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Abstract
Differentiable programming is a new paradigm for modeling and optimization in many
fields of science and engineering, and automatic differentiation (AD) algorithms are at
the heart of differentiable programming. Existing methods to achieve higher-order AD
often suffer from one or more of the following problems: (1) exponential scaling with
respect to order due to nesting first-order AD; (2) ad-hoc handwritten higher-order
rules which are hard to maintain and do not utilize existing first-order AD infras-
tructures; (3) inefficient data representation and manipulation that causes significant
overhead at lowered-order when compared to nesting highly-optimized first-order AD
libraries. By combining advanced techniques in computational science, i.e., aggressive
type specializing, metaprogramming, and symbolic computing, we introduce a new
implementation of Taylor mode automatic differentiation in Julia that addresses these
problems. The new implementation shows that it is possible to achieve higher-order
AD with minimal overhead and without sacrificing the performance of lower-order
AD and obtain significant speedup in real-world scenarios over the existing Julia
AD library. In addition, this implementation automatically generates higher-order
AD rules from first-order AD rules, which is a step towards a general framework for
higher-order AD.
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Chapter 1

Introduction

1.1 Differentiable programming and automatic dif-

ferentiation

1.1.1 Differentiable programming

Differentiable programming is an emerging paradigm that unifies computational mod-

eling with gradient-based optimization, allowing the computation of gradients of

functions with respect to their input parameters. The program, or the model repre-

sented by the program can therefore be optimized with gradient-based methods. This

paradigm has become increasingly popular in recent years, as it provides a powerful

tool for optimization problems, machine learning, and scientific modeling.[1, 2]

1.1.2 Automatic differentiation

Differentiable programming is based on the fundamental technique of automatic dif-

ferentiation, which computes exact derivatives of functions through a sequence of

algorithmic transformations.

Automatic differentiation is a technique that differs from other differentiation

methods, such as symbolic differentiation and numerical differentiation[3]. Symbolic

differentiation involves computing the derivative of a function by manipulating sym-

13



bolic expressions. While symbolic differentiation can be useful for simple functions, it

can be cumbersome for complicated functions and may suffer from expression swell,

where the expression for the derivative becomes exponentially larger than the orig-

inal expression. This issue can be mitigated by simplifying the derivative, but the

simplification process can be costly[4]. Numerical differentiation, on the other hand,

approximates the derivative of a function by computing the difference quotient using

finite differences. This method is simple to implement, but it can be prone to numer-

ical errors and may require many function evaluations, which can be computationally

expensive[5].

In contrast, automatic differentiation avoids the limitations of both symbolic and

numerical differentiation by computing derivatives using a recursive application of

the chain rule[6]. This approach is efficient and accurate, and it can compute exact

derivatives to machine precision for any differentiable function (at least theoretically),

regardless of its complexity.

In summary, differentiable programming offers a powerful paradigm for optimiza-

tion problems, machine learning, and scientific modeling, and automatic differentia-

tion provides a robust and efficient method for computing derivatives.

1.1.3 Variations of automatic differentiation

Automatic differentiation can be performed in forward mode, reverse mode, or mixed

mode. In forward mode, the derivative of a function is computed by calculating the

derivative of each variable in the function with respect to the input and propagating

through the sequence of operations. In reverse mode, the derivative of a function

is computed by calculating the derivative of the output with respect to each vari-

able in the function and propagating reversely through the sequence of operations.

In the mixed mode, these two directions may be arbitrarily combined during the

computation[4].

In addition, there are two main approaches to implement automatic differentia-

tion: operator overloading and source code transformation.

Operator overloading involves defining new mathematical operations on custom
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types that contain derivative information, such as addition, multiplication, and ele-

mentary functions, so that the derivative of a function can be computed by recursively

applying the chain rule to the individual operations. This approach is straightfor-

ward to implement and is widely used in programming languages that support op-

erator overloading. However, operator overloading may suffer from issues related to

efficiency and type stability, as the resulting code can be less optimized[4].

Source code transformation, on the other hand, involves transforming the source

code of a function to a new code that computes the derivative of the function. This

approach can be more efficient than operator overloading, as it avoids the overhead of

repeatedly calling overloaded operators and allows for more precise control over the

numerical computations. However, source code transformation can be more complex

to implement than operator overloading, as it requires understanding the semantics

of an arbitrarily complicated program and producing the correct code to compute its

derivatives[6].

Both operator overloading method and source code transformation method can

be utilized to implement forward mode, reverse mode, or mixed mode automatic

differentiation[7]. The choice of variation to use depends on the specific requirements

of the problem at hand, such as the complexity of the function to be differentiated, the

accuracy and efficiency of the differentiation, and the programming language and tools

available. For example, operator overloading may be preferred for simple functions

and quick prototyping, while source code transformation may be more suitable for

complex functions and production-level code.

1.2 Higher-order automatic differentiation

1.2.1 Higher-order derivatives in differentiable programming

In scientific modeling, higher-order derivatives are often needed to compute physical

quantities such as acceleration, curvature, and higher moments of a distribution[1,

8, 9]. As a result, many models, especially models expressed as ordinary differential
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equations (ODE) and partial differential equations (PDE), require efficient higher-

order derivative computation via automatic differentiation. Although some automatic

differentiation tools allow nesting, naively repeatedly applying first-order automatic

differentiation methods to obtain higher-order derivatives can have efficiency and cor-

rectness problems[10, 11]. For example, the operator-overloading method suffers from

exponential scaling with respect to order, and the source code transform method often

produces code that cannot be differentiated efficiently again by itself[12]. Therefore,

dedicated higher-order automatic differentiation methods and designs are needed to

efficiently compute higher-order derivatives.

1.2.2 Taylor mode automatic differentiation

Insights are obtained if we recognize various automatic differentiation methods as

different ways of applying the chain rule. For example, forward mode automatic

differentiation can be viewed as applying the chain rule in the forward direction,

while reverse mode automatic differentiation can be viewed as applying the chain

rule in the reverse direction. In its most simple form (first-order, scalar input, scalar

output), the chain rule can be expressed as follows:

d

dx
f(g(x)) = f ′(g(x)) · g′(x), (1.1)

where f ′ and g′ are the derivatives of f and g with respect to their inputs, respectively.

This expression can be generalized to higher-order derivatives by using Faà di Bruno’s

formula, which states that the n-th derivative of a composite function is a sum of

products of various orders of derivatives of the component functions[13]:

dn

dxn
f(g(x)) = (f ◦ g)(n)(x) =

∑
π∈Π

f (|π|)(g(x)) ·
∏
B∈π

g(|B|)(x), (1.2)

where Π is the set of all partitions of the set {1, . . . , n}, |π| is the number of blocks

in the partition π, and |B| is the number of elements in the block B.

Since Faà di Bruno’s formula is a generalization of the chain rule used in first-order
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automatic differentiation, one can directly apply this formula to achieve higher-order

automatic differentiation. Compared to the naive approach of repeatedly applying

first-order automatic differentiation methods, Faà di Bruno’s formula provides a more

efficient and accurate way to compute higher-order derivatives by avoiding a lot of

redundant computations. The resulting method is called Taylor mode automatic

differentiation, as it can be viewed as applying the chain rule in the Taylor series

representation of a function[10].

In summary, higher-order derivatives are important in scientific modeling, but

repeatedly applying first-order automatic differentiation methods to obtain them can

be inefficient and numerically unstable. Faà di Bruno’s formula provides a more

efficient and accurate way to compute higher-order derivatives by generalizing the

chain rule used in first-order automatic differentiation, resulting in the Taylor mode

automatic differentiation method.

1.2.3 Problems with existing implementations of Taylor mode

automatic differentiation

However, the existing algorithms for implementing Taylor-mode automatic differ-

entiation have some significant limitations. Within the Julia language community,

TaylorSeries.jl[14] provides a systematic treatment of Taylor polynomials in one and

several variables, but it only supports a very limited set of primitives (via ad-hoc

handwritten rules). In addition, its mutating and scalar code isn’t great for speed,

and therefore despite the theoretical advantage over nested first-order derivatives, it

is often slower compared to packages like ForwardDiff[15] in orders <4. Similarly, in

the Python community, jax.jet in the JAX framework[10] is an experimental im-

plementation of Taylor-mode automatic differentiation, but it suffers from the same

problem of handwritten higher-order rules, and is not composable with other parts of

JAX. Other implementations of Taylor-mode automatic differentiation, such as the

one in the Tapenade tool[16], have similar problems.
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1.3 Julia language and related implementations

1.3.1 Julia language for differentiable programming

Julia is a high-level, dynamic programming language designed for numerical and

scientific computing[17, 18]. It is designed to be fast and expressive, with syntax

that is familiar to users of other technical computing environments such as MATLAB

and Python. Julia’s features include a just-in-time (JIT) compiler, multiple dispatch,

type inference, and a flexible macro system. These features make Julia well-suited

for differentiable programming, which requires a combination of performance and

expressiveness.

One of the strengths of Julia is its ability to support multiple dispatch, which

allows for efficient, generic programming. In particular, Julia’s support for multiple

dispatch makes it possible to define overloads for custom types, which is essential for

building operator-overloading based first- and higher-order automatic differentiation

tools.[19, 20]

1.3.2 First-order implementations

Julia has several implementations of first-order automatic differentiation, including:

• ForwardDiff.jl[15]: This is a fast and reliable implementation of forward-mode

automatic differentiation in Julia. It is based on operator overloading and

supports scalar and vector-valued functions. ForwardDiff.jl is widely used in the

Julia community and is the recommended package for forward-mode automatic

differentiation.

• ReverseDiff.jl[21]: This is an implementation of reverse-mode automatic differ-

entiation in Julia. It is based on operator overloading and supports a variety of

types.

• Zygote.jl[12]: This is a source-to-source automatic differentiation tool in Julia

which supports reverse-mode automatic differentiation.
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• Enzyme.jl[22, 23]: This is a source-to-source automatic differentiation tool in

Julia that supports both forward- and reverse-mode automatic differentiation.

Unlike Zygote.jl which works on the untyped Julia IR, Enzyme.jl works on the

LLVM IR, which allows it to efficiently handle scalar operations, control flow

and other complex features.

• AbstractDifferentiaton.jl[24]: This is an abstraction over different implementa-

tions of automatic differentiation in Julia. It provides a common interface for

forward- and reverse-mode automatic differentiation and supports scalar and

vector-valued functions.

1.3.3 Higher-order implementations

In addition to these first-order automatic differentiation packages, Julia also has sev-

eral implementations of higher-order automatic differentiation, including:

• TaylorSeries.jl[14]: This is a package for performing automatic differentiation

using truncated Taylor series expansions in one or many variables.

• Diffractor.jl[25]: This is a next-generation source-code transformation-based

forward-mode and reverse-mode AD package, but its higher-order functionality

is currently only a proof-of-concept.

Overall, Julia’s flexibility and performance make it a powerful tool for differen-

tiable programming, with a variety of options for performing first- and higher-order

automatic differentiation.

1.3.4 Potential applications of higher-order automatic differ-

entiation in the Julia community

Although there hasn’t been a satisfactory implementation of Taylor mode automatic

differentiation in Julia or any other language, higher-order automatic differentiation

has a wide range of potential applications in the Julia community.
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One application is in the field of physical modeling, where higher-order deriva-

tives are needed to accurately model complex physical phenomena. For example, the

NeuralPDE.jl[26] package uses higher-order automatic differentiation to solve differ-

ential equations for complex systems in physics and biology.

In addition, higher-order automatic differentiation can be used for uncertainty

quantification, where higher-order derivatives can be used to compute error bounds

and sensitivity analysis. This has applications in finance, machine learning, and

scientific modeling.

Overall, the potential applications of higher-order automatic differentiation in the

Julia community are vast and varied, and the availability of efficient and flexible

automatic differentiation tools in Julia is likely to accelerate progress in many areas

of research and development.

1.4 Goals of this work

The goal of this work is to develop a new implementation of Taylor-mode automatic

differentiation in Julia that is efficient, composable, and easy to use. The detailed

goals are as follows:

• Reasonable scaling with the order of differentiation (while naively composing

first-order differentiation would result in exponential scaling)

• Automatic generation of higher-order derivative rules to avoid the need for

manual implementation of higher-order rules

• Same performance with ForwardDiff.jl[15] on first order and second order, so

there is no penalty of abstraction caused by the implementation of Taylor mode

• Composable with other automatic differentiation systems like Zygote.jl[12], so

that the user can use it together with other tools for the computation of gra-

dients (e.g. compute the physical derivatives with Taylor mode and then opti-

mized with gradient-based optimization techniques with Zygote.jl)

20



• Easy to use for both experts and non-experts in automatic differentiation

By combining advanced techniques in computational science and engineering, i.e.

aggressive type specializing, metaprogramming and symbolic computing, this work

will meet the above goals and provide a new perspective for the Julia community.
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Chapter 2

Theory

2.1 Geometric formulation of higher-order auto-

matic differentiation

2.1.1 Taylor series representation

In first-order forward-mode automatic differentiation, the computation of a function’s

derivative at a point is performed by evaluating the function on a dual number. A

dual number is a mathematical construct of the form x0 + x1ε, where x0 and x1 are

real numbers and ε is a non-zero number satisfying the property ε2 = 0. The value

x0 represents the function’s value at a given point, while the value x1 represents the

function’s derivative at that point. If we extend the domain of elementary functions

f on dual numbers, we will get:

f(x0 + x1ε) = f(x0) + f ′(x0)x1ε+
1

2
f ′′(x0)x

2
1ε

2 + · · · = f(x0) + f ′(x0)x1ε, (2.1)

since the higher-order Taylor expansion terms are zero. Therefore, by computing a

function’s value on a dual number instead of a real number, we can automatically

compute its derivative using the properties of dual numbers.

In programmatic implementations, dual numbers are often stored as number pairs

(x0, x1), and we need to define a set of rules for elementary functions and arithmetic
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operations on dual numbers to ensure that the derivative of a function is computed

correctly. For example, function sin on the number pair is defined as:

sin(x0, x1) = (sin(x0), cos(x0)x1), (2.2)

and the product of two dual numbers (x0, x1) and (y0, y1) is computed as:

(x0, x1) · (y0, y1) = (x0y0, x0y1 + x1y0). (2.3)

Therefore, in an arbitrarily complicated function, the input dual number goes

through a series of arithmetic operations and elementary functions, and the output

dual number contains the derivative of the function at the input point.

In higher-order automatic differentiation, truncated Taylor series extends the

idea of dual numbers. A truncated Taylor series is a mathematical construct of the

form x0+x1t+x2t
2+· · ·+xnt

n, where t is a non-zero number satisfying tn+1 = 0, where

n is the order of differentiation of interest. The value x0 represents the function’s value

at a given point, while the value x1 represents the function’s first derivative at that

point, and so on. If we extend the domain of elementary functions f on truncated

Taylor series, we will get:

f(x0 + x1t+ x2t
2 + · · · ) = f(x0) + f ′(x0)x1t+ [f ′′(x0)x2 + f ′2(x0)x

2
1]t

2 + · · · (2.4)

In programmatic implementations, we also define a set of rules accordingly. For

example,

(x0, x1, · · · , xn) · (y0, y1, · · · , yn) = (x0y0, x0y1 + x1y0, x0y2 + x1y1 + x2y0, · · · ) (2.5)

Therefore, by computing a function’s value on a truncated Taylor series instead of a

real number, we can automatically apply the Faà di Bruno’s formula[13] and thereby

extract its derivatives of orders up to n.
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2.1.2 From numbers to manifolds

The truncated Taylor series representation of higher-order automatic differentiation

is intuitive and follows nicely from elementary calculus. However, in the context of

differentiable programming, we care not only about differentiating on a predefined

set of types, but also arbitrary custom types in arbitrary programmatic constructs[1].

In fact, there is a more general framework for understanding higher-order automatic

differentiation, which is based on the theory of differential geometry.

Differential geometry is the branch of mathematics that studies geometric prop-

erties and structures for smooth (differentiable) shapes and smooth spaces. In the

context of automatic differentiation, differential geometry provides a framework for

understanding the behavior of arbitrary types that undergoes automatic differen-

tiation, as long as the type corresponds to a differentiable Riemannian manifold.

Although the idea has been explored by various texts[27, 28, 29, 30, 31, 32], it has

not been fully elaborated with a general form for arbitrary order and programmatic

types.

To begin with, we assume the space of possible values of a type T can be viewed

as a high-dimensional differentiable manifold M , with each point on the manifold

representing a different value. The tangent space at a point x0 on the manifold,

Tx0M , represents the space of first-order derivatives. The tangent bundle is defined

as:
TM =

⋃
x0∈M

{x0} × Tx0M

= {(x0, x1)|x0 ∈ M,x1 ∈ Tx0M}.
(2.6)

For a differentiable function f : M → N , the pushforward f∗ is a mapping from

the tangent space Tx0M to the tangent space Tf(x0)N that maps the tangent vector

x1 ∈ Tpx to the tangent vector f∗(x1) ∈ Tf(x0)N . The pushforward f∗ is defined as:

f∗(x1) =
d

dt

∣∣∣∣
t=0

f(γ(t)), (2.7)

where γ is a curve on M such that γ(0) = x0 and γ′(0) = x1. Therefore, by defining
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pushforward rules for relevant types and functions, we can achieve the first-order

(forward-mode) automatic differentiation.

We can also extend the above discussion to higher order. The Taylor spaces at

a point x0 on the manifold, T n
x0
M , represents the space of n-th order derivatives. The

Taylor bundle is defined as:

T nM = {(x0, x1, x2, · · · , xn)|x0 ∈ M,xi ∈ T i
x0
M}. (2.8)

For a differentiable function f : M → N , the higher-order pushforward f∗ can

also be similarly defined to map the derivatives to the corresponding spaces T n
x0
N .

Therefore, by defining higher-order pushforward rules for relevant types and functions,

we can achieve higher-order automatic differentiation.

The geometry of these tangent spaces plays an important role in the design and

implementation of automatic differentiation algorithms. For example, the Chain-

Rules.jl package[33] uses a combination of natural tangents, structural tangents and

special tangents to write efficient rules for a variety of Julia types, and handles lazy

evaluation and control flow elegantly.

In summary, differential geometry provides a powerful framework for understand-

ing the relationships between higher-order derivatives of types that correspond to

various spaces, and this understanding can be used to develop more general and

robust program transformations for automatic differentiation.

2.2 Bundle representation

We further assume the elements in the Taylor bundle also correspond to some type

in the programming language. In the context of Julia’s type system, we can define

a bundle type for the Taylor bundle T nM as B = Tuple{T, T1, T2, ..., Tn},

where each value of this type correspond to a mathematical tuple x = (x0, x1, · · · , xn).

For many practical types such as scalars and arrays, there is a natural isomorphism

between the tangent space and the original space, so programmatically all components

of the bundle can be stored in a value of original type T. Therefore we can conveniently
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express the bundle type in a parameterized composite type:

Listing 2.1: Bundle type for primal types with natural isomorphism

1 struct Taylor{T, N}

2 value :: NTuple{N, T}

3 end

where NTuple is the Julia Tuple type of several components in the same type, and

tuple size N is the order of the Taylor series plus 1 (N = n+1). For example, the Taylor

bundle for a scalar Float64 with order 3 is represented as Taylor{Float64, 4}.

While this form cannot represent the Taylor bundle for types that do not have a

natural isomorphism, it is sufficient for many practical use cases. Therefore, in this

work, we will focus on bundle types with the form shown in Listing 2.1.

These type constructs have complete inferred information about the type and

order, therefore it automatically unwraps and unrolls to the corresponding original

type at compile time, and therefore the bundle representation does not incur any

runtime overhead. In contrast, TaylorSeries.jl[14] use Vector{T} to represent the

Taylor bundle, which incurs a runtime overhead for indexing and heap allocation,

and causes mutating array issues when composed with other packages like Zygote.jl.

We will see the consequences of this design choice in chapter 4.

Furthermore, since ForwardDiff.jl also uses NTuple to represent dual numbers,

it is expected that they will have similar performance at lower-order. Therefore,

users won’t be punished at lower order if they would like the benefits of higher-order

automatic differentiation.

2.3 Pushforward rules

2.3.1 Requirements

For the purpose of this work, we will use an operator-overloading approach, although

this may change in the future (see chapter 5). In Julia language terminology, for each

manifold M represented by primal type T that has a method f(x::T) defined, we
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define a corresponding method for the bundle type Taylor{T, n + 1} that represents

the bundle x = (x0, x1, · · · , xn) for each order n, i.e. f(x::Taylor{T, n + 1}), and

this method is called a pushforward rule. Similarly, for each pair of primal type T,

S that has a method f(x::T, y::S) defined, we need to define methods accordingly.

Since there is a natural projection from the bundle type to the primal type, for

functions with more than one input, we only need to define the method where all

inputs are bundle types, and promote the primal type to the bundle type when the

inputs are a mixture of primal types and bundle types.

2.3.2 Manual implementation of basic pushforward rules

The pushforward rule for four basic arithmetic operations can be derived by making

an analogy to the higher-order addition, subtraction, multiplication and division rules

that are well-known in calculus:

(f + g)(n) = f (n) + g(n)

(f − g)(n) = f (n) − g(n)

(f × g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

(
f

g

)(n)

=
1

g

[
f (n) −

n−1∑
k=0

(
n

k

)(
f

g

)(k)

g(n−k)

]
(2.9)

where f (n) is the n-th derivative of f . These rules need to be implemented once for

the parameterized bundle type Taylor{T, N} and can be used for any type T that

has corresponding arithmetic operations defined.

2.3.3 Automatic generation of other pushforward rules

In a comprehensive differentiable programming system, numerous rules (often called

“primitives”) are needed for efficient and flexible computation of derivatives, and it

is often beyond the ability of the author of AD libraries to implement all of them.

Many AD libraries have a mechanism for separating AD engine and AD rules, for
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example,

• In ForwardDiff.jl[15], the AD rules come from DiffRules.jl[34].

• In Zygote.jl[12], the AD rules come from ChainRules.jl [33], which is powered

by ChainRulesCore.jl rule definition system[35]; in addition, it also has its own

rule definition system ZygoteRules.jl[36].

• In Difffractor.jl[25], the AD engine is completely supported by ChainRules.jl.

With the presence of many well-written first-order AD rule sets, it seems redun-

dant to implement the higher-order AD rules for other functions manually (as shown

in TaylorSeries.jl[14]). Instead, it is desirable to have a mechanism to automatically

generate higher-order AD rules for other functions from (1) well-written first-order

AD rule sets and (2) a limited set of higher-order AD rules for basic arithmetic oper-

ations. In this section, we will show how to automatically generate pushforward rules

for other functions from the pushforward rules for basic arithmetic operations.

To begin with, one can observe that the higher-order multiplication rule and

division rule can be used to partially unroll the higher-order chain rule:

f(g(x))(n) = [f ′(g(x))g′(x)]
(n−1)

=
n−1∑
i=0

(
n− 1

i

)
[f ′(g(x))]

(i)
g(n−i). (2.10)

Therefore, we have a three-step approach to generate higher-order pushforward

rules for f :

1. Obtain the form of f ′ from ChainRules.jl

2. Recurse to get the [f ′(g(x))](i) part, where i is the order of differentiation, up

to n− 1

3. Sum up via product rule as shown in equation 2.10

This recursion process doesn’t seem to be efficient at first glance, but in most

cases the form of f ′ is closely related to f itself, or can be built by simple arithmetic
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expression of the input variable. In either case, the recursion process can be done in a

single pass by reusing the lower-order results and the complexity is at most quadratic

to the order of differentiation n.

For example, consider the pushforward rule for exp function, which converts the

bundle x = (x0, x1, · · · , xn) to the bundle y = (y0, y1, · · · , yn):

• y0 = exp(x0);

• y1 = exp(x0)x1;

• For each higher order, observe that in equation 2.10 the f ′ part is exp itself,

therefore we can reuse the lower-order result y0, y1, · · · and get

yi =
i−1∑
k=0

(
i− 1

k

)
ykxi−k.

Another example would be the pushforward rule for log function:

• y0 = log(x0);

• y1 = x1/x0;

• For each higher order, observe that in equation 2.10 the f ′ part is 1/g, therefore

we can use the division rule and get

yi =
1

x0

(
xi −

i−1∑
k=0

(
i− 1

k

)
ykxi−k

)
.

The complexity of both of these processes is clearly O(n2) from the description.

While exponentiation and logarithm are extreme cases of reusing lower-order results,

many other functions can be handled similarly. For example, the higher-order deriva-

tive of tan(g(x)) can be related to the lower-order results of 1 + tan2(g(x)), which

in turn is related to itself via arithmetic operations; the higher-order derivative of

arctan(g(x)) can be related to the lower-order results of 1 + g2(x), which in turn is

related to g(x) via arithmetic operations. While not proven for arbitrary functions,
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all functions in DiffRules.jl (which is a large set with almost all (100+) built-in scalar

mathematical functions) can be handled either of these two ways with complexity

O(n2). In the text below, we will call these functions to have simple derivative

expressions.

In practice, we will use Symbolics.jl[37] to obtain the form of f ′ from ChainRules.jl

and automatically discover its possibilities of reusing lower-order results. If the form

of f ′ is not recognized, we will fall back to the recursion process described above.

2.4 Complexity analysis

We will now formalize the complexity analysis of the pushforward rules described in

the previous section, and give proofs for linear and non-linear unary functions.

Theorem 1 Assume we have a unary function f mapping from a differentiable man-

ifold M to another manifold N , and they are programmatically represented by a func-

tion method of f with input type T and output type S respectively. We additionally

require M and N to have natural isomorphism to their tangent spaces, so the data

structure in listing 2.1 can be used. For a particular input x which is a value of type

T, it takes X steps on a Turing machine to compute f(x), then we have:

• If f is linear (as defined by the linear space underlying the manifold), there is

an algorithm to implement the pushforward rule which, upon the input bundle

containing x, finishes within O(nX) steps;

• If f is non-linear and has a simple derivative expression, there is an algorithm

to implement the pushforward rule which, upon the input bundle containing x,

finishes within O(n2 + nX) steps.

Proof 1 We will first prove the theorem for linear functions, then for non-linear

functions with simple derivative expressions.

• If f is linear, then guaranteed by the isomorphism, we only need to apply the

function f on each component of the bundle type Taylor{T, N}, which takes
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O(nX) steps. This result is a simple extension of the linearity of higher-order

derivatives in a programmatic context.

• If f is non-linear and has a simple derivative expression, then the pushforward

rule can be implemented by reusing lower-order results as described in the pre-

vious section.

– For each higher order, we need to construct f ′ from the simple expres-

sion, which, according to the complexity of first-order AD[38], takes O(cX)

steps, where c is a constant independent of n;

– For each higher order, we need to reuse lower-order results and assemble

them by the equation 2.10, which takes at most O(n) steps;

The complexity of this process is O(n2 + nX).

In many applications, the complexity of the function to differentiate is dominated

by linear operations (such as in neural networks)[26, 39, 40]; in addition, non-linear

functions like exp often takes much more steps than simple addition and multipli-

cation required by 2.10. Therefore, in practice the O(nX) term always dominates

the complexity of the pushforward rule, and the O(n2) term is negligible. It is not

surprising to observe a linear scaling of the complexity with respect to the order of

differentiation n in the following experiments in chapter 4.
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Chapter 3

Implementation

3.1 General information

The algorithm is written as a Julia package, namely TaylorDiff.jl[41], in order to

be easily accessible to the Julia community. The package is available on the Julia

registry and can be installed by running the following command in the Julia REPL:

1 julia > ] add TaylorDiff

3.2 Type definition and type system integration

In addition to the core definition in listing 2.1, the package also defines a number of

methods to organically integrate it into the type system, so that the type behaves like

a number. For example, the type allows construction from primal type or (first-order)

tangent bundle:

Listing 3.1: Constructors

1 """

2 Taylor{T, N}(x::T) where {T, N}

3

4 Construct a Taylor bundle with zeroth order coefficient .

5 """
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6 @generated function Taylor{T, N}(x::T) where {T, N}

7 return quote

8 $( Expr (:meta , :inline ))

9 Taylor ((T(x), $( zeros(T, N - 1)...)))

10 end

11 end

12

13 """

14 Taylor{T, N}(x::T, d::T) where {T, N}

15

16 Construct a Taylor bundle with zeroth and first order

17 coefficient , acting as a seed.

18 """

19 @generated function Taylor{T, N}(x::T, d::T) where {T, N}

20 return quote

21 $( Expr (:meta , :inline ))

22 Taylor ((T(x), T(d), $( zeros(T, N - 2)...)))

23 end

24 end

Notice that generated functions[17] are used to allow the compiler to specialize

the code for different types. This is necessary because the number of zeros to pad

is not known until compile time. The type also has number-like conversions and

promotions:

Listing 3.2: Conversions

1 function promote_rule (:: Type{Taylor{T, N}},

2 :: Type{S}) where {T, S, N}

3 Taylor{ promote_type (T, S), N}

4 end

5
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6 convert (:: Type{Taylor{T, N}}, x:: Taylor{T, N})

7 where {T, N} = x

8 convert (:: Type{Taylor{T, N}}, x::S)

9 where {T, S, N} = Taylor{T, N}( convert (T, x))

3.3 Handwritten rules

The package includes basic definitions of arithmetic operations as well as the recursion

method described in 2.10 in order to serve as the basis of code generation. For

example, the definition of multiplication and division is as follows:

Listing 3.3: Multiplication and division

1 @generated function *(a:: Taylor{T, N}, b:: Taylor{T, N})

2 where {T, N}

3 return quote

4 va , vb = value(a), value(b)

5 Taylor ($([:(+($([:($( binomial (i - 1, j - 1))

6 * va[$j] * vb [$(i + 1 - j)]) for j in 1:i ]...)))

7 for i in 1:N]...))

8 end

9 end

10

11 @generated function /(a:: Taylor{T, N}, b:: Taylor{T, N})

12 where {T, N}

13 ex = quote

14 va , vb = value(a), value(b)

15 v1 = va [1] / vb [1]

16 end

17 for i in 2:N

18 ex = quote
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19 $ex

20 $( Symbol(’v’, i)) = (va[$i] -

21 +($([:($( binomial (i - 1, j - 1)) * $( Symbol(’v’, j)) *

22 vb [$(i + 1 - j)]) for j in 1:(i - 1)]...))) / vb [1]

23 end

24 end

25 ex = :($ ex; Taylor ($([ Symbol(’v’, i) for i in 1:N ]...)))

26 return :( @inbounds $ex)

27 end

3.4 Code generation

A comprehensive set of rules is generated using the code generation method described

in chapter 2, with the help of Julia symbolics[37]. The code generation is done by the

following function:

Listing 3.4: Code generation

1 for func in RULE_LIST

2 F = typeof(func)

3 # base case

4 @eval function (op ::$F)(t:: Taylor{T, 2}) where {T}

5 t0 , t1 = value(t)

6 Taylor{T, 2}( frule (( NoTangent (), t1), op , t0))

7 end

8 der = frule(dummy , func , t)[2]

9 term , raiser = der isa Pow && der.exp == -1 ?

10 (der.base , raiseinv ) : (der , raise)

11 # recursion by raising

12 @eval @generated function (op ::$F)(t:: Taylor{T, N})

13 where {T, N}
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14 der_expr = $( QuoteNode (toexpr(term )))

15 f = $func

16 quote

17 $( Expr (:meta , :inline ))

18 t = Taylor{T, N - 1}(t)

19 df = $ der_expr

20 $$ raiser ($f(value(t)[1]) , df , t)

21 end

22 end

23 end

The raiser function is an implementation of 2.10 to compute the Taylor bundle

of order N from lower orders. During the compilation step, the expressions generated

by the @generated function undergo a number of optimizations including common

subexpression elimination, which reuses computation from lower orders, and therefore

the scaling mentioned in theorem 1 is achieved.

3.5 Interface

The package also provides a number of convenience functions to allow easy use of

the Taylor bundle type to compute derivatives. For example, the following functions

compute either the derivative of a function at a point, or the directional derivative of

a vector-input function at a point in a given direction:

Listing 3.5: Derivative

1 function derivative end

2

3 @inline function derivative (f, x::T,

4 order :: Int64) where {T <: Number}

5 derivative (f, x, Val{order + 1}())

6 end
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7

8 @inline function derivative (f, x::V, l::V,

9 order :: Int64) where {V <: AbstractVector {<: Number }}

10 derivative (f, x, l, Val{order + 1}())

11 end

12

13 @inline function derivative (f, x::T,

14 :: Val{N}) where {T <: Number , N}

15 t = Taylor{T, N}(x, one(x))

16 return extract_derivative (f(t), N)

17 end

18

19 make_taylor (t0::T, t1::T, :: Val{N}) where {T, N}

20 = Taylor{T, N}(t0 , t1)

21

22 @inline function derivative (f, x::V, l::V,

23 vN:: Val{N}) where {V <: AbstractVector {<: Number}, N}

24 t = map ((t0 , t1) -> make_taylor (t0 , t1 , vN), x, l)

25 return extract_derivative (f(t), N)

26 end

Note that the two of the interfaces nicely wrap around the underlying types that

are specialized for each order, and instead allow an integer input to specify the order.

This is possible because the compiler can infer the type of the input at compile

time, and thus the order can be used to select the correct method. The function

extract_derivative is used to extract the derivative from the Taylor bundle, and

is defined as follows:

Listing 3.6: Extract derivative

1 extract_derivative (t:: Taylor , i:: Integer ) = t.value[i]
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3.6 Composability

Finally, the package is designed to be composable with other packages. For example,

one should be able to compute several orders of derivative in forward mode using this

package, and then compute an additional order of gradient in the reverse mode using

packages like Zygote.jl[12] or Diffractor.jl[25]. This is achieved by making the types

understandable by the rrules in ChainRules.jl, as shown in defining the following

methods:

Listing 3.7: ChainRules

1 function rrule (:: typeof(value), t:: Taylor{T, N}) where {N, T}

2 value_pullback (v:: NTuple{N, T}) = NoTangent (), Taylor(v)

3 # for structural tangent , convert to tuple

4 function value_pullback (v:: Tangent {P, NTuple{N, T}}) where {P}

5 NoTangent (), Taylor{T, N}( backing (v))

6 end

7 value_pullback (v) = NoTangent (),

8 Taylor{T, N}( map(x -> convert (T, x), Tuple(v)))

9 return value(t), value_pullback

10 end

11

12 function rrule (:: typeof( extract_derivative ), t:: Taylor{T, N},

13 i:: Integer ) where {N, T <: Number}

14 function extract_derivative_pullback (d)

15 NoTangent (), Taylor{T, N}( ntuple(j -> j === i ?

16 d : zero(T), Val(N))),

17 NoTangent ()

18 end

19 return extract_derivative (t, i), extract_derivative_pullback

20 end
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Chapter 4

Results

4.1 Open source contributions

The code implementation described in chapter 3 is open-sourced on GitHub[41]. The

code is available under the MIT license, and is free to use for both academic and

commercial purposes. At the time of writing, the package has received 42 stars on

GitHub, 36 issues and pull requests, and has been used in several other research

projects and applications.

4.2 Correctness

The correctness of automatic differentiation can be tricky due to the complexity of

supporting a variety of different programs. In the package, we use FiniteDifferences.jl[42],

which is a Julia package to calculate derivatives with finite difference methods, to au-

tomatically verify the correctness of all primitives involved. The test suite is run on

every pull request and commit to ensure that the package is always correct.

4.3 Performance results

Below we demonstrate the performance of the package on a variety of benchmarks.

Similar to tests, some performance benchmarks are also automatically run on ev-
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ery pull request and commit to study the influence of various design choices. The

continuous benchmarking results are available on a dedicated website[43].

All benchmarks are run with Julia 1.8.5, and the versions of third-party packages

are detailed at GitHub repository. Continuous benchmarks are run exclusively on

Julia community machine “AMDCI-3.0” with a 1.5 GHz AMD EPYC 7502 32-core

processor and 512 GB of RAM, and other benchmarks are run on a 2018 MacBook Pro

with a 2.6 GHz Intel Core i7 6-core processor and 16 GB of RAM. All benchmarks

are run by the Julia standard benchmarking package BenchmarkTools.jl[44, 45] to

average over multiple runs and reduce the influence of noise, as well as to exclude the

time of compilation.

4.3.1 Scaling behavior

In figure 4-1, we demonstrate the scaling behavior of TaylorDiff.jl on two benchmarks.

The first benchmark is the computation of higher-order derivatives of the sin function,

and the second benchmark is the computation of the directional derivative of a multi-

layer perceptron. The formula for the perceptron is:

f(x) =
n∑

i=1

W
(2)
i σ

(
m∑
j=1

W
(1)
ij xj + b

(1)
i

)
+ b(2), (4.1)

where σ is the sigmoid function, W
(1)
ij , b

(1)
i , W

(2)
i and b(2) are random weights and

biases of the perceptron.

In both cases, we compare the performance of TaylorDiff.jl with ForwardDiff.jl,

which is the state-of-the-art and well-optimized forward-mode automatic differenti-

ation package in Julia. We can see that ForwardDiff.jl demonstrates exponential

scaling (a line in the log-scaled y-axis) in the sin example, while TaylorDiff.jl has

mostly linear scaling. Similarly, in the multi-layer perceptron example, Forward-

Diff.jl has exponential scaling, while TaylorDiff.jl grows much slower. This is due to

the fundamental capability of the Taylor mode of automatic differentiation in com-

puting higher-order derivatives. We note that while ForwardDiff.jl is well-optimized,
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the performance of TaylorDiff.jl still has a lot of room to improve due to a lack of

detailed optimizations, so we can expect the advantage to grow with implementation

refinements. We leave this as future work.

Figure 4-1: From the continuous benchmark set. Scaling behavior of TaylorDiff.jl with
comparison to ForwardDiff.jl. Left: the time to compute the higher-order derivative
of sin function with respect to the order of derivatives. Right: the time to compute
the gradient of a multi-layer perceptron with respect to the order of the derivatives.

More noticeably, TaylorDiff.jl has demonstrated comparable performance with

ForwardDiff.jl at lower orders (first and second order), ensuring that there is no

“penalty of abstraction”, allowing drop-in replacement. This is a significant advantage

over other packages like TaylorSeries.jl, which often have a much higher overhead.

4.3.2 Comparison with existing higher-order automatic dif-

ferentiation packages

In table 4.1, we compare the performance of TaylorDiff.jl with existing higher-order

automatic differentiation packages like TaylorSeries.jl. We examine their capabilities

to compute Taylor expansions to a relatively high order (20 is used in these tests),

and compare their performance in terms of time, heap memory allocation amount

and number of allocations. In each case, Taylor expansion is computed on a real

function in the neighbor of 0, where the input variable is represented by Float64

in Julia. To compute the expansion, the input Taylor bundle is constructed as

Taylor1(Float64, 20) in TaylorSeries.jl and Taylor{Float64, 21}(0.0, 1.0) in
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TaylorDiff.jl (the N in the type definition 2.1 is the length of the tuple, which is 1 plus

the order). The functions to expand are a mixture of some common functions that

have meaningful Taylor series and some real use cases collected from Julia community

(provided in the appendix A).

Table 4.1: Comparison of TaylorDiff.jl with TaylorSeries.jl on a variety of benchmarks,
in terms of time, memory allocation numbers, and memory usage.

Test case TaylorDiff.jl TaylorSeries.jl
time (µs) alloc (KiB) number time (µs) alloc (KiB) number

sin 0.145 0.176 1 0.708 0.704 4
arcsin 0.594 0.176 1 10.4 24.1 144
log1p 0.233 0.176 1 0.665 1.23 9
Bell 0.262 0.528 3 0.928 1.70 12√
1 + x2 0.394 0.528 3 0.931 1.70 12

case1 3.55 0.176 1 8.86 23.0 106
case2 27.2 0 0 95.7 92.0 426

While TaylorSeries.jl achieved AD via dynamic mutating array-style code, Tay-

lorDiff.jl achieves fully static and non-allocating code by exploiting the structure of

Taylor polynomials and using advanced techniques in computational science, such

as aggressive type specializing and metaprogramming. This results in significant

improvements in memory allocation and speed. We also notice that TaylorSeries.jl

expands arcsin much slower than sin, which is due to the fact that it has a handwrit-

ten rule for sin but fallback to recursion for arcsin. In the case of TaylorDiff.jl, the

expansion of arcsin is on the same order of magnitude as sin, since the auto-generated

higher-order rule for arcsin has little overhead.

4.3.3 Neural PDE case study

Furthermore, this project has significant potential applications in scientific models

where higher-order derivatives are required to be calculated efficiently, such as solving

ODEs and PDEs with neural functions, which is also known as physics-informed

neural networks (PINNs)[46]. The efficient computation of higher-order derivatives

enables faster and more accurate optimization of these models, when compared to

44



numerical finite differences that are currently used in such applications, leading to

more reliable predictions and better scientific insights.

As a case study, we demonstrate the performance of TaylorDiff.jl on a PINN

model for solving Poisson’s equation, which is taken from NeuralPDE.jl tutorial. The

Poisson’s equation is a fundamental model in physics, and it is defined as:

∂2u

∂x2
+

∂2u

∂y2
= − sin(πx) sin(πy), (4.2)

where u is the physical quantity over a space domain x ∈ [0, 1], y ∈ [0, 1], x and y are

the positions. The boundary conditions are:

u(x, 0) = 0

u(x, 1) = 0

u(0, y) = 0

u(1, y) = 0.

(4.3)

The PINN model is defined as:

φ(x, y) = x(1− x)y(1− y)NN(x, y), (4.4)

where x(1 − x)y(1 − y) is the part to ensure the boundary condition, and NN is

the neural network function with 2 inputs and 1 output that is later trained to

approximate the Poisson’s equation. The neural network function NN is built with

Flux.jl[47, 48], defined as a multi-layer perceptron with 2 hidden layers, and the

activation function is exp, and the number of neurons in each layer is 16. The training

is done by minimizing the loss function:

L =
N∑
i=1

(
∂2φ

∂x2
+

∂2φ

∂y2
+ sin(πx) sin(πy)

)2

, (4.5)

where N is the number of training data points randomly sampled from the domain

x ∈ [0, 1], y ∈ [0, 1].
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The numerical way to compute the derivative in the loss function is:

∂2φ

∂x2
+

∂2φ

∂y2
=

φ(x+ h, y) + φ(x− h, y) + φ(x, y + h) + φ(x, y − h)− 4φ(x, y)

h2
,

(4.6)

where h is the step size chosen as 0.001. The automatic differentiation way to compute

the derivative in TaylorDiff.jl is to utilize the directional derivative interface defined

in listing 3.5.

The loss function is minimized using the stochastic gradient descent optimizer with

the gradient of neural network parameters calculated by Zygote.jl[36]. The training is

done in single precision floating point number (Float32 in Julia) for 100 epochs with

a learning rate of 0.001. We note that in this case we don’t include TaylorSeries.jl for

comparison because its implementation is based on mutating arrays, which cannot be

differentiated by Zygote.jl.

Based on a random sample of training data points, we obtain the performance of

forward evaluation and gradient evaluation of the loss function with finite differences

methods and TaylorDiff.jl in figure 4-2.

Figure 4-2: From the continuous benchmark set. The averaged computation time
of the loss function on a training data point with finite differences methods and
automatic differentiation methods with TaylorDiff.jl. Left: forward evaluation. Right:
gradient evaluation.
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We can see that the forward evaluation is 2.1 times faster, and the gradient eval-

uation is 1.7 times faster. The performance improvement is significant, and it is

expected to be more significant when the model is more complex. We note that Tay-

lorDiff.jl has a lot of room to improve, as it is still in the early stage of development,

and we expect the advantage to grow with implementation refinements.

Moreover, while the accuracy of the finite differences method is generally enough,

we observed a significant improvement in terms of smooth training curve when using

TaylorDiff.jl, which is shown in figure 4-3. This is due to the more accurate derivatives

computed by automatic differentiation algorithms, and may lead to faster convergence

and better generalization of the model in more complicated cases.

Figure 4-3: Averaged loss function in the training progress, on a training data point
with finite differences methods and automatic differentiation methods with Tay-
lorDiff.jl.

In summary, in the neural PDE case study, we demonstrate that TaylorDiff.jl can

be used to efficiently compute higher-order derivatives in scientific models, and it has

significant potential applications in scientific models where higher-order derivatives

are required to be calculated efficiently, such as solving ODEs and PDEs with neural

functions.
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Chapter 5

Conclusion

5.1 Summary

Overall, this work on higher-order differentiation algorithms represents a contribution

to the field of automatic differentiation. Through the development of advanced algo-

rithms and techniques, I have overcome the challenges associated with higher-order

automatic differentiation and developed a package that is efficient, accurate, and easy

to use. The key contributions of my research are as follows:

• Taylor-mode automatic differentiation algorithms which can compute the n-th

order derivative of most functions in effectively O(n) time;

• Comparable performance with ForwardDiff.jl at lower order in simple scalar

and vector routines;

• Greatly improved performance over TaylorSeries.jl for various higher-order com-

putations, in terms of both time and memory;

• Generated higher-order rules from first-order rule sets in ChainRules.jl and a

very limited set of handwritten higher-order rules;

• Composable with other packages in the Julia ecosystem, including Zygote.jl

and Flux.jl, demonstrated by the use of TaylorDiff.jl in a neural PDE training

example;
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5.2 Future work

I am excited about the potential impact of TaylorDiff.jl on the Julia community and

look forward to further developing the package in the future. As the package is still in

the early alpha stage, there is a lot of room for growth and potential improvements,

and I am going to continue working on this in my future research. Some areas for

future work include:

• Improving the performance of the package by optimizing the generated code

and the implementation of the algorithms;

• Integrate TaylorDiff.jl with the new machine learning framework Lux.jl[49],

which is designed to be a more explicitly parameterized and performant alter-

native to Flux.jl;

• Developing a more robust and efficient algorithm for source-code transformation-

based higher-order automatic differentiation;

• Integrate this package as a general differentiation method in NeuralPDE.jl,

allowing compilation of symbolic user-defined models to calls to TaylorDiff.jl;

Additionally, it would be valuable to explore potential applications of TaylorDiff.jl

in other areas of computational science and engineering, such as financial modeling

and operational research.
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Appendix A

Benchmarks used to compare

TaylorSeries.jl and TaylorDiff.jl

Case 1

This case solves the Liouville equation y′ = x2 + y2 using Picard integration method.

1 using TaylorSeries , TaylorDiff

2 using BenchmarkTools

3 import TaylorSeries : integrate

4

5 @generated function integrate (t:: TaylorScalar {T, N}) where {T, N}

6 return quote

7 $( Expr (:meta , :inline ))

8 v = TaylorDiff .value(t)

9 TaylorScalar (( zero(T), $([:(v[$i] / $i)

10 for i in 1:N -1]...)))

11 end

12 end

13

14 function taylor_step (f, u0 , t)
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15 u = u0

16 unew = u0 + integrate (f(u, t))

17 for i = 1:20

18 u = unew

19 unew = u0 + integrate (f(u, t))

20 end

21 return u

22 end

23

24 ts = Taylor1 ([1.0] , 20)

25 td = TaylorScalar {Float64 , 21}(1.0)

26

27 f(x, t) = x^2 + t^2

28

29 @btime taylor_step (f, ts , 1.)

30 @btime taylor_step (f, td , 1.)

Case 2

This case calculates the Taylor expansion of a polynomial after a change of variable.

1 using TaylorSeries , TaylorDiff

2 using BenchmarkTools

3

4 function my_calculation (t, p, alpha , s)

5 x = 1.0 / (1.0 - s * (t + 1) / (t - 1))

6 rez = zero(x)

7 for i in eachindex (p)

8 rez += p[i] * x^alpha[i]

9 end
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10 return rez * sqrt (2) / (1 - t)

11 end

12

13 N, m = 100, 20

14 p, alpha , s = rand(N), rand(N), rand ()

15 p ./= sum(p)

16 t_ts = Taylor1 (eltype(p), m)

17 t_td = TaylorScalar {eltype(p), m + 1}(0.0 , 1.0)

18

19 @btime my_calculation ($t_ts , $p, $alpha , $s)

20 @btime my_calculation ($t_td , $p, $alpha , $s)
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