
Complex System Simulation Framework for Shared
Augmented Reality Applications

by

Praneet Mekala
B.S. Computer Science and Engineering, Massachusetts Institute of

Technology, 2023
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© Praneet Mekala, MMXXIII. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide,
irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Praneet Mekala
Department of Electrical Engineering and Computer
Science
May 19, 2023

Certified by: Eric Klopfer
Professor and Director of the Scheller Teacher Education
Program
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Complex System Simulation Framework for Shared

Augmented Reality Applications

by

Praneet Mekala

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Complex systems perspectives are a tool that give an individual the ability to better
understand the outcomes of actions on both the environment and other actors within
the system. These perspectives are rarely given an opportunity to develop within
educational environments, and many students lack this perspective. System simula-
tions to aid in the development of complex systems perspectives have been created
in the past. These past simulations, however, fail to provide either an immersive of
expansive experience for the students. The We’re In This Together (WIT) team is
addressing these issues by developing complex system simulations for mixed reality
headsets to be used in a classroom setting. This project specifically focuses on the
subtask of creating a programmatic interface for simulation data to be updated and
shared uniformly across devices. This interface will be usable by developers to create
their own customized simulations.

Thesis Supervisor: Eric Klopfer
Title: Professor and Director of the Scheller Teacher Education Program

2

Contents

1 Introduction 6

1.1 Complex Systems . 6

1.1.1 Example . 7

1.2 Mixed Reality . 8

1.3 We’re in this Together . 8

1.4 Problem . 12

2 Related Works 13

3 Networking 15

3.1 Requirements . 15

3.2 Architectures . 16

3.2.1 Peer-to-peer . 16

3.2.2 Client Hosted . 17

3.2.3 Dedicated Server . 19

3.3 Products . 21

3.3.1 Netcode For GameObjects . 21

3.3.2 Photon Unity Networking . 22

3.3.3 Photon Bolt . 23

3.3.4 Photon Fusion . 23

4 Simulation Engine 27

4.1 Goals . 27

3

4.2 Complex System Simulation Models 29

4.2.1 System Dynamics Models . 29

4.2.2 Agent Based Modeling . 32

4.2.3 Hybrid Model . 34

4.3 Interface . 38

4.3.1 System Dynamics Interface . 38

4.3.2 Agent Based Interface . 41

4.3.3 Hybrid Interface . 43

4.4 Implementation . 45

4.4.1 System Dynamics Implementation 46

4.4.2 Agent Based Implementation 53

5 Results 58

4

List of Figures

1-1 Diagram showing all three layers and their interactions within the sys-

tem [37] . 10

3-1 Peer-to-Peer connections. All devices on the network are able to send

and receive data from any other device. 17

3-2 Client-hosted connections. All devices on the network must communi-

cate by going through the client. 18

3-3 Dedicated server connections. All devices on the network must com-

municate by going through the server. 20

3-4 Client-side prediction. Left: Network without client-side prediction.

Right: Network with client-side prediction. Green represents time

when client gets the network result of the input, yellow represents time

when client computes local result of input 26

4-1 An example of a system dynamics model, created in the sagemodeler

tool. 30

5-1 A still image from the demo created using the WIT framework. . . . 59

5

Chapter 1

Introduction

At first glance, it may be difficult to find similarities between the location of fishing

boats in the Caribbean, the spread of viruses in developing countries, and planning

critical infrastructure for building cities. Each of these examples has a limitless num-

ber of factors that affect their respective outcomes. Fishing boat locations can be

affected by the temperature or the amount of fish present in the area. Epidemics can

be affected by city population or healthcare availability. City planning can be affected

by environmental conditions or citizen happiness. All these complexities and factors

that make them unique unite these systems under one categorical term - complex

systems.

1.1 Complex Systems

Studies of complex systems can result in world-changing perspectives on problem-

solving [32]. It allows researchers to approach problems with a broader mindset and

focus on aspects of systems that are traditionally over-simplified. This perspective

enhances an individual’s ability to understand how an agent’s action within a system

affects the system itself. Unfortunately, these perspectives are rarely taught in schools,

and students have difficulties understanding the intricacies of complex systems [14]

A complex system is more concretely defined as a system with many elements or

agents that exchange stimuli with each other and their environment. Complex systems

6

generally display organization without any organizing elements being in place. Any

alteration of the system by an internal agent or an external force results in a modified

state of the functioning system. In elaborate cases and ones being studied by this

project, agents act on a limited amount of information about the system to progress

their individual goals.[25]

1.1.1 Example

To help understand what a complex system entails, I will elaborate on the fishing

boats example provided earlier. In this example, the agents in question are the

individual fishing boats, and the environment is a shared fishing space for the agents

to catch fish for profit. Several forces drive this system. Agents can modify the

environment directly by catching fish, depleting the environment of its resources.

Agents also can communicate with each other to strike deals about where and when

to fish, affecting their actions in the future. Additionally, external forces such as

fishing policies can affect when and how much agents can fish. An example of this is

a policy that only allows fishing boats to be out between 9 am and 5 pm. By limiting

the time that fishing boats are allowed to act, the fish population has a greater window

of recovery than without the policy. To add to the complexity, perhaps environmental

conditions change in the fishing area, such as the water freezing over during the winter

and such. All actors in this system have their own goals and can perform actions to

modify the environment to achieve those goals [13]. Although this is a small example

with a few possible actions outlined, the space of state action pairs for any agent

is enormous. For a real-world system with thousands of compounding factors, the

number of state action pairs is magnitudes larger. This enormous space makes it

unfeasible to mathematically model the system, which is why gaining the complex

system perspective is vital to understanding how the system works as a whole [31].

7

1.2 Mixed Reality

Virtual reality (VR), augmented reality (AR) and mixed reality (MR) are emerging

technologies that have the potential to change education in classrooms. Virtual reality

is defined as a fully virtual environment in that a user experiences full presence. This

means there are no visual stimuli from the real world, and the entire experience

is conducted on a headset device. Augmented reality on the other hand uses the

physical environment and augments it with virtual elements. Mixed reality is not as

well defined as VR and AR, but sits somewhere in the middle of the two, combining

both physical and virtual worlds into one [17].

In the recent few years, virtual reality (VR) and augmented reality (AR) has seen

increasing popularity in both entertainment and research. In the past 4 years alone,

virtual reality headset sales have gone up by over 400% [33]. The rise in popularity

is due to three main characteristics of this technology: immersion, perception to be

present in an environment, and interaction with the environment. These three factors

feed into a sense of realism for the user, aligning the user’s expectations with their

expectations of reality [16].

Past research on MR used in education settings has shown that the introduction

of MR technology in classrooms makes the learning process "more interesting and

pleasant for the students" [26]. Through the use of a virtual environment, students

can make decisions affecting the environment without needing to worry about facing

real-world repercussions. This allows students to get hands-on experiences on topics

they struggle with, which has been shown to engage students more in what they are

learning and develop their critical thinking skills [29]. Mixed reality technology is an

effective tool that can improve students’ learning experiences in a classroom.

1.3 We’re in this Together

We’re in this Together (WIT) is one of the projects within the MIT Scheller Teacher

Education Program (STEP). The goal of this project is to create a framework that ex-

8

ternal developers can use to easily develop personalized simulations. This framework

is being built in Unity, as Unity provides an interface with thousands of functions

that allow for visual virtual entities to be modifiable by script. WIT has been split

into three separate components, that each interact with each other in unique ways.

1. The first is known as the view layer. The view layer has two main goals. The

first goal is to ensure that all members in the simulation have synchronized

perspectives. One of the biggest challenges of creating a shared augmented-

reality simulation is that coordinate systems on individual augmented-reality

enabled do not automatically align. If an object within the shared simulation

is supposed to appear in a certain location on one device, it will likely not

appear in the same location on another device. The second goal of the view

layer is to access real-world objects in the headset’s surroundings and represent

them locally. This is to allow the simulation to interact with the real-world

environment, creating a more immersive experience for the users.

2. The second layer is the simulation layer. This layer is a lower-level layer that

runs the simulation behind the scenes. The goal of this layer is to be able to run

a complex simulation efficiently. This includes rules to update the state of the

environment and Unity’s GameObjects. While users experiencing the shared

simulation will not be directly affected by the consequences of this layer, this

layer is the main interface that simulation developers can use to create their

own simulations.

3. The third layer is the interactions layer. The goal of this layer is to create

mechanisms for users within the simulation to modify virtual objects in the

simulation in similar ways to real-world interactions. This layer will define

various interaction types and create objects that can link actions from the user

with modifications of the internal simulation.

A full diagram of the three layers and their interactions is shown in Figure 1-1

WIT is a three-year-long project that will be completed in 2025. The goal for

the developers within the first year is to create a simulation framework from end to

9

Figure 1-1: Diagram showing all three layers and their interactions within the system
[37]

10

end that allows for these complex system simulations to be created. The current

developers will only be working on this project for a year, at which point it will be

handed off to another group of developers. It is important that within this first year,

the design of the created layers is well thought out, in order to ensure a seamless

transition between developers. As a result, the three layers defined above

There are two main types of hardware that the WIT team is using for this project:

a virtual reality headset with pass-through AR features and a server to store all

system data. The headsets have inbuilt cameras that allow for stereo vision of the

surroundings on the internal display, allowing for virtual objects to appear on screen

with the camera feed [36]. Each student in the classroom will be equipped with

a separate headset, each of which is connected to the server, a computer running

the system code. We choose to use a local server rather than a hosted server to

minimize any latency issues that could be present. Students will be able to view the

environment determined by the server code and interact with it by sending requests

directly to the server over the network that will be set up.

Each headset has a unique set of features and unique SDKs to use for development.

The current implementation of the WIT framework uses Meta Quest Pro headsets,

which have features vital to the development of the end goal, namely cloud anchors [9]

and pass-through AR [6]. Purchasing Meta Quest Pros for classrooms full of students

will be infeasible for the team budget, so future work in choosing a cheaper headset

and adapting the framework to use the new headsets’ SDK must be done. Currently,

the only requirement for server hardware is a Windows 11 operating system. Beyond

this, further research must be done to determine hardware limitations with respect

to the created framework.

For more information on the view layer, read Ellen’s thesis "Capturing Worlds

of Play: A Framework for Educational Multiplayer Mixed Reality Simulations" [37].

For more information on the interactions layer, read Anna’s thesis "Designing Student

Interactions To Explore Systems Thinking in Augmented Reality" [38].

11

1.4 Problem

As the use of Augmented and Virtual reality grows in educational contexts, the need

for frameworks for application development on the headset will follow. The goal of

the WIT project is to provide one of these frameworks specialized in creating complex

system simulations. As the space is still growing, currently there exist no frameworks

that can create these shared augmented reality complex system simulations. As a

result, the WIT project, composed of its three layers, must be built from the ground

up. The focus of this thesis is on the simulation layer that will be created. The

simulation layer must display the following properties:

1. The ability to run simulations to modify GameObjects in Unity by following

common complex system simulation paradigms

2. The ability for an external developer to be able to define customized simulations

using the framework provided in an intuitive manner

3. The ability for the simulation layer to interact with the view layer and the

interaction layer to have simulation components be affected by the real world

4. The ability to have its feature set expanded easily as new abstractions for com-

plex system simulations are created

Creating a simulation layer that follows these properties will be one of the main

stepping stones that will allow for complex system simulations to be created in an

efficient and effective way by external simulation developers.

12

Chapter 2

Related Works

Complex system simulations for classroom use have been experimented with in the

past to explore the impacts of these systems perspectives on student thinking. The

goal of these is to immerse students in agent-based roles of the simulation to make

decisions and understand the resulting outcomes[34]. In the past, there have been two

main types of systems simulations studied. The first is physical system simulations.

These involve creating a system in the physical world that allows students to move

around freely while interacting with the real world to understand how their decisions

affect other members of the system[18]. This method allows for sensory immersion due

to interactions with the environment being entirely physical. Physical simulations,

however, are limited to a small space of possibilities due to the resources required

to set them up and are also limited in their ability to convey global changes to the

environment due to an individual’s actions. The second type of simulation studied

in the past is computer simulations. These involve students taking the role of an

agent on a computer-based simulation and running the simulation entirely virtually,

interacting with other agents through a network [35]. While these have a greater

degree of freedom in terms of simulation capabilities, they lack sensory immersion

due to all interactions between students and the environment being done through a

computer screen.

We plan to build upon these approaches by combining aspects of the two that

make the simulation more enticing to the target audience. By running the simulation

13

in a virtual mixed-reality world, we enable sensory immersion through the use of

spatial anchoring of objects and headset audio, while enabling a full range of freedom

for simulation development. Combining these traits from the approaches taken in the

past will allow us to create a simulated system that negates the downsides of each of

the approaches individually.

14

Chapter 3

Networking

One of the key decisions that needed to be made before creating the simulation layer

of WIT was the networking solution to be used. This would dictate what types of

data needed to be stored and how data would be transferred between the server and

clients, as well as between two different clients.

3.1 Requirements

There were 3 main factors taken into consideration when choosing which networking

solution would be used:

1. Robustness. We were seeking a networking solution that had near limitless

capability in terms of network architecture, as we did not have a finalized use

case or network model in mind yet. As design decisions in other areas would

be made, such as data size and hardware capabilities, the networking solution

would need to be able to adapt to our network needs.

2. Complexity. Although networking was an important part of the WIT project,

it was only one piece of the component and all members of the WIT team

would have other tasks to accomplish to make the project come together. As

a result, the time it would take to understand the intricacies of a complex

network solution could instead be put in places to make the overall simulation

15

achieve WIT’s main goals. Additionally, since members of WIT will constantly

be changing over the multi-year lifespan of the project, we sought a simpler

networking solution such that new members would not need to dedicate as

much time relearning the technology.

3. Support. This encompassed two main ideas. Firstly is the support of the

networking solution by its own developers. Since WIT is a multi-year-long

project, we wanted to choose a solution that would be kept up-to-date by its

developers and could potentially be expanded in terms of technical ability and

ease of use. Also, in case of bugs with any libraries or methods, we wanted

the ability to contact the solution’s developers to ensure a speedy resolution.

Secondly was the support for new developers. Having lots of documentation

and other projects to reference online would mean that issues that would come

up during development could be solved relatively easily.

3.2 Architectures

Before searching for networking solutions to use for the project, we needed to un-

derstand and analyze different network architectures and how they would fit into

WIT. There are three standard architectures commonly used in networked games

and simulations that were considered.

3.2.1 Peer-to-peer

A peer-to-peer network architecture takes a distributed approach to client commu-

nication. In this model, clients are able to communicate with each other directly

in order to exchange data (See Figure 3-1). This can be done manually, through

cabled connections between devices, or over a wireless network. Additionally, each

client has the ability to affect a subsection of the game/simulation, meaning clients

will be constantly communicating with each other to ensure their local copies of the

game/simulation are up-to-date. [28]

16

Figure 3-1: Peer-to-Peer connections. All devices on the network are able to send
and receive data from any other device.

This network architecture was quickly ruled out for the WIT project for one main

reason: using a distributed computation system would mean that there would be no

single source of truth. In an environment designed to ensure that participants would

be able to see the same simulation state as each other, a single source of truth would

be a necessary feature. Due to this reason, a peer-to-peer architecture was not taken

into consideration for the final implementation.

3.2.2 Client Hosted

In a client-hosted model, one client acts as an authority and communicates with

other clients to alter the game state. This way, each client aside from the host only

needs to communicate with one other client (the host), reducing the overall network

17

Figure 3-2: Client-hosted connections. All devices on the network must communicate
by going through the client.

traffic compared to a peer-to-peer model (See Figure 3-2). This, however, means

that the hosting device will perform a majority of the calculations required for a

game/simulation to run.

While a client-hosted model solves the issue of not having a single source of truth

that the peer-to-peer architecture faced, it introduces a new issue of hardware capa-

bilities. The headsets that were used for testing (which were higher-end headsets that

would likely not be used in a classroom setting) had a limited 6GB RAM. To test the

limitations of the headsets, objects with positional updating logic were spawned until

the lag was noticeable. The smooth performance capped at approximately 30 virtual

objects, which we predict would be less than most complex simulations would need.

As a result, due to the hardware limitations of the headsets, a client-hosted model

was also not taken into consideration for the final implementation.

18

3.2.3 Dedicated Server

The final network architecture that we looked at was a dedicated server model. In this

type of model, a device is set aside to perform all computations and send resulting

data to the clients (See Figure 3-3)[22]. This is very similar to a client-hosted model,

with the exception that the center of computations no longer needs to be a client

itself. Many modern game companies with access to powerful computers to use as

servers use this architecture for their games for two main reasons. Firstly, it prevents

malicious inputs from clients since the server can only operate on a developer-defined

set of operations, but more importantly, it allows all users to share a consistent state

[11].

A dedicated server model solves the problem introduced in the previous section

with hardware limitations being an issue. The server architecture means we are no

longer limited tp having a headset perform simulation calculations. Instead, we can

set up a computationally powerful computer with more memory than the headsets

as the server and have all headsets communicate with this computationally powerful

computer. A dedicated server, however, is not a perfect solution. Since the server code

is being run on a desktop computer instead of a headset, the same build that was used

for the headset cannot be used on the server. In order to optimize computation speed

and not waste resources on the server, all visual elements of the headset build must be

stripped away, leaving an un-interactable build on the server [12]. This means that any

alterations to the server-side simulation (such as pausing the simulation) must be done

by sending a message from a headset to the server, altering the server’s simulation

state based on the contents of the message, and sending the altered simulation state

back to the headset. This effectively doubles the necessary amount of network traffic

on server-sided operations. We predict, however, that in our simulation, server-sided

operations will be rare and this extra network traffic will not have a significant impact

on the network.

19

Figure 3-3: Dedicated server connections. All devices on the network must commu-
nicate by going through the server.

20

3.3 Products

In the search for a networking solution that could satisfy all three of the goals stated

above, we came across several products that satisfied the requirements we set to

varying degrees. For each product, some research and minor development were done

to get an understanding of the benefits and drawbacks they could provide when

completing our projects.

3.3.1 Netcode For GameObjects

The first networking solution that we looked into was Netcode for GameObjects.

Netcode for GameObjects is a networking solution created in late 2022 by Unity

Technologies. It provides users with an abstract library for sending GameObject

data as well as global scene data across the network [20]. Netcode for Gameobjects

additionally supports multiple network architectures, including peer-to-peer models,

dedicated server models, and client-hosting models [27]. As part of understanding

the intricacies of Netcode for GameObject, we created a demo centered around a

client-host model. During this process of creating a demo, we came across multiple

pitfalls that made Netcode for GameObjects a difficult networking solution to work

with.

Since Netcode for GameObjects is meant to be a standalone solution that gives

developers a high degree of freedom for designing their network, there were many

features that needed to be implemented which other solutions abstracted away. This

included technical details such as having to programmatically determine the server’s

IP address, or choosing packet sizes/sending rate. These are important features when

developing an entirely independent application using customized server settings, how-

ever, were not necessary for us as other solutions (discussed below) abstracted away

these specifics. Furthermore, because Netcode for GameObjects does not use any

intermittent servers for communication (only devices the user specifies), there were

multiple issues with respect to sending data across public networks. Many public

networks limit what devices can send and receive certain data. On the MIT public

21

network, for example, we needed to request special permission in order to use certain

devices as a server in the demo. We predicted that this would be an issue for WIT’s

goal of making a framework for educators to create simulations on, as educators

generally operate on public networks, and would likely run into similar issues.

Additionally, Netcode for GameObjects’ release in October 2022 meant there was

very little documentation and prior projects to learn from. During the development

of the demo, whenever there were issues that had no immediate solution, finding

solutions was a very time-consuming process. Perhaps in the future, as documentation

improves and more projects utilize Netcode for GameObjects as their networking

solution, WIT can slowly transition to using Netcode for GameObjects as its own

networking solution. For now, however, due to the aforementioned issues with this

networking framework, WIT has decided to seek other options for our networking

solution.

3.3.2 Photon Unity Networking

The second networking solution that we explored was called Photon Unity Network-

ing (abbr. PUN). It was released in 2018 and has been one of the main networking

solutions for Unity ever since. PUN can be thought of as 2 separate layers – a commu-

nications layer that handles the low-level details about how the clients communicate

such as transport protocols and custom server settings, and a data layer that sits on

top of the communication layer and handles which data is sent over the network as

well as how data interacts with clients. PUN allows for development in both layers

to provide its users with a high degree of flexibility when designing their network.

However, PUN also provides a default implementation for the communications layer

which can be minimally modified based on the developer’s needs [8].

Due to its vast presence in Unity multiplayer projects, PUN is very well docu-

mented and has lots of resources to help developers deal with issues that come up

while developing multiplayer games. PUN does have its downsides, however. It is

built upon using a peer-to-peer network architecture rather than a dedicated server

architecture as needed by the WIT project [2]. Although a peer-to-peer network ar-

22

chitecture can be cleverly modified to be turned into a dedicated server architecture,

the tipping point for not choosing this solution was that PUN is being discontinued by

Photon in favor of a newer networking solution. Because of the lack of future support

for PUN, we decided to step away from it and seek other networking solutions.

3.3.3 Photon Bolt

Photon Bolt is another networking solution developed by Photon. Bolt was released

in late 2016 and also grew to become one of the most popular networking solutions for

building multiplayer games. Unlike PUN, however, Bolt uses a server-based model,

supporting both client-hosted and dedicated server type architectures [1].

Bolt additionally abstracts away much of the communication side of development,

meaning details on how devices are connected over the network are not necessary

to implement. There were two major downsides to Photon Bolt. Firstly, similar

to PUN, it is also no longer being supported by Photon in favor of more modern

networking solutions. Additionally, being an older networking solution, we feared

that Bolt would not be optimized for modern network capabilities. As a result, Bolt

was quickly taken out of consideration from the choice of networking solutions for the

WIT project without further exploration or the creation of demos.

3.3.4 Photon Fusion

Photon Fusion was the final networking solution that the WIT team considered.

Fusion is the most recent networking solution developed by Photon and is meant

to be an all-encompassing network solution for unity development. Fusion supports

all types of network architectures outlined in section 3.2. According to the Photon

website, Fusion was developed with the intent of evolving and replacing both PUN and

Bolt, which is why both PUN and Bolt are no longer being supported by Photon [3].

Similar to both PUN and Bolt, Fusion abstracts away much of the lower-level detail

necessary for creating multiplayer games. For example, in a dedicated server setup, a

developer can specify which device is the server and which devices are the clients. If

23

the developer wants to send data from the server to a client or vice versa, they only

need to specify the data itself (ensuring it is in a network admissible format), and the

client ID (which is assigned by Fusion when the client joins the network). All other

communication information, such as data compression and client-side prediction, is

abstracted away from the user and is not necessary for development.

Due to Fusion being one of the more recent networking solutions to be released

on the market, it shares some of the same issues that Netcode for GameObjects had.

Specifically, documentation for Fusion is still improving and very few public projects

that use Fusion exist that can be used as reference. On the other hand, however, since

Fusion was built by Photon as a replacement for PUN and Bolt, any of the features

and concepts in Fusion were shared by PUN and Bolt as well [3]. Although the order

solutions have many differences from Fusion, the documentation for PUN and Bolt

could be generally used to help understand concepts in Fusion that we were confused

about. Additionally, Fusion provides its users with helpful tech demos showcasing

the ability of Fusion in different contexts. One of the demos that was provided was

a VR demo with a shared server architecture, which we were able to utilize to assist

us in the initial architecture setup phase [5].

The feature set that Fusion provides developers with was extremely useful for

achieving WIT’s goal of making a framework for simulation development. When

making a simulation framework, the simplicity of developing using that framework

must be kept in mind. Fusion provides developers with some basic functionality that

are universal to developing multiplayer games/simulations. This includes features

such as auto-syncing object locations in the environment, as well as sending data

between devices [3]. On top of this universal feature set, however, Fusion contains

other features that made the creation of a simulation framework significantly easier.

One of these features was a tick-based model for syncing clients to the server. Unity

natively uses a tick-based model to render and update the scene locally [4]. When

creating the simulation framework for an external developer to make simulations on,

we operated under the assumption that they would have some basic level of Unity

experience. Because local Unity development and networked development on Fusion

24

both share a tick-based model, we could have the developer leverage the use of Fusion’s

tick based model by abstracting away all the network-specific details in the simulation

framework. This would allow the developer to create a simulation in a near-identical

way as they would in a local Unity setting, making it easier for them to develop

simulations on the framework.

Another unique feature that Fusion provides is inbuilt client-side prediction [4].

One of the goals of the WIT team is to ensure a comfortable experience for users

that wear headsets. It has been shown that lag in VR headsets can cause some users

to feel nauseated. A virtual environment lag as short as 48ms can cause users to

feel dizzy and induce motion sickness [21]. In a situation where a user is grabbing

and moving a virtual object, if the object moves 48ms after their hand does, they

are likely to experience dizziness. In a networked setting, a delay of 48ms between

a client sending input to the server and subsequently receiving an update is almost

inevitable. Because of this, we need to ensure that visual lag is minimized when

creating a simulation on the network. Fusion’s client-side prediction feature helps

us with this task. Figure 3-4 shows the difference in a dedicated server architecture

with and without client-side prediction. Although in both scenarios, the server sends

an updated position to the client at the same delay after the client’s input, when

client-side prediction is used, the client does not observe this delay at all.

Fusion follows many of the same abstractions as Unity does. For example, in order

to make a GameObject have a synced position across devices, a NetworkTransform

component can be added which defines the position and rotation on the network,

similar to how a Transform component defines the position and rotation locally. Sim-

ilarly, a NetworkRigidBody component allows for physics computations to occur on

the network, similar to how a RigidBody component allows for physics computations

to occur locally. Because Fusion and Unity share many of the same abstractions,

by including networking details as part of the simulation framework, developers that

use the framework can follow the same experience developing networked simulations

as they would developing local simulations in Unity. This would make a developer’s

experience in creating networked simulations just as easy as creating local simulations

25

Figure 3-4: Client-side prediction. Left: Network without client-side prediction.
Right: Network with client-side prediction. Green represents time when client gets
the network result of the input, yellow represents time when client computes local
result of input

in Unity. Along with other abstractions provided by the simulation framework, us-

ing Fusion will allow developers to create shared augmented reality simulations with

relative ease.

26

Chapter 4

Simulation Engine

The main goal of this project was to make a simulation engine that would let devel-

opers easily create interactable augmented reality simulations for classroom use. In

this section, I detail the goals, interface, and design decisions I faced when creating

the simulation engine.

4.1 Goals

Before even thinking about how to implement the simulation engine, the first step in

the process was defining what the end goals for the project were. These goals would

be a combination of both WIT’s goals in creating an end-to-end platform for a shared

augmented reality experience in classrooms, and goals specific to just the simulation

aspect of the project itself. After deliberation with the WIT team, we came up with

the following list of goals that the simulation engine needed to satisfy:

1. Ability to create simulations. The core of any simulation engine is to provide de-

velopers with a set of tools to set up the simulation itself. Within the simulation

engine framework, we needed to provide developers with a way to specify what

components they could include in their simulation and how those components

interact with each other. This had to be done in a generalized way such that

developers were not constrained in the types of simulations they could produce,

while still providing developers with specialized tools and functions to ensure

27

they would not need to start from scratch. Finding this balance of abstraction

vs specificity would be the basis of creating the simulation engine and would

define the interface that would be provided to developers.

2. Ability to run simulations in a predictable manner. Once developers set up a

customized simulation, the next step is to run the simulation. Our simulation

engine needed to run in a way that would be expected by the developer. This

would mean handling interactions between developer-defined components prop-

erly, as well as modifying developer-defined values in ways that the simulation

developer could easily understand. Fulfilling this goal would entail processing

all parts of the simulation in line with the full interface we provide developers

with

3. Ability to interact with simulations. One of the main focuses of the WIT project

is for the simulation to be interactive. Interactable simulations are predicted to

cause a heightened sense of immersion within individuals participating in the

simulation. Interactability with simulations can take on countless forms, such as

modifying flow rates between components, or moving objects from one location

to another. Similar to the simulation creation goal, an interface for modifying

the simulation would need to be specified that is abstract enough for supporting

several different types of interaction processes, while still being specific enough

to provide developers with a set of functions to define interactions so they do

not have to start from scratch.

4. Ease of simulation development. This goal centers around the developers’ ex-

perience when creating a simulation. Unity provides developers with an un-

bounded amount of functionality and freedom to create whatever the developer

desires. This, however, comes with the cost of simplicity. In order to create a

complex system simulation in Unity from scratch, developers need to deal with

the inner workings of Unity and potentially learn hundreds of functions. This

is a time-consuming process and not all educators who want to create complex

system simulations have the time or patience to learn these Unity concepts. As

28

a result, the simulation framework we provide to developers needs to be easily

understandable while still providing developers with a full set of functionality

to create simulations from.

5. Ease of expansion. As stated previously, WIT is a long-term project with team

members constantly changing throughout its multi-year lifespan. Within this

first year of development, small-scale demos are being created to test the func-

tionality of different components. It is likely that within the next few years of

development, the feature set of WIT will be greatly expanded. As a result, we

need to design a simulation engine in a way that can be easily understood and

further expanded upon by future members of WIT.

This list of goals is not an exhaustive list of factors that affected design decisions.

Other factors, such as designing the simulation engine for integration with other

members’ work, also affected some of the choices made, however, these 5 factors

impacted the design of the simulation engine the most.

4.2 Complex System Simulation Models

There are two main mathematical modeling paradigms when it comes to complex

system simulations: system dynamics models and agent-based models. In this section,

we provide details about both types of models, as well as providing an analysis of

which type of model fits the learning goals of WIT the best.

4.2.1 System Dynamics Models

The first paradigm of complex system modeling is system dynamics modeling. This

type of modeling excels at understanding the structures and dynamics of complex

systems. It uses the concepts of state variables and information feedback loops to

determine how a system changes. At a high level, it can be thought of as a series

of "stocks and flows". Stocks are containers that hold a given amount of some basic

unit. Flows are the rate at which basic units move in and out of stocks [30]. For

29

Figure 4-1: An example of a system dynamics model, created in the sagemodeler tool.

example, a water system can be modeled with the systems dynamics paradigm. In

this case, we would have one basic unit: water. Stocks in this scenario could be a

well, a lake, or even clouds in the sky. Flows, on the other hand, represent the flow

rate of water between two stocks. An example of a flow would be rainfall, transferring

water from clouds into a lake.

System dynamics models are powerful tools to help understand how a system

works on a macro-scale. In the example above, we can imagine expanding the water

system to contain hundreds of stocks and flows. By varying the amounts of the basic

unit within a stock, or changing the rate of a flow, we can study how modifying one

component in the system dynamics model affects all other components in the system.

In theory, with a detailed enough water systems dynamics model, we could answer

questions such as "How would higher evaporation rates due to global warming affect

how much water reaches my home?"

This system of stocks and flows that make up a systems dynamics model can

be represented mathematically as a differential equation [19]. Suppose we have a

vector 𝑆 which is a stacked vector of state variables (amounts contained in stocks,

30

environment variables, etc). Then, we can represent the system dynamics model as

𝑑𝑆

𝑑𝑡
= 𝐹 (𝑆)

where 𝐹 is a non-linear vector function that represents the flows between the different

stocks. Since 𝐹 is non-linear, however, the differential equation becomes analytically

intractable [19]. As a result, the system dynamics are best approximated using a

forward Euler "step" function:

𝑆𝑡+1 = 𝑆𝑡 +∆𝑡𝐹 (𝑆𝑡)

The fact that the function 𝐹 is a multivariable non-linear function is what makes

system dynamics models so robust. There are two important consequences of this

fact. The first consequence is that flows are not necessarily symmetric. The amount

of inflow within a system is not necessarily equal to the amount of outflow. This is

a necessary feature if multiple basic units are involved in the system. For example,

suppose we wanted to expand our water example to include crop amounts in farms.

Suppose that 100 water units from a well are converted to 1 crop within the farm.

The flow in this case would remove 100 units from the well but only add 1 unit to the

farm. Due to the asymmetry of flows, we can effectively model a system containing

an arbitrary number of units. The second consequence is that a flow can be impacted

by any number of variables. The amount of a basic unit that moves between two

stocks can be a function of any of the state variables of the system. Suppose, in our

example, a farmer owns two farms in different locations, Farm A and Farm B. If Farm

A contains 10 units of crops, the farmer wants to stop all production on Farm B. This

can be modeled by setting the inflow of Farm B as a function of the state of Farm

A. These two consequences make system dynamics a robust option for modelling how

large-scale systems change over time.

One of the shortcomings of system dynamics models is the difficulty in under-

standing and implementing decision-making. While systems dynamics models are

useful for studying how changing one component in a system affects another com-

31

ponent, it falls shorts of identifying why those things happen [10]. Expanding upon

the example we have been building up, suppose the farmer has hundreds of farms

in different locations, each with different relationships with each other. The farmer

makes decisions on what to do with one farm based on the states of all other farms.

While these decisions could be encoded using functions similar to the case with two

farms, this would become a cumbersome task and difficult to get correct. On top of

this, extracting information such as what decision is being made by the farmer at any

given moment is not possible with the current model described. As a result, systems

dynamics models do a poor job of studying when actors in a system perform certain

decisions and why.

4.2.2 Agent Based Modeling

Agent-based modeling is another complex system modeling paradigm that splits up

the system in terms of its constituent parts called agents. Agents are equipped with

various properties and can interact with each other and the environment in predefined

ways [24]. In order to understand agent-based modeling at a greater depth, we must

first define what exactly an agent is.

There are many ways agents have been defined in past literature, each of which

contains some universal properties. At a fundamental level, agents display the fol-

lowing properties[15]:

1. Agents are autonomous. Within agent-based models, agents must be able to

operate without external stimuli. More specifically, agents contain a set of

behaviors by which they operate on. They may display functional logic based

on other elements they "sense" in their environment, but actions must be taken

on their own.

2. Agents are self-contained. An agent must be an identifiable entity with clear

boundaries. For each element in the agent-based model’s state, it must either

be a part of an agent, or not part of an agent.

32

3. Agents are able to interact with other agents. As stated before, agents are

created with a predefined set of behaviors. These behaviors describe how an

agent interacts with its environment. Agents are often equipped with the ability

to "sense" other agents’ properties and environmental properties.

This set of fundamental properties is what defines an agent in agent-based simulations.

This open-ended definition of agents gives developers a high degree of freedom in

designing and running their simulations. Other properties that agents commonly

(but not necessarily) have are as follows [15]:

• Agents are often given goals that their behavior can follow. These goals can

be manifested as an optimization problem, where an agent tries to maximize

or minimize a predefined property, or as a set of criteria they use to make a

behavioral decision.

• Agents often have the ability to learn from their decisions. By measuring the

distance from their goal or using a quantitative analysis of the outcome of their

decisions in a certain state, agents can adapt their decision-making strategy to

ensure a higher "payout" the next time they are in a similar situation.

• Agents have attributes that can change based on their interactions with other

agents and the environment. These attributes are often the focus of study when

developing agent-based models to understand how a system works.

Agent-based modeling is a powerful paradigm for understanding decision-making

processes within systems. By analyzing state-action pairs of individual agents, we

can get a better understanding of what situations cause real-world entities to act in

certain ways.

For example, suppose we have an agent-based model studying human population

movement in an area, with each agent representing an individual human. Each agent

would likely have logic determining whether they stay in a location, or leave the

location in which case there would be more logic to determine another area to move

to. This logic would be dependent on a variety of factors, such as population and

33

resources in various locations. With a detailed enough simulation, we can answer

questions about human behavior such as what factors cause people to leave an area,

and what areas people prefer when moving to a new area.

As seen in the example, agent-based simulations can provide an intuitive under-

standing of agent behaviors. The discrete nature of agent-based simulations makes it

easier to understand simulations with hundreds or even thousands of moving parts.

By singling out a single agent and measuring its properties, we can get a more in-

tuitive understanding of each individual component without needing to understand

every relationship in the system as a whole [7].

Agent-based simulations do have their own shortcomings, however. Firstly, agent-

based simulations often require a lot more computational power than system dynamics

simulations [7]. This is due to the first property of agents, where each agent acts au-

tonomously, independent of other agents. Agent-based simulations also do a poor job

of representing macro-based concepts. For example, the movement of water between

water sources can be represented in an agent-based model where each water source is

an individual agent, however, the behaviors these agents exhibit have effectively no

real-world intuition behind them. Due to these reasons, agent-based simulations are

not a universally effective paradigm for creating simulations.

4.2.3 Hybrid Model

Both paradigms for complex system simulations have their own advantages and dis-

advantages over each other. Systems dynamics simulations provide an intuitive un-

derstanding of how the simulation environment evolves on a macro scale, while agent-

based simulations provide an intuitive understanding of individual decision-making

processes on a micro-scale. On the flip side, a system dynamics paradigm does not do

a good job of modeling several independent yet interconnected components behaving

in their own way, while an agent-based paradigm provides little to no intuition on

how changes in the environment affect the system as a whole.

WIT wants to provide its developers and subsequent users with an intuitive ap-

proach to model and understand complex systems. As a result, we wish to combine

34

the two simulation paradigms to create a hybrid paradigm that makes modeling a

complex system as intuitive as possible, while making it easy to understand the sys-

tem at both a micro and macro level.

Hybrid models using aspects from both agent-based modeling and system dynam-

ics modeling have been studied in the past. One type of hybrid model commonly used

splits the system into individual entities. These individual entities have internal states

that are updated using a system dynamics model. The interactions between entities

of the hybrid system are modeled using an agent-based model. Other approaches

use a similar method, with one key difference. Instead of the state of entities being

modified using a system dynamics model, the state of the system is modified using a

system dynamics model, while the interactions between entities and the state of the

entities are modeled using an agent-based approach [23].

Of these two common paradigms of hybrid models, the latter fits our use case the

most. Since Unity provides various functionality to modify a GameObjects state, we

felt that the state update of individual entities did not need to be modeled using a

system dynamics approach. Instead, we focused on modeling the state of the system

using a system dynamics approach. The following paradigm is the result of adapting

this hybrid method to the WIT simulation layer:

• Individual components of the system that display behaviors that run on pro-

grammatic logic will be represented as agents. These agents will have physical

components with positions and rotations tied to them, as they need a medium

to interact with other agents.

• Components of the system that are purely meant for resource storage purposes

will have a representation under the system dynamics paradigm. These com-

ponents will not have individual behaviors but will be able to transfer stored

resources between each other through user-defined functions.

• In order for the agent-based aspect of the system to interact with the system

dynamics-based aspect of the system, each component within the system dy-

namics side of the system may have a physical representation with positional

35

information as well as an interface to modify the component within the sys-

tem dynamics side of the simulation. This way, the physical agents are able

to directly interact with the system dynamics side of the simulation using the

provided interface.

The hybrid model proposed here was designed with the intent of splitting up com-

plex systems in a way that is easy to understand and model. This model will leverage

the advantages of both system dynamics and agent-based modeling paradigms. By

splitting the model into two separate sections, users can use their intuitive understand-

ing of complex systems at both a micro-level and macro-level in order to develop a

simulation of the complex system for students to use.

The following is how we envision what the development process of a complex

system will look like in our hybrid model. We include an example of each step for

the development of a foresting-based complex system:

1. The developer identifies which components in their system can be modeled as

part of the environment. These are components of the system that do not

explicitly exhibit "behaviors", but rather contain resources that can move/be

converted between each other. These components of the system, as well as the

movement of resources, are then modeled using the system dynamics interface

that we provide. Example: within a foresting-based complex system, some

components that fall in this category could include the number of trees in an

area, the amount of water stored as clouds, rainfall, and the dispersal of tree

seeds between two separate locations.

2. The developer then identifies which components in their system can be modeled

as a collection of behaviours. These will likely be the complementary set of sys-

tem components from the components identified in Step 1. These components

will be modeled using the agent-based modeling interface that we provide. Ex-

ample: lumberjacks that "decide" when to cut down trees in a forest, animals

that run away from lumberjacks out of fear.

36

3. The components of the system dynamics side of the simulation that agents

directly interact with must be identified. Physical representations of these com-

ponents are then created, providing a way for agents to interact with the en-

vironment. Example: A physical forest is created that will eventually allow

lumberjack agents to cut down trees when they are within physical distance.

4. Agent behavior is then defined by the developer using the provided agent-based

simulation interface. This interface will allow a developer to specify how agents

interact with each other and the physical representations of the system dynamics

side of the simulation. Example: Lumberjack code adds logic that decreases the

number of trees when they are within a specified distance of the forest.

We believe this process to be the most intuitive and straight forward way of break-

ing down and understanding a system in terms of its individual components. This

hybrid model, however, does come with its downsides. We place certain constraints

on the system simulation that allows this model to work. For example, all agents must

have a physical representation in order to interact with each other. In some complex

systems, agents could be abstract entities that modify the state of the world. An

example of this is an agent that increases the price of each log based on the number

of trees in the forest. This agent would intuitively not need a physical representation,

as it is not using any physical information about the simulation in order to perform

its behaviors, but would still require one with our method. While creating this agent

would still be doable, since Unity allows for physical entities to become physically

"invisible", it would still require some overhead and extra computation power. An-

other downside of this hybrid approach is the extra steps required to connect the

agent-based simulation with the system dynamics simulation. Agents are not able

to directly modify the system dynamics simulation, and must instead interact with a

physical representation of the component they would like to interact with. Overall,

however, we believe that these downsides to the hybrid model are minor disadvantages

compared to the intuitive value that the model provides developers.

37

4.3 Interface

Once a model for representing complex systems was decided, the next step of the

process was defining an interface that developers could use to create their simulations.

As stated before, the goal of the interface was to provide developers a simple and

intuitive way to break down and develop complex system simulations. In this section

I detail the various methods provided to the target audience of this project, and

provide discussion on the importance of these features. Implementation details and

design decision will be discussed in a future section.

4.3.1 System Dynamics Interface

We intend for developers to create simulations in the steps detailed in Section 4.2.3.

The first step in this process is to define the environment/system dynamics aspect

of the simulation. The following functions are provided to developers to create the

system dynamics side of their complex system:

* Creates a new collector (stock) with specified parameters

* @param name The name of the collector used for referencing

* @param startAmount Amount of resource in collector on simulation start

* @param minCapacity Minimum amount allowed to be in collector at any given

point in the simulation. Default value 0

* @param maxCapacity Maximum amount allowed to be in collector at any given

point in the simulation. Default value ∞

AddCol lector (name , startAmount , minCapacity = 0 , maxCapacity = ∞)

* Creates a flow between two collectors c1 and c2

* @param c1 Name of the collector from which resource is removed

* @param c2 Name of the collector to which resource is added

* @param flowFunc Function that returns 2 values: the rate to reduce c1 and the

rate to increase c2 on any given tick of the simulation. This can

be a function of any number of variables.

38

CreateFlow (c1 , c2 , flowFunc)

* Gets the amount of resources in a specified collector

* @param name A collector’s name

* @return float The amount of resources currently stored in the collector

GetCollectorAmount (name)

These three functions are the fundamental required to create the system dynamics

aspect of the simulation. This will allow developers to create a rudimentary stocks

and flows model, as well as read data about the model at any given point in time.

This interface, however, is only part of the interface provided to the users. While the

three functions above can be used to implement any stocks-and-flows model, some

aspects of system dynamics simulations are difficult to implement with these three

functions alone with no prior understanding of the implementations of the functions.

For example, suppose a developer wanted to add an infinite source into their simu-

lation (e.g. an ocean in a water simulation). In theory, the developer could call the

𝐴𝑑𝑑𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 function with a starting value of ∞. This, however, may be unintuitive

for both the developer of the simulation, as well as future developers within the WIT

team. As a result, to solve this problem and other similar issues, we provide further

abstractions to the system dynamics portion of the simulation engine:

* Adds a new collector that contains an infinite amount of a resource. Adding or

removing any amount of resource from this collector will not change its value.

AddIn f in i t eResource (name)

* Adds a new collector that contains an infinite amount of a resource. Resources

can only be added or removed with a certain probability. This can be used for

non-constant elements in a simulation (e.g. rain).

* @param name Name of the random resource

* @param timeInterval The interval in which the state of the random resource does

39

not change (e.g. length of time it rains)

* @param probability The probability that the collector is open to adding or

removing resources during a time interval

AddInfiniteRandomResource (name , t imeInte rva l , p r obab i l i t y)

* Gets a string representation of the current state of the simulation. This

representation includes all finite collectors and the amounts of resources stored

within them.

* @return string Representation of simulation state.

GetS imulat ionStr ing ()

* Gets the resource amounts in a given collector from a starting point in time

* @param name Name of the collector for which we want the history

* @param starttime The starting point of the history (in seconds)

* @param endtime The ending point of the history (in seconds)

* @return List[float] A list of the amount stored in the specified collector between

the specified starting time, and the current time. The history of the collector is

polled once every second.

GetHistory (name , s t a r t t ime = 0 , endtime = now)

This list of functions was determined by the WIT team to be the fundamental

abstractions when creating a system dynamics-based simulation. It provides devel-

opers with a set of intuitive functions they can use to define their system, while still

providing them with enough freedom to create relationships between components in

their system in any way they desire. The list is not exhaustive, and in the future,

there will likely be more functions to add to the system dynamics interface. For now,

however, we believe that these functions are sufficient for a robust system dynamics

simulation within our hybrid model of complex systems.

40

4.3.2 Agent Based Interface

As explained in section 4.2.3, the second step that a developer goes through when

creating an agent-based simulation is defining what agents are part of the simulation.

Through the interface we provide, developers must be able to define agent behav-

iors, create physical entities representing the agents, and connect those agents to the

system dynamics side of the simulation.

Since agents have a high degree of freedom in terms of behaviors they can exhibit,

we leave the behavior definitions up to the developer. As Unity itself is an agent-based

game engine, we chose to give developers access to the full range of tools offered by

Unity to define their agents. In order to assist new developers and make the process

easier, we also provided developers with common abstractions used in agent-based

simulations. Additionally, we added some requirements for running agent behaviors

to ensure smooth integration into the system dynamics side of the simulation. The

following is the interface we decided upon for building agents:

* This function is where agent behavior will be defined by the developer. It is called

on every tick of the simulation

* @param deltaTime The amount of time passed since Tick was called last

Tick (deltaTime)

This function is the only function required for developers to implement in agents.

Other functions in the interface provide developers tools to make defining agents’

behavior easier:

* Adds a collision handler between the current agent and agents of another type

* @param agentType The type of agent that collision behavior will be defined with

* @param action The function is called when the two agents collide.

OnColl is ionWithAgent (agentType , a c t i on)

* Function called when the simulation starts. This function is called only on agents

that exist within the scene before the simulation is started. The function will be filled

in by the developer

41

OnSimulat ionStart ()

* Function called when an agent is spawned into the simulation. This function will

be filled in by the developer

OnSpawn()

* Function called when an agent is despawned from the simulation. This function

will be filled in by the developer

OnDespawn ()

* Moves the agent to a specified position in the simulation

* @param newPos The new position to move the agent to

Se tPos i t i on (newPos)

* Rotates the agent in a way specified by its euler angles.

* @param newRot The new rotation to rotate the agent to.

SetRotat ion (newPos)

This set of functions can be used/implemented by the developer in order to make

the agent development process easier. There were additional discussions on other

functions that could be added to the agent-based development interface, however, we

came to the conclusion that many of these functions would simply be Unity one-liners.

For example, one function that came up in discussion was changing the color of an

agent. While it was possible to provide a function ChangeColor(newColor) for the

developer to use, this would provide developers no additional benefit compared to the

functions that Unity natively provides. As the WIT project expands and developers

give feedback on functions that would be helpful for their development, this interface

will also likely expand. For now, however, we believe that this interface will provide

developers with the abstractions necessary to simplify designing their agents while

providing enough freedom that they can define agent behavior however they like.

42

4.3.3 Hybrid Interface

The final step of the process that we need to provide developers with an interface for

is connecting the agent-based aspect of the simulation to the system dynamics aspect

of the simulation. There are two types of interactions that can happen between

the agent-based layer and the system dynamics layer. The first is that an agent

can directly modify the system dynamics. This is a fairly straightforward concept,

with agents defining their interactions with the system in their behaviors. The second

type of interaction is when properties of the system dynamics aspect of the simulation

modify the agents. This would mean that some aspect of the system needs to be able

to modify the agents as well. This is where we can leverage the definition of agents

made in section 4.2.2. Since agents are independent entities, any action on a group

of agents can be modeled as distributing the action amongst the individuals of the

group. This means that any interaction that the system dynamics simulation has on

the agent-based simulation can be modeled within the individual agents themselves.

This analysis of interactions means that any interaction in the system can be done

through the use of agents. As a result, the interface we provide is meant to be called

within the code of agents:

* Modifies the amount of a resource stored in a collector by a certain amount one

time

* @param name The name of the collector that will be modified

* @param deltaAmount The amount by which the collector will be modified (can be

negative)

ModifyCollectorAmount (name , deltaAmount)

* Modifies the flow rate between two collectors

* @param c1_name The name of the outflow collector

* @param c2_name The name of the inflow collector

* @param newFunc Function that returns two values which determine the rate that

the collectors change

43

ModifyFlowRate (c1_name , c2_name , newFunc)

* Spawns a new agent in the simulation with the given starting position and rotation.

* @param agentType The type of agent that will be spawned

* @param position The world position where the agent will be spawned

* @param rotation The orientation that the agent will be spawned in

SpawnAgent (agentType , po s i t i on , r o t a t i on)

* Permanently deletes an agent from the simulation. This action cannot be undone.

* @param agent a reference to the agent that will be deleted

DeleteAgent (agent)

* Gets a list of references to all agents in the simulation of a given type

* @param agentType The type of the agent that will be retrieved

* @return List[Agent] List of all agents of the specified type

GetAgentsOfType (agentType)

* Gets the distance in world coordinates between two agents

* @param agent1, agent2 References to the agents whose distance needs to be mea-

sured

* @return float Distance between the two agents

GetDistanceBetweenAgents (agent1 , agent2)

* Gets a list of references of all agents within a specified distance of a certain location

* @param position The location from which distance will be measured

* @param distance The radius of which agents will be searched for

* @return List[Agent] List of all agents within the specified distance of the starting

location

GetAgentsWithinDistance (po s i t i on , d i s t ance)

As with the other interfaces defined for the simulation engine, we believe that this

44

set of functions provides developers with sufficient functionality for interfacing the

agent-based side of the simulations with the system-dynamics-based side. Of these

functions, however, not all are necessary to provide to the user. The last two func-

tions, GetDistanceBetweenAgents and GetAgentsWithinDistance can be manually

implemented by the developer using the other functions provided as well as native

Unity functions. We decided to provide developers with these two functions in order

to simplify their development process. It is highly likely that in the future of WIT,

more functions similar to these two functions, which simplify the development of sim-

ulations but do not necessarily add functionality for users, will be added as patterns

in the development process are explored.

4.4 Implementation

With the interface for simulation development now defined, the next goal was to

create the interface within Unity. Two main factors affected design decisions within

the implementation of the interface:

1. Ease of expansion. The interface defined in the above section contains a bare

backbone of tools required for a developer to create a simulation within the

WIT project. As the WIT project continues and more simulations are devel-

oped using the interface, certain patterns will likely form. In order to abstract

these patterns away from the developer, new functions will be added to the

interface to ensure that developers will not be required to write code with some

basic functionality that we could provide. This will make it easier on the de-

veloper as a) the developer has less chances to make errors within their own

implementations, and b) developers will not need to solve common problems

faced by other simulation developers.

2. Ease of understanding. Since WIT is a multi-year project that will inevitably

have a conclusion, the code will likely be expanded by both future members

of the WIT team as well as external developers interested in adding core func-

45

tionality within the simulation engine. Since many others will need to read and

understand the code before adding their own features to the simulation engine,

it is important to implement the interfaces in a way that is easy for someone

to understand. This includes properly modularizing components in the code

in an easily understandable way, and stripping any major complexity from the

programming logic by leveraging Unity and C#’s built in functions.

These two factors, as well as the base goal of creating a functional interface for

developers as defined above resulted in the simulation engine being designed as dis-

cussed below. Since the interfaces for the system dynamics aspect and agent-based

aspect of the simulation were disjoint, we decided to modularize the implementation

of the interfaces in a similar way.

4.4.1 System Dynamics Implementation

The first module that was implemented was the system dynamics portion of the

implementation. This was chosen as the first part of the engine to implement, since

it operates independently of Unity’s subsystems. As described in the interface for

the system dynamics component of the simulation in section 4.3.1, this side of the

simulation does not require the use of Unity’s GameObjects, and thus much of Unity’s

functionality is not required.

There were two main abstractions within the system dynamics simulation that

needed to be modeled: stocks and flows. Stocks are an abstraction that simply holds

an amount of a certain resource, while flows are more complex abstractions which

represents how much of a resource moves between stocks at any given time. Early on

in the development stage, the goal was to modularize the system as much as possible.

This would mean having separate classes for stocks and flows, and another class to

link these two concepts together to make a full fledged simulation. The thought

process behind this was that more modularization within the code would fall in line

with the goals of ease of expansion and ease of understanding. With the former, any

functionality that would need to be added would have to be categorized into three

46

types:

1. Behavior of a stock

2. Behavior of a flow

3. Combined behavior of stocks and flows

Once the type of the added functionality is determined, a developer could simply

extend the system dynamics simulation by adding the function directly into the class

determined by the type of functionality. With the latter, the system dynamics code

could be understood by first analyzing the code from the basic components (stocks

and flows), and using the understanding of those components to understand the in-

teractions defined by linking code between the two classes. Early attempts at im-

plementations of the system dynamics simulation interface used this concept of high

modularization between basic components.

This model of modularizing the system was quickly found to not be a feasible

implementation model. This is because of two main issues that arose during the

implementation process. The first is that the base components of the modulariza-

tion were not necessarily expandable. Stocks and flows are very basic components

that contain very little functionality within themselves. In the early implementation,

stocks were objects that held a single state variable representing the amount resource

within the stock, and flows were objects that held a function to determine how much

of a stock needed to be transferred to another stock. Beyond the data, the only ad-

ditional functionality that these objects needed were functions to change the stored.

Since the functionality of stocks and flows are limited on their own and cannot be

meaningfully expanded, the need to cater towards the goal of ease of expansion was no

longer an issue. The second main issue is that object-oriented programming (OOP)

paradigms do not follow the same model as the stocks and flows paradigm. Objects

in OOP are meant to store data, and operations on that data are defined in methods

within the object. While an object representing stocks would follow this model, with

the data being the amount of resource within the stock, an object representing flows

47

would not fit this model, as flows represent functions. Because of this difference be-

tween common object-oriented principles and the flow representation within a system

dynamics simulation, keeping this initial implementation would undermine the goal

of ease of understanding of the implementation.

Modifications were made to the initial attempts of implementation in order to

resolve the issues that were detracting from our goals. Stocks and flows did not need

to be modularized, since the base components had very little functionality on their

own, and thus all stocks, flows, and the interactions between them were processed

entirely through one file called the SystemDynamicsSimulator. This implementation,

however, quickly grew to be complex. Several data structures were required to store

all stock variables, all flow functions, map stock variables to flow functions, modify

stock amounts based on the flow functions at any given time, etc. Additionally, since

all data and computations were being stored in one file, it became difficult for us

to understand our own code, meaning future developers would likely also trouble

understanding the code. As a result, this method of using one file for the entire

system dynamics aspect of the simulation was also discarded.

From these implementations, it was clear to us that running the full simulation

from one file was difficult because of the complexity required to support the simula-

tion, and that modularizing flows would be unintuitive to future readers of the code,

the only other option was that stocks would be represented as their own separate

objects. Even with this code structure determined, there were now several different

ways of representing flows within the simulation. After some experimentation, the

following code structure was decided upon. Note that this code structure is a high

level pseudocode representation for understanding the relationships between stocks,

flows, and the code that runs the simulation, and does not represent the depth of

implementation of the actual code.

Class Stock {

f l o a t amount

Lis t<Pair<Func , Stock>> out f l ows

func Flow (currentTime) :

48

f o r flowFunc , destStock in out f l ows :

amount −= flowFunc (currentTime) . outAmount

destStock . amount += flowFunc (currentTime) . inAmount

}

Class SystemDynamicsSimulator {

Lis t<Stock> s tock s

func Tick (currentTime) : * This is called on every simulation tick

f o r s tock in s to ck s :

s tock . Flow ()

}

This method of setting the flow functions to be a property of the source stocks was

a deliberate decision made because of how the flow function interacts with stocks.

One initial concept was to have the flow functions be stored within the simulator

class itself. This, however, required multiple data structures to be used in order to

implement the rest of the interface. For example, to implement just the Tick function

alone, a designation for which flows affect which stocks, as well as the relationship

graph between stocks, would have to be stored within the simulator class. As a result,

it was decided that flow functions would be represented entirely within the stock class.

There was an additional decision on which stock a flow function should be connected

to - the source stock or the destination stock. In the end, it was decided to be

more intuitive that a flow is represented on the source stock since a stock providing

resources to another stock seemed more natural that a stock taking resources from

another stock. This decision was made fairly arbitrarily, and if it is decided by future

developers in WIT that flow functions are more intuitive to understand as part of

the destination stock, this can be changed easily by swapping signs within the Flow

function.

While this problem of determining the structure of the system dynamics code was

an important design decision that would define how the system dynamics aspect of

49

the simulation engine ran, several other design decisions were made to ensure the

goals of ease of understanding and ease of expansion were reached.

When designing a simulation with the WIT team, several possibilities of simula-

tions were discussed which required the expansion of the types of stocks provided.

In the discussions of water systems, which modeled how water would move around

several sources, features such as an ocean that provides an infinite supply of water, or

rain which does not provide a steady flow but instead only flows in certain conditions,

could not be modeled with the implementation discussed thus far. As a result, the

implementation would need to be expanded to allow for these interaction types to

exist within the system.

One common aspect of these features is that they all perform the same "flow"

action as a basic stock. Oceans should still be able to give and receive water, even if

there is no "amount" as required in the stock class, and rain should be able to switch

on or off which the stock class does not implement. Since all of these structures

need to perform the same core functionality, before creating brand new structures to

support this behavior, this core functionality would need to be factored in to prevent

code duplication.

C# supports the creation of abstract classes. Abstract classes are special classes

within object-oriented programs that cannot be instantiated. Instead, abstract classes

must be inherited by other classes. These other classes then receive functionality and

data specified within the abstract class. What makes abstract classes different from

standard classes is that abstract classes may include abstract methods. These are

empty methods that must be implemented by the child class in order for the code to

compile. Since we need all of our new structures to support the same functionality,

but use their own implementations, we can leverage the use of abstract classes to

solve this problem:

ab s t r a c t c l a s s ResourceContainer {

Lis t<Pair<Func , ResourceContainer>> out f l ows

ab s t r a c t func Flow (currentTime)

}

50

Now that we have our abstract class defined, we can adapt our original stock class

and system dynamics simulation class to use this abstract class:

Class Stock : ResourceContainer {

f l o a t amount

func Flow (currentTime) : * This is overridden from ResourceContainer

f o r flowFunc , destStock in out f l ows :

amount −= flowFunc (currentTime) . outAmount

destStock . amount += flowFunc (currentTime) . inAmount

}

Class SystemDynamicsSimulator {

Lis t<ResourceContainer> re sourceConta ine r s

func Tick (currentTime) : * This is called on every simulation tick

f o r r e sourceConta ine r in r e sourceConta ine r s :

r e sourceConta ine r . Flow ()

}

With this modification, the system dynamics simulator will be able to handle

any structure that inherits from the ResourceContainer class. As a result, we can

imagine defining other ResourceContainer types with custom flow behaviors. For

example, suppose we wanted to model an infinite source that can give resources to

other stocks. We could model this as:

Class I n f i n i t e S ou r c e : ResourceContainer {

func Flow (currentTime) : * This is overridden from ResourceContainer

f o r flowFunc , des t in out f l ows :

des t . amount += flowFunc (currentTime) . inAmount

}

By using the functionality of abstract classes, we are able to add new structures to

our system dynamics simulation. This works towards both goals of implementation

design. So far, all structure types discussed by the WIT team have already been

51

implemented using the abstract class and added to the system dynamics simulation

interface. However, since flow functionality can be open-ended, it is likely that in

the future, other generic structures for the system dynamics simulation will need to

be created. The abstract class method makes this expansion of system dynamics

structures easier for future developers by providing support for the use of generic

flowing structures within the simulation.

The final major design decision that was made when implementing the system

dynamics simulation was related to networked data. As discussed in Section 3, the

simulation code would be running on a dedicated server, with data being sent to the

headsets. The most important decisions for sharing data would be to determine what

data needed to be sent to the headsets, as well as how that data would be structured.

The two main types of data that were being handled by the system dynamics

simulation were data related to stocks and data related to flows. Data related to stocks

include information such as how much of a resource is currently stored in the stock, or

which stocks are connected to each other. Data related to flows includes information

such as the current flow rate. To minimize network traffic, it was decided that only

data which needed to be accessed by the headsets would be constantly updated over

the network. This data was determined to only be data about the amounts of resources

within any given stock. By having this data be networked, headsets can constantly

keep track of stock amounts to perform any local computations necessary, such as

modifying local visuals or sending Remote Procedure Calls (RPCs) to the server

based on the amount of a stock.

This does not mean, however, that headsets are only limited to using stock

amounts. If a headset needs other data about the system dynamics simulation, it

may send RPC requests to the server, which will respond with the data in question.

We expect that data not related to resource amounts will rarely be required by the

headsets, so these RPC requests will not be called often. This way, headsets will have

access to any data required, and network traffic will not be overloaded by syncing an

entire simulation’s worth of data to the headsets.

Photon Fusion provides developers with a method to synchronize certain data

52

types across the network. Since resource amounts within the system dynamics simu-

lation were represented as floats, the data structure used for synchronizing resource

amounts across the network needed to either be floats or collections of floats. One

important feature of networking data in Fusion is that the networked data needs to

be attached to some networked object. Otherwise, if the data is instead attached to

a local object, other devices across the network would not be able to access the data.

If we were to simply network the amount of resources within each stock class, we

would have to convert all stock objects into network objects. This would be unneces-

sary network overhead, and could cause synchronization lag over the network. As a

result, we instead use a single networked object to store all data within a collection

of networked floats and update this networked object on the server. This means that

only one object would need to be spawned on the server, and all headsets would

subsequently be able to access the synchronized resource amounts.

While the design decisions discussed in this section were the main decisions made

when implementing the system dynamics simulation, several other small implemen-

tation decisions were made that are not significant to the design of the engine, and

as such will not be discussed in this paper.

4.4.2 Agent Based Implementation

The next step in implementation was to create a framework for defining the agent-

based simulation. The goals for the agent-based simulation built on the goals defined

at the start of the section; on top of prioritizing ease of use and ease of expansion, we

needed to ensure that the agent-based simulation interfaced nicely with the system

dynamics simulation. Additionally, each agent in the simulation would end up having

a virtual Unity GameObject attached, so the implementation of agents needed to sup-

port Unity features as well. The constraints that both Unity and the system dynamics

implementation set on the agent-based simulation decreased the possibility space of

implementations while making it more difficult to find a suitable implementation for

the original two goals.

The initial attempt at the agent-based implementation followed a similar structure

53

to the system dynamics implementation. The goal of the initial attempt was to create

an implementation that could run completely independently from Unity’s structure.

This way, developers could define the simulation purely in C#, and would only need to

interact with Unity to tie GameObjects to simulation components and affect visuals

within the headsets. This would allow developers with little to no Unity experience

to use the provided interface to create and run simulations from end to end, aligning

with WIT’s goal of creating frameworks that would simplify a developer’s experience

in creating a simulation as much as possible.

One of the advantages of using Unity for an agent-based simulation is that Unity

is an agent-based gaming framework. GameObjects within Unity are independent

entities that act autonomously based on predefined behaviors, similar to the definition

of agents presented in section 4.2.2. Continuing this analogy further, creating a

generic GameObject with some behaviors can be thought of as creating a generic

agent with those same behaviors. Therefore, if we model a generic agent script similar

to how the generic GameObject script works, then we can create agents as a child

of the generic agent script similar to how GameObjects in Unity are children of a

generic GameObject. Once the agent is instantiated within the simulation, we can

transfer its behavior to an analogous GameObject to run in Unity.

Similar to the system dynamics model, where we had a generic ResourceContainer

abstract class which could be implemented to make customized system dynamics

structures, in the agent-based implementation, we created an abstract Agent class.

Unlike the ResourceContainer, however, this Agent class would be used directly by a

simulation developer to create customized behaviors for their own agents. This ab-

stract class would contain both abstract methods that would need to be implemented

by the developer, as well as regular methods hidden away from the developer in order

to interface the agent with the system dynamics simulation.

The following was a preliminary structure for the Agent script. As before, this

is a pseudocode implementation and does not expose the details of the actual imple-

mentation:

ab s t r a c t c l a s s Agent {

54

Vec3 po s i t i o n

Quaternion Rotation

GameObject l inkedObjec t

* This function performs any behavior defined in an agent script on object o

func LinkToGameObject (GameObject o) :

l inkedObjec t = o

* This function is called on every tick of the simulation and will sync the gameob-

ject with the simulation agent

func TickAgent () :

Tick ()

l inkedObjec t . t rans form . po s i t i o n = po s i t i o n

l inkedObjec t . t rans form . r o t a t i on = ro t a t i on

* This function must be defined by the developer to define bahvior on the agent

every tick of the simulation

abs t r a c t func Tick ()

}

The code displayed above is a very rudimentary version of the first attempt at

implementing the agent framework. In order to create their own custom agent, a de-

veloper would simply inherit from this agent class and implement the Tick() function

to display their desired behavior. An example of this is as follows:

c l a s s Frog : Agent {

Tick () :

p o s i t i o n += (1 , 0 , 0)

}

At a basic level, this method of implementing the Agent worked. GameObjects

were abiding by the behaviors set by a developer in a derived Agent class. As more

features were added to improve upon the interface, however, two issues became ap-

parent. Firstly, the set of features required to model an Agent as a GameObject was

55

enormous. In the example above, the only properties that are being synced between

Agents and their linked GameObjects are position and rotation. However, GameOb-

jects can have hundreds of properties that can be programmatically changed, each

of which can have hundreds of properties themselves. As a result, creating an Agent

script that synchronizes all of this data to the GameObject is infeasible and has a high

chance of causing bugs and glitches within the simulation. Secondly, and more im-

portantly, since Agents in this implementation are completely independent of Unity,

they do not have any object representations attached to themselves. This means that

any property related to the physical property of the object, such as color, cannot be

modeled. This issue was initially discovered when trying to implement collision logic

within the Agent script. Since these independent Agents do not have physical entity

representations, collisions cannot be detected, and as a result, the interface defined

in section 4.3.2 cannot be created.

The two aforementioned issues make the initial approach for implementing the

agent-based simulation nearly impossible. In fact, since physical callback functions are

only available on scripts attached to GameObjects in Unity, the freedom to design the

agent-based simulation framework is very restricted. Any behavior-defining scripts

created by the developer must be placed on a GameObject. While this is restrictive

in a design sense, this opens up the possibility to use the entire Unity library for both

development of the interface and the development of the simulation itself.

The next iteration of the agent-based simulation was the final implementation

that was decided on. As stated previously, because of the restriction on how agents

within the simulation needed to be attached to GameObjects, there was only one

feasible way to implement agents. Similar to the first attempt, the Agent class is

an abstract class we provide to developers to inherit and create customized agents

from. This time, however, these agent scripts will not be independent of Unity, but

will be instead attached to Prefabs created by the developer to act as a physical

representation of the agent. The following is the final basic structure of the agent

script of the simulation engine

56

abs t r a c t c l a s s Agent : NetworkBehavior{ * Necessary for spawning agent

* This function must be defined by the developer with the desired agent behav-

ior, and will be called on every tick of the simulation

abs t r a c t func Tick ()

}

While many design decisions were made when creating the agent-based implemen-

tation of the simulation engine, most of the decisions were minor, as they corresponded

to design decisions of singular functions from the defined interface. The decision of

keeping the agent script tied to a GameObject or keeping it independent was the only

major decision made when implementing the agent-based simulation.

57

Chapter 5

Results

As the simulation layer of WIT was designed as a framework for building simulations,

there are few quantitative measures to determine the effectiveness of the solution.

Instead, the effectiveness of the framework was defined by the ability to meet the

goals of the project, as defined in section 1.4.

In order to test the WIT framework, a demo was created using all three layers of

WIT. This demo was meant to be a proof-of-concept, testing all features implemented.

An image from the demo can be seen in Figure 5-1. An analysis of the goals of the

simulation layer of this project, as presented in section 1.4, was done in the context

of the creation of this demo:

1. Ability to run a simulation to modify GameObjects. The simulation was able

to modify the behavior of all GameObjects in the scene. Examples of evidence

of this are frogs jumping around on tables, and butterflies flying around the

room.

2. Ability for a developer to define customized simulations. The demo was created

externally from the code used to develop the framework itself. This means that

none of the components of the demo are hard-coded within the framework, but

instead, the functions provided by the simulation framework were used to create

the demo.

3. Ability for the simulation layer to interact with other layers. Through the

58

Figure 5-1: A still image from the demo created using the WIT framework.

demo, it was clear that the simulation was able to interact with both the view

and interaction layer. The former was evidenced by the frogs’ ability to jump

and navigate around real-world objects without falling (recognize when they

will jump off the real-world desk), which was a consequence of the simulation

layer being able to read data from the view layer about the real world, and the

latter was evidenced by the ability to change the rate of rain within the demo,

or spawn butterflies within the simulation, which is the consequence of the

simulation layer being able to identify when users are performing interactions

in predefined ways.

4. As discussed in section 4.4, many of the design decisions made when creating

the simulation layer were influenced by the need for the expansion of simulation

components.

Overall, the current iteration of the simulation layer achieves the specifications

required within the WIT project. Although the simulation layer is designed to be

improved upon over the three-year span of the WIT project, it currently achieves its

goals of being a robust platform for developers to build simulations on. This project

59

will be an important stepping stone in the growth of immersive shared augmented

reality experiences that will change the landscape of education in classrooms.

60

Bibliography

[1] Bolt vs pun. https://doc.photonengine.com/pun/current/reference/pun-vs-bolt.

[2] Feature overview. https://doc.photonengine.com/pun/current/getting-
started/feature-overview.

[3] Fusion introduction. https://doc.photonengine.com/fusion/current/getting-
started/fusion-intro.

[4] Fusion network simulation loop. https://doc.photonengine.com/fusion/current/manual/network-
simulation-loop.

[5] Fusion vr host. https://doc.photonengine.com/fusion/current/technical-
samples/fusion-vr-host.

[6] Passthrough api overview. https://developer.oculus.com/documentation/unity/unity-
passthrough/. Accessed: 2022-12-03.

[7] Pros cons of agent-based modeling. https://educationalresearchtechniques.com/2020/08/07/pros-
cons-of-agent-based-modeling/.

[8] Pun’s structure. https://doc.photonengine.com/pun/current/getting-
started/pun-intro.

[9] Spatial anchors overview. https://developer.oculus.com/documentation/unity/unity-
spatial-anchors-overview/. Accessed: 2022-12-03.

[10] System dynamics. http://foresight-platform.eu/community/forlearn/how-to-do-
foresight/methods/gaming-simulation-and-models/system-dynamics/.

[11] What-is-the-difference-between-shared-hosting-and-dedicated-server, Dec 2022.

[12] Larah Armstrong. Dedicated game server (dgs): Unity multiplayer networking,
Feb 2023.

[13] Fikret Berkes. Fishermen and the "tragedy of the commons". Environmental
Conservation, 12(3):199–206, 1985.

[14] U Blikstein, P. & Wilensky. An atom is known by the company it keeps: A con-
structionist learning environment for materials science using agent-based mod-
eling. International Journal of Computers for Mathematical Learning, pages
81–119, 2009.

61

[15] Eric Bonabeau. Agent-based modeling: Methods and techniques for sim-
ulating human systems. Proceedings of the National Academy of Sciences,
99(suppl_3):7280–7287, 2002.

[16] Giglioli IAC. Cipresso P. The past, present, and future of virtual and augmented
reality research: A network and cluster analysis of the literature. Front Psychol,
2018.

[17] Roy D. Learning across realities: Virtual and augmented reality in education.
page 59, 2021.

[18] Peppler K Danish J. Life in the hive: Supporting inquiry into complexity within
the zone of proximal development. Journal of Science Education and Technology,
pages 454–467, June 2011.

[19] Jay W Forrester. System dynamics and the lessons of 35 years. A systems-based
approach to policymaking, pages 199–240, 1993.

[20] Anton Iancu. About netcode for gameobjects: Unity multiplayer networking,
Apr 2023.

[21] Ripan Kumar Kundu, Akhlaqur Rahman, and Shuva Paul. A study on sensor
system latency in vr motion sickness. Journal of Sensor and Actuator Networks,
10(3), 2021.

[22] Scott M Lewandowski. Frameworks for component-based client/server comput-
ing. ACM Computing Surveys (CSUR), 30(1):3–27, 1998.

[23] Romina Martin and Maja Schlüter. Combining system dynamics and agent-based
modeling to analyze social-ecological interactions—an example from modeling
restoration of a shallow lake. Frontiers in Environmental Science, 3, 2015.

[24] Muaz Niazi and Amir Hussain. Agent-based computing from multi-agent systems
to agent-based models: a visual survey. Scientometrics, 89(2):479–499, 2011.

[25] J M. Ottino. Complex systems. AIChE Journal, 49(2):292+, February 2003.

[26] Pereira A. Piovesan S., Passerino L. Virtual reality as a tool in the education.
CELDA, 2012.

[27] Sara. Network topologies: Unity multiplayer networking, Mar 2023.

[28] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications. In Proceedings first international
conference on peer-to-peer computing, pages 101–102. IEEE, 2001.

[29] et al. Scogin S., Kruger C. Learning by experience in a standardized testing
culture: Investigation of a middle school experiential learning program. Journal
of Experiential Education, 40(1):39–57, 2017.

62

[30] John D Sterman. System dynamics modeling: tools for learning in a complex
world. California management review, 43(4):8–25, 2001.

[31] Emma Anderson Susan A. Yoon. Teaching about complex systems is no sim-
ple matter: building effective professional development for computer-supported
complex systems instruction. Instructional Science, pages 99–121, 2017.

[32] Hanel R. & Klimek P. Thurner S. Introduction to the theory of complex systems.
Oxford University Press, 2018.

[33] TrendForce. Augmented reality (ar) and virtual reality (vr) headset shipments
worldwide from 2019 to 2023 (in millions), 2022.

[34] Collela V. Participatory simulations: Building collaborative understanding
through immersive dynamic modeling. June 1998.

[35] Stroup Vilensky. Learning through participatory simulations: Network-based
design for systems learning in classrooms. 1999.

[36] Oculus VR. Mixed reality with passthrough. July 2021.

[37] Ellen Wang. Capturing worlds of play: A framework for educational multiplayer
mixed reality simulations, Submitted: May 2023.

[38] Anna Weinstein. Designing student interactions to explore systems thinking in
augmented reality, Submitted: May 2023.

63

