
Refactoring Tutor: An IDE Integrated Tool for
Practicing Key Techniques to Refactor Code

by

Mario Leyva

S.B. Computer Science and Engineering
Massachusetts Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Mario Leyva. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Mario Leyva
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Robert C. Miller
Distinguished Professor of Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Refactoring Tutor: An IDE Integrated Tool for Practicing

Key Techniques to Refactor Code

by

Mario Leyva

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Refactoring code is an important skill to become a competent software engineer,
however it is usually never explicitly taught in coding intensive courses. Even though
engineers in academia and industry agree refactoring is important, most novice pro-
grammers are unaware of the code smells they should avoid when writing code. This
thesis discusses a novel tutoring system to assist novice programmers with refactoring.
This tool provides refactoring exercises to students in an introductory programming
class. The tutor exposes students to various types of code smells and has them de-
liberately practice how to refactor. The tutor infrastructure has proven to be robust
to several refactoring exercises. Based on a user study involving the students and the
staff members from 6.1010: Fundamentals of Programming, the tutor infrastructure
has shown to be robust to bugs and staff feedback. The tutor shows promise, but fur-
ther studies with more students are necessary to evaluate its effectiveness on teaching
student refactoring.

Thesis Supervisor: Robert C. Miller
Title: Distinguished Professor of Computer Science

3

4

Acknowledgments

Completing this thesis was not possible if it were not for the invaluable mentorship

of my thesis advisor, Robert C. Miller. I am indebted to Prof. Rob Miller for all the

guidance, support, and patience that helped me complete this project. I appreciated

all the time and effort that was made to make sure my MEng went smoothly. I am

rather lucky to have had such a great advisor.

I would also like to especially thank Gaby Ecanow. It was tremendously helpful

having someone who was in the same boat as me throughout the MEng. I am grateful

for all help getting started and especially appreciate the responsive texts on questions

I had about the tutor.

The people who were courageous enough to try the refactoring tutor were a bless-

ing; this included the TAs, LAs, and students of 6.1010. I thank them for providing

me with crucial feedback and ideas to improve the tutor.

Last but not least, I would like to thank my family and friends, especially my

parents. I cannot, in any way, repay all the time and effort my parents invested in

me. Without them, I wouldn’t have gotten through MIT, even less so accepted. The

thought of returning the favor and making them proud is what has gotten me through

so many sleepless nights and stressful times during my time at MIT.

5

6

Contents

1 Introduction 13

2 Related Work 17

2.1 Code Smells . 17

2.2 Why Refactoring? . 18

2.3 Deliberate Practice . 18

2.4 Teaching Refactoring . 19

3 Code Smells 21

3.1 Boolean Laundering . 21

3.2 Line too long . 22

3.3 Variable Renaming . 25

3.4 Variable Naming Inconsistencies . 26

3.5 Magic Numbers . 27

3.6 Code Hoisting . 29

3.7 Conditional Complexity . 30

3.8 Excessive Nesting . 32

3.9 Lack of Idiomatic Syntax . 35

4 Concept Map 37

4.1 Level 0 Concept Group . 37

4.2 Level 1 Concept Groups . 38

4.3 Level 2 Concept Groups . 39

7

5 Design 41

5.1 Exercise Authors . 41

5.2 The Student . 42

6 Implementation 49

6.1 Exercise Checking . 51

6.2 Diff Checking . 52

6.3 Diff Matching . 54

6.4 Exercise Metadata . 57

6.4.1 diffConfiguration . 60

6.4.2 Yanked Insertions . 61

6.4.3 Transformers . 63

6.4.4 Triggered Hints for Diffs . 66

6.5 Test Cases . 67

7 Deployment 69

7.1 First Deployment . 69

7.2 Second Deployment . 70

8 Evaluation 73

8.1 Student Results . 73

8.1.1 Boolean-laundering-if-statements 75

8.1.2 Single-character-variable-name 80

8.1.3 Single-character-variables-compound-interest 83

8.1.4 Register-user-never-nest . 85

8.1.5 Tuple-unpacking-in-loops . 89

8.2 Staff Results . 91

8.3 Staff Feedback . 92

8.3.1 Hints . 93

8.3.2 Exercise Description . 94

8.3.3 Exercise Bugs . 95

8

8.4 Infrastructure Bugs . 96

9 Discussion 99

9.1 Future Improvements . 100

10 Conclusion 103

9

10

List of Figures

4-1 Refactoring Tutor Concept Map . 38

5-1 Exercise Files . 42

5-2 Refactoring Tutor Concept Map Progress 43

5-3 Code Hoisting Exercise . 44

5-4 Running Test Cases on Refactoring Tutor 46

5-5 Submitting Exercise before running Test Cases 46

5-6 Failing Exercise on Refactoring Tutor 47

5-7 Completing Exercise on Refactoring Tutor 47

6-1 Refactoring Tutor Architecture . 50

6-2 Diff Checker . 54

6-3 Matching Student And Staff Diffs . 56

6-4 Yanking Insertions in Magic Number Exercise 62

8-1 Exercises Completed by students in 6.1010 74

8-2 Passed and Failed Attempts per Exercise from students 75

8-3 Number of Exercises completed by staff 92

8-4 Passed and Failed Attempts per Exercise from staff 93

11

12

Chapter 1

Introduction

Code refactoring has always been an important aspect of software engineering. It

is an essential skill when writing any code, whether that is in industry, school, or

open source projects. Ensuring code is easy to read, maintainable, and ready for

changes improves the software development process for both people interacting with

a given code-base and the future author. Refactoring also results in less time spent

on deciphering messy code. Undoubtedly, there are benefits to refactoring no matter

where code is produced. Understanding when refactoring code is necessary even helps

prevent writing incoherent code in the first place.

However, refactoring code is typically not explicitly taught in introductory CS

classes. Unlike performance or testing, refactoring isn’t a focus in CS classes. Usually,

programmers gain skills for refactoring code as they work on exercises and projects

in school or in industry. Getting a head start on learning to refactor would help

minimize poor code feeding into code-bases, some of which affect important computer

systems. Therefore, introducing the concepts of refactoring and teaching students

about very common ways to refactor code along with how to recognize bad code

smells is paramount during introductory CS classes. Throughout this thesis, different

types of code smells will be mentioned. Definitions and examples of such code smells

can be found in chapter 3 for reference.

The approach for this project revolves around directly providing students from an

introductory programming course with a refactoring tutoring system. Most introduc-

13

tory classes have hundreds of students, therefore instructors typically can’t address

refactoring issues for every student. With an automated tutoring system however,

every student would be able to get familiar with refactoring concepts and practice

with the provided exercises. The main target for the refactoring tutor is 6.101: Fun-

damentals of Programming, one of the first programming classes in the computer

science curriculum at MIT. In this class, refactoring is an essential skill since the pro-

grams students write become complex quickly. Since the class is purely taught in the

Python programming language, the tutor focuses on refactoring in Python. However,

most of the concepts that are focused on extend beyond Python and can be applied

to other programming languages.

An essential design principle that we had in mind as we created the refactoring

tutor was language-agnosticism. As mentioned in the previous paragraph, the tutor

currently supports Python refactoring, but the infrastructure should be capable of

supporting refactoring exercises in other programming languages too. Perhaps in the

future, the tutor will be extended to support TypeScript so that it could be used in

6.102: Software Design (formerly 6.031).

The refactoring tutor was designed to teach low level skills about refactoring,

which relies on recognizing code smells and non-idiomatic code style, through repet-

itive practice via exercises. The goal of the tutor is to provide students with plenty

of practice so that the moment they write or read code, they will be able to quickly

diagnose code smells and know which refactoring techniques to apply. In order to

effectively teach students how to refactor, examples with code smells were curated

with advice from CS instructors and the current literature regarding best code prac-

tices. Such exercises involved isolated pieces of code that focused in on a specific

concept. Many different exercises were created that ranged from the simplest refac-

toring skills such as removing boolean laundering to the more complex skills such

removing excessive nesting and code hoisting.

Refactoring spans many different skills. The skills we are tackling are focused

on refactoring code in a general sense, however other researchers instead focus on

system design and refactoring at a higher level. They focus more on object oriented

14

programming (OOP) and evaluation of such systems and exactly how one should go

about refactoring. Specifically, they bring forth the concept of Unified Modelling

Language (UML), which is a standardized modelling language that helps engineers

develop software systems. UML consists of diagram and figures that engineers can use

in order to develop, visualize, and document software systems. Using UML, engineers

can then better understand how systems should be refactored if necessary. This is

referred to as model refactoring and is the focus of many research projects. There even

are some projects that have been successful at automatically creating UML diagrams

given a code-base (Mens, 2007).

UML and model refactoring are out of scope for this project, as the audience

for such refactoring is mostly meant for more advanced software engineers. This

thesis focused on source code refactoring, which is more low level and concerned with

refactoring smaller pieces of code compared to entire code-bases. Additionally, novice

programmers should understand how source code refactoring should be done before

they approach refactoring larger code systems.

There are two main users involved with the tutor: the students and exercise au-

thors. As already mentioned, students complete exercises and learn about refactoring,

using a popular integrated development environment (IDE), VSCode. Exercise au-

thors are responsible for creating exercises for the students, which involves creating

the initial code for students to refactor as well as the their solution (known as the

staff solution). In order for exercises to be robust, the exercise authors can fine tune

the exercises using diff configuration, transformers, and triggered hints to allow for

unexpected solutions from the student which are still refactored correctly.

The refactoring tutor was built on the Praxis Tutor infrastructure, a program-

ming tutorial system. The existing infrastructure has support for exercises to learn

Typescript or Java, however I added support for Python. Also, a pipeline of matching

insertions and checking diffs was developed to determine if student submissions are

correctly refactored were implemented. The pipeline depended on diffs, which are dif-

ferences between two versions of code (in this case, the two versions were the student

and staff solutions to exercises). Matching insertions involves removing insertions

15

present in both the student submission and staff solution to ignore placement agnos-

tic code. Diff checking scans the diffs of the student submission and staff submission

and checks if the changes are the same.

The students who used the tutor were somewhat successful with completing refac-

toring exercises. About half completed at least 11 out of the 21 exercises without too

many attempts. The staff of 6.1010 also play-tested the tutor and were more success-

ful than the students. Most of the staff was able to complete all exercises. I received

feedback from the staff and some bugs were found with the exercises. However, the

bugs were due to misconfigurations of the exercises. The infrastructure of the refac-

toring tutor allowed for the exercise author to easily make changes to the exercises

to fix the bugs.

16

Chapter 2

Related Work

2.1 Code Smells

Code smells refer to symptoms of mediocre implementation choices that make pro-

grams hard to understand, brittle and not ready for change, and prone to bugs. Many

novice programmers repeatedly introduce code smells as they program. Tufano et al.

(2015), anaylzed over 500,000 commits from novice and advanced programmers and

concluded that (1) both novice and advanced programmers are prone to code smells

but (2) code smells from novice programmers are inherently different than those of

advanced programmers. Advanced programmers tend to introduce code smells regard-

ing software design, however novice programmers introduce lower level code smells.

Code smells such as boolean laundering are more prevalent in novices than experts,

for example. Izu et al. (2022) have identified certain novi code smells linked to loop

constructs as they drilled deeper into the differences of novice and advanced pro-

grammers and their respective code smells. One of these code smells involves looping

constructs and the idea of AskFirstOrLast. They realized that many students had

conditionals in loops that check if an index has reached its final value. This is clearly

a code smell, since it requires an unnecessary conditional (the range of the looping

construct could simply be adjusted and the final operation could be executed before

or after the loop, hence the name AskFirstOrLast). Refactoring concepts concerning

conditional complexity and looping structures were addressed in several concepts of

17

the refactoring Tutor as they are one of the most common used structures for beginner

programmers.

2.2 Why Refactoring?

As mentioned in the introduction, refactoring is crucial for the maintenance of soft-

ware systems. In large scale projects, it is almost certain that code will have to

be refactored. Unforeseen changes, new features, or bugs will prompt developers to

refactor code. Novice programmers many times are responsible for deliberate techni-

cal debt. This includes cutting corners by writing programs with code smells to speed

up development instead of thinking through general solutions that will be robust for

change and easy for others to understand (Ciolkowski, 2021). In order to pass a suite

of test cases, novice programmers sometimes patch their code in order to handle cer-

tain edge cases, which may end up being difficult to debug. Gaining refactoring skills

at an early stage of programming will help the Student write better code and identify

when code should be refactored.

2.3 Deliberate Practice

Deliberate practice makes perfect. When it comes to teaching, many studies have

shown that it’s not just repetition that helps improve skills, but the quality of prac-

tice. The development of skills is attained through deliberate training that drives

neurological changes in the brain (Ericsson 2016). Successful musicians, athletes, sci-

entists, etc. all have one thing in common: they all partake in purposeful practice

in their field of work. This is the driving idea behind many educational programs

and tools. For the Refactoring Tutor, the goal is to provide the student deliberate

practice with refactoring code. With this, it is hoped that the student will benefit

greatly and be capable to easily refactor code when necessary. Some of the ways this

project tries to do that is by providing several curated exercises, spanning various

concepts that are common across many programming languages. Since refactoring

18

relies on making small changes and testing if a program still works as intended, the

tutor has mechanisms that ensure that the student is testing their code as they are

refactoring. The tutor also attempts to provide meaningful warnings and feedback

for the student. In a sense, the tutor is a resource for automatically and deliberately

practicing code refactoring.

2.4 Teaching Refactoring

Teaching the student how to refactor requires them to first recognize code smells.

One research study provides a resource for students to learn to identify certain code

smells (Izu, 2022). The resource focused on four rules to apply when writing or reading

conditional logic. They found that after explicitly teaching students the four rules

to write more concise conditional statements, their code quality improved within a

few weeks. They also mentioned that students who had an inadequate understanding

of the programming language semantics made it difficult for students to figure out

how to simplify their code. The student, therefore, must be explicitly taught about

certain language semantics, while still providing practice. Although the goal for the

refactoring tutor is to deliver deliberate practice, there were many opportunities to

provide explanations and resources about the semantics of the programming language

and how to leverage them properly to write clean code.

Keuning et al. (2021) were interested in helping novice programmers learn and

practice basic refactoring skills and created a working refactor tutor that exempli-

fies many of the properties our tutor built upon. Their tutor had simple examples

concerned with reducing conditional complexity, simplifying looping constructs, and

simplifying boolean statements. Their implementation used static analyzers to evalu-

ate whether students had made the correct changes to code that demonstrated proper

refactoring. The tutor is robust, and is capable of providing clear and direct feedback

to the student, however it does not have breadth in terms of refactoring concepts.

The concepts were limited most to simplifying conditional statements, loops, and

boolean statements. There are also only a handful of exercises which probably won’t

19

provide the student with all the necessary tools to identify code smells and refactor

programs. Additionally, the use of static analyzers to determine whether the student

made the correct changes to the code is not language agnostic. Our approach at-

tempts to further improve their tutor by expanding the different types of refactoring

concepts provided while having a language agnostic way of determining whether the

student’s responses are correct.

20

Chapter 3

Code Smells

This section describes common code smells and how they are generally fixed. The

code smells presented are used to create exercises in the refactoring tutor to help

students how to fix and prevent writing the code smells in the future.

3.1 Boolean Laundering

Boolean laundering is defined as the unnecessary comparison between an expression

which should evaluate to a boolean and a boolean constant such as True or False. It

can also involve explicitly outputting boolean constants in functions, instead of using

expressions that evaluate to booleans. Consider the given example:

1 # Severe case of boolean laundering

2 def is_even(number):

3 even = number % 2 == 0

4 if even == True:

5 return True

6 else:

7 return False

8

9 # cleaner way to write the above function

21

10 def is_even(number):

11 return number % 2 == 0

The first function is riddled with boolean laundering. First of all, the conditional

statement that checks if even is equal to True is unnecessary. The even variable

itself stores True or False, depending on whether the input number is truly even.

Therefore, the conditonal statement ends up having two cases. If even is true then,

the conditional statement evaluates to True == True. If even is false, then the

conditional statement evaluates to False == True. The explicit comparison between

even and True is therefore not necessary. There is also no need to explicitly return

True or False, since even stores the expected boolean value. Therefore, most of the

code is unneeded. The second version of the function demonstrates that removing the

explicit boolean check can greatly improve code readability and ease of understanding.

Almost every novice programmer has written code with boolean laundering. It

is a common code smell that novice programmers don’t notice, however it is easy

to understand why it is unnecessary and easy to fix. Boolean laundering is one of

the first code smells to learn about and practice in the refactoring tutor, since it is

relatively easy to understand and checking if the student was successful in removing

unnecessary boolean is less complex than checking if the student fixed other code

smells.

3.2 Line too long

Having long lines of codes is generally not a good idea. When programs have long

lines, it becomes hard to read. Small monitors or displays often trouble programmers

since long lines require them to constantly scroll code. Even if large, wide screen

monitors are available, it’s not good practice to have egregiously long lines of code.

Generally the solution for this code smell is simple: reduce the length of the line by

breaking it up into multiple pieces. There are a couple ways to go about breaking

up lines of code. One way involves creating intermediate variables to store small

22

expressions within a long line of code, and then using those intermediate variables to

shorten the length of the long line. Consider the following two functions:

1 # return statement is too long since and hard to read

2 def euclidean_distance(coord1, coord2):

3 '''

4 coord1: (x1, y1), coord2: (x2, y2)

5 '''

6 return (abs(coord1[0] - coord2[0]) * abs(coord1[0] - coord2[0]) +

abs(coord1[1] - coord2[1]) * abs(coord1[1] - coord2[1])) ** (1 /

2)

→˓

→˓

7

8 # breaking up return statement made function much easier to understand

9 def euclidean_distance(coord1, coord2):

10 '''

11 coord1: (x1, y1), coord2: (x2, y2)

12 '''

13 x_dist = abs(coord1[0] - coord2[0])

14 y_dist = abs(coord1[1] - coord2[1])

15 return (x_dist * x_dist + y_dist * y_dist) ** (1 / 2)

The first function simply has a long return statement. It’s hard to make sense of

it due to the length of the line. The second function makes use of the two x_dist

and y_dist variables to reduce the length of the return expression. The variables

themselves even help document the code. Knowing that x_dist is the absolute value

of the difference in x-coordinates, makes it easier to reason about the correctness of

the return statement, which computes the euclidean distance in 2D space. This way

of refactoring long lines of code is good practice, although it was difficult to check

such changes in the refactoring checker.

The tutor focuses on a different way to deal with long line code smells. Specifically,

long lines that have lists, tuples, or dictionaries could be split up using newlines.

23

In Python, expressions typically cannot be separated using newlines, however, the

language does support adding newlines within lists, tuples, and dictionaries ([], (),

{}). Long lines of code that have one of these types can be split in different lines.

For example consider the piece of code below:

1 def euclidean_distance(coord1, coord2):

2 '''

3 coord1: (x1, y1), coord2: (x2, y2)

4 '''

5 return (

6 abs(coord1[0] - coord2[0]) * abs(coord1[0] - coord2[0])

7 + abs(coord1[1] - coord2[1]) * abs(coord1[1] - coord2[1])

8) ** (1 / 2)

This code has not changed much from the original code, in fact, only a few newlines

were inserted. However, inserting the newlines helped segment the line such that it’s

easier to process visually. Inserting newlines improved readability. Newlines could

also be inserted to make Python dictionaries more readable. For example, it’s much

easier to read a newline-separated dictionary than a dictionary that has all its keys

and values on a single line. Notice in the following code that the first function is a

bit harder to decipher than the second function, where the keys are on different lines.

1 def reverse_audio(audio):

2 '''

3 Returns a new dictionary with audio data reversed.

4 '''

5 return {'rate': audio['rate'], 'left': audio['left'][:], 'right':

audio['right'][:]}→˓

6

7 def reverse_audio(audio):

8 '''

24

9 Returns a new dictionary with audio data reversed.

10 '''

11 return {

12 'rate': audio['rate'],

13 'left': audio['left'][:],

14 'right': audio['right'][:]

15 }

The refactoring tutor uses exercises that involve the student figuring out where

newlines should be inserted in order to improve readability. Since identifying and

inserting newlines in code is localized, it was not difficult to create a checker that

made sure the student reduced the length of long lines of code.

3.3 Variable Renaming

Many novice programmers fail to choose suitable variable names for expressions. Sin-

gle character variable names, generic names, or overloaded names are typically chosen

instead of thinking of more expressive variable names. Debugging becomes difficult,

since code with poor variable names is harder to understand. Poor variable names

in code makes it harder for both the future author of the code and other developers

to interact with the code, therefore, exercises that provide practice with variable re-

naming are included in the refactoring tutor. In the below code, the two functions

calculate the compound interest earned based on some principal amount. That is

fairly obvious based on the documentation. However, if the documentation weren’t

present, the first function would be confusing, since a developer who doesn’t know

about compound interest would not understand what is going on. On the other hand,

if the variables have meaningful names, then a developer would have some context

about how compound interest works. This is also a toy example; in large codebases,

having meaningful variable names that self-document code are extremely important

for understanding code, being ready for change, and preventing bugs.

25

1 MONTHS = 12

2 def compound_interest_monthly(s, r, t):

3 '''

4 Calculate compound interest given the starting amount, interest

5 rate, and time elapsed in months.

6 '''

7 amount = s * (pow((1 + r / MONTHS), t))

8 return amount - s

9

10 MONTHS = 12

11 def compound_interest_monthly(starting_amount, rate, elapsed_months):

12 '''

13 Calculate compound interest given the starting amount, interest

14 rate, and time elapsed in months.

15 '''

16 amount = starting_amount * (pow((1 + rate / MONTHS),

elapsed_months))→˓

17 return amount - starting_amount

3.4 Variable Naming Inconsistencies

When creating variables, it is important to be consistent to use the same style be-

tween camelCase or snake_case. Although not as common as poor variable names,

having inconsistent variable names can hinder the readability of code. In the follow-

ing example, variables should follow the snake_case pattern which adheres to Python

variable naming conventions.

1 def average(elements):

2 total_so_far, numOfElements = 0, 0

3

4 for element in elements:

26

5 total_so_far += element

6 numOfElements += 1

7 return total_so_far / numOfElements

8

9 def average(elements):

10 total_so_far, num_of_elements = 0, 0

11

12 for element in elements:

13 total_so_far += element

14 numOfElements += 1

15 return total_so_far / num_of_elements

The first function named the first variable using the snake_case pattern, while

naming the second variable using the camelCase pattern. The second function is

consistent in using the snake_case convention for all variables.

3.5 Magic Numbers

Magic numbers are numbers in code that seem arbitrary and lack context. They

are commonly found in code written by novice programmers and are not easy to

understand, not ready for change, and not safe from bugs. In the following toy

example, there are various magic numbers scattered across the code. These numbers

may make sense to the author, however they might fail to make sense for other

developers or the future author. Also, in programs where the same magic number is

used more than once, refactoring becomes a hassle since all references of the same

magic number would have to be changed manually. Replacing a magic number with

a variable helps with three important aspects of software design. It makes the code

easier to understand (ETU), ready for change (RFC), and safe from bugs (SFB).

In the first function, the magic numbers are 1.5, 1.25, and 3.0. These numbers

are arbitrary and should be stored as constant variables. The second function is bet-

ter as the three numbers mentioned above are assigned to three different meaningful

27

constants that are used in the cost calculations. (Note that constants have a different

naming convention than other variables. They are fully capitalized and may be sep-

arated with underscores. In the magic number exercises, the student was prompted

to replace magic numbers with constants, which had the same convention.)

1 def calculate_pizza_cost(num_slices, num_toppings):

2 '''

3 Calculates the cost of pizza, given number of slices and number of

4 toppings. Each slice has an additional cost, as well as each

5 topping.

6 '''

7 total_slice_cost = num_slices * 1.5

8 total_topping_cost = num_toppings * 1.25

9 return total_slice_cost + total_topping_cost + 3.0

10

11

12 def calculate_pizza_cost(num_slices, num_toppings):

13 '''

14 Calculates the cost of pizza, given number of slices and number of

15 toppings. Each slice has an additional cost, as well as each

16 topping.

17 '''

18 BASE_COST = 3.0

19 COST_PER_SLICE = 1.5

20 COST_PER_TOPPING = 1.25

21

22 total_slice_cost = num_slices * COST_PER_SLICE

23 total_topping_cost = num_toppings * COST_PER_TOPPING

24 return total_slice_cost + total_topping_cost + BASE_COST

Magic number exercises are challenging to check, mainly because magic numbers

could be created in or outside a function definition. The student is required to make

28

changes to code that are less localized than changes in boolean laundering exercises

for example. They need to identify magic numbers, delete them, and replace them

with constants, which requires a general understanding of the provided code.

3.6 Code Hoisting

The need for code hoisting is apparent when programs contain lines of code that are

present in multiple branches of conditional logic. That is, if a line of code needs to

be executed regardless of a conditional branch, it is still written in multiple branches.

To get rid of this code smell, one must realize that the line of code must be executed

regardless and then "hoist" (or pull) the line of code out of the conditional structure,

while making sure the line is deleted in all the branches. In the following example,

iterations is incremented regardless of the (num_for_hailstone != 1) condition,

so the line, iterations += 1, is hoisted outside of the condition. This results in the

cleaner code in the second function.

1 def get_hailstone_iterations(num_for_hailstone):

2 '''

3 Outputs number of times a new hailstone number is calculated until

4 it reaches the terminating condition.

5 '''

6 iterations = 0

7 while (num_for_hailstone != 1):

8 if (num_for_hailstone % 2 == 0):

9 num_for_hailstone /= 2

10 iterations += 1

11 else:

12 num_for_hailstone = 3 * num_for_hailstone + 1

13 iterations += 1

14 return iterations

15

29

16 def get_hailstone_iterations(num_for_hailstone):

17 '''

18 Outputs number of times a new hailstone number is calculated until

19 it reaches the terminating condition.

20 '''

21 iterations = 0

22 while (num_for_hailstone != 1):

23 if (num_for_hailstone % 2 == 0):

24 num_for_hailstone /= 2

25 else:

26 num_for_hailstone = 3 * num_for_hailstone + 1

27 iterations += 1

28 return iterations

Code hoisting exercises require having context of the code. To know what should

be changed, the student must identify which line of code is repeated and know where

the line should be hoisted.

3.7 Conditional Complexity

Many times novice programmers fail to see how conditional logic can be expressed

more succinctly. When constructing conditional statements, they don’t have a clear

understanding how control flow should work. As a simple example, the function below

has an if-elif statement that could be simplified into an if-else statement. The elif part

of the conditional structure is unnecessary, since (num_for_hailstone % 2 == 0) is

the inverse of (num_for_hailstone % 2 != 0). Although a minor change, it demon-

strates a misunderstanding of how conditional logic should be structured.

1 def hailstone(num_for_hailstone):

2 sequenceOfNums = []

3 while (num_for_hailstone != 1):

30

4 sequenceOfNums.append(num_for_hailstone)

5 if (num_for_hailstone % 2 == 0):

6 num_for_hailstone /= 2

7 elif (num_for_hailstone % 2 != 0):

8 num_for_hailstone = 3 * num_for_hailstone + 1

9 sequenceOfNums.append(num_for_hailstone)

10 return sequenceOfNums

11

12 def hailstone(num_for_hailstone):

13 sequenceOfNums = []

14 while (num_for_hailstone != 1):

15 sequenceOfNums.append(num_for_hailstone)

16 if (num_for_hailstone % 2 == 0):

17 num_for_hailstone /= 2

18 else:

19 num_for_hailstone = 3 * num_for_hailstone + 1

20 sequenceOfNums.append(num_for_hailstone)

21 return sequenceOfNums

Novice programmers also fail to see when conditional structures could be collapsed.

In the following example, there are two nested if-else structures. The inner if-else

structure is not necessary. The conditional statements (age < AGE_THRESHOLD) and

is_student could be combined into a single conditional statement. This is exactly

what the second function does. Combining the two statements allows for condensing

the code to use a single if-else structure. Exercises like the following were included in

the refactoring tutor, since it is very common amongst novice programmers to over-

complicate conditional statements. Providing such practice will help promote writing

more succinct code.

1 AGE_THRESHOLD = 23

2 DISCOUNTED_PRICE = 10

31

3 ORIGINAL_PRICE = 15

4

5 def get_ticket_price(age, is_student):

6 '''

7 Gets ticket prices for a certain event given a person's

8 age and student status.

9 '''

10 if age < AGE_THRESHOLD:

11 if is_student:

12 return DISCOUNTED_PRICE

13 else:

14 return ORIGINAL_PRICE

15 else:

16 return ORIGINAL_PRICE

17

18 def get_ticket_price(age, is_student):

19 '''

20 Gets ticket prices for a certain event given a person's

21 age and student status.

22 '''

23 if age < AGE_THRESHOLD and is_student:

24 return DISCOUNTED_PRICE

25 else:

26 return ORIGINAL_PRICE

3.8 Excessive Nesting

Complementary to simplifying conditional statements, another code smell that is

common among novice programmers is excessive nesting. For example in the following

code, the nesting can be reduced:

32

1 def validate_and_register(user_info):

2 """

3 Validates and registers a user given a string input that should

4 have the following form:

5

6 'user_id,user_name'

7

8 If the user_info doesn't have 2 entries or the user id is negative,

9 then the entry is invalid and the function should return None.

10 """

11 parts = user_info.replace(" ", "").split(",")

12

13 if len(parts) == 2:

14 user_id = int(parts[0])

15 if user_id >= 0:

16 user_name = parts[1]

17 return (user_id, user_name)

18 else:

19 return None

20 else:

21 return None

Specifically, since we return None if the first condition is not met, then checking

if the condition evaluates to false should be used to "return fast". The same goes for

the second condition. If (user_id < 0), then we should return None immediately.

There is no need to nest code in this way if we can "return fast".

1 def validate_and_register(user_info):

2 """

3 Validates and registers a user given a string input that should

4 have the following form:

33

5

6 'user_id,user_name'

7

8 If the user_info doesn't have 2 entries or the user id is negative,

9 then the entry is invalid and the function should return None.

10 """

11 parts = user_info.replace(" ", "").split(",")

12

13 if len(parts) != 2:

14 return None

15 user_id = int(parts[0])

16 if user_id < 0:

17 return None

18 user_name = parts[1]

19 return (user_id, user_name)

Notice that the nested conditions were split and the structure of the code now

has the error checking in the beginning, and the main logic following the error check-

ing. This is a trivial example, and nesting the conditional statements in this case

doesn’t seem terrible. However, in more complicated programs that have three or

more conditions, nesting gets out of control and makes the programs more difficult

to understand. This paradigm of having all of the error checking code that returns

early if certain conditions are met helps prevent nesting and can greatly improve code

readability and readiness to change, especially in longer and more complex programs.

Exercises that tackle code smells such as above were included in the refactoring

tutor. This is one of the harder code smells to fix since it requires full understanding

of the code. Major structural changes have to be made in order to separate the error

checking from the main logic. However, it is particularly useful when dealing with

large programs.

34

3.9 Lack of Idiomatic Syntax

Not having idiomatic syntax is less important than not having other code smells, how-

ever each programming language has easier ways to write different constructs, such

as loops. Proficient programmers should be able to read and write each programming

language’s idiomatic syntax. In Python, simple loops can usually be written as list

comprehensions, which encapsulate loop and conditional logic into a single line of

code.

1 def square_numbers(numbers):

2 '''

3 Returns a new array where the numbers are squared.

4 '''

5 squared_nums = []

6 for number in numbers:

7 squared_nums.append(number ** 2)

8 return squared_nums

9

10 def squared(numbers):

11 return [number ** 2 for number in numbers]

The first function initializes a list to store the squared numbers, iterates through

the input numbers list, appends the squares of the numbers, and outputs the squared_nums

list. The second function has the same functionality as the first function, however

the syntax is more succinct via a list comprehension.

35

36

Chapter 4

Concept Map

The exercises in the refactoring tutor were presented in a particular manner to the

student. Since some code smells are harder to fix than others, the exercises were

divided into groups based on concept difficulty. I created a concept map which divides

the concepts into three levels. The Level 0 concept group is designed to introduce the

student to the refactoring tutor. Level 1 concept groups provide the student practice

with refactoring exercises that are relatively easy to refactor. The exercises in this

level tend to require localized changes, not major refactoring changes. Level 2 concept

groups are harder to refactor, since they require major changes to the code. Figure

4-1 depicts the concept map used for the refactoring tutor.

4.1 Level 0 Concept Group

The Level 0 concept group involves a single exercise which teaches the student how

to use the refactoring tutor. This involves explaining what is expected of the student,

how the prompts work, how to run test cases, how to submit an answer, and how to

get hints.

37

Figure 4-1: Refactoring Tutor Concept Map

The concept map of the refactoring tutor exercise groups is shown above. Level 0 consists
of Refactoring tutor basics (familiarizing users with the tutor). Level 1 consists of low level

refactoring techniques that are relatively easy to understand. Level 2 involves more
complex refactoring techniques, with code hoisting, reducing nesting, and simplifying

conditional logic being less localized than Level 1 refactoring techniques.

4.2 Level 1 Concept Groups

Level 1 concept groups include boolean laundering, case consistency, long lines, vari-

able renaming and magic numbers. These concept groups tend to be simple to un-

derstand and master. All of the concept groups (except the Magic Numbers concept

group) are mostly localized; that is students don’t require contextual information

38

about the code to understand what to change or how to refactor code. For example,

boolean laundering requires looking at a few, if not only one, lines to fix. It is very

specific and localized. Long lines are also localized since students need to only find

lines of code with sufficient length. Case consistency, variable renaming, and magic

numbers are less localized, since students need to understand how to change vari-

able names, however students don’t need to change the structure of code in order to

successfully refactor. The exercise groups mentioned above should be understood by

students before they go on to tackle more complex issues. Each concept group had

one or more concepts.

4.3 Level 2 Concept Groups

The more challenging refactoring concepts are found within Level 2. Exercise groups

in Level 2 involve code hoisting, reducing nesting, simplifying conditional logic, and

writing idiomatic python code. The exercises in these groups are not localized. They

require students to gain context and understand the structure of the code they must

refactor. For code hoisting, students must identify which pieces of code are executed

regardless of any conditional statements. For reducing nesting and simplifying con-

ditional logic, students must understand how to change conditional statements in

order to make code succinct. Writing idiomatic python code requires understanding

which code structures such as loops, conditional statements, data structures can be

translated into Python’s idiomatic structures. Exercises in Level 2 are designed to be

completed after students master Level 1.

39

40

Chapter 5

Design

The refactoring tutor leverages the existing Praxis Tutor platform that is used to pro-

vide practice with Java and Typescript for novice programmers. The tutors made in

the platform provide a series of exercises that the student completes. The refactoring

tutor uses the concept map described in the previous section.

There are two types of users involved with the refactoring tutor. Exercise authors

are involved in the development of exercises. They design the exercises and translate

them into source files and necessary metadata. Students engage with the exercises

and practice the concepts outlined in the concept map.

5.1 Exercise Authors

Creating an exercise requires creating two files. One of files contains the starting code

that the student will see when starting the exercise. The other file contains the correct,

refactored code that will be used to determine whether the student’s submitted code

is correct. The file with the starting code includes metadata in the exercise. To

specify prompts, concepts, hints, and how checks will work, the author must include

metadata in the starter file in the form of a YAML comment (YAML stands for You

Ain’t Markup Language and is a human-readable data-serialization language usually

used for configuration files). Various exercise checkers will be responsible for using

the provided metadata and the student’s submitted code to determine correctness.

41

Figure 5-1 shows what the exercise author needs to get started making an exercise.

Figure 5-1: Exercise Files

Exercise metadata has configuration fields so exercise authors can specify how the

exercise should work and what code will be correct. The tutor allows the exercise

author to specify which lines of code should be present in the student’s code, which

lines of code should not be present, how long lines should be, among other configu-

rations that will be discussed. The exercise author can create triggered hints, which

are hints that are displayed to the student when a certain event or line of code is

found within the student’s submitted code. Triggered hints and the other metadata

to configure an exercise will be discussed more in the implementation section.

5.2 The Student

The student uses the refactoring tutor within the Visual Studio Code IDE. This way,

the student has access to the plethora of tools and features (syntax highlighting and

an integrated terminal, for example). The refactoring tutor displays prompts for the

student and serves as a guide, providing hints when the student needs assistance with

the exercises.

Initially, the student is welcomed with a concept map. To get the student started

with the tutor, there is an introductory exercise that explains the typical process of

completing refactoring exercises; the intro exercise explains that the student must

make refactoring changes to the code, run test cases, make sure they pass, and then

42

attempt to submit. If they need help or are stuck on an exercise, they can ask for hints

by pressing the "get hint" button in the UI. The introductory exercise corresponds

to the Level 0 exercise from the concept map in the previous section. After finishing

Level 0 exercises, Level 1 exercises will be unlocked in the concept map. Once a

student fully completes the exercises in a concept group, a green check mark will

appear next to the completed concept group. Figure 5-2 shows the initial view of

the refactoring tutor. As can be seen, the tutor is integrated with the Visual Studio

Code IDE. If the student wishes to attempt an exercise group again, they can do so

by navigating to the concept group and clicking it again.

Figure 5-2: Refactoring Tutor Concept Map Progress

When a student clicks on an exercise group, one of the exercises from the group

is displayed to the student. The tutor then displays a prompt to the student while

the VSCode IDE displays the code associated with the prompt. Figure 5-3 shows an

exercise from the Code Hoisting exercise group. There is a prompt on the left hand

side of the explorer of the IDE and code for the student to refactor on the right hand

side. In general, the prompts will require the student to either delete, reorganize, or

add certain lines of code. An important aspect to refactoring that is emphasized by

43

the tutor is that refactoring itself should not affect functionality of the provided code.

Therefore, most exercises have test cases, or a series of inputs and expected outputs

that the code must produce. The student must run the test cases from the IDE.

Figure 5-3: Code Hoisting Exercise

Automatically running test cases was considered, however, promoting students to

run tests cases themselves, even if it simply requires a press of a button, is another

important goal of the tutor. If students develop a habit of running test cases whenever

they change code, it will hopefully help them catch mistakes early on. For example,

if the student has a program that requires major refactoring and the student only

runs the test cases when they have made significant changes to the program, then

it is possible the changes introduced bugs. The student will then have to debug

them and figure out which changes cause the test cases to fail, which will take time.

On the other hand, if the student continually runs test cases while refactoring the

program, then they will catch the issue immediately. This is good practice, and even

when implementing new features, tests should be run to ensure correct functionality.

Therefore, requiring test cases to be run is intentional, even when the student makes

small changes to the code in the exercise.

44

When test cases are run in the IDE, the terminal will show whether tests pass

or not. In Figure 5-4, the test cases have been run; the terminal at the bottom of

the figure will let the student know if the tests have passed. If the student does not

run the test cases and attempts to submit the exercise, then an error message will be

displayed on the tutor as can be seen in Figure 5-5. In the tutor side, a message in red

text appears, notifying the student that test cases should be run before submitting

the exercise. If the student fails the test cases and attempts to submit, then an error

message will appear on the tutor side and the student will be unable to submit the

exercise. The refactoring tutor will have a sizable reliance on test cases to make sure

students successfully refactor the provided code, but also do not change functionality.

Even if test cases pass, the student must still check whether the refactored code

meets the prompt’s requirements. If not, then the tutor will be outlined with red,

signifying to the student that the submitted code was not refactored correctly. If the

student does successfully pass the test cases and submits correctly refactored code,

then the tutor will be outlined with green, signifying completion. The student will

be able to move on the next exercise in the exercise group. Figures 5-6 and 5-7 show

what the student will see when either failing or completing the exercise.

45

Figure 5-4: Running Test Cases on Refactoring Tutor

Figure 5-5: Submitting Exercise before running Test Cases

46

Figure 5-6: Failing Exercise on Refactoring Tutor

Figure 5-7: Completing Exercise on Refactoring Tutor

47

48

Chapter 6

Implementation

As mentioned in the Design section, the refactoring tutor uses the Praxis Tutor infras-

tructure, which is comprised of three main components: the Mongo Database (Mon-

goDB), the VSCode Extension, and the Tutor Web Application. MongoDB is used to

store relevant refactoring exercises ordered by concepts. The exercises are stored as

source files which contain both the code the student will view in the VSCode IDE and

the metadata for the exercise in the form of a YAML comment. The YAML comment

is what the exercise author modifies to include prompts, create hints, and specify the

types of validation checks required for the exercise. The VSCode extension is a small

plugin that allows interfacing with the IDE. The student views exercises on the IDE

and edits code as they wish. The Web Application (Web App) is the workhorse of

the tutor, since it is responsible for fetching exercises, checking the student’s submis-

sions, and providing useful feedback. It has to communicate with MongoDB and the

VSCode Extension as can be seen in Figure 6-1. The architecture of the Refactoring

Tutor and the typical workflow that is expected of the student is shown in Figure 6-1.

There were a few changes to the Praxis Tutor infrastructure (which will be explained

in the next sections) to allow for robustly checking refactoring exercises, however, the

core architecture remains the same.

49

Figure 6-1: Refactoring Tutor Architecture

(1): The student starts the refactoring tutor and clicks on an available exercise.
(2): MongoDB sends back desired exercise to Web Application.
(3): Exercise sent from Web App to VSCode Plugin. Exercise is set up for use by the
student.
(4): The student requests to check answer. The Extension first makes sure that test cases
(doctests) have been run on the latest version of the student code before sending request
to the Web App.
(5): Request to check answer is sent to Web App.
(6): Web App asks Extension for student answer; extension sends the student answer to
Web App.
(7): Checker tests for constraints and rules set by instructor or exercise author.
(8): Web App asks MongoDB to provide staff solution.
(9): Check if the student answer conforms to the constraints and rules in the staff solution.
Triggered hints provide guidance, if any.
(10): If the Student’s answer is correct, then tutor will display a successful message. If not,
the student will see a message to try again.

50

6.1 Exercise Checking

Refactoring is a subjective process and there exist multiple ways to refactor code.

There are better ways to refactor pieces of code than others, however the space of

valid ways to refactor code is very large, which makes checking refactoring exercises

extremely difficult. It is much harder to check if code was properly refactored than

checking for correctness. Hence, checking for refactoring has proven the most difficult

aspect of this project. To make checking refactoring easier, every refactoring con-

cept was tested individually. That is, each exercise checks for a specific refactoring

technique. Exercises with multiple refactoring techniques would make correctness

checking much harder; the space of solutions would be even larger. Scoping the exer-

cises to only a single refactoring technique has proven useful and the current methods

for checking correctness for the exercises explained in the concept map have been

robust so far.

In order to understand how the main method for checking, the notion of diffs must

be understood. Diffs refer to the differences of two versions of text. Diffs are used in

version control systems such as git as it provides a way to show the differences between

two versions of the same file. As an example, suppose there are two versions of a file:

Version A and Version B. A diff given these two versions will determine their

differences. In general, it will provide data on insertions, deletions, and unchanged

text. This is useful in order to determine where and what changed from Version A

to Version B.

Diffs are an integral aspect of the refactoring tutor’s correctness checkers. They

are used to help determine the differences between the student’s code and the cor-

rectly refactored code specified by the exercise author. A simple use case for diffs

in boolean laundering exercises, for example, is determining whether the student

deleted the boolean values True or False. Given that a diff contains information

about deleted text, it is trivial to check for correctness. For example, the code below

can be refactored by removing the == True part of the code in line 10 of the code

shown below.

51

1 def is_even(number):

2 """ Return true if number is even, false otherwise. """

3 return number % 2 == 0

4

5 def sum_evens(sequence):

6 """ Return the sum of even numbers in sequence list.

7 Assume all numbers non-negative. """

8 even_sum = 0

9 for number in sequence:

10 if is_even(number) == True:

11 even_sum += number

12 return even_sum

The resulting diff will be a sequence of unchanged, and deleted text (there are no

insertions in this case). The deletion might be expressed as the following:

{"Type": Deletion, Line: 10, "Text": "== True"}

When using diffs, the granularity can be chosen. The granularity can be adjusted

to single characters, words (sequence of non-space, non-newline), or whole lines. The

diffing used in this design uses word granularity in diffs. It was found that using

word granularity works better for refactoring exercises, since usually the refactoring

exercises look for changes in words.

6.2 Diff Checking

Checking the student’s answer for an exercise requires a staff solution. A staff solution

is one correctly refactored version of the exercise. The goal of the refactor tutor is

to guide the student into making a series of changes such that their code gets as

close to the staff solution as possible. Simply checking if the raw text of the student

solution is the same as the raw text of the staff solution is a naive way to check for

correctness. This method would not be robust to irrelevant deviations of the student

52

solution from the staff solution, and would not be able to provide proper hints to the

student since there would be no concept of code insertions and deletions. Using diffs

is a more robust method to determine correctness. However, this method requires

three versions of the exercise code: the student code, staff code and original code. The

original exercise code is used to create two distinct diffs. The diff between the original

exercise code and the student code will determine what the student left unchanged,

deleted, or inserted while doing the exercise. This diff will be referred to as the student

diff. The diff between the original exercise code and the staff code describes which

parts of the code should be left unchanged, which lines should be deleted, or what

should be inserted after refactoring. This will be referred to as the staff diff. Once

both diffs are computed, the exercise can be checked for correctness. By sequentially

scanning both diffs and ensuring that each contains the same unchanged, deleted, or

inserted pieces of code, the exercise can be checked. If the student diff does not have

the correct deletions or insertions, the exercise will be marked wrong, but they may

receive feedback depending on the exercise author’s configuration. If the student diff

does not have the same unchanged code, the exercise will also be marked wrong, and

feedback will similarly be provided to the student. The student will be informed of

changes that weren’t supposed to be made. Figure 6-2 depicts the process of creating

the student and staff diffs and comparing them to determine correctness for a given

exercise.

Diff checking does work for exercises focusing on localized changes to code. This

includes the boolean laundering and case consistency exercises. Some simplifying

conditional exercises only need diff checking also.

Checking for identical diffs alone though, is not robust for all types of exercises.

Namely, exercises that should have tolerance to student solutions such as those pro-

viding practice with magic numbers, renaming variable names, reducing conditional

complexity, etc. should allow for sensible answers that differ from the staff solution.

For example, when magic numbers are removed, a constant should be created to re-

place the magic number. Generally, there are multiple sensible places in code where

a constant could be defined. The student may not define the constant in the same

53

place where it was defined in the staff solution, however it can still be perfectly fine.

Diff checking will not be robust to these scenarios.

Figure 6-2: Diff Checker

There are three different files: the original source code, the staff solution, and the student

solution. A diff between the staff solution and the original source code will have to be

compared against a diff between the student solution and the original source code in order

to determine if the student correctly refactored the prompted code.

6.3 Diff Matching

Increasing tolerance for exercises that allow multiple sensible solutions requires an-

other process for handling diffs. Such a process will be referred to as Diff Matching,

which is executed before running a diff check on the student and staff diffs. Instead

of only scanning through diffs and checking for equality as was described above, diff

matching involves scanning two diffs and matching insertions that are found in both

diffs. Matching a pair of insertions means that both insertions are found in the diffs,

regardless of order. If a pair of insertions is matched, then they are removed from the

54

diffs. The idea is that matching all pairs of insertions in the student and staff diffs,

removes lines of code that are placement agnostic and are found in both the student

and staff diffs. For example, in Figure 6-3, A_THRESHOLD = 90 is found in both the

student and staff diffs. In the student diff, A_THRESHOLD = 90 is found within the

calculated_grade() function, whereas in the staff diff, the line is found outside of

the function. In both of these cases, the magic number is removed and replaced with

a valid constant; the student solution is correct. Therefore, in order for the diff check-

ing process to work, the same insertions must be matched and removed from both

the student and staff diffs.

55

Figure 6-3: Matching Student And Staff Diffs

The process of diff matching is shown above. The diffs for the student and staff solutions

are computed. For demonstration purposes, only the insertions in the diffs are depicted by

the green boxes. The lines between the green boxes represent matching two insertions

between the two diffs. For example, A_THRESHOLD = 90 in the student solution is matched

to the same text in the staff solution. Matching all the insertions between the student and

staff diffs results in removing them from the diffs. After removing the matched insertions,

the diffs represent the code seen in the bottom two boxes.

56

6.4 Exercise Metadata

As mentioned in the previous sections, the metadata stored in the YAML comments

of exercises specifies the prompts, conceptIds, and the requirements for the Web Ap-

plication to mark the student’s solution to exercises as correct. To support refactoring

exercises, several fields were added to the Praxis Tutor metadata model. An example

of the metadata for a refactoring exercise is shown below:

1 #<yaml>

2 # - id: Magic-numbers

3 # conceptIds:

4 # - python::removing-single-magic-number

5 # prompts:

6 # - >-

7 # <p>Magic numbers are numbers that may not seem random to you,

8 # but do seem random to others who end up reading your code.

9 # It is bad practice to introduce numbers other than the most

10 # common numbers used while coding (0, 1, 2 for example)

11 # without adding a comment or creating a constant with a

12 # descriptive name. In this exercise we'll want to do the

13 # latter.

14 #

15 # <p>Find and remove the magic number in the following code.

16 # Replace the magic number with a constant variable with name,

17 # MINIMUM_PASSING_SCORE.</p>

18 # - >-

19 # https://py.mit.edu/spring23/readings/style#_magic_numbers

20 #

21 # priority: 0

22 # explanation: ""

23 # correctFileRequired: true

24 # testResultsFilename: .results.txt

57

25 # diffConfiguration:

26 # yankedInsertions:

27 # - MINIMUM_PASSING_SCORE=65

28 # transformers:

29 # - regex: \s+

30 # replacement: ""

31 # - regex: (\(|\))

32 # replacement: ""

33 # triggeredHintsForUnchanged:

34 # - regex: score>=65

35 # hint: You need to create a constant instead of comparing

with the magic number, 65.→˓

36 # appliedBeforeTransformers: false

37 # triggeredHintsForInsertions:

38 # - regex: "[A-Z]+(_[A-Z]+)*=65"

39 # hint: Constant created for number 65!

40 # appliedBeforeTransformers: false

41 #</yaml>

42

43 def passes_course(score):

44 '''

45 Given grade score, determines if student passes the course.

46 >>> passes_course(100)

47 True

48 >>> passes_course(30)

49 False

50 '''

51 return score >= 65

52

53 # DO NOT MODIFY BELOW

54 if __name__ == '__main__':

58

55 import doctest

56 import os

57 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

58 results.write(str(doctest.testmod(verbose=True).failed))

The metadata is contained within a YAML comment along with the Python source

code that is shown to the student. The YAML comment is extracted from the file

in the Web Application and the metadata is converted into TypeScript models that

help with correctness checking. The student only sees the source code when doing

the exercise; the YAML comment is only to be seen by the exercise author.

The YAML metadata consists of the following keys:

• exerciseId: Exercise identifier

• conceptMapIds: Concept Map containing the exercise

• conceptIds: Concept Ids upon which the exercise belongs

• prompts: Prompts or hints for the Student to complete the exercise

• priority: Index where the exercise should be displayed with respect to the

exercises in the concept group

• explanation: Explanation of the concept of exercise and the approach used to

get to the answer.

• correctFileRequired: Boolean denoting whether the exercise requires a sec-

ondary source file (also known as the staff file) that has the correct answer.

The staff file is compared to the student’s solution to determine if the student

correctly answer the exercise.

• testResultsFilename: Name of file that will store test case results. This is

used to check if the student ran test cases and passed them.

59

• diffConfiguration: Contains information that is used to attempt to transform

student answer into staff answer. The exercise author can also include Triggered

Hints in order to help students if they have a common misconception.

For every exercise, including refactoring exercises, the exercise author writes a

prompt in the prompts key to give students instructions. The last three keys are

important for refactoring exercises. The correctFileRequired key is used to tell the

tutor whether a correct version of the code is required. The testResultsFilename

key lets the tutor know if test cases need to be run and where to save the test cases

results; if the key is not specified, then the plugin does not require the student to run

any test cases, but if there are, then the plugin checks if the student ran the tests and

passed them before allowing the student to submit their solution to the Web App.

The diffConfiguration key stores configuration data for diffs. The exercise author

is responsible for curating the diff configuration for each exercise.

6.4.1 diffConfiguration

The diffConfigration key maps to a DiffConfiguration typescript model. The model

has the following fields:

• yankedInsertions: Array of strings that should be pulled out of an insertion

before matching occurs.

• transformers: Array of transformers

• triggeredHintsForUnchanged: Array of triggered hints that will be applied

exclusively to unchanged parts of code

• triggeredHintsForInsertions: Array of triggered hints that will be applied

exclusively to insertions

• triggeredHintsForDeletions: Array of triggered hints that will be applied

exclusively to deletions

The following sections will explain the purpose of the above fields.

60

6.4.2 Yanked Insertions

The diff checking and matching procedure is capable of matching insertions and check-

ing if diffs are identical, however, there are cases where the diff generation algorithm

groups multiple insertions together if they are near each other. In Figure 6-3, the

threshold constants seem to be separate, but without further processing the raw diffs,

the constants will be grouped together. This is due to the nature of diff-ing. The

diff-match-patch library used to obtain diffs, for example, analyzes changes to two

pieces of code and determines differences. Those differences can be insertions or

deletions. Insertions and deletions are grouped together based on proximity, how-

ever. Unchanged lines of code are also grouped together. This is simply how diff-ing

is meant to function. For purposes of the refactoring tutor however, single line in-

sertions and deletions are usually desired. Therefore, before the diff checking and

matching procedures are executed, the student and staff diffs are pre-processed in

order to extract the desired insertions.

It is not enough to split up the the insertions by newlines. This would work for

some cases, but if the exercise author wants to specify that an insertion with newlines

should be separate from a group of insertions, then splitting the insertion group by

newlines would not work. Also, since the refactoring tutor is designed to be language

agnostic, support for languages other than Python is necessary.

To robustly split up a group of insertions, a set of desired insertions must be

specified by the exercise author. That is, the exercise author must determine which

pieces of code should be pulled out from a group of insertions. The exercise author

can specify the insertions in the yankedInsertions (since insertions are pulled out

or "yanked" from a group of insertions) field in the exercise YAML comment. If the

yankedInsertions field is not defined, then the diff checking and matching runs as

usual. However, if the field is defined, then the Web App uses it to yank insertions

from the student and staff diffs. Then, the diff checking and matching occurs. Figure

6-4 shows the process of yanking insertions from a group of insertions in a diff. In the

example in Figure 6-4, the yanked insertions that the exercise author would have spec-

61

ified to extract the threshold constants are: A_THRESHOLD = 90, B_THRESHOLD = 90,

C_THRESHOLD = 90, and D_THRESHOLD = 90.

In summary, yanking insertions from diffs is a necessary pre-processing step before

diff matching. It helps make exercises robust to unexpected, but valid inputs from

the student.

Figure 6-4: Yanking Insertions in Magic Number Exercise

In this example, assuming the exercise author has specified to yank the threshold constant
assignments. The original diff shows that the inserted threshold constants are grouped

together. The other insertions in the diff aren’t grouped together because they are
separated by unchanged text. The diff along with the author’s specified yanked insertions

are used to separate the insertions within the group. This is shown by the yanking
insertion process, where author specified insertions are yanked one at a time. The resulting

diff has separated insertions, which can then be fed into the diff matching algorithm.

62

6.4.3 Transformers

Transformers are used in the refactoring tutor to help transform the student solution

into a version similar to that of the staff solution. A transformer is represented as

a model with two fields: regex and replacement. The regex field stores a regular

expression that will attempt to be matched in a given text. If a match is found,

then the expression that was matched is replaced by the specified replacement.

The reason this is needed is because exercises which have many valid answers should

allow for student solutions that are different than the staff solutions. The refactoring

tutor allows alternate student solutions by using transformers. Specifically, the tutor

attempts to apply transformations to the student solution before it can check for

correctness. Given the transformer functionality, transformers can help convert the

student solution into the staff solution. Transformers were used in the renaming

variables exercises. Recall that renaming poor variable names is a subjective process.

There are many variable names that can serve as a replacement, some better than

others, but it is difficult to draw the line between what is a good or bad variable

name. Therefore, the solution is to allow the exercise author to specify transformers

that could change potential student solutions to the canonical staff solution. Consider

an exercise where the student has to rename a single character variable t to total.

In this case the staff solution would be to change instances of the variable t to total.

However, if the student chooses to use a different variable name, such as total_sum,

then the exercise author could create a transformer that converts total_sum into

total. The exercise author can create multiple transformers that can convert student

solutions to the canonical staff solution. An example of such an exercise is shown

below. In the function avg_of_list(), the variable t, should be renamed. In the

exercise metadata, there is a transformer in lines 30-31 that converts variable names

that have to do with the concept of total to the variable total.

1 #<yaml>

2 # - id: Single-character-variable-name

63

3 # conceptIds:

4 # - python::variable-renaming

5 # prompts:

6 # - >-

7 # Choosing variable names can be tricky sometimes, but you

8 # shouldn't resort to variable names that other people (or

9 # future you) will find hard to make sense of in the context

10 # of your code. As a simple example, it is usually a bad idea

11 # to have single character variable names unless it is being

12 # used for an index perhaps. Identify and replace the single

13 # character variable in the following code with a better, more

14 # descriptive name.

15 #

16 # If your first guess doesn't seem to work, try out other

17 # variable names you think make sense in the context of the

18 # code.

19 # - >-

20 #

https://py.mit.edu/spring23/readings/style#_concise_descriptive_names→˓

21 #

22 # priority: 0

23 # explanation: ""

24 # correctFileRequired: true

25 # testResultsFilename: .results.txt

26 # diffConfiguration:

27 # transformers:

28 # - regex: \s+

29 # replacement: ""

30 # - regex: (\(|\))

31 # replacement: ""

32 # - regex: (num_sum|num_total|total(_(\w)+)*|((\w)+_)*total)

64

33 # replacement: "total"

34 #</yaml>

35

36 def avg_of_list(nums):

37 '''

38 Given a list of integers, calculates the average.

39 >>> avg_of_list([1])

40 1.0

41 >>> avg_of_list([1, 2, 3, 4, 5])

42 3.0

43 >>> avg_of_list([3, 6, 9, 16])

44 8.5

45 '''

46 # keeps track of sum

47 t = 0

48 for num in nums:

49 t += num

50 return t / len(nums)

51

52 # DO NOT MODIFY BELOW

53 if __name__ == '__main__':

54 import doctest

55 import os

56 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

57 results.write(str(doctest.testmod(verbose=True).failed))

The implementation for transformers was relatively simple. The tutor takes the

transformers the exercise author made and applies them to both the student and staff

solutions. The text in the student and staff solutions is changed to reflect replacements

specified by transformers. Currently, all transformers are applied until the code stops

65

changing. This is useful for transformers as it makes them robust to their application

order. In other words, if one transformer is trying to remove a whitespace character,

and another transformer introduces a space, then the whitespace transformer will

delete the space. The tutor will attempt to transform the student solution into the

staff solution before checking and matching the diffs.

6.4.4 Triggered Hints for Diffs

Yanked insertions and transformers help make the refactor tutor resilient to unex-

pected student solutions. However, when the student is unable to get a correct an-

swer, they need guidance or hints. One way that the refactor tutor provides hints is

via triggered hints. Triggered hints are hints that are triggered by certain patterns in

code. Specifically, the triggers are regexes, just like in transformers. A triggered hint

is triggered whenever a provided regex is matched. Just like transformers, triggered

hints are created by the exercise author. The following fields are required to define a

TriggeredHint:

• regex: Regex to used to trigger hint

• hint: Hint that should be shown to students if regex is triggered

• appliedBeforeTransformers: Boolean to denote whether triggered hint should

be applied before or after transformers. A true value will apply triggered hints

before transformers (this is the default behaviour)

Triggered hints are categorized into three groups: triggeredHintsForUnchanged,

triggeredHintsForInsertions, triggeredHintsForDeletions (these are fields in

the diffConfiguration model, which the exercise author can define). To get hints,

each group of triggered hints is applied to the respective diff group (unchanged, in-

sertions, or deletions). triggeredHintsForUnchanged are only applied to sections

of text that were not changed. triggeredHintsForInsertions are only applied to

insertions in the text. triggeredHintsForDeletions are only applied to deletions

in the text. The reason triggered hints were grouped as such is to allow the exercise

66

author to fine tune hints for exercise. It is possible that the exercise author wants a

triggered hint just insertions. Sometimes a hint should only be triggered based upon

deleted text, not inserted or unchanged text. Having this sort of flexibility helped

make exercises more helpful.

Apart from applying triggered hints to either unchanged, inserted, or deleted text,

triggered hints could also be applied before or after transformers are applied. The

exercise author simply has to specify true or false in the triggered hints applied-

BeforeTransformers field. Allowing exercise authors to chose whether to apply

triggered hints before or after transformers are applied is useful since transformers

can potentially distort the original text. For example, consider the following fields of

a whitespace transformer:

• regex: \s+

• replacement: ""

The whitespace regex (\s+) matches a sequence of one or more whitespace char-

acters. The whitespaces are then replaced with the empty string. Applying this

transformer until it can no longer be applied deletes all whitespace characters from a

given text. This is necessary since adding or removing whitespaces should not affect

the correctness of the student solution to an exercise in most cases. However, the

text after removing the whitespaces will be difficult to reason about for the exercise

author. Therefore, it can be useful for the exercise author to specify whether triggered

hints should be applied before or after transformers.

6.5 Test Cases

Running test cases is an integral facet to the refactoring tutor. As previously men-

tioned, the student is required to run test cases (if available) to ensure correct func-

tionality. Each exercise may have a set of test cases to be run before the student can

submit their solution. This is important for two main reasons. First, the student

should develop an instinct to run test cases whenever a small change has been made

67

to code regardless of whether it was a refactoring change. Making sure tests cases

pass when a small change has been made helps prevent bugs. Secondly, ensuring

that the student passes the test cases helps prune many invalid submissions that the

checker determines as correct. If the test cases pass, the checker will assume that the

student code is functional. The diff checking, diff matching, and tests cases all work

together to make the refactoring tutor robust.

68

Chapter 7

Deployment

The refactoring tutor was deployed to two different groups of programmers over the

course of a couple of months. The first group consisted of novice programmers who

are currently enrolled in 6.1010: Fundamentals of Programming at MIT. This course

is taken by most computer science majors since it is a required course in the cur-

riculum at MIT. Many of the students in the course do not have much experience

programming, and possibly even less experience with refactoring. Students in 6.1010

could benefit quite a bit from learning to refactor their code, since writing code that

is difficult to understand or prone to bugs will result confusion and even when asking

for help, staff may find it difficult to debug when code is messy. The refactoring tutor

was also deployed to the staff of 6.1010, which consisted of teaching and lab assistants.

The TAs and LAs consist of intermediate to advanced programmers. Deploying the

tutor to the TAs and LAs was useful for gathering feedback about the tutor and the

exercises and concepts about refactoring that it attempts to teach students.

7.1 First Deployment

The first round of deployment of the refactoring tutor was in early March 2023. At

this time, the refactoring tutor supported only Level 0 and Level 1 exercises. A total

of 14 exercises, providing practice for 10 concepts, were available. Before deploying

the tutor, it was necessary to identify which students needed the most help with

69

code style. Fortunately, lab assignments for 6.1010 had a style component. That

is, student’s code was evaluated for style. The style checker used a combination

of Pylint and Radon complexity checks to evaluate the style of the student’s code.

Pylint is a static code analysis tool for Python; it helps identify poor variable names,

boolean laundering, and long lines for example. Radon is another tool supported for

Python that determine cyclomatic complexity, a measure of the number of linearly

independent paths through a program. In other words, cyclomatic complexity is a

measure of how complex a given piece of code is. The complexity is determined via

multiple metrics (many conditional statements and for / while loops contribute to

complexity, for example).

Roughly 80 students were contacted to participate and try out the refactoring

tutor based on code style data that was collected on assignments. The students

contacted were flagged for mediocre code style. Unfortunately, there were only two

participants. The participants however, were able to completely finish all of the Level

0 and Level 1 exercises in about 30 minutes.

7.2 Second Deployment

The refactoring tutor was deployed online for students in 6.1010 in the beginning of

April. Students were given instructions on how to install the tutor and begin working

on exercises. Additionally, there was an extra help session every week, where students

were encouraged to try out the refactoring tutor if they had completed the session’s

task. The tutor featured the final Level 2 exercises from the refactoring tutor. A total

of ten new exercises and eight new concepts were included in the second version of the

tutor. These exercises were more challenging than those included in the first round

of deployment. In April, an additional 20 students completed at least one exercise in

the latest version of the refactoring tutor. A few students managed to complete all

the exercises. Most students did not complete them all, however.

Apart from the students, the refactoring tutor was also deployed to the staff of

6.1010, as mentioned previously. About 50 staff attempted the refactoring tutor. The

70

staff was instructed to complete the tutor as they would if they were also students,

and then go back and attempt to find bugs or other unintended behavior found in

the tutor. There were some technical difficulties in installing the tutor according to

various staff members, but within roughly an hour, about half of the staff was able

to install the tutor and complete Level 0, Level 1, and Level 2 exercises. During the

session, 45 feedback responses were collected. The feedback will be discussed in the

evaluation section.

71

72

Chapter 8

Evaluation

This section discusses the refactoring tutor feedback gathered from staff and the

results of deploying the refactoring tutor in 6.1010: Fundamentals of Programming.

The refactoring tutor was used by most of the course staff and many members claimed

the tutor would be a useful tool for students. The staff did provide feedback on certain

exercises and some found minor bugs in a few exercises. With the infrastructure of

the tutor however, it was possible to modify exercises to take into account the staff

feedback and fix the bugs.

The students who used the tutor were able to get past the Level 0 and Level 1

exercises, with some amount of success with the Level 2 exercises. Since there is

not enough student data, quantitative conclusions regarding the effectiveness of the

refactoring tutor on teaching students about refactoring won’t be made. Instead, this

section will focus mainly on the qualitative aspects of the refactoring tutor and the

staff feedback.

8.1 Student Results

Over the past few months, 21 students used the refactoring tutor and made progress

on the exercises. In total, the 21 students collectively submitted their answers 362

times. 201 of the submissions were marked as correct, while 161 of the submissions

were marked as wrong. Every student was able to pass the tutorial exercise. 11

73

students were able to finish at least half of the exercises. The first half of the exercises

correspond to Level 0 and Level 1 exercises which aren’t very challenging, so it makes

sense that a good portion of the student were able to finish those. Three students

were able to complete the majority of the exercises. Figure 8-1 shows how many

exercises were completed by how many students.

Figure 8-1: Exercises Completed by students in 6.1010

There were a few exercises that were seemingly confusing to the students. Fig-

ure 8-2 shows the number of passed and failed attempts per exercise. Based on

Figure 8-2, there were six exercises that had more failed attempts than successful

attempts. These exercises include Boolean-laundering-if-statements, Long-line-sobel-

filter, Single-character-variable-name, Single-character-variables-compound-interest,

Register-user-never-nest, and Tuple-unpacking-in-loops. The next sub-sections will

discuss the types of issues students encountered in the mentioned exercises, along

with fixes to make the exercise better. The Long-line-sobel-filter was not attempted

nearly as much as the other exercises, therefore, it will be excluded from the discus-

sion.

74

Figure 8-2: Passed and Failed Attempts per Exercise from students

8.1.1 Boolean-laundering-if-statements

The Boolean-laundering-if-statement exercise had 15 successful attempts and 26 failed

attempts. The exercise is shown below:

1 #<yaml>

2 # - id: Boolean-laundering-if-statements

3 # conceptIds:

4 # - python::boolean-laundering-in-if-statements

5 # prompts:

6 # - >-

7 # Notice in the following exercise that score >= 65 is

8 # used as the check for a passing grade. Then a boolean value

9 # is returned, but the if-condition is itself a boolean value

10 # after being evaluated. Think of what you can change to make

75

11 # the code more succint and readable.

12 # - >-

13 #

https://py.mit.edu/spring23/readings/style#_boolean_laundering→˓

14 #

15 # priority: 2

16 # explanation: ""

17 # correctFileRequired: true

18 # testResultsFilename: .results.txt

19 # diffConfiguration:

20 # transformers:

21 # - regex: \s+

22 # replacement: ""

23 # - regex: (\(|\))

24 # replacement: ""

25 # triggeredHintsForUnchanged:

26 # - regex: return True

27 # hint: Do you explicitly need to return True?

28 # appliedBeforeTransformers: true

29 # - regex: return False

30 # hint: Do you explicitly need to return False?

31 # appliedBeforeTransformers: true

32 #</yaml>

33

34 def passes_course(score):

35 '''

36 Given grade score, determines if student passes the course.

37 >>> passes_course(100)

38 True

39 >>> passes_course(30)

40 False

76

41 '''

42 if score >= 65:

43 return True

44 return False

45

46 # DO NOT MODIFY BELOW

47 if __name__ == '__main__':

48 import doctest

49 import os

50 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

51 results.write(str(doctest.testmod(verbose=True).failed))

The solution to this exercise requires removing the verbose return statements:

1 def passes_course(score):

2 '''

3 Given grade score, determines if student passes the course.

4 >>> passes_course(100)

5 True

6 >>> passes_course(30)

7 False

8 '''

9 return score >= 65

10

11 # DO NOT MODIFY BELOW

12 if __name__ == '__main__':

13 import doctest

14 import os

15 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

77

16 results.write(str(doctest.testmod(verbose=True).failed))

It turns out that 19 of the 26 of the incorrectly marked submissions had the

correct refactoring that the exercise was looking for. However, the student solutions

were somehow modified such that docstrings used double quotes instead of single

quotes as is used in the starter code and the solution. For example, one of the

student submissions is shown below:

1 def passes_course(score):

2 """

3 Given grade score, determines if student passes the course.

4 >>> passes_course(100)

5 True

6 >>> passes_course(30)

7 False

8 """

9 return score >= 65

10

11 # DO NOT MODIFY BELOW

12 if __name__ == '__main__':

13 import doctest

14 import os

15 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

16 results.write(str(doctest.testmod(verbose=True).failed))

Lines 2 and 8 are different between the staff solution and the student submission.

Changing single quotes to double quotes shouldn’t affect the correctness of the exer-

cise, since the intended refactoring was done by most of the students, therefore, the

student submission should have been marked correct. This could easily be fixed by

adding a transformer that converts all double quotes to single quotes in the metadata

78

of the exercise. For example, the new metadata of the exercise could look like the

following:

1 #<yaml>

2 # - id: Boolean-laundering-if-statements

3 # conceptIds:

4 # - python::boolean-laundering-in-if-statements

5 # prompts:

6 # - >-

7 # Notice in the following exercise that score >= 65 is

8 # used as the check for a passing grade. Then a boolean value

9 # is returned, but the if-condition is itself a boolean value

10 # after being evaluated. Think of what you can change to make

11 # the code more succint and readable.

12 # - >-

13 #

https://py.mit.edu/spring23/readings/style#_boolean_laundering→˓

14 #

15 # priority: 2

16 # explanation: ""

17 # correctFileRequired: true

18 # testResultsFilename: .results.txt

19 # diffConfiguration:

20 # transformers:

21 # - regex: \s+

22 # replacement: ""

23 # - regex: (\(|\))

24 # replacement: ""

25 # - regex: \"

26 # replacement: "\""

27 # triggeredHintsForUnchanged:

79

28 # - regex: return True

29 # hint: Do you explicitly need to return True?

30 # appliedBeforeTransformers: true

31 # - regex: return False

32 # hint: Do you explicitly need to return False?

33 # appliedBeforeTransformers: true

34 #</yaml>

Single quotes might have been changed to double quotes in the students’ submis-

sions unintentionally by a VSCode extension that autoformats code. This is the most

likely scenario since the students probably didn’t manually change the single quotes

to double quotes.

8.1.2 Single-character-variable-name

There were a variety of different answers in the Single-character-variable-name exer-

cise. The exercise file is shown below:

1 #<yaml>

2 # - id: Single-character-variable-name

3 # conceptIds:

4 # - python::variable-renaming

5 # prompts:

6 # - >-

7 # Choosing variable names can be tricky sometimes, but you

8 # shouldn't resort to variable names that other people (or

9 # future you) will find hard to make sense of in the context

10 # of your code. As a simple example, it is usually a bad idea

11 # to have single character variable names unless it is being

12 # used for an index perhaps. Identify and replace the single

13 # character variable in the following code with a better, more

80

14 # descriptive name.

15 #

16 # If your first guess doesn't seem to work, try out other

17 # variable names you think make sense in the context of the

18 # code.

19 # - >-

20 #

https://py.mit.edu/spring23/readings/style#_concise_descriptive_names→˓

21 #

22 # priority: 0

23 # explanation: ""

24 # correctFileRequired: true

25 # testResultsFilename: .results.txt

26 # diffConfiguration:

27 # transformers:

28 # - regex: \s+

29 # replacement: ""

30 # - regex: (\(|\))

31 # replacement: ""

32 # - regex: (num_sum|num_total|total(_(\w)+)*|((\w)+_)*total)

33 # replacement: "total"

34 #</yaml>

35

36 def avg_of_list(nums):

37 '''

38 Given a list of integers, calculates the average.

39 >>> avg_of_list([1])

40 1.0

41 >>> avg_of_list([1, 2, 3, 4, 5])

42 3.0

43 >>> avg_of_list([3, 6, 9, 16])

81

44 8.5

45 '''

46 # keeps track of sum

47 t = 0

48 for num in nums:

49 t += num

50 return t / len(nums)

51

52 # DO NOT MODIFY BELOW

53 if __name__ == '__main__':

54 import doctest

55 import os

56 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

57 results.write(str(doctest.testmod(verbose=True).failed))

As has been seen before, the idea of this exercise is to rename the variable t into

total. Some students got the exercise wrong because they renamed t to sum. This is

intentional, since renaming a built-in function (sum is a built-in function in Python)

is not good practice. Another student used the variable name running, which isn’t

included in the transformer regex that transforms variable names to total. It’s quite

subjective, however, running isn’t as expressive as total or total_sum. However, one

student did use running_sum, which is a better variable than t or running, however

the tutor marked it wrong. To allow for such a variable name, the transformer that

converts variable names to total could be modified to include running_total. The

new diff configuration in the exercise metadata could look something like the following:

1 # diffConfiguration:

2 # transformers:

3 # - regex: \s+

4 # replacement: ""

82

5 # - regex: (\(|\))

6 # replacement: ""

7 # - regex:

(num_sum|num_total|total(_(\w)+)*|((\w)+_)*total|running_sum|((\w)+_)+sum)→˓

8 # replacement: "total"

Notice that running_sum is now included in the transformer regex. A more general

regex that is included in the transformer regex however is ((\w)+_)+sum.

Four out of the 12 failed attempts involved renaming the variable nums to numbers,

which is subjectively a good change. However, the exercise is only expecting the

variable t to be renamed. To prevent confusion, the prompt could be modified to

explicitly mention only to rename single character variable names.

8.1.3 Single-character-variables-compound-interest

The Single-character-variables-compound-interest exercise had a student outlier where

11 failed attempts were made. Given that the mentioned exercise is a variable re-

naming exercise and therefore somewhat open-ended, it was somewhat expected that

student would struggle with renaming variable names. In fact, the outlier student

submitted feedback for the exercise and mentioned that they tried multiple variable

names that weren’t working. The exercise the student was struggling with is shown

below:

1 #<yaml>

2 # - id: Single-character-variables-compound-interest

3 # conceptIds:

4 # - python::variable-renaming

5 # prompts:

6 # - >-

7 # In this example, there are multiple single character variable

8 # names which might be confusing those who aren't familiar with

83

9 # compounding interest. Identify and replace the single

10 # character variables in the following code with better, more

11 # descriptive names.

12 #

13 # priority: 1

14 # explanation: ""

15 # correctFileRequired: true

16 # testResultsFilename: .results.txt

17 # diffConfiguration:

18 # transformers:

19 # - regex: \s+

20 # replacement: ""

21 # - regex: (\(|\))

22 # replacement: ""

23 # - regex:

(starting(_(\w)+)*|start(_(\w)+)*|((\w)+_)*start|((\w)+_)*starting)→˓

24 # replacement: "starting"

25 # - regex: (principle(_(\w)+)*|((\w)+_)*principle)

26 # replacement: "starting"

27 # - regex:

(interestRate|rateInterest|rate(_(\w)+)*|((\w)+_)*rate)→˓

28 # replacement: "rate"

29 # - regex: (time(_(\w)+)*|((\w)+_)*time)

30 # replacement: "time"

31 #</yaml>

32

33 MONTHS = 12

34 def compound_interest_monthly(s, r, t):

35 '''

36 Calculate compound interest given the starting amount, interest

37 rate, and time elapsed in months.

84

38 >>> compound_interest_monthly(100, 0.10, 12)

39 10.471306744129677

40 >>> compound_interest_monthly(2000, 0.05, 24)

41 209.8826711166539

42 '''

43 amount = s * (pow((1 + r / MONTHS), t))

44 return amount - s

45

46 # DO NOT MODIFY BELOW

47 if __name__ == '__main__':

48 import doctest

49 import os

50 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

51 results.write(str(doctest.testmod(verbose=True).failed))

I extracted student logs for the variable renaming exercise to determine why the

student’s submissions were being marked wrong. As expected, it turns out that the

student used a variable name that the exercise was not expecting. Specifically, the

student was replacing t with elapsed_months, which was not accepted by the tu-

tor. The variable name elapsed_months is completely valid. Updating the exercise

to allow for the elapsed_months variable name required adding a transformer that

converted elapsed_months to time. The infrastructure was built to easily add trans-

formers to detect and change valid variable names into those of the staff solution.

8.1.4 Register-user-never-nest

Another confusing exercise for the students was the Register-user-never-nest exercise,

one of the hardest exercises. Only one student was able to get it right. Not many stu-

dents understood what they had to do, since this concept is rather niche for students.

The exercise is shown below:

85

1 #<yaml>

2 # - id: Register-user-never-nest

3 # conceptIds:

4 # - python::reducing-nesting

5 # prompts:

6 # - >-

7 # In this exercise, you can see that there is a bit of nesting

8 # in the logic to register a user. This is a simple example,

9 # but in complex functions that have a lot of conditional

10 # logic, nesting can get terrible. One way to reduce that

11 # however, is to do all the error checking first. This usually

12 # requires inverting some conditionals that deal with returning

13 # early. In this example, we return None whenever we hit an

14 # unhappy case. After returning, it is then unnecessary to nest

15 # code anymore, which helps with clarity of the code. This

16 # process splits up the code into the initial error checking

17 # part, and then the actual logic that the function should

18 # generally execute.

19 # priority: 1

20 # explanation: ""

21 # correctFileRequired: true

22 # testResultsFilename: .results.txt

23 # diffConfiguration:

24 # yankedInsertions:

25 # - "iflenparts!=2:returnNone"

26 # - "ifuser_id<=0:returnNone"

27 # - "ifnotlenparts==2:returnNone"

28 # - "ifnotuser_id>=0:returnNone"

29 # transformers:

30 # - regex: \s+

31 # replacement: ""

86

32 # - regex: (\(|\))

33 # replacement: ""

34 # triggeredHintsForUnchanged:

35 # - regex: "iflenparts==2:(.)*ifuser_id>=0:"

36 # hint: The length 2 parts condition and non-negative ids

condition are still nested.→˓

37 # The goal is un-nest the conditions.

38 #</yaml>

39 def validate_and_register(user_info):

40 """

41 Validates and registers a user given a string input that should

42 have the following form:

43

44 'user_id,user_name'

45

46 If the user_info doesn't have 2 entries or the user id is negative,

47 then the entry is invalid and the function should return None.

48 >>> validate_and_register('1, ben')

49 (1, 'ben')

50 >>> validate_and_register('100, alice')

51 (100, 'alice')

52 """

53 parts = user_info.replace(" ", "").split(",")

54

55 if len(parts) == 2:

56 user_id = int(parts[0])

57 if user_id >= 0:

58 user_name = parts[1]

59 return (user_id, user_name)

60 else:

61 return None

87

62 else:

63 return None

64

65 # DO NOT MODIFY BELOW

66 if __name__ == '__main__':

67 import doctest

68 import os

69 with open(f'{os.path.expanduser("~")}/.praxistutor/.results.txt',

'w') as results:→˓

70 results.write(str(doctest.testmod(verbose=True).failed))

This goal behind this exercise is explained in the Excessive Nesting sub-section

of the Code Smells section. Student were able to reduce nesting based on their

submissions, however, not in the way the staff solution expected. For example, one

of the student submissions is shown below:

1 def validate_and_register(user_info):

2 parts = user_info.replace(" ", "").split(",")

3

4 if len(parts) != 2 or int(parts[0]) < 0:

5 return None

6

7 user_id = int(parts[0])

8 user_name = parts[1]

9

10 return (user_id, user_name)

This does manage to reduce nesting. There is only one level of nesting here.

However, it is marked incorrect because the two error conditionals are combined

into one. In this case it’s not a good idea to combine the two conditions, since the

int(parts[0]) is repeated twice. The intent of this exercise was that students have

two different if-statements, one for checking the length of parts and the other for

88

checking the numerical values of the user id.

Another student submission, which was very close to being marked correct is

shown below:

1 def validate_and_register(user_info):

2 parts = user_info.replace(" ", "").split(",")

3

4 if len(parts) != 2:

5 return None

6 user_id = int(parts[0])

7 if user_id >= 0:

8 user_name = parts[1]

9 return (user_id, user_name)

In this case, the student has the first error checking if-statement. The student has

the right idea to return a user id and user name if the user_id >= 0, but to follow

the paradigm explained in the exercise, the student was supposed to return fast and

check if user_id < 0.

To help fix this issue, more clear instructions were added to the exercise descrip-

tion. Specifically, the prompt now states that there must be two error checking

conditions that must return None. New hints are also included. If a student presses

the "get hint" button, an example of returning fast with the first error condition is

shown with the hopes that they are able to figure out how to refactor the rest of

the function. It was difficult to add triggered hints for this exercise since student

solutions tend to deviate a lot from the staff solution, therefore better instructions

and manual hints were used to help students with this exercise.

8.1.5 Tuple-unpacking-in-loops

The Tuple-unpacking-in-loops exercise was also confusing for students. Only three

students were able to correctly answer the exercise. This may partially be due to the

fact that not many students got to the last exercise. One of the students that was not

89

able to pass the exercise submitted feedback. The student attempted the exercise over

20 times without success. Most of the student submissions are the same (the student

was not sure why they were getting the exercise wrong and perhaps submitted the

same code over and over). However, the reason the student was marked incorrect was

because they were using a list comprehension as their solution. The tuple unpacking

exercise that the student was unable to get right is shown below:

1 # EXERCISE STARTER CODE

2 def calculate_z_scores(data):

3 '''

4 Calculates z-scores for each entry in data. Each entry

5 in data is a tuple consisting of (mean, x, std deviation).

6 '''

7 z_scores = []

8 for entry in data:

9 # z-score is calculated by (x - mean) / std deviation

10 z_scores.append((entry[1] - entry[0]) / entry[2])

11 return z_scores

12

13 # EXERCISE STAFF SOLUTION

14 def calculate_z_scores(data):

15 '''

16 Calculates z-scores for each entry in data. Each entry

17 in data is a tuple consisting of (mean, x, std deviation).

18 '''

19 z_scores = []

20 for mean, x, std_dev in data:

21 # z-score is calculated by (x - mean) / std deviation

22 z_scores.append((x - mean) / std_dev)

23 return z_scores

24

90

25 # SUGGESTED STUDENT SOLUTION

26 def calculate_z_scores(data):

27 '''

28 Calculates z-scores for each entry in data. Each entry

29 in data is a tuple consisting of (mean, x, std deviation).

30 '''

31 return [(x - mean) / std_dev for mean, x, std_dev in data]

The intended solution was to simply replace the entry variable with mean, x,

std_dev . The student made an astute observation and realized the code could be

refactored into a list comprehension. The student code is more concise than the

staff solution, which arguably makes the student code better than the staff code.

Another reason the student might have defaulted to list comprehensions is because

the exercises preceding the tuple unpacking exercise focus on list comprehensions. The

exercise group dealing with idiomatic python code contained both list comprehension

and tuple unpacking concepts. So it’s likely that, the student was misguided by

the ordering of the exercises. To help prevent scenarios like this, two main changes

were made to the exercise. Firstly, the tuple unpacking exercise now precedes the

list comprehension exercises. Secondly, the exercise now mentions to focus on only

unpacking tuples and not list comprehensions, since the goal of the tutor is focus in

on certain refactoring concepts.

8.2 Staff Results

Compared to the student results, it seems like staff were more successful. That is

expected since staff have more experience with coding and refactoring. Figure 8-3

shows the number of exercises the staff completed. 14 staff members completed all

the exercises. 27 staff completed 15 or more exercises. Some staff couldn’t make it

through the entire tutor due to installation issues and bugs associated with having

reformatting extensions in VSCode. However, it seems that the refactoring exercises

91

were doable by the staff. The staff was also instructed to attempt to break the tutor

and find any bugs after they finished the set of exercises.

Figure 8-3: Number of Exercises completed by staff

The staff also seemed to have struggled with the same exercises the students strug-

gled with. As can be seen in Figure 8-4, the same three exercises that the students

struggled with were the exercises with the most failed attempts by the staff. The ex-

ercises were: Single-character-variables-compound-interest, Register-user-never-nest,

and Tuple-unpacking-in-loops. The Register-user-never-nest exercise was failed the

most by the staff as it was by the students. More explanations were added to the

mentioned exercise in hopes of making it more clear to students and staff who use

the tutor.

8.3 Staff Feedback

The staff provided helpful feedback after they tried out the refactoring tutor. There

were 45 individual responses collected. Out of the 45 responses, two were about hints,

92

Figure 8-4: Passed and Failed Attempts per Exercise from staff

six were about the problem descriptions, and 13 were about potential bugs. The other

responses were positive feedback about the tutor and how it could be used to help

students in 6.1010. Most of the feedback received mentioned how either the problem

description or hints could be made clearer.

8.3.1 Hints

The feedback for hints in the refactoring tutor mentioned that more explicit hints

should be given. One user wrote, "hints should explain what exact changes to the

program should be made." In some cases, this was true. The hints for some exercises

were sparse (some hints linked to readings, instead of explicitly mentioning what

exact changes should be made), so understandably a student who is struggling with

93

the exercises would prefer explicit hints. However, it is difficult to balance how many

and what hints to give, since the idea for the tutor is to get the student thinking

about how to refactor via exercises. The goal is not to tell the student how to solve

each exercise. Hints for the exercises were revised, however. Hints were added to the

most difficult exercises suggested by the student and staff results. Given the tutor

infrastructure, adding hints to exercises is trivial. The exercise author simply has to

create either triggered hints or explicit hints in the exercise definition.

8.3.2 Exercise Description

Similar to hints, the staff made it clear that more explicit instructions on the exercises

would be better. Some staff suggested rewording some instructions and descriptions.

For example, in the long line exercises, it isn’t clear that brackets, parentheses, or curly

braces could be separated by newlines in Python. The student probably wouldn’t

know this, making the exercise confusing. This feature of Python was originally

mentioned as a hint, but now is part of the exercise descriptions of the long line

exercises. Another staff member claimed that it was confusing not knowing what

to rename variables in the renaming variables exercises. They claimed that explicit

instructions on what to rename variables would have been great. Although it might

be great for completing the exercises, it might not be the best for learning. Having

explicit variable names in the instructions for such exercises defeats the purpose of

the exercise. However, for renaming variable exercises, perhaps there should be a

word bank with commonly chosen words that aren’t the best variable name choice.

This is difficult since naming variables is partially subjective. A variable name that

seems bad to some people will seem good to others.

The exercises descriptions were revised to include more details about what is

required and explanations about subtle Python features. This was done trivially,

since changing the exercise descriptions requires only changing the prompt in the

exercise YAML comment.

94

8.3.3 Exercise Bugs

Exercise bugs were bugs found by the staff that involved getting an exercise wrong,

even though the submitted code was refactored correctly, but in a way that deviated

from the exercise’s staff solution. An example of this is demonstrated in the tuple

unpacking exercise shown below.

1 # EXERCISE STAFF SOLUTION

2 def calculate_z_scores(data):

3 '''

4 Calculates z-scores for each entry in data. Each entry

5 in data is a tuple consisting of (mean, x, std deviation).

6 '''

7 z_scores = []

8 for mean, x, std_dev in data:

9 # z-score is calculated by (x - mean) / std deviation

10 z_scores.append((x - mean) / std_dev)

11 return z_scores

12

13 # SUGGESTED SOLUTION

14 def calculate_z_scores(data):

15 '''

16 Calculates z-scores for each entry in data. Each entry

17 in data is a tuple consisting of (mean, x, std deviation).

18 '''

19 z_scores = []

20 for (mean, x, std_dev) in data:

21 # z-score is calculated by (x - mean) / std deviation

22 z_scores.append((x - mean) / std_dev)

23 return z_scores

Notice the difference between lines 8 and 20. The suggested solution was marked

95

incorrect since it included parentheses and deviated from the exercise staff solution.

However, it shouldn’t be marked wrong, since the refactoring concept of tuple unpack-

ing was used successfully in the exercise. It required adding a transformer that would

remove parentheses from text. It might seem weird to remove all parentheses, since

the semantic meaning is different depending on the context. In the example above,

the parentheses don’t matter. The code will work without them. When parentheses

are used to call a function, for example, they matter quite a bit. Removing those

parentheses would raise an exception. The exercise checkers however don’t need to

worry about correctness of the code however, since that is handled by the test cases.

All submitted code is code that passed the test cases. Therefore, in order to fix the

bug, adding a parenthesis transformer works.

Also it’s worth mentioning that some staff suggested that the tuple unpacking

exercise above can be done using a list comprehension, but as mentioned in the

Student Results section, the goal for the tutor is to focus on a particular refactoring

technique at a time, therefore the staff solution was unchanged. However, the exercise

description was modified to include instructions to focus on tuple unpacking, not

creating list comprehensions. Although, it is a neat way to refactor the code. Perhaps

future versions of the refactoring tutor could include multiple refactoring techniques.

8.4 Infrastructure Bugs

Many staff had issues with the exercises because they had one or more VSCode

extensions that would automatically reformat their code on save. This was especially

noticeable for the long line exercises. Staff reported code being changed on save

even though the staff didn’t want to make such changes. This is of course a feature

of the VSCode extensions that auto-format code, however, it is problematic for the

refactoring exercises, especially because the exercises rely on the exact submitted text.

It was found that staff who were having issue with the exercises submitted answers

that were nearly correct according the exercise checkers. The issue was the difference

between single quotes and double quotes. It is assumed that the VSCode extensions

96

were the culprit of modifying the exercises to have single quotes instead of double

quotes that were contained in the starting exercise code. The staff likely wouldn’t

have changed all double quotes to single quotes intentionally, especially since none of

the exercises instructed them to do so. This was a subtle bug, but it can potentially

be fixed with a double quote transformer. Although, that is perhaps not the best

solution to this issue. The main problem affecting the correctness of exercises is the

VSCode extensions. To make the refactoring tutor more robust, extensions need to

be deactivated when doing the exercises, either automatically or manually. This will

prevent any future bugs having to do with auto-formatting.

97

98

Chapter 9

Discussion

The tutor shows promise in teaching students how to refactor based on the completion

of exercises by some students and staff in 6.1010. Exercises have been shown to be

rather robust, and when there are bugs with exercises, modifying them is not hard.

Based on the the evaluation of the tutor, most of the bugs, or issues found with the

exercises were or could be solved by modifying the exercise prompt, hints, or trans-

formers. There was a lot of staff feedback on the exercise prompts for example. Staff

mentioned that there were exercises where the instructions were unclear. Changing

the exercise prompts only requires changing the prompt in the exercise’s YAML com-

ment. This applies to hints also. Adding manual hints can be done by adding to the

exercise’s YAML comment. Triggered hints could be modified by changing the diff

configuration field in the YAML comment. Some students had trouble with the re-

naming variable exercises as was expected. Some used unexpected, but good variable

names, therefore adjusting the exercises to include more acceptable variable names

was needed. This was also not hard, and just required adding more transformers to

the diff configuration of the exercises.

The data gathered from the students suggested that the exercises were doable,

although more data is needed to determine if the exercises are confusing or not. Not

all students finished the exercises, however the tutor was optional for students in

6.1010. Perhaps with some incentives in a future semester of 6.1010, will students be

determined to finish the exercises. The staff were more successful in completing the

99

exercise. A one hour time slot was allotted during a staff training day to have the

staff go through the exercises. It was expected that the staff would have more success

than the students, since they have more experience with coding.

9.1 Future Improvements

There are still many aspects to improve on, though. To prevent bugs stemming from

unintended auto-formatting, VSCode extensions should be deactivated; or at least

the extensions that auto-format code. This probably has to be handled in the plugin.

It may be possible to automatically turn the extensions off when using the refactoring

tutor, however if it is not possible, then another solution is to check if there are any

formatting extensions and let the user know. The tutor could display a warning

message that prompts the user to turn off the extensions.

Another potential upgrade for the tutor is to include "compilation" errors. That

is, whenever an exercise is marked incorrect, the tutor will pin-point exactly where

the issue is by underlining a line(s) of code for example. Having this will make exer-

cises more intuitive and will help student understand what is wrong with their code.

Implementing this may require further analyzing the student diff and determining

what parts of the diff were missing or incorrectly included.

An addition to the tutor that would also be helpful to the students, would be

a streamlined process where students could submit answer suggestions for exercises.

In the variable renaming exercises, there was a lot of student frustration that their

chosen variable names didn’t work. Some of the student’s chosen variable names were

valid however, therefore, instead of just marking the exercise as wrong, having a way

for the student to submit suggestions for valid variable names would be useful. The

process could involve various staff members where they approve the suggestion or

provide feedback on why the student’s suggestion was rejected.

To help exercise authors develop and modify exercises a UI that assists in creating

transformers or triggered hints could be made. Editing exercises via the YAML file

works, however it would be more user-friendly if the process to do so included some

100

graphical interface.

101

102

Chapter 10

Conclusion

In this thesis, a novel tool to help students learn about refactoring and improve

their coding style was developed. The refactoring tutor was a VSCode extension that

presented student with various types of refactoring exercises. Concepts spanning from

removing boolean laundering to writing more idiomatic Python code were included in

the tutor. Since refactoring and style is partially a subjective concept, the exercises

has to focus on very specific refactoring concepts. Each exercise provided practice

with a single concept.

In order to develop refactoring exercises, additions to the existing Praxis Tutor

infrastructure were made. The most important addition was the creation of the diff

checking and matching algorithms that compared student diffs and staff diffs. The

algorithm was used by most exercises. It was robust for the most part, however, the

algorithm did use additional configurations set by the exercise author to make the

tutor more resilient to edge cases and bugs. A configuration structure was included

to allow the exercise author to fine tune the exercise.

Although the results in this paper did not show conclusive evidence that the

tutor helped students learn refactoring, it still has promise. Not enough students

participated and tried out the tutor, however, if the tutor was assigned for example,

in an introductory programming class, then more student data could be gathered

and possible show that the tutor does help students learn refactoring. The staff for

6.1010: Fundamentals of Programming play-tested the tutor and provided feedback.

103

The feedback was used to improve the tutor, and most the feedback involved making

a few modifications to the exercises with the infrastructure that was developed for

the refactoring tutor. Most of the staff was able to complete most of the refactoring

exercises. With a bit more testing and tuning, the tutor has potential to help students

practice and learn important refactoring skills.

104

Bibliography

[1] Patrick Beer. Code Context based Generation of Refactoring Guidance. PhD
thesis, 02 2019.

[2] Marcus Ciolkowski, Valentina Lenarduzzi, and Antonio Martini. 10 years of
technical debt research and practice: Past, present, and future. IEEE Software,
38(6):24–29, 2021.

[3] CodeAesthetic. Why You Shouldn’t Nest Your Code. YouTube, Dec 2022.

[4] Anders Ericsson. Peak : secrets from the new science of expertise / Anders
Ericsson and Robert Pool. Houghton Mifflin Harcourt, Boston, 2016 - 2016.

[5] Cruz Izu and Shrey Chandra. Are we there yet? novices’ code smells linked to
loop constructs. pages 1151–1151, 03 2022.

[6] Cruz Izu, Paul Denny, and Sayoni Roy. A resource to support novices refactoring
conditional statements. 07 2022.

[7] Amandeep Kaur and Manpreet Kaur. Analysis of code refactoring impact on
software quality. MATEC Web of Conferences, 57:02012, 01 2016.

[8] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. A tutoring system to learn
code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’21, page 562–568, New York, NY, USA,
2021. Association for Computing Machinery.

[9] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing refactoring depen-
dencies using graph transformation. Software and Systems Modeling (SoSyM),
6, 08 2007.

[10] Mohammed Misbhauddin and Mohammad Alshayeb. Uml model refactoring: A
systematic literature review. Empirical Software Engineering, 20, 02 2013.

[11] Suzanne Smith, Sara Stoecklin, and Catharina Serino. An innovative approach
to teaching refactoring. volume 38, pages 349–353, 03 2006.

[12] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and why your code
starts to smell bad. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 403–414, 2015.

105

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

106

