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Abstract

The Julia programming language is a high performance computing language that
employs an LLVM-based just-in-time compiler and an LLVM-based ahead-of-time
compiler to produce optimized machine code. When Julia uses its just-in-time com-
piler, compilation of methods must be done before methods can begin execution,
which presents as a delay the first time a function is executed. When Julia compiles
code ahead of time into code images, a large fraction of time is spent optimizing and
emitting machine code for large numbers of functions. Here, we investigate ways of
exposing opportunities for parallelism to both compilers, as well as investigate ways
to perform less work during the compilation process using newer LLVM technolo-
gies. Our results show that we can achieve speedups of 8-16X in the ahead-of-time
compiler when compiling on multiple threads, while the just-in-time compiler can
achieve speedups between 1.5-3X under certain circumstances. Additionally, we find
that LLVM’s new CompileOnDemandLayer for delaying compilation until code is ex-
ecuted can avoid 30-40% of compilation work in certain applications, while LLVM’s
new pass manager framework can reduce optimization time by up to 17.5% compared
to the legacy pass manager. Incorporation of these compiler improvements into the
Julia language yields marked decreases in the initial delays that are observed by users
today.
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Chapter 1

Introduction

The Julia programming language is a high-performance dynamically-typed JIT-compiled

language well suited for scientific computation workloads. The language’s stated goal

is to solve what it characterizes as the "two-language problem," where one program-

ming language (such as Python) is used to write simple glue code for libraries written

in another, higher performance but lower-level language (e.g. C++). To achieve its

performance requirements, Julia embeds a type-inference system as well as an opti-

mizing compiler. Julia’s optimizing compiler is itself split into two pipelines, one of

which is written in Julia and another of which is written using LLVM, a collection of

compiler utilities.

One of the more unique features about Julia is its use of multiple dispatch and

heavy use of generic programming. When a method is called in Julia, the runtime will

inspect the concrete types of the arguments to that method and select the method

definition with the best match to those arguments. If that method definition has

never been compiled for the passed in types, the compiler will perform type infer-

ence and optimization before emitting machine code to memory. Once this machine

code emission has completed, execution will be continued, calling the fast compiled

method. Subsequent calls to the same method with the same types will not result in

compilation, as the calls will dispatch to the same compiled machine code.

Currently, Julia faces a problem known variously as time-to-first-plot (TTFP),

time-to-first-execution (TTFX), or compilation latency. Briefly, this is the time that is
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spent inferring and compiling Julia source code to machine code that can be executed

on a CPU directly. As described above, before a method may be executed for the

first time, it must be compiled. However, the types that a method will be called with

are known only after that method has been called. Thus, the execution time of the

first call to a method includes compilation time, and a slow compiler results in slow

performance measurements for methods that are only called once.

Here we show that we can improve the performance of the compiler drastically

by introducing parallelism in the time-consuming portions of the compiler. We also

find that new LLVM features such as lazier compilation tools and a new optimization

pass manager significantly reduce the amount of compilation work that must be done,

further reducing TTFX measurements.
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Chapter 2

Background

2.1 LLVM

The LLVM Project is a collection of modular and reusable compiler and toolchain

technologies [13]. Julia primarily relies on LLVM’s intermediate representation (IR),

a method of representing source code in a generic and predictable manner. LLVM

IR is a static-single assignment (SSA) IR, which means every variable is assigned

once and only once in a program. Furthermore, the IR is broken up into several

levels of structure, starting with modules which contain one or more functions, func-

tions which contain one or more basic blocks, basic blocks which contain one or more

instructions, and instructions which map very closely to corresponding assembly in-

structions. SSA-form IR enables a wide variety of optimizations to be represented as

simple replacements of one value with another.

LLVM also provides an optimization pass manager as well as several optimization

passes which can be used to canonicalize and simplify the IR for a faster execution

time. However, while the final code that is produced is fast and efficient, producing

LLVM IR and optimizing it are slow steps and contribute significantly to compilation

latency.
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2.2 JIT Compilation

JIT compilation, or just-in-time compilation, is the process of generating code and

subsequently executing this generated code during the process of program execution.

JIT compilation is often contrasted with ahead-of-time (AOT) compilation, where a

compiler produces an executable that is then run as the actual program. Compared to

AOT compilation, JIT compilation includes compilation overhead during the running

of the program, which takes time and resources away from the actual execution of the

user’s code. However, AOT compilation can only optimize code based on knowledge

that is available prior to execution of a program, while a JIT compiler is free to run

compilation at a time of its choosing during the execution of the program, when more

information is available.

In Julia’s case, methods are specialized for every combination of types [6]. In

an AOT compiler, this would necessitate specializing a method for every possible

combination of argument types, which is infeasible to compile due to combinatorial

explosion. However, Julia gets around this problem by only compiling for particular

combinations of arguments that are passed in at runtime, which necessitates a JIT

compiler to generate machine code.

2.3 Julia’s Compilation Process

Julia embeds a number of different stages in its compilation process, as shown in

figure 2-1.

2.3.1 In-Julia Compilation

First, any macros are expanded and code is lowered into an abstract syntax tree

(AST), a representation that removes order of operations and syntactical rules from

the code. Then, the AST is converted to a Julia SSA form (Julia IR). This Julia IR

is then run through an optimization pipeline to initially simplify the code, before it

is piped to the LLVM IR generator (known as codegen).
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Figure 2-1: Julia Compilation Pipeline

Julia’s compilation pipeline passes source code through a variety of stages to parse, trans-
form, and optimize the program for a faster execution time. Steps shaded in blue are done
using LLVM and written in C++, steps shaded in yellow operate only on Julia data struc-
tures and are written in Julia, and steps shaded in green are written in femtoLISP, a custom
dialect of LISP. Steps with a thick gray outline are performed only while the global compi-
lation lock is held. Thick red lines indicate steps that may trigger additional functions to
be compiled or inferred.
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2.3.2 LLVM Compilation

All of the above steps are written in Julia itself. For codegen and subsequent steps,

however, the implementation is written in C++ as LLVM APIs are defined in terms

of C++.

Codegen

Codegen is the process of taking Julia IR and converting it to LLVM IR. LLVM IR,

while superficially similar to Julia IR in that both are SSA-form IRs, offers a much

more expressive transformation API at the cost of slower compilation speed. LLVM

IR also has a more mature optimization ecosystem, and contains facilities to emit

machine code, both of which are lacking for Julia IR.

LLVM IR relies on the presence of an LLVM context, which is an object that

contains state common to various IR constructs. Operations on different context

objects are thread safe, but operations on the same context are not. Parallelization

of LLVM code generation and optimization must therefore move or duplicate LLVM

IR into different contexts in order to effectively operate on LLVM IR from multiple

threads.

As the final step of codegen, once all of the relevant methods have been located

and compiled to their own individual modules, the method modules are merged into

a single module that contains all of the methods being compiled in this batch and

emitted to the ORC JIT.

ORC JIT

On-Request Compilation (ORC) JIT is LLVM’s JIT compilation toolchain, which

supports in-memory compilation and linking. ORC is designed to support building

custom JIT compilation stacks by composing ORC layers. An ORC layer is a col-

lection of resources that are used to transform some input information into a final

compiled output. A typical implementation of an ORC layer transforms its input of

type A into an output of type B, then emits the output of type B to some base ORC

18



layer that takes an input of type B. This allows layers to form a JIT compilation

stack, where layers can be added and removed freely to customize the JIT.

Julia’s JIT compilation stack is depicted in figure 2-2, and includes an optimization

layer, a compilation layer to generate object files, and a linker layer to make those

machine code object files available for execution.

2.4 Parallel Speedup Measurement

In addition to knowing about the compilation pipeline, it is also useful to understand

how performance of a program is assessed. While the definition of how much a

serial optimization helped is quite trivial (% decrease in runtime/memory usage),

parallelism optimizations are more complicated to analyze.

Measuring parallel speedups is typically performed in one of two different ways: by

measuring how much time a fixed workload takes as additional threads are added, or

by adding both additional threads and additional work and measuring the additional

time taken. These two measurements are referred to as strong scaling and weak

scaling, and are described by Amdahl’s law and Gustafson’s law, respectively.

2.4.1 Amdahl’s Law

Amdahl’s law [4] describes how the speedup of a task is a function of the parallel

fraction of the total work and the number of processors allocated to the task. Fur-

thermore, Amdahl’s law assumes that as processors are added, the work remains

equally divisible among the new number of processors. Here, we present a short

derivation of the law based on these principles, where 𝑇1 is the time taken for single-

thread serial execution, 𝑇𝑃 is the time taken for execution on 𝑃 processors, and 𝑝 is

the fraction of work that is parallelizable.

𝑇1 = 𝑇1((1− 𝑝) + 𝑝) (2.1)
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Figure 2-2: Julia JIT Compilation Stack

Julia’s JIT stack first determines an optimization level for the current module, then dis-
patches modules to the appropriate optimizer and compiler, before linking the module’s
functions and globals into the current process. The function pointer may be obtained once
linking is complete.
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𝑇𝑃 = 𝑇1(1− 𝑝) + 𝑇1
𝑝

𝑃
(2.2)

𝑆𝑃 =
𝑇1

𝑇𝑛

=
𝑇1

𝑇1(1− 𝑝) + 𝑇1
𝑝
𝑃

=
1

(1− 𝑝) + 𝑝
𝑃

(2.3)

Amdahl’s law suggests that the speedup gains from additional processors decrease

with every additional processor added. In the limiting case of infinite processors,

the maximum speedup predicted by Amdahl’s law comes out to 1
1−𝑝

, which is the

reciprocal of the fraction of the workload that is not parallelizable. Therefore the end

result of Amdahl’s law is to suggest that parallel efficiency gains come with a cap for

a fixed workload.

2.4.2 Gustafson’s Law

From a user’s perspective, however, increases in efficiency and speedups are typically

followed by running larger workloads than before. Gustafson’s law [10] addresses this

by noting that the larger workloads typically increase the work in the parallel section

without increasing the work in the serial section. In such a case, increasing processor

count permits an arbitrarily larger amount of work to be accomplished in the same

amount of time. Gustafson’s law is defined as 𝑆𝑃 = (1 − 𝑝) + 𝑝𝑃 , to show that the

effective speedup increases without bound as the number of processors increases. It

does however assume that the serial workload does not increase even as the parallel

workload increases, which may not always be a valid assumption for the problem.
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Chapter 3

Related Work

3.1 Overview

The problem of reducing compilation latency has been addressed previously in a

number of ways over the last 30 years. However, method invalidation poses a new

problem to Julia compilation in particular, and this section is devoted to analyzing

prior work in the field as well as the likely impact of method invalidation on those

strategies.

3.2 Method Invalidation

One of Julia’s core features is the ability to redefine compiled methods at runtime,

a feature supported by few other compiled languages. As an example, in figure 3-1,

method 𝑓 is originally defined to return 5, but is then redefined to return the empty

string. However, since method 𝑔 used method 𝑓 , method 𝑔 must also be recompiled

to call the new version of function 𝑓 . In other words, both methods 𝑓 and 𝑔 were

invalidated by the redefinition of 𝑓 [12].

The implementation of invalidation is handled by storing a list of backedges to

dependent methods inside the relevant method’s methodinstance definition; in figure

3-1, 𝑔 would be registered as a backedge of 𝑓 . During compilation, every method that

was called by 𝑔 would have 𝑔 appended to its backedge list, forming a reverse call graph

23



j u l i a > f ( ) = 5
f ( g en e r i c func t i on with 1 method )

j u l i a > g ( ) = f ( )
g ( g en e r i c func t i on with 1 method )

j u l i a > g ( )
5

j u l i a > f ( ) = ""
f ( g en e r i c func t i on with 1 method )

j u l i a > g ( )
""

Figure 3-1: Julia Method Invalidation Example

When function f is redefined to have a new implementation, function g must also be recom-
piled to ensure that the result remains accurate even with the redefinition of f.

of backedges. Then, when any of those methods was recompiled (𝑓), the backedge

graph would be traversed and the relevant code instances would be invalidated [5].

Method invalidation is a Julia feature that significantly increases compile times,

due to the recompilation triggered by invalidation. However, its presence motivates

the need for a lower-latency JIT compiler for Julia.

3.3 Precompilation and Code Images

3.3.1 Precompilation

As one solution to the latency problem, Julia developers have developed a precompi-

lation system that caches type-inferred code. Precompilation is a way of saving the

results of type inference in a manner that the saved results can be loaded in future

sessions. As type inference can take significant amounts of compilation time, care-

fully chosen precompilation statements can provide large savings for an end-user that

adheres to those call signatures [11].

Precompilation is primarily of interest to package authors, as packages are con-
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sidered more stable than code written by end-users. When packages are added to a

local Julia environment, the Julia runtime will look for and locally cache the results

of precompilation statements defined by the package author. Then, users may load

the package at any time in the future and benefit from the savings in compilation

time [11].

3.3.2 System Images

Another solution that has been developed is known as a system image. Rather than

save just the type-inferred code from precompile statements, system images also save

the native code that results from compilation of the precompile statements and allow

loading of that native code in a future session. A system image therefore has the

capability to vastly reduce compilation time from a carefully designed Julia program

[15]. Julia also ships with a mode that can eliminate the compiler by loading a

system image and restricting programs to only call methods that are defined inside

that system image. Furthermore, system images may be compiled for multiple CPU

architectures [3]. This multi-CPU compilation is referred to as multiversioning, and

is a critical feature enabling usage of higher performance vector instructions on CPUs

that support them while maintaining fallback methods for CPUs that do not support

vector instructions.

However, system images do have some drawbacks. Unlike standard precompila-

tion, which can be done incrementally for each package, at most one system image can

be used at a time by the Julia runtime. Furthermore, adding or removing methods

from the system image requires a full recompilation of that system image, which can

take significant amounts of time due to the large number of methods contained within

one. The system image used by base Julia for its most critical functions contains over

25000 functions and can take time on the order of minutes to finish compiling.
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3.3.3 Package Images

Package images are a new feature introduced in Julia 1.9. Rather than relying on the

system image framework to cache native code, package images are an extension of the

precompilation framework that simply caches native code as well as inference results

locally. As a result, package images benefit from the advantages of precompilation

over system images, while also further reducing compilation latency from packages.

However, like system images, package images do take a large amount of time to

precompile when the package is first installed, and this cost will be repeated each

time either the package or one of its dependencies is updated.

Package images also compare unfavorably to system images in terms of relocatabil-

ity. System images may be uploaded to a web server and made available for download

by users. By contrast, package images cannot be shared in the same way, as they are

dependent on the local filesystem and the order in which packages are loaded. Thus,

package images do not serve as a complete replacement for system images.

3.3.4 Method Invalidation

However, all of these solutions face significant challenges with regards to method in-

validation, as type inference results and compiled code may be invalidated if methods

are redefined. This can occur if two packages define methods with the same name,

and both are loaded into the current session. If such invalidation occurs, future calls

to the conflicting method and any methods that call into the conflicting method may

need to be reinferred and recompiled [12].

Method invalidation also has a secondary impact on package images. Package

images are compiled under the assumption of a certain set of method definitions

being present. If that set of method definitions changes, the package image may be

invalidated and some native code may have to be recompiled, as different methods

could be called. Thus, package images have an additional load time cost due to having

to check each of its compiled methods to ensure no recompilation is required. System

images do not suffer from this problem, as system images are loaded before any other
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code and therefore cannot have method conflicts when they are loaded.

3.4 LLVM’s New Pass Manager

LLVM has two different pass manager systems, referred to as the legacy pass manager

and the new pass manager. The legacy pass manager has existed since the beginning

of LLVM, and was the default pass manager until recently. The new pass manager

has become the default pass manager, as a result of its design for reduced compile

times and more efficient compilation [9].

As background, both pass managers have analysis passes that extract information

about the IR and transform passes which change the IR. Each of these passes is

then split into module, call graph, function, and loop passes, each of which operates

on their respective IR unit. By changing the IR, transform passes may invalidate

analyses that were performed earlier, and those analyses may have to be recomputed

as a result.

The legacy pass manager interface allowed transform passes to specify upfront

which analysis passes were required by that transform pass, and which ones would be

preserved. When the pass was run, the result of running that pass would be a boolean

indicating if the IR was changed. If the IR was changed, then any pass that was not

specifically preserved upfront would be invalidated and need to be recalculated, a

process that could be rather computation-intensive over a large amount of IR.

The new pass manager interface provides more granularity and flexibility com-

pared to the legacy pass manager. Instead of declaring dependencies upfront, passes

may now demand analyses when necessary, which saves computing analyses if they

end up never being used by a pass. Such a situation could occur if the pass makes an

early exit due to a precondition not being met. Furthermore, the result of running a

transform pass on the IR unit has changed to a set of preserved analyses, which may

be all analyses or a subset thereof. This allows passes to preserve certain kinds of

analyses conditionally, which can provide further savings in not having to recompute

those analyses as would have been required by the legacy pass manager.
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3.5 Compiler Concurrency Support

3.5.1 Global Compilation Lock

Julia’s compiler was protected by a single compilation lock, which guards all of type

inference, LLVM IR generation, and native code generation [2]. This lock simplified

implementation of the compiler, but ultimately proves an obstacle to multithreaded

compilation. Multithreaded compilation is a useful feature, as it not only enables

threads performing unrelated tasks to progress independently of each other, but also

is a requirement for moving compilation to background threads.

3.6 JIT Compilation Strategies

3.6.1 HotSpot Java Virtual Machine

The Java programming language is typically run on the HotSpot Java Virtual Ma-

chine (HotSpot JVM), which implements a JIT compilation strategy known as tiered

compilation. Initially, Java bytecode is interpreted directly by the HotSpot JVM.

When a method is found to be called often, the HotSpot JVM compiles a slightly op-

timized version of the method with profiling instructions added. Then, once sufficient

profiling data has been collected, the HotSpot JVM will compile a finalized version

of the code, using profiling data to enhance the applied optimizations [1].

The HotSpot JVM also supports speculative optimization and deoptimization of

code. Speculative optimization of code refers to performing optimizations that may

not always be correct. When the incorrectness is discovered during execution of the

optimized program, the compiler will deoptimize the method by returning it to the

interpreter to potentially be recompiled with the additional incorrectness information

accounted for. This enables more aggressive optimizations to be used initially, without

needing to compile extensive code to account for edge or error cases [16].

Currently, the Julia compiler implements none of these optimizations. However,

some of the work presented in this paper may be extended in the future to support
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these optimizations.

3.6.2 On-Stack Replacement

On-stack replacement is a technique used by some JIT compilers to be able to optimize

code concurrently with running an application [8]. Typically, code replacement occurs

by replacing a call to an unoptimized function with a call to an optimized functions.

This presents a problem when an unoptimized version of a function has already begun

execution, but the optimized version becomes available and is significantly faster.

On-stack replacement allows switching execution to the optimized code even after

execution of unoptimized code has begun.

Currently, Julia does not have support for this feature, and support for on-stack

replacement would likely come after tiered compilation support is implemented.
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Chapter 4

Image Generation Parallelism

4.1 Overview

As mentioned in sections 3.3.2 and 3.3.3, Julia is capable of compiling machine code

ahead of time and using it to avoid recompilation in future runs. For optimal perfor-

mance of the compiled code, Julia runs its entire optimization pipeline on all of the

methods being compiled. However, this step takes a long time, as each system image

or package may have hundreds of methods that need compilation [6]. Thus, paralleliz-

ing this optimization step provides large speedups to the build time of system images

and package images while making optimal use of the available system resources.

4.2 Procedure

4.2.1 Parallelization

LLVM has significant support for concurrency in the form of multiple contexts, as

described in 2.3.2. Therefore, the process for parallelizing the image generation, as

shown in figure 4-1, is centered around creating fragments of the original module in

different LLVM contexts and running them on multiple threads.
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Figure 4-1: Image Optimization Parallelization Process

Original (left) and parallel (right) process for generating Julia code images. Steps that run
on multiple threads are shown in the third column on the right and denoted with multiple
overlapping boxes. Multiversioning information is analyzed prior to optimization in the
parallel generation to allow function cloning and fixups to happen on multiple threads in
parallel and avoid a synchronization point in the middle of the optimization pipeline.
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4.2.2 Module Partitioning

The process of creating these fragments has a crucial role on the speedup factor of

parallelization. The overall runtime of the parallel step of image generation is always

the maximum time taken to optimize and emit a fragment. This means that optimal

parallelism requires an equal load to be shared by all of the processors. Thus, we

implement a partitioning algorithm that estimates the added workload each module

feature adds to a module and fragments the module accordingly.

This partitioning step relies on the computation of a module’s complexity score,

as defined below.

𝑆𝑀 = 𝑛𝑔𝑣 + 𝑛𝑔𝑎 +
𝑛𝑓∑︁
𝑓=1

𝑆(𝐹𝑓 ) (4.1)

In equation 4.1, we define 𝑆𝑀 as the complexity score of a module, 𝑛𝑔𝑣 as the number

of global variables, 𝑛𝑔𝑎 as the number of global aliases, and 𝑆(𝐹𝑓 ) as the complexity

score of function 𝐹𝑓 . We then define the complexity score of a function 𝐹𝑓 as follows.

𝑆𝐹 = (1 + 𝑛𝑏𝑏 + 𝑛𝑖) * 𝑛𝑐 (4.2)

In equation 4.2, we define 𝑆𝐹 as the complexity score of a function, 𝑛𝑏𝑏 as the number

of basic blocks in a function, 𝑛𝑖 as the number of LLVM instructions in a function,

and 𝑛𝑐 as the number of times multiversioning will clone that function.

We then distribute work by sorting the list of global values of the module in

descending order of complexity score. Then, we assign each global value in order to

the fragment with current lowest complexity score, which gives us a reasonably well

partitioning of work.

4.2.3 Serialization and Deserialization

Transferring modules between contexts is hard to do in LLVM, and requires the

serialization of the module to bitcode and deserialization from that bitcode into the

destination context. However, this serialization and deserialization process is slow.

To reduce time spent in this context deserialization, we take advantage of LLVM’s
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support for lazy bitcode deserialization, which avoids loading function bodies from

bitcode until specifically requested. This allows us to serialize the entire module to

bitcode once on the main thread, then deserialize the module on each worker thread

with lazy deserialization. Once the module is available for operation on each thread,

we then delete the functions, global variables, and global aliases that are irrelevant to

the thread’s assigned fragment workload, and only then force the remaining function

bodies to be loaded from bitcode. Running the deserialization and partition pruning

on multiple threads increases the parallel fraction of the code without requiring the

main thread to do all of the deserialization work.

4.2.4 Multiversioning

One complicating factor of the image generation process is the ability for Julia to

generate code optimized for multiple architectures in the same binary. This process,

called multiversioning, collects information about every function in the module, clones

functions and marks them for optimization with architecture-specific flags, and creates

a few large arrays with information about the different functions that have been cloned

for the specified architectures. Then, when Julia loads the image, the Julia loader

inspects these arrays, selects the functions that are best optimized for the architecture

that it is being run on, and links the functions into the current process. Generating

these large arrays were an inherent blocker to parallelization of the image generation,

as splitting up the module would involve spreading functions out among different

fragments. Additionally, the multiversioning pass would no longer have access to all

of the functions in the module, which was another blocker to parallelization.

To work around this, the multiversioning pass is first split into two to collect

the information in an initial step and to later do its cloning with that information

available. Then, we modified the loader to load multiple fragments of the module

from the same image. This allows each fragment to be emitted separately, without

needing to fuse the arrays from separate fragments back together. Together, this

parallelizes of the multiversioning pipeline by first collecting the information necessary

for multiversioning, then running the optimization pipeline with a pass that did the
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cloning and array emission steps of multiversioning alone, and then emitting each

fragment of the original module to the same shared library.

4.3 Performance Metrics

Here, we analyze the parallelization of image generation in two contexts: system image

creation, and package images created by import Pkg; Pkg.add("OrdinaryDiffEq").

Data for the system image was collected with 10 rounds of system image building,

while data for the package images was collected with 6 rounds of building, with data

collected at each thread count from 1 to 64, inclusive. The default system image was

built without any multiversioning, while the multiversioned system image was built

with JULIA_CPU_TARGET set to "generic;sandybridge,-xsaveopt,clone_all;

haswell,-rdrnd,base(1)".

4.3.1 System Image

Speedup Analysis

To analyze how building the system image was sped up using parallel image opti-

mization, the system image was built 10 times at thread counts varying from 1 to 64

threads. The time spent in various stages of the build process was measured, then

used to derive speedups when using 𝑁 threads to optimize the system image as com-

pared to using 1 thread to optimize. The results from this experiment are plotted in

figure 4-2.

As seen in figure 4-2, parallelization of the optimization step alone results in very

large speedups in the total amount of time spent building the system image. For

the default system image up to 8X speedups are observed, while for multiversioned

system images speedups approaching 16X are observed. This increase in speedup

for the multiversioned system image is due to additional work being done in the

optimization pipeline, which increases the parallel fraction of the code relative to the

default system image and thus enables greater speedups as indicated by Amdahl’s
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Figure 4-2: System Image Parallelization Speedups

Parallelizing system image optimization results in significant reductions in runtime and
speedups ranging up to approximately 8X for a default system image build and 16X for
a multiversioned system image build. The best-fit equations suggest a minimum speed
of 19.92 seconds for the default system image (9.27X speedup) and 22.21 seconds for the
multiversioned system image (20.03X speedup) with infinite cores available.
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law.

By curve fitting the equation 𝑡 = 𝑇𝑆+𝑇𝑃/𝑃 to both the default and multiversioned

system image times, where 𝑡 represents the build time, 𝑇𝑆 represents the serial time

of the program, 𝑇𝑃 represents the parallel time of the program, and 𝑃 represents the

number of processors, we arrive at a figure of 𝑇𝑆 = 19.92 seconds and 𝑇𝑃 = 164.80

seconds for the default system image, and 𝑇𝑆 = 22.21 seconds and 𝑇𝑃 = 422.85

seconds for the multiversioned system image.

Parallel speedups are typically fairly sensitive to the distribution of work between

processors. Thus, an analysis on the partitioning algorithm was conducted along with

the speedup study to assess its performance and identify areas for improvement.

Partitioning Analysis

Firstly, the partitioning algorithm relies on the computation of a complexity score,

which is used as a proxy for runtime. If the complexity score does not relate to

the actual runtime of optimization, then work will not be split up among the threads

equally, which increases the span of optimization. Therefore, the complexity score and

time to optimize each partition was measured in the system image building process,

for thread counts from 1 to 64. Higher thread counts result in each partition having a

lower complexity score, which enables analysis of the correlation between complexity

score and runtime. The results of this experiment are shown in figure 4-3.

Figure 4-3 shows that for both the multiversioned and default system images, as

complexity score increases, the runtime required for optimizing the system image also

increases. This indicates that the complexity score heuristic is valid for estimating

expected runtime of optimizing an image. However, as the system image is parti-

tioned, the variation in runtime increases with an increasing number of partitions,

which is visible in the wider spreads towards lower complexity values in figure 4-3.

This indicates that there exist some factors that modify the optimization time of a

module that are unaccounted for in the given complexity score formula.

As stated in section 4.2.2, the optimization time in a parallel context is determined

by the runtime of the longest-running partition of the module. By using the conclu-
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Figure 4-3: System Image Complexity Score Analysis

Complexity scores from partitioning the system image show that at higher complexity scores,
partition optimization time is closely linked to complexity score. As complexity score de-
creases, variation in the complexity score-runtime relationship increases, a relationship which
holds across both the default and multiversioned system image. Thread count is inversely
related to per-partition complexity and runtime.
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Figure 4-4: System Image Partitioning Analysis

The chosen partitioning algorithm is very effective at partitioning the system image into
a small number of partitions (< 10), but shows increased maximum partition complexity
scores as the number of partitions grows. However, the maximum partition complexity score
remains within 20% of the ideal partition complexity score for all thread counts up to 64
threads.
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sion that complexity score is a valid proxy for runtime, the goal of the partitioning

algorithm can be converted to partitioning the module into partitions such that the

maximum complexity score of any partition is as small as possible.

To assess the effectiveness of the partitioning algorithm, we first note that the

ideal partitioning algorithm results in partitions that have complexity scores exactly

equal to the total complexity score of the module divided by the number of threads,

formalized in equation 4.3.

𝑆𝑃,𝐼 =
𝑆𝑀

𝑃
(4.3)

Then, we define an inefficiency metric which determines the degree to which the

produced partition exceeds the optimal partition. This is defined as the observed

maximum complexity score of any partition when the module is partitioned into 𝑃

partitions. This is formalized in equation 4.4, where 𝑆𝑃 represents the complexity

score of a partition, 𝑃 represents the number of threads, and 𝐼 represents the ineffi-

ciency metric.

𝐼 =
max(𝑆𝑝∀𝑝 ∈ 𝑃 )

𝑆𝑃,𝐼

(4.4)

Defining the inefficiency score in this manner allows comparison of different mod-

ules in a standardized method. However, the ideal partitions represented by equation

4.3 are not necessarily achievable, as large functions cannot be split among multiple

modules and therefore block parallel speedups in that manner.

To confirm the acceptability of the chosen partitioning algorithm, the maximum

partition complexity score for every thread count was measured, along with the total

weight of the system image. The results of this measurement are shown in figure 4-4,

which shows that the maximum partition complexity score remains relatively close

to the ideal maximum partition complexity score at low numbers of partitions. As

the number of partitions increases, the maximum partition complexity score begins

to diverge further and further from the ideal complexity score, achieving a maxi-

mum inefficiency score of approximately 17% over the ideal partition. Since the ideal
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Figure 4-5: Package Image Parallelization Speedups

Parallel speedups from various packages as a result of precompilation triggered from adding
the OrdinaryDiffEq package. Packages are sorted from left to right, top to bottom, in
decreasing order of maximum speedup from parallelization.

complexity score is a lower bound, and 17% is not a very high inefficiency score, we

can conclude the partitioning algorithm is effective at distributing work among the

available computational resources.

4.3.2 Package Images

Package image data was collected by adding the package OrdinaryDiffEq to the local

environment with the JULIA_NUM_PRECOMPILE_TASKS environment variable

set to 1 and iterating on the number of image parallel threads sequentially. Of the 112

packages and dependencies that were precompiled as a result, 81 packages fell below

the minimum threshold of 1000 complexity score to be assessed for parallelization,

and 31 packages were optimized on multiple threads.

The speedups for the parallel packages when building images with multiple threads

is visible in figure 4-5. Each of these packages see significant speedups when com-

piling with multiple threads, although packages that see smaller speedups also see a
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Figure 4-6: Package Image Complexity Score Analysis

Serial runtime and complexity scores for parallel-capable modules. The modules are sorted in
decreasing order of maximum parallel speedup from left to right, which shows that generally
maximum parallel speedup increases as both a function of module complexity score as well
as serial runtime. Thus, module complexity serves as a reasonable proxy for serial runtime
for packages, and qualitatively corresponds to the expected parallel speedup. The exceptions
of NonlinearSolve and RecipesBase are discussed in the text.

decrease in speedup when thread counts rise beyond a package-specific optimum. To

analyze why particular packages saw greater speedups than others, the initial module

complexity and runtime with one thread were compared in figure 4-6, where package

names are sorted in decreasing order of maximum parallel speedup from left to right.

Overall, complexity score and serial runtime track each other well, while qualitatively

there appears to be a relationship between these two factors and maximum parallel

speedup.

However, there are a pair of outliers in the form of NonlinearSolve and Recipes-

Base, which show high complexity score and serial runtime but relatively low parallel

speedup. This may be explained by the presence of a few large functions in these

packages, which cannot be effectively distributed among multiple threads in the same

way that many small functions can be. Evidence to support this theory comes from
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Figure 4-7: Package Image Partitioning Analysis

Multiplier of maximal partition by complexity score at varying thread counts for different
packages. Higher multipliers indicate suboptimal partitioning, while smaller multipliers
indicate more optimal partitioning.

figure 4-5, which shows that parallel speedup peaks at a small number of threads

but does not decrease at high numbers of threads, the way that other packages with

similar low parallel speedups do. This indicates that there exists partitions comprised

primarily of a single large function that cannot be split, which then occupies the same

amount of time to optimize and emit even when the number of threads is increased.

Further evidence to support this suboptimal partitioning theory is provided in figure

4-7, which shows high maximal partition multipliers for both of these packages that

match packages with similar parallel speedup patterns, indicating that a few large

unsplittable partitions are contributing the majority of the runtime.
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Figure 4-8: Parallel System Image Build Time Breakdown

Increasing thread count causes module creation and serialization to take up significantly
larger proportions of the image creation time. For the default system image, module creation
time surpasses module output time, while a considerable margin between output time and
module creation time still exists for the multiversioned system image.
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4.4 Further Optimizations

4.4.1 Optimal Partitioning

While the current parallelization work has resulted in significant speedups in both

system image build time and package image build time, there are still potential ex-

tra speedups that could be obtained from either more or better parallelization. As

shown in figure 4-8, the fraction of time spent partitioning the module is much lower

than the fraction of time spent optimizing the module. This indicates that a different

partitioning algorithm may provide a net speedup in the overall time of the build

process, trading some extra time spent partitioning the image for a more balanced

parallel workload. Alternatively, the complexity score used by the partitioning al-

gorithm could be further investigated to include the additional component causing

runtime variation noted in section 4.2.2. Refining the complexity score would also

improve parallel work distribution by giving the partitioner a clearer view of which

global values take the most work to optimize, and thus reducing additional work

present in their partitions.

4.4.2 Multi-Module Generation

Another method of reducing the system image build time is to alter the method

by which the system image LLVM module is created. Currently, the build process

compiles an array of methods into an array of modules, and then fuses them into one

module before optimizing it. Now that the optimizer is partitioning the one module

into multiple, it may make sense to pre-partition the array of methods and generate

LLVM IR from those partitions in different contexts directly. Doing so enables the

method-level partitions to be parallelized, and also removes the serialization step as

the different method partitions would already be in different LLVM contexts. Since

figure 4-8 suggests that module creation and serialization occupy the majority of the

non-optimization time, optimizing and/or parallelizing these steps would likely result

in the biggest speedups.
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4.4.3 Saving JIT-Compiled Code

Due to Julia’s dynamism, precompilation occurs by executing precompile statements,

tracking which methods are called, then compiling them in a reloadable format and

saving them to disk. During the execution process, most of the methods that are called

end up being compiled by the JIT compiler. This compilation work is however wasted,

as the JIT compiler does not compile code in a manner that enables the code to be

reloaded after being written to disk. Altering the JIT compiler to produce this kind of

code would remove most of the methods from having to be compiled twice, resulting

in potentially large savings if no multiversioning is required. If multiversioning is

required, however, the compile twice approach may be faster due to the available

parallelism that cannot be introduced at the JIT compiler stage.
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Chapter 5

JIT Concurrency

5.1 Overview

As chapter 4 covers speedups gained from parallelizing ahead-of-time (AOT) compi-

lation, this chapter covers speedups gained from concurrent just-in-time (JIT) com-

pilation of methods. The primary difference between the two strategies from a per-

formance perspective is that while parallelization performs the workload distribution

itself, concurrent JIT compilation simply permits multiple application threads to be

running compilation simultaneously. In this context, we hoped to see gains from ap-

plications that exposed a large amount of work to the compiler on multiple threads.

Here, we consider only concurrency in the type inference phase of the compiler.

Concurrency in the codegen phase poses a few extra challenges that currently make

it infeasible to deploy, which are discussed in section 5.4.4.

5.2 Procedure

5.2.1 Lock Removal

The formal procedure of removing the global compilation lock involves progressively

shrinking the region covered by the lock until no code is executed within the locked

region, at which point the lock and unlock calls may simply be deleted. This process
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of identifying code that used shared resources, either eliminating or correcting those

uses to be thread safe, and then shrinking the lock around those uses was iterated on

several times to remove the lock around type inference. As an example, we consider

how saving type-inferred method data was made to be thread safe.

5.2.2 Atomics

Many of the data structures that type inference uses are updated by using atomic

primitives that are safe to execute from multiple threads. By relying on the order-

ing and visibility of the effects of these atomic primitives, the data structures do

not require the use of a lock to guard against concurrent modification. This also

allows increased concurrency as no thread must wait for a lock to be acquired before

performing type inference.

In the context of concurrent type inference, the type-inferred method data was

stored to a field in the code instance non-atomically. By marking the stores and loads

as atomic, and verifying that the relevant operations would observe the code instance

in a consistent state given the existence of a particular value for that type-inferred

method data, accesses to that field were made thread safe and thus enabled the global

compilation lock to be removed around type inference.

5.3 Performance Metrics

5.3.1 Synthetic Benchmark

Since the main speedups were to be expected from applications that exposed work to

the compiler on multiple threads, a synthetic benchmark was designed with the intent

of measuring the performance gap. The design goal of this benchmark was to allow

varying the complexity of type inference, as well as permitting repeated inference at

the same complexity level. This was achieved by creating a tree of recursive function

calls, with the total number of nodes being equal to the product of 𝑝1 and 𝑝2. The

ability to repeat inference at the same complexity level was accomplished by varying
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Figure 5-1: Scaling Measurements for Synthetic Benchmark

Plot of median runtimes against different combinations of 𝑝1 and 𝑝2, log scaled along the
median runtimes in the color axis. An optimal runtime for further measurements was

found in the boundary between the red and yellow regions, corresponding to runtimes in
the 1-10 second range.

the type of the first parameter. Since Julia triggers type inference whenever a new

combination of types is passed to a method, and the first parameter does not affect

the inference complexity of the function, this satisfies the stated design goal.

Selection of an appropriate value for 𝑝1 and 𝑝2 for further experimentation is

critical; too small results in type inference not spending much time in contention,

while too large represents a waste of computational time and memory waiting for

shared resources. Therefore, we measured inference runtime for a single compilation

of the benchmarking function for every pair of numbers from 1 to 12 for both 𝑝1

and 𝑝2. The results of this experiment are shown in figure 5-1, which shows the

expected multiplicative increase in runtimes as 𝑝1 and 𝑝2 were increased. We find

that the values of 𝑝1 = 𝑝2 = 9 has an inference time of approximately 4 seconds,

which represents an acceptable trade off where contention between multiple threads

is easily observable.
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Figure 5-2: Runtimes and Efficiencies of Serial and Concurrent Type Inference for
Multiple Different Functions

The runtime of concurrent type inference significantly decreases relative to the runtime of
serial type inference with the global compilation lock still held for type inference. Values

presented are the median of 10 trials at each thread count. Efficiency scores were
computed by dividing the median runtime of a single thread by the median runtime at a

particular thread count.

5.3.2 Multi-Function Efficiency Comparison

To compare the effective speedup of concurrent type inference over serial type in-

ference, we conducted an experiment where multiple threads would simultaneously

attempt to compile different functions, resulting in contention over shared compilation

resources. In serial type inference, the expectation is that threads sequentially ac-

quire the compilation lock and release it one thread at a time, resulting in a workload

tied heavily to the number of threads. In the fully concurrent case, we expect zero

contention with every method being compiled simultaneously. As figure 5-2 shows,

however, the workload does grow as a function of the number of threads even with

concurrent type inference; however it grows at a significantly slower rate compared

to serial type inference. Furthermore by calculating the efficiency scores, it is clear

that concurrent type inference has superior efficiency characteristics at any number
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Figure 5-3: Efficiency Speedup for Concurrent Compilation of Multiple Different
Functions

Concurrent type inference always presents a net increase in efficiency multiplier at any
thread count, maxing out at an approximately 2.5X-3X increase in efficiency multiplier
above 32 threads. The efficiency multiplier was computed as the efficiency of concurrent

type inference divided by the efficiency of serial type inference for each thread count. Noise
in the serial runtime measurements is carried over into the efficiency comparison.
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of threads.

Figure 5-3 analyzes the relationship between the efficiency ratios at different

thread counts in greater detail. In general, there appears to be a positive relationship

between concurrent type inference and greater efficiency scores, with ratios approach-

ing 3X at 64 threads. However, analysis of the data is complicated by the noise in

the serial type inference measurements, which causes large variations in the efficiency

score ratios. This may be due to the compiler’s use of spin locks, which is discussed

further in section 5.4.1.

The efficiency gain of concurrent type inference over serial type inference appears

to maximize around a ratio of 3, regardless of the number of threads available. This

indicates that additional synchronization between threads is reducing compilation

throughput.

5.3.3 Same-Function Efficiency Comparison

Since Julia will compile methods for every new combination of types passed into a

method, a speedup was also expected in the case where multiple threads attempted

to compile the same function for different arguments. This scenario could occur in

a real-life workload when a user splits up a list of objects with different types over

multiple threads, and then calls a function with each element of that list.

In figure 5-4, it is clear that the timing difference between concurrent and serial

type inference when the same function is being inferred with different arguments is

significantly smaller than the timing difference when the functions are completely

different. Likewise, the efficiency score patterns do not show an obvious clear winner

between concurrent and serial type inference. In figure 5-5, it is clear that at low

thread counts serial type inference runs in a shorter amount of time than concurrent

type inference, though at higher thread counts concurrent type inference regains its

advantage.

To understand these more surprising results, we obtained a profiler report, which

identified a bottleneck in decompression of Julia IR immediately before inferring the

function. This decompression was performed under a lock, which inherently serialized
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Figure 5-4: Runtimes and Efficiencies of Serial and Concurrent Type Inference for
the Same Function with Different Arguments

The runtime of concurrent type inference and serial type inference measure out to be quite
similar, though the serial type inference timings are much noisier than the concurrent type

inference timings. Values presented are the medians of 10 trials.
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Figure 5-5: Efficiency Speedup for Concurrent Compilation of the Same Function
with Different Arguments

At higher thread counts concurrent type inference performs better than serial type
inference for multiple thread counts, though at low thread counts it performs worse. Green

bars indicate concurrency efficiency multiplier greater than 1, while red bars indicate a
multiplier less than 1.

the task between all of the threads. Since multiple different functions do not share

the same compressed Julia IR, this bottleneck did not appear in the benchmarks from

section 5.3.2 as each thread could decompress in parallel.

The fact that efficiency decreases at lower thread counts compared to serial type

inference can likely be attributed to sharing of type inference results from one thread

to another. In concurrent type inference, each thread that starts type inference

will complete its own inference without results from other threads that may also

be inferring similar methods. In serial type inference, however, these results are

available to the inferring thread, which may use the results to reduce the time spent

in inference. At higher thread counts, the fact that all threads are able to proceed

with inference simultaneously outweighs the speed boost from reusing results, which

makes concurrent type inference perform better than serial type inference.
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5.4 Further Optimizations

5.4.1 Sleeping Locks

Currently, the Julia compiler’s internal locks are all spin locks, which are optimized

for uncontended locks and unlocks. In the contended case, spin locks will burn CPU

cycles in the hope that the lock becomes available soon. Future work could change

some of these spin locks to OS-supported sleeping locks, which would reduce power

consumption and resource usage in the contended case [14].

5.4.2 Read-Write Lock

As noted in section 5.3.3, the major bottleneck experienced by inferring the same

function with different arguments ends up being the decompression of Julia IR, which

is guarded by a simple lock. Since decompression is inherently a read-only operation,

decompression of the IR could be guarded by a read-write lock [7], which permits

multiple readers to access data at the same time. In the presence of a read-write lock

for IR decompression, results more closely matching the multiple different methods

performance improvements would be expected.

5.4.3 Shared Type-Inference Workqueue

Another method of increasing performance from concurrent type inference is to reuse

inference results more aggressively. Currently, type inference results may only be

reused when a thread finishes type inference. If thread A starts type inference, and

then thread B needs the results of type-inferring the same method, thread B will begin

type-inferring the method even though thread A might finish soon. With a more so-

phisticated work-tracking algorithm, type inference results could be dispatched once,

with dependent tasks waiting for the results to be computed. This would save on CPU

resources and potentially some real time, as redundant type inference would never

occur and type inference results would be computed as soon as feasibly possible.
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5.4.4 Codegen Concurrency

Concurrency in the codegen phase of the compiler is more complicated than the type

inference phase. While type inference may run multiple times on the same method,

codegen interacts with lower level data structures that are harder to access safely

from multiple threads. In particular, LLVM’s old RuntimeDyld linker could not

handle multithreaded linking, while LLVM’s new JITLink linker is not supported on

some platforms that Julia supports, which precludes a redesign of parallel codegen.

However, JITLink support is getting better, which could permit such a redesign in

the future.
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Chapter 6

Lazy Compilation

6.1 Overview

Julia compiles methods once for a given set of passed-in argument types. However,

since the number of types is unbounded in a program, Julia performs this compilation

the first time a function is called with a particular set of argument types; that is,

compile(f, typeof(args)...) will only ever be called once for the same arguments

to compile. However, in the process of compiling one method, other methods called

by the currently compiling method may also be compiled if their argument types are

known through type inference. The goal with lazier compilation here was to delay the

compilation of these called methods and thus reduce their impact on compile times.

6.2 Laziness Procedure

Implementation of lazier compilation primarily involved adding LLVM’s CompileOn-

DemandLayer to the JIT compiler, which would then implement the necessary func-

tionality required for lazier compilation. The CompileOnDemandLayer required the

use of the new JITLink linker, as well as removing an optimization where LLVM con-

texts were reused for multiple JIT compilations. Additionally, CompileOnDemand-

Layer comes with an optional partitioning function, which allows users to control the

degree to which laziness occurs. Here, we test the case where each function is individ-
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ually compiled when called, and the case where each module with potentially multiple

functions is compiled when any of its functions are called. This feature allows the

user to trade off between adding additional overhead from splitting out functions into

different lazy units and avoiding compiling as much code as possible.

6.3 Performance Metrics

Performance metrics here were acquired by building Julia from source, which involves

a number of phases of executing Julia code. By default, building Julia from source will

perform these executions at optimization level O0, but by performing the executions

at optimization level O3 the different executions act as proxies for different kinds

of Julia workloads. These executions of Julia code to build Julia from source are

henceforth referred to as bootstrap compilation, as they are necessary to set Julia up

for running user code.

6.3.1 Potential Gains

Adding lazier compilation inherently involves some overhead in both the first invoca-

tion of the function as well as future invocations, as the CompileOnDemandLayer’s

laziness is implemented via a function trampoline. Therefore, the call count of all the

methods that were compiled to the JIT compiler was recorded, as well as the number

of basic blocks and instructions in those methods. The results of which methods

needed to be compiled compared to which methods were actually called are shown in

figure 6-1.

Figure 6-1 shows that regardless of the degree of lazy compilation used, there exist

large savings to be gained during the sys.ji and sys-o.a phases of compilation. These

phases compile quite a bit of code that is ultimately never actually called by the

program. Furthermore, the plot on the right shows that while using per-module lazy

compilation, the number of functions lazily compiled drops significantly, the number

of actually compiled basic blocks and instructions shows a much smaller reduction.

This disparity between function count and basic block/instruction count is likely
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Figure 6-1: Uncompiled Method Fractions in Various Phases of Julia Bootstrap Com-
pilation

Large fractions of code may be left uncompiled during the sys.ji and sys-o.a phases of
compilation. The left plot shows the fraction of code that would be left uncompiled when
using maximal laziness (i.e. per-function lazy compilation). The plot on the right shows

the fraction of code that would be left uncompiled when performing lazy compilation on a
per-module level.
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due to the existence of Julia ABI stubs, which allow the Julia interpreter to call into

compiled code with a fixed interface. These stubs are compiled in the same module

as their compiled function, but are infrequently called and typically represent a very

small fraction of the complexity and compile time of the module.

The Core.Compiler phase in bootstrap compilation, however, shows a much smaller

degree of wasted function compilation. Therefore, this represents a workload which

is targeted toward maximal use of compiled functions. Under such a scenario, the

overhead from the machinery of lazy compilation is likely to harm performance more

than it helps, as all of the code ultimately does end up being compiled. However, the

underlying reason behind why Core.Compiler has most of its code is compiled is likely

due to poor inferrability. Much of the compiler relies on Julia’s dynamism, which will

result in fewer static linkages between functions and therefore minimal wasted compi-

lation. In contrast, user code typically places an emphasis on maintaining inferrable

code and maximizing type information, which results in additional static compilation

whose impact can be mitigated by lazier compilation.

6.3.2 Bootstrap Compilation Laziness

To inspect the true performance impact of lazier compilation, the time to execute

various phases of Julia’s bootstrap compilation was measured under different build

conditions. The results of these measurements are shown in figure 6-2. Firstly, in a

change from figure 6-1, the sys-o.a phases were merged into the same timer, and the

Link phase was dropped due to the very minor amount of time and functions spent in

that phase. Additionally, the runtime of different conditions of implementing lazier

compilation was measured, to identify where the biggest performance benefits and

overhead arose from.

Figure 6-2 shows that the overhead of per-function lazy compilation far outweighs

any benefit that is obtained from lazier compilation, regardless of compilation phase.

However, per-module lazy compilation shows a much better performance picture,

with better speedups in the sys.ji and sys-o.a phases, as expected from the uncalled

function counts in figure 6-1. These speedups range from 2 seconds ( 4%) in sys.ji to 8
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Figure 6-2: Laziness Performance Improvements for Bootstrap Compilation

Per-module lazy compilation sees the largest benefits from lazier compilation, while
increased overhead from per-function lazy compilation outweighs any speedups from lazier

compilation.

seconds ( 10%) in the sys-o.a phase. However, it too presents a performance regression

in Core.Compiler ( 5%) due to the almost negligible benefits from lazier compilation,

although the overhead is much better than the per-function lazy compilation results.

Additionally, in the Core.Compiler phase the use of the JITLink linker instead

of the RuntimeDyld linker normally used accounts for approximately 60% of the

performance degradation. This suggests that the laziness overhead in Core.Compiler

is much smaller than the absolute difference from the current eager compilation mode,

and is related in part to the change of linker. Further improvements to the linker’s

performance could assist in reducing the linker penalty, and thus make the overhead

from lazier compilation more palatable even in the case of poorly inferred code.

Switching from pooled LLVM contexts to a new LLVM context for each compi-

lation appears to have had beneficial impacts on compilation time in the sys.ji and

sys-o.a phases of bootstrap compilation. This result was unexpected, as reuse of con-

texts would typically avoid memory allocation and deallocation overhead, as well as
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Figure 6-3: Laziness Performance Improvements for Bootstrap Compilation at O3

With higher optimization costs, lazier compilation shows larger time savings, though they
do not completely outweigh the increase in compilation time. Compared with figure 6-2,

the benefits of lazier compilation are increased, to the point that even the increased
overhead of per-function compilation outweighs the added overhead in the case of sys-o.a.
Additionally, per-module lazy compilation improves performance over the JITLink-only in

the case of Core.Compiler.

permitting reuse of resources between different compilations.

6.3.3 Bootstrap Compilation at O3

Bootstrap compilation occurs at optimization level O0, since the JIT compiled code

will not be saved and compilation time takes up a large fraction of the runtime of

bootstrapping. However, user code is run at optimization level O3, which entails

a longer pass pipeline and more time spent in compilation. Therefore, we repeat

the same experiments as section 6.3.2, except that all compilation takes place at

optimization level O3. The results of these experiments are shown in figure 6-3.

At optimization level O3, an increased amount of time is spent compiling and

optimizing code in the hope of increased runtime performance and overall minimized

cost. However, this effort is wasted if the code is never run in the first place. Therefore
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we expect to see increased relative benefits from lazier compilation as compared to

O0, and this is indeed borne out in figure 6-3. Here, sys-o.a shows an impressive 25%

reduction in runtime for per-module lazy compilation, approaching the maximum ex-

pected benefit from the counts of uncalled functions in figure 6-1. This indicates that

compilation of methods takes up almost all of the time in this phase, and also shows

that per-module lazy compilation has very little overhead. In the Core.Compiler

phase, per-module lazy compilation even starts to claw back some of the performance

regression from switching to the JITLink linker, despite the fact that there were very

few functions that would be affected by lazier compilation.

Per-function lazy compilation does better in sys.ji and sys-o.a as well, as would

be expected since any reduction in amount of compilation translates to large compile

time savings at O3. There does not appear to have been a large change in percent

change for Core.Compiler, likely due to the lower impact of lazier compilation there.

6.4 Further Optimizations

6.4.1 Increased Optimization Pipeline

Although significant benefits are not immediately observed from the added LLVM-

level laziness, additional benefits are likely to be seen if the pass pipeline becomes

more complicated. Since the variable cost of running the pass pipeline on the compiled

methods is eliminated until the method is actually called, with total elimination for

methods that are never called, this makes the effective time taken by optimization

grow slower than without any lazy compilation. Therefore this work could enable a

more powerful pass pipeline to be used by default in Julia.

6.4.2 Tiered Compilation

Lazy compilation is fairly close to tiered compilation, as described in section 3.6,

where functions are initially interpreted or compiled at a low optimization level but

subsequently compiled offline at a higher optimization level. This approach enables
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high performance of frequently called methods, while avoiding excess optimization

and compilation on methods that are only ever called a few times. Thus, a natural

next step for this line of work is the implementation of a tiered compilation system

for Julia, which could yield increased benefits in both compile time and generated

code performance when section 6.4.1 is considered.

6.4.3 Correctness and Feature Completeness

Currently, the CompileOnDemandLayer implementation of lazier compilation does

not pass tests. In particular, one issue is that the implementation does not handle

passing arguments to functions in vectors correctly, due to not saving the vector

registers when calling back into the compiler. On the Julia side, other features remain

incomplete, such as compiling the relevant code without calling into the function.

Thus, some additional work is required before the CompileOnDemandLayer can be

turned on for the majority of platforms Julia supports.
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Chapter 7

New Pass Manager Integration

7.1 Overview

As mentioned in section 3.4, LLVM’s new pass manager is supposed to provide im-

provements in compilation time via a few mechanisms. Here, we analyze its speedups

in the few phases of the Julia compiler.

7.2 Performance Metrics

7.2.1 Bootstrap JIT Compilation

To measure the performance impact of the new pass manager, the amount of time

spent in the optimization phase of JIT compilation was recorded for both the new

pass manager and the legacy pass manager. Furthermore, data was collected for the

cases where bootstrap compilation ran at optimization level O0 and at optimization

level O3. The results of this experiment are shown in figure 7-1 and figure 7-2.

Figure 7-1 shows that at O0, using the new pass manager actually increased time

spent optimizing code, while at O3 using the new pass manager decreased time spent

optimizing code. This relation holds constant among all of the phases of bootstrap

compilation, indicating that the new pass manager is able to provide performance

improvements on Julia’s longer and more complicated pipelines rather than its shorter
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Figure 7-1: Pass Manager Timing Comparison for Bootstrap JIT Compilation

LLVM’s new pass manager results in decreased time spent optimizing code in the JIT at
optimization level O3 compared to the legacy pass manager, but increased time optimizing
code at optimization level O0. Baseline values of each subplot differ to enhance visibility of

timing differences. Within the O0 and O3 rows, overall scale is held constant between
plots.
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Figure 7-2: Pass Manager Performance Comparison for Bootstrap JIT Compilation

For bootstrap compilation, at O0 the new pass manager has a 5-10% performance penalty
compared to the legacy pass manager, while at O3 the new pass manager sees an

across-the-board performance improvement of 10%.

and simple ones. Additionally, figure 7-2 provides more numerical insight into these

timing measurements, showing that at O3 the new pass manager reports speedups

of 10% across all phases. At O0 the penalty is more varied, with Core.Compiler

observing a 10% slowdown, but sys.ji and sys-o.a both showing only a 5% slowdown.

In raw times, O0 runs much faster than O3, and the savings from the new pass

manager are unable to make up for that difference in timings.

The reason why the O0 pipeline sees a slowdown, while the O3 pipeline sees a

speedup from the new pass manager likely comes down to the way the pipelines

are structured. The O3 pipeline attempts to optimize code to squeeze out as much

performance as possible, which involves inserting many LLVM-provided passes into

the pipeline. These LLVM-provided passes rely more heavily on IR analyses that

LLVM also provides. With the new pass manager, there is better infrastructure for

reporting when analyses need to be recomputed and incrementally updating analyses

instead of recomputing them from scratch. Since LLVM itself made the transition
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to use the new pass manager by default, those LLVM-provided passes and analyses

have been made aware of each other and thus take full advantage of the new pass

manager’s functionality.

By contrast, the O0 pipeline includes very few LLVM passes, and mostly relies on

passes written by the Julia developers with compatibility shims to hook into the new

pass manager’s interface. These passes have not been updated to preserve analyses

whenever possible, and frequently trigger recomputation of all analyses whenever they

change the IR. Thus, the extra analysis invalidation machinery becomes less useful,

and the increased overhead appears as the slowdown.

7.2.2 Package Image Compilation

As a slightly different workload, package image optimization times were also measured

for both the legacy and new pass managers. Here, the measurements were captured by

running import Pkg; Pkg.add("OrdinaryDiffEq"); with a nonexistent ~/. julia folder

and a single precompilation task. The package images were all compiled at optimiza-

tion level O3. The results from the packages with median optimization times being

greater than 1 second are depicted in figures 7-3 and 7-4.

Figure 7-3 shows that all of the 8 packages with median optimization times greater

than 1 second observed speedups with the new pass manager compared to the legacy

pass manager. Figure 7-4 more quantitatively shows that LoopVectorization and

LinearSolve had the smallest speedups between 2.5% to 3%, while ExponentialUtilities

and NonlinearSolve had the largest speedups near 15% to 17.5%. Interestingly, both

LoopVectorization and LinearSolve had fairly large variances in the timing reported,

which could indicate that their true speedups are higher than what was measured.

Overall, this indicates that integration of the new pass manager into image compi-

lation would result in a net speedup of user code. Given that at O3 the JIT compiler

also saw speedups from migrating to the new pass manager, and that most user code

is run at O3, integration of the new pass manager into the JIT compiler should also

result in some reduction in compilation time.
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Figure 7-3: Pass Manager Timing Comparison for Package Image Construction

Package images display a consistent reduction in time spent optimizing when using the
new pass manager as compared to the legacy pass manager. Unlike figure 7-1, neither
baseline nor scaling is consistent among subplots, due to small differences in large total

optimization times.

Figure 7-4: Pass Manager Performance Comparison for Package Image Construction

Package images show a consistent improvement in optimization time, ranging from 2.5% to
17.5%. Packages are ordered left to right by decreasing median optimization time.
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7.3 Further Optimizations

7.3.1 Improved LLVM Analysis Preservation

Currently, as mentioned in section 7.2.1, many of the LLVM passes written for Julia

specifically do not attempt to preserve LLVM analyses. When other LLVM passes

need to use those analyses, they must be recomputed from scratch, at much higher cost

compared to keeping the existing analysis up to date. By updating the Julia-specific

LLVM passes to preserve additional analyses, it may be possible to improve the

relative performance of the new pass manager at O0. In addition, these improvements

would also help reduce the time spent at O3, where the likelihood of a downstream

pass requiring an analysis is higher.

7.3.2 Pass Pipeline Nesting Optimization

One of New PM’s benefits is that it makes explicit the nesting between module, call

graph, function, and loop passes. Crossing this nesting boundary has implications

on when passes are run on particular IR units, and it is typically preferred to group

related passes close together to maximize cache speedups. Currently Julia’s pass

pipeline has not been optimized for this grouping, which will likely provide large

speedups when compared to the old pass manager where the nesting was implicit.

7.3.3 Pass Pipeline Updating

With each new version, LLVM adjusts its default pass pipelines for different opti-

mization levels to have different combinations of passes and different options on those

passes. However, LLVM’s default pipelines are tuned for C and C++, rather than

a more dynamic language such as Julia. Therefore, Julia maintains its own pass

pipeline which must be kept up to date with LLVM versions. After the transition to

New PM, it would make sense to reevaluate the pass pipeline to account for LLVM’s

changes and identify any low-hanging fruit for either generated code improvements

or compile time improvements from replacing complex passes with simple passes.
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Chapter 8

Discussion and Conclusions

8.1 Summary of Results

Of the different methods used to improve the Julia compiler’s performance, the largest

speedups come from parallelization. Intuitively this makes sense, as parallelization of

compiler work opens up opportunities to perform vastly more work in the same span

of real time. However, the results from chapter 6 and chapter 7 show that there are

still opportunities to reduce the work performed by the compiler during compilation.

These optimizations also build upon each other in different ways. Lazier compi-

lation has a multithreading impact because functions are optimized and emitted as

machine code when the function is first called. Without laziness, this optimization

and machine code emission happens inside the global compilation lock; with laziness,

they happen outside the lock. Combining lazier compilation with the concurrent type

inference discussed in chapter 5 would likely increase the speedup for concurrently

compiling functions.

Likewise, the new pass manager reduces the amount of time spent in the opti-

mization phase, benefiting benchmarks in both concurrent type inference and parallel

image compilation. However, this speedup would be mitigated by the fact that opti-

mization tends to be in the parallel fraction of work rather than the serial fraction,

but the work would allow a more enhanced pass pipeline to further improve the

performance of the generated code, without compromising compiler performance.
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8.2 Sources of Error and Limitations

All of the experiments conducted here were performed with 10 trials at each combi-

nation of parameters. However, some of the experiments, especially with regards to

serial type inference on multiple threads, still exhibited significant variability between

trials. For concurrent type inference in particular, the use of spinlocks hampers re-

peatable testing, as high CPU usage can trigger a number of deoptimizations such

as thermal throttling or lower dynamic voltage frequency scaling. In other cases, the

machine’s active processes were monitored by use of the command top, but the top

command itself could add a small amount of noise to the measurements.

All measurements were performed on a x86-64 machine with two 32-core AMD

EPYC 7502 CPUs running Ubuntu 18.04 or Ubuntu 22.04. The full output of lscpu

can be found in appendix TODO.

8.3 Applicability of Performance Enhancements

8.3.1 Current Merge Status

Much of the groundwork for the changes have been merged into Julia 1.9 or the up-

coming Julia 1.10 release. In particular, parallel system image generation will be

shipped with Julia 1.10. However, there are some remaining blockers to full imple-

mentation of each of these features.

Julia’s package manager already has parallel capabilities, but these parallel capa-

bilities are limited to precompiling packages that do not depend on each other in par-

allel. The proposed work enables parallelism within precompilation of packages, but

balancing parallelism between multiple packages and within each packages remains

unimplemented. However, preliminary results suggest that a noticeable speedup is

still achieved by including intra-package parallelism even when inter-package paral-

lelism is enabled.

Concurrent type inference is mostly enabled, but it is difficult to trigger its ap-

pearance in Julia 1.9 due to a particular acquisition of the global compilation lock.
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While this statement was altered for testing purposes, in order to commit to moving

that acquisition so as to permit concurrent type inference additional verification of

thread safety in the surrounding code must be achieved.

LLVM’s new pass manager has a few remaining performance issues in generated

code when compared to the legacy pass manager, mostly around loop unrolling and

loop unswitching, which were heavily revamped in the new pass manager. Once those

issues are resolved, Julia will switch over to using the new pass manager, as the legacy

pass manager implementation is slated to be deprecated and unmaintained by LLVM

upstream.

Lazier compilation remains the feature that has the longest timeline for inclusion,

as it depends on using the JITLink linker, which currently does not have full feature

or platform parity with the current RtDyld linker. Furthermore, the implementation

of lazier compilation described here may not end up being the implementation that

is merged, as external improvements to the compiler could enable other parts of the

compilation process to be included in lazier compilation, such as codegen itself. In

that situation, the benchmarks for improved laziness would likely improve, as less

upfront work would be necessary, and additional work would be happening outside

the global compilation lock.

8.3.2 Future Impact

As chip designers are actively adding more parallel processing capabilities to their

products, the impact of the parallelization work will compound in the future as con-

sumer devices obtain more cores. As the parallelization work also has the largest

speedups, compared to the lazier compilation and new pass manager, this increase in

parallel capabilities will become invaluable to users in the future.

On the serial optimizations, a tiered JIT compiler would enable optimizing for

both compile time and runtime on the appropriate methods. Bringing a tiered JIT

compiler to Julia would likely bring widespread reductions in compile time, to a

greater extent than just lazier compilation alone. Lazier compilation’s main benefit

in this regard is to set up the groundwork for building a tiered JIT compiler.

73



The new pass manager’s benefit is likely to be a one-time speed boost, though its

infrastructure improvements may enable small optimizations in the future. Out of all

of the improvements discussed here, the new pass manager is therefore likely to have

the smallest future impact.
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