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Abstract

This thesis proposes advancement of the collaborative and intelligent abilities of Tu-
tor Intelligence robot systems through leveraging the geometry of array structures to
perform online inference of object locations and registering partial in-hand scans to
automatically orient objects. This research will automate portions of the data annota-
tion process required for the robots’ deep intelligence, enabling the collaborative robot
systems to more efficiently and effectively perform pick-and-place tasks. Evaluation
is conducted through an exploratory pilot study, and further design recommendations
are given.
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Chapter 1

Introduction

Robots are increasingly being adopted beyond their traditional factory cages, working

directly alongside human workers in factory lines to automate the most tedious and

dangerous tasks [1, 2]. As such, there has been increased need for robots to robustly

perform pick-and-place tasks; notably, the Amazon Picking Challenge has driven a

body of work on the task [3]. In the United States, policy has also encouraged the

adoption of robotics in manufacturing in order to increase the ability of firms to com-

pete in a global market; for example, the Massachusetts Manufacturing Accelerate

Program (MMAP) [4] provides capital and business connections for small to medium-

sized facilities to purchase automation solutions. Adoption of robots into production

lines where human workers are stationed enables automation of the most menial and

monotonous tasks, providing the additional benefit of allowing facilities to subse-

quently upskill workers to supervise robots. Thus, not only can overall productivity

can be increased, but also workers can be promoted into higher-skilled, higher-paying

positions.

In situations where collaborative robots, termed cobots, work directly on lines

with human workers, regularity of tasks is often not guaranteed; a worker may brush

a box of product as they walk past, knocking the box out of place, or they may place

product before the robot with the labels in various orientations. In order to handle

the variations of irregular, out-of-cage work—for example, picking objects of different

sizes or packed loosely into boxes—robotic intelligence beyond hand-designed, fixed
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robot motions is required.

To this end, Tutor Intelligence has developed intelligent collaborative robots (B-

1) that leverage deep learning for pick-and-place tasks [5]. Productivity gains can

be achieved in factory settings by using the robots to perform tedious, repetitive

motions and instead allowing the human worker to serve a more ubiquitous and less

physically taxing role annotating data generated by the robot. These annotations are

then utilized by the robots to improve performance.

Many factory settings involve products that are spaced at regular intervals or

packed into geometric arrays in pallets or boxes. Moreover, there may be requirements

for the products to move through production lines in certain orientations in order to

read codes, affix labels, etc. Robotic intelligence can be used to augment the data

labelling task in these cases, removing workload from the human labeller.

To automate label generation of the robot data, I have created a grid inference

target labelling scheme that leverages geometric regularity of boxes or pallets of ob-

jects. This method infers the overall geometry of object placements based on the

identification of individual objects within the structure. To allow the robot to auto-

matically orient objects in specified orientations, I have developed an algorithm to

register a partial scan against a reference object scan and calculate a correctional

rotation to uniformly orient objects. Evaluation of the effectiveness of grid inference

and automatic orientation in automating the data annotation process is performed

through an exploratory pilot study.

The main contributions of this thesis work are:

• Online inference of geometric grid structure using Fourier Transform techniques,

• Orientation-agnostic scan registration to calculate correctional rotations for con-

sistent object placement, and

• An exploratory pilot study investigating the effects of the above tooling on

human labeller productivity and workload.
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Chapter 2

Relevant Work

2.1 Section 1: Automation of the Data Labelling

Process

As the relevance of data-driven deep learning approaches for robotics has grown, so

has the need for ways to address the large amounts of data traditionally required to

train these deep models. One approach to address this problem is to automate the

data labelling process directly. The authors of [6] and [7] both bring the human into

the training loop through a streamlined verification step during the active learning

process for 3D segmentation and object detection, respectively. [6] propagates human

annotations over the dynamic network, while [7] requires no additional initial anno-

tation beyond image-level labels. This work seeks to additionally automate the data

labelling process beyond the integration of a human into the training loop.

Researchers have also investigated methods for a robot to semi-automatically col-

lect labelled data, for example where objects are placed in front of the robot during

a "training phase," and the robot automatically collects RGBD scans, segments out

the object, and uses the segmented object for training [8]. In [9], the authors explored

the use of a physical virtual-reality marker to semi-automatically label robot-collected

scans. However, the training phase required for these methods is not practical for

real-world industrial applications where a robot going offline for training for each new
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object would mean a production line constantly taken down and large penalties to

revenue. Moreover, this training phase would require a human worker to supervise the

robot and place objects in front of it as required, furthering the cost of such training.

2.2 Section 2: Image processing for Grid Inference

Development of the scalable, efficient Fast Fourier Transform algorithm [10, 11] en-

abled a large body of work exploring frequency domain analysis of various signals.

Frequency domain analysis has been extended to RGB-D inputs for robotics appli-

cations as well, including post-processing the RGB-D images to fill in holes where

depth signal was lost [12], and using various frequency bands to segment objects by

textures [13]. However, these methods apply directly to the scene, whereas this work

considers human inputs labelling portions of a scene.

To the best of the author’s knowledge, no previous work has been done to explore

inference of geometric structures made of arbitrary objects with human-given priors.

For a task that considers boxes only or consistently-placed objects in a grid, there

exist techniques for edge crease detection that would allow for grid reconstruction

[14]. However, products are often not rectangular or regular (eg. bags of chips,

stuffed animals, etc.) and can be packed without regard to orientation, resulting in a

high variance of contours and rendering these approaches ineffective. The authors in

[15] showed that the underlying symmetries in a scene can still be identified through

overlaying noise, which this work will similarly seek to show.

2.3 Section 3: Registration

The Iterative Closest Point (ICP) algorithm has held the place of both industry and

academic standard for registration of two roughly aligned point clouds since its in-

troduction [16], with many variants developed afterwards by the research community

[17]. However, depth-based registration is insufficient for orienting geometrically-

symmetric objects with differing visual markings. Further work has been conducted
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to extend ICP methods to incorporate color [18] and increase robustness to lighting

noise [19], but ICP is known to be a time-intensive algorithm and have a convergence

success highly sensitive to initialization.

Deep learning has proven to be effective for solving various challenges in percep-

tion in recent years, and researchers have explored deep learning-based methods for

oriented object detection [20, 21], though orientation is limited to the axis of the

2-dimensional image with these methods. Deep-learning-based approaches have also

been extended to registration of point clouds, both colorless [22] and colored [23, 24].

Though some existing methods, such as those presented in [24] for learning both visual

and geometric visual features from RGB-D video, may present a potential solution

for quick online registration and orientation of a grasped object, the requirement for

training data prohibits their use for Tutor Intelligence’s robots; it is impractical in a

manufacturing setting to allocate time and resources to collecting training data for

all the various objects the robots may pick.
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Chapter 3

Task Definition

3.1 Robotic System

Tutor Intelligence robots leverage deep intelligence in order to perform a variety

of pick-and-place tasks on differing types of objects. Because the deep intelligence

requires labelled data to learn execution of various tasks, the role of human data-

labellers in annotating pick and place locations in top-down scans of the product

workspace saved by the robot, such as in figure B-5a, is integral to the process. Per-

formance of the deep-learning-based system depends on both accuracy and correctness

of labelled data.

The faster robot scan data can be accurately labelled, the greater the number of

tasks Tutor Intelligence robots can perform. Without external aid, a single human

worker is limited in the rate at which they can produce accurate and correct data

labels. Thus, this work aims to increase the rate of data label generation by automat-

ing portions of the process and decreasing the human worker’s workload, supporting

the application of the robotic system to a wide variety of tasks.

3.2 Robot Tasks

Tutor Intelligence robots are deployed in collaborative production environments,

where humans work directly on the same lines as, and sometimes interact directly
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with, the robots (B-1). Multiple human workers complete the various tasks necessary

for a production line, and the robots perform their own pick-and-place tasks on the

same line next to the workers. The workers collaborate with the robots by loading

products for the robots to pack / unpack and retrieving / placing empty containers for

the robot to use. Workers are tasked with setting up the robot and its jobs, ensuring

that it runs smoothly throughout the day.

Specific tasks Tutor Intelligence robots perform include picking products out of

boxes and placing them onto a conveyor, picking products off a conveyor and onto

another, and picking product from one bin into a box. Many of these scenarios may

have elements of regularity that can be leveraged for increased labelling efficiency.

One such theme of regularity is the geometric placement of products in boxes or

pallets. Robots may either be tasked with picking objects out of or placing them

into these regular geometric arrays. Given that all of the products are identical,

identification of a subset of the objects would allow for inference of a larger set of the

objects.

Many production lines require products to enter parts of the line facing the same

direction (eg. for accurate labelling, boxing, etc.). However, the robot may receive

these objects rotated in various ways and must place them in a specified orientation.

The data labellers’ job of annotating the rotations by hand is time-consuming and

even impossible in situations where there are no identifiable visual indicators of orien-

tation in the images saved by the robot, for example when scanning pallets of canned

goods from a top view. Moreover, a mistake in placement orientation often results in

a product that must be thrown out, for example if it receives a label further down the

line in an incorrect location. Thus, automating this process of deriving the correct

placement rotation for each object will both improve the efficiency of data-labelling

and allow the robot to perform jobs with a larger variety of products that require

placement in specific orientations.

In particular, this thesis work will consider two classes of setups involving elements

of regularity:

1. Products placed in regular geometric arrays, such as bars of soap packed neatly

20



into a shipping box or a pallet of cereal boxes, where the geometry of the product

can be used to infer object labels, and

2. Oriented products, such as a box of soup cans or sauce bottles with labels, that

are required to be placed facing the same direction.
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Chapter 4

Approach

4.1 Grid-Based Inference

As products often are arranged into orderly geometric arrays, these geometries can

be exploited to automate identification of all objects in the arrays for pick and place

operations. The problem is reduced initially to a two-dimensional layer of objects

to reduce parameter tuning for different objects. Additionally, the formulation is

restricted to include only arrays with orthogonal axes, referred to as grids. The

following presents an online, stateless approach to grid inference.

4.1.1 Specification of a Grid

Though grid inference in entirety does not depend on internal state, a representation

is still necessary to internally refine and update the best understanding of geometric

structure. A grid can be specified with the following information:

• 𝑝: grid corner

• 𝑢⃗, 𝑣⃗: unit basis vectors defining grid axes

• 𝑑𝑖𝑚1, 𝑑𝑖𝑚2: dimensions of the grid along axes 𝑢⃗, 𝑣⃗

• 𝑠𝑡𝑒𝑝1, 𝑠𝑡𝑒𝑝2: step sizes along axes 𝑢⃗, 𝑣⃗
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To fully specify the grid without a 45 degree ambiguity of orientation, an assump-

tion is made that the first two given points align along one axis of the grid; in other

words, the first two points either belong to the same row or column of the grid. This

requirement is given as part of the instructions for grid inference usage.

4.1.2 Planar Conversion

Points corresponding to objects in the camera frame must be first projected from the

camera frame to 3-D world points to correct for camera distortions. However, since

inference is being performed on a 2-D layer of objects, the dimensionality must then

be reduced. To reduce dimensionality, points are first projected to the plane that

lies on the pick face of the layer of objects. This plane is defined by the two largest

components found through Principal Component Analysis (PCA).

Because of the noise of real-world data and to mitigate complications that arise

when PCA is run with insufficient points, a collection of points is sampled from the

point cloud surrounding each of the labeller-given points, which is then used to fit the

plane. The process is as follows: the sampling kernel size in meters is first determined

by computing 𝑚𝑖𝑛(𝜖 * 𝑤, 0.02), where 𝑤 is the width of the object found through a

preliminary object scan step described in section 4.2.1 and 𝜖 is a tolerance scaling

factor empirically determined to be 0.7. The width in meters is converted to pixel

space by first projecting a vector of length 𝑤 meters xyz coordinates into pixel space

according to the projection equation

𝑖𝑢, 𝑖𝑣 =

(︂
𝐾 · 𝑝
𝑝𝑧

)︂
𝑥𝑦

(4.1)

where 𝑖𝑢, 𝑖𝑣 are the coordinates of the gripper in the image frame, 𝑝 is the point to

be projected from xyz coordinates, and the subscripts 𝑥, 𝑦, and 𝑧 refer to the x, y,

and z components of the position, respectively. The linearity of the equation allows

for direct projection of the width 𝑤 into pixel space, where the projected width 𝑤𝑝

is 𝑤𝑝 = | < 𝑖𝑢, 𝑖𝑣 > |. For computational efficiency, a maximum of 2500 points were

sampled with uniform stride a maximum of 𝑤𝑝

2
away from each labelled pixel.
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4.1.3 Grid Parameter Inference

With the assumption that the first two given points 𝑎 and 𝑏 are axis-aligned, 𝑢⃗ is first

defined as 𝑢⃗ = 𝑏−𝑎
|𝑏−𝑎| . Determination of the second basis vector, 𝑣⃗, requires definition

of a parameter, 𝜖, thresholding the allowable error in each row or column the grid. A

subsequent point, 𝑐, given by the labeller is found to define the second dimension of

the grid when
|𝑢⃗× (𝑐− 𝑝)|

|𝑐− 𝑝|
> 𝜖 (4.2)

, where |𝑢⃗× (𝑐− 𝑝)| is the perpendicular distance between point 𝑐 and the unit basis

vector 𝑢⃗, and 𝑝 is the corner of the grid. Once a point 𝑐, determined to lie in a different

row/column from preceding points, is found, 𝑣⃗ can be taken to be the perpendicular

vector to 𝑢⃗ with a positive dot product with the vector from 𝑝 to 𝑐 according to

𝑤⃗ = (𝑐− 𝑝)−
(︂
𝑢⃗ · (𝑐− 𝑝)

)︂
𝑢⃗

𝑣⃗ =
𝑤⃗

|𝑤⃗|

(4.3)

The corner 𝑝 can be set arbitrarily and updated as the point with the most negative

sum of dot products with the unit basis vectors 𝑢⃗ and 𝑣⃗. Grid dimensions 𝑑𝑖𝑚1, 𝑑𝑖𝑚2

are determined by projecting all labelled points along the basis vectors and taking

the maximum distances for each axis.

4.1.4 Grid Step Size

Frequency response

The human-given inputs for grid cells will be prone to noise due to fatigue, hu-

man inaccuracy, low-resolution input images, etc. Moreover, any error in step sizes

𝑠𝑡𝑒𝑝1, 𝑠𝑡𝑒𝑝2 will be compounded and result in poor estimates as the number of ob-

jects increases. The periodicity of geometric grids can be leveraged to address this

noise and mitigate intensive parameter-tuning for different target objects by using a

transform-based analysis of step sizes.
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Specifically, labelled points are first projected along the two basis vectors and

represented as an unsigned distance from the corner. The vector of projected distances

𝑑 is discretized into a signal with number of samples

𝑁 = 𝑚𝑎𝑥

(︂
0,

𝑟𝑜𝑢𝑛𝑑(𝑚𝑎𝑥(𝑑))

𝑑𝑥
+ 2

)︂

. 𝑑𝑥 is the predefined step size used in generating the signal, which was determined

to be .002 meters. This signal is initialized with zeros and incremented at the corre-

sponding index for each distance.

Frequencies of the signals are analyzed using the one-dimensional Fast Fourier

Transform implemented in the NumPy FFT package [25, 10].

Filtering

An additional high pass filtering step on the resulting frequency response is performed

before calculation of step size in order to avoid calculating a step size that is a smaller

factor of the true value. With knowledge of the object’s width 𝑤 and length 𝑙 from

the object scan, the minimum allowable frequency is found according to the following:

𝑓𝑚𝑖𝑛 =
1

𝑚𝑎𝑥(𝑤, 𝑙) * 𝛼
(4.4)

𝛼 is a value greater than 1 that accounts for human inaccuracy in the given labels

by giving a more conservative estimate of the lowest acceptable frequency, empirically

determined to be 1.25. Frequencies less than 𝑓𝑚𝑖𝑛 are ignored.

Calculating step size

Step size can be calculated from the fundamental frequency of the geometric array

by first finding the fundamental frequency 𝑓𝑟𝑒𝑞:

𝑓𝑟𝑒𝑞 =
𝑝𝑒𝑎𝑘_𝑖𝑛𝑑𝑒𝑥

𝑑𝑥 *𝑁
(4.5)

𝑝𝑒𝑎𝑘_𝑖𝑛𝑑𝑒𝑥 is determined to be the lowest index of the detected peaks of the
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Fourier Transform with a frequency value above the minimum frequency discussed

in the Filtering step. Peaks are found using the SciPy Spatial find_peaks function

with distance parameter 3 [26]. Consequently, step size is found as the inverse of the

fundamental frequency:

𝑠𝑡𝑒𝑝 =
1

𝑓𝑟𝑒𝑞
(4.6)

in meters.

4.1.5 Grid Generation and Online Updates

With grid parameters fully defined, a grid can be generated upon request. Labels are

generated in 3D world coordinates first and then converted into the camera frame.

Orientation of labels is taken to be identical to that of the first labeled data point

given by the human annotater.

All grid parameters except the basis vectors are updated in an online manner for

each new data label provided. Thus, as more labels are given, a more refined estimate

of the grid of objects can be generated.

4.1.6 User Interface

An interactive interface was created by another member of the team in order to modify

and load the grid of suggestions. The interface provides the ability to send labels

to the grid generation tool, modify the labels (vertical and horizontal translation,

vertical and horizontal rotation, clockwise and counter-clockwise rotation about the

center of the grid), and then accept or reject the labels (individually or as a group).

Additionally, this interface allows the user to save a modified grid and load it onto a

subsequent scan.
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4.2 Automatic Object Orientation

For this task, which requires that all products are identical and only rotated about

the z-axis, two additional human inputs beyond that of the typical workflow are

required: 1) collocated workers are asked to specify the correct orientation of the

product by taking an image of the product correctly oriented at the place location.

2) The human data labellers use this reference image to label the correct orientation

of a placed product.

The robot automatically calculates the necessary intermediate steps such that the

data labellers can otherwise label product without considering orientation. First,

the robot scans the object with the lower RGBD camera and creates a model of

a "canonical" object. Then, features are extracted from the RGB image. For each

object that is required to be placed, the robot will pick the object, save a single image

of the picked object, and from that image calculate the rotation necessary to place

the object in the requested orientation.

4.2.1 Object Scan

In order to correctly orient objects, there must be an understanding of the correct

orientation. In this approach, I have chosen to utilize a "canonical" object as a

reference and specify the correct rotation in relation to this canonical object. Previous

work at Tutor Intelligence enables the robot to take multiple scans of an object’s sides

and build a point cloud model of the object from theses scans. I extract canonical

features using the RGBD scans and object point cloud generated by this process.

4.2.2 Partial Scan and Object Filtering

Following a successful pick of an object, the robot moves to a predetermined joint

configuration where the product is in view of the bottom RGBD camera and saves a

single scan. The rigid transformations of the base camera in the world frame 𝑐
𝑤𝑇 and

gripper in the world frame 𝑔
𝑤𝑇 are known and can be composed to find the location
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of the gripper in the camera frame according to

𝑔
𝑐𝑇 = 𝑖𝑛𝑣(𝑐𝑤𝑇 ) ·𝑔𝑤 𝑇 (4.7)

. The euclidean norm, 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟, of the translational component of 𝑔
𝑐𝑇 is used to estimate

the valid depths that correspond to the object in the depth scan. The object is filtered

from the background by thresholding for depth values 𝑑 that are within 𝛼 *𝑚𝑎𝑥_𝑤

of the distance between the camera and the gripper according to

𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 − 𝛼 *𝑚𝑎𝑥_𝑤 ≤ 𝑑 ≤ 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 + 𝛼 *𝑚𝑎𝑥_𝑤 (4.8)

. Maximum object width 𝑚𝑎𝑥_𝑤 is determined by taking the maximum of width

𝑤 and length 𝑙, where 𝑤 and 𝑙 are determined during the earlier object scan step

detailed in section 4.2.1, and 𝛼 was empirically determined to be 1.3.

The bitwise depth mask created by this filtering step is then additionally pro-

cessed to filter out points above the object (corresponding to the gripper) and below

the object that may be close to the object (such as additional product). The 3D

coordinates of the gripper can be found in the camera image according to equation

4.1, where 𝑝 in this case would be the position of the base of the gripper in the camera

frame. As the predetermined scanning joints require the object to be held vertically

(in other words, roll and pitch of the object expressed in the world frame are both

zero), the gripper is segmented out of the image with a horizontal line at its location

in the image. Similarly, points below the object are segmented out by finding the

location of the bottom of the object in 3D world coordinates using object height from

the object scan, projecting this point into the image according to Equation 4.1, with

𝑝 in this instance referring to the position of the gripper tip in the camera frame.

After segmenting all values below the horizontal line in the camera image that inter-

sects this point, the result is an image with the grasped object segmented from the

remainder of the scene.
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4.2.3 Feature Extraction and Matching

Keypoints and descriptors in the segmented RGB image are detected and computed

using the OpenCV implementation of SIFT feature extraction [27] with default pa-

rameters. Keypoints and descriptors for all scans in the preliminary full object scan

step are computed and saved, and keypoints and descriptors for the single partial

scan taken during the pick-and-place task are computed at run time.

SSC

The methods presented by Bailo et al. in [28] were explored as a method to increase

performance by forcing use of keypoints that describe varying features on the object.

However, downsampling through Suppression via Square Covering (SSC) actually de-

creased accuracy of final calculated correctional rotation. A possible explanation for

this decreased performance is that while many applications involving keypoint detec-

tion are sensitive to redundant information (eg. clusters of keypoints), the following

registration step utilizes a voting-based approach to align two point clouds. Thus, it

is more effective to have large numbers of correct matches than to have spread out

matches with lower confidence.

Feature Matching

Matches between the descriptors of the canonical object scan and the partial scan

were calculated using OpenCV brute-force matcher with L1 norm and cross check.

The 𝑛 matches with the lowest distances were used in following calculations, with 𝑛

empirically determined to as 𝑛 = 50.

For each match, the 3D locations of the corresponding keypoints in the canonical

scan and the partial scan were calculated by projecting pixel values 𝑢, 𝑣 from the

RGB-D images back to a point in world coordinates 𝑝 according to

𝑝 = 𝐾−1 ·

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ * 𝑑 (4.9)

30



where 𝐾 is the camera intrinsics matrix and 𝑑 is the sensed depth at pixel 𝑢, 𝑣. To

constrain the algorithm to only calculating a rotation about the z-axis of the gripper,

the z coordinates of these match points were zeroed.

4.2.4 Registration

Once feature extraction has been performed for both the reference and partial scans,

the partial scan can be registered to the canonical scan.

After the 3D locations of the keypoints have been found, the canonical and partial

sets are aligned using Random Sample Consensus (RANSAC) to account for noise

and fitting models through the Kabsch-Umeyama algorithm, which minimizes the

overall distance of clouds with known correspondences as described in [29] and [30].

RANSAC is run with a maximum of 500 iterations and an error threshold of .001.

This generates a rigid transformation comprised of position and rotation of the partial

scan keypoint point cloud to the canonical 𝑝
𝑐𝑇 . Since we assume all objects are picked

up from the "top," the yaw component of the rotation is extracted as the correctional

rotation.

Due to the variations of placement of the object in the robot gripper (ie. object z

axes are not guaranteed to be aligned with the gripper z axis) and the zeroing of key-

point z-coordinates resulting in some rotational ambiguity, the RANSAC alignment

may produce a rotation with a roll offset by approximately ±𝜋 radians accompanied

by a yaw offset by approximately ±𝜋 from the true values. To address this edge case,

an additional check was implemented on the value of the calculated roll component 𝑟

of the rotation: if 𝑎𝑏𝑠(𝑎𝑏𝑠(𝑟)− 𝜋) ≤ 𝜖, where 𝜖 is 0.2, the calculated yaw to reorient

the object was rotated by 𝜋 radians.

4.2.5 Flattened Scan Representation

Since target objects can be rotationally symmetric from a top-down view, a different

representation is necessary to allow data labellers to visually identify the correct

rotation of object placement and annotate the correct placement. A flattened view
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of the object’s sides is generated by first finding the minimum bounding box that

includes the entirety of all masked views of the object’s sides from the object scan

step (4.2.1) and cropping the images by this bounding box. These cropped images are

subsequently horizontally concatenated and warped into a ringlike shape. Since all

component scans are constrained to be the same size and scans are taken at consistent

angle intervals, the scan angles that correspond to columns in the concatenated array

can be linearly interpolated. The correspondences of image columns to scan angles

are stored, allowing determination of the rotation annotated by the data labeller. At

run time, this rotation from the canonical orientation to the requested orientation,
𝑟
𝑐𝑅, is then composed with the correctional rotation from the scan orientation to the

canonical 𝑐
𝑠𝑅 to generate an orientation for the place action according to

𝑟
𝑠𝑅 =𝑐

𝑠 𝑅 ·𝑟𝑐 𝑅 (4.10)

.
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Chapter 5

Results and Evaluation

To evaluate these effectiveness of grid inference and automatic orientation as tools to

increase data labelling efficiency, an exploratory pilot study was conducted exploring

usage of these tools.

5.1 Aims of the Experiment

The aims of both the grid inference and auto-orientation of product is to increase the

rate of successful annotations. The rate of successful annotation 𝑟 can be measured

as the number of successful annotations per minute (APM), calculated as the total

number of successful annotations 𝑎 divided by total time scan data are present on the

participant’s screen in minutes 𝑡 according to

𝑟 =
𝑎

𝑡

An annotation is considered successful if it results in a successful pick-place motion.

The following hypotheses are proposed concerning rate of annotations:

Hypothesis 1. The average rate of annotations will be greater when grid sugges-

tions are enabled.

Hypothesis 2. The average rate of annotations will be greater when auto-

orientation is enabled.
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Moreover, since auto-orientation is intended to be used in situations in which an

object’s place orientation must be accurate, the following hypothesis is proposed.

Hypothesis 3. The average rate of erroneous annotations will be lower when

auto-orientation is enabled.

A pick-place motion is defined as erroneous when it results in a place where the

object is rotated more than ±30 degrees from the requested placement.

Both tools aim to perform portions of the work the human labeller would other-

wise have to perform. Thus, we formulate the following two hypotheses surrounding

workload:

Hypothesis 4. Data labellers will experience decreased workload when grid sug-

gestions are enabled.

Hypothesis 5. Data labellers will experience decreased workload when auto-

orientation is enabled.

To evaluate these two hypotheses, participants were asked to complete a NASA

Task Load Index (TLX) survey, detailed in table A.2, following each experimental

condition. The NASA TLX is a well-studied method for evaluation of multiple facets

of perceived workload: Mental Demand, Physical Demand, Temporal Demand, Per-

formance (reverse scale), Effort, and Frustration [31]

Additionally, participants responded to subject questions measuring workload

and human-machine team fluency according to a five-point Likert response format

(“strongly disagree,” “weakly disagree,” neutral,” “weakly agree,” and “strongly agree”)

to gain a greater understanding of workload perception [32]. Three categories of ques-

tions were asked: robot teammate traits, working alliance for human-robot teams, and

additional measures of team fluency. These questions are enumerated in A.3.

Following completion of all trials, participants were given an open response survey,

detailed in table A.4, in order to gain further insight into the tools. Given the small

sample size (𝑛 = 4) of this exploratory pilot study, these responses were especially

important for understanding usage and effectiveness of the tools.
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5.2 Experimental Design

In this study, participants were asked to label data generated by two robotic systems

performing an unloading task, which involved the robot picking items out of a 3-by-4

grid and placing them onto a conveyor belt as shown in Figure B-2. Both systems

utilized a UFACTORY xArm 6 robot arm on a Swivellink stand equipped with a

proprietary vacuum gripper. One system was outfitted with two Luxonis RGB-depth

cameras and was set up to unload 4-by-3 trays of 16.3 oz. Skippy Super Chunk

Peanut Butter jars. The other system was outfitted with two Intel RealSense RGB-

depth cameras and was set up to unload 4-by-3 trays of 19 oz. Progresso Reduced

Sodium Savory Chicken & Wild Rice soup cans. The dual setup was used in order

to increase the cognitive workload of the participants by introducing an element of

context-switching, as all participants were familiar with the labelling tasks prior to

the start of the study.

Products are shown in Figure B-3. Neither of these two products had identifying

features on the top face that would allow a labeller to determine object orientation

from a top-down robot scan, so tape was placed in the centers of the pick faces of

products labelled with either a "P" or "C" (corresponding to "peanut butter" and

"chicken soup"). As these tape labels are rotationally asymmetric and are aligned

with the product labels, it is possible to determine object orientation from orienting

the letters. Trays of both labelled objects are shown in Figures B-4a and B-4b. Soup

cans were picked from the bottom due to hardware limitations surrounding the pull

tab on the top. The study refers to all components of the software (including the grid

inference tool) and hardware collectively as "the robot" for ease of notation.

Utilization of the grid inference tool and auto-orientation tool were modulated in

differing trials. As referenced in section 5.1, annotations were evaluated for this study

by being used directly as inputs for the two robotic systems. Successful annotations

were tallied, and for the three out of five trials that required evaluation of accuracy of

orientation, accurate annotations were tallied. An image of the object in the correct

orientation was given to the participant to specify target placement orientation.
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Five ten-minute trials were conducted with participants to test varying configu-

rations of the two independent variables:

1. Experiment 1: Baseline. Participants were asked to label pick and place lo-

cations for robot-generated scan data. No specific place orientation was required

during this trial.

2. Experiment 2: Baseline with Orientation Constraint. Participants were

asked to label pick and place locations for robot-generated scan data. A specific

place orientation was required during this trial.

3. Experiment 3: Grid Inference. Participants were asked to use the grid

inference tool to automatically generate multiple picks. Ultimately, participants

were able to decide whether to accept the grid suggestions or reject them and

generate labels by hand. No specific place orientation was required during this

trial.

4. Experiment 4: Auto-Orientation. The auto-orientation tool was enabled

for this trial. Participants were asked to label pick locations and the place

location on the flattened object scan. A specific place orientation was required

during this trial.

5. Experiment 5: Grid Inference + Auto-Orientation. The auto-orientation

tool was enabled for this trial, and participants were asked to additionally gen-

erate suggestions using the grid inference tool. Participants were allowed to

accept or reject grid suggestions, while orientation was determined by the auto-

orientation tool and the annotated flattened object scan. A specific place ori-

entation was required during this trial.

To reduce bias from the participants learning how to effectively use the tools, a

random number generator was used to determine the order in which each participant

conducted the five trials.

Before their first trial with each tool, participants were given a demonstration on

usage. Additionally, prior their first trial using the grid inference tool, participants
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were given five minutes to familiarize themselves with the tool due to the complexity

of usage.

5.3 Participants and Participant Biases

The exploratory pilot study was run with four participants, all employed at the com-

pany. Thus, all participants were familiar with the robotic system and tasks, and

all had previously annotated data generated by the robots (though none generated

with the two products used in the study). Participants had various amounts of ex-

perience with data annotation, and two had seen and briefly used the grid inference

tool prior to the study. Responses to the questionnaires may have been biased by a

consideration that surveys may be used to evaluate participants’ performance at the

company. Moreover, participants had an understanding that the grid inference and

auto-orientation tools were intended to improve productivity and efficiency and may

have been primed to look upon them favorably. As all participants were colleagues

with the author, they may have been less inclined to respond negatively, and they

may have additionally shared information about the study with each other prior to

the conclusion of the study.

While statistically significant conclusions may not be drawn from such a small

sample size, the data may be used to indicate general trends and as a window into the

effectiveness of the grid inference and auto-orientation tools for increasing efficiency.

A full user study would be required to corroborate or disprove the trends found

through this preliminary study.

5.4 Experimental Results

5.4.1 Limiting Factors

Due to the nature of running the experiment in the company robot lab test setting,

there were many factors that could have a confounding influence on the variables of

interest in the study. The network was unstable across approximately three quarters
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of all trials. Other employees in the office may have presented distractions moving

through the lab space, having conversations, looking for tools, etc. The nature of the

robotic system also means that scan data cannot always immediately be generated

for the participants to annotate following completion of the current annotation task.

As employees of the company, participants were also required to perform a number

of complementary tasks during each trial that detracted from performance.

Additionally, a couple of hardware complications acted to reduce possible perfor-

mance. The RGB-D cameras on the robotic system tasked to unload jars of peanut

butter provided inconsistent depth information, affecting the success of the executed

robot picks and grid inference. Additionally, due to the ridges on the soup cans and

the lack of appropriate smaller grippers, the tolerance of the labelling task was very

low for data generated with the cans. This limitation resulted in a constraint that

annotations must produce a robot pick within approximately 2cm of the center of

a can to be counted as successful. Participants generated approximately 30% more

labels for the data generated with peanut butter jars than for the data generated with

soup cans.

Data was not fully recorded for Trial 1 with Participant 2, and the trial was

omitted from analysis. Participant 2 provided unnecessary manual orientation labels

(as requested for Trial 2) during Trial 4, potentially biasing results for that trial.

5.4.2 Performance

Participants’ average successful annotations per minute (APM), accurate APM, and

inaccurate APM are given in table A.1. On average, participants’ successful annota-

tion rate was much higher for the baseline trial than all others at 17.69 APM, almost

doubling the second quickest APM. Trial 3: Grid Inference produced the slowest

successful annotation rate at 5.96 APM, and the other trial involving the grid in-

ference tool (Trial 5) produced the second slowest successful annotation rate at 7.86

APM. Trials 2: Baseline with Orientation Constraint and 4: Auto-Orientation had

similar successful annotation rates, but rate of accurate annotations was higher for

Trial 4 (8.88 APM vs. 7.29 APM). Trial 2 also resulted in about 2.24 inaccurate
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APM when evaluated on the robot system, while Trials 4 and 5, which utilized the

auto-orientation tool, resulted in about 0.35 and 0.42 inaccurate APM, respectively.

5.4.3 Post-Trial Questionnaires

Responses for the NASA TLX survey measuring workload were tallied and averaged.

Averages rounded to the nearest integer value are given in Figure B-7. Responses for

the post-trial questionnaires were also tallied and averaged according to the mapping

1: strongly disagree; 2: weakly disagree; 3: neutral; 4: weakly agree; 5: strongly agree,

except for question 4, which was evaluated on a reverse scale. Average responses across

participants are given in figure B-6.

Trials where the grid inference tool were used (Trials 3 and 5) were found to be the

most frustrating and require the greatest mental demand. Moreover, these two trials

required the most effort to complete, closely followed by the trial requiring manual

labelling of product orientations (Trial 2). These three trials were also perceived

as more rushed, while Temporal Demand was perceived as lowest during Trial 4.

Performance was perceived to be lowest during Trial 3.

5.4.4 Open-Response

Three out of four participants indicated that they preferred to label picks manually

over accepting grid inference suggestions. Two of these participants cited irregularity

of object grids as a contributing factor. Both products (peanut butter jars and soup

cans) were placed in cardboard trays at the pick location, resulting in relatively regular

product placement. However, the low error tolerance resulting from the geometry of

the cans likely caused minute changes in product placement to have a disproportionate

effect on success of annotations. Moreover, participants preferred the certainty of

annotating pick locations by hand rather than relying on an uncertain automated

aide.

Interestingly, the two participants with less experience labelling data were more

open to using the grid inference tool than the two participants with more experience
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labelling data. A likely explanation would be that the two with more experience

have had more practice labelling by hand and are thus more comfortable with the

manual workflow. This familiarity would be especially relevant as the controls for

using the grid inference tool are significantly more involved than those for manual

labelling, resulting in interacting with the grid inference tool "taking up more time."

Grid inference performance also suffers when depth information is incomplete, and

one of the robotic systems provided scans with significant amounts of invalid depth.

Two participants indicated that they were less inclined to use the grid inference tool

for scans with poor depth information.

Participant 2’s response to question 3 was unrelated to the prompt and did not

respond to question 4, so their data for both questions were not included in analysis.

All other participants showed significant preference for the auto-orientation tool, one

responding that the tool "was extremely helpful with cylindrical object[s] that [have]

little to no visual indicator of the orientation from the top view." Two participants

noted that the time required for the robot to scan the object to orient it during the

evaluation phase slowed down its performance.

5.5 Evaluation

The findings of the exploratory study contradict Hypotheses 1 and 2 as the suc-

cessful annotation per minute APM of the Baseline trial was much higher than that

of the Grid Inference trial, and the APM of the Baseline with Orientation Constraint

trial was also higher than that of the Auto-Orientation trial. However, the APM of

Trial 2 was only around 3 percent faster than that of Trial 4, and the rate of accurate

APM was greater for both Trials 4 and 5 compared to the baseline of Trial 2. The

error rate of annotations was greater than five times higher for Trial 2 than Trials 4

and 5, supporting Hypothesis 3. These findings suggest that, even with the tradeoff

of the robot requiring additional time to perform the partial scan for auto-orientation

during robot runtime, the auto-orientation tool is effective for increasing the rate of

accurate annotations.
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The significant increase in rate of the baseline trial compared to all other trials

can be partially attributed to participants’ familiarity with generating annotations

through this workflow and unfamiliarity with all other workflows. Moreover, current

engineering efforts have targeted the baseline workflow, whereas both grid inference

and auto-orientation tools are experimental, potentially resulting in additional bias.

Nonetheless, the resulting APM metrics suggest that both the grid inference and auto-

orientation tools slow the labelling process. Further testing is necessary to confirm

the factors that contribute to the lowered rate.

The post-trial NASA TLX survey ratings contradict Hypothesis 4 and Hypoth-

esis 5, as participants experienced increased workload when the grid inference tool

and/or the auto-orientation tool were turned on. Moreover, the results suggest that

the increase in participant workload was significant for the grid inference tool. 20

controls exist for interacting with the tool, likely resulting in a large learning curve

that was not entirely addressed by the five minutes participants received before the

first grid inference trial. Moreover, a combination of imperfect performance and lack

of ability to easily modify individual labels (ie. deleting a label could only be achieved

through cycling through all labels until the desired label was selected or deleting the

entire set of labels) likely contributed to increased workload.

Participants’ higher average workload rating for the auto-orientation tool when

compared to the baseline trial likely is influenced at least in part by unfamiliarity, as

comfort and understanding of the robot (Questions 4-5) were rated poorer in trials

utilizing the two tools as opposed to the baseline. This rating likely is also affected

by the previous experience of the participants in performing data labelling tasks.

However, the lower rating of Temporal Demand for the auto-orientation tool trial

compared to the baseline suggests that the tool may be helpful in increasing APM

rate once labellers become comfortable with the tool.
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5.6 Recommendations

Through the conduction of the exploratory pilot study, a number of recommendations

to the company have been identified.

5.6.1 Grid Inference

Participants’ main concerns about grid inference centered around flexibility and user

agency. For example, several participants noted that more flexible controls in inter-

acting with the grid generation feature would have improved the usage experience

and annotation speed. The following are core recommendations to improve the grid

generation user experience:

• Automatically save individual labels inputted to the grid inference tools. Cur-

rently, labellers can choose to directly label a scan or provide labels to the grid

inference tool. This creates a cost for using the grid generation tool if the sug-

gested grid labels are incorrect; the time spent annotating labels for the grid

inference tool will have produced no viable labels. Instead, a mode to annotate

as usual while sending the same annotations to the grid tool would incur no

additional cost while generating a potentially time-saving grid of labels.

• Improved interface for deletion of individual labels in the generated grid. Partic-

ipants expressed frustration that deletion was only possible by cycling through

generated labels until the desired one was reached or deleting all suggested

labels at once.

• Ability to modify individual points or sections of labels in the grid structure.

Due to a variety of factors, the target objects may not be presented in a perfect

geometric array. Thus, a fast and efficient method of rectifying the regularly-

arrayed grid labels to account for this imperfection would be to allow movement

of groups of suggested labels independently of the rest of the suggestions.

• Opinions were divided on the effectiveness of the current mapping of keyboard

controls to grid adjustment actions. Some participants indicated they would be
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"more inclined to use gridding if the [keyboard] control / layout was improved,"

while others indicated they enjoyed using the current controls. Further user test-

ing on the user experience of gridding may be necessary to develop an intuitive,

effective interface.

• Invalid depths, as shown in figure B-5b, often caused poor grid suggestions.

Another strategy for fitting a plane may be necessary to mitigate this effect

(or alternatively, further investigation into camera hardware solutions). For

example, it may be more effective to first segment out the product in the RGB

image, and then employ a method such as RANSAC to fit a plane to the tops

of the products using only valid depths.

In its current state, the use of the grid inference tool carries a high workload likely

extending beyond a high workload generated by the learning process, especially be-

cause objects in the real world are often not presented in perfectly geometric arrays.

This high workload is likely a driver of decreased rate and thus should be addressed

before the tool is integrated into the annotation workflow. Future usage of the grid

inference tool would benefit from improvements to robustness and ease of use.

5.6.2 Object Registration and Automatic Orientation

In general, the auto-orientation tool was found by study participants to be helpful

and produce approximately the same amount of workload as the baseline. While

usage of the tool did not increase the rate of successful APM, it increased the rate of

accurate APM, generating fewer inaccurate annotations. However, robot performance

was noted to be slower than that of the baseline during the validation execution step.

The following are core recommendations to improve auto-orientation:

• Increasing speed of robot execution. Because the robot pauses to take a scan

of the grasped object in a predetermined joint location, it is unable to pick and

place objects as quickly as in the Baseline trial. While it may be reasonable to

expect a decrease in pick-place rate when there is an orientation requirement,

steps may be taken to speed up the motions of the robot.
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– Dynamic calculation of scan location. A scan joint location that results

in little deviation from the planned path from pick to place joints can be

calculated for each object pick / place pair. A straighter path should allow

for an increased robot pick / place rate.

– The pausing of the robot to save a partial scan of the object results in a

reduced robot pick rate. The effect of auto-orientation on pick rate could

be reduced by developing a method for the robot to take a scan while still

moving toward the place location. Because it is necessary to mitigate blur

on the scan in order to extract viable features, a scan protocol could be

constructed where, for example, the robot slows down while taking the

scan, then speeds back up after the scan has been taken.

• Larger flattened scan representation. Multiple participants mentioned that the

flattened scan representation was "hard to see" at its current scale. A straight-

forward solution would be to increase the size of the image.

• Communication of the desired orientation of the product. Participants re-

quested multiple confirmations of the desired product placement and time to

view and understand product visuals. While both requests were possible to ad-

dress in this controlled user study, in a practical application, labellers would not

receive support beyond the singular image showing requested product orienta-

tion. One possible solution would be to show a scan of all sides of the object

along with multiple images of the object placed in the correct orientation taken

from varying angles in order to provide as much context as possible.

Overall, auto-orientation was found to be a useful tool. Notably, in this ex-

ploratory study, labels were given to visually distinguish orientation from a top-down

view; this laboratory labelling step would not be available in real-world settings.

Thus, this tool will be especially helpful in enabling robots to perform pick-and-place

tasks for objects with little to no visual indicators from a top-down view. Even for

tasks involving objects with rotationally-asymmetric identifying features on the top

face, such as for printed boxes, the feature can help to increase accuracy and decrease
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the temporal workload of labellers, potentially increasing productivity. The most hin-

dering factor to utilization would be the slower speed at which it requires the robot

to run. Once addressed, this feature would generate value integrated into the robotic

systems.
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Chapter 6

Discussion

6.1 Recommendations for System Designers

The exploratory pilot study uncovered the influence of the ease of user interaction,

which appears to be equally important as reliability, on usage and efficacy of tooling.

This suggest that when designing and developing features for robotic systems that

incorporate an element of human interaction, system designers should thoroughly

study and iterate upon the human experience in order to produce the most effective

tooling. Moreover, familiarity with a particular workflow appears to confer a large

advantage, the effects of which should not be discounted. A centralized training

program may also be beneficial for tools with more involved usage.

6.2 Limitations

The assumptions made by the grid inference tool regarding dimensionality of the grid

structure and reduction to problems involving arrays with orthogonal axes, while

applicable to many factory settings, are limiting nontheless. Moreover, the internal

grid representation does not take into account that the width and length of objects

may be significantly different when calculating step size and could be modified to

do so. The high-pass filtering step currently may result in a step size that is half

the ground truth if an object has one dimension that is larger than twice the other

47



dimension.

Auto-orientation is limited by lighting conditions and scan quality; these methods

are not robust to environmental changes such as sunlight hitting a workspace or

dust blocking the cameras. These limitations could be mitigated by a controlling the

environment of the robot systems.

The exploratory pilot study was affected by many external factors and was con-

ducted with a small set of participants, so the data cannot be used for extensive

analysis. Accuracy was evaluated by hand and is thus susceptible to human error.

6.3 Future Work

Future exploration of the grid inference tool includes extrapolating to a 3D array

of objects, such as a full pallet of objects in a warehouse. Additionally, an auto-

matching feature that employs computer vision methods such as template matching

or deep segmentation in order to automatically match and move grid-generated labels

to objects in a scan image could potentially result in large performance gains.

For auto-orientation, future work could include 3D automatic orientation, for

example for bin picking tasks where objects are not guaranteed to be upright. Opti-

mization for computational efficiency could also be performed.

6.3.1 Full User Study

The exploratory pilot study conducted as part of this work points towards promising

methods for increasing productivity of human data labellers. As a major limitation

of the exploratory pilot study was the small and biased set of participants, further

evaluation conducted through a full user study would be valuable, allowing for more

accurate evaluation of the grid inference and auto-orientation tools and their ability

to increase efficiency and productivity of labelling. It would additionally be valuable

to study the requirements and challenges to learning how to interact with and use

the tools. Furthermore, this expanded study could explore more varied scenarios,

including data generated by robot systems picking different geometric shapes, and
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data generated by more than two systems. Analysis of the human labeller’s workload

and affected ability to context-switch could help to inform system design for further

efficiency improvements.

6.4 Conclusions

The grid inference and auto-orientation tools show promise for aiding a human labeller

in efficiently annotating data, especially in situations where the human worker may

have insufficient information to correctly generate annotations. Further improvements

are necessary for both to increase utility for the Tutor Intelligence robotic systems.

A full user study is recommended to fully understand the usage and impacts of these

tools.
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Appendix A

Tables
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Table A.1: Average annotations per minute (APM) across participants, where a suc-
cessful annotation results in a pick and subsequent place (pick-place) of an object, an
accurate annotation results in a pick-place of an object oriented within ±30 degrees
of the requested orientation, and an inaccurate annotation results in a pick-place
of an object oriented more than ±30 degrees differently compared to the requested
orientation. Annotations per minute are rounded to two decimal places.

Trial Successful APM Accurate APM Inaccurate APM
1: Baseline 17.69 N/A N/A
2: Baseline with Orienta-
tion Constraint

9.54 7.29 2.24

3: Grid Inference 5.96 N/A N/A
4: Auto-Orientation 9.24 8.88 0.35
5: Grid Inference + Auto-
Orientation

7.86 7.44 0.42

Table A.2: Task Load Index (TLX) - Post-Trial Questionnaire. Evaluated on a 21-
point scale from 0: Very Low, to 20: Very High.

1. Mental Demand: How mentally demanding was the task? (Very Low: 0 - Very
High: 20)

2. Physical Demand: How physically demanding was the task? (Very Low: 0 -
Very High: 20)

3. Temporal Demand: How hurried or rushed was the pace of the task?(Very Low:
0 - Very High: 20)

4. Performance: How successful were you in accomplishing what you were asked
to do? (Perfect: 0 - Failure: 20)

5. Effort: How hard did you have to work to accomplish your level of performance?
(Very Low: 0 - Very High: 20)

6. Frustration: How insecure, discouraged, irritated, stressed, and annoyed were
you? (Very Low: 0 - Very High: 20)
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Table A.3: Subjective Measures - Post-Trial Questionnaire. Questions 1-3 pertain to
robot teammate traits, questions 4-5 pertain to the working alliance for human-robot
teams, and questions 6-10 pertain to additional measures of team fluency.

Robot teammate traits

1. The robot was intelligent.

2. The robot was trustworthy.

3. The robot was committed to the task.

Working alliance
4. I feel uncomfortable with the robot (reverse scale).

5. The robot and I understand each other.

Additional measures

6. I was satisfied by the productivity of the robot.

7. I would work with the robot the next time the tasks
were to be completed.

8. The robot’s intelligence increased the productivity
of the team.

‘ 9. The robot’s intelligence allows me to do less work.

10. The robot and I worked as quickly as possible.

Table A.4: Subjective Measures - Post-Study Open-Response

1. When the products were not required to be placed in a certain orientation,
which of the scenarios did you prefer, and why?

2. When the products were required to be placed in a certain orientation, which
of the scenarios did you prefer, and why?

3. If you were going to add a robotic assistant to a manufacturing team,
which setup (baseline, grid inference, auto-orientation, grid inference + auto-
orientation) would you use, and why?

4. What aspects of grid inference and auto-orientation made you more or less
inclined to use each feature?

5. How useful was the circular display of the product for auto-orientation? How
could the display be more helpful?
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Appendix B

Figures
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Figure B-1: Person moving collaborative Tutor Intelligence robot to the correct po-
sition.
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Figure B-2: Exploratory pilot study test setup with robot system, product, and
conveyor belt.
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Figure B-3: Exploratory pilot study test products: soup can and peanut butter jar.
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(a) 3x4 tray of peanut butter with labelled lids.

(b) 3x4 tray of upside-down soup cans with labelled bottom faces.

Figure B-4: 3x4 trays of products used for the conveyor unloading task in the ex-
ploratory pilot study from a top-down view. Tape labels are aligned to product labels;
orientations of the products are varied.
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(a) Top-down product scan, RGB image only

(b) Top-down product scan, RGB image masked by valid depths

Figure B-5: Two example scans of target pick products from a RGB-D camera, (a)
showing the original RGB scan, and (b) showing the RGB scan masked by valid
depths. Significant amounts of invalid depths are returned by the camera in this
example of a "poor" scan.
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Figure B-6: Likert Scale responses to post-trial surveys averaged across participants,
grouped by question category. Questions are listed in table A.3
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Figure B-7: Responses to post-trial NASA TLX workload surveys averaged across
participants.
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