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Abstract

Private information  retrieval (PIR)  is a  protocol  which allows  a  user to  retrieve data  

from  a  database  on  a  server without the server being  able  to  deduce which records 

were retrieved. Due to  the homomorphic  cryptography systems required to  make 

these protocols  work and  large  amount  of  data  processing  required per user query, 

these algorithms  tend to  run much slower  than needed for  real-time applications  such 

as  streaming  movies or  voice  calling.  To  improve these speeds  to  ones  more  tolerable  

for  user applications,  we  designed  OnionChopper:  a  small,  fast,  and  energy efficient 

hardware  accelerator  on  which to  offload  the heaviest computational  work. 

This hardware accelerator  is optimized for  a state-of-the-art  PIR algorithm,  Onion-  

PIR,  but is widely applicable  due to  similarities in the fundamental algorithms  and  

cryptographies used in private information  retrieval. We identified the major  bottle-  

neck operation  common  to  OnionPIR  and  other PIR  schemes  and  designed  compu-  

tation  units to  aid  with that operation.  We designed  a  near-storage  accelerator  with 

on-chip  parallel  computation  units, SRAMs  and  register files for  exploiting data  reuse, 

and  a  near-storage  connection  to  the SSD to  exploit its high internal bandwidth to  

access  the database.  We used a  space  exploration  tool  to  identify the optimal  archi-  

tecture and  scheme  of  computation  and  data  movement over that architecture. Our 

resulting design  offers  a  nearly 300× speed improvement over running on  a  general-  

purpose processor  for  a  64GB  database.  
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Chapter 1 

Introduction

With an  increasingly  privacy-conscious  populus, demand has  heightened for  services 

that prevent inadvertent release  of  user data,  even to  the service itself. Private 

Information  Retrieval (PIR)  allows  a  user to  retrieve a  record from  a  database  located  

on  a  server, without the server being  able  to  detect which record was  retrieved. PIR  

could  be used to  privately stream movies [14],  for  voice  calling  that keeps participants 

private [1],  and  even for  privacy-preserving advertisement delivery [13].

1.1  Motivation

A popular  method to  achieve  private information  retrieval on  a  single,  untrusted server 

is by using  homomorphic  encryption, a  type of  cryptography that allows  for  operations  

such as  addition and  multiplication on  encrypted ciphertexts. The user, or  client, 

sends an  encrypted query to  the server indicating which record of  the database  should 

be retrieved. The server then performs homomorphic  computations  and  returns to  

the user an  encryption of  the desired record in the database.  

Unfortunately, private information  retrieval (PIR)  methods tend to  be quite slow.  

While PIR  algorithms  have  been getting  faster,  they are  bounded by some  funda-  

mental limitations. Homomorphic  encryption, used in many PIR  algorithms,  is com-  

putationally expensive. However, its use  is fundamental in many such algorithms  

due to  the need to  perform computation  on  a  client’s query without knowing  what
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the query is. Many  recent works improve upon previous algorithms  by using  faster  

homomorphic  cryptographies or  faster  homomorphic  operations.  

An even more  fundamental limitation is the requirement that any  PIR  algorithm  

computes upon every record in the database.  Otherwise, it would be possible  for  

the server to  surmise that certain records which were not  accessed  must not  be the 

records the client has  queried for.  PIR  algorithms  must, then, be at  least  linear in 

the size  of  the database,  and  practical  databases  can  be quite large.

1.2  Contribution

We designed  OnionChopper,  a  near-storage  hardware  accelerator  to  improve the per- 

formance  of  server-side computation  in a  PIR  algorithm.  We designed  the accelerator  

targeting  the OnionPIR  algorithm,  a  state-of-the-art  algorithm  with low  response  

sizes  [21].  Hardware  has  the advantage  of  being  able  to  process  data  in parallel  and  

specialization  allows  hardware  units to  compute faster  than with general-purpose  

programming  instructions. 

By placing  the hardware  near  the storage  for  the database,  the disk, computation  

can  happen on  data  streamed directly from  the database  rather than waiting  for  the 

data  to  be brought in to  memory, caches,  and  ultimately the computer’s processor  

itself. Based  on  our  analysis  of  the OnionPIR  program,  disk bandwidth is easily  satu-  

rated by running this protocol,  so  this approach  allows  an  even higher disk bandwidth 

to  be achieved. 

Inside an  NVMe disk is some  amount  of  DRAM that can  be accessible  to  a  hard-  

ware  accelerator  [5]  [7].  The design  of  the accelerator  itself also  includes some  SRAM 

buffers, registers, and  compute units. We performed a  space  search  to  find out the 

most  efficient configuration  of  these different components.  

OnionChopper  has  performance  benefits of  nearly 300x  compared  to  a  general-  

purpose processor.  Running  the OnionPIR  algorithm’s  bottleneck operation  on  this 

accelerator  would result in speeds  nearing  the SSD’s bandwidth. The majority of  

energy consumption comes  from  that required for  the minimum number of  possible

16



SSD accesses.  OnionChopper  is also  similarly efficient on  other PIR  algorithms  for  

large  database  sizes.

1.3  Thesis Organization

In  Chapter 2,  we  discuss background  on  PIR  schemes  and  the Timeloop  tool.  In  

Section 2.1,  we  discuss basic  PIR  algorithms,  cryptographic operations  used in PIR,  

and  various  improvements made  in different PIR  variants. Section 2.2 contains  a  dis-  

cussion  of  Timeloop,  the design  exploration  tool  used to  explore various  architectures 

and  data  movements in our  thesis. 

In  Chapter 3,  we  discuss the bottleneck operation  of  OnionPIR,  as  well as  its 

similarities to  the main operations  in other PIR  schemes. 

In  Chapter 4,  we  discuss the basic  design  of  our  hardware  accelerator,  including 

the computation  units and  storage  hierarchy in the near-storage  accelerator.  

In  Chapter 5,  we  discuss our  methods of  using  Timeloop  to  explore the space  of  

possible  storage  hierarchy designs.  

In  Chapter 6,  we  analyze  the explored space  of  storage  hierarchy designs  to  de-  

termine the optimal  architecture. We also  evaluate  this architecture’s speed, area,  

and  energy consumption, compare  it to  a  general  purpose processor,  and  compare  its 

performance  across  different PIR  schemes. 

In  Chapter 7,  we  discuss limitations to  our  processes  and  analyses.  

Chapter 8 provides concluding  remarks.
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Chapter 2 

Background and Related Work

Here, we  provide background  on  PIR,  covering  the security problem that PIR  tries 

to  address,  PIR  variations  and  algorithmic  performance  optimization  techniques, and  

the basic  cryptographic operations  necessary  in modern PIR  algorithms.  We then 

give  background  on  Timeloop,  a  design  space  exploration  tool  which was  built for  

designing  Deep Neural Network (DNN) or  tensor accelerators.  In  this thesis, we  

will use  Timeloop  to  assist  in the design  space  exploration  of  our near-storage  PIR  

accelerator.

2.1  Private  Information  Retrieval

Private Information  Retrieval  (PIR)  allows  a  user to  retrieve a  record from  a  database  

without the server hosting  the database  discovering  which record was  retrieved. The 

basic  problem is as  follows:  

Suppose the server has  a  database D with n elements, D0...Dn−1, and  a  user wants  

to  retrieve the record at  index i, Di. The user can  communicate  a  query q to  the 

server to  request this record, and  the server can  respond with some  response r. The 

query q must not  reveal anything about i. 

Note  that, no  matter what  algorithm  the server uses  to  compute response r, it 

must ultimately process  every element of  the database D in some  way.  Otherwise, 

this must mean  that the elements it did not  process  were not  the record that the client
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requested, revealing  something  about  the value of i. This means  that a  fundamental 

limitation of  PIR  algorithms  is that they must be at  least  linear in the size  of  the 

database, n.

2.1.1  Basic Scheme

Suppose for  the moment that we  have  a  system of  encryption with special  functions 

that, when applied to  ciphertexts, can  add  or  multiply the underlying plaintexts. 

Let’s call  these operations ⊕ and ⊗, and  denote E(p) as  the encrypted ciphertext 

corresponding  to  plaintext p.  

Then, we  have  that:

E(p1)⊕  E(p2)  = E(p1 + p2)

E(p1)⊗  E(p2)  = E(p1 · p2)

We will also  need to  be able  to  multiply a  ciphertext and  a  plaintext together. 

We will denote this by the ? operation.

p1 ? E(p2)  = E(p1 · p2)

So,  using  the ⊕, ⊗, and ? operator,  a  server can  operate  on  the underlying plain-  

texts of  ciphertexts without needing  to  (or indeed, being  able  to) decrypt them. 

If  we  have  a  cryptosystem with these operations,  we  can  use  it to  build a  PIR  

protocol.  Suppose the user wants  to  request record Di, out  of  a  database  with n total  

elements. The user can  encrypt, using  a  secret key, a  one-hot  vector encoding  the 

index i (a  vector of n elements where every element is 0,  except for  the element at  

index i, which is 1),  and  send this as  their query q [21].

q = E({0
0
, 0
1
, 0
2
,  ..., 1

i
,  ..., 0

n−3
, 0
n−2

, 0
n−1

})

Then, the server takes  the dot  product of  the database  vector D with the query 

vector q, using  the ? operation  for  multiplication and  the ⊕ operation  for  addition.
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Figure 2-1:  Basic  PIR  scheme

This results in the encryption of  the element Di, which is sent back  to  the client.

D · q = ⊕

n−1
∑

j=0

Dj ?  qj = E(Di)

The client can  decrypt this to  determine Di. Since all  of  these operations  were 

occurring  under encryption, the server could  never learn the value of i or Di. This 

process  is shown  in Figure 2-1.

Dimensionality

To  reduce the size  of  the query, the server can  reconceptualize  the database  as  a  2D  

matrix of  size
√

n ×  

√

n [21].  To  retrieve the record at  row i, column j (Di,j), the 

client sends two  encrypted one-hot  vectors, one  with a  1  at  index i and  one  with a  1  

at  index j.

q =  (q1,  q2)

q1 = E({0
0
, 0
1
, 0
2
,  ..., 1

i
,  ..., 0√

n−3
, 0√

n−2
, 0√

n−1
})

q2 = E({0
0
, 0
1
, 0
2
,  ..., 1

j
,  ..., 0√

n−3
, 0√

n−2
, 0√

n−1
})
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Figure 2-2:  2D  PIR  scheme

As a  first step, the server multiplies the database D
√
n×

√
n with the row  part of  

the query, q1. Each  plaintext-ciphertext multiplication is done  using  the ? operation.

A1×
√
n = q

1×
√
n

1 ·D
√
n×

√
n

This results in a  vector containing  encryptions of  all  of  the records in row i. For  

the next step, the server multiplies this result with the column part of  the query,

q2. Now,  all  multiplications will be ciphertext-ciphertext, so  they will use  the ⊗

operation.

r = q
1×

√
n

2 · (A1×
√
n)T

This process  is demonstrated in Figure 2-2.  This can  be extended to  an  arbi-  

trary number of  dimensions, with all  dimension reductions after  the first using  the ⊗

operation.

2.1.2  Homomorphic  Encryption

Two  encryption schemes  which have  the necessary  operations, ⊕, ⊗, and ?, are  BFV 

and  RGSW  encryption. A crytography system which implements these types of  oper-  

ations  is called  homomorphic.  We present the definitions of  BFV and  RGSW  that are
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used in the implementation of  OnionPIR,  rather than those  presented in the paper.

Operation  Cost  Summary

Table 2.1 is  a  summary of  the different homomorphic  operations  discussed below,  

their computational  costs  (in equivalent polynomial  multiplications), and  the noise  

of  the resulting ciphertext (assuming  a  ciphertext c or  two  ciphertext cx and cy, 

and  plaintext p)  [21]. B, l, and t are  parameters of  the cryptosystems and  will be 

explained below.

Operation Cost Noise  Growth
BFV ciphertext-ciphertext addition - O(Err(cx)  + Err(cy))
BFV ciphertext-plaintext multiplication 2 O(Err(c) ·  |p|)
BFV ciphertext-ciphertext multiplication 4  +  2l O(t · (Err(cx)  + Err(cy)))
BFV-RGSW  External Product 2l O(B · Err(cx)  + cy)

Table  2.1:  Homomorphic  Operation  Costs

BFV Encryption

BFV encryption deals  with integer polynomials  of  degree  less  than n (where n is one  

security parameter), whose  coefficients  are  from Zq (where q is another  parameter).

Zq here is the set of  integers modulo q. We say  that these polynomials  are  members 

of  a  ring Rq = Zq/(f(x)), where f(x)  = xn +  1. After polynomial  multiplications 

or  additions  are  done,  the coefficients  often  need to  be reduced modulo q which is 

represented by [h]q for  some  polynomial h and  modulo q. [10]  

Polynomials  can  be represented by their coefficients  in the interval 0 to q − 1. 

Plaintexts are  integer polynomials  drawn from Rt, and  ciphertexts are  pairs of  poly-  

nomials  drawn from Rq. The ciphertext expansion  factor F is the ratio  in size  between 

ciphertexts and  plaintexts, which is:

F =  

2 log q

log t
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During the encryption process,  and  in setting up secret and  public keys, several  

random  polynomials  must be chosen.  For the purposes of  proving the security of  

this scheme, the exact manner in which these polynomials  are  drawn from Rq is 

important. However, the details are  not  relevant here so  I  will point the reader to  

[10]  for  additional  information.  

To  encrypt plaintexts, a  secret key must first be chosen.  The secret key s is a  

random  polynomial  in Rq. 

To  encode  a  plaintext message m,  a  random  polynomial a must be sampled  from

Rq. A small  random  polynomial e, the error term, is also  sampled  from Rq. Let

b = −(a · s+ e), and ∆  = bq  /tc.  Then the ciphertext can  be calculated  as:

c =  (b+  ∆ ·m,  a)  =  ([−(a · s+ e)  +  ∆ ·m]q,  a)

To  decrypt a  ciphertext (c0,  c1):

µ =

⌊

c0 + c1 · s

∆

⌉

=

⌊

−e+  ∆m

∆

⌉

=

⌊

m+
−e

∆

⌉

Since e is small,  when µ is rounded, we  obtain  the original  message m [26].  

Under these methods of  encryption and  decryption it is possible  to  construct 

definitions for  the homomorphic  operations  needed for  a  PIR  scheme  -  that is ⊕, ⊗, 

and ?. Also  notice  that the accuracy  of  decryption depends on  the error term, or  

“noise”  being  small.  Homomorphic  operations  can  increase  the noise  in a  ciphertext, 

and  if it becomes  too  large,  the ciphertext will not  be decryptable.

Homomorphic  addition can  be performed in this scheme  by simply adding  the 

polynomials  in the ciphertexts togethers.  For  two  ciphertexts cx and cy:

(cx0,  cx1)⊕ (cy0,  cy1)  =  ([cx0 + cy0]q, [cx1 + cy1]q)

Here, the normal  addition operator  represents polynomial  addition, which  can 

be  performed  by adding each coefficient. Thus, the ⊕ operation  is linear in the 

size  of  the polynomial, n.  

The noise  in the resulting ciphertext is the sum of  the noise  in the two  input
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ciphertexts.

Homomorphic  plaintext-ciphertext  multiplication can  be performed in this 

scheme  by multiplying each  of  the two  ciphertext polynomials  by the plaintext poly-  

nomial.  For  plaintext p and  ciphertext c:

p  ?  c =  (p · c0,  p · c1)

Here, the normal  multiplication operator  represents polynomial  multiplication. 

This can  be done  by performing polynomial  multiplication in the standard way,  but 

it is typically done  by using  a  Number Theoretic Transform  (NTT) [18].  Performing  

an  NTT on  two  polynomials  allows  them to  be multiplied coefficient-wise.  By then 

performing an  inverse-NTT, the resulting polynomial  will be the same  as  if the polyno-  

mials  had  been multiplied in the standard way.  Since many ciphertexts or  plaintexts 

will be reused in multiple ? operations,  the NTT operation  can  be bulk-applied to  all  

cipher and  plaintexts before  and  after  a  large  computation. In this  case, the ? op-  

eration  will  effectively  boil  down  to  coefficient-wise  multiplication, making  

it linear in the size  of  the polynomial.  

The noise  in the resulting ciphertext is the magnitude of  the plaintext p times the 

noise  in the ciphertext c.

Homomorphic  ciphertext-ciphertext  multiplication is more  complicated.  

The initial multiplication step produces not  two,  but three polynomials.  A relineariza-  

tion step is required to  reformat  the ciphertext into two  polynomials  [10].  Overall,  

the computational  cost  of  this operation  is equivalent to  about 4  +  2l polynomial  

multiplications, where l = blogT qc for  a  chosen  base T [10]. l is usually 5  [21].  

The noise  in the resulting ciphertext is t times the sum of  the noise  in the two  

input ciphertexts.

RGSW Encryption

An RGSW  plaintext is also  a  polynomial,  as  in BFV encryption. However, an  RGSW  

ciphertext is constructed as  follows.  For  a  base  parameter B and  length parameter l,
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the gadget  vector g is defined as:

g(`×1) =  (Blog q  / logB−1,  Blog q  / logB−2,  ...,  Blog q  / logB−`)T

The gadget  matrix G is:

G = I2 ∨ g =

  



g 0  

0 g

  



A ciphertext that encrypts a  message m is then:

C =  [Z +m ·G]q

where each  row  of Z ∈ R(2`×2) is a  BFV encryption of  0.  The bottom half  of  

the matrix C is very similar to ` BFV ciphertexts encrypting base B decompositions  

of  the plaintext m, except that the factor  of ∆ has  not  been multiplied by m.  The 

details of  these decompositions  are  not  important for  this thesis, but they can  be used 

to  decrypt the ciphertext [21].  

Due to  the relationship between RGSW  and  BFV encryption, a  new operation  

is possible: External  Product. This operation  multiplies an  RGSW  ciphertext cx

and  BFV ciphertext cy, and  returns a  BFV ciphertext. The computational  cost  is 

equivalent to 2` polynomial  multiplications. The noise  of  the output ciphertext is

B times the noise  of cx plus the noise  of cy. Since the noise  growth  of  the external 

product is less  compared  to  that of  normal  BFV ciphertext-ciphertext multiplication, 

it is a  good  replacement for  the ⊗ operation  in private information  retrieval.

2.1.3  OnionPIR

OnionPIR,  like most  PIR  schemes, uses  the basic  pieces  of  §2.1.1 and  §2.1.2.  The 

main improvements that OnionPIR  makes  are  to  reduce the response  size  and  com-  

putational  cost  compared  to  other modern PIR  algorithms  [21].  

In  order to  reduce noise  growth,  other algorithms  such as  SealPIR  do  not  use  ho-  

momorphic ciphertext-ciphertext multiplications. Instead,  once  one  dimension of  the
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database  matrix is processed,  the resulting ciphertexts are  split into F (the cipher- 

text expansion  factor)  ciphertexts. These  ciphertexts are  then treated as  plaintexts 

for  the next step, so  that instead of  ciphertext-ciphertext multiplication with the 

next portion of  the query, plaintext-ciphertext multiplication is performed. However, 

when the matrix is split into d dimensions, this results in a  response  size  of F d−1 ci-  

phertexts (compared to  a  single  ciphertext when ciphertext-ciphertext multiplications 

can  be used). Remember that if noise  growth  is uncontrolled, ciphertexts cannot  be 

decrypted, and  the noise  compounds  over the multiplications in all d dimensions. 

As a  solution  to  this problem, OnionPIR  uses  the external product operation  

instead of  BFV ciphertext-ciphertext multiplications. The query contains  RGSW  

ciphertexts instead of  BFV ciphertexts so  they can  be used in the external product 

operation  with the intermediate ciphertext matrices produced from  multiplying the 

last  dimension. The lower  noise  growth  of  the external product operation  allows  

its use  without compromising  the ciphertexts, so  the final response  can  be a  single  

ciphertext. The lower  noise  growth  also  provides headroom  to  increase t, reducing 

the ciphertext expansion  factor F and  further reducing the response  size.  

To  keep computational  costs  low,  the first dimension remains a  BFV computation  

-  specifically, a  BFV plaintext-ciphertext multiplication. The first dimension is also  

made  larger  than the subsequent dimensions to  ensure that the bulk of  the compu-  

tation  is in that dimension, and  the larger  computational  cost  associated  with the 

external product multiplications in other dimensions is not  a  bottleneck. One  other 

caveat  is needed for  the first dimension, which is that each  plaintext in the database  

and  each  ciphertext in the first query is decomposed into two  parts. When a  decom-  

posed  plaintext is multiplied with a  decomposed  ciphertext, the dot  product is taken 

between them. This decomposition  is to  help control  noise.  

The reference OnionPIR  implementation uses  a  first PIR  dimension size  of  256,  

and  subsequent dimension sizes  of  4  [22].  The number of  dimensions for  the database  

depends on  the database  size.  In  general,  there are  tradeoffs  for  making  the number 

of  dimensions larger.  The first dimension matrix multiplication must always  calcu-  

late  across  the entire database,  and  the subsequent matrix multiplications are  extra
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computations  that add  to  the total  computation  cost.  Although the first dimension 

is the most  expensive, the subsequent dimensions do  add  some  computational  cost  

(especially since they are  ciphertext-ciphertext multiplications in OnionPIR).  On  the 

other hand, by increasing  the dimension size,  the request size  decreases,  since you can  

now  send multiple shorter vectors instead of  one  long  query vector. OnionPIR’s  prac-  

tical  choice  was  made  primarily for  the purpose of  reducing request size.  By making  

the number of  dimensions dependent on  the size  of  the database,  the request size  is 

logarithmic  in the size  of  the database.  Since OnionPIR  keeps the other dimensions 

small  (4  compared  to  the first dimensions size  of  256),  and  each  dimension reduces 

the size  of  the matrices that need to  be multiplied, the bottleneck will mainly be in 

the first dimension and  the computational  cost  is essentially still linear in the size  of  

the database  despite the extra computations  for  each  dimension. Other PIR  schemes  

make different tradeoffs  for  the dimensionality.

2.1.4  Other PIR  Schemes

Many  modern PIR  schemes  have  similarities in the basic  scheme  they follow  -  many 

follow  §2.1.1 closely.  They also  rely on  homomorphic  encryption schemes,  most  of  

which use  similar fundamentals. Here I  catalog  some  PIR  schemes,  as  well as  one  

example of  a  near-storage  accelerator  for  a  PIR  scheme, to  display some  of  these 

similarities as  well as  their differences and  the tradeoffs  each  make. Many  of  these 

similarities and  differences will become  relevant as  we  apply our own  near-storage  

accelerator  to  these schemes.

SealPIR

SealPIR’s  main contribution to  single-query PIR  is in reducing the query size.  In-  

stead  of  sending  a  one-hot  vector (i.e. encryptions of  0s  and  1s)  to  the server, the 

client instead encrypts the index i of  the database  record they are  requesting. The 

plaintext the client encrypts is the monomial xi. The server then performs an  obliv-  

ious  expansion  procedure that creates  the necessary  one-hot  vector from  the client’s
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encryption of i. 

As mentioned in §2.1.3,  SealPIR  treats the database  as  a  multi-dimensional ma-  

trix. The client sends an  encryption of  an  index for  each  axis  of  that matrix based  

on  which record they are  requesting. After multiplying the database  with the first 

one-hot  expanded query vector, SealPIR  expands each  ciphertext in the resulting 

vector into F ciphertexts, and  treats them as  plaintexts for  the next round of  mul- 

tiplication. Thus, all  multiplications will be plaintext-ciphertext multiplications to  

keep noise  growth  small.  The response  size  in SealPIR  is F d−1 ciphertexts.

MulPIR

MulPIR  introduces various  techniques to  reduce the request and  response  size  of  

SealPIR  [2].  In  BFV encryption, the first polynomial  in the ciphertext is a  random  

polynomial  drawn from Rq. Instead  of  sending  this polynomial  as  part of  the query, 

the client can  send the random  seed  used to  generate  it, and  the server can  re-generate  

it. This reduces the query size  by about  half.  

MulPIR  also  uses  a  technique called  modulus switching on  the final ciphertexts 

in the PIR  response  to  make them as  small  as  possible.  This technique decreases  the 

size  of  the ciphertexts at  the cost  of  increasing  the noise.  Since the ciphertexts will 

only be used once  for  decryption purposes, they can  be decreased  in size  as  much as  

possible  while still being  decryptable. 

MulPIR  uses  homomorphic  ciphertext-ciphertext multiplications to  reduce the 

response  size  to  one  ciphertext. This decreases  the response  size  at  the expense of  a  

higher computational  cost.

SimplePIR

SimplePIR uses  a  different encryption scheme  than many others discussed in this 

section,  but it is based  on  the same  RLWE concepts.  Here, a  vector is chosen  as  

the secret key. A matrix A and  error vector e are  chosen  at  random.  For  ciphertext 

modulus q and  plaintext modulus p,  the ciphertext for  a  vector µ is:
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E(µ)  =  (A,  c)  =  (A,  As+ e+ bq  /pc  · µ)

. 

SimplePIR considers  the database  as  a
√

N by
√

N matrix D, and  the client 

submits two  encrypted query vectors which are  one-hot  vectors encoding  the row  and  

column indices of  the desired record in the matrix. Note  that unlike BFV encryption, 

the entire vector is encrypted rather than each  element of  the vector being  a  separate  

ciphertext [15].  

This encryption scheme  is linearly homomorphic,  meaning  the database D can  

be multiplied by query vector q straightforwardly under encryption - E(D · q)  =

D ·  E(q). In  other words, the ? operation  is simple multiplication. Both  elements of  

the encrypted vector, A and c,  are  multiplied by D. This costs  one  matrix-matrix 

and  one  matrix-vector multiplication. 

SimplePIR additionally proposes  that the client reuses the matrix A over multiple 

queries. Then, the server can  calculate D · A once,  and  the client can  download  this 

value as  a  “hint”. Only the matrix-vector multiplications would need to  occur  for  

every subsequent query. 

This scheme  has  very high throughput at  the cost  of  downloading  a  the hint once  

per client.

FastPIR

FastPIR  is a  PIR  scheme  created with the goal  of  low  latency and  high throughput in 

mind, since it was  geared  towards  a  voice-calling  application  where real-time response  

times are  critical [1].  FastPIR  uses  BFV ciphertext operations  for  their computational  

efficiency. 

As in other PIR  methods, the query is a  one-hot  vector for  the row  of  the record in 

the database.  However, FastPIR  does  not  use  one  ciphertext to  encode  each  element 

of  these vectors. Instead,  the entire one-hot  vector is encoded  into a  single  plaintext 

and  then encrypted. If  there are  more  database  records than the size  of  a  plaintext,
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multiple plaintexts are  needed to  encode  the query. The plaintexts for  the database  

also  include multiple elements of  the database  per plaintext. A BFV multiply oper-  

ation  is used to  multiply these plaintexts and  ciphertexts such that the result is an  

encryption of  the elementwise multiplication of  the underlying plaintexts. By multi- 

plying the one-hot  query vector with a  database  vector, the result is an  encryption of  

many zeros  and  the requested record. Packing  multiple indices of  the one-hot  vector 

into a  single  plaintext reduces request size.  

The database  will have  multiple columns  of  data  in each  record. As a  result of  the 

multiplications, there will be one  encrypted vector with a  single  piece  of  data  (and 

many zeros)  per column. To  save  response  space,  the FastPIR  algorithm  uses  a  BFV 

rotate  operation  to  rotate  these vectors such that the data  land at  different indices in 

each  vector. These  vectors can  then be added together  to  combine  data  from  multiple 

columns  into a  single  encrypted vector, which is returned to  the client.

INSPIRE

The INSPIRE  system is a  near-storage  hardware  accelerator  for  the FastPIR  algo-  

rithm [19].  The INSPIRE  system makes  changes  to  the FastPIR  protocol  that make 

it more  amenable  to  hardware  acceleration.  The original  FastPIR  organizes  vector 

rotations  in a  recursive manner, whereas  INSPIRE  organizes  them in an  iterative 

manner that is faster  and  more  amenable  to  hardware  solutions.  

The INSPIRE  protocol  also  partitions the database  into “groups”  and  each  group  

into “blocks”,  and  uses  queries that target  these groups  and  blocks. The database  is 

streamed into the hardware,  where the answers  are  first aggregated  at  the block  level, 

then combined at  the group  level, and  finally rotations  are  performed to  collect  results 

from  each  database  column. The actual  homomorphic  cryptographic operations  that 

must be performed are  computed on  a  dedicated hardware  unit. This hardware  unit 

can  perform operations  on  the long  ciphertexts required by the INSPIRE  protocol  by 

breaking  down  large  ciphertexts into smaller ones.  Another dedicated hardware  unit 

is used to  accelerate  a  step of  the homomorphic  rotations.  

This hardware  was  able  to  achieve  an  impressive 22.9x  speedup compared  to  the
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software  changes  to  the protocol  alone.

2.2  Timeloop

In  designing  a  hardware  accelerator  for  a  PIR  algorithm,  there are  two  main consider-  

ations  we  made.  One  is the massive  amount  of  data  being  processed,  and  the second  

is the optimization  of  the individual calculations.  To  help process  large  amounts  of  

data,  it is helpful to  have  a  hardware  accelerator  with a  storage  hierarchy -  i.e. the 

database  lives on  disk, but parts of  the data  are  successively pulled onto  DRAM, 

SRAM, and  registers, and  finally the computational  units to  perform the necessary  

cryptographic operations.  Data  which is reused does  not  necessarily have  to  be ac-  

cessed  again  multiple times from  the slower  levels of  the storage  hierarchy if it exists 

at  the faster  levels of  the storage  hierarchy when it is needed. 

Timeloop  is an  infrastructure capable  of  evaluating  different such hardware  archi-  

tectures for  a  specific design  problem and  determining what  the best way  to  arrange  

data  on  the different storage  levels is, and  in what  order to  access  the data  to  do  the 

computations.  Timeloop  will then report the number of  cycles  taken for  the entire 

computation,  the area  of  the architecture, and  the energy taken to  do  the computa-  

tion, among  many other relevant statistics. By testing many different architecture 

designs,  Timeloop  can  be used to  find a  good  design  for  a  particular computational  

problem.

2.2.1  Problem

Timeloop  is designed  for  Deep Neural Network (DNN) problems, but it has  appli-  

cations  in many problems that can  be expressed as  a  nested loop.  This includes 

various  types of  matrix and  tensor multiplications and  convolutions  [24].  A problem 

(“workload”)  is expressed in timeloop  using  a  form  of  einsum notation  [23].  

In  einsum notation,  summations  are  left out  and  implied by the fact  that certain 

indices only appear  on  one  side of  the equation. For  example, the matrix multiply of

A and B can  be written as:
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Cn×m = An×p
· Bp×m

Ci,j =

p
∑

k=0

Ai,k · Bk  ,j

In  einsum notation,  this would be:

Ci,j = Ai,k · Bk  ,j

This can  simplify the notation  for  complex convolutions  and  multiplications when 

there are  many different indices. 

To  define such a  problem in timeloop,  all  indices should be specified (here, these 

are i, j, and k). This is called  the “operation  space”,  as  it defines the entire space  

over which computations  occur.  

Then, all  tensors  should be specified. These  are  the “data  spaces”.  For  each  tensor, 

a  “projection”  must be specified, which defines the relation  between that data  space  

and  the operation  space.  In  other words, how  the tensor is indexed by the dimensions 

(in this case i, j, and k) in the operation  space.  For  tensor C, it is indexed by the 

pair [i,  j], for  example. 

Finally, the problem must be concretized by assigning  the bounds of  each  dimen- 

sion  in the operation  space.  This in turn defines the size  of  each  tensor in the data  

space.

2.2.2  Architecture

An architecture in Timeloop  consists  of  a  storage  hierarchy “tree”  of  several  levels, 

culminating in compute unit “leaves”.  This can  be defined by specifying  the type of  

storage  appearing  at  each  level and  the number of  instances  of  each  [24].  

For  example, you may specify that your storage  hierarchy begins  with a  large  

DRAM (where all  data  is initially resident). That  DRAM connects  to  two  SRAM 

buffer units, each  of  which connects  to  four  register files, each  of  which connects  to  

a  compute unit. To  specify this structure in Timeloop,  you can  specify the total
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number of  storage  units at  each  level. 

For  each  type of  storage,  microarchitectural attributes can  be specified that affect  

its functioning in the system. For  example, the datawidth, bandwidth, and  total  size  

of  the storage  unit can  be specified. 

With smart data  access  patterns, such a  storage  hierarchy can  be used to  take 

advantage  of  data  reuse in a  certain problem space.  By loading  a  data  value into 

a  lower  tier of  the storage  hierarchy, expensive DRAM accesses  can  be avoided  on  

every access  to  that same  location,  replacing  them with faster  SRAM or  register file 

accesses.  This will become  even more  important when exploring applications  to  PIR,  

where the top tier of  memory accesses  is to  the Disk, which is slower  than DRAM 

and  works best if reads  and  writes are  performed in very large  chunks at  a  time.

2.2.3  Mapping

A mapping  in Timeloop  describes the way  in which the operation  space  is split into 

tiles and  the order in which those  tiles are  delivered to  each  level of  the memory 

hierarchy [24].  A tile is a  portion of  the operation  or  data  spaces,  based  on  looping  

through just part of  the bounds of  one  or  more  of  the dimensions. 

Recall  our  matrix example:

Ci,j = Ai,k · Bk  ,j

Suppose we  instantiate this with concrete  bounds for i,  j  ,  k, denoted i =  16, j =  8,

k =  4. 

For  instance, in our  matrix example, a  tile could  be the resulting operation  and  

data  spaces  from  using  only half  of  all  values  of i. Thus, we  would use  all  values  from

i =  0 to 7 in one  tile, and  the second  tile would contain  all  values  form i =  8 to 15.  

In  terms of  the data  spaces,  this tile would contain  half  the matrix C, half  the 

matrix A, and  the entire matrix B. 

In  a  Timeloop  mapping,  you can  specify that on  the highest level of  storage  (say, 

the DRAM level), the operation  space  would be split into tiles in this manner to
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be delivered to  the next level of  storage  (say, the SRAM level). In  timeloop,  this is 

specified by stating  that this level of  storage  has  factor  “2”  for  the “i”  dimension, and  

factor  “1”  for  all  other dimensions (since the other dimensions are  not  being  split). 

In  addition to  specifying  which tiles must be delivered to  the next level of  storage,  

a  timeloop  mapping  must also  specify in what  order. For  the above  example, there is 

only one  dimension across  which the tiling is occuring,  so  tiles will simply be delivered 

in order across  that dimension. However, data  can  be tiled across  multiple dimensions 

at  once.  

For  example, we  can  tile in both the i and j dimensions (say, with a  factor  of  2  

again).  Now,  there are  four  tiles to  deliver to  the next level, and  we  have  two  choices  

as  to  how  to  deliver them. 

Option  1  would be:

for i’  in range(2):  

for j’  in range(2):  

deliver tile i’,  j’

Option  2  would be:

for j’  in range(2):  

for i’  in range(2):  

deliver tile i’,  j’

The ordering  of  these tiles in Matrix C are  show  in Figure 2-3.  

So,  at  every level of  storage,  a  timeloop  mapping  specifies  both the tiling factors  

of  all  dimensions -  this determines how many tiles there are  and  how  they are  defined 

across  dimensions -  and  the ordering  of  the dimensions -  this determines how tiles are  

delivered to  the next level of  storage.  

A full example of  a  mapping  is located  in Appendix A.

2.2.4  Mapper

Timeloop  can  iterate through all  legal  mappings  for  an  architecture and  check which 

are  the best on  certain metrics, such as  cycle count or  energy [24].  This is accom-
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Matrix C

Option 1 Option 2

Tile 0 Tile 1

Tile 2 Tile 3

Matrix C

Tile 0 Tile 2

Tile 1 Tile 3

Figure 2-3:  Matrix C Tiling Comparison

plished by checking  every possible  reordering of  the dimensions at  each  storage  level, 

and  every possible  dimension factor  at  each  level (so  long  as  their product is the 

overall  dimension bound). Each  mapping  must be checked for  validity by enforcing  

that data  for  a  tile being  stored at  each  level can  actually  fit in the storage  allotted  

at  that level. 

Each  mapping  is evaluated  by determining how  many cycles  it will take to  deliver 

tiles and  do  the computation  itself. Delivering tiles and  doing  computations  can  

happen in parallel  across  different storage  levels, assuming  double buffering. Cycle 

counts  are  limited by the number of  computations  that must be done,  the size  of  tiles 

to  deliver, and  the bandwidths of  various  storage  components.  

Each  mapping  is also  evaluated  on  the energy consumed  by these operations.  

Each  primitive operation,  such as  an  individual read/write from  a  storage  unit, or  an  

individual computation  from  a  compute unit, is evaluated  through a  program  called  

Accelergy, which takes  in the architecture specifications  (such as  size,  datawidth, etc), 

and  determines the energy for  these operations.  Timeloop  then determines the overall  

energy by adding  up the number of  these operations  which must occur  over the course  

of  the entire calculation.
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Timeloop  can  iterate through every possible  mapping  for  small  mapspaces,  but 

for  larger  mapspaces,  there are  also  flags  to  stop  the search  early if a  certain number 

of  consecutive invalid or  suboptimal mappings  have  been found. Timeloop  also  has  

options  to  search  the mapspace  linearly, randomly, or  a  mix of  the two.  When finished, 

the timeloop  mapper reports the statistics for  the best mapping.

2.2.5  Design Space Tool

Timeloop  is also  able  to  assist  in exploring design  spaces  through the design-space  

tool  [8].  This tool  allows  for  sweeping  over various  architectural variables,  such as  the 

sizes  and  numbers of  storage  units. For  each  architecture, it runs the timeloop  mapper 

and  finds the best mapping.  This allows  the user to  easily  compare  architectures for  

speed and  energy on  the same  problem. 

This will be especially  relevant for  the our  case  of  PIR,  where it is not  immediately 

clear  what  architectures will yield the best results. Timeloop’s  automation  will make 

it easy  to  iterate over many architectures at  once.
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Chapter 3 

Application Characteristics

To  determine the best design  of  a  hardware  accelerator,  first we  explored the runtime 

characteristics of  OnionPIR  when running with large  database.  We profiled the disk 

bandwidth while OnionPIR  was  running to  determine if it was  saturated by the 

application,  as  this has  implications for  the design  of  hardware  accelerators  as  well. 

We found  that with modest  parallelization,  disk bandwidth would be saturated on  

modern SSDs, so  the best choice  of  hardware  accelerator  is a  near-storage  hardware  

accelerator.  

We also  determined the specific operation  which was  taking  the most  runtime. 

This operation  turned out  to  be the query-database  and  query-intermediate cipher- 

text multiplications that occur  during OnionPIR.  These  are  effectively matrix-vector 

multiplications, but where each  element of  the matrix and  vector are  RGSW  or  BFV 

ciphertexts. Those  ciphertexts turn out  to  be matrices of  their own  due to  the defini- 

tion of  RGSW  ciphertexts and  the decomposition  occuring  in OnionPIR.  Inside those  

matrices are  several  polynomials.  

Finally, we  explored the extensibility of  the OnionPIR  bottleneck operation  to  

other PIR  schemes,  as  this informs if the hardware  accelerator  would be more  widely 

applicable.  Several PIR  schemes  also  share  a  main operation  which is also  a  “matrix- 

of-matrix-of-many-polynomial”  multiplication, making  this operation  possibly exten- 

sible to  other protocols.
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3.1  Disk Bandwidth  Profiling

In  order to  run OnionPIR  on  large  database  sizes,  where we  would like to  optimize its 

performance,  we  first had  to  modify the OnionPIR  source  code.  The source  code  was  

originally  created to  keep the entire database  in memory. We modified this to  store  

the database  instead in files on  disk, using  the mmap command  to  map  the database  

into virtual memory [20].  

To  profile OnionPIR,  we  ran OnionPIR  with a  database  size  larger  than physical 

memory and  ran the iostat tool  to  determine how  much disk bandwidth was  taken up 

by the program  [17].  Our tests revealed that approximately 650MB/s  disk bandwidth 

was  used by OnionPIR.  

In  comparison,  we  also  ran the disk benchmarking tool fio [11].  We used the fio

tool  to  test the speed of  the disk on  our  machine  by running a  sequential read  test. 

This revealed a  maximum disk bandwidth of  around  1000MB/s.  The disk on  this 

machine  is a  modern SSD. 

OnionPIR  is currently a  single-threaded  program,  with many opportunities for  

parallelism.  This test reveals  that if OnionPIR  is parallelized,  it will quickly saturate  

the disk bandwidth and  fail  to  see  continued benefit from  further parallelism.  Because  

of  this, we  chose  to  design  a  near-storage  hardware  accelerator.  A near-storage  accel-  

erator  can  take advantage  of  the internal bandwidth of  the SSD, rather than being  

limited to  the external bandwidth. In  addition, by placing  the computation  directly 

near  disk, the data  does  not  have  to  travel through the entire memory hierarchy of  

caches  and  DRAM to  reach  the CPU before  computation  can  begin.  Since disk band-  

width can  easily  become  a  limiting factor  in OnionPIR,  a  near-storage  accelerator  

makes  sense  in our  design.

3.2  Runtime  Profiling

We profiled OnionPIR  using  the callgrind  tool,  which constructs a  callgraph  and  

counts  the costs  of  various  functions running within a  program  [6].  This allows  for

40



determination of  where a  program  spends most  of  its time. 

We profiled OnionPIR  running on  a  Linux virtual machine  that was  allocated  

8GB  memory, using  a  32GB  database.  This ensured that OnionPIR  would be tested 

in an  environment where it would be required to  read  from  disk, as  would likely be 

the case  in a  large-scale  production application  of  OnionPIR.  

We found  that OnionPIR  spent 75.55%  of  the time in the external product func-  

tion. See  Table 3.1 for  the results. This function is used in both the first dimension 

and  subsequent dimensions to  do  the underlying matrix multiplications. In  the first 

dimension, it is used to  perform the ciphertext-plaintext multiplications between the 

first query vector and  the database  matrix. In  subsequent dimensions, it is used to  

perform the external product ciphertext-ciphertext multiplications between an  RGSW  

query vector and  an  intermediate ciphertext matrix. 99.4%  of  the external product 

multiplication effort is spent in the first dimension.

Percentage  of  Cycles Function
42.69% Polynomial  Multiplication
21.34% Polynomial  Addition
11.52% Other
75.55% External Product (Total)

Table  3.1:  Cachegrind  Results

3.3  Basic Operation

The responsibility of  the external product function is to do the  RGSW-BFV ciphertext- 

ciphertext external product multiplications that occur  during the matrix-vector mul- 

tiplications of  OnionPIR  [22].  

In  dimensions past  the first, the vector being  multiplied is an  RGSW  one-hot  

vector, and  the matrix is an  intermediate matrix of  BFV ciphertexts. Recall  the 

parameter ` for  the RGSW  cryptosystem -  the size  of  an  RGSW  ciphertext matrix 

is 2`× 2, with each  element of  the matrix being  a  polynomial.  The other parameter 

for  the cryptosystem is the base B. In  order to  use  the RGSW  external product 

operation,  the BFV ciphertexts are  decomposed,  base B, into ` · 2  =  2` polynomials.
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This setup is done  in between each  successive  dimension computation.  From here, 

the external product operation  between the RGSW  ciphertext c1 (a 2` × 2 matrix) 

and  the BFV ciphertexts (effectively a 2`× 1 matrix) c2 is the matrix multiplication

cT1 · c2. 

Each  element within the matrix that needs to  be multiplied and  added during 

this matrix multiplication is a  polynomial.  The polynomial  additions  can  be accom-  

plished by adding  the coefficients  element-wise modulo q (the ciphertext modulus), 

and  the multiplications can  be accomplished  by multiplying the coefficients  element- 

wise  modulo q if an  NTT is applied as  a  pre-processing  step and  an  inverse NTT as  

a  post-processing  step. 

However, each  ciphertext or  plaintext matrix element is actually  not  a  single  

polynomial,  but multiple polynomials,  one  per ciphertext modulus. Thus far,  we  have  

been assuming  one  modulus q for  the entire system. However, OnionPIR  uses  multiple 

coefficient  moduli, storing  one  polynomial  for  each.  Thus, each  multiplication and  

addition operation  must be repeated for  each  polynomial  within the matrix element. 

The first dimension does  not  use  ciphertext-ciphertext multiplications, since the 

database  consists  of  plaintexts. However, it can  still use  the same  external product 

function. The BFV ciphertexts for  this dimension are  decomposed  as  well, except 

instead of  decomposition  base B they are  decomposed  into 2  parts, forming  a 2 × 2

matrix. The plaintexts are  also  decomposed  in a  similar way,  forming  a 2× 1 matrix. 

These  match the dimensions of  the RGSW  external product operations  if ` were set 

to  1.  This means  that the operations  occurring  in the first dimension and  subsequent 

dimensions are  exactly the same,  just operating  over different matrices and  vectors. 

For  simplicity, we will assume  that the query vector ciphertexts are pre-transformed  

to  be 2 × 2` matrices. Then, what  we  have  as  the bottleneck operation  is a  matrix- 

vector multiplication, where each  element of  the matrix and  vector are  themselves 

matrices and  vectors, and  where elements of  those  matrices and  vectors are  lists of  

several  polynomials.  To  keep this as  generalizable  as  possible,  we  will not  make 

any  assumptions  about  the dimensions of  these matrices. With this in mind, this 

operation  can  be defined by the following  einsum.
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Figure 3-1:  OnionPIR  Basic  Operation

Cm,n,p,q  ,c,d = Am,j,p,k  ,c,d · Bj,n,k  ,q  ,c,d

Here:

• m represents the row  in matrices A or C

• n represents the column in matrices B or C

• p represents the sub-row  (row in the sub-matrix) in A or C

• q represents the sub-column (column in the sub-matrix) in B or C

• c represents the coefficient  modulus

• d represents the polynomial  coefficient

• j is a  summation index which is the column in A and  row  in B

• k is a  summation index which is the sub-column in A and  sub-row  in B

This operation  is shown  in Figure 3-1 for  OnionPIR  and  in general  in Figure 3-2.  

Let the bounds for  these dimensions be M  ,  N  ,  P  ,  Q,  C  ,  D ,  J , and K respectively. 

In  OnionPIR,  the polynomials  typically have  degree  4096,  so D =  4096. There are  

typically 2  coefficient  moduli, so C =  2. Since the sub-matrices are 2× 2` and 2`× 1,
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Figure 3-2:  Generic Basic  Operation

and ` is 1  for  the first dimension operation, P =  2, Q =  1, and K =  2. K would 

change  for  different values  of `, such as  in subsequent dimensions where ` =  5 (and

K =  10). A will be a  query vector, so M =  1. N and J depend on  the size  of  the 

database  and  which dimension the operation  is being  applied in. As an  example, for  

a  64GB  database,  the first dimension will have J =  256 and N =  2048. 

It is important to  note  here that the products and  sums implied by this einsum 

are  not  integer multiplication and  addition, but integer multiplication and  addition

modulo specific coefficient moduli. Which modulus to  perform an  operation  under 

depends on  the value of c.  Each  computation  in the einsum takes  the product of  

some  element of A and  some  element of B, adds  the value for  some  element of C, 

and  stores  this back  into that element of C. This operation  is called  a  “multiply-and- 

accumulate”.
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3.4  Applicability  to  Other  PIR Schemes

We find that our  operation  is similar to  the main operations  found  in some  other PIR  

schemes.  This hardware  accelerator  may therefore improve the speeds  of  not  just 

OnionPIR,  but other PIR  schemes  as  well.

PIR  Scheme M N P Q J K C D

SealPIR 1
√

records 2 1
√

records 1 2 4096
MulPIR - - - - - - - -

SimplePIR
√

records 1 1 1
√

records 1 1 1
FastPIR 1 columns 2 1 ptxts/column 1 2 4096

Table  3.2:  Applicability of  Basic  Operation  to  Other PIR  Schemes

3.4.1  SealPIR

SealPIR  uses  BFV ciphertexts and  plaintexts and  does  not  use  decomposition.  Each  

BFV ciphertext-plaintext multiplication, since it occurs  under NTT, can  be trivially 

viewed as  a  matrix multiplication between the BFV ciphertext (a 2×1 matrix of  poly-  

nomials)  and  the BFV plaintext (a 1× 1 matrix of  polynomials). Once  SealPIR  has  

performed the setup before  each  dimension, which consists  of  splitting the ciphertexts 

into F ciphertexts to  be treated as  plaintexts, the main operation  per dimension is 

a  matrix-vector multiplication of  ciphertexts and  plaintexts, so  our operation  can  be 

applied. Based  on  the ciphertext-plaintext matrix sizes, P =  2, Q =  1, and K =  1. 

The degree  of  the polynomials  in SealPIR  is 4096,  so D =  4096. M =  1 since A is 

used for  the query vector. N depends on  which dimension is being  processed  and  the 

size  of  the database,  as  does J . For  the first dimension, they will be the square root  

of  the database  size.  [3].

3.4.2  MulPIR

MulPIR  uses  BFV ciphertext-ciphertext multiplications. These  are  more  complex 

than the RGSW-BFV  external product of  BFV ciphertext-plaintext operations,  and  

involve relinearization  to  reduce the ciphertext size  from  3  to  2  polynomials  after  the
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initial multiplication. As such, there is no  easy  way  to  use  our  operation  in MulPIR,  

which relies on  the ability to  do  elementwise multiplication and  addition over the 

polynomial  coefficients  [2].

3.4.3  SimplePIR

SimplePIR’s main operation  is a  matrix-vector multiplication [15].  Thus, our opera-  

tion is straightforwardly applicable  by setting all  sub-matrix dimensions to  1.  That  is,

P =  1, Q =  1, K =  1. In  addition, there are  no  polynomials  and  only one  coefficient  

modulus, so D =  1 and C =  1. The value of N =  1, since B will be a  vector. The 

values  of M and J will depend on  the size  of  the matrix and  vector being  multiplied 

in SimplePIR, i.e. the size  of  the database.  

SimplePIR will likely not  benefit (and may be hindered by) any  optimizations  

to  our  design  specific to  the fact  that submatrices and  polynomials  exist within the 

matrices being  multiplied.

3.4.4  FastPIR

In  FastPIR,  each  database  column contains  several  BFV plaintext vectors. The query 

is also  several  BFV ciphertext vectors, which together  make up a  one-hot  vector 

selecting  an  row  index from  the database.  The plaintexts from  the database  column 

are  multiplied by the ciphertexts from  the query vector and  added together  to  form  the 

result for  a  column. This happens for  each  column, making  up a  matrix multiplication 

across  the entire database.  The BFV plaintexts and  ciphertexts, as  discussed in §3.4.1,  

can  be considered sub-matrices for  the purposes of  our  operation.  For a  database  with

c columns  and p plaintexts per database  column, we  can  set P =  2, Q =  1, K =  1,

M =  1, N = c, J = p.
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Chapter 4 

Hardware Accelerator  Design

4.1  Overview

Our proposed  hardware  design  is a  near-storage  accelerator  operating  at  2GHz  located  

in an  SSD. Our design  is pictured in Figure 4-1.  

Our accelerator  relies on  a  storage  hierarchy starting with an  SSD and  DRAM 

unit. Beyond  the DRAM will be a  hierarchy of  SRAMs  and  register files that aims  

to  take advantage  of  data  reuse. Each  unit in the storage  hierarchy fans  out into 

potentially multiple other storage  units in the hierarchy level below  it; exactly how  

high this fan-out  is for  each  level is a  detail to  be determined in §6.  

The leaves of  this storage hierarchy  are computational  units that perform a multiply- 

and-accumulate  operation  with modulo.  This is the main computation  that is needed 

in the bottleneck operation  of  OnionPIR.  We designed  a  6-stage  computation  unit 

that can  be pipelined further to  achieve  the desired clock  time. 

Since each  computation  depends not  just on  the data  being  operated  on,  but also  

on  a  modulus, a  separate  small  structure is kept that stores  modulus information.  In  

OnionPIR  and  other PIR  algorithms,  there are  typically very few  coefficient  moduli. 

Based  on  the tiling and  loop  ordering, the moduli selector  unit will be responsible 

for  selecting  which moduli to  apply to  each  computation.  We anticipate  very lower  

energy and  area  overhead  for  this structure. 

The host  will be responsible for  setting up the dataflows  within this hardware  by
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Figure 4-1:  Overview of  Hardware

sending  a  pre-determined dataflow  schedule to  a  hardware  scheduler unit that selects  

which data  will be transferred between which storage  units at  what  times during the 

computation.

4.2  Compute  Unit

The compute unit needs to  perform a  multiply-and-accumulate, modulo  some  number 

which is different potentially every cycle (depending on  the ordering  of  the loops  to  

compute the einsum). The compute unit has  inputs a, b, c, n,  and m,  an  accumulator  

register, and  an  output. Each  cycle, the compute unit calculates  a  new product (a

times b for  some  previous inputs a and b,  due to  pipelining) and  adds  it to  the accu-  

mulator register (modulo n).  The compute unit outputs the value of  the accumulator  

register. The input m will be explained in §4.2.1.  

The compute unit also  has  a  reset signal  and  a  refresh signal.  The reset signal  

simply resets all  register values  to  zero.  The refresh signal  starts a  new sum with a  

new modulo,  beginning  with the current product plus c,  in the accumulator  register,
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rather than adding  to  the current sum. 

The compute unit will have  two  overall  stages;  one  for  the “multiply” step and  one  

for  the “accumulate”  (addition) step. The compute unit is shown  in Figure 4-2.

4.2.1  Multiplication

Algorithm

To  multiply two  numbers in hardware,  we  use  the Barrett Reduction  algorithm  de-  

scribed in [4].  We will be multiplying two  64-bit  numbers (a and b)  and  reducing the 

result modulo  a  third 64-bit  number, n. 

For  simplicity, let the intermediate 128-bit  product p = a · b.  Our goal  is to  find 

the result r, where:

r = p mod n

We can  write this using  the definition of  modulo,  and  floor  division:

q := bp/nc

r = p− q · n

Where we  are  now  subtracting from p a  whole  number of ns  to  find the remainder 

on  division by n. The first step, dividing p by n,  is expensive in hardware,  so  we  

instead choose  to  replace  division by n with multiplication by m and  division by 2k

(accomplished  with a  shift) such that m/2k is as  close  to 1/n as  possible.  This is 

achieved by setting m =
⌊

2k/n
⌋

. We set the value of k to  128  in order to  find the 

modulo  of  a  128-bit  number p.  

Now,  our  modulo  calculation  is:

p := a · b  

q := b(p ·m) >>  kc
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r = p− q · n

However, since m is only an  approximation, q may be 1  too  small.  Thus, it is 

possible  that to  complete the modulo  operation,  an  extra subtraction by n is needed. 

The full operation  is then:

p := a · b  

q := b(p ·m) >>  kc

r = p− q · n  

r =

  

  



r − n, if r ≥ n  

r, if r  <  n

  

  


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Hardware

The multiplication unit contains  four  basic  stages,  displayed in Figure 4-3.  The first 

stage  calculates  the initial product a · b.  This product is 128  bits. The second  stage  

calculates  the product p · m.  This product is 256  bits. It is shifted by k, which is 

equal to  128,  so  only the top 128  bits of  this product need to  be saved.  The third 

stage  calculates  the product q · n.  Even though q is 128  bits and n is 64  bits, this 

product will be strictly less  than p (which is 128  bits), so  we  can  safely  store  only the 

lower  128  bits of  this product. The final stage  subtracts this q · n product from p, as  

well as  an  additional n if necessary.  

As an  additional  optimization,  the largest  stage  -  the 128  bit by 128  bit multi- 

plication  of p and m -  can  be split into two  stages.  Each  of  these 128  bit numbers 

is split into an  upper and  lower  half.  In  the first stage,  the product of  every pair of  

halves  is taken. These  are  all  64  by 64  bit multiplications. In  the second  stage,  these 

products are  summed at  the appropriate  bit locations  to  form  the final product. 

Additional pipelining is discussed in §4.2.5.

4.2.2  Addition

Modulo  addition is simple to  implement in hardware.  Our goal  is to  implement the 

operation r = a+ b mod n in hardware,  assuming  that a and b are  already  reduced 

modulo n (i.e. both are  less  than n).  This can  be accomplished  by simply performing 

the sum, and  subtracting n if the result is greater  than or  equal to n:

s := a+ b  

r =

  

  



s− n, if s ≥ n  

s, if s  <  n

  

  



The addition unit does  not  require the extra input m.  This operation  can  be 

directly implemented in hardware  in a  single  stage  with a  comparator,  multiplexer, 

and  adder, as  shown  in Figure 4-4.
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4.2.3  Refresh

To  ensure the computation  unit can  continually process  inputs every cycle without 

pause,  we  add  a  refresh input. This input indicates that the current inputs are  to  

start a  new sum with a  new moduli. The refresh input is passed  into a  shift register, 

copying  its value across  the many stages  of  computation  in the multiplication unit. 

When the multiplication result is ready, the refresh register is checked. 

If  it is set, the c input (also  passed  through a  shift register to  get  to  this point) 

is passed  into the addition stage.  If  not, the accumulator  is passed  into the addi-  

tion stage.  The other input to  the addition stage  is the product computed by the 

multiplication stage.  Either way,  the result of  the addition stage  is passed  into the 

accumulator  register. If  the refresh input is set, a  new coefficient  moduli will also  be 

used for  the multiplication and  addition. 

The benefit of  this scheme  depends on  the ultimate loop  ordering. If  different 

locations  in the C array  are  accessed  on  every cycle, then the refresh input will 

always  be true, and  the accumulator  register will be of  little use. However, if the 

same  location  in the C array  is accessed  repeatedly, the accumulator  register can  be 

used to  accumulate  a  sum for  that location  in C, only needing  to  provide a  new value
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for  the c input and  read  the output of  the computation  unit when the location  in C

is changed.  This can  reduce the need for  reads  and  writes at  the lowest  level of  the 

storage  hierarchy, which may save  a  small  amount  of  energy.

4.2.4  Synthesis

We used verilator [27]  to  simulate this modulo  multiply-and-accumulate unit, and  

yosys [30]  to  synthesize it. We found  the critical path of  the computation  unit to  be 

3442.00  ps. This is equivalent to  a  clock  speed of  291MHz.  This computation  unit is 

slower  than DRAM speeds. DDR5  can  operate  at  speeds  of  3.2GHz  [25].

4.2.5  Pipelining

To  improve the speed of  the computation  unit, the additions  and  multiplications can  

be highly pipelined into individual full-adder units. A full-adder unit is a  hardware  

adder that takes  in two  1  bit numbers and  a  1  bit carry and  outputs a  1  bit sum and  

a  1  bit carry. These  1-bit  adders can  be chained  together  to  create  larger  adders, and  

those  larger  adders can  be chained  together  to  create  multipliers. 

Typically, adders and  multipliers are  not  actually  created by chaining  together  full 

adders linearly, but logarithmically  to  improve delay. No  matter how  they are  chained  

together, though,  a  pipeline stage  could  be shortened to  be the length of  only a  single  

full adder. An example of  this type of  pipeline for  a  linear adder is shown  in Figure

4-5 and  for  a  linear multiplier is shown  in Figure 4-6.  For  an N -bit linear adder, this 

type of  pipelining produces N stages.  For  an N -bit linear multiplier (which produces 

a 2N -bit output), this type of  pipelining produces 3N − 4 stages.  

The comparators  used in our  design  can  also  be pipelined in a  similar way,  with 

individual 1-bit  comparator  units being  separated  into pipeline stages,  as  shown  in 

Figure 4-7.  

Since our  computation  unit is made  primarily of  full adders (through the adders 

and  multipliers), comparators,  and  multiplexers, it is a  prime candidate  for  pipelining 

in this way.  A single  full adder, as  synthesized through yosys is 153.58  ps. A single
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Figure 4-7:  Pipelined Comparator

1-bit  comparator  unit is 100.32  ps. To  be conservative, we  will say  that the entire 

computation  unit can  be pipelined in this manner to  a  clock  period of  500ps.  

This will greatly  increase  the pipeline depth. For  instance, if using  a  linear multi- 

plier, the 128-bit  by 128-bit  multiplication stage,  which used to  be a  single  cycle, will 

now  take 380  (albeit, smaller) cycles. However, if the entire system -  i.e. including 

the storage  hierarchy -  is also  well pipelined, the latency of  the computation  unit 

should not  matter as  much as  the clock  period, which we  have  reduced through this 

pipelining exercise. 

By reducing the clock  period to  500ps,  we  allow  the system to  run at  2GHz.

4.3  Storage  Hierarchy

The storage  hierarchy is shown  in Figure 4-8.  The top level of  the storage  hierarchy 

is an  NVME SSD. We make the assumption  that it has  an  approximately 10GB/s  

internal bandwidth. This assumption  is justified by using  the SSD simulator MQSim 

[28].  We simulated a  sequential read  workload  with average  request size  of  16KB  using  

an  SSD with 16  flash  channels,  with the assumption  that the channel  transfer rate 

has  approximately doubled since the simulator’s publication. This achieved external 

bandwidths of  1.9GB/s,  which is similar to  those  seen  in modern SSDs. 

The next level of  the storage  hierarchy is the DRAM. SSDs typically contain  on-  

chip DRAM, which is used in duties such as  block  mapping  in the flash  translation

56



SSD

DRAMSRAM

Register File

Compute 

Unit

Register File

Compute 

Unit

Register File

Compute 

Unit

…

…

SRAM

Register File

Compute 

Unit

Register File

Compute 

Unit

Register File

Compute 

Unit

…

SRAM

Register File

Compute 

Unit

Register File

Compute 

Unit

Register File

Compute 

Unit

…

Figure 4-8:  Storage  Hierarchy

layer. Past  research  has  proposed  repurposing this DRAM for  other uses, and  having  

the host  take over the mapping  duties [5]  [7].  Our design  will take advantage  of  this, 

and  assume  access  to  a  4GB  on-chip  DRAM store. We assume  that the DRAM will 

be DDR5. 

The next level of  the storage  hierarchy is SRAM. The DRAM level may fan  out to  

several  SRAMs.  Since the SRAM will expect fills of  tiles from  the DRAM level, the 

SRAM should be constructed to  at  least  match the bandwidth of  the DRAM level. 

DDR5  can  serve four  32-bit  words  per cycle, or  128  bits [9].  The SRAMs  are  also  

required to  fill tiles to  the next level of  storage,  which is potentially many register 

files. A reasonable  datawidth for  the SRAM is 256  bits, as  this exceeds the DRAM 

read  bandwidth, and  it can  serve several  64-bit  words  per cycle to  the the register 

files it fans  out  to,  if those  register files happen to  require consecutive data.  

The next level of  the storage  hierarchy is register files. The SRAM level may fan  

out  to  several  register files. Register  files are  responsible for  accepting  tiles from  the 

SRAM level, and  accepting  reads  and  writes from  the computation  units. To  that 

end, the register file is provided with 3  read  ports (to read  values  from  elements of A,

B, and C each  cycle), and  2  write ports (one  for  fills from  SRAM, and  one  for  writes
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from  the computation  unit back  to C). Each  register file is connected  to  exactly one  

computation  unit, which it delivers data  to.

4.4  Moduli

The moduli register and  selector  unit is shown  in Figure 4-9.  The moduli register 

contains  the set of  moduli available  to  the entire matrix calculation,  both n and  pre- 

computed m values. This is 192  bits of  storage  per moduli. Only a  modest  amount  

of  storage  would be required to  support the vast majority of  use  cases.  

Just as  the storage  hierarchy is responsible for  delivering the data  values a and

b to  the computation  unit, the moduli selector  unit is responsible for  delivering the 

values n and m.  This will follow  an  extremely predictable pattern based  on  the 

loop  ordering  and  tiling. With any  loop  ordering  or  tiling, the moduli will be cycled 

through. How  often  moduli need to  be switched depends on  the exact loop  ordering  

and  tiling. Based  on  this pattern, the moduli selector  unit need only consist  of  an  

index register to  keep track of  the current modulus, a  counter register to  determine 

when to  rollover to  the next modulus, and  a  multiplexer to  select the current modulus 

values  as  output. The moduli selector  unit will also  need registers to  keep track of  the
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counter value that should initialize a  rollover, and  the number of  coefficient  moduli, 

both of  which should be initialized at  the beginning  of  a  computation.  The size  of  the 

counter register can  be decided by the expected range  of  repeats  of  the same  modulus 

given a  specific loop  ordering  and  tiling, once  an  optimal  looping  ordering  is found  in 

§6.
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Chapter 5 

Space Exploration

5.1  High-Level  Strategy

Now  that we  have  specified our  computational  problem and  architecture, there are  

several  variables  left undefined. Parts of  the architecture storage  hierarchy are  un- 

specified, and  the way  in which the einsum problem actually  runs on  that hierarchy is 

also  not  defined. In  particular, the sizes  and  fanouts  of  units in the storage  hierarchy, 

and  the loop  ordering  and  tiling of  the einsum problem must be defined. 

At a  high level, we  will define a  range  of  reasonable  values  for  the storage  level 

sizes  and  fanouts.  For each  possible  architecture, we  will run the timeloop  tool  to  

obtain  the best mapping  (i.e. loop  ordering  and  tiling). From the Timeloop  tool,  

we  obtain  details about  the area  of  the architecture, the energy required to  run the 

mapping  on  the architecture, and  the number of  cycles  it will take. Since PIR  is 

primarily limited by speed, we  will compare  architectures by their cycle counts, and  

for  those  with the same  or  similar cycle counts, we  will compare  their area-energy  

products to  see  which architectures are  best.
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5.2  Space  Definition

5.2.1  Architecture

For  each  of  the unspecified architecture attributes, we  swept through a  range  of  

potential values  that it could  take on.  From the minimum to  maximum value, we  

stepped exponentially, multiplying by two  each  time. We swept through the following  

values:

• Size of  each  SRAM: 32KB  -  64MB

• Size of  each  Register  File: 32  -  4096  Registers  (64  bits each)

• Total  number of  SRAMs:  1  -  32

• Total  number of  Register  Files/Compute  Units: 1  -  1024  

From this large  search  space,  it was  clear  that the optimal  number of  SRAMs  is 

2,  and  the optimal  number of  Register  Files/Compute  Units is 2.  We also  noticed 

that the most  optimal  designs  did not  require much area,  so  expanded a  new search  

space  to  include smaller SRAMs  and  register files. These  decisions  will be discussed 

further in §6.  This refined search  space  is as  follows:

• Size of  each  SRAM: 2KB  -  64MB

• Size of  each  Register  File: 4  -  4096  Registers  (64  bits each)

• Total  number of  SRAMs:  Fixed at  2

• Total  number of  Register  Files/Compute  Units: Fixed at  2

5.2.2  Mappings

For  loop  reorderings and  tilings, there is a  large  space  to  explore. We used Timeloop  

to  explore this space  in a  random  way,  stopping  after  finding 500  consecutive valid 

mappings  which are  suboptimal (i.e. the cycle count is higher than the current best
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mapping,  or  cycle count is equivalent with a  higher energy). We found  this gave  

reasonable  results and  increasing  this number did not  find much better mappings.  

Timeloop  frequently finds invalid mappings  -  this happens when the mapping,  for  

example, implies that more  data  must be stored in a  storage  unit than there is space  

available.  These  are  skipped over and  do  not  count towards  this suboptimal total.

5.3  Implementation

Architecture space  sweeps  are  implemented in timeloop’s  design-space  tool  [8].  This 

tool  takes  in the existing architecture definition and  constructs new architectures for  

every possible  combination  of  the architecture attributes you are  sweeping  over. For  

each  architecture, the tool  runs timeloop’s  normal  mapper to  find the best mapping.  

In  order to  use  this tool  for  our  use  case,  we  had  to  add  several  features.

5.3.1  Memory  Restriction

First, our  architecture search  space  was  at  many times during this research  quite 

large.  The original  design  space  tool  constructed each  architecture in memory before  

applying the timeloop  mapper to  each  one  in turn. We made  a  modification  to  

construct these architectures on-the-fly  so  that only one  is kept in memory at  a  time, 

allowing  it to  work for  much larger  architecture spaces.

5.3.2  Constraints

Timeloop’s  architecture allows  specification  of  the total  number of  instances  of  each  

storage  unit. Our architecture search  space  includes sweeping  over the number of  

instances  of  both SRAMs  and  register files. This allows  for  absurd cases  where the 

number of  SRAMs  is more  than the number of  register files, so  the SRAMs  cannot  

fanout  to  the register files. 

To  control  for  these cases,  we  added user-specified constraints into the design  

space  tool  and  specified that the number of  instances  of  SRAMs  must be less  than or
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equal to  the number of  instances  of  register files. 

These  constraints skip evaluating  any  architecture that violates  them. For  our 

purposes, these are  invalid architectures, but these constraints can  also  be used for  

architectures that a  user wishes  not  to  explore but that are  otherwise within the 

search  space.

5.3.3  Disk

Timeloop  natively supports the highest level of  the storage hierarchy  being  an  unlimited- 

size  DRAM. With the large  amount  of  data  required in PIR,  the highest level of  stor-  

age  in our  application  must be an  SSD disk. We added a  Disk component  to  Timeloop,  

to  be available  in the same  unlimited capacity  that DRAM was,  and  allowed  DRAM 

to  be limited in size.  

We also  added energy estimations  for  the new Disk component  to  Accelergy  [31],  

from  which Timeloop  derives its energy and  area  calculations.  The DRAM area  

estimation in Accelergy  was  set to  0  (since it was  an  unlimited DRAM with no  real  

footprint), and  the energy estimation did not  depend on  the size  of  the DRAM. We 

modified these to  use  the CACTI  program  [29]  to  estimate DRAM area  and  energy 

based  on  the specified size  of  DRAM and  DRAM type (e.g.  DDR5, DDR4, LPDDR, 

etc).
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Chapter 6 

Evaluation Results

After collecting  and  analyzing  data  from  Timeloop,  we  found  the best architecture 

to  have  two  SRAMs  of  size  4KB,  each  of  which feeds  into a  single  register file of  size  

32.  This optimal  architecture is paired with an  optimal  mapping  that iterates over 

the J and N indices at  the register file level. 

The OnionChopper  accelerator performs  very well on  OnionPIR  for large  databases,  

with speeds  close  to  disk bandwidth speeds  and  the majority of  energy consumption 

deriving from  necessary  SSD accesses.  Our accelerator  presents an  almost  300-fold  

improvement over speeds  on  a  general-purpose  processor.  In  addition, these bene-  

fits carry over to  other PIR  algorithms,  with most  differences in speed and  energy 

consumption occurring  at  small  database  sizes.

6.1  Initial Architecture  Sweep

We performed an  initial architecture sweep  over a  large  space  of  register file and  

SRAM sizes  and  number of  instances.  We primarily wanted to  optimize for  speed, so  

the first result we  examined was  the number of  cycles  taken by different architectures 

to  compute the results. 

As seen  in Figure 6-1,  the number of  cycles  taken by the different architectures is 

clustered mostly around 1.7 × 1010 and 1.3 × 1010. Investigating  further, the reason  

for  this becomes  clear:  these two  clusters are  both defined by the bandwidth limits
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the SSD must still deliver all  of  the data  in the A, B, and C matrices to  the rest of  

the storage  hierarchy at  least  once.  

The size  of A is M · J · P · K · C · D =  8, 388, 608 elements. The size  of B is

J ·N ·K ·Q ·C ·D =  8, 589, 934, 592 elements. The size  of C is M ·N ·P ·Q ·C ·D =  

33, 554, 432 elements. The total  size  is |A| + |B| + |C| =  8, 631, 877, 632 elements. 

Each  element has  64  bits, or  8  bytes. The total  size  of  all  data  that must be served is 

therefore 69, 055, 021, 056 bytes, or 64.3125 GB.  The SSD can  deliver 10  GB/s,  so  at  

a  clock  speed of  2GHz,  this amount  of  data  will take at  least 12, 862, 500, 500 cycles. 

This explains the cluster of  architectures around 1.3×1010 on  the graph  in Figure 6-1,  

as  these are  the architectures with multiple compute units that are  limited instead 

by the bandwidth of  the SSD. 

In  fact,  any  architecture with at  least  2  compute units will be limited by the SSD, 

since upon splitting the computational  work in half  the amount  of  cycles  necessary  

to  devote to  it is less  than the amount  of  cycles  required to  bring in the data  to  

process.  Any additional  compute units are  purely wasteful.  There are  then truly only 

two  types of  storage  hierarchies to  consider: those  with two  SRAMs,  feeding  into 

one  compute unit and  register file each,  or  those  with one  SRAM that feeds  into two  

compute units and  register files. 

We examined the data,  comparing  similar such architectures with the same  register 

file sizes  and total SRAM sizes.  That  is, for  example, comparing  an  architecture with 

64KB  in one  SRAM or  split into two  32KB  SRAMs.  We found  that the energy used 

by the SRAMs  is smaller in the case  where the SRAMs  are  split in half.  Although 

the number of  cycles  required for  the entire system remains the same,  the number 

of  cycles  required for  the SRAMs  is higher when combined. This is because  one  

SRAM cannot  service any  requests in parallel,  whereas  when split, both SRAMs  can  

process  requests at  the same  time (e.g.  reads  from  their respective register file units). 

This results in the SRAMs  spending a  higher proportion of  time idling rather than 

spending energy. 

Based  on  this initial analysis,  we  concluded that the optimal  design  has  2  SRAMs  

and  2  Register  Files/Compute  Units. Taking  an  initial look  at  the area  and  energy
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the trends observed, this means  that by making  our  architectures larger  (primarily 

by increasing  the size  of  the SRAM), we  are  for  the most  part not  reducing energy 

consumption caused  by inefficiencies in data  reuse, only increasing  energy due to  the 

larger  energy consumption per access.  This means  that even at  the smallest  SRAM 

sizes  tested, we  are  adequately providing a  buffer for  reuse of  data  that prevents 

unnecessary DRAM accesses.  Further decreasing  SRAM size  is not  reasonable,  as  

at  the smallest  size  it is already  only 2KB  with 64  rows.  Fewer than 64  rows  is 

not  supported by the Accelergy  plugin used to  compute the energy estimates for  the 

SRAM. 

Small changes  to  the size  of  the register file do  not  impact the area  much but may 

impact the reuse patterns. For  the smallest  SRAM sizes,  we  investigate this impact. 

Data  is plotted in Figure 6-5.  

We find there is a  general  trend of  larger  energies  with larger  register files. We 

also  find that there is a  slight dip in the energy consumption around  a  register file 

depth of  16  or  32,  where both smaller or  larger  register files consume  more  energy. 

Smaller register files likely have  poor  reuse, leading  to  higher energy consumption. 

Larger  register files have  more  energy consumption due to  their larger  footprint and  

multiplexers. Note  that any  fewer than 8  registers, and  the cycle count becomes  too  

high, so  these architectures have  been eliminated. 

For  the overall  area-energy  product, the optimal  architecture turns out to  have  

a  small  SRAM size  (32768  bits, or  4KB),  and  a  32-register  register file. This is 

consistent with the analysis  above,  a  4KB  SRAM is one  of  the smallest  tested and  32  

registers is at  a  low  point in the graphs  in Figure 6-5.  

The overall  optimal  architecture is shown  in Figure 6-6.

6.3  Mapping

The Timeloop  tool,  in addition to  outputting statistics that were useful in determining 

the optimal  architecture, also  determined the optimal  mapping  on  which to  run that 

architecture. In  fact,  the number of  cycles  and  the energy the computation  took  to
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run on  a  given architecture are  dependent on  the loop  ordering  and  tiling (or mapping) 

of  the problem on  the architecture. 

With 8  different loop  variables,  and  large  loop  bounds, there was  a  very large  

search  space  for  tilings and  loop  orderings,  and  it was  not  reasonable  to  explore the 

entire space.  Thus, there was  a  certain amount  of  randomness  in whether or  not  the 

optimal  mapping  found  by Timeloop  was  truly the optimal  mapping.  

We tried adding  the additional  constraints to  Timeloop  to  perform either an  

“output-stationary”  or  “input-stationary”  mapping.  For  our  architecture, this means  

that at  the register-file level, the mapping  repeatedly accesses  either the same  output 

(or input) element, and  only changes  the other matrix elements involved in compu-  

tations.  These  types of  mappings  tend to  be more  efficient, so  may lead  Timeloop  to  

find a  better answer  by exploring a  smaller space.  

Timeloop’s  answers  in this smaller space  were mostly on-par  with its answers  in 

the full mapping  space,  and  it did not  find any  more  efficient mappings.  

The best mapping  was  found  in the original  space,  which we  present here. The 

number of  elements present from  each  array  at  each  level is listed at  the top of  the 

tiling loops  for  that level.

72



SSD [ A: 8388608  B:  8589934592  C: 33554432  ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| f o r  D in [ 0 : 3 2 )  

DRAM [ A: 262144  B:  268435456  C: 1048576  ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| f o r  C in [ 0 : 2 )  

| f o r  K in [ 0 : 2 )  

| f o r  D in [ 0 : 1 2 8 )  

| f o r  J in [ 0 : 8 )  

| f o r  N in [ 0 : 5 1 2 )  

| f o r  J in [ 0 : 2 )  ( Spa t i a l  ) 

SRAM  [ A: 32  B:  64  C: 8  ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| f o r  J in [ 0 : 2 )  

| f o r  N in [ 0 : 2 )  

| f o r  P in [ 0 : 2 )  

Reg i s t e r  F i l e [ A: 8  B:  16  C: 2  ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| f o r  J in [ 0 : 8 )  

| f o r  N in [ 0 : 2 )

As another  reminder of  the problem:

Cm,n,p,q  ,c,d = Am,j,p,k  ,c,d · Bj,n,k  ,q  ,c,d

Tiling of D (the coefficients  of  the polynomials)  is concentrated at  the DRAM 

level and  SSD level. Tiling of N (the columns  of B and C) is also  concentrated at  the
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DRAM level. Tiling of J (the columns  of A and  rows  of B) occurs  across  the storage  

hierarchy. Tiling of  the coefficient  moduli occurs  at  the outer loop  of  the DRAM 

level, separating  the two  polynomials  in each  pair. 

For  this particular mapping,  the coefficient  moduli change  very rarely. Thus, for  

the moduli selector,  a  large  counter would be required to  control  the rollover of  the 

moduli index. The counter needs to  be able  to  count up to  on  the order of  the number 

of  computations.  A reasonable  assumption  is that this number should fit in a  64  bit 

integer, so  we  should allocate  64  bits for  the coefficient  moduli counter.

6.4  Evaluation  Statistics

For  a  64GB  database,  our  design  took  12,833,318,209  cycles. At 2GHz,  this is equiv- 

alent to  6.4  seconds.  This time will not  be affected  much by latencies  in the sys-  

tems; even though  timeloop  does  not  account  for  the startup latencies,  even very 

deep pipelines will be dwarfed by the total  number of  cycles  taken. Running  on  a  

MacBook  Pro  laptop  with a  2.9  GHz 6-Core  Intel Core  i9  and  32  GB  memory in 

an  Ubuntu virtual machine  allocated  2  processors  with 8GB  of  memory, the same  

calculation  takes  29  minutes, an  improvement of 271.9×. 

Our design  used 169.09  J. This means  that it was  consuming  26.35W  during the 

computation, 33.43% of  which was  used by the compute units and 64.99% of  which 

is used by the SSD. 

Our design  is 6.87mm2 in area.  The compute units contribute 99.54% of  this area.  

Most  of  the remaining  area  is taken up by the SRAMs,  with a  negligible  amount  from  

the register files. The DRAM and  SSD are  not  counted in this total.

6.5  Different  Database  Sizes

We evaluated  the OnionChopper  architecture on  various  database  sizes  for  the key 

bottleneck operation  in the OnionPIR  algorithm.  This is plotted in Figure 6-7 and

6-8.  We found  that it maintained a  high speed on  all  database  sizes  and  in particular,
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Chapter 7 

Limitations and Future  Work

There are  several  factors  that our  work does  not  take into account.  One  such factor  

is the modeling  of  the Disk level of  the storage  hierarchy. For  the DRAM and  SRAM 

levels, Timeloop  considers  the total  number of  accesses  to  these storage  units and  

assumes  that the number of  cycles  these accesses  will take is equal to  the number 

of  accesses.  Then, if the bandwidth of  these storage  units does  not  permit this high 

of  an  access  rate, the number of  cycles  is appropriately increased.  Timeloop  does  

not  take into account  whether the accesses  are  sequentially or  randomly distributed. 

We extended Timeloop  with a  Disk level and  used the same  modelling.  For  Disk, 

the difference between sequential and  random  accesses  can  have  a  significant  effect 

on  delay  and  breaks the assumption  that these accesses  can  be served with the same  

bandwidth. This is an  area  for  future research  to  determine if this has  an  effect on  the 

optimal  tiling of  data  from  the SSD level, or  if it degrades  the modelled performance  

of  the accelerator.  

Our modeling  of  the energy consumption from  disk accesses  is also  an  overestimate. 

We used data  from  the power  consumption of  NVME SSDs when sequentially reading  

and  writing [16]  [12].  This overestimates the energy consumption by including energy 

consumed  by the entire system. However, since most  of  the various  architectures and  

mappings  explored used the same  number of  SSD accesses,  this energy did not  need 

to  be overly precise for  our  comparison  purposes. 

Timeloop  assumes  our  storage  hierarchy and  compute units are  pipelined and
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double-buffered or  use buffets [24].  To  achieve  the speeds  suggested  by the results 

in §6.4,  these double buffers or  buffets would need to  be implemented in order to  

guarantee  that all  levels of  the storage  hierarchy can  operate  in parallel.  If  double 

buffering is used, this would use  additional  area  and  some  additional  energy as  storage  

units would need to  be duplicated so  that one  can  be independently filled with the 

next tile as  the other is drawing  from  the current tile. 

The loop  tilings and  reorderings present a  very large  search  space,  due to  the large  

number of  loop  dimensions (8), and  large  number of  factorings  of  each  dimension 

(leading  to  a  large  number of  possible  tilings). It was  not  practical  to  search  through 

the entire space  for  every architecture candidate,  or  even for  a  single  architecture. Our 

search  may therefore have  likely not  identified the single  best mapping  in the search  

space  for  each  architecture. This also  means  that the best architecture identified by 

our  search  may not  have  truly been the best. Based  on  our  analysis  of  trends in 

§6.1 and  §6.2,  it is likely that at  least  a  similar architecture in the space  is the true 

optimum according  to  our  criteria. However, further research  may reveal a  better 

architecture. 

We designed  our  architecture based  on  a  10GB/s  SSD. Further research  is required 

to  determine how  the speed of  the SSD affects  the best architecture design  and  its 

throughput. 

We optimized primarily for  OnionPIR  on  a  64GB  database.  As seen  in §6.5 and  

§6.6,  this extends well to  other database  sizes  and  other PIR  algorithms.  However, 

because  of  our  optimization  approach,  the speed and  energy consumption does  get  

worse  by a  small  amount  on  small  database  sizes.  Further research  is required to  

design  a  system that works just as  well on  small  and  large  database  sizes.  

An area  for  future work may be in exploring changes  to  the design  of  the accelera-  

tor for  a  protocol  which batches  several  client requests and  processes  them at  the same  

time, thus requiring fewer overall  accesses  to  the database.  This would involve matrix 

multiplications, so  our  accelerator  is likely already  a  good  fit, but future research  may 

reveal different optimizations  specific to  the new dimension sizes  and  reuse patterns 

involved.
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Our modeling  of  the computation  unit in Accelergy  assumes  full pipelining of  all  

multipliers, adders, and  comparators  in each  stage.  We do  not  consider  the interac-  

tion between each  stage,  which leads  to  many extra registers between stages  where 

computations  could  be started earlier. This increases  our  energy and  area  estimates. 

We may also  be overly-aggressive  with our  pipelining in general.  It may be possible  

to  meet the 2GHz  target  speed without pipelining each  full adder and  comparator  

unit down  to  a  single  stage,  which could  reduce the energy and  area  requirements. 

Since the compute units comprise  a  reasonable  amount  of  the energy consumption 

and  the vast majority of  the area  requirements in our  system, future research  could  

focus  on  this area  for  improvement. 

We did not  implement the fine details of  this accelerator,  nor  test it in hardware.  

Details such as  the setup of  the moduli registers and  initialization  of  a  computation  

require some  hardware  components  and  software  interaction. The impact of  these 

operations  was  not  modeled  as  part of  the latency of  computation,  although  it should 

be mostly constant  regardless  of  the size  of  the database.  Since our accelerator  has  

not  been physically implemented, we  cannot  be sure it behaves  exactly as  modelled.
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Chapter 8 

Conclusion

We designed  OnionChopper,  a  near-storage  accelerator  for  the OnionPIR  protocol.  

Our accelerator  consists  of  a  storage  hierarchy and  compute units which together  

stream data  from  an  SSD disk to  do  arithmetic calculations  modulo  various  integers. 

For  the main bottleneck operation  in this protocol,  our  accelerator  improves the 

speed drastically, allowing  the operation  to  run at  speeds  equivalent to  the SSD 

bandwidth. OnionChopper  is extensible to  any  large  database  size,  as  well as  other 

PIR  protocols,  all  achieving  similar speeds. Our accelerator  is also  quite energy 

efficient, with a  majority of  the energy usage  coming  from  the necessary  SSD accesses,  

and  the accelerator  itself eliminating the need for  any  repeated SSD accesses  to  the 

same  element. During computation  on  a  64GB  database, 26.45W is consumed. Our 

accelerator  is small,  fitting within 6.87mm2. 

Realtime  applications  such as  streaming  or  voice  calling  require a  low  server re-  

sponse  time and  a  low  server response  size  in order to  work effectively. OnionPIR  

provides a  small  response  size,  and  OnionChopper  can  greatly  improve the response  

time to  make such realtime applications  feasible.  Since OnionChopper  is also  extensi- 

ble to  other schemes,  new PIR  protocols  based  on  the same  concepts  of  homomorphic  

encryption that improve upon request size,  response  size,  response  time, or  other as-  

pects of  the protocol  may also  be able  to  take advantage  of  this accelerator  to  gain  

an  automatic  boost  in response  time.
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Appendix A 

Example Timeloop Mapping

The following  is an  example of  a  Timeloop  Mapping  for  a  matrix multiplication 

problem:

Ci,j = Ai,k · Bk  ,j

Suppose we  instantiate this with concrete  bounds for i,  j  ,  k, denoted i =  16, j =  8,

k =  4. Also  suppose  we  have  an  architecture with a  DRAM main memory, an  SRAM  

global  buffer, and  4  register files. 

A possible  mapping  could  be as  follows:

mapping:  

- target:  MainMemory  

type: temporal  

factors: I=2 J=1  K=2  

permutation: JKI  

- target:  GlobalBuffer  

type: temporal  

factors: I=4 J=2  K=1  

permutation: JKI
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- target:  GlobalBuffer  

type: spatial  

factors: I=1 J=4  K=1  

permutation: JKI  

- target:  RegisterFile  

type: temporal  

factors: I=2 J=1  K=2  

permutation: JKI

This mapping  says  that main memory will deliver 4  tiles to  the SRAM, in the

i → k order, with factors  of  2  for  both i and k. For each  tile the SRAM gets,  the 

SRAM will deliver 8  tiles to  the register files, in the i → j order, with a  factor  of  4  

for i and  2  for j. There are  multiple register files, so  each  tile that gets  delivered can  

further be divided into four  tiles, in this case  along  the j dimension. Finally, for  each  

tile it gets,  the register file will deliver 4  tiles to  the computation  unit, with a  factor  

of  2  in the i dimension and  2  in the k dimension, in the i → k order. Each  of  these 

tiles will be enough  to  perform one  single  computation  -  i.e. one  element from A, one  

element from B, and  one  element from C.
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