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Abstract

Landslide detection and susceptibility prediction are valuable tools for disaster pre-
vention. Despite there being many various solutions to accomplish these tasks, they all
generally depend on topographic features of the environment. However, there are not
many solutions that can adapt to triggering events such as hurricanes, earthquakes,
or volcanic eruptions. This lack of adaptability can greatly limit the performance of
the algorithms designed to solve these problems, which, in turn, makes it difficult
for emergency managers and responders in the area to prepare for these events ap-
propriately. This work experiments with various kinds of machine learning models
and analyzes the effects of incorporating dynamic features based on triggering events
in the training process. Ultimately, the final versions of the best performing models
produced in this thesis will be deployed as a part of a landslide monitoring system
to be used in Mocoa, Colombia. This system is being adapted and developed for the
Drones/UAVs for Equitable Climate Change Adaptation (DECCA) project run by
MIT’s Environmental Solutions Initiative.
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Chapter 1

Introduction

1.1 Background

A landslide is a term that is generally used to describe the down-slope movement or

mass wasting of soil, rock, and organic materials under the effects of gravity, as well

as the land-form that results from such movement [11]. Landslides can be incredibly

destructive events that can wipe out critical infrastructure in communities and towns,

cost governments billions of dollars, and destroy many lives. This is where the problem

of landslide susceptibility, or landslide probability prediction becomes vital, as even

though landslides are typically unpreventable, knowing how likely one is to occur in

a given region can help communities and local authorities respond appropriately and

take the proper actions in order to minimize losses these natural disasters may cause.

This can include evacuating areas that are predicted to be high risk at a certain point

in time, or not building infrastructure in certain spaces where the terrain may be

unstable.

There has been significant progress in developing solutions to the landslide sus-

ceptibility prediction problem, and most of the best solutions utilize machine learning

models trained on specific static features of the environment. These features are gen-

erally extracted from the topography of the region being studied, and they include

attributes such as altitude, curvature, and slope of the land that is being studied.

While these models have produced high accuracy predictions for landslide suscepti-
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bility based on these factors alone [31], they struggle to adapt to triggering events.

Nonetheless, factors related to weather, seismology, volcanic activity, vegetation, and

even human activity can play a major role in determining whether or not landslides

are likely to occur in a given area [18], but most of the current methods don’t ac-

count for these factors, or if they do, they play a minimal role. Because of this, these

models often produced very inaccurate outputs, either because the topography would

not be changed significantly enough to make the model change its prediction, or the

topography would be changed so significantly that the previous patterns the model

had learned before would become useless. The inability for these models to adapt to

these trigger events can prevent local governments and emergency managers in the

community from responding appropriately, which can not only cost billions of dollars,

but also destroy many lives.

This work seeks to improve upon current machine learning based solutions by

considering both the static topographical features and dynamic event related features

in order to produce models that are more adaptive to sudden environmental changes.

Dynamic features will be derived from sources that can give us more information

about potential triggering events, including weather stations, geology databases, and

vegetation and land cover changes. We will analyze some of these dynamic factors to

determine which ones have the greatest influence on landslide susceptibility, specifi-

cally precipitation and land surface temperature. These factors were picked based on

the availability of the data we have to work with, as well as prior research that shows

how these factors influence how landslides occur [12] [3]. We will then use this infor-

mation to train and test a model that will provide landslide susceptibility predictions

predicated on both the static and dynamic features of the environment. We aim to

test the hypothesis that including dynamic features can greatly improve performance,

which can allow authorities to take the appropriate actions to minimize losses in their

communities including more timely and targeted disaster response, direct landscape

intervention and remediation, and better informed long-term urban planning.

It is also worth mentioning that other natural events such as earthquakes [16]

and volcanic eruptions [21] can potentially increase landslide risk. However, we did
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not have the means to obtain sufficient data to perform analysis on other dynamic

features outside of precipitation and temperature, as there were no ground sensors

established in our area of interest to collect any seismic information for us to use.

The ultimate focus region for the landslide susceptibility modelling effort is Mocoa,

Colombia. This region is being studied due to its mountainous terrain, heavy rainfall,

and other features that cause landslides to occur there very frequently. However,

due to acquisitions and logistical delays involved with the data collecting sensor and

platform it was decided to begin landslide susceptibility modelling in Puerto Rico with

the intent of transferring the model to work with data collected in Mocoa, Colombia

as soon as it becomes available. Puerto Rico was selected as a landslide susceptibility

modelling site to transfer our analysis from because it experiences frequent landslides

and similar mass wasting events induced by hurricanes, flooding, and earthquakes.

Furthermore, Puerto Rico shares many environmental features with Mocoa, Colombia

including tropical and sub-tropical climate zones and montane cloud forest ecosystem

dynamics. Additionally, not only does Puerto Rico have topographic landforms and

geologic stratigraphy similar to Mocoa, the complexity of Puerto Rico’s environment

also allows the methods we are using to be transferable to any other region of the

world, as the problem of modelling landslide susceptibility is most difficult with an

environment like Puerto Rico which has tree canopies, mountainous terrain, and

significant amounts of cloud cover. Finally, datasets similar to those intended to be

collected for Mocoa, Colombia had already been collected for Puerto Rico and were

available to utilize including foliage penetrating 3d lidar point clouds, multispectral

and thermal imagery, and geology and weather data. All of these factors coalesced

to make Puerto Rico a near ideal substitute candidate for developing and testing a

landslide susceptibility model in anticipation of datasets that will be collected for

Mocoa, Colombia in the near-term future.

For this thesis, as a part of the Drones/UAVs for Equitable Climate Change Adap-

tation (DECCA) project led by MIT’s Environmental Solutions Initiative (ESI), in

collaboration with MIT Lincoln Laboratory and the Colombian Regional Environ-

mental Authority Corpoamazonia, I aim to contribute to producing an effective and
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robust landslide monitoring system that combines data collected by Unmanned Aerial

Vehicles (UAVs) with the development of algorithms using machine learning and arti-

ficial intelligence to predict landslide susceptibility risk levels. I hypothesize that the

incorporation of more dynamic features of the environment, specifically precipitation

and temperature for this project, will allow the models to make more accurate pre-

dictions and analyses in determining landslide susceptibility. The results and insights

gained from this thesis will be utilized in further developing and perfecting the models

that will be deployed in Mocoa.

1.2 Related Work

1.2.1 Topography Data Based Solutions

Previous solutions to landslide detection and prediction problems have primarily re-

lied on learning information from topographical data. This topographical data can

be derived from Digital Terrain Models (DTMs), a form of Digital Elevation Model

(DEM) consisting of 3 dimensional representations of the bare earth surface, disre-

garding above ground objects such as trees and buildings [11]. DTMs can be derived

from many sources of data including topographic surveys, optical stereo photogram-

metry [32], Synthetic-Aperture Radar (SAR) [29], and Light Detection and Ranging

(lidar) [8]. We decided on using Lidar because of the balance it has in penetrating the

earth to get high-resolution data, while also being able to avoid cloud cover, which

is common in both the Puerto Rico and Mocoa regions. DTMs are an extremely

useful tool for performing landslide analysis because of the rich topographic features

the data contains, but current methods tend to only focus on second order features

derived from these DTMs, rather than other more dynamic factors, which limits their

performance.

16



1.2.2 Landslide Detection

While landslide susceptibility prediction will be our main focus for our project, land-

slide detection is still a valuable tool that has been used to determine what factors

play the biggest roles in causing landslides to occur, and it is also one of the various

forms of analysis you can perform once you have acquired a DTM. Interferometric

SAR (InSAR) data in particular has been used to investigate land deformations and

mass wasting events in different areas [13] [9].

One project which relied more on using lidar data was performed on a region

in Hong Kong [29]. This work utilized multiple machine learning methods, includ-

ing convolutional neural networks (CNNs), random forest models, logistic regression,

boosting, and support vector machines (SVMs). This work was able to be signifi-

cantly more robust than previous methods, and we hope to build on their studies, in

order to improve the state of art of landslide detection and susceptibility modelling.

1.2.3 Landslide Susceptibility Prediction

There has been significant progress in the development of solutions to the landslide

susceptibility prediction problem, a lot of which has been enabled by recent advance-

ments in machine learning [23], as well as technological advances of the sensors which

enable machine learning models to collect higher-resolution data. An example of this

progress can be seen in a project performed for a region in Malaysia [15]. This project

uses more dynamic variables such as precipitation, but they only use two topograph-

ical features to train their models, which limits overall performance. Another project

was performed in Romania which also used machine learning to predict landslides

from SAR data and DTM analysis [4]. This provides valuable information regarding

which topographical factors play the biggest roles in predicting landslides for that

region, however, the focus was placed on the static features of the environment. I will

go into more detail on specific methodologies used in Chapter 3.

The ability to efficiently store and compute significant quantities of data, in addi-

tion to access to a greater diversity of data on triggering factors of dynamic landslides
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such as weather and temperature, allowed us to develop landslide susceptibility mod-

els that can better adapt to triggering events. In the following chapters, I will describe

how this work was accomplished.
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Chapter 2

Dataset Overview and Preparation

2.1 Data Collection

2.1.1 Study Areas

The study area for the experimentation performed in this thesis is located on the

border of the Utuado and Jayuya municipalities in Puerto Rico, as can be seen in

the map in Figure A-1. This region was selected because it has thoroughly developed

landslide inventories produced by the Federal Emergency Management Agency. Also,

the data we collected was captured in the aftermath of Hurricane Maria in October

2017, a hurricane that caused severe damage to much of Puerto Rico, especially in

the municipalities of Utuado and Jayuya, producing sufficient landslide information

for which to extract and perform analysis.

The final models will be trained and deployed in Mocoa, Colombia, which can

be seen on a map in Figure A-2. For this region, we will have more detailed time

series data in order for us to perform predictions based on the state of the features

at previous time steps, rather than just simply performing uni-temporal analysis as

compared to the work in the Puerto Rico region. The models trained for this study

area will be deployed as part of the DECCA project later in 2023 to help with risk

prevention efforts within the region.

Data collection and preparation methods are universal across both regions unless
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otherwise specified.

2.1.2 3D Data Collection Methodology

Light detection and ranging (lidar), interferometric synthetic aperture radar (InSAR),

and optical stereo photogrammetry are all sensing modalities and data sources that

can be used to generate robust, accurate, and high resolution 3d digital elevation

models (DEMs) for terrestrial regions of the earth including digital terrain models

(DTMs) which focus on the topography of underlying terrain. While optical stereo

photogrammetry has the advantage of being the cheapest and most common method

for generating remotely sensed 3d model, it cannot be utilized from satellite platforms

for the focus regions of this thesis because of the near perpetual cloud cover. Fur-

thermore, even if flying beneath the cloud deck on a low altitude aerial platform such

as an unmanned aerial vehicle (UAV), optical sensors cannot penetrate dense tree

canopies in order to reveal the underlying terrain. Synthetic aperture radar seems

like a good sensing modality to utilize from spaceborne platforms in order to penetrate

cloud cover and generate 3d digital terrain models using across-track interferometric

data collection and processing methods. However, my particular area of interest is

densely tree covered, and the C-band synthetic aperture radar data we have available

to us experiences rapid phase decay in regions that are densely tree covered. Also,

C-band SAR data has extremely limited ability to penetrate foliage in order to reveal

underlying terrain. Lidar sensing was found to occupy a good middle ground in that

it can be flown beneath the cloud deck on low flying UAVs while offering excellent

foliage penetrating capabilities at sufficiently high spatial resolution in order to assess

the land form of the underlying terrain.

2.1.3 Features

After selecting our study areas, we selected various kinds of features with which to

perform landslide susceptibility analysis and prediction. All of these features were

selected based on the work of Deepankar Gupta, more specifically, his thesis work
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called "Interpretable Machine Learning Methods for Landslide Analysis" submitted in

February 2022. These features were selected because they all have been scientifically

shown to be landslide conditioning factors [11], and the results in Gupta landslide

prediction analysis demonstrates that these features have significant predictive power.

All of these datasets have been resampled to 1 m resolution in ground sample

distance (GSD). Below is a list of all features that were selected1:

• Topographic Data: In order to extract all of the topographic features of our

study areas, we first had to generate DTMs. These DTMs were created from 3D

lidar point cloud datasets collected by the Airborne Optical Systems Testbed

(AOSTB) from MIT Lincoln Laboratory. With these DTMs, we derived the

following features [2]:

– Altitude: One of the most important features for determining landslide

susceptibility is altitude, as this has effects on temperature, slope, aspect,

vegetation type, among other environmental factors. In both study areas,

altitude values are measured from mean sea level.

– Slope: Slope describes the degree of incline of a surface. Slope can have

a major influence on landslide severity, especially in regions where it may

vary significantly.

– Aspect : Aspect describes the compass direction that a slope is facing,

with 0 degrees representing the northernmost direction. For sloped surfaces

aspect can govern other parameters such as vegetation growth and vigor

and evapotranspiration with the effect becoming more pronounced at more

northerly or southerly latitudes.

– Curvatures: For this feature, we extracted two different types of cur-

vatures: plan and profile. Plan curvature, which is short for planform

curvature, describes the curvature that is perpendicular to the direction

of maximum slope. In other words, when planform curvature is positive,

1All features are continuous unless otherwise specified.
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this means that the surface is laterally convex, and if it is negative, it is

laterally concave [5]. In contrast, profile curvature describes the curvature

that is parallel to the direction of maximum slope, which affects how flow

accelerates or decelerates on a sloped surface. So a positive curvature in

this setting would result in an upwardly concave surface, accelerating flow,

while a negative curvature results in an upwardly convex surface, which

decelerates flow [2, 5]. We also combined gathered general curvature val-

ues, (i.e. a combination of both planform and profile curvatures), and used

this as a feature as well.

– Flow Direction: Flow direction is a categorical feature which describes

the direction of water flow based on the maximum change in elevation

between a given cell (which is simply a square section of space in a map)

and its eight bordering cells. There are 8 possible flow directions: north,

northeast, east, southeast, south, southwest, west, and northwest.

– Flow Accumulation: Flow accumulation of a given region provides a

measure of total flow accumulated based on upstream catchment basins.

– Stream Network : The stream network is simply a map of all water-

sheds in a region, as moving water can influence landslide probability in a

given area. Strahler Stream order was also calculated to get a measure of

branching complexity of different streams within a network [5].

– Topographic Wetness Index (TWI): TWI is an index used to describe

how wet the region can be, which is useful for gathering information about

hydrological processes that occur in the terrain [26].

– Sediment Transport Index (STI): STI is an index used to describe the

level of erosion in an area due to sediment movement, which can have a

significant impact on how land moves when natural disasters occur.

– Stream Power Index (SPI): SPI is an index used to describe the level

of erosion in an area due to water flow. This factor can have a great effect

on landslide susceptibility as well, especially after floods, hurricanes, or
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other water based natural disasters.

• Static Multispectral Data: The visible and near-infrared (VNIR) multi-

spectral data was collected by the Pleiades-1a satellite for calculating spec-

troradiometric indices for describing local vegetation and moisture conditions.

Long-wave infrared (LWIR) image data was also acquired from the Landsat-8

satellite in order to calculate land surface temperature, but this is a dynamic

feature that will be discussed later.

– Normalized Difference Vegetation Index (NDVI):

𝑁𝐷𝑉 𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅 +𝑅𝑒𝑑
(2.1)

NDVI is a spectroradiometric index used to quantify the presence of green

vegetation by reading the amount of reflected red visible light (Red) and

near-infrared light (NIR) [6]. Equation 2.1 demonstrates how the NDVI

value is calculated. Values closer to 1 likely represent vigorous green veg-

etation, whereas values closer to -1 represent other surface materials such

as open water which absorb near-infrared light.

– Normalized Difference Wetness Index (NDWI):

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
(2.2)

NDWI is a spectroradiometric used to quantify moisture content in a region

[1] by comparing the amount of reflected green light (Green) and near-

infrared light (NIR). Equation 2.2 demonstrates how the NDWI value is

calculated. Values closer to 1 represent bodies of open water, and values

closer to -1 represent very dry areas, or non-water surfaces.

• Geology Data: Geology data was collected from the United States Geological

Survey (USGS). Geology data is valuable for landslide prediction due to the

information it provides us regarding lithology, soil type, ground stability and
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erosion levels.

– Soil Classification: Soil classification is a categorical feature with values

defined by the Unified Soil Classification System (USCS). It describes soils

by their plasticity, liquid limits, and particle size and sorts soils into distinct

classes of clays, gravels, sands, and silts.

– Lithology Classification: Lithology classification is a categorical feature

that describes the type of rocks that are present in the region. The four

lithology types that are in the classification for the Puerto Rico region are

alluvium, amphibolite, granodiorite, and Robles Formation.

• Impervious Surface Data: The impervious surface data was collected from

the Humanitarian OpenStreetMap Team [20]. It’s a binary feature that identi-

fies which areas are surfaces that are impervious to rainwater absorption, which

includes buildings, paved roads, sidewalks, parking lots, and certain types of

bare/exposed rocks.

• Dynamic Features: The dynamic features are the primary focus of this thesis.

The two features being tested are the land surface temperature and precipita-

tion.

– Land Surface Temperature: Like the other multispectral features, the

land surface temperature was collected by the Landsat 8 satellite. Land

surface temperature is a critical component for deriving apparent evapo-

transpiration which in turn describes the portion of precipitation which

is absorbed into the ground vs being evaporated back to the atmosphere.

Temperature is included in the training process of these models because

this factor is something that can change drastically under landslide trig-

gering events.

– Precipitation Intensity : Precipitation data is collected by the NASA

Global Precipitation Measurement Mission. It measures the level of rainfall

intensity per day in mm.
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• Historic Landslide Inventory: The historical landslide inventory contains

data about where and when landslides have occurred since 1985 for this specific

region of Puerto Rico. The USGS and FEMA collected the landslide data for

Puerto Rico.

2.2 Data Processing

All data was processed using ArcGIS Pro [22], an app that is designed to work with

Geographic Information Systems (GIS), and Rasterio [7], a Python library used to

handle rasterized files and data more easily.

2.2.1 Continuous Data

The majority of the features used in training have continuous values. Before training,

all continuous features are normalized between 0 and 1. To fill in missing values,

for each feature, I calculated the median to use as a placeholder to minimize any

effects that could occur from skewing data. I made sure to calculate the percentage

of missing values to make sure this would have as little effect on the training process

as possible. When doing these calculations, the highest percentage I calculated was

less than 0.05%, which gave me confidence to use my strategy of using median to

handle these missing values.

2.2.2 Discrete Data

To handle missing values for the discrete data, for all features except the lithology

and soil classifications, I calculated the mode in the feature’s data and used the mode

to fill in missing values. For the lithology and soil classification features, I added

a new class for each of these categories signifying the fact that the statuses of the

classifications are unknown.
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Chapter 3

Methods

3.1 Machine Learning Strategies

For this thesis, I experimented with various machine learning methods, ranging from

conventional machine learning methods, to deep neural networks, to ultimately deter-

mine the effect of adding dynamic features to the training process has in improving

model performance. The conventional models were trained using scikit-learn, while

the deep neural networks were trained using PyTorch.

For the experimentation process, using the historic landslide inventory as my

target to predict, I employed two different strategies: regression and classification. For

regression, I simply performed the normalization process I described in Section 2.2.1

to the landslide inventory, and used the methods described below to try to predict

those target values directly, essentially creating a historic landslide density map. This

essentially meant treating the target values as pseudo-probabilities, with 1 being the

maximum probability of a landslide occurring, and 0 being the minimum. I only

used conventional machine learning models for regression tasks due to the difficulty I

had with demonstrating the relationship between landslide conditioning factors and

landslide susceptibility when doing deep learning tasks.

For classification, however, I decided to divide up the historic landslide data into

four susceptibility classes. These classes were numbered from 1 to 4, with 1 being the

lowest risk of a landslide occurring, to 4 being the highest. To avoid having a skewed
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target distribution, I divided up the normalized landslide probabilities into quartiles,

and used that to determine their classification values. It is important to note that

a skewed target distribution of classes is not necessarily undesirable2, but for the

purposes of the experiments I am conducting, I decided it would be best to keep the

four classes evenly distributed. Table B.1 provides information on what the precise

quartile values were for the study area of Puerto Rico. I used both conventional

machine learning and deep learning methods for classification.

For categorical features in both the regression and classification model training,

I used binary encoding to embed these features before passing them into all of the

models used.

3.1.1 Conventional Machine Learning Methods

Logistic Regression (LR)

Logistic regression is one of the most popular machine learning methods used to

find relationships between variables, and this method has been consistently used in

landslide prediction tasks for a long time [14]. Logistic regression is a supervised

learning method that typically works well for classification problems, due to how it

utilizes the concept of odds to assign probabilities to events.

Quantitatively, a logistic regression function for multiple variables can be repre-

sented as follows:

𝑃 (X) =
exp(𝛽 · X)

1 + exp(𝛽 · X)
(3.1)

where X represents the 𝑚 landslide predictors of our problem, 𝛽 is the set of learning

parameters, and 𝑃 (X) is the probability of a landslide occurring given the predictors

in X.

For regression, we start by treating this as a binary classification problem at

first, so that we only have to predict one probability value representing landslide

susceptibility. But instead of picking which class has the higher likelihood, we simply
2The four classes do not have to be evenly distributed, depending on how much we want to

emphasize certain landslide risk levels over others, as it may be desirable to have a model be more
or less risk-averse.
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use the probability value calculated as our output.

For classification, since we have four landslide susceptibility classes in total, for

training, we essentially have to predict four probability values, one for each class,

meaning there are four sets of learning parameters 𝛽1..4 we need to calculate to get

our results. To predict what the correct classification is, we just take the probability

with the maximum value.

Random Forest (RF)

Random forests is another popular method that has been used in landslide detection

and other natural hazards prediction tasks [19]. It is an ensemble learning method

based on combining the results of decision trees to give a consensus prediction. This

method is very popular due to its robustness, and its ability to be used on very large

datasets. This method also provides multiple parameters that we have direct control

over, including the number of decision trees we want to use, as well as the branching

factor and depth of each tree.

For regression, we replace our traditional decision trees with regression trees, and

instead of determining a consensus prediction out of a discrete set of options, we

average the results of each regression tree to get a final prediction.

For classification, nothing is fundamentally changed. Each decision tree just has

to predict from four susceptibility classes.

Support Vector Machines (SVM)

Support vector machines are another machine learning method that can be used

for classification tasks, and has been used for landslide prediction tasks in the past

[28]. Support vector machines work by mapping the original input features into

a higher dimensional feature space where a hyperplane can be found to act as a

decision boundary. This mapping process is done by a kernel, which could be linear,

polynomial, Gaussian, or some other form. The kernel used in this thesis is the radial

basis function, due to the power it has as an approximator [5]. The radial basis
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function kernel is defined by the following equation:

𝑘(x𝑖,x𝑗) = exp(−𝜆‖x𝑖 − x𝑗‖2) (3.2)

where x𝑖 and x𝑗 are feature vectors with all of the landslide predictor variables, and

𝜆 is a tuning parameter accounting for the smoothness of the decision boundary

produced by the support vector machine.

For regression, instead of finding a hyperplane to act as a decision boundary, we

look for more of a best fit line through the data to make continuous predictions. This

method is known as support vector regression.

For classification, because there are four classes, we make four binary predictors to

perform a multi-class classification task. Each binary predictor behaves by dividing

one class of data from the other classes. This is just one common approach for perform

multi-class classification tasks with support vector machines [30].

Adaptive Boosting (AB)

Adaptive Boosting, or AdaBoost, is another ensemble learning method which com-

bines the performances of a bunch of weak classifiers to produce a final prediction [10].

Quantitatively, we can define the equation for a prediction with 𝑚 weak classifiers

and 𝑛 data points as

𝐹 (𝑥) = argmax
𝑘

𝑚∑︁
𝑖=1

𝑐𝑖 · I(𝑓𝑖(𝑥) = 𝑘) (3.3)

where I is an indicator function which is equal to 1 if a weak classifier 𝑓𝑖 picks class

𝑘, and 0 otherwise, and 𝐹 (𝑥) gives us our predicted class. The weak classifier used in

this project is simply a decision tree, but other kinds of classifiers can also be used.

For regression, we replace our weak classifiers with regressors, and instead of using

an argmax operation, we simply take the weighted average of the results produced

by each of our weak classifiers.

For classification, similarly to random forests, nothing fundamentally changes.
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3.1.2 Deep Learning Methods

Up to this point, I have mainly focused on describing more conventional machine

learning methods that I used in my experimentation process. While conventional

machine learning models have the benefit of being simple to use and implement, they

tend to struggle to learn more complex patterns in data. Because of this, I decided to

experiment with deep neural networks as well, to determine the potential performance

differences when incorporating more dynamic features into the training process. More

specifically, I experimented with utilizing segmentation models provided by PyTorch’s

segmentation model library, as segmentation models have been proven to be successful

in landslide detection tasks in the past [25].

Data Pre-processing

In order to pass the features into the segmentation model, there was some pre-

processing that needed to be done. Experiments were performed dividing the data

into 64 × 64 patches and 128 × 128 patches. The patches were also padded with 4

pixels on each side, and 8 pixels on each side, respectively, in order to make sure the

map did not appear too discretized when produced.

Model Architecture

The framework architecture I am using as the segmentation model is called U-Net

[24]. In a nutshell, U-Net uses an encoder-decoder structure to perform predictions,

using convolutional layers to both compress the original input features, and expand

this compression to produce an image with classified pixels. This architecture is

especially good at performing segmentation tasks because of how the encoder part

of the network is able to learn how to classify pixels, and how the decoder part of

the network can recover the exact spatial location of those pixels, making this a very

powerful method in practice.

U-Net also provides us with the freedom to change the complexity of the encoder

itself, and for this project, two different encoders were used. Both of these encoders are
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ResNet architectures [27], which are deep residual networks that are known to perform

well on image classification tasks. The two different versions of this architecture used

are ResNet-18 and ResNet-50. These architectures were used to observe if there

were any significant changes in model performance if the deep neural network was

given more layers, potentially making the addition of dynamic features in the training

process more significant.

Loss Function

The loss function used for this segmentation model is Dice loss [33]. This loss function

was picked due to how well it performs in segmentation tasks under situations where

there is major data imbalance. The dice loss function can be written as follows:

ℒ𝐷𝑖𝑐𝑒 = 1−
2
∑︀𝑛

𝑖=1

∑︀𝑐
𝑗=1 𝑦𝑖𝑗𝑝𝑖𝑗 + 𝜖∑︀𝑛

𝑖=1

∑︀𝑐
𝑗=1(𝑦𝑖𝑗 + 𝑝𝑖𝑗) + 𝜖

(3.4)

where 𝑦𝑖𝑗 represents whether or not data point 𝑖 has target class 𝑗, 𝑝𝑖𝑗 represents

whether or not data point 𝑖 is predicted to be class 𝑗, and 𝜖 is a constant used to

prevent the denominator from being 0. The minimum (and optimal) Dice loss value

is 0, and the maximum is 1.
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Chapter 4

Experiments and Results

4.1 Experiments

The ultimate goal of our experiments is to determine the effects of adding dynamic

features in the training process of landslide susceptibility models.

For this study area, we train all of the machine learning models described in

Chapter 3, using the features described in Section 2.1.3. For the conventional machine

learning models, the data is randomly split into training, validation, and test sets,

with 70% of the data in the training set, 10% of the data in the validation set, and

the remaining 20% of the data in the test set. For the deep neural networks, instead

of dividing up the data by individual data points, we would divide by the 64×64 and

128× 128 patches described in Section 3.1.2.

4.2 Evaluation Metrics

4.2.1 Classification

To evaluate the models in the case of classification, we use accuracy, precision, and

recall, along with the Area-Under-Curve (AUC) score given by the receiver operating

characteristic (ROC) curve. All of these equations use four variables: true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN). The equa-
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tions for the first three metrics can be described as follows:

Accuracy =
TN + TP

TN + FN + TP + FP
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

The ROC curve simply plots the True Positive Rate (or the recall) vs False Positive

Rate (FPR), where FPR is defined by the following equation:

FPR =
FP

FP + TN
. (4.4)

With the curve, the area under it gives us an aggregate measure of how accurate our

predictions of each class are, with respect to all of our other classes.

4.2.2 Regression

To evaluate models in the case of regression, we simply take the root mean squared

error between the predicted landslide probability and the ground truth landslide prob-

ability generated in Chapter 3.

4.3 Effects of Adding Dynamic Features

4.3.1 Feature Importances

The process of analyzing the effects of adding dynamic features to the training process

begins with examining how much influence these features have compared with all

of the other features. Figure A-3 displays a list of feature importance information

based on Gini importance values extracted from training some of the best performing

conventional machine learning models based on accuracy, and averaging these results

over all models obtained [17].

From this feature importance plot, we can see that precipitation is the highest
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valued feature by all of the best performing predictors by a significant margin. Static

features such as altitude, lithology classification, and soil classification are also valued

significantly by most of the predictors. Both precipitation and land surface temper-

ature are top 5 in importance metrics, which shows that adding these features to

the training process is likely to have significant influence on the performance of the

models.

4.3.2 Regression Model Results

Table B.2 contains the root mean square error results produced by all of the regression

models. For these regression models, we can observe that in general, the addition of

dynamic features improves model performance. In fact, it improved performance for

all conventional models used except for AdaBoost, although the AdaBoost algorithm

did not perform optimally in this environment anyway.

Figure A-8 shows maps produced for each conventional model except the support

vector machines, as the training time complexity for this model is extremely large.

From these maps, we can see that the models were biased towards predicting very low

risk values across the board, regardless of whether or not we used dynamic features

in the training process. This is likely due to the fact that the distribution of ground

truth risk values is skewed towards lower values, as can be seen from Table B.1,

therefore the predictions end up imitating this distribution to minimize error, and

the addition of new features is unlikely to change this behavior significantly. To

mitigate this problem in future studies, one could try transforming the distribution

of ground truth values in such a way that the predictions will not be as biased towards

predicting low risk values.

4.3.3 Classification Model Results

Tables B.3 and B.4 contain all of the classification based evaluation metrics for the

conventional models and segmentation models, respectively. Figures A-4 and A-5

contain a histogram showing the proportions of each landslide susceptibility class
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predicted for all models trained without and with the use of dynamic features.

For the conventional models, we can see from Table B.3 that the addition of

dynamic features consistently improves model performance in every metric utilized

in this experimentation process. Considering that both dynamic features were top

5 in feature importances, it is reasonable to conclude that the addition of dynamic

features in the training process improved model performance.

From Figure A-4 and the generated susceptibility maps in Figure A-6, we can see

that the conventional models are more likely to predict very high risk values, regardless

of whether or not dynamic features are utilized in the training process, however, the

addition of dynamic features actually increased the likelihood of predicting the lowest

risk class across the board. This shows that the models trained with dynamic features

are less risk-averse than the models trained without these dynamic features.

For the segmentation models, we actually notice some different patterns arise.

For starters, the addition of dynamic features actually decreases model performance

for all models except the ResNet-18 model trained with 128 × 128 patch size. This

difference in performance was more prominent as the models increased in size from

18 layers to 50 layers.

Also, when looking at Figure A-5 and the generated susceptibility maps in Fig-

ure A-7, we can see that models trained with a patch size of 64×64 is much more likely

to predict a susceptibility class value of "Very High" when dynamic features are added

to the training process, but with a patch size of 128×128, the distribution is bimodal

for models trained without dynamic features, and more spread out amongst predict-

ing other susceptibility classes (except the "High" class) when dynamic features are

added to the training process. So while the raw evaluation metrics values show that

the performance is better without the use of dynamic features in the training process,

the addition of dynamic features can create more balanced distributions, which can

be beneficial in creating more useful landslide susceptibility prediction models.
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4.3.4 Other Visual Observations

For the classification conventional models, the addition of dynamic features in the

training process appear to produce the higher susceptibility risk regions more accu-

rately. For the regression conventional models, there was not much of a significant

difference, except for the AdaBoost case, where the addition of dynamic features did

allow for the model to predict some higher probability values.

For the segmentation models, similar trends were visible. Higher susceptibility

regions in the ground truth map were predicted to have higher landslide suscepti-

bility values, although, the predictions would often either drastically overestimate or

underestimate the landslide risk, meaning that many "Medium" level areas would

be predicted as "Low" risk, whereas many "High" level areas would be predicted as

"Very High" risk.
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Chapter 5

Conclusion

The results presented in this thesis show that the addition of dynamic features to

the training process can definitely impact the performance of landslide susceptibility

models, although simply adding features like temperature or precipitation will not

guarantee that predictions will be more accurate. In the case of conventional models,

performance improved across the board, regardless of the model used. However, as

the models got more complex, improvement of performance was not guaranteed.

Other observations worth noting include that the regression models all bias their

predictions towards lower susceptibility levels, while the classification models gener-

ally biased their predictions towards either higher risk, or predicting more low and

very high risk value classes, ignoring the medium risk options. Even though I chose to

have the susceptibility classes be equally distributed across the region for the purposes

of eliminating potential bias, it is possible to engineer a more optimal distribution

of susceptibility classes that could eliminate, or potentially emphasize, the biases ob-

served in these experiments, depending on what effects would be more desired by

those evaluating landslide risk for any given region.

With the addition of precipitation and temperature into the training process,

landslide susceptibility models can potentially better adjust to triggering events like

hurricanes and floods. However, there is work to be done still to determine how these

triggering events may influence landslide risk in specific areas of regions. The models

in this study are also prone to underfitting, which is potentially due to a combination
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of the models being too small, and the data being insufficient to get a better picture

of what the landslide risks truly are in different parts of the region. More work can

be done in the future to expand this analysis to larger models and datasets.

When transferring this work to Mocoa, it is important to take into account the fact

that these models can be biased towards very high risk or very low risk predictions,

leaving out intermediate risk level prediction values. This issue can be magnified

when creating a real-time landslide monitoring system, especially if the predictions

vary frequently between time steps. It may be necessary to adjust the distributions

of susceptibility risk classes when training these models for the Mocoa region, so that

they are more likely to predict intermediate classes to make real-time updates in the

monitoring system smoother.

It is also worth mentioning that precipitation and temperature are only two of

many potential dynamic features of an environment that can influence landslide sus-

ceptibility. Earthquakes, volcanic eruptions, and river velocity are just a few other

factors that could potentially increase landslide risk, and with the appropriate data,

more experiments can be done to determine how much of an influence these factors

have in improving landslide susceptibility prediction.
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Appendix A

Figures

Figure A-1: Map of the southern part of the border between the Utuado and Jayuya
municipalities of Puerto Rico. Initial training and testing of machine learning models
was performed here for data analysis spanning approximately 17 km2 of the region.
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Figure A-2: Map of the region of Mocoa, Colombia. The final versions of the model
will be trained later in the year, after the completion of this thesis.
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Figure A-3: A bar plot measuring the average feature importances from the best per-
forming conventional machine learning models trained using both static and dynamic
features.

43



Figure A-4: Plots showing percentages of susceptibility classes predicted for each
conventional model for the Puerto Rico region, comparing the results of the models
with and without the use of dynamic features in the training process.
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Figure A-5: Plots showing percentages of susceptibility classes predicted for each
segmentation model for the Puerto Rico region, comparing the results of the models
with and without the use of dynamic features in the training process.
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Ground Truth

Model No Dynamic Dynamic

Logistic Regression

Random Forest

AdaBoost

Figure A-6: Visualizations of discrete classification susceptibility maps produced by
each of the conventional models for the Puerto Rico region, excluding the support
vector machines. No map was produced for the support vector machines due to the
large time complexity of training.
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Ground Truth

Model (Patch Size) No Dynamic Dynamic

ResNet-18 (64x64)

ResNet-18 (128x128)

ResNet-50 (64x64)

ResNet-50 (128x128)

Figure A-7: Visualizations of discrete classification susceptibility maps produced by
each of the segmentation models for the Puerto Rico region.
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Ground Truth

Model No Dynamic Dynamic

Logistic Regression

Random Forest

AdaBoost

Figure A-8: Visualizations of maps produced by each of the continuous predictions for
the Puerto Rico region, excluding the support vector machines. No map was produced
for the support vector machines due to the large time complexity of training.
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Appendix B

Tables

Table B.1: Landslide density quartile values for Puerto Rico region.

Min Q1 Median Q3 Max
0 6.204× 10−3 7.446× 10−2 1.762× 10−1 1

Table B.2: Root mean squared error values for conventional models trained with and
without dynamic features for the Puerto Rico region.

Model No Dynamic Dynamic
LR 0.1617 0.1612
RF 0.1284 0.1229

SVM 0.1255 0.1249
AB 0.1390 0.1563
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Table B.3: Classification results for conventional models trained on the Puerto Rico
region (ND means no dynamic features were used in the training process, while D
means dynamic features were used).

Model
Accuracy Precision Recall AUC Score

ND D ND D ND D ND D
LR 0.3589 0.3760 0.3447 0.3514 0.3589 0.3760 0.6171 0.6337
RF 0.3603 0.3826 0.3789 0.3917 0.3603 0.3826 0.6318 0.6599

SVM 0.3535 0.3737 0.3538 0.4073 0.3219 0.3730 0.6123 0.6398
AB 0.3743 0.4087 0.3667 0.3947 0.3743 0.4087 0.6308 0.6613

Table B.4: Classification results for segmentation models trained on the Puerto Rico
region (ND means no dynamic features were used in the training process, while D
means dynamic features were used). All models were trained for 25 epochs.

Encoder Patch Size
Accuracy Precision Recall AUC Score

ND D ND D ND D ND D

ResNet-18
64x64 0.4270 0.4034 0.4008 0.3794 0.4273 0.4033 0.6892 0.6746

128x128 0.4017 0.4253 0.3527 0.4187 0.4028 0.4255 0.6584 0.6819

ResNet-50
64x64 0.4227 0.4059 0.4301 0.3930 0.4234 0.4057 0.6934 0.6751

128x128 0.4606 0.4371 0.4527 0.4016 0.4611 0.4377 0.7144 0.7050
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