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Abstract

Random quantum circuits are an attractive model for the behavior of complex many-
body physics, due to their analytic tractability as well as ability to reproduce the
behavior of chaotic quantum systems. Recent progress in elucidating their structure
has led to an improved understanding of quantum complexity, both in the context of
quantum circuit complexity and state preparation, as well as for the task of measuring
and distinguishing quantum states. However, previous results in the literature rely on
the properties of specific theoretical models, or require unrealistic assumptions about
the dynamics and experimental realization of large systems.

In this thesis we discuss the application of random circuits to probe local dynamics
in a broad class of many-body systems, focusing on the regime in which the depth of
the circuit is small compared to the size of the system. Motivated by recent results,
we provide a definition for local scrambling based on the difficulty of distinguishing
the resulting distribution from a Haar-random transformation in the case where only
a region of fixed size may be accessed. We prove that up to the second moment, local
scrambling of a product state input by a 1D random circuit occurs in log depth, i.e.
requiring circuit depth asymptotically proportional to the logarithm of the size of the
region, and is independent of the total system size.

In addition, we consider models for classifying topological phases and character-
izing the entanglement structure of quantum matter. In particular, we describe the
immediate application of our above result to bounds on the detection of these phases.
We then discuss the topological entanglement entropy (TEE), a quantity related to
the quantum conditional mutual information. Under standard assumptions, we prove
that in the trivial phase, spurious contributions to the TEE decay in the limit as the
size of the system goes to infinity, suggesting that the TEE is a robust indicator of
topological order.

Thesis Supervisor: Aram W. Harrow
Title: Professor of Physics
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Chapter 1

Introduction

The relationship between physics, computation, and probability theory extends as

far back as the Industrial Revolution, during which statistical theories of physics

were first developed to explain the thermodynamics of steam engines. The central

ideas of statistical mechanics were in turn cemented into modern computer science

by the seminal works of Nyquist, Harley, and Shannon in the 1920s and 1940s which

pioneered the study of classical information theory [3].

Quantum information theory offers new tools and perspectives for understand-

ing both computational theory and physical phenomena in the regime where quan-

tum effects become important. On one hand, quantum computation provides an

alternative model of the Church-Turing thesis, and takes advantage of the mathe-

matical properties of quantum mechanical hardware to deliver theoretical speedups

over classical computers for certain tasks, most notably the unstructured query and

integer factorization problems. On the other, the application of quantum information-

theoretic approaches has prove fruitful for a number of applications in fundamental

physics. These include characterizing out-of-equilibrium physics and the observation

of uniquely quantum effects such as many-body localization and exotic phases of mat-

ter [4–7], as well as in resolving the apparent conflict between unitarity and classical

predictions of general relativity in models of black hole physics [8–11].

One area of both theoretical and practical interest is in the efficient and accurate

description of quantum mechanical systems, and understanding the conditions for
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which an advantage is obtained over classical computers. Feynman first proposed

quantum computation for this application [12], citing the fact that in general, 𝑞𝑛

parameters are required to describe the state of a quantum system composed of 𝑛 𝑞-

level particles, thereby utilizing computational resources which scale exponentially in

the size of the system. The task of quantum simulation has wide-ranging applications,

such as in the design of novel chemical structures and materials, random number

generation, and potentially more general numerical optimization methods [13].

To this end, several recent experimental and theoretical advances have contributed

to an improved understanding of quantum complexity, particularly in the case of local

quantum dynamics, in which the interaction terms of the Hamiltonian are restricted

to nearest-neighbor pairs. A key step in these achievements was the introduction

of random quantum circuit models, which give ensembles of unitary gates sampled

classically from some underlying distribution, typically uniformly random over all

operations [14]. Random circuits are attractive as models for many-body physics

due to their ability to reproduce universal properties of a broad class of quantum

phenomena [15–18], and offer a powerful yet tractable framework for quantifying

information complexity in quantum systems.

In particular, one direction which has been fruitful is relating quantum circuit

complexity to the complexity of algorithms both for distinguishing quantum states or

phases [19–21], as well as classically simulating quantum processes [22–24], for which

it gives strong bounds on quantum advantages. Notably, it has been shown that for

a local one-dimensional model, both exact circuit complexity and the difficulty of

distinguishing the resulting distribution of states grow linearly in time [25–27].

However, several of these results implicitly require strong assumptions regarding

access to measurements the entire system. On the other hand, prior to the spread of

information throughout the entire system, chaotic quantum processes are expected to

exhibit local scrambling, so that it is difficult to distinguish the resulting distribution

of states when only a local subsystem is accessed. As far as we know, local scrambling

has not been studied analytically in the existing literature, but is important for appli-

cations in condensed matter and black hole physics in which both access to the entire
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system is impractical, and the relevant time scales are typically small in comparison

to the total system size [9, 16, 17]. This phenomenon is also related to the measure-

ment complexity and performance of classical shadow methods for learning operators

on quantum states, in the general case where the operators are of intermediate rank

and have support on some subregion of the system [28].

In addition, while classical shadow tomography provides a manner of efficiently

reconstructing arbitrary properties of a many-body quantum state from the mea-

surement of certain operators, it does not always provide information about which

operators to choose or what types of properties may be measured in a generic system.

For instance, while it is known that no linear operator can serve as a robust indica-

tor for topological phases, which arise from patterns of long-range entanglement [29],

in general the practicality of classifying topological order in physical systems is not

well-understood.

The goal of our work is twofold: first, we address the fundamental issue of local

scrambling by providing analytic bounds on the difficulty of distinguishing the out-

put of a random circuit given a fixed subset of the system. Second, we build upon

existing results which apply random circuit models to characterize topological phases

of matter, in an attempt to provide guarantees on robust methods of distinguishing

these phases.

1.1 Outline of thesis

In Chapter 2, we review the background on random quantum circuits, with a focus on

the mathematical structure of Haar-random unitary circuits, and describe techniques

such as the statistical mechanics mapping for computing the moments of random

circuits, which we relate to measures of information scrambling and quantum com-

plexity. In addition, we discuss tensor network methods for analyzing entanglement

and information complexity.

In Chapter 3, we provide motivation for a definition of local scrambling in ran-

dom circuits, based on the difficulty of distinguishing the distribution of the circuit
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output when only a local subsystem of fixed size may be accessed. We relate this

definition to a previous result on anti-concentration in random circuits [22] to pro-

vide analytic bounds for its convergence in linear 1D circuits. We show that up to

the second moment, local scrambling of a product state input occurs in depth scaling

logarithmically in the size of region accessed.

In Chapter 4, we provide an overview of the application of higher dimensional

quantum circuits as a model for topological order, and previous proposals for the de-

tection of topological phases. We then focus on the topological entanglement entropy

(TEE), a quantity related to the quantum conditional mutual information, in two

dimensions. Building upon recent progress in understanding this quantity, we prove

that spurious contributions in the trivial phase, i.e. with product state input, decay

roughly exponentially in the system size, so that the TEE is generically a robust

indicator of topological order.
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Chapter 2

Random quantum circuits

2.1 Motivation

We begin by discussing basic definitions and properties as well recent theoretical

progress for random circuits, and provide intuition for these structures. Throughout

this work, we consider circuits on 𝑛 qudits of local dimension 𝑞, for which the system

is represented by a Hilbert space ℋ of dimension 𝑞𝑛. Notably, many platforms for

quantum computation as well as physical systems of interest are restricted to local

interactions. We are interested in the simplest models which incorporate both local-

ity as well as information about generic quantum dynamics, and therefore focus on

ensembles of unitary circuits without additional structure. Two-qudit gates in this

model are chosen at random from the unitary group 𝑈(𝑞2).

Physically, these circuits can be interpreted as describing the possible trajectories

of a system which experiences time-dependent interactions in the high-temperature

limit, where they reproduce universal features such as the spectral statistics of a

chaotic quantum system [18]. Computationally, these circuits represent the set of

possible quantum protocols on a given platform, providing a method to bound the

typical performance of these protocols. For instance, we note that quantum mea-

surements are completely determined by the ensemble statistics. For a given circuit

ensemble, the difficulty of distinguishing the distribution of output states from a

uniformly random state is therefore bounded by the difference of the moments.
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We first provide in Section 2.2 a description of the brickwork circuit in one and

two dimensions, which is our main circuit architecture of interest. We then review

well-known properties of the unitary group in Section 2.3, including its Weingarten

calculus which is used to compute the moments of the Haar measure. In Sections 2.4

and 2.5, we apply these properties to describe other useful ensembles, and summarize

a statistical mechanics mapping method for computing integrals over local random

circuits. We also include a note on models with conserved charges in Section 2.6.

Finally, we offer an overview of tensor network methods for analyzing entanglement

dynamics in quantum circuits in Section 2.7.

2.2 Circuit architectures

In our analysis we typically restrict to the one- and two- dimensional brickwork cir-

cuit architectures consisting of two-site gates on neighboring qudits, each of which

are sampled uniformly over the Haar distribution. In the 1D case, we have a linear

geometry in which each qudit interacts with two nearest neighbors, up to unspec-

ified boundary conditions. On the other hand, in the 2D case we adopt a square

lattice geometry, so that each qudit interacts with four nearest neighbors, two in each

direction.

We are interested in studying the scaling relationship between the behavior of

random circuits and their depth, which is given by the minimum number of non-

overlapping layers in the circuit. We can therefore consider circuits with alternating

layers of gates up to some depth 𝐿: Throughout most of this work, we assume the

Figure 2-1: Local one-dimensional random circuit architecture with 𝑛 = 10, 𝐿 = 7

18



regime in which 𝐿≪ 𝑛. Thus whenever the accessible region of the system 𝐴 is local,

i.e. connected, and satisfies |𝐴| ≪ 𝑛, we are guaranteed that the “lightcone” of 𝐴

is also much smaller than the rest of the system, and takes on a trapezoidal shape

which does not overlap with itself.

2.3 Properties of the unitary group

2.3.1 Moments of the unitary group

In order to compute statistics over the unitary group, we must first describe the

equal-volume integration measure. Formally, the Haar measure is the unique left- and

right-invariant measure over 𝑈(𝑁), and therefore represents the uniform distribution

over the group. The resulting ensemble is also known as the circular unitary ensemble

(CUE). Using the symmetries of the unitary group, it can be shown that

∫︁
Haar

𝑑𝑈𝑈𝑖1𝑗1 ...𝑈𝑖𝑘𝑗𝑘𝑈
†
𝑙1𝑚1

...𝑈 †
𝑙𝑘𝑚𝑘

=
∑︁

𝜎,𝜏∈𝑆𝑘

𝛿(⃗𝑖, 𝜎(𝑚⃗))𝛿(⃗𝑗, 𝜏 (⃗𝑙))𝑊𝑔(𝜎−1𝜏, 𝑑), (2.1)

where we sum over permutation operators 𝜎, 𝜏 . The Weingarten coefficients 𝑊𝑔 are

rational functions of 𝑞 with degree at most −𝑘, and can be computed exactly by

applying the Schur-Weyl duality and combinatorially constructing the irreps of the

symmetric group, then solving the resulting system of equations. For more detail and

comments on generalizations to other groups, see Appendix A. We then define the

moments of the unitary group as follows:

Definition 1 (Moments of the Haar distribution) For any linear operator 𝑋

acting on ℋ⊗𝑘, the 𝑘-th moment of 𝑋 over the Haar distribution can be defined

via the twirling operators

𝑇
(𝑘)
Haar(𝑋) =

∫︁
Haar

𝑑𝑈 𝑈⊗𝑘𝑋(𝑈 †)⊗𝑘. (2.2)

As 𝑇 (𝑘)
Haar(𝑋) commutes with any transformation on a single qudit, it must consist of a

linear combination of permutation operators, which we interpret as acting on 𝑘 copies
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of the system. For instance, the second moment is a linear combination of identity

(1) and swap (𝑆) operations on the two copies of the Hilbert space and is given by

𝑇
(2)
Haar(𝑋) =

∫︁
Haar

𝑑𝑈 𝑈⊗2𝑋(𝑈 †)⊗2

=
1

𝑑2 − 1

(︂
1Tr𝑋 − 1

𝑑
1Tr𝑆𝑋 + 𝑆 Tr𝑆𝑋 − 1

𝑑
𝑆 Tr𝑋

)︂
. (2.3)

2.3.2 Haar-random states

It is possible to extend the above definitions to discuss distributions over states. In

particular, the uniform distribution over all state vectors is equal to that obtained by

applying a uniformly random unitary to a computational basis state. We can therefore

define the moments of this distribution via the action of the twirling operator on the

product state 𝑇 (𝑘)
Haar((|0⟩⟨0|)⊗𝑘), which can be interpreted as an ensemble average over

𝑘 copies of a given state, or of the output of 𝑘 copies of a random circuit [30,31]. We

emphasize that while these two definitions are very similar, they are in general not

equivalent, as it is simpler to specify the domain of independent transformations on

𝑘 copies of a state than to consider arbitrary entangling transformations on ℋ⊗𝑘. We

provide further intuition for this fact and some of its consequences in Section 3.6.

2.4 Design property

It is often useful to consider ensembles of unitaries which capture some of the statis-

tical properties of the Haar distribution:

Definition 2 (Unitary designs) An ensemble 𝜀 = {𝑝𝑖, 𝑈𝑖} is called a unitary k-

design if it reproduces the first 𝑘 moments of the Haar distribution, so that

𝑇 (𝑘′)
𝜀 (𝑋) =

∫︁
𝜀

𝑑𝑈 𝑈⊗𝑘′𝑋(𝑈 †)⊗𝑘′ = 𝑇
(𝑘′)
Haar(𝑋) (2.4)

for all 𝑋 acting on ℋ⊗𝑘′ and 1 ≤ 𝑘′ ≤ 𝑘.

For instance, it is known that the Clifford group, which are the set of unitaries which
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map Pauli operators to other Pauli operators, form a 2-design. In addition, it is

shown in [32] that they form a 3-design in the case 𝑞 = 2𝑚 for integer 𝑚, though they

fail to form a 4-design for any 𝑞 ≥ 2.

In general it is difficult to find explicit constructions of 𝑘-designs for arbitrary

𝑘; however, constructions have been given for approximate designs in connection to

stochastic Hamiltonians and random circuits [21]. More precisely, we consider the

following condition on ensemble averages:

Definition 3 (Approximate design property) An ensemble 𝜀 = {𝑝𝑖, 𝑈𝑖} is called

an 𝜖-approximate 𝑘-design if the diamond norm of the difference of the 𝑘-th moment

is bounded by ⃦⃦⃦
𝑇 (𝑘)
𝜀 − 𝑇

(𝑘)
Haar

⃦⃦⃦
◇
≤ 𝜖. (2.5)

Recall the diamond norm of a channel is defined as

‖𝑇‖◇ ≡ sup
𝑑

‖𝑇 ⊗ 1𝑑‖1→1. (2.6)

where the superoperator norm ‖·‖𝑝→𝑝 for 𝑝 ≥ 1 is given in terms of a supremum over

non-trivial operators

‖𝑇‖𝑝→𝑝 ≡ sup
𝑂 ̸=0

‖𝑇 (𝑂)‖𝑝
‖𝑂‖𝑝

= sup
𝑂 ̸=0

(Tr |𝑇 (𝑂)|𝑝)1/𝑝
(Tr |𝑂|𝑝)1/𝑝 . (2.7)

Since integrating over the Haar measure erases the effect of any unitary applied on

the system, this property can be interpreted as a condition for information scrambling

in random circuits. From Eq. A.5, we observe that information contained in 𝑉 is

completely scrambled by a circuit which perfectly samples from the Haar distribu-

tion. Otherwise, information accessible via POVM measurements is bounded via the

trace distance between the ensemble and the Haar moments. It can be shown via

a statistical mechanics mapping that local random circuits acting on 𝑛 qudits form

approximate 𝑘-designs in 𝑂(𝑛 · poly(𝑘)) [26]. We reproduce the key ideas of this

argument in the next section.
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2.5 Unitary designs from statistical mechanics

Hunter-Jones [26] showed the unitary design condition for scrambling is achieved in

linear time by applying a mapping from integrals over local random circuits to an

Ising-like model. While the diamond norm is difficult to work with directly, it can

be related to another quantity known as the frame potential. For any ensemble of

unitaries 𝜀, the 𝑘-th frame potential is given by

ℱ (𝑘)
𝜀 =

∫︁
𝜀

𝑑𝑈𝑑𝑉
⃒⃒
Tr𝑈 †𝑉

⃒⃒2𝑘
. (2.8)

The frame potential for any ensemble is lower bounded by the Haar value, and fur-

thermore the difference between the values bounds the diamond norm distance via

⃦⃦⃦
𝑇 (𝑘)
𝜀 − 𝑇

(𝑘)
Haar

⃦⃦⃦
◇
≤ 𝑑2𝑘(ℱ (𝑘)

𝜀 −ℱ (𝑘)
Haar). (2.9)

When 𝜀 is a random quantum circuit of depth 𝐿, the frame potential can be written in

terms of an integral over a circuit of depth (2𝐿−1) with periodic boundary conditions:

ℱ (𝑘)
𝜇𝐿

=

∫︁
𝑑𝜇2𝐿−1|Tr𝑈 |2𝑘, (2.10)

where we denote by 𝜇𝐿 the ensemble generated by a local random circuit of depth

𝐿. This is a 𝑘-th moment quantity, and can be computed by expanding a product

of Weingarten functions. In order to compute this expansion, we consider a mapping

which sends the 2𝑘 copies of each gate to a pair of effective vertices with two incoming

and outgoing legs, respectively.

...

= (2.11)

We identify each vertex with a “spin” which is assigned one of the possible permutation

operator terms 𝜎 ∈ 𝑆𝑘. Note that these configurations do not correspond to physical
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instances of the circuit, and in general are not valid quantum states. We can visualize

the result of this process as an Ising-like model on a triangular lattice where sites are

given by the red vertices in Eq. 2.11, with domain walls separating regions of different

spins. The frame potential can then be identified with the the partition function of

this model via

ℱ (𝑘)
𝜇𝐿

=
∑︁
{𝜎}

∏︁
▷∈𝛾

𝐽𝜎1
𝜎2𝜎3

, (2.12)

where for a plaquette with spins 𝜎1, 𝜎2, 𝜎3 on its three vertices, the 𝐽𝜎1
𝜎2𝜎3

are computed

by applying Eq. 2.1 and summing over the Tr 𝜏𝑗,𝑗+1𝜌
⊗2
𝑗,𝑗+1 coefficients, which yields

𝐽𝜎1
𝜎2𝜎3

=
∑︁
𝜏∈𝑆𝑘

σ1

σ2

σ3

τ =
∑︁
𝜏∈𝑆𝑘

𝑊𝑔(𝜎−1
1 𝜏, 𝑞2)𝑞ℓ(𝜏

−1𝜎2)𝑞ℓ(𝜏
−1𝜎3). (2.13)

For 𝑘 = 2 we have 𝜎𝑖, 𝜏 ∈ {1, 𝑆}, so the coefficients for all non-zero plaquette config-

urations are given by

1

1

1

= 1,
1

1

S

= 1

S

1

=
𝑞

𝑞2 + 1

S

S

S

= 1, S

S

1

=
S

1

S

=
𝑞

𝑞2 + 1

(2.14)

Since plaquettes with 𝜎2 = 𝜎3 and 𝜎1 ̸= 𝜎2 result in a coefficient of 0, only lattice

configurations which do not have pairs of annihilating domain walls contribute to

the second moment. Furthermore, a domain wall contributes a factor of 𝑞
𝑞2+1

for

each layer it propagates, so that configurations with fewer domain walls have larger

weights. Due to the periodic boundary condition, only configurations with the same

domain wall locations at the leftmost and rightmost layers contribute, so the frame

potential is upper bounded by a binomial expansion in the width of the circuit and

thus decays asymptotically as
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ℱ (2)
𝜇𝐿

≈ 2

(︂
1 +

1

𝑞2𝐿

)︂𝑛

. (2.15)

Applying Eq. 2.9, it can then be shown that random circuits form an 𝜖-approximate

2-design for depth 𝑂(𝑛 + log 1/𝜖). For higher 𝑘, the analysis is more complicated,

as some plaquettes can contribute a negative weight. However, in the limit of large

local dimension, it can be shown that the depth required to form a 𝑘-design scales as

𝑂(𝑛𝑘 + log 1/𝜖).

The statistical mechanics mapping is a surprisingly powerful technique for an-

alyzing random circuit dynamics, and can also be applied to study the behavior

of out-of-time-order correlators [21], anti-concentration metrics [22], and even phase

transitions in monitored quantum circuits [33].

2.6 Symmetric circuit models

While random circuit ensembles provide strong bounds on the complexity generic

quantum dynamics and protocols, they are unphysical in the sense that they do not

obey basic requirements such as energy conservation. Here we comment briefly on

recent progress in understanding circuits with conserved quantities.

The presence of a conserved charge has profound effects on the structure of the

circuit, including additional implications for the accessible state space. Requiring

the entire circuit to commute with an Abelian or non-Abelian quantity restricts the

ensemble of unitary gates to ones which are block diagonal in the different charge

sectors. It is possible to apply hydrodynamics approaches to study the diffusion in

the charge sectors and the resulting operator spreading, as in [34,35]. However, while

it is known that in general a local random circuit of arbitrary depth can approximate

any unitary transformation on the entire system [21,27], it is not the case that a local

circuit which obeys a conservation law can approximate any unitary transformation

on the entire system which does the same [36]. In particular, it was recently shown

that non-Abelian symmetries restrict the circuit to the subgroup of symplectic or

orthogonal transformations on each charge sector [37].
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2.7 Entanglement dynamics

One of the hallmarks of quantum mechanical systems is entanglement, which arises

from the Hilbert space structure and can be understood as a source of non-classical

correlations. It is possible to quantify the amount of entanglement across any bipar-

tition of a quantum system using the entanglement entropy, which we define in terms

of the von Neumann entropy as follows: given a bipartite quantum state |𝜓⟩𝐴𝐴, the

entanglement entropy of the state with respect to the partition 𝐴,𝐴 is given by

𝑆𝐴 = −Tr(𝜌𝐴 ln 𝜌𝐴), (2.16)

where 𝜌𝐴 = tr𝐴 |𝜓⟩⟨𝜓| is the reduced density matrix on 𝐴. In general, the von Neu-

mann entropy can be interpreted as the smallest possible Shannon entropy which can

be obtained for a projective measurement on a given state [38]. Note that when the

state of the entire system is not pure, this quantity also includes classical correlations

which do not correspond to entangled degrees of freedom.

Unfortunately, the von Neumann entropy is difficult to compute for an arbitrary

state, as it requires us to diagonalize a density matrix with dimension exponential in

|𝐴|. It is possible to approximate this quantity with the Rényi entropies, which are

more analytically and computationally tractable. Recall that for any state on system

𝐴, the 𝛼-th order Rényi entropy of 𝜌𝐴 is given by

𝑆
(𝛼)
𝐴 =

1

1− 𝛼
lnTr 𝜌𝛼. (2.17)

The von Neumann entropy can be recovered in the limit as 𝛼 → 1. These entropic

quantities can be used to define a measure of both quantum and classic correlations

between arbitrary subsystems whose union is not necessarily the entire system:

Definition 4 (Quantum mutual information) For a general bipartite state 𝜌𝐴𝐵,

the mutual information 𝐼(𝐴 : 𝐵) is given by

𝐼(𝐴 : 𝐵) = 𝑆𝐴 + 𝑆𝐵 − 𝑆𝐴𝐵. (2.18)
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In addition, for a tripartite state 𝜌𝐴𝐵𝐶, we can define the conditional mutual infor-

mation of the subsystems 𝐴 and 𝐶, conditioned on 𝐵:

𝐼(𝐴 : 𝐶|𝐵) = 𝑆𝐴𝐵 + 𝑆𝐵𝐶 − 𝑆𝐵 − 𝑆𝐴𝐵𝐶 . (2.19)

As in the classical case, the quantum mutual information and CMI are non-negative.

Note that in the presence of unitary time evolution, all contributions to the von

Neumann entropy are due to quantum entanglement. These quantities thus provide

a measure of entanglement dynamics, describing the degree of non-classical behavior

in various systems in terms of their statistical correlations.

2.7.1 Tensor network methods

Tensor networks provide a framework for the visualization and analysis of entangle-

ment dynamics in systems with local interactions. These methods can be understood

as an extension of classical techniques for solving isotropic spin lattice models under

the relaxation of translation invariance [39], and enable efficient classical representa-

tions of many-body states which are generated by local dynamics.

To see this, recall that for any state |𝜓⟩ on a multipartite system with subsystem

𝐴, the Schmidt decomposition guarantees a representation of |𝜓⟩ of the form

|𝜓⟩ =
∑︁
𝑖

𝑎𝑖|𝑖⟩𝐴 ⊗ |𝑖⟩𝐴, (2.20)

where the sets {|𝑖⟩𝐴} and {|𝑖⟩𝐴} form orthonormal bases on 𝐴 and 𝐴 respectively,

and
∑︀ |𝑐𝑖|2 = 1. This is equivalent to the statement that the reduced states on 𝐴 and

𝐴 have the same spectrum and entropy. For any 1D system with linear geometry and

bounded bipartite Schmidt rank, it is possible to decompose the state via a matrix

product state construction:

Definition 5 (Matrix product state) Suppose there exists 𝑏 such that for any
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𝑚 ∈ [𝑛], |𝜓⟩ can be written in the form

|𝜓⟩ =
𝑏∑︁

𝑖=1

𝑎𝑖|𝑖⟩[𝑚]|𝑖⟩[𝑚+1,𝑛]. (2.21)

Then we can write |𝜓⟩ in a matrix product state form as a product of tensors

|𝜓⟩ = 𝐴
(1)

𝑖1,𝑞′1
𝐴

(2)

𝑖1,𝑖2,𝑞′2
...𝐴

(𝑛)
𝑖𝑛−1,𝑞′𝑛

, (2.22)

where except for the first and last site each tensor is of dimension 𝑞𝑏2. This corre-

sponds to a chain of 𝑛 tensors connected by bonds representing the contracted virtual

indices, and dangling legs representing the physical indices as in Figure 2-2.

A(0) A(1) A(2) A(n)...

Figure 2-2: Matrix product state representation of state on 𝑛 qudits

For example, it is known that all local 1D Hamiltonians which are gapped, i.e. admit a

finite energy gap between the ground state and excited spectrum, have ground states

with this property and can therefore be written as a matrix product state [40]. As

this representation requires only 𝑂(𝑛𝑞) parameters, these systems can be efficiently

simulated on a classical computer.

While the higher-dimensional picture is more complicated, it is still possible to use

a tensor network decomposition to analyze entanglement dynamics in any dimension.

In particular, note that given a circuit on any input state which admits a matrix

product state decomposition with tensors 𝐴(𝑚), the output can also be expressed as a

matrix product state with tensors 𝐴′(𝑚) which are computed by factorizing the gates

via the singular value decomposition and contracting with the qudit legs of the original

state. A similar statement holds for density operators, which can be visualized as two

copies of a matrix product state with a partial trace denoted by contraction of pairs

of dangling legs. Notably, since the total bond dimension is upper bounded by the

product of the bond dimensions of the corresponding contracted tensors, applying a
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fixed-depth local circuit can increase the bond dimension by at most a constant factor.

In addition, we remark that for a random circuit, the typical bond dimension is equal

to the maximum, as there is zero probability of applying multiple transformations

with the same eigenbasis.
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Chapter 3

Local information dynamics

We now consider a restricted model of measurement, in which only a geometrically

local subregion of fixed size may be accessed. Inspired by recent results relating

complexity to the approximate design condition in random circuit models [21, 22],

we define a similar condition for the achievement of local scrambling, focusing on

the one-dimensional case. This corresponds to the generic information-theoretical

task of distinguishing quantum states given access to some subsystem. While these

conditions are not well-understood, they are directly relevant to a wide range of

applications, including many systems of interest in condensed matter physics [41].

Our main results are Theorems 3 and 4, showing that in the regime where the sizes

of the accessible region and circuit are both small compared to the size of the entire

system, the distinguishability given a product state input decays exponentially with

the depth of the circuit. This implies that, up to the second moment, the depth

required to achieve local scrambling in a 1D system scales logarithmically in the size

of the region accessed, and crucially is independent of the total system size.

We begin in Section 3.1 by motivating such a definition with a review of frame-

works for analyzing quantum complexity, focusing specifically on state complexity.

We then provide a formal definition of local scrambling in Section 3.2, and summa-

rize our proof strategy. We provide full proofs of our upper and lower bounds in

Sections 3.3 and 3.4, respectively.
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3.1 Models of quantum complexity

In the absence of any global symmetries, 2-qudit gates chosen from any universal

gate set are sufficient to reproduce any unitary transformation on the system [21,

36]. The minimum circuit size required to perform a given quantum operation, also

known as quantum circuit complexity, is therefore a robust and natural measure of its

implementation cost. The geometric approach for analyzing complexity is well-known

[42–44], and provides a bound for the circuit cost of a given unitary transformation

𝑈 by considering geodesics between 𝑈 and the identity.

An alternative definition of quantum complexity based on distinguishable mea-

surements is given in [21]. Informally, the measurement complexity of a quantum

circuit 𝑈 is defined as the minimum circuit size required to implement an ancilla-

assisted measurement which can distinguish 𝜌 ↦→ 𝑈𝜌𝑈 † from from the completely

depolarizing channel 𝜌 ↦→ 1
𝑑
1. This description also invokes a definition of scram-

bling as the inability to distinguish information carried by a quantum state. It can

be shown that this condition is in general an upper bound for the naive notion of

complexity based on the circuit size required to approximate a quantum operation.

Random circuits are a natural model for the complexity of generic quantum sys-

tems and operations. More, precisely, recall that a random ensemble ℰ = {𝑝𝑖, 𝑈𝑖}
is said to form an unitary 𝑘-design if it reproduces the first 𝑘 moments of the Haar

measure. It is shown in [21] that any ensemble which forms an approximate unitary

𝑘-design also has measurement complexity which scales as 𝑂(𝑘), and that random

quantum circuits satisfy this property in depth scaling with 𝑂(𝑛 · poly(𝑘)). Further-

more, it is known that the exact circuit complexity of a sequence of Haar-random

gates grows linearly with probability 1 before saturating after exponential depth [27],

suggesting that random circuits are efficient scramblers of information.

3.1.1 Anti-concentration in random circuits

Dalzell, Hunter-Jones, and Brandão [22] studied the related property of anti-concentration

in various local random circuit architectures, where an ensemble of states is defined
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to be anti-concentrated if the expected collision probability is at most a constant fac-

tor times that for a uniform distribution. Here collision probability is defined as the

probability that two identical copies of the circuit produce the same outcome when

measured. For measurements with respect to the computational basis, it is given by

𝑍 = 𝑞𝑛E[𝑝(|0⟩)2], (3.1)

where |0⟩ denotes the computational basis state in which all qudits are initialized to 0.

The collision probability for the Haar-random distribution, which samples uniformly

over all unitary transformations on the system, is given by

𝑍𝐻 =
2

𝑞𝑛 + 1
. (3.2)

Since the expected collision probability is a second moment quantity, satisfying the

approximate 2-design property guarantees that the output of the circuit also satis-

fies the anti-concentration property; however, in general anti-concentration is weaker

than the approximate 2-design condition. It is shown that for the one-dimensional

ring as well as complete graph architectures, the output of a local random circuit

reaches anti-concentration in log depth, faster than the circuit forms an approxi-

mate 2-design. In particular, for a one-dimensional random circuit with depth 𝐿, the

collision probability is bounded by

𝑍𝐿 = 𝑍𝐻

(︃
1 + (𝑒− 1)𝑛

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
)︃
. (3.3)

We attempt to provide intuition for the difference in these two measures of scrambling

and discuss further connections as well as potential for future work in Section 3.6.

3.2 Local scrambling

The observation that the 𝑘-th moment of an operator with respect to the Haar dis-

tribution must commute with and thereby absorb the effect of any unitary motivates
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the definition of local scrambling via absorption of a unitary acting on a local region.

More concretely, for a local random quantum circuit consisting of 𝐿 layers, and 𝐴

a region which is geometrically local. For a constant 𝑈𝐴, we are interested in the

condition ∫︁
𝑑𝜇𝐿𝑈

⊗𝑘𝑋(𝑈 †)⊗𝑘 ≈
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗𝑘𝑋(𝑈 †𝑈 †
𝐴)

⊗𝑘. (3.4)

Note that for the case 𝑘 = 1, the twirling channel produces the completely mixed

state, and thus information in the system is scrambled at constant depth 𝑑 = 1.

We restrict to the simplest nontrivial case 𝑘 = 2 on the 1D brickwork circuit,

for which 𝑇
(2)
𝜇𝐿 consists of terms with either the identity or swap operation on each

qudit, and consider the action of the random circuit on an input state 𝜌. We therefore

consider the following definition for local scrambling, up to the second moment:

Definition 6 (Local scrambling) Consider a random circuit of depth 𝐿 on 𝑛 qu-

dits with input 𝜌 and a geometrically connected subsystem 𝐴. Let 𝜇𝐿 denote the

ensemble consisting of instances of the random circuit. Then, up to some 𝜖 > 0, the

region 𝐴 of 𝜌 is scrambled by the circuit if for any unitary 𝑈𝐴 which acts trivially on

the subsystem 𝐴,

⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

≤ 𝜖.

Recall that the trace norm or Schatten 1-norm of an operator 𝐴 is defined via

‖𝐴‖1 := Tr |𝐴| = Tr
√
𝐴𝐴†. (3.5)

Intuitively, we expect that this conditions holds for |𝐴| ≪ 𝐿, and in particular that

the maximum size of the region absorbed scales asymptotically with 𝐿, independent

of the size of the entire system. We show in the following sections that the depth

required is logarithmic in the size of |𝐴|.
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3.2.1 Proof outline

The key step in proving both the upper and lower bounds is reducing the problem

to one which is asymptotically independent of 𝑛. This is relatively straightforward

for the upper bound, where we use the fact that the trace norm contracts under

the application of completely positive trace-preserving (CPTP) maps to reduce the

random circuit into a trapezoidal region of size |𝐴|+ 2𝐿. We then apply the triangle

inequality to the quantity of interest in Definition 6 and bound the coefficients in

terms of 𝐿, using a combinatorial argument reduce the number of terms to a sum

which is asymptotically independent of 𝑛. From there, we adapt the lattice mapping

technique in order to upper bound the coefficients of contributing terms.

The case of the lower bound is trickier, as we cannot directly eliminate regions

outside of the lightcone of 𝐴 since the appearance of additional domain walls in

the circuit decreases the overall weight. We avoid this issue via an intermediate

application of the quantum Wasserstein distance of order 1, trading a prefactor linear

in |𝐴| in order to give a bound which is explicitly independent of the rest of the

circuit, for a given 𝑈𝐴. We then use a similar combinatorial argument to give a lower

bound in terms of the spin lattice weights for generic 𝑈𝐴.

3.3 Proof of upper bound for product state input

3.3.1 Spin lattice weights

We are interested in the action of a random circuit on an input state and in conditions

for local scrambling which are asymptotically independent of system size. While the

frame potential analysis is not directly useful for describing local scrambling due to

the factor of 𝑑2𝑘 = 𝑞2𝑘𝑛, we can apply a similar lattice mapping technique as that

described in Section 2.5 in order to bound the second moment, corresponding to

accessing two copies of the input state.

From Eq. 2.3, integrating over a two-site unitary on qudits 𝑗, 𝑗 + 1 which are not
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entangled with the rest of the system yields

1

𝑞4 − 1

(︂
1Tr 𝜌⊗2

𝑗,𝑗+1 −
1

𝑞2
1Tr𝑆𝜌⊗2

𝑗,𝑗+1 + 𝑆 Tr𝑆𝜌⊗2
𝑗,𝑗+1 −

1

𝑞2
𝑆 Tr 𝜌⊗2

𝑗,𝑗+1

)︂
⊗ 𝜌⊗2

{𝑖}𝑛1 ∖{𝑗,𝑗+1},

where 𝜌{𝑖}𝑛1 ∖{𝑗,𝑗+1} is the reduced density matrix on the rest of the system. Applying

the statistical mechanics mapping technique in [26], we can represent these factors

by replacing each of the gates with a “spin” which is assigned one of the possible

permutation operators, in this case the 1 or 𝑆 operators on the two copies of the

system. Integrating over the entire circuit, each term in the full expansion is then

represented by a configuration of domain walls separating regions with the same spin.

See Figure 3-1 for an example of one of these configurations.

I I I I

I I I

I I I S

I I S

I S S S

S S S

S S I S

I I I

I I I I

Figure 3-1: Example of a domain wall configuration in the spin lattice model (right)
which corresponds to one of the terms in the output (left), where each gate is replaced
by a vertex and domain walls are drawn in between regions of identity and swap.

The weighting for each term can therefore be computed via a partition function

on the lattice. Let Γ denote all possible configurations 𝛾. Then the second moment

is given by

𝑇 (2)
𝜇𝐿

(𝜌⊗2) =

∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 =
∑︁
𝛾∈Γ

𝑊 (𝛾)𝛾𝐿, (3.6)

where 𝛾𝐿 denotes the configuration of the last layer. Each of the coefficients 𝑊 (𝛾)
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can be expressed in terms of the triangular plaquettes:

𝑊 (𝛾) =
∏︁
▷∈𝛾

𝐽𝜎1
𝜎2𝜎3

. (3.7)

3.3.2 Reduced trapezoidal circuit

In the shallow circuit regime, we can simplify the quantity of interest in Definition

6 by considering the lightcone of 𝑈𝐴, which consists of the trapezoidal region of size

|𝐴|+2𝐿. We will assume for the remainder of this section that |𝐴|+2𝐿 ≤ 𝑛, so that

the lightcone is a trapezoidal region. It is clear that the rest of the circuit commutes

with 𝑈𝐴; to see this, consider the unitary 𝑈𝐵 = 𝑈 †𝑈𝐴𝑈 which is constructed by

pushing 𝑈𝐴 through the circuit. Since the architecture consists of alternating layers

of two-site gates, for each layer 𝑈𝐴 must be pushed through neighboring gates which

act on two additional qudits, so that 𝑈𝐵 acts nontrivially on at most |𝐴|+2𝐿 qudits.

Since the random circuit is a an ensemble of CPTP channels and therefore itself

CPTP, we can show that the original condition is upper bounded by its value for the

trapezoidal circuit.

A

−−−−−−−−−−−−−−−−→ 𝐿

Figure 3-2: Trapezoidal circuit consisting of gates in the “lightcone” of the region 𝐴

Theorem 1 (Trapezoidal circuit reduction) Suppose that 𝑛 ≥ |𝐴|+ 2𝐿, and let

𝜇* denote the ensemble of unitaries generated by the trapezoidal region of gates in the

lightcone of 𝐴. Then for any 𝑈𝐴 which acts trivially on 𝐴, we have
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⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

≤
⃦⃦⃦⃦∫︁

𝑑𝜇*𝑈
⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

.

Proof. Let 𝜇𝐸 denote the ensemble generated by the rest of the circuit which is not

included in the trapezoidal region. Then for any 𝑈 ∈ 𝜇𝐿, we can write 𝑈 = 𝑈𝐸𝑈* for

some 𝑈𝐸 ∈ 𝜇𝐸 and 𝑈* ∈ 𝜇*. We can then rewrite the left hand side in terms of the

two parts of the circuit:⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

=

⃦⃦⃦⃦∫︁
𝑑𝜇*𝑑𝜇𝐸(𝑈𝐸𝑈*)𝜌

⊗2(𝑈 †
*𝑈

†
𝐸)

⊗2 −
∫︁
𝑑𝜇*𝑑𝜇𝐸(𝑈𝐴𝑈𝐸𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐸𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

=

⃦⃦⃦⃦∫︁
𝑑𝜇𝐸𝑈

⊗2
𝐸

[︂∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

]︂
(𝑈 †

𝐸)
⊗2

⃦⃦⃦⃦
1

.

≤
∫︁
𝑑𝜇𝐸

⃦⃦⃦⃦
𝑈⊗2
𝐸

[︂∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

]︂
(𝑈 †

𝐸)
⊗2

⃦⃦⃦⃦
1

Since the operator norm of a unitary 𝑈 must satisfy ‖𝑈‖∞ = 1, we can apply Hölder’s

inequality to obtain⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

≤
∫︁
𝑑𝜇𝐸

⃦⃦⃦⃦∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

=

⃦⃦⃦⃦∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

. (3.8)

We have thus reduced the definition to a condition explicitly independent of the total

system size, as desired.
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3.3.3 Combinatorial argument

We now consider the simplest case, in which we are given two copies of a product

state as input. We observe that 𝑈𝐴 must commute with terms that correspond to

configurations whose last layer contain all identity or all swap in the region 𝐴. Our

strategy is therefore to apply the triangle inequality to the right hand side of Eqs. 3.6

and 3.8, and bound the coefficients of the contributing configurations via a mapping

between the set of configurations with a domain wall in 𝐴 and the set of all config-

urations; we will then independently bound the sum of all configuration weights by

adapting an anti-concentration result previously proved in [22].

We begin by establishing an upper bound for the quantity of interest in terms of

the sum of all trapezoidal lattice configuration weights:

Theorem 2 (Correspondence counting bound) Consider a trapezoidal circuit

of depth 𝐿 which forms the lightcone of a region 𝐴. Let Γ denote all trapezoidal

lattice configurations, and 𝑊 (𝛾) denote the weight assigned to a given configuration

𝛾. Then the right hand side of Eq. 3.8 can be bounded in terms of a sum over all

configurations as follows:

⃦⃦⃦⃦∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

≤ 2|𝐴|𝑞2|𝐴|+4𝐿

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1∑︁
𝛾∈Γ

𝑊 (𝛾).

Proof. Using the weight function, we can rewrite the quantity of interest as

⃦⃦⃦⃦∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

=

⃦⃦⃦⃦
⃦∑︁
𝛾∈Γ

𝑊 (𝛾)
[︁
𝛾 − 𝑈⊗2

𝐴 𝛾(𝑈 †
𝐴)

⊗2
]︁⃦⃦⃦⃦⃦

1

.

Recall that for any 𝑈𝐴 which acts trivially on 𝐴 and 𝛾 = 𝜎⊗|𝐴| ⊗ 𝛾𝐴, we have

𝑈⊗2
𝐴 𝛾(𝑈 †

𝐴)
⊗2 = 𝛾. Then letting Γ* denote trapezoidal lattice configurations with

a domain wall in 𝐴, we can simplify this as
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⃦⃦⃦⃦
⃦∑︁
𝛾∈Γ*

𝑊 (𝛾)
[︁
𝛾 − 𝑈⊗2

𝐴 𝛾(𝑈 †
𝐴)

⊗2
]︁⃦⃦⃦⃦⃦

1

≤
∑︁
𝛾∈Γ*

𝑊 (𝛾)
[︁
‖𝛾‖1 +

⃦⃦⃦
𝑈⊗2
𝐴 𝛾(𝑈 †

𝐴)
⊗2
⃦⃦⃦
1

]︁
≤ 2

∑︁
𝛾∈Γ*

𝑊 (𝛾)‖𝛾‖1,

where we have again applied Hölder’s inequality on 𝑈𝐴. Then since the single-qudit

1 and 𝑆 each have 𝑞2 eigenvalues with magnitude 1, we have⃦⃦⃦⃦∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

⃦⃦⃦⃦
1

≤ 2𝑞2|𝐴|+4𝐿
∑︁
𝛾∈Γ*

𝑊 (𝛾).

(3.9)

We now construct a mapping between 𝐹 : Γ* → Γ as follows: for any 𝛾1 ∈ Γ*, we

map it to the configuration 𝛾0 ∈ Γ constructed by deleting the first domain wall that

ends in 𝐴. Then consider the preimage 𝐹−1 : Γ → Γ*. Note that

⋃︁
𝛾0∈Γ

𝐹−1(𝛾0) = Γ*, (3.10)

so that all contributing configurations are counted by the union of preimages. We

observe that for any 𝛾0 ∈ Γ, we can choose at most |𝐴| locations to add a domain wall,

and at most two ways to propagate it backwards for each layer. Since domain walls

are forbidden from annihilating in the direction of propagation, for any 𝛾1 ∈ 𝐹−1(𝛾0),

we must have

𝑊 (𝛾1) = 𝑊 (𝛾0)

(︂
𝑞

𝑞2 + 1

)︂𝐿−1

.

We can therefore bound the right hand side of Eq. 3.9 via

2𝑞2|𝐴|+4𝐿
∑︁
𝛾∈Γ*

𝑊 (𝛾) ≤ 2𝑞2|𝐴|+4𝐿
∑︁
𝛾0∈Γ

∑︁
𝛾∈𝐹−1(𝛾0)

𝑊 (𝛾)

≤ 2𝑞2|𝐴|+4𝐿
∑︁
𝛾∈Γ

|𝐴|
(︂

2𝑞

𝑞2 + 1

)︂𝐿−1

𝑊 (𝛾). (3.11)
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It is not immediately obvious that the right hand side of Eq. 3.11 should decrease in 𝐿;

however, since the second moment must approach that of the Haar distribution, it can

be shown by applying the results of [22] that these weights are in fact exponentially

small in the size of the lightcone.

Lemma 1 For a trapezoidal circuit with depth 𝐿 and terminal region 𝐴 which is

initialized to a product state input, the sum of lattice configuration weights is bounded

by a constant times 1/𝑞|𝐴|+2𝐿(𝑞|𝐴|+2𝐿 + 1), and satisfies

∑︁
𝛾∈Γ

𝑊 (𝛾) ≤ 2𝑧

𝑞|𝐴|+2𝐿(𝑞|𝐴|+2𝐿 + 1)

(︃
1 + (𝑒− 1)(|𝐴|+ 2𝐿)

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
)︃
exp

[︂
1

1− (2𝑞/(𝑞2 + 1))2

]︂
,

where we have defined 𝑧 := 1 +
(︁

𝑞
𝑞2+1

)︁𝐿−1

.

Proof. Consider the set Γ′ which consists of all trapezoidal lattice configurations which

contain only domain walls that exits through the side of the trapezoid, the set Γ0 of all

trapezoidal lattice configurations which do not contain a domain wall exiting through

the side, as well as the set Γ𝑟 which consists of all linear ring circuit configurations

with dimension |𝐴| + 2𝐿 and depth 𝐿. For any trapezoidal configuration 𝛾 ∈ Γ, we

can decompose 𝛾 into unique 𝛾′ ∈ Γ′ and 𝛾0 ∈ Γ0, with 𝑊 (𝛾) = 𝑊 (𝛾′)𝑊 (𝛾0). Thus

we have that ∑︁
𝛾∈Γ

𝑊 (𝛾) ≤
∑︁
𝛾′∈Γ′

𝑊 (𝛾′)
∑︁
𝛾0∈Γ0

𝑊 (𝛾0). (3.12)

We first show that
∑︀
𝑊 (𝛾′) is bounded even as 𝐿 increases to infinity. Note that for

each layer from 𝑡 = 1 to 𝐿, we may have domain walls exiting from neither, one, or

both sides of the trapezoid. Thus the sum of weights from exiting domain walls is

upper bounded by
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∑︁
𝛾′∈Γ′

𝑊 (𝛾′) ≤
∞∏︁
𝑡=0

(︃
1 +

(︂
2𝑞

𝑞2 + 1

)︂𝑡
)︃2

≤
∞∏︁
𝑡=0

exp

[︃(︂
2𝑞

𝑞2 + 1

)︂2𝑡
]︃

= exp

[︃
∞∑︁
𝑡=0

(︂
2𝑞

𝑞2 + 1

)︂2𝑡
]︃

= exp

[︂
1

1− (2𝑞/(𝑞2 + 1))2

]︂
. (3.13)

We now consider the relationship between
∑︀
𝑊 (𝛾0) and

∑︀
𝑊 (𝛾𝑟). Note that due to

closed boundary conditions, Γ𝑟 contains only configurations with an even number of

domain walls in each layer. Since domain wall parity is conserved, we can consider

two separate cases; one in which 𝛾0 ∈ Γ0 has an even number of domain walls, and

one in which it has an odd number. We construct a mapping 𝐹𝑟 : Γ0 → Γ𝑟 as follows:

if 𝛾0 ∈ Γ0 is even, it is mapped to the unique configuration 𝛾𝑟 ∈ Γ𝑟 with the rest

of the circuit filled in such that no domain walls are added, and 𝑊 (𝛾0) = 𝑊 (𝛾𝑟).

Otherwise, it is mapped to the unique configuration 𝛾𝑟 ∈ Γ𝑟 such that one domain

wall is added along the upper side of the trapezoid. Thus each configuration 𝛾𝑟 ∈ Γ𝑟

is mapped to by at most one odd or one even configuration, and

∑︁
𝛾0∈Γ0

𝑊 (𝛾0) ≤
[︃
1 +

(︂
𝑞

𝑞2 + 1

)︂𝐿−1
]︃ ∑︁

𝛾𝑟∈Γ𝑟

𝑊 (𝛾𝑟). (3.14)

Finally, we can rewrite the norm of the output for the ring lattice and apply Eq. 3.3:

1

𝑞|𝐴|+2𝐿

⃦⃦⃦⃦∫︁
𝑑𝜇𝑟𝑈

⊗2
𝑟 (|0⟩⟨0|)⊗2(𝑈 †

𝑟 )
⊗2

⃦⃦⃦⃦
1

=
1

𝑞|𝐴|+2𝐿
Tr

⃒⃒⃒⃒∫︁
𝑑𝜇𝑟𝑈

⊗2
𝑟 (|0⟩⟨0|)⊗2(𝑈 †

𝑟 )
⊗2

⃒⃒⃒⃒

=
1

𝑞|𝐴|+2𝐿

𝑞|𝐴|+2𝐿−1∑︁
𝑖=0

∫︁
𝑑𝜇𝑟⟨𝑖|⊗2𝑈⊗2

𝑟 (|0⟩⟨0|)⊗2(𝑈 †
𝑟 )

⊗2|𝑖⟩⊗2
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=
1

𝑞|𝐴|+2𝐿

𝑞|𝐴|+2𝐿−1∑︁
𝑖=0

𝐸𝜇𝑟 [𝑝(|𝑖⟩)2] = 𝐸𝜇𝑟 [𝑝(|0⟩)2]

=
1

𝑞|𝐴|+2𝐿

𝑞|𝐴|+2𝐿−1∑︁
𝑖=0

⟨𝑖|⊗2

(︃∑︁
𝛾𝑟∈Γ𝑟

𝑊 (𝛾𝑟)𝛾𝑟

)︃
|𝑖⟩⊗2 =

∑︁
𝛾𝑟∈Γ𝑟

𝑊 (𝛾𝑟)

≤ 2

𝑞|𝐴|+2𝐿(𝑞|𝐴|+2𝐿 + 1)

(︃
1 + (𝑒− 1)(|𝐴|+ 2𝐿)

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
)︃
. (3.15)

Substituting into Eq. 3.12 yields the desired result.

We now apply the previous results to give an upper bound for local scrambling of

a product state input by a random circuit.

Theorem 3 (Upper bound on product state scrambling) Consider a linearly

connected system which is initialized to a product state. In the regime in which the

circuit depth and size of the region are small compared to the size of the entire system,

a connected subsystem 𝐴 is scrambled by a local random circuit in 𝑂(log |𝐴|) depth.

Proof. Substituting Theorems 1-2 and Lemma 1 into Definition 6, we have⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2(|0⟩⟨0|)⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2(|0⟩⟨0|)⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

≤ 4|𝐴|𝑠𝑧𝑞2|𝐴|+4𝐿

𝑞|𝐴|+2𝐿(𝑞|𝐴|+2𝐿 + 1)

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
(︃
1 + (𝑒− 1)(|𝐴|+ 2𝐿)

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
)︃

≤ 4|𝐴|𝑠𝑧
(︂

2𝑞

𝑞2 + 1

)︂𝐿−1
(︃
1 + (𝑒− 1)(|𝐴|+ 2𝐿)

(︂
2𝑞

𝑞2 + 1

)︂𝐿−1
)︃
, (3.16)

where for simplicity we have defined

𝑧 := 1 +

(︂
𝑞

𝑞2 + 1

)︂𝐿−1

, 𝑠 := exp

[︂
1

1− (2𝑞/(𝑞2 + 1))2

]︂
. (3.17)

Taking 𝑞 ≥ 2, for fixed |𝐴| and 𝐿≫ 1/(ln(𝑞2 + 1)− ln 2𝑞) the right hand side of Eq.

3.16 scales as

𝑂

(︃
|𝐴|
(︂

2𝑞

𝑞2 + 1

)︂𝐿−1
)︃
.
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Thus in the regime where the circuit is shallow relative to the size of the system, the

depth required to locally scramble a product state input up to some 𝜖 > 0 scales as

𝑂(log |𝐴|/𝜖).

3.4 Proof of lower bound for product state input

While it is relatively straightforward to show that the upper bound is independent of

the total size of the system using Theorem 1, obtaining a tight lower bound is trickier.

At the cost of a prefactor which linear in the size of accessible region, we provide a

simple argument that the lower bound is independent of the total system size using

techniques inspired by optimal transport theory.

3.4.1 Quantum Wasserstein distance of order 1

We first review some of the properties of the quantum 𝑊1 norm proposed in [45],

which is obtained as a generalization of the classical Hamming distance. Consider a

system of 𝑛 qudits with local dimension 𝑞, which has total state space ℋ. Let 𝒪𝑛

be the set of all Hermitian operators on ℋ, and 𝒟𝑛 ⊂ 𝒪𝑛 denote the set of density

matrices on ℋ. Then we define

Definition 7 (Quantum 𝑊1 norm) For any Hermitian operator 𝑋 ∈ 𝒪𝑛, the quan-

tum 𝑊1 norm is defined as

||𝑋||𝑊1 = min{𝑡 ≥ 0 : 𝑋 ∈ 𝑡ℬ𝑛}.

Here ℬ𝑛 is a closed, bounded, and convex subset of 𝒪𝑛 defined by

ℬ𝑛 = {
𝑛∑︁

𝑖=1

𝑝𝑖𝑁𝑖 : 𝑁𝑖 ∈ 𝒩 (𝑖)
𝑛 , 𝑝 ∈ ℳ+([𝑖])},

where 𝒩𝑛 is the set of all possible differences between two states that coincide after
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tracing out one qudit:

𝒩 (𝑖)
𝑛 = {𝜌− 𝜌′ : 𝜌, 𝜌′ ∈ 𝒟𝑛,Tr𝑖 𝜌 = Tr𝑖 𝜌

′},

𝒩𝑛 =
𝑛⋃︁

𝑖=1

𝒩 (𝑖)
𝑛 .

It is clear that the above definition reduces to the classical Hamming distance when

restricted to the set of computational basis states. In addition, we use the following

properties of the 𝑊1 norm, for which we provide proofs in Section B.2.1.

Lemma 2 (𝑊1 norm for local operators) For any multi-index 𝐼 ⊂ [𝑛] and 𝑋 ∈
𝒪𝑛 such that Tr𝐼 𝑋 = 0, we have that

||𝑋||𝑊1 ≤ |𝐼|𝑞
2 − 1

𝑞2
||𝑋||1. (3.18)

Lemma 3 (Tensorization property of the 𝑊1 norm) The 𝑊1 norm satisfies an

additivity relation. For any 𝑋 ∈ 𝒪𝑚+𝑛 with trace zero, we have that

||𝑋||𝑊1 ≥ ||Tr1...𝑚𝑋||𝑊1 + ||Tr𝑚+1...𝑚+𝑛𝑋||𝑊1 . (3.19)

Lemma 4 (Relation between 𝑊1 and trace distance) For any 𝑋 ∈ 𝒪𝑛 with

trace zero, the 𝑊1 distance is bounded via

1

2
||𝑋||1 ≤ ||𝑋||𝑊1 ≤

𝑛

2
||𝑋||1. (3.20)

3.4.2 Circuit reduction for lower bound

Due to the symmetries of the random circuit, it is possible to convert to the 𝑊1 norm

at an intermediate step in order to bound the left hand side of Eq. 3.20 in terms of

an expression independent of 𝑛. We then arrive at a circuit reduction similar to the

case of the upper bound:

Theorem 4 (Lower bound on product state scrambling) Suppose that 𝑛 ≥ |𝐴|+
2𝐿, and let 𝜇* denote the ensemble generated by the trapezoidal region of gates in the
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lightcone of 𝐴. Then for any unitary 𝑈𝐴 which acts trivially on 𝐴,

2|𝐴|𝑞
2 − 1

𝑞2

⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

⃦⃦⃦⃦
1

≥ 1

2

⃦⃦⃦⃦
Tr𝐴

(︂∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

)︂⃦⃦⃦⃦
1

. (3.21)

Proof. We define the operator

𝑋 =

∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2 −
∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2.

Note that 𝑋 acts on ℋ⊗ℋ = ℋ⊗2. By linearity, we have that

Tr𝐴𝑋 = Tr𝐴

(︂∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2

)︂
− Tr𝐴

(︂∫︁
𝑑𝜇𝐿(𝑈𝐴𝑈)

⊗2𝜌⊗2(𝑈 †𝑈 †
𝐴)

⊗2

)︂
= Tr𝐴

(︂∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2

)︂
− Tr𝐴 𝑈

⊗2
𝐴

(︂∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2

)︂
(𝑈 †

𝐴)
⊗2

= Tr𝐴

(︂∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2

)︂
− Tr𝐴

(︂∫︁
𝑑𝜇𝐿𝑈

⊗2𝜌⊗2(𝑈 †)⊗2

)︂
= 0.

Then applying Eqs. 3.18, 3.19, and 3.20 in order yields a bound in terms of Tr𝐴𝑋:

2|𝐴|𝑞
2 − 1

𝑞2
‖𝑋‖1 ≥

1

2
‖Tr𝐴𝑋‖1. (3.22)

Tracing out the rest of the system enables us to once again apply the trapezoidal

circuit reduction from Section 3.3.2, as we have

Tr𝐴𝑋 = Tr𝐴

∫︁
𝑑𝜇𝐸𝑈

⊗2
𝐸

[︂∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

]︂
(𝑈 †

𝐸)
⊗2

= Tr𝐴

(︂∫︁
𝑑𝜇*𝑈

⊗2
* 𝜌⊗2(𝑈 †

*)
⊗2 −

∫︁
𝑑𝜇*(𝑈𝐴𝑈*)

⊗2𝜌⊗2(𝑈 †
*𝑈

†
𝐴)

⊗2

)︂
. (3.23)

Plugging into Eq. 3.22 yields the desired result.

Note that in general, the left hand side of Eq. 3.21 depends on the choice of 𝑈𝐴,
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and for instance is zero when 𝑈𝐴 is the identity. However, in the case in which 𝑈𝐴 is

nearly maximally entangling, which is true of most unitary matrices in the limit of

large dimension [46], we expect a scaling of

‖Tr𝐴𝑋‖1 =
⃦⃦⃦⃦
⃦Tr𝐴 ∑︁

𝛾∈Γ*

𝑊 (𝛾)
[︁
𝛾 − 𝑈⊗2

𝐴 𝛾(𝑈 †
𝐴)

⊗2
]︁⃦⃦⃦⃦⃦

1

≈ 𝑔(𝑞)

⃦⃦⃦⃦
⃦Tr𝐴 ∑︁

𝛾∈Γ*

𝑊 (𝛾)𝛾

⃦⃦⃦⃦
⃦
1

≳ 𝑂(|𝐴|𝑒−𝑐𝐿), (3.24)

where as in Section 3.3.3 we use Γ* to denote trapezoidal lattice configurations with

a domain wall in 𝐴, and 𝑔(𝑞) represents a polynomial function of 𝑞. Unfortunately,

this relation is not tight, as we have “traded” a factor of |𝐴| when converting between

the 𝑊1 and 1-norm.

3.5 Numerical results

While we have not obtained tight lower bounds for the local scrambling depth, we

can infer the strength of our upper bound and the true scaling of the quantity in

Definition 6 from numerical simulations. We computed the exact quantities

𝐵0 =

⃦⃦⃦⃦∫︁
𝑑𝜇𝐿𝑈

⊗2(|0⟩⟨0|)⊗2(𝑈 †)⊗2

⃦⃦⃦⃦
1

, 𝐵1 = 𝑞2|𝐴|+4𝐿
∑︁
𝛾∈Γ*

𝑊 (𝛾) (3.25)

for 𝑞 = 2, 4 and |𝐴| = 4, up to depth 𝐿 = 10. Recall Γ* is defined as the set of all

configurations which have a domain wall in the region 𝐴 and therefore contribute to

the quantity in Definition 6, and 𝑊 denotes the weights for a product state input.

Note that here 𝐵0 is computed for a ring architecture using 𝑛 = |𝐴|+2(𝑡− 1) for the

total size of the system at depth 𝑡; however the mixed channel analysis still applies.

We observe that 𝐵0 appears to decrease exponentially in the depth of the circuit,

as expected. On the other hand, 𝐵1 appears to decay more slowly and does not

approach 𝐵0, suggesting that our analytic bound is fairly loose as it is an upper
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Figure 3-3: Comparison of the natural logarithm of numerically computed values for
the upper bounds given in Eq. 3.25, with two different values of 𝑞

bound for 𝐵1. However, we recover the asymptotically exponential decay, suggesting

that the log depth scaling is correct. See Figure 3-3 for a log plot of both bounds

with circuit depth.

3.6 Discussion

We have shown that up to the second moment, a large system with no initial en-

tanglement is locally scrambled by a random circuit in log depth, i.e. the depth

required scales asymptotically with the logarithm of the size of the region of interest.

Given analytical and numerical evidence from related work based on the statistical

mechanics mapping, we conjecture that this result generalizes to more general states,

as well as higher moments. We also expect that a similar relation holds for other

architectures, such as 2D lattice geometries. We further note that in the regime in

which the circuit is not shallow relative to the size of the system, it is not possible

to separate the rest of the circuit, and the analysis becomes similar to that for the

anti-concentration result in [22].

We emphasize that this notion of state scrambling should be distinguished from

operator scrambling, which is more generally defined using the approximate design
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condition and is expected to occur in linear depth in random circuits. One potential

reason to expect the difference in scaling is the possibility of operators which entangle

the two copies of the Hilbert space in the definition of a unitary design. We can

consider the decomposition of any such operator into permutations on the copies

of the Hilbert space, and unitary transformations on each of the copies. The same

instance of a random circuit is applied to each copy, and thus cannot directly “undo”

the entanglement between the different copies of the Hilbert space.

The formal definition of local scrambling presented in this paper can be applied

to a variety of problems, offering potential directions for future work:

• Classical shadows are constructed using an ensemble of random unitary trans-

formations, and can be used to efficiently reconstruct certain properties of a

quantum state depending on the types of transformations performed [19]. In

particular, the amount of long-range entanglement generated limits the mea-

surement of long-range correlations in the system. Although strategies for the

two limiting cases of measuring single-qudit and global properties are under-

stood, recent work such as [28] has focused on interpolating between the two

cases by applying finite-depth random circuits; importantly, the ensemble cho-

sen to measure a local property only needs to locally scramble the information

contained in the state. Although our results are not directly applicable to the

rate of convergence of classical shadow tomography, which depends on a third-

moment quantity, we conjecture that a similar circuit depth scaling may be

achieved.

• It may be possible to extend techniques such as the statistical mechanics map-

ping to study scrambling in certain physical systems with symmetries or con-

served quantities. In particular, the convergence of different coefficients can

be analyzed for any subgroup of unitary operators which is equipped with a

Weingarten calculus, such as those described in [47]. For the special case of

a 𝑈(1) gauge symmetry, the moments are identical and we obtain the same

bounds for information scrambling, which we prove in Section A.3.1. On the
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other hand, in the presence of a conservation law, the space of allowed unitary

transformations can be decomposed into charge sectors. While it is known that

in general actions on these charge sectors are described by the orthogonal and

symplectic subgroups [37], it is not clear whether these models converge to the

global moments within each charge sector.

In addition, state scrambling can be applied to study the properties of topological

order. In particular, topological phases can be defined as the set of states which

can be obtained by perturbing the system for a finite time, which is modeled by a

shallow random quantum circuit. It is known that two topological phases cannot be

distinguished by any single measurement on a state [29]. Our results suggest that

when more than one copy of the state is provided, the ability to distinguish two phases

is limited by the localization of the measurement. We discuss this application in more

detail in Chapter 4.

Finally, although this work does not generalize directly to the diamond norm

bound for channels, it may be possible to apply similar techniques to analyze a local

form of scrambling on operators. In particular, it is expected that the “local” form

of the approximate design property will be satisfied before the system is completely

scrambled, requiring depth scaling linearly with the size of a local region.
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Chapter 4

Classification of topological phases

In this chapter we turn to higher-dimensional systems, and consider random circuits as

a model for the emergence of purely quantum phenomena. In particular, we focus on

the application of random circuits to classify topological phases of matter, which arise

from long-range patterns of entanglement in many-body systems. The application of

circuit models to study quantum matter is motivated by fundamental as well as

practical questions, including the simulation exotic phases of matter on quantum

devices [48] as well as topological schemes for quantum error correction and fault-

tolerant quantum computation [49]. Furthermore, the versatility of these models

lends itself as a framework for analyzing a broad class of quantum systems.

We first provide an overview of topological phases in quantum circuit models, as

well as different proposals for the detection and characterization of topological order,

in Section 4.1. In addition, we describe bounds for the sensitivity of functions which

depend on a finite order of moments in terms of the support of the function and

the time scales under consideration. We then consider one proposal, the topological

entanglement entropy (TEE), and provide intuition for the quantity in Section 4.2.

Motivated by recent results on spurious contributions to the TEE, we show in Section

4.3 that it decays to zero for the trivial phase and is therefore in general a robust

indicator of topological order. In addition, we include numerical evidence in Section

4.4 from simulations of a random spin chain model.
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4.1 Topological phases in random circuit models

In condensed matter physics, topological order is a form of long-range order which

does not correspond to a classical order parameter or explicit conserved symmetry.

Macroscopically, it is conjectured that bosonic phases in two dimensions can be com-

pletely classified using the algebraic properties of their anyonic excitations, as well as

the chiral central charge [50]. The power of these macroscopic descriptions for char-

acterizing topological phenomena allows topological phases to be studied without an

explicit reference Hamiltonian.

In addition, it is often useful to discuss the stability of physical properties and

phases of matter [51, 52]. Topological phases are often associated with the phe-

nomenon of topological ground state degeneracy, which is robust against local pertur-

bations and can in principle be realized in zero-temperature phases of matter in the

thermodynamic limit. It is the apparent stability of this structure and its support on

a finite area in phase space which enables both non-trivial physical phenomena and

quantum error correction protocols. These properties further motivate the applica-

tion of shallow random circuits as a model for topological order. We thereby adopt

the following definition:

Definition 8 (Topological phase) Given a system of 𝑛 qudits and corresponding

Hilbert space ℋ, a topological phase is an equivalence class in ℋ defined by the region

of state space which can be accessed by varying the Hamiltonian for a finite time, or

equivalently by applying a constant-depth random circuit, for a given initial state.

It is therefore possible to discuss the complexity of a topological phase in terms of

the difficulty of preparing it. In particular, we define the trivial phase as follows:

Definition 9 (Trivial phase) The trivial phase is the set of states which can be

prepared by applying a constant-depth circuit on a product state input.

States in the trivial phase are therefore characterized by a lack of long-range entan-

glement. We emphasize that these definitions and properties are implicitly dependent

on the geometry of the system. Throughout this chapter we assume the 2D square
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lattice architecture. To avoid confusion, we use 𝑑 to denote the maximum number of

gates applied between any nearest-neighbor pair.

Furthermore, we typically restrict to the case in which the input state exhibits

translation invariance, which simplifies the analysis of topological orders and is rel-

evant both for describing physical systems which are periodic in space [51], as well

as for constructing scalable quantum error correcting codes. In two dimensions, it is

known that any translation invariant stabilizer code with local generators and code

distance linear in the system size can be decomposed into a finite number of copies of

the toric code [53]. Below we discuss general bounds on the detection of these phases.

4.1.1 Bounds from quantum complexity

Given their importance in both fundamental physics and proposals for practical quan-

tum computation, there is broad interest in developing methods for characterizing

generic topological phases of matter. While in principle such phases are completely

characterized by the microscopic behavior and ground state degeneracy of the parent

Hamiltonian, it is often impractical to exactly solve such systems. We are there-

fore interested in quantities which are more straightforward to compute but serve as

reliable indicators of topological order.

The definition of topological phases in terms of a random circuit model enables

the application of complexity-theoretic techniques to consider potential measurement

protocols. In particular, the expectation value of any analytic function over a topo-

logical phase can be written as a sum of moments over the circuit ensemble. For

instance, it is known that topological phases cannot be distinguished by any linear

function of the density matrix [29]. Formally, we have:

Lemma 5 (No-go theorem on measurement of topological phases) Given generic

system dynamics, there does not exist an observable 𝑂 which is capable of distinguish-

ing topological phases.

Proof. We reproduce the proof in [29]. By definition, a topological phase is the set

of all states which are generated by a random circuit of finite depth 𝑑. Denoting by
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ℰ0 the trivial phase and ℰ ′ as any other phase, we have that for any 𝑑 ≥ 1,

⟨𝜌⟩ℰ ′ = ⟨𝑈 |𝜓⟩⟨𝜓|𝑈 †⟩

=

∫︁
𝑑𝜇𝑑 𝑈 |𝜓⟩⟨𝜓|𝑈 †

=
1

𝑞𝑛
1

= ⟨𝜌⟩ℰ0

from a simple application of Eq. 2.2, where we have used the fact that the result

must commute with all unitaries to express the integral as a multiple of the identity.

We therefore have by linearity

⟨𝑂⟩ℰ ′ = ⟨𝑂⟩ℰ0 =
1

𝑞𝑛
tr𝑂. (4.1)

In addition, our result in Theorem 3 suggests that when more than one copy of the

state is provided, the ability to distinguish two phases is limited by the localization

of the measurement. Taking the converse of the scrambling statement, given fixed

time scale 𝑑, the minimum required support of a distinguishing measurement on a

single copy of the system is expected to scale exponentially with 𝑑. Furthermore,

the approximate design property [21] suggests that in general the number of copies

of the state required to make any distinguishing measurement is expected to scale

linearly in 𝑑. Thus in general, access to a large number of qudits as well as exposure

to higher-order moments improves robustness against perturbations.

4.2 Topological entanglement entropy

We now consider the topological entanglement entropy (TEE), a quantity first pro-

posed in [54] as an indicator of topological order. Empirically, many systems of

interest which are subject to local dynamics and exhibit a gapped spectrum are ob-

served to exhibit area law scaling, in which the entanglement entropy of any region

52



𝑅 in the ground state scales with the size of the boundary. The presence of topolog-

ical order removes additional degrees of freedom from the system, so that the total

entanglement entropy is expected to be of the form

𝑆 = 𝑐[𝑅]− 𝛾 + ... (4.2)

where [𝑅] is the area of the boundary, 𝛾 is a finite correction identified as the TEE,

and the additional terms vanish in the limit as |𝑅| → ∞. In a topological quantum

field theory with massive quasiparticle excitations, 𝛾 is given by

𝛾 = log𝐷. (4.3)

Here 𝐷 is the total quantum dimension and is equal to

𝐷 =

√︃∑︁
𝑎

𝑑2𝑎, (4.4)

where the sum runs over charge sectors of different quantum numbers, and 𝑑𝑎 is the

quantum dimension of a particle with charge 𝑎 [54]. While this formula relies on

knowledge about dynamics of the system, it is possible to approximate 𝛾 directly by

explicitly computing the entropy of finite subregions and canceling out contributions

from the boundaries. We focus on the annulus construction illustrated in Figure 4-1,

for which the TEE is given in terms of the three subregions 𝐴,𝐵,𝐶 via

2𝛾 = 𝑆𝐴𝐵 + 𝑆𝐵𝐶 +−𝑆𝐵 − 𝑆𝐴𝐵𝐶 (4.5)

= 𝐼(𝐴 : 𝐶|𝐵). (4.6)

This definition yields the same value as Eq. 4.2 in the limit as the size of the re-

gions goes to infinity. The condition of positive TEE is therefore equivalent to the

existence of non-trivial mutual information between two spatially separated regions,

conditioned on the portion of the system in between. We make use of this definition

in order to analyze the robustness of TEE as an indicator for the presence of topo-
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logical order. While the TEE offers a succinct test for topological degrees of freedom,

A

B

B

C

Figure 4-1: Illustration of annulus construction for TEE

it is not an invariant over topological phases, in the sense that it is known to differ

for some pairs of states which are related by a constant-depth circuit [55, 56]. It is

shown in [57] that these spurious contributions are always non-negative for states in

same phase as a broad class of 2D reference states of interest. In addition, it is proved

in [52] that when the state at the boundary is a stabilizer state, spurious contributions

arise only when the state is in a nontrivial 𝐺1 × 𝐺2 symmetry-protected topological

(SPT) phase, though it is not known in general whether SPT phases are necessary

for the presence of spurious TEE [58].

We show in Section 4.3 that spurious contributions in the trivial phase decay to

zero on all but a fraction zero subset of the phase. To do so, we adapt a recent

result in [59] which bounds the decay of CMI in matrix product density operators,

and extend it to non-translation invariant states. We thus argue that the TEE is in

general a robust indicator of topological order, as it is generically non-zero only on a

non-trivial phase. Furthermore, we conjecture that this result extends more generally

to spurious contributions in other topological phases.

4.2.1 Stabilizer state case

We first review a simpler problem, in which we restrict to stabilizer states which can

be generated by a constant-depth Clifford circuit on a local 2D architecture. In this

case, the entropy of any region 𝐴 can be expressed in terms of a canonical set of
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generators of the stabilizer group with respect to the region [60]:

𝑆𝐴 = 𝑛𝐴 − |𝑔𝐴|, (4.7)

where 𝑛𝐴 is the size of the region and |𝑔𝐴| is the rank of the subgroup produced when

the stabilizer group is projected onto 𝐴, or equivalently the number of generators

which are contained entirely within 𝐴. We therefore have for the annulus construction

𝛾 =
1

2
|𝑔𝑁𝐿| =

1

2
(|𝑔𝐴𝐵𝐶 |+ |𝑔𝐵| − |𝑔𝐴𝐵| − |𝑔𝐵𝐶 |), (4.8)

so that 𝛾 is non-zero only when non-local structure is present and there are necessarily

stabilizer generators supported on 𝐴𝐶.

In the absence of any additional structure in the random Clifford circuit, we outline

a heuristic argument for why 1
2
|𝑔𝑁𝐿| should vanish in all but a vanishing subset of

stabilizer states in the trivial phase as the size of the annulus region goes to infinity,

similar to the result in [52]. First, for a product state input, the generators can always

be written in a local form. Since each gate in the circuit is sampled from a finite set,

for any lattice site 𝑠 there is a finite probability 𝑝 that all of the gates in the lightcone-

area of 𝑠 are the identity. As the size of the boundary of the region approaches infinity,

with probability 1 there exist sites on each piece of the boundary so that the two ends

are not entangled and the resulting state has no non-local generators.

4.2.2 Outline of trivial phase case

For the more general case of constant-depth Haar-random quantum circuits, the above

argument fails as gates are sampled from a continuous space of transformations. Since

the set of non-entangling gates is a lower-dimensional subspace of all possible unitary

transformations, it comprises a fraction of size zero.

However, it is still possible to show that spurious contributions to the TEE decay

to zero in the limit of large system size by analyzing the entanglement structure of

the boundary. We build upon previous results in the literature which show that the
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quantum CMI decays exponentially in certain matrix product density operators. In

particular, by generalizing the transfer matrix of the boundary state to a Y-shaped

channel, it is sufficient to show that the density operator can be constructed from

a sequence of channels which have a “forgetful” component mapping any left input

state to the same right output state with a fixed probability. Finally, we use typicality

arguments about Haar-random unitaries in order to bound this probability.

4.3 Proof of decay in trivial phase

4.3.1 Tensor network representation

We focus on the 2𝐷 case of a square lattice with gates between each qudit and its

four nearest neighbors. Consider the set of all states on a rectangular region 𝑅 which

can be obtained by acting on a product state |0⟩⊗|𝑅| with a circuit of depth 𝑑. Since

the entanglement entropy of 𝑅 is not affected by a local change of basis, we need

only analyze gates which affect the entanglement at the boundary. We can visualize
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Figure 4-2: Illustration of decomposition of random circuit on coarse-grained sites of
boundary region, where 𝑉𝑖 is a polyhedral region of gates applied after the square
prism 𝑈𝑖, with their projection onto the 2D surface on the left. The remaining poly-
hedral regions act only on the interior or exterior of 𝑅, and do not contribute to
the entanglement entropy. On the right is the tensor network representation of the
circuit, where 𝒰𝑖 and 𝒱⟩ are the rotated tensors corresponding to 𝑈𝑖(|0⟩⊗16𝑑2) and 𝑉𝑖,
respectively.

the ensemble of resulting states as a closed chain of length 𝑙 which includes coarse-

grained sites and gates representing polyhedral regions on the boundary as in Figure
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4-2, where each of the new sites is a half-square of side length 4𝑑. Two horizontally

neighboring sites are input into each 𝑈𝑖, which represents a square prism of base

4𝑑×4𝑑. The right half of the output is denoted as 𝐴𝑖, and is input along with the left

of half of the next adjacent square, 𝐶𝑖, into the polyhedral region of gates 𝑉𝑖. Finally,

the output of 𝑉𝑖 is split vertically into the inside and outside half-squares 𝐵𝑖 and 𝐸𝑖,

representing the interior and exterior boundary state, respectively. The 𝐸𝑖 legs are

then traced out.

We adopt a transfer matrix approach to analyze this state, by considering the

transfer channels, also called “Y-shaped” channels [59], 𝒯𝑖 which has the input leg 𝐴𝑖

and output legs 𝐵𝑖 and 𝐶𝑖:

Ui Vi

Bi

Ei

Ai Ci

Ti

Figure 4-3: Illustration of the Y-shaped transfer channel 𝒯𝑖, in which we have traced
out the 𝐸𝑖 output legs to obtain a channel with one input and two outputs.

Definition 10 (Transfer channel) Given a chain of length 𝑙, let 𝐴𝑖 denote the left

legs associated with each site and 𝐵𝑖, 𝐶𝑖 denote the right legs. Then define the transfer

channel 𝒯𝑖 : 𝒪𝐴𝑖
→ 𝒪𝐵𝑖

⊗𝒪𝐶𝑖
such that

𝜌𝑖 = 𝜌𝐴1𝐵1...𝐵𝑖𝐶𝑖
= (1𝐴1𝐵1...𝐵𝑖−1

⊗ 𝒯𝑖)(𝜌𝑖−1). (4.9)

We note that while the transfer matrices associated to each group of unitary trans-

formations may not be explicitly CPTP, each of the 𝒯𝑖 must be in order to specify a

valid state on any region of the boundary.

We can explicitly check that this holds for the product state input by writing out

the resulting transformation:
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Lemma 6 (CPTP property for trivial transfer channel) Given product state

input, the transfer channel associated to an instance of a random circuit with depth

𝑑 on the boundary of a region is CPTP.

Proof. First, we rewrite the effect of each polyhedral transformation in the transfer

matrix fashion. Using the fact that |𝜓⟩𝐴𝑖
= 𝑈𝑖|0⟩⊗16𝑑2 is the output of a unitary

transformations within a square prism, we can write it in terms of the Schmidt de-

composition

𝑈𝑖|0⟩⊗16𝑑2 = 𝑢𝑖,𝑎|𝑎𝑖𝑎𝑖⟩, (4.10)

where |{|𝑎𝑖⟩}| = 𝑞2𝑑(𝑑+1) and
∑︀ |𝑢𝑖,𝑎|2 = 1. Note here we use the same label for

the basis states on both the left and right half-squares which appear together in the

Schmidt decomposition, though they do not necessarily refer to the same vectors in

the 𝑞8𝑑2-dimensional Hilbert space. Rotating the tensors gives

𝒰𝑖(|𝑎𝑖⟩⟨𝑎′𝑖|) = 𝑢𝑖,𝑎𝑢
*
𝑖,𝑎′|𝑎𝑖⟩⟨𝑎′𝑖|. (4.11)

Similarly, we can consider a basis {|𝑐𝑖⟩} for the immediately adjacent square to the

right. We denote the effect of the unitary transformation 𝑉𝑖 as

𝑉𝑖|𝑎𝑖𝑐𝑖⟩ =
∑︁
𝑏𝑖

𝑣𝑖,𝑎,𝑐,𝑏|𝑏𝑖𝑏𝑖⟩, (4.12)

where we have that |{|𝑏𝑖⟩}| = 𝑞4𝑑
2 and

∑︀
𝑏𝑖
|𝑣𝑖,𝑎,𝑐,𝑏|2 = 1. Rotating this matrix yields

𝒱𝑖(|𝑎𝑖⟩) =
∑︁
𝑐𝑖,𝑏𝑖

𝑣𝑖,𝑎,𝑐,𝑏|𝑐𝑖⟩ ⊗ |𝑏𝑖𝑏𝑖⟩ =
∑︁
𝑐𝑖

|𝑐𝑖⟩ ⊗ 𝑉𝑖|𝑎𝑖𝑐𝑖⟩, (4.13)

which maps all unit norm vectors to a sum over unit norm vectors and is there-

fore manifestly completely positive. Furthermore, as the partial trace is always

CPTP, summing over the output spectrum 𝑢𝑖+1,𝑐|𝑐𝑖⟩ yields that the composition

𝒯𝑖 = Tr𝐸𝑖
∘𝒱𝑖 ∘ 𝒰𝑖 is also CPTP, as desired.
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4.3.2 Conditions for decay of quantum CMI

Definition 11 (Forgetful channel) A transfer channel 𝒯 is forgetful if it has a

forgetful component, i.e. there exists 𝜂 with 0 < 𝜂 ≤ 1 such that for any input 𝜌, we

can write the action of 𝒯 as

𝒯 (𝜌) = 𝜂ℱ(𝜌) + (1− 𝜂)𝒯 ′(𝜌), (4.14)

where 𝒯 ′ is also a transfer channel and ℱ is a channel which sends

𝜌 ↦→ Φ(𝜌)⊗ 𝜔, (4.15)

so that any input state is mapped to the same state in one of the outputs.

Theorem 5 (CMI decay for forgetful channels [59]) Given a chain of forgetful

transfer channels 𝒯𝑖 = 𝒯 , where 𝒯 admits a decomposition 𝜂ℱ + (1− 𝜂)𝒯 ′, we have

𝐼(𝐴1 : 𝐶𝑙|𝐵1...𝐵𝑙) = 𝑂((1− 𝜂)𝑙). (4.16)

Proof. We adapt the short proof from [59]. Let 𝐴 denote 𝐴1 and any additional part

of the system to the left of 𝐴1, and 𝐵 the boundary region between 𝐴1 and 𝐶𝑖. Using

the joint convexity of relative entropy and the fact that all channels are CPTP, it can

be shown that

𝐼(𝐴 : 𝐵𝐶𝑖) = 𝐷(𝒯 (𝜌𝑖−1)||𝜌𝐴 ⊗ 𝒯 (𝜌𝐵1...𝐵𝑖−1𝐶𝑖−1
))

≤ 𝜂𝐷(ℱ(𝜌𝑖−1)||𝜌𝐴 ⊗ℱ(𝜌𝐵1...𝐵𝑖−1𝐶𝑖−1
)) + (1− 𝜂)𝐷(𝒯 ′(𝜌𝑖−1)||𝜌𝐴 ⊗ 𝒯 ′(𝜌𝐵1...𝐵𝑖−1𝐶𝑖−1

))

= 𝜂𝐷(𝜌𝐴𝐵 ⊗ 𝜔||𝜌𝐴 ⊗ 𝜌𝐵 ⊗ 𝜔) + (1− 𝜂)𝐷(𝒯 ′(𝜌𝑖−1)||𝜌𝐴 ⊗ 𝒯 ′(𝜌𝐵1...𝐵𝑖−1𝐶𝑖−1
))

≤ 𝜂𝐷(𝜌𝐴𝐵||𝜌𝐴 ⊗ 𝜌𝐵) + (1− 𝜂)𝐷(𝜌𝑖−1||𝜌𝐴 ⊗ 𝜌𝐵1...𝐵𝑖−1𝐶𝑖−1
)

= 𝐼(𝐴 : 𝐵) + (1− 𝜂)(𝐼(𝐴 : 𝐵1...𝐵𝑖−1𝐶𝑖−1)− 𝐼(𝐴 : 𝐵)).

Moving 𝐼(𝐴 : 𝐵) to the left hand side and applying the monotonicity of mutual

59



information yields

𝐼(𝐴 : 𝐶𝑖|𝐵) ≤ (1− 𝜂)(𝐼(𝐴 : 𝐵1...𝐵𝑖−1𝐶𝑖−1)− 𝐼(𝐴 : 𝐵))

≤ (1− 𝜂)(𝐼(𝐴 : 𝐵1...𝐵𝑖−1𝐶𝑖−1)− 𝐼(𝐴 : 𝐵1...𝐵𝑖−1))

= (1− 𝜂)𝐼(𝐴 : 𝐶𝑖−1|𝐵1...𝐵𝑖−1).

Thus the CMI contracts by a factor of (1− 𝜂), giving the desired result.

We now extend this result to the case of non-translation invariant transfer chan-

nels, by considering a class of transfer channel chains such that each channel is inde-

pendently 𝜂-forgetful with some probability 𝑝.

Corollary 1 (CMI decay for probably forgetful channels) Given a chain of for-

getful transfer channels 𝒯𝑖 such that for some 𝜂, with probability 𝑝 each 𝒯𝑖 indepen-

dently admits a decomposition 𝜂ℱ𝑖 + (1− 𝜂)𝒯 ′
𝑖 , we have

𝐼(𝐴1 : 𝐶𝑙|𝐵1...𝐵𝑙) ≲ 𝑂((1− 𝜂)𝑙𝑝). (4.17)

Proof. This follows from the contraction coefficient computed in Theorem 5 and

the observation that we expect on average 𝑙𝑝 channels in the chain to be forgetful.

Furthermore, we have that in the limit as 𝑙 → ∞, the probability that we have fewer

than 𝑙(𝑝− 𝜖) forgetful channels is bounded via Chebyshev’s inequality as

𝑃 ≤ 𝑝(1− 𝑝)

𝑙𝜖2
(4.18)

for any 𝜖 < 𝑝. Thus for large 𝑙 we have vanishing probability of observing less than any

constant fraction of 𝑙𝑝 forgetful channels, as well as resulting CMI with any constant

factor larger than the contraction coefficient (1− 𝜂)𝑙𝑝 from Theorem 5.

4.3.3 Bounds on forgetful component

Corollary 2 (Trivial transfer channels are forgetful) Given a chain of length 𝑙

with input |0⟩⊗16𝑑2𝑙 and 𝜌𝐴𝐵𝐶 = (𝒯𝑙 ∘ ... ∘ 𝒯1)
(︁
(|0⟩⟨0|)⊗16𝑑2𝑙

)︁
, for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑙
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there exists some 𝜂𝑖 > 0 and decomposition of 𝒯𝑖

𝒯𝑖 = 𝜂𝑖ℱ𝑖 + (1− 𝜂𝑖)𝒯 ′
𝑖 , (4.19)

where 𝒯 ′
𝑖 is CPTP and ℱ𝑖 is forgetful.

Proof. Using the decomposition given in the proof of Lemma 6, we have that

𝒯𝑖(|𝑎𝑖⟩⟨𝑎𝑖|) = Tr𝐸𝑖
∘𝒱𝑖 ∘ 𝒰𝑖(|𝑎𝑖⟩⟨𝑎𝑖|) (4.20)

=
∑︁
𝑐𝑖,𝑐′𝑖

|𝑐𝑖⟩⟨𝑐′𝑖| ⊗ Tr𝐸𝑖

(︁
𝑉𝑖|𝑎𝑖𝑐𝑖⟩⟨𝑎𝑖𝑐′𝑖|𝑉 †

𝑖

)︁
(4.21)

=
∑︁
𝑐𝑖,𝑐′𝑖

|𝑐𝑖⟩⟨𝑐′𝑖| ⊗
∑︁
𝑒𝑖,𝑏′𝑖

𝑣𝑖,𝑎,𝑐,𝑒𝑣
*
𝑖,𝑎,𝑐′,𝑏′|𝑒⟩⟨𝑏′| · ⟨𝑏′|𝑒⟩ (4.22)

=
∑︁
𝑐𝑖,𝑐′𝑖

|𝑐𝑖⟩⟨𝑐′𝑖| ⊗
∑︁
𝑒𝑖,𝑏′𝑖

𝑣𝑖,𝑎,𝑐,𝑒𝑣
*
𝑖,𝑎,𝑐′,𝑏′|𝑒⟩⟨𝑒*|𝑏′*⟩⟨𝑏′|. (4.23)

We can equivalently “factorize” this result to write

𝒯𝑖(|𝑎𝑖⟩) =
∑︁
𝑐𝑖

|𝑐𝑖⟩ ⊗
∑︁
𝑏𝑖

𝑣𝑖,𝑎,𝑐,𝑏|𝑏⟩⟨𝑏*|. (4.24)

Thus any unit norm vector for 𝐴 is mapped to a superposition of the non-degenerate

unit norm vectors in 𝐶 tensored with some operator on 𝐵. Since we are guaranteed

positivity by construction regardless of the values of 𝑣𝑖,𝑎,𝑐,𝑏, we can find a forgetful

decomposition for 𝒯𝑖 with 𝜂 = min |𝑣𝑖,𝑎,𝑐,𝑏|2.
Furthermore, we can bound the values of these coefficients by considering the dis-

tribution of Schmidt coefficients for Haar-random bipartite states, as in [46]. Below,

we provide values of 𝑝0 and 𝜂0 for the case 𝑞 = 2.

Lemma 7 (Magnitude of forgetful component for 𝑞 = 2) Given a random cir-

cuit ensemble on qubits, and constant 𝜂0 which satisfies

𝜂
1/4𝑑2

0 ≤ 1

2
−
√︂

3

20
, (4.25)
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we are guaranteed that each 𝒯𝑖 is independently 𝜂0-forgetful with probability

𝑝0 =

(︃
1− 3

20(1/2− 𝜂
1/4𝑑2

0 )2

)︃4𝑑2

. (4.26)

Proof. Given a bipartite Haar-random state on two qubits, the distribution of the

Schmidt coefficients 𝜆𝑖 satisfies [46]

𝐸[𝜆] =
1

2
, 𝐸[𝜆2] =

2

5
.

Let 𝜆𝑚 = min𝜆𝑖. We again apply Chebyshev’s inequality to obtain

𝑃 [𝜆𝑚 < 𝜖] = 𝑃

[︂⃒⃒⃒⃒
𝜆𝑖 −

1

2

⃒⃒⃒⃒
≥ 1

2
− 𝜖

]︂
≤ 3

20(1/2− 𝜖)2
.

Furthermore, for a series of Haar-random transformations, we have with mutually

distinct Schmidt bases with probability 1 due to the continuous nature of the unitary

group. For a generic instance of the circuit we thus have 𝜂 =
∏︀

𝑈 𝜆𝑚(𝑈), so for a

given 𝜂0 we are guaranteed

𝑝0 ≥
(︁
1− 𝑃

[︁
𝜆𝑚 < 𝜂

1/|{𝑈}|
0

]︁)︁|{𝑈}|

=
(︁
1− 𝑃

[︁
𝜆𝑚 < 𝜂

1/4𝑑2

0

]︁)︁4𝑑2
≥
(︃
1− 3

20(1/2− 𝜂
1/4𝑑2

0 )2

)︃4𝑑2

.

4.3.4 Upper bound on decay in trivial phase

Theorem 6 (Decay of TEE in trivial phase) Given a rectangular annulus region

𝑅 with boundary dimension 𝑙 ≫ 1 and initial state |0⟩|𝑅|, the spurious TEE decays as

𝛾 ≲ 𝑂((1− 𝜂0)
𝑙𝑝40), (4.27)
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where 𝑝0, 𝜂0 > 0 are functions of 𝑞 and 𝑑.

Proof. We abstract away the geometry of the problem by combining the four total

interior and exterior boundaries of region 𝐵 of the annulus into a single chain of

transfer channels with length 𝑙:

𝒯 *
𝑖 = 𝒯 (1)

ext,𝑖 ⊗ 𝒯 (1)
int,𝑖 ⊗ 𝒯 (2)

ext,𝑖 ⊗ 𝒯 (2)
int,𝑖.

The result the follows from substituting Corollary 2 and the arguments in Lemma 7

into Corollary 1 in order to obtain the decay of long-range CMI in the trivial phase

under the action of the 𝒯 *
𝑖 . Note we are guaranteed probability 𝑝40 that for some 𝑖 all

four of the transfer channels on each boundary are forgetful. Finally we apply Eq.

4.6 which yields that the TEE of the total state is proportional to that of the CMI,

and therefore decays exponentially in 𝑙 as desired.

A

B
(2)
ext

B
(1)
ext

B
(2)
int

B
(1)
int

C

Figure 4-4: Illustration of annulus construction with four boundaries of 𝐵 labeled

4.4 Numerical model

In addition to our analytic bound for the case 𝑞 = 2, we provide numerical evidence

for the decay of spurious TEE in the trivial phase through the simulation of a random

spin chain model. Our numerical model is inspired by [52] and reproduces some of

the properties of the coarse-grained tensor network representation of the boundary

state described in Section 4.3.1. In particular, the state on the random spin chain

sites is given by replacing 𝑈 |00⟩ with maximally entangled states
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Ω𝑞′ =
1√
𝑞′

𝑞′∑︁
𝑎=1

|𝑎𝑎⟩, (4.28)

and applying the unitary transformation to neighboring left and right sites corre-

sponding to the Stinespring dilation of the channel

𝒲𝑖 =
1

(𝑞′)2

𝑞′∑︁
𝑎=1

(𝑃𝑎 ⊗ 𝑃𝑎𝑊𝑖) · (𝑃𝑎 ⊗𝑊 †
𝑖 𝑃𝑎), (4.29)

where the 𝑃𝑎 are generalized Pauli operators and 𝑊𝑖 is a random unitary. Random

noise proportional to 1 + 𝑖𝜖𝐻 for some 𝜖 > 0 and Hermitian 𝐻 drawn from the

Gaussian unitary ensemble is then applied at each site. The code used to produce the

following results can be found at [61]. The resulting state has exact spurious value

𝛾 = 1 for all 𝑙 ≥ 2 when the noise is set to zero. The TEE is observed to decay for

finite 𝜖. We provide an example of the density matrix for 𝑙 = 3 in both the original and

noisy model in Figure 4-5. In addition, we investigate the distribution of 𝛾 in noisy

(a) Random spin chain model (b) Noisy model with 1 + 𝑖𝜀𝐻, 𝜀 = 0.5

Figure 4-5: Density matrices of boundary state in original and noisy model

chains of different lengths using both the von Neumann and Rényi entropies, and

find that for small numerical examples the spurious contributions decay with 𝑙 with

the distribution shown in Figure 4-6. Furthermore, we observe that in general the
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Figure 4-6: Distribution of 𝛾 computed exactly with von Neumann entropy for noisy
chains with 𝑙 = 2, 3, 4, 5 and 𝜀 = 0.5

behavior of the Rényi entropies mirror that of the von Neumann entropy, suggesting

that it may be possible to extend our analysis to more computationally tractable

proxies for the von Neumann TEE.

3.1 3.2 3.3

3.00

3.05

3.10

3.15

3.20

(a) Rényi entropies plotted against
von Neumann entropy for noisy
chains with 𝑙 = 2
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(b) Average values of 𝛾𝛼 computed with Rényi en-
tropies for noisy chains with 𝑙 = 2, 3, 4, 5, where
𝛼 = 1 denotes the von Neumann entropy

Figure 4-7: Comparison of Rényi and von Neumann entropies for chains with 𝜖 = 0.5
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4.5 Discussion

We have shown that under generic local deformations, spurious contributions to the

TEE of the trivial phase decay exponentially in the size of the region. As the spurious

TEE is known to be non-negative in models of nontrivial topological order, we argue

that non-zero TEE is a necessary and sufficient condition for topological order in

two-dimensional systems. We further conjecture that our results for spurious TEE

generalize to other local circuit architectures as well as translation-invariant states

which are in non-trivial topological phases, including the toric code.

In addition, the decay of TEE and CMI in difference classes of systems is connected

to broader issues in quantum complexity, notably questions such as when local parent

Hamiltonians admit ground states with finite correlation length or trivial complexity,

and vice versa. For instance, it is known that in 1D the exponential decay of CMI

is both necessary and sufficient for a state to be approximated by a local Gibbs

state corresponding to a parent Hamiltonian [59]. Furthermore, the preparation of

non-trivial low energy states corresponding to certain classes of generic Hamiltonians

has been recently proposed as a task which is classically intractable but quantumly

easy [62], suggesting long-range order as a potential source of quantum advantage.

Notably, the results presented here do not apply in the case of structured circuits,

in which the circuit may be restricted to commute with or remain invariant under the

action of certain symmetries. Additional work is required to fully characterize the

effects of these constraints and their interactions with SPT phases or other phenomena

in systems of interest for condensed matter physics. Furthermore, we comment that

the TEE cannot fully classify different topological phases, as for example it does not

distinguish between models with Abelian and non-Abelian anyons. The development

of robust diagnostic methods to more completely characterize topological order in the

ground states of generic many-body systems therefore remains an open problem.

Finally, we comment that while the TEE has gained traction for its relative sim-

plicity and versatility which enable analysis of its theoretical properties, it may be

impractical to compute for large simulations, or to measure experimentally in a macro-
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scopic system. However, we expect that our bound may be extended to the Rényi

entropy analogues as well as other quantities which encode information about the

entanglement entropy of the system, offering opportunities for further analysis.
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Appendix A

Representations of the unitary group

In this appendix we provide a basic introduction to representation theory, before

discussing results for the unitary group. In particular, we discuss the application

of the Schur-Weyl duality to 𝑈(𝑁) to derive the Weingarten calculus, though we

do not prove most of these results. For a more complete description of Lie groups

and algebras and their representations, we suggest [63], which focuses on matrix Lie

groups, or [64] for a more formal approach.

A.1 Overview of representation theory

Roughly speaking, the goal of representation theory is to relate objects from abstract

algebra to linear transformations, which provide a tractable framework for analyzing

their properties. More precisely:

Definition 12 (Group representation) Given a vector space 𝑉 , let End(𝑉 ) de-

note the set of linear maps defined on 𝑉 → 𝑉 . Then a representation of a group 𝐺

is a vector space 𝑉 along with a homomorphism 𝑅 : 𝐺→ End(𝑉 ).

In order to fully classify the representations of a group, we can examine the class of

all irreducible representations:

Definition 13 (Irreducible representation) An irreducible representation or ir-

rep (𝑅, 𝑉 ) is one which does not contain a non-trivial subrepresentation (𝑅|𝑊 ,𝑊 )
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with 𝑊 ⊂ 𝑉 closed under the action of 𝑅. All unitary representations can be ex-

pressed as the direct sum of irreps.

Finite-dimensional unitary representations are directly relevant to the implementation

of different sets of operations on quantum platforms. In particular, we are often

interested in representations of Lie groups, which are a type of continuous group:

Definition 14 (Lie group) A Lie group is a group 𝐺 = (𝐺, ·) which is also a finite-

dimensional differentiable manifold in the sense that for any 𝑎, 𝑏 ∈ 𝐺 both 𝑎 ↦→ 𝑎−1

and 𝑎, 𝑏 ↦→ 𝑎 · 𝑏 are differentiable maps.

Lie groups often appear in physics as descriptions of continuous symmetries, such

as rotations or dilations. It is useful to focus on matrix Lie groups, which can be

described as follows:

Definition 15 (Matrix Lie group) Let 𝐺𝐿𝑛(C) denote the group of invertible ma-

trices of dimension 𝑛 with complex entries. A matrix Lie group 𝐺 is a closed subgroup

of 𝐺𝐿𝑛(C).

Due to their continuous nature, it is often difficult to explicitly compute properties

of Lie groups. It is typically more straightforward to adopt a Lie algebra picture,

which enables us to work with vector spaces directly rather than with differentiable

manifolds.

Definition 16 (Lie algebra) A finite-dimensional Lie algebra is a finite-dimensional

vector space g along with a commutator operation [·, ·] which is a bilinear, skew sym-

metric map which satisfies the Jacobi identity that for any 𝑎, 𝑏, 𝑐 ∈ g,

[𝑎, [𝑏, 𝑐]] + [𝑐, [𝑎, 𝑏]] + [𝑏, [𝑐, 𝑎]] = 0. (A.1)

Definition 17 (Lie algebra representation) A representation of a Lie algebra g

on a vector space 𝑉 is a map of Lie algebras

𝑟 : g → gl(𝑉 ) ∼= End(𝑉 ).
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We can then translate between Lie groups and algebras via a map which is motivated

by the follow result:

Lemma 8 (One-parameter subgroup) If 𝐴 is a one-parameter subgroup of 𝐺𝐿𝑛(C),

there exists a unique matrix 𝑋 ∈𝑀𝑛((𝐶)), up to a constant factor, such that 𝐴 = 𝑒𝑡𝑋 .

Definition 18 (Matrix Lie algebra) For a matrix Lie group 𝐺, the corresponding

Lie algebra g is given by the set of all 𝑋 such that 𝑒𝑡𝑋 ∈ 𝐺.

Here we have adopted the mathematical convention, though both of the results can

be stated equivalently using the Wick rotated map 𝑒𝑖𝑡𝑋 , as is the physics convention.

In other words, the Lie algebra is given by the tangent space of 𝐺 at the identity.

Any group operation can then be expressed in terms of the Lie algebra:

Lemma 9 (Group homomorphisms in the Lie algebra) For any two matrix Lie

groups 𝐺,𝐻 and homomorphism Φ : 𝐺 → 𝐻, there exists a unique real-linear map

𝜑 : g → h such that for all 𝑋 ∈ g,

Φ(𝑒𝑋) = 𝑒𝜑(𝑥). (A.2)

We can use this fact to relate representations of Lie algebras to those of the corre-

sponding Lie group. In particular, for any simply connected Lie group, the repre-

sentations of the Lie group are in one-to-one correspondence with those of the Lie

algebra. While 𝑈(𝑁) and many of its subgroups are not simply connected, it can be

shown that 𝑆𝑈(𝑁) is simply connected for all 𝑁 ≥ 1, and its representation theory

is well-known. These properties can be used to describe the algebraic structure of

physical theories which obey certain gauge symmetries. We consider an example with

𝑈(1) symmetry in Section A.3.1.

A.2 Schur-Weyl duality

In this section we describe a well-known result and its applications in quantum in-

formation theory. Given some finite-dimensional vector space 𝑉 , consider the vector
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space 𝑉 ⊗𝑛. In the context of quantum circuits, 𝑉 typically describes the state space

of a single qudit and is of dimension 𝑑 = 𝑞𝑛. Intuitively, for any 𝑣 = 𝑣1 ⊗ ...⊗ 𝑣𝑛 and

permutation and linear transformations 𝜎 ∈ 𝑆𝑛, 𝑔 ∈ 𝐺𝐿𝑞(C),

(𝜎 ∘ 𝑔⊗𝑛)(𝑣) = (𝑔⊗𝑛 ∘ 𝜎)(𝑣).

This implies that there exists a basis in which 𝜎 and 𝑔 are simultaneously diagonalized.

The Schur-Weyl duality gives a stronger version of this statement, namely that this

basis decomposes 𝑉 ⊗𝑛 into irreps:

Theorem 7 (Schur-Weyl duality) Any composite vector space 𝑉 ⊗𝑛 admits a de-

composition of the form

𝑉 ⊗𝑛 ∼=
⨁︁
𝜆

𝑉𝜆 ⊗ 𝑆𝜆𝑉, (A.3)

where the 𝑉𝜆 denote all irreps of 𝑆𝑛 and 𝑆𝜆𝑉 is either an irrep of 𝐺𝐿𝑞(C) or zero.

Formally, this statement is equivalent to the condition that the span of 𝑆𝑛 and𝐺𝐿𝑞(C)

are centralizers of each other in End(𝑉 ⊗𝑛), i.e. form the subset of all elements which

leave the other fixed. This property holds when we restrict to unitary single-qudit

operations, so that we obtain irreps corresponding to the action of a unitary trans-

formation on each block. The Schur-Weyl duality thus provides a natural basis for

describing systems which multipartite systems of independently and identically dis-

tributed states [65], and can be used to analyze a broad range of quantum protocols.

Below, we discuss its application to explicitly computing coefficients in integrals over

the unitary group.

A.3 Weingarten calculus

A key technique for the analysis of random circuit ensembles and quantum complexity

is the Weingarten calculus, which was first derived explicitly in [66] using the Schur-

Weyl duality. In order to compute statistics over the unitary group, we must first

describe the equal-volume integration measure. Formally, the Haar measure is the
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unique left- and right-invariant measure over 𝑈(𝑁), and therefore represents the

uniform distribution over the group. Using the symmetries of the unitary group, it

can be shown that

∫︁
Haar

𝑑𝑈𝑈𝑖1𝑗1 ...𝑈𝑖𝑘𝑗𝑘𝑈
†
𝑙1𝑚1

...𝑈 †
𝑙𝑘𝑚𝑘

=
∑︁

𝜎,𝜏∈𝑆𝑘

𝛿(⃗𝑖, 𝜎(𝑚⃗))𝛿(⃗𝑗, 𝜏 (⃗𝑙))𝑊𝑔(𝜎−1𝜏, 𝑑), (A.4)

where we sum over permutation operators 𝜎, 𝜏 . The Weingarten coefficients 𝑊𝑔 are

rational functions of 𝑞 with degree at most −𝑘. One method of computing these

functions is by applying the Schur-Weyl duality and combinatorially constructing the

irreps of the symmetric group, then solving the resulting system of equations, as we

describe below:

First note that for any 𝑉 ∈ 𝑈(𝑞), the twirling operators satisfy

𝑉 ⊗𝑘𝑇
(𝑘)
Haar(𝑋)(𝑉 †)⊗𝑘 =

∫︁
Haar

𝑑𝑈 (𝑉 𝑈)⊗𝑘𝑋(𝑈 †𝑉 †)⊗𝑘

=

∫︁
Haar

𝑑𝑈 𝑈⊗𝑘𝑋(𝑈 †)⊗𝑘

= 𝑇
(𝑘)
Haar(𝑋), (A.5)

since 𝑉 ⊗𝑘 can be absorbed into the integral due to the left- and right-invariance

of the Haar measure. Since 𝑇
(𝑘)
Haar(𝑋) commutes with any single-qudit unitary, it

must consist of a linear combination of permutation operators [67]. Furthermore, for

𝑋 ∈ 𝑆𝑘, we have that 𝑇 (𝑘)
Haar(𝑋) = 𝑋, thus yielding a complete system of equations

which we may solve explicitly to compute the Weingarten calculus coefficients.

In addition, we note that a similar combinatorial formula exists for several sub-

groups of 𝑈(𝑁), including 𝑈(𝑁)/𝑂(𝑁) and 𝑈(𝑁)/𝑆𝑝(𝑁), which describe circuits

which obey time-reversal symmetry [47, 68], in addition to other gauge symmetry

groups [69]. As a simple example, the moments of 𝑈(𝑁)/𝑈(1), which represents

the group of unique transformations on systems which observe a 𝑈(1) gauge symme-

try [70], coincide with those of 𝑈(𝑁). As far as we know, this result does not appear

in any previous literature, though it is relatively simple to show. We include a proof

of this result in the following section.
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A.3.1 𝑈(1) gauge symmetry

While the case of a 𝑈(1) gauge symmetry is fairly straightforward, as far as we know,

it has not been explicitly computed in the literature. The fact that the moments

of the resulting subgroup is the same implies that circuits obeying such a symmetry

exhibit the same qualitative behavior. We provide a proof of this fact below.

Lemma 10 For any 𝑁 , 𝑈(𝑁)/𝑈(1) ∼= 𝑆𝑈(𝑁)/𝑍(𝑁).

Proof. This is a well-known property [71] which follows from the definition of 𝑆𝑈(𝑁)

as the group of unitary matrices with determinant 1. Recall that any matrix 𝑈 ∈
𝑈(𝑁) can be written in the form 𝑈 = det(𝑈)𝑈 ′, where |det(𝑈)| = 1 and det(𝑈 ′) = 1.

Then there exists 𝜃(𝑈) ∈ R such that 𝑒𝑖𝜃(𝑈) = det𝑈 . We therefore have 𝑈 = 𝑒𝑖𝜃(𝑈)𝑈 ′,

so that any unitary can be written as the product of an element of 𝑈(1) and an

element of 𝑆𝑈(𝑁). Furthermore, enforcing det(𝑈) shows that this decomposition

is unique up to a factor of 𝑒2𝜋𝑖𝑗/𝑁 . We therefore have an isomorphism mapping

𝑈(𝑁) → 𝑈(1)×𝑆𝑈(𝑁)/𝑍(𝑁). Taking the quotient of both the domain and codomain

gives the desired result.

Corollary 3 For any 𝑁 , the moments of 𝑈(𝑁)/𝑈(1) coincide with those of 𝑈(𝑁).

Proof. We apply the isomorphism from the above result to write integrals over 𝑈(𝑁)

in terms of commuting integrals over 𝑈(1), 𝑆𝑈(𝑁), and 𝑍(𝑁), so that the moments

over 𝑈(𝑁) are given by

𝑇
(𝑘)
Haar(𝑋) =

∫︁
Haar

𝑑𝑈 𝑈⊗𝑘𝑋(𝑈 †)⊗𝑘

=
∑︁

𝑗∈𝑍(𝑁)

∫︁
𝑈(1)

𝑑𝜃

∫︁
𝑆𝑈(𝑁)

𝑑𝑈 ′ (𝑒𝑖𝜃𝑒2𝜋𝑖𝑗/𝑁𝑈 ′)⊗𝑘𝑋(𝑒−𝑖𝜃𝑒−2𝜋𝑖𝑗/𝑁𝑈 ′†)⊗𝑘

=
∑︁

𝑗∈𝑍(𝑁)

∫︁
𝑈(1)

𝑑𝜃

∫︁
𝑆𝑈(𝑁)

𝑑𝑈 ′ (𝑈 ′)⊗𝑘𝑋(𝑈 ′†)⊗𝑘.

We therefore have that the moments are independent of the integral over 𝜃, and are

thus equal for both 𝑆𝑈(𝑁) and 𝑈(𝑁)/𝑈(1) ∼= 𝑆𝑈(𝑁) × 𝑍(𝑁). Note that a more

comprehensive treatment of integrals over 𝑆𝑈(𝑁) can be found in [72].
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Appendix B

Properties of the quantum 𝑊1 norm

In this appendix we briefly review background on optimal transport theory and in-

spiration for the definition of the quantum Wasserstein distance of order 1 in [45].

We first provide an overview of optimal transport theory and discuss a classical 𝑊1

distance derived from the Hamming distance on bit strings. We then provide proofs

for some basic properties of the quantum 𝑊1 norm.

B.1 Classical Wasserstein distance

B.1.1 Foundations of optimal transport

Optimal transport theory is concerned with optimization problems over distributions

of resources, and is well-established in the classical setting. The central objective

of this area is the Monge-Kantorovich problem, which for the discrete and finite-

dimensional case can be given as follows [73]:

Definition 19 (Monge-Kantorovich problem) Given any two discrete and finite-

dimensional measures

𝛼 =
𝑛∑︁

𝑖=1

𝑎𝑖𝛿𝑥𝑖
, 𝛽 =

𝑚∑︁
𝑗=1

𝑏𝑗𝛿𝑦𝑗 , (B.1)

with 𝑥𝑖, 𝑦𝑗 ∈ 𝒳 , as well as the cost matrix 𝐶𝑖𝑗 = 𝑐(𝑥𝑖, 𝑦𝑗), the minimization of trans-
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portation cost between the two measures can be expressed as a linear program via

𝐿𝐶 = min
𝑃

∑︁
𝑖𝑗

𝑃𝑖𝑗𝐶𝑖𝑗, (B.2)

where 𝑃 is doubly stochastic and the solution describes the optimal coupling, or equiv-

alently transport map, between 𝛼 and 𝛽.

Optical offers a broad framework for statistical analysis, and can be applied to a wide

range of problems, including in machine learning and economics theory [73].

Notably, when the cost matrix is chosen to be a power of a Hilbertian distance on

the underlying event space 𝒳 , the transportation problem induces another distance

on the space of measures via the optimal transport cost, which is known as the

Wasserstein or 𝑊𝑝 distance. Unlike metrics such as relative entropy, 𝑊𝑝 satisfies the

triangle inequality for all 𝑝 and is therefore a true distance over measures.

In practice, 𝑝 is often chosen to be 1 or 2 for ease of analysis. It can be shown

that the 𝑊2 distance induces a Riemannian structure on the space of continuous

probability measures, providing additional insight on classical information geometry

[74–76]. On the other hand, for discrete probability distributions, it is often useful

to consider 𝑊1 distances [73,77]. In general, the 𝑊1 metric is upper bounded by the

𝑊2, and in some settings they can been directly related to show that the structure of

continuous probability spaces extends to the discrete case, or vice versa [73,78].

B.1.2 Continuity bound for Shannon entropy

Continuity bounds for the Shannon entropy arise in applications such as characterizing

the capacity region of classical interference channels. While the capacity may be

difficult to compute exactly for an arbitrary channel, such bounds enable efficient

estimation of a large family of channels. Notably, no dimension-independent bound

can be given in terms of the relative entropy. More precisely:

Lemma 11 (Difference of Shannon entropies) Given discrete probability distribu-
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tions 𝑃,𝑄 ∈ ℳ(𝒳 ) and metric 𝛿 over ℳ(𝒳 ), consider bounds of the form

|𝐻(𝑃 )−𝐻(𝑄)| ≤ 𝑐𝛿(𝑃,𝑄). (B.3)

For 𝛿(𝑃,𝑄) = 𝐷(𝑃 ||𝑄), there is no constant 𝑐 which satisfies Eq. B.3.

To see this, consider the case in which 𝑃 is the uniform distribution over the sequence

of integers between 1 and 𝑛. Let 𝑄 be the mixture of 𝑃 and the uniform distribution

over the integers between 1 and 𝑛2, with probability (𝑛+1)/2𝑛2 for the integers from

1 to 𝑛. Note that in the limit 𝑛 → ∞, 𝐷(𝑃 ||𝑄) converges to log 2, whereas the gap

of entropies is unbounded and grows as Θ(log 𝑛). Thus there is no constant 𝑐 which

satisfies Eq. B.3.

On the other hand, it is shown in [77] that choosing the Wasserstein distance of

order 1 induced by the classical Hamming distance over bit strings does provide a

bound for the difference of Shannon entropies. Defining

𝑊1(𝑃,𝑄) = inf
𝜋𝑋𝑌

E[𝑑𝐻(𝑋, 𝑌 )], (B.4)

where the infimum is taken over all couplings between the distributions 𝑋, 𝑌 , it can

be shown that the difference of entropies is bounded by a convex function of the 𝑊1

distance:

Theorem 8 (Continuity of Shannon entropy) Given discrete probability distributions

𝑃,𝑄 ∈ ℳ(𝒳 ), we have that

|𝐻(𝑃 )−𝐻(𝑄)| ≤ 𝑛𝐹𝒳 (
1

𝑛
𝑊1(𝑃,𝑄)),

𝐹𝒳 = 𝑥 log(|𝒳 | − 1) +𝐻2(𝑥),

(B.5)

up to a constant factor which is determined by the base of the logarithm.

This result is due to the independence of each bit and the key result that this 𝑊1

distance is additive in the length of the bit string, and is proved in [77].
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B.2 Quantum Wasserstein distance of order 1

The proposal in [45] generalizes the analysis in [77] on bit strings to construct a

quantum Wasserstein distance of order 1. This metric is based on the concept of

“neighboring” states, which are equal after one qudit is discarded.

More precisely, consider a system of 𝑛 qudits with local dimension 𝑞, with total

state space ℋ𝑛. Let 𝒪𝑛 be the set of all Hermitian operators on ℋ𝑛, and 𝒟𝑛 ⊂ 𝒪𝑛

denote the set of density matrices on ℋ𝑛. We then extend the Hamming distance as

follows:

Definition 20 (Neighboring states) Two states 𝜌, 𝜌′ ∈ 𝒟𝑛 are neighboring if their

reduced density matrices over 𝑛− 1 qudits coincide, so that

tr𝑖 𝜌 = tr𝑖 𝜌
′, 1 ≤ 𝑖 ≤ 𝑛. (B.6)

In addition, we define the set of all possible differences between two neighboring states:

𝒩 (𝑖)
𝑛 = {𝜌− 𝜌′ : 𝜌, 𝜌′ ∈ 𝒟𝑛, tr𝑖 𝜌 = tr𝑖 𝜌

′},

𝒩𝑛 =
𝑛⋃︁

𝑖=1

𝒩 (𝑖)
𝑛 .

(B.7)

Now consider the convex hull of 𝒩𝑛, which we denote by ℬ𝑛:

ℬ𝑛 = {
𝑛∑︁

𝑖=1

𝑝𝑖𝑁𝑖 : 𝑁𝑖 ∈ 𝒩 (𝑖)
𝑛 , 𝑝 ∈ ℳ+([𝑖])}. (B.8)

Note that 𝒟𝑛 is closed and bounded in the Schatten 1-norm, so ℬ𝑛 is also a closed,

bounded, and convex subset of 𝒪𝑛. Furthermore, ℬ𝑛 = −ℬ𝑛 due to symmetry. This

set can therefore be interpreted as a “unit ball”, which induces the desired metric:

Definition 21 (Quantum 𝑊1 norm) For any 𝑋 ∈ 𝒪𝑛, the quantum 𝑊1 norm is

defined via

||𝑋||𝑊1 = min{𝑤 ≥ 0 : 𝑋 ∈ 𝑤ℬ𝑛}. (B.9)
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The 𝑊1 distance between two states on the system 𝜌, 𝜌′ ∈ 𝒟𝑛 is then given by

𝑊1(𝜌, 𝜌
′) = ||𝜌− 𝜌′||𝑊1 . (B.10)

Note from the definition of ℬ𝑛 that the quantum 𝑊1 norm is non-negative, symmetric,

and satisfies the triangle inequality, and is therefore a proper distance. In addition,

it is clear that the above definition reduces to the classical Hamming distance when

restricted to the set of computational basis states. In the remainder of this section,

we will use 𝑊1 to denote the quantity given in Def. 21 unless otherwise specified.

Similar to the classical case, the quantum 𝑊1 norm also yields a Lipschitz conti-

nuity bound for the von Neumann entropy, which is proved in [45]:

Theorem 9 For 𝜌, 𝜌′ ∈ 𝒟𝑛, the difference of von Neumann entropies is bounded via

|𝑆(𝜌)− 𝑆(𝜌′)| ≤ 𝑔(||𝜌− 𝜌′||𝑊1) + ||𝜌− 𝜌′||𝑊1 ln 𝑑
2𝑛,

𝑔(𝑡) = (𝑡+ 1) ln(𝑡+ 1)− 𝑡 ln 𝑡.
(B.11)

For a family of states 𝜌, 𝜌′ with fixed 𝑑 and 𝜖 > 0, Theorem 9 implies that if

||𝜌− 𝜌′||𝑊1 ≤
𝜖𝑛

ln 𝑑2𝑛
, (B.12)

then we have that asymptotically for large 𝑛,

|𝑆(𝜌)− 𝑆(𝜌′)| ≤ 𝜖𝑛+𝑂(ln𝑛). (B.13)

This result suggests that the entanglement structure of a quantum state is robust un-

der perturbations up to 𝑜(𝑛/ ln𝑛) in the 𝑊1 distance [45], motivating the application

of the 𝑊1 norm to study the growth of information complexity in many-body systems

such as in [79].
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B.2.1 Properties

In this section we denote by 𝒪𝑇
𝑛 the set of all traceless Hermitian operators on ℋ𝑛. We

summarize some of the key properties of the quantum 𝑊1 distance and its behavior

under quantum operations, and reproduce the proofs given in [45].

Lemma 12 (Symmetries of the 𝑊1 distance) For any 𝑋 ∈ 𝒪𝑛 and quantum

channel Φ : 𝒟𝑛 → 𝒟𝑛 which can be decomposed into a permutation of qudits 𝜎 ∈ 𝑆𝑛

and a series of single-qudit channels Φ𝑖, we have

‖Φ(𝑋)‖𝑊1
≤ ‖𝑋‖𝑊1

, (B.14)

with equality when the single-qudit channels are unitary.

Proof. First, note that from Definition 20, ℬ𝑛 is the convex hull of a set which is

symmetric over all qudits and local changes of basis, and mapped to itself under

single-qudit channels. It follows that the set ℬ𝑛 is also invariant under permutations

and single-qudit operations. Thus for 𝑤 = ‖𝑋‖𝑊1
,

Φ(𝑋) ∈ 𝑤ℬ𝑛,

so we have ‖Φ(𝑋)‖𝑊1
≤ 𝑤. Furthermore, when Φ is the composition of a permutation

and a series of unitaries, we have Φ−1(ℬ𝑛) = ℬ𝑛, so that the 𝑊1 norm is invariant.

Lemma 13 (Relation to trace distance, Lemma 4 in main text) For any 𝑋 ∈
𝒪𝑇

𝑛 , the 𝑊1 norm of 𝑋 is bounded via

1

2
||𝑋||1 ≤ ||𝑋||𝑊1 ≤

𝑛

2
||𝑋||1. (B.15)

Proof. Note that we can equivalently write the 𝑊1 norm as

‖𝑋‖𝑊1
=

1

2
min

(︃
𝑛∑︁

𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1
: 𝑋(𝑖) ∈ 𝒪𝑇

𝑛 ,Tr𝑖𝑋
(𝑖) = 0, 𝑋 =

𝑛∑︁
𝑖=1

𝑋(𝑖)

)︃
, (B.16)
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where we have obtained an extra factor of 1/2 from the symmetry of ℬ𝑛. From the

triangle inequality,

‖𝑋‖1 ≤
𝑛∑︁

𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1
,

so that we obtain the lower bound

1

2
||𝑋||1 ≤ ||𝑋||𝑊1 .

On the other hand, for any traceless 𝑋 we can consider a decomposition 𝑋 = 𝑋+ −
𝑋−, where 𝑋+, 𝑋− are positive semi-definite operators with orthogonal support and

Tr𝑋± = ‖𝑋‖1/2. We can pick in Eq. B.16

𝑋(𝑖) =
2

‖𝑋‖1
(Tr1...𝑖−1𝑋

+ ⊗ Tr𝑖...𝑛𝑋
− − Tr1...𝑖𝑋

+ ⊗ Tr𝑖+1...𝑛𝑋
−),

so that for each 𝑖 we are guaranteed

⃦⃦
𝑋(𝑖)

⃦⃦
1
≤ ‖𝑋‖1.

It therefore follows that

‖𝑋‖𝑊1
≤ 1

2

𝑛∑︁
𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1
≤ 𝑛

2
‖𝑋‖1. (B.17)

Lemma 14 (Tensorization, Lemma 3 in main text) For any 𝑋 ∈ 𝒪𝑇
𝑚+𝑛,

||𝑋||𝑊1 ≥ || tr1...𝑚𝑋||𝑊1 + || tr𝑚+1...𝑚+𝑛𝑋||𝑊1 . (B.18)

Proof. Consider 𝑋 and 𝑋(𝑖) ∈ 𝒪𝑇
𝑚+𝑛 such that

Tr𝑖𝑋
(𝑖) = 0, 𝑋 =

𝑚+𝑛∑︁
𝑖=1

𝑋(𝑖).
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We can then write the partial traces of 𝑋 as

Tr1...𝑚𝑋 =
𝑚+𝑛∑︁

𝑖=𝑚+1

Tr1...𝑚𝑋
(𝑖),

Tr𝑚+1...𝑚+𝑛𝑋 =
𝑚∑︁
𝑖=1

Tr𝑚+1...𝑚+𝑛𝑋
(𝑖).

Then applying Eq. B.17 yields

‖Tr1...𝑚𝑋‖𝑊1
+‖Tr𝑚+1...𝑚+𝑛‖𝑊1

≤ 1

2

𝑚∑︁
𝑖=1

⃦⃦
Tr𝑚+1...𝑚+𝑛𝑋

(𝑖)
⃦⃦
1
+
1

2

𝑚+𝑛∑︁
𝑖=𝑚+1

⃦⃦
Tr1...𝑚𝑋

(𝑖)
⃦⃦
1
.

Since this holds for all possible choices of 𝑋(𝑖), we can apply the contractivity of the

1-norm under partial traces to obtain the result

‖Tr1...𝑚𝑋‖𝑊1
+ ‖Tr𝑚+1...𝑚+𝑛‖𝑊1

≤ min
1

2

𝑛∑︁
𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1
= ‖𝑋‖𝑊1

.

Lemma 15 (Local operations, Lemma 2 in main text) For any multi-index 𝐼 ⊂
[𝑛] and 𝑋 ∈ 𝒪𝑛 such that tr𝐼 𝑋 = 0, the 𝑊1 norm satisfies

||𝑋||𝑊1 ≤ |𝐼|𝑞
2 − 1

𝑞2
||𝑋||1. (B.19)

Proof. First, we note that for any 𝑋 ∈ 𝒪𝑛, the completely depolarizing channel on

𝒟𝑛 obeys the relation ⃦⃦⃦⃦
𝑋 − 1

𝑞
⊗ Tr1𝑋

⃦⃦⃦⃦
1

≤ 2
𝑞2 − 1

𝑞2
‖𝑋‖1, (B.20)

which can be seen from the standard decomposition of the depolarizing channel as a

sum of generalized Pauli terms:

⃦⃦⃦⃦
𝑋 − 1

𝑞
⊗ Tr1𝑋

⃦⃦⃦⃦
1

=

⃦⃦⃦⃦
⃦𝑑2 − 1

𝑑2
𝑋 − 1

𝑑2

𝑑2∑︁
𝑖=2

(𝑃𝑖 ⊗ 1⊗(𝑛−1))𝑋(𝑃 †
𝑖 ⊗ 1⊗(𝑛−1))

⃦⃦⃦⃦
⃦
1

.
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Without loss of generality, let 𝐼 = [𝑘] for 𝑘 ≤ 𝑛 and

𝑋(𝑖) =
1

𝑞𝑖−1
1
⊗(𝑖−1) ⊗ Tr1...𝑖−1𝑋 − 1

𝑞𝑖
1
⊗𝑖 ⊗ Tr1...𝑖𝑋,

so that we have

Tr𝑖𝑋
(𝑖) = 0, 𝑋 =

𝑘∑︁
𝑖=1

𝑋(𝑖).

Then the result follows from substituting Eq. B.20 into Eq. B.16:

‖𝑋‖𝑊1
≤ 1

2

𝑛∑︁
𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1

≤ 1

2

𝑘∑︁
𝑖=1

⃦⃦
𝑋(𝑖)

⃦⃦
1

≤ ‖𝐼‖𝑞
2 − 1

𝑞2
‖𝑋‖1.
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