 2-12: Thresholds 𝜏 used for identifying sufficient input subsets in TF binding
datasets. In each dataset, the threshold is defined as the 90th percentile of the
predictive test distribution.

Figure 2-13: Two DNA sequences that receive positive TF binding predictions for the
MAFF factor (SIS is shaded).

nor length constraints are enforced. We see that when the sufficiency constraint is

enforced in alternative methods (Suff. IG), the rationales are significantly longer

than those identified by SIS. Moreover, as shown in Figure 2-15, when the sufficiency

constraint is not enforced (or the rationale lengths are constrained to the length of

SIS rationales) in alternative methods, the rationales have significantly less predictive

power, often not satisfying 𝑓(x𝑆) ≥ 𝜏 . The rationales produced via our SIS approach

are shorter and better at preserving large 𝑓 -values than rationales from other methods

(Figures 2-14 and 2-15).

2.5.3 Evaluation of the Quality of TF Rationales

To predict binding so accurately (Figure 2-11), the CNN must faithfully reflect the

biological mechanisms that relate the DNA sequence to the probability of TF occu-

pancy. We evaluate the rationales found by SIS and our baseline methods (see Sec-

tion 2.3.1) against known TF binding motifs from JASPAR (Mathelier et al., 2016)

as the ground truth. We adopt KL divergence between the known motif and each

proposed rationale as a measure of quality of the rationale. Each rationale is padded
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Figure 2-14: Length (number of bases) of rationales identified by various methods.
Note that the sufficiency constraint (𝑓(x𝑆) ≥ 𝜏) is only enforced for SIS and Suff.
IG. The lengths of IG, LIME, and Perturb. rationales are constrained to the length
of SIS rationales.

Figure 2-15: Prediction on rationale only (all other bases masked) vs. rationale length
(number of bases) for various methods in the TF binding task.



Figure 2-16: KL divergence between JASPAR motifs (known ground truth) and ra-
tionales found via various methods. Shown are results for 422 TF datasets (each one
summarized by median divergence).

.

with “N” (unknown) bases to the length of a full input sequence (101 bases) and

optimally aligned with the known motif4 according to the likelihood criterion. The

aligned motif is then also padded to the same length, and we compute the divergence

between between the rationale 𝑅 and known motif 𝑀 as:

Div(𝑅,𝑀) =
∑︁
𝑖

𝐷KL(𝑅𝑖||𝑀𝑖) (2.3)

where 𝐷KL(𝑅𝑖||𝑀𝑖) =
∑︀

𝑗 𝑅𝑖(𝑗) log
𝑅𝑖(𝑗)
𝑀𝑖(𝑗)

is the Kullback-Leibler (KL) divergence from

𝑀𝑖 to 𝑅𝑖, and 𝑀𝑖 and 𝑅𝑖 are distributions over bases (A, C, G, T) at position 𝑖.

Note that as 𝑅 and 𝑀 become more dissimilar, Div(𝑅,𝑀) increases. We ensure

𝑀𝑖𝑗 > 0 ∀ 𝑖, 𝑗 so 𝐷KL is always finite. Figure 2-16 shows the divergence of rationales

produced by SIScollection is significantly lower than that of rationales identified

using other methods (Wilcoxon 𝑝 ≤ 1e−5 in all cases). SIS is thus more effective

at uncovering these underlying biological principles than the alternative methods we

explored.

4A JASPAR motif is a 𝑛×4 right stochastic matrix 𝑀 . The columns represent the ACGT DNA
bases and the rows a DNA sequence. It represents the marginal probability of the base 𝑗 at position
𝑖 being present with probability 𝑀𝑖𝑗 . The unknown base “N” receives uniform 1/4 probability for
each of ACGT. An example JASPAR motif is shown in Figure 2-20.
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2.6 MNIST Digit Classification

In this section, we apply SIS to interpret a 10-way convolutional neural network

(CNN) classifier trained on the MNIST handwritten digits data (LeCun et al., 1998).

In addition to interpreting the classifier’s decisions on correctly classified examples,

we see how SIS can be further employed to understand the basis for the CNN’s

misclassifications (Section 2.6.2). In this application, we also observe the effect of

local minima in the backward selection phase of the SIS procedure and show how our

method facilitates minimality of the resulting rationales (Section 2.6.3).

2.6.1 Dataset and Model Details

The MNIST database of handwritten digits contains 60k training images and 10k test

images (LeCun et al., 1998). All images are 28x28 grayscale, and we normalize them

such that all pixel values are between 0 and 1. We train a simple 10-way CNN to

classify the images using the same architecture as that provided in the Keras MNIST

CNN example.5 The architecture is defined as follows:

1. Input: (28 x 28 x 1) image, all values ∈ [0, 1]

2. Convolutional Layer 1: Applies 32 3x3 filters with ReLU activation

3. Convolutional Layer 2: Applies 64 3x3 filters, with ReLU activation

4. Pooling Layer 1: Performs max pooling with a 2x2 filter and dropout proba-

bility 0.25

5. Dense Layer 1: 128 neurons, with ReLU activation and dropout probability

0.5

6. Dense Layer 2: 10 neurons (one per digit class), with softmax activation

The Adadelta optimizer (Zeiler, 2012) is used to minimize cross-entropy loss on

the training set. The final model achieves 99.7% accuracy on the train set and 99.1%

accuracy on the held-out test set.
5http://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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(a) Digit 4 (b) Digit 5

(c) Digit 8 (d) Digit 9

Figure 2-17: Visualization of SIS-collections identified from MNIST digits (a) 4,
(b) 5, (c) 8, and (d) 9 that are confidently classified by the CNN. For each class, six
examples were chosen randomly. For each example, we show the original image (left)
and the complete set of sufficient input subsets identified for that example (remaining
images in each row). Each individual SIS depicted satisfies 𝑓(x𝑆) ≥ 0.7 for that class.

2.6.2 Applying SIS to Interpret Image Classifiers

When applying SIS to interpret the CNN’s classification of MNIST handwritten digits,

we only consider predicted probabilities for one class of interest at a time and always

set 𝜏 = 0.7 as the probability threshold for deciding that an image belongs to the class.

We then extract the SIS-collections of all corresponding MNIST test set examples.

Examples of the complete SIS-collection corresponding to randomly chosen digits are

shown in Figure 2-17.

We also employ the SIS procedure to rationalize the CNN’s misclassifications.

We explore misclassifications of natural images in the MNIST test set as well as

adversarially modified images. Figure 2-18a shows two (unmodified) MNIST digits

whose true labels are 5 but which are misclassified by the CNN as 6 and 0, respectively.

The SIS-collections depicted for these digits immediately enable us to understand the

basis for why the misclassifications occur.
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(a) (b)

Figure 2-18: (a) SIS for digits 5 that are misclassified as 6 (1st column) and as 0
(2nd column). (b) SIS for correctly classified 9 (1st column) and when adversarially
perturbed toward class 4 (2nd column).

Figure 2-18b illustrates how the SIS-collection drastically changes for an exam-

ple of a correctly-classified 9 that has been adversarially manipulated (Carlini and

Wagner, 2017b) to become confidently classified as the digit 4. Although a visual

inspection of the perturbed image does not really reveal exactly how it has been ma-

nipulated, it becomes immediately clear from the SIS-collection for the adversarial

image. The SIS-collections show that the perturbation modifies pixels in such a way

that input patterns similar to the typical SIS-collection for a 4 (Figure 2-21) become

embedded in the image. The adversarial manipulation was done using the Carlini-

Wagner 𝐿2 (CW2) attack6 (Carlini and Wagner, 2017b) with a confidence parameter

of 10. The CW2 attack tries to find the minimal change to the image, with respect to

the 𝐿2 norm, that will lead the image to be misclassified. Carlini and Wagner (2017a)

demonstrate it to be one of the strongest extant adversarial attacks.

2.6.3 Local Minima in Backward Selection

Figure 2-19 demonstrates an example MNIST digit for which there exists a local

minimum in the backward selection phase of our algorithm to identify the initial SIS.

Note that if we were to terminate the backward selection as soon as predictions drop

6Implemented in the cleverhans library of Papernot et al. (2017)
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(a) (b) (c) (d)

Figure 2-19: (a) Prediction on remaining image as pixels are masked during backward
selection, when our CNN classifier is fed the MNIST digit in (b). The dashed line
depicts the threshold 𝜏 = 0.7. (b) Original image (class 9). (c) SIS if backward
selection were to terminate the first time prediction on remaining image drops below
0.7, corresponding to point C in (a) (CNN predicts class 9 with probability 0.700
on this SIS). (d) Actual SIS produced by our FindSIS algorithm, corresponding to
point D in (a) (CNN predicts class 9 with probability 0.704 on this SIS).

below the decision threshold, the resulting SIS would be overly large, violating our

minimality criterion. It is also evident from Figure 2-19 that the smaller-cardinality

SIS in (d), found after the initial local optimum in (c), presents a more interpretable

input pattern that enables better understanding of the core motifs influencing our

classifier’s decisions. To avoid suboptimal results, it is important to run a complete

backward selection sweep until the entire input is masked before building the SIS

upward, as done in our SIScollection procedure (Section 2.2).

2.7 Clustering SIS for Global Insights

Identifying the different input patterns that justify a decision can help us better grasp

the general operating principles of a model. To this end, we cluster all of the sufficient

input subsets produced by our SIS method applied across a large number of examples

that receive the same decision by a particular model. Here, we cluster the sufficient

input subsets using DBSCAN (Ester et al., 1996), a widely applicable algorithm that

only requires specifying pairwise distances between the SIS. This approach allows us

to choose a suitable distance metric between sufficient input subsets depending on
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the particular domain.

2.7.1 Clustering SIS from Sentiment Predictors

We first cluster the sufficient input subsets found across held-out7 beer reviews (Test

fold in Table 2.1) that received positive aroma predictions from our LSTM model

(model details in Section 2.4.1). The distance between two SIS is taken here as the

Jaccard (intersection over union) distance between their bag of words representations,

𝑆1 and 𝑆2:

𝐷(𝑆1, 𝑆2) = 1− 𝑆1 ∩ 𝑆2

𝑆1 ∪ 𝑆2

(2.4)

Table 2.3 shows three resulting clusters containing phrases that the LSTM has

learned to associate with positive aromas in the absence of other context. The full

clustering for SIS from beer reviews with strong positive predicted sentiment can be

found in Table A.1 (strong negative predicted sentiment in Table A.2).

2.7.2 Clustering SIS from TF Binding Classifiers

We next apply our clustering procedure to the sufficient input subsets found by our

method across all test-set DNA sequences which the CNN model (Section 2.5.1) pre-

dicts would be bound by some transcription factor (see Section 2.5). In this ap-

plication, the pairwise distance between two sufficient input subsets is taken to be

the Levenshtein (edit) distance between the string representations of the masked se-

quences (where non-SIS characters are masked with N as in Section 2.5.1).

Figure 2-20 shows the clusters for a particular transcription factor (MAFF) for

which two SIS clusters were found, aligned with the known motif from JASPAR (Math-

elier et al., 2016) for this TF (discussion of JASPAR motifs in Section 2.5.3). Ad-

ditional SIS in each of the clusters are given in Table 2.4. Notably, we find that

despite contiguity not being enforced in our algorithm, each cluster is comprised of

short sequences that clearly capture different aspects of the underlying DNA motif

7For experiments involving clustering and/or comparing different models, we use examples drawn
from the Test fold (instead of Annotation fold, see Table 2.1) to consider a larger number of examples.
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Table 2.3: Three clusters of SIS extracted from beer reviews with positive CNN
aroma predictions. Each row shows four most frequent unique SIS in a cluster (each
SIS shown as ordered word list with text-positions omitted). Each unique SIS can be
present many times in one cluster.

Cluster SIS #1 SIS #2 SIS #3 SIS #4

𝐶1

smell amazing

wonderful

nice wonderful

nose

wonderful

amazing

amazing

amazing

𝐶2

grapefruit

mango

pineapple

pineapple

grapefruit

pineapple

grapefruit

hops grapefruit

pineapple floyds

mango

pineapple

incredible

𝐶3

creme brulee

brulee

creme brulee

decadent

incredible

creme brulee

creme brulee

exceptional

known to bind this TF. This result suggests that when the models are expected to

behave according to some underlying scientific principles (e.g., those governing DNA

transcription factor binding, as captured by the motif), the SIS clustering approach

presented here is able to recover them. Had the motif not been known a priori, our

approach would have enabled us to gain insight into which DNA sequence positions

are critical for DNA-TF binding to occur.

2.7.3 Clustering SIS from MNSIT Digit Classifiers

Finally, we apply our clustering methodology the sufficient input subsets found across

all MNIST test set examples that are confidently identified by the CNN (Section 2.6)

as a particular class. To cluster SIS from the image data, we compute the pairwise

distance between two sufficient input subsets 𝑆1 and 𝑆2 as the energy distance (Rizzo

and Székely, 2016) between two distributions over the image pixel coordinates that
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Figure 2-20: Known JASPAR motif (top) and alignment with cluster modes (bottom)
for two SIS clusters identified by DBSCAN for one particular TF (MAFF). Additional
items in clusters given in Table 2.4.

Table 2.4: Two clusters of SIS resulting from DBSCAN clustering on SIS stemming
from CNN predicting binding for a particular transcription factor (MAFF). Most
frequently-occurring SIS are each shown for each cluster. Frequency indicates number
of times that SIS was observed.

SIS Freq.

GCTGAGTCAT 197

ATGACTCAGC 185

GCTGAGTCA-C 83

GCTGAGTCAC 53

GCTGACTCAGCA 42

SIS Freq.

TGCTGA––GCA-TTT 12

GCTGAC–-GCA-TTT 8

TGCTGAC–-GCA-TT 6

TGCTGAC–-GCA-AA 5

TGCTGAC–-GCA-AT 4



Figure 2-21: Eight clusters of SIS identified from examples of digit 4. Each row
contains fifteen random SIS from a single cluster.

comprise the SIS, 𝑋1 and 𝑋2 ∈ R2:

𝐷(𝑋1, 𝑋2) = 2 · E ||𝑋1 −𝑋2|| − E ||𝑋1 −𝑋 ′
1|| − E ||𝑋2 −𝑋 ′

2|| ≥ 0 (2.5)

Here, 𝑋𝑖 is uniformly distributed over the pixels that are selected as part of the SIS

subset 𝑆𝑖, 𝑋 ′
𝑖 is an i.i.d. copy of 𝑋𝑖, and || · || represents the Euclidean norm. Unlike

a Euclidean distance between images, our usage of the energy distance takes into

account distances between the similar pixel coordinates that comprise each SIS. The

energy distance offers a more efficiently computable integral probability metric than

the optimal transport distance, which has been widely adopted as an appropriate

measure of distance between images.

Figure 2-21 depicts the SIS clusters identified for digit 4. These clusters reveal

distinct feature patterns learned by the CNN to distinguish digit 4 from other digits,

which are clearly present in the vast majority of test set images confidently classified

as a 4. For example, cluster 𝐶8 depicts parallel slanted lines, a pattern that never

occurs in other digits. We repeat this analysis for additional digit classes, and results

are shown in Figure 2-22.
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(a) Digit 3 (b) Digit 5

(c) Digit 8 (d) Digit 9

Figure 2-22: Clustering all the SIS found for digits (a) 3, (b) 5, (c) 8, and (d) 9
under the CNN model. Each row contains images drawn from one cluster. The bottom
row (“Misc”) contains a sample of miscellaneous SIS not assigned to any cluster by
DBSCAN.

2.8 Understanding Differences Between Models

The general insights revealed by our SIS clustering methodology can also be used to

compare and contrast the operating behaviors of different models trained for the same

task. In this section, we demonstrate this approach in two of our settings: training a

text CNN to compare to our existing LSTM that predicts sentiment in beer reviews

(Section 2.4) and training a simple feed-forward neural network to compare to our

existing CNN to classify MNIST digits (Section 2.6).

Both networks exhibit similar accuracy in each task, so it is not immediately clear

which model would be preferable to use in practice. We first determine whether the

SIS extracted under one model are sufficient for the other model to arrive at the

same prediction. Figure 2-23 shows the SIS extracted under one model are typically

insufficient to receive the same decision from the other model, suggesting that these

models base their positive predictions on different evidence. We next adopt our joint

SIS clustering methodology to expose the differences in the SIS from each of the
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(a) (b)

Figure 2-23: Predictions by one model on the SIS extracted from the other model
in: (a) beer reviews with positive LSTM/CNN aroma predictions, and (b) MNIST
digits confidently classified as 4 by CNN/MLP.

architectures in each of these applications in turn.

2.8.1 Understanding Differences Between Sentiment Predic-

tors

In addition to the LSTM (see Section 2.4.1), we train a convolutional neural network

(CNN) on the same sentiment analysis task (on the aroma aspect). The text CNN

architecture is as follows:

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each

timestep is represented by a (learned) 100-dimensional embedding

2. Convolutional Layer 1: Applies 128 filters of window size 3 over the sequence,

with ReLU activation

3. Max Pooling Layer 1: Max-over-time pooling, followed by flattening, to

produce a (128, ) representation

4. Dense: 1 neuron (sentiment output), sigmoid activation

Note that a new set of embeddings is learned with the CNN. As with the LSTM

model, we use Adam (Kingma and Ba, 2015) to minimize MSE on the training set.

For the aroma aspect, this CNN achieves 0.016 (0.850), 0.025 (0.748), 0.026 (0.741),

0.014 (0.662) MSE (and Pearson 𝜌) on the Train, Validation, Test, and Annotation
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sets, respectively. We note that this performance is similar to that from the LSTM

(Table 2.1).

We apply our SIScollection procedure to extract the SIS-collections from all

applicable test examples using the text CNN, as in Section 2.4. Figure 2-23a shows

the predictions from one model (LSTM or CNN) when fed input examples that are

SIS extracted with respect to the other model (for reviews predicted to have positive

sentiment toward the aroma aspect). Since the word embeddings are model-specific,

we embed each SIS using the embeddings of the model making the prediction (note

that while the embeddings are different, the vocabulary is the same across the models).

In Table 2.5, we show five example clusters (and cluster composition) resulting

from clustering the combined set of all sufficient input subsets extracted by the LSTM

and CNN on reviews in the test set for which a model predicts positive sentiment

toward the aroma aspect. The complete clustering on reviews receiving positive sen-

timent predictions is shown in Table A.3 (Table A.4 for reviews receiving negative

sentiment predictions). These results suggest that the text CNN tends to learn lo-

calized (unigram/bigram) word patterns, while the LSTM identifies more complex

multi-word interactions that seem more relevant to the target aroma value. Many

SIS from the CNN are simply phrases with universally-positive sentiment, indicating

this model may be less able to distinguish between positive sentiment toward aroma

vs. other aspects such as appearance or palate.

2.8.2 Understanding Differences Between MNIST Classifiers

We next use SIS and our clustering procedure to understand and visualize differences

in features learned by two different models trained on the same MNIST digit classifi-

cation task. In addition to the previously described CNN model (see Section 2.6.1),

we also trained a simple multilayer perceptron (MLP) on the same task. The MLP

architecture is as follows:

1. Input: 784-dimensional (flattened) image, all values ∈ [0, 1]

2. Dense Layer 1: 250 neurons, ReLU activation, and dropout probability 0.2
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Table 2.5: Joint clustering of the SIS from beer reviews predicted to have positive
aroma by LSTM or CNN. Dashes are used in clusters with under four unique SIS.
Percentages quantify SIS per cluster stemming from the LSTM.

Cluster LSTM SIS #1 SIS #2 SIS #3 SIS #4

𝐶1 0% delicious - - -

𝐶2 0% very nice - - -

𝐶3 20% rich chocolate very rich
chocolate

complex
smells rich

𝐶4 33% oak chocolate

chocolate raisins

raisins oak

bourbon

chocolate oak raisins chocolate

𝐶5 70% complex aroma
aroma complex

peaches complex

aroma complex

interesting

cherries

aroma complex

3. Dense Layer 2: 250 neurons, ReLU activation, and dropout probability 0.2

4. Dense Layer 3: 10 neurons (one per digit class), with softmax activation

As with the CNN, Adadelta (Zeiler, 2012) is used to minimize cross-entropy loss on

the training set. The final MLP model achieves 99.7% accuracy on the train set and

98.3% accuracy on the test set, which is close to the performance of the CNN (see

Section 2.6.1).

We apply the same procedure as in Section 2.6 to extract the SIS-collections

from MNIST test images using the MLP. Figure 2-24 shows some examples of SIS-

collections extracted for MNIST digits 4 and 8 from the MLP architecture. We also

cluster the SIS-collections extracted from the MLP (as in Section 2.7.3). Clusters for

two classes are shown in Figure 2-25.

To understand and visualize the differences between the features learned by each

model to classify MNIST digits, we combine all SIS (from both models, for a partic-

ular class) and apply our joint SIS clustering procedure. In the resulting clustering

(for digit 4 as shown in Figure 2-26), we list what percentage of the SIS in each

cluster stem from the CNN vs. the MLP. Most clusters contain examples purely from

a single model, indicating the two models have learned to associate different feature
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(a) Digit 4 (b) Digit 7

Figure 2-24: Visualization of SIS-collections identified for MNIST digits (a) 4 and
(b) 7 under the MLP model. For each class, six examples were chosen randomly.
For each example, we show the original image (left) and the complete set of sufficient
input subsets identified for that example (remaining images in each row). Note that
each individual SIS satisfies 𝑓(x𝑆) ≥ 𝜏 for that class. Compare to the SIS extracted
from the CNN architecture (Figure 2-17).

(a) Digit 4 (b) Digit 7

Figure 2-25: Clustering all the SIS identified by our method on digits (a) 4 and
(b) 7 under the MLP model (Section 2.8.2). Each row contains images drawn from
one cluster. The bottom row (“Misc”) contains a sample of miscellaneous SIS not
assigned to any cluster by DBSCAN. Compare to the SIS clustering from our CNN
model (Figure 2-22).



Figure 2-26: Jointly clustering the MNIST digit 4 SIS from CNN and MLP. We list
the percentage of SIS in each cluster stemming from the CNN (rest from MLP).

patterns with class 4. Evidently, the CNN bases its confidence primarily on spatially-

contiguous strokes comprising only a small portion of each image. Classifications by

the MLP instead seem to be based on pixels located throughout the digit, demon-

strating this model relies more on the global shape of the handwriting. Thus, this

result suggests that the CNN may be more susceptible to mistaking other (non-digit)

handwritten characters for 4s if they happen to share some of the same strokes.
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Chapter 3

Overinterpretation by Deep Learning

Classifiers

Well-founded decisions by machine learning (ML) systems are critical for high-stakes

applications such as autonomous vehicles and medical diagnosis. Pathologies in mod-

els and their respective training datasets can result in unintended behavior during

deployment if the systems are confronted with novel situations. For example, a med-

ical image classifier for cancer detection attained high accuracy in benchmark test

data, but was found to base decisions upon presence of rulers in an image (present

when dermatologists already suspected cancer) (Patel, 2017). We define model over-

interpretation to occur when a classifier finds strong class-evidence in regions of an

image that contain no semantically salient features. Overinterpretation is related to

overfitting, but overfitting can be diagnosed via reduced test accuracy. Overinterpre-

tation can stem from true statistical signals in the underlying dataset distribution that

happen to arise from particular properties of the data source (e.g., dermatologists’

rulers). Thus, overinterpretation can be harder to diagnose as it admits decisions that

are made by statistically valid criteria, and models that use such criteria can excel

at benchmarks. We demonstrate overinterpretation occurs with unmodified subsets

of the original images. In contrast to adversarial examples that modify images with

extra information, overinterpretation is based on real patterns already present in the

training data that also generalize to the test distribution. Hidden statistical signals
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of benchmark datasets can result in models that overinterpret or do not generalize

to new data from a different distribution. Computer vision (CV) research relies on

datasets like CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015)

to provide standardized performance benchmarks. Here, we analyze the overinterpre-

tation of popular CNN architectures on these benchmarks to characterize pathologies.

Revealing overinterpretation requires a systematic way to identify which features

are used by a model to reach its decision. Feature attribution is addressed by a large

number of interpretability methods, although they propose differing explanations for

the decisions of a model. One natural explanation for image classification lies in the

set of pixels that is sufficient for the model to make a confident prediction, even in

the absence of information about the rest of the image. In the example of the medical

image classifier for cancer detection, one might identify the pathological behavior by

finding pixels depicting the ruler alone suffice for the model to confidently output the

same classifications. In Chapter 2, we introduced Sufficient Input Subsets (SIS) as a

framework to help humans interpret the decisions of black-box models. An SIS subset

is a minimal subset of features (e.g., pixels) that suffices to yield a class probability

above a certain threshold with all other features masked.

Here, we demonstrate that classifiers trained on CIFAR-10 and ImageNet can base

their decisions on SIS subsets that contain few pixels and lack human understandable

semantic content. Nevertheless, these SIS subsets contain statistical signals that gen-

eralize across the benchmark data distribution, and we are able to train classifiers on

CIFAR-10 images missing 95% of their pixels and ImageNet images missing 90% of

their pixels with minimal loss of test accuracy. Thus, these benchmarks contain inher-

ent statistical shortcuts that classifiers optimized for accuracy can learn to exploit,

instead of learning more complex semantic relationships between the image pixels

and the assigned class label. While recent work suggests adversarially robust models

base their predictions on more semantically meaningful features (Ilyas et al., 2019),

we find these models suffer from overinterpretation as well. As we subsequently show,

overinterpretation is not only a conceptual issue, but can actually harm overall clas-

sifier performance in practice. We find model ensembling and input dropout partially
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mitigate overinterpretation, increasing the semantic content of the resulting SIS sub-

sets. However, this mitigation is not a substitute for better training data, and we find

that overinterpretation is a statistical property of common benchmarks. Intriguingly,

the number of pixels in the SIS rationale behind a particular classification is often

indicative of whether the image is correctly classified.

It may seem unnatural to use an interpretability method that produces feature

attributions that look uninterpretable. However, we do not want to bias extracted

rationales towards human visual priors when analyzing a model’s pathologies, but

rather faithfully report the features used by a model. To our knowledge, this is

the first analysis showing one can extract nonsensical features from CIFAR-10 and

ImageNet that intuitively should be insufficient or irrelevant for a confident prediction,

yet are alone sufficient to train classifiers with minimal loss of performance. Our

contributions include:

• We discover the pathology of overinterpretation and find it is a common failure

mode of ML models, which latch onto non-salient but statistically valid signals

in datasets (Section 3.3.1).

• We introduce Batched Gradient SIS, a new masking algorithm to scale SIS

to high-dimensional inputs and apply it to characterize overinterpretation on

ImageNet (Section 3.2.2).

• We provide a pipeline for detecting overinterpretation by masking over 90% of

each image, demonstrating minimal loss of test accuracy, and establish lack of

saliency in these patterns through human accuracy evaluations (Sections 3.2.3,

3.3.2, and 3.3.3).

• We show that the size of the feature set that the model relies on is inversely

correlated with whether it is semantically meaningful via human evaluation

(Section 3.3.3).

• We show misclassifications often rely on smaller and more spurious feature sub-

sets suggesting overinterpretation is a serious practical issue (Section 3.3.4).
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• We identify two strategies for mitigating overinterpretation (Section 3.3.5). We

demonstrate that overinterpretation is caused by spurious statistical signals in

training data, and thus training data must be carefully curated to eliminate

overinterpretation artifacts.

Code for the experiments in this chapter is available at: https://github.com/

gifford-lab/overinterpretation.

3.1 Related Work

While existing work has demonstrated numerous distinct flaws in deep image clas-

sifiers, we demonstrate a new distinct flaw, overinterpretation, previously undoc-

umented in the literature. There has been substantial research on understanding

dataset bias in CV (Torralba and Efros, 2011; Tommasi et al., 2017) and the fragility

of image classifiers deployed outside benchmark settings. We extend our work on

sufficient input subsets (SIS) (Chapter 2) with the introduction of the Batched Gra-

dient SIS method, and we use this method to show that ImageNet sufficient input

subset pixels for training and testing often exist at image borders. Many alterna-

tive interpretability methods also aim to understand models by extracting rationales

(pixel-subsets) that provide positive evidence for a class (Fong et al., 2019; Samek

et al., 2016; Agarwal and Nguyen, 2020; Dhurandhar et al., 2018), and we adopt SIS

throughout this work as a particularly straightforward method for producing such

rationales. This prior work (including SIS) is limited to understanding models and

does not use the enhanced understanding of models to identify overinterpretation. We

contrast the issue of overinterpretation against other previously known model flaws

below:

• Image classifiers have been shown to be fragile when objects from one image are

transplanted in another image (Rosenfeld et al., 2018), and can be biased by object

context (Shetty et al., 2019; Singh et al., 2020b). In contrast, overinterpretation

differs because we demonstrate that highly sparse, unmodified subsets of pixels
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in images suffice for image classifiers to make the same predictions as on the full

images.

• Lapuschkin et al. (2019) demonstrate that DNNs can learn to rely on spurious

signals in datasets, including source tags and artificial padding, but which are still

human-interpretable. In contrast, the patterns we identify are minimal collections

of pixels in images that are semantically meaningless to humans (they do not com-

prise human-interpretable parts of images). We demonstrate such patterns general-

ize to the test distribution suggesting they arise from degenerate signals in popular

benchmarks, and thus models trained on these datasets may fail to generalize to

real-world data.

• CNNs in particular have been conjectured to pick up on localized features like tex-

ture instead of more global features like object shape (Gatys et al., 2017; Geirhos

et al., 2019). Brendel and Bethge (2019) show CNNs trained on natural ImageNet

images may rely on local features and, unlike humans, are able to classify texturized

images, suggesting ImageNet alone is insufficient to force DNNs to rely on more

causal representations. Our work demonstrates another source of degeneracy of

popular image datasets, where sparse, unmodified subsets of training images that

are meaningless to humans can enable a model to generalize to test data. We pro-

vide one explanation for why ImageNet-trained models may struggle to generalize

to out-of-distribution data.

• Geirhos et al. (2018) discover that DNNs trained on distorted images fail to gener-

alize as well as human observers when trained under image distortions. In contrast,

overinterpretation reveals a different failure mode of DNNs, whereby models latch

onto spurious but statistically valid sets of features in undistorted images. This

phenomenon can limit the ability of a DNN to generalize to real-world data even

when trained on natural images.

• Other work has shown deep image classifiers can make confident predictions on

nonsensical patterns (Nguyen et al., 2015), and the susceptibility of DNNs to ad-
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versarial examples or synthetic images has been widely studied (Goodfellow et al.,

2015; Madry et al., 2018; Ilyas et al., 2019). However, these adversarial examples

synthesize artificial images or modify real images with auxiliary information. In

contrast, we demonstrate overinterpretation of unmodified subsets of actual train-

ing images, indicating the patterns are already present in the original dataset. We

further demonstrate that such signals in training data actually generalize to the

test distribution and that adversarially robust models also suffer from overinter-

pretation.

• Hooker et al. (2019) found sparse pixel subsets suffice to attain high classifica-

tion accuracy on popular image classification datasets, but evaluate interpretability

methods rather than demonstrate spurious features or discover overinterpretation.

• Ghorbani et al. (2019) introduce principles and methods for human-understandable

concept-based explanations of ML models. In contrast, overinterpretation differs

because the features we identify are semantically meaningless to humans, stem from

single images, and are not aggregated into interpretable concepts. The existence of

such subsets stemming from unmodified subsets of images suggests degeneracies in

the underlying benchmark datasets and failures of modern CNN models to rely on

more robust and interpretable signals in training datasets.

• Geirhos et al. (2020) discuss the general problem of “shortcut learning” but do

not recognize that 5% (CIFAR-10) or 10% (ImageNet) spurious pixel-subsets are

statistically valid signals in these datasets, nor characterize pixels that provide

sufficient support and lead to overinterpretation.

• In natural language processing (NLP), Feng et al. (2018) explored model patholo-

gies using a similar technique, but did not analyze whether the semantically spu-

rious patterns relied on are a statistical property of the dataset. Other work has

demonstrated the presence of various spurious statistical shortcuts in major NLP

benchmarks, showing this problem is not unique to CV (Niven and Kao, 2019).
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3.2 Methods

3.2.1 Datasets and Models

CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015) have become

two of the most popular image classification benchmarks. Most image classifiers are

evaluated by the CV community based on their accuracy in one of these benchmarks.

We also use the CIFAR-10-C dataset (Hendrycks and Dietterich, 2019) to evaluate the

extent to which our CIFAR-10 models can generalize to out-of-distribution (OOD)

data. CIFAR-10-C contains variants of CIFAR-10 test images altered by various cor-

ruptions (e.g., Gaussian noise, motion blur). Where computing sufficient input sub-

sets on CIFAR-10-C images, we use a uniform random sample of 2000 images across

the entire CIFAR-10-C set. Additional results on CIFAR-10.1 v6 (Recht et al., 2018)

are presented in Table B.4. We use the ILSVRC2012 ImageNet dataset (Russakovsky

et al., 2015).

For CIFAR-10, we explore three common CNN architectures: a deep residual net-

work with depth 20 (ResNet20) (He et al., 2016a), a v2 deep residual network with

depth 18 (ResNet18) (He et al., 2016b), and VGG16 (Simonyan and Zisserman, 2015).

We train these networks using cross-entropy loss optimized via SGD with Nesterov

momentum (Sutskever et al., 2013) and employ standard data augmentation strate-

gies (He et al., 2016b) (Appendix B.2). After training many CIFAR-10 networks indi-

vidually, we construct four different ensemble classifiers by grouping various networks

together. Each ensemble outputs the average prediction over its member networks

(specifically, the arithmetic mean of their logits). For each of three architectures,

we create a corresponding homogeneous ensemble by individually training five net-

works of that architecture. Each network has a different random initialization, which

suffices to produce substantially different models despite having been trained on the

same data (Osband et al., 2016). Our fourth ensemble is heterogeneous, containing

all 15 networks (5 replicates of each of 3 distinct CNN architectures).

For ImageNet, we use a pre-trained Inception v3 model (Szegedy et al., 2016) that

achieves 22.55% and 6.44% top-1 and top-5 error (Paszke et al., 2019) Additional
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results from an ImageNet ResNet50 are presented in Appendix B.6.

3.2.2 Discovering Sufficient Features

CIFAR-10. We interpret the feature patterns learned by CIFAR-10 CNNs using

the Sufficient Input Subsets (SIS) procedure, which produces rationales (SIS subsets)

of a black-box model’s decision-making (introduced in Chapter 2). SIS subsets are

minimal subsets of input features (pixels) whose values alone suffice for the model to

make the same decision as on the original input. Let 𝑓𝑐(𝑥) denote the probability

that an image 𝑥 belongs to class 𝑐. An SIS subset 𝑆 is a minimal subset of pixels of

𝑥 such that 𝑓𝑐(𝑥𝑆) ≥ 𝜏 , where 𝜏 is a prespecified confidence threshold and 𝑥𝑆 is a

modified input in which all information about values outside 𝑆 are masked. We mask

pixels by replacement with the mean value over all images (equal to zero when images

have been normalized), which is presumably least informative to a trained classifier

(Section 2.2). SIS subsets are found via a local backward selection algorithm applied

to the function giving the confidence of the predicted (most likely) class.

ImageNet. We scale the SIS backward selection procedure to ImageNet with the

introduction of Batched Gradient SIS, a gradient-based method to find sufficient

input subsets on high-dimensional inputs. The sufficient input subsets discovered by

Batched Gradient SIS are guaranteed to be sufficient, but may be larger than those

discovered by the original exhaustive SIS algorithm. Here we find small SIS subsets

with Batched Gradient SIS (Figure B-15). Rather than separately masking every

remaining pixel at each iteration to find the pixel whose masking least reduces 𝑓 , we

use the gradient of 𝑓 with respect to the input pixels x and mask 𝑀 , ∇𝑀𝑓(x⊙ (1−

𝑀)), to order pixels (via a single backward pass). Instead of masking only one pixel

per iteration, we mask larger subsets of 𝑘 ≥ 1 pixels per iteration. Given 𝑝 input

features, our Batched Gradient FindSIS procedure finds each SIS subset in 𝒪( 𝑝
𝑘
)

evaluations of ∇𝑓 (as opposed to 𝒪(𝑝2) evaluations of 𝑓 in FindSIS (Section 2.2)).

The complete Batched Gradient SIS algorithm is presented in Appendix B.1.
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3.2.3 Detecting Overinterpretation

We produce sparse variants of all train and test set images retaining 5% (CIFAR-10)

or 10% (ImageNet) of pixels in each image. Our goal is to identify sparse pixel-

subsets that contain feature patterns the model identifies as strong class-evidence as

it classifies an image. We identify pixels to retain based on sorting by SIS BackSelect

(Section 2.2, CIFAR-10) or our Batched Gradient BackSelect procedure (ImageNet).

These backward selection (BS) pixel-subset images contain the final pixels (with their

same RGB values as in the original images) while all other pixels’ values are replaced

with zero. Note that we apply backward selection to the function giving the confidence

of the predicted class from the original model to prevent adding information about the

true class for misclassified images, and we use the true labels for training/evaluating

models on pixel-subsets. As backward selection is applied locally on each image, the

specific pixels retained differ across images.

We train new classifiers on solely these pixel-subsets of training images and evalu-

ate accuracy on corresponding pixel-subsets of test images to determine whether such

pixel-subsets are statistically valid for generalization in the benchmark. We use the

same training setup and hyperparameters (Section 3.2.1) without data augmentation

of training images (results with data augmentation in Table B.1). We consider a

model to overinterpret its input when these signals can generalize to test data but

lack semantic meaning (Section 3.2.4).

3.2.4 Human Classification Benchmark

To evaluate whether sparse pixel-subsets of images can be accurately classified by

humans, we asked four participants to classify images containing various degrees of

masking. We randomly sampled 100 images from the CIFAR-10 test set (10 images

per class) that were correctly and confidently (≥ 99% confidence) classified by our

models, and for each image, kept only 5%, 30%, or 50% of pixels as ranked by

backward selection (all other pixels masked). Backward selection image subsets are

sampled across our three models. Since larger subsets of pixels are by construction
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Figure 3-1: Sufficient input subsets (SIS) for a sample of CIFAR-10 test images
(top). Each SIS image shown below is classified by the respective model with ≥ 99%
confidence.

supersets of smaller subsets identified by the same model, we presented each batch of

100 images in order of increasing subset size and shuffled the order of images within

each batch. Users were asked to classify each of the 300 images as one of the 10 classes

in CIFAR-10 and were not provided training images. The same task was given to

each user (and is shown in Appendix B.5).

3.3 Results

3.3.1 CNNs Classify Images Using Spurious Features

CIFAR-10. Figure 3-1 shows example SIS subsets (threshold 0.99) from CIFAR-10

test images (additional examples in Appendix B.3). These SIS subset images are

confidently and correctly classified by each model with ≥ 99% confidence toward

the predicted class. We observe these SIS subsets are highly sparse and the average

SIS size at this threshold is < 5% of each image (Figure 3-2), suggesting these CNNs

confidently classify images that appear nonsensical to humans (Section 3.3.3), leading

to concern about their robustness and generalizability. We also find that SIS size can
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Figure 3-2: Distribution of SIS size per predicted class by CIFAR-10 models computed
on all CIFAR-10 test set images classified with ≥ 99% confidence (SIS confidence
threshold 0.99).

differ significantly by predicted class (Figure 3-2).

We retain 5% of pixels in each image using local backward selection and mask

the remaining 95% with zeros (Section 3.2.3) and find models trained on full images

classify these pixel-subsets as accurately as full images (Table 3.1). Figure 3-3a shows

the pixel locations and confidence of these 5% pixel-subsets across all CIFAR-10 test

images. We found the concentration of pixels on the bottom border for ResNet20 is a

result of tie-breaking during SIS backward selection (Appendix B.4). Moreover, the

CNNs are more confident on these pixels subsets than on full images: the mean drop

in confidence for the predicted class between original images and these 5% subsets

is −0.035 (std dev. = 0.107), −0.016 (0.094), and −0.012 (0.074) computed over all

CIFAR-10 test images for our ResNet20, ResNet18, and VGG16 models, respectively,

suggesting severe overinterpretation (negative values imply greater confidence on the

5% subsets). We find pixel-subsets chosen via backward selection are significantly

more predictive than equally large pixel-subsets chosen uniformly at random from

each image (Table 3.1).

We also find SIS subsets confidently classified by one model do not transfer to other

models. For instance, 5% pixel-subsets derived from CIFAR-10 test images using

one ResNet18 model (which classifies them with 94.8% accuracy) are only classified

with 25.8%, 29.2%, and 27.5% accuracy by another ResNet18 replicate, ResNet20,

and VGG16 models, respectively, suggesting there exist many different statistical
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(a) CIFAR-10 (b) ImageNet

Figure 3-3: Heatmaps of pixel locations comprising pixel-subsets. Frequency indicates
fraction of subsets containing each pixel. (a) 5% pixel-subsets across CIFAR-10 test
set for each model. Mean confidence indicates confidence on 5% pixel-subsets. (b)
Sufficient input subsets (confidence threshold 0.9) across ImageNet validation images
from Inception v3.

patterns that a flexible model might learn to rely on, and thus CIFAR-10 image

classification remains a highly underdetermined problem. Training classifiers that

make predictions for the right reasons may require clever regularization strategies

and architecture design to ensure models favor salient features over spurious pixel

subsets.

While recent work has suggested semantics can be better captured by models

that are robust to adversarial inputs that fool standard neural networks via human-

imperceptible modifications to images (Madry et al., 2018; Santurkar et al., 2019), we

explore a wide residual network that is adversarially robust for CIFAR-10 classifica-

tion (Madry et al., 2018) and find evidence of overinterpretation (Figure 3-1). This

finding suggests adversarial robustness alone does not prevent models from overinter-

preting spurious signals in CIFAR-10.

We also ran Batched Gradient SIS on CIFAR-10 and found edge-heavy sufficient

input subsets for CIFAR-10 (Appendix B.4). These heatmap differences are a re-

sult of the different valid equivalent sufficient input subsets found by the two SIS

discovery algorithms. However, since all sufficient input subsets are validated with

a model and guaranteed to be sufficient for classification at the specified threshold,

the heatmaps are accurate depictions of what is sufficient for the model to classify

images at the threshold. Overinterpretation is independent of the SIS algorithm used

because both algorithms produce human-uninterpretable sufficient subsets as shown
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Figure 3-4: Sufficient input subsets (threshold 0.9) for example ImageNet validation
images. The bottom row shows the corresponding images with all pixels outside of
each SIS subset masked but are still classified by the Inception v3 model with ≥ 90%
confidence.

in the examples.

ImageNet. We find models trained on ImageNet images suffer from severe overin-

terpretation. Figure 3-4 shows example SIS subsets (threshold 0.9) found via Batched

Gradient SIS on images confidently classified by the pre-trained Inception v3 (addi-

tional examples in Figures B-12–B-14). These SIS subsets appear visually nonsensical,

yet the network classifies them with ≥ 90% confidence. We find SIS pixels are concen-

trated outside of the actual object that determines the class label. For example, in the

“pizza” image, the SIS is concentrated on the shape of the plate and the background

table, rather than the pizza itself, suggesting the model could generalize poorly on

images containing different circular items on a table. In the “giant panda” image, the

SIS contains bamboo, which likely appeared in the collection of ImageNet photos for

this class. In the “traffic light” and “street sign” images, the SIS consists of pixels in

sky, suggesting that autonomous vehicle systems that may depend on these models

should be carefully evaluated for overinterpretation pathologies.

Figure 3-3b shows SIS pixel locations from a random sample of 1000 ImageNet

validation images. We find concentration along image borders, suggesting the model

relies heavily on image backgrounds and suffers from severe overinterpretation. This

is a serious problem as objects determining ImageNet classes are often located near

image centers, and thus this network fails to focus on salient features. We found the

81



mean fraction of an image required for classification with ≥ 90% confidence is only

0.0914, and mean SIS size differs significantly by predicted class (Figure B-16).

3.3.2 Sparse Subsets are Real Statistical Patterns

The overconfidence of CNNs for image classification (Guo et al., 2017) may lead one to

wonder whether the observed overconfidence on semantically meaningless SIS subsets

is an artifact of calibration rather than true statistical signals in the dataset. We

train models on 5% pixel-subsets of CIFAR-10 training images found via backward

selection (Section 3.2.3). We find models trained solely on these pixel-subsets can

classify corresponding test image pixel-subsets with minimal accuracy loss compared

to models trained on full images (Table 3.1), and thus these 5% pixel-subsets are

valid statistical signals in training images that generalize to the test distribution.

As a baseline to the 5% pixel-subsets identified by backward selection, we create

variants of all images where the 5% pixel-subsets are selected at random from each

image (rather than by backward selection) and use the same random pixel-subsets

for training each new model. Models trained on random subsets have significantly

lower test accuracy compared to models trained on 5% pixel-subsets from backward

selection (Table 3.1). We observe, however, that random 5% subsets of images still

capture enough signal to predict roughly 5 times better than blind guessing, but do

not capture nearly enough information for models to make accurate predictions.

We found that the 5% backward selection pixel-subsets did not contain model-

specific features, and thus reflected valid predictive signals regardless of the model

architecture employed for subset discovery. Our hypothesis was that 5% pixel-subsets

discovered with one architecture would provide robust performance when used to train

and evaluate a second architecture. We found this hypothesis supported for all six

pairs of subset discovery and train-test architectures evaluated (Table B.2). These

results demonstrate that the highly sparse subsets found via backward selection offer

a valid predictive signal in the CIFAR-10 benchmark exploited by models to attain

high test accuracy.

We observe similar results on ImageNet. Inception v3 trained on 10% pixel-subsets
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of ImageNet training images achieves 71.4% top-1 accuracy (mean over 5 runs) on the

corresponding pixel-subset ImageNet validation set (Table B.7). Additional ImageNet

results for Inception v3 and ResNet50, including training and evaluation on random

pixel-subsets and pixel-subsets of different architectures, are provided in Table B.7.

3.3.3 Humans Struggle to Classify Sparse Subsets

We find a strong correlation between the fraction of unmasked pixels in each image

and human classification accuracy (𝑅2 = 0.94, Figure B-11). Human accuracy on

5% pixel-subsets of CIFAR-10 images (mean = 19.2%, std dev = 4.8%, Table B.6)

is significantly lower than on original, unmasked images (roughly 94% (Karpathy,

2011)), though greater than random guessing, presumably due to correlations between

labels and features such as color (e.g., blue sky suggests airplane, ship, or bird).

However, CNNs (even when trained on full images and achieve accuracy on par

with human accuracy on full images) classify these sparse image subsets with very

high accuracy (Table 3.1), indicating benchmark images contain statistical signals

that are not salient to humans. Models solely trained to minimize prediction error

may thus latch onto these signals while still accurately generalizing to test data, but

may behave counterintuitively when fed images from a different source that does

not share these exact statistics. The strong correlation between the size of CIFAR-

10 pixel-subsets and the corresponding human classification accuracy suggests larger

subsets contain more semantically salient content. Thus, a model whose decisions

have larger corresponding SIS subsets presumably exhibits less overinterpretation

than one with smaller SIS subsets, as we investigate in Section 3.3.4.

3.3.4 SIS Size is Related to Model Accuracy

Given that smaller SIS contain fewer salient features according to human classifiers,

models that justify their classifications based on sparse SIS subsets may be limited

in terms of attainable accuracy, particularly in out-of-distribution settings. Here,

we investigate the relationship between a single model’s predictive accuracy and the
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size of the SIS subsets in which it identifies class-evidence. We draw no conclusions

between models as they are uncalibrated (additional results of SIS from calibrated

models are presented in Appendix B.4). For each of our three classifiers, we compute

the average SIS size increase for correctly classified images as compared to incorrectly

classified images (expressed as a percentage). We find SIS subsets of correctly classi-

fied images are consistently significantly larger than those of misclassified images at

all SIS confidence thresholds for both CIFAR-10 test images (Figure 3-5) and CIFAR-

10-C OOD images (Figure B-3). This is especially striking given model confidence

is uniformly lower on the misclassified inputs (Figure B-4). Lower confidence would

normally imply a larger SIS subset at a given confidence level, as one expects fewer

pixels can be masked before the model’s confidence drops below the SIS threshold.

Thus, we can rule out overall model confidence as an explanation of the smaller SIS

of misclassified images. This result suggests the sparse SIS subsets we identify are

not just a curiosity, but may be leading to poor generalization on real images.

Figure 3-5: Percentage increase in mean SIS size of correctly classified compared to
misclassified CIFAR-10 test images. Positive values indicate larger mean SIS size
for correctly classified images. Error bars indicate 95% confidence interval for the
difference in means.
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3.3.5 Mitigating Overinterpretation

Ensembling. Model ensembling is known to improve classification performance (Goh

et al., 2001; Ju et al., 2018). As we found pixel-subset size to be strongly correlated

with human pixel-subset classification accuracy (Section 3.3.3), our metric for mea-

suring how much ensembling may alleviate overinterpretation is the increase in SIS

subset size. We find ensembling uniformly increases test accuracy as expected but

also increases the SIS size (Figure 3-6), hence mitigating overinterpretation.

We conjecture the cause of both the increase in the accuracy and SIS size for

ensembles is the same. We observe that SIS subsets are generally not transferable

from one model to another— i.e., an SIS for one model is rarely an SIS for another

(Section 3.3.1). Thus, different models rely on different independent signals to arrive

at the same prediction. An ensemble bases its prediction on multiple such signals,

increasing predictive accuracy and SIS subset size by requiring simultaneous activa-

tion of multiple independently trained feature detectors. We find SIS subsets of the

ensemble are larger than the SIS of its individual members (examples in Figure B-2).

Input Dropout. We apply input dropout (Srivastava et al., 2014) to both train

and test images. We retain each input pixel with probability 𝑝 = 0.8 and set the

values of dropped pixels to zero. We find a small decrease in CIFAR-10 test accuracy

for models regularized with input dropout though find a significant (∼ 6%) increase

in OOD test accuracy on CIFAR-10-C images (Table 3.1, Figure B-5). Figure 3-6

shows a corresponding increase in SIS subset size for these models, suggesting input

dropout applied at train and test time helps to mitigate overinterpretation. We

conjecture that random dropout of input pixels disrupts spurious signals that lead to

overinterpretation.
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Figure 3-6: Mean SIS size on CIFAR-10 test images as SIS threshold varies. SIS
size indicates fraction of pixels necessary for model to make the same prediction at
each confidence threshold. Model accuracies are shown in the legend. 95% confidence
intervals are shaded around each mean.
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Table 3.1: Accuracy of CIFAR-10 classifiers trained and evaluated on full images, 5%
backward selection (BS) pixel-subsets, and 5% random pixel-subsets. Where possible,
accuracy is reported as mean ± standard deviation (%) over five runs. For training on
BS subsets, we run BS on all images for a single model of each type and average over
five models trained on these subsets. Additional results on CIFAR-10.1 are presented
in Table B.4.

Model Train On Evaluate On CIFAR-10 Test Acc. CIFAR-10-C Acc.

ResNet20

Full Images

Full Images 92.52± 0.09 69.44± 0.52

5% BS Subsets 92.48 70.65

5% Random 9.98± 0.03 10.02± 0.01

5% BS Subsets 5% BS Subsets 92.49± 0.02 70.58± 0.03

5% Random 5% Random 50.25± 0.19 44.04± 0.33

Input Dropout (Full) Input Dropout (Full) 91.02± 0.25 75.46± 0.74

ResNet18

Full Images

Full Images 95.17± 0.21 75.08± 0.20

5% BS Subsets 94.76 75.15

5% Random 10.08± 0.15 10.08± 0.07

5% BS Subsets 5% BS Subsets 94.96± 0.04 75.25± 0.05

5% Random 5% Random 51.27± 0.82 45.24± 0.45

Input Dropout (Full) Input Dropout (Full) 94.15± 0.26 80.35± 0.39

VGG16

Full Images

Full Images 93.69± 0.12 74.14± 0.45

5% BS Subsets 93.27 73.95

5% Random 10.02± 0.18 9.97± 0.18

5% BS Subsets 5% BS Subsets 92.60± 0.08 73.27± 0.18

5% Random 5% Random 53.66± 1.96 46.88± 1.27

Input Dropout (Full) Input Dropout (Full) 91.09± 0.15 80.43± 0.24

Ensemble
(ResNet18) Full Images

Full Images 96.07 77.00

5% Random 9.98 10.01
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Chapter 4

Computational Design of Peptide

Vaccines with 𝑛-times Coverage

In this chapter, we introduce the EvalVax and OptiVax framework for the computa-

tional evaluation and design of peptide vaccines. In contrast to the traditional vaccine

strategies that deliver protein subunits or contain live-attenuated pathogen to elicit

antibody responses, peptide vaccines are focused on activation of T cells against spe-

cific short antigenic fragments. Peptide vaccines deliver short peptide epitopes that

are presented on the surface of antigen presenting cells (APCs) by Major Histocom-

patibility Complex (MHC) class I or class II molecules that are recognized by T cells

to engage a cellular immune response against the peptides. Peptide vaccines can

mitigate potential allergenic responses that could be triggered by the greater diver-

sity of antigens found in larger protein subunits (Li et al., 2014). In addition, pep-

tide vaccines can focus immune responses toward epitopes that are conserved across

pathogenic variants, unlike larger protein vaccines that may induce immune responses

against mutable antigens. Peptide vaccines are in development for diseases including

HIV (Arunachalam et al., 2020), HPV (Kenter et al., 2009), and malaria (Nardin

et al., 2000), as well as in cancer where peptide vaccines can deliver personalized

neoantigens that are present in patients’ tumors (Hu et al., 2018).

An important consideration in the development of peptide vaccines is the selec-

tion of a compact vaccine payload. Ideally, the peptides should provide broad pop-
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ulation coverage considering the MHC allele diversity in the human population, and

for an optimal immune response, the vaccine should activate both CD8+ and CD4+

T cells (Zhang et al., 2009). For pathogenic targets, peptides should be conserved

across pathogenic variants to provide pan-variant immunity. Importantly, our eval-

uation and design framework introduces the metric of 𝑛-times population coverage,

in which each individual in the population is ideally covered by at least 𝑛 vaccine

peptide-HLA hits. We define a peptide-HLA hit as a (peptide, HLA allele) pair for

which the peptide is predicted to be displayed by the HLA allele and immunogenic

in the individual. While it might be assumed that an individual will be covered by a

vaccine if they display a single peptide, our 𝑛-times coverage framework provides the

following advantages over 1-times coverage to increase the robustness of the vaccine:

1. When an individual displays multiple peptides, their immune system activates

and expands more than one set of T cell clonotypes that are poised to fight viral

infection (Sekine et al., 2020; Schultheiß et al., 2020; Grifoni et al., 2020b).

2. The peptides that are immunogenic vary from one individual to another, and

thus having multiple peptides displayed increases the probability at least one

will be strongly immunogenic (Croft et al., 2019).

3. If a virus evolves and changes its peptide composition, using multiple peptides

reduces the chance of viral escape (Wibmer et al., 2021).

For a peptide to be effective in a vaccine to induce cellular immunity it must first

bind within the groove of a MHC class I or class II molecule, and secondly, it must be

immunogenic, that is, it must activate T cells when it is bound by MHC proteins and

displayed. Immunogenicity is therefore dependent on the sequence of the peptide dis-

played, the protein sequences of an individual’s MHC genes, and the affinity between

the two. A challenge for the design of peptide vaccines is the diversity of human

MHC gene alleles that each have specific preferences for the peptide sequences they

will display. The Human Leukocyte Antigen (HLA) loci, located within the MHC,

encode the HLA class I and class II molecules; an individual’s HLA type describes
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the alleles they carry at each three classical class I loci (HLA-A, HLA-B, and HLA-C)

and three class II loci (HLA-DR, HLA-DQ, and HLA-DP).

To create effective vaccines it is necessary to consider the HLA allelic frequency

in the target population, as well as linkage disequilibrium between HLA genes to

discover a set of peptides that is likely to be robustly displayed. Human populations

that originate from different geographies have differing frequencies of HLA alleles,

and these populations exhibit linkage disequilibrium between HLA loci that result

in population specific haplotype frequencies. However, previous computational pep-

tide vaccine design and evaluation methods do not utilize the distribution of HLA

haplotypes in a population, and thus cannot accurately assess the coverage provided

by a vaccine. Present population-based methods, like iVax (Moise et al., 2015) and

SARS-CoV-2 specific efforts (Fast et al., 2020), do not take into account haplotypes

and rare HLA allelic combinations. The IEDB Population Coverage Tool (Bui et al.,

2006) estimates peptide-HLA binding coverage and the distribution of peptides dis-

played for a given population but assumes independence between different loci and

thus does not consider linkage disequilibrium.

Here, we utilize human HLA haplotype frequencies of three major populations,

those self-reporting as having White, Black, or Asian ancestry, to computationally

compute population coverage of SARS-CoV-2 peptides with high predicted HLA bind-

ing affinity for inclusion in MHC class I or II vaccine formulations. We examined 4,690

geographically sampled SARS-CoV-2 genomes to exclude peptides with undesired mu-

tation rates. Recent advances in machine learning have produced models that can

predict the presentation of peptides by hundreds of allelic variants of both class I and

class II MHC molecules (Zeng and Gifford, 2019; Jurtz et al., 2017; O’Donnell et al.,

2018; Jensen et al., 2018; Peters et al., 2020). These models are evaluated on their

ability to accurately predict data unobserved during their training on hundreds of

HLA alleles. Given that different models may be more or less accurate for different

sequence families and can make idiosyncratic errors, we use an ensemble of models

for vaccine design. We evaluate completed designs using eleven models to provide a

conservative evaluation of vaccine peptide presentation. Our vaccine evaluation met-
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rics (EvalVax) can be used independently of vaccine optimization to evaluate existing

vaccines as we demonstrate.

Using conservative metrics of peptide-HLA binding, we find that our optimization

methods (OptiVax) provide both a higher likelihood of peptide display as well as

a larger number of associated peptides than other published SARS-CoV-2 peptide

vaccine designs with fewer than 150 peptides. Our proposed SARS-CoV-2 MHC class

I vaccine formulations provide 93.21% predicted population coverage with at least

five vaccine peptide-HLA hits on average per person (≥ 1 peptide 99.91%) with all

vaccine peptides perfectly conserved across 4,690 geographically sampled SARS-CoV-

2 genomes. Our proposed MHC class II vaccine formulations provide 97.21% predicted

coverage with at least five vaccine peptide-HLA hits on average per person with all

peptides having observed mutation probability ≤ 0.001. We also show OptiVax can

be used to augment SARS-CoV-2 spike (S) protein vaccine designs to increase their

population coverage.

The methods we present in this chapter are focused on the computational design

of optimized vaccine payloads, and these payloads can be delivered through a variety

of platforms, including synthesized peptides, viral vectors, nucleic acids, and can be

encapsulated in nanoparticles (Paston et al., 2021; Pardi et al., 2018). In Chapter 5,

we evaluate our 𝑛-times coverage vaccine design approach in a SARS-CoV-2 animal

challenge study, and our vaccine is delivered by an mRNA-LNP molecule that encodes

the vaccine payload.

Code and data for the experiments in this chapter are available at: https://

github.com/gifford-lab/optivax. HLA haplotype frequency data are available

at: http://dx.doi.org/10.17632/cfxkfy9zp4.1.
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4.1 Methods

4.1.1 Framework Overview

Our approach to vaccine design uses combinatorial optimization to select peptides to

achieve specific population level objectives. We provide two methods for peptide vac-

cine evaluation: EvalVax-Unlinked, which considers HLA allele frequencies assuming

independence between HLA loci, and EvalVax-Robust, which considers haplotype

frequencies and computes population coverage at minimum levels of high scoring

peptide-HLA combinations per individual. We employ these evaluation methods as

objective functions for peptide vaccine formulation by combinatorial optimization in

OptiVax-Unlinked and OptiVax-Robust. In our framework, vaccine design proceeds

by (1) starting with an initial proteome, filtering out peptides with undesired prop-

erties, (2) scoring which peptides will be presented and thus are potentially immuno-

genic, and (3) selecting an optimized set of candidate peptides given the frequency of

HLA haplotypes or HLA alleles in a target population. Our filtering steps eliminate

peptides that are predicted to be glycosylated, peptides that are expected to drift in

sequence and thus cause vaccine escape, peptides that are cleaved, and peptides that

are identical to peptides in the human proteome. Vaccine peptides can be drawn from

the entire proteome or from specific proteins of interest. An overview of our system

is shown in Figure 4-1.

Once candidate peptides are tested, any that are not immunogenic in the context of

the restricting HLA allotype can be eliminated from the candidate peptide pool. Draft

vaccine designs containing non-immunogenic peptides can be revised to eliminate

them, and the reduced vaccine design can be re-evaluated with EvalVax to see if

the design still meets performance criteria. If not, the vaccine design process can be

repeated with the revised candidate pool. Immunogenicity data can be incorporated

into the peptide scoring process that is used for both vaccine design and evaluation

as shown in italics in Figure 4-1.

93



Experimental 
Immunogenicity Evaluation

Viral or 
Cancer 

Proteome

Vaccine Evaluation

Vaccine 
Metrics

Candidate Selection

Peptide ScoringPeptide Filtering
OptiVax-Robust

OptiVax-Unlinked

EvalVax-Robust

EvalVax-Unlinked

Haplotypes

Allele Frequencies Allele Frequencies Diverse Peptide Scoring

Haplotypes Diverse Peptide Scoring

Peptide 
Vaccine 

Candidates

Baseline Vaccines

Coverage Optimization

Figure 4-1: The OptiVax and EvalVax machine learning system for combinatorial
vaccine optimization and evaluation. The methods can be used to design new peptide
vaccines, evaluate existing vaccines, or augment existing vaccine designs. Peptides
are scored by machine learning and immunogenicity data for population coverage
optimization and evaluation.

4.1.2 Proteome to Candidate Vaccine Peptides

Given a target proteome as input, we identify all potential T cell epitopes for inclusion

in a vaccine. We extract peptides of length 8–10 inclusive for consideration of MHC

class I binding (Rist et al., 2013) and peptides of length 13–25 inclusive for class

II binding (Chicz et al., 1992) by using sliding windows of each size over the entire

proteome. While peptides presented by MHC class I molecules can occasionally be

longer than 10 residues (Trolle et al., 2016), we conservatively limit our search to

length 8–10 since MHC class I presented peptides are predominately 8–10 residues in

length (Rist et al., 2013).

Using this sliding window approach, we created peptide sets from the SARS-

CoV-2 (COVID-19) and SARS-CoV (Human SARS coronavirus) proteomes. SARS-

CoV-2 was processed to discover relevant peptides for a vaccine, and SARS-CoV

was processed to reveal common peptides between the two viruses during evaluation.

The SARS-CoV-2 proteome is comprised of four structural proteins (E, M, N, and

S) and at least six additional ORFs encoding nonstructural proteins, including the

SARS-CoV-2 protease (Finkel et al., 2020; Zhang et al., 2020a). We obtained the

SARS-CoV-2 viral proteome from GISAID (Elbe and Buckland-Merrett, 2017) se-

quence entry Wuhan/IPBCAMS-WH-01/2019, the first documented case. We used
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Nextstrain (Hadfield et al., 2018) to identify open reading frames (ORFs) and trans-

late the sequence. Our sliding windows on SARS-CoV-2 resulted in 29,403 candidate

peptides for MHC class I and 125,593 candidate peptides for MHC class II. We ob-

tained the SARS-CoV proteome from UniProt (Consortium, 2019) under Proteome

ID UP000000354. For SARS-CoV, our procedure creates 29,661 and 126,711 unique

peptides for MHC class I and class II, respectively.

4.1.3 Peptide Filtering

Removal of Highly Mutable Peptides. We eliminate peptides that are observed

to mutate above an input threshold rate to improve coverage over all SARS-CoV-2

variants and reduce the chance that the virus will mutate and escape vaccine-induced

immunity in the future. When possible, we select peptides that are observed to be

perfectly conserved across all observed SARS-CoV-2 viral genomes. Peptides that

are observed to be perfectly conserved in thousands of examples may be functionally

constrained to evolve slowly or not at all. If functional data are available, they can

be used to supplement observed viral genome mutation rates by increasing mutation

rates over functionally non-constrained residues.

For SARS-CoV-2, we obtained the most up to date version of the GISAID database

(Elbe and Buckland-Merrett, 2017) (as of 2:02pm EST May 13, 2020, see Table S4:

GISAID acknowledgements) and used Nextstrain (Hadfield et al., 2018) to remove

genomes with sequencing errors, translate the genome into proteins, and perform

multiple sequence alignments (MSAs). We retrieved 24468 sequences from GISAID,

and 19288 remained after Nextstrain quality processing. After quality processing,

Nextstrain randomly sampled 34 genomes from every geographic region and month

to produce a representative set of 5142 genomes for evolutionary analysis. Nextstrain

definition of a “region” can vary from a city (e.g., “Shanghai”) to a larger geograph-

ical district. Spatial and temporal sampling in Nextstrain is designed to provide a

representative sampling of sequences around the world.

The 5142 genomes sampled by Nextstrain were then translated into protein se-

quences and aligned. We eliminated viral genome sequences that had a stop codon,
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a gap, an unknown amino acid (because of an uncalled nucleotide in the codon), or

had a gene that lacked a starting methionine, except for ORF1b which does not begin

with a methionine. This left a total of 4690 sequences that were used to compute

peptide level mutation probabilities. For each peptide, the probability of mutation

was computed as the number of non-reference peptide sequences observed divided by

the total number of peptide sequences observed.

Removal of Cleavage Regions. SARS-CoV-2 contains a number of post-translation

cleavage sites in ORF1a and ORF1b that result in a number of nonstructural protein

products. Cleavage sites for ORF1a and ORF1b were obtained from UniProt (Con-

sortium, 2019) under entry P0DTD1. In addition, a furin-like cleavage site has been

identified in the spike protein (Wang et al., 2020; Coutard et al., 2020). This cleavage

occurs before peptides are loaded in the endoplasmic reticulum for class I or endo-

somes for class II. Any peptide that spans any of these cleavage sites is removed from

consideration. This removes 3,739 peptides out of the 154,996 we consider across

windows 8–10 (class I) and 13–25 (class II) (∼2.4%).

Removal of Glycosylated Peptides. Glycosylation is a post-translational mod-

ification that involves the covalent attachment of carbohydrates to specific motifs

on the surface of the protein. We eliminate all peptides that are predicted to have

N-linked glycosylation as it can inhibit MHC class I peptide loading and T cell recog-

nition of peptides (Wolfert and Boons, 2013; Wrapp et al., 2020). In addition, we

do not know how well existing peptide prediction methods function on glycosylated

peptides. The use of peptides that are natively glycosylated in a virus would likely

require that vaccine peptides be identically glycosylated to enable T cell recognition

of vaccine primed memory. The use of non-glycosylated vaccine peptides in this case

has resulted in vaccine failures (Wolfert and Boons, 2013).

We identified peptides that may be glycosylated with the NetNGlyc N-glycosylation

prediction server (Gupta et al., 2004). We verified these predictions for the spike pro-

tein by ensuring they were in the same locations as those found using experimental
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data of spike N-glycosylation from Cryo-EM (Walls et al., 2020) and tandem mass

spectrometry (Zhang et al., 2020b). A majority of the potential N-glycosylation sites

(16 out of 22) were identified in both experimental studies, and further supported by

homologous regions with glycosylation found in SARS-CoV (Walls et al., 2020). We

found that all 22 experimentally identified real or likely N-glycosylation sites from the

SARS-CoV-2 spike protein were predicted to be glycosylated with non-zero probabil-

ity by NetNGlyc. Therefore, we eliminated all peptides where NetNGlyc predicted a

non-zero N-glycosylation probability in any residue. This resulted in the elimination

of 18,957 of the 154,996 peptides considered (∼12%).

Removal of Self-epitopes. T cells are selected to ignore peptides derived from the

normal human proteome, and thus we remove any self-peptides from consideration

for a vaccine. In addition, it is possible that a vaccine might stimulate the adaptive

immune system to react to a self-peptide that was presented at an abnormally high

level, which could lead to an autoimmune disorder. All peptides from SARS-CoV-2

were scanned against the entire human proteome downloaded from UniProt (Consor-

tium, 2019) under Proteome ID UP000005640. A total of 48 exact peptide matches

(46 8-mers, two 9-mers) were discovered and eliminated from consideration.

Removal of Undesired Proteins. OptiVax can design vaccines using peptides

from specific viral or oncogene proteins of interest by removing peptides from unde-

sired proteins from the candidate pool. Grifoni et al. (2020b) tested T cell responses

from COVID-19 convalescent patients and found that peptides from the S, M, and

N proteins of SARS-CoV-2 produce the dominant CD4+ and CD8+ responses when

compared to other SARS-CoV-2 proteins. We used OptiVax to produce additional

SARS-CoV-2 vaccines comprised of peptides drawn from only the S, M, and N pro-

teins (Section 4.2.2).
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4.1.4 Computational Models for Candidate Peptide Scoring

Computational Peptide-HLA Prediction Models. For a peptide vaccine to

be effective, its constituent peptides need to be displayed, and thus a computational

vaccine design must be built upon a solid predictive foundation of what peptides

will be displayed by each HLA allele. Incorrect predictions could lead to failure of a

pre-clinical or clinical trial at great human cost. To this end we are concerned with

the precision (true positives / all positives) of our predictions such that we maximize

the chance that a peptide predicted to be displayed will in fact be displayed. We are

less concerned with our ability to recall all of the peptides that will be displayed as

long as we have a set of suitable size that will be displayed. We reduce the risk of

false positives by employing multiple computational methods to predict peptide-HLA

binding.

All models take as input a (HLA, peptide) pair and output predicted peptide-

HLA binding affinity (IC50) in nanomolar units. For both MHC class I and class

II models, we consider peptides to be binders if the predicted HLA binding affin-

ity is ≤ 50 nM (Sette et al., 1994), providing a conservative threshold to increase

the probability of peptide display. For MHC class I design, we use an ensemble

that outputs the mean predicted binding affinity of NetMHCpan-4.0 (Jurtz et al.,

2017) and MHCflurry 1.6.0 (O’Donnell et al., 2020a, 2018). We find this ensem-

ble increases the precision of binding affinity estimates over the individual models

on available SARS-CoV-2 experimental data (Section 4.2.1). For MHC class II de-

sign, we use NetMHCIIpan-4.0 (Reynisson et al., 2020b). For evaluation, we use

our ensemble estimate of binding (MHC class I), as well as use binding predictions

from multiple prediction algorithms (MHC class I: NetMHCpan-4.0 (Jurtz et al.,

2017), NetMHCpan-4.1 (Reynisson et al., 2020a), MHCflurry 1.6.0 (O’Donnell et al.,

2020a), PUFFIN (Zeng and Gifford, 2019); MHC class II: NetMHCIIpan-3.2 (Jensen

et al., 2018), NetMHCIIpan-4.0 (Reynisson et al., 2020b), PUFFIN (Zeng and Gifford,

2019)) to ensure that all methods agree that we have a good peptide vaccine. Where

our methods require a probability of peptide-HLA binding (as in Equation 4.5), affin-
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ity predictions are capped at 50000 nM and transformed into [0, 1] using a logistic

transformation, 1− log50000(aff), where larger values correspond to greater likelihood

of eliciting an immunogenic response (Sette et al., 1994; Buus et al., 2003; Nielsen

et al., 2003). The ≤ 50 nM binding affinity threshold corresponds to a threshold of

≥ 0.638 after logistic transformation.

Our computational predictions of peptide display specify the supporting HLA

alleles, thus enabling immunogenicity testing of peptides on HLA matched individuals.

When available, these data can be used to eliminate peptide support by particular

HLA alleles when the peptides are found to be non-immunogenic (Figure 4-1).

Comparison of Binding Affinity and Rank Predictions. NetMHCpan-4.0

(Jurtz et al., 2017) and NetMHCIIpan-4.0 (Reynisson et al., 2020b) output predicted

binding affinity (BA), percentile rank of predicted BA compared to a set of random

natural peptides, and percentile rank of an eluted ligand (EL) score compared to a

set of random natural peptides. Default parameters for these methods suggest EL

percentile rank thresholds of 0.5% and 2% rank for classifying peptides as strong and

weak binders, respectively, for MHC class I and thresholds of 2% and 10% for strong

and weak binders, respectively, for MHC class II.

To score peptides for our vaccine designs, we use a 50 nM predicted binding affinity

threshold. We found binders selected with this criterion are also considered binders

under alternative criteria based on percentile rank and increased precision on available

SARS-CoV-2 experimental data (Section 4.2.1). Across our set of all candidate SARS-

CoV-2 MHC class I peptides, we found 91.0% of peptide-HLA hits with ≤ 50 nM

predicted binding affinity by NetMHCpan-4.0 were also considered binders using BA

percentile rank ≤ 0.5% (100.0% have BA percentile rank ≤ 2%). Using percentile

rank for EL scores, 67.6% of peptide-HLA hits with ≤ 50 nM predicted binding

affinity have EL percentile rank ≤ 0.5% (92.6% have EL percentile rank ≤ 2%).

Across all candidate SARS-CoV-2 MHC class II peptides, we found 86.1% of peptide-

HLA hits with ≤ 50 nM predicted binding affinity by NetMHCIIpan-4.0 were also

considered binders using BA percentile rank ≤ 2% (100.0% have BA percentile rank ≤
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10%). Using percentile rank for EL scores, 26.1% of peptide-HLA hits with ≤ 50 nM

predicted binding affinity have EL percentile rank ≤ 2% (63.1% have EL percentile

rank ≤ 10%).

Binders selected using percentile rank metrics were generally not considered binders

under a 50 nM predicted binding threshold. Across our set of all candidate SARS-

CoV-2 MHC class I peptides, we found 17.5% of peptide-HLA hits with EL percentile

rank ≤ 0.5% have ≤ 50 nM predicted binding affinity by NetMHCpan-4.0. Across

all candidate SARS-CoV-2 MHC class II peptides, we found 11.3% of peptide-HLA

hits with EL percentile rank ≤ 2.0% have ≤ 50 nM predicted binding affinity by

NetMHCIIpan-4.0.

4.1.5 HLA Population Frequency Computation

When we compute the probability of vaccine coverage over a population, we use

complementary methods that assume either independence or linkage between allele

frequencies in genomically proximal HLA loci. In EvalVax-Unlinked, we assume in-

dependence and use HLA allelic frequencies for 2392 class I alleles and 280 class II

alleles across 15 geographic regions from the dbMHC database (Helmberg et al., 2004)

obtained from the IEDB Population Coverage Tool (Bui et al., 2006). For each ge-

ographic region, we normalize the frequencies within each locus. If the sum of the

raw frequencies exceeds one we normalize them to one, and if the sum of the raw

frequencies is less than one the missing frequency is made up by a placeholder allele

that receives no binding. In EvalVax-Robust, we assume linkage and use observed

haplotype frequencies of HLA-A, HLA-B, and HLA-C loci for class I computations,

or observed haplotype frequencies of HLA-DP, HLA-DQ, and HLA-DR for class II

computations. We observed a total of 2138 distinct haplotypes for the HLA class I

locus that include 230 different HLA-A, HLA-B, and HLA-C HLA alleles. We ob-

served a total of 1711 distinct haplotypes for the HLA class II locus that include 280

different HLA-DP, HLA-DQ, and HLA-DR HLA alleles. We have independent hap-

lotype frequency measurements for three populations self-reporting as having White

(European), Black (African), or Asian ancestry.
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HLA class I and class II haplotype frequencies were inferred using high resolution

typing of individuals from distinct racial background. We estimated HLA class I hap-

lotypes from HLA-A,-B, and -C genotypes of 2886 individuals of Black ancestry (46

distinct HLA-A alleles, 70 distinct HLA-B alleles, 40 distinct HLA-C alleles), 2327

individuals of White ancestry (38 distinct HLA-A alleles, 64 distinct HLA-B alleles,

34 distinct HLA-C alleles) and 1653 individuals of Asian ancestry (25 distinct HLA-A

alleles, 51 distinct HLA-B alleles, 25 distinct HLA-C alleles). HLA class II haplotypes

were estimated based on DR, DQ, DP genotypes of 2474 individuals of Black ancestry

(10 distinct HLA-DPA1 alleles, 45 distinct HLA-DPB1 alleles, 14 distinct HLA-DQA1

alleles, 21 distinct HLA-DQB1 alleles, 38 distinct HLA-DRB1 alleles), 1857 individu-

als of White ancestry (7 distinct HLA-DPA1 alleles, 29 distinct HLA-DPB1 alleles, 18

distinct HLA-DQA1 alleles, 21 distinct HLA-DQB1 alleles, 41 distinct HLA-DRB1 al-

leles) and 1675 individuals of Asian ancestry (7 distinct HLA-DPA1 alleles, 28 distinct

HLA-DPB1 alleles, 16 distinct HLA-DQA1 alleles, 16 distinct HLA-DQB1 alleles, 36

distinct HLA-DRB1 alleles). For each racial background, HLA class I and class II

haplotypes were inferred using Hapferret1, an implementation of the Expectation-

Maximization algorithm (Excoffier and Slatkin, 1995). A total of 1200, 779, and 440

class I and 920, 537, and 502 class II haplotype frequencies were derived in Black,

White, and Asian populations, respectively.

4.1.6 EvalVax Population Coverage Objectives

EvalVax-Robust. EvalVax-Robust computes the distribution of per individual

peptide-HLA binding hits over a given population. It accounts for the significant

linkage disequilibrium (LD) between HLA loci and uses haplotype frequencies for

population coverage estimates. We expect that a vaccine will be more effective if more

of its peptides are displayed by an individual’s HLA molecules, and thus EvalVax-

Robust computes the probability of having at least 𝑁 predicted peptide-HLA binding

hits for each individual in the population.

Assuming for each of the HLA-A,B,C loci there are 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 alleles respec-
1https://github.com/nilsboar/hap-ferret
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tively, for a given haploid 𝐴𝑖𝐵𝑗𝐶𝑘, the haplotype frequency is defined as 𝐺(𝑖, 𝑗, 𝑘) and∑︀𝑀𝐴

𝑖=1

∑︀𝑀𝐵

𝑗=1

∑︀𝑀𝐶

𝑘=1 𝐺(𝑖, 𝑗, 𝑘) = 1. We assume independence of inherited haplotypes and

compute the frequency of a diploid genotype as:

𝐹𝑖1𝑗1𝑘1𝑖2𝑗2𝑘2 = 𝐹 (𝐴𝑖1𝐵𝑗1𝐶𝑘1 , 𝐴𝑖2𝐵𝑗2𝐶𝑘2) = 𝐺(𝑖1, 𝑗1, 𝑘1)𝐺(𝑖2, 𝑗2, 𝑘2) (4.1)

For each allele 𝑎, 𝑒(𝑎) denotes the number of peptides predicted to bind to the allele

with ≤ 50 nM affinity, which we call the number of peptide-HLA hits. Then for each

possible diploid genotype we compute the total number of peptide-HLA hits of the

genotype as the sum of 𝑒(𝑎) of the unique alleles in the genotype (there can be 3–6

unique alleles depending on the zygosity of each locus):

𝐶𝑖1𝑗1𝑘1𝑖2𝑗2𝑘2 = 𝐶(𝐴𝑖1𝐵𝑗1𝐶𝑘1 , 𝐴𝑖2𝐵𝑗2𝐶𝑘2) =
∑︁

𝑎∈{𝐴𝑖1
,𝐵𝑗1

,𝐶𝑘1
}∪{𝐴𝑖2

,𝐵𝑗2
,𝐶𝑘2

}

𝑒(𝑎) (4.2)

We then compute the frequency of having exactly 𝑘 peptide-HLA hits in the popula-

tion as:

𝑃 (𝑛 = 𝑘) =

𝑀𝐴∑︁
𝑖1=1

𝑀𝐵∑︁
𝑗1=1

𝑀𝐶∑︁
𝑘1=1

𝑀𝐴∑︁
𝑖2=1

𝑀𝐵∑︁
𝑗2=1

𝑀𝐶∑︁
𝑘2=1

𝐹𝑖1𝑗1𝑘1𝑖2𝑗2𝑘21{𝐶𝑖1𝑗1𝑘1𝑖2𝑗2𝑘2 = 𝑘} (4.3)

We define the population coverage objective function for EvalVax-Robust as the prob-

ability of having at least 𝑁 peptide-HLA hits in the population, where the threshold

𝑁 is set to the minimum number of displayed vaccine peptides desired:

𝑃 (𝑛 ≥ 𝑁) =
∞∑︁

𝑘=𝑁

𝑃 (𝑛 = 𝑘) (4.4)

When we evaluate metrics on a world population, we equally weight population cov-

erage estimations over three population groups (White, Black, and Asian) as the

final objective function. In addition to the probability of having at least 𝑁 peptide-

HLA hits per individual, we also evaluate the expected number of per individual

peptide-HLA hits in the population, which provides insight on how well the vaccine is
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displayed on average. The EvalVax objective can be used independently to evaluate

peptide vaccine population coverage (Figure 4-1).

EvalVax-Unlinked. When haplotype frequencies are not available for a popula-

tion, we can evaluate a vaccine using HLA allele frequencies that assume indepen-

dence and compute the probability that at least one peptide binds to any of the alleles

at any of the loci. To encourage a diverse set of peptides to bind to a single HLA

allele, we use the predicted binding probability of a peptide to an allele instead of

using a binary indicator of binding. This permits multiple peptides to contribute

to the probability score at each allele. Considering 𝐾 loci {𝐿1, ..., 𝐿𝐾}, for each lo-

cus there are 𝑀𝑘 alleles 𝑎1, ..., 𝑎𝑀𝑘
and the allele frequency is defined as 𝐺𝑘(𝑎𝑖) and∑︀𝑀𝑘

𝑖=1 𝐺𝑘(𝑎𝑖) = 1. Given a set of 𝑁 peptides 𝒫 = {𝑃1, 𝑃2, . . . , 𝑃𝑁}, for each allele

(of locus 𝐿𝑘) the predicted binding probability to peptide 𝑃𝑛 is 𝑒𝑛𝑘(𝑎𝑖). Assuming no

competition between peptides, the probability that allele 𝑎𝑖 ends up having at least

one peptide bound is:

𝑒𝑘(𝑎𝑖) = 1−
𝑁∏︁

𝑛=1

(1− 𝑒𝑛𝑘(𝑎𝑖)) (4.5)

We define the diploid frequency of alleles as 𝐹𝑘(𝑎𝑖, 𝑎𝑗) = 𝐺𝑘(𝑎𝑖)𝐺𝑘(𝑎𝑗), and we con-

servatively assume that a homozygous diploid locus does not improve the chance of

peptide presentation over a single copy of the locus. Thus, the probability that a

diploid genotype has at least one peptide bound is defined as:

𝐵𝑘(𝑎𝑖, 𝑎𝑗) =

⎧⎪⎨⎪⎩1− (1− 𝑒𝑘(𝑎𝑖))(1− 𝑒𝑘(𝑎𝑗)), if 𝑖 ̸= 𝑗

𝑒𝑘(𝑎𝑖), if 𝑖 = 𝑗

(4.6)

Therefore, the probability that a person in the given population displays at least one

peptide in the set 𝒫 at a particular locus 𝐿𝑘 is calculated by:

𝐹𝑘(𝒫) =
𝑀𝑘∑︁
𝑖=1

𝑀𝑘∑︁
𝑗=1

𝐹𝑘(𝑎𝑖, 𝑎𝑗)𝐵𝑘(𝑎𝑖, 𝑎𝑗) (4.7)
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To combine different loci assuming no linkage disequilibrium, the probability that a

person in the given population has at least one locus that binds to at least one peptide

from 𝒫 is defined as:

𝑃 (𝒫) = 1−
𝐾∏︁
𝑘=1

(1− 𝐹𝑘(𝒫)) (4.8)

which is the evaluation metric for EvalVax-Unlinked.

We conservatively only consider peptides with predicted binding affinity ≤ 50

nM. We set values of 𝑒𝑛𝑘(𝑎𝑖) weaker than 50 nM predicted binding affinity to zero.

This constraint on peptide binding operates in addition to the peptide filtering steps

described in Section 4.1.3. When we evaluate vaccines on a world population, we

equally weight population coverage estimates over 15 geographic regions (see Figure 4-

4b) as the final objective function.

4.1.7 OptiVax

Coverage optimization is performed by OptiVax using beam search to efficiently select

an optimal subset of peptides that maximizes a desired population coverage objective.

Starting from an empty set, OptiVax iteratively expands solutions in the beam by

adding one peptide at a time, and keeps the top 𝑘 solutions over all possible expansions

in the beam. We use a beam size of 𝑘 = 10 for MHC class I and 𝑘 = 5 for MHC class

II.

OptiVax-Robust. OptiVax-Robust uses beam search to find a minimal set of pep-

tides that reaches a target population coverage probability at a threshold of 𝑛 pre-

dicted peptide-HLA hits for each individual. We start from an empty set of peptides

and 𝑛 = 0, and iteratively expand the solution by one peptide at a time and retain

the top 𝑘 solutions until the population coverage probability for the current 𝑛 reaches

the target population coverage probability threshold for that 𝑛. We then repeat the

same process for 𝑛 + 1. If it not possible to reach the target population coverage

probability threshold for 𝑛 then the current coverage is accepted and we repeat the

process for 𝑛 + 1. At the expense of increased computational cost, beam search im-
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proves upon greedy optimization by considering 𝑘 possible solutions at each step.

During each iteration, the population coverage probability threshold at the present 𝑛

controls the robustness of coverage. Increasing the target population coverage prob-

ability increases the difficulty of the optimization task. The iterative process stops

when the target population coverage at the desired 𝑛 is achieved. In early rounds of

optimization, OptiVax uses a high population coverage probability to provide better

individual coverage. In subsequent rounds, the target population coverage probability

is reduced on a fixed schedule.

In Liu et al. (2022), this combinatorial optimization problem is formally defined

as the Maximum 𝑛-times Coverage problem, which is shown to be NP-complete

and not submodular. The beam search procedure described above is formalized as

the MarginalGreedy algorithm (Liu et al., 2022).

OptiVax-Unlinked. OptiVax-Unlinked optimizes the EvalVax-Unlinked objective

function (Section 4.1.6) that considers HLA allele frequencies at each HLA locus

independently. OptiVax-Unlinked uses beam search to find a minimal set of peptides

that reaches a desired population coverage probability that each individual on average

displays at least one vaccine peptide.

Peptide Sequence Diversity Constraints. During optimization, we add se-

quence diversity constraints between vaccine peptides to avoid selection of overlapping

peptide sequences in a vaccine formulation. This issue arises because sliding a window

over a proteome produces overlapping sequences that are very similar in HLA binding

characteristics. When any version of OptiVax selects a peptide during optimization,

it eliminates from further consideration all unselected peptides that are within three

(MHC class I) or five (MHC class II) edits on a sequence distance metric from the

selected peptide. The distance metric computation aligns two peptides not allowing

gaps and mismatches and the distance metric is the sum of the lengths of any end

overhangs where the opposite peptide sequence is absent.
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4.2 Results

4.2.1 Validation of ML Models on Experimental Stability Data

We evaluate peptide-HLA binding predictions on a set of experimentally assessed

SARS-CoV-2 peptides whose peptide-HLA complex stability was assessed in vitro

across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1 HLA-DRB1) (Prachar

et al., 2020). Prachar et al. (2020) suggests peptides with at least 60% of the stability

of a reference peptide in a NeoScreen assay are likely high affinity binders. For MHC

class I alleles, the dataset contains 912 unique peptide-HLA pairs, of which 185 pep-

tides are considered stable (≥ 60% stability). For MHC class II, the dataset contains

93 total peptides, of which 22 are stable. We use our computational models to pre-

dict peptide-HLA binding and evaluate them using various binding criteria against

the experimental peptide stability measurement (Table 4.1). We compare classifica-

tion performance using different binding criteria (Section 4.1.4) and find in general

that classifying binders using predicted binding affinity maximizes AUROC, and a

50 nM binding affinity threshold maximizes precision (Table 4.1). We find our mean

ensemble of NetMHCpan-4.0 and MHCflurry further improves classification AUROC

and precision over the individual models for predicting MHC class I epitopes. On

MHC class II data, NetMHCIIpan-4.0 achieves AUROC 0.848 and precision 0.625 us-

ing a 500 nM threshold (Table 4.1). While NetMHCIIpan-4.0 with a 50 nM threshold

does not identify any peptides in this dataset as binders, we use this stricter thresh-

old in our vaccine designs as it is more conservative and less likely to admit false

positive binders. In general, we find performance of PUFFIN with a 50 nM binding

threshold comparable to alternative methods on both MHC class I and class II data

and use PUFFIN as part of our vaccine design evaluation (Section 4.2.6). We further

calibrated ML models using experimental immunogenicity data from convalescent

COVID-19 patients, and results are presented in Liu et al. (2021).

106



Table 4.1: Classification performance of computational methods for predicting
peptide-MHC binding evaluated on experimental SARS-CoV-2 peptide stability
data (Prachar et al., 2020) across 11 MHC allotypes (5 HLA-A, 1 HLA-B, 4 HLA-C, 1
HLA-DRB1). Ensemble outputs the mean predicted binding affinity of NetMHCpan-
4.0 and MHCflurry (Section 4.1.4). Classification performance of peptide-MHC scor-
ing models was calculated using scikit-learn (Pedregosa et al., 2011). AUROC and
average precision are computed using raw predictions, and the remaining metrics are
computed using binarized predictions based on the respective binding criteria. (BA
= binding affinity, EL = eluted ligand)

MHC Model Binding Criterion AUROC Precision Sensitivity Specificity Avg. Precision

Class I

NetMHCpan-4.0 BA ≤ 50 nM 0.845 0.516 0.714 0.829 0.486

NetMHCpan-4.0 BA ≤ 500 nM 0.845 0.308 0.968 0.446 0.486

NetMHCpan-4.0 BA % Rank ≤ 0.5 0.746 0.249 0.968 0.257 0.416

NetMHCpan-4.0 BA % Rank ≤ 2 0.746 0.212 1.000 0.054 0.416

NetMHCpan-4.0 EL % Rank ≤ 0.5 0.757 0.256 0.930 0.312 0.479

NetMHCpan-4.0 EL % Rank ≤ 2 0.757 0.214 0.989 0.077 0.479

NetMHCpan-4.1 BA ≤ 50 nM 0.853 0.504 0.719 0.820 0.499

NetMHCpan-4.1 BA ≤ 500 nM 0.853 0.304 0.984 0.428 0.499

NetMHCpan-4.1 EL % Rank ≤ 0.5 0.776 0.278 0.903 0.403 0.490

NetMHCpan-4.1 EL % Rank ≤ 2 0.776 0.219 0.989 0.103 0.490

MHCflurry 1.6.0 BA ≤ 50 nM 0.724 0.404 0.422 0.842 0.411

PUFFIN BA ≤ 50 nM 0.768 0.526 0.492 0.887 0.485

PUFFIN BA ≤ 500 nM 0.768 0.272 0.870 0.406 0.485

Ensemble Mean BA ≤ 50 nM 0.862 0.683 0.514 0.939 0.650

Class II

NetMHCIIpan-4.0 BA ≤ 50 nM 0.848 0.000 0.000 1.000 0.762

NetMHCIIpan-4.0 BA ≤ 500 nM 0.848 0.625 0.682 0.873 0.762

NetMHCIIpan-4.0 EL % Rank ≤ 2 0.908 1.000 0.182 1.000 0.785

NetMHCIIpan-4.0 EL % Rank ≤ 10 0.908 0.789 0.682 0.944 0.785

NetMHCIIpan-3.2 BA ≤ 50 nM 0.766 1.000 0.045 1.000 0.544

NetMHCIIpan-3.2 BA ≤ 500 nM 0.766 0.253 0.909 0.169 0.544

NetMHCIIpan-3.2 BA % Rank ≤ 2 0.766 0.380 0.864 0.563 0.536

NetMHCIIpan-3.2 BA % Rank ≤ 10 0.766 0.253 1.000 0.085 0.536

PUFFIN BA ≤ 50 nM 0.704 0.667 0.091 0.986 0.430

PUFFIN BA ≤ 500 nM 0.704 0.275 0.864 0.296 0.430

4.2.2 OptiVax-Robust Vaccine Designs for SARS-CoV-2

MHC class I. We selected an optimized set of peptides from all SARS-CoV-2 pro-

teins using OptiVax-Robust and the EvalVax-Robust objective function. We limited

our candidates to peptides with length 8–10 and excluded peptides that have been

observed with any mutation or are predicted to have non-zero probability of glyco-

sylation (Section 4.1.2). For computation of the objective function, we use the mean

predicted IC50 values from our NetMHCpan-4.0 and MHCflurry ensemble to obtain

reliable binding affinity predictions for evaluation and optimization. After peptide
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filtering, we had 378 candidate peptides. With OptiVax-Robust optimization, we

designed a vaccine with 19 peptides that achieves 99.39% EvalVax-Unlinked coverage

and 99.91% EvalVax-Robust coverage over three ethnic groups (Asian, Black, White)

with at least one peptide-HLA hit per individual. This set of peptides also provides

93.21% coverage with at least 5 peptide-HLA hits and 67.75% coverage with at least

8 peptide-HLA hits (Figure 4-2, Table 4.2). The population level distribution of the

number of peptide-HLA hits in White, Black, and Asian populations is shown in Fig-

ure 4-2, where the expected number of peptide-HLA hits is 9.358, 8.515, and 10.206,

respectively.

MHC class II. We limited our candidates to peptides with length 13–25 and ex-

cluded peptides that have been observed with mutation probability greater than 0.001

or are predicted to have non-zero glycosylation probability. We use the predicted bind-

ing affinity from NetMHCIIpan-4.0 for optimization and evaluation. After peptide

filtering, we had 7977 candidate peptides. With OptiVax-Robust optimization, we

designed a vaccine with 19 peptides that achieves 90.76% EvalVax-Unlinked coverage

and 99.67% EvalVax-Robust coverage over three ethnic groups (Asian, Black, White)

with at least one peptide-HLA hit per individual. This set of peptides also provides

97.21% coverage with at least 5 peptide-HLA hits and 88.48% coverage with at least

8 peptide-HLA hits (Figure 4-2, Table 4.2). The population level distribution of the

number of peptide-HLA hits per individual in White, Black, and Asian populations

is shown in Figure 4-2, where the expected number of of peptide-HLA hits is 16.635,

15.708, 11.000, respectively.

Vaccine designs with S, M, N proteins only. We also used OptiVax-Robust to

design vaccines for MHC class I and class II based solely upon peptides from the S,

M, and N proteins of SARS-CoV-2 and evaluated the resulting vaccine performance.

Grifoni et al. (2020b) found that peptides from the S, M, and N proteins produced

the majority of the CD4+ (86%) and CD8+ (60%) T cell response in 20 convalescent

COVID-19 patients. Since Grifoni et al. (2020b) used megapool based assays, it is
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Figure 4-2: SARS-CoV-2 OptiVax-Robust selected peptide vaccine set for (A) MHC
class I and (B) MHC class II. (a) EvalVax-Robust population coverage at different
per-individual number of peptide-HLA hit cutoffs for populations self-reporting as
having White, Black, or Asian ancestry and average values. (b) EvalVax-Unlinked
population coverage on 15 geographic regions and averaged population coverage. (c)
Binding of vaccine peptides to each of the available alleles in MHC I and II. (d) Peptide
viral protein origins. (e) Distribution of the number of per-individual peptide-HLA
hits in populations self-reporting as having White, Black, or Asian ancestry. (f)
Vaccine peptide presence in SARS-CoV.

not possible to use their data to identify individual peptides that are immunogenic.

As shown in Table 4.2, our SMN only MHC class I vaccine with 26 peptides

achieves 98.15% coverage over three ethnic groups (Asian, Black, White) with at

least one average peptide-HLA hit per individual. There were an average of at least

five peptide hits in 67.37% of the population, and the expected per-individual num-

ber of hits for White, Black, and Asian populations are 5.313, 5.643, and 6.448,

respectively. The OptiVax-Robust MHC class II SMN only vaccine with 22 peptides

achieves 98.57% coverage with an average of at least one peptide-HLA hit per individ-

ual. There were an average of at least five peptide hits in 85.37% of the population,

and the expected per-individual number of hits in White, Black, and Asian popula-

tions are 11.309, 9.693 and 7.053, respectively. The detailed vaccine designs are in
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Figure 4-3: OptiVax-Robust designed peptide vaccine using peptides from the SARS-
CoV-2 S, M, and N proteins only. (A) Results for MHC class I and (B) MHC class
II. (a) EvalVax-Robust population coverage at different minimum number of peptide-
HLA hit cutoffs. (b) EvalVax-Unlinked population coverage. (c) Binding of vaccine
peptides to each of the available alleles in MHC I and II. (d) Peptide viral protein
origins. (e) Distribution of the number of per-individual peptide-HLA hits in popu-
lations self-reporting as having White, Black, or Asian ancestry. (f) Vaccine peptide
presence in SARS-CoV.

Figure 4-3. We observed that it is more difficult to optimize vaccines with S, N, and

M proteins only. We expect this is because we have fewer candidate peptides to cover

all of our haplotype combinations.

4.2.3 OptiVax-Unlinked Vaccine Designs for SARS-CoV-2

MHC class I. We limited our candidates to peptides with length 8–10 and zero

predicted probability of glycosylation. We also excluded peptides that have been ob-

served with any mutation. We use the mean predicted binding affinity values from our

ensemble of NetMHCpan-4.0 and MHCflurry on 2392 HLA class I alleles to obtain

reliable binding affinity predictions for evaluation and optimization. After peptide

filtering, we had 472 candidate peptides. With OptiVax-Unlinked optimization, we
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designed a vaccine with 19 peptides that achieves 99.79% EvalVax-Unlinked popula-

tion coverage (averages over 15 geographic regions). As shown in Figure 4-4, the 19

vaccine peptides bind to a diverse range of alleles across the HLA-A/B/C loci. Even

though less effective than OptiVax-Robust at providing a higher number of expected

individual peptide-HLA hits in the population, the OptiVax-Unlinked peptide set still

achieves high coverage on EvalVax-Robust metrics (99.99% for 𝑝(𝑛 ≥ 1), 89.15% for

𝑝(𝑛 ≥ 5), 49.59% for 𝑝(𝑛 ≥ 8)). The expected per-individual number of peptide-HLA

hits for the design is 7.340, 6.899, and 8.971 for White, Black, and Asian populations,

respectively (Table 4.2).

MHC class II. We excluded peptides that have been observed with a mutation

probability greater than 0.001 or are predicted to have non-zero probability of being

glycosylated. We use the predicted binding affinity from NetMHCIIpan-4.0 for opti-

mization and initial evaluation. After peptide filtering, we had 7966 candidate pep-

tides. With OptiVax-Unlinked, we designed a vaccine with 19 peptides that achieves

91.67% EvalVax-Unlinked population coverage (averaged over 15 geographic regions).

As shown in Figure 4-4, the 19 vaccine peptides bind to a diverse range of alleles across

the HLA-DRB/DP/DQ loci. Even though less effective than OptiVax-Robust on pro-

viding a high predicted number of average peptide-HLA hits in the population, the

OptiVax-Unlinked peptide set still achieves high coverage on EvalVax-Robust met-

rics (99.67% for 𝑝(𝑛 ≥ 1), 95.94% for 𝑝(𝑛 ≥ 5), 83.30% for 𝑝(𝑛 ≥ 8)). The expected

per-individual number of peptide-HLA hits for the design is 14.366, 12.711, and 9.657

for White, Black, and Asian populations, respectively (Table 4.2).

4.2.4 EvalVax Evaluation of Public SARS-CoV-2 Vaccine De-

signs

We used EvalVax to evaluate peptide vaccines and megapools proposed by other publi-

cations (Lee and Koohy, 2020; Fast et al., 2020; Poran et al., 2020; Bhattacharya et al.,

2020; Baruah and Bose, 2020; Abdelmageed et al., 2020; Ahmed et al., 2020; Srivas-

tava et al., 2020; Herst et al., 2020; Vashi et al., 2020; Akhand et al., 2020; Mitra et al.,
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Figure 4-4: OptiVax-Unlinked selected SARS-CoV-2 optimal peptide vaccine set for
(A) MHC class I and (B) MHC class II. (a) EvalVax-Robust population coverage
at different per-individual number of peptide-HLA hits cutoffs for populations self-
reporting as having White, Black, or Asian ancestry and average value. (b) EvalVax-
Unlinked population coverage on 15 geographic regions and averaged population cov-
erage. (c) Binding of vaccine peptides to each of the available alleles in MHC I and
II. (d) Peptide viral protein origins. (e) Distribution of the number of per-individual
peptide-HLA hits in populations self-reporting as having White, Black, or Asian an-
cestry. (f) Vaccine peptide presence in SARS-CoV.

2020; Khan et al., 2020; Banerjee et al., 2020; Ramaiah and Arumugaswami, 2020;

Gupta et al., 2020; Saha and Prasad, 2020; Tahir ul Qamar et al., 2020; Singh et al.,

2020a; Yarmarkovich et al., 2020; Grifoni et al., 2020a; Nerli and Sgourakis, 2020;

Yazdani et al., 2020; Ismail et al., 2020) on metrics including EvalVax-Unlinked and

EvalVax-Robust population coverage at different per-individual number of peptide-

HLA hits thresholds, expected per-individual number of peptide-HLA hits in White,

Black, and Asian populations, percentage of peptides that are predicted to be glyco-

sylated, peptides observed to mutate with probability greater than 0.001, or peptides

that sit on known cleavage sites. We define normalized coverage as the mean expected

per-individual number of peptide-HLA hits for a vaccine divided by the number of

peptides in the vaccine. Details of the baseline vaccine designs are presented in the
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Key Resources Table of Liu et al. (2020a).

We evaluate whole protein vaccines by first converting them into the non-redundant

peptides they display in a given haplotype population. Using a windowing strategy to

enumerate all peptides in a whole protein vaccine produces a large number of overlap-

ping redundant peptides that will cause EvalVax to provide optimistic and unrealistic

vaccine metrics. We accomplish protein vaccine representation by using OptiVax to

create a vaccine design from the entire protein vaccine payload without any limita-

tion on the number of peptides in the vaccine. OptiVax eliminates highly redundant

peptides during design and chooses the largest set of peptides that maximizes popula-

tion coverage (Section 4.1.7). For example, EvalVax predicts SARS-CoV-2 S protein

vaccines will have 𝑛 ≥ 5 MHC class II peptide hits in 95.99% of the population on

average when simple windowing is employed resulting in 16315 redundant peptides,

and 82.72% of the population when non-redundant S is used resulting in its represen-

tation as 102 peptides that are not glycosylated, and have a mutation probability of

≤ 0.001 (Table 4.2).

Figures 4-5 and 4-6 show the comparison between OptiVax-Robust designed MHC

class I and class II vaccines at all vaccine sizes (top solution in the beam up to the

given vaccine size) from 1–35 peptides (blue curves) and baseline vaccines (red crosses)

proposed by other publications. We observe superior performance of OptiVax-Robust

designed vaccines on all evaluation metrics at all vaccine sizes for both MHC class

I and class II. Most baselines achieve reasonable coverage at 𝑛 ≥ 1 peptide hits.

However, many fail to show a high probability of higher hit counts, indicating a

lack of predicted redundancy if a single peptide is not displayed. We also evaluate

randomly selected peptide sets of size 19 from predicted binders of MHC class I and

II, where a binder is defined as a peptide predicted to bind with ≤ 50 nM to more

than 5 of the alleles in the MHC class. We found that a set of random binders can

achieve greater coverage than some of the proposed vaccines we use as baselines.

Table 4.2 summarizes EvalVax results for all baselines with a vaccine peptide

count less than 150 peptides. We also evaluated an average of 200 random designs

for MHC class I or class II that are comprised of 19 random peptides predicted to
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Figure 4-5: EvalVax population coverage evaluation, expectation of per individual
number of peptide-HLA hits and normalized coverage for MHC class I SARS-CoV-
2 vaccines. (a) EvalVax population coverage for OptiVax-Unlinked and OptiVax-
Robust proposed vaccine at different vaccine sizes. (b) EvalVax-Robust population
coverage with 𝑛 ≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is
shown by the blue curve and baseline performance is shown by red crosses (labeled by
name of first author). (c) EvalVax-Robust population coverage with 𝑛 ≥ 5 peptide-
HLA hits. (d) EvalVax-Robust population coverage with 𝑛 ≥ 8 peptide-HLA hits. (e)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust
and OptiVax-Unlinked, and normalized coverage (hits / vaccine size) at different
vaccine size. (f) Comparison of OptiVax-Robust and baselines on expected number
of peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and
baseline performance is shown by red crosses. (g) Comparison between OptiVax-
Robust and baselines on normalized coverage.

bind with ≤ 50 nM to more than 5 of the alleles in the MHC class. We found

that the baseline methods all provide less coverage than OptiVax derived sets, and

some contain peptides predicted to be glycosylated or have a high observed mutation

probability (Table 4.2). We also observe some baselines contain peptides that cross

cleavage sites or overlap with self-peptides.

4.2.5 OptiVax Augmentation of SARS-CoV-2 S Protein Vac-

cines

When predicted population coverage for a whole protein vaccine is found insufficient,

OptiVax can perform optimized augmented vaccine design to suggest additional pep-
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Figure 4-6: EvalVax population coverage evaluation, expectation of per individual
number of peptide-HLA hits and normalized coverage for MHC class II SARS-CoV-
2 vaccines. (a) EvalVax population coverage for OptiVax-Unlinked and OptiVax-
Robust proposed vaccine at different vaccine sizes. (b) EvalVax-Robust population
coverage with 𝑛 ≥ 1 peptide-HLA hits per individual, OptiVax-Robust performance is
shown by the blue curve and baseline performance is shown by red crosses (labeled by
name of first author). (c) EvalVax-Robust population coverage with 𝑛 ≥ 5 peptide-
HLA hits. (d) EvalVax-Robust population coverage with 𝑛 ≥ 8 peptide-HLA hits. (e)
Expected number of peptide-HLA hits vs. peptide vaccine size for OptiVax-Robust
and OptiVax-Unlinked, and normalized coverage (hits / vaccine size) at different
vaccine size. (f) Comparison of OptiVax-Robust and baselines on expected number
of peptide-HLA hits. OptiVax-Robust performance is shown by the blue curve and
baseline performance is shown by red crosses. (g) Comparison between OptiVax-
Robust and baselines on normalized coverage.

tides to add to an existing formulation. In this mode, we use OptiVax to compute the

non-redundant displayed peptide set for a protein vaccine, and then use this as the ini-

tial set of peptides for OptiVax design. OptiVax then adds additional non-redundant

peptides to this initial set to increase population coverage.

We used OptiVax-Robust augmentation to add 26 peptides to the SARS-CoV-2 S

protein vaccine to increase the predicted MHC class II population coverage for 𝑛 ≥ 5

peptide hits from 82.72% to 98.73%. For MHC class I, OptiVax augmentation added

16 peptides to the SARS-CoV-2 S protein vaccine to increase the predicted population

coverage for 𝑛 ≥ 5 peptide hits from 97.4% to 99.9% (Table 4.2). OptiVax vaccine

designs, non-redundant peptide sets, and vaccine augmentations are presented in

Supplemental Table S3 of Liu et al. (2020a). Additional population coverage gap
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results and SARS-CoV-2 protein subunit augmentation vaccine designs are presented

in Liu et al. (2021).

4.2.6 EvalVax Vaccine Evaluation Using Alternative Predic-

tion Models

We evaluated all Table 4.2 vaccine designs using eleven independent peptide-HLA

binding prediction methods to ensure that the performance observed in Table 4.2 is

consistent across prediction methods. For MHC class I prediction, we validated using

seven methods: NetMHCpan-4.0; NetMHCpan-4.1; MHCflurry 1.6.0; PUFFIN; the

mean of NetMHCpan-4.0 and MHCflurry 1.6.0 with a 50 nM threshold on predicted

affinity; and NetMHCpan-4.0 and NetMHCpan-4.1 with a 99.5% threshold on EL

ranking. For MHC class II prediction, we validated using four different methods:

NetMHCIIpan-3.2 and NetMHCIIpan-4.0, each with either a 50 nM threshold on

predicted affinity or a 98% threshold on EL ranking. The result of all eleven EvalVax

evaluation metrics for all Table 4.2 designs are presented in Supplemental Table S2

of Liu et al. (2020a). We find all eleven methods used for evaluation show Table 4.2

is a conservative estimate of vaccine performance.
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Table 4.2: Comparison of existing baselines, S-protein peptides, and OptiVax de-
signed peptide vaccines (using all SARS-CoV-2 or S/M/N proteins only) on various
population coverage evaluation metrics and vaccine quality metrics (percentage of
peptides with mutation rate > 0.001 or with non-zero probability of being glycosy-
lated). S-protein includes all possible S-protein peptides of lengths 8–10 (MHC class
I) and 13–25 (MHC class II). Non-redundant peptide sets are a result of OptiVax
analysis of non-redundant displayed peptides. The table is sorted by EvalVax-Robust
𝑝(𝑛 ≥ 1). Random subsets are generated 200 times. The binders used for generating
random subsets are defined as peptides that are predicted to bind with ≤ 50 nM to
more than 5 of the alleles.

Peptide Set Vaccine 
Size 

EvalVax-
Unlinked 

EvalVax-
Robust 
p(n≥1) 

EvalVax-
Robust 
p(n≥5) 

EvalVax-
Robust 
p(n≥8) 

Exp. # 
Peptide-
HLA 
Hits / 
Vaccine 
Size 

Exp. # 
Peptide-
HLA 
Hits 
(White) 

Exp. # 
Peptide-
HLA 
Hits 
(Black) 

Exp. # 
Peptide-
HLA 
Hits 
(Asian) 

Peptides 
Glycosyl
ated 

Peptides 
Mutation 
Rate > 
0.001 

On 
Cleavage 
Site 

Protein Origins In 
SARS-
CoV 

MHC Class I Peptide Vaccine Evaluation 
OptiVax Augmented Non-
redundant S-protein 

126 + 16 100.00% 100.00% 99.97% 99.27% 20.50% 27.20 27.68 32.44 0.00% 0.00% 0.00% M, N, ORF1a, ORF1b, ORF3a, 
S1, S2 

30.28% 

S-protein 3795 99.96% 100.00% 99.17% 98.29% 0.91% 30.84 32.14 41.13 15.57% 29.99% 0.63% S1, S2 29.30% 
OptiVax-Unlinked 19 99.79% 99.99% 89.15% 49.59% 40.72% 7.34 6.90 8.97 0.00% 0.00% 0.00% ORF1a, ORF1b, ORF3a, S1 42.11% 
Non-redundant S-protein 126 99.84% 99.93% 97.37% 91.69% 16.82% 19.20 19.99 24.38 0.00% 0.00% 0.00% S1, S2 27.78% 
OptiVax-Robust 19 99.39% 99.91% 93.21% 67.75% 49.26% 9.36 8.52 10.21 0.00% 0.00% 0.00% ORF1a, ORF1b, ORF3a, 

ORF9b, S1 
52.63% 

OptiVax-Robust – size 15 15 99.07% 99.89% 86.69% 54.36% 54.47% 8.17 7.20 9.14 0.00% 0.00% 0.00% ORF1a, ORF1b, ORF9b, S1 53.33% 
Non-redundant S1-subunit 68 99.18% 99.76% 86.53% 56.36% 12.23% 8.31 8.84 7.80 0.00% 0.00% 0.00% S1 8.82% 
Srivastava et al. (2020) 37 95.86% 99.75% 52.94% 16.00% 13.51% 5.37 4.99 4.64 8.11% 37.84% 0.00% E, M, N, ORF10, ORF1a, 

ORF1b, ORF3a, ORF6, ORF7a, 
ORF7b, ORF8, S1 

45.95% 

OptiVax-Robust – S/M/N only 26 97.49% 98.15% 67.37% 26.24% 22.31% 5.31 5.64 6.45 0.00% 0.00% 0.00% M, N, S1, S2 57.69% 
Herst et al. (2020) 52 90.89% 95.82% 56.52% 19.99% 9.88% 5.20 4.44 5.77 7.69% 34.62% 0.00% N 55.77% 
Herst et al. (2020) – top 16 16 80.41% 93.46% 9.47% 0.03% 15.73% 2.75 2.60 2.20 12.50% 12.50% 0.00% N 68.75% 
Random subset of binders 19 81.04% 90.33% 25.02% 4.58% 16.74% 3.01 2.83 3.70 0.00% 29.89% 0.00% N/A 40.37% 
Baruah and Bose (2020) 5 71.91% 90.10% 0.55% 0.00% 33.60% 1.93 1.44 1.67 0.00% 40.00% 0.00% S1, S2 40.00% 
Fast et al. (2020) 13 78.66% 85.29% 58.51% 30.56% 44.25% 5.59 4.98 6.69 7.69% 30.77% 0.00% E, M, N, ORF1a, S1, S2 23.08% 
Poran et al. (2020) 10 69.12% 85.13% 3.21% 0.01% 19.23% 1.68 1.72 2.37 0.00% 30.00% 0.00% ORF1a, ORF1b, ORF3a, ORF8, 

S1 
20.00% 

Vashi et al. (2020) 51 68.63% 80.80% 1.52% 0.00% 3.12% 1.90 1.70 1.17 11.76% 43.14% 5.88% S1, S2 5.88% 
Abdelmageed et al. (2020) 10 66.91% 78.49% 23.49% 2.72% 28.34% 2.93 2.50 3.07 10.00% 10.00% 0.00% E 80.00% 
Lee and Koohy (2020) 13 64.96% 75.75% 39.82% 37.09% 34.15% 4.77 3.69 4.86 0.00% 7.69% 0.00% E, N, ORF1a, ORF1b, S2 53.85% 
Akhand et al. (2020) 31 49.46% 71.24% 0.08% 0.00% 3.47% 1.09 1.11 1.02 3.23% 35.48% 0.00% E, M, N, S1 41.94% 
Singh et al. (2020a) 7 53.91% 66.59% 1.38% 0.00% 19.87% 1.34 1.30 1.53 0.00% 28.57% 0.00% E, M, N, S1, S2 71.43% 
Bhattacharya et al. (2020) 13 44.56% 61.09% 0.00% 0.00% 5.67% 0.79 0.69 0.73 23.08% 46.15% 7.69% S1, S2 23.08% 
Ahmed et al. (2020) 16 45.25% 52.30% 35.61% 4.15% 15.57% 2.56 2.18 2.73 12.50% 25.00% 0.00% N, S2 100.00% 
Saha and Prasad (2020) 5 29.90% 41.77% 0.00% 0.00% 8.86% 0.56 0.36 0.41 0.00% 20.00% 0.00% S1 20.00% 
Gupta et al. (2020) 7 30.23% 38.91% 21.08% 1.41% 23.92% 1.32 0.55 3.15 0.00% 42.86% 0.00% S1, S2 14.29% 
Khan et al. (2020) 3 27.14% 34.98% 0.00% 0.00% 17.33% 0.76 0.56 0.24 0.00% 66.67% 0.00% S1, S2 0.00% 
Mitra et al. (2020) 9 13.97% 23.86% 0.00% 0.00% 2.83% 0.15 0.08 0.54 22.22% 11.11% 0.00% S1, S2 11.11% 
MHC Class II Peptide Vaccine Evaluation 
OptiVax-Unlinked 19 91.67% 99.67% 95.94% 83.30% 64.45% 14.37 12.71 9.66 0.00% 0.00% 0.00% M, ORF1a, ORF1b, S2 52.63% 
OptiVax-Robust 19 90.76% 99.67% 97.21% 88.48% 76.04% 16.64 15.71 11.00 0.00% 0.00% 0.00% M, ORF1a, ORF1b, S1, S2 42.11% 
OptiVax Augmented Non-
redundant S-protein 

102 + 26 91.65% 99.67% 98.73% 97.27% 26.81% 43.79 36.06 23.12 0.00% 0.00% 0.00% M, ORF1a, ORF1b, S1, S2 29.69% 

Ramaiah and Arumugaswami 
(2020) 

134 87.28% 98.88% 90.20% 83.97% 25.18% 45.04 38.25 17.93 20.15% 44.78% 0.00% E, M, N, S1, S2 30.60% 

S-protein 16315 89.80% 98.76% 95.99% 95.73% 2.22% 492.82 385.60 208.34 30.01% 57.50% 1.43% S1, S2 16.06% 
OptiVax-Robust – S/M/N only 22 86.34% 98.57% 85.37% 62.49% 42.51% 11.31 9.69 7.05 0.00% 0.00% 0.00% M, N, S1, S2 36.36% 
Non-redundant S-protein 102 84.91% 98.56% 82.72% 77.19% 16.61% 23.54 17.04 10.23 0.00% 0.00% 0.00% S1, S2 28.43% 
Non-redundant S1-subunit 53 77.14% 95.81% 63.43% 41.82% 16.33% 13.07 8.74 4.16 0.00% 0.00% 0.00% S1 3.77% 
Random subset of binders 19 72.41% 93.61% 58.67% 32.40% 31.59% 7.72 6.49 3.79 0.00% 63.79% 0.00% N/A 23.55% 
Fast et al. (2020) 13 67.29% 86.99% 15.24% 3.69% 19.69% 3.65 2.26 1.77 30.77% 38.46% 0.00% E, M, N, ORF1a, S1, S2 0.00% 
Banerjee et al. (2020) 9 56.73% 83.51% 12.49% 0.66% 26.65% 3.16 2.35 1.68 22.22% 44.44% 0.00% S1, S2 55.56% 
Tahir ul Qamar et al. (2020) 11 39.44% 72.75% 0.27% 0.00% 11.62% 1.84 1.46 0.53 0.00% 72.73% 0.00% E, M, N, ORF10, ORF6, 

ORF7a, ORF8 
36.36% 

Poran et al. (2020) 10 42.30% 69.37% 0.00% 0.00% 9.83% 1.47 0.91 0.57 20.00% 90.00% 0.00% ORF1a, ORF1b, ORF3a, S2 20.00% 
Akhand et al. (2020) 31 43.90% 60.45% 9.22% 1.01% 6.08% 2.53 2.54 0.59 3.23% 48.39% 0.00% E, M, N, S1 29.03% 
Singh et al. (2020a) 7 41.48% 56.29% 0.96% 0.00% 14.02% 1.44 1.11 0.39 0.00% 28.57% 0.00% E, M, N, S1, S2 71.43% 
Ahmed et al. (2020) 5 27.69% 54.96% 0.00% 0.00% 13.08% 0.74 0.72 0.51 0.00% 20.00% 0.00% N, S2 100.00% 
Mitra et al. (2020) 5 25.46% 47.92% 0.04% 0.00% 13.14% 0.90 0.58 0.49 60.00% 20.00% 0.00% S1, S2 0.00% 
Vashi et al. (2020) 20 20.78% 35.12% 0.04% 0.00% 3.36% 0.96 0.62 0.44 15.00% 35.00% 5.00% S1, S2 0.00% 
Abdelmageed et al. (2020) 10 19.15% 28.40% 0.96% 0.00% 4.79% 0.92 0.27 0.24 60.00% 70.00% 0.00% E 30.00% 
Baruah and Bose (2020) 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.00 0.00 66.67% 100.00% 0.00% S1 0.00% 
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Chapter 5

Pan-variant COVID-19 Vaccine

Challenge Study

In this chapter, we evaluate a vaccine designed using the OptiVax framework (Chap-

ter 4) in an animal challenge study. We adopt a humanized HLA-A*02:01 transgenic

mouse model and immunize mice with a T cell vaccine (“MIT-T-COVID”) contain-

ing the HLA-A*02:01 subset of our human population vaccine design and additional

epitopes we predict to be presented by the mouse MHC class II allele H-2-IAb. Our

results highlight the importance of the 𝑛-times coverage strategy and demonstrate

the role of CD8+ and CD4+ T cells in mediating viral clearance following challenge

with the SARS-CoV-2 Beta variant.

Current strategies for COVID-19 vaccine design utilize one or more SARS-CoV-2

Spike protein subunits to primarily activate the humoral arm of the adaptive immune

response to produce neutralizing antibodies to the Spike receptor binding domain

(RBD) (Walsh et al., 2020; Baden et al., 2021). Vaccination to produce neutralizing

antibodies is a natural objective, as neutralizing antibodies present an effective barrier

to the viral infection of permissive cells by binding to the RBD and thus blocking cellu-

lar entry via the ACE2 receptor. However, the strategy of focusing on Spike as the sole

vaccine target has proven problematic as Spike rapidly evolves to produce structural

variants that evade antibody-based acquired immunity from vaccination or infection

with previous viral variants (Tregoning et al., 2021; Willett et al., 2022). Compared
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to the original Wuhan variant, novel viral variants are arising that are more conta-

gious (Zhang et al., 2021), and infectious to a broader range of host species (Shuai

et al., 2021). Thus, vaccine designers are pursuing a stream of novel Spike variant

vaccines. Multivalent Spike vaccines and bivalent booster vaccines provide protec-

tion against multiple known variants of concern (VOCs) of SARS-CoV-2 but are not

necessarily protective against unknown future variants (Martinez et al., 2021). Mo-

saic RBD nanoparticles that display disparate SARS-CoV RBDs have been found to

produce effective neutralizing antibodies against both SARS-CoV-1 and SARS-CoV-

2 (Cohen et al., 2022), but the robustness of mosaic RBD protection against possible

future Spike mutations depends upon conserved Spike structural epitopes.

The vaccine approach we present depends upon conserved T cell epitopes drawn

from the entire viral proteome for protection against future variants. Since T cell

epitopes can originate from any part of the viral proteome, they can be drawn from

portions of the proteome that are evolutionarily stable and immunogenic. The predi-

cation of epitope stability can be accomplished by historical analysis of thousands of

viral variants (Section 4.1.3), structural analysis (Nathan et al., 2021), or the func-

tional analysis of mutations lethal to the virus. We have used a set of highly stable

epitope candidates to design a T cell vaccine that covers a broad range human MHC

class I and class II haplotypes. Our T cell vaccine design proceeds by vaccine epitope

selection that optimizes population coverage where every vaccinated individual is pre-

dicted to experience on average multiple immunogenic peptide-HLA hits (Chapter 4).

Code for the experiments in this chapter is available at: https://github.com/

gifford-lab/MIT-T-COVID-vaccine. Original data collected during this study have

been deposited to Mendeley Data: http://dx.doi.org/10.17632/p4c823jzxz.1.
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5.1 Methods

5.1.1 𝑛-times Coverage Vaccine Design

The MIT-T-COVID vaccine realizes an 𝑛-times coverage objective by encoding mul-

tiple epitopes for each target MHC class I and II diplotype to (1) expand diverse sets

of T cell clonotypes to fight viral infection, (2) accommodate variations in epitope im-

munogenicity between vaccinees, and (3) reduce the chances that viral evolution will

lead to immune system escape (Chapter 4). The MIT-T-COVID vaccine consists of

eight MHC class I epitopes and three MHC class II epitopes (Figure 5-1A, Table 5.1,

Appendix C.1). The MHC class I and II vaccine peptides are encoded into a single

mRNA construct for delivery with the same Acuitas LNP delivery platform that is

used by the Pfizer-BioNTech Comirnaty® vaccine (Figure 5-1A). The eight MIT-T-

COVID MHC class I epitopes are the HLA-A*02:01 subset of the MHC class I de novo

MIRA only vaccine design of Liu et al. (2021) that used combinatorial optimization

to select vaccine epitopes to maximize 𝑛-times population coverage over HLA hap-

lotype frequencies (Chapter 4). For inclusion in the assembled construct, the eight

MHC class I vaccine peptides were randomly shuffled, and alternate peptides were

flanked with five additional amino acids at each terminus as originally flanked in the

SARS-CoV-2 proteome. Selected epitopes were flanked to test if flanking enhanced

or impaired epitope presentation. The three MHC class II epitopes were selected by

considering all SARS-CoV-2 proteome windows of length 13–25 and selecting con-

served peptides that are predicted to be displayed by the mouse MHC class II allele

H-2-IAb (details in Appendix C.1). The mRNA construct encodes a secretion signal

sequence at the N-terminus and an MHC class I trafficking signal (MITD) at the

C-terminus (Kreiter et al., 2008). Peptide sequences are joined by non-immunogenic

glycine/serine linkers (Sahin et al., 2017). The construct also included control pep-

tides for HLA-A*02:01 and H-2-IAb (CMV pp65: NLVPMVATV for HLA-A*02:01

and Human CD74: KPVSKMRMATPLLMQAL for H-2-IAb) (Vita et al., 2019).
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A

B

Figure 5-1: (A) Assembled vaccine construct containing a secretion signal sequence
(red), peptides (bold) joined by non-immunogenic glycine/serine linkers, and an MHC
class I trafficking signal (blue). (B) Study design.

5.1.2 SARS-CoV-2 Beta Variant Challenge Study

We immunized with three test articles: a negative control injection (PBS), the Pfizer-

BioNTech Comirnaty® vaccine (wastage that was refrozen and then thawed), and

the MIT-T-COVID vaccine (Figure 5-1B). We immunized HLA-A*02:01 human trans-

genic mice with these three vaccines, immunizing 11 age-matched male mice with each

vaccine. Comirnaty® or MIT-T-COVID immunizations contained of 10 µg of mRNA.

The mice were immunized at Day 0 and boosted at Day 21 (details in Appendix C.1).

At Day 35 three mice from each group were sacrificed for immunogenicity studies, and

at Day 37 the remaining eight mice were challenged intranasally (I.N.) with 5 × 104

TCID50 of the SARS-CoV-2 B.1.351 variant. Challenged mice were subjected to daily

monitoring for the onset of morbidity (i.e., weight changes and other signs of illness)

and any mortality. At Day 39 (2 days post infection) three mice were taken from each

group and sacrificed to determine viral burdens and to perform lung histopathology.

At Day 44 (7 days post infection) the remaining mice were sacrificed to determine
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viral burdens and to perform lung histopathology.

Additional method details are presented in Appendix C.
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Table 5.1: MIT-T-COVID vaccine peptides, query peptides (vaccine immuno-
genicity), peptide origin, and appearance probability in HLA-A*02:01 convalescent
COVID-19 patients in Snyder et al. (2020) (MIRA column) and Kared et al. (2021)
(MCMT). Selected peptides were tested by other studies for their immunogenicity in
convalescent COVID-19 patients whose HLA type included HLA-A*02:01. The study
by Snyder et al. (2020) included 80 HLA-A*02:01 convalescent COVID-19 patients
and tested peptides individually or in small pools with the Multiplex Identification
of T-cell Receptor Antigen Specificity (MIRA) assay. Query peptides were first fil-
tered to only consider those with predicted HLA-A*02:01 binding affinity less than or
equal to 25 nM. The MIRA fraction is the number of individuals positive for a pool
containing a query peptide divided by 80. The Kared et al. (2021) study evaluated
16 HLA-A*02:01 convalescent COVID-19 patients by mass cytometry–based multi-
plexed tetramer (MCMT) staining. The MCMT fraction is the number of individuals
positive for a query peptide divided by 16.

MHC

Class

Vaccine Peptide Query Peptide Query ID Organism Gene Vaccine

Peptide

Start–End

Query

Peptide

Start–End

MIRA MCMT

1 YLYALVYFL YLYALVYFL CD8-1 SARS-CoV-2 ORF3a 107–115 107–115 0.86 0.19

1 RSKNPLLYDANYFLCWHTN LLYDANYFL CD8-2 SARS-CoV-2 ORF3a 134–152 139–147 0.7 0.44

1 FVDGVPFVV FVDGVPFVV CD8-3 SARS-CoV-2 ORF1ab 4726–4734 4726–4734 0.68

1 AYYVGYLQPRTFLLKYNEN YLQPRTFLL CD8-4 SARS-CoV-2 S 264–282 269–277 0.66 0.62

1 FLNRFTTTL FLNRFTTTL CD8-5 SARS-CoV-2 ORF1ab 3482–3490 3482–3490 0.53

1 RLTKYTMADLVYALRHFDE TMADLVYAL CD8-6 SARS-CoV-2 ORF1ab 4510–4528 4515–4523 0.44

1 SIIAYTMSL SIIAYTMSL CD8-7 SARS-CoV-2 S 691–699 691–699 0.59

1 LLLFVTVYSHLLLVAAGLE TVYSHLLLV CD8-8 SARS-CoV-2 ORF3a 84–102 89–97 0.61

1 ATSRTLSYY ATSRTLSYY CD8(−)-1 SARS-CoV-2 M 171–179 171–179

1 KTFPPTEPK KTFPPTEPK CD8(−)-2 SARS-CoV-2 N 361–369 361–369

1 NLVPMVATV NLVPMVATV A0201 (+) CMV pp65 495–503 495–503

2 KSILSPLYAFASEAARVVR

SIFSRTL

PLYAFASEAARVVRSI CD4-1 SARS-CoV-2 ORF1ab 527–552 532–547

2 VDYGARFYFYTSKTTVASL

INTLNDL

RFYFYTSKTTVASLIN CD4-2 SARS-Cov-2 ORF1ab 1416–1441 1421–1436

2 EEIAIILASFSASTSAFVE

TVKGLDY

ILASFSASTSAFVETV CD4-3

(Female co-

hort only)

SARS-CoV-2 ORF1ab 471–496 476–491

2 KPVSKMRMATPLLMQAL KPVSKMRMATPLLMQAL IAb (+) Homo sapiens CD74 102–118 102–118



5.2 Results

5.2.1 MIT-T-COVID vaccine expands CD8+ and CD4+ SARS-

CoV-2 specific T cells

Immunization with MIT-T-COVID vaccine expanded CD8+ and CD4+ T cells that

expressed interferon gamma (IFN-𝛾) or tumor necrosis factor alpha (TNF-𝛼) when

queried by vaccine epitopes (Figures 5-2A–B). The observed variability of immuno-

genicity of MIT-T-COVID epitopes in convalescent COVID patients (Table 5.1) and

in the present study supports our usage of multiple epitopes per MHC diplotype for

𝑛-times coverage. Immunization by Comirnaty® produced no significant T cell re-

sponses to vaccine epitopes (including a Spike epitope) when compared to PBS. CD8+

T cells that are activated by the CD8-4 epitope (YLQPRTFLL, Spike 269–277) are

expanded in animals immunized with the MIT-T-COVID vaccine (IFN-𝛾 1.32% ±

0.53% of CD8+ T cells, 𝑃 = 0.0087 vs. PBS; TNF-𝛼 0.38% ± 0.09% of CD8+ T cells,

𝑃 = 0.0149 vs. PBS; Figure 5-2A). Similarly, the CD8-8 epitope (TVYSHLLLV,

ORF3a 89–97) activated CD8+ T cells that are expanded by the MIT-T-COVID vac-

cine (IFN-𝛾 0.60% ± 0.02% of CD8+ T cells, 𝑃 = 0.001 vs. PBS; TNF-𝛼 0.25%

± 0.12% of CD8+ T cells, 𝑃 = 0.015 vs. PBS) and the CD4-2 epitope (RFYFYT-

SKTTVASLIN, ORF1ab 1421–1436) activated CD4+ T cells are expanded by the

MIT-T-COVID vaccine (TNF-𝛼 0.078% ± 0.027%, 𝑃 = 0.058 vs. PBS, 𝑃 = 0.010

vs. Comirnaty®, IFN-𝛾 not significant, Figure 5-2B). We also measured interleukin-2

(IL-2) expression and found the MIT-T-COVID vaccine significantly expanded CD4+

T cells activated by the SARS-CoV-2 CD4+ pool (𝑃 = 0.0015 vs. PBS, 𝑃 = 0.0013

vs. Comirnaty®, Figure C-11). The lack of HLA-A*02:01 transgenic animal response

to certain CD8+ epitopes that were immunogenic in patients (Table 5.1) is consistent

with past studies of transgenic mouse models (Kotturi et al., 2009), the variability

of immunogenicity of epitopes between in-bred mice (Croft et al., 2019), and the

potential of immunodominance of the immunogenic epitopes.

We immunized an additional cohort of female HLA-A*02:01 transgenic mice (Ap-
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pendix C.1), and results are shown in Figure C-8. We also immunized female mice

with synthetic peptides mixed with poly IC adjuvant and found no significant SARS-

CoV-2 specific T cell responses compared to PBS controls (Figures C-9A–B, Ap-

pendix C.1). We found a significant increase in the number of effector and memory

CD8+ CD44+ T cells in MIT-T-COVID and Comirnaty®-immunized mice, compared

to those immunized with Peptide/poly IC or PBS (Figure C-9C).

T cells that lack IFN-𝛾 responses can produce effective immune mediators (Naki-

boneka et al., 2019). We found that the fraction of CD4+ T cells that are Foxp3+,

designated regulatory T cells (Treg), were not expanded in Comirnaty® or MIT-T-

COVID-immunized animals, suggesting that Treg cells that could induce tolerance

were not expanded by immunization (Figure 5-2C).

5.2.2 MIT-T-COVID attenuates morbidity and prevents mor-

tality

Upon viral challenge, both PBS and MIT-T-COVID-immunized animals exhibited

a more than 10% weight loss by Day 3 (PBS mean weight reduction 11.386% ±

1.688%, MIT mean weight reduction 10.851% ± 0.641%), with the MIT-T-COVID-

immunized animals beginning to recover from Day 4 onward (Figure 5-3A). The

weight phenotype was mirrored by the clinical score phenotype, with PBS animals

not recovering and MIT-T-COVID-immunized animals improving from Day 5 onward

(Figure 5-3B, details in Appendix C.1). The Comirnaty® vaccine protected animals

from significant weight loss and poor clinical scores.

When the yields of infectious progeny virus were measured at 2 days post infection

(dpi), we noted that mice immunized with MIT-T-COVID vaccine had 6.706 ± 0.076

log10 TCID50/g, compared to 7.258 ± 0.367 log10 TCID50/g in the PBS control,

representing a moderate 3.6-fold reduction in viral replication (𝑃 = 0.046; Figure 5-

3D). In contrast, mice immunized with Comirnaty® had infectious viral titers that

were below the detection limits at 2 dpi. Infectious viral titer was not significant for

all test articles at 7 dpi (Figure 5-3D). Lung viral mRNA levels measured by qPCR
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followed the same trends as infectious virus progeny in the lungs, with Comirnaty®

showing no significant levels. Despite a reduced content of total and sub-genomic

viral RNAs associated with MIT-T-COVID vaccine samples as assessed by qPCR,

the reduction was insignificant, compared to those of PBS control (Figure C-2).

All the Comirnaty® and MIT-T-COVID-immunized mice survived to 7 dpi, when

the study was terminated, with the difference in clinical scores of these two vaccine

groups becoming insignificant (Figure 5-3C). In contrast, four of five PBS control mice

had been euthanized because of weight loss > 20%. The survival of all five animals

immunized with Comirnaty® and the MIT-T-COVID, respectively, was significant,

compared to that of PBS-immunized control (𝑃 = 0.0053, logrank test).

We noted that mice immunized with the Comirnaty® vaccine elicited substantial

specific antibodies capable of neutralizing Beta and WA-1 variants of SARS-CoV-2

with 100% neutralizing titers (NT100) of 896 ± 350 and fold 2048 ± 1887, respectively

(Figure 5-3E). The higher neutralizing titer against WA-1 is expected as it is the strain

matched to Comirnaty®. As expected for a peptide-based vaccine, no neutralizing

titer could be readily detected in the serum from mice immunized with MIT-T-COVID

vaccine or PBS. Total specific IgG/IgM antibodies were also measured by ELISA

against a cell lysate prepared from WA-1-infected Vero E6 cells. Comirnaty® has

a log10 IgG/IgM titer of 4.915 ± 0.213, while the log10 titer produced by PBS was

2.452 ± 0.321 and the MIT-T-COVID vaccine produced a log10 titer of 2.266 ± 0.291

(Figure 5-3F). The low but detectable titers in PBS and MIT-T-COVID vaccine-

immunized mice may represent an early IgM response to viral infection.

5.2.3 MIT-T-COVID increases T cell infiltration of infected

lungs

All lung samples were subjected to immunohistochemistry (IHC) staining for the

SARS-CoV-2 spike protein (Figure C-3). We found specimens immunized with PBS

exhibited extensive staining indicative of viral infection throughout the epithelium of

both the bronchioles and the alveolar sacs, with the viral infection appearing more in-
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tense at 2 dpi. Although viral infection is significantly reduced by 7 dpi, viral antigen

was still readily detectable throughout alveoli. In comparison, specimens immunized

with the MIT-T-COVID vaccine exhibited similarly extensive viral infection at 2 dpi

throughout the bronchiolar and alveolar epithelia, albeit somewhat reduced in inten-

sity. However, by 7 dpi, viral infection was significantly reduced in both extent and

intensity, with brown puncta being detected only in a few alveoli scattered throughout

the tissue. Contrasted with both PBS and MIT-T-COVID-immunized specimens, the

Comirnaty®-immunized specimens exhibited significantly reduced viral infections at

both 2 and 7 dpi. Apart from a single area at 7 dpi (see Figure C-4), viral antigen

was undetected at both timepoints in Comirnaty®-immunized animals.

Paraffin-embedded and H&E-stained lung specimens of differentially immunized

mice, harvested at 2 and 7 dpi, were subjected to histopathological examination

(Figure C-5). We found that at 7 dpi mice immunized with MIT-T-COVID vaccine

exhibited extensive lymphocytic infiltrations in perivascular regions and spaces from

around bronchi, bronchioles, to alveoli. Fewer infiltrations were found in mice immu-

nized with either Comirnaty® or PBS. Additionally, these infiltrations only localized

at perivascular regions around bronchi and large bronchioles. Despite the less in-

tensive and localized inflammatory infiltrates, we also noted widespread congestion,

hemorrhage, and few foci of thromboembolism were exclusively observed within the

lungs of Comirnaty®-immunized mice but not others (Figure C-5). We also noted

the lung histopathology was milder but the same pattern at 2 dpi than those of 7 dpi

(data not shown).

Lung specimens were subjected to IHC staining for CD8+ and CD4+ cells at both

2 and 7 dpi (Figures 5-4, C-6, and C-7). At 2 dpi, we found a significant increase in

CD8+ T cells infiltrating the lungs in mice immunized with MIT-T-COVID (12.6% ±

5.91% of all nucleated cells were CD8+) or Comirnaty® (12.4% ± 2.35%) compared

to mice immunized with PBS (PBS mean 4.48% ± 1.99%; 𝑃 = 0.044 vs. MIT-T-

COVID, 𝑃 = 0.050 vs. Comirnaty®; Figure 5-4A). At 7 dpi, we found a significant

increase in CD8+ T cells infiltrating the lungs in mice immunized with MIT-T-COVID

(24.0% ± 5.21% of all nucleated cells were CD8+) compared to mice immunized with
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Comirnaty® (Comirnaty® mean 4.35% ± 2.20%, 𝑃 = 0.001) or PBS (PBS mean

7.32% ± 4.88%, 𝑃 = 0.001; Figure 5-4A). We observed a significant increase in CD8+

T cells infiltrating the lungs in mice immunized with MIT-T-COVID between 2 and

7 dpi (𝑃 = 0.0039), and a significant decrease in CD8+ T cells infiltrating the lungs

in mice immunized with Comirnaty® between 2 and 7 dpi (𝑃 = 0.044; Figure 5-

4A). At 7 dpi, we also found a significant increase in CD4+ T cells infiltrating the

lungs in mice immunized with MIT-T-COVID (7.09% ± 4.05%) compared to mice

immunized with PBS (PBS mean 0.41% ± 0.39%; 𝑃 = 0.0062; Figure 5-4B). In the

unchallenged cohort of female mice, we found an increase in CD8+ T cells infiltrating

the lungs in mice immunized with MIT-T-COVID (1.12% ± 0.59% of all nucleated

cells were CD8+) or Comirnaty® (0.87% ± 0.56%) compared to mice immunized with

PBS (0.09% ± 0.10%; 𝑃 = 0.001 vs. MIT-T-COVID, 𝑃 = 0.003 vs. Comirnaty®;

Figure C-10).

129



130

**

**
**

*

*

*
*

*
*

*
*

**
*

**

**
**

A

B

C

Figure 5-2: Vaccine immunogenicity. (A) CD8+ T cell responses, (B) CD4+ T cell
responses, (C) Foxp3+ regulatory T cells (Tregs) as a percentage of all CD4+ cells.
The CD8 pool includes MHC class I peptides CD8-1–CD8-8 (Table 5.1). The CD4
pool includes MHC class II peptides CD4-1 and CD4-2. The Pep pool includes all
query peptides in Table 5.1 except CD4-3. Error bars indicate the standard deviation
around each mean. 𝑃 values were computed by one-way ANOVA with Tukey’s test.
*𝑃 < 0.05, **𝑃 < 0.01. See also Figure C-11.
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Figure 5-3: Study phenotypic data, lung viral titer, and vaccine antibody responses.
(A) Weights vs. days post infection, (B) clinical scores vs. days post infection, (C)
Kaplan-Meier mortality curve (mortality at 80% weight loss), (D) lung viral titer,
(E) maximum serum dilution that provided 100% neutralization of viral infection in
vitro, (F) IgG/IgM titer measured by ELISA against cell lysate infected with WA-1
SARS-CoV-2. Dotted lines in (D)–(F) indicate assay limits of detection. Error bars
indicate the standard deviation around each mean. 𝑃 values were computed by one-
way ANOVA with Tukey’s test except (C) 𝑃 values were computed using the logrank
test. *𝑃 < 0.05 and **𝑃 < 0.01.
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Figure 5-4: Lung immunohistochemistry for CD8+ and CD4+ cells. Counts of (A)
CD8+ and (B) CD4+ T cells expressed as a percentage of all nucleated cells visible
in each field from lung tissue. Example CD8+ stain images at 7 dpi for (C) MIT-
T-COVID, (D) Pfizer/BNT, and (E) PBS-immunized animals. Lung samples were
subjected to IHC staining for CD8 (brown) with hematoxylin counterstain (blue).
Images were taken at 10x magnification. Red outlines in (C)–(E) indicate CD8+ cells
identified and counted by CellProfiler software (Appendix C.1). Error bars indicate
the standard deviation around each mean. 𝑃 values were computed by two-way
ANOVA with Tukey’s test. *𝑃 < 0.05 and **𝑃 < 0.01. See also Figures C-6 and
C-7.



5.3 Discussion

Here we find that a T cell vaccine (“MIT-T-COVID”) that contains the human HLA-

A*02:01 displayed subset of our COVID-19 T cell vaccine and additional mouse spe-

cific CD4+ epitopes provides effective prophylaxis against the onset of SARS-CoV-2-

induced morbidity and mortality caused by SARS-CoV-2 Beta infection in transgenic

mice carrying HLA-A*02:01. The vaccine consists of 11 short T cell epitopes that are

unchanged over 22 presently known SARS-CoV-2 variants of concern (VOCs) (Ap-

pendix C.1). We further demonstrate the MIT-T-COVID vaccine causes significant

infiltration of CD8+ and CD4+ T lymphocytes in the lungs post infection. We chose

the Beta variant for our challenge study as it is more pathogenic than recent vari-

ants (Halfmann et al., 2022) and its host range includes wild type mice (Shuai et al.,

2021) since murine infection with SARS-CoV-2 variants that require ectopic human

ACE2 expression results in fatal encephalitis (Kumari et al., 2021) which is not ideal

for evaluating the efficacy of a T cell vaccine. We selected a highly pathogenic vari-

ant that models human disease to evaluate the effectiveness of our T cell vaccine

in anticipation of possible future SARS-CoV-2 variants that result in severe disease.

MIT-T-COVID vaccine epitopes delivered as peptides with a Poly(I:C) adjuvant failed

to induce significant immune responses, supporting the value of mRNA-LNP delivery

of the epitopes.

Existing Spike vaccines produce a T cell response that is thought to be important

for vaccine effectiveness and durability (Moss, 2022). However, the T cell response

induced by a Spike vaccine may be less effective in promoting durable immune re-

sponses than the T cell response induced by a pure T cell vaccine. Spike based T

cell responses may contain epitopes that are subject to evolutionary change (de Silva

et al., 2021; Redd et al., 2021) that dominate stable epitopes, or Spike epitopes may

not be as well presented or immunogenic as epitopes drawn from a more diverse set of

SARS-CoV-2 proteins. Thus, T cell augmentation strategies for Spike vaccines (Liu

et al., 2021) and pure T cell vaccines will require further exploration to unravel the hi-

erarchy of immune responses to their components, and how to structure a vaccine for
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optimal prophylaxis. In patients with impaired antibody responses, T cell vaccines

would eliminate the burden of non-immunogenic B cell epitopes (Benjamini et al.,

2022) and provide immune protection, at least to a certain extent, against infection.

Multiple designs for T cell vaccines for SARS-CoV-2 have been proposed (Liu

et al., 2021; Nathan et al., 2021; Heitmann et al., 2022; Pardieck et al., 2022) and are

in clinical trials (NCT05113862, NCT0488536, NCT05069623, NCT04954469), but

identifying the mechanisms behind the efficacy of pure T cell vaccines remains an

open question. Substantial literature suggests that T cell responses are integral to

the adaptive immunity to COVID-19 (Moss, 2022; Geers et al., 2021). For example, a

study that ablated the B cell compartment of the immune system in Spike immunized

mice found that CD8+ T cells alone can control viral infection (Israelow et al., 2021).

Pardieck et al. (2022) found that vaccination with a single mouse restricted CD8+ T

cell epitope conferred protection against mortality from the Leiden-0008/2020 SARS-

CoV-2 variant (B.1) in K18-hACE2 transgenic mice, but unlike our study, required

three doses for efficacy, did not engage a CD4+ T cell response, did not identify

significant T cell infiltration of the lungs, challenged with a lower viral dose (5000 PFU

vs. our 5 × 104 TCID50), and used a variant of SARS-CoV-2 that is not pathogenic

in wild type mice (Shuai et al., 2021). In addition to specific antibody responses,

COVID-19 vaccinees and convalescent patients possess SARS-CoV-2 specific CD8+

and CD4+ T cells, suggesting the contribution of the T cell compartment to the

adaptive immunity to COVID-19 (Sekine et al., 2020), and clinical findings have

revealed vaccine-induced T cell responses in B cell-deficient patients (Shree, 2022). It

has also been reported that vaccination by WA (Wuhan) Spike in a mouse model failed

to produce antibodies fully capable of neutralizing the SA (Beta) variant of SARS-

CoV-2, yet immunized mice were protected against Beta strain challenge (Kingstad-

Bakke et al., 2022). In addition, vaccination with T cell epitope-rich Nucleocapsid

protein produced specific T cell responses thought to be causally associated with

viral control (Matchett et al., 2021). Intranasal vaccination of mice with SARS-CoV-

1 Nucleocapsid followed by challenge with 104 Plaque-forming units of SARS-CoV-1

prevented mortality in 75% of the mice (Zhao et al., 2016). Combined Spike and
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Nucleocapsid vaccination improved viral control compared to Spike vaccination alone

in preclinical models, while CD8+ T cell depletion demonstrated the role of CD8+ T

cells in viral control and protection from weight loss (Hajnik et al., 2022).

The marginal IgG/IgM antibody titers that were not neutralizing elicited by mice

immunized with the MIT-T-COVID vaccine indicates that the protective mechanism

of the vaccine was likely based on a T cell response to the virus. The reduction in

viral titer on day 2 shows that T cell responses were present early in infection. In

the absence of neutralizing antibodies these responses were sufficient to rescue the

immunized mice from the onset of mortality.

We expect that a T cell vaccine would provide prophylaxis, at least to certain

extent, like what we have described against future SARS-CoV variants and strains

that conserve the vaccine’s epitopes. We chose Beta (B.1.351) for our challenge

study as it has a severe phenotype in a wild-type mouse background (Shuai et al.,

2021). Transgenic human ACE2 (hACE2) mice exhibit encephalitis post COVID

infection that does not represent human pathology (Kumari et al., 2021) and thus

might not be an ideal model for assessing the efficacy of T cell-based vaccines. Instead,

we chose to evaluate the HLA-A*02:01 component of our vaccine design in a HLA-

A*02:01 transgenic animal model given the predominance of HLA-A02 in the human

population (Ellis et al., 2000).

The MIT-T-COVID vaccine induced a response where circulating T cells migrated

rapidly and efficiently into the lung upon viral challenge, as evidenced by more intense

and widespread lymphocytic infiltrations than other groups. Further, the degree of

CD8+ T cell infiltration of the lungs significantly increased in mice immunized with

the MIT-T-COVID vaccine between days 2 and 7 post infection and compared to

that elicited by unimmunized and challenged cohorts, thereby thwarting the concern

over the involvement of resident T cells of the lung.

Another finding is that widespread congestion, hemorrhage, and few foci of throm-

boembolism were exclusively observed within the lungs of Comirnaty®-immunized

mice. Although this finding is unrelated to the MIT-T-COVID vaccine, it suggests

the possibility of immunization-induced side-effects or immunopathology of SARS-
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CoV-2 vaccination and is consistent with previous reports in humans (Pavord et al.,

2021; de Oliveira et al., 2022). The exact mechanism of pulmonary embolism in this

case remains currently unknown and should be explored.

Cytotoxic T cells (CD8+ T cells) can kill virally infected cells, and thus T cell

vaccines might promote the long-term immunity to more effectively control Long

COVID. Post-acute sequelae of COVID-19 (PASC, “Long COVID”) causes persistent

symptoms in ∼10% of people past twelve weeks of COVID infection (Rajan et al.,

2021). Long COVID has been associated with the continued presence of Spike in

the blood, suggesting that a tissue based viral reservoir remains in Long COVID

patients (Swank et al., 2023).

Our results suggest that if one goal of a vaccine is protection against novel viral

strains it may be appropriate to develop vaccines that permit symptomatic infection

but protect against severe illness. Current regulatory criteria for licensing vaccines

are solely based upon the prevention of symptomatic illness for vaccine matched viral

strains. Further research on T cell vaccines may reveal novel vaccine designs that

prevent severe illness while providing protection against viral variants as an additional

tool in the fight against global pandemics.
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Chapter 6

Discussion

The application of machine learning (ML) to biological problems often involves (1)

training accurate models on data from biological experiments, where it is important

that the models learn the underlying biological mechanisms to generalize to unseen

data, and (2) the application of these models to a downstream task, such as anti-

body design or vaccine design. In this thesis, we introduce frameworks for ML model

interpretability and for the computational design of peptide vaccines. Our model

interpretability framework (SIS) can be used to evaluate black-box ML models, in-

cluding those trained on biological data. Our vaccine design framework (OptiVax)

adopts a ML model that predicts peptide-HLA binding and introduces a combinato-

rial optimization problem for the downstream task of peptide vaccine evaluation and

design. Both framework designs are flexible, faithful to their respective underlying

systems, and conceptually straightforward to facilitate their adoption.

In the Sufficient Input Subsets (SIS) interpretability framework (Chapter 2), we

interpret black-box model decisions through minimal input patterns that alone pro-

vide sufficient evidence to justify a particular decision. We identify sufficient input

subsets through a straightforward backward selection strategy applied locally to in-

dividual inputs. Intuitively, this procedure iteratively masks the least informative

features whose removal causes the least loss of predicted confidence, preserving the

most important features and preserving combinations of features present in the input

that provide support for the prediction in combination (whereas the features may be
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uninformative when presented independently). Interestingly, we also found that the

confidence loss over the backward selection path may be non-monotonic, and thus to

identify minimal sufficient input subsets, we remove and rank all features during back-

ward selection and then build a minimal SIS in the reverse order. Our SIS framework

can be broadly applied to a wide range of model classes, including set-valued inputs,

and is faithful to the underlying models without requiring differentiability, additional

training steps, or an auxiliary explanation model. Further, our framework design

permits the flexible choice of decision confidence threshold and input mask, and SIS

can be extended to accommodate sampling-based imputation methods (Rubin, 1976).

During evaluation of interpretation methods, it is important to avoid biasing re-

sults toward human priors of the ideal explanations or assume that the model is

making decisions using semantically meaningful, rather than spurious, features. In

our evaluation of SIS on natural language that measures alignment of rationales with

human annotations, we first computed a metric that captures whether the human

rationales contain sufficient predictive information on their own, before computing

concordance between the SIS and human rationales. We also showed how the local

explanations on individual decisions can be aggregated over many examples to gain

insight into the model’s global decision-making process and to contrast the behavior

of different models trained on the same task. Given multiple models of compara-

ble accuracy, we found that SIS-clustering can uncover critical operating differences,

such as which model is more susceptible to spurious training data correlations or may

generalize worse to counterfactual inputs that lie outside the data distribution.

Central to our SIS framework is the guarantee that each rationale provides suffi-

cient evidence for confident prediction in absence of the rest of the features. Like Lei

et al. (2016), we posit that rationales should be minimal and sufficient. Intriguingly,

we found that rationales comprising salient features from widely used interpretability

methods often do not contain sufficient support for confident classifications, or must

contain a larger subset of features to meet the sufficiency threshold. Compared to

alternative interpretability methods, we found SIS more effectively identified subsets

of features that are both minimal and sufficient for confident classification. On bio-
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logical data where the ground-truth for the model’s behavior was known, we found

subsets identified by SIS more accurately matched the underlying transcription factor

motifs compared to other methods. Thus, we expect another use of our SIS framework

is for scientific discovery—accurate ML models trained on experimental data can be

interpreted to uncover the underlying principles. We applied SIS to deep neural net-

works that predict antibody-antigen binding enrichment, and SIS provided hypotheses

about antibody CDR-H3 binding signatures that can be explored in future structural

studies (Liu et al., 2020b). We also demonstrated comparing SIS interpretations to

biological motifs in Carter et al. (2020). We used SIS to critique and compare deep

neural networks trained to predict protein function from sequence (Bileschi et al.,

2022), and SIS revealed differences in decision-making by different model classes.

Our SIS framework design also permits the flexible selection of SIS-finding algo-

rithm. While the local backward selection strategy presented in Chapter 2 finds a

SIS solely through black-box model evaluations, one limitation of this approach is

its computational efficiency. Given 𝑝 input features, the algorithm scales as 𝒪(𝑝2).

While our method performed well on the datasets we evaluated in Chapter 2 (up to

approximately 1000 input features), this procedure may be prohibitively expensive

for high-dimensional inputs. To overcome this limitation, we introduced the Batched

Gradient SIS algorithm (Chapter 3) to find SIS on high-dimensional inputs, including

ImageNet images.

We applied SIS to popular image classifiers and discovered overinterpretation, a

novel failure mode of ML models that make confident predictions based upon nonsen-

sical patterns present in benchmark datasets. A model that overinterprets spurious

feature subsets may fail to generalize outside of the benchmark setting. Importantly,

despite their lack of semantically meaningful features, we found these sparse pixel-

subsets are indeed underlying statistical signals that suffice to accurately generalize

from the benchmark training data to the benchmark test data. Thus, our results

suggest that overinterpretation is caused by spurious statistical signals present in

benchmark datasets, including CIFAR-10 and ImageNet. We found that different

models rationalize their predictions based on different sufficient input subsets, sug-
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gesting optimal image classification rules remain underdetermined by the training

data. Our results suggest that ensembles of networks or regularization through input

dropout can each mitigate overinterpretation and increase a model’s generalizability

to unseen data.

Our overinterpretation results call into question model interpretability methods

whose outputs are encouraged to align with prior human beliefs of proper classifier

operating behavior (Adebayo et al., 2018). Given the existence of non-salient pixel-

subsets that alone suffice for correct classification, a model may solely rely on such

patterns. In this case, an interpretability method that faithfully describes the model

should output these nonsensical rationales, whereas interpretability methods that

bias rationales toward human priors may produce results that mislead users to think

their models behave as intended. The SIS method permitted the discovery of overin-

terpretation by identifying rationales that were faithful to the underlying model yet

nonsensical to humans, demonstrating one way model interpretation can be used to

evaluate ML models prior to deployment. Separately, we applied the SIS methodology

to compare the features informative to pruned neural networks to those informative

to their unpruned counterparts, and interpretation revealed weight-pruned networks

preserve parent features better than filter-pruned networks (Liebenwein et al., 2021).

In Chapter 4, we introduced the EvalVax and OptiVax framework for the com-

putational evaluation and design of peptide vaccines. Our 𝑛-times coverage objective

computes the fraction of the population predicted to be covered by at least 𝑛 peptide-

HLA hits. The presentation of multiple peptides by HLA molecules in a given individ-

ual (1) engages additional T cell clonotypes for a stronger cellular immune response,

(2) permits differences in peptide immunogenicity across individuals to increase the

probability that at least one vaccine peptide will be immunogenic, and (3) reduces

the chance of vaccine escape by pathogenic drift. Thus, we expect vaccines designed

using this framework will elicit a more robust cellular immune response and can confer

pan-variant immunity against mutable pathogens. Our OptiVax framework permits

both de novo vaccine design and augmentation of subunit vaccines to fill population

coverage gaps, as we further explored in Liu et al. (2021). Our framework is focused
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on the design of optimal compact vaccine payloads, and the resulting vaccine sets can

be delivered by any suitable delivery platform, such as mRNA encapsulated in lipid

nanoparticles (LNPs) as used in our COVID-19 challenge study (Chapter 5).

One challenge for the computational design of vaccines is the imperfect predic-

tion of immunogenic epitopes. Ideally, the ML model used by our framework would

predict peptide-HLA immunogenicity, but immunogenicity also depends upon each

individual’s randomized T cell receptor (TCR) repertoire, and thus peptide immuno-

genicity may differ across individuals with the same HLA diplotype. In absence of

these models, we adopt ML models that predict peptide-HLA binding affinity, as

peptide-HLA binding is a prerequisite for peptide-HLA presentation and T cell ac-

tivation, and higher peptide-HLA affinity is correlated with immunogenicity (Sette

et al., 1994). We calibrated these ML models using available SARS-CoV-2 experi-

mental data and chose strict thresholds of predicted affinity to maximize precision,

and we use ensembles to mitigate idiosyncratic errors of individual networks. Our

framework permits the integration of experimental or clinical immunogenicity data

where available in place of ML predictions, as we demonstrate in Liu et al. (2021).

Another challenge addressed by our framework is the combinatorial selection of a

compact set of vaccine peptides from a large set of candidates to maximize population

coverage. We used HLA haplotype frequencies to compute 𝑛-times population cover-

age across three different ancestries self-reporting as Black, White, or Asian, and we

found that our greedy optimization procedure with beam search effectively designed

compact vaccines for SARS-CoV-2. Our framework can be used for the design of vac-

cines targeting a specific haplotype distribution. Our framework design also permits

the flexible choice of optimizer, and the 𝑛-times coverage objective can alternatively

be cast as a probabilistic model (Dai and Gifford, 2023) or an integer linear program

(Liu et al., 2022; Dimitrakakis, 2021).

In Chapter 5, we validated the 𝑛-times coverage framework through an animal

challenge study. We immunized HLA transgenic mice with a T cell vaccine (“MIT-T-

COVID”) containing short peptide epitopes that are conserved over 22 SARS-CoV-2

variants of concern designed using the OptiVax framework. We found our vaccine
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elicited robust T cell responses and consequently protected mice from mortality after

challenge with the SARS-CoV-2 Beta variant compared to a PBS control. Our re-

sults highlight the importance of the 𝑛-times coverage vaccine design objective. The

MIT-T-COVID vaccine contains eight MHC class I epitopes that were all previously

found to activate T cell responses in peripheral blood mononuclear cells (PBMCs)

from convalescent COVID-19 patients with HLA-A*02:01. However, we found that

only two of the eight MHC class I epitopes were immunogenic in HLA-A*02:01 trans-

genic mice. The lack of observed immunogenicity of all epitopes is consistent with

data from Snyder et al. (2020) that show these specific vaccine epitopes were each

only immunogenic in 44–86% of convalescent patient PBMC samples (Table 5.1), re-

flecting the differences in peptide immunogenicity across individuals, as well as prior

studies of HLA transgenic mouse models (Kotturi et al., 2009). For MHC class II, or

vaccine included three SARS-CoV-2 epitopes predicted to be displayed by the endoge-

nous mouse allele H-2-IAb, and we found one of three epitopes to be immunogenic in

our study. However, despite only a limited subset of immunogenic vaccine peptides

observed in mice from the MIT-T-COVID vaccine, our vaccine induced both SARS-

CoV-2 specific CD8+ and CD4+ T cell responses that mediated an effective antiviral

response in mice challenged with SARS-CoV-2. Together, these data illuminate the

need for 𝑛-times coverage of vaccine designs to maximize the likelihood that at least

one peptide is immunogenic in each individual. Our results suggest that optimal val-

ues of 𝑛 may be chosen based upon the observed immunogenicity of vaccine peptides

in experimental screens, the specific HLA alleles covered by a vaccine, and peptide

delivery platform constraints.

6.1 Future Work

Model interpretation and its applications in biology provide ripe opportunities for

future research. Our results reveal the importance of dataset quality, and noisy or

sparse datasets are often a limitation of applying ML in biology. In addition to

improving ML methods and datasets, there are many unknowns about the immune
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system and biological systems in general. Since we design ML methods to reflect

underlying biological mechanisms, learning more about those mechanisms can help

develop more accurate computational methods.

Our SIS framework requires the selection of a feature mask that is uninformative

to a trained model. However, a limitation of this approach is that a masked input

may be out-of-distribution or does not fully destroy all information about each masked

feature, and thus the resulting SIS may be sensitive to the choice of mask. Consistent

with the approach of Ribeiro et al. (2018), future work can explore a stronger SIS

definition that requires the SIS be sufficient for classification in the presence of any

background, thus eliminating dependence on the choice of mask. Other work could

include seeking theoretical guarantees about the subsets found by the SIS backward

selection algorithm, which are currently only known for backward selection in certain

linear settings (Das and Kempe, 2008).

The discovery of overinterpretation by our sufficient input subsets framework re-

vealed a new failure mode of deep neural networks and benchmark datasets. Miti-

gating overinterpretation and the broader task of ensuring models are accurate for

the right reasons remain significant challenges for ML. While we identified strate-

gies for partially mitigating overinterpretation, additional work is needed to develop

ML methods that guide models to rely exclusively on causal and interpretable input

features. One approach is to regularize neural networks by constraining saliency at-

tributions (Ross et al., 2017; Simpson et al., 2019; Viviano et al., 2021). However,

these methods would require a human annotator to highlight the correct pixels as

an auxiliary supervision signal. Our results suggested the presence of many different

spurious patterns in a given dataset that a model could rely on, which poses an addi-

tional challenge for methods that guide a model to rely on causal features. Further,

our work suggests a need for new methods to curate training datasets that do not

contain spurious signals in order to train more robust models. Finally, our methods

can be extended for the evaluation of benchmark datasets to ensure the benchmarks

can accurately measure generalizability.

Our computational vaccine design framework introduced the idea of multiple im-
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munogenic peptide-HLA “hits” in each individual as a vaccine design objective. At

present, we rely upon imperfect ML models that predict peptide-HLA binding and

calibrated the models to maximize precision. While we found these models to work

sufficiently well in practice, more accurate models to predict peptide-HLA immuno-

genicity would permit the design of vaccines with additional hits in each individual,

which we expect would further increase vaccine-induced responses. Present train-

ing data for ML models predicting peptide-HLA binding are generally restricted to

in vitro binding affinity measurements or eluted ligands identified by mass spec-

trometry (Reynisson et al., 2020a), and these data do not consider T cell activation

by the resulting peptide-HLA complex. While T cell activation by a peptide-HLA

complex may ultimately differ across individuals, it is possible that structural fea-

tures (Riley et al., 2019) or data from high-throughout library-on-library TCR-pMHC

screens (Dobson et al., 2022) could be used to train more accurate ML models and

merits further study. It may be challenging to train ML models that generalize as well

to rare HLA alleles as present data are skewed toward high frequency HLA alleles,

and thus, curation of training data over a diverse range of human samples will be

essential.

The COVID-19 pandemic has reinforced the importance of pan-variance in vac-

cine designs, as SARS-CoV-2 variants have escaped neutralization by vaccine-induced

humoral immunity (Garcia-Beltran et al., 2021). To design pan-variant vaccines, we

filtered epitopes by mutation rate and other criteria, and filters in our framework can

be flexibly chosen to address the specific requirements of a vaccine design. We used

a straightforward heuristic that computes mutation rate over presently known vari-

ants and only permits highly conserved peptides, and we found our vaccine payload

remained conserved in more recent variants of concern. Further work is needed to

rigorously evaluate this approach and further develop methods that can accurately

predict conserved epitopes across future variants.

Our MIT-T-COVID vaccine activated both CD8+ and CD4+ T cells in immunized

mice, and we found a significant increase in both CD8+ and CD4+ T cells infiltrat-

ing the lungs of MIT-T-COVID immunized mice compared to unimmunized mice at
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7 days post infection. Future work to activate CD8+ and CD4+ T cell responses

independently would elucidate the individual roles of CD8+ and CD4+ T cells in

mediating viral clearance. The study by Pardieck et al. (2022) solely activated a

CD8+ T cell response by vaccination with a single epitope but found that a third

dose was necessary to confer vaccine protection, and thus it would be interesting to

understand the specific role of CD4+ T cells activated by our vaccine as CD4+ T cells

help activate CD8+ T cell responses (Zhang et al., 2009). In addition, our study was

limited to viral challenge at 37 days post immunization. Cohen et al. (2021) found

that virus-specific T cells had a half-life of roughly 200 days in COVID-19 patients.

Thus, further studies can investigate the durability of antiviral T cell responses at

longer time intervals between immunization and challenge.

The polypeptide construct encoded by the MIT-T-COVID vaccine links vaccine

peptides with flexible linkers to facilitate proteasomal cleavage, which may introduce

an additional failure point if peptides are not cleaved at the appropriate positions.

The lack of any immunogenic SARS-CoV-2 epitopes in mice immunized with syn-

thetic peptides mixed with poly IC adjuvant supports our hypothesis that the lack

of immunogenicity of all MIT-T-COVID epitopes is the result of an insufficient TCR

repertoire in the transgenic mice, rather than lack of peptide delivery and processing.

However, future studies are needed to validate that all epitopes were indeed displayed

on antigen-presenting cells (APCs) by HLA-A*02:01 to confirm this hypothesis and

fully validate the construct design. Finally, the total delivery capacity of this platform

and capacity of the immune system to respond to a diverse range of vaccine-delivered

epitopes is presently unknown. Future experiments can adopt known control epitopes

to determine the total number of immunogenic epitopes that can be incorporated into

this delivery platform to inform future vaccine design efforts.
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Appendix A

Additional Sufficient Input Subsets

Experiments

This appendix contains additional details and results for the material in Chapter 2.

Further experiments and results can be found in the Supplementary Information of

Carter et al. (2019).

A.1 Additional Details of Sentiment Analysis Exper-

iments

Here, we provide additional details of our experiments applying SIS to interpret LSTM

models predicting sentiment in beer reviews (Section 2.4).

A.1.1 Imputation Strategies: Mean vs. Hot-deck

In Section 2.2, we discuss the problem of masking input features. Here, we show that

the mean-imputation approach (in which missing inputs are masked with a mean

embedding, taken over the entire vocabulary) produces a nearly identical change

in prediction to a nondeterministic hot-deck approach (in which missing inputs are

replaced by randomly sampling feature-values from the data). Figure A-1 shows the

change in prediction 𝑓(x ∖ {𝑖})− 𝑓(x) by both imputation techniques after drawing
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Figure A-1: Change in prediction (𝑓(x ∖ {𝑖}) − 𝑓(x)) after masking a randomly
chosen word with mean imputation or hot-deck imputation. 10,000 replacements
were sampled from the aroma beer reviews training set.

a training example x and word 𝑥𝑖 ∈ x (both uniformly at random) and replacing

𝑥𝑖 with either the mean embedding or a randomly selected word (drawn from the

vocabulary, based on counts in the training corpus). This procedure is repeated

10,000 times. Both resulting distributions have mean near zero (𝜇mean-embedding =

−7.0e−4, 𝜇hot-deck = −7.4e−4), and the distribution for mean embedding is slightly

narrower (𝜎mean-embedding = 0.013, 𝜎hot-deck = 0.018). Because we find that these two

imputation approaches perform equally well on average, we adopt mean-imputation as

our preferred method for masking information about features’ values when applying

SIS.

We also explored other options for masking word information, e.g., replacement

with a zero embedding, replacement with the learned <PAD> embedding, and simply

removing the word entirely from the input sequence, but each of these alternative

options led to undesirably larger changes in predicted values as a result of masking,

indicating they appear more informative to 𝑓 than replacement via the feature-mean.

A.1.2 Additional Results for Aroma Aspect

This section includes additional results applying our SIS clustering methodology (Sec-

tion 2.7) to interpret LSTM sentiment predictors. Here, we present the full SIS clus-

tering for both reviews with strong positive and strong negative predicted sentiment

(Section 2.7.1).
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Table A.1: All clusters of sufficient input subsets extracted from reviews from the test
set predicted to have positive aroma by the LSTM. Frequency indicates the number
of occurrences of the SIS in the cluster.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1

smell amazing

wonderful
2

nice wonderful

nose
2

wonderful

amazing
2 amazing amazing 2

𝐶2

grapefruit mango

pineapple
2

pineapple

grapefruit

pineapple

grapefruit

1
hops grapefruit

pineapple floyds
1

mango pineapple

incredible
1

𝐶3

nice smell citrus

nice grapefruit

taste

1

smell great

complex ripe

taste

1

nice smell nice

hop smell pine

taste

1
love nice nice

smell bliss taste
1

𝐶4

fresh great

fantastic taste
1

rich great

fantastic hoped
1

fantastic cherries

fantastic
1

everyone great

snifters fantastic
1

𝐶5 awesome bounds 1

awesome

grapefruit

awesome

1

awesome

awesome

pleasing

1
awesome nailed

nailed
1

𝐶6

creme brulee

brulee
3

creme brulee

decadent
1

incredible creme

brulee
1

creme brulee

exceptional
1

𝐶7

oak vanilla

chocolate

cinnamon vanilla

oak love

1

dose oak

chocolate vanilla

acidic

1
vanilla figs oak

thinner great
1

chocolate aroma

oak vanilla

dessert

1
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Table A.2: All clusters of sufficient input subsets extracted from reviews from the test
set predicted to have negative aroma by the LSTM. Frequency indicates the number
of occurrences of the SIS in the cluster. Dashes are used in clusters with under 4
unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 awful 15 skunky skunky 9 skunky t 7 skunky taste 6

𝐶2 garbage 3 taste garbage 1 garbage avoid 1 garbage rice 1

𝐶3 vomit 16 - - - - - -

𝐶4 gross rotten 1 rotten forte 1 awkward rotten 1 rotten offputting 1

𝐶5 rancid horrid 1 rancid t 1 rancid 1 rancid avoid 1

𝐶6 rice t rice 2 rice rice 1 rice tasteless 1 budweiser rice 1



A.1.3 Understanding Differences Between Sentiment Predic-

tors

We also include the full joint SIS clustering (clustering SIS from LSTM and text

CNN models together) for reviews with strong positive and strong negative predicted

sentiment (Section 2.8.1).
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Table A.3: Joint clustering of the SIS extracted from beer reviews predicted to have
positive aroma by LSTM or CNN model. Frequency indicates the number of occur-
rences of the SIS in the cluster. Percentages quantify SIS per cluster from the LSTM.
Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 (LSTM:

20%)
rich chocolate 13 very rich 9

chocolate

complex
5 smells rich 4

𝐶2 (LSTM:

21%)
great 248 amazing 119 wonderful 112 fantastic 75

𝐶3 (LSTM:

47%)
best smelling 23

pineapple

mango
6

mango

pineapple
6

pineapple

grapefruit
5

𝐶4 (LSTM: 5%) excellent 42
excellent

flemish flemish
1

excellent

excellent

phenomenal

1 - -

𝐶5 (LSTM:

33%)
oak chocolate 2

chocolate

raisins raisins

oak bourbon

1 chocolate oak 1
raisins

chocolate
1

𝐶6 (LSTM: 5%) goodness 19
watering

goodness
1 - - - -

𝐶7 (LSTM:

24%)
pumpkin pie 25

huge pumpkin

aroma pumpkin

pie

1

aroma perfect

pumpkin pie

taste

1

smell pumpkin

nutmeg

cinnamon pie

1

𝐶8 (LSTM: 5%) jd 13 tremendous 8 tremendous jd 1 - -

𝐶9 (LSTM:

40%)
brulee 14

creme brulee

brulee
3 creme creme 1

creme brulee

amazing
1

𝐶10 (LSTM:

0%)
s wow 20 - - - - - -

𝐶11 (LSTM:

0%)
delicious 56 - - - - - -

𝐶12 (LSTM:

0%)
very nice 23 - - - - - -

𝐶13 (LSTM:

70%)
complex aroma 5

aroma complex

peaches

complex

1

aroma complex

interesting

cherries

1 aroma complex 1
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Table A.4: Joint clustering of the SIS extracted from beer reviews predicted to have
negative aroma by LSTM or CNN model. Frequency indicates the number of occur-
rences of the SIS in the cluster. Percentages quantify SIS per cluster from the LSTM.
Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

𝐶1 (LSTM:

29%)
not 247 no 105 bad 104 macro 94

𝐶2 (LSTM:

100%)
gross rotten 1 - - - - - -

𝐶3 (LSTM:

100%)
rotten garbage 1 - - - - - -

𝐶4 (LSTM:

62%)
vomit 26 - - - - - -

𝐶5 (LSTM:

21%)
budweiser 22

sewage

budweiser
1

metal

budweiser
1

budweiser

budweiser

budweiser

1

𝐶6 (LSTM:

100%)
garbage rice 1 - - - - - -

𝐶7 (LSTM: 3%) n’t 19 adjuncts 14 n’t adjuncts 1 - -

𝐶8 (LSTM: 0%) faint 82 - - - - - -

𝐶9 (LSTM: 0%) adjunct 42 - - - - - -
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Appendix B

Additional Overinterpretation

Experiments

This appendix contains additional details and results for the material in Chapter 3.

B.1 Details of Batched Gradient SIS Algorithm

It is computationally infeasible to scale the original backward selection procedure of

SIS (Section 2.2) to ImageNet. As each ImageNet image contains 299× 299 = 89401

pixels, running backward selection to find one SIS for an image would require ∼ 4 bil-

lion forward passes through the network. Here we introduce a more efficient gradient-

based approximation to the original SIS procedure (via Batched Gradient SIScol-

lection, Batched Gradient BackSelect, and Batched Gradient FindSIS) that

allows us to find SIS on larger ImageNet images in a reasonable time. The Batched

Gradient SIScollection procedure described below identifies a complete collection

of disjoint masks for an input x, where each mask 𝑀 specifies a pixel-subset of the

input x𝑆 = x⊙(1−𝑀) such that 𝑓(x𝑆 ≥ 𝜏). Here 𝑓 outputs the probability assigned

by the network to its predicted class (i.e., its confidence).

The idea behind our approximation algorithm is two-fold: (1) Instead of separately

masking every remaining pixel to find the least critical pixel (whose masking least

reduces the confidence in the network’s prediction), we use the gradient with respect
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to the mask as a means of ordering. (2) Instead of masking just 1 pixel per iteration,

we mask larger subsets of 𝑘 ≥ 1 pixels per iteration. More formally, let x be an image

of dimensions 𝐻 ×𝑊 × 𝐶 where 𝐻 is the height, 𝑊 the width, and 𝐶 the channel.

Let 𝑓(x) be the network’s confidence on image x and 𝜏 the target SIS confidence

threshold. Recall that we only compute SIS for images where 𝑓(x) ≥ 𝜏 . Let 𝑀 be

the mask with dimensions 𝐻 ×𝑊 with 0 indicating an unmasked feature (pixel) and

1 indicating a masked feature. We initialize 𝑀 as all 0s (all features unmasked). At

iteration 𝑖, we compute the gradient of 𝑓 with respect to the input pixels and mask

∇𝑀 = ∇𝑀𝑓(x⊙ (1−𝑀)). Here 𝑀 is the current mask updated after each iteration.

In each iteration, we find the block of 𝑘 features to mask, 𝐺*, chosen in descending

order by value of entries in ∇𝑀 . The mask is updated after each iteration by masking

this block of 𝑘 features until all features have been masked. Given 𝑝 input features,

our Batched Gradient SIScollection procedure returns 𝑗 sufficient input subsets

in 𝒪( 𝑝
𝑘
· 𝑗) evaluations of ∇𝑓 (as opposed to 𝒪(𝑝2𝑗) evaluations of 𝑓 in the original

SIS procedure (Section 2.2).

Here, we use 𝑘 = 100, which allows us to find one SIS for each of 32 ImageNet

images (i.e., a mini-batch) in ∼1-2 minutes using Batched Gradient FindSIS. Note

that while our algorithm is an approximate procedure, the pixel-subsets produced are

real sufficient input subsets, i.e., they always satisfy 𝑓(x𝑆 ≥ 𝜏). For CIFAR-10 images

(which are smaller in size), we use the original SIS procedure (Section 2.2). For both

datasets, we treat all channels of each pixel as a single feature.
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Algorithm 4: Batched Gradient SIScollection
Input: function 𝑓 , input x, threshold 𝜏 , batch size 𝑘 (number of pixels)

𝑀 = 0

for 𝑗 = 1, 2, . . . do

𝑅 = Batched Gradient BackSelect(𝑓,x,𝑀, 𝑘)

𝑀𝑗 = Batched Gradient FindSIS(𝑓,x, 𝜏, 𝑅)

𝑀 ←𝑀 +𝑀𝑗

if 𝑓(x⊙ (1−𝑀)) < 𝜏 then

return 𝑀1, . . . ,𝑀𝑗−1

end if

end for

Algorithm 5: Batched Gradient BackSelect
Input: function 𝑓 , input x, mask 𝑀 , batch size 𝑘 (number of pixels)

𝑅 = empty stack

while 𝑀 ̸= 1 do

𝐺* = Top𝑘 (∇𝑀𝑓(x⊙ (1−𝑀))

Update 𝑀 ←𝑀 +𝐺*

Push 𝐺* onto top of 𝑅

end while

return 𝑅

157



Algorithm 6: Batched Gradient FindSIS
Input: function 𝑓 , input x, threshold 𝜏 , stack 𝑅

𝑀 = 1

while 𝑓(x⊙ (1−𝑀)) < 𝜏 do

Pop 𝐺 from top of 𝑅

Update 𝑀 ←𝑀 −𝐺

end while

if 𝑓(x⊙ (1−𝑀)) ≥ 𝜏 then

return 𝑀

else

return None

end if
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B.2 Model Implementation and Training Details

CIFAR-10 Models

We first describe the implementation and training details for the CIFAR-10 models

used in this work (Section 3.2.1). The ResNet20 architecture (He et al., 2016a) has

16 initial filters and a total of 0.27M parameters. ResNet18 (He et al., 2016b) has

64 initial filters and contains 11.2M parameters. The VGG16 architecture (Simonyan

and Zisserman, 2015) uses batch normalization and contains 14.7M parameters.

All models are trained for 200 epochs with a batch size of 128. We minimize cross-

entropy via SGD with Nesterov momentum (Sutskever et al., 2013) using momentum

of 0.9 and weight decay of 5e-4. The learning rate is initialized as 0.1 and is reduced by

a factor of 5 after epochs 60, 120, and 160. Datasets are normalized using per-channel

mean and standard deviation, and we use standard data augmentation strategies

consisting of random crops and horizontal flips (He et al., 2016b).

The adversarially robust model we evaluated is the adv_trained model of Madry

et al. (2018), available on GitHub1.

To apply the SIS procedure to CIFAR-10 images, we use an implementation avail-

able on GitHub2. For confidently classified images on which we run SIS, we find one

sufficient input subset per image using the FindSIS procedure. When masking pixels,

we mask all channels of each pixel as a single feature.

ImageNet Models

For finding SIS, we use pre-trained models (Inception v3 (Szegedy et al., 2016) and

ResNet50 (He et al., 2016a)) provided by PyTorch (Paszke et al., 2019) in the torchvi-

sion package (PyTorch version 1.4.0, torchvision version 0.5.0).

When training new ImageNet classifiers, we adopt model implementations and

training scripts from PyTorch (Paszke et al., 2019), obtained from GitHub3. Models

1https://github.com/MadryLab/cifar10_challenge
2https://github.com/google-research/google-research/blob/master/sufficient_

input_subsets/sis.py
3https://github.com/pytorch/examples/blob/master/imagenet/main.py
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are trained for 90 epochs using batch size 256 (Inception-v3) or 512 (ResNet50).

We minimize cross-entropy via SGD using momentum of 0.9 and weight decay of

1e-4. The learning rate is initialized as 0.1 and reduced by a factor of 10 every 30

epochs. Datasets are normalized using per-channel mean and standard deviation.

For Inception v3, images are cropped to 299 x 299 pixels. For ResNet50, images

are cropped to 224 x 224. When training Inception v3, we define the model using

the aux_logits=False argument. We do not use data augmentation when training

models on pixel-subsets of images.

Hardware Details

Each CIFAR-10 model is trained on 1 NVIDIA GeForce RTX 2080 Ti GPU. Once

models are trained, SIS are computed across multiple GPUs (by parallelizing over

individual images). Each SIS (for 1 CIFAR-10 image) takes roughly 30-60 seconds to

compute (depending on the model architecture).

ImageNet models are trained on 2–3 NVIDIA Titan RTX GPUs. For finding SIS

from pre-trained ImageNet models, we run Batched Gradient BackSelect for batches

of 32 images across 10 NVIDIA GeForce RTX 2080 Ti GPUs, which takes roughly

1-2 minutes per batch (details in Appendix B.1).
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B.3 Additional Examples of CIFAR-10 Sufficient In-

put Subsets

B.3.1 SIS of Individual Networks

Figure B-1 shows a sample of SIS for each of our three architectures. These images

were randomly sampled among all CIFAR-10 test images confidently (confidence ≥

0.99) predicted to belong to the class written on the left. Out of 10000 CIFAR-10 test

images, 8596 were predicted with ≥ 99% confidence by ResNet18 (7829 by ResNet20,

9048 by VGG16). SIS are computed under a threshold of 0.99, so all images shown in

this figure are classified with probability ≥ 99% confidence as belonging to the listed

class.
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(a) ResNet20
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cat
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dog

frog

horse

ship

truck

(c) VGG16

Figure B-1: Examples of SIS (threshold 0.99) on random sample of CIFAR-10 test
images (15 per class, different random sample for each architecture). All images
shown here are predicted to belong to the listed class with ≥ 99% confidence.

162



B.3.2 Ensemble Sufficient Input Subsets

Figure B-2 shows examples of SIS from one of our model ensembles (a homogeneous

ensemble of ResNet18 networks, see Section 3.2.1), along with corresponding SIS for

the same image from each of the five member networks in the ensemble. We use a SIS

threshold of 0.99, so all images are classified with ≥ 99% confidence. These examples

highlight how the ensemble SIS are larger and draw class-evidence from the individual

members’ SIS.

B.4 Additional Results on CIFAR-10

B.4.1 Training on Pixel-Subsets With Data Augmentation

Table B.1 presents results similar to those in Section 3.3.2 and Table 3.1, but where

models are trained on 5% pixel-subsets with data augmentation (as described in Ap-

pendix B.2). We find training without data augmentation slightly improves accuracy

when training classifiers on 5% pixel-subsets of CIFAR-10.

Table B.1: Accuracy of CIFAR-10 classifiers trained and evaluated on full images,
5% backward selection (BS) pixel-subsets, and 5% random pixel-subsets with data
augmentation (+). Accuracy is reported as mean ± standard deviation (%) over five
runs.

Model Train On Evaluate On CIFAR-10 Test Acc. CIFAR-10-C Acc.

ResNet20
5% BS Subsets (+) 5% BS Subsets 92.26± 0.01 70.21± 0.14

5% Random (+) 5% Random 48.87± 0.41 42.66± 0.15

ResNet18
5% BS Subsets (+) 5% BS Subsets 94.51± 0.38 74.91± 0.41

5% Random (+) 5% Random 49.03± 0.92 42.97± 0.82

VGG16
5% BS Subsets (+) 5% BS Subsets 91.17± 0.04 71.82± 0.13

5% Random (+) 5% Random 51.32± 1.35 44.56± 0.96
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Original Image Ensemble ResNet18 #1 ResNet18 #2 ResNet18 #3 ResNet18 #4 ResNet18 #5

Figure B-2: Examples of SIS (threshold 0.99) from the ResNet18 homogeneous en-
semble (Section 3.2.1) and its member models. Each row shows original CIFAR-10
image (left), followed by SIS from the ensemble (second column) and the SIS from
each of its 5 member networks (remaining columns). Each image shown is classified
with ≥ 99% confidence by its respective network.
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B.4.2 Training on Pixel-Subsets With Different Architectures

Table B.2 presents results of training and evaluating models on 5% pixel-subsets

drawn from different architectures. Models were trained without data augmentation

on subsets from one replicate of each base architecture. We find accuracy from train-

ing and evaluating a model on 5% pixel-subsets of images derived from a different

architecture is commensurate with accuracy of training and evaluating a new model

of the same type on those subsets (Table 3.1).

Table B.2: Accuracy of CIFAR-10 classifiers trained and evaluated on 5% backward
selection (BS) pixel-subsets from different architectures. Accuracy is reported as
mean ± standard deviation (%) over five runs.

5% Subsets from Model Model Trained CIFAR-10 Test Acc. CIFAR-10-C Acc.

ResNet20
ResNet18 92.53± 0.02 70.56± 0.04

VGG16 92.47± 0.02 70.42± 0.14

ResNet18
ResNet20 94.88± 0.03 75.14± 0.10

VGG16 94.88± 0.05 75.13± 0.09

VGG16
ResNet20 92.05± 0.14 73.01± 0.08

ResNet18 92.57± 0.10 73.33± 0.21

B.4.3 Additional Results for Models Trained on Pixel-Subsets

Table B.3 presents results of models trained on 5% backward selection (BS) or random

pixel-subsets of CIFAR-10 training images, evaluated on full (original) CIFAR-10 test

images. While accuracies are generally significantly higher than random guessing, we

note that full images are highly out-of-distribution for a model trained on images

with only 5% pixel-subsets and hence such a model cannot properly generalize to full

images. Further, the model trained on 5% images may not rely on the same features

as the model trained on full images as it is trained on a substantially different training

set.
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Table B.3: Accuracy of CIFAR-10 classifiers trained on 5% backward selection (BS)
or random pixel-subsets with (+) and without (−) data augmentation. Accuracy is
reported as mean ± standard deviation (%) over five runs.

Model Train On Evaluate On CIFAR-10 Test Acc. CIFAR-10-C Acc.

ResNet20

5% BS Subsets (−) Full Images 21.02± 1.57 17.50± 1.15

5% Random (−) Full Images 38.66± 3.31 36.40± 2.73

5% BS Subsets (+) Full Images 10.87± 1.50 10.75± 1.32

5% Random (+) Full Images 37.08± 3.51 33.78± 2.81

ResNet18

5% BS Subsets (−) Full Images 20.86± 2.74 18.20± 1.43

5% Random (−) Full Images 26.05± 7.59 25.03± 6.41

5% BS Subsets (+) Full Images 11.83± 1.74 11.48± 1.15

5% Random (+) Full Images 20.98± 4.61 20.35± 3.56

VGG16

5% BS Subsets (−) Full Images 41.63± 3.55 30.34± 1.97

5% Random (−) Full Images 25.73± 6.08 23.56± 4.39

5% BS Subsets (+) Full Images 14.32± 3.40 13.22± 2.01

5% Random (+) Full Images 27.58± 3.96 24.92± 3.10



B.4.4 Additional Results for SIS Size and Model Accuracy

Figure B-3 shows percentage increase in mean SIS size for correctly classified images

compared to misclassified images from the CIFAR-10-C dataset.

Figure B-3: Percentage increase in mean SIS size of correctly classified images com-
pared to misclassified images from a random sample of CIFAR-10-C test set. Positive
values indicate larger mean SIS size for correctly classified images. Error bars indicate
95% confidence interval for the difference in means.

Figure B-4 shows the mean confidence of each group of correctly and incorrectly

classified images that we consider at each confidence threshold (at each confidence

threshold along the x-axis, we evaluate SIS size in Figure 3-5 on the set of images

that originally were classified with at least that level of confidence). We find model

confidence is uniformly lower on the misclassified inputs.
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(a) CIFAR-10 test set (b) CIFAR-10-C test set

Figure B-4: Mean confidence of correctly vs. incorrectly classified images for each
corresponding SIS threshold we evaluate in Figure 3-5 across the (a) CIFAR-10 test
set and (b) our random sample of the CIFAR-10-C test set. Shaded region indicates
95% confidence interval.



B.4.5 Additional Results for Input Dropout

Figure B-5 shows the accuracy improvement on each individual corruption of the

CIFAR-10-C out-of-distribution test set for models trained with input dropout (Sec-

tion 3.3.5) compared to original models.
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(c) VGG16

Figure B-5: Accuracy on individual corruptions of CIFAR-10-C out-of-distribution
images for original models and models trained with input dropout (Section 3.3.5).
Accuracy is given as mean ± standard deviation over five replicate models.



B.4.6 Results on CIFAR-10.1

Table B.4 reports accuracy of the models from Section 3.3.2 computed on the CIFAR-

10.1 v6 dataset (Recht et al., 2018), which contains 2000 class-balanced images drawn

from the Tiny Images repository (Torralba et al., 2008) in a similar fashion to that

of CIFAR-10, though Recht et al. (2018) found a large drop in classification accuracy

on these images.

B.4.7 SIS and Calibrated Models

We calibrated one model of each architecture class after training using Temperature

Scaling (Guo et al., 2017) based on an implementation available on GitHub4. The

CIFAR-10 test set was randomly split into a 5k validation set (for optimization of

the temperature parameter) and a 5k held-out test set (for final evaluation of ECE).

Table B.5 shows the Expected Calibration Error (ECE) of each model on held-out test

images before and after calibration, as well as mean SIS size using confidence threshold

0.99 computed on the entire CIFAR-10 test set. We find that while the mean SIS

size (for test images that the re-calibrated model can classify with ≥ 99% confidence)

does increase slightly, the resulting SIS subsets are still semantically meaningless and

far below the threshold of SIS size where humans can meaningfully start to classify

CIFAR images with any degree of accuracy (Figure B-6). We note that one of the

key findings of our work is that even when we compute SIS subsets from uncalibrated

models, those subsets still contain enough signal for training entirely new classifiers

that can generalize as well to the corresponding test subsets (Section 3.3.2).

B.4.8 SIS with Random Tie-breaking

We suspect the concentration of pixels on the bottom border for ResNet20 (Figure 3-

3a) is a result of tie-breaking during backward selection of the SIS procedure. To

explore this hypothesis, we modified the tie-breaking procedure to randomly (rather

than deterministically) break ties during SIS backward selection by adding random

4https://github.com/gpleiss/temperature_scaling
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Table B.4: Accuracy of CIFAR-10 classifiers trained and evaluated on full images,
5% backward selection (BS) pixel-subsets, and 5% random pixel-subsets reported on
CIFAR-10.1 v6 dataset (evaluating models from Section 3.3.2 that were trained on
full images or 5% subsets of the CIFAR-10 train set). Where possible, accuracy is
reported as mean ± standard deviation (%) over five runs. For training on BS subsets,
we run BS on all images for a single model of each type and average over five models
trained on these subsets.

Model Train On Evaluate On CIFAR-10.1 Acc.

ResNet20

Full Images

Full Images 83.98± 0.68

5% BS Subsets 82.80

5% Random 10.00± 0.00

5% BS Subsets 5% BS Subsets 82.56± 0.07

5% Random 5% Random 39.78± 1.27

Input Dropout (Full) Input Dropout (Full) 81.88± 0.44

ResNet18

Full Images

Full Images 88.89± 0.45

5% BS Subsets 89.35

5% Random 10.06± 0.11

5% BS Subsets 5% BS Subsets 89.49± 0.04

5% Random 5% Random 39.45± 1.02

Input Dropout (Full) Input Dropout (Full) 86.28± 0.33

VGG16

Full Images

Full Images 86.23± 0.79

5% BS Subsets 86.45

5% Random 9.78± 0.26

5% BS Subsets 5% BS Subsets 85.61± 0.19

5% Random 5% Random 40.98± 1.27

Input Dropout (Full) Input Dropout (Full) 81.00± 0.65

Ensemble
(ResNet18) Full Images

Full Images 90.30

5% Random 10.05
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Table B.5: Results of model calibration by temperature scaling. Expected Calibration
Error (ECE) is computed on a held-out set of 5k CIFAR-10 test images. SIS are
computed using a threshold of 0.99 on all CIFAR-10 test images classified with ≥
99% confidence (and corresponding number of such images listed). SIS size is given
as mean ± standard deviation.

Model ECE (%) SIS Size (% of Image) Num. Images Pred. ≥ 0.99

ResNet20 Uncalibrated 3.91 2.36± 1.21 7829

ResNet20 Calibrated 0.91 2.94± 1.39 5805

ResNet18 Uncalibrated 2.49 2.53± 1.53 8596

ResNet18 Calibrated 1.00 3.54± 1.94 5934

VGG16 Uncalibrated 4.95 2.18± 1.37 9048

VGG16 Calibrated 1.56 8.26± 2.86 23

Gaussian noise (𝜇 = 0, 𝜎2 = 1e−12) to the model’s outputs for each remaining

masked pixel at each iteration of backward selection. For each image in a sample of

1000 CIFAR-10 test images, we repeated this randomization procedure three times

and found the resulting heatmap of 5% backward selection pixel-subsets for ResNet20

more concentrated in the image centers rather than bottom border (Figure B-7).

B.4.9 Confidence Curves for SIS Backward Selection on CIFAR-

10

Figure B-8 shows the predicted confidence on the remaining pixels at each step of SIS

backward selection for the entire CIFAR-10 test set for each architecture trained on

CIFAR-10.
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(a) ResNet20 Calibrated (b) ResNet18 Calibrated

(c) VGG16 Calibrated

Figure B-6: Examples of SIS (threshold 0.99) on sample of CIFAR-10 test images
from calibrated models. All images shown are predicted to belong to the listed class
with ≥ 99% confidence.

Figure B-7: Heatmap of pixel locations comprising 5% backward selection pixel-
subsets computed on a set of 1000 CIFAR-10 test set images with random tie-breaking
during backward selection.
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(a) ResNet20 (b) ResNet18

(c) VGG16

Figure B-8: Prediction history on remaining (unmasked) pixels at each step of the
SIS backward selection procedure for all CIFAR-10 test set images. Black line depicts
mean confidence at each step.



B.4.10 Batched Gradient SIS on CIFAR-10

We also ran Batched Gradient SIS on the entire CIFAR-10 test set for ResNet18 and

found Batched Gradient SIS produced edge-heavy heatmaps for CIFAR-10 (Figure B-

9a). For CIFAR-10, we set 𝑘 = 1 to remove a single pixel per iteration of Batched

Gradient SIS. These heatmap differences (compared to Figure 3-3) are a result of

the different valid equivalent SIS subsets found by the two SIS discovery algorithms.

However, since all SIS subsets are validated with a model and guaranteed to be suffi-

cient for classification at the specified threshold, the heatmaps are accurate depictions

of what is sufficient for the model to classify images at the threshold. Overinterpre-

tation is independent of the SIS algorithm used because both algorithms produce

human-uninterpretable sufficient subsets (Figure B-9b).
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(a)

(b)

Figure B-9: Results of running Batched Gradient SIS (threshold 0.99) on CIFAR-10.
(a) Heatmaps of SIS pixel locations computed on entire CIFAR-10 test set for each
architecture. (b) Example Batched Gradient SIS for ResNet18 (all images and SIS
subsets shown are classified with ≥ 99% confidence).



B.5 Details of Human Classification Benchmark

Here we include additional details on our benchmark of human classification accuracy

of sparse pixel-subsets (Section 3.2.4). Figure B-10 shows all images shown to users

(100 images each for 5%, 30% and 50% pixel-subsets of CIFAR-10 test images). Each

set of 100 images has pixel-subsets stemming from each of the three architectures

roughly equally (35 ResNet20, 35 ResNet18, 30 VGG16).5 Figure B-11 shows the

correlation between human classification accuracy and pixel-subset size (accuracies

shown in Table B.6).

Table B.6: Human classification accuracy on a sample of CIFAR-10 test image pixel-
subsets of varying sparsity (see Section 3.2.4). Accuracies given as mean ± standard
deviation.

Fraction of Images Human Classification Accuracy (%)

5% 19.2± 4.8

30% 40.0± 2.5

50% 68.2± 3.6

5The human classification benchmark was performed using pixel-subsets computed from earlier
implementations of the three CNN architectures (in Keras rather than PyTorch). Figure B-10 shows
all pixel-subsets derived from these models that were shown to users in the human classification
benchmark. ResNet20 was based on a Keras example using 16 initial filters and optimized with Adam
for 200 epochs (batch size 32, initial learning rate 0.001, reduced after epochs 80, 120, 160, and 180
to 1e-4, 1e-5, 1e-6, and 5e-7, respectively). ResNet18 was based on a GitHub implementation using
64 initial filters, initial strides (1, 1), initial kernel size (3, 3), no initial pooling layer, weight decay
0.0005 and trained using SGD with Nesterov momentum 0.9 for 200 epochs (batch size 128, initial
learning rate 0.1, reduced by a factor of 5 after epochs 60, 120, and 160). VGG16 was based on a
GitHub implementation trained with weight decay 0.0005 and SGD with Nesterov momentum 0.9 for
250 epochs (batch size 128, initial learning rate 0.1, decayed after each epoch as 0.1·0.5⌊epoch/20⌋). We
selected the final model checkpoint that maximized test accuracy. We found these models exhibited
similar overinterpretation behavior to the final models.

• https://keras.io/examples/cifar10_resnet/

• https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/applications/resnet.py

• https://github.com/geifmany/cifar-vgg/blob/e7d4bd4807d15631177a2fafabb5497d0e4be3ba/cifar10vgg.py
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(a) 5% Pixel-Subsets (b) 30% Pixel-Subsets

(c) 50% Pixel-Subsets

Figure B-10: Pixel-subsets of CIFAR-10 test images shown to participants in our
human classification benchmark (Section 3.2.4).
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Figure B-11: Human classification accuracy on a sample of CIFAR-10 test image
pixel-subsets (see Section 3.2.4).



B.6 Additional Results of ImageNet Overinterpreta-

tion

B.6.1 Training CNNs on ImageNet Pixel-Subsets

We extracted 10% backward selection (BS) pixel-subsets by applying Batched Gradi-

ent BackSelect to all ImageNet train and validation images using pre-trained Inception

v3 and ResNet50 models from PyTorch (Paszke et al., 2019). We kept the top 10%

of pixels and masked the remaining 90% with zeros. We trained new models of the

same type on these 10% BS pixel-subsets of ImageNet training set images (training

details in Appendix B.2) and evaluated the resulting models on the corresponding

10% pixel-subsets of ImageNet validation images. Table B.7 shows a small loss in val-

idation accuracy, suggesting these 10% pixel-subsets that are indiscernible by humans

contain statistically valid signals that generalize to validation images. Models trained

on 10% pixel-subsets were trained without data augmentation. As with CIFAR-10

(Appendix B.4), we found training models on pixel-subsets with standard data aug-

mentation techniques (random crops and horizontal flips) resulted in worse validation

accuracy.

We also trained and evaluated ImageNet models on random pixel-subsets, and

results are shown in Table B.7. For training on random pixel-subsets, each of the

five training runs was trained on different random pixel-subsets. For evaluation of

pre-trained models on random subsets, each pre-trained model was evaluated on five

different random random pixel-subsets. All pixels in random pixel-subsets were drawn

uniformly at random, and the remaining pixels masked with zeros. We found random

10% pixel-subsets significantly less informative to pre-trained classifiers than 10%

backward selection pixel-subsets from Batched Gradient SIS.

We repeated the experiment of Table B.2 and found for ImageNet that 10% pixel-

subsets from one architecture can also be used to train a new model of a different

architecture. We trained a new DenseNet-121 model (Huang et al., 2017) on 10%
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BS pixel-subsets of ImageNet training images drawn from the ResNet506, and the

DenseNet-121 was able to classify the corresponding 10% BS pixel-subsets of Ima-

geNet validation images as accurately as the ResNet50 trained on the 10% BS pixel-

subsets (Table B.7).

B.6.2 Additional Examples of SIS on ImageNet

Figure B-12 shows additional examples of SIS (threshold 0.9) on ImageNet valida-

tion images for the pre-trained Inception v3 found via Batched Gradient FindSIS.

Figure B-13 shows examples of SIS for the pre-trained ResNet50.

6we used subsets drawn from ResNet50 as the default input image size for Inception v3 is 299×299
while the default input image size for ResNet50 and DenseNet-121 is 224× 224
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Table B.7: Accuracy of models on ImageNet validation images trained and evaluated
on full images, backward selection (BS) pixel-subsets, and random pixel-subsets. Ac-
curacy for training on 10% BS Subsets is reported as mean ± standard deviation (%)
over five training runs with different random initialization. For training/evaluation
on BS pixel-subsets, we run backward selection on all ImageNet images using a single
pre-trained model of each type, but average over five models trained on these subsets.
For training on random pixel-subsets, each of the five training runs was trained on dif-
ferent random pixel-subsets. For evaluation of pre-trained models on random subsets,
each pre-trained model was evaluated on five different random random pixel-subsets.
All pixels in random pixel-subsets were drawn uniformly at random.

Model Train On Evaluate On Top 1 Acc. Top 5 Acc.

Inception v3

Full Images (pre-trained)

Full Images 77.21 93.53

10% BS Subsets 73.87 83.43

15% BS Subsets 76.15 84.93

20% BS Subsets 76.75 85.40

10% Random 0.75± 0.02 2.55± 0.03

15% Random 1.51± 0.03 4.61± 0.03

20% Random 2.83± 0.03 7.75± 0.03

10% BS Subsets 10% BS Subsets 71.37± 0.15 83.73± 0.10

10% Random 10% Random 64.53± 0.16 85.36± 0.10

ResNet50

Full Images (pre-trained)

Full Images 76.13 92.86

10% BS Subsets 45.14 64.12

15% BS Subsets 61.06 75.26

20% BS Subsets 68.35 79.46

10% Random 0.28± 0.02 1.03± 0.01

15% Random 0.43± 0.00 1.54± 0.03

20% Random 0.67± 0.02 2.37± 0.02

10% BS Subsets 10% BS Subsets 65.71± 0.08 80.45± 0.08

10% Random 10% Random 55.70± 0.24 79.06± 0.17

DenseNet-121
10% BS Subsets

(from ResNet50)

10% BS Subsets

(from ResNet50)
65.67± 0.19 81.30± 0.10
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Figure B-12: Example SIS (threshold 0.9) from ImageNet validation images (top row
of each block) for Inception v3. The middle rows show the location of SIS pixels
(red) and the bottom rows show images with all non-SIS pixels masked but are still
classified by the Inception v3 model with ≥ 90% confidence.



Figure B-13: Example SIS (threshold 0.9) from ImageNet validation images (top
row of each block) for ResNet50. The middle rows show the location of SIS pixels
(red) and the bottom rows show images with all non-SIS pixels masked but are still
classified by the ResNet50 model with ≥ 90% confidence.

We also explored the relationship between pixel saliency and the order pixels were

removed by Batched Gradient BackSelect. Surprisingly, as shown in Figure B-14 for

Inception v3, we found that the most salient pixels were often eliminated first and thus

unnecessary for maintaining high predicted confidence on the remaining pixel-subsets

and subsequently for training on pixel-subsets. Figure B-15 shows the predicted confi-

dence on remaining pixels at each step of the Batched Gradient BackSelect procedure

for a random sample of 32 ImageNet validation images by the Inception v3 model.
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Figure B-14: SIS subsets and ordering of pixels removed by Batched Gradient FindSIS
in a sample of ImageNet validation images that are confidently (≥ 90%) and correctly
classified by the Inception v3 model. The top row shows original images, second row
shows the location of SIS pixels (red), and third row shows images with all non-
SIS pixels masked (and are still classified correctly with ≥ 90% confidence). The
heatmaps in the bottom row depict the ordering of batches of pixels removed during
backward selection (blue = earliest, yellow = latest).

Figure B-15: Prediction history on remaining (unmasked) pixels at each step of the
Batched Gradient BackSelect procedure for a random sample of 32 ImageNet valida-
tion images by the Inception v3 model. Black line depicts mean confidence at each
step.



B.6.3 SIS Size by Class

Figure B-16 shows the distribution of SIS sizes by predicted class (SIS threshold 0.9)

for all ImageNet validation images classified with ≥ 90% confidence (23080 images)

by the pre-trained Inception v3.

Figure B-16: Mean SIS size per predicted ImageNet class by a pre-trained Inception v3
on ImageNet computed on ImageNet validation images (SIS threshold 0.9). Classes
are sorted by mean SIS size. 95% confidence intervals are indicated around each
mean. The top 5 classes with largest mean SIS size (mean % of image) are: English
foxhound (40.0%), bee eater (28.4%), trolleybus (27.7%), Japanese spaniel (27.3%),
whippet (27.0%). The 5 classes with the smallest mean SIS size are: bearskin (1.1%),
bath towel (1.3%), wallet (1.4%), fire screen (1.7%), coffeepot (1.9%).
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B.6.4 SIS for Vision Transformers

We applied Batched Gradient SIS to a vision transformer (ViT) (Dosovitskiy et al.,

2021) as ViTs have been shown to be more robust to perturbations and shifts than

CNNs (Naseer et al., 2021). We used a pre-trained B_16_imagenet1k ViT model

available from GitHub7, which we found achieves 83.9% top-1 ImageNet validation

accuracy. Figure B-17 shows an example of the resulting SIS, suggesting this ViT

likewise suffers from overinterpretation on ImageNet data.

Figure B-17: Example SIS (threshold 0.9) from ImageNet validation images (top row
of each block) for a vision transformer (ViT). The middle rows show the location of
SIS pixels (red) and the bottom rows show images with all non-SIS pixels masked but
are still classified by the ViT model with ≥ 90% confidence.

7https://github.com/lukemelas/PyTorch-Pretrained-ViT
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B.6.5 SIS for SimCLR ResNet50

We applied Batched Gradient SIS to a ResNet50 model trained using the SimCLR

contrastive learning framework (Chen et al., 2020). We used a pre-trained ResNet50

(1x) SimCLRv1 model available from GitHub8 converted for PyTorch9, which we

found achieves 68.9% top-1 ImageNet validation accuracy. Note that since this model

does not normalize the input data, here our zeros mask corresponds to a black image.

We found that on an all-zeros input, the mean predicted confidence over all 1000 Im-

ageNet classes was 0.001, and the maximum confidence toward any class was 0.0065.

Figure B-18 shows an example of the resulting SIS.

Figure B-18: Example SIS (threshold 0.9) from ImageNet validation images (top
row of each block) for a pre-trained SimCLRv1 ResNet50 (1x) model. The middle
rows show the location of SIS pixels (red) and the bottom rows show images with
all non-SIS pixels masked but are still classified by the SimCLR model with ≥ 90%
confidence.

8https://github.com/google-research/simclr
9https://github.com/tonylins/simclr-converter
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Appendix C

Additional Details for COVID-19

Vaccine Challenge Study

This appendix contains additional details of methods and results for the material in

Chapter 5. Further results can be found in the Supplementary Material of Carter et al.

(2023), available at: https://www.frontiersin.org/articles/10.3389/fimmu.2023.

1135815/full#supplementary-material.

C.1 Supplementary Methods

C.1.1 Mice

A total of 33 male HLA-A*02:01 human transgenic mice (Taconic 9659) were used

that were between 12 and 16 weeks old when they received their initial immunization.

These CB6F1 background mice carry the MHC class I alleles HLA-A*02:01, H-2-

Kb, H-2-Db, H-2-Kd, and H-2-Dd, and H-2-Ld. The mice carry the MHC class II

alleles H-2-IAd, H-2-IEd, and H-2-IAb. We also immunized a female cohort of the

same transgenic mouse strain (Taconic 9659, 3 mice per vaccine) for immunogenicity

measurement, and results are shown in Figures C-8–C-10.

191

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1135815/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1135815/full#supplementary-material


C.1.2 Tissue Culture and Virus

Vero E6 cells (ATCC, CRL:1586) were grown in minimum essential medium (EMEM,

Gibco) supplemented with penicillin (100 units/mL), streptomycin (100 µg/mL) and

10% fetal bovine serum (FBS). Two strains of SARS-CoV-2 were used in this study,

SARS-CoV-2 (US_WA-1/2020 isolate) and Beta (B.1.351/SA, Strain: hCoV-19/USA/MD-

HP01542/2021). Both viruses were propagated and quantified in Vero E6 cells and

stored at -80 ∘C until needed.

C.1.3 MIT-T-COVID Vaccine Design

MHC Class I Epitopes. Eight peptides from SARS-CoV-2 were selected as a

subset of the MHC class I de novo MIRA only vaccine design of Liu et al. (2021).

We filtered this set of 36 peptides to the 8 peptides predicted to be displayed by

HLA-A*02:01 by a combined MIRA and machine learning model of peptide-HLA im-

munogenicity (Liu et al., 2021). The combined model predicts which HLA molecule

displayed a peptide that was observed to be immunogenic in a MIRA experiment,

and uses machine learning predictions of peptide display for HLA alleles not ob-

served or peptides not tested in MIRA data. Thus, all eight MHC class I peptides in

our vaccine were previously observed to be immunogenic in data from convalescent

COVID-19 patients (Snyder et al., 2020). We further validated that all peptides are

predicted to bind HLA-A*02:01 with high (less than or equal to 50 nM) affinity using

the NetMHCpan-4.1 (Reynisson et al., 2020a) and MHCflurry 2.0 (O’Donnell et al.,

2020b) machine learning models. For inclusion in the assembled construct, the eight

vaccine peptides were randomly shuffled, and alternate peptides were flanked with

five additional amino acids at each terminus as originally flanked in the SARS-CoV-2

proteome. The CD4-2 vaccine epitope produced a CD8+ response, and this may be a

consequence of a contained MHC class I epitope, with candidates including SLINTL-

NDL (HLA-A*02:01 predicted binding 55 nM), ASLINTLNDL (H-2-Db predicted

binding 289 nM), FYTSKTTVASL (H-2-Kd predicted binding 293 nM), FYFYT-

SKTTV (H-2-Kd predicted binding 40 nM), and YFYTSKTTV (H-2-Kd predicted
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binding 56 nM).

MHC Class II Epitopes. Three peptides from SARS-CoV-2 were optimized for

predicted binding to H-2-IAb. We scored all SARS-CoV-2 peptides of length 13–25

using the sliding window approach described in Section 4.1.2 and a machine learning

ensemble that outputs the mean predicted binding affinity (IC50) of NetMHCIIpan-

4.0 (Reynisson et al., 2020b) and PUFFIN (Zeng and Gifford, 2019). We selected

the top three peptides by predicted binding affinity using a greedy selection strategy

with a minimum edit distance constraint of 5 between peptides to avoid selecting

overlapping windows. All three peptides were flanked with an additional five amino

acids per terminus from the SARS-CoV-2 proteome.

The start and end amino acid positions of each vaccine peptide in its origin gene

is shown in Table 5.1. For SARS-CoV-2, peptides are aligned to reference proteins

in UniProt (Consortium, 2019) (UniProt IDs: P0DTC2 (S), P0DTC3 (ORF3a),

P0DTC5 (M), P0DTC9 (N), P0DTD1 (ORF1ab)). All of the epitopes are con-

served over these variants of concern: Alpha (B.1.1.7), Beta (B.1.351), Gamma

(P.1), Delta (21A, 21J, B.1.617.2), Kappa (B.1.617.1), Epsilon (B.1.427, B.1.429),

Iota (B.1.526), Lambda (C.37), Mu (B.1.621) , Omicron (BA.1, BA.2, BA.4, BA.5,

BA.2.12.1, BA.2.75, BQ.1, XBB, XBB.1.5), EU1 (B.1.177).

C.1.4 MIT-T-COVID Vaccine Formulation

Codon optimization for mouse expression of the MIT-T-COVID vaccine construct was

performed using the IDT Codon Optimization Tool (Integrated DNA Technologies).

The resulting nucleic acid sequence is provided in Figure C-1. RNA was synthesized

by TriLink BioTechnologies as a modified mRNA transcript with full substitution

of 5-Methoxy-U, capped (Cap 1) using CleanCap® AG and polyadenylated (120A).

RNA containing lipid nanoparticles were prepared as previously described (Pardi

et al., 2017). Briefly, an ethanolic solution of ALC-0315 (Patent WO2017075531),

cholesterol, distearoylphosphatidylcholine (DSPC), and 2-[(polyethylene glycol)-2000]

N,N ditetradecylacetamide (ALC-0159, Patent Application US14732218) was rapidly
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mixed with an solution of RNA in citrate buffer at pH 4.0 (composition described

in Patent WO2018081480). Physical properties of the LNP such as size and polydis-

persity were assessed by Malvern Zetasizer and encapsulation efficiency by Ribogreen

assay (Life Technologies).

ATG AGG GTC ACA GCT CCT CGG ACC TTG ATC CTC CTT TTG TCT GGT GCT CTT GCA CTG ACT GAG ACT TGG GCC GGG

TCA GGA GGC AGT GGA GGA GGA GGA TCC GGG GGT TAT TTG TAT GCT CTG GTT TAT TTT CTG GGC GGG TCC GGA GGC

GGT GGC TCT GGC GGG AGG TCC AAG AAT CCA CTT CTC TAC GAC GCA AAC TAT TTC TTG TGT TGG CAC ACC AAT GGG

GGG AGC GGT GGC GGA GGA AGC GGT GGG TTC GTG GAC GGA GTT CCC TTT GTT GTT GGT GGG TCA GGC GGA GGA GGC

TCT GGC GGG GCT TAC TAT GTA GGG TAC CTG CAG CCC CGA ACA TTC CTT TTG AAA TAC AAC GAG AAC GGT GGA TCC

GGT GGG GGA GGA AGT GGA GGG TTT CTG AAT AGA TTC ACC ACC ACT CTG GGA GGT TCT GGC GGC GGG GGT TCT GGT

GGA CGG CTG ACT AAA TAC ACA ATG GCC GAT CTT GTT TAC GCA TTG CGG CAT TTT GAT GAG GGA GGC AGT GGC GGA

GGG GGA TCC GGC GGC AGC ATA ATA GCT TAC ACC ATG TCA CTG GGA GGG AGC GGA GGG GGC GGG AGC GGC GGT TTG

CTC CTT TTC GTG ACA GTG TAT AGC CAT CTC CTT CTG GTG GCA GCT GGC CTT GAA GGG GGG AGC GGT GGA GGA GGT

AGC GGT GGC GCC ACT TCT AGG ACA TTG AGT TAC TAT GGG GGC AGC GGA GGA GGA GGT TCT GGA GGC AAG ACC TTC

CCC CCT ACA GAG CCC AAG GGA GGT TCC GGC GGC GGG GGC AGT GGT GGG GAA GAG ATC GCC ATT ATC TTG GCT TCC

TTT AGT GCT TCA ACA AGC GCT TTT GTA GAG ACC GTA AAG GGC CTC GAT TAT GGA GGT TCA GGG GGA GGA GGC TCA

GGT GGG AAG TCA ATA CTG TCT CCT CTT TAT GCA TTT GCA TCA GAG GCT GCA AGA GTT GTC CGA TCC ATT TTT TCT

CGC ACT CTT GGG GGG TCC GGC GGA GGC GGG TCT GGC GGT GTG GAT TAT GGT GCT AGG TTT TAT TTT TAC ACT TCC

AAA ACC ACT GTT GCC TCT CTC ATA AAT ACC CTC AAT GAC CTG GGA GGG TCT GGT GGC GGG GGG AGT GGC GGG AAT

CTT GTT CCT ATG GTT GCA ACA GTA GGA GGT TCC GGA GGG GGT GGC AGC GGA GGA AAG CCA GTG TCC AAG ATG AGA

ATG GCA ACC CCT TTG CTG ATG CAG GCC CTG GGT GGC AGT CTG GGA GGT GGT GGC TCC GGC ATC GTA GGT ATA GTC

GCC GGA CTT GCA GTT TTG GCC GTG GTA GTG ATA GGC GCA GTT GTT GCC ACC GTT ATG TGC CGA CGA AAG AGT TCA

GGC GGC AAG GGT GGT TCT TAC TCC CAA GCT GCA AGC TCC GAC TCC GCT CAG GGG AGT GAT GTT AGC TTG ACT GCA

TGA

Figure C-1: Nucleic acid sequence for assembled vaccine construct in Figure 5-1A.
Codon optimization for mouse expression was performed using the IDT Codon Opti-
mization Tool (Integrated DNA Technologies).
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C.1.5 Animal Immunization

Thirty-three HLA-A*02:01 human transgenic mice were randomly divided into three

groups and immunized twice at three-week intervals with vehicle (PBS/300 mM su-

crose), 10 µg of Comirnaty® vaccine or 10 µg of MIT-T-COVID vaccine. All vaccines

were administered as a 50 µL intramuscular injection. The Comirnaty® vaccine was

wastage vaccine that was diluted for human administration (0.9% NaCl diluent), and

remaining unusable wastage vaccine in vials was flash frozen at -80 ∘C. This wastage

vaccine was later thawed and immediately administered without dilution (50 µL is 10

µg of mRNA). No Comirnaty® was used that could have been administered to hu-

mans. Since Comirnaty® was thawed twice, our results may not be representative of

its best performance. The MIT-T-COVID vaccine was diluted to 10 µg in 50 µL with

PBS with 300 mM sucrose and then administered. In the female unchallenged cohort,

direct peptide immunization was performed to test the importance of mRNA-LNP

delivery. Three mice were immunized with an injection of 14 short synthetic peptides

in the MIT-T-COVID vaccine (15 µg per peptide, 210 µg in total) adjuvanted with

50 µg of high molecular weight polyinosine-polycytidylic acid (Poly(I:C), InvivoGen,

tlrl-pic) in a volume of 150 µL via intramuscular injection. These peptides include

11 MHC class I epitopes and 3 MHC class II epitopes present in the MIT mRNA

vaccine (all Table 5.1 epitopes except CD4-3). CD4-3 was not included during pep-

tide/poly IC immunization and was used as a negative control for immunogenicity

measurement.

C.1.6 Viral Challenge

At two weeks post booster immunization, eight mice of each group were challenged

with 5×104 TCID50/60 mL of SARS-CoV-2 (B.1.351/SA, Strain: hCoV-19/USA/MD-

HP01542/2021) via intranasal (IN) route. Mice were weighted daily and clinically ob-

served at least once daily and scored based on a 1–4 grading system that describes the

clinical well-being. Three mice in each group were euthanized at 2 dpi for assessing

viral loads and histopathology of the lung. The remaining five mice were continued
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monitored for weight changes, other signs of clinical illness, and mortality (if any) for

up to 7 dpi before euthanasia for assessing antibody responses within the blood and

viral loads and histopathology of the lung. Animal studies were conducted at Galve-

ston National Laboratory at University of Texas Medical Branch at Galveston, Texas,

based on a protocol approved by the Institutional Animal Care and Use Committee

at UTMB at Galveston.

C.1.7 Assessment of Mortality and Morbidity

Differentially immunized and challenged mice were monitored at least once each day

for the morbidity and mortality and assigned the clinical scores based on the fol-

lowing: 1: Healthy, 2: ruffled fur, lethargic, 3: hunched posture, orbital tightening,

increased respiratory rate, and/or > 15% weight loss, and 4: dyspnea and/or cyanosis,

reluctance to move when stimulated or > 20% weight loss.

C.1.8 Immunogenicity Measurements

At 14 days post booster immunization, three mice of each group were sacrificed for

harvesting splenocytes in 2 mL R10 medium (RPMI, 10% FBS, 1%P/S, 10 mM

HEPES). Briefly, spleens were homogenized and subjected to filtration onto 40 µm

cell strainers, followed by a wash of strainers with 10 mL PBS and centrifuged at 500 g

for 5 min at 4 ∘C. Cell pellet was resuspended by using 2 mL of 1x red blood cell lysis

buffer (eBioscience) for 2–3 min, followed by a supplement of 20 mL PBS. Resulting

cell suspensions were centrifuged at 500 g for 5 min, resuspended in 2 mL R10 medium

before counting the numbers under a microscope. For a brief in vitro stimulation,

aliquots of 106 cells were incubated with indicated peptide at a final concentration of

1 µg/mL in each well of a 96-well plate. GolgiPlug (5 µg/mL, BD Bioscience) was

added into the culture at 1 hr post stimulation and followed by an additional 4 hrs

incubation. For cell surface staining, cultured splenocytes were resuspended in 40

µL FACS buffer containing fluorochrome-conjugated antibodies and incubated 1 hr

at 4 ∘C followed by cell fixation using Cytofix/Cytoperm buffer (BD Bioscience) for
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20 min at 4 ∘C. Cells were further incubated with fluorochrome-conjugated cytokine

antibodies overnight. The next day, cells were washed twice using 1x Perm/Wash

buffer and resuspended in 300 µL FACS buffer for analysis. For Foxp3 staining,

cells were fixed and permeabilized by Foxp3/Transcription Factor Staining Buffer

Set (Thermo Fisher Scientific) according to the instruction. Fixable Viability Dye

eFluor506 (Thermo Fisher Scientific) was also used in all sample staining to exclude

dead cells from our data analysis. The fluorochrome-conjugated anti-mouse antibod-

ies included: FITC-conjugated CD3 (17A2, Biolegend), efluor450-conjugated CD4

(GK1.5, eBioscience), PE-Cy7-conjugated CD8 (53-6.7, eBioscience), PE-conjugated

IFN-𝛾 (XMG1.2, eBioscience), PerCP-eFlour710- conjugated TNF-𝛼 (MP6-XV22,

eBioscience), APC-conjugated IL-2 (JES6-5H4, eBioscience). For the Foxp3 stain-

ing: Pacific Blue-conjugated CD4 (GK1.5), FITC-conjugated CD25 (PC61), Percp-

Cy5.5-conjugated CTLA4 (UC-10-4B9), PE-conjugated Foxp3 (FJK-16s). For the

CD44+ T cell analysis (female cohort only): FITC-conjugated CD3 (17A2, Biole-

gend), efluor450-conjugated CD4 (GK1.5, eBioscience), PE-Cy7-conjugated CD8 (53-

6.7, eBioscience), APC-conjugated mouse/human CD44 (IM7, BioLegend). Cell ac-

quisition was performed a BD LSR Fortessa and data were analyzed using BD FACS-

Diva 9.0 and FlowJo 10 (FlowJo, LLC). Lymphocytes were defined by SSC-A vs.

FSC-A plots. Singlet cells were defined by FSC-H vs. FSC-A plots. Dead cells were

excluded by positive staining with viability dye. CD4+ and CD8+ T cells were gated

from CD3+ cells. The cytokines secreting CD4+ and CD8+ T cells were then iden-

tified with IFN-𝛾, TNF-𝛼, and IL-2 expression. Boundaries between positive and

negative cells for the given marker were defined by the fluorescence minus one (FMO)

control and adjusted according to the unstimulated splenocyte group. For the Treg

cell gating strategy, CD4+ T cells were gated from CD3+ cells and identified by the

positivity of Foxp3 and CD25 staining.

C.1.9 Viral Titer Assay

For virus quantitation, the frozen lung specimens were weighed before homogeniza-

tion in PBS/2% FBS solution using the TissueLyser (Qiagen), as previously de-
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scribed (Tseng et al., 2007). The homogenates were centrifuged to remove cellular

debris. Cell debris-free homogenates were used to quantifying infectious viruses in

the standard Vero E6 cell-based infectivity assays in 96-well microtiter plates, as we

routinely used in the lab (Tseng et al., 2012). Titers of virus were expressed as 50%

tissue culture infectious dose per gram of tissue (TCID50/g).

C.1.10 Antibody Neutralization Assay

Sera of mice collected at 7 dpi were used for measuring specific antibody responses.

Briefly, sera were heat-inactivated (56 ∘C) for 30 min, were stored at -80 ∘C until

needed. For determining the SARS-CoV-2 neutralizing antibody titers, serially two-

fold (starting from 1:40) and duplicate dilutions of heat-inactivated sera were incu-

bated with 100 TCID of SARS-CoV-2 (US_WA-1/2020 isolate) or Beta (B.1.351/SA,

Strain: hCoV-19/USA/MD-HP01542/2021) at 37 ∘C for 1 h before transferring into

designated wells of confluent Vero E6 cells grown in 96-well microtiter plates. Vero E6

cells cultured with medium with or without virus were included as positive and nega-

tive controls, respectively. After incubation at 37 ∘C for 3 days, individual wells were

observed under the microscopy for the status of virus-induced formation of cytopathic

effect. The 100% neutralizing titers (NT100) of sera were expressed as the lowest di-

lution folds capable of completely preventing the formation of viral infection-induced

cytopathic effect in 100% of the wells.

C.1.11 Serum IgG/IgM Response by ELISA

ELISA was applied to verified serum IgG and IgM responses with SARS-CoV-2

(US_WA-1/2020 isolate) infected Vero-E6 cell lysate. In brief, SARS-CoV-2 infected

Vero-E6 cell lysate was coated on 96-well plate (Corning) at 1 µg/well in PBS for

overnight at 4 ∘C. The plates were blocked using 1% BSA/PBST for 1 h at room

temperature. The 5-fold serial-dilution serum from each mouse (starting at 1:100)

was then added into antigen-coated plates and incubated for 1 h at 37 ∘C. The plates

were then washed three times with PBST (PBS/0.1% Tween-20) followed by incuba-
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tion with 100 µL of anti-mouse IgG and IgM HRP conjugated secondary antibody

(Jackson immunoresearch) (1:2000) for 1 h at 37 ∘C. After three times wash using

PBST, 100 µL of ABTS substrate (Seracare) was added to the plates and incubated

for 30 min in the dark. After stopped by adding 1% SDS. Then absorbance at 405 nm

(OD 405 nm) was measured with the plate reader (Molecular Devices) and analyzed

with GraphPad Prism Version 9.1.2.

C.1.12 RNA Extraction and Quantitative RT-PCR

Lung tissues were weighted and homogenized in 1 mL of Trizol reagent (Invitrogen)

using TissueLyser (Qiagen). The RNA was then extracted using Direct-zol RNA

miniprep kits (Zymo research) according to the manufacturer’s instructions. 500

ng total RNA was then applied to cDNA synthesis using iScript cDNA Synthesis

kit (Biorad) according to the manufacturer’s instructions. The viral genomic RNA,

subgenomic RNA and mice 18s rRNA has then been amplified using iQ SYBR green

supermix (Biorad) and performed using CFX96 real time system (Biorad). The sam-

ples were run in duplicate using the following conditions: 95 ∘C for 3 min then 45

cycles of 95 ∘C for 15 s and 58 ∘C for 30 s. The level of expression was then normal-

ized with 18s rRNA and calculated using the 2−ΔΔ𝐶𝑇 method, as we have previously

described (Tseng et al., 2007; Agrawal et al., 2015).

The primer set for SARS-CoV-2 RNA amplification is nCoV-F (ACAGGTACGT-

TAATAGTTAATAGCGT) and nCoV-R (ATATTGCAGCAGTACGCACACA). SgLeadSARS2-

F (CGATCTCTTGTAGATCTGTTCTC) and nCoV-R (ATATTGCAGCAGTACG-

CACACA) were used for subgenomic SARS-CoV-2 RNA amplification. Mouse 18s

rRNA was served as the internal control and amplified using 18s-F (GGACCAGAGC-

GAAAGCATTTGCC) and 18s-R (TCAATCTCGGGTGGCTGAACGC).

C.1.13 Immunohistochemistry

All slides were prepared by the Histopathology Core (UTMB) into 5 µm paraffin-

embedded sections for immunohistochemistry (IHC). IHC staining and analysis were
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performed by UTMB according to previously published protocols (Tseng et al., 2007;

Yoshikawa et al., 2009). In brief, a standard IHC sequential incubation staining

protocol was followed to detect the SARS-CoV-2 spike (S) protein, CD4+ cells, or

CD8+ cells using a rabbit-raised anti-SARS-CoV-2 S protein antibody (1:5000 dilu-

tion, ab272504, Abcam plc, Cambridge UK), a rabbit monoclonal anti-CD4 antibody

(1:250 dilution, ab183685, ab183685, Abcam plc, Cambridge, UK), and a rabbit mon-

oclonal anti-CD8 antibody (1:500 dilution, ab217344, Abcam plc, Cambridge, UK)

followed by peroxidase-conjugated secondary antibody and 3,3’-Diaminobenzidine

(DAB) substrate kit (MP-7802, Vector Laboratories, Burlingame, CA). Slides were

counterstained with hematoxylin (MHS16-500ML, Sigma-Aldrich Inc., St. Louis,

MO) and antigen expression was examined under 10X and 40X magnifications us-

ing an Olympus IX71 microscope.

CD4+ and CD8+ cell counts were quantified using CellProfiler 4.2.4 (Stirling et al.,

2021). The image analysis pipeline included the following modules: (1) UnmixColors

(for each of DAB and hematoxylin stains), (2) ImageMath (applied to DAB stain

images only; subtract 0.5 from all intensity values and set values less than 0 equal

to 0), and (3) IdentifyPrimaryObjects (require object diameter 20–60 pixels [DAB

stain] or 15–60 pixels [hematoxylin stain]; Global threshold strategy; Otsu threshold-

ing method with two-class thresholding, threshold smoothing scale 1.3488, threshold

correction factor 1.0, lower threshold bound 0.0, upper threshold bound 1.0, no log

transform before thresholding; Shape method to distinguish clumped objects and

draw dividing lines between clumped objects; automatically calculate size of smooth-

ing filter for declumping; automatically calculate minimum allowed distance between

local maxima; speed up by using lower-resolution image to find local maxima; fill

holes in identified objects after declumping only; continue handling objects if exces-

sive number of objects identified).

C.1.14 Statistical Analysis

One-way ANOVA tests were performed in Python using the SciPy package (Virtanen

et al., 2020). Two-way ANOVA and Tukey’s tests were performed in Python using
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the statsmodels package (Seabold and Perktold, 2010). Logrank tests were performed

using GraphPad Prism.

C.2 Supplementary Figures

6 

A B 

Figure C-2: (A) Lung viral RNA level, and (B) lung subgenomic viral RNA level.
Error bars indicate the standard deviation around each mean.
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Figure C-3: All lung samples were subjected to IHC staining for SARS-CoV-2 spike
protein (brown) with hematoxylin counterstain (blue), representative images of which
are shown here. Inset images taken at 40X magnification. Black arrowheads indi-
cate selected areas of viral infection. (a) Specimens immunized with PBS exhibited
extensive staining indicative of viral infection throughout the epithelium of both the
bronchioles and the alveolar sacs, with the viral infection appearing more intense at
2 days post infection (dpi, left) than at 7 dpi (right). Although viral infection is
significantly reduced by 7 dpi, viral antigen was still readily detectable throughout
alveoli. (b) In comparison, specimens immunized with the MIT-T-COVID vaccine
exhibited similarly extensive viral infection at 2 dpi (left) throughout the bronchi-
olar and alveolar epithelia, albeit somewhat reduced in intensity. However, by 7
dpi (right), viral infection was significantly reduced in both extent and intensity,
with brown puncta being detected only in a few alveoli scattered throughout the tis-
sue. (c) Contrasted with both PBS and MIT-T-COVID-immunized specimens, the
Pfizer/BNT-immunized specimens exhibited significantly reduced viral infections at
both 2 (left) and 7 dpi (right). With the exception of a single area at 7 dpi (see
Figure C-4), viral antigen was undetected at both timepoints.
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Figure C-4: Sole region of detectable SARS-CoV-2 spike antigen in alveoli of
Comirnaty®-immunized lung specimens at 7 days post infection. Black arrowhead
indicates infected cell. See also Figure C-3.
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Figure C-5: Lung histopathology. Lungs of mice immunized with MIT-T-COVID (A)
or Pfizer/BNT (B) are compared with those with PBS (C). At 7 dpi, the MIT-T-
COVID-immunized group showed extensive lymphocytic infiltrations in perivascular
regions and spaces around bronchi, bronchioles, and alveoli. There are fewer in-
filtrations found in the Pfizer/BNT or PBS groups and they are only localized at
perivascular regions around bronchi and large bronchioles. There is widespread con-
gestion along with hemorrhage and few foci of thromboembolism (arrow in D) seen
in the Pfizer/BNT group but not others. Bar = 80 µm in A, B and C; Bar = 40 µm
in D.
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Figure C-6: Lung immunohistochemistry for CD4+ cells at 7 dpi. Example CD4+

stain images for (A) MIT-T-COVID, (B) Pfizer/BNT, and (C) PBS-immunized an-
imals. Lung samples were subjected to IHC staining for CD4 (brown) with hema-
toxylin counterstain (blue). Images were taken at 10X magnification. Red outlines
indicate CD4+ cells identified and counted by CellProfiler software (Appendix C.1).
See also Figure 5-4 and Figure C-7.
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Figure C-7: Lung immunohistochemistry for CD8+ and CD4+ cells at 2 dpi. Example
CD8+ stain images for (A) MIT-T-COVID, (B) Pfizer/BNT, and (C) PBS-immunized
animals. Example CD4+ stain images for (D) MIT-T-COVID, (E) Pfizer/BNT, and
(F) PBS-immunized animals. Lung samples were subjected to IHC staining for CD4
(brown) with hematoxylin counterstain (blue). Images were taken at 10X magni-
fication. Red outlines indicate cells identified and counted by CellProfiler software
(Appendix C.1). See also Figure 5-4 and Figure C-6.
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Figure C-8: Vaccine immunogenicity in female mouse cohort (Appendix C.1). (A)
CD8+ T cell responses, (B) CD4+ T cell responses. The CD8 pool includes MHC
class I peptides CD8-1–CD8-8 (Table 5.1). The CD4 pool includes MHC class II
peptides CD4-1, CD4-2, and CD4-3. The Pep pool includes all query peptides in
Table 5.1. Error bars indicate the standard deviation around each mean. 𝑃 values
were computed by one-way ANOVA with Tukey’s test. *𝑃 < 0.05, **𝑃 < 0.01. See
also Figure C-9.
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Figure C-9: Immunogenicity of Peptide/poly IC immunization in female mouse cohort
(Appendix C.1). (A) CD8+ T cell responses, (B) CD4+ T cell responses, and (C)
CD44+ T cell responses. The CD8 pool includes MHC class I peptides CD8-1–CD8-8
(Table 5.1). Mice were immunized with all Table 5.1 epitopes except CD4-3 (negative
control). The CD4 pool includes MHC class II peptides CD4-1, CD4-2, and CD4-
3. The Pep pool includes all query peptides in Table 5.1. Error bars indicate the
standard deviation around each mean. 𝑃 values in (C) were computed by one-way
ANOVA with Tukey’s test. *𝑃 < 0.05, **𝑃 < 0.01, n.s. = not significant. See also
Figure C-8.
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Figure C-10: Lung immunohistochemistry for CD8+ and CD4+ cells in unchallenged
female mouse cohort. (A) Counts of CD8+ and CD4+ T cells expressed as a percent-
age of all nucleated cells visible in each field from lung tissue. Example CD8+ stain
images for (B) MIT-T-COVID, (C) Pfizer/BNT, and (D) PBS-immunized animals.
Lung samples were subjected to IHC staining for CD8 (brown) with hematoxylin
counterstain (blue). Images were taken at 10x magnification. Red outlines in (B)–(D)
indicate CD8+ cells identified and counted by CellProfiler software (Appendix C.1).
Error bars indicate the standard deviation around each mean. 𝑃 values were com-
puted by one-way ANOVA with Tukey’s test. **𝑃 < 0.01, n.s. = not significant.
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Figure C-11: Vaccine immunogenicity interleukin-2 (IL-2) measurements (male co-
hort). (A) CD8+ T cell responses, (B) CD4+ T cell responses. The CD8 pool includes
MHC class I peptides CD8-1–CD8-8 (Table 5.1). The CD4 pool includes MHC class
II peptides CD4-1 and CD4-2. The Pep pool includes all query peptides in Table 5.1
except CD4-3. Error bars indicate the standard deviation around each mean. 𝑃
values were computed by one-way ANOVA with Tukey’s test. **𝑃 < 0.01. See also
Figure 5-2.
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