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Abstract

Healthcare systems face financial and operational challenges to provide high-quality
patient care. Advances in machine learning and scalable optimization have led to
opportunities for utilizing analytics to improve healthcare operations. However, only
a limited number of models have been extensively deployed in practice due to the
complex nature and strict regulations of healthcare systems. This thesis aims to
develop and deploy practical analytics models that support strategic, tactical, and
operational decision making in healthcare systems.

A large part of the thesis involves close collaborations with Hartford HealthCare
(HHC), the largest hospital network in Connecticut, spanning seven hospitals with
$5 billion annual revenue. In Chapter 2, we optimize nurse staffing at the Emergency
Department (ED) of Hartford Hospital. We develop a two-phase methodology: (a) a
robust optimization model to allocate aggregate staffing levels, followed by (b) mixed
integer optimization models to schedule each nurse. Then in Chapter 3, we develop
machine learning models to predict eight patient operational outcomes related to
discharge, mortality, and intensive care for all inpatients at seven hospitals. We build
an online daily pipeline from data extraction to prediction-driven decision support.

More importantly, we implement our models into a two-module end-to-end soft-
ware deployed in large-scale production, supporting daily decision making of over 400
users of doctors, nurses, and managers across seven hospitals at HHC. The nurse
scheduling module provides a labor-free process from input collection to schedule
output, improving patient coverage and nurse satisfaction with reduced cost. The
patient outcome prediction module is deeply integrated into medical providers’ daily
workflow, identifying timely discharges and patient exacerbation. HHC reports better
staff workflow and patient care, together with substantial benefits in reduced length
of stay and increased financial margins.

In the final part of the thesis; we collaborate with a mobile health (mHealth)
application, Hearsteps, designed to reduce sedentary behavior and promote physical
activity in individuals with hypertension. In Chapter 4, we develop innovative batch
off-policy learning methods to optimize the app’s digital intervention by sending anti-



sedentary messages to users. Our interpretable decision tree-based policy improves
treatment effects and guides future clinical trials.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor of Management
Associate Dean for Business Analytics
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Chapter 1

Introduction

We re-imagine a patient’s journey in healthcare systems for the near future:

Encountering a medical emergency, the patient calls the ambulance which takes
her to an emergency department (ED) of a hospital network. The ED is well-prepared
for the new arrival with additional nurses scheduled by automatic staffing software,
which detected a recent increase in ED volume ahead of time. Skillfully trained
nurses quickly triage the patient into a treatment room, where nurses provide high-
quality care for the patient with sufficient resources. Meanwhile, the hospital database
updates the patient’s medical record and sends an anticipated hospitalization request.
A real-time capacity prediction and bed allocation system admits the patient into an
available intensive care unit (ICU) inside the hospital.

During hospitalization, a machine learning tool guides the caring team on various
decisions. As the patient stabilizes, the tool predicts the likelihood of leaving the
ICU and updates the bed management center with an expected ICU capacity in
the upcoming days. The care provider team monitors her mortality risk predictions
daily, receiving a red alert for an increase in the risk score. After several days of
improvement, the tool sends a green alert predicting a discharge to a skilled nursing
facility in the next 48 hours. The case management team begins contacting nurse
facilities, obtains signatures for authentication, and prepares for a timely discharge,
until the attending physician orders an informed discharge.

After several weeks at the facility, the patient is discharged home with continued

19



care provided by digital health services. She wears an activity tracker that monitors
her heart rate and steps taken every minute, and the data gets passed to a mobile
health application. After several hours of lack of movement, she receives a phone
notification suggesting a one-minute exercise. Calculated with a maximized expected
treatment effect by the built-in reinforcement learning algorithm, the message is sent
just in time to reduce the patient’s sedentary time and remain healthy.

The pathway toward this vision of smarter healthcare requires a joint effort by
operations researchers and healthcare workers in two aspects. First, models: lever-
aging big data and artificial intelligence to develop methodologies to tackle opera-
tional bottlenecks. Second, implementation: putting the innovations in deployment

to transform healthcare practices.

1.1 Decision Making in Healthcare Operations

We study three problems in different healthcare organizations and develop method-
ologies from optimization, machine learning, and policy learning to support their
decision making processes. The implications benefit a wide range of stakeholders in
healthcare systems, including doctors, nurses, human resources, case managers, bed

managers, mobile health app designers, and most of all, patients.

1.1.1 Nurse Staffing Optimization

The ED is essential in treating urgent patients and managing a large source of pa-
tient arrivals into the hospital. One challenge is to schedule the “right” number of
nurses, i.e., large enough to accommodate future patient demand but not too large
to save limited staffing resources and nursing hours. Another challenge is to assign
a desirable schedule to each nurse for their higher satisfaction. To improve patients’
and nurses’ experiences, optimizing nurse staffing and scheduling is necessary for the
ED. Improved staffing levels that better match patient demand can improve cost-
effectiveness while meeting patient need with fewer staff. Individual nurse schedules

that better satisfy each nurse’s preferences can increase nurse satisfaction. Addi-

20



tionally, increased nurse training can strengthen nurse capacities and resources. In
Chapter 2, we partner with an ED to develop and implement such optimization mod-
els in practice, to create a positive impact on nurses and patients as well as the overall

performances of the ED and the hospital (Bertsimas et al.|2023al).

1.1.2 Patient Outcome Prediction

Access to accurate predictions of patients’ outcomes can enhance the medical staff’s
decision-making, which ultimately benefits all stakeholders in the hospital. Anticipat-
ing short-term discharges informs about bed availability and can facilitate resource
utilization while identifying discharge barriers provides clinical guidance to person-
alize the delivery of care. Furthermore, detecting patients with high mortality or
ICU risk (or changes thereof) can alert the medical team and call their attention to
those who need it the most. More broadly, discharge is a complex process involving
the coordination of different stakeholders and resources, which could be anticipated
given accurate predictions on discharge disposition early in a patient’s stay. There is
a collection of models for such inpatient flow predictions in the literature. We refer
to |/Awad et al.| (2017a)) for a comprehensive survey on mortality and length of stay
(LOS) predictions, and to Mees et al. (2016) for discharge destination predictions.
Accordingly, in Chapter 3, we develop machine learning models that predict various
patient outcomes, including imminent discharge, mortality risk, discharge disposition,

and ICU risk, and deploy the models in a large hospital network (Na et al./[2023)).

1.1.3 Mobile Health Intervention

To promote healthy behaviors, many mobile health applications provide message-
based interventions, such as tips, motivational messages, or suggestions for healthy
activities. Ideally, the intervention policies should be carefully designed so that users
obtain the benefits without being overwhelmed by overly frequent messages. As part
of the HeartSteps (Liao et al|2018, |[Klasnja et al. 2019)) physical-activity interven-

tion, users receive messages intended to disrupt sedentary behavior. HeartSteps uses

21



an algorithm to uniformly spread out the daily message budget over time but does
not attempt to maximize treatment effects. This limitation motivates constructing
a policy to optimize the message delivery decisions for more effective treatments.
Moreover, the learned policy needs to be interpretable to enable behavioral scien-
tists to examine it and to inform future theorizing. Thus in Chapter 4, we address
this problem by learning an effective and interpretable policy that reduces sedentary

behavior (Bertsimas et al.[2022).

1.2 Deployment in a Large Hospital Network

Apart from tackling these problems with novel methodologies, the thesis also high-
lights successful implementations in a large-scale hospital network. Specifically, the
work presented in Chapters 2 and 3 is deployed in Hartford HealthCare (HHC), the
largest hospital system in Connecticut. The projects are part of a broader initiative
named Holistic Hospital Optimization (H20), where we improve hospital operations
holistically with analytics tools. In this section, we provide an overview of HHC
and discuss the main challenges encountered during the collaboration. Moreover, we
summarize key elements that contributed to the successful implementation, sharing
insights and inspirations for future efforts of developing and deploying other decision-

making support tools in healthcare organizations.

1.2.1 Hartford HealthCare

Hartford HealthCare is the largest and most comprehensive healthcare network in
Connecticut. With 36,000 employees, HHC operates in over 400 locations, including
seven acute care hospitals, several behavioral health, physical therapy, and rehabilita-
tion facilities, a multi-specialty physician group, a clinical care organization, services
of regional home care and senior care, and a mobile neighborhood health program.
In 2021, the system covered 104,696 transitions from inpatient care (i.e., movement
from HHC to another healthcare setting), 555,358 patient days of hospitalization, and

406,949 emergency department visits, generating an operating revenue of $5 billion.
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The unified network provides a high standard of care with enhanced access, afford-
ability, and equity in crucial specialties and institutes. HHC contains seven diverse
hospitals, ranging from Hartford Hospital (HH), one of the largest teaching hospitals
in New England (867 licensed beds) to smaller (150 beds) community hospitals.

We further present in more detail the seven hospitals of the network. The main
hospital of HHC, Hartford Hospital, is one of the largest teaching hospitals in New
England, in collaboration with the University of Connecticut School of Medicine. HH
is a tertiary hospital, recognized to be high performing in a variety of procedures,
conditions, and specialties. Backus Hospital (BH) is an acute-care community teach-
ing hospital and a trauma center in the east region, with an outstanding specialty
in stroke. Charlotte Hungerford Hospital (CH) is a general acute care community
hospital serving a healthcare resource in the northwest region. The Hospital of Cen-
tral Connecticut (HOCC) is a central region community teaching hospital providing
comprehensive inpatient and outpatient services in a variety of specialties and partic-
ipating in residency programs with the University of Connecticut School of Medicine.
MidState Medical Center (MMC) is another community hospital serving the central
region with a wide collection of services. St. Vincent’s Medical Center (SV) is a
tertiary community teaching hospital and mission-driven Catholic hospital that pro-
vides care with special attention to the most vulnerable and poor patients. Windham
Hospital (WH) is a community hospital in the east region and does not provide an

ICU level of care. Descriptive information and statistics about the seven hospitals

are provided in Table

1.2.2 Challenges in Healthcare Analytics

Developing and implementing new analytics models in the healthcare field poses
numerous challenges. Based on our experience of deploying H20 decision-making
support tools in Hartford HealthCare, we summarize various challenges encountered

during different phases of the projects.
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Table 1.1: Descriptive Statistics of the Seven Hospitals in HHC in 2021.

Hospital Beds Units  Services Highest Level  Patient  Operating

Days Revenue

BH 233 13 38 Critical Care 52,328 $449.9 million
CH 122 11 18 Intensive Care 27,912 $175 million
HH 867 47 48 Intensive Care 261,954  $2 billion
HOCC 446 20 34 Critical Care 76,325 $552.8 million
MMC 156 12 31 Intensive Care 39,972 $385.4 million
SV 520 26 43 Intensive Care 85,322 $466.5 million
WH 130 5 14 Step Down 11,545  $127.5 million

Regulation hurdles in model development. The healthcare industry places
the highest priority on patient safety and outcomes, leading to a highly conservative
and rigorous environment. Hospital institutions, in particular, are subject to high
risks at stake and stringent regulations. Starting analytics projects in hospitals re-
quires the initiatives to be documented, reported, and evaluated in detail. Obtaining
patient data, especially transferring electronic medical records out of hospitals’ fire-
works, is extremely challenging, subject to data privacy concerns and Institutional
Review Board protocols. In addition, some hospitals have inadequate historical data
recording systems, unorganized data structures, and limited capabilities to extract
data frequently from their IT systems. These bottlenecks can cause significant de-
lays, up to months or even years to build optimization and machine learning models.
These hurdles remain present throughout the development phase, for example, when

requesting additional data and project expansion to improve and extend models.

Conservatism in result screening. After developing the models, conveying re-
sults to healthcare stakeholders is another critical phase. The medical staff needs to
build understanding, trust, and approval of the resulting models. To prevent adverse
effects on patients from using the models, doctors and nurses seek confident model
interpretations that align with their medical knowledge, as well as high standards
for accurate results and low error tolerance. Hospital leadership relies on rigorous
evidence of significant margins of improvement to consider incorporating the results,

especially given the potential changes to medical staftf’s workflows. Some stakeholders
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have disagreements due to reasons such as unwillingness to change schedules, restric-
tions by contract, hesitations to adopt new machine intelligence, and reluctance to
overcome decades of conventions in place. Pushing back such resistance to achieve
consensus is necessary for large hospital institutions to move forward. Overall, the
complications of involving humans in the decision making loops can be larger than
technical complexities by an order of magnitude, leading to a slow process of imple-

menting new tools at a larger scale.

Complexity of decision-making process integration. After obtaining consen-
sus on implementing the changes, adopting new tools in medical decision-making
processes is deemed the most challenging phase. As healthcare workers need a highly
efficient workflow, developing automated user-friendly end-to-end software implemen-
tation is critical. Injecting new software with existing commercial software in use
poses considerable challenges involving third parties and might not be feasible, in
which case healthcare workers need additional steps to use the new tool. The integra-
tion of human-machine decision-making requires further investigation. As machines
may not capture all clinical and operational factors to make complex human deci-
sions, medical users need to be able to abide by or override the model’s decisions
when in disagreement. Moreover, some cases require medical decision-makers to run
models on demand to incorporate dynamic information changes, which needs train-
ing in new technical skills. Addressing these challenges requires close collaboration

between researchers and healthcare providers to upgrade the system.

1.2.3 Key Factors of Successful Implementation

From our journey of overcoming these challenges and implementing advanced analyt-
ics solutions on a large scale, we identify three key components that contributed to

our success.

Close collaboration with Hartford HealthCare. Over the past decade, HHC

and MIT have been closely collaborating to improve decision-making in various parts
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of the healthcare system, conducting over 20 analytics-based projects together. For
example, the HHC-MIT partnership developed machine learning (ML) models to
quantify different clinical risks such as stroke risk (Orfanoudaki et al.[|2020), COVID-
19 mortality risk (Bertsimas et al. 2020]), neutropenic risk (Wiberg et al.| 2021]),
and postoperative outcomes (Orfanoudaki et al.|[2022). The success and positive
impact of these projects in different parts of HHC built the necessary trust to envision
larger network-wide implementations of analytics tools under the H20 initiative. We
interact closely with different stakeholders, ranging from hospital leadership, doctors,
nurses, information technology (IT), case management teams, via weekly meetings
and visit trips. From iterations of improving models based on feedback from our
clinical collaborators, we create a sense of co-ownership together which is essential

for successful implementation.

End-to-end software integration. For an initiative of this scale, we also part-
nered with Dynamic Ideas LLC, a data consultancy company with deep expertise in
the implementation of operations research and analytics tools. Together we developed
software interfaces to share model outputs with medical users in a convenient, inter-
pretable, and streamlined way. The software features model explanations facilitating
transparency and trust in models and interactive adjustment supporting editing and
overriding the outputs. To further facilitate the integration of the H20 tools, we
provided tutorials and lectures about machine learning to doctors at HHC and re-
viewed human-machine cooperation regularly to improve the new decision-making
process. This end-to-end software integration coupled with multi-party collaboration

significantly accelerated the adoption of the tool and its continuous improvement.

Staggered progression over time. Our success in two large-scale implementa-
tions at HHC also lies in the way we organized the progression of the projects over
time. Instead of implementing all models for all the HHC hospitals simultaneously, we
adopted a gradual approach and started with HH, the main hospital of the network.

We first tested the patient outcome prediction tool with four physician champions
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who are lead hospitalists of five medical units at HH. After a positive evaluation
of the impact of this pilot use, HHC decided to extend our work to other hospitals
in two batches, three more hospitals at a time, until fully deployed in all hospitals.
Compared with the prediction support tool, the nurse staffing implementation di-
rectly making decisions on 200+ nurses’ schedules and changing their lives was even
more challenging effort. We pushed the incorporation at HH gradually, starting from
offline strategic adoption and transitioning into online operational use. Through nu-
merous back-and-forth iterations, the ED first adjusted hiring strategies to accommo-
date our staffing level recommendations and slowly accommodated changes in nurses’
schedules. Eventually, the software automated online scheduling, where nurses enter
preferences as needed and nurse managers generate schedules dynamically. After the
staggered progression, HHC plans to extend the innovation to all nurse staffing in

seven hospitals in the future.

1.3 Overview of Main Contributions

We summarize our solutions to address the aforementioned problems and challenges
in correspondence to the outline of the thesis. Our key contributions are two-fold,
spanning from models with demonstrated benefits through experiments to implemen-

tation with impacts created in practice.

1.3.1 Models Pushing State-of-the-art

Chapter 2. We present an integrated approach for optimizing nurse staffing at
the Emergency Department (ED) of Hartford Hospital, leveraging a combination of
data, optimization, and software. We develop and implement two-phase optimization
models to schedule nurses for 12-hour shifts across different positions over each 6-
week staffing cycle. In the first phase, we develop a robust optimization model to
allocate staffing levels for uncertain patient demand. Given the optimized levels
along with nurse preferences, we then develop a pair of mixed integer problems to

generate individual schedules including work, trainee, and preceptor shifts for each
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nurse. Experimental results demonstrate that our proposed approach leads to less
costly (5-8%) staffing with more coverage of patient care (8-25%) and higher nurse
satisfaction (5%). Compared with the previous schedule, nurses can work fewer shifts
on weekends (17%), holidays (14%), and overtime (85%) as well as be assigned to

more diverse positions (3.6) and more daily training opportunities (0.95).

Chapter 3. In collaboration with Hartford HealthCare, we develop machine learn-
ing models that predict short-term and long-term outcomes for all inpatients across
their seven hospitals. In particular, we predict the probability of patients being dis-
charged and that of patients being transferred from/to an intensive care unit in the
next 24/48 hours, as well as the probabilities of mortality and other discharge dispo-
sitions. All models achieve high out-of-sample accuracy (in the 75.7%-92.5% range)

and are well-calibrated.

Chapter 4. We design an effective and interpretable policy to optimize digital in-
tervention delivery for more effective treatments in a mobile health application. We
make decisions for HeartSteps physical-activity intervention to send users messages
intended to disrupt sedentary behavior. We propose Optimal Policy Trees + (OPT+),
an innovative batch off-policy learning method, that combines personalized threshold
learning and an extension of Optimal Policy Trees under a budget-constrained set-
ting. We implement and test the method using data collected in HeartSteps V2/V3
clinical trials. Computational results demonstrate a significant reduction in sedentary
behavior with a lower delivery budget. OPT+ produces a highly interpretable and

stable output decision tree thus enabling theoretical insights to guide future research.

1.3.2 Implementation Impacting Real-world Systems

Chapter 2. We implement our framework into an automated end-to-end schedul-
ing optimization software, which is deployed for use at Hartford Hospital since March
2023. The software collects preferences from 200 ED nurses, enables managers to gen-

erate optimized schedules based on decision preferences, and provides guided dynamic
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adjustments until exporting final daily schedules. This transformative implementa-
tion streamlines a labor-free staffing process and delivers robustly sufficient, cost-
effective, and desirable schedules. Ultimately, it benefits nurses, patients, hospital
leadership, and other stakeholders at Hartford Hospital, demonstrating the potential

of revolutionizing nurse staffing at healthcare institutions.

Chapter 3. We implement an automated pipeline that extracts new data every
morning and dynamically updates our predictions, as well as user-friendly software
and a color-coded alert system to communicate these patient-level predictions (along-
side explanations) to the clinical teams. We have been gradually deploying the tool,
and training medical staff at Hartford HealthCare since May 2022. As of January
2023, over 200 doctors, nurses, and case managers across seven hospitals use it every
day in their patient review process. In addition to increased accuracy in discharge
date prediction, we observe a significant reduction in average length-of-stay following

the tool’s adoption and anticipate substantial financial benefits for the system.
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Chapter 2

Optimization Automates Nurse
Scheduling at Hartford Hospital

Emergency Department

2.1 Introduction

The Emergency Department (ED) is a crucial component of hospitals, providing
urgent care to patients in need. However, ED overcrowding can lead to increased
waiting times, compromise care, and result in adverse outcomes for patients, such
as dissatisfaction and increased mortality rates (Bernstein et al.|2009). Additionally,
ED congestion can affect patient flows into the hospital, further impacting patient

care (Elder et al.[2015).

Nurses play a vital role in providing care to patients, especially ED patients in
critical conditions. However, healthcare systems face a worsening nurse shortage and
resource limitation, which hinders their ability to meet nurse-patient-ratios and thus
leads to higher patient mortality, higher nurse burnout, and dissatisfaction (Aiken
et al./|2002)). To patients, higher hours of care by registered nurses, lower nurse work-
load, and higher nurse skillset are associated with reduced mortality rate and shorter

hospital stays, among various patient outcome improvements (Needleman et al.[[2002,
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Aiken et al|2014, Twigg et al.[2019). To nurses, overtime hours during understaffing
periods could result in employee attrition, and dissatisfaction with schedule flexibil-
ity is also related to more intention to leave (Leineweber et al.[2016). To the whole
system, shortage of nurse staffing also negatively impacts throughput metrics in the
ED such as increased ED stay and leaves without being seen (Ramsey et al.|2018)).
Our objective is to develop nurse staffing optimization models that address the
aforementioned challenges in ED operations. More importantly, we aim to implement
the models to bring tangible benefits to the ED. The latter is not achievable without
close collaboration with an ED in practice. In the next section, we introduce our

partner ED and Hartford Hospital and describe their nurse staffing problem.

2.1.1 ED Nurse Staffing Problem at Hartford Hospital

As introduced in Section [1.2.1] Hartford Hospital is HHC’s flagship facility, a teaching
hospital and a tertiary care center with 867 beds. With over 160 years of experience,
the hospital serves over 40,000 discharges and 100,000 ED visits annually.

The ED at HH has around 200 nurses, who work in different positions of two
categories: management positions covering logistics as well as “pods” treating patients.
The set of management positions includes Chief Nurse Leadership (CNL), first nurse,
resource, triage, and Front End Provider (FEP). There are various pods to treat
patients from different categories, including the main pods (consisting of blue, green,
and orange pods and their hallways with additional capacity, for the majority of
patients), red pod (for resuscitation/emergent patients), purple pod (for behavioral
patients), iTrack (for less urgent patients), and Emergency Department Observation
Unit (EDOU for observation patients). During the early surge of COVID-19, HH
opened up a new trailer pod at the ED to treat COVID-19 patients and removed
hallway pods that could have exposed patients to infection. Nurses are classified into
different tiers based on their years of experience and qualifications for these positions.
The nurses work on one of three shift types (7 am—7 pm, 11 am-11 pm, and 7 pm—7
am). Every 6 weeks, a staffing schedule assigns nurses to shifts at these positions

throughout the period. Additionally, the leadership can arrange training for nurses
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for positions with higher eligibility requirements, requiring the scheduling of both
trainees and preceptors. We use the term shift for both the 12-hour time slot as well

as assignment of a nurse to a slot.

Currently, HH has a fixed staffing level for the number of nurses working in each
position for every shift, which remains the same every day. Throughout the day, the
levels are also kept the same for most positions except for a few positions like triage
and iTrack. However, patient demand in pods varies over time, and patterns are seen
within the week and within the day. We elaborate in the Appendix such inconsis-
tency between fluctuating demand levels (see Figure in Appendix Section ,
Figure and Figure in Section and fixed staffing levels (Figure in
Section . This contrast can lead to overstaffing at some times, increasing hospital
staffing costs, and understaffing at other times, compromising patient care quality.
Furthermore, COVID-19 has further complicated the situation by disrupting patient

demand patterns and increasing employee attrition.

The current nurse scheduling process is as follows. Staffing cycles rotate every
6 weeks. Before each staffing cycle, nurses enter their preferences and availability.
Schedules and ED nurse managers manually generate a schedule that aims to bal-
ance staffing levels and preferences between nurses. In addition, ED leadership also
manually attempts to add training sessions to the schedule when possible. After the
schedule is announced, nurses can ask for amendments to better satisfy individual
preferences and increase fairness among nurses. In turn, managers and schedulers
need to constantly re-compute schedules and accommodate feasible requests. To an-
nounce the schedule, scheduling managers take an additional step to manually convert
the schedule of approximately 3600 shifts (on average, three weekly shifts per nurse
for 200 nurses over 6 weeks) into a “team sheet” in a specified format. The entire
scheduling process takes managers and schedulers many hours and days of manual

work and can be prone to errors.

We improve the ED nurse scheduling process with an integrated approach consist-
ing of a two-phase optimization methodology and a software implementation. First,

we use a data-driven approach that allocates limited staffing resources cost-effectively
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and staffs sufficient nurses to cover target nurse-to-patient ratios for uncertain patient
demand. Second, we generate an optimized individual-level schedule that improves
nurse satisfaction by matching individual requests and preferences and expanding
training opportunities. Finally, we implement an automated scheduling software that
relieves manual labors and operations burdens for nurse managers and schedulers.
Overall, our decision-support tool leverages a combination of data, optimization, and

software to achieve a holistic improvement for ED staffing.

2.1.2 Related Work

The operations research literature contains numerous models aimed at improving ED
operations. We summarize several main categories of methodologies used and refer
readers to [Saghafian et al.| (2015)) for a comprehensive review. Simulation-based ap-
proaches involve system simulation of the ED environment, which can be used to eval-
uate alternative scenarios or combined with optimization to allocate resources (Chen
and Wang]2016)), staff (doctors, lab technicians, and nurses) (Ahmed and Alkhamis
2009), and particularly nurses (Draeger (1992). Queueing theory methods typically
assume a Poisson process with an arrival rate, sometimes considered as uncertain (Ma-
man|[2009). In a multiclass queueing system, |Chan et al. (2021) examine beneficial
yet challenging dynamic shift assignments for ED nurses. Hu et al. (2021) assume
a doubly stochastic Poisson process and integrate with ED demand forecast (Hu
et al.[[2023) to derive a two-stage nurse staffing policy for both base and surge lev-
els. Mathematical optimization is widely used to formulate personnel scheduling as
formal optimization problems with constraints and objectives (Brucker et al. 2011).
Such nurse staffing models can be solved using optimization solvers (Svirsko et al.
2019), iteratively by each objective (Rerkjirattikal et al|[2022)), or using heuristic
algorithms (Hamid et al. 2020). Additionally, goal programming models are devel-
oped to achieve a set of assumed target goals for ED nurse staffing (Ang et al.|[2018|
Mohammadian et al.|2019). Among the different approaches, we deem mathemati-
cal optimization as the most suitable to our problem, as it can learn from our data

without any distribution assumptions, incorporate specific constraints to generate

34



realistic schedules in practice and optimize for multiple objectives without having

pre-set target values.

Mathematical optimization methods can account for uncertainty sources of un-
certainty in staffing problems on the demand side or supply side. Van Hulst et al.
(2017) use robust optimization (Ben-Tal et al. 2009, Bertsimas and den Hertog||2022)
to generate shifts for workforce planning against adversarial workload predictions,
while Lim and Mobasher]| (2011]) apply relative robust optimization method (Kouvelis
and Yu/|2013) to model a common nurse scheduling problem with nurse-patient-ratio
objectives subject to patient workload variability. In addition to demand uncer-
tainty, changes in nurse availability due to sickness or unexpected events can make
the schedule infeasible, which is another bottleneck for model implementation in prac-
tice. [Clark et al.| (2015]) review the challenges of rescheduling and call for methods to
support rescheduling. [Wickert et al.| (2019) study strategies to reconstruct schedules
for multi-skilled nurses using an integer optimization problem with some relaxations.
In this work, we address both uncertain components in our two-phase models. To
protect against demand uncertainty, we develop a robust optimization model that
characterizes the target nurse-patient-ratios with an uncertainty set and solves for
robust optimal solutions that satisfy constraints with the worst-case objective value
under all realizations of uncertain demand in the set. Furthermore, we implement a
software interface that allows nurses to update availabilities and enables ED managers
to re-run the integer optimization problem with updated information and to edit the

schedule dynamically.

The most related work to ours is |Ang et al.| (2018)), who develop a mixed-integer
sequential goal programming model that optimizes for multiple objectives, including
nurse—patient-ratios, shift preferences, and nurse rest days in the ED. They inte-
grate the model into an online decision support system to facilitate implementation.
This paper provoked discussion and critics, see, e.g., Park et al.| (2022) that calls
for “no more unimplementable nurse workforce planning”. Despite the abundance of
operations research work in the past decade on nurse workforce scheduling, there is

still a significant gap between research and practice, with supposedly only 30% of
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nurse scheduling models from research being implemented and even fewer remain-
ing in use (Kellogg and Walczak 2007)). Another obstacle to implementation is the
lack of optimization knowledge and understanding in nurses (Park et al.|[2022). To
bridge this gap and advance nursing science, we work closely with nurse managers
and iterate on optimization models that can be realistically implemented. We also
develop a user-friendly end-to-end software interface for nurses to use and train nurse
leadership to run the scheduling optimization on their own. Our model-software in-
tegration, jointly with trust built with medical collaborators results in the successful

deployment at Hartford HealthCare.

2.1.3 Main Contributions

We summarize our contributions as follows. First, we develop a two-phase optimiza-

tion approach to optimize nurse staffing in the ED:

1. We leverage robust optimization and historical demand data to optimize aggre-

gate nurse staffing levels.

2. Given aggregate staffing levels, we develop mixed integer optimization prob-
lems to generate an individual-level schedule that prioritizes individual nurse

preferences and training opportunities.

Next, on computational experiments, we demonstrate the benefit of our optimization
approach and its flexibility to adjust under post-COVID-19 demand fluctuations.
The schedule cuts costs by 5-8% during overstaffing periods (early COVID-19) and
reduces insufficient nurse-patient-ratio coverage by 8-25% during understaffing pe-
riods (more recently). In addition, we conduct various experiments that compare
different modeling variants, illustrate metric trade-offs controlled by parameters, and
provide strategic insights for ED leadership. The optimized individual-level schedule
improves individual nurse satisfaction by 5% as well as introduces position diversity,
training opportunities, and fairness. Finally, we implement the models into auto-

matic end-to-end scheduling software. Near 200 ED nurses enter their availability
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and preferences into the interface, and nurse managers run the models on their own
to generate, edit, and announce schedules via simple clicks. In addition to the ben-
efit of optimization, the software revolutionizes ED nurse scheduling with minimal

manual burdens.

2.2 ED Aggregate Staffing Optimization

In the first phase, we develop a robust optimization model to allocate staffing levels

based on the historical patterns of uncertain demand.

2.2.1 Data

Indices and Sets Notation. We first define the indices and sets used in the model.
For the rest of this thesis, we use [J] for J € Z, to denote the set {1,2,...,J}. We

use the following list of indices with respective cardinalities:

e Nurses are assigned to work at a position j: CNL, first nurse, resource, triage,

FEP, blue, green, orange, hallway, red, purple pod, iTrack, and EDOU (J = 13).

e Some of the pods, blue, green, orange pods, and hallway, have the same func-
tionalities of treatment and thus belong to the same pod type as the main pods.

Pod type n: main pods, red pod, purple pod, iTrack, and EDOU (N = 5).

e As nurses can float to work between red pod, main pods, and iTrack during
each shift, we define a pod floating group as a set of pods where nurses can float
with each other. Pod floating group m: main pods + red pod + iTrack, purple
pod, EDOU (M = 3).

e Nurses work on one of the shift types. Shift ¢: 7 am-7 pm, 7 pm-7 am, 11
am—11 pm (I = 3).

e Based on nurses’ years of experience and training qualifications, they are cate-

gorized into a nurse tier ¢ (Q = 9).
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e Based on years of experience, the hospital classifies nurses into two groups that
restrict the frequency of weekend shifts. Nurse weekend group g: working every

other weekend, every third weekend (G = 2).

e The optimization model schedules for an entire staffing cycle (6-week period)
with some week-over-week regularity. We discretize time over the cycle into
each week indexed by w (W = 6), each day d (D = 42), and each 1-hour time
period ¢ (7T"=1,008). To account for schedule patterns from week to week, we

also introduce hour s (S = 168) and day e of each week (E = 7).

We define the following discrete subsets:

Jn, Jm C [J]: set of pods j of type n and of floating group m, respectively.
e Dn C [D]: set of weekend days of the cycle.
e De C [E]: set of days of the first week of the cycle.

e Dy, Dn, C[D]: set of days and set of weekend days in week w, respectively.

Demand Data Collection. Hartford HealthCare’s IT system transfers records of
ED patients to our data repository on Amazon Web Services using a secure file transfer
protocol server. The data for each patient contains details such as Emergency Severity
Index (acuity level), accommodation, service, ICD10 code, and discharge disposition
(e.g., admitted to ICU, surgery, interventional radiology, or discharge). Based on ED
rules, we map each patient from a combination of the aforementioned information
into an appropriate pod and a target nurse-patient-ratio for the patient (1:1 or 1:2
for severe patients in the red pod, 1:7 for behavioral patients in the purple pod,
1:12 for low acuity level patients in iTrack, and 1:5 for remaining patients in main
pods and EDOU). To obtain the demand for nurses, we calculate the time range for
which each patient is treated in each pod with the corresponding target nurse-patient-

hist
hmt )

ratio. We then aggregate the data by patients to compute the historical demand

representing the number of nurses needed to meet the target nurse-patient-ratio to
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treat the patients in pod floating group m during hour t. We automatically receive

the data files every day and aggregate them into demand data every week.

Modeling Uncertain Demand. Every 6 weeks, we follow the timeline shown in
Figure to model the uncertain demand for each staffing cycle spanning from week
WS to week w4+ 5. The uncertainty is hymse: the number of nurses needed to
meet the target nurse-to-patient ratio for patients in pod floating group m during

hhist

hour s of week w in the next staffing cycle. We use historical demand data h,3,

to construct an uncertainty set U and assume fng, € U. The schedule is typically
planned and announced to nurses approximately three weeks ahead of the beginning
of the upcoming staffing cycle. To ensure adequate preparation time, we construct

start ysing historical demand data up to

the uncertainty set four weeks prior to week w
the end of week ws*™* — 5. We first utilize the demand of the most recent 6 weeks of
the period, week ws®* — 10 to ws*®* —5, as the nominal demand h,,,,. To account for
fluctuations, we estimate demand changes between 6-week periods that are 10 weeks

apart. To do this, we compute a list of absolute differences between pairs of historical

demand data starting from week wS*?"* — 20:
Emsw = |PISE— phist N Wm o€ [M],s € [S],w € {wt™ —11,... wt — 5},

Finally, we construct an uncertainty set that bounds deviations of uncertainty Pomsw

from nominal demand h,,s, parameterized by &,,s.:

P B )
Romsw > 0, VYm € [M],s € [S],w € [W]
|Emsw_;lmsw| S€1m57 Vm € [M],SG [S],we [W]

U= hmsw ‘ Z Bmsw - E ﬁmsw| < €2m, Vm € [M]7 w e [W]

s€[S] s€[S]
‘ Z Bmsw - Bmsw‘ < €3, Yw € [W]
L me[M],s€[S] me[M],s€[S] )

where we estimate pairwise inter-10-week demand fluctuations €;,,, for each m, s as
the 80" percentile of &5, Vo € {ws™* —11, ... ws¥*—5} and scale €y,,, accordingly

to obtain €5, and e3. From Table 2 in Bertsimas et al.| (2021a)), the uncertainty set
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Figure 2-1: Timeline of Uncertain Demand Modeling for Every Staffing Cycle.

can obtain a probabilistic guarantee on constraint violation if €5, roughly scales with

V/Sé1ms and €3 roughly scales with /M Sey,,s. Thus we use:

€om = ﬁe/\/g Z €1ms, vm € [M]v €3 = 6&/ v MS Z €1ms

s€[S] me[M],s€[S]

with an adjustable discount factor . € (0, 1].

Other Data and parameters. Other than the demand data, we collect the fol-
lowing data from ED leadership:

e Z,: total number of nurses of type g.

e Z7: total number of nurses of type ¢ and weekend group g.

curr.
e .

e+ number of nurses working in pod j during shift ¢ on day e of the week in

the current schedule.

e n;,7;; minimum and maximum number of nurses required at unit j, respec-

tively.
e T'n, maximum total number of shifts each nurse of type ¢ can work in a week.

e Ny: set of tuples (g, 7) such that nurse of type ¢ cannot work in unit j due to

qualifications and years of experience.
e [, number of nurses of type ¢ available to work on period ¢.

We also introduce o4 (or equivalently 0i4s,) to indicate whether shift ¢ on day d

contains time period ¢.
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2.2.2 Optimization Model Formulation

Decision Variables. In the next 6-week cycle, on each day of the week, we decide
the number of nurses of each tier to be staffed for each position during each shift. To

do so, we introduce decision variables:

® Zyjidg € Z: number of nurses of tier ¢ from the weekend group g working at

position j during shift ¢ on day d.

Objective. The objective of the model is to minimize the total number of nurse
shifts scheduled while penalizing shortage for demand and changes from the current
schedule, with parameters to control trade-offs between the three terms.

To achieve this, we use two auxiliary variables to track the second and third terms:

e npr: the weighted sum of insufficiency in the worst case w.r.t. the demand
uncertainty set, where insufficiency is defined as the number of nurse shifts

missing to satisfy the target nurse-to-patient ratios to treat the patients.

o Azj,.: the absolute difference in the number of scheduled nurses working at

position j during shift ¢ on day e of the week from the current schedule.

We use the notation f(z); to denote the positive part of the function f(z), i.e.,

f(z)y = max{f(x),0}. We impose constraints on the auxiliary variables:

npr Z Z ww(ﬁmsw - Z quidgo-idsw)Jr? Vil € Z/{,
me[M],se[S],we[W] q€[Q),jEIm i€[I],d€[D],g€[G]
(2.1)
Azjie > |25 — > gl Vi€l i€l ecE] (2.2)

q€(Q],deDe,g€[G]

Constraint (2.1)) is a robust constraint with parameter w,, increasing with w to pe-

nalize more on later weeks to capture the most recent demand trend.
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Our objective function is to minimize a weighted combination of three terms:

min Z Z4jidg  (Minimize number of scheduled work shifts)
a€[Ql,j€lJ] i€(l],de[D],9€[C]
+ - npr (Penalize when staffed below target ratios)
+ e Z Azjie (Penalize number of changed work shifts),

JE[J]i€ll],e€E]

with parameters p, s > 0 to control the trade-off between the objective terms.

Constraints. The schedule must adhere to a range of staffing constraints to be

feasible. These include:

e Each position j has a minimum and maximum number of nurses to staff during

time ¢:

n; < Z Zqjidg * Oiar <My, Vi€ [J],te[T].
q€(Q),i€[I],de[D],g€[G]

Staffing levels are fixed at certain positions (such as CNL and first nurse) for
logistical reasons (with n; = 7m; to be the same as current levels), while other

positions at different pods can be adjusted to demand.

e Certain units are not eligible based on nurse tiers:

quidg:07 v(Qa])ENU7ZE[I]’dE[D]’ge[G]

e Staffing levels among the three main pods are allocated in proportion to their
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capacities:

E Zqdidg S E Zq3idg S § Zq5idg )

q€[Q),i€(I],de[D],g€[G] q€[Q),i€(1],de[D],g€[G] q€(Qli€(1],de[D],g€[G]
Z Zqjids — Z Zgjiaz < 1,
q€[Q],i€[l],de[D],g€(G] q€[Ql,i€[1],de[D],g€[G]
Z Zqjids — Z Zgjida < 1.
q€(Q],i€[l],de[D],g€[G] q€[Ql,i€[1],de[D],g€[G]

e Staffing levels are kept to be consistent from week to week for a stable schedule:

E: 2q,j,i,k+E(w—1),g = E 2q,j,i,k+E(W-1),g

7€[Q],9€[G] €[Ql,9€[G] (2.3)
Vk € [El,w e [W —1],i € [I],j € [J].

ED leadership indicates a preference to consider only the constraints above when
deciding on staffing levels, based on demand only. However, they have the option to

also consider nurse availability and supply information in this stage of scheduling by

including additional constraints in the model:

e Assignments are capped by the number of available nurses of each tier during

each period:

Z Zqjidg * Oidt S eq; vq € [Q]at € [T]
jelJlicll],de[D],g€[G]

e Total number of weekly working hours is bounded for each nurse:

Z Zqjidg S qu7 VQ € [Q]v w e [W]

deDy,j€[J]i€ll],9€[G]

e Nurses working every other weekend can have at most two weekend shifts ev-

ery two consecutive weeks (allowing one shift on Saturday and another one on
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Sunday on the working weekend):

> Zyjitg < 22, Vg€ [Qlw e [W 1]

deDnywUDny 1 1,j€[J]i€[I],9€[G]

e Nurses working every third weekend can have at most two weekend shifts every

three consecutive weeks:

Z Rqjidg < 2Z§7 vq € [Q]?w € [W - 2]

d€DnyUDny4+1UDngy+2,j€[J]i€[I],9€[G]

2.2.3 Solving the Robust Optimization Model

We describe our method and implementation of solving the robust optimization prob-

lem outlined in Section 2.2.2] Due to the fact that both the decision variables and

uncertainties are integers, duality theory is not applicable and thus a closed-form ro-

bust counterpart cannot be obtained. In light of the discrete and finite nature of the

uncertainty set, a cutting plane method is employed to identify a subset of the most

restrictive constraints and to approximate the worst-case objective value among the

uncertainty set. We solve the model with Algorithm [I], in which the master problem

is the optimization problem defined in Section with U being replaced by a subset

u.‘{

in constraint (2.1).

Algorithm 1 Cutting plane algorithm

1: Given the nominal demand hMst : /0 {hhiSt}, k < 1, and tolerance 7, initiate
the master problem

2: repeat

3: Solve the master problem and obtain a solution 2"

4: npry(h, 2%) > Wos (Pmsw — > Zgjidggidsw))+

me[M],s€[S],we[W] q€[Ql,jEIm,i€[I],d€[D],g€[G]

5: h* < arg max nprﬁ(ﬁ, 2") > Maximize insufficiency w.r.t. demand
uncertainty sehteu

6: Ut {hhi“,hl,...,h“}

7 kK Kk+1

8: until (npr® — npr~=1) /nprf=t < nor k = KM > Reach violation gap or

maximum iterations
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All models in this work are implemented using the JuMP package (Dunning et al.
2017)) in Julia programming language (Bezanson et al.|[2017) and are solved by the
Gurobi solver (Gurobi Optimization, LLC|[2023)). The master problem is converted
into a mixed integer linear problem, where we linearize constraints with positive
parts and constraints (2.2)) with absolute values by including additional auxiliary
variables and constraints. We set a stopping criterion to solve the master problem with
either a tolerance of 0.01 optimality gap for the mixed integer optimization problem
or a 20-minute time limit. For the cutting planes implementation, we utilize solver
callbacks with added lazy constraints in JuMP to accelerate the model compilation
and solving process. We set the tolerance of violation gap for cutting planes n = 0.1
and the maximum number of iterations of cutting planes x™** = 20. To linearize
the objective of maximizing the summation of positive parts for each subset U"*, we

introduce big M constraints with M = 100.

Parameter Tuning. In preparation for each upcoming staffing cycle starting on

Week wstart

, we fine-tune a combination of parameters, (., 1, t2, Wy, using historical
data. To validate our choices, we examine the performance of different combinations
of parameters over a validation period of ws®* — 10 to w**** — 5. By comparing the

values of the objective terms, we determine the optimal combination of parameters.

Deterministic Model. For comparative purposes, we also consider a deterministic
model where we only use the nominal demand instead of incorporating the uncertainty
set. In this case, we solve a single master problem using the optimization model
defined in Section [2.2.2] but with U replaced by the set of historical demand only
{h"s*} in constraint (2.1)), which is equivalent to setting e; = €, = €3 = 0 in U.

2.2.4 Quantifying Strategic Decisions

Our model not only optimizes staffing levels for each cycle but also provides a way for
nurse leadership to quantify strategic decisions. By designing different model varia-

tions, we can evaluate different options and guide the leadership in making decisions
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such as: Should they maintain the same staffing levels each day or week of the cycle?
And should they consider incorporating new shift types in addition to the three ex-
isting ones? To guide these strategic decisions, we use our model to compare different
variations and quantify the operational costs associated with each. This approach
allows us to evaluate the trade-off between different objectives and impose additional

constraints as needed.

Stable staffing levels. Currently, the staffing levels remain constant every day.
Motivated by the different demand patterns by day of the week, we allow the staffing
levels to vary by day of the week while keeping the same levels among the 6 weeks
with a weekly stability constraint . To evaluate the benefits of this variation, we

compare it to two other options:

1. Daily stability: Staffing levels can be fixed from day to day, by replacing ({2.3])

with the following constraint:

> Zgig= Y. zging, Vde[D—1]ie(l],jel]]. (2.4)
9€[Q],9€[G] 9€[Q],9€(G]
This option is easier for the leadership to manage but might result in unneces-

sary overstaffing and understaffing on some days.

2. No stability: Staffing levels can be allowed to vary every day, by not including
constraint (2.3)) and (2.4). This option has additional flexibility to fit demand
patterns but could be potentially overfitting the data.

The operational costs and values of the three options can be compared to determine

the best approach.

Change shift designs. ED leadership also considers changing or adding shift types.
Such changes would be disruptive and require some nurses to change their lifestyles
to accommodate the new working hours but they may lead to more cost-effective

staffing. With many potential shift type options available, it is essential to determine
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which ones could result in the most improvement. We support this by introducing
binary variables y; € {0, 1} that indicate whether a shift type i is generated. We have
the set of existing shift types I and consider a feasible set of potential shift types

Tteasible 2 Loxist With ;4 for each @ € Igeaqie. We add the following constraints to the

model:

e A shift type is generated if and only if used in any shifts:

Z Rqjidg S My *VYi, Vi € [l]
q€[Ql.j€[J],de[D],g€[G]

with a constant M,,.
e The number of shifts types is bounded with a parameter Yj,.:

Z Yi S Ymax :

1€ [feasible

e If considering only new shift types without changing the existing shift types,
then all current shift types are kept:

Yi = 17 Vi € Iea:ist'

By solving different variations and comparing their objective values, we can identify

the most valuable shift type candidates.

2.3 ED Individual Scheduling Optimization

For the second phase, we develop another optimization model to schedule individual

nurses based on the recommended aggregate schedule.

2.3.1 Data

Indices and Sets. We introduce additional indices and sets besides those defined

in Section [2.2.1F
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e Individual nurse ¢ (L ~ 200 representing the total number of nurses).
e Pattern u (U = 3) out of patterns to have shifts on and off:

1. All shifts in a row (e.g., working on Monday, Tuesday, and Wednesday

consecutively),
2. Every other day (e.g., Monday on, Tuesday off, Wednesday on, ...),

3. Two on two off (e.g., Monday and Tuesday on, Wednesday and Thursday
off, ...).

e Criterion o (O = 9) to measure each nurse’s dissatisfaction, such as match or

mismatch in shift assignment with nurses’ preference on dates and patterns.
and sets:

e L,: set of nurses of type q.

o Jslack: get of positions j where a shortage or surplus of at most one is allowed.

Data Input. One of the inputs of the second phase model is the output aggregate

levels 2%8% from the first phase, aggregating the number of nurses to schedule for

jid
position j during shift ¢ on day d from the solution 27, :

g = Z Zgjiag: VI € [J],i € [I].d € [D].
4€[Q),9€[G]
While the assignment per nurse type ¢ and weekend group g in the first phase is
included to ensure a feasible assignment, it is subject to change during the second
phase. In addition to the aggregate levels, the model takes into account a range of

individual preferences and availabilities for each nurse:
o/ Zrd, [anref’ Ifeas: whether nurse ¢ prefers (typically their current shift type),

does not prefer, and has the feasibility to work at shift type i, respectively.

e Fy,: maximum number of shifts for nurse ¢ on week w, obtained by subtracting
Paid Time Off (PTO) and education time of each week from the total number

of weekly shifts.
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e kg, whether nurse /¢ is assigned to work on the weekend of week w.

pref punpref poff pavail. 1 i
o P, , P, Py, Py whether nurse ¢ prefers, does not prefer, is off, and is

available to work on day d, respectively.

. A;’;ef, Axpref: whether nurse ¢ prefers to have, and not to have the work pattern

u, respectively.

° T?J’.as, pi‘;asz whether nurse / is eligible to be a trainee, and a preceptor (training

the trainees), respectively, at position j.

2.3.2 Integer Optimization Model on Shift Scheduling

To generate an individual schedule that prioritizes various staff preferences as well as
training opportunities given these inputs, we develop a mixed integer linear problem

that comprises the following components.

Decision Variables. The core decision variables track nurse assignments:
o byjia € {0,1}: whether nurse ¢ works at position j during shift ¢ on day d.

e 1450 € {0,1}: whether nurse ¢ is assigned as trainee at position j during shift

on day d.
e s, € {0, 1}: whether nurse ¢ is assigned to shift type i.

To optimize computational efficiency, we implement all variables as sparse matrices
and tensors under conditions as follows. For instance, binary variables byj;q are only
needed if the values are allowed to be one, and thus are only defined for indices ¢, 7,7, d
such that nurse ¢ is eligible to work at position 7 and is available during shift i on
day d. Such sparse indexing naturally incorporates some eligibility, availability, and

feasibility constraints.
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Objective. Our primary objective is to maximize nurse satisfaction across various
metrics, such as individual preference on dates, times, and shift patterns, diversity
in pod assignments, and reduction in weekend, holiday, and overtime shifts. Mean-
while, we penalize shortages and surpluses in aggregate staffing levels while rewarding
scheduled training shifts.

We introduce auxiliary variables to track different terms of the objective:
e ¢, € R: computing nurse ¢’s dissatisfaction penalty score on criterion o.
o f5 €{0,1}: whether nurse ¢ works an overtime shift on week w.

e k) € {0,1}: whether nurse ¢ works on a weekend of week w where she is

supposed to be off that weekend.

e vy; € {0,1}: whether nurse ¢ has at least one shift at position j during the

staffing cycle.
e apg € {0,1}: whether nurse ¢ starts work pattern w on day d.

® Zids th’d € [0,1]: whether there is one shortage or surplus at position j during

shift < on day d, respectively.

f; € R*: number of unassigned shifts for nurse /.
We impose a range of constraints on the auxiliary variables:

e Number of each nurse’s weekly shifts cannot exceed the maximum (allowing at

most one overtime shift per week if f,/ =1):

Z (bejia + Tejia) < Fwew + fi,, V0 € [L],w € [W].

deDy,,jelJ)ielI]

e Nurse can only work (at most two shifts) on the weekend if assigned the week-

end (allowing shifts to schedule on an unassigned weekend if k;, = 1):

> (brjia+1ejia) < 2kew + k), VO E[L]w e [W].

d€Dny,je[J],i€(I]
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e Tracks whether nurse ¢ has at least one shift at position j:

v <Y by, VLEL]LjEJ].

de[D],ig[I]

e Tracks work patterns:

— Nurse cannot work more than three shifts in a row:

aprd+apiar <1, Yle[L]l,de[D -3

— All shifts in a row pattern:

314 < > (begiat bejiae + bejiase)
JelJ]iell]
+ Z (Tejid+ Tejidr1 + Tojidre), VO €[L],de[D—2],
JelJliell]
3asiq > Z (bejia+ bejiarr + bejidre)
jelJliell]
+ Z (Té,j,i,d + T0jidv1 r@,j,i,d+2) -2, We [L], de [D - 2}
JelJ] iell]

— Every other day pattern:

3apqg < Z (bejia+1—"bejidr1 + bejidre)
Je[J]iell]

+ Z (W,j,i,d +1— Tid+1 T Té,j,i,d—|—2); Vil e [L], d e [D - 2],
jelJ)ie(l]

apqd > Z (bejia—1—"brjidr1+ bejidre)
JE[J]ielI]

+ Z (W,j,i,d —1- T jid+1 T rﬁ,j,i,d+2), Vi e [L], de [D — 2].
jelJliell]
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— Two on two off pattern:

dagqg < E (bejid+ bejiarr +2—bejidre — bejidrs) + E (rejid

JelJiell] JelJliell]

T jidel T2 = Tejidi2 — Té,j,i,d+3)a Vi e [L],de[D -3,

dagps > Z (begid +bejidrn — 1 —bejiare — bejiars) + Z (Tegid
jelJliell] jelJliel]

+’I“g,j7i7d+1 —1- T0jid+2 — TK,j,i,d-i—B)a VYl € [L], de [D — 3]

e Computes individual nurse penalty score for each [ € [L] counting the number

of:
— Shifts on dates supposed to be off: ¢, = > P (bjia + Tejia)-
de[D],jelJ]iell]
— Unassigned weekends turned on: cpp = > k..
we[W]

— Overtime shifts: ¢3 = > [ .
we[W]

— Unpreferred shift types: ¢y = > I Z-nprefbeg‘z’d-
de[D],je[J],ie(1]

— Unpreferred dates: ¢;5 = > P (bgjia + Tojia)-
de[D],jelJ],ie(]]

Preferred dates: c;5 = > PE (bijia + Tjia)-
de[D],je[J]ie(]]

— Different positions assigned: ¢z = > vy;.

Je]
— Unpreferred patterns: ¢z = > AP " rud > ALY " s
de[D—-2],u€2] de[D—-3]
— Preferred patterns: cj9 = S A?;efagud + > A?;efaggd.
de[D—-2],u€l2] de[D-3]

e The individual nurse schedule matches aggregate staffing levels with shortages

and surpluses:

L = P — Pt Z bejia, Vj € JP¥ i€ [I],de (D).
Le[L]
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e Some positions do not allow shortages or surpluses:

Zaa =% =0, jeJ\JP¥ielll,de D]

e The number of unassigned shifts for each nurse is the number of maximum shifts

minus assigned shifts:

fr=> Fu- > (bejia + rejia)-

we[W] jelJli€(l],de[D]

Our objective function is to minimize a weighted combination of four terms:

min  p3 Z AoCro (Minimize total weighted dissatisfaction score)
Le[L],0€[0]
+ i Z w;hortagezj_i 4 (Penalize shortage to aggregate staffing levels)

j€[J),i€[I),de[D]

+ s Z z};d + Z /i) (Penalize unassigned nurse shifts and surpluses)
Jj€E[J]i€[I],d€[D] Le[L]

— g Z T4jid (Reward total training shifts assigned)
Le[L),je[J) i€ll],de[D]

with parameters:

o \i,... 5, A8 >0, g, A7, A9 < 0 as weights for each penalty score metric,

® /i3, [Lg, 15, ftg > 0 to control the trade-off between the objective terms,

shortage > 0 as penalization weights for shortage at position j.

Constraints. Besides the constraints associated with the auxiliary variables for the

objective, the schedule is enforced to satisfy the following constraints:

e Nurses are limited to working at most one location for each available shift, and

cannot work on unavailable dates:

S (bjia + rezia) < B, Wee [L]i € [I],d € [D].

JEJ]
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Each nurse is assigned at most one shift type over the 6-week period:

ZS& <1, Ve e [L]

i€[]]
Each nurse can be only assigned a feasible shift type:
su < I e e[L),ie[]).
Each nurse can only work on her assigned shift type (with My = 2D):

Z (bejia + Sejia) < My - sy, VO € [L],i € [1].
de[D],je(J]

Nurses of each level can only work at their eligible positions:

bijia =0, Vqe[Q],(q,5) € Ny,l € Lg,i € [I],d € [D].

For EDOU, at least one EDOU resource nurse needs to be present at 7-7 shifts:

Z beepou,ia > 1, Vie{1,3},d e [D].

LELEDOU resource

Each nurse can only train at positions she is eligible to be a trainee:

reia < v, Ve [L]j € [J),iell],de[D].

There can be at most three training shifts for each training over the period:

> ryia <3, Ve[L]je[J].
i€[I],de[D]

The number of trainees assigned cannot exceed the number of eligible preceptors
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working at each position during each shift:

Z Tejid < Z bejia i, J € [J],i € [I],d € [D].

Le[L] Le(L]

e To ensure fairness among nurses, each nurse’s penalty score cannot exceed a

max.

bound ¢

d <™, el (2.5)
0€[0]

2.3.3 Integer Optimization Model on Preceptor Scheduling

After obtaining the optimal solution for scheduled work shifts b7;;; and trainee shifts
rijia from solving the model defined in Section [2.3.2] we develop and solve another
mixed integer linear optimization model to schedule preceptor shifts to train the
corresponding trainees. The overall goal is to distribute trainees more evenly among

eligible preceptors. To achieve this, we introduce decision variables:

e pyjia € {0,1}: whether nurse ¢ serves as a preceptor at position j during shift

on day d.

e p™** ¢ R: an auxiliary variable to track the maximum number of preceptor

shifts assigned among all nurses.
We set the objective function to:
min pM** (maximum number of preceptor shifts assigned to each nurse).
The model is subject to several constraints:

e p™* is at least the number of preceptor shifts for each nurse:

pr > Z Prjid, VU € [L].

JE[J],i€[I],de[D]
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Each nurse can only be a preceptor if she is eligible to train the trainees at each
position:

p@jid Spg(;'asa Vf € [L]vj S [‘”72 € [[]7d € [D]

Each preceptor shift is in tandem with the nurse’s work shift at the same posi-
tion:

pfjidgszidy Vge[L],jG[J],ZG[I],dE[D]

Each trainee shift is covered by a preceptor. Specifically, the number of precep-
tors working is at least the number of trainees assigned at each position during

each shift:

> ria <> peas Vi€ i€l de[D].
Le[L] Le[L]

2.3.4 Flexible Options for Nurse Leadership

We provide various options for ED nurse leadership to generate alternative schedules

based on their preferences. These options include:

The option to forbid shift type change from each nurse’s pre-assigned shift type
by setting s, = ID', Ve € [L),i € [I].

The ability to exclude trainee scheduling by setting rp;q = 0, Y0 € [L],j €
[J],i € [I],d € [D].

The option to decompose the model into ED and EDOU and solve each of the

two partitions separately.

Control over the priority importance of different terms in the objective function
by adjusting p’s. Currently, the order of importance is shortage, satisfaction,
unassigned /surplus, and training. If training is not intended to be scheduled,

it can be excluded by setting its weight to zero.

Adjustment of the relative priority of coverage between positions using wjhortage
Currently, positions that require more senior nurse tiers (such as CNL and

triage) have higher penalization weight for shortage.
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e Fine-tuning of the relative importance of satisfaction score metrics using \’s.
To reduce model solving time, the preferred pattern and/or unpreferred pattern

term(s) can be turned off by assigning a weight of zero if desired.

e Inclusion of fairness among nurses as a hard constraint in Equation ([2.5)), with

c™** controlling the degree of worst-case penalty score, or as a soft constraint

max

by adding the term ¢™* in the objective function with a corresponding weight
factor. Alternatively, fairness can be excluded altogether, which could also

reduce solving time.

2.4 Results

We present experimental results of various components of our approach in different
staffing periods. As shown in Figure in Appendix section the ED volume has
fluctuated over the recent years. We first developed the first phase aggregate model
in late 2020, when demand significantly dropped due to the beginning of COVID-19.
In Section we compared model variations and parameter trade-offs, illustrated
schedule and demand patterns, and demonstrated the benefit of optimization in this
overstaffing period. Then in 2021, we iterated with the nurse leadership to adjust the
aggregate model and to develop the second phase individual model. In Section [2.4.2]
we present the progression of the recommended schedules as well as the benefits of
optimization for individual nurses. More recently in 2022, the ED patient demand
started bouncing back to the pre-COVID-19 period, and understaffing exceeded more
than ever. In Section [2.4.3] we demonstrate our calibrated model’s benefit in reducing
insufficiency during this understaffing period. Moreover, we developed software for

automatic nurse staffing and investigated the results of resolving the models.

2.4.1 Reducing Staffing Costs during Low Demand Periods

We first define the quality metrics and a variety of approaches for evaluation. We

conduct experiments using data for staffing cycles from October 26 to December 20
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2020 to compare approaches and demonstrate metric trade-offs. Lastly, we illustrate
recommended schedule changes and schedule patterns corresponding to demand pat-

terns.

Quality measures. We use two metrics to evaluate staffing. (a) Cost: We obtain
the total number of nurses assigned to work shifts, which is not subject to uncertainty.
(b) Insufficiency: We first compute the fractional number of nurses missing to satisfy
the target nurse-to-patient ratios during each hour of the upcoming staffing cycle,
which we sum over all hours of the 6 weeks and then divide by the number of days
and the number of hours per shift (12). We call this metric average daily insufficiency
evaluated out of sample, subject to uncertain demand during the future 6 weeks. For
example, a current average daily insufficiency of 0.17 reported in Table means
that we need to add on average of 0.17 12-hour shifts per day to the exactly needed

time and spot to satisfy target ratios. We aim to reduce both cost and insufficiency.

Different approaches for evaluation. We consider the following 6 approaches

that generate schedules to compare their performances:

1. Current schedule: The baseline is the current staffing levels that the ED uses

every day.

2. Oracle approach: We design the oracle approach to understand what would be
the best we could have done if we had perfect demand information. For each 6-
week period, we apply the optimization model on the demand observed in these
6 weeks and test the schedule during the same period. Since it is not possible
to know perfect demand information ahead, this approach is not realistic to
implement in practice but rather illustrates the best possible improvement as a

benchmark.

3. Non-robust optimization: In the remaining approaches, we only use information
known previously to make prospective decisions for the future to demonstrate

the feasible improvement achievable in practice. We first apply the optimization
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model on the previous 6-week period’s data to generate the schedule, and then
apply the schedule on the following new 6-week period to evaluate the perfor-
mance. In the non-robust scenario, we solve a deterministic model to optimize

the schedule on the data in the previous period 6-week period.

4. Robust optimization (a): As demand keeps changing over time, the deterministic
approach might not be robust against uncertain demand deviations between
the previous and new 6-week periods. We thus use the robust model described
in Section to protect against possible insufficiency due to such demand

uncertainty.

5. Robust optimization (b): As mentioned in Section [2.2.4] ED leadership is inter-
ested in quantifying the benefits of strategic changes in the shift type design.
This variation considers changing one of the shift types to another 12-hour

period.

6. Robust optimization (c): The last variation considers adding a new shift type

spanning another 12-hour period on top of the three existing ones.

Comparison results among approaches. We test the above approaches on data
from three overlapping 6-week periods (beginning one week apart) from October 26 -
December 6 to November 9 - December 20 in 2020. Table shows the daily staffing
cost and insufficiency as well as relative reductions from the current status among
the three tested periods using the 6 different approaches. Currently, each day has
56 nurse shifts and an average daily insufficiency of 0.17 nurse-shifts. On average,
rearranging current shifts optimally given oracle information can reduce the daily
cost to 49.81 (11.05% reduction) and daily insufficiency to 0.02 (86.96% reduction).
This suggests significant room for improvement from the current status quo in both
quality measures. By rearranging the current shifts prospectively, the non-robust
schedule reduces cost by 9.95% on average but increases insufficiency by 22.55%. We
generate robust schedules with more protection against demand deviations with three

variations. With the current shift types, robust schedule (a) can on average reduce
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Table 2.1: Results of Average Outcomes (4 Standard Feviation) from 6 Approaches.

Schedule Shift types Daily cost Cost Daily Insufficiency
approach reduction [%|  insufficiency  reduction |%]
Current 7-7, 11a-11p 56 - 0.17 (£ 0.06) -

Oracle 7-7, 11a-11p  49.81 (£ 0.46) 11.05 (£ 0.82) 0.02 (£ 0.00) 86.96 (£ 0.33)
Deterministic 7-7, 11a-11p ~ 50.42 (£ 0.38)  9.95 (£ 0.67)  0.21 (£ 0.04) -22.55 (& 79.57)
Robust (a) 77, 1la-11p  51.33 (& 0.50)  8.33 (£ 0.90)  0.12 (£ 0.03) 27.70 (& 81.31)
Robust (b)  7-7, 12p-12a  50.57 (& 0.49)  9.69 (& 0.88)  0.15 (£ 0.07) 13.18 (& 72.64)
Robust (¢) 77, 1la-1lp, 50.57 (£ 0.38)  9.69 (£ 0.67)  0.15 (£ 0.07) 11.45 (& 74.95)

2p-2a

cost to 51.33 (8.33% reduction) and reduce insufficiency to 0.12 (27.70% reduction).
Changing or adding 12-hour shift types, robust schedules (b) and (c) can further
reduce average cost to 50.57 (9.69% reduction) with average insufficiency of 0.15
(11.45-13.18% reduction). The results show that adding or changing shift types could
reduce staffing cost by an additional 1.36% while increasing daily insufficienty with
0.03. After reviewing with the nurse leadership, we decide to recommend the robust
schedule (a) for its ability to reduce both cost and insufficiency, as well as its feasibility
to be implemented without disruptive changes in shift types. Meanwhile, the potential
benefit of adding an afternoon shift uncovers this possibility to be later implemented

in 2023.

Trade-off between cost and insufficiency. There exists a trade-off between cost
and insufficiency, as staffing more nurses facilitates more sufficiency with increased
cost, and vice versa. We illustrate the flexibility of the optimization model to control
such trade-offs by varying parameters p; and (. in Figure where scatter points
from each approach represent the daily average insufficiency and cost of schedules
generated with different parameters. This earlier version of the model did not include
the objective term with py or the parameter w,. The current schedule has a daily
average cost of 56 and insufficiency of 0.17. Retrospectively, given perfect information,
schedules optimized with different parameters range from having 50.43 cost and 0.01
insufficiency to having 48.57 cost and 0.06 insufficiency. Prospectively with the data-
driven approach, the non-robust schedules lead to a reduction of cost to 49.43 - 50.90

with the trade-off of higher insufficiency between 0.26 and 0.20. The robust schedules
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Table 2.2: Recommended Schedule Change (Shift 1: 7a-7p, 2: 1la-11p, 3: 7p-7a).

Pod Main Red Purple

Shift || 1 2 3 |1 2 311 2 3
Mon || -2 +4 -2 -1 0 -1-1 0 O
Tue -2 +3 0 ||-1 0 -1|0 O O
Wed || -2 +3 0 ||-1 +1 -10 0 -1
Thu ||-1 +3 -2{-1 0 -1(-1 0 O
Fri -1 +2 -1}-1 +1 -1{0 0 -1
Sat -4 +1 4-1 +1 -1{-1 0 -1
Sun ||[-3 +1 -3|-1 0 -1)-1 0 -1

(a) incorporate uncertain demand deviations to trade off some cost reduction for more
sufficiency, ranging from giving 50.38 cost and 0.17 insufficiency to 53.24 cost and 0.08

insufficiency. One of them is selected for schedule illustration next.

Illustration of schedule change. We illustrate the robust schedule (a) for Novem-
ber 2 - December 13 with selected parameter values. Compared with the current
schedule, Table reports the number of additional nurses compared with the status
quo for each shift on each day of the week at main, red, and purple pods (e.g. +2
denotes adding 2 more shifts and -1 denotes reducing 1 shift). Staffing levels at other

positions (CNL, first nurse, triage, and iTrack) are not changed per request from ED
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Table 2.3: Recommended Level Change at Iteration 1.

Pod Blue Green Orange Purple
Shift | 7a 1la 7p | 7a 1lla 7p | 7a 1lla 7p | 7a 1lla T7p
Sun -1 0 -1 1-1 0 -1 ]1-2 0 2 1-1 0 -1

Mon -1 +1 -1 |0 O o (-1 -1 -1,10 O 0
Tue |0 O 0 |0 O o (-1 +1 -1 ,10 O 0
Wed [0 O 0 |0 O 0 |0 O 0 10 O 0
Thur | -1 +1 -1 [0 O o (-1 -1 -1 10 O 0
Fri 0 0 0 |0 O 0 |-1 O 0 10 O 0
Sat -1 1 -11]-1 0 o (-2 +1 -2 -1 O 0

leadership. We recommend having more 11 am—11 pm shifts (especially on weekdays)
and fewer 7-7 shifts (especially on weekends). Changes in each shift vary from 04 for
the main pods and 0-1 for the red pod or purple pod. This recommendation reduces
average daily cost by 7.40% (from 56 to 51.86) and insufficiency by 47.87% (from 0.18
to 0.10) during this period. We further show our better match of staffing levels with

demand patterns and provide the full schedule by the optimization approach in the

Appendix section [A.2]

2.4.2 Iterating Towards Implementable Schedules

Adjusting aggregate schedule with ED leadership feedback. After present-
ing the positive results to Hartford Hospital in the previous section, we gained support
from the hospital executives. In 2021, we worked closely with the nurse leadership
and had multiple iterations to make the schedules more practical for implementation.
We made adjustments to the model’s input parameters to better align with the needs
of the nursing staff. For instance, we fixed the red pod staffing to three all the time
and introduced the possibility for nurses to float from the red pod to the main pods
when demand in the red pod is low. After adjusting the parameters, we obtained
the first iteration of output aggregate level changes (numbers of nurses increased or
decreased from the current schedule), as shown in Table 2.3] for the staffing cycle
from May 30 - July 10, 2021.

The results suggested the need for more 11 am—11 pm shifts, fewer 7 am—7 pm, 7

pm—7 am, and weekend shifts, which would reduce the total number of shifts by 8%
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Table 2.4: Recommended Level Change at Iteration 2.

Pod Blue Green Orange Purple
Shift | 7a 1la 7p | 7a 1lla 7p | 7a 1lla 7p | 7a 1lla T7p
Sun -1 0 -1 1-1 0 -1 ]1-2 0 2 1-1 0 -1
Mon [0 O 0 |0 O 0 |0 O 0 |0 O 0
Tue |0 O 0 |0 O O (-1 +1 -1 10 O 0
Wed |0 O 0O |0 O 0 |0 O 0 |0 O 0
Thur | 0 O 0 |0 O 0 |0 O 0 |0 O 0
Fri 0 0 0O |0 O 0 -1 O 0 10 O 0
Sat -1 1 -11]-1 0 -1 -1 0 -1 ]-1 0 0

and better match demand patterns for this overstaffing period. However, the nursing
leadership was reluctant to reduce staffing levels significantly, citing various concerns.
First, since the ED staffing levels were kept in the current way for decades, it was
challenging for human decision-makers to break the tradition and adopt innovations.
To lessen this concern, we added the penalty term for the number of changes from the
current schedule with weight po, which represents the willingness to change. Second,
due to the high risk of ED patients, the nurses are among the most conservative people
to reduce staffing, despite their high cost and employee dissatisfaction. We addressed
this problem by tuning the trade-off parameters 1y and S, and providing options for
them to adjust the parameters based on their safety level. Third, being aware of
the larger fluctuations in ED demands than usual due to COVID-19, the leadership
raised concerns about how well the previous weeks’ data can capture trends for the
future 6-week period. Thanks to this concern, we added the parameter w,, to increase
penalization weights on more recent weeks’ data to capture more recent trends. The
output schedule changes after these adjustments, shown in Table 2.4] had a reduced
magnitude of changes, especially on weekdays, which made nurse leadership more
comfortable in adopting our recommendation. Overall, these adjustments helped
build closer relationships and trust between the research team and the nursing team,

resulting in more practical and implementable schedules.

Benefits of individual schedule optimization. With an implementable aggre-

gate schedule, we solve the individual scheduling model based on collected nurse
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Table 2.5: Comparison of Alternative Registered Nurse (RN) Schedules.

Variation Default Less overtime Shift change EDOU float
Overtime shifts 72 52 8 48
Training shifts 72 60 40 60

Weekends turned on 11 11 6 11
Holidays turned on 2 2 2 2
RN with shift type changed 0 0 4 0
EDOU RN relocated to ED 0 0 0 2

preferences to make practical assignments. We consider a roster of 110 ED nurses (ex-
cluding per diem nurses) and 26 EDOU nurses. We solve and compare four schedules
with alternative settings and parameters in Table 2.5 Compared with the solution
with default parameters, a variation with increased weights on overtime shifts reduces
overtime with a trade-off of less training. On top of the variation, allowing changes in
nurses’ shift types significantly reduces overtime shifts by changing four nurses’ shift
types. Alternatively, assigning two EDOU nurses to float to work at ED can bring
several more overtime reductions. After reviewing with ED leadership, we decided to

use the schedule with shift changes due to its best overall metrics.

We then show a metric comparison between the selected schedule and the cur-
rent one in Table 2.6, The optimization reduces the number of daily shifts by 5%,
with a higher reduction on weekends (17%) and holidays (14%). Additionally, the
optimization leads to a remarkable 85% reduction in overtime shifts. Such savings in
staffing cost and nurse workload at the ED is achieved while maintaining sufficient
staffing: less than 0.1% of patient demand exceeds target patient-to-nurse ratios.
Furthermore, the optimized schedule expands training shift opportunities by nearly
one shift per day on average. By assigning each nurse to over four different positions
on average per staffing cycle, the optimized schedule introduces desirable diversity,
whereas the current schedule assigns most nurses to the same position throughout the
staffing cycle. The optimized schedule reduces the individual nurses’ dissatisfaction
penalty score by 5%, while also ensuring fairness among their scores. Overall, our

optimization significantly improves operational efficiency and nurse satisfaction in the

ED.
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Table 2.6: Comparison of Current vs Optimized Schedule.

Metric Current Recommended Reduction
Work shifts per day 48.3 45.7 5%
Per weekend day 48.0 40.0 17%
Per holiday 48.5 41.5 14%
Overtime per day 1.3 0.2 85%
Insufficiency per day <0.1 <0.1 -
Training shifts per day 0 0.95 -
Different positions per nurse 1 4.6 -
Weighted dissatisfaction score 101 96 5%

2.4.3 Reducing Insufficiency during High Demand Periods

During the second half of 2022, the demand in the ED kept increasing and reached
even higher than in the pre-COVID-19 period, resulting in severe nurse understaffing.
In correspondence to the demand change, the ED changed the structure of their
positions and increased the number of nurses. We apply the same model developed
from the previous period into this new period while adjusting the ED positions and
tiers input and re-tuning model parameters. We demonstrate the ability of our model
to shift the primary benefit from reducing overstaffing under low demand into reducing
insufficiency under high demand. To further facilitate automating the scheduling in
adjustment to demand variation, we investigate the benefit of resolving the aggregate

model and adjusting the schedule every week during the 6-week staffing cycle.

Parameter Tuning Illustration. We re-tune the parameters of the updated model,
which incorporated additional parameters s and w,,, to illustrate the objective trade-
offs. We first tune p; and ., the two main parameters that control the trade-off
between cost and insufficiency. In Figure 2-3a] we show the different combinations
where 1 drawn from the list {0, 0.2, 0.3, 0.4, 0.6, 0.8, 1} and §. from {0.1, 0.15,
0.2, 0.3, 0.4, 0.5, 0.6} with fixed puy and w,. From the plot, different parameter
combinations lead to a wide range of metric trade-offs. Several parameters result in
higher insufficiency than the current schedule to save cost, which is not desirable for

the ED as patient care is the priority. Several other parameters increase staffing to
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Figure 2-3: Objective Trade-offs during Staffing Cycle December 4, 2022 - January
14, 2023.

reduce insufficiency, which provides strategic insights on how hiring more nurses and
allocating them with optimization can reduce understaffing more significantly. For
schedule implementation with the current nurses, we select ©; = 0.2 and 5, = 0.3
that reduce both cost and insufficiency simultaneously.

With p; and S, fixed, we then fine-tune the other parameters. We vary ps to
regularize the number of changes from the current schedule and w,, to adjust penal-
ization weights based on the recency of training data. We use an auxiliary parameter
w € [0,1] and let wy, .. .,ws to be uniformly distributed between 1 —w and 1+ w. In
Figure [2-3b| we vary p» from {0, 0,1, 0.2, 0.3, 0.4, 0.5} and vary w from {0, 0.1, 0.2,
0.25, 0.3, 0.4, 0.5}. We finally select uy = 0.2 and w = 0.3 together with p; = 0.2
and . = 0.3, which reduces insufficiency 8% (from 5.08 to 4.66 shifts per day) with
2.38% less staffing (from 66 to 64.43 daily shifts).

Adjustment from resolving aggregate model weekly. We consider another
variation to solve the aggregate model every week. We conduct experiments on three
adjacent 6-week staffing cycles between July 31 and December 3, 2022. We compare

three alternatives:
1. Current schedule.

2. The model is solved every 6 weeks and generates a schedule for each 6-week
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Table 2.7: Average Daily Results and Change (0) from Current Schedules on Three
Staffing Cycles during July 31 - December 3, 2022.

Schedule approach  Cost |d] Insufficiency [0] dz from current dz by week
Current 66 1.85 0 0
Solve every 6 weeks 61.67 [-6.57%| 1.59 [-13.86%]  4.71 [7.14%) 0
Resolve weekly 62.37 [-5.51%| 1.39 [-24.83%]  4.26 [6.46%)] 2.08 [3.33%]

staffing cycle. This requires solving the model three times for the three staffing

cycles.

3. For each staffing cycle, the model is resolved every week using the training data
one week later and update the schedule for the remaining weeks of the cycle.

This involves solving the model 18 times for the 18-week period.

For each week, we compute the average number of daily shifts and average daily
insufficiency during that week’s schedule, and plot the three variations during the
time period in Figure[2-4] Resolving the model weekly changes in staffing levels from
week to week and leads to improved insufficiency in most weeks. We summarize the
average daily metrics among the 18 weeks for the three alternatives in Table [2.7]
On average, resolving weekly changes the staffing levels by 2.08 shifts from week to
week. This would require the nurse leadership to ask several nurses to request shift
changes from their pre-arranged schedule. Solving the model every 6 weeks (resp.
every week) on average changes the staffing levels from the current schedule by 4.71
(resp. 4.26) shifts. In return, resolving weekly can reduce the shortage of nurse shifts
to meet target nurse-patient-ratios by 24.83% from the current schedule, which is
larger than 13.86% reduction by solving the model every 6 weeks. The benefit of
reducing insufficiency is particularly useful for this period when the ED is extremely
understaffed and is achieved with 5.51% (resp. 6.57%) less staffing cost from solving

the model every 6 weeks (resp. every week).
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Figure 2-4: Change from Resolving Weekly during Three Staffing Cycles.

2.5 Implementation

In collaboration with a data consultancy company and a development team, we im-
plement the models into end-to-end software for ED nursing to optimize scheduling.
The process is summarized in Figure [2-5, which outlines the four phases of scheduling:
preparation, input entrance, solution generation, and schedule output. The flowchart
depicts the interactions between the software (blue rounded rectangle), ED nurse
managers (red rectangle), and individual nurses (green oval) at Hartford Hospital
Our software revolutionizes the ED nurse scheduling process as follows. The im-
plementation begins with nurse managers setting up general configurations and nurse
information in the software, which then enables individual nurses to log into their
accounts and enter general preferences. This phase is completed prior to the first use
and can be updated whenever necessary, whereas the remaining three phases repeat
for every 6-week staffing cycle. Approximately five weeks before the start of each
cycle, the software collects nurses’ and managers’ requests specific to the upcoming
cycle and then passes them as inputs to the optimization model. Four weeks before
the cycle, the software automatically solves the first-stage aggregate model, allowing
managers to edit the output aggregate levels and run the program to generate sched-
ules with parameters of their choice. After managers edit, compare, and select the
schedules, the software outputs reports based on templates for managers to announce

to nurses three weeks ahead of the staffing cycle. If nurses request to swap or change
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Figure 2-5: Process of Integrating Decision-support Software into ED Nurse Staffing.

shifts from the announced schedule, the software guides managers to accept or reject
the changes based on staffing shortages and surpluses at each shift. The end-to-end

implementation was partially used in March 2023 and fully deployed since April 2023.

2.5.1 Software Illustration

In this section, we demonstrate various components of the software from input col-

lection to output generation.

Collecting input. Figure [2-6] shows the two sections to gather input from nurse
managers and individual nurses. The Config tab, as shown in Figure enables
nurse managers to set general staffing inputs: the RN Tier page specifies eligibilities
for nurses of each tier to work at each position; the Groups page assigns nurses
into different cohorts with corresponding unavailability dates for each cohort due to
holiday off or education; the Schedule Date page sets the start and end date of the
next staffing cycle to schedule for. These configurations set up the structures for the
Employee tab shown in Figure which collects information and preferences from
individual nurses. Managers (ED leadership, head nurses, and scheduling assistants)

can modify the nurse roster by adding, removing employees, or importing an Excel

file. They can also edit each nurse’s account settings and basic information with a
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click. Once the forms are released to all nurses, they can log into their accounts
to enter additional shift availability, shift pattern preferences, dates they prefer to
work on and request paid or unpaid time off. After nurses enter their preferences,
managers can approve or deny their requested days off and finalize all nurse inputs

for the software to pass to the optimization models.

Generating solutions. After collecting nurse input, nurse managers can use the
software’s output sections, as demonstrated in Figure 2-7, to generate and output
schedules. In the Solutions Tab, managers can set parameters, solve the model, and
obtain a solution with a specified name, as illustrated in Figure[2-7al They can review
and edit the recommended aggregate levels in the table, and select parameters such as
whether or not to allow nurses to change shift types, to include training schedules, and
to incorporate fairness. The software offers additional flexibility to solve for a subset
of nurses or tiers, such as solving for ED only or EDOU nurse only. The managers can
experiment with different parameters and generate alternative solutions to compare,
as shown in Figure 2-7b] In the schedule table, each nurse is represented by a row,
containing basic information and assigned shifts for each position (in different colors)
on specific dates. Options to filter or search for specific nurses, as well as control

which columns to display, are also available.

Adjusting schedules. Due to dynamic changes in staffing needs and nurse avail-
abilities, the support for schedule adjustments is deemed essential. As seen at the
bottom of Figure aggregate staffing levels from the individual schedule above
(first number) are presented in comparison to target levels (second number) for each
shift or 4-hour block at any subset of positions selected. For example, on Thursday,
April 13, the red pod staffs 4 nurses during blocks 7a-11a, 11a-3p, and 3p-7p, which
has a surplus of one nurse during the first block (highlighted in red) and is the same
as the target aggregate level during the last two blocks. On Friday and Saturday,
the red pod has a shortage of one nurse during 11a-3p and 3p-7p (highlighted in

orange). Every week, the software also resolves the model with updated demand and
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Figure 2-6: Software Sections for Nurse Input Collection.
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alerts managers of any expected changes. This component advises managers where
shortages or surpluses exist across the pods and blocks after the schedule is built,
suggesting adjustments to be made. Also demonstrated in Figure 2-7b] managers
can execute any schedule changes by editing shifts, dates, positions, or nurses with
simple clicks. The combination of these functionalities supports a variety of schedule
adjustments: It suggests how each shortage can be filled if specific nurses can work
overtime to cover the spot, advising managers to know which nurses to ask and staff
at which shift to reduce the shortage. If nurses request shift swaps due to availability
or preference change, the aggregate summary encourages managers to approve those
requests to swap from a surplus block into a shortage block. If two nurses request to
swap with each other, the list of available positions and employees while editing shifts
automatically checks the feasibility of the switch and enables managers to approve
it if possible. To cover additional shortages, managers can add shifts on per diem
nurses (who do not work full-time but pick up shifts on demand anytime) to fill in

the shortage shifts.

Announcing Outputs. Finally, ED managers can output the finalized schedule
as shown in Figure The Schedule tab shows the determined schedule, where
nurse managers have a holistic view and each nurse can view their own schedule.
In addition, the Report tab enables managers to download and print reports of the
schedule based on the ED template, including a summary of staffing for each cycle and
a daily team sheet for each date. The screenshot includes an example team sheet on
April 9, 2023, which assigns nurse names at each position during each time block for
both day and night shifts of the day. Overall, the software provides decision support

as well as aligns with ED operations.

2.5.2 Financial Benefit Estimation

The schedule optimization with its implementation translates into substantial finan-
cial benefits projected by Hartford Hospital. The reduction of nursing hours from

Table 2.6] and Table [2.8] converts into estimated cost savings in Table By saving
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Figure 2-7: Software Sections for Generating Schedules.
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Table 2.8: Estimated Time Spent by ED Leaders on Manual Scheduling.

Responsibility component Responsible staff Total time

Schedule build /balancing Scheduler 12 hours

Schedule approval Scheduler /Manager 1 hour

Management of shift switches Scheduler/Manager/Assistants 4 hours weekly

Orientation scheduling Educators/Managers/Scheduler 3 hours

Daily team sheet building Manager / Assistants 8 hours weekly
Total hours per 6-week staffing cycle 88 hours

Table 2.9: Projected Savings of Nursing Hours and Cost for HH ED.

Component Daily hours Annual hours Hourly cost Annual cost
Base shifts 31.2 11,388.00 $50 $569,400.00
Overtime (extra)  13.2 4,818.00 $25 $120,450.00
Manual scheduling 2.1 764.76 $50 $38,238.10

Total $728,088.10

2.6 shifts (12-hour long) daily, ED will save an average of 31.2 nursing hours per day,
which annualizes into 11,388 hours per year. An average salary of an entry-level reg-
istered nurse with an average fringe of 24% is approximately $50 per hour at Hartford
Hospital. With overtime salary being 50% higher than the base salary, the reduction
of 1.1 overtime shifts per day cuts the cost with an additional $25 per hour. Com-
bined with the 88-hour manual work per 6 weeks saved from Table the hospital
financial department projects that the optimization can save $728,088.10 annually in

nursing costs.

2.5.3 Overcoming Challenges in Deployment

Deploying the optimization tool at Hartford Hospital automated and revolutionized
ED nurse staffing. Such an initiative of changing the lives of 200 nurses, nurse sched-
ulers, and managers carried numerous challenges. The deployment of the tool involved
transitioning from an offline to an online scheduling process. In this section, we discuss
how we overcame challenges, progressed with the deployment, and achieved practical

impact.
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Offline strategic adoption. The development started with offline iterations at
the beginning of 2021. Researchers generated schedules offline for ED leadership
to review, and then incorporated feedback and constraints into the models. As de-
scribed in Section [2.4.2] researchers adapted the optimization models and parameters
to overcome the nurse leadership’s conservatism in reducing staffing levels. With re-
fined models, the team communicated with hospital leadership to adopt our optimized
schedules. The model suggested fewer 7-7 shifts and more 11-11 shifts in response
to demand patterns. However, as each nurse was pre-assigned to a fixed shift type
upon being hired, it was difficult to swap shifts without disrupting their lives. Af-
ter strategic discussions, hospital leadership decided to hire more 11 am—11 pm shift
nurses as opposed to 7-7 shift nurses to accommodate the recommendation. During

this overstaffing period, the optimized schedule needed fewer nurse shifts than the

hired nurse resources as shown in Sections [2.4.1| and [2.4.2] This presented another

challenge as the hospital was still required to utilize all nursing hours as per the con-
tract. After evaluating several options, the ED decided to turn the saved work shifts
into additional training shifts, which count as working hours but do not serve patient

demand.

Motivation from Offline to Online. Following the successful strategic adoptions
at the ED, our next goal was to implement the generated individual nurse schedule
for the ED to use. However, experimentation for the next staffing cycle showed that
offline iterations between researchers solving models and managers providing feedback
were not feasible to be adopted. Managers needed to propose changes to the schedule
frequently for reasons such as nurse dissatisfaction, availability changes, and manager
preferences. The frequent back-and-forth communications with the research teams
caused delays and were not sustainable. On the other hand, manually reshuffling the
machine-generated schedule was infeasible for nurse managers without optimization
training. To address these issues, we decided to develop software for automation that

would allow nurse managers to regenerate and edit schedules online.
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Online implementation. In 2022, we began software development for staffing au-
tomation. The research team collaborated with consultancy and development teams
and integrated the optimization models into the software. Given imported input data,
users were able to solve the models and obtain the schedule under the Solution and
Schedule tabs. However, the upcoming main challenge was to connect the software
with the hospital to collect input from nurses and pass output for the ED to use. One
complication arose as the entire nurse staffing at Hartford HealthCare relied on com-
mercial software that links shift assignments to the nurse payroll system. Despite the
team’s attempts to integrate with the commercial software throughout 2022, the com-
plexity of involving a third-party organization was beyond our control. After careful
discussions between the team and executives at Hartford HealthCare, a decision was
made to build a standalone software instead. In early 2023, we built the information
collection component of the software. After frequent weekly meetings and iterations
between researchers, the development team, nurse managers, and schedulers, the in-
terface evolved to cover all ED nurse staffing functionalities. We further improved the
schedule generation process, enabling dynamic schedule changes by nurse leadership
to adapt to quick information changes. The ED executed more model recommenda-
tions after the long collaboration, such as swapping shift types for some nurses. The
fine-tuned schedule announced on April 30, 2023 has no overtime shifts, satisfies 92%
preferred date assignments, only 1 undesirable shift pattern among all nurses across 6
weeks, and assigns nurses with desirable diversity to average 2.43 different positions
per week. Following the pilot ED deployment at Hartford Hospital, the Hartford
HealthCare executive team aims to extend the models and software to cover all nurse

staffing in 7 hospitals of the network in the future.

2.6 Conclusions

We develop models and implementation to optimize nurse staffing at Emergency De-
partment at Hartford Hospital. Our methodology consists of two phases to optimize

each 6-week staffing cycle. First, we learn an uncertainty set from patient demand
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data and develop a robust optimization model solved by the cutting planes method to
allocate aggregate staffing levels and quantify strategic decisions. Next, we develop
a pair of two mixed integer optimization models to generate individual nurse sched-
ules for work, trainee, and preceptor shifts. Experimental results demonstrate the
versatile benefit of the first-phase aggregate model: cutting staffing costs by 5-8% in
low-demand periods versus reducing insufficiency by 8-25% during high-demand peri-
ods. In addition, we analyze how the outcomes change with different model variations
and parameter trade-offs as well as illustrate schedule iterations and demand patterns.
The second-phase individual schedule optimization brings significant benefits to ED
nurses, reducing 17% weekend, 14% holiday, and 85% overtime shifts while increasing
5% satisfaction score, 3.6 more diverse positions, and 0.95 training per day. The mod-
els are implemented into end-to-end software that supports scheduling from staffing
preparation, input collection, and solution generation, to schedule output. After nu-
merous challenges were overcome, the software was deployed starting March 2023 at
Hartford Hospital, automating and transforming the nurse scheduling at the Emer-
gency Department. The implementation relieved manual scheduling burdens and is
projected to save $728,088.10 in annual nursing costs. brought more cost-effective,
sufficient, and desirable staffing into practice, benefiting various stakeholders in the

hospital system.
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Chapter 3

Patient Outcome Predictions Improve
Hospital Operations at Hartford
HealthCare

3.1 Introduction

The collection of patient-level information from Electronic Medical Records (EMRs)
combined with advances in machine learning methodology creates opportunities to
enhance hospital operations and clinical decision making, especially for inpatients,

who constitute a major part of hospital activities and revenues.

There is a recent, rich, and growing academic literature on machine learning mod-
els trained to predict inpatient outcomes. However, only a limited number of these
models are deployed in practice and make an impact. As introduced in Section [1.2.]]
and Section [[.2.3] we collaborate with Hartford HealthCare and Dynamic Ideas LLC
and succeed in developing and implementing models in practice that improves hos-
pital operations. Since 2020, our joint team of healthcare providers, academics, and
data consultants, have been working together to develop predictive models on eight
operational metrics for seven different hospitals (covering over 2,400 inpatient beds),

to deploy these models in the entire hospital network, and to measure their impact
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on the operational performance of the hospitals.

3.1.1 Summary of Contributions

First, we build an end-to-end ML pipeline, from data extraction and processing to
a user-friendly software interface, and apply it to the seven HHC hospitals. Using
comprehensive data from patient EMRs, including patient status, clinical measure-
ments, and laboratory results, we train ML models (XGBoost) to daily predict eight
inpatient outcomes: mortality risk, probability of discharge in the next 24 and 48
hours, discharge disposition, and intensive care unit (ICU) risk in the next 24 and
48 hours. Our models achieve state-of-the-art accuracy (75.7%-92.5% area under the
receiver operating curve, i.e., AUC across all tasks and all hospitals) and are well
calibrated. Moreover, we demonstrate that integrating our discharge predictions into
physicians’ decision making process can identify more discharge opportunities with

higher accuracy and lower readmission risk.

Second, through multiple iterations with clinicians, we develop a software tool
for doctors, nurses, and case managers, to integrate these predictions into their daily
workflow. In addition to presenting raw risk scores, the tool provides patient-level
explanations for each of the predictions as well as a color-coded alert system to help
them quickly identify at-risk patients (red alert) and potential imminent discharges
(green alert). The features of our software help increase trust, clinical adoption, and

easy integration into the patient progression rounds.

Finally, we have been gradually deploying our solution in the hospitals, training
physicians and nurses, and measuring its operational impact. As of January 2023,
our tool is benefiting over 200 users and supporting daily operational decisions at
the seven hospitals. We observe a significant reduction in the average length of stay
(LOS) by 0.67 days per patient from our solution and project annual revenue uplift

of $35.89 million dollars from our deployment in the HHC system.

80



T —
2 [ J

C =

ssssss
oF STAY HOSP DISCH TIME

) o
~ DISCHARGE

CHARTED  DISCHARGE
ACTION ALERT x DISPOSITION oM DATE

aaaaa

26, 2023 Py s asm oass 1088
a warz7, 20 - 1as o aae Poesm  zae - 0zsn Lamn
Otver facilies
tar 28,2023 - o 8.49% 533% s057% 261% 045% 100%
Hon nare

Figure 3-1: Trajectory of Predictions for an Example Patient.

3.1.2 Our Tool in Action

We now illustrate how our tool works on one patient trajectory. Figure [3-1] is a
screenshot of our software solution for a particular patient. Each row corresponds
to a day. The patient is admitted on March 22, 2023. On the first day of the stay,
the patient is assigned low probabilities of mortality and discharge. Two days after
admission, the condition of the patient deteriorates: discharge probabilities decrease
and mortality risk increases, peaking at 23.82% on March 24. The system detects
an exacerbation of the patient’s condition and raises a red alert, which calls the
attention of the caring team. Over the following days, the mortality risks decrease
towards patient recovery, and the probabilities of discharge gradually increase until
discharge. The system correctly delivers green alerts on the last two days of the
stay. In particular, the probability of discharge in the next 48 hours (resp. 24 hours)
started exceeding 0.4 (resp. 0.25) on the day before (resp. the day of) discharge. On
March 28, the patient is discharged to Home with Health Care Services, as correctly
predicted by the discharge disposition prediction model (from the final destination

column).

By clicking on each predicted value, the clinician can also access a waterfall plot
to understand the patient-specific factors that explain such a prediction. Figure [3-2
displays these plots for the mortality prediction on March 24 (Figure and the
48-hour discharge prediction on March 27 (Figure for our patient. For a given
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Figure 3-2: Prediction Explanation Plots for the Patient Example.

risk score f, starting from the baseline risk in the population, E[f(X)] (here, the
variable X denotes all patient-level information used to make predictions), at the
bottom of the plot, we add up the contributions of each variable to finally reach the
patient-specific estimate, f(x). Figure for example, explains why the patient’s
mortality risk score on March 24 is 0.238, while the average prediction among all
patients is 0.07. The main factors explaining a higher-than-average prediction are
the fact that the patient has a high age (40.06), a high fall risk score assessment
(+0.05), multiple consultation orders placed in the last 24 hours, and agitated status
indicated by a Richmond Agitation Sedation Scale (RASS) measurement equal to 2
(+0.02), among others. Meanwhile, these aspects are partially counterbalanced by
several other variables that decrease the predicted mortality risk; for instance, the

average heart rate in the past 24 hours and red cell distribution width (RDW).

3.2 Problem Statement and Related Literature

We focus our attention on the following patient outcomes: length of stay, mortality

risk, discharge disposition, and ICU risk.
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3.2.1 Length of Stay

Models in the literature predict a variety of LOS related outcomes, such as daily dis-
charge volume (Zhu et al.|[2015), next 24-hour discharge (Safavi et al.|2019| Bertsimas
et al.|2021b), long LOS (Bardak and Tan 2021}, Bertsimas et al.|2021b)), and remain-
ing LOS (Wang et al.[[2022). Since our priority is prompt discharge identification, the
medical team at HHC suggests predicting whether each patient will be discharged
without expiration (i.e., without death) in the next 24 and 48 hours. We note that
patient death or transition to hospice are not considered as discharges. Predicting the
next 48h discharges is critical and particularly useful for HHC since it helps physicians
identify and prioritize patients who are ready for discharge while giving case man-
agement teams enough time to accelerate discharge preparations, which ultimately

reduces patient burdens and direct operating costs in healthcare systems.

3.2.2 Mortality Risk

Preventing death is one of the major responsibilities of hospitals. Physicians examine
and evaluate patient daily charts with clinical knowledge and experience, but they
encounter challenges in simultaneously processing hundreds of measurements and giv-
ing quick dynamic assessments for all patients. We build models to help predict each
patient’s mortality risk, defined as the probability of each patient expiring or going
to hospice at the end of the hospital stay. The high accuracies of mortality risk
prediction models are demonstrated in previous works such as |Awad et al. (2017b),
Rajkomar et al.| (2018)), |Jin et al. (2018), Bardak and Tan| (2021]). With such aid, the
medical staff can give prioritization and rapid treatment plans to high-risk patients,
which could potentially prevent their death. Moreover, detection of increasing mor-
tality risk over time alerts the care team of patients with worsening conditions, which

can lead to more timely intervention and improve patient outcomes.
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3.2.3 Discharge Disposition

It is also important to anticipate the patient’s final destination after discharge. We
divide the dispositions into three categories: home without service (i.e., discharged
back home with self-care), expired or hospice (died at the hospital or transferred
into hospice, where the latter is considered as near death), and home with service
or other facilities (such as skilled nursing facility, rehab facility, long term acute
care hospital). Differentiating discharge destinations early helps anticipate the need
for post-discharge resources. In particular, the third discharge disposition requires
additional case management efforts, such as contacting and obtaining approval from
the care facility or ordering devices for service at home. Combined with discharge
time prediction, it can help the case management team coordinate post-discharge

services and prevent logistical delays.

3.2.4 ICU Risk

Uncertain intensive care demand and limited bed space make it particularly challeng-
ing to manage flows out of and into the ICUs, one of the most scarce and expensive
resources in a hospital. Patients who need to enter an ICU and cannot do so promptly
are often placed in secondary units, leading to higher readmission risk and extended
LOS (Kim et al.[2016). On the other side, some patients are ready to leave the ICU but
experience delays due to congestion in step-down units or delayed ICU discharge iden-
tification, which in turn congests the ICU, overflows other parts of the hospital (Long
and Mathews 2018), and prolongs boarding from the emergency department (Math-
ews et al.| 2018). As exacerbated during the COVID-19 pandemic, predictions of
ICU admission and mortality can help manage these valuable units (Zhao et al.[|2020],
Covino et al. 2020, |Subudhi et al.|2021]). We build models to predict the probability
of being in the ICU in the next 24 and 48 hours, respectively. Specifically, we predict
the probability of entering (resp. leaving) the ICU for patients currently not in (resp.
currently in) the ICU.

Our objective, however, is not to predict for the sake of prediction but, more
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importantly, to implement our innovations in hospitals for real-world impact. Un-
der such context, we aim to develop practical ML systems and deploy them in the
entire hospital network. In this regard, our approach is similar to that of [Bertsi-
mas et al. (2021b) who study a similar set of patient outcomes and integrate their
predictions into hospital daily operations. In addition to using different ML models,
their analysis, however, is single-center while we train, deploy, and evaluate the ben-
efits of our models in different locations. Furthermore, the operational decisions and
end-users are different. While they create a dashboard with unit-level predictions
for the hospital flow management center, we work with doctors, nurses, and medical
staff to leverage these patient-level predictions for the management of each patient

individually.

3.3 Methods

In this section, we describe our methodological approach, from data collection and
feature engineering to predictive modeling and its integration as a decision making

support tool.

3.3.1 Data Collection

We first collect and build relevant data extracts for our various prediction tasks. Since
HHC uses a third-party EMR solution and since this is their first ML project applied
to all inpatients in the network, there was no pre-existing pipeline for us to use, and
thus we build the data extracts and pipeline from scratch.

We start by replicating the pipeline of [Bertsimas et al.[(2021b)) and using the same
set of variables as those they identify as important, followed by weekly discussions
with doctors, nurses, and the IT team at HHC to include other useful data sources
and variables. Based on those discussions as well as data availability, we build 10
data extracts summarized in Table [3.I] The extracts provide information including
demographics (e.g., age at admission), patient status (e.g., current service, oxygen de-

vice), clinical measurements (e.g., oxygen concentration, blood pressure), laboratory

85



Table 3.1: Summary of Data Extracts.

Extract Extract description Granularity Example columns
1 Admission, discharge, Event Hospital, department desti-
transfer events nation
2 Admission, discharge, Order Service, order type
transfer orders
3 Lab results with normal Patient day Platelet count with normal
ranges range
4 Clinical measurements Patient day Blood pressure, respiratory
rate
) Preparation for discharge Patient day Discharge time,  future
surgery date
6 DNR status Patient day DNR
7 Time invariant patient Patient Age, discharge disposition
information
8 Summary statistics of Patient day Diagnosis, number of notes
notes written
9 Surgery Surgery case  Procedure name, start time,

10
ders

Summary statistics of or-

Patient day

end time
Number of orders, pending
labs

Hospital extracts Server Models make Physicians Hospital obtains
patient EMR data receives data predictions use software benefits
00:00 am 8:00 am 9:30 am progression rounds

>

>

Time of each day

Figure 3-3: End-to-end Pipeline in Daily Production.

results (e.g., albumin, bilirubin), diagnoses, orders, procedures, notes, and others.

All the data is extracted from the EMRs directly, on HHC’s IT system, password-

protected, and then transferred to a dedicated database hosted on Amazon Web

Service (AWS) machines by a Secure File Transfer Protocol server. Daily extracts are

scheduled every day at midight so that up-to-date data about current inpatients are

received by 7:40 am every morning (see Figure . EMRs were gradually deployed in

the network so data availability for training purposes varies by hospital. Our database

starts on January 2016 for Hartford Hospital, January 2021 for St. Vincent Medical

Center, and January 2020 for the remaining five hospitals.
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3.3.2 Feature Curation

Since our pipeline and predictions are updated daily, we curate a feature space where

each row represents each patient day. We create features from the following six groups.
1) Current conditions (e.g., department, whether in ICU);
2) Lab results (e.g., albumin, white blood cell count);
3) Clinical measurements (e.g., temperature, respiratory rate, heart rate);
4) Time series summary statistics of operational variables (e.g., days in ICU);
5) Patient information prior to current admission (e.g., age, previous admission);

6) Auxiliary operational variables which are not patient-specific (e.g., day of the

week).

Creating this collection of features requires a large amount of data processing, such
as imputing missing data, parsing string formats, and encoding categorical variables.
A more comprehensive list of variables and details on data processing can be found

in Section of the Appendix.

3.3.3 Machine Learning Modeling

Inclusion-Exclusion Criteria: We consider all inpatients during their hospital-
ization days in HHC. Emergency Department patients and outpatients who are not
admitted as an inpatient are excluded. For each inpatient, we consider the range
starting from their admission date until their discharge date. We further filter the
data depending on the prediction target. We identify a set of special discharge dis-
positions: left against medical advice/AMA, still a patient, admitted as an inpatient,
court/law Enforcement, ED dismiss/diverted Elsewhere. For mortality and discharge
disposition predictions, we exclude patients whose discharge disposition is missing
because the target is missing, and exclude patients who have a special discharge dis-

position to reduce noise in the target. For 24/48-hr discharge predictions, we exclude
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patients whose discharge disposition or discharge time is missing and exclude data
points where the patient is discharged in the next 24/48 hours to one of the special
dispositions. For 24/48-hr ICU predictions, we include only patients who still are in
the hospital in the next 24/48 hours. Moreover, we include only patients who are
currently in the ICU for leaving ICU predictions and include only patients currently

not in the ICU for entering ICU predictions.

Split of Training, Validation, and Testing Sets: For each hospital, we sort the
data by record date and split it into 50% training, 20% validation, and 30% testing
sets. The train/validation/test set split is performed separately for each hospital and
chronologically to reflect real-world implementation, where the models are trained on
past data and utilized for future prediction. Both imputation and machine learning
models are trained on the training set, tuned on the validation set, and evaluated on

the testing set.

Prediction Models: We consider a variety of machine learning models to make
predictions. Since patient predictions should be interpretable for medical staff, we
started with interpretable ML models, including Optimal Classification Trees (OCT,
Bertsimas and Dunn|2017) and sparse classification (Bertsimas et al. 2021c)), imple-
mented in the Interpretable Al software (Interpretable Al, LLC 2022). OCT is a
state-of-the-art interpretable decision tree model that divides the feature space using
simple and understandable rules. The resulting OCT trees were closely examined and
discussed by the doctors, which uncovered important insights as well as established
doctors’ initial understanding and trust in the algorithm. As doctors got more recep-
tive to using and understanding the models, we then shifted the objective to improve
the performance of predictions. We consider other machine learning models including
XGBoost (Chen and Guestrin|[2016)), Light GBM (Ke et al.[2017), and Tabnet (Arik
and Pfister| 2021)). XGBoost is a gradient boosting method that ensembles a set of
decision trees to make predictions in an additive fashion. It consistently outperformed

the other five methods across all prediction tasks on preliminary experiments so we
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decided to use it for our final models. To obtain higher accuracy, we also considered
ensembling up to 10 XGBoost models together or creating more sophisticated fea-
tures from time series measurement using the tsfresh package (Christ et al. 2018),
but decided that the marginal gain in accuracy did not justify the additional com-
putational burden and lost of interpretability. We train a separate model for each
prediction task (a multi-class classification model for discharge disposition and binary
classification models for the other target variables) and for each hospital. We use the
validation set to calibrate the hyper-parameters (depth of trees, learning rate, number

of estimators, loss function, and L2 regularization rate).

Model Calibration: For interpretability purposes, it is important for classification
models to be well calibrated, i.e., that the numerical scores (scaled between 0 and
1) returned by the models correspond to the probability of the event of interest
to occur. For example, if the predicted probability of discharging a patient in the
next 48 hours is 0.2, a doctor will likely expect interpret that this patient has a
20% chance of being discharged. Note that calibration and accuracy are different
issues (for example, dividing all scores by a factor 2 impacts calibration but keeps
AUC constant). Therefore, we ensure that all our models are well calibrated by
chronologically splitting the testing set into two halves, using the isotonic regression
method (Zadrozny and Elkan|2002) to calibrate the model on the first half, and then

assessing the final calibration on the second half.

Computing Resources: Data processing, feature engineering, model training, and
offline testing are conducted in Python 3.5.2 with a parallelization strategy on MIT
Supercloud (Reuther et al.2018) with 32GB RAM Intel Xeon-P8 CPU per instance.
The online daily pipeline in production is run in Julia 1.5 and Python 3.8 on a cloud

computing server via AWS with 64GB RAM and 8 CPUs.
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3.3.4 Predictive Analytics for Decision Making

To turn these predictive analytics into a decision support tool that is sustainably
used by practicionners, we complement the raw probability predictions with an alert

system and visual explanations for each prediction.

Color-coded Alert System: It can be difficult for clinicians to quickly grasp the
implications of a raw probability score and use it efficiently for decision making.
For instance, it is not obvious how to interpret a 0.28 risk of mortality or a 0.57
probability of discharge. Moreover, medical staff are responsible for many patients,
and they cannot read and process hundreds of probabilities including eight predictions
for all their patients every day as part of their filled daily schedule. To overcome these
challenges, we design an alert system to highlight the set of patients who are getting
likely to be discharged and patients who are exacerbating with different colors. We
send a green alert for patients that are ready for short term discharge, i.e., whenever
their probability of 24-hr or 48 hr discharge is above certain thresholds. On the other
hand, we send a red alert to warn for patients who have a high risk or are exacerbating,
i.e., if the mortality risk or the increase of mortality risk from the previous day reaches

certain thresholds.

Prediction Explanation Plot: As doctors require sufficient clinical reasoning to
make major decisions like patient discharge, it is critical to provide them with some
interpretation of model predictions. We compute Shapley values and SHapley Addi-
tive exPlanations (SHAP Strumbelj and Kononenko|2014) on the XGBoost models to
derive each feature’s attribution to model predictions. We use SHAP summary plots
to visualize the top features of each model and their overall effect of the predictions,
which is useful to audit the models and assess their validity with clinicians. We also
produce SHAP plots at the individual level on every patient’s prediction on each day,

to provide a visual explanation of each predicted probability.
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Figure 3-4: The Collaboration Timeline.

3.4 Project Management Approach

A major factor in the success of the large-scale deployment of an advanced analytics
solution like this one lies in the way we organized the progression of the project over

time and scheduled its extension from one to several hospitals within HHC.

3.4.1 Project Timeline

We have been collaborating on this solution since 2020. Our first challenge was to
interface with the third-party software HHC uses for managing all of their EMRs. In
2020, we worked on an automated pipeline to daily extract data from the EMR sys-
tem to dedicated database. We then focused our attention to HH, the largest of HHC
hospitals, to develop a first proof of concept for our predictive models (including only
a limited number of operational outcomes) and our doctor-facing interface. With this
prototype, we constituted in 2021 a group of physician champions to serve as beta
testers, collected feedback from their utilization and understanding of the models
(regarding model accuracy, missing predictive information, additional relevant out-
comes to predict, and the user interface), and iteratively improved the models and
the software tool. The tool was then rolled out for usage by the entire HH in 2022.
Concurrently, we re-trained the models initially developed for HH to the other six
hospitals at HHC and deployed them in production progressively between May 2022
and January 2023. The timeline of the project is sketched in Figure
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Figure 3-5: Implementation Feedback Loops.

3.4.2 Pilot Implementation at Hartford Hospital

Instead of developing our models for all the HHC hospitals simultaneously, we adopted
a gradual approach and started with HH, the main hospital of the network. Since
the second half of 2021, HHC tested the tool with four physician champions who are
lead hospitalists of five medical units at HH, including two teaching units (BLISS 7
EAST and CONKLIN 4) and three non-teaching units (CENTER/NORTH 12 and
CONKLIN 5). Every week, the clinical and analytics teams met to review technical
issues on the deployment of the model in production as well as to incorporate feedback

from the physician leaders.

Figurerepresents the different feedback loops between the technical team (blue
rounded rectangle), the hospitals (red rectangle), and specific physicians from HHC
(green oval). Feedback from the phyisicians has been crucial to identify other sources
of data to integrate into our model, as well as define the most relevant uses cases for
the prediction and improve the functionalities of our software tool. On a weekly basis,
physicians reviewed patients and their predictions and provided written comments for
each prediction. For example, when patients had high predicted discharge probability
but were not ready for discharge yet, physicians would note their current discharge

barrier and the MIT team would propose solutions to account for it. Through this

process, the MIT team incorporated physicians’ clinical knowledge into the feature
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processing and engineering steps, e.g., by creating delta variables and time series
summary statistics for some important features or by adjusting the missing value
imputation based on medical knowledge. Clinical expertise was also needed to decide
the depth and breadth of the data extracts. For example, we initially received only
one measurement of the RASS score per day (the latest) but later decided to extract
all daily measurements to capture deterioration/improvement in the patient’s anxiety
level.

Having a software interface to share the outputs of our models in a convenient,
interpretable, and streamlined way with physicians significantly accelerated the adop-
tion of the tool and its continuous improvement. The MIT team further facilitated the
integration of the tool by providing tutorials and lectures about machine learning to
doctors at HHC. We cannot emphasize enough how instrumental this pilot implemen-
tation with physician champions at HH has been for establishing a close relationship
and trust between the analytics team (MIT-Dynamic Ideas) and the doctors and

nurses at HHC, and for enabling the wider roll-out of the solution.

3.4.3 Scaling to Multiple Hospitals

Only once built the data extraction pipelines, the ML models, and ran through a
couple of iterations with teams at HH, did we start replicating this development
(including the data extraction part) to other hospitals. After an evaluation of the im-
pact of our solution on the pilot conducted at HH (presented in , HHC decided to
extend our work to three other hospitals—Hospital of Central Connecticut (HOCC),
Backus Hospital (BH), and Charlotte Hospital (CH)—chosen for the diverse set of ac-
tivities they cover and for their appetite for experimentation. Finally, we included the
remaining three hospitals—Midstate Medical Center (MMC), St. Vincent’s Medical
Center (SV), and Windham Hospital (WH).

By extending our data extraction and processing to different institutions, we de-
signed a fairly robust and generalizable feature processing pipeline (described in Sec-
tion of the Appendix). After feature curation and processing, we chose to train

separate ML models for each hospital for different reasons. First, as described in
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Section the seven HHC hospital are very diverse in size, service, levels of care,
and patient populations. Second, developing and deploying models for a large hos-
pital network requires a staggered roll-out. As opposed to developing a model for
all hospitals at once, we developed and implemented them gradually to earn trust
and support from the leadership. Third, since each hospital has its own encoder and
imputer (see of the Appendix), we cannot apply one common model for all hospi-
tals. In an early stage, we tried applying the model trained for HH directly to three
other hospitals and, as expected, we obtained low performance due to different ways

of encoding (e.g., department and service).

3.5 Results

We present statistics, evaluation, and analysis of the models. Unless specified other-

wise, all results in this section are evaluated in the testing sets for each hospital.

3.5.1 ML Model Evaluation

Accuracy: The performance of the binary classification models is assessed by the
AUC. For discharge disposition, multiclass AUCs are computed on each class against
the rest. Table presents out-of-sample AUCs of eight prediction tasks for seven
hospitals. For hospitals BH, CH, HH, HOCC, MMC, and SV, AUCs range from
0.905-0.925 for mortality, 0.858-0.884 for discharge disposition, 0.812—0.848 for 24-hr
discharge, 0.816-0.852 for 48-hr discharge, 0.850-0.872 for 24-hr entering ICU, 0.812—
0.896 for 24-hr leaving ICU, 0.811-0.847 for 48-hr entering ICU, and 0.833-0.896 for
48-hr leaving ICU. Our models achieve state-of-the-art performances compared with
the literature described in Section Compared with the other six hospitals, WH
has lower AUCs in mortality and discharge-related predictions, which are likely due
to the smaller data size (see Table and Table and the higher complexity of
differentiating among less critical patients who have a much higher proportion of being
discharged in the next 48 hours than other hospitals (see Table . A full summary

statistics of the data at each hospital for each prediction task is reported in Section
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Table 3.2: AUC Metrics for All Predictions in All Seven Hospitals.

Hospital Prediction BH CH HH HOCC MMC SV WH

Mortality 0.915 0.902 0.919 0.905 0.925 0.925 0.888
Discharge Disposition 0.858 0.871 0.884 0.884  0.879 0.869 0.802
Discharge 24 hr 0.832 0.812 0.857 0.844  0.837 0.848 0.757
Discharge 48 hr 0.830 0.816 0.852 0.843  0.836 0.841 0.768
Enter ICU 24 hr 0.867 0.853 0.868 0.868  0.872 0.850

Leave ICU 24 hr 0.896 0.830 0.871 0.883  0.887 0.812 No ICU
Enter ICU 48 hr 0.834 0.813 0.818 0.811  0.847 0.820

Leave ICU 48 hr 0.896 0.848 0.865 0.880  0.876 0.833

in the Appendix. We also report a breakdown of the AUCs by department at
HH as an example in Table in Section Appendix.

Model Calibration: As discussed in Section [3.3] it is important for classification
models to be well calibrated. Accordingly, we calibrate our models on the first half of
the testing set and assess the calibration on the second half using calibration curves.
Detailed assessment of the calibration of our models are presented in Section [B.2.2]

of the Appendix.

3.5.2 Alert System Assessment

We select the thresholds for the color-coded alert system depending on the resulting
precision /recall trade-off they provide for identifying discharges (green alert) and
high-risk patients (red alert), as illustrated in Figure for HH.

For discharge prediction, our objective is to correctly mark (with a green alert)
the patients that will be discharged in the next 48 hours. Precision represents the
proportion of actual discharges among patients that are marked (also referred to
as positive predicted value) and recall is the proportion of patients marked among
all actual discharges (true positive rate). We raise an alert whenever the predicted
probabilities of being discharged in the next 24 or in 48 hours exceed a threshold,
to4 and t45 respectively. Figure [3-6a) represents the precision and recall for different

threshold values, to4,t4s € [0,1]. We observe that the precision-recall relationship is
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almost linear. HHC wants to achieve a precision of around 0.7 for 48-hour discharge
prediction, so we define the option one of the green alert as toqy = t43 = 0.5 (dark
green upward triangle in the plot), yielding 0.698 precision and 0.598 recall. After
three months of utilization, the medical team expressed the need to identify more
potential discharges, at the expense of lower precision. Accordingly, we lowered the
threshold for a green alert, defined as tyy = 0.25, t4s = 0.4 (light green downward
triangle in the plot), which gives 0.621 precision and 0.746 recall.

For mortality prediction, our objective is to mark with a red alert on two types
of patients: those who will likely expire (i.e., death or hospice), and those who have
worsening conditions. Accordingly, we raise an alert whenever the predicted mortality
probability exceeds a threshold ¢, or when its absolute change compared with the
previous day exceeds ts. Figure represents the precision/recall trade-off for ¢ €
[0.05,0.3],ts = 1 (grey squares) and for ¢ € [0.05,0.3],¢5; € [0.05,0.3] (black circles).
We observe that incorporating a criterion based on variations in mortality scores
(ts < 1) provides more granularity in terms of precision/recall trade-off, although it
can lead to strictly worst performance if not calibrated carefully. Also, it spotlights
patients whose condition is deteriorating, which the medical team can find even more
helpful than predicting an absolute probability of mortality. For example, doctors
find the tool more helpful in identifying a young patient’s mortality risk increased
from low probabilities on previous days, which would call for the provider team’s
action of interference, compared with reporting an 80-year-old patient’s consistently
high mortality risk, which typically would have been already expected from their
clinical assessment. Given that patient lives are at stake, doctors emphasize having
a high recall and are less concerned about low precision (i.e., high false alarm rate).
Therefore, we define red alerts as t = 0.2 and t5 = 0.1, which gives 0.477 precision
and 0.705 recall.

We report the accuracy, precision, and recall for our previous green (toy = t4g =
0.5), new green (to, = 0.25,t48 = 0.4), and red (t = 0.2,ts = 0.1) alerts at all
seven hospitals in Table Among the hospitals, previous green alerts have 0.696-
0.782 accuracy, 0.645-0.698 precision, and 0.546-0.684 recall; new green alerts have
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Figure 3-6: Out-of-Sample Precision-Recall Curves under Different Thresholds for

Colored Alert System at HH.

Table 3.3: Precision and Recall under Selected Thresholds for Alerts.

Alert Hospital  BH CH HH HOCC MMC SV WH
Accuracy 0.757 0.739 0.782 0.771 0.759 0.78 0.696

Previous Green Precision 0.672 0.645 0.698 0.682 0.684 0.692 0.68
Recall  0.653 0.679 0.598 0.628 0.684 0.546 0.646

Accuracy 0.734 0.714 0.767 0.751  0.739 0.768 0.687

New Green Precision 0.604 0.588 0.621 0.611 0.623 0.617 0.629
Recall 0.78 0.8 0.746 0.764 0.796 0.701 0.78

Accuracy 0.901 0.895 0.899 0.881 0.896 0.886 0.925

Red Precision 0.55 0.574 0.477 0.492 0.528 0.505 0.53
Recall  0.668 0.553 0.705 0.691 0.715 0.663 0.471

0.687-0.768 accuracy, 0.588-0.629 precision, and 0.701-0.8 recall; red alerts have 0.885-

0.925 accuracy, 0.477-0.55 precision, and 0.471-0.715 recall.

We further report a

department-level alert evaluation at all departments of HH in Section of the

Appendix.

3.5.3 Assistance to Medical Staff

To evaluate how our models can help the decision making for doctors, nurses, and case

management teams, we compare their accuracy with that of physicians. Every day at

progression rounds, a team of attending physicians, residents, and nurses reviews each

patient’s chart information, discusses their case, and enters (or updates) an Expected
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Table 3.4: Comparison of AUC Metrics between Doctors’ and Models’ Discharge
Predictions.

48-hr Discharge AUC 24-hr Discharge AUC

Hospital Doctor Model Increment Doctor Model Increment
BH 0.689  0.803 0.114 0.732  0.811 0.079
CH 0.647  0.786 0.139 0.696  0.789 0.093
HH 0.644  0.834 0.190 0.678  0.843 0.165
HOCC  0.603  0.817 0.214 0.642  0.824 0.182
MMC 0.582  0.809 0.227 0.606  0.816 0.210
SV 0.524 0.82 0.296 0.548  0.831 0.283
WH 0.683  0.746 0.063 0.718  0.742 0.024

Discharge Date (EDD) for each patient. To compare with our models’ outputs, we
consider EDD as a score (by converting it into a time to discharge) to rank patients
based how soon they are likely to be discharged and we evaluate its AUC. In line
with our outcome definition for the discharge prediction models, we compare the
doctors’ and models’ discharge predictions on patients whose discharge dispositions
are neither hospice nor expiration, and report their respective AUC in Table 3.4 We
observe that our models achieve higher AUCs than the doctors for all hospitals, and
that the improvement is higher for 48-hr than for 24-hr predictions. The improvement
ranges between 0.063-0.296 for 48-hr discharge and ranges between 0.024-0.283 for
24-hr discharge.

We also investigate how doctors perform (in terms of precision and recall) at
identifying 48-hour discharges compared with our green alert system. We report
the precision and recall of doctors for each of the seven hospitals in Table In
comparison with the green alert (see, e.g., Table , doctors generally demonstrate
lower precision but higher recall, thus predicting more discharges than the green
alerts. Greater benefits can be obtained by combining the two predictions together.
In particular, if we predict a discharge when both the doctor’s EDD is less than 48
hours away and a green alert is raised (‘Doctor AND Green’ column in Table ,
we increase precision by 0.121-0.294 compared with doctors’. Furthermore, we can
achieve higher recall by predicting a discharge whenever the doctor predicts discharge

or a green alert is raised (‘Doctor OR Green’ column). By doing so, we complement
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Table 3.5: Precision and Recall Improvement (Delta) of Doctors’ 48-h Discharge
Predictions by Referencing Green Alert.

Metric Precision Recall
Hospital Doctor Doctor AND Green Delta Doctor Doctor OR Green Delta
BH 0.522 0.713 0.191  0.775 0.917 0.143
CH 0.510 0.671 0.161  0.792 0.926 0.134
HH 0.500 0.720 0.220 0.681 0.878 0.197
HOCC 0.478 0.691 0.213  0.656 0.882 0.226
MMC 0.510 0.705 0.195  0.605 0.892 0.287
SV 0.411 0.705 0.294  0.547 0.824 0.277
WH 0.596 0.718 0.121  0.806 0.906 0.100

doctors’ input to identify potential discharge cases that doctors would otherwise have
missed and increase the recall of doctors by 0.1-0.287 across seven hospitals. These
results suggest that by referencing the green alert system, doctors, nurses, and the
case management team can identify more discharges and do so more precisely, which

can further reduce patients’ LOS.

3.5.4 Representation of Readmission Risk

In addition to accurate, timely discharges, it is also important to ensure the safety of
the discharge. According to Medicare, around 20% of hospital-discharged patients are
readmitted within 30 days, resulting in billions of dollars in annual costs (Jencks et al.
2009). Early readmissions, which occur within 7 days post-discharge, are particularly
closely linked to premature discharges, where a tradeoff exists between LOS and
readmission (Koekkoek et al.|[2011). As predicting post-discharge outcomes can be
challenging due to the many complex factors involved, models predict 30-day and
7-day readmission with moderate discriminative ability (Zhou et al.2016, Saleh et al.
2020)). Although our models for patient outcomes up to and including discharge do not
consider readmission or other post-discharge outcomes, we are interested in exploring
their potential associations. Specifically, we examine the relationship between our
discharge prediction tool and the risk of patient readmission within 7 days and 30
days, respectively. We evaluate our findings using data from January to April 2022,

which represents an out-of-sample period in the testing sets for all 7 hospitals prior
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Figure 3-7: Readmission Risk vs 48-hr Discharge Probability.

to the models being put into production.

We begin by discretizing the probability of discharge within the next 48 hours
into fixed buckets with 5% probability intervals. For each bucket, we compute the
proportions of 30-day readmission and 7-day readmission among patients within that
probability bucket and who get discharged within the next 48 hours. As shown in
Figure we observe a negative, almost linear, relationship between the two. Specif-
ically, higher predicted discharge probabilities correspond to lower readmission risks
for both 30-day and 7-day readmissions. This suggests that our model’s confidence
in a patient’s likelihood of being discharged within 48 hours is also indicative of the
safety of the discharge. Importantly, this relationship holds even though readmission
outcomes are not included as inputs or outputs during the training of our discharge

prediction models.

We also investigate the relationship between our green alert system and readmis-
sion risk. Specifically, we compare the proportions of patients who are subsequently
readmitted within 30 days or 7 days, among those discharged with and without a
green alert, respectively. As shown in Figure patients who receive a green alert
48 hours before discharge have 3.07% lower 30-day readmission risk and 1.13% lower
7-day readmission risk compared to those discharged without a green alert. One-
sided Welch’s t-tests with different variance groups reject null hypotheses with p-value
< 1078 for 30-day and p-value < 1072 for 7-day, concluding that patients discharged

with green alerts have statistically significantly lower readmission rates than those
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Figure 3-8: Readmission Risks for Patients Discharged without vs with Green Alerts.

discharged without green alerts. Odds ratios for 30-day and 7-day readmissions for
patients without a green alert compared to those with are 1.32 and 1.34, respectively.
This indicates that the odds of being readmitted within 30 days and 7 days are in-
creased each by over 30% for patients who do not receive a green alert. These findings
suggest an additional potential use of our green alert system to screen readmission

risks and advise more confidence discharges.

3.5.5 Understanding Predictions

We show SHAP summary plots of example prediction models on sample hospitals
to understand how the top 30 features of each model impact the prediction in the
testing set. In the plots, positive SHAP values represent an increase in predicted
probability whereas negative values represent a decrease; the colors ranging from red
to blue represent high to low values of the features.

We analyze Figure for mortality models. For some important variables, such
as age, fall risk score, heart rate, RDW, intravenous (IV) pain, and white blood cells,
higher values drive higher mortality risks. Other important variables include the
number of order types since admission, the number of days since the last surgery, the
oxygen (O2) device, fall prevention level, and more. While most of these variables
align with doctors’ experiences and intuitions, others differ from what doctors typi-

cally use to make their assessments. For example, according to our model, RDW plays
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Figure 3-9: SHAP Summary Plots for Mortality Predictions.

a major role in mortality predictions; however, this feature was not one of the main
variables doctors considered during their assessment. After some literature review,

we learned that multiple papers found a similar significance of RDW in mortality

predictions (Senol et al[2013, Wang et al.|2018| [Soni and Gopalakrishnan([2021)), and

following careful examination doctors agreed to incorporate RDW in their mortality
assessment. This anecdote illustrates how interpretable machine learning can help

doctors learn and enhance their clinical evaluation.

A comparison of the HH model (Figure and the WH model (Figure
shows that while the majority of the important variables are the same between the two
hospitals, a small number of differences exists. For instance, the current department
is a crucial factor in the HH model’s predictions, but it does not rank among the
top 30 features in the WH model. Reviews with doctors suggest this disparity might
be due to the fact that HH has a broad range of departments catering to a diverse
patient population, with varying levels of care and specialties, whereas WH has a
small collection of departments that do not include critical or intensive care for a
more homogeneous patient group. Further, we present additional SHAP plots on
discharge and ICU predictions in Figure and analyze them in Section of
the Appendix.
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3.6 Implementation and Impact

As presented in Section the solution was first piloted with physicians at HH. This
pilot phase helped refine the user interface and conduct a first impact evaluation,

before extending the deployment to the other hospitals.

3.6.1 Software Implementation

Each doctor or medical staff can log into their account with two-factor authentication,
select their hospital, and enter the application. In the tool, patients can be filtered by
a variety of features (e.g., department, date, alert, patient ID). For example, Figure
shows a list of patients and their associated predictions in the HH BLISS 7 East
unit on January 10th, 2023. Each row corresponds to one patient on a given day.
Each user can customize their interface and the subset of columns to display among

the following five categories:

1. Basic information, e.g., current date, patient ID, current department, room,

bed number, service, and level of care.

2. Predicted probabilities for the eight patient operational characteristics on the
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current day.

3. The predicted probabilities from the previous day or the change in these prob-
abilities. An arrow | (resp. |) is prefixed if the 48-hour discharge probability

increases (resp. decreases) by at least 0.1 compared to the previous day.
4. Color-coded (green and red) alerts.
5. Doctor’s expected discharge date with charted time.

The software also supports printing and can be accessed from mobile devices. Upon
clicking the comment icon, the user can provide feedback on the prediction for the
team to review.

As discussed in Section [3.1], the clinician has also access to a SHAP waterfall plot
for each patient prediction (upon clicking on the predicted value) to understand the
patient-specific factors that explain the prediction. Figure displays two examples
of SHAP waterfall plots. For each feature on the vertical axis, we represent its
contribution (either negative, in blue, or positive, in red) to the final prediction for

this particular patient.

3.6.2 Progression of Hospital Deployment

We describe the progress of software use at HHC, from the pilot deployment with
physician champions at Hartford Hospital, and following the initial benefits revealed,

expanded scales of utilization in all hospitals at HHC.

Financial Benefits from Pilot Implementation at HH: Before rolling out the
tool to the other hospitals, HHC’s leadership and financial departments evaluated the
potential benefits of the tool, based on the result of the pilot implementation at HH.
They conduct a simple before-and-after analysis and compare the lengths of stay of
patients in Q4 2020 (277 such patients) and Q4 2021 (351 patients), for those patients
whose attending discharge physician is one of the four physician champions who had

access to the tool in the second half of 2021. Compared with Q4 2020, they observe
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a reduction in average LOS by 0.35 days (from 5.84 to 5.49) in Q4 2021. Given HH’s
high utilization rate, HHC assumes that any additional bed made available thanks
to a reduction in LOS will be occupied. Accordingly, they estimate (see details in
Section of the Appendix) that the pilot implementation could have generated a
$711,348.44 increase in annual contribution margin (CM), hence motivating further

deployment.

However, we acknowledge that this initial evaluation has several limitations. The
pilot implementation only involves a limited number of physicians/units/patients, in
a single hospital, and over a limited period of time. The magnitude of the benefits is
likely to be different once the tool is more deeply integrated into the workflows of all
medical staff, and deployed to other units and hospitals. Moreover, in their before-
after analysis, HHC compares LOS in 2020 Q4 and 2021 Q4 without controlling for
potential confounding factors that could explain differences between the two periods

(e.g., COVID-19 level).

Large-scale Deployment in All Hospitals: Based on the positive feedback and
benefits from the pilot implementation, HHC decided to expand the program not just
to physicians but also to medical service teams, case management, and nursing unit
leadership. They deployed the tool to more floor units and included more physician
champions in the study. HHC progressively rolled out the software in more units of
HH, as well as other hospitals, with a focus on medicine and cardiology (some of such
units also contain surgical service), because such units cover most of the discharges
and would benefit most from using the predictions. Section of the Appendix
provides details on the progressive deployment at HHC, including information on 15
units where our tool is fully deployed (with start dates between July 11, 2022 to
January 15, 2023) and 12 units where the incorporation has not been completed (as

of April 15, 2023).
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3.6.3 Empirical Effect on LOS Reduction

We analyze the impact of using our tool on patient length of stay. We consider two
groups of units from Table in the Appendix: a treatment group of 15 HHC units
that fully used our tool between January 15 and April 15, 2023, and a control group
of 12 units that had not yet fully incorporated the tool as of April 15, 2023. We
collect discharge data for patients whose exit status is neither expired nor hospice
since 2021 and compute the LOS of each patient as the difference between admission
order time and discharge time. We exclude patients whose recorded admission order
time is after their recorded discharge time. The outcome of interest is the average
LOS of patients discharged from each unit group. This convention (i.e., assigning
patients to their discharge unit only) is aligned with the conventions used by HHC
for performance evaluation and with the fact that our tool can mostly impact patient

LOS by helping physicians anticipate and plan the discharge process.

To estimate the treatment effect, we use the Difference-in-Differences (DiD) tech-
nique (Abadie[2005| Bertrand et al.|2004), which compares the average change in LOS
among patients in the treatment group to that of patients in the control group over
time. We control for similar patient population fixed effects between the two groups,
as they covered units of the same level of care (general level) and specialty (medicine
and cardiology). We also control for the time non-stationarity effect within the year

on LOS by focusing on the January 15 - April 15 period of the past three years.

We present the results in Figure , which shows the average LOS (in the number
of days with decimal points) over the three-month period from 2021 to 2022 and 2023.
The control group did not use the tool throughout, whereas the treatment group had
varying degrees of tool usage during the three periods. HHC reported no tool usage
from January 15— April 15, 2021, partial tool usage in 5 units due to the pilot program
in January 15 — April 15, 2022, and full deployment of the tool in all 15 treatment
units on January 15 — April 15, 2023. We assumed that the difference in LOS over
time would have been the same between the two groups if the tool had not been used

throughout the periods, based on the parallel trend assumption from DiD. We thus
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Figure 3-11: Difference-in-differences Analysis for Treatment Effect on Length of Stay.

imputed the counterfactual average LOS for the treatment group if there had been

no treatment (in light green dashes).

The LOS of the control group showed a steady (approximately linear) increase,
rising from 4.96 to 5.4 and eventually reaching 5.85 over three periods. Between 2021
and 2022, the treatment group’s LOS increased from 4.76 to 5.1, which was in line
with the parallel trend but slightly lower by 0.1 days, potentially due to the pilot’s
partial treatment effect. After full deployment, the treatment group’s LOS dropped
to 4.98 in 2023, while the control group’s LOS continued to rise from 4.96 to 5.85.
The difference between the parallel counterfactual and actual treatment group’s LOS
resulted in an estimated benefit of reducing the average patient length of stay by 0.67
days. This benefit was more significant than the estimation from the pilot evaluation
at HH due to several reasons, such as the tool’s increased utilization in more units
and hospitals and its deeper integration into the daily clinical workflow, resulting in a
higher potential for LOS reduction. Our analysis incorporated control variables such
as time period of the year, level of care, and specialty of units, and it was multi-center,

which was absent from the simple before-and-after comparison for the pilot.

However, our analysis holds several assumptions and limitations. For instance,
this was a descriptive analysis that assumed a parallel trend of LOS between the

two equivalent patient populations, controlling only basic time and unit variables.
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Table 3.6: Projection of Financial Benefits from LOS Reduction.

Deployment coverage 15 treatment units 12 control units
LOS reduction (days) 0.67 (estimated)  0.67 (extrapolated)
Patients per year 49,424 24,565
Patient days saved 33,114.08 14,448.55
Average new LOS 4.98 5.22
Proportion of beds backfilled 50% 50%
Additional patients 3324.71 2767.92
Average CM per patient $10,796 $10,796
Total CM increase $35,893,515.18 $14,941,240.02

Additionally, there could be other confounding factors affecting LOS, such as patient
demographics and other efforts to reduce LOS in HHC. Moreover, even though a
small portion of physicians in the control units had access and used the predictions,
we deemed these units as the control group, which could lead to a more conservative
estimation of the effect. Finally, heavy-tailed LOS distributions could be significantly
influenced by patient outliers with overly long LOS.

3.6.4 Projected Contribution Margin Increase

Table [3.6| outlines our projections for the estimated impact on HHC’s contribution
margin as a result of the LOS reduction. By reducing the average LOS by 0.67 days
among patients in the 15 treatment units (49,424 annually), we can save 33,114.08
patient days. Assuming a conservative scenario where only half of the beds would be
backfilled, we estimate that this would make room for an additional 3,324.71 patients
per year, with an average CM of $10,796 per patient. This leads to a projected total
annual CM increase of $35,893,515.18 in these units. With the expansion of the tool
to the 12 control units, we expect an additional increase of $14,941,240.02 in CM.
Overall, upon full utilization among these 27 units, we anticipate a financial benefit of
$50.83 million per year, with the potential for further growth as the tool is extended

to more units across different levels of care and specialties.
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3.6.5 Limitations and Future Work

Although we tried to incorporate as many relevant variables as possible, some infor-
mation considered as predictive by the medical team is still unavailable and unac-
counted for by the current models. This includes medically-related variables (e.g.,
Clinical Institute Withdrawal Assessment for Alcohol scale score) as well as social
and operational issues that are usually recorded in nursing and case management
notes (e.g., goals of care, palliative discussion, pending authentication to the skilled
nursing facility, and pending equipment delivery to home for patients whose discharge
disposition plan is to go home with service). The team is working on obtaining these
additional features and notes, where the latter would require supplemental Institu-

tional Review Board protocol, text de-identification, and privacy management.

Like many medical institutions, HHC uses a commercial EMR system, from which
we extract data using our own data pipeline (from Figure . Due to the techni-
cal complexity of this integration, data is refreshed once a day only and with an
8-hour delay. Physicians, however, identified that some relevant information might
become available between the extraction time (midnight) and the time the data ex-
tracts become available (8 a.m.), information that the model currently cannot take
into account. A more frequent update with shorter delays is an area of potential
improvement, especially for ICU predictions. As of today, despite extensive efforts,
we have not been able to lift the technical bottlenecks in the hospital data system
that generate these long delays. Dynamic Ideas and HHC are currently working on
running the models directly within the hospital EMR system (instead of conducting
data extracts and running the models on a dedicated AWS server), which would allow

for near-to-real-time data updates.

In future work, we will continue expanding the deployment of the tool and evalu-
ating its impact on LOS and other patient /hospital outputs, as more data is collected
over longer time periods. Followed by the connection between higher discharge pre-
dictions and lower readmission risks, another direction is to develop and integrate

patient-level readmission risk predictions in production to enhance patient safety in
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practice.

3.7 Concluding Remarks

As part of a collaboration between Hartford HealthCare, MIT, and Dynamic Ideas, we
develop a system of machine learning models predicting short-term discharge, mortal-
ity and discharge disposition, and ICU risk. After three years of iterative development
and validation, the final models aggregate a variety of clinical and nonclinical data
about the daily status of each patient, achieve state-of-the-art predictive accuracy,
and are well-calibrated.

In particular, the 48-hour discharge predictions generated by the analytics pro-
gram provide 6.3%-29.6% higher distinguishing power (measured by AUC) than the
ones currently obtained from the healthcare providers directly; the combination of
the two (human and algorithmic) predictions can achieve 12.1%-29.4% higher preci-
sion or identify 10%-28.7% more discharge opportunities. Furthermore, the predicted
discharge probabilities uncover a negative representation of 30-day and 7-day read-
mission risks, unintentionally capturing discharge safety. Patients discharged with
green alerts have statistically significantly lower readmission rates compared with
those without green alerts, suggesting another potential use of discharge predictions
to enhance patient safety.

In addition to being accurate, these models have been deployed in seven hospi-
tals and are being used by hundreds of doctors, nurses, and case managers at HHC.
The close and long-term partnership with key stakeholders at HHC enabled a broad
adoption of the tool by medical providers and a deep integration within their daily
workflow. As a result, HHC experienced first-hand benefits to shorten the length
of stay, decrease the cost of care, facilitate the education of patients and families re-
garding discharge, enhance patient safety, and improve the overall patient experience.
Empirically, we observe a reduction in average patient length of stay by 0.67 days
and project an annual contribution margin increase of $35.89 million dollars.

The successful deployment in multiple centers of a representative U.S. hospital
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network also demonstrates the significant potential to scale the framework to other

healthcare systems, in the U.S. and around the world.
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Chapter 4

Data-driven Interpretable Policy
Construction Personalizes Mobile

Health Intervention

4.1 Introduction

Mobile health (mHealth) applications play an increasingly important role in helping
people improve their lives. In part, mHealth applications do this by tracking individ-
uals’ behaviors and contextual data and sending interventions via smart devices such
as smartphones and wearables to encourage healthy behaviors. Applications target
a variety of health behaviors including substance use (Gustafson et al. 2014, Tofighi
et al.|2019, Boumparis et al.[2019)), chronic disease management (Hamine et al.|2015),
stress management (Battalio et al.|2021)), and physical activity (Yom-Tov et al./|2017,
Klasnja et al.[2019). This work concerns an mHealth app, HeartSteps, which is de-
signed to promote physical activity and reduce sedentary behavior in individuals with
hypertension (Liao et al.|2018, Klasnja et al.|2019). In the second and third trials of
HeartSteps (Liao et al.|[2018), HeartSteps V2/V3, whenever a user is sedentary for
more than 40 minutes, the HeartSteps app may send an anti-sedentary message with

the goal of interrupting prolonged sedentary episodes. The messages are sent using
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an algorithm (Liao et al2018)) that uniformly samples each user’s eligible sedentary
times, with the goal of sending an average of 1.5 messages per day per user. There
was no effort to optimize delivery, so as to reduce the sedentary behavior. Our goal
is to learn an interpretable policy for delivering anti-sedentary messages with the
objective of reducing the time it takes for users to become non-sedentary with less

message delivery.

Learning a policy using clinical trial data, such as the data from HeartSteps
V2/V3, poses a number of challenges. The policy needs to be learned in a data-
poor environment with a small number of users. In this study, we use data from 51
users who participated in the HeartSteps V2/V3 trials. The data was collected via
the users’ smartphones, a wrist-worn activity tracker, and pre-study surveys. The
data is noisy, with many missing or imprecise measurements. Such data environ-
ments require careful data imputation and processing steps, as well as intelligently
pooling data during policy learning. Further challenges are related to the nature
of policy to be learned. First, to maintain user engagement with the intervention,
treatments cannot be sent overly frequently, since over-treatment can lead to user
disengagement (Nahum-Shani et al.|[2018]); this includes users becoming insensitive
to the messages and, in more drastic cases, deleting the application from their smart-
phone. Second, in the context of HeartSteps, the learned policy, along with additional
analyses of the data and reviews of the current literature on mHealth interventions,
will be used to formulate how best to improve the effectiveness of the HeartSteps
application in future implementations. Thus, it is critical that the learned policy be
interpretable. The scientific team should be able to use the policy to derive useful
conclusions regarding the importance of different contextual variables in optimizing

the delivery of the messages.

Our work aims to overcome the above challenges in learning such a policy. We
approximate the environment by a contextual bandit environment for each user; that
is, we assume that the effect of the anti-sedentary messages is momentary, not last-
ing more than 2 hours on user behaviors. Our approach deals with the potential

longer-term impact of messages (i.e., disengagement) by constraining the number of
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messages that can be delivered per day. We modify doubly robust estimation (Dudik
et al.[2011)) to estimate counterfactual outcomes for use in batch off-policy evaluation.
For batch off-policy learning, we consider two methods. First, we derive a threshold-
based approach, similar to approaches used across queueing systems (Lin and Kumar
1984), trading (Bertrand and Papavasiliou 2019), and optimal stopping (Baumann
et al.|2020)) fields, due to the simplicity and ability to trade off between exploration and
exploitation (Sang et al.[|2020)). Second, we generalize the Optimal Policy Trees (Am-
ram et al.[2022) method to accommodate constraints. We name the proposed policy
Optimal Policy Trees + (OPT+), which will be used, along with qualitative studies,
other analyses, and the evolving literature, to inform the further development of the
HeartSteps mobile intervention.

Our contributions are three-fold:

1. We develop two innovative batch off-policy learning methods. First, we design a
threshold-based method, that learns personalized thresholds with the feasibility
to be used as a stand-alone policy. Second, we develop Optimal Policy Trees
+, which builds on the thresholds and Optimal Policy Trees (OPT) to learn

interpretable decision tree-based policies.

2. We develop and test an end-to-end batch off-policy learning approach for the
mobile health pipeline. Using HeartSteps V2/V3 data we demonstrate that our
method is able to improve the effectiveness of the anti-sedentary messages sig-
nificantly while reducing the number of messages to send. In particular, OPT-+
has an edge in interpretability and stability over the stand-alone threshold-based

method without sacrificing performance.

3. The resulting decision tree-based policy is informative for further development
of the HeartSteps app. The decision tree policy identifies key variables for op-
timizing the effect of the anti-sedentary messages, including certain user traits,
as well as more dynamic information. Some variables were previously recog-

nized as important whereas other variables are new and require validation. See

further discussions in Section 4.7.11
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The outline of the chapter is as follows. We review related work in Section
and formulate the problem framework in Section Next, we describe the method-
ology for policy evaluation in Section [4.4] and for policy learning in Section We
then present computational results in Section [£.6] Finally, we discuss our recom-

mendations, limitations and future work in Section before stating conclusions in

Section [4.8]

4.2 Related Work

We relate our work to the broader literature from mobile health, batch off-policy

learning, and tree-based policies.

4.2.1 Computational Methods in Mobile Health

Much machine learning work in mobile health focuses on detecting and predicting
behaviors, such as activity sensing (Consolvo et al. |2008), detecting moments of
stress (Hovsepian et al.|[2015)), clustering physical activity patterns (Fukuoka et al.
2018) and predicting user adherence (Zhou et al.|2019). Further work estimates
treatment effects using data from micro-randomized trials (Bidargaddi et al.| 2018,
Klasnja et al.[|2019) to answer questions such as “Does providing suggestions increase
app engagement compared to no suggestion?” and “Do suggestions work only dur-
ing certain parts of the day, like the morning or afternoon?” Despite facilitating an
understanding of user behaviors, such analyses do not directly learn policies.

Policy construction methods have been developed that utilize reinforcement learn-
ing algorithms, for example in physical activity promotion (Yom-Tov et al.[2017, |Zhou
et al.|2018al), and in weight loss (Forman et al.2019)). Often bandit or contextual
bandit algorithms are used. Some of these algorithms learn online, such as My-
Behavior app for physical activity and dietary change (Rabbi et al.2015ajbl 2017,
2018), and a context-adaptive algorithm for medical diagnosis (Tekin et al. [2014]).
In an off-policy setting with the goal of improving emotion regulation (Ameko et al.

2020)), a contextual bandit algorithm is used for batch learning. Since they consider
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a simpler problem of learning a time-invariant initial policy for users, a recommender
algorithm can be built directly based on doubly robust estimators and logistic re-
gression (Ameko et al.|2020). In contrast, we consider a more complicated setting,
consisting of frequent decision time steps subject to budget and other constraints,
which require additional learning methodology. As discussed in the Introduction, in
the HeartSteps V1/V2 studies, an algorithm was used to uniformly sample sedentary
times (Liao et al.[2018). For a different HeartSteps intervention component (walking
suggestions as opposed to anti-sedentary messages), an online reinforcement learn-
ing algorithm (Liao et al.[2020|) was developed and implemented. Our work focuses
on batch off-policy reinforcement learning to develop an interpretable policy and to
provide recommendations for future studies. Anticipating future needs in policy de-
velopment, we also provide a way to transition from learning the optimal policy on

current users to new users.

4.2.2 Batch Off-policy Learning

Our work falls under the field of offline reinforcement learning, for which we refer the
readers to the review paper (Levine et al.2020). In the literature, there exists a vari-
ety of batch off-policy construction methods, which all use counterfactual estimation
for off-policy evaluation. One commonly used evaluation method is the doubly ro-
bust method (Dudik et al.|[2011)), which combines modeling the outcome and inverse
propensity score weighting (Horvitz and Thompson|[1952) and results in an estimator
with reduced variance. Among the batch off-policy learning methods, several works
consider a generally similar framework to ours but have important differences. For
instance, one algorithm (Athey and Wager||2021) uses a doubly robust estimator and
learns a treatment policy subject to specific constraints. In their framework, the pol-
icy must belong to a pre-specified policy class, whereas our method defines our own
new policy class. In another work (Sun et al.2021), a similar problem is considered
to maximize the treatment effect under budget constraints, using data collected from
randomized controlled trials. Their work focuses on modeling an uncertain cost func-

tion, whereas we utilize past data points with observed costs. These approaches differ
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from ours in other important ways as well. They consider prioritizing between users
among the population while we focus on personalizing the policy for each user in a
time series setting. Their work is based on black-box methods such as random forest,
whereas ours are based on thresholds and decision trees to make the policy more in-
terpretable to behavioral scientists. Moreover, our applications to mobile health need

to address the particular challenges mentioned in Section [4.1]

4.2.3 Tree-based Policies

This class of policy learning methods uses decision tree-based policies, which encour-
age wide practical applications due to their interpretability. A family of personalized
tree algorithms is proposed to perform recursive partition on the data and minimize
the defined sum of within-partition personalization impurities (Kallus/[2017). Opti-
mal Prescriptive Trees (Bertsimas et al.[2019) applies the Optimal Trees (Bertsimas
and Dunn|2017) and jointly optimizes the problem for predictive accuracy in coun-
terfactual estimations and optimality of policy outcomes. Cross-fitted Augmented
Inverse Propensity Weighted Learning (Zhou et al.|2018b)), with the implemented R
package policytree (Sverdrup et al.|[2020)), applies doubly robust estimators (Dudik
et al.|2011)), a K-fold algorithmic structure, and a tree-formed policy.

More recently, the Optimal Policy Trees (OPT) method (Amram et al.[2022)) has
been developed which has several advantages over the other tree-based approaches.
The counterfactual estimation is conducted separately prior to the tree construction
and is not limited to the tree form of piecewise linear or piecewise constant structure.
Based on the Optimal Trees (Bertsimas and Dunnl [2017)) structure, OPT simulta-
neously achieves both global optimality of the tree and high scalability. Moreover,
Optimal Trees tend to be more stable than greedy decision trees due to the global
optimization and automatic parameter tuning during the training process. OPT
yields interpretable policies and demonstrates strong performance in benchmarking

problems.
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4.3 Problem Framework

In this section, we first describe the problem background and the dataset through the
HeartSteps study and then formulate the problem mathematically.

4.3.1 HeartSteps Study

The HeartSteps V1 study (Klasnja et al. 2015, |2019) was a mobile health study
in which sedentary users received prompts on their phones to plan physical activ-
ity and suggestions to encourage near-term activity. In the next study HeartSteps
V2/V3 (Liao et al.2018), patients with stage 1 hypertension wore a Fitbit Versa
tracker and used an updated HeartSteps mobile application. One intervention uses
anti-sedentary messages, messages (via phone notifications) designed to disrupt pro-
longed episodes of sedentary time. An illustration of the anti-sedentary Message
interface is shown in Figure [4-1] At every 5-minute time step during a 12-hour win-
dow anchored by each user’s typical sleep schedule, it was determined whether users
were sedentary and available for treatments. Users were deemed to be sedentary if
they have taken fewer than 150 steps in the past 40 minutes, and available if they
had been sedentary for at least 40 minutes, no intervention message was sent in the
last hour, and they had not had an extended bout of physical activity in the previous
two hours. At each available sedentary time step, an algorithm (Liao et al. |2018)
randomized sending a message with variable probabilities computed based on a pre-
diction of the number of additional sedentary episodes that the user would have over

the rest of the day.

4.3.2 Dataset Description and Pre-processing

We compile three data sources collected from the HeartSteps V2/V3 study: longi-
tudinal step and heart-rate minute-level data gathered by Fitbit activity trackers,
5-minute level anti-sedentary treatments data, and baseline user characteristics gath-
ered by surveys. To standardize between the V2 (3-month) and V3 (9-month) studies,

we include up to the first 80 days after each user’s treatment start date. We further
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Figure 4-1: Screen Shot of an Anti-sedentary Message from HeartSteps.

restrict to time steps with at least one measurement in the next 2 hours (to deter-
mine the outcome), with at least 5 same-day prior measurements (to construct the
contextual features), and when the user is available (for treatment feasibility). Out of
the original 94 users from HeartSteps V2/V3, we have access to all three data sources
from 63 users, among whom 2 did not have any available time steps, and additional
10 provided less than a week of data—in both cases missingness being due to tech-
nical problems. Thus here we use the data from the remaining 51 users, including
25 V2 users and 26 V3 users. Within the 80-day duration of this study, each user
can have a different number of days and 5-minute measurements for which we have
recorded study data due to, for instance, non-wear of the Fitbit tracker. We only

keep time steps where there are associated measurements, and impute the additional
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missing data (number of steps, heart rates, and user features) using the OptImpute
algorithm (Bertsimas et al.|[2018)), a state-of-the-art imputation algorithm based on

optimization and k-nearest neighbor learner.

4.3.3 Problem Formulation

We assume a contextual bandit environment for each user. For each user at each
available time step, the user’s current state is used to make a decision. We assume
that the effect on the user of sending a message lasts at most two hours since the
content of the messages suggests an activity that would last less than 1-2 minutes.
The learned policy is constrained by a daily budget across the time steps. We define

policy metrics at a user daily level in evaluating learned policies.

Indices and Sets. User i € [I] denotes each user in the study. Day d € [D;] denotes
each day of the study for user i. Time step t € [T;] denotes every up to 5-min time
step when a decision is to be made for user i. [T},4] denotes the set of available time

steps t on day d for user 1.

States. For each user i € [I], at time step t € [T}]:

e We observe contextual information vector x;, including 103 features from 5
categories: the number of steps taken and heart rate at each of the most recent
6 measured time steps, time step information such as hour of the day and day
of the week, in addition to user demographics, personality traits, and routines

as reported from the baseline survey.

e We access the feasibility indicator of sending a message:

Fyy = min{I;;, rs, N —ny } € {0, 1},

with availability indicator I; € {0, 1}, indicator of a message was sent in the
past 2 hours r; € {0, 1}, number of messages sent during the day so far n, € Z7,

and pre-determined budget on number of messages per each user day N € Z*.
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e We then define the state as the tuple

Sit = {171’15, Fz‘t}-

Decision Variables. For each user i € [I], at time step ¢ € [T;], we learn a policy
7(Si) to decide the action A;; € {0, 1} on whether to send a message. From the data,
we know the historical actions At € {0, 1} with the probability to send treatment

plist € [0, 1] by the current algorithm (Liao et al.[2018).

Constraints. The learned policy is subject to the following constraints. Treatments
can only be sent at the user’s available times. At most one treatment can be sent
every two hours. The total number of messages to each user on each day cannot

exceed the budget N. The above can be expressed using one feasibility constraint:
Ay < Fy, Yiell],tell). (4.1)

Since the actions affect the feasibility of the following decision times, optimization is

challenging as the constraint is intertwined with the policy we aim to learn.

Outcomes per User Time Step. For each user i € [I], at time step ¢ € [T}], we
define the outcomes given state S;; and action A;; as follows. We define the proximal
activity outcome to be the number of minutes the user takes to change from being
sedentary to being non-sedentary. We observe partial outcomes ' from historical
data, and then impute the outcomes §;,(xy), 95 (z;) under context x; if a message is
sent and if a message is not sent, respectively, using the procedure in Section [4.4.2]
Sometimes the duration of the number of minutes until no longer sedentary is censored
due to missing step count data. We redefine the duration to be the duration until
step counts are observed and the user is not sedentary. We truncate this duration
with a maximum cap to y™** = 120 minutes. We then define the treatment effect of

sending a message to be the difference between the outcome with a treatment and

122



the outcome without a treatment:
0y = @zlt(xﬂf) - @?t(xit)' (4-2)

Metrics per User Day. We use two metrics to evaluate policies. For each user
i € [I], on each day d € [D;], we define the user daily cost of the learned policy 7 for
user i on day d as the total number of minutes of sedentary time in the day: Ci4(m).
We define the user daily message count to be the number of messages sent to the user

1 during day d under the learned policy:

Nia(m) = Y w(Sq).

te€(T;a]

4.4 Policy Evaluation Method

4.4.1 Split of Training, Validation, and Testing Sets

We split the data points into train, validation, and test sets, in correspondence with
the study structure and design. For existing users who continue the study, we can
learn the policy from data from their previous days and apply the policy to their
later days. For new users who will enter the study later, we can learn the policy
from pooling existing users to apply it for all days for the new users. Therefore, we
conduct a systematic split in two folds. First, we split the users from V2 and V3
respectively into returning users, new users for validation, and new users for testing.
Out of the 25 total users from HeartSteps V2, we select 80% users as returning
users, approximately 10% as new users for the validation set, and the remaining
approximately 10% as newer users for the test set. Users are sorted and split based on
their study start date. We apply the same splits for the 26 total users from HeartSteps
V3, and combine them with the V2 splits accordingly, thereby maintaining the same
ratio between V2 and V3 users in each set. For each of the returning users, we split
their days approximately into 80% training, 10% validation, and 10% testing sets.
The days are sorted and split based on the date. This two-fold split simulates the
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Table 4.1: Summary Statistics of the Splits.

Set split Training set ~ Validation set ~ Testing set
User group  Return New Return New Return New
# users 45 0 45 6 45 5

% users 80% 0%  80% 11%  80% 9%
# user days 2692 0 314 272 154 272
% user days 68% 0% 8% ™% 6% 11%

circumstances in real life, where we need to learn from past user days to apply for
future user days. Table summarizes the statistics for each group of users in each
resulting set split, including the number and percentage of users and user days.

The resulting splits of data points are used in the experiments as follows. We
train methods on the training days of returning users (64% of all user days). We then
validate the method for both returning and new users in the validation set. Finally,
we apply and evaluate the method for both returning and new users in the testing

set.

4.4.2 Counterfactual Outcome Estimation

One of the main challenges in this problem is to estimate the counterfactual outcomes.
For each user at each time step, exactly one out of the two counterfactual outcomes
(corresponding to the realized treatment) is observed. Thus, it is unknown in the
historical data what the outcome would have been if the alternative treatment was
implemented. For future users and days, the policy will also be based on estimating
the outcome under each treatment option. To impute the counterfactuals for our

problem, we adapt the doubly robust estimation procedure as follows.

Propensity Score. The propensity scores pst (i.e., the treatment probabilities)

are in observed in the dataset.

Outcome Prediction. We develop two machine learning models to predict the
outcome with and without a message, f(z;,1) and f(z;,0) for user i at time ¢,

respectively. We train XGBoost regression models using the training set, with a
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parameter grid including the maximum depth of the trees ranging from 2 to 7 and
the number of rounds from 10 to 300 validated using the validation set. We then
apply the two models to the entire data for policy use. In parallel, we train two other
XGBoost models independently using the testing set only. The predictions will be set
aside during the policy training and application and used at the end as the ground
truth to evaluate the policy outcomes at all time steps, including the ones when we
observed the outcomes based on historical actions. This leads to a fair evaluation
without information leaking when we train and evaluate the policy.

Recall our assumption that the effect of the message on the outcome (i.e., the
user’s decision to get up and move around) will not last more than two hours from
when the message is sent. Since our outcome is the number of minutes until the user
becomes non-sedentary, one complication in our setting is that the treatment affects
not only the current time step but the steps before and after the treatment as well.
These time steps could add noise to the model and confuse the treatment effects. To
address this problem, when training the outcome prediction models, we exclude the
data points where there is both no treatment at the current time step and there was
at least one treatment within 2 hours before or after the current time step. These

data points will be included back as potential decision points in the treatment stage.

Doubly Robust Outcome Estimation. We obtain the doubly robust estimated

outcome for each data point with and without a message sent, respectively:

?33,:(3%) = f(fBz't, 1) + AEM : (yz}‘?St - f(%’t; 1))/]723“»

) = i, 0) + (1= AB) - (415 — F (a0, 0))/(1 = pli).

It has been proven that the estimated policy outcome is accurate if at least one
of the propensity score or outcome estimators is accurate, thus the name doubly-
robust (Dudik et al|2011). In our case, since the propensity score is known, this
results in an unbiased estimate of the counterfactual outcome. We apply an additional

trimming step to keep the outcome in the range y € [0, y™**| to obtain the final doubly
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robust estimates ¢, (x;).

4.4.3 Policy Evaluation Metrics.

Given the metrics per user day from Section 4.3.3, we now define two overall policy

evaluation metrics, the average daily cost across all users:

T =137 3 Culm, (43

iell] " de[Dy)

and the average daily number of messages sent across all users:

N(r) = %Z Di > Nu(m). (4.4)

4.5 Policy Learning Method

We take a three-step approach to solve the problem. In step 1, we follow Section
to estimate outcomes under a policy. In step 2, given the estimated outcomes, we
develop a threshold-based decision rule, which can be used either as a stand-alone
policy or as one step of our proposed policy. In step 3, we apply Optimal Policy Trees
and combine with the previous steps, integrating into our proposed OPT+ policy to

select the treatment that gives minimal estimated costs.

4.5.1 Threshold-based Decision Rule

We describe our algorithms to apply and learn a threshold-based decision rule. Given
the budget N, we learn for each user i a threshold vector I'; € R", consisting of
threshold values for each of the N messages to be sent during a day. Algorithm
uses a threshold to send messages at the first N feasible time steps when the expected
treatment effect of sending a message reaches below user i’s threshold for the n'®
message of the day. For each user, the threshold to send the n'® message of the day
can be different among n € [N]. To trade off between the sedentary outcome and the

number of messages sent, we consider varying N € {1,2}.
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The process to learn the thresholds is described in Algorithm , where D! .
denotes the number of training days for user i, and I;..;, denotes the number of
users in the training set. We consider a set of different threshold parameters I' €
G1 X -+ x Gy to select from, where G; = --- = Gy = {-120,—115,...,—5,0} is
a set with cardinality 25 ranging from -120 to 0 with 5 minutes apart. For each
returning user ¢, we learn a personalized threshold I'; from that user’s historical data.
For the new users, we pool all existing data from returning users and learn a best
fixed threshold I'};,., for this pooled group of users. Then each new user ¢ in the

testing set uses this learned fixed threshold I'f = I'}; ., to be applied in Algorithm [2]

This addresses the challenge of no historical record for the new users.

Algorithm 2 Threshold-based decision tule

1: Given budget N, threshold I'; € R¥ for user i, initiate at the beginning of day d
2: for t € [T}4] do
3: Estimate outcomes ;,(x;) and 9% (xy).
Obtain treatment effect dy,, from .

if 6y, <T7*!' and F;, = 1 then

I (S) « 1. > Send a message if threshold reached and feasible
else

7 (S;) « 0.
9: end if
10: end for

4.5.2 Optimal Policy Trees + Policy

As discussed in Section [£.2.3] the Optimal Policy Trees (OPT) (Amram et al|[2022)
is a methodology for learning optimal tree-based policies directly from data. OPT
consists of two steps, estimating outcomes and learning an interpretable decision
tree policy. For the outcome estimation step, we follow our procedure described in
Section to obtain §'(z) and §°(x). In the second tree training step, it takes
contexts  and estimated outcomes, ' (x) and §°(z), as input, and outputs the policy
#OF T(a:) The same structure of inputs and outputs follows when OPT is applied to
new data. Due to its performance, scalability, and interpretability, we incorporate

OPT in the method we propose. However, OPT has key limitations to be directly
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Algorithm 3 Threshold learning

1: Given budget N and threshold parameter set G; x - -- X Gy, initiate
2: for i € [Ijrqin] do

3: for'e Gy x--- x Gy do > Parameter index
4: for d € [D;, ;] do

5: Apply Algorithm [2| with parameter I' to obtain policy 7 (Sy),Vt €

[Tia)-

6: Obtain metrics Ciq(m™), Nyg(mThr).

7: end for

8: end for

9:  Tr<argming7— > Ci(x™). > Personalized threshold

b Dy,
10: end for
11 I%,,0q ¢ arg mFin Inim ' Dijm
1€[ltrain]
12 Y Cig(n™™). > Fixed threshold

de[Di

tTain}

applicable to our setting. Therefore, we propose OPT+ with several adaptations to
build on top of OPT, including personalized policy application, budget soft constraint,

and validation process. We elaborate on each of the three aspects below.

Constrained Personalized Policy. First, the construction of the tree does not
support our constrained personalization setting. Since the policy also affects the
feasibility constraints at each time step, the feasibility of sending a message at each
time step cannot be encoded prior to training the tree. Thus, at time steps when it
is not feasible to send a message due to mandatory practical constraints described in
Section [£.3.3] for example after a recent treatment within the past two hours, OPT
might still recommend a message due to a sizable estimated benefit in the outcome.
Moreover, by construction, each leaf of the tree recommends the option that works
on average the best among all data points in the leaf. While this intelligently pools
user decision points into buckets, the derived action might not give the best estimated
outcome for each particular user time step. To address these problems, we propose
Algorithm [ We dynamically update the feasibility indicator Fj; and enforce the
associated constraints in . At a feasible time step, OPT+ sends a treatment
if both the threshold-based decision rule from Algorithm [2] and OPT recommend a
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treatment. This also leads to a balance between pooling among data in each leaf
of OPT and ensuring the particular personal treatment effect up to the threshold.
Compared to the threshold method, OPT+ is designed to be more restrictive in

sending a message and do so with interpretability.

Algorithm 4 Optimal Policy Trees + policy
1: Given OPT tree, budget N, learned threshold I'; € R for user ¢, initiate at the
beginning of day d, initiate
2: for t € [T4] do

3. Apply OPT to obtain #°F7(S;,).

4: Apply Algorithm 2| to obtain 7™ (S;;) with T;.

5: if 7™ (S,;) =1 and ﬁOPT(Sit) =1 and F;;, =1 then

6: TOPT(S;) + 1. > Send message given consensus
7: else

8: 7OPT(S;) <+ 0.

9: end if

10: end for

Budget Soft Constraint. Second, the training of OPT does not support direct
incorporation of the budget constraint. Even though we incorporate the budget to
Algorithm [4] as a hard constraint, it might not be optimal to train an OPT indifferent
between sending and not sending a message given the same estimated outcome. To
address this issue, we adapt the tree training process to incorporate the budget as
a soft constraint by adding penalization of the outcome when training OPT. A pa-
rameter A € R is introduced to control the trade-off between the outcome and the
number of messages sent. We define the penalized outcome by adding A in the case

of a message sent:

@gxed(iﬂit, Ai) = Yp(xi) + X+ Au,

and train OPT with z, AMst, g4 (2 AMst)  To personalize the budget penalization,
we also consider learning a user-specific \;. We utilize the personalized thresholds T’;
learned from Algorithm [3] in the case of N = 1, with the intuition that I'; captures

the relative unit outcome changes between users. We then define

Ao =Tia, G (2, Au) = Gag(2a) + N - A,
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where 0 < a < 1 is a discount factor to further tune the trade off between outcome
and budget. Finally we train OPT with z, AMst gpersonalized (g, - gbist) = Thig Jeads to

~fixed

two variations of the algorithm with g and gpersonalized

Extended Validation Procedure. Third, the validation procedure of OPT is
designed to optimize for the sum of outcomes among all user time steps given the
policy tree. This is not sufficient for us, since our algorithm contains other policy
components and targets user daily metrics. Thus, we adapt the validation process

i

: 1 denote the number of validation

to select the best parameter combination. Let D
days for user ¢, and I, denotes the number of users in the validation set. For each
variation, we apply Algorithm [5| to tune and select the parameters of the following
types and ranges. For personalized penalization of the budget constraint for tree
training, we consider a list of a values ranging from 0 to 0.005 with 0.001 apart;
for fixed penalization, we consider a list of A values ranging from 0 to 3 with 0.5
apart. We consider OPT of maximum depth 5 and depth 7 and automatically tune
the complexity parameter of the tree. In addition, since the best threshold from
the stand-alone Algorithm [3] might not be the best for Algorithm [5 we retune the

thresholds with a warm start selection by using a list of threshold values selected for

at least one user from Algorithm

Algorithm 5 Optimal Policy Trees + policy learning

1: Given personalized penalization option, initiate a set of « or A, OPT maximum
depths, and threshold parameters I' | initiate

2: for each personalized penalization option, OPT depth and o or A do

3 Train OPT with z, Ahist’ Qﬁxed (.I', Ahist) or @personalized<x7 Ahist)_

4: for each parameter I' do

5 for i € [I,ul,d € [D!,] do

6

Apply Algorithm 4 to obtain policy 7°FT(S;;) for parameter combina-
tion for all ¢ € [T;4).

7: Obtain metrics Cig(7%FT) and Ny (7OFT).
8 end for

: end for
10: end for

11: Select the parameter combination which gives the best average daily metrics
among validation set users.
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4.6 Computational Results

We conduct experiments to demonstrate and compare the benefits of our method.
We split the data into train, validation, and test sets as described in Section [4.4.1]
We apply the methods in Section and evaluate on the testing set. For each
user on each day, we compute the two metrics defined in Section [4.3.3} sedentary
time and message count. We evaluate the performance of both the threshold-based
decision rule as a stand-alone policy and our integrated proposed method, compared
with the current policy. We further present the output Optimal Policy Tree + for
interpretation and stability analysis. The computational experiments are conducted
in Julia programming language on a Macbook Pro with 2.3 GHz Quad-Core Intel

Core i7 processor.

Comparison of Methods. For the threshold-based decision rule as a stand-alone
policy, we implement 4 variations of the policy, with a budget of 1 and 2 messages
and with personalization turned on and off. For the Optimal Policy Trees + policy,
we implement 2 variations with a budget of 2 messages and personalized penalization
turned on and off. For each variation of each method, we validate the best selected
parameters, and then compute the two metrics defined in Section the number
of minutes in sedentary time and the number of messages sent, for each user day
in the testing set. Since each user has a different number of available days in the
testing set, to give each user equal weight, we compute an average daily metric among
the available days for each user. Given the metrics per user, we then compute the
mean from and and the standard deviation of metrics among the users for
each method. The results for each method are summarized in Fig. where each
scatter point represents the mean metric with 95% confidence interval bars. The plot
demonstrates the resulting trade-offs between the sedentary time and message count
in the testing set.

For an average user, the current policy results in 148.02 minutes of daily seden-
tary time with 1.62 messages sent. In comparison to the current policy, significant

improvements in both metrics are achievable from all variations of threshold-based
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Figure 4-2: Method Comparison (Average +£95% Confidence Intervals).

decision rule and OPT-+. For an average user, the stand-alone fixed threshold-based
decision rule with budget 1 reduces the average daily sedentary time to 103.98 min-
utes with 0.79 messages, and the OPT-based policy with a fixed threshold reduces the
average daily sedentary time to 108.56 minutes with 0.76 messages. These two varia-
tions have comparable performance, whereas OPT+ has the edge of interpretability.
As another option, the threshold method with a budget of 2 can reduce sedentary
times more if the decision maker is willing to achieve higher improvement by sending
more messages than the other variations. We note that OPT is designed to be more
restrictive about sending a message (since both OPT and the threshold need to agree
to send) and provide more interpretability. We observe that personalization does not

bring a benefit over fixed thresholds.

To further compare the OPT+ and threshold methods which send similar numbers
of messages, we show in Fig. [{-3|the number of returning and new users for whom each
method gives the least sedentary time in the testing set. The majority of users achieve
the best sedentary time reduction from the fixed threshold and OPT+ methods, with

similar portions between the two among both returning and new users.
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Figure 4-4: Optimal Policy Trees.

Output Optimal Policy Tree. The final Optimal Policy Trees is shown in Fig. [4-4]
to be applied for users in the testing set. The tree partitions users and time steps into
different subgroups with estimated heterogeneous treatment effects between them.
For each user time step, we follow the logic of the decision tree based on user and
contextual information to reach to a leaf node, similar to other decision trees. At each
leaf node, we prescribe one of the actions: treated (sending a message) or untreated
(not sending a message). The intensity of the red or green coloring of the leaves is
proportional to the estimated outcome difference; the stronger the shade of the color,
the more confident our recommendation is. Each node of the tree presents summary

statistics among training data points that fall under the node, where the sample

133



size of each budget is denoted in “n =".

It also shows a table of average estimated
(penalized) outcomes under each treatment, which results in the prescribed treatment

of each node.

Stability of the Optimal Policy Trees. Moreover, we analyze the stability of
the Optimal Policy Trees, namely how the tree output changes with respect to the
randomness and parameters involved in the tree training process. The stability issue is
especially important since the output tree is critical in providing interpretability and
insights for mHealth applications, and a stable tree can enhance the decision makers’
trust in the algorithm. The final tree uses 15 variables in the splits. To investigate
the stability of the tree, we train 99 additional alternative trees with slightly different
parameters and compare if similar variables are identified by the alternative trees.
Table shows the proportion of trees among the 100 which identified each of the
15 variables. The top 7 variables appear in at least half of these 100 trees, which
supports the stability of these variables and confidence in interpretation and guidance
for scientific study. Stability analysis that compares the importance value (in addition
to occurrence in the trees) of the variables in the 100 trees shows similar results, which

we omit here for brevity.

Overall, we recommend using the OPT+ policy. Our proposed method is beneficial
for sedentary users by sending a limited number of messages. It provides stable
interpretability to decision makers without sacrificing performance, facilitating the

use of the policy in real life.

4.7 Discussions and Future Work

In this section, we discuss how our overall work draws recommendations for the
HeartSteps study. We further discuss the limitations of our study and directions for

future work.
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Table 4.2: Stability of Variables Used in OPT.

Variable Proportion
Day of the week 100%
Heart rate in the current measured time step 89%
Hour of the day 81%
Heart rate in the 1st latest measured time step 74%
What is your age? 69%
Number of minutes of current sedentary episode so far 59%
Disorganized; careless 50%
Sense of belonging to group that do same activities 43%
Number of steps taken in the current measured time step 29%
Heart rate in the 2nd latest measured time step 18%
Daily frequency of turning on phone screen 14%
Employed full-time 10%
I am in a bad mood 9%
Confident to handle personal problems 4%
More flexibility on Monday 4%

4.7.1 Recommendations for HeartSteps

As initial evidence for the value of interpretable mHealth policies, the Optimal Policy
Tree shown in Fig. yields several insights that validate the usefulness of our

approach and can inform future research on HeartSteps.

Concordance with Previous Research Findings. Prior research has found that
individuals’ sedentary time—as well as their ability to be active—is closely tied to
their daily routines, such as meal times, and time spent at work. This connection of
sedentary behavior and daily routines is reflected in the variables frequently identified
by the OPT-based policy, day of the week and hour of the day, providing initial
evidence for its ecological validity and supporting the intuition that if users have
more flexibility during a part of the day (e.g., having fewer meetings), they are more
able to get up and move when they receive an anti-sedentary message. Other studies
found similar patterns (Bidargaddi et al. 2018, |[Klasnja et al. |[2019| Fukuoka et al.

2018)), providing a further ecological-validity check for the tree.
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Informing New Theorizing. Besides reflecting known behavioral patterns, the
Optimal Policy Tree also uncovered a number of unexpected moderators of interven-
tion response. Understanding why these variables may matter requires additional
theorizing and could advance our understanding of the processes that underlie behav-
iors and behavior changes. By uncovering such factors, the tree provides a data-driven
and transparent tool to guide theorizing, which is especially useful at fast time scales
(minute-, hour-, and day-level) for which we do not have existing behavioral theories.

Among the interesting results unearthed by the tree are the following:

1. Among the variables that describe a user’s current state (as opposed to more
stable characteristics), heart rate played a significant role in 2 of the 7 most
commonly found features. Given that all of the data used by the tree are for
available time points only (i.e., a person has been sitting for at least 40 min-
utes), the heart rate is not related to the current physical activity. Since it is
known that heart rate correlates with stress, we propose one possible hypoth-
esis: that people are more likely to respond to an anti-sedentary message and
get up and move around when they are feeling stressed. Physical activity is
known to help with stress management, so it is possible that the prospect of
getting up and moving away from the current task is more appealing when the
task is stressful and when the person needs some time to regroup. In future
studies, we can test this hypothesis by including intraday measures of stress
and analyzing whether reported or detected stress levels moderate the response

to anti-sedentary messages.

2. In addition to time-varying contextual features, the policy contains a number of
variables about stable user characteristics, obtained from baseline surveys, that
do not strictly relate to physical activity. These include user age and personality
characteristics such as low levels of conscientiousness. While most past studies
have focused on learning a policy from the data about the current context
(e.g., the number of minutes of sedentary time up to that point), this finding

suggests that user trait information can also be useful for forming policies.
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Further group analyses will need to be done for user groups who are similar
on personality-related trait measures as well as physical activity-related traits
(e.g., self-efficacy for activity and commitment to being active) to discover what
traits may matter for other types of interventions. In addition, if such trait
characteristics are repeatedly found to influence the response to momentary
interventions, additional theorizing will be needed to understand how and why

those trait matter for moment-to-moment decisions about whether to be active.

Future Improvements for HeartSteps. Finally, our results suggest potential

improvements for future versions of the HeartSteps intervention itself.

1. Given the promising computational results, the policy can be considered for
use in the next version of the intervention. In particular, people with certain
characteristics and routines are more inclined to be responsive to anti-sedentary
messages when given our policy, so if these characteristics could be obtained
during the study intake, they could be used to selectively provide this policy to

individuals who are most likely to benefit from it.

2. On the other hand, user groups with certain traits do not benefit as much from
the current treatment regime. This finding suggests that other policies may
need to be developed for these user groups or that they may require a different

type of policy altogether.

3. Lastly, since heart rate is a key predictive feature despite sizable amounts of
missing values, this can encourage future efforts to collect more complete and

accurate heart rate data to further improve outcomes.

4.7.2 Limitations and Future Work

The current work has several limitations that can guide future work. We were only
able to use data (with partially known outcomes) from a subset of 51 users out of 94
total HeartSteps V2/V3 participants, which could create possible bias. More adequate

data would enhance our validation scope. For policy learning, our method constructs
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a deterministic policy that makes binary decisions for intervention provision, whereas
extending the method to send probabilistic treatments could facilitate off-policy anal-
yses after the use of our policy. One possibility is to adapt the current binary voting
regime into stochastic treatments with voting probabilities among multiple OPTs
and thresholds, although the ensembling procedure could sacrifice the extent of inter-
pretability. Finally, our work provides a proof-of-concept and demonstrates benefits
from the past data from HeartSteps. This suggests the potential benefit if we were to
implement our method in future HeartSteps studies online. Although our framework
is developed and tested in a batch setting, it has the potential to be extended for
use in an online setting. With online data collection from returning and new users,
we can use our pre-learned policy as a warm start, and retrain the algorithms and
trees regularly (e.g., daily or weekly) to incorporate more information. If such online
extensions were found to be stable, their incorporation in the next version of the
HeartSteps intervention may both improve its effectiveness and generate further data

that can guide theorizing about behavior-change processes.

4.8 Conclusions

In this chapter, we develop and test two innovative batch off-policy learning meth-
ods for personalized mobile health applications. The first method learns thresholds
and can be used as a stand-alone policy. Optimal Policy Trees + incorporates the
learned threshold and adapts OPT to a budget-constrained setting. Experiments
on HeartSteps V2/V3 data demonstrate significant improvement in the effectiveness
of anti-sedentary messages with lower budgets using our methods as compared to
the current practice. In particular, OPT+ identifies important variables with inter-
pretability and stability without sacrificing performance. Insights uncovered from the
decision tree can guide new theorizing on the factors that influence behavior-change
processes at the intraday level, thus advancing our understanding of the dynamics of

human health behavior.
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Chapter 5

Conclusions

In this thesis, we improve healthcare operations from models to implementation. The
main contributions of this thesis are two-fold: 1) We develop methodologies from
optimization, machine learning, and policy learning to support strategic, tactical,
and operational decision making for multiple healthcare systems. 2) We extensively
deploy software in daily production at a comprehensive scale in a representative large
hospital network. Not only do our models achieve state-of-the-art performances, but
their implementation also makes tangible impacts in practice.

The two-phase optimization model developed in Chapter 2 for nurse staffing at
the Emergency Department results in a less costly schedule with improved patient
coverage and higher nurse satisfaction, while the benefits are flexible to adapt to
changes over time. Meanwhile, the machine learning models developed in Chapter
3 enable accurate prediction of various patient operational characteristics for all in-
patients across seven hospitals. Moreover, the interpretable batch off-policy learning
methods developed in Chapter 4 reduce sedentary behavior more effectively for an
mHealth app.

Our end-to-end software, implemented in Chapters 2 and 3, leverages optimization
and machine learning to support systematic resource allocation and patient evaluation
for over 400 direct users and more stakeholders at Hartford Healthcare. The adoption
of our tool results in cost savings, better patient care coverage, and increased nurse

satisfaction, reducing the average patient length of stay by 0.67 days and enhancing
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patient safety while reducing manual labor of healthcare workers. Our tool’s success-
ful implementation at HHC led to a projected $36.62 million annual revenue uplift,
including $0.73 million cost saving from nurse staffing and $35.89 million contribu-
tion increase from LOS reduction. As the deployment continues to expand in more
hospitals and units, we expect to generate even more substantial financial benefits in
the upcoming years.

Overall, the thesis demonstrates the potential of transforming the future of health-
care operations with models and implementation. From our collaboration with health-
care stakeholders throughout the development and deployment, we gained and shared
insights on our first-hand challenges and successful takeaways, which we hope can en-
lighten future efforts in connecting the bridge further between research and practice.

Looking ahead, we envision the future expansion of the Holistic Hospital Optimiza-
tion (H20) framework to encompass four key elements: 1) Holistic data: Utilizing
multiple input modalities (e.g., image, language, tabular, and time series data) to
solve healthcare problems, as demonstrated in the unified Holistic Al in Medicine
(HAIM) framework (Soenksen et al.|2022). 2) Holistic models: Leveraging the in-
teractions of different methodologies, such as incorporating large language models to
enhance patient outcome machine learning models in production (Villalobos Carballo
et al|2022). 3) Holistic decision making: Integrating resource allocation, patient
outcome prediction, and digital intervention into a unified system (Bertsimas et al.
2023b), which aims to turn the imagination of the patient journey from the thesis
introduction into an anecdote. 4) Holistic implementation: Expanding the success-
ful deployment from a multi-center, representative U.S. hospital network to other

healthcare systems worldwide.
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Appendix A

Appendix to Chapter 2

A.1 Demand Trends and Patterns

Figure displays the number of ED patient arrivals for each day since late 2016.
Before March 2020, the ED volume was about 250-350 patient arrivals per day with
small fluctuations. Since the beginning of COVID-19, the number of arrivals to
the ED dropped significantly and then kept growing back through 2021 to a level
slightly lower than before, with 200-300 arrivals per day. As the pandemic progressed
through different stages, people were recovering from the COVID-19 isolation period,
which brought the ED volume back to 250-350 arrivals per day, while having larger
fluctuations over time compared with pre-COVID-19. To reduce noise from the pre-
COVID-19 period as well as the time when the demand significantly dropped right
after COVID-19, we use data starting June 22, 2020 for all analysis, which we highlight
in Figure [A-Ib] These trends demonstrate the varying ED demand over time and
suggest potential differences in the benefits of our approach to the ED during periods
of low versus high demand.

For each pod type, Figure shows patterns for the number of patients in each
pod type at each hour of the day (midnight to midnight) and for each day of the week
(Monday to Sunday). In each of the plots, the solid curves represent the average value
with error bars as standard deviations over the 27-week periods from June 22 to De-

cember 6, 2020. For main pods, we have a much higher demand in the afternoons and
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Figure A-1: ED Historical Volume Over Time.

evenings. Demand at these busier times often exceeds room capacity. During these
periods, we observe higher demand on Mondays to Wednesdays, lower on Thursdays
and Fridays, and further lower demand on weekends. In general, demand in the main
pods has the highest variability among other pods. For the red pod, we have on
average 1-2 patients and higher demand in the afternoons and evenings. It has much
higher demand on Friday compared with other days of the week. For the purple
pod, we have slightly higher demand during the nights and slightly higher demand
on weekdays than on weekends. For iTrack, we also observe patterns of higher de-
mand in afternoons, evenings, and weekdays. These variabilities and patterns suggest
the possibility of adjusting the staffing corresponding to the demand to have better
operations at the ED.

A.2 Schedule Illustration

In this Appendix section, we provide a more detailed illustration of the
recommended schedule for November 2 - December 13, 2020 obtained from robust
(a) approach from Section , including the relationship with patient demand
patterns, insufficiency breakdown by pod types, and a complete recommended

schedule.
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+ Standard Deviations from June 22 to December 6, 2020).
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Figure A-4: Hour-of-day Patterns of Demand and Staffing.

Patterns of demand vs staffing. We illustrate that our recommendation
matches staffing with demand patterns and results in a more cost-effective schedule.
In this period, the average number of patient stays over 6 weeks and the number of
nurses recommended to staff each week in each pod type from Monday to Sunday
(starting from 7 am to 7 am each day) are shown in Figure and Figure [A-3D]
For the main pods and the purple pod, as patient demands tend to be higher on
weekdays than weekends, we staff more nurses on weekdays than weekends. For the
red pod, we have a particularly higher demand on Friday when we also staff more
nurses. Both demand and staffing for iTrack have less variability throughout the

days of the week.

For intra-day patterns, we show the average number of patients over 6 weeks in each
pod type at each hour of the day (from hours starting at 0:00 to 23:00) in
Figure [A-4a] For main, red, and iTrack pods, we have higher demands in the

144



afternoons and evenings, where the variability is highest for main pods. For purple
pod, demand is more constant throughout the day with slightly higher demand
during nighttime. Currently, every day applies the schedule shown in Figure [A-4D]
for the number of nurses working in each position at each hour of the day. Only
staffing at iTrack adapts to the variability in demand with more staffing in
afternoons and evenings and less at night. However, in red and main pods where we
also observe variabilities in demand (especially in main pods), staffing remains
constant throughout the day and week. In contrast, the recommended schedule
shown in Figure is consistent with the demand patterns by having smoother
staffing in the purple pod and more staffing from 11 am—11 pm for other pods.
Even though the schedule is generated with information only prior to the period, it
can capture most of the day-of-week and hour-of-day demand patterns in the period
prospectively, which justifies the robustness of our approach. By matching staffing

with demand patterns, we reduce the staffing cost by 7.40%.

Recommended schedule. We show the complete recommended schedule for the
period in Table where we specify the number of nurses assigned to each of the
three shifts at each of the 8 positions on each day every week. We note that the
position configuration was different in 2020 from now. We break the main pods
down into blue, green, and orange pods. This aggregate schedule can lead to
multiple feasible schedules for individual nurse assignments, which is flexible to
incorporate nurse types and individual nurse preferences for final schedule

implementation.
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Table A.1: Recommended Schedule (Shift 1: 7a-7p, 2: 1la-11p, 3: 7p-Ta).
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Appendix B

Appendix to Chapter 3

B.1 Feature Processing

In this Appendix section, we elaborate the feature processing of the data, and in
particular, changes and efforts taken to expand models from one hospital to seven

hospitals.

Full List of Curated Features. We create various features divided into 6 groups.
1) Current conditions:
e Information extracted from admission, discharge, transfer orders, and

events (e.g., department, service, whether in ICU).

e Current status such as DNR and Nothing by Mouth (NPO, meaning

inability to eat or drink).

e Others such as dialysis and oxygen (O2) device.
2) Lab results (e.g., albumin, white blood cell count):

e [atest measurements.

e Delta variables (difference of the current day’s lab result from the

previous day’s).
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e Normal range indicators (1 if the lab value is within the normal range, 2

if outside the normal range, and 0 if the lab value is missing).

e Distance between the lab value and its normal range, i.e.,

min(value-lower bound, 0)+max(value-upper bound, 0).

e Number of abnormal lab results in the past 24 hours.
3) Clinical measurements (e.g., temperature, respiratory rate, heart rate):

e Latest measurement.

e Highest measurement in the past 24 hours.

e Average value in the past 24 hours.

e Critical indicators (whether or not the value is critical with respect to the
critical range provided by doctors).

4) Time series summary statistics of operational variables:

e Number of days in the ICU and in hospitalization since admission.

e Number of days until the next scheduled surgery, the number of days

since the last surgery, and total time spent in surgery since admission.

e Pending results (whether or not MRI/CT/ECHO/etc. is pending, and
the number of labs pending).

e Numbers of notes, orders, and medications in the last 24 hours and since

admission.

e Number of attending physicians in the last 24 hours.
5) Patient information prior to current admission:

e Age at admission and patient type.

e Number of days since the previous admission, and LOS of the previous

admission.

6) Auxiliary operational variables which are not patient-specific:
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e Current date-related variables such as day of the week and weekend

indicator.
e Ward-related statistics such as census, utilization, and daily discharges.

e Hospital-related statistics (e.g. number of hospital admissions in the past

24 hours).

Missing Feature Imputation. Like most clinical data, our data extracts contain
a large portion of missing data. We adopt different imputation techniques to deal
with different types of missing features. First, with the hospital’s help, we leverage
information about how the data are collected, recorded, and computed to develop a
rule that deterministically imputes a subset of variables. For some binary variables
in group 1), a missing value indicates that the patient does not have this current
condition. For example, DNR is missing when the patient did not sign a DNR, NPO
is missing when the patient does not have an NPO constraint, and IV is missing
when the patient is not on IV. Thus we fill the categorical values accordingly for
such binary variables. For some multi-class categorical variables in group 1), missing
values are deemed as a separate category indicating that it is missing. For example,
missing O2 device, and diagnosis are imputed as “NA Value” to indicate the patient
has no O2 device and has no diagnosis. For the range columns of lab results in
group 2) (e.g. normal range for bilirubin), we first extract the non-missing record
for each admission event and backfill on all dates for this admission event. Here we
assume that the normal range column has unique input for each admission event. If
all records for the admission event are missing, we fill the entries with the most
frequent category of this range column. For clinical measurements in group 3), we
capture cases when a value is not measured, which could reflect additional
information, by imputing the missing value with a special value such as -1. For most
summary statistics of operational variables in group 4, we fill the count with 0 if
there is no record found. For example, if there is no pending lab and no medications

in the record, then the count of pending labs and the number of medications are
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computed as 0. For some other counting variables in groups 4) and 5), imputing
with 0 would confuse with a count of 0 due to their meanings. For example, the
number of days until the next scheduled surgery is 0 if the future surgery date is the
current day. Thus we impute a missing future surgery date, which means the
patient does not have surgery scheduled, with the value -1 instead of 0. For the
number of days since the last surgery and since the previous admission, no record of
the last surgery and admission is approximated with a long time ago by imputing
with 9999. After our clinical rule-based imputation step, other variables such as
laboratory results and vital devices also have a high missing percentage. We drop
columns with more than 50% missing values in the dataset and then impute missing
values of the remaining features using the OptImpute (Bertsimas et al|[2018), an
imputation method based on optimization and k nearest neighbors (Peterson![2009).
We note that for features in group 3), we impute the original lab results and clinical

measurements before computing the delta and distance to the normal range.

String Parsing. Several columns in the data extracts require string parsing to
obtain numerical values. The normal range features are stored in the format of
“lower bound - upper bound”, “>upper bound”, or “<lower bound” as strings.
Hence, we first split these strings into two float formatted numbers as upper bound
and lower bound features. Several variables such as the last RASS score and pain
score take string formats containing both the numerical score and an explanation of
the score, such as “0 — alert and calm”, “-4 — deep sedation”, “10 — hurts worst”,
etc. We parse such string columns to extract only the numerical score as a

continuous variable.

Categorical Variable Encoding. The feature space contains several categorical
variables and requires encoding before passing into the imputation and modeling
process. Some features must be encoded in a specific way, for example, the feature
DNR is encoded as 1 if the entry is “DNR (DO NOT RESUSCITATE)”, and 0

otherwise. For other categorical variables, such as current department, current
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service, and oxygen device, we use a label encoder to encode each column

separately.

Differences between hospitals. Since the electronic medical records of the
seven hospitals are unified in HHC, most variables have consistent forms across
hospitals and thus did not require additional processing to scale from one hospital
to others. However, each hospital has some different conventions and some variables
required specific processing for each hospital. For example, hospitals have different
ways of naming departments and levels of care. Departments of intensive care level
are named ICU in HH, CH, and MMC, named CCU in BH, and Critical Care in
HOCC, WH does not have an ICU, and SV have specific names for ICU units.
These differences were identified by inspection of the data and consultation with the
hospital network. Thus we modified the way to compute ICU-related variables such
as whether or not a patient is in the ICU and the number of days in the ICU, as
well as to compute the ICU-related prediction targets for each hospital differently.
The hospital is set to be a parameter to address the differences in the feature
processing part. Another major difference is that multi-class categorical variables
can take very different sets of values from one hospital to another. This could be
due to differences in both patient populations and in ways of recording data by
different staff members. In previous models for HH only, some multi-class
categorical variables, such as service, diagnosis, insurance, etc., were manually
encoded based on their critical levels where similar values of variables are grouped
together. For example, O2 devices are converted into numerical values ranging from
1 (most critical devices) to 7 (room air or no device). Such encoding was done with
discussions with doctors at HH based on their clinical knowledge. However, since
the seven hospitals have different categories, manual categorization would need to
be done for each hospital individually. To make the process more efficient and
scalable, we decided to replace such manual encoding with label encoding, where we
have one encoder for each categorical variable for each hospital. The encoders are

saved for each hospital for consistent use in production. Similarly, we train, save,
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Table B.1: Summary of Data Size.

Hospital BH CH HH HOCC MMC SV WH
# Patients 15,493 7,956 105,184 20,011 15,576 11,624 4,838
# Admissions 23,354 12,822 171,072 29,490 21,612 15,319 6,924
# patient days 106,662 52,931 879,357 139,542 90,924 79,615 26,184

and apply separate OptImpute imputers for each hospital.

B.2 Supplementary Results

In this Appendix section, we present additional results of the data and experiments.

B.2.1 Data Summary Statistics

We report here the summary statistics of the data after the process of inclusion,
exclusion, and splits from the Machine Learning Modeling section. For each
hospital, the number of patients, admissions, and patient days in the union of
training, validation, and testing sets are summarized in Table [B.1] In total, we use
data from 180,682 patients, 280,593 admissions, and 1,375,215 patient days in HHC.
The data sizes vary across hospitals, where HH, the hospital with the largest data
size, has over 33 times of patient days than WH, the hospital with the smallest data
size. After filtering per target, the numbers of data points, i.e., patient days of the
remaining training, validation, and testing sets combined are shown in Table
Mortality and discharge-related targets keep the majority of the data points,
whereas [CU targets have fewer data points largely due to the split of patients in
versus not in ICU, especially leaving ICU predictions have a small portion of data
because a very small portion of patients are in ICU.

We also report the proportions observed of each prediction task outcome in the
testing set. For mortality and discharge disposition, since the target outcome is the
outcome at the end of the stay, we compute the proportions of patients for each of
the three discharge disposition classes for each hospital in Table B.3] The

proportions are similar between hospitals, except that BH and WH have a higher
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Table B.2: Number of Data Points (Patient Days) for Each Prediction.

Hospital Prediction BH CH HH HOCC MMC SV WH

Mortality 104,552 51,542 865,954 134,684 88,999 76,618 25,823
Discharge Disposition 104,552 51,542 865,954 134,684 88,999 76,618 25,823
Discharge 24hr 105,451 52,021 869,468 135,592 89,474 77,178 25,937
Discharge 48hr 105,225 51,851 868,563 135,297 89,320 77,032 25,888
Enter ICU 24 hr 75,585 34,378 592,264 92,700 63,876 59,701

Leave ICU 24 hr 7,808 5,792 115,997 17,499 5,526 4,590 No ICU
Enter ICU 48 hr 56,679 24,166 454,803 69,097 47,491 47,569

Leave ICU 48 hr 7,312 5,336 109,443 16,332 5,079 4,360

Table B.3: Proportion of Patient Admissions for Each Discharge Disposition in Test-
ing Set.

Outcome Class BH CH HH HOCC MMC SV WH
Expired/hospice ~ 6.08% 7.47% 5.63% 7.17% 6.31% 7.41% 5.12%
Home w/o service 60.44% 45.26% 50.04% 50.16% 52.51% 52.08% 61.97%
With service 33.48% 47.27% 44.33% 42.67% 41.18% 40.51% 32.91%

proportion of patients discharged to the home without service category compared to
the other hospitals. For the discharge and ICU next 24-hr and 48-hr targets, since
the outcome depends on the date, we compute the proportions of patient days that
have a positive outcome for each prediction task in each hospital in Table [B.4]
Compared with the other six hospitals, WH has a significantly higher proportion of
positive discharge 24-hr / 48-hr outcomes, as WH tends to treat less critical patients
without the presence of an ICU. Entering ICU predictions have highly imbalanced
classes, as less than 3% of patients enter the ICU in the next 24 and 48 hours. The
proportion of patients leaving ICU range from 77.41% to 88.92% for 24 hours and
from 64.19% to 80.60% between the six hospitals, likely due to the different

composition of the patient population and congestion level in each hospital.
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Table B.4: Proportion of Patient Days with Positive Target Outcomes in Testing Set.

Outcome BH CH HH HOCC MMC SV WH
Discharge 24h  19.81% 20.56% 17.94% 18.61% 21.08% 17.44% 25.75%
Discharge 48h  36.54% 37.60% 32.95% 34.49% 38.05% 31.58% 46.12%
Enter ICU 24h 0.93% 1.35% 1.62% 1.53% 0.69%  0.90%
Leave ICU 24h 83.34% 88.92% 81.04% 84.06% &5.69% 77.41%
Enter ICU 48h 1.62%  2.52%  2.78%  2.48% 1.23%  1.46%
Leave ICU 48h 73.16% 80.60% 69.89% 74.35% 76.40% 64.19%

No ICU

B.2.2 Assessment of Model Calibration

We evaluate the proper calibration of all our models on the second half of the
testing set, which was not used during calibration. This evaluation is performed
using calibration curves, which compare the probabilities predicted by the
calibrated model vs the empirical probabilities of the data. Following DeGroot and
Fienberg (1983), [Niculescu-Mizil and Caruanal (2005)), we generate these curves by
bucketing the probabilities predicted by the calibrated model into 10 uniform bins.
Within each bin/bucket, we compare the empirical probability and the average
predicted probability (or classification score). We then plot the resulting points (we
only include points for bins with at least 10 observations, to reduce noise). As
observed from sample calibration curves in Figure [B-1] the points mostly fall near

the diagonals, indicating that the final models are indeed well calibrated.
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Figure B-1: Calibration Curves for Predictions.
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B.2.3 Out-of-Sample Evaluation by Department at Hartford
Hospital

In this section, we evaluate the prediction models and the alerts for each of the
departments at Hartford Hospital. In Table we present the out-of-sample AUCs
for all prediction models. We then evaluate the alerts (green and red) for each of the
departments at HH. In Tables [B.6] and [B.8], we report the out-of-sample
accuracy, precision, and recall of the green and red alerts, respectively. In all tables,
an NA entry in the table means that there is at most one class (or two classes in the

case of discharge disposition) present in the specific department.
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Table B.5: AUC Metrics by Department at Hartford Hospital.

Department Mortality Disch. Disch. Disch. Enter Leave Enter Leave
Dispo. 24hr 48hr ICU ICU ICU ICU
24hr  24hr  48hr  48hr
11 0.82 0.779 0.882 0.852 0.769 0.75
NORTH 9 STEP DOWN 0.845 0.849 0.856 0.823 0.769 NA 0.738 NA
CONKLIN 3 0.934 0.850 0.791 0.781 0.814 NA 0.752 NA
BLISS 9 ICU 0.921 0.831 0.952 0.929 NA 0.878 NA 0.876
CONKLIN 2 0.905 0.871 0.790 0.782 0.793 NA 0.755 NA
CENTER 9 ICU 0.864 0.838 0.922 0.927 NA 0.868 NA 0.861
BLISS 8 0.888 0.884 0.831 0.834 0.817 NA 0.743 NA
BLISS 7 EAST 0.873 0.850 0.805 0.797 0.792 NA 0.755 NA
CONKLIN 4 0.888 0.851 0.781 0.772 0.761 NA 0.740 NA
HIGH 12 0.873 0.865 0.797 0.777 0.833 NA 0.752 NA
CONKLIN 5 0.872 0.852 0.778 0.761 0.788 NA 0.749 NA
BLISS 6 MATERNITY NA NA 0.914 0.938 0.471 NA NA NA
BONE AND JOINT 4 0.959 0.863 0.819 0.812 0.728 NA 0.728 NA
CENTER 10 0.865 0.811 0.783 0.762 0.857 NA 0.800 NA
BLISS 9 STEP DOWN 0.849 0.826 0.841 0.814 0.757 NA 0.733 NA
CENTER 8 ICU 0.811 0.794 0.910 0.916 NA 0.885 NA 0.880
BLISS 5 EAST 0.920 0.882 0.804 0.787 0.791 NA 0.711 NA
BLISS 9 EAST 0.829 0.781 0.780 0.765 0.831 NA 0.759 NA
EMERGENCY 0.848 0.796 0.782 0.746 0.825 NA 0.784 NA
BLISS 10 EAST 0.820 0.777 0.763 0.736 0.863 NA 0.819 NA
BLISS 10 STEP DOWN 0.852 0.801 0.871 0.859 0.767 NA 0.748 NA
BLISS 11 ICU 0.837 0.837 0.870 0.881 NA 0.902 NA 0.892
NORTH 9 0.842 0.779 0.791 0.791 0.838 NA 0.808 NA
BONE AND JOINT 5 NA NA 0.801 0.802 0.391 NA 0.365 NA
NORTH 8 0.931 0.902 0.787 0.791 0.822 NA 0.755 NA
NORTH 11 0.883 0.867 0.785 0.777 0.839 NA 0.804 NA
BLISS 10 ICU 0.879 0.823 0.876 0.918 NA 0.865 NA 0.848
NORTH 10 0.841 0.794 0.781 0.757 0.905 NA 0.862 NA
BLISS 7 ICU 0.858 0.835 0.889 0.894 NA 0.847 NA 0.848
CENTER 11 0.990 0.941 0.787 0.831 0.912 NA 0.780 NA
BLISS 7 STEP DOWN 0.810 0.813 0.838 0.833 0.778 NA 0.755 NA
LABOR DELIVERY®6 NA NA 0.825 0.726 0.947 NA 0.470 NA
BLISS 6 NURSERY NA NA 0.718 0.742 NA NA NA NA
EMERGENCY OBS 0.932 0.878 0.693 0.702 0.817 NA 0.807 NA
IR 0.957 0.907 0.779 0.839 0.858 NA 0.643 NA
MAIN PACU 0.826 0.908 0.804 0.920 0.934 NA NA NA
CONKLIN 1 0.895 0.849 0.687 0.661 0.988 NA 0.210 NA
MAIN OR 0.733 0.742 0.822 0.806 0.725 NA 0.729 NA
CARDIAC CATH LAB 0.722 0.587 0.930 0.667 0.826 NA 0.929 NA
BJI PERIOP SVC 0.953 0.818 0.969 0.814 0.872 NA 0.713 NA
EP LAB NA NA NA NA NA NA NA NA
GI ENDOSCOPY NA NA NA NA NA NA NA NA
BJI PRE/POST NA NA NA NA NA NA NA NA
CENTER 12 0.851 0.845 0.781 0.770 0.781 NA 0.740 NA
NORTH 12 0.881 0.848 0.780 0.774 0.824 NA 0.723 NA
BLISS NORTH 2 ICU 0.833 0.836 0.891 0.871 NA 0.736 NA 0.723
BLISS NORTH 3 ICU 0.826 0.724 0.899 0.928 NA 0.857 NA 0.851
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Table B.6: Accuracy, Precision and Recall by Department for the Previous Green
Alert at Hartford Hospital.

Department Accuracy Precision Recall
BLISS 11 STEP DOWN 0.959 0.447 0.130
NORTH 9 STEP DOWN 0.883 0.526 0.172
CONKLIN 3 0.745 0.617 0.452
BLISS 9 ICU 0.969 0.542 0.152
CONKLIN 2 0.764 0.588 0.402
CENTER 9 ICU 0.968 0.745 0.154
BLISS 8 0.752 0.712 0.722
BLISS 7 EAST 0.729 0.628 0.585
CONKLIN 4 0.702 0.689 0.376
HIGH 12 0.715 0.673 0.472
CONKLIN 5 0.704 0.637 0.511
BLISS 6 MATERNITY 0.908 0.936 0.954
BONE AND JOINT 4 0.734 0.692 0.756
CENTER 10 0.705 0.633 0.568
BLISS 9 STEP DOWN 0.851 0.579 0.257
CENTER 8 ICU 0.978 0.600 0.045
BLISS 5 EAST 0.718 0.659 0.633
BLISS 9 EAST 0.694 0.697 0.670
EMERGENCY 0.810 0.499 0.170
BLISS 10 EAST 0.710 0.581 0.456
BLISS 10 STEP DOWN 0.858 0.696 0.378
BLISS 11 ICU 0.982 0.375 0.129
NORTH 9 0.733 0.651 0.576
BONE AND JOINT 5 0.886 0.907 0.969
NORTH 8 0.716 0.675 0.683
NORTH 11 0.723 0.641 0.543
BLISS 10 ICU 0.960 0.580 0.150
NORTH 10 0.711 0.604 0.528
BLISS 7 ICU 0.975 0.289 0.118
CENTER 11 0.749 0.682 0.765
BLISS 7 STEP DOWN 0.930 0.385 0.106
LABOR DELIVERY 6 0.738 0.680 0.337
BLISS 6 NURSERY 0.920 0.920 1.000
EMERGENCY OBS 0.647 0.693 0.629
IR 0.592 0.769 0.465
MAIN PACU 0.760 0.833 0.500
CONKLIN 1 0.660 0.418 0.509
MAIN OR 0.729 0.669 0.480
CARDIAC CATH LAB 0.682 0.714 0.500
BJI PERIOP SVC 0.750 0.700 0.467
CENTER 12 0.724 0.636 0.472
NORTH 12 0.725 0.662 0.462
BLISS NORTH 2 ICU 0.835 0.689 0.449
BLISS NORTH 3 ICU 0.965 0.650 0.197
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Table B.7: Accuracy, Precision and Recall by Department for the New Green Alert
at Hartford Hospital.

Department Accuracy Precision Recall
BLISS 11 STEP DOWN 0.951 0.321  0.205
NORTH 9 STEP DOWN 0.877 0.478  0.325
CONKLIN 3 0.723 0.542  0.650
BLISS 9 ICU 0.967 0.457  0.200
CONKLIN 2 0.735 0.504  0.605
CENTER 9 ICU 0.967 0.611  0.248
BLISS 8 0.734 0.653  0.830
BLISS 7 EAST 0.713 0.573  0.758
CONKLIN 4 0.715 0.630  0.585
HIGH 12 0.706 0.596  0.682
CONKLIN 5 0.686 0.570  0.710
BLISS 6 MATERNITY 0.905 0.922  0.967
BONE AND JOINT 4 0.712 0.639  0.859
CENTER 10 0.676 0.562  0.747
BLISS 9 STEP DOWN 0.841 0.505  0.404
CENTER 8 ICU 0.977 0.500  0.104
BLISS 5 EAST 0.699 0.597  0.792
BLISS 9 EAST 0.685 0.644  0.805
EMERGENCY 0.787 0.422  0.328
BLISS 10 EAST 0.669 0.502  0.650
BLISS 10 STEP DOWN 0.850 0.591  0.547
BLISS 11 ICU 0.981 0.370  0.183
NORTH 9 0.705 0.573  0.750
BONE AND JOINT 5 0.887 0.897  0.984
NORTH 8 0.685 0.601  0.845
NORTH 11 0.702 0.573  0.721
BLISS 10 ICU 0.957 0.484  0.238
NORTH 10 0.673 0.526  0.727
BLISS 7 ICU 0.971 0.259  0.191
CENTER 11 0.722 0.622  0.880
BLISS 7 STEP DOWN 0.924 0.373  0.234
LABOR DELIVERY 6 0.714 0.555  0.513
BLISS 6 NURSERY 0.920 0.920  1.000
EMERGENCY OBS 0.650 0.646  0.788
IR 0.761 0.825  0.767
MAIN PACU 0.800 0.778  0.700
CONKLIN 1 0.572 0.368  0.709
MAIN OR 0.722 0.598  0.679
CARDIAC CATH LAB 0.636 0.583  0.700
BJI PERIOP SVC 0.682 0.526  0.667
CENTER 12 0.708 0.566  0.671
NORTH 12 0.702 0.569  0.666
BLISS NORTH 2 ICU 0.839 0.635  0.623
BLISS NORTH 3 ICU 0.962 0.500  0.273
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Table B.8: Accuracy, Precision and Recall by Department for the Red Alert at Hart-
ford Hospital.

Department Accuracy Precision Recall

11 0.705 0.450 0.813
NORTH 10 0.950 0.398 0.315
CONKLIN 5 0.913 0.387 0.499
NORTH 11 0.922 0.348 0.546
BLISS 7 ICU 0.668 0.516 0.925
BONE AND JOINT 4 0.988 0.320 0.295
BLISS 7 STEP DOWN 0.667 0.355 0.803
NORTH 9 0.934 0.208 0.445
BLISS 8 0.969 0.431 0.310
BLISS 9 ICU 0.792 0.506 0.908
CONKLIN 4 0.894 0.469 0.631
BLISS 10 STEP DOWN 0.816 0.373 0.635
CENTER 11 0.968 0.945 0.890
BLISS 5 EAST 0.970 0.519 0.548
CENTER 10 0.953 0.334 0.356
BLISS 10 ICU 0.761 0.567 0.850
CONKLIN 3 0.914 0.599 0.737
CENTER 8 ICU 0.746 0.399 0.709
BLISS 9 EAST 0.988 0.089 0.121
CENTER 9 ICU 0.767 0.532 0.798
NORTH 9 STEP DOWN 0.860 0.353 0.579
CONKLIN 2 0.849 0.604 0.758
EMERGENCY 0.914 0.425 0.425
HIGH 12 0.915 0.331 0.494
EMERGENCY OBS 0.971 0.440 0.208
BLISS 9 STEP DOWN 0.868 0.207 0.567
BLISS 11 ICU 0.688 0.597 0.910
BLISS 10 EAST 0.932 0.248 0.292
NORTH 8 0.964 0.532 0.414
BLISS 7 EAST 0.874 0.438 0.608
IR 0.930 0.167 1.000
MAIN PACU 0.800 0.286 1.000
MAIN OR 0.987 0.250 0.222
CONKLIN 1 0.959 0.286 0.400
NORTH 12 0.902 0.407 0.492
CENTER 12 0.907 0.366 0.469
BLISS NORTH 2 ICU 0.891 0.267 0.646
BLISS NORTH 3 ICU 0.769 0.176 0.760
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B.2.4 SHAP Summary Plots

In Figure [B-2] we present SHAP summary plots for discharge and ICU predictions
for 6 different hospitals. We analyze Figure and Figure [B-2D] for discharge
48-hr models. Some major clinical discharge barriers are identified, such as intensive
care, fall risk score, NPO, O2 device, O2 concentration, and future surgery date,
which are used as top variables in both models’ and doctors’ predictions. In
addition to the clinical variables, the models use a variety of operational variables
that also have significant contributions to the predictions. A lot of these variables
are time-series variables such as counting the number of abnormal blood results, lab
orders, ICD codes, days in hospitalization, notes, etc. in the past 24 hours or since
admission. Others are not patient-specific; for example, the day of the week and
daily discharges from the ward often affect discharge probabilities as well.
Compared with models, doctors focus mainly on the clinical aspects of the patients.
The models learn that discharge depends on a combination of clinical and
operational characteristics of the patients as well as affected by the hospital’s
operational status, which is the case in practice as well. Moreover, by comparing the
plots between different hospitals in Figure [3-9, we observe that models for different
hospitals find common important variables.

For entering ICU, the importance of the future surgery date and the service aligns
with known hospital protocols; for example, patients with scheduled cardiology
surgery typically go to the ICU after surgery. Many of the significant features
identified are similar to those for mortality prediction as entering ICU is strongly
correlated with increased mortality risk. For leaving ICU, top features include some
oxygen-related variables, such as O2 device, O2 concentration, and SPO2, as well as

other clinical variables such as RASS measurement and inverse flow.
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Figure B-2: SHAP Summary Plots for Discharge and ICU Predictions.
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B.3 Supplementary Information on Implementation

and Impact

In this Appendix section, we present additional information and results of the

implementation and impact.

B.3.1 Screenshot of the Software Tool

Figure presents the log-in page of our tool where each doctor or medical staff

can select their hospital.

Control Center HE Aac

Select Account
(® HHC HH Hartford Hospital
O HHC HOCC The Hospital of Central Connecticut

(O HHC BH Backus Hospital

b
O HHC CH Charlotte Hungerford Hospital Hartford -
HealthCare

(O HHC MMC Midstate Medical Center
(O HHC SV St. Vincent's Medical Center

(O HHC WH Windham Hospital

Figure B-3: User Interface to Enter Software.

B.3.2 Estimation of the Financial Benefits from Pilot

We compare the lengths of stay of patients whose attending discharge physician is
one of the four physician champions from the five pilot units in Q4 2020 (277 such
patients) vs. Q4 2021 (351 patients). Compared with Q4 2020, the average LOS was
reduced by 0.35 days (from 5.84 to 5.49) in Q4 2021. Given that HH usually has a
waitlist for inpatient admission, the assumption is that the beds made available
thanks to the reduction in LOS would be immediately filled, which would not result
in cost savings but a revenue increase. Had the tool been available in Q4 2020, these

277 patients would have been discharged 0.35 days earlier, resulting in savings of
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96.95 patient days for the quarter, extrapolated to 387.80 patient days for one year.
At an average LOS of 5.84 in Q4 2020, the additional 387.80 patient days available
translate into 65.89 additional patients. At an average contribution margin of
$10,796 per patient, HH estimated an annual contribution margin increase of

$711,348.44 as a result of the pilot implementation.

B.3.3 Staggered Roll-Out of Our Tool

Table presents information and deployment progress of all units that satisfy the
level and specialty of care criterion in the seven hospitals. During the second half of
2022, some units in four hospitals (BH, CH, HOCC, and HH) fully incorporated the
software in their daily clinical decision process since the start dates indicated in the
table. Two more hospitals (MMC and WH) began adopting the tool in several units
on January 15, 2023 as the next phase of implementation. By April 15, 2023, 15
units across six hospitals had fully integrated the predictions in their review process,
where unit leads review the predictions with the provider team daily and adjust
decisions accordingly. Smaller hospitals with standard procedures of progression
rounds with unit leads (BH, CH, and WH) deployed the tool in most of their eligible
units, while other hospitals (HH, HOCC, MMC) are still in the process of rolling out
more units. Since SV does not have regular progression rounds where the medical
team conducts a structured daily patient review process, a streamlined integration of
our tool in their progression rounds is ongoing work. As of April 15, 2023, 12 other
units (with an NA Start Date) had not officially integrated the daily process deeply,

but individual physicians still have the option to access and use the predictions.
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Table B.9: Unit Deployment Progress Information.

Hospital Unit Start Date Specialty Capacity
HH HH CONKLIN 2 NA Medicine/Oncology 27
HH HH CONKLIN 4 9/13/22 Medicine 25
HH HH CONKLIN 5 7/11/22 Medicine 47
HH HH BLISS 7 EAST 8/23/22 Medicine 17
HH HH BLISS 10 EAST NA Cardiology 14
HH HH CENTER 10 NA Cardiology 26
HH HH CENTER 12 7/11/22 Medicine 26
HH HH NORTH 10 NA Cardiology 27
HH HH NORTH 12 7/11/22 Medicine 20
BH BH A3 MEDSURG 8/23/22 Medicine/Surgical 30
BH BH E4 Cardiology 8/23/22 Cardiology 28
CH  CHFOURTH FLOOR  8/23/22 Medicine/Surgical 28
CH CH FIFTH FLOOR 8/23/22 Medicine/Surgical 29

HOCC HOCC EAST 2 NA Medicine/Observation 12
HOCC HOCC WEST 2 NA Medicine 15
HOCC HOCC NORTH 3 1/15/23 Medicine 24
HOCC HOCC NORTH 4 10/22/22  Medicine/Cardiology 28
HOCC HOCC NORTH 5 8/23/22 Medicine/Stroke 30
MMC MMC PAVILION D NA Medicine 28
MMC MMC PAVILION E 1/15/23 Medicine 28
SV SV 6 NORTH NA Cardiology 20
SV SV 6 SOUTH NA Cardiology 20
SV SV 9 NORTH NA Medicine 22
SV SV 10 NORTH NA Medicine 29
WH WH 4 SHEA EAST 1/15/23 Medicine/Surgical 30
WH WH 4 SHEA NORTH 1/15/23 Medicine/Surgical 12
WH WH GREER NA Medicine/Surgical 23
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