
Allocating Scarce Resources:
Modeling and Optimization

by
Samuel Gilmour

B.S., University of Auckland (2017)
Submitted to the Sloan School of Management

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Operations Research

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© Samuel Gilmour, 2023. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute, and publicly display copies of the thesis, or release the thesis under an

open-access license.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

May 5, 2023
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nikolaos Trichakis
Associate Professor of Operations Management

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Patrick Jaillet
Dugald C. Jackson Professor of Electrical Engineering and Computer

Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Georgia Perakis

William F. Pounds Professor of Management Science
Co-Director, Operations Research Center



2



Allocating Scarce Resources:

Modeling and Optimization

by

Samuel Gilmour

Submitted to the Sloan School of Management
on May 5, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

There are countless settings in which an authority must choose how to allocate scarce
resources among a set of recipients. Deceased-donor organs must be allocated to
patients, public school spaces to students, and public housing to residents. When
resources are extremely scarce, it is particularly important for the authority to build
an allocation system that achieves an acceptable trade-off between efficiency and
equity. This thesis contributes several models and tools that both support the design
of new allocation systems and extract insight from existing ones. In both cases,
efficiency and equity take center stage.

Chapter 2 considers the problem faced by an authority who allocates resources
according to a scoring system. A scoring system is based on two foundations: a scoring
rule, which is a function that computes scores for each recipient-resource pair based
on some observable properties that relate the pair, and an allocation procedure, which
determines the allocation using only the scores. We introduce a model that allocates a
set of resource types among a set of patient types according to a scoring system, before
presenting several optimization formulations and heuristics that directly optimize the
scoring rule while scaling to practical problem sizes. We also show how a scoring rule
of high quality in the type-based model can fail in a setting where individual recipients
and resources exhibit within-type variation in properties, and suggest approaches that
perform well when allocating individuals.

Moving away from the specific setting of a scoring system, Chapter 3 shows that
the ability for recipients to choose whether to accept or decline the offer of a resource
can act as a hidden source of inequity in an allocation system. We formulate several
game-theoretic models based on two groups of recipients, selective and non-selective,
who display different propensities to accept or decline the offer of a resource. We
define the notion of an equilibrium in these models and provide numerical experiments
showing that inequity can arise directly as a result of the disparity in selectiveness
between recipients.

Chapter 4 studies a mass screening program for SARS-CoV-2 that was imple-
mented in Greece during 2021, in which the Greek National Public Health Organi-
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zation allocated a finite supply of mandatory self-tests among different segments of
the population. We develop a novel compartmental model to describe the dynamics
of the COVID-19 pandemic in Greece, placing particular focus on the testing proce-
dures. We fit the model to detailed data to quantify the overall effectiveness of the
program in reducing hospitalizations and deaths, and also to understand the effects of
several operational decisions. We conclude that self-testing is an extremely important
intervention to consider for pandemic preparedness.

Thesis Supervisor: Nikolaos Trichakis
Title: Associate Professor of Operations Management

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Anyone who has studied economics, even just for a single term in high school, should

be familiar with the concept of resource scarcity. The fact that many resources have

only finite supply means that societies need mechanisms to coordinate how these

resources are allocated among the recipients that demand them. The two most com-

mon mechanisms that operate to this end are markets, in which participants exchange

resources among themselves, and planning systems, whereby resources are allocated

according to some computational procedure supervised by a central authority. In

essence, this thesis studies how to design effective planning systems.

Societies typically choose a mechanism to allocate a particular type of scarce

resource based on ethical principles that prevail at the time. In the present day,

planning systems are considered the most suitable for allocating extremely scarce re-

sources which contribute directly to fundamental human rights such as education and

healthcare, so that the utility derived from these resources is not concentrated in the

hands of those with greater economic power. Deceased-donor organs [1], COVID-19

treatments [2, 3], admissions to public schools, and public housing are some examples

of resources which are allocated using planning systems in most countries around the

world.

Given that a planning system has been chosen to allocate a type of scarce resource,

the fundamental question faced by the authority is: how should the allocation mech-

anism be designed to achieve their goals? Broadly speaking, the authority aims to

17



achieve a system which is efficient, maximizing some notion of utility, and equitable,

minimizing unfairness and disparities in outcomes among recipients. Unfortunately,

these goals are frequently in tension with each other, and arriving at an allocation

mechanism which represents a suitable trade-off requires extreme care [4].

Operations Research (OR) can help authorities design an allocation mechanism

in several ways. First, mathematical models describing the mechanism can be useful

approximations to reality, so as to improve understanding of the trade-off between

efficiency and equity. Second, given such models, tools from optimization can be used

to help the authority tune their allocation mechanism and obtain one which lies on

the frontier of the trade-off between efficiency and equity. This thesis proposes models

for understanding systems and provides tools to optimize them in several settings.

Chapter 2 considers the problem of optimizing a scoring system, which is a par-

ticular type of mechanism in which a score is assigned to each recipient in the system

every time a resource must be allocated. Once the scores have been assigned, the

mechanism allocates the resource only on the basis of the scores. In other words,

given the scores, a scoring system is fully blind to any differences in the properties

of recipients. The chapter begins by proposing a general model of a scoring system

that allocates heterogeneous resource types among heterogeneous recipient types, and

describes some basic steady-state quantities arising in this system.

The chapter proceeds by specifically modeling a priority system, whereby a re-

source is offered to the top-scoring recipient, and formulates the optimization problem

faced by the authority when deciding how to choose the scores. The formulation pro-

vides significant modeling flexibility by remaining solvable to optimality with around

30 recipient and resource types. In the case where more are required, the chapter

describes and analyzes some heuristics for approximating the solution.

The chapter continues by modeling a lottery system, whereby a resource is al-

located randomly among recipients based on their scores. Again, it formulates the

optimization problem faced by an authority choosing the scores, and again, this for-

mulation provides modeling flexibility by scaling to around 15 recipient and resource

types.
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In many allocation systems, recipients are allowed to decline the offer of a resource

and choose to wait for future offers. Chapter 3 shows that this form of recipient

choice can be an important source of inequity. It formulates a general game-theoretic

queueing model based on two groups of recipients, selective and non-selective, who

display different propensities to accept or decline the offer of a resource, and defines

the notion of an equilibrium.

The chapter then instantiates the model with several allocation mechanisms: for

example, one where each individual recipient receives the next offer with equal prob-

ability, and one where their chance is weighted by their waiting time in the system

so far. Numerical testing shows that inequity can arise in these models directly as a

result of the disparity in selectiveness between recipients.

Finally, Chapter 4 considers a more practical setting based around a real-world

dataset. In 2021, at the height of the COVID-19 pandemic, the Greek government

implemented a mass screening program to curb the spread of the virus by requiring

citizens to take self-tests at home. Had the entire population been tested, the cost

would have been prohibitive. Therefore, the government had to choose how to dis-

tribute scarce self-tests among the population to best slow the spread of infection.

This chapter develops a novel compartmental model that describes the spread of a

disease through a population, with a particular focus on the self-testing procedure.

The model was fitted to granular data provided by the Greek National Public

Health Organization (NPHO) and used to quantify the overall impact of the program

on hospitalizations and deaths, ultimately concluding that the program avoided a

significant number of both. In addition, the fitted model was used to understand the

effects of several operational decisions made by the government during the implemen-

tation of the program.

Chapters 2 and 3 describe quite general allocation settings that are relevant for

many types of scarce resource, whereas Chapter 4 describes a very specific setting. In

each case, it is our hope that the models and optimization formulations will be of use

to practitioners who are faced with the difficult problem of designing an allocation

mechanism for their particular scarce resource.
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Chapter 2

Modeling and Optimizing Scoring

Allocation Systems

2.1 Introduction

One type of mechanism for allocating scarce resources that is frequently implemented

in practice is a scoring system. In this type of mechanism, for each resource, an

authority assigns a score to each recipient in the system and then uses a procedure

to allocate the resource to a recipient in a way that depends only on the scores. In

other words, if two recipients have the same score, they are treated as identical by

the allocation procedure.

Though in principle they could be assigned arbitrarily, scores are typically com-

puted using a scoring rule. This is a function that acts on observable properties

relating the recipient-resource pair to produce a number (a score). When a system is

implemented with a scoring rule that can be easily interpreted, it has the attractive

property that allocations are easily understood by its participants.

In addition to the scoring rule, a scoring system also requires a specific procedure

to act on the scores and allocate each resource. Two in particular are common in

practice. A priority mechanism, which allocates each resource to the recipient with the

highest score, is one. Such a system satisfies several fundamental principles of equity

identified by Young [5]. Lottery mechanisms are a different approach to allocation
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that use randomization to appeal to an intuitive human notion of fairness. In this

chapter, we study both priority and lottery systems that make use of a scoring rule.

The main question we focus on is the following: given either a priority or lot-

tery allocation mechanism, how can the authority select a scoring rule to obtain a

desirable allocation? Surprisingly few studies have aimed to answer this question.

Even though scoring rule systems are widely implemented in practice and backed by

sound economic principles, guidance for implementing these systems has therefore

been sparse. This chapter addresses the deficit by providing models and formulations

that can be used by an authority as they attempt to design an effective scoring system

for allocating a scarce resource.

2.1.1 Main Results and Contributions

Section 2.2 describes a general setting for allocating scarce resources with a scoring

rule and develops a fluid approximation model based on heterogeneous recipient and

resource types. Section 2.3 introduces priority allocation, instantiates the optimiza-

tion problem faced by the authority, and proves it to be NP-hard. We present a

mixed-integer program (MIP) formulation with a simple structure and show that the

formulation scales to sizes that are useful for practical modeling purposes. Section 2.4

provides two heuristics for solving this problem approximately, as well as bounds on

their performance. Section 2.5 explains how scoring rules of high quality in the type-

based model can fail when individual recipients and resources exhibit within-type

variation in their properties, and provides an approach to deal with this situation.

In Section 2.6, we introduce lottery allocation, define the optimization problem

faced by the authority, formulate it as a nonconvex quadratic problem, and provide

numerical experiments for a heuristic and an approach for allocating to individuals.

Section 2.7 concludes with a brief discussion on equity in the context of the two

allocation mechanisms.
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2.1.2 Related Literature

As previously mentioned, little effort has been dedicated to the problem of selecting a

scoring rule that maximizes welfare under a given allocation mechanism. Of the few

studies that address the problem, all focus on priority allocation where a resource is

allocated to the recipient with the highest score. They are generally motivated by

applications in organ allocation systems.

Bertsimas, Farias, and Trichakis [6] study the deceased-donor kidney allocation

system with a data-driven optimization approach. They develop a heuristic for finding

a scoring rule that produces an efficient allocation while approximately satisfying ex-

post equity constraints under the priority mechanism. Their procedure first solves a

maximum-weighted bipartite matching problem with equity constraints and uses the

optimal dual variables to compute equity-adjusted reward coefficients for each patient-

organ pair. They then solve a regression problem to describe these coefficients using

a scoring rule. Though they also optimize for the scoring rule, their heuristic does

not attempt to model the mechanics of the allocation mechanism as we do in this

chapter.

Ding, McCormick, and Nagarajan [7] use tools from queuing theory to develop a

type-based model of resources and recipients where the scoring rule is the sum of two

terms: a function of the types of a recipient-resource pair, and an increasing function

of the waiting time within a recipient queue. All resources of a particular type are

allocated to the recipient queue with the highest score. They derive an approximation

to the steady-state behaviour of the system and find a scoring rule that maximizes a

specific objective function which trades off efficiency with equity.

With a discrete stochastic model, David and Yechiali [8] build on Righter [9] to

consider the problem of allocating a finite set of organs among a finite set of patients.

In their setting, the reward obtained by matching an organ to a patient depends only

on a single attribute. While their characterization of the optimal policy allows it to

be interpreted as a scoring rule, our model is concerned with types that are identified

by multiple attributes rather than just one.
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It is also worth highlighting some related work which either entirely sweeps away

the role of the scoring rule or marginalizes its importance. Among this group is a

growing body of recent work that studies how techniques from optimization can be

applied to allocation systems. Shi [10] recognizes that priorities are often optimization

variables for the authority to choose. He proposes and studies a model that allocates

a continuum of customers (split into market segments) to resources using a priority

mechanism, while optimizing over the priorities. The model is general enough to

encompass allocation mechanisms such as the Gale-Shapley deferred acceptance, top

trading cycles, and serial dictatorship algorithms. Ashlagi and Shi [11] and Bodoh-

Creed [12] consider the allocation of heterogeneous resources to customers who have

both a publicly known type and privately known vector of utilities. They optimize

the allocation as a function for each customer type that maps a utility vector onto a

set of allocation proportions over the resources.

In the realm of queueing theory, Afeche, Caldentey, and Gupta [13] consider a

queuing system with a set of heterogeneous customer classes processed by a set of

heterogeneous servers, and seek to find the matching topologies (which are not selected

based on scores) in this bipartite graph which define the Pareto frontier for system

reward and customer delay. Sisselman and Whitt [14] and Mehrotra et al. [15] both

model allocation of calls in a call center and aim to maximize match-specific rewards.

While there is a lack of technical research on the role of scoring rules in allocation

systems, real-world implementations have been studied extensively from the perspec-

tive of their operations: the methods used to choose scoring rules, debates on the

ethics of allocation mechanisms, and the outcomes observed when systems are simu-

lated or implemented in practice. Sparrow [16] reviews a historical example arising

from the demobilization of United States (US) army troops after the Second World

War, in which individual soldiers posted overseas were removed from duty according

to points assigned by a scoring rule. The scoring rule took into account factors such

as the number of dependents of the soldier and their time spent in combat. Been

et al. [17] and Thakral [18] study the public housing allocation system in the US (for

which some regions use a points-based system) and Greely [19] notes that jobs in the
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US civil service have historically been assigned on the basis of a scoring rule. Edwards

[20] describes waitlist systems that operate within the National Health Service (NHS)

in the United Kingdom (UK) and the scoring systems that allocate medical services

to patients on these lists. Zenios, Wein, and Chertow [21] use a simulation model and

data taken from the US to compare various mechanisms for deceased-donor kidney

allocation, among which they include the scoring system used at that time.
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2.2 Allocating Resources with a Scoring Rule

This section describes the resource allocation setting considered in this chapter. We

briefly describe the role of scoring rules in many real-world allocation systems and

then develop a fluid model that leads to tractable (though NP-hard) optimization

problems. This section does not introduce any specific procedures for allocating

resources. It is left for Sections 2.3 and 2.6 to describe the two allocation mechanisms

we study: the priority and lottery mechanisms, respectively.

Our motivation is a setting where an authority must allocate resources among

recipients. In much of the literature on allocation systems, the authority is allowed

complete freedom in choosing which recipient to allocate each resource. Our setting

is different: when a resource arrives, the authority computes a score for each recipient

using a function called a scoring rule which acts on a vector of properties that relates

the recipient-resource pair. An allocation mechanism then allocates the resource to

a recipient only using these scores. This approach is used frequently in practice –

for instance, the kidney allocation system in the US uses a scoring rule that assigns

points to patients for properties such as the number of years they have spent on the

waitlist, and then allocates the next kidney to the patient with the highest score [22].

Throughout the chapter, we specifically consider the setting where resources are

scarce. This statement will soon be made precise when the fluid model is introduced,

but in essence it means that new recipients arrive at a much greater rate than the

resources. Many real-world allocation systems have this characteristic: for instance, in

2020, patients waiting to receive a kidney transplant in the US outnumbered available

kidneys by 5 to 1 [23]. In 2021, low-income families outnumbered available affordable

housing units in some urban centers within the US by up to 6 to 1 [24].

When resources are scarce, it is important that they are allocated in line with

certain axiomatic principles of equity. Young [5] notes that scoring rule systems pro-

vide impartiality : no distinctions are made between recipients except for differences

in their properties. Two recipients who have the same properties will necessarily have

the same scores and therefore will be treated identically by the allocation mechanism.
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He goes on to identify two further principles that are satisfied specifically by the

priority mechanism; we will return to these when appropriate.

2.2.1 Fluid Model

Our model is based on 𝐼 heterogeneous recipient types and 𝐽 heterogeneous resource

types. Figure 2-1 illustrates the setup, which operates as follows. Recipients of type

𝑖 arrive into the system at a rate of 𝜆𝑖 ∈ R+ and enter a queue. Resources of type

𝑗 ∈ [𝐽 ] arrive at a rate of 𝜇𝑗 ∈ R+ and are fractionally allocated across the recipient

queues. Let 𝑥𝑖𝑗 ∈ [0, 1] be the fraction of resource type 𝑗 arrivals that are allocated

to the recipient queue of type 𝑖, meaning that resources are allocated to queue 𝑖 at

a rate
∑︀𝐽

𝑗=1 𝜇𝑗𝑥𝑖𝑗. Assume that 𝜆𝑖 := 𝜆𝑖 −
∑︀𝐽

𝑗=1 𝜇𝑗𝑥𝑖𝑗 ≥ 0 (we will return to the

significance of this assumption soon).

The allocation fractions in x must belong to a set, 𝒳 , so that no more than the

total resources arriving are allocated among the recipient queues:

𝒳 :=

{︃
x ∈ [0, 1]𝐼×𝐽 :

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 1, ∀𝑗 ∈ [𝐽 ]

}︃

Let 𝐿𝑖(𝑡) be the length of queue 𝑖 at some time 𝑡 and 𝛿 > 0 be the next small

unit of time. Within this unit of time, 𝛿𝜆𝑖 individuals join the queue and 𝛿
∑︀𝐽

𝑗=1 𝜇𝑗𝑥𝑖𝑗

individuals leave the queue after receiving a resource. We introduce a new parameter,

𝑞𝑖, to model recipient attrition seen in systems such as organ allocation (where patients

can die or become too sick to receive a transplant). Now, each remaining individual

in the queue decides to leave on their own with probability 𝛿𝑞𝑖, which depletes the

queue by 𝛿𝑞𝑖
(︀
𝐿(𝑡) + 𝛿𝜆𝑖

)︀
. These dynamics allow us to derive an expression for the

rate of change of the length of the queue with time:

𝐿𝑖(𝑡+ 𝛿)− 𝐿𝑖(𝑡) = 𝛿𝜆𝑖 − 𝛿𝑞𝑖
(︀
𝐿𝑖(𝑡) + 𝛿𝜆𝑖

)︀
lim
𝛿→0

[︂
𝐿𝑖(𝑡+ 𝛿)− 𝐿𝑖(𝑡)

𝛿

]︂
= 𝜆𝑖 − 𝑞𝑖𝐿𝑖(𝑡)
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Recipient
Types

Resource
Types

Figure 2-1: Setting for the fluid approximation model, where recipients arrive and
form queues of types while being served by arriving resources (split across queues).

Solving the resulting differential equation for 𝐿𝑖(𝑡) and taking the limit as 𝑡→∞

leaves an expression for the steady-state length of the queue:

𝐿𝑖 =
𝜆𝑖

𝑞𝑖

Finally, let 𝑅𝑖𝑗 ∈ R+ be the reward obtained by allocating a resource of type 𝑗

to a recipient of type 𝑖, and define 𝑟𝑖𝑗 := 𝜇𝑗𝑅𝑖𝑗. The rate of reward earned by the

authority is:
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗

2.2.2 Optimizing Allocation Fractions

So far, we have described a model where fixed allocation fractions give rise to queues

with lengths and an overall rate of earning reward. But our objective is to model a

system that operates with a scoring rule – therefore, allocation fractions should be
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computed based on the scores of each recipient-resource pair, and scores should be

computed based on properties that relate these pairs.

With 𝐾 ∈ N being this number of properties, let f𝑖𝑗 ∈ R𝐾 be the values relating

recipient type 𝑖 with resource type 𝑗. These vectors act as the inputs for the scoring

rule, 𝑠 : R𝐾 −→ R. As a shorthand we use 𝑠𝑖𝑗 = 𝑠(f𝑖𝑗) to refer to the score of recipient

type 𝑖 for resource type 𝑗. An allocation function is simply a function that maps

scores onto allocation fractions:

Definition 2.1 (Allocation Function). An allocation function, defined on a set of

score matrices, 𝒮 ⊆ R𝐼×𝐽 , has the signature x : 𝒮 ↦→ 𝒳 . It maps a matrix of scores

onto a matrix of allocation fractions, and must be scale-free by satisfying the property:

x(𝜃s) = x(s) ∀𝜃 > 0, ∀s ∈ 𝒮

The two allocation functions we define and study correspond to the priority and

lottery allocation mechanisms, and we will define them so that the type-based model

approximates the (deterministic or random) procedure that allocates individual re-

sources to individual recipients.

An allocation function may be defined on all score matrices in R𝐼×𝐽 , but the

authority is the one who actually generates the scores by choosing a scoring rule from

a restricted class to act on the properties. This decision is described in more detail

soon, but for now let 𝒮 ⊆ 𝒮 be the set of scores that the authority can produce.

Now we return to the assumption that 𝜆𝑖 ≥ 0 for each queue 𝑖. When resources

are scarce, it can be expected that the recipient queues in our model do not deplete

regardless of the scores chosen by the authority. This observation motivates the

precise definition of scarcity used in the rest of this chapter:

Assumption 2.1 (Scarce Resources). For some allocation function, x, resources are

assumed to be scarce in the sense that, for every recipient type 𝑖, the following holds:

𝜆𝑖 −
𝐽∑︁

𝑗=1

𝜇𝑗𝑥𝑖𝑗(s) ≥ 0 ∀s ∈ 𝒮
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With all these definitions in place, we now define the central optimization problem

faced by an authority who aims to maximize the rate of reward earned under a

particular allocation function, x, and set of possible scores, 𝒮:

Problem 2.1 (Fluid Model Optimization).

max
s∈𝒮

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗(s) (2.1)

2.2.3 Scoring Rule Considerations

Recall that 𝒮 is produced by giving the authority a set of candidate scoring rules to

choose from. We consider linear rules as the broad set of candidates, but since the

priority and lottery allocation functions are defined on different sets of scores, some

extra restrictions must be placed on these rules depending on the allocation function.

These will be introduced in the relevant sections.

Above all else, a linear scoring rule is interpretable. Choosing a linear rule simply

means specifying a weight vector w ∈ R𝐾 so that 𝑠(f𝑖𝑗) = w⊺f𝑖𝑗 with the interpretation

that 𝑤𝑘 is the marginal score assigned for a unit increase in the value of the 𝑘th

property in f𝑖𝑗. This information is easily digested by the recipients in an allocation

system, and it contributes to explaining why linear scoring rules have been so widely

adopted in real-world systems. Regardless, if we wish to assign scores based on a

nonlinear function of the properties then an extra component that computes this

nonlinear function can simply be appended to f𝑖𝑗.

Throughout this chapter, we will place almost no extra restrictions on the linear

scoring rules. However, in practice, it may be desirable to impose some constraints:

for example, a cardinality constraint on the number of nonzero weights. Many useful

constraints can easily be incorporated within our optimization formulations without

significant impact on the techniques used to solve them.
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2.3 Priority Allocation

This section introduces the priority allocation function, which is designed to model

the allocation procedure in real-world allocation systems where each resource is allo-

cated to the top-scoring recipient. We will define the allocation function, analyze the

optimization problem faced by the authority, and present some numerical results.

First, we note two observations made by Young [5]. As well as the principle of

impartiality that has been described, allocating resources using a priority mechanism

satisfies the principle of consistency. This means that two recipient types 𝑖 and 𝑖′

will be allocated a particular resource type in the same way regardless of the other

recipients in the system – certainly a desirable property for an allocation system.

Young [5] also notes that when linear scoring rules are used in a priority mecha-

nism, the resulting system is separable: scores do not exhibit complementary effects

between properties. To be precise – fix a resource type 𝑗 and suppose we have two

arbitrary pairs of recipient types: 𝑎, 𝑏 ∈ [𝐼] and 𝑐, 𝑑 ∈ [𝐼]. Each pair is identical

in properties 3 through 𝐾 (though possibly different between the pairs). Now let 𝑎

match 𝑐 in the first two properties (𝑓𝑎𝑗1 = 𝑓𝑐𝑗1 and 𝑓𝑎𝑗2 = 𝑓𝑐𝑗2) and the same for 𝑏 and

𝑑. A scoring mechanism is separable if 𝑠𝑎𝑗 ≥ 𝑠𝑏𝑗 ⇐⇒ 𝑠𝑐𝑗 ≥ 𝑠𝑑𝑗. Though some alloca-

tion settings may indeed be better suited to inseparable mechanisms, it is important

to note that complementary effects can still be modelled by amending f𝑎𝑏 with extra

properties that are computed based on a function of the original properties.

The priority allocation function, retaining notation as x, can be applied to any

matrix of scores. Accordingly, we set 𝒮 = R𝐼×𝐽 . Letting ℐ𝑗 = argmax𝑖∈[𝐼](𝑠𝑖𝑗) be the

top-ranked recipient types for resource type 𝑗, the priority allocation function is:

𝑥𝑖𝑗(s) =

⎧⎪⎨⎪⎩1 𝑖 ∈ argmax𝑘∈ℐ𝑗(𝑟𝑘𝑗)

0 otherwise

𝑥𝑖𝑗(s) is equal to 1 whenever recipient type 𝑖 is top-scoring for resource type 𝑗 and

also wins a tiebreaker by having the highest reward of all top-scoring queues. Note

that this function is not well-defined when there are two top-scoring queues that are
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also tied in the reward tiebreaker. We leave it up to implementation on how to deal

with these secondary ties given that any method does not impact the reward earned.

Without secondary ties, x certainly satisfies the required signature x : 𝒮 ↦→ 𝒳 , whilst

being scale-free. It is therefore a valid allocation function according to Definition 2.1.

In the fluid model, this allocation function assigns all resources to their top-ranked

recipient queue. It is therefore useful for modeling systems such as the previously-

described organ allocation systems under the assumption of resource scarcity.

Finally, a restriction must be placed on the candidate scoring rules from which the

authority chooses. Since setting w = 0 results in a score matrix of zeroes and x(0)

simply picks the recipient type with the highest reward for each resource type, we

ignore the trivial w = 0 rule. The set of scores available to the authority is therefore:

𝒮 = [w⊺f𝑖𝑗 : w ̸= 0]

It is possible that some problem instances admit other rules that produce the score

matrix of zeroes (or some other constant matrix) – we comment on how to deal with

these in Section 2.3.2, but eliminating w = 0 means this situation does not occur in

every instance and therefore allows us to establish some complexity results.

2.3.1 Complexity of Optimization

This definition of x and 𝒮 combined with Problem 2.1 gives rise to a well-defined

optimization problem. This subsection characterizes the complexity of the problem

both intuitively (with an example) and formally (with a result showing it is NP-hard).

First, though, some new notation is required. The priority allocation function

ensures that each 𝑥𝑖𝑗(s) ∈ {0, 1} and it is therefore convenient to introduce a tuple

y = (𝑖1, . . . , 𝑖𝐽) when referring to an allocation where 𝑥𝑖𝑗𝑗 = 1 for each resource type

𝑗. This notation allows a feasible allocation to be easily defined:

Definition 2.2. y = (𝑖1, . . . , 𝑖𝐽) is feasible under the priority allocation function if:

∃s ∈ 𝒮 : 𝑥𝑖𝑗𝑗(s) = 1, ∀𝑗 ∈ [𝐽 ]
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Much of the difficulty in solving the optimization problem is due to the fact that

only a subset of all allocations are feasible for any given instance of the problem.

In fact, Proposition 2.1 provides a basic characterization of the feasible allocations

in terms of the polyhedral structure of the property vectors. A proof is included in

Appendix A.1.

Proposition 2.1 (Characterization of Feasibility). Let 𝒫𝑗 = conv({f1𝑗, . . . , f𝐼𝑗}) be

a polytope defined for each resource type, 𝑗 ∈ [𝐽 ]. Let also y = (𝑖1, . . . , 𝑖𝐽) be some

allocation. Then y is feasible if and only if
∑︀𝐽

𝑗=1 f𝑖𝑗𝑗 is an extreme point of
∑︀𝐽

𝑗=1𝒫𝑗.

Unfortunately, this restricted set of feasible allocations can contain local optima,

in the sense that a feasible allocation may have an objective value strictly greater

than all its neighbours in
∑︀𝐽

𝑗=1𝒫𝑗 without being the global optimum. Example 2.1

gives an illustration of such local optima – which, at an intuitive level, are the main

sources of complexity in the problem. When combined with the observation that the

number of extreme points in the sum of 𝐽 polytopes may increase exponentially in 𝐽

[25], we are left with a complex search space of exponential size that contains local

optima.

Proposition 2.2 establishes that the problem is, in fact, NP-hard. A proof using a

reduction from the Maximum Feasible Linear System (MAX-FLS) problem studied

by Amaldi and Kann [26] is included in Appendix A.2.

Proposition 2.2 (NP-Hardness of Optimization). Problem 2.1, paired with the pri-

ority allocation function, is NP-hard when its input size is measured in the number

of resource types, 𝐽 .

Amaldi and Kann [26] provide a simple algorithm that approximates MAX-FLS

within a constant factor of 2 and also show that the problem cannot be approximated

arbitrarily well. Unfortunately, these results do not easily extend to our problem. In

Section 2.4 we describe two heuristics which provide good practical performance and

establish some elementary performance bounds – but results with similar strength as

those available for the MAX-FLS problem remain elusive.
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Figure 2-2: Example demonstrating a local optimum in the optimization problem
with the priority allocation function.

Example 2.1. Consider a case where 𝐼 = 6, 𝐽 = 2, 𝐾 = 2. The problem data take

the structure shown in Figure 2-2. In this illustration, the left-hand and center groups

of points correspond to properties for the first and second resource types respectively,

and the right-hand group of points is the set of extreme points of the sum 𝒫1 + 𝒫2.

Red labels are the recipient type indices and black labels are the reward coefficients

for the pair. 𝛿 > 0 is a small positive constant.

It is immediately clear that, for example, the allocation y = (3, 5) is infeasible:

if recipient type 3 is selected for the first resource type, recipient type 5 cannot be

selected for the second resource type. This allocation does not correspond to an

extreme point of 𝒫1 + 𝒫2.

A greedy algorithm that begins by choosing either recipient type 3 for resource

type 1 or recipient type 5 for resource type 2 will find itself stuck in a local optimum

within 𝒫1+𝒫2, because these choices prevent any reward from being obtained for the

other resource type. The optimal decision is to pick w = (−1, 0) which leads to an

allocation y = (1, 1) and reward of 2 + 2𝛿.
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2.3.2 Optimization Using a MIP

Even though the problem is NP-hard, this subsection shows that it admits formulation

as a linear MIP. It is useful to first introduce a group of sets that divide the set of

linear scoring rules the authority may choose from:

𝒲𝑖𝑗 =
{︀
w ∈ R𝐾 : w⊺(f𝑖𝑗 − f𝑖′𝑗) ≥ 0, ∀𝑖′ ̸= 𝑖

}︀
∖ {0}

𝒲𝑖𝑗 is the set of scoring rules for which recipient type 𝑖 is top-scoring for resource

type 𝑗. Our formulation in Problem 2.2 makes use of the binary variables 𝑥𝑖𝑗 ∈ {0, 1}

for 𝑖 ∈ [𝐼] and 𝑗 ∈ [𝐽 ] and constrains them so that 𝑥𝑖𝑗 = 1 if and only if the chosen

linear scoring rule w is contained in 𝒲𝑖𝑗.

Problem 2.2 (Priority Allocation Optimization).

max
w, x

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗 (2.2a)

subject to e⊺w = 1 (2.2b)

𝑠𝑖𝑗 = w⊺f𝑖𝑗 ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (2.2c)

𝑠𝑖𝑗 − 𝑠𝑖′𝑗 ≥𝑀(𝑥𝑖𝑗 − 1) ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑖′ ̸= 𝑖 (2.2d)

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ [𝐽 ] (2.2e)

x ∈ {0, 1}𝐼×𝐽 (2.2f)

To confirm that this formulation is correct, suppose we have computed scores

using a scoring rule w ∈ 𝒲𝑖𝑗. It follows that 𝑠𝑖𝑗 − 𝑠𝑖′𝑗 ≥ 0 for all 𝑖′ ̸= 𝑖, allowing

the constraint in (2.2d) to be satisfied when setting 𝑥𝑖𝑗 = 1. On the other hand, if

w /∈ 𝒲𝑖𝑗 then there is some 𝑖′ for which 𝑠𝑖𝑗−𝑠𝑖′𝑗 < 0 and setting 𝑥𝑖𝑗 = 0 is required to

ensure the constraint holds. Note also that (2.2e) ensures at most one recipient type

is matched with each resource type in case there is a tie for the top-ranked queue, and
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the objective ensures that this tie is broken by selecting the match with maximum

reward.

It is impossible to exactly model the requirement that w ̸= 0 in a MIP, but (2.2b)

at least makes this solution infeasible. Since the allocation function is scale-free, the

search space effectively covers all scoring rules with e⊺w > 0, while eliminating those

with e⊺w ≤ 0. The MIP can be solved a second time with e⊺w = −1 to cover

e⊺w < 0, and covering e⊺w = 0 can be achieved by solving with a small perturbation

of the properties.

An instance of this problem can clearly have multiple optimal solutions. Suppose

that w* is an optimal scoring rule to 2.2 which produces an allocation y* = (𝑖*1, . . . , 𝑖
*
𝐽).

If y* is the unique optimal allocation, then the set of optimal scoring rules is given

exactly by (2.3):

𝒲* =

(︃
𝐽⋂︁

𝑗=1

𝒲𝑖*𝑗 𝑗

)︃
(2.3)

On the other hand, if y* is not the unique optimal allocation, then𝒲* is a subset

of the optimal rules.

Finally, a remark on the structure of the properties. Let F refer to the matrix

formed by stacking values of corresponding properties across all recipient and resource

types:

F :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓111 . . . 𝑓11𝐾
... . . . ...

𝑓𝐼11 · · · 𝑓𝐼1𝐾

𝑓121 · · · 𝑓12𝐾
... . . . ...

𝑓𝐼𝐽1 . . . 𝑓𝐼𝐽𝐾

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With this notation, Fw ∈ R𝐼𝐽 gives the scores for each recipient-resource type

pair in vector form. If the columns of F are linearly dependent, then there exists some

w ̸= 0 so that Fw = 0. It is also possible that there is some w which results in all

scores being identical and nonzero. Both cases are unlikely to happen in practice if

it is assumed that 𝐾 << 𝐼𝐽 . But if Problem 2.2 is solved and all scores are returned
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identical, a small 𝜖 > 0 can be added to (2.2d) to require that the top-scoring recipient

type has strictly the highest score.

2.3.3 Computational Experiments

The scalability of the formulation was tested on randomly generated data. We used

𝐼 = 𝐽 (the same number of recipient and resource types) with 𝐾 ∈ {5, 10}. All

elements in F and r were generated independently and uniformly at random on the

unit interval [0, 1]. For each configuration of parameters, we generated 5 independent

problem instances and solved the formulation in Problem 2.2 with a time limit of 5

hours. All tests were conducted on an Intel Xeon 2.1 GHz quad-core CPU with 32

GB of RAM and solved with Gurobi 9.1.1.

Figure 2-3 shows how the range of solution times changed as the number of re-

cipient and resource types in the instance increase. Problems with up to 30 types for

𝐾 = 5 and up to 25 types for 𝐾 = 10 could be solved to provable optimality within

the time limit.

Figure 2-4 shows how the range of optimality gaps changed as the number of

recipient and resource types varied. Optimality gaps grew quickly once the problem

could not be solved within 5 hours. When 𝐾 = 10 and the number of types grew to

50, optimality gaps were between 35% and 50%.
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Figure 2-3: Ranges of solution times for Problem 2.2 when instances were solved to
optimality. The dashed line indicates the 5 hour time limit.
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Figure 2-4: Ranges of the optimality gap for Problem 2.2 after the 5 hour time limit.
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2.4 Heuristics for Priority Allocation

Though the MIP for priority allocation can be solved optimally for moderately-sized

instances with a reasonable number of properties, it is useful to have heuristics that

provide good solutions for larger instances. This section describes two, and provides

performance bounds and experiments showing when each should be applied.

2.4.1 Projection Heuristic

The first heuristic finds a scoring rule that produces scores which are close to the

rewards by projecting r onto 𝒮. It is similar to the approach of Bertsimas, Farias,

and Trichakis [6], who solve a least-squares problem to project their equity-adjusted

rewards onto the scores that can be produced by the authority in their setup.

In our setting, the motivation for this heuristic is the following: suppose there

is a scoring rule ŵ ∈ R𝐾 for which f⊺𝑖𝑗ŵ = 𝑟𝑖𝑗 for all 𝑖 ∈ [𝐼] and 𝑗 ∈ [𝐽 ]. Then,

since it guarantees the top-ranking recipient type has the highest reward for each

resource type, this scoring rule is optimal. If we instead find scores that are close to

the rewards, they may be good (rather than optimal).

In this section it is more convenient to represent rewards and properties by stacking

their components. Recall the previous notation used for the properties, F, and let

similar notation for the rewards be:

r := (𝑟11, . . . , 𝑟𝐼1, 𝑟12, . . . , 𝑟𝐼𝐽)

The projection solution for our setup is defined when F has linearly independent

columns (a mild assumption) and is given in Definition 2.3. Note that the projection

solution is not defined when F⊺r = 0, or equivalently r ⊥ colspace(F).

Definition 2.3 (Projection Solution). The projection solution, ŵ(F, r) ∈ R𝐾 ∖ {0},

is obtained by solving:

ŵ(F, r) := argmin
w∈R𝐾

1

2
||Fw − r||22 = (F⊺F)−1F⊺r
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Figure 2-5: Example where projection fails. 𝑟1 > 𝑟2, so projection generates reward
𝑟1 = 0. However, there is a scoring rule −ŵ with −𝑟1 < −𝑟2, so it is possible for the
authority to earn 𝑟2 = 1.

In general the projection solution can be arbitrarily far from optimality. Figure 2-5

illustrates a problem instance where projection fails for 𝐼 = 2, 𝐽 = 1, 𝐾 = 1.

In Figure 2-5, the angle 𝛾 between r and 𝒮 is large and contributes to how poorly

the projection solution performs. 𝛾 is a measure of how well the properties describe

the rewards. If 𝛾 = 0, then the properties can perfectly reproduce the rewards,

whereas if 𝛾 = 𝜋
2
, then the properties provide no information about the rewards. We

bound the performance of the projection heuristic in terms of 𝛾, which is defined for

the angle between a vector r and score set as:

𝛾 = cos−1

(︂
max
s∈𝒮

r⊺s

||r|| · ||s||

)︂
(2.4)

The bounds consider a single resource type (𝐽 = 1) and drop the corresponding

subscript. The bound in Proposition 2.3 (with a proof in Appendix A.3) extends

easily to the case 𝐽 > 1 when the result is interpreted as a per-resource-type bound.
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Proposition 2.3. Let 𝐽 = 1, and the projected reward coefficients be given by r̂ ∈ R𝐼

with 𝑟1 ≥ 𝑟2 ≥ . . . ≥ 𝑟𝐼 . Let 𝛾 be the angle between r and 𝒮 as in (2.4).

Let 𝑧* be the optimal objective value of Problem 2.2, and let 𝑧 be the objective value

of the projection solution. The following bound holds for any angle 0 ≤ 𝛾 < 𝜋/2:

𝑧* − 𝑧

||r||
≤ max

(︂
0,

𝑟2 − 𝑟1
||r̂||

+
√
2 sin(𝛾)

)︂

A second proposition writes the RHS in terms of r only:

Proposition 2.4. Let 𝐽 = 1, and the projected reward coefficients be given by r̂ ∈ R𝐼

with 𝑟1 ≥ 𝑟2 ≥ . . . ≥ 𝑟𝐼 . Let 𝛾 be the angle between r and 𝒮 as in (2.4).

Let 𝑧* be the optimal objective value of Problem 2.2, and let 𝑧 be the objective value

of the projection solution. The following bound holds for any angle 0 ≤ 𝛾 < 𝜋/2:

𝑧* − 𝑧

||r||
≤ max

(︂
0,

𝑟2 − 𝑟1
||r||

+ 2
√
2 sin(𝛾)

)︂

The left-hand side of the bound does not have the most intuitive interpretation.

Ideally, we would like to produce a bound on (𝑧* − 𝑧)/𝑧* that measures the relative

optimality gap. But in the absence of such a result, ||r|| replaces the denominator

and acts as a proxy for the optimal value of Problem 2.2. The key observation to

make is that the right-hand side increases with a known function of 𝛾, and decreases

with larger separation in the scores of the two top-ranked types.

The bound we have derived is tight for any fixed 0 ≤ 𝛾 ≤ 𝜋/4, in the sense that

an example can be constructed with property vectors F so that the left-hand side

is arbitrarily close to the right-hand side in Proposition 2.3. Example 2.2 illustrates

this observation. For 𝛾 > 𝜋/4, the bound is not necessarily tight.
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Example 2.2. For a fixed 𝛾 > 0, a single resource type (𝐽 = 1), four recipient types

(𝐼 = 2) and one property (𝐾 = 1), consider a property vector and r̂ given by:

r̂⊺ = F⊺ =

(︂
1√
2
+ 𝜖,

1√
2

)︂

where 𝜖 > 0 is a small positive number. Note that a basis for the subspace orthogonal

to 𝒮 is:

G ≈

⎡⎣−1√
2

1√
2

⎤⎦
The projection solution r̂ ranks recipient type 1 highest, so the reward it obtains

is given by 𝑟1. On the other hand, there is a scoring rule (w = (0, 1)) under which

type 2 is ranked highest. So for any r, its absolute suboptimality is max(0, 𝑟2 − 𝑟1).

Now consider an adversary who constructs r to make r̂ perform as poorly as

possible, and with the angle between r and r̂ no more than 𝛾. Therefore they aim to

solve:

max
𝛿≤tan(𝛾)

(︂
𝑟1 − 𝛿

1√
2

)︂
+

(︂
𝑟2 + 𝛿

1√
2

)︂
For 𝛾 ≤ 𝜋

2
, they will choose 𝛿 = 1 and r ≈ (0,

√
2). The absolute suboptimality is

𝑟2 − 𝑟1 =
√
2, and we have:

𝑧* − 𝑧

||r||
≈
√
2√
2
≈ max

(︂
0,

𝑟2 − 𝑟1
||r̂||

+
√
2 sin(𝛾)

)︂
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2.4.2 Lookahead Heuristic

The projection heuristic is a geometric approach to solving the problem, but we can

also frame the problem as a sequence of individual allocations and make use of a

combinatorial approach. This section describes such an approach and calls it the

lookahead heuristic. It requires some new notation and a definition of the problem as

a sequence of decisions – ultimately leading to formulation with a Bellman equation.

Note that a complete allocation can be constructed in 𝐽 steps, where at each step

a resource is selected and allocated to a recipient. At the conclusion of this process we

must be left with a feasible allocation, which can be ensured by maintaining feasibility

of the partial allocation as it is built up.

To this end, we let a partial allocation that has been produced in 𝐷 steps be

denoted by z𝐷 := {(𝑖1, 𝑗1), . . . (𝑖𝐷, 𝑗𝐷)}. Here, 𝑗𝑑 is the 𝑑th resource to be allocated

and 𝑖𝑑 is the recipient which was allocated this resource. The set of scoring rules

which are consistent with this partial allocation is:

𝒲𝐷 =
𝐷⋂︁

𝑑=1

𝒲𝑖𝑑𝑗𝑑

and the set of recipients (say ℐ𝑗) which can therefore be selected for some 𝑗 ∈ 𝒥 to

extend the partial allocation and maintain feasibility is given by:

ℐ𝑗 = {𝑖 :𝒲𝑖𝑗 ∩𝒲𝐷 ̸= ∅}

Now let the value function 𝑓(z𝐷) be the maximum reward that can be earned

when resources 𝒥 := [𝐽 ] ∖ {𝑗1, . . . , 𝑗𝐷} must be allocated to complete the partial

allocation z𝐷. The Bellman equation describing the optimal structure of the problem

is:

𝑓(z𝐷) = max
𝑗∈𝒥 , 𝑖∈ℐ𝑗

[︀
𝑟𝑖𝑗 + 𝑓(z𝐷 ∪ {(𝑖, 𝑗)})

]︀
This equation says the following: at each step, the authority must choose a re-

source that has not been allocated (𝑗 ∈ 𝒥 ) and a recipient who can be matched to
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this resource when restricted to scoring rules that are consistent with the partial al-

location (𝑖 ∈ ℐ𝑗). Their choice should maximize the sum of the reward obtained due

to the pair and the reward that can be obtained by completing the partial allocation.

While 𝑓(z𝐷) cannot be computed directly, it is possible to compute an upper

bound that helps to define the lookahead heuristic. This upper bound, denoted by

𝑓(z𝐷), is simple: the sum of the maximum rewards that may be obtained for each

remaining resource in 𝒥 while choosing only from scoring rules that are consistent

with the partial allocation z𝐷:

𝑓(z𝐷) =
∑︁
𝑗∈𝒥

max
𝑖∈ℐ𝑗

𝑟𝑖𝑗

The lookahead heuristic uses this upper bound to repeatedly extend a partial

solution into a full solution by selecting, at each step, the pair which maximimizes

the following expression:

max
𝑗∈𝒥 , 𝑖∈ℐ𝑗

[︀
𝑟𝑖𝑗 + 𝑓(z𝐷 ∪ {(𝑖, 𝑗)})

]︀
Proposition 2.5. The lookahead heuristic approximates the optimal solution within

a factor of 𝐽 − 1. This bound is (arbitrarily) tight.

A proof for the first part of Proposition 2.5 is included in Appendix A.4. Exam-

ple 2.3 provides a tight example for 𝐽 = 3 (which is easily extended for 𝐽 > 3) where

the lookahead heuristic approximates the optimal solution within a factor arbitrarily

close to 2.

It is also worth noting that the lookahead heuristic finds the optimal solution when

the data are generated with 𝛾 = 0. The argument is straightforward: when 𝛾 = 0,

𝑓(z𝐷) = 𝑓(z𝐷) for any partial solution z𝐷, so the lookahead heuristic will pick pairs

in decreasing order of their reward. It is difficult to find a bound on suboptimality

for the lookahead heuristic in terms of 𝛾, but this observation is the reason for testing

the two heuristics on problem instances parameterized by 𝛾 in the next section.
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Figure 2-6: Problem data for the lookahead example. Each separate diagram shows
the reward coefficients and structure of the 𝒲𝑖𝑗 sets for a resource type 𝑗.

Example 2.3. Suppose 𝐼 = 4 and 𝐽 = 3. Figure 2-6 provides an alternative repre-

sentation of the problem data: instead of being in terms of the property vectors, f𝑖𝑗,

it shows the sets 𝒲𝑖𝑗 where recipient 𝑖 is the top-scoring type for resource 𝑗. The

corresponding pair (𝑖, 𝑗) is denoted by the reward coefficient for this match.

The lookahead heuristic begins with z0 = ∅. The unique choice for the first match

is z1 = {(1, 1)} since this produces 𝑟11+𝑓({(1, 1)}) = 2 and it can be readily observed

that no other selection is able to match this value.

But the partial solution z1 can only gain a reward of one unit (from either (1, 2)

or (4, 3)) when completed into a full solution. Compared with the optimal solution

z = {(3, 1), (3, 2), (3, 3)} with an objective value of 2− 2𝛿, the approximatoin ratio of

the lookahead solution is 1/(2− 2𝛿).

Essentially, this effect occurs when the first selection made by the lookahead solu-

tion is maximally naive. The example can be easily extended for any 𝐽 > 3 to obtain

an optimality bound arbitrarily close to 1/(𝐽 − 1).
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2.4.3 Numerical Results

We tested the performance of both heuristics on randomly generated data. We used

𝐼 = 𝐽 = 10 and 𝐾 = 5 so that the MIP formulation could be solved to optimality

and the exact optimality gap of each heuristic could be measured. All elements in F

were generated independently and uniformly at random on the unit interval [0, 1]. A

random point r̂ ∈ 𝒮 was generated along with 𝛿 ∈ 𝒮⊥ such that ||𝛿||2 = 1. Then, 𝛾

was selected uniformly at random from the interval [0, 𝜋
2
] and the reward coefficients

were set to be r = r̂ + ||r̂|| tan(𝛾)𝛿 so that the angle between r̂ and r was 𝛾. We

generated 500 of these problem instances and solved the formulation in Problem 2.2

to optimality before comparing with the projection solution.

Figure 2-7 shows the optimality gap achieved by the two heuristics on each of

the problem instances. The fitted line is from a Loess regression model and shaded

band is the single standard error range. When 𝛾 ≈ 0, both heuristics are optimal.

When 𝛾 = 𝜋
8
= 22.5∘, the optimality gaps within a single standard error of a Loess

regression model are between 2% and 13% for the lookahead heuristic and between

12% and 30% for the projection heuristic. At 𝛾 = 𝜋
4
= 45∘ they are between 10% and

33%, and 45% and 75% respectively. Though a bound on performance in terms of

𝛾 could not be found for the lookahead heuristic, it is the better performer in these

experiments.
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Figure 2-7: Optimality gap for the two heuristics applied to Problem 2.2 as the value
of 𝛾 varied.
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2.5 Scoring Rules for Individual Allocation

In practice, scoring systems allocate individual resources to individual recipients.

Our type-based model is an accurate one in systems where every individual can be

assigned to a types and individuals with the same type share identical properties.

On the other hand, there are systems where this is not possible and individuals

which share a type only have similar properties. The kidney allocation system in

the US includes time spent on the waiting list as a property, and since this variable

is continuous, individuals cannot be divided into a small set of types which share

identical properties. This section explains how the MIP and heuristics for priority

allocation optimization may fail when used in this type of system, and suggests an

approach to find a more appropriate scoring rule.

2.5.1 Modeling Individual Allocation

We first establish a model which allocates individual resources to individual recipients

and use it to make the idea of a discrepancy relative to the previous type-based model

more precise. The model is very simple, allocating a finite set of resources to a finite

set of recipients, but the ideas it illustrates are relevant even when the model is

extended to a more complicated setting with stochasticity and infinite streams of

recipient and resource arrivals.

Individual resources are indexed by ℬ and individual recipients by 𝒜. The prop-

erties relating a pair of individuals, (𝑎, 𝑏) ∈ 𝒜 × ℬ, are denoted f𝑎𝑏 ∈ R𝐾 . For some

fixed scoring rule 𝑠 : R𝐾 −→ R, the score relating two individuals is 𝑠𝑎𝑏 = 𝑠(f𝑎𝑏) and

the reward obtained by a match is 𝑟𝑎𝑏 ∈ R+.

The model retains the notion of types: 𝐼 recipient types and 𝐽 resource types.

Let the type of recipient 𝑎 be 𝛼𝑎 ∈ [𝐼] and the type of resource 𝑏 be 𝛽𝑏 ∈ [𝐽 ]. Assume

that it is possible to find a representative property vector that relates a pair of types,

(𝑖, 𝑗) ∈ [𝐼] × [𝐽 ], and call this f𝑖𝑗 ∈ R𝐾 . In keeping with this notation, a score

relating two types is 𝑠𝑎𝑏 = 𝑠(f𝑎𝑏) and a representative reward for matching two types

is 𝑟𝑖𝑗 ∈ R+. Let the rate 𝜆𝑖 be the fraction of recipients in 𝒜 who are type 𝑖 (and let
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𝜇𝑗 be computed similarly for the resources).

The procedure for constructing an allocation of individuals is a natural one. Let

ℳ⊆ 𝒜 be the set of recipients who have already been matched, starting withℳ = ∅.

The resources arrive in order. When 𝑏 ∈ ℬ arrives, scores are computed for all

recipients who remain, 𝒜∖ℳ, and an allocation mechanism is applied to these scores

to select a recipient 𝑎 and update ℳ ←− ℳ ∪ {𝑎}. In this context, the allocation

mechanism is a set of functions:

Definition 2.4 (Allocation Mechanism). An allocation mechanism is a family of

(possibly randomized) functions, {𝑔𝑚}|𝒜|
𝑚=1. Each of the functions has the signature:

𝑔𝑚 : R𝑚 ↦→ [𝑚]

𝑔𝑚 takes takes as input the vector of 𝑚 scores from the recipients who are waiting

for a resource, and selects one of these recipients to allocate the next resource.

Let 𝑥𝑖𝑗(w) be the fraction of all individual type 𝑗 resources allocated to individual

type 𝑖 recipients, and note that we have parameterized the input with the scoring rule

rather than scores, since a scoring rule generates an allocation in both the individual

and type-based models. Now, by specifying some allocation function 𝑥𝑖𝑗(w) in the

type-based model and using the properties F, rewards r, and rates 𝜆, 𝜇 previously

defined, we obtain a corresponding type-based model. The discrepancy maps a scoring

rule onto a measure of difference between the individual allocations and the underlying

type-based allocations:

𝑑𝑝(w) = ||x(w)− x(w)||𝑝

2.5.2 Where Do Discrepancies Arise?

Under the priority allocation mechanism, a large discrepancy occurs when within-type

variation in properties (and therefore scores) causes the type of top-ranked individual

recipients to differ from the type-based model. Example 2.4 shows that even arbi-

trarily small within-type variation can lead to a scoring rule that is optimal for the

underlying type-based model performing poorly when used to allocate individuals.
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If a scoring rule leads to a large discrepancy, we must accept that the type-based

model is not a good approximation of the individual allocation under this scoring

rule. On the other hand, if it leads to a small discrepancy then the approximation is

likely a good one. If it is known that the scoring rule is optimal in the type-based

model and that the approximation is good, then we can hope it also performs well

when used to allocate individuals. This chain of reasoning is the basis for the heuristic

presented in the next subsection.
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Figure 2-8: Illustration of the setup in Example 2.4.

Example 2.4. This example preserves notation from 2.2 and uses a set of recipients

𝒜 = {1, 2, 3}. The individual data are:

f1 = (0, 1), 𝑟1 = 2 f2 = (1− 3𝛿, 0), 𝑟2 = 1− 𝛿 f3 = (1 + 𝛿, 0), 𝑟3 = 1 + 𝛿

Red labels indicate property vectors in the approximate dataset, and the small

grey points indicate variation of individuals. There are two recipient types, with

𝛼1 = 1 and 𝛼2 = 𝛼3 = 2. The representative data are taken as the within-type

averages:

f1 = (0, 1), 𝑟1 = 2 f2 = (1− 𝛿, 0), 𝑟2 = 1

The scoring rule w1 = (1, 1) is optimal when Problem 2.2 is solved on the approx-

imate dataset as it ranks recipient 1 (with the maximum reward) highest. But, if w1

is used to allocate resources in the original dataset, recipient 3 has the highest score

and will be allocated the resource (though they do not have the highest reward).

A better scoring rule is w2 = (0, 1). This choice places more weight on the property

that differentiates the two recipient types in the fluid model and separates the scores

of individuals from each type further. Even when the properties of type 2 recipients

vary about f2, the resource will be allocated to a recipient of type 1.
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2.5.3 Minimizing Discrepancy

It is quite natural to form an optimization problem that balances maximizing the

objective of the type-based model with minimizing the discrepancy between the indi-

vidual and type-based models. By letting 𝜂 ≥ 0 determine this trade-off, we obtain:

max
w

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗(w)− 𝜂𝑑𝑝(w)

Clearly, when 𝜂 = 0, the problem reduces to Problem 2.2 and there is a tractable

MIP formulation available. For any other value 𝜂 > 0, the problem is harder to solve

given that x(w) is a complex function that depends on potentially many individual

allocations. After all, if we had a tractable representation, we could simply optimize∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑟𝑖𝑗𝑥𝑖𝑗(w).

However, a tractable problem can be obtained by replacing the discrepancy term

with a surrogate which measures the minimum difference between the top-ranked and

second-ranked scores of the recipient-resource type pairs. Maximizing this quantity

is likely to reduce the size of the discrepancy (by our previous discussion). More

precisely, define:

𝑑(w) = min
𝑗∈[𝐽 ]

(︀
s𝑗(w)(1) − s𝑗(w)(2)

)︀
where s𝑗(w)(𝑖) is the 𝑖th highest-ranked recipient type for resource 𝑗. Our new problem

becomes:

max
w

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗(w) + 𝜂𝑑(w)

𝑑(w) remains a nontrivial function to model. The remainder of this section shows

how to solve the problem efficiently for the regime where 𝜂 → 0, in which case we

obtain a linear program. Appendix A.5 provides a linear MIP formulation for the

general case where 𝜂 > 0.

In particular, when 𝜂 → 0, the problem becomes to maximize 𝑑(s) over the set of

optimal solutions to Problem 2.2, denoted𝒲* and obtained from (2.3). A formulation

to do this is presented in Problem 2.3.
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Problem 2.3 (Margin Formulation).

max
w, s, 𝛾, 𝑧

𝑧 (2.5a)

subject to 𝑧 ≤ 𝑠𝑖*𝑗 𝑗 − 𝛾𝑗 ∀𝑗 ∈ [𝐽 ] (2.5b)

𝛾𝑗 ≥ 𝑠𝑖𝑗 ∀𝑗 ∈ [𝐽 ], 𝑖 ̸= 𝑖*𝑗 (2.5c)

𝑠𝑖𝑗 = f⊺𝑖𝑗w ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (2.5d)

w ∈ 𝒲* (2.5e)

Since the objective is to maximize 𝑧, the 𝛾𝑗 terms in (2.5b) are set as small as the

constraints allow. (2.5c) therefore ensures that 𝛾𝑗 takes on the score of the second-

ranked recipient type for resource type 𝑗, and so each right-hand side term in (2.5b)

measures a score difference between the optimal recipient type and the second-ranked

type for that resource type 𝑗. The objective maximizes the minimum difference.

Problem 2.3 does not explicitly take into account the individual variation of recip-

ients and resources around the representative types – it only aims to maximize score

differences according to the representative types themselves. A more useful approach

would take into account the details of the individual variation, whilst also remaining

tractable to solve.

Problem 2.4 is a formulation which addresses this issue. It relies on defining

two well-known functions (for fixed values of 𝐿𝑖𝑗), where 𝒟𝑖𝑗 = {(𝑎, 𝑏) ∈ 𝒜 × ℬ :

𝜎(𝑎) = 𝑖, 𝜎(𝑏) = 𝑗} is the set of pairs of individual recipients and resources with the

corresponding types.

Definition 2.5 (Mean Top-L Function).

𝑔𝑖𝑗(s) = max
t

1

𝐿𝑖𝑗

∑︁
(𝑎,𝑏)∈𝒟𝑖𝑗

𝑠𝑎𝑏𝑡𝑎𝑏

subject to e⊺t = 𝐿𝑖𝑗

t ∈ {0, 1}|𝒟𝑖𝑗 |
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Definition 2.6 (Mean Bottom-L Function).

ℎ𝑖𝑗(s) = min
t

1

𝐿𝑖𝑗

∑︁
(𝑎,𝑏)∈𝒟𝑖𝑗

𝑠𝑎𝑏𝑡𝑎𝑏

subject to e⊺t = 𝐿𝑖𝑗

t ∈ {0, 1}|𝒟𝑖𝑗 |

These functions represent the average of the 𝐿𝑖𝑗 largest and smallest scores respec-

tively, over all property vectors in the original instance associated with a particular

recipient type 𝑖 and resource type 𝑗.

𝑔𝑖𝑗 and ℎ𝑖𝑗 can be formulated as piecewise linear convex and concave functions,

respectively [27], and we use them to define the convex optimization in Problem 2.4

for some fixed values of 𝐿𝑖𝑗. Note that when 𝐿𝑖𝑗 = |𝒟𝑖𝑗|, the functions return the

mean score of the pairing with recipient type 𝑖 and resource type 𝑗. If the mean

function had been used to compute the approximate instance, then we recover the

formulation in Problem 2.3.

Problem 2.4 (Top/Bottom-L Formulation).

max
w, s, 𝛾, 𝑧

𝑧 (2.6a)

subject to 𝑧 ≤ ℎ𝑖*𝑗𝑛
(s)− 𝛾𝑗 ∀𝑗 ∈ [𝐽 ] (2.6b)

𝛾𝑗 ≥ 𝑔𝑖𝑗(s) ∀𝑗 ∈ [𝐽 ], 𝑖 ̸= 𝑖*𝑗 (2.6c)

𝑠𝑖𝑗 = f⊺𝑖𝑗w ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (2.6d)

w ∈ 𝒲* (2.6e)

This formulation modifies Problem 2.3 to take into account only the most influ-

ential individuals for a particular choice of the scoring rule w. The individuals from

suboptimal recipient types who have the highest scores and the individuals from op-

timal recipient types who have the lowest scores are the most likely candidates for
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misclassifications – and it is these which the formulation aims to separate. Since 𝑔𝑖𝑗

and ℎ𝑖𝑗 are piecewise linear functions, the problem may be easily reformulated as a

linear program.

2.5.4 Numerical Experiments

We tested this approach on synthetic data for 𝐼 = 𝐽 = 10 and 𝐾 = 5. Property

vectors for each recipient-resource type pairing were first selected independently and

uniformly at random on [0, 1]𝐾 . Then, the dataset of individuals was generated

by adding zero-mean Gaussian noise with a diagonal covariance matrix whose entries

were generated independently and uniformly at random on [0, 𝜂]𝐾 for some variability

parameter 𝜂 > 0. The rewards were generated as if they were the (𝐾+1)th property.

A baseline scoring rule was obtained by solving Problem 2.2 for the underlying

type-based instance, and this rule was compared to the modified rule returned by

the solution to Problem 2.4. Comparisons were made by using both rules to simulate

allocations on the original data instance with individuals under priority allocation

where each resource was allocated to the top-scoring recipient in the system at that

point. The values of 𝐿𝑖𝑗 varied according to a percentage of |𝒟𝑖𝑗|.

We tracked the discrepancy in allocation, 𝑑1(w), under both the baseline and

modified scoring rules and report the ratio of these values across data instances in

Figure 2-9. The modified solution gives consistently smaller discrepancies than the

baseline solution, but as variability in the data increases this effect becomes less

pronounced. At a variability of 0.02 the median reduction in discrepancy is 40% and

at a variability of 0.1 the median reduction is 10%.

We see a similar, though smaller, effect on reward. The modified solution leads

to an improved reward for all variabilities, though this becomes less as variability

increases. The median improvement in reward earned is 5% for a variability of 0.02

and 2% for a variability of 0.1. On both metrics, there was little to distinguish the

effect of the different fractions used to compute each 𝐿𝑖𝑗.
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Figure 2-9: Changes in allocation discrepancy of the modified rule relative to the
baseline rule, as the variability in the synthetic data increases.
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Figure 2-10: Changes in reward earned by the modified rule relative to the baseline
rule, as data variability increases.
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2.6 Lottery Allocation

The priority allocation mechanism may not always be the appropriate choice for

a scoring system. It has the fundamental property that when two recipients have

nearly identical scores, the one with the larger score receives the resource ahead of

the other – but it is easy to imagine a setting where two recipients with nearly identical

scores should have a similar random chance of receiving the resource. Systems which

implement a random procedure such as this are referred to as lottery systems. Leaving

the outcome of an allocation up to chance appeals to an intuitive human notion of

fairness, which helps to explain why these systems are proposed time and again –

including, most topically, for distributing scarce medical resources during the COVID-

19 pandemic [28, 29].

This section focuses on a variation of a lottery system called a weighted lottery

[30] in which the probabilities of receiving a resource may be different for different

recipients. More precisely, the lottery mechanism we study computes scores for each

recipient and then randomly allocates a resource among them with probabilities pro-

portional to their scores: if 𝑠𝑎𝑏 = 1 and 𝑠𝑎′𝑏 = 2, then recipient 𝑎′ has twice the chance

of receiving resource 𝑏 as recipient 𝑎.

There are many real-world examples of lottery systems that make use of scoring

rules. One system was recently implemented in Philadelphia to distribute scarce

medications for treating COVID-19 patients [31, 32, 33]. Another example is the

Dutch system for allocating admissions to medical schools, which ran until 2017 as a

weighted lottery with student scores equal to their high-school GPAs, and is proposed

to be reintroduced in 2023 [34].

2.6.1 Defining the Allocation Function

The first step in modeling a lottery allocation mechanism is to define the correspond-

ing allocation function in the fluid model and the scores on which it is defined. We

start with the scores, which must simply be nonnegative and nonzero (so that the
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probabilities of allocation can be proportional to them):

𝒮 =
{︀
s ∈ R𝐼×𝐽 : s ≥ 0

}︀
∖ {0}

The scores chosen by the authority must also satisfy this property:

𝒮 = {Fw ≥ 0 : w ̸= 0} ∖ {0}

Next, we fix some some scores, and attempt to define the allocation function 𝑥𝑖𝑗(s)

so that it represents the fraction of resources of type 𝑗 that are allocated to recipients

of type 𝑖. Note that the total weight held collectively by the queue of recipient type 𝑖

is 𝑠𝑖𝑗𝐿𝑖𝑗 =
𝑠𝑖𝑗
𝑞𝑖

(︁
𝜆𝑖 −

∑︀𝐽
𝑘=1 𝜇𝑘𝑥𝑖𝑘

)︁
. The allocation fractions must therefore satisfy the

following expression for each recipient type 𝑖 and resource type 𝑗 (written in terms of

the operator 𝑇𝑖𝑗):

𝑥𝑖𝑗 =
𝑠𝑖𝑗𝐿𝑖𝑗∑︀𝐼
𝑙=1 𝑠𝑙𝑗𝐿𝑙𝑗

=

𝑠𝑖𝑗
𝑞𝑖

(︁
𝜆𝑖 −

∑︀𝐽
𝑘=1 𝜇𝑘𝑥𝑖𝑘

)︁
∑︀𝐼

𝑙=1
𝑠𝑙𝑗
𝑞𝑙

(︁
𝜆𝑙 −

∑︀𝐽
𝑘=1 𝜇𝑘𝑥𝑙𝑘

)︁ := 𝑇𝑖𝑗(x) (2.7)

This expression does not give the allocation fractions in closed form. In fact,

computing the fractions amounts to finding a fixed point of the operator 𝑇 (x). It is

not immediately clear this operator has a unique fixed point, or that it has a fixed

point at all. But if the fractions x are to represent a valid allocation function from

the set of scores onto 𝒳 , then a fixed point must both exist and be unique.

Let us first establish the existence of a fixed point. It is clear that 𝑇 (x) ∈ 𝒳 when

x ∈ 𝒳 due to the scarcity assumption (the numerators in 𝑇𝑖𝑗(x) are nonnegative) and

the normalization terms (which ensure
∑︀𝐼

𝑖=1 𝑇𝑖𝑗(x) = 1). Since 𝒳 is compact and

convex, and 𝑇 (x) is continuous, the Brouwer fixed-point theorem applies and ensures

that 𝑇 has at least one fixed point.

Next we turn to uniqueness of the fixed point, though a proof remains elusive. 𝑇

is not a contraction mapping and therefore the Banach fixed-point theorem cannot be

applied. On the other hand, Appendix A.6 provides the results of extensive numerical
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testing showing that Banach-Picard iterations converge to a unique fixed point in all

instances and with generally very few iterations. We strongly suspect that 𝑇 has a

unique fixed point, and note that this point is easy to compute.

2.6.2 Optimization Formulation

Though an allocation function satisfying the ratios in (2.7) is likely to exist, we do

not have this function in closed form. This subsection formulates the optimization

problem faced by the authority as a nonconvex bilinear program. This class of prob-

lems are known to be NP-hard (and generally hard to solve in practice) but modern

solvers make use of a MIP reformulation that can solve instances of reasonable size

either to optimality or with a well-quantified optimality gap. We include numerical

results of our formulation on the same synthetic data that were used in Section 2.3.

The key to the formulation is to introduce variables 𝜎 and constrain them to

represent the normalization terms appearing in (2.7). The formulation is provided in

Problem 2.5 and followed with a justification of its correctness:

Problem 2.5 (Lottery Allocation Optimization).

max
w, s, x, 𝜎

𝐽∑︁
𝑗=1

𝐼∑︁
𝑖=1

𝑟𝑖𝑗𝑥𝑖𝑗 (2.8a)

subject to 𝜎𝑗𝑥𝑖𝑗 =
𝑠𝑖𝑗
𝑞𝑖

(︃
𝜆𝑖 −

𝐽∑︁
𝑗′=1

𝜇𝑗′𝑥𝑖𝑗′

)︃
∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (2.8b)

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ [𝐽 ] (2.8c)

𝑠𝑖𝑗 = w⊺f𝑖𝑗 ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (2.8d)

e⊺w = 1 (2.8e)

s,x,𝜎 ≥ 0 (2.8f)

(2.8b) ensures that the allocation fractions are constrained correctly provided that
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each 𝜎𝑗 takes on the correct value of the normalization term. To confirm that the 𝜎𝑗

variables are indeed defined correctly, note that for each 𝑗 ∈ [𝐽 ]:

𝜎𝑗 =

(︃
𝐼∑︁

𝑖=1

𝑥𝑖𝑗

)︃
𝜎𝑗 =

𝐼∑︁
𝑖=1

𝑥𝑖𝑗𝜎𝑗 =
𝐼∑︁

𝑖=1

𝑠𝑖𝑗
𝑞𝑖

(︃
𝜆𝑖 −

𝐽∑︁
𝑗′=1

𝜇𝑗′𝑥𝑖𝑗′

)︃

where the first equality follows from (2.8c) and the third from (2.8b).

The normalization constraint in (2.8e) is again included to ensure that the result-

ing scores lie in 𝒮. The same comment as for the priority allocation optimization

problem applies: the problem can be solved again for e⊺w = −1 and perturbations

of the properties to cover the entire search space of w.

We tested the scalability of this formulation on data generated randomly in the

same way as in Section 2.3.3, with the addition of random 𝜇 values from [0, 1] and

random 𝜆 values from [0, 1] which were then scaled to satisfy Assumption 2.1. All

tests were conducted with a time limit of 5 hours on an Intel Xeon 2.1 GHz quad-

core CPU with 32 GB of RAM and solved with the nonconvex bilinear procedure in

Gurobi 9.1.1.

Figure 2-11 shows how the ranges of solution times varied as the number of re-

cipient and resource types in the instance increased. There was little to distinguish

between 𝐾 = 5 and 𝐾 = 10, and problems with up to approximately 15 types could

be solved to optimality within the time limit. While this is fewer than the 30 types

that could be solved to optimality for priority allocation with 𝐾 = 5, it still provides

a reasonable amount of modeling flexibility.

Figure 2-12 shows how the ranges of optimality gaps varied as the number of types

increased. Once again, gaps were similar for both 𝐾 = 5 and 𝐾 = 10. However, these

gaps grew quickly once the problem could not be solved within 5 hours. When 𝐾 = 5

and the number of types was greater than 20, the optimality gaps were between 75%

and 100%.
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Figure 2-11: Ranges of solution times for Problem 2.5. Dashed line indicates the 5
hour time limit.

0

25

50

75

100

10 20 30 40 50

Number of recipient and resource types (I = J)

S
ol

ve
r 

bo
un

d 
ga

p 
(%

)

Number of properties (K) 5 10

Figure 2-12: Ranges of the optimality gap for Problem 2.5 after the 5 hour time limit.
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Figure 2-13: Optimality gap for the projection solution, applied to Problem 2.5.

2.6.3 Heuristic Performance

Problem 2.5 is difficult to solve, and it is therefore useful to study heuristics for

solving it. While the lookahead heuristic that has been previously introduced cannot

be easily re-purposed for this problem, the projection heuristic can.

The motivation for applying the projection heuristic to lottery allocation is similar,

though not identical, to before. Suppose that we are able to reproduce the reward

coefficients with a scoring rule ŵ ∈ 𝒲 . Then, for any given resource type 𝑗, a recipient

type that earns a high reward will tend to receive a larger share of the resource and

a recipient type that earns a low reward will tend to receive a smaller share (which

should also likely be true in the optimal solution).

The techniques previously used to bound performance of the projection heuristic

do not apply to the lottery allocation problem, and we turn instead to the compu-

tational analysis in Figure 2-13. Results are shown for the same instances that were

generated in Section 2.4.3. When 𝛾 = 𝜋
8
= 22.5∘ the solutions obtained from the

projection heuristic have optimality gaps within a single standard error of between

2% and 6%. When 𝛾 = 𝜋
4
= 45∘ they are between 2% and 8%.
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2.6.4 Modifying for Individual Allocation

In this subsection, we briefly consider how to approach the problem of allocating

individuals under the lottery system by modifying a solution from the full optimization

problem. Section 2.5.3 is a good starting point, but the surrogate discrepancy function

we included in the objective for priority allocation no longer applies.

For the lottery system, discrepancy is minimized when the scores of individual

(𝑎, 𝑏) pairs are similar to the scores of their corresponding type pair (𝛼𝑎, 𝛽𝑏). This ob-

servation motivates us to select the surrogate discrepancy function as a least-squares

term that compares the scores of the individuals and their representative types, in

order to get the problem:

max
w

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗(w)− 𝜂
∑︁
𝑎∈𝐴

∑︁
𝑏∈ℬ

(𝑠𝑎𝑏(w)− 𝑠𝛼𝑎𝛽𝑏
(w))2

For general 𝜂 > 0, this is a mixed-integer second order cone program (SOCP) and

is solvable by several leading commercial solvers, including Gurobi. Our numerical

tests focused on the regime 𝜂 → 0, where the problem reduces to a SOCP. We use the

same data instances that were used when testing the priority allocation function in

Section 2.5. Figure 2-14 shows ratios of the discrepancy under the baseline solution

and the modified solution, and Figure 2-15 shows similar for the reward. The heuristic

did not improve either discrepancy or reward earned.
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Figure 2-14: Ratios of the discrepancy under the modified rule relative to the baseline
rule from the lottery model, as data variability changes.
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Figure 2-15: Objective ratio of the modified rule relative to the optimal rule for the
lottery model, as data variability changes.
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2.7 Ex-Post Equity in Allocations

At various points in this chapter, we have highlighted some desirable aspects of a

system for allocating scarce resources – for example, the three principles of equity

identified by Young [5] and the role of chance in a fair mechanism. Each of these

properties relate to the process followed by the system (ex-ante) rather than the out-

come of the allocation (ex-post). This section provides some comments on modifying

our approaches to achieve ex-post equity.

In our context, an ex-post equity constraint requires the allocation fractions to

satisfy some property. For example: the authority may wish to constrain the pro-

portion of recipients who receive a resource and have some attribute to lie within a

certain range. If the first and second recipient types are the only ones with this at-

tribute, then lower and upper bounds can be enforced with a simple linear constraint

on the allocation variables:

𝐿 ≤
𝐽∑︁

𝑗=1

1

𝐽
(𝑥1𝑗 + 𝑥2𝑗) ≤ 𝑈

The class of linear constraints is large and covers several flavors of bound on the

proportion or average value of an attribute in both the recipient types which are

allocated resources and those which are not. These constraints are also interpretable

and intuitive – Bertsimas, Farias, and Trichakis [6] note that it is a type favoured by

policymakers in practice.

To be more precise, we may associate an additional set of 𝑁 attributes with each

recipient type. Let 𝑎𝑖𝑛 ∈ R be the 𝑛th attribute associated with the 𝑖th recipient

type. These attributes may be distinct from the properties in each f𝑖𝑗 or they may

overlap. The key distinction is that the properties in f𝑖𝑗 are unprotected – the system

may compute priority scores on their basis. Some of the attributes in each a𝑖 may be

protected, meaning that although they can be used to define equity constraints, they

cannot be used as a basis for computing priority scores. Race and gender are two

examples of attributes generally considered to be protected in most practical systems.
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Enforcing linear ex-post equity constraints within our optimization problems sim-

ply amounts to adding linear constraints on the allocation fractions. This does not

alter the problem class of the formulations. The priority allocation function still gives

rise to a linear MIP and the lottery allocation function still gives rise to a noncon-

vex bilinear program, though the additional constraints presumably increase the time

required to solve instances to optimality. However, it is important to note that satis-

fying even a single ex-post equity constraint is as hard as the complete optimization

problem. This makes enforcing such a constraint in either of the two heuristics we

have discussed impossible.

An approximate way of dealing with this trouble is provided by Bertsimas, Farias,

and Trichakis [6], where it was used successfully. Here, an offline matching problem

with ex-post equity constraints is solved to obtain optimal dual variables. The re-

ward coefficients are then modified with these dual variables to obtain equity-adjusted

coefficients under which the optimal solution to a standard bipartite matching prob-

lem satisfies the constraints. Using these equity-adjusted coefficients as inputs into

the projection and lookahead heuristics may provide a rough method for obtaining

allocations that approximately satisfy the equity constraints.
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2.8 Discussion and Conclusions

This chapter introduced a general model for allocating a set of heterogeneous resource

types among a set of heterogeneous recipient types on the basis of scores computed

from observable properties. We used the model to define an optimization problem

faced by the authority when tasked with choosing the scores from a restricted set, and

analysed specific instances of the optimization problem associated with two real-world

allocation mechanisms: priority allocation and lottery allocation.

Both optimization problems are hard to solve, but tractable with modern opti-

mization techniques and a moderate number of recipient and resource types. The

priority model was solved to optimality within five hours with 30 resource and recip-

ient types, and the lottery model with 15 resource and recipient types. Our formu-

lations also allow for equity constraints to be included without increasing the overall

complexity of the models.

For problems larger than these, or in a setting where a solution must be obtained

quickly, we presented some heuristics. The projection heuristic is available in closed

form and approximates the optimal solution to the priority model well when the

reward coefficients are well explained by the properties. It also approximates the op-

timal solution to the lottery model even when reward coefficients are poorly explained

by the properties, rarely achieving an optimality gap less than 10%. Our lookahead

heuristic was more effective at solving the priority model than the projection heuristic

when the reward coefficients are poorly explained by the properties, with a maximum

optimality gap around 25%.

We also studied the setting where properties of individual recipients and resources

vary within their assigned types, and suggested some strategies for choosing a scoring

rule. The optimization problem becomes more complex for both priority and lottery

models, but we demonstrated that introducing a surrogate objective function leads

to tractable problems. On the lottery model, we showed that the techniques had no

benefit, however, the techniques significantly reduced discrepancy and improved the

reward earned in the priority model.
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Our models are attractive for their focus on describing the underlying allocation

mechanism. In settings where available data is sparse or sophisticated tools such as

simulation models are not available, this approach is essential. On the other hand,

it is worth noting that more data-driven approaches to modelling and optimization

may work better in settings where granular data and simulation tools are available.

There are several limitations to the models we presented. First, the queueing

model that underlies the optimization formulations is extremely simple; it assumes

that recipients keep the same type throughout their time in the system. While this

may be a reasonable approximation for many settings, others (including organ al-

location) are heavily influenced by recipient properties changing over time. Future

research could generalize our underlying model to account for transitions between

types and provide more modeling flexibility for settings where it is required.

Second, our model does not specifically take into account recipient choice; specifi-

cally, the potential for recipients to decline the offer of a resource. This is an extremely

influential factor in many allocation systems – particularly those with perishable re-

sources, where it can lead to resource wastage if offers are not made sensibly by the

authority. Chapter 3 looks at the effect that recipient choice may have on equity in

an allocation system, but another interesting direction for future research could be to

study how recipient choice may be incorporated into optimization models for picking

the scoring rule (perhaps within the framework of robust optimization).
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Chapter 3

Inequity Due to Recipient Choice in

Allocation Systems

3.1 Introduction

Almost all real-world allocation systems operated by central authorities have equity

as one of their goals. Equity is both context dependent, being informed by ethi-

cal principles relevant for that particular allocation setting, and highly subjective,

generally requiring a trade-off to be made along several competing dimensions. For

example, the Organ Procurement and Transplantation Network (OPTN) lists patient

utility, justice, and respect for personhood as the three guiding ethical principles for

assessing their organ allocation systems, while recognizing that these factors are often

at odds with each other [35].

One component of equity is equality, which is more concrete in nature and refers

to the right held by participants in a system for equal treatment. Equality in an

allocation system is sometimes sacrificed as part of a well-understood trade-off; for

example, giving the youngest and healthiest patients priority access to organs maxi-

mizes utility, but does not treat older and sicker patients as equals [35].

On the other hand, inequality can creep into a system in a way that is not obvious

or well-understood; for example, giving priority points to a blood type that is more

common in the white population than the non-white population, skewing offers toward
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the white population. Clearly, understanding these insidious threats to equality is

highly important when designing an allocation system that has equity as a central

goal. The aim of this chapter is to model a source of inequality in allocation systems

that has not previously been studied: recipient choice.

There is an important distinction to be made between offers of resources to re-

cipients, and the actual allocations that are produced, since recipients can typically

choose to decline the offer of a resource and remain in the system to wait for a future

offer. For the rest of this chapter, we fix the setting to be an organ allocation system

where a patient may choose to decline the offer of an organ if they believe they would

be better served by waiting for a future offer. However, it is easy to see how the

same ideas apply to other settings in which scarce resources must be allocated and

recipients can choose whether to accept or decline offers.

A patient choosing to decline an organ is exceptionally common in the deceased-

donor organ allocation systems overseen by the OPTN. In the kidney program, be-

tween July 1, 2015, and June 30, 2016, there were 1 512 496 offers declined by patients

and only 11 922 offers accepted [36]. Patient choice is a significant feature of the sys-

tem, with a pronounced effect on the allocations that are ultimately produced.

It is also important to note that patient choice behavior varies widely across

transplant centers, which have the power to decline an organ offered to one of their

patients before the patient even sees the offer. This behavior is driven by the methods

used for evaluating the performance of transplant centers, which often include metrics

such as post-transplant patient survival. Depending on the risk tolerance of the center,

it may be prudent for them to decline an offer before it ever reaches the patient [37].

Given that some patients (and their transplant centers) are more selective than

others, the question we address in this chapter is the following. Can a disparity in

selectiveness when it comes to patient choice lead to inequality in outcomes? If so,

how significant can this inequality be?

We seek to answer this question within the framework of some commonly-used

approaches to offering organs. One approach is the waitlist allocation model, in

which each arriving organ is offered uniformly at random among all patients on a
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waitlist. Another is the waiting time allocation model, in which organ offers are

biased towards patients who have been waiting in the system for longer. Both methods

seem appealingly equitable in nature, but as we will show, recipient choice can lead

to inequity.

3.1.1 Main Results and Contributions

Section 3.2 introduces a general steady-state queueing model under which organs

of varying quality (good and bad) are distributed among a population of selective

and non-selective patients whose health declines over time. Selective patients are

strategic, setting a threshold time before which they choose to decline any offers of

bad organs. The model defines a utility function, the concept of a Nash equilibrium,

and a measure of inequality between the selective and non-selective patients.

In Sections 3.3, 3.4, and 3.5, we describe instances of the model with specific

approaches to making offers: the waitlist, waiting time, and rate allocation models.

For the first two models we provide algorithms to compute steady-states of the system,

as well as conjectures regarding the existence and uniqueness of equilibria. The

third model is introduced as a reference point and shown to be immune to strategic

behaviour by selective patients.

Section 3.6 describes and presents the results of numerical studies on the waitlist

and waiting time allocation models. We report findings relating to monotonicity of

the inequality measure with respect to certain parameters, and attempt to explain

the driving forces behind these results.

3.1.2 Related Literature

Very little literature has studied the effects of patient choice on equity in allocation

systems. Perhaps the closest related study is by Su and Zenios [38], who note that

in the early 2000s, an explosion of patients enrolling on organ transplant waitlists in

the US coincided with a continued shortage of organs that left the system resembling

a first come, first served (FCFS) queue. Their model studies patients who join a
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FCFS M/M/1 queue with exponential reneging and must choose whether to accept

or decline an organ when it is offered to them. In contrast to our model, a major

assumption is full patient homogeneity, meaning that all patients are strategic. They

place only brief focus on studying the inequality that may arise in the system.

A less closely-related study is by Su and Zenios [39], who propose a model in which

an arriving stream of organs with different qualities are split between several types

of patient queue. Patients, who are assigned a type that is only observed by them,

have private information about their propensity for good outcomes after receiving

an organ of varying quality. They strategically report a type (not necessarily their

own) to join a queue that maximizes their utility at steady state. In contrast to this

study, ours attempts to explicitly model patients who choose between accepting and

declining the offer of an organ.

There are many other models that study equilibria in queueing systems, but which

are not closely related to the setting we study. Hassin and Haviv [40] collect and

summarise many of these models.
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3.2 Modeling Recipient Choice

This section introduces a general model under which organs of varying quality are

offered to patients. Some of these patients are selective, choosing to accept or decline

offers after observing the quality of the organ. Other patients are non-selective,

accepting all organ offers. Our objective is to study whether inequity may arise from

this disparity in strategic behavior. We do not instantiate a specific model in this

section; this is left to Sections 3.3, 3.4, and 3.5, which introduce three models with

slightly different approaches to offering the organs among patients.

A fundamental assumption that frames the general model is the following: a

selective patient declines an organ under the belief that they will obtain a better

outcome by waiting. Their strategic behavior therefore trades off the positive utility

that would be obtained by accepting an existing offer with the possibility of greater

utility from waiting for a better organ, and negative utility from deteriorating health.

It is important to note that this assumption encompasses behaviors from both patients

and transplant centers in real-life organ allocation systems.

3.2.1 Model Description

The general model is based on two series of 𝑚 queues running parallel to each other.

There is one series for each of two patient types: selective, and non-selective, which are

labelled as 𝑆 and 𝑁 , respectively. Selective patients arrive into the first selective queue

(denoted 𝑆1) and non-selective patients into the first non-selective queue (denoted

𝑁1) as a pair of independent Poisson processes with rates 𝜆𝑆 and 𝜆𝑁 , respectively.

For notational purposes, we let 𝜆tot := 𝜆𝑆 + 𝜆𝑁 be the total patient arrivals and

𝜃S := 𝜆𝑆/(𝜆𝑆 +𝜆𝑁) be the fraction of patient arrivals which are selective. We also let

𝒢 = {𝑆1, . . . , 𝑆𝑚,𝑁1, . . . , 𝑁𝑚} be the set of all 2𝑚 queues in the system.

The 𝑚 queues in each series represent different health stages of disease. At one

end, 𝑖 = 1 is the earliest stage with the healthiest patients, while at the other, 𝑖 = 𝑚

is the final stage with patients closest to death. Once a patient arrives into a health

stage queue, they progress to the next stage after an exponentially distributed time
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with rate parameter 𝑚𝛾. A patient dies if they progress out of the final health stage.

The expected time to progress through each health stage is 1/(𝑚𝛾), so the expected

time to progress through all stages is 𝑚/(𝑚𝛾) = 1/𝛾, and therefore 1/𝛾 represents

the average time to death for a patient entering the system.

Each queue in the system has a length, denoted 𝐿𝑞 for queue 𝑞 ∈ 𝒢. We will soon

dig into precisely how these lengths are defined, but for the moment it suffices to say

that they exist, and that they represent a steady state that the system settles into

based on the arrival rates of patients and the service rates of organs consumed by

each queue. Note that we also require that each 𝐿𝑞 > 0.

Two types of organs arrive into the system: good, and bad, which are labelled

𝐺 and 𝐵, respectively. Good organs arrive with total rate 𝜇𝐺, and bad organs with

total rate 𝜇𝐵, as a pair of independent Poisson processes. Analogous to the patient

arrivals, we let 𝜇tot := 𝜇𝐺 + 𝜇𝐵 be the total organ arrivals and 𝜃G := 𝜇𝐺/(𝜇𝐺 + 𝜇𝐵)

be the fraction of total organ arrivals corresponding to good organs.

The main question now is: how are organs consumed by the queues? The answer

requires two ingredients to be introduced. The first is the notion of a threshold

health stage, denoted 𝑦 ∈ {1, . . . ,𝑚 + 1}. When selective patients are in any stage

𝑖 < 𝑦, they decline a bad organ whenever it is offered to them. On the other hand,

good organs are always accepted by all patients. Choosing the threshold is the only

strategic decision available to the selective patients, and though we will return to it

when defining equilibria, for now it should be considered as fixed. For notational

purposes, we let ℬ = {𝑆𝑦, . . . , 𝑆𝑚,𝑁1, . . . , 𝑁𝑚} be the set of queues accepting bad

organs.

The second ingredient is a collection of scores. One is assigned to each queue,

and these are denoted {𝑇𝑞}𝑞∈𝒢. The scores represent the number of lottery tickets

held by each individual in that queue, where the next arriving organ is offered at

random among all patients by selecting one of these lottery tickets. Scores therefore

determine the proportion of organs allocated to each queue.

For some fixed scores, the rate at which good organs are consumed by a queue is

the product of the total arrival rate of good organs and the fraction of total lottery
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tickets held by that queue. With 𝑈𝐺 :=
∑︀

𝑟∈𝒢 𝑇𝑟𝐿𝑟 representing the total number of

lottery tickets in all queues, the rate for queue 𝑞 ∈ 𝒢 is:

𝜇𝐺

(︂
𝑇𝑞𝐿𝑞

𝑈𝐺

)︂

On the other hand, bad organs are consumed at a rate of zero by any queue in

𝒢 ∖ ℬ. With 𝑈𝐵 :=
∑︀

𝑟∈ℬ 𝑇𝑟𝐿𝑟 representing the total number of lottery tickets in

queues that accept bad organs, the rate that these are consumed by queue 𝑞 ∈ ℬ is:

𝜇𝐵

(︂
𝑇𝑞𝐿𝑞

𝑈𝐵

)︂

By defining the rates of consumption in this way, the model ensures that any time

a bad organ is offered to a queue in 𝒢 ∖ℬ, it is declined and eventually ends up being

offered to a queue in ℬ. It is therefore implicitly assumed that an organ never spoils

and becomes unsuitable for transplant (which unfortunately does happen in real life

[41]).

The scores are what differentiate the three models we study in this chapter. The

waitlist model sets scores to 𝑇𝑞 = 1, the waiting time model sets scores to the cumu-

lative waiting time of each queue, and the rate model uses an approach that deviates

slightly from the scoring framework. It is important to note that the scores can de-

pend on properties of the system itself at steady state (such as in the waiting time

model), which leaves considerable modeling flexibility to consider extensions that are

not studied in this chapter.

It remains to describe how the lengths are calculated in our model. Even when

the scores are fixed to constants, the rates at which organs are consumed by each

queue depend on the lengths of the queues, which also depend on the consumption

rates. We would expect the system to settle into a steady state in which the flows

into and out of each queue are balanced. Figure 3-1 illustrates the balances required;

we also write them out explicitly in the following paragraphs.

For the selective group, equations only need to balance the good organs received
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in all queues before the threshold:

𝜆𝑆 = 𝜇𝐺

(︂
𝑇𝑆1𝐿𝑆1

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆1

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︂
𝑇𝑆𝑖𝐿𝑆𝑖

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀2 ≤ 𝑖 < 𝑦

Whereas after the threshold, equations need to balance good and bad organs

received:

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︂
𝑇𝑆𝑖𝐿𝑆𝑖

𝑈𝐺

)︂
+ 𝜇𝐵

(︂
𝑇𝑆𝑖𝐿𝑆𝑖

𝑈𝐵

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀𝑦 ≤ 𝑖 ≤ 𝑚

The non-selective group simply accepts all good and bad organs, so their equations

do not change at the threshold:

𝜆𝑁 = 𝜇𝐺

(︂
𝑇𝑁1𝐿𝑁1

𝑈𝐺

)︂
+ 𝜇𝐵

(︂
𝑇𝑁1𝐿𝑁1

𝑈𝐵

)︂
+𝑚𝛾𝐿𝑁1

𝑚𝛾𝐿𝑁(𝑖−1) = 𝜇𝐺

(︂
𝑇𝑁𝑖𝐿𝑁𝑖

𝑈𝐺

)︂
+ 𝜇𝐵

(︂
𝑇𝑁𝑖𝐿𝑁𝑖

𝑈𝐵

)︂
+𝑚𝛾𝐿𝑁𝑖 ∀2 ≤ 𝑖 ≤ 𝑚

Recalling that 𝑈𝐺 and 𝑈𝐵 are weighted sums involving the queue lengths, there

are 2𝑚 equations and 2𝑚 unknowns (the queue lengths). Even if the scores are fixed

as constants, it is certainly not clear that the system has a solution. We return to

this point when defining the waitlist, waiting time, and rate models, and show that

there is a unique solution with positive queue lengths in each case.

Before proceeding, it is useful to define some aggregations of the queue lengths that

arise in the models. We let the aggregate length of all queues accepting good organs

(i.e. all queues) be 𝐿𝐺 :=
∑︀

𝑞∈𝒢 𝐿𝑞, and the aggregate length of all queues accepting

bad organs be 𝐿𝐵 :=
∑︀

𝑞∈ℬ 𝐿𝑞. Also, we let 𝐿𝑆 :=
∑︀𝑚

𝑖=1 𝐿𝑆𝑖 and 𝐿𝑁 :=
∑︀𝑚

𝑖=1 𝐿𝑁𝑖 be

the aggregate lengths of each patient type, and 𝐿𝑆𝐵 :=
∑︀𝑚

𝑖=𝑦 𝐿𝑆𝑖 be the aggregate

length of selective patient queues which accept bad organs.

76



Selective
Patients

Non-Selective
Patients

Figure 3-1: Illustration of the queues and flows between them. Balance equations are
derived by setting the inward and outward flows for each queue equal to each other.
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3.2.2 Outcome Probabilities

Ultimately, the selective group needs a utility function to drive their behavior, and the

non-selective group needs a utility function so that inequality can be measured. This

subsection defines some quantities of interest: the probabilities of patients observing

each of the three possible outcomes (receiving a good organ, a bad organ, and death).

A patient who has arrived into a particular queue is subject to several distinct

Poisson processes. If they are accepting bad organs in this queue, they are subject

to three processes: one for receiving a good organ, one for a bad organ, and one for

moving to the next health stage. On the other hand, if they are declining bad organs,

they are only subject to two. These three processes occur with the following rates in

each queue, 𝑞 ∈ 𝒢, where dependence on the threshold 𝑦 (through the effect 𝑦 has on

the queue lengths) is made explicit:

𝐺𝑞(𝑦) := 𝜇𝐺

(︂
𝑇𝑞

𝑈𝐺

)︂
𝐵𝑞(𝑦) := 𝜇𝐵

(︂
𝑇𝑞

𝑈𝐵

)︂
𝐷 := 𝑚𝛾

Because we aim to define an equilibrium, the probabilities associated with a pa-

tient choosing to deviate from population behavior must be quantified. We make

the standard assumption that an individual deviating from the population does not

alter steady-state queue lengths, allowing the probabilities for an individual choosing

threshold 𝑦 when the population chooses threshold 𝑧 to be written as follows.

For the selective patients, the probability of receiving a good organ is:

𝑝good𝑆 (𝑦, 𝑧) =
𝑧−1∑︁
𝑖=1

𝐺𝑆𝑖(𝑦)

𝐺𝑆𝑖(𝑦) +𝐷

(︃
𝑖−1∏︁
𝑗=1

𝐷

𝐺𝑆𝑗(𝑦) +𝐷

)︃
+

(︃
𝑧−1∏︁
𝑖=1

𝐷

𝐺𝑆𝑖(𝑦) +𝐷

)︃
𝑚∑︁
𝑖=𝑧

𝐺𝑆𝑖(𝑦)

𝐺𝑆𝑖(𝑦) +𝐵𝑆𝑖(𝑦) +𝐷

(︃
𝑖−1∏︁
𝑗=𝑧

𝐷

𝐺𝑆𝑗(𝑦) +𝐵𝑆𝑗(𝑦) +𝐷

)︃

where the first term sums the probabilities of receiving a good organ before the

individual threshold, 𝑧, and the second term sums the probabilities of receiving a

good organ after the individual threshold.
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Remaining with the selective patients, the probability of receiving a bad organ is:

𝑝bad𝑆 (𝑦, 𝑧) =

(︃
𝑧−1∏︁
𝑖=1

𝐷

𝐺𝑆𝑖(𝑦) +𝐷

)︃
×

𝑚∑︁
𝑖=𝑧

𝐵𝑆𝑖(𝑦)

𝐺𝑆𝑖(𝑦) +𝐵𝑆𝑖(𝑦) +𝐷

(︃
𝑖−1∏︁
𝑗=𝑧

𝐷

𝐺𝑆𝑗(𝑦) +𝐵𝑆𝑗(𝑦) +𝐷

)︃

and the probability of death is:

𝑝die𝑆 (𝑦, 𝑧) =

(︃
𝑧−1∏︁
𝑖=1

𝐷

𝐺𝑆𝑖(𝑦) +𝐷

)︃(︃
𝑚∏︁
𝑖=𝑧

𝐷

𝐺𝑆𝑖(𝑦) +𝐵𝑆𝑖(𝑦) +𝐷

)︃

On the other hand, because they do not depend on the individual threshold, the

non-selective group has expressions for these probabilities which are simpler:

𝑝good𝑁 (𝑦) =
𝑚∑︁
𝑖=1

𝐺𝑁𝑖(𝑦)

𝐺𝑁𝑖(𝑦) +𝐵𝑁𝑖(𝑦) +𝐷

(︃
𝑖−1∏︁
𝑗=1

𝐷

𝐺𝑁𝑗(𝑦) +𝐵𝑁𝑗(𝑦) +𝐷

)︃

𝑝bad𝑁 (𝑦) =
𝑚∑︁
𝑖=1

𝐵𝑁𝑖(𝑦)

𝐺𝑁𝑖(𝑦) +𝐵𝑁𝑖(𝑦) +𝐷

(︃
𝑖−1∏︁
𝑗=1

𝐷

𝐺𝑁𝑗(𝑦) +𝐵𝑁𝑗(𝑦) +𝐷

)︃

𝑝die𝑁 (𝑦) =
𝑚∏︁
𝑖=1

𝐷

𝐺𝑁𝑖(𝑦) +𝐵𝑁𝑖(𝑦) +𝐷

3.2.3 Utility and Equilibrium

Given these expressions for the outcome probabilities, we can introduce a utility

function for the selective patients using a parameter, 𝜂 ∈ [1/2, 1]:

𝑢𝑆(𝑦, 𝑧) = 𝜂𝑝good𝑆 (𝑦, 𝑧) + (1− 𝜂)𝑝bad𝑆 (𝑦, 𝑧)

The value 𝜂 trades off the importance of receiving a good organ against the im-

portance of receiving a bad organ. When 𝜂 = 1/2, organs are valued equally, and

when 𝜂 = 1, a bad organ is considered equivalent to death. For any value of 𝜂, death

contributes no utility at all.
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Within this framework, a population threshold 𝑦* is a Nash equilibrium whenever

an individual cannot improve their utility by deviating from 𝑦*. In other words, an

equilibrium threshold satisfies the relationship in (3.1):

𝑦* ∈ argmax
𝑧∈{1,𝑚+1}

𝑢𝑆(𝑦
*, 𝑧) (3.1)

For each of the three models we study, there turns out to be a unique equilibrium

threshold for any value of 𝜂. Therefore, given any problem data and some value of 𝜂,

it is assumed that the system settles into this equilibrium, with utilities for both the

selective and non-selective groups given by:

𝑢*
𝑆 = 𝜂𝑝good𝑆 (𝑦*, 𝑦*) + (1− 𝜂)𝑝bad𝑆 (𝑦*, 𝑦*)

𝑢*
𝑁 = 𝜂𝑝good𝑁 (𝑦*) + (1− 𝜂)𝑝bad𝑁 (𝑦*)

Throughout the rest of this chapter we consider the ratio 𝑢*
𝑆/𝑢

*
𝑁 as the measure

of inequality. As this ratio grows, selective patients receive greater utility compared

to non-selective individuals. When the ratio is close to one, all patients in the system

share similar utility.

3.2.4 Conditions on Data

Before moving on to introduce the specific models, two small restrictions must be

imposed on the data. First, because resources are assumed to be scarce, the data

must have 𝜇tot ≤ 𝜆tot. If this condition is not satisfied, then supply outpaces demand,

all queues effectively have zero length, and the model is not well defined.

Second, we also require that 𝜇𝐵 ≤ 𝜆𝑁 . This specifically deals with the case

𝑦 = 𝑚+1, where the selective patients accept no bad organs, and all of these organs

are redirected to the non-selective patients. Without this restriction, when 𝑦 = 𝑚+1,

all non-selective queues have zero length and the model is not well defined.
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3.3 Waitlist Allocation Model

The simplest model for offering organs to queues in the system is the waitlist model.

This model is named as such because every patient on the waitlist has the same

chance of being offered the next arriving organ. Though it appears on the surface

to be an equitable offer scheme, we will ultimately show that inequity may be intro-

duced into this system by recipient choice. In this section, we describe the model,

provide an efficient method for calculating its steady-state queue lengths, and also

show numerically that it has a unique equilibrium threshold.

3.3.1 Model Definition

In the waitlist model, all scores are set to 𝑇𝑞 = 1, meaning that each individual

patient has an equal chance of being offered the next arriving organ. Queues therefore

consume organs in proportion with their lengths. The waitlist model has a particular

set of balance equations which are written out for clarity below. For selective patients,

the equations are:

𝜆𝑆 = 𝜇𝐺

(︂
𝐿𝑆1

𝐿𝐺

)︂
+𝑚𝛾𝐿𝑆1 (3.2a)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︂
𝐿𝑆𝑖

𝐿𝐺

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀2 ≤ 𝑖 < 𝑦 (3.2b)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︂
𝐿𝑆𝑖

𝐿𝐺

)︂
+ 𝜇𝐵

(︂
𝐿𝑆𝑖

𝐿𝐵

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀𝑦 ≤ 𝑖 ≤ 𝑚 (3.2c)

whereas for the non-selective patients, they are:

𝜆𝑁 = 𝜇𝐺

(︂
𝐿𝑁1

𝐿𝐺

)︂
+ 𝜇𝐵

(︂
𝐿𝑁1

𝐿𝐵

)︂
+𝑚𝛾𝐿𝑁1 (3.3a)

𝑚𝛾𝐿𝑁(𝑖−1) = 𝜇𝐺

(︂
𝐿𝑁𝑖

𝐿𝐺

)︂
+ 𝜇𝐵

(︂
𝐿𝑁𝑖

𝐿𝐵

)︂
+𝑚𝛾𝐿𝑁𝑖 ∀2 ≤ 𝑖 ≤ 𝑚 (3.3b)

As mentioned previously, it is unclear whether these systems have a unique solu-

tion, a closed-form solution, or even a solution at all. However, there is a procedure
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that exploits the structure of the equations to compute a collection of positive lengths

that satisfy the equations. This procedure is based on finding the roots of a function

of a single variable, which we call 𝑓(𝐿𝐺).

The function 𝑓(𝐿𝐺) does not have a simple form, but it does have a simple in-

terpretation, and we now describe how it is computed. The input, 𝐿𝐺 > 0, can be

interpreted as a guess at a correct value for 𝐿𝐺 in the system formed by (3.2) and

(3.3). Given this guess, the corresponding guess at a correct value of 𝐿𝑆1 (called 𝐿𝑆1)

can be computed from equation (3.2a):

𝐿𝑆1 = 𝜆𝑆

(︂
1

𝜇𝐺/𝐿𝐺 +𝑚𝛾

)︂

Next, given 𝐿𝐺 and 𝐿𝑆1, a guess at the correct value of 𝐿𝑆2 (called 𝐿𝑆2) can be

computed from equation (3.2b):

𝐿𝑆2 = 𝑚𝛾𝐿𝑆1

(︂
1

𝜇𝐺/𝐿𝐺 +𝑚𝛾

)︂

and so on, until the guesses {𝐿𝑆𝑖}𝑦−1
𝑖=1 representing the lengths of all queues before the

threshold 𝑦 have been computed. A guess at a correct value of 𝐿𝐵 (called 𝐿𝐵) can

then be computed as:

𝐿𝐵 = 𝐿𝐺 −
𝑦−1∑︁
𝑖=1

𝐿𝑆𝑖

From 𝐿𝐺 and 𝐿𝐵, all remaining guesses at lengths can be computed by utilizing

the equations in (3.2) and (3.3). The value of 𝑓(𝐿𝐺) is the sum of all these guesses:

𝑓(𝐿𝐺) =
∑︁
𝑞∈𝒢

𝐿𝑞

It is clear that if 𝑓(𝐿𝐺) = 𝐿𝐺, and all 𝐿𝑞 > 0, then by construction we are left with

lengths that are positive and satisfy all relationships in (3.2) and (3.3). Conjecture 3.1,

which is supported by extensive numerical evidence, would establish that 𝑓(𝐿𝐺) has a

unique fixed point, and therefore that the system has a unique solution with positive

lengths.
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Conjecture 3.1. 𝑔(𝐿) := 𝑓(𝐿)− 𝐿 is a function with the following properties:

(i) 𝑔(𝐿) is well-defined and finite for all 𝐿 > 𝐿*, where:

𝐿* =

(︂
𝜇𝐺

𝑚𝛾

)︂(︂
(1− 𝜇𝐺/𝜆𝑆)

1/(𝑦−1)

1− (1− 𝜇𝐺/𝜆𝑆)1/(𝑦−1)

)︂

(ii) 𝑔(𝐿) has exactly one root on the interval (𝐿*,∞).

Conjecture 3.1 suggests an algorithm for computing the unique solution to the

system in (3.2) and (3.3). First, start with 𝐿1 = 𝐿* + 𝛿 (where 𝛿 > 0 is a small

perturbation) and 𝐿2 so that 𝑔(𝐿1) > 0 and 𝑔(𝐿2) < 0. Then, use a bisection search

beginning with the interval [𝐿1, 𝐿2] to find the unique root of 𝑔.

3.3.2 Model Behavior and Equilibrium

Figures 3-2 and 3-3 plot the three outcome probabilities for two problem instances as

the population threshold varies between 1 and 𝑚 + 1 and individuals choose not to

deviate. Most of the behavior observed is intuitive: the selective group can increase

their chance of receiving a good organ by delaying the threshold, while reducing their

chance of receiving a bad organ.

However, it is also worth noting that the model displays some more complex

behavior that depends on the data instance. For example, in Figure 3-2, where fewer

patients are selective, increasing the threshold provides diminishing returns for the

selective queue on the probability of receiving a good organ. On the other hand,

in Figure 3-3, where more patients are selective, increasing the threshold provides

increasing returns.

The final questions to answer relate to equilibria. With some value of 𝜂 defining

the utility function, do equilibria exist? Is there a unique equilibrium? Conjecture 3.2

is supported by numerical testing and would answer both questions in the affirmative.

Conjecture 3.2. For all problem instances, and all values of 𝜂 ∈ [1/2, 1], the wait-

list allocation model has a unique equilibrium threshold satisfying the relationship in

equation (3.1).
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Figure 3-2: Queue length and outcome probabilities for waitlist and waiting time
models on problem instance with 𝜆tot = 100, 𝜇tot = 10, 𝜃𝑆 = 0.17, and 𝜃𝐺 = 0.5.

Figure 3-3: Queue length and outcome probabilities for waitlist and waiting time
models on problem instance with 𝜆tot = 100, 𝜇tot = 10, 𝜃𝑆 = 0.67, and 𝜃𝐺 = 0.5.
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As an example, the details of several problem instances with 𝜂 = 0.95 are shown

in Figure 3-4. Each panel represents a problem instance, and the two series plotted

correspond to the utility of an individual adhering to a population threshold, and the

best response for an individual choosing to deviate. The curves intersect at a unique

threshold, which is the unique equilibrium.

85



Figure 3-4: Utility for an individual who chooses to deviate (best response) or not
from a population threshold in the waitlist model, for various problem instances with
𝜂 = 0.95, 𝜆tot = 100, and 𝜇tot = 10.
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3.4 Waiting Time Allocation Model

The waiting time model is a natural extension of the waitlist model which appears in

many real-world allocation systems. In this model, scores are set in proportion with

the waiting time a patient has spent in the system. Waiting time allocation appeals

to an intuitive notion of equity, but it will ultimately be shown that inequality can

be induced by recipient choice. This section provides a similar exposition to what the

waitlist model received in the previous section.

3.4.1 Model Description

Though these quantities have not been explicitly defined previously, each of the queues

in our model has a waiting time associated with it by simple application of Little’s

Law. Letting 𝑊𝑞 represent the waiting time in queue 𝑞 ∈ 𝒢, we have:

𝑊𝑆1 =
𝐿𝑆1

𝜆𝑆

and 𝑊𝑁1 =
𝐿𝑁1

𝜆𝑁

for the first queues in each series, and:

𝑊𝑆𝑖 =
𝐿𝑆𝑖

𝑚𝛾𝐿𝑆(𝑖−1)

and 𝑊𝑁𝑖 =
𝐿𝑁𝑖

𝑚𝛾𝐿𝑁(𝑖−1)

for the remaining queues.

The cumulative time waited by a patient who has arrived in queue 𝐿𝑆𝑖 can be

modelled as 𝑉𝑆𝑖 =
∑︀

𝑗≤𝑖 𝑊𝑆𝑗 (and similar for the non-selective queues). The waiting

time model sets the scores for 𝑞 ∈ 𝒢 to 𝑇𝑞 = 𝑉𝑞. This gives rise to the following

balance equations.
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For the selective patients, they are:

𝜆𝑆 = 𝜇𝐺

(︃
𝑉𝑆1𝐿𝑆1∑︀
𝑞∈𝒢 𝑉𝑞𝐿𝑞

)︃
+𝑚𝛾𝐿𝑆1 (3.4a)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︃
𝑉𝑆𝑖𝐿𝑆𝑖∑︀
𝑞∈𝒢 𝑉𝑞𝐿𝑞

)︃
+𝑚𝛾𝐿𝑆𝑖 ∀2 ≤ 𝑖 < 𝑦

(3.4b)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜇𝐺

(︃
𝑉𝑆𝑖𝐿𝑆𝑖∑︀
𝑞∈𝒢 𝑉𝑞𝐿𝑞

)︃
+ 𝜇𝐵

(︃
𝑉𝑆𝑖𝐿𝑆𝑖∑︀
𝑞∈ℬ 𝑉𝑞𝐿𝑞

)︃
+𝑚𝛾𝐿𝑆𝑖 ∀𝑦 ≤ 𝑖 ≤ 𝑚

(3.4c)

Whereas for the non-selective group, they are:

𝜆𝑁 = 𝜇𝐺

(︃
𝑉𝑁1𝐿𝑁1∑︀
𝑞∈𝒢 𝑉𝑞𝐿𝑞

)︃
+ 𝜇𝐵

(︃
𝑉𝑁1𝐿𝑁1∑︀
𝑞∈ℬ 𝑉𝑞𝐿𝑞

)︃
+𝑚𝛾𝐿𝑁1 (3.5a)

𝑚𝛾𝐿𝑁(𝑖−1) = 𝜇𝐺

(︃
𝑉𝑁𝑖𝐿𝑁𝑖∑︀
𝑞∈𝒢 𝑉𝑞𝐿𝑞

)︃
+ 𝜇𝐵

(︃
𝑉𝑁𝑖𝐿𝑁𝑖∑︀
𝑞∈ℬ 𝑉𝑞𝐿𝑞

)︃
+𝑚𝛾𝐿𝑁𝑖 ∀2 ≤ 𝑖 ≤ 𝑚

(3.5b)

It is once again unclear whether the equations have a unique solution. However,

a similar approach to the one used for the waitlist model allows queue lengths that

satisfy the equations to be computed with minimal computational burden. The exact

procedure is slightly more complex but once again relies on defining a function 𝑓(𝑈𝐺),

which takes as input a guess at the total weight across all queues,
∑︀

𝑞∈𝒢 𝑉𝑞𝐿𝑞. The

value of 𝑓(𝑈𝐺) is then computed as follows.

Given 𝑈𝐺, a guess at 𝐿𝑆1 (called 𝐿𝑆1) can be computed by substituting the ex-

pression for waiting time into (3.4a) and solving the resulting quadratic equation:

𝜆𝑆 = 𝜇𝐺

(︂
𝑉𝑆1𝐿𝑆1

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆1 = 𝜇𝐺

(︂
𝐿2
𝑆1

𝜆𝑆𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆1
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which has solutions:

𝐿𝑆1 =
−𝑚𝛾 ±

√︁
(𝑚𝛾)2 + (4𝜇𝐺/𝑈𝐺)

(2𝜇𝐺)/(𝜆𝑆𝑈𝐺)

Exactly one of these solutions for 𝐿𝑆1 is positive, and this is the one we select. We

are also left with a guess at 𝑉𝑆1 (called 𝑉 𝑆1). Next, given these guesses, we obtain a

guess at 𝐿𝑆2 (called 𝐿𝑆2) by solving the next quadratic balance equation in (3.4b):

𝑚𝛾𝐿𝑆1 = 𝜇𝐺

(︂
𝑉 𝑆2𝐿𝑆2

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆2

= 𝜇𝐺

(︂
(𝑉 𝑆1 +𝑊 𝑆2)𝐿𝑆2

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆2

= 𝜇𝐺

(︂
𝑉 𝑆1 + 𝐿2

𝑆2/(𝑚𝛾𝐿𝑆1)

𝑈𝐺

)︂
+𝑚𝛾𝐿𝑆2

which again has a single positive solution. This procedure is repeated until reaching

the threshold, at which point 𝑈𝐵 = 𝑈𝐺−
∑︀𝑦−1

𝑖=1 𝑉𝑆𝑖𝐿𝑆𝑖 can be computed. In the same

way as for the waitlist model, we build up a full set of guesses at lengths and waiting

times, before finally computing the value of 𝑓(𝑈𝐺) as:

𝑓(𝑈𝐺) =
∑︁
𝑞∈𝒢

𝑉 𝑞𝐿𝑞

Once again, if 𝑓(𝑈𝐺) = 𝑈𝐺, and all 𝐿𝑞 > 0, then we have lengths that are posi-

tive and satisfy all balance equations. Conjecture 3.3 is also supported by extensive

numerical evidence and would establish that 𝑓(𝑈𝐺) has a unique fixed point.

Conjecture 3.3. 𝑔(𝐿) := 𝑓(𝐿)− 𝐿 is a function with the following properties:

(i) There exists an 𝐿* > 0, so that 𝑔(𝐿) is well-defined and finite for all 𝐿 > 𝐿*.

(ii) 𝑔(𝐿) has exactly one root on the interval (𝐿*,∞).

Conjecture 3.3 suggests an algorithm for computing the unique solution to the

system in (3.4) and (3.5) that is nearly identical to the one for the waitlist model.
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3.4.2 Model Behavior and Equilibrium

Figures 3-2 and 3-3 plot the three outcome probabilities observed in the waiting time

model as the population threshold varies between 1 and 𝑚+1 and individuals choose

not to deviate. Observed behavior is similar to the waitlist model, where the selective

group can increase their chance of receiving a good organ by delaying the threshold.

Figure 3-2, with fewer selective patients, again shows some complex behavior, such

as an interval of increasing returns on the probability of receiving a good organ being

followed by an interval of diminishing returns as the threshold grows larger.

Just like the waitlist model, the waiting time model appears to have a unique

equilibrium threshold for every data instance (as stated in Conjecture 3.4). This

claim is backed up by extensive numerical testing and illustrated for a range of data

instances in Figure 3-5.

Conjecture 3.4. For all problem instances, and all values of 𝜂 ∈ [1/2, 1], the waiting

time allocation model has a unique equilibrium threshold satisfying the relationship in

equation (3.1).
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Figure 3-5: Utility for an individual who chooses to deviate (best response) or not
from a population threshold in the waiting time model, for various problem instances
with 𝜂 = 0.95, 𝜆tot = 100, and 𝜇tot = 10.

91



3.5 Rate Allocation Model

Having introduced the first two models and noted (without showing) that they are

susceptible to inequality in the presence of recipient choice, it is reasonable to ask:

is there a model in which equality is guaranteed? The model which answers this

question in the affirmative is the rate allocation model.

The rate model deviates from the general model we have discussed so far in the

sense that it is not defined by assigning scores to queues. However, it has a very

intuitive interpretation. First, all arriving organs are split between the two patient

types in proportion with the arrival rates. For example, if 𝜆𝑆 = 2𝜆𝑁 , then two thirds

of all arriving organs (both good and bad) are offered to the selective group and one

third to the non-selective group. Within the types, allocations are made proportional

to the queue lengths.

The corresponding balance equations for the selective patients are:

𝜆𝑆 = 𝜃𝑆𝜇𝐺

(︂
𝐿𝑆1

𝐿𝑆

)︂
+𝑚𝛾𝐿𝑆1 (3.6a)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜃𝑆𝜇𝐺

(︂
𝐿𝑆𝑖

𝐿𝑆

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀2 ≤ 𝑖 < 𝑦 (3.6b)

𝑚𝛾𝐿𝑆(𝑖−1) = 𝜃𝑆𝜇𝐺

(︂
𝐿𝑆𝑖

𝐿𝑆

)︂
+ 𝜃𝑆𝜇𝐵

(︂
𝐿𝑆𝑖

𝐿𝑆𝐵

)︂
+𝑚𝛾𝐿𝑆𝑖 ∀𝑦 ≤ 𝑖 ≤ 𝑚 (3.6c)

whereas for the non-selective patients they are:

𝜆𝑁 = (1− 𝜃𝑆)𝜇𝐺

(︂
𝐿𝑁1

𝐿𝑁

)︂
+ (1− 𝜃𝑆)𝜇𝐵

(︂
𝐿𝑁1

𝐿𝑁

)︂
+𝑚𝛾𝐿𝑁1 (3.7a)

𝑚𝛾𝐿𝑁(𝑖−1) = (1− 𝜃𝑆)𝜇𝐺

(︂
𝐿𝑁𝑖

𝐿𝑁

)︂
+ (1− 𝜃𝑆)𝜇𝐵

(︂
𝐿𝑁𝑖

𝐿𝑁

)︂
+𝑚𝛾𝐿𝑁𝑖 ∀2 ≤ 𝑖 ≤ 𝑚

(3.7b)

These equations have a unique solution of positive queue lengths, and an algorithm

for computing them that is almost identical to the ones for the waitlist and waiting

time models. We omit details of the algorithm to avoid repetition.
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It is more interesting in this case to look at the equilibrium behavior. First, Con-

jecture 3.5, which is supported by extensive numerical evidence, claims the existence

of a unique equilibrium.

Conjecture 3.5. For all problem instances, and all values of 𝜂 ∈ [1/2, 1], the rate

allocation model has a unique equilibrium threshold satisfying the relationship in equa-

tion (3.1).

Next, Proposition 3.1 establishes that if no individual chooses to deviate from the

population threshold, then outcomes are perfectly equitable.

Proposition 3.1. Under the rate allocation model, the following relationships hold:

𝑝good𝑆 (𝑦, 𝑦) = 𝑝good𝑁 (𝑦) and 𝑝bad𝑆 (𝑦, 𝑦) = 𝑝bad𝑁 (𝑦) ∀𝑦 ∈ {1, . . . ,𝑚+ 1}

Proof. As a slight modification of the quantities introduced in Section 3.2.2, the three

Poisson process rates which selective patients are subject to are:

𝐺𝑞(𝑦) =
𝜃𝑆𝜇𝐺

𝐿𝑆

𝐵𝑞(𝑦) =
𝜃𝑆𝜇𝐵

𝐿𝑆𝐵

𝐷 = 𝑚𝛾

whereas for non-selective patients these rates are:

𝐺𝑞(𝑦) =
(1− 𝜃𝑆)𝜇𝐺

𝐿𝑁

𝐵𝑞(𝑦) =
(1− 𝜃𝑆)𝜇𝐵

𝐿𝑁

𝐷 = 𝑚𝛾

Substituting the relationships for selective patients into the expressions for out-

come probabilities and simplifying leads to:

𝑝good𝑆 (𝑦, 𝑦) =
𝜃𝑆𝜇𝐺

𝜆𝑆

and 𝑝bad𝑆 (𝑦, 𝑦) =
𝜃𝑆𝜇𝐵

𝜆𝑆

which are simply statements that the outcome probabilities correspond to the overall

fractions of arriving patients which leave due to consuming either good or bad organs.

Similarly, for the non-selective patients:

𝑝good𝑁 (𝑦) =
(1− 𝜃𝑆)𝜇𝐺

𝜆𝑁

and 𝑝bad𝑁 (𝑦) =
(1− 𝜃𝑆)𝜇𝐵

𝜆𝑁
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Finally, for any value of 𝜂, these expressions can be substituted into the expression

for the inequality measure to get:

𝑢𝑆

𝑢𝑁

=
(𝜃𝑆/𝜆𝑆) (𝜂𝜇𝐺 + (1− 𝜂)𝜇𝐵)

((1− 𝜃𝑆)/𝜆𝑁) (𝜂𝜇𝐺 + (1− 𝜂)𝜇𝐵)

=

(︂
𝜆𝑁

𝜆𝑆

)︂(︂
𝜃𝑆

1− 𝜃𝑆

)︂

= 1

A simple corollary of Proposition 3.1 (assuming Conjecture 3.5 holds) is that the

unique equilibrium must satisfy 𝑢*
𝑆 = 𝑢*

𝑁 and therefore achieve perfect equality in

utility.
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3.6 Experiments and Results

We performed extensive numerical experiments on both the waitlist and waiting time

models across a range of parameters to study whether inequality was introduced by

strategic behavior. Problem data were generated using the following procedure, and

exact parameter values for the experiments are shown in Table 3.1.

(i) Fix 𝛾 = 1, which sets the scale for the model. Fix 𝑚 = 15.

(ii) Select 𝜆tot as the total arrival rate of patients.

(iii) Select 𝜌 as the scarcity parameter, and calculate the total arrival rate of organs

as 𝜇tot = 𝜌𝜆tot.

(iv) Select 𝜃𝑆 and 𝜃𝐺 as the fractions of selective patients and good organs, respec-

tively. Calculate 𝜆𝑆 = 𝜃𝑆𝜆tot and 𝜇𝐺 = 𝜃𝐺𝜇tot.

(v) Select 𝜂.

For each combination of parameters, the unique equilibrium threshold was com-

puted, as well as utilities for both patient groups, inequality ratio, and queue lengths.

The results show that under certain combinations of parameters, strategic behavior

induced inequality in both the waitlist and waiting time models. This section high-

lights the main insights from the experiments and attempts to explain the mechanisms

behind them.

Parameter Set Number of Values

𝜆tot {100, 10 000} 2
𝜌 {0.01, 0.1, 0.5} 3
𝜆 [0.001, 0.999] 7
𝜇 [0.001, 0.999] 7
𝜂 [0.5, 1.0] 12

Table 3.1: Values of parameters used to generate problem instances for studying the
waitlist and waiting time models.
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Inequality increases with the value of good organs

The inequality ratio was increasing in 𝜂 in both the waitlist and waiting time models.

In other words, as more utility was derived from receiving a good organ compared

to a bad organ, inequality between selective and non-selective patients increased.

Figure 3-6 shows this effect across multiple parameter combinations with 𝜂 on the

horizontal axis. This experiment also showed the inequality ratio to be greater for

the waiting time model than the waitlist model, but only marginally so.

For both models, the effect can be explained by 𝑢*
𝑆(𝜂) being convex and 𝑢*

𝑁(𝜂)

being concave. Appendix B.2 proves that this is a sufficient condition for 𝑢*
𝑆/𝑢

*
𝑁 to

be increasing. A rough decomposition using the chain rule, where the equilibrium

threshold depends on 𝜂, provides some insight as to why 𝑢*
𝑆(𝜂) is convex. Similar

reasoning can be applied to 𝑢*
𝑁(𝜂).

(︂
d𝑢*

𝑆

d𝜂

)︂
𝜂

= 𝑝good𝑆 (𝑦*(𝜂))− 𝑝bad𝑆 (𝑦*(𝜂))+

(︂
d𝑦*

d𝜂

)︂
𝜂

⎛⎝𝜂

(︃
d𝑝good𝑆

d𝑦

)︃
𝑦*(𝜂)

+ (1− 𝜂)

(︂
d𝑝bad𝑆

d𝑦

)︂
𝑦*(𝜂)

⎞⎠
The first term gives the increase in utility due to increasing 𝜂: as 𝜂 increases,

weight shifts from 𝑝bad𝑆 to 𝑝good𝑆 . Since 𝑦*(𝜂) is increasing in 𝜂, and Figures 3-2 and

3-3 showed that 𝑝good𝑆 (𝑦, 𝑦) increases and 𝑝bad𝑆 (𝑦, 𝑦) decreases with 𝑦, this term is

increasing in 𝜂.

The second term represents the change in utility due to a changing equilibrium

threshold. d𝑦*

d𝜂
has two regimes: d𝑦*

d𝜂
= 0, when 𝜂 is small enough that 𝑦*(𝜂) = 1,

and d𝑦*

d𝜂
> 0, when 𝜂 is large enough that 𝑦*(𝜂) > 1. The second part of the term

represents the change in utility due to an increasing threshold. This whole term is

more opaque, but numerical testing shows that the two parts of the term combine to

increase in 𝜂. Hence, 𝑢*
𝑆(𝜂) is convex, and similar testing shows that 𝑢*

𝑁(𝜂) is concave.

Furthermore, Figure 3-6 includes plots for 𝜌 ∈ {0.1, 0.5}. It is clear that the effect

is less pronounced when organs are more scarce.
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Figure 3-6: Inequality ratio (varying with 𝜂) across multiple combinations of 𝜃𝑆
(columns) and 𝜃𝐺 (rows), for 𝜆tot = 100, with 𝜌 = 0.1 (top) and 𝜌 = 0.5 (bot-
tom).
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Inequality increases with proportion of selective patients

The inequality ratio was increasing in 𝜃𝑆 in both the waitlist and waiting time models.

In other words, as the fraction of patients who are selective increases, inequality

between these patients and the non-selective patients increases. Figure 3-7 shows this

effect across multiple parameter combinations with 𝜃𝑆 on the horizontal axis.

For both models, the effect is explained by the fact that d𝑢*
𝑆

d𝜃𝑆
≥ d𝑢*

𝑁

d𝜃𝑆
and d𝑢*

𝑁

d𝜃𝑆
≤ 0.

Appendix B.2 proves that this is a sufficient condition for 𝑢*
𝑆/𝑢

*
𝑁 to be increasing.

Again, a rough decomposition using the chain rule sheds light on the mechanism

behind this effect. Note that utility in this case depends on the equilibrium threshold,

𝑦*, and also on the value of 𝜃𝑆 itself. In other words, 𝜃𝑆 determines 𝑦*, which itself

has an effect on utilities, but for a fixed threshold, 𝜃𝑆 also modifies utilities through

its effect on queue lengths. Therefore the rate of change of utility for the selective

patients can be written:

d𝑢*
𝑆

d𝜃𝑆
= 𝜂

(︂
𝜕𝑝𝐺
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

+ (1− 𝜂)

(︂
𝜕𝑝𝐵
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

+(︂
d𝑦*

d𝜃𝑆

)︂
𝜃𝑆

(︃
𝜂

(︂
𝜕𝑝𝐺
𝜕𝑦

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

+ (1− 𝜂)

(︂
𝜕𝑝𝐵
𝜕𝑦

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

)︃

An interesting observation which holds true in the experiments is the following:

as the proportion of selective patients varies, the equilibrium threshold is unaffected.

Therefore, the gradient of interest, d𝑢*
𝑆

d𝜃𝑆
− d𝑢*

𝑁

d𝜃𝑆
, reduces to:

d𝑢*
𝑆

d𝜃𝑆
− d𝑢*

𝑁

d𝜃𝑆
= 𝜂

(︃(︂
𝜕𝑝𝐺
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

−
(︂
𝜕𝑞𝐺
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

)︃
+

(1− 𝜂)

(︃(︂
𝜕𝑝𝐵
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

−
(︂
𝜕𝑞𝐵
𝜕𝜃𝑆

)︂
(𝜃𝑆 ,𝑦*(𝜃𝑆))

)︃

When 𝜂 is larger, the first term (which is always positive) carries more weight and

dominates the second term. When 𝜂 is smaller, we have 𝑦* closer to 1, and so the

first term still dominates the second.
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Figure 3-7: Inequality ratio (varying with 𝜃𝑆) across multiple combinations of 𝜂
(columns) and 𝜃𝐺 (rows), for 𝜆tot = 100, with 𝜌 = 0.1 (top) and 𝜌 = 0.5 (bot-
tom).
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Inequality decreases with proportion of good organs

The inequality ratio was decreasing in 𝜃𝐺 in both the waitlist and waiting time models.

As the proportion of arriving organs which were good increased, inequality between

selective and non-selective patients decreased, and the effect was more pronounced for

larger values of 𝜂. Figure 3-8 shows this effect across multiple parameter combinations

with 𝜃𝐺 on the horizontal axis.

The result is reasonably intuitive. As 𝜃𝐺 increases, there are more good organs to

be distributed within the system. The selective queue accepts more organs, especially

with larger values of 𝜂, which applies pressure to reduce their aggregate queue length.

This ensures that even more of the newly arriving good organs are offered to the

non-selective queue.
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Figure 3-8: Inequality ratio (varying with 𝜃𝐺) across multiple combinations of 𝜃𝑆
(columns) and 𝜂 (rows), for 𝜆tot = 100, with 𝜌 = 0.1 (top) and 𝜌 = 0.5 (bottom).
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3.7 Discussion and Conclusions

Allocation systems that are controlled by a central authority typically have equity as

one of their primary goals. Unfortunately, inequity can creep into a system through

subtle mechanisms that are not well-understood by the authority, and it is therefore

important to propose models that identify these mechanisms. This chapter studied

recipient choice as a novel source of inequity.

We defined a game-theoretic queueing model, with both selective (strategic) and

non-selective (non-strategic) recipients, and resources of good and bad quality. Nu-

merical experiments showed that two common (and intuitively equitable) approaches

to allocating the resources were susceptible to inequity introduced through strategic

play by the selective recipients.

The experiments showed little difference in the inequity introduced by the waitlist

and waiting time models. In both cases, inequity increased as the value of a good

resource increased relative to the value of a bad resource. This result is intuitive: since

selective recipients were able to directly influence their chance of receiving a good

resource, it makes sense that utility is concentrated among the selective recipients

when this resource is highly-valued. Similarly, in both cases, inequity increased as

the fraction of recipients who were selective increased.

The results suggest some specific situations in which the authority who supervises

an allocation system with recipient choice must take particular care. In particular,

significant inequity may be introduced in a setting where the resources being allocated

have widely-varying qualities or valuations, and when a significant fraction of the

population is selective. Identifying the former mostly requires domain knowledge,

but the latter can be identified using data that are typically collected as part of

an allocation system. For example, most deceased-donor organ allocation systems

track counts of accepted and declined organs, and it is straightforward to identify the

relative selectiveness of different patients and transplant centers using these data.

There are certainly limitations to the study in this chapter. First, several con-

jectures are left in place of results; these deal with the uniqueness of the solution to
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each system of balance equations defining the models, the existence and uniqueness

of equilibria in the models, and the monotonicity of the inequality measure as a func-

tion of separate variables. Analytical results to prove these conjectures would be an

excellent direction for future research.

Second, as has been mentioned, the underlying model in this chapter is a game

played on a network of queues with Poisson processes governing all inflows and out-

flows. Lengths of the queues are defined by the solution to a system of balance equa-

tions. This type of modelling framework was not identified in the literature review,

and could possibly be generalized to describe other settings in future research.

Finally, we presented a stylized model as a first step in studying the phenomenon

of inequity due to patient choice. A data-driven study aimed at determining whether

the effect is significant in practice could be an extremely useful next step. This type

of study could make use of simulation tools that exist for some systems (such as

organ allocation), or be conducted with a model fitted to observed data. We strongly

believe that inequity due to recipient choice is an effect that warrants further study.

103



104



Chapter 4

Modeling Mass Self-Testing for

SARS-CoV-2

4.1 Introduction

The global emergence of the SARS-CoV-2 virus caught the whole world off guard.

During 2020 and 2021, widespread community transmission of the pathogen led to

massive demand for healthcare resources that stretched many national health sys-

tems beyond their capacity. To slow the transmission of the virus and reduce the

stress placed on health systems to manageable levels, authorities implemented var-

ious non-pharmaceutical interventions (NPIs). These ranged from public advisories

emphasizing the importance of minimizing close contacts, to face mask mandates,

travel restrictions, and lockdowns [42, 43].

As they developed strategies for intervention, policymakers had to make difficult

trade-offs. On the one hand, the most strict interventions (including lockdowns)

were very effective at relieving pressure on health systems and averting deaths due to

COVID-19 [44, 45]. On the other hand, they came with wide-ranging and potentially

huge negative consequences that were both explicit [46] and implicit [47]. These

included direct financial costs, disrupted education, and adverse effects on mental

health, among many others. Less strict interventions (such as public advisory cam-

paigns) were less effective at curbing transmission of the virus, but came with milder
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negative consequences.

In general, predicting the effect of an intervention is a very challenging problem.

Some interventions which had been adopted in previous respiratory pandemics simi-

lar to COVID-19 had already been studied in the literature, which gave policymakers

a good understanding of their positive and negative consequences. However, other

interventions were novel, and though they were implemented based on sound reason-

ing, their effectiveness had not been studied prior to the COVID-19 pandemic. It is

easy to see why analyzing these interventions is extremely important for informing

responses to similar crises that may occur in the future.

The novel NPI studied in this chapter is mass screening, and in particular, mass

self-testing. Mass screening programs involve large, susceptible populations taking

tests preemptively and routinely to detect infected individuals before they have the

chance to infect many others. Mass screening programs are particularly attractive

interventions because they come with limited negative consequences, which are pri-

marily financial costs that can be estimated prior to implementation. During the

COVID-19 pandemic, advancements in diagnostics, manufacturing, and supply chain

capabilities enabled several countries, including Greece, to procure and distribute

self-testing kits to the public at massive scale. However, testing the entire population

remained infeasible, and therefore the programs had to choose how to allocate their

finite supply of tests among the population.

The Greek self-testing program ran from April to December, 2021. The program

initially targeted primary and high-school students and their teaching staff. In May

2021, the program was expanded to private sector employees and civil servants who

were working in person and not vaccinated or previously infected. For the most part,

each individual in the targeted groups was required by law to take two self tests per

week (regardless of whether they were symptomatic) and report the results through a

centralized online platform. The entire population was also encouraged to take tests,

and free kits were occasionally distributed to everyone, particularly before or after

holidays that involved large gatherings of people.

This chapter aims to quantify the effect of the novel Greek self-testing program on
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curbing the COVID-19 pandemic. In particular, we aimed to estimate the impact of

the program on the reproduction number of the virus, hospitalizations, and deaths, as

well as to obtain insights on best practices and lessons learned from the operational

decisions made when implementing the program. It is hoped that this analysis can

serve as a reference point for policymakers who aim to develop effective intervention

strategies during future pandemics.

4.1.1 Main Results and Contributions

The primary methodological contribution of this chapter is a novel epidemiological

model that describes the spread of an infectious disease through a population in the

presence of self-testing. Crucially, the model makes use of highly granular data that

were collected by the Greek NPHO through the online platform used for reporting

results of self-tests. It is a compartmental model, and Section 4.2 provides a detailed

description of its structure, input data, parameters, and the outcomes it estimates.

Next, the model was fitted to the historical data and used to perform inference,

with exact methods described in Section 4.3. Broadly speaking, we aimed to answer

the following two questions:

1. What was the overall impact of the program in curbing the COVID-19 pandemic

in Greece?

2. What can be learnt from the operational decisions made when implementing

the self-testing program in Greece?

Overall Impact of the Program

The overall impact of the self-testing program was assessed according to its effect

on three important metrics: reproduction number of the virus, hospitalizations, and

deaths. Our analysis found that the program reduced the reproduction number by

an average of 4% over the self-testing period, and by as much as 24% during periods

when virus transmission was high. Our most conservative estimates also suggest that
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discarding the program would have resulted in hospitalizations increasing by approx-

imately 25% and deaths by 20%, corresponding to nearly 22 000 hospitalizations and

2 300 deaths.

Impact of Operational Decisions

Our analysis focused on three key operational decisions made during the implemen-

tation of the program. The first related to the scale of the program: what would have

happened if the Greek government had increased or decreased the number of tests

administered? Our results suggest that if 20% fewer tests had been administered,

hospitalizations and deaths would have increased by 10% and 8% respectively. On

the other hand: if 20% more tests had been administered, hospitalizations and deaths

would have decreased by 8% and 6% respectively. Importantly, this shows a pattern

of diminishing returns.

The second question we sought to answer was related to the subpopulations tar-

geted by the distribution of the tests: given a fixed number of tests, how should the

Greek government have distributed them among the various age groups in the popu-

lation? Our results suggest that, after fixing the total number of tests to what was

observed, distributing approximately 40% to the 0 to 18 age group, 60% to the 19

to 64 age group, and 0% to the 65-plus age group would have resulted in the largest

reduction in hospitalizations and deaths. However, in both metrics, the estimated

reduction of 1-2% was small.

The final question related to the quality of the self-tests themselves: how im-

portant was the clinical accuracy of the self-tests used? Our results suggest that

higher-quality self-tests would have significantly reduced hospitalizations and deaths.

For example, if the sensitivity of the self-tests was increased from 60% to 80%, we

estimate that hospitalizations and deaths would have reduced by 12% and 10% re-

spectively.
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4.2 Model Description

This section provides a detailed description of our model. It begins with a qualitative

description of the compartments and transitions in the model (Section 4.2.1), and

then elaborates on the dynamics; in other words, how transitions are modeled using

a mix of parameters and available historical data (Section 4.2.2). This is followed by

a discussion of the methods used to fit the model (Section 4.2.3), while a detailed

description of the procedure which minimized the loss function is left to Appendix C.2.

4.2.1 Model Compartments and Transitions

The model is reminiscent of a standard 𝑆𝐼𝑅 model, but with important modifications

that enable relevant dynamics, such as the self-testing and vaccination programs, to

be described. All compartments are replicated across three age groups: 0 to 18 years,

19 to 64 years, and 65-plus years. These groups are chosen for two reasons. First,

they approximately correspond to the age groups which were subject to different

self-testing regimes imposed by the Greek government (details are included in Ap-

pendix C.1). Second, they correspond to the age groups which are generally assumed

to have significant differences in the health outcomes of infected individuals. Depend-

ing on the age group, compartments are indexed with subscript 𝑎 taking values in

𝒢 = {0− 18, 19− 64, 65+}.

Similarly, each compartment is replicated across two vaccination statuses. These

are indexed by 𝑣 ∈ {0, 1} to indicate vaccination. Figure 4-1 illustrates the model

compartments and possible transitions between them for a single age group, 𝑎 ∈ 𝒢.

First, we focus on describing the unvaccinated compartments (indexed by 𝑎0).

Most individuals are susceptible and unvaccinated (𝑆𝑎0) to begin with. From here,

they may become vaccinated (𝑆𝑎1) or infected. If infected, they move to one of three

compartments: asymptomatic and mild (𝐼𝐴𝑀𝑎0), symptomatic and mild (𝐼𝑆𝑀𝑎0),

or symptomatic and severe (𝐼𝑆𝑆𝑎0). Those with mild disease are assumed to recover

without requiring treatment, whereas those with severe disease eventually become

sick enough to end up in hospital. Populations in all three of these compartments can

109



Vaccinated

Unvaccinated

Hospitalized

Dead

Infected
(asymptomatic + mild)

Infected
(symptomatic + mild)

Infected
(symptomatic + severe)

Isolated

Susceptible

Recovered

Recovered
(keep testing)

Breakthrough Infected
(symptomatic + severe)

Breakthrough Infected
(asymptomatic + mild)

Dead

HospitalizedIsolated

Breakthrough Infected
(symptomatic + mild)

Vaccinated

Recovered +
vaccinated

Recovered +
vaccinated

(keep testing)

Figure 4-1: The structure of the model within a particular age group, 𝑎 ∈ 𝒢. For
vaccination group 𝑣 ∈ {0, 1}, states are indexed by 𝑎𝑣. Blue compartments are sub-
ject to testing, while green and red corners indicate asymptomatic and symptomatic
compartments, respectively.
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spread the disease to other susceptible populations in any age group or vaccination

status.

Infected individuals may be identified by taking a test, at which point those with

mild disease move to an isolated compartment (𝑂𝑎0), whereas those with severe disease

move to a hospitalized (𝐻𝑎0) compartment. Infected individuals with mild disease,

however, may never be identified through testing – in which case they eventually

recover into a compartment that continues to be subject to testing (𝑅𝑇𝑎0). Infected

individuals with severe disease are always assumed to eventually be identified.

Individuals in isolation with mild disease are assumed to eventually recover, while

hospitalized individuals may recover or die. Recovered individuals transition to 𝑅𝑎0,

and those who die to 𝐷𝑎0.

For the vaccinated population (indexed by 𝑎1), transitions between compartments

follow the same structure as those for the unvaccinated, but with the following ex-

ception: a fraction of the vaccinated population is assumed to gain full immunity.

Therefore, vaccinated individuals in 𝑆𝑎1 may transition directly to the recovered com-

partment that continues to be subject to testing (𝑅𝑇𝑎1) after being exposed to the

virus.

4.2.2 Model Dynamics and Data

Guided by data obtained through the Greek NPHO, the model operates in discrete

time steps corresponding to days. Time steps are indexed with 𝑡 ∈ {0, 1, . . . , 𝑇},

where 𝑇 is the model horizon. The actual model was fitted to data spanning January

21, 2021, to December 15, 2021.

The dynamics of the model can be described in terms of the number of individuals

that transition between each pair of compartments in a single time step. Let 𝒳 be

the set of all compartments in the model and 𝒳𝑎𝑣 be the compartments for a given

age group 𝑎 and vaccination status 𝑣. For compartments 𝑋, 𝑌 ∈ 𝒳 , the number

of individuals that transition from 𝑋 to 𝑌 at time step 𝑡 is denoted ∆𝑋�𝑌 (𝑡). If

compartment 𝑋 has a population at time step 𝑡 equal to 𝑋(𝑡), the population at the
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next time step is given by:

𝑋(𝑡+ 1) = 𝑋(𝑡) +
∑︁
𝑌 ∈𝒳

∆𝑌 �𝑋(𝑡)−
∑︁
𝑌 ∈𝒳

∆𝑋�𝑌 (𝑡)

In the model, transitions corresponding to historical data are generally fixed to this

data (for example, the number of new vaccinations). Other transitions are modeled

using parameters learned as part of the fitting process. To disambiguate, we use the

following notational convention: quantities explicitly available in data are denoted

with a bar, whereas quantities learned during the fitting process are denoted without

a bar. For example: 𝑥 denotes a quantity from the data, whereas 𝑥 is a quantity that

must be learned.

We discuss the transitions in four categories: (1) vaccination, (2) infection, (3)

recovery, hospitalization, and death, and (4) testing and isolation.

Vaccination

Vaccinated individuals are defined as those who have received two doses of the vaccine.

Let 𝑣𝑎(𝑡) denote the recorded number of individuals in age group 𝑎 who received their

second dose on day 𝑡. These data are provided by Greek NPHO records [48].

The available data do not specify whether individuals who were vaccinated at

time 𝑡 belonged in the susceptible (𝑆𝑎0) or recovered compartment that is subject to

testing (𝑅𝑇𝑎0). We assume a proportional split between the two, so that:

∆𝑆𝑎0�𝑆𝑎1(𝑡) =

(︂
𝑆𝑎0

𝑆𝑎0 +𝑅𝑇𝑎0

)︂
𝑣𝑎(𝑡)

∆𝑅𝑇𝑎0�𝑅𝑇𝑎1(𝑡) =

(︂
𝑅𝑇𝑎0

𝑆𝑎0 +𝑅𝑇𝑎0

)︂
𝑣𝑎(𝑡)

Infection

Infected individuals expose susceptible individuals to the virus when coming into

close contact with them, which may result in the susceptible individuals becoming

infected. It is useful to examine two quantities that model these dynamics: first,
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the total number of newly infected individuals in each time step, and second, the

number of these who transition into the different infected compartments in the model

(depending on disease severity and vaccination status).

We first focus on transmission at time 𝑡 from age group 𝑏 ∈ 𝒢 to age group 𝑎 ∈ 𝒢.

Consider an infected individual from age group 𝑏 and, to begin with, assume that

the entire age group 𝑎 population is unvaccinated and susceptible. Then, let 𝛽𝑎𝑏(𝑡)

be the number of individuals from age group 𝑎 that the infected individual from age

group 𝑏 comes into close contact with and infects. Note that these parameters, which

are referred to as mixing parameters, capture several relevant factors including the

infectivity of the pathogen, the contagiousness of the infected individuals, and the

contact patterns between different age groups.

However, each infected individual from age group 𝑏 need not infect as many as

𝛽𝑎𝑏(𝑡) individuals from age group 𝑎 due to two reasons. First, some of those in age

group 𝑎 may not be susceptible, and second, individuals in age group 𝑎 may have

developed full immunity through vaccination.

Let us specifically focus on infections of unvaccinated individuals in age group 𝑎.

As mentioned above, each infected individual in age group 𝑏 may infect fewer than

𝛽𝑎𝑏(𝑡) unvaccinated individuals in age group 𝑎, because only a fraction of those they

come into contact with are susceptible and unvaccinated. We refer to the population

within age group 𝑎 that an infected individual comes into contact with as the commu-

nity population for that age group. This population is drawn from all compartments

except the isolated, hospitalized, and dead compartments. It is denoted 𝒞𝑎:

𝒞𝑎 = {𝑆𝑎𝑣, 𝐼𝐴𝑀𝑎𝑣, 𝐼𝑆𝑀𝑎𝑣, 𝐼𝑆𝑆𝑎𝑣, 𝑅𝑇𝑎𝑣, 𝑅𝑏𝑣 : 𝑣 ∈ {0, 1}}

and the size of the associated community population is denoted 𝐶𝑎(𝑡):

𝐶𝑎(𝑡) =
∑︁
𝑋∈𝒞𝑎

𝑋(𝑡)

With this notation, the fraction 𝑆𝑎0(𝑡)/𝐶𝑎(𝑡) of all contacts made by an individual

113



from age group 𝑏 with age group 𝑎 are with susceptible and unvaccinated individuals.

Therefore, an infected individual from age group 𝑏 infects 𝛽𝑎𝑏(𝑡) × (𝑆𝑎0(𝑡)/𝐶𝑎(𝑡))

unvaccinated individuals from age group 𝑎 in time step 𝑡.

To calculate the total number of unvaccinated individuals from age group 𝑎 that

become infected in a given time step, infections due to each age group must be

considered. Let 𝐼𝑏(𝑡) be the number of infected individuals at time 𝑡 from age group

𝑏, given by:

𝐼𝑏(𝑡) =
∑︁

𝑣∈{0,1}

𝐼𝐴𝑀𝑏𝑣(𝑡) + 𝐼𝑆𝑀𝑏𝑣(𝑡) + 𝐼𝑆𝑆𝑏𝑣(𝑡)

Then, letting 𝑁𝐼𝑎0(𝑡) be the total number of newly infected unvaccinated individ-

uals in age group 𝑎 at time 𝑡, the quantity 𝑁𝐼𝑎0(𝑡) can be expressed as:

𝑁𝐼𝑎0(𝑡) =
∑︁
𝑏∈𝒢

𝛽𝑎𝑏(𝑡)

(︂
𝑆𝑎0(𝑡)

𝐶𝑎(𝑡)

)︂
𝐼𝑏(𝑡)

Infections of vaccinated individuals from age group 𝑎 are similar, with one dif-

ference: some vaccinated individuals who are exposed to the virus are not infected

due to vaccine-induced immunity. We introduce a parameter termed the probability

of vaccine immunity to model this effect, denoted 𝑝v−imm.

More precisely, a vaccinated individual who is exposed to the virus and would

have been infected had they not been vaccinated, remains uninfected with probability

𝑝v−imm. This probability is assumed to remain the same across age groups. Also, note

that it relates directly to the effectiveness of the vaccine.

Vaccine effectiveness for the Omicron variant is estimated to be approximately

80% [49]. This value is adjusted to 𝑝v−imm = 85% to account for the greater vaccine

effectiveness against non-Omicron variants that were prevalent in Greece throughout

2021 (accounting for vaccine types and variant proportions in the population [50]).

Using this new parameter, the number of new infections in the vaccinated from age

group 𝑎 at time step 𝑡, denoted 𝑁𝐼𝑎1(𝑡), can be written as:

𝑁𝐼𝑎1(𝑡) = (1− 𝑝v−imm)
∑︁
𝑏∈𝒢

𝛽𝑎𝑏(𝑡)

(︂
𝑆𝑎1(𝑡)

𝐶𝑎(𝑡)

)︂
𝐼𝑏(𝑡)
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Next, we describe the transitions that determine the symptoms and severity of

disease in an infected individual by introducing two parameters. The first is the

probability of asymptomatic disease, denoted 𝑝asymp
𝑎 , which represents the probability

that an infected individual in age group 𝑎 does not develop symptoms. We have

𝑝asymp
0−18 = 0.6 𝑝asymp

19−64 = 0.35 𝑝asymp
65+ = 0.35

based on estimates reported for unvaccinated infected individuals [51]. Because there

are no data to suggest that the proportion of asymptomatic infection changes due to

vaccination, the same probabilities are also used for breakthrough infections.

The second is the probability of severe disease, denoted 𝑝severe𝑎𝑣 , which represents

the probability that an infected individual who is symptomatic will develop severe

disease (as opposed to mild disease). Recall that those with severe disease eventually

require hospitalization, whereas those with mild disease recover without treatment.

Estimates [52] for the probabilities of infected and unvaccinated individuals who are

hospitalized (1% for 0 to 18 years, 7% for 19 to 64 years, and 30% for 65-plus years)

do not quite correspond to 𝑝severe𝑎𝑣 in our model, which is a probability conditional

on symptomatic disease. Therefore, this probability is left as a free parameter to be

learned in the fitting process.

Combining all expressions and parameters, transitions of the susceptible popula-

tion into the infected compartments can be expressed as follows:

∆𝑆𝑎𝑣�𝐼𝐴𝑀𝑎𝑣(𝑡) = 𝑝asymp
𝑎 × 𝑁𝐼𝑎𝑣(𝑡)

∆𝑆𝑎𝑣�𝐼𝑆𝑆𝑎𝑣(𝑡) = (1− 𝑝asymp
𝑎 )𝑝severe𝑎𝑣 × 𝑁𝐼𝑎𝑣(𝑡)

∆𝑆𝑎𝑣�𝐼𝑆𝑀𝑎𝑣(𝑡) = (1− 𝑝asymp
𝑎 )(1− 𝑝severe𝑎𝑣 ) × 𝑁𝐼𝑎𝑣(𝑡)

Finally, we must define the transition from 𝑆𝑎1 to 𝑅𝑇𝑎1. This represents the

susceptible and vaccinated individuals in age group 𝑎 who develop full immunity by

taking the vaccine but continue to take tests because they are not themselves aware

of their immunity. This transition takes place at the point where such an individual
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is exposed to the virus, and therefore can be expressed as:

∆𝑆𝑎1�𝑅𝑇𝑎1(𝑡) = 𝑝v−imm
∑︁
𝑏∈𝒢

𝛽𝑎𝑏(𝑡)

(︂
𝑆𝑎1(𝑡)

𝐶𝑎(𝑡)

)︂
𝐼𝑏(𝑡)

Recovery, Hospitalization, and Death

Infected individuals with mild disease spend an average of 𝜏 rec = 10 days [53] in

the infected compartments (𝐼𝐴𝑀𝑎𝑣 or 𝐼𝑆𝑀𝑎𝑣) before they recover and infectiousness

subsides. Therefore, in the absence of a positive test, the following rates for each age

group 𝑎 and vaccination status 𝑣 can be written:

∆𝐼𝐴𝑀𝑎𝑣�𝑅𝑇𝑎𝑣(𝑡) =
1

𝜏 rec
𝐼𝐴𝑀𝑎𝑣(𝑡)

∆𝐼𝑆𝑀𝑎𝑣�𝑅𝑇𝑎𝑣(𝑡) =
1

𝜏 rec
𝐼𝑆𝑀𝑎𝑣(𝑡)

Similarly, it is assumed that isolated individuals also spend an average of 𝜏 rec days

in their compartment before recovery:

∆𝑂𝑎𝑣�𝑅𝑎𝑣(𝑡) =
1

𝜏 rec
𝑂𝑎𝑣(𝑡)

Infected individuals with severe disease are hospitalized an average of 𝜏hosp = 10

days [54] after infection:

∆𝐼𝑆𝑆𝑎𝑣�𝐻𝑎𝑣(𝑡) =
1

𝜏hosp
𝐼𝑆𝑆𝑎𝑣(𝑡)

Hospitalised individuals are discharged either due to death or recovery. The av-

erage length of stay in the hospital, denoted by 𝜏 los𝑎𝑣 (𝑡), varies with age, vaccination

status, and month and is provided by the Greek NPHO [55]. Among the discharged

individuals, the fraction 𝑝die𝑎 of those who die could in principle be estimated from the

raw data. Unfortunately, this estimate was observed to vary substantially over time,

and therefore it was left as a parameter to be learned through the fitting process.
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Combining the above gives the following transitions:

∆𝐻𝑎𝑣�𝑅𝑎𝑣(𝑡) = (1− 𝑝die𝑎 )
1

𝜏 los𝑎𝑣 (𝑡)
𝐻𝑎𝑣(𝑡)

∆𝐻𝑎𝑣�𝐷𝑎𝑣(𝑡) = 𝑝die𝑎

1

𝜏 los𝑎𝑣 (𝑡)
𝐻𝑎𝑣(𝑡)

Testing and Isolation

The model allows for two types of testing: regular tests and self tests. Both are

conducted with the aim of isolating infected individuals and preventing them from

spreading the disease, or providing them with the appropriate hospital treatment in

the case of severe illness. However, the tests themselves are quite different in nature.

Regular tests are voluntary tests sought out by individuals (usually due to symp-

toms) and administered by a medical provider. There is little the government can do

to pressure an individual into taking a regular test – instead, this process is driven

almost entirely by the behavior of the individual.

Regular tests are accurate, with clinical sensitivity and specificity given by 𝜎reg =

0.8 and 𝜇reg = 1 respectively. Available data [56] provide the total regular tests

administered across the country, and these are combined with Greek census data [57]

to estimate the number of regular tests performed daily in age group 𝑎 and vaccination

status 𝑣, denoted by 𝑇 reg
𝑎𝑣 (𝑡). Tests are assumed to be allocated proportionally to the

sizes of different age and vaccination groups.

At each time step 𝑡, the 𝑇 reg
𝑎𝑣 (𝑡) tests must be split among different compartments.

Letting 𝑇 reg
𝑋 (𝑡) be the tests taken by compartment 𝑋 ∈ 𝒳 , we model the split as

follows. First, because newly hospitalized individuals were routinely tested upon

admission:

𝑇 reg
𝐼𝑆𝑆𝑎𝑣

(𝑡) = ∆𝑋�𝐻𝑎𝑣(𝑡)

The remaining 𝑇 reg
𝑎𝑣 (𝑡)−𝑇

reg
𝐼𝑆𝑆𝑎𝑣

(𝑡) tests are assumed to be split in the following way.

Because regular tests are voluntary, individuals in different compartments had differ-

ent propensities to take them based on their symptoms. 𝜃𝑎 and 1− 𝜃𝑎 are introduced
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to denote the testing propensities of asymptomatic and symptomatic individuals re-

spectively. The total propensity of age group 𝑎 and vaccination group 𝑣, denoted Θ𝑎𝑣,

can be computed:

Θ𝑎𝑣 = 𝜃𝑎(𝑆𝑎𝑣(𝑡) +𝑅𝑇𝑎𝑣(𝑡) + 𝐼𝐴𝑀𝑎𝑣(𝑡)) + (1− 𝜃𝑎)𝐼𝑆𝑀𝑎𝑣(𝑡)

Then, the 𝑇 reg
𝑎𝑣 (𝑡)−𝑇 reg

𝐼𝑆𝑆𝑎𝑣
(𝑡) tests are split in proportion with the testing propen-

sity and size of each compartment:

𝑇 reg
𝑋 (𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︁
𝜃𝑎𝑋(𝑡)
Θ𝑎𝑣

)︁ (︀
𝑇 reg

𝑎𝑣 (𝑡)− 𝑇 reg
𝐼𝑆𝑆𝑎𝑣

(𝑡)
)︀

if 𝑋 ∈ {𝑆𝑎𝑣, 𝑅𝑇𝑎𝑣, 𝐼𝐴𝑀𝑎𝑣}(︁
(1−𝜃𝑎)𝑋(𝑡)

Θ𝑎𝑣

)︁ (︀
𝑇 reg

𝑎𝑣 (𝑡)− 𝑇 reg
𝐼𝑆𝑆𝑎𝑣

(𝑡)
)︀

if 𝑋 = 𝐼𝑆𝑀𝑎𝑣

0 otherwise

As a brief note, this expression is scale-free in 𝜃𝑎 in the sense that 𝑇 reg
𝑋 (𝑡) does

not change when scaling 𝜃𝑎 and 1 − 𝜃𝑎 by the same positive constant. This is why

the pair of testing propensities can be normalized to sum to one.

Given 𝑇 reg
𝑋 (𝑡), the total number of positive regular tests taken by compartment 𝑋

can therefore be calculated in a straightforward way:

𝑃 reg
𝑋 (𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎reg𝑇 reg

𝑋 (𝑡) if 𝑋 ∈ {𝐼𝐴𝑀𝑎𝑣, 𝐼𝑆𝑀𝑎𝑣}

∆𝑋�𝐻𝑎𝑣(𝑡) if 𝑋 = 𝐼𝑆𝑆𝑎𝑣

0 otherwise

In contrast to regular tests, self-tests are mandatory. Unvaccinated individuals

in certain age groups were required by the government to take these tests at regular

intervals regardless of whether they were symptomatic or not, and by increasing or

decreasing supply the government was able to increase or decrease testing coverage

among these populations.

Self-tests are generally less accurate than regular tests, with clinical sensitivity

and specificity given by 𝜎self = 0.6 and 𝜇self = 1 respectively. Available data [56]
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provide the total number of self-tests administered to age group 𝑎 and vaccination

status 𝑣 each week. These were assumed to be uniformly distributed throughout that

week, and we let 𝑇 self
𝑎𝑣 (𝑡) denote the number of self-tests performed at time 𝑡. Because

self-tests were only for unvaccinated individuals, note that all 𝑇 self
𝑎1 (𝑡) = 0.

Because self-tests are mandatory, we assume a uniform distribution among the

eligible compartments. Note that no self-tests are taken by individuals in 𝐼𝑆𝑆𝑎𝑣,

because it is assumed that those with severe disease instead seek a regular test. The

total number of self-tests administered to compartment 𝑋 can be calculated as:

𝑇 self
𝑋 (𝑡) =

⎧⎪⎨⎪⎩
(︁

𝑋(𝑡)
𝑆𝑎𝑣(𝑡)+𝐼𝐴𝑀𝑎𝑣(𝑡)+𝐼𝑆𝑀𝑎𝑣(𝑡)+𝑅𝑇𝑎𝑣(𝑡)

)︁
𝑇 self

𝑎𝑣 (𝑡) if 𝑋 ∈ {𝑆𝑎𝑣, 𝐼𝐴𝑀𝑎𝑣, 𝐼𝑆𝑀𝑎𝑣, 𝑅𝑇𝑎𝑣}

0 otherwise

and the total number of positive self-tests in each compartment is:

𝑃 self
𝑋 (𝑡) =

⎧⎪⎨⎪⎩𝜎self𝑇 self
𝑋 (𝑡) if 𝑋 ∈ {𝐼𝐴𝑀𝑎𝑣, 𝐼𝑆𝑀𝑎𝑣, 𝐼𝑆𝑆𝑎𝑣}

0 otherwise

We conclude by noting that all individuals who are identified as positive and are

not suffering from a severe infection move to the isolated compartment:

∆𝑋�𝑂𝑎𝑣(𝑡) = 𝑃 reg
𝑋 (𝑡) + 𝑃 self

𝑋 (𝑡) for 𝑋 ∈ {𝐼𝐴𝑀𝑎𝑣, 𝐼𝑆𝑀𝑎𝑣}

4.2.3 Model Fitting

The model was fitted against several outcomes for which daily historical data were

available: hospitalizations, deaths, total cases, and cases reported through the self-

testing program. Parameters were selected to minimize the sum of squared log errors

between the model estimates for these outcomes and the data. This subsection pro-

vides details on these outcomes, leaving the minimization procedure to Appendix C.2.
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Hospitalizations and Deaths

The number of daily hospitalizations (by age group and vaccination status) and deaths

(by age group) are available from data recorded by the NPHO of Greece [58]. The

corresponding model predictions are given by:

∆𝐼𝑆𝑆𝑎𝑣�𝐻𝑎𝑣(𝑡) and
∑︁

𝑣∈{0,1}

∆𝐻𝑎𝑣�𝐷𝑎𝑣(𝑡)

Total Cases

The total number of new cases by age group are available from data recorded by the

Greek NPHO [59]. The corresponding model predictions are given by:

∑︁
𝑣∈{0,1}

∑︁
𝑋∈𝒳𝑎𝑣

𝑃 self
𝑋 (𝑡) + 𝑃 reg

𝑋 (𝑡)

Cases Reported Through the Self-Testing Program

The total number of new cases (by age group) that were identified through the self-

testing program are available from the Greek NPHO [59]. While these cases were

predominantly recorded following a positive self test, the data contain artifacts to

suggest that some were erroneously recorded after a positive regular test (without an

associated positive self test).

To account for this possibility, let 𝛾𝑎(𝑡) be the fraction of regular positive tests

that were reported through the self-testing program by age group 𝑎 at time 𝑡. The

model estimates of cases reported through the self-testing program are given by:

∑︁
𝑣∈{0,1}

∑︁
𝑋∈𝒳𝑎𝑣

𝑃 self
𝑋 (𝑡) + 𝛾𝑎(𝑡)𝑃

reg
𝑋 (𝑡)

Note that 𝛾𝑎(𝑡) is assumed to vary with age and over time to account for different

types of reporting errors as the system processed varying amounts of self-tests for

different segments of the population.
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4.3 Methods for Inference

Recall that the study aimed to quantify the overall impact of the self-testing program

in Greece and understand the effect of several operational decisions related to the

scale of the program, the distribution of self-tests among age groups, and the clinical

sensitivity of the self-tests.

This section describes how estimates were obtained by performing sensitivity anal-

yses on the fitted model to simulate outcomes for different input values of either self-

tests or their clinical sensitivity. To obtain confidence intervals in addition to point

estimates, simulations were performed within a bootstrapping framework whose de-

scription is left to Appendix C.2.

4.3.1 Sensitivity Analysis

The sensitivity analyses on the clinical sensitivity of self-tests was performed in a

straightforward way. Given the fitted model, the fitted parameters were simply used

to simulate outputs of the model for various values of the clinical sensitivity, 𝜎self .

On the other hand, sensitivity analyses which required modifying the number of

self-tests were more complicated. In all cases, self-tests were modified by scaling the

input values uniformly across time and different age groups. To be more precise, at

time 𝑡, the number of self-tests taken by age group 𝑎 and vaccination status 𝑣 was

set to (1 + 𝜂)𝑇 self
𝑎𝑣 (𝑡), where 𝜂 is the scaling parameter. Note that 𝜂 = 0 recovers the

observed scenario, while 𝜂 < 0 and 𝜂 > 0 consider scenarios in which the scale of the

program is decreased or increased, respectively.

Changing the scale of the self-testing program would likely have modified voluntary

testing behavior compared with what was observed. For example, if self-tests were

reduced, some individuals who self-tested in practice and could no longer self-test

under this reduced-scale scenario might seek to take a regular test instead (particularly

if they were symptomatic). Ignoring this potential for behavioral change could have

overstated the effect of self-tests, especially when their scale is reduced (𝜂 < 0).

To address this concern, the following modification was made to each simulation.
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First, under the observed scenario and for individuals within a given community

compartment 𝑋 ∈ 𝒞𝑎, the fraction who sought a regular test among those who did

not take a self test was computed:

𝑞𝑋(𝑡) = min

(︂
1,

𝑇 reg
𝑋 (𝑡)

𝑋(𝑡)− 𝑇 self
𝑋 (𝑡)

)︂
(4.1)

The fraction 𝑞𝑋(𝑡) is the fraction of individuals in 𝑋 who took a regular test,

given that they did not take a self-test. It was assumed that this fraction remained

the same regardless of the scale of the self-testing program. Now let 𝑞𝑋(𝑡) represent

the fractions that were produced after fitting the model to the data. Then, in the

simulations, the number of regular tests taken were modified to be:

𝑞𝑋(𝑡)
(︀
𝑋(𝑡)− 𝑇 self

𝑋 (𝑡; 𝜂)
)︀

(4.2)

where 𝑇 self
𝑋 (𝑡; 𝜂) is the number of self-tests in compartment 𝑋, after the total number

of self-tests are scaled by (1 + 𝜂).

To estimate the impact of the fractions of self-tests that were allocated among

different age groups, we varied the fractions of self-tests allocated to each group while

constraining them to sum to one (so that to total number of tests is held constant).

For each set of fractions considered, the number of tests taken within each age group

was scaled uniformly across all time periods.

4.3.2 Conservative Estimates for Overall Impact

The obvious approach to obtaining a simple estimate for the overall impact of the

program on reproduction number, deaths, and hospitalizations is to simply set 𝜂 =

−1. This directly removes self-tests from the model, and we refer to this approach as

the direct method. It was the only method used to estimate the effect of the program

on the effective reproduction number, 𝑅𝑡, which was calculated for each time step

according to the method proposed by Arroyo-Marioli et al. [60].

However, during inference, we expect estimates made by the model to become
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less accurate as 𝜂 strays further from zero. This reduced confidence is reflected in

wider bootstrapped confidence intervals for estimates of hospitalizations and deaths,

and conservative estimates are provided by the lower ends of the intervals. However,

it is useful to obtain even more conservative estimates which we can be extremely

confident in lower bounding the true values. For this purpose, we made use of the

indirect method for estimating the overall impact of the program on hospitalizations

and deaths, which worked as follows.

First, the sensitivity analyses were used to estimate local derivatives at the ob-

served scenario for deaths and hospitalizations, which we denote with 𝜕𝐷 and 𝜕𝐻.

In particular, the analysis was run for 𝜂 = −0.01 and 𝜂 = 0.01 to consider ±1%

perturbations of the scale of the program, and then finite differences were used to cal-

culate 𝜕𝐷 and 𝜕𝐻. Given that the total number of deaths and hospitalizations are

concave in the number of self-tests conducted (in other words, additional self-tests

provide diminishing returns), conservative estimates of the total number of deaths

and hospitalizations are provided by:

(total number of self tests)× 𝜕𝐷

(total number of self tests)× 𝜕𝐻
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4.4 Results

4.4.1 Overall Impact of the Program

The overall impact of the self-testing program was assessed according to its effect on

three important metrics: the reproduction number of the virus, hospitalizations, and

deaths. As described in Section 4.3, the effect on reproduction number was quantified

using standard sensitivity analyses, whereas the effect on hospitalizations and deaths

was quantified using standard sensitivity analyses (the direct method) in addition to

a more conservative approach (the indirect method).

Table 4.1 presents 80% confidence intervals for the average reduction and the

maximum weekly reduction in the effective reproduction number, 𝑅𝑡, over the period

of study. The analysis suggests that the program reduced the transmissibility of the

virus by 4.7% on average, with a largest weekly reduction of approximately 24%.

Table 4.1 also presents 80% confidence intervals on the number of deaths and

hospitalizations averted by the self-testing program, as obtained by the direct and

indirect methods of estimation. For reference, the total number of deaths observed

in the historical data over the self-testing period was 10 336, and the total number of

hospitalizations was 76 299.

Metric Estimate

Percentage reduction in 𝑅𝑡

Mean 4.72 (3.93 – 5.37)
Maximum 24 (17.3 – 25.6)

Reduction in deaths
Using direct method 4 888 (3 698 – 6 808)
Using indirect method 3 434 (2 350 – 4 387)

Reduction in hospitalizations
Using direct method 40 655 (33 625 – 50 699)
Using indirect method 28 379 (21 763 – 34 425)

Table 4.1: Point estimates and 80% confidence intervals for percentage reduction
in 𝑅𝑡 and absolute reduction in deaths and hospitalizations due to the self-testing
program in Greece).
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The most conservative estimates on the effect of the self-testing program suggest a

mortality reduction of at least 20%, which corresponds to approximately 2 000 deaths.

Furthermore, the program yielded a reduction in hospital admissions of at least 25%,

corresponding to approximately 20 000 hospitalizations.

4.4.2 Impact of Operational Decisions

We also quantified the effect of three main operational decisions: the scale of the

program, the fractions of self-tests allocated among each age group, and the sensitivity

of the self-tests themselves. As described in Section 4.3, each effect was estimated

using a variation on a standard sensitivity analysis.

Scale of the Program

For policymakers, the trade-offs associated with scale are straightforward: more tests

come at higher cost, while increasing the chance of early detection and isolation of

infections. Across the period of the study, approximately 60 million self-tests were

taken by the population and on average 2.1% of the population were tested daily.

Figure 4-2 shows point estimates and 80% confidence intervals of the percentage

changes in hospitalizations and deaths during 2021 had the program in Greece been

scaled up or down. For example, if 20% fewer tests had been administered, total

hospitalizations would have increased by approximately 10% and total deaths by

approximately 8%. If 20% more tests had been administered, total hospitalizations

would have decreased by approximately 8% and total deaths by approximately 6%.

Allocation of Self-Tests Among Age Groups

In the program implemented in Greece, 56.2% of the total self-tests were allocated to

the 0 to 18 age group, 43.3% were allocated to the 19 to 64 age group, and 0.5% were

allocated to the 65-plus age group. Percentage changes in deaths and hospitalizations

for all possible alternative allocations of self-tests are provided in Figure 4-3.

The largest reductions are as follows. A strategy that distributed 30% of self-tests
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Figure 4-2: 80% confidence intervals for the percentage changes in deaths (left) and
hospitalizations (right) as a function of the percentage change in the self-tests admin-
istered.
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Figure 4-3: Percentage changes in deaths (left) and hospitalizations (right) as the
fractions of tests allocated between different age groups changes. Remaining tests are
allocated to the 65-plus group, and dashed lines are fractions observed in Greece.
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Figure 4-4: 80% confidence intervals for percentage changes in deaths (left) and hos-
pitalizations (right) as self-test sensitivity changes. Dashed line indicates sensitivity
reported by the manufacturers of the testing kits used in Greece.

to the 0 to 18 age group and 70% to the 19 to 64 age group resulted in a 2.23%

reduction in deaths (80% CI: -3.85 to 6.84%). A strategy that distributed 40% of

self-tests to the 0 to 18 age group and 60% to the 19 to 64 age group would have

resulted in a 1.16% reduction in hospitalizations (80% CI: -2.34 to 4.04 %).

Accuracy of Tests

Because they must be inexpensive and provide a fast turnaround for results, self-tests

are less accurate than the PCR and antigen tests used for regular testing. In order

to determine whether the program could have benefitted from more accurate tests,

and also to assess the effect of possibly reduced sensitivity due to errors made by the

public in administering the tests, the model was used to perform sensitivity analyses

for this parameter on hospitalizations and deaths.

Figure 4-4 provides point estimates and 80% confidence intervals of the percentage

changes in hospitalizations and deaths during 2021 had the program in Greece used

self-tests with different sensitivities. The results indicate that higher quality tests

would have contributed to averting more deaths and hospitalizations. For example, if

self-test sensitivity was increased from 60% to 80%, we estimate that hospitalizations

would have decreased by 12% and deaths by 10%.
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4.5 Discussion and Conclusions

NPIs based on social distancing, such as bans on public events, school closures, and

full-blown lockdowns, have been shown to reduce transmissibility of a pathogen [45]

but are associated with large financial and societal costs. In contrast, mass self-testing

programs offer a low-cost solution that has minimal impact on social and economic

activity, though the effectiveness of these programs in response to a widespread in-

fectious disease has not been explored previously. Our results suggest that the imple-

mentation of the self-testing program in Greece during 2021 was at least as effective

in reducing the transmissibility of SARS-CoV-2 as the previously mentioned social

distancing measures and averted a significant number of hospitalizations and deaths.

Our results also show the scale of the self-testing program in Greece (as measured

by the number of tests) yielded diminishing returns on deaths and hospitalizations

avoided. On the one hand, more deaths and hospitalizations would have been averted

had the program been scaled up and more tests been administered, but on the other,

disproportionally more deaths and hospitalizations would have occurred had the pro-

gram been scaled down and fewer tests administered. The analysis also shows that

alternative allocations of self-tests amongst the age groups could have been more ef-

fective in Greece. In particular, increasing the fraction of tests distributed to the 19

to 64 age group could have averted slightly more deaths and hospitalizations, which

is consistent with findings that this age group show higher transmissibility compared

to children [61]. Finally, the analysis shows that using tests with higher sensitivity

would have averted more deaths and hospitalizations.

Given that the analysis was based on observational data and not a (natural or de-

signed) experiment, several assumptions had to be made. First, it was assumed that

the dynamics of the disease followed a structure defined by a compartmental model,

though structures of this kind are widely used in the mathematical epidemiology liter-

ature. Furthermore, when performing the sensitivity analyses, other changes related

to population behavior, policy modifications, or additional stress on the healthcare

system caused by the perturbation were not accounted for (besides the potential test
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substitution effect discussed in Section 4.3).

Moreover, the model assumed that false positive self-tests in susceptible individ-

uals do not lead to them being isolated or hospitalized, since in principle these cases

were followed up with a PCR or antigen test and resolved. Another assumption

was that individuals die only after being hospitalized, implying there are no deaths

at home. The data fully support this latter assumption — there were almost no

COVID-19-related deaths outside of a hospital in Greece. Finally, although individ-

uals age, these transitions between compartments of different age groups were not

modelled for simplicity.

Despite its shortcomings, the model is rich enough to produce insights for pol-

icymakers and public health practitioners on the deployment and optimization of

self-testing programs. In late 2020, Slovakia tested their entire population over two

consecutive weekends using antigen tests administered by medical professionals [62].

This intervention led to a decrease in the reproduction number (and therefore the

number of reported cases) immediately after the testing program [63], but the ef-

fect quickly disappeared because high-intensity testing administered by the medical

system was not sustainable [64]. In contrast, we found that the Greek program was

effective because it focused on testing a large proportion of the population with reg-

ularity, even though the tests themselves were of lower quality [65]. This sets an

important priority for policymakers responding to future pandemics.

Our findings also suggest that, assuming full population coverage is not feasible

due to limited resources or prohibitive cost, policymakers should target the most

active subsets of the population with self-tests [66]. Furthermore, tests with higher

sensitivity should always be preferred due to their ability to avert more deaths and

hospitalizations, but an effective implementation can still be achieved with relatively

low sensitivity tests provided the coverage and frequency of testing within the popu-

lation is high.

Potential for future pandemics seems to be increasing as the global population

grows and ages, and as advances in transportation increase global mobility. It is

important to document interventions that were used during the COVID-19 pandemic
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to develop a set of best practices for future pandemic preparedness. Mass screening

through self-testing is one such best practice that could provide an invaluable tool

to slow the spread of a highly infectious pathogen with minimal social and financial

cost.
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Appendix A

Appendix for Chapter 2

A.1 Characterization of Feasible Allocations

Here, we provide a proof of Proposition 2.1 for the case where 𝐽 = 2. Similar reasoning

extends the proof easily to 𝐽 > 2.

Proof. First suppose 𝑦 = (𝑎, 𝑏) is a feasible allocation. This means:

w⊺𝑓𝑎1 > w⊺f1, ∀f1 ∈ 𝒫1 ∖ {f𝑎1} and w⊺𝑓𝑏2 > w⊺f2, ∀f2 ∈ 𝒫1 ∖ {f𝑏2}

It follows that w⊺ (f𝑎1 + f𝑏2) > w⊺
(︀
f1 + f2

)︀
,∀f1 ∈ 𝒫1 ∖ {f𝑎1}, f2 ∈ 𝒫2 ∖ {f𝑏2}.

Therefore, f𝑎1 + f𝑏2 is an extreme point of 𝒫1 + 𝒫2.

Now suppose that f𝑎1 + f𝑏2 is an extreme point of 𝒫1 + 𝒫2. By definition there is

some w for which:

(f𝑎1 + f𝑏2)
⊺w > (g1 + g2)

⊺w

for any g1 ∈ 𝒫1 and g2 ∈ 𝒫2 such that g1 + g2 ̸= f𝑎1 + f𝑏2.

If there is some 𝑖 ̸= 𝑎 for which f⊺𝑖1w ≥ f⊺𝑎1w (meaning that recipient type 𝑖 scores

at least as highly as 𝑎 on resource type 1) we would have:

(f𝑖1 + f𝑏2)
⊺ w ≥ (f𝑎1 + f𝑏2)

⊺ w

which violates the previous observation given that f𝑖1+f𝑏2 ̸= f𝑎1+f𝑏2 and both f𝑖1 ∈ 𝒫1
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and f𝑏2 ∈ 𝒫2.

So f⊺𝑖1w < f⊺𝑎1w for any 𝑖 ̸= 𝑎 and recipient type 𝑎 is the unique top-scoring

recipient type for resource type 1. Similar reasoning applies to 𝑏 on resource type

2.
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A.2 NP-Hardness of Priority Scoring Optimization

This section provides a proof that the optimization in Problem 2.2 is NP-hard. No-

tation is preserved from Section 2.2.

We reduce from an instance of the MAX-FLS (feasible linear subsystem) problem

in Amaldi and Kann [26]. This problem deals with finding the largest subset of

relations that can be satisfied simultaneously in a system of linear inequalities. An

instance is defined by a set of 𝐽 halfspaces given by 𝐻𝑗 = {w ∈ R𝐾 : a⊺
𝑗w ≥ 𝑏𝑗}.

Amaldi and Kann [26] show that this problem remains NP-hard when the inequal-

ities are homogeneous (𝑏𝑗 = 0) and the trivial solution w = 0 is excluded. This is the

version of the problem we reduce from.

To see the reduction, set 𝐼 = 2, and then f1𝑗 = a𝑗, f2𝑗 = 0, 𝑟1𝑗 = 1 and 𝑟2𝑗 = 0

for all 𝑗. If we are able to find some w ̸= 0 so that a⊺
𝑗w ≥ 0 then we also have

(f1𝑗−f2𝑗)⊺w ≥ 0 and therefore claim the reward 𝑟1𝑗 = 1 on the 𝑗th resource type. The

objective values in both problems is clearly identical and the reduction is complete.
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A.3 Projection Optimality Bound

Our approach to deriving the bound is to fix r̂, and let an adversary pick a reward

vector r which forms an angle no greater than 𝛾 in order to maximize the suboptimal-

ity of the projection solution. The adversary is only allowed to perturb the reward

vector perpendicular to 𝒮 in order to ensure that r̂ remains the projected scores.

Note that any vector of reward coefficients can be represented in terms of the

perturbation away from r̂ as r = r̂+ 𝛿, where 𝛿 ⊥ 𝒮 is a perturbation orthogonal to

𝒮. The relationship between 𝛾 and ||𝛿|| is:

tan(𝛾) =
||𝛿||
||r̂||

We wish to define the set Δ to be all perpendicular perturbations with length

less than or equal to some value 𝜃 := ||r̂|| tan(𝛾) > 0. Let a collection of orthonormal

vectors spanning the space orthogonal to 𝒮 be arranged in columns to get G ∈

R𝐼𝐽×(𝐼𝐽−𝐾). Then Δ can be defined as a degenerate ball with radius 𝜃 in terms of G:

Δ = {Gu : ||u||2 ≤ 𝜃}

We start by establishing the following lemma:

Proposition A.1. Let 𝐽 = 1, and the projected reward coefficients be given by r̂ ∈ R𝐼

with 𝑟1 ≥ 𝑟2 ≥ . . . ≥ 𝑟𝐼 . Let 𝛾 be the angle between r and 𝒮 as in (2.4).

Let 𝑧* be the optimal objective value of Problem 2.2, and let 𝑧 be the objective value

of the projection solution. Let x̂ be any set of allocation fractions. The following bound

holds for any angle 0 ≤ 𝛾 < 𝜋/2:

𝑧* − 𝑧

||r̂||
≤ max

(︂
𝑟1
||r̂||

+ ||e1 − x̂||2 tan(𝛾), . . . ,
𝑟𝐼
||r̂||

+ ||e𝐼 − x̂||2 tan(𝛾)
)︂
− r̂⊺x̂

||r̂||

Proof. We look for the largest suboptimality that can be induced by the adversary

across all feasible perturbations, referring to this quantity as 𝛼. Since 𝑧* and 𝑧

depend on the perturbation we write them as 𝑧*(𝛿) and 𝑧(𝛿). When the adversary
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perturbs, they are restricted by the fact that r ≥ 0, which means that by dropping

this restriction we get an upper bound on 𝛼 as 𝛼 ≤ max𝛿∈Δ (𝑧*(𝛿)− 𝑧(𝛿)).

An upper bound on 𝑧*(𝛿) is max(𝑟1, . . . , 𝑟𝐼) = max(𝑟1+𝛿1, . . . , 𝑟𝐼 +𝛿𝐼). Also note

that, since the allocation fractions of the projection solution do not change as the

adversary perturbs the reward coefficients, we have 𝑧(𝛿) = (r̂+ 𝛿)⊺x̂. We can write:

𝛼 ≤ max
𝛿∈Δ

(𝑧*(𝛿)− (r̂+ 𝛿)⊺x̂)

≤ max
𝛿∈Δ

(max(𝑟1 + 𝛿1, . . . , 𝑟𝐼 + 𝛿𝐼)− (r̂+ 𝛿)⊺x̂)

= max
𝛿∈Δ

(max (𝑟1 + 𝛿1 − 𝛿⊺x̂, . . . , 𝑟𝐼 + 𝛿𝐼 − 𝛿⊺x̂)− r̂⊺x̂)

The RHS optimization is nonconvex (as the maximization of a piecewise linear

convex function) but we can write it as:

𝛼 ≤ max

(︂
𝑟1 +max

𝛿∈Δ
(𝛿1 − 𝛿⊺x̂) , . . . , 𝑟𝐼 +max

𝛿∈Δ
(𝛿𝐼 − 𝛿⊺x̂)

)︂
− r̂⊺x̂

We let 𝑣*𝑖 = max𝛿∈Δ (𝛿𝑖 − 𝛿⊺x̂). A closed form solution for each of these values

can be obtained by optimizing over the ellipsoid Δ (parameterized by 𝜃 for this part

of the argument):

𝑣*𝑖 = 𝜃
√︀
(e𝑖 − x̂)⊺GG⊺(e𝑖 − x̂)

Since the columns of the nonsquare matrix G are orthonormal, we can extend

them into an orthonormal square matrix G to derive a bound on each 𝑣*𝑖 :

𝑣*𝑖 ≤ 𝜃

√︁
(e𝑖 − x̂)⊺GG⊺(e𝑖 − x̂) ≤ 𝜃||e𝑖 − x̂||2

and use this to return to the bound on 𝛼:

𝛼 ≤ max (𝑟1 + 𝜃||e1 − x̂||2, . . . , 𝑟𝐼 + 𝜃||e𝐼 − x̂||2)− r̂⊺x̂

Substituting in the relationship tan(𝛾) = 𝜃/||r̂|| leaves us with the result we
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intended to show:

𝛼

||r̂||
≤ max

(︂
𝑟1
||r̂||

+ ||e1 − x̂||2 tan(𝛾), . . . ,
𝑟𝐼
||r̂||

+ ||e𝐼 − x̂||2 tan(𝛾)
)︂
− r̂⊺x̂

||r̂||

Next we refine Proposition A.1 to prove Proposition 2.3 for the specific case of

the priority allocation.

Proof. In this selection procedure, the allocation is determined by the highest-ranking

projected reward coefficient (this is the recipient type with the highest score), so

x̂ = e1. Substituting into the bound obtained in Proposition A.1 gives:

𝑧* − 𝑧

||r̂||
≤ max

(︂
𝑟1
||r̂||

+ 0, . . . ,
𝑟𝐼
||r̂||

+ ||e𝐼 − e1||2 tan(𝛾)
)︂
− 𝑟1
||r̂||

= max

(︂
0,

𝑟2 − 𝑟1
||r̂||

+
√
2 tan(𝛾), . . . ,

𝑟𝐼 − 𝑟1
||r̂||

+
√
2 tan(𝛾)

)︂

= max

(︂
0,

𝑟2 − 𝑟1
||r̂||

+
√
2 tan(𝛾)

)︂

Finally, by using the relationship ||r̂|| = ||r|| cos(𝛾) we get:

𝑧* − 𝑧

||r||
≤ max

(︂
0,

𝑟2 − 𝑟1
||r̂||

+
√
2 sin(𝛾)

)︂
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A.4 Lookahead Optimality Bound

The proof in this section establishes the result for 𝐽 = 3, but the same approach can

easily be extended to any 𝐽 > 3.

Proof. Let (𝑖1, 𝑗1), (𝑖2, 𝑗2), (𝑖3, 𝑗3) be the sequence of matches selected by the lookahead

heuristic, and let (𝑖′2, 𝑗2), (𝑖
′
3, 𝑗3) be the matches appearing in the upper bound used

by the heuristic when it selects its first match.

Next, let (𝑖*1, 𝑗1), (𝑖*2, 𝑗2), (𝑖*3, 𝑗3) be the matches in the optimal solution. The algo-

rithm followed by the heuristic ensures that the following two inequalities hold:

1. 𝑟𝑖2𝑗2 + 𝑟𝑖3𝑗3 ≥ max(𝑟𝑖′2𝑗2 , 𝑟𝑖′3𝑗3).

2. 𝑟𝑖1𝑗1 + 𝑟𝑖′2𝑗2 + 𝑟𝑖′3𝑗3 ≥ 𝑟𝑖*1𝑗1 + 𝑟𝑖*2𝑗2 + 𝑟𝑖*3𝑗3 .

If the first inequality did not hold, then the heuristic would have selected (𝑖′2, 𝑗2)

or (𝑖′3, 𝑗3) before (𝑖2, 𝑗2). If the second did not hold, then it would have selected (𝑖*1, 𝑗1)

before (𝑖1, 𝑗1).

Piecing these observations together gives the ratio:

𝑧

𝑧*
=

𝑟𝑖1𝑗1 + 𝑟𝑖2𝑗2 + 𝑟𝑖3𝑗3
𝑟𝑖*1𝑗1 + 𝑟𝑖*2𝑗2 + 𝑟𝑖*3𝑗3

(A.1)

≥
𝑟𝑖1𝑗1 +max(𝑟𝑖′2𝑗2 , 𝑟𝑖′3𝑗3)

𝑟𝑖1𝑗1 + 𝑟𝑖′2𝑗2 + 𝑟𝑖′3𝑗3
(A.2)

This ratio is at its minimum when 𝑟𝑖1𝑗1 = 0, and once this restriction is enforced

it becomes clear that the minimum value of the ratio is 1/2.

Note that, in the final ratio constructed in the proof, replacing max(𝑟𝑖′2𝑗2 , 𝑟𝑖′3𝑗3)

with max(𝑟𝑖′2𝑗2 , . . . , 𝑟𝑖′𝐽 𝑗𝐽 ) in the numerator and 𝑟𝑖′2𝑗2 + 𝑟𝑖′3𝑗3 with 𝑟𝑖′2𝑗2 + · · · + 𝑟𝑖′𝐽 𝑗𝐽 in

the denominator leads to a minimum ratio of 1/(𝐽−1). The remaining logic all holds

for 𝐽 > 3, and so does the result.
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A.5 Margin Formulation with 𝜂 > 0

In the general case when 𝜂 > 0, (2.5.3) can be formulated as a linear MIP rather than

a linear program. Problem A.1 provides the full formulation:

Problem A.1 (General Margin Formulation).

max
w, s, x, 𝛾, 𝑧

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑟𝑖𝑗𝑥𝑖𝑗 + 𝜂𝑧 (A.3a)

subject to e⊺w = 1 (A.3b)

𝑠𝑖𝑗 = w⊺f𝑖𝑗 ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ] (A.3c)

𝑠𝑖𝑗 − 𝑠𝑖′𝑗 ≥𝑀(𝑥𝑖𝑗 − 1) ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑖′ ̸= 𝑖

(A.3d)

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ [𝐽 ] (A.3e)

𝑧 ≤
𝐼∑︁

𝑖=1

𝑥𝑖𝑗𝑠𝑖𝑗 − 𝛾𝑗 ∀𝑗 ∈ [𝐽 ] (A.3f)

𝛾𝑗 ≥ 𝑠𝑖𝑗 −𝑀𝑥𝑖𝑗 ∀𝑗 ∈ [𝐽 ] (A.3g)

x ∈ {0, 1}𝐼×𝐽 (A.3h)

The
∑︀𝐼

𝑖=1 𝑥𝑖𝑗𝑠𝑖𝑗 term in (A.3f) picks out the top score for resource type 𝑗, and

the constraints in (A.3g) are only switched on for recipient types which are not top-

ranked. The product terms each involve a binary and continuous variable and can be

linearized using standard techniques.
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A.6 Fixed Point Uniqueness in Lottery Allocation

We numerically verified that Banach-Picard iteration using the operator 𝑇 (x) (that

was defined in Section 2.6) converges to a unique fixed-point. The computation was

conducted as follows: for each 𝐼, 𝐽 ∈ {2, 3, 5, 10, 20, 50} (representing the number

of recipient and resource types, respectively), 1000 instances of data were randomly

generated to satisfy the scarcity assumption. For each instance, 1000 random vectors

in 𝒳 were selected and used as starting points for the Banach-Picard iteration scheme.

In all instances and starting points, iterations converged to a unique fixed point.

Across all data instances, the median number of iterations never exceeded 20, and

the median time to converge never exceeded 0.1 seconds.
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Appendix B

Appendix for Chapter 3

B.1 Waitlist Model with 𝑚→∞

For the waitlist model, we can write the rates of the three Poisson processes that

individual patients are subject to as:

𝐺(𝑦) =
𝜇𝐺

𝐿𝐺

𝐵(𝑦) =
𝜇𝐵

𝐿𝐵

𝐷 = 𝑚𝛾

Even though these quantities are the same across all queues, the expressions for

the outcome probabilities remain cumbersome. By taking 𝑚 → ∞ with 𝑦 = 𝑦𝑚

being held as a fixed fraction 𝑦 ∈ [0, 1] of 𝑚 (and similar for 𝑧), we end up with

simpler expressions for the probabilities and an intuitive interpretation of them. In the

notation, we now replace 𝑦, 𝑧 with 𝑦, 𝑧, since they still effectively represent thresholds.

For selective patients, the probability of receiving a good organ in this regime is:

𝑝good𝑆 (𝑦, 𝑧) =

(︂
1− exp

(︂
−𝐺(𝑦)𝑧

𝛾

)︂)︂
+

exp

(︂
−𝐺(𝑦)𝑧

𝛾

)︂(︂
𝐺(𝑦)

𝐺(𝑦) +𝐵(𝑦)

)︂(︂
1− exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))(1− 𝑧)

𝛾

)︂)︂

which can be interpreted in terms of only two health stages. Under this interpretation,

a selective patient arrives into the system, and if they have not received a good organ
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before 𝑧/𝛾 time has elapsed, they move into the second health stage. Here, they

are subject to the processes of both good and bad organ arrivals, and if they do not

receive either before (1− 𝑧)/𝛾 time has elapsed, they die.

The expression for the probability of a selective patient receiving a bad organ is

consistent with this interpretation:

𝑝bad𝑆 (𝑦, 𝑧) = exp

(︂
−𝐺(𝑦)𝑧

𝛾

)︂(︂
𝐵(𝑦)

𝐺(𝑦) +𝐵(𝑦)

)︂(︂
1− exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))(1− 𝑧)

𝛾

)︂)︂

and so is the expression for the probability of death:

𝑝die𝑆 (𝑦, 𝑧) = exp

(︂
−𝐺(𝑦)𝑧

𝛾

)︂
exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))(1− 𝑧)

𝛾

)︂

Things are very similar for the non-selective group, except there is only one health

stage where the individual is subject to both good and bad organ processes:

𝑝good𝑁 (𝑦) =

(︂
𝐺(𝑦)

𝐺(𝑦) +𝐵(𝑦)

)︂(︂
1− exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))

𝛾

)︂)︂
𝑝bad𝑁 (𝑦) =

(︂
𝐵(𝑦)

𝐺(𝑦) +𝐵(𝑦)

)︂(︂
1− exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))

𝛾

)︂)︂
𝑝die𝑁 (𝑦) = exp

(︂
−(𝐺(𝑦) +𝐵(𝑦))

𝛾

)︂

As well as new expressions for the individual probabilities, the 𝑚 → ∞ regime

also gives us an expression that relates 𝐿𝐺 and 𝑦 so that, although we do not have

𝐿𝐺(𝑦) in closed form, we have the relationship implicitly defined in a single equation.

In other words, given some 𝑦 that the entire selective population sticks to, solving

the following equation provides us with the unique 𝐿𝐺 from which we can determine

the lengths of all individual queues using the balance equations presented previously:

𝜇𝐺𝑓(𝑦, 𝐿𝐺)+𝜇𝐵 = 𝜆𝑆 exp

(︂
−𝐺(𝑦)𝑦

𝛾

)︂(︂
1− exp

(︂
−(1− 𝑦)

𝛾

(︂
𝜇𝐺𝑓(𝑦, 𝐿𝐺) + 𝜇𝐵

𝐿𝑓(𝑦, 𝐿𝐺)

)︂)︂)︂
+

𝜆𝑁

(︂
1− exp

(︂
−1
𝛾

(︂
𝜇𝐺𝑓(𝑦, 𝐿𝐺) + 𝜇𝐵

𝐿𝐺𝑓(𝑦, 𝐿𝐺)

)︂)︂)︂
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where:

𝑓(𝑦, 𝐿𝐺) = 1− 𝜆𝑆

𝜇𝐺

(︂
1− exp

(︂
−𝐺(𝑦)𝑦

𝛾

)︂)︂
𝑓(𝑦, 𝐿𝐺) can be interpreted as the fraction of good organs which are distributed

amongst the queues which also accept bad organs. To see this, note that the expres-

sion 𝜆𝑆

(︁
1− exp

(︁
−𝐺(𝑦)𝑦

𝛾

)︁)︁
is the rate of selective arrivals receiving a good organ in

the first queue of the two-stage model. 𝜇𝐺𝑓(𝑦, 𝐿𝐺)+𝜇𝐵 is therefore the rate at which

organs are offered to the queues which accept bad organs, and the equality effectively

balances this rate with the rate at which these organs are received by these queues.
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B.2 Supplementary Proofs

Proposition B.1. Let 𝑔(𝑥) ≥ 0 and ℎ(𝑥) ≥ 0 be defined on [0.5, 1], and satisfy the

following properties:

(i) 𝑔(0.5) = ℎ(0.5).

(ii) 𝑔(𝑥) is convex.

(iii) ℎ(𝑥) is concave.

Then 𝑔(𝑥)/ℎ(𝑥) is increasing over its domain.

Proof. Take any 0.5 ≤ 𝑥1 ≤ 𝑥2 ≤ 1 in the domain. Since 𝑔(𝑥) is convex, we have:

𝑔(𝑥2)− 𝑔(0.5)

𝑥2 − 0.5
≥ 𝑔(𝑥1)− 𝑔(0.5)

𝑥1 − 0.5

which is equivalent to:

𝑔(𝑥2) ≥
(︂
𝑔(𝑥1)− 𝑔(0.5)

𝑥1 − 0.5

)︂
(𝑥2 − 0.5) + 𝑔(0.5)

Similarly, we can show that:

ℎ(𝑥2) ≤
(︂
ℎ(𝑥1)− ℎ(0.5)

𝑥1 − 0.5

)︂
(𝑥2 − 0.5) + ℎ(0.5)

and then, piecing these two relationships together, we end up with:

𝑔(𝑥2)

ℎ(𝑥2)
≥

(︁
𝑔(𝑥1)−𝑔(0.5)

𝑥1−0.5

)︁
(𝑥2 − 0.5) + 𝑔(0.5)(︁

ℎ(𝑥1)−ℎ(0.5)
𝑥1−0.5

)︁
(𝑥2 − 0.5) + ℎ(0.5)

=
𝑔(𝑥1)− 𝑔(0.5)(𝑥2 − 𝑥1)

ℎ(𝑥1)− ℎ(0.5)(𝑥2 − 𝑥1)

≥ 𝑔(𝑥1)

ℎ(𝑥1)

which shows that 𝑔(𝑥)/ℎ(𝑥) is increasing.
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Proposition B.2. Let 𝑔(𝑥) ≥ 0 and ℎ(𝑥) ≥ 0 be defined on [0, 1], and satisfy the

following properties:

(i) 𝑔(𝑥) ≥ ℎ(𝑥).

(ii) 𝑔′(𝑥) ≥ ℎ′(𝑥).

(iii) ℎ′(𝑥) ≤ 0.

Then 𝑔(𝑥)/ℎ(𝑥) is increasing over its domain.

Proof. Let 𝑓(𝑥) := 𝑔(𝑥)/ℎ(𝑥). Then we have:

𝑓 ′(𝑥) =
𝑔′(𝑥)ℎ(𝑥)− 𝑔(𝑥)ℎ′(𝑥)

ℎ(𝑥)2

At any 𝑥 ∈ [0, 1], we can examine two possible cases. If 𝑔′(𝑥) ≥ 0, then since

−𝑔(𝑥)ℎ′(𝑥) ≥ 0, the numerator in 𝑓 ′(𝑥) is the sum of two nonnegative terms. Hence,

𝑓 ′(𝑥) ≥ 0.

On the other hand, if 𝑔′(𝑥) < 0, then we have:

𝑓 ′(𝑥) ≥ ℎ′(𝑥)(ℎ(𝑥)− 𝑔(𝑥))

ℎ(𝑥)2
≥ 0

which confirms that 𝑓(𝑥) is increasing.
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Appendix C

Appendix for Chapter 4

C.1 Additional Program Implementation Details

In March 2021, when a new wave of the COVID-19 pandemic placed significant pres-

sure on the Greek National Health System, authorities chose to launch mandatory

weekly testing, starting with students and staff in schools. Self-testing kits were

distributed through pharmacies across the country on a weekly basis, using social

security numbers. Control was carried out either with the display of a solemn dec-

laration stating that the individual was tested negative, or through an online form

available at self-testing.gov.gr. For positive self-test results, an amendment of

legislation required a second test (either PCR or antigen) by a healthcare professional

to confirm the result of the first test and update the National Registry for COVID-19

Patients. The authorities also proceeded occasionally with the distribution of free

self-testing kits to the entire population, particularly before or after public holidays.

The distribution of self-testing kits and the implementation of mandatory checks

began on April 7, 2021, on the reopening date of high schools, vocational high schools

and junior high schools as well as junior high schools with senior classes, with the

provision of two self-testing kits per week for all students (as well as the staff at

these schools). On April 19, 2021, the government passed a law imposing mandatory

self-testing for private sector employees and civil servants working physically at their

workplace. Self-testing kits were distributed to these employees throughout the sum-
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mer period of 2021, while distribution to teaching staff and students paused during

the summer holidays.

In September 2021, authorities imposed once-per-week mandatory self-testing for

private sector employees and civil servants who were not fully vaccinated or who

have not previously had COVID-19, at personal cost. With the beginning of the

new school year, weekly self-testing was mandatory only for students aged 4-18 who

were not vaccinated or had not previously had COVID-19. It should be noted that

when students were considered as close contacts of a COVID-19 case, the Education

Division would provide additional self-tests to ensure daily testing. Finally, private

sector employees and civil servants who were not vaccinated or had not had COVID-

19 were obliged to carry out two weekly tests from November 5, 2021, onwards, at

personal cost, considering the role of seasonality in the spread of SARS-CoV-2.

During the entire period, a total of 97 000 000 self-testing kits were purchased.

The kits were selected based on the rates of sensitivity (above 85% for samples test-

ing positive with a qPCR up to the 33rd reaction cycle) and specificity (over 99%),

which was supported through a peer reviewed process available at the FIND test

directory (https://www.finddx.org). Importantly, these tests were safe, inexpen-

sive, acceptable by the target population and simple to take at home or anywhere,

providing rapid results.
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C.2 Loss Function Minimization

The model was fitted by finding the parameter values that minimized the sum of

squared log errors between the data and the model predictions for the outcomes

discussed in Section 4.2.3.

To introduce some notation, consider an age group 𝑎 and time period 𝑡. Let

∆𝐻𝑎(𝑡) and ∆𝐷𝑎(𝑡) be the corresponding number of new hospitalizations and deaths,

respectively; let 𝑃 tot
𝑎 (𝑡) be the corresponding total number of cases recorded; and

let 𝑃 conf
𝑎 (𝑡) be the corresponding number of cases reported through the self-testing

program. The data and corresponding predictions are summarized in Table C.1.

A non-convex optimization algorithm was used to minimize the sum of squared

log errors between the model predictions and the target data. In order to avoid

overfitting, a regularization term was included in the loss function.

Data Model Estimate

Hospitalizations ∆𝐼𝑆𝑆𝑎𝑣�𝐻𝑎𝑣(𝑡)
Deaths

∑︀
𝑣∈{0,1}∆𝐻𝑎𝑣�𝐷𝑎𝑣(𝑡)

Total Cases
∑︀

𝑣∈{0,1}
∑︀

𝑋∈𝒳𝑎𝑣
𝑃 self
𝑋 (𝑡) + 𝑃 reg

𝑋 (𝑡)

Cases Through Self-Testing Program
∑︀

𝑣∈{0,1}
∑︀

𝑋∈𝒳𝑎𝑣
𝑃 self
𝑋 (𝑡) + 𝛾(𝑡)𝑃 reg

𝑋 (𝑡)

Table C.1: List of outcomes the compartmental model was fitted against, with cor-
responding expressions for the model estimates.

C.2.1 Parameters and Initialization

Certain model parameters were constrained in order to facilitate the fitting process.

These are discussed next and summarized in Table C.2.

The probabilities of severe disease 𝑝severe
𝑎𝑣 , though learned from the fitting process

defined below, were constrained to lie within the following intervals:

0 ≤ 𝑝severe
0-18,𝑣 ≤ 0.02 0 ≤ 𝑝severe

19-64,𝑣 ≤ 0.14 0 ≤ 𝑝severe
65+,𝑣 ≤ 0.6
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Parameter Count (Wave 1) Count (Wave 2) Notes

𝐼𝐴𝑀𝑎𝑣(0) 3 6 initial prevalence < 0.3%
𝐼𝑆𝑀𝑎𝑣(0) 3 6 initial prevalence < 0.3%
𝐼𝑆𝑆𝑎𝑣(0) 3 6 initial prevalence < 0.3%
𝛽𝑎𝑏(𝑡) 36 42 constant over 4 week intervals
𝑝severe𝑎𝑣 6 6 intervals from [52]
𝑝die𝑎 3 3 intervals from [58]
𝛾𝑎(𝑡) 18 21 constant over 6 week intervals
Total 72 90

Table C.2: Number of parameters learned by the model in each of the two waves.

which have widths twice the size of estimated values [52]. Similarly, all 𝑝𝑑𝑖𝑒𝑎 were

learnt and constrained to lie in intervals [0, 2𝑞𝑎], where 𝑞𝑎 represents the total deaths

divided by the total hospitalizations in age group 𝑎 in a given wave, obtained from

Greek NPHO data [58].

The mixing parameters, 𝛽𝑎𝑏(𝑡), and the reporting parameters, 𝛾𝑎(𝑡), were assumed

to be constant in 4 and 6 week intervals respectively. These limits were empirically

established with the goal of enabling tractability and avoiding overfitting.

The data include all dates between January 21, 2021 and December 15, 2021. Dur-

ing this period, Greece experienced two epidemic waves, one lasting from January 21,

2021 until June 20, 2021, and the other from June 21, 2021 until December 15, 2021.

The self-testing program was introduced in the middle of the first waves and contin-

ued through the second wave. The model is fitted to both waves in separate runs.

For the first wave, the sizes of all compartments were initialized at 0 with the follow-

ing exceptions. The number of initially hospitalized patients were directly estimated

from the raw data using Little’s Law. The size of the susceptible compartments and

infected compartments were allowed to be nonzero (and learned through the fitting

process) subject to the following constraints: (i) the prevalence was assumed to be

less than 0.3% (an upper bound supported by Bastani et al. [67]), (ii) the sum of all

compartments summed to the population data per age group provided in the Greek

census [57].
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For the second wave, the sizes of all compartments were initialized at their levels

learned from the model fitting to the first wave, with the exception of the infected

compartments that were learned through fitting on the second wave. Similar to the

first wave, a constraint was imposed that the sum of all compartments in each age

group was equal to values provided in the Greek census [57]. Note that fitting the

sizes of the infected compartments for the second wave was necessary, because the

fit for these quantities from the first wave may not be credible due to end-of-horizon

effects.

C.2.2 Loss Function

The loss function used to fit the model was the sum of squared log errors, across time

steps, age groups, and waves for all outcomes presented in Table C.1.

There were more than 70 parameters to fit for each wave. In addition, the loss

function was complex with no analytical gradients, making the underlying optimiza-

tion problem a difficult task with the potential for overfitting. In order to obtain

robust solutions, a regularization scheme was used on the time-varying parameters

(𝛽𝑎𝑏(𝑡) and 𝛾𝑎(𝑡)) with a two-stage block minimization procedure to ease the opti-

mization burden.

Regularization was a standard penalty on the absolute differences in successive

values of the time-varying parameters. In particular, two regularization parameters

were introduced, 𝜆1 and 𝜆2, and the following component was added to the loss

function:

𝜆1

∑︁
𝑎∈𝒜

∑︁
𝑏∈𝒜

|𝛽𝑎𝑏(𝑡+ 1)− 𝛽𝑎𝑏(𝑡)|+ 𝜆2

∑︁
𝑎∈𝒜

|𝛾𝑎(𝑡+ 1)− 𝛾𝑎(𝑡)|

The block-minimization approach worked in two steps:

1. Numerically minimize the regularized loss function with the cross-age-group

mixing parameters fixed to zero (𝛽𝑎𝑏(𝑡) = 0 for 𝑎 ̸= 𝑏), to obtain an initial

estimate on the unknown parameters.

2. Numerically minimize the loss function by varying all mixing parameters, 𝛽𝑎𝑏(𝑡),
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keeping the remaining parameters fixed to their values from Step 1.

Both fitting steps were completed using the Levenberg-Marquardt algorithm [68]

with random restarts. The regularization parameters were fixed in the optimization

and chosen by searching through a grid (Figure C-1). The parameters were chosen

to be as large as possible while retaining a good fit to the data (low mean abso-

lute percentage error). All computational experiments were run on the SuperCloud

infrastructure [69].

C.2.3 Bootstrapping for Confidence Intervals

To derive confidence intervals for our sensitivity analyses, an approach was followed

that is similar to traditional bootstrapping. It relied on the data being split according

to the 74 regional units of Greece, and used this split to construct virtual populations

that were obtained by randomly sampling regional units (with replacement) until the

total population of the collection was at least 2 million.

It was observed that the time series within individual regional units with small

populations suffered from high variance, and therefore the 2 million resident threshold

was selected so that the time series of the virtual populations were relatively stable.

Figure C-2 shows the profiles of the 25 bootstrap samples.

In our analysis, we set 𝑁 = 25 for tractability, and report 80% confidence intervals.

Confidence intervals for the quantities of interest were derived by completing the

fitting procedure and analysis on each of the bootstrapped datasets.
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Figure C-1: Median values of the mean absolute percentage achieved by the fitted
model across all bootstrap datasets as the regularization weights vary, for the first
wave (top) and second wave (bottom).
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Figure C-2: Deaths, hospitalizations, and cases per person split by age group. Each
colored series is a time series from a single bootstrap sample.
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