
OnionChopper: A Modular Arithmetic Hardware

Accelerator for Private Information Retrieval

by

Georgia Shay

S.B. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Georgia Shay. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under

copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access

license.

Authored by: Georgia Shay

May 12, 2023

Certified by: Mengjia Yan

Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by: Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

OnionChopper: A Modular Arithmetic Hardware Accelerator

for Private Information Retrieval

by

Georgia Shay

Submitted to the Department of Electrical Engineering and Computer Science

on May 12, 2023, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Private information retrieval (PIR) is a protocol which allows a user to retrieve data

from a database on a server without the server being able to deduce which records

were retrieved. Due to the homomorphic cryptography systems required to make

these protocols work and large amount of data processing required per user query,

these algorithms tend to run much slower than needed for real-time applications such

as streaming movies or voice calling. To improve these speeds to ones more tolerable

for user applications, we designed OnionChopper: a small, fast, and energy efficient

hardware accelerator on which to offload the heaviest computational work.

This hardware accelerator is optimized for a state-of-the-art PIR algorithm, Onion-

PIR, but is widely applicable due to similarities in the fundamental algorithms and

cryptographies used in private information retrieval. We identified the major bottle-

neck operation common to OnionPIR and other PIR schemes and designed compu-

tation units to aid with that operation. We designed a near-storage accelerator with

on-chip parallel computation units, SRAMs and register files for exploiting data reuse,

and a near-storage connection to the SSD to exploit its high internal bandwidth to

access the database. We used a space exploration tool to identify the optimal archi-

tecture and scheme of computation and data movement over that architecture. Our

resulting design offers a nearly 300× speed improvement over running on a general-

purpose processor for a 64GB database.

Thesis Supervisor: Mengjia Yan

Title: Assistant Professor

3

4

Acknowledgments

I would like to thank my research supervisor, Mengjia Yan, for providing constant

support for this project even as it changed directions. Your advice and encouragement

has been well appreciated.

I would also like to thank my research mentor Tianhao Huang. Your valuable

insights on near-storage accelerators and SSDs made this project possible.

I would like to thank my dad for letting me borrow his kubernetes cluster for

computational power to run experiments.

Finally, I would like to thank my family for their support and encouragement

throughout this project.

5

6

Contents

1 Introduction 15

1.1 Motivation . . 15

1.2 Contribution . 16

1.3 Thesis Organization . . 17

2 Background and Related Work 19

2.1 Private Information Retrieval . 19

2.1.1 Basic Scheme . 20

2.1.2 Homomorphic Encryption . 22

2.1.3 OnionPIR . . 26

2.1.4 Other PIR Schemes . 28

2.2 Timeloop . . 32

2.2.1 Problem . 32

2.2.2 Architecture . 33

2.2.3 Mapping . . 34

2.2.4 Mapper . 35

2.2.5 Design Space Tool . . 37

3 Application Characteristics 39

3.1 Disk Bandwidth Profiling . . 40

3.2 Runtime Profiling . . 40

3.3 Basic Operation . . 41

3.4 Applicability to Other PIR Schemes 45

7

3.4.1 SealPIR . . 45

3.4.2 MulPIR . . 45

3.4.3 SimplePIR . 46

3.4.4 FastPIR . . 46

4 Hardware Accelerator Design 47

4.1 Overview . 47

4.2 Compute Unit . 48

4.2.1 Multiplication . 49

4.2.2 Addition . 52

4.2.3 Refresh . . 53

4.2.4 Synthesis . 54

4.2.5 Pipelining . 54

4.3 Storage Hierarchy . 56

4.4 Moduli . 58

5 Space Exploration 61

5.1 High-Level Strategy . 61

5.2 Space Definition . 62

5.2.1 Architecture . 62

5.2.2 Mappings . . 62

5.3 Implementation . 63

5.3.1 Memory Restriction . 63

5.3.2 Constraints . 63

5.3.3 Disk . 64

6 Evaluation Results 65

6.1 Initial Architecture Sweep . 65

6.2 Refined Architecture Sweep . 68

6.3 Mapping . . 70

6.4 Evaluation Statistics . 74

8

6.5 Different Database Sizes . 74

6.6 Different PIR Algorithms . 75

7 Limitations and Future Work 81

8 Conclusion 85

A Example Timeloop Mapping 87

9

10

List of Figures

2-1 Basic PIR scheme . 21

2-2 2D PIR scheme . 22

2-3 Matrix C Tiling Comparison . . 36

3-1 OnionPIR Basic Operation . . 43

3-2 Generic Basic Operation . . 44

4-1 Overview of Hardware . . 48

4-2 Compute Unit . 50

4-3 Multiply Unit . 51

4-4 Addition Unit . 53

4-5 Pipelined Adder . 55

4-6 Pipelined Multiplier . 55

4-7 Pipelined Comparator . . 56

4-8 Storage Hierarchy . 57

4-9 Moduli Selector Unit . 58

6-1 Initial Sweep Architecture Cycles . 66

6-2 Refined Sweep Architecture Cycles 68

6-3 Refined Sweep Area vs. Energy . 69

6-4 Refined Sweep (Fast Only) Area vs. Energy 69

6-5 Register File Depth vs Energy . 71

6-6 Overall Optimal Architecture . 72

6-7 Accelerator Speed vs Database Size for OnionPIR 75

11

6-8 OnionPIR Speed on a General-Purpose Processor vs Accelerator . . . 76

6-9 Accelerator Energy Consumption vs Database Size for OnionPIR . . 76

6-10 Accelerator Power Consumption vs Database Size for OnionPIR . . . 77

6-11 Database Size vs Speed Comparison 77

6-12 Database Size vs Energy Comparison 78

6-13 Database Size vs Power Comparison 79

12

List of Tables

2.1 Homomorphic Operation Costs . . 23

3.1 Cachegrind Results . . 41

3.2 Applicability of Basic Operation to Other PIR Schemes 45

13

14

Chapter 1

Introduction

With an increasingly privacy-conscious populus, demand has heightened for services

that prevent inadvertent release of user data, even to the service itself. Private

Information Retrieval (PIR) allows a user to retrieve a record from a database located

on a server, without the server being able to detect which record was retrieved. PIR

could be used to privately stream movies [14], for voice calling that keeps participants

private [1], and even for privacy-preserving advertisement delivery [13].

1.1 Motivation

A popular method to achieve private information retrieval on a single, untrusted server

is by using homomorphic encryption, a type of cryptography that allows for operations

such as addition and multiplication on encrypted ciphertexts. The user, or client,

sends an encrypted query to the server indicating which record of the database should

be retrieved. The server then performs homomorphic computations and returns to

the user an encryption of the desired record in the database.

Unfortunately, private information retrieval (PIR) methods tend to be quite slow.

While PIR algorithms have been getting faster, they are bounded by some funda-

mental limitations. Homomorphic encryption, used in many PIR algorithms, is com-

putationally expensive. However, its use is fundamental in many such algorithms

due to the need to perform computation on a client’s query without knowing what

15

the query is. Many recent works improve upon previous algorithms by using faster

homomorphic cryptographies or faster homomorphic operations.

An even more fundamental limitation is the requirement that any PIR algorithm

computes upon every record in the database. Otherwise, it would be possible for

the server to surmise that certain records which were not accessed must not be the

records the client has queried for. PIR algorithms must, then, be at least linear in

the size of the database, and practical databases can be quite large.

1.2 Contribution

We designed OnionChopper, a near-storage hardware accelerator to improve the per-

formance of server-side computation in a PIR algorithm. We designed the accelerator

targeting the OnionPIR algorithm, a state-of-the-art algorithm with low response

sizes [21]. Hardware has the advantage of being able to process data in parallel and

specialization allows hardware units to compute faster than with general-purpose

programming instructions.

By placing the hardware near the storage for the database, the disk, computation

can happen on data streamed directly from the database rather than waiting for the

data to be brought in to memory, caches, and ultimately the computer’s processor

itself. Based on our analysis of the OnionPIR program, disk bandwidth is easily satu-

rated by running this protocol, so this approach allows an even higher disk bandwidth

to be achieved.

Inside an NVMe disk is some amount of DRAM that can be accessible to a hard-

ware accelerator [5] [7]. The design of the accelerator itself also includes some SRAM

buffers, registers, and compute units. We performed a space search to find out the

most efficient configuration of these different components.

OnionChopper has performance benefits of nearly 300x compared to a general-

purpose processor. Running the OnionPIR algorithm’s bottleneck operation on this

accelerator would result in speeds nearing the SSD’s bandwidth. The majority of

energy consumption comes from that required for the minimum number of possible

16

SSD accesses. OnionChopper is also similarly efficient on other PIR algorithms for

large database sizes.

1.3 Thesis Organization

In Chapter 2, we discuss background on PIR schemes and the Timeloop tool. In

Section 2.1, we discuss basic PIR algorithms, cryptographic operations used in PIR,

and various improvements made in different PIR variants. Section 2.2 contains a dis-

cussion of Timeloop, the design exploration tool used to explore various architectures

and data movements in our thesis.

In Chapter 3, we discuss the bottleneck operation of OnionPIR, as well as its

similarities to the main operations in other PIR schemes.

In Chapter 4, we discuss the basic design of our hardware accelerator, including

the computation units and storage hierarchy in the near-storage accelerator.

In Chapter 5, we discuss our methods of using Timeloop to explore the space of

possible storage hierarchy designs.

In Chapter 6, we analyze the explored space of storage hierarchy designs to de-

termine the optimal architecture. We also evaluate this architecture’s speed, area,

and energy consumption, compare it to a general purpose processor, and compare its

performance across different PIR schemes.

In Chapter 7, we discuss limitations to our processes and analyses.

Chapter 8 provides concluding remarks.

17

18

Chapter 2

Background and Related Work

Here, we provide background on PIR, covering the security problem that PIR tries

to address, PIR variations and algorithmic performance optimization techniques, and

the basic cryptographic operations necessary in modern PIR algorithms. We then

give background on Timeloop, a design space exploration tool which was built for

designing Deep Neural Network (DNN) or tensor accelerators. In this thesis, we

will use Timeloop to assist in the design space exploration of our near-storage PIR

accelerator.

2.1 Private Information Retrieval

Private Information Retrieval (PIR) allows a user to retrieve a record from a database

without the server hosting the database discovering which record was retrieved. The

basic problem is as follows:

Suppose the server has a database D with n elements, D0...Dn−1, and a user wants

to retrieve the record at index i, Di. The user can communicate a query q to the

server to request this record, and the server can respond with some response r. The

query q must not reveal anything about i.

Note that, no matter what algorithm the server uses to compute response r, it

must ultimately process every element of the database D in some way. Otherwise,

this must mean that the elements it did not process were not the record that the client

19

requested, revealing something about the value of i. This means that a fundamental

limitation of PIR algorithms is that they must be at least linear in the size of the

database, n.

2.1.1 Basic Scheme

Suppose for the moment that we have a system of encryption with special functions

that, when applied to ciphertexts, can add or multiply the underlying plaintexts.

Let’s call these operations ⊕ and ⊗, and denote E(p) as the encrypted ciphertext

corresponding to plaintext p.

Then, we have that:

E(p1)⊕ E(p2) = E(p1 + p2)

E(p1)⊗ E(p2) = E(p1 · p2)

We will also need to be able to multiply a ciphertext and a plaintext together.

We will denote this by the ? operation.

p1 ? E(p2) = E(p1 · p2)

So, using the ⊕, ⊗, and ? operator, a server can operate on the underlying plain-

texts of ciphertexts without needing to (or indeed, being able to) decrypt them.

If we have a cryptosystem with these operations, we can use it to build a PIR

protocol. Suppose the user wants to request record Di, out of a database with n total

elements. The user can encrypt, using a secret key, a one-hot vector encoding the

index i (a vector of n elements where every element is 0, except for the element at

index i, which is 1), and send this as their query q [21].

q = E({0
0
, 0
1
, 0
2
, ..., 1

i
, ..., 0

n−3
, 0
n−2

, 0
n−1

})

Then, the server takes the dot product of the database vector D with the query

vector q, using the ? operation for multiplication and the ⊕ operation for addition.

20

A

B

C

D

E

00010 B

×

Database

Query Response

=

Figure 2-1: Basic PIR scheme

This results in the encryption of the element Di, which is sent back to the client.

D · q = ⊕

n−1
∑

j=0

Dj ? qj = E(Di)

The client can decrypt this to determine Di. Since all of these operations were

occurring under encryption, the server could never learn the value of i or Di. This

process is shown in Figure 2-1.

Dimensionality

To reduce the size of the query, the server can reconceptualize the database as a 2D

matrix of size
√

n ×

√

n [21]. To retrieve the record at row i, column j (Di,j), the

client sends two encrypted one-hot vectors, one with a 1 at index i and one with a 1

at index j.

q = (q1, q2)

q1 = E({0
0
, 0
1
, 0
2
, ..., 1

i
, ..., 0√

n−3
, 0√

n−2
, 0√

n−1
})

q2 = E({0
0
, 0
1
, 0
2
, ..., 1

j
, ..., 0√

n−3
, 0√

n−2
, 0√

n−1
})

21

EDCBA

JIHGF

ONMLK

TSRQP

YXWVU

00100 ONMLK

×

Database

Row Query Intermediate Ciphertext

K

L

M

N

O

00001

Column Query

K

×

Intermediate Ciphertext

Response

1 2

= =

Figure 2-2: 2D PIR scheme

As a first step, the server multiplies the database D
√
n×

√
n with the row part of

the query, q1. Each plaintext-ciphertext multiplication is done using the ? operation.

A1×
√
n = q

1×
√
n

1 ·D
√
n×

√
n

This results in a vector containing encryptions of all of the records in row i. For

the next step, the server multiplies this result with the column part of the query,

q2. Now, all multiplications will be ciphertext-ciphertext, so they will use the ⊗

operation.

r = q
1×

√
n

2 · (A1×
√
n)T

This process is demonstrated in Figure 2-2. This can be extended to an arbi-

trary number of dimensions, with all dimension reductions after the first using the ⊗

operation.

2.1.2 Homomorphic Encryption

Two encryption schemes which have the necessary operations, ⊕, ⊗, and ?, are BFV

and RGSW encryption. A crytography system which implements these types of oper-

ations is called homomorphic. We present the definitions of BFV and RGSW that are

22

used in the implementation of OnionPIR, rather than those presented in the paper.

Operation Cost Summary

Table 2.1 is a summary of the different homomorphic operations discussed below,

their computational costs (in equivalent polynomial multiplications), and the noise

of the resulting ciphertext (assuming a ciphertext c or two ciphertext cx and cy,

and plaintext p) [21]. B, l, and t are parameters of the cryptosystems and will be

explained below.

Operation Cost Noise Growth
BFV ciphertext-ciphertext addition - O(Err(cx) + Err(cy))
BFV ciphertext-plaintext multiplication 2 O(Err(c) · |p|)
BFV ciphertext-ciphertext multiplication 4 + 2l O(t · (Err(cx) + Err(cy)))
BFV-RGSW External Product 2l O(B · Err(cx) + cy)

Table 2.1: Homomorphic Operation Costs

BFV Encryption

BFV encryption deals with integer polynomials of degree less than n (where n is one

security parameter), whose coefficients are from Zq (where q is another parameter).

Zq here is the set of integers modulo q. We say that these polynomials are members

of a ring Rq = Zq/(f(x)), where f(x) = xn + 1. After polynomial multiplications

or additions are done, the coefficients often need to be reduced modulo q which is

represented by [h]q for some polynomial h and modulo q. [10]

Polynomials can be represented by their coefficients in the interval 0 to q − 1.

Plaintexts are integer polynomials drawn from Rt, and ciphertexts are pairs of poly-

nomials drawn from Rq. The ciphertext expansion factor F is the ratio in size between

ciphertexts and plaintexts, which is:

F =

2 log q

log t

23

During the encryption process, and in setting up secret and public keys, several

random polynomials must be chosen. For the purposes of proving the security of

this scheme, the exact manner in which these polynomials are drawn from Rq is

important. However, the details are not relevant here so I will point the reader to

[10] for additional information.

To encrypt plaintexts, a secret key must first be chosen. The secret key s is a

random polynomial in Rq.

To encode a plaintext message m, a random polynomial a must be sampled from

Rq. A small random polynomial e, the error term, is also sampled from Rq. Let

b = −(a · s+ e), and ∆ = bq /tc. Then the ciphertext can be calculated as:

c = (b+ ∆ ·m, a) = ([−(a · s+ e) + ∆ ·m]q, a)

To decrypt a ciphertext (c0, c1):

µ =

⌊

c0 + c1 · s

∆

⌉

=

⌊

−e+ ∆m

∆

⌉

=

⌊

m+
−e

∆

⌉

Since e is small, when µ is rounded, we obtain the original message m [26].

Under these methods of encryption and decryption it is possible to construct

definitions for the homomorphic operations needed for a PIR scheme - that is ⊕, ⊗,

and ?. Also notice that the accuracy of decryption depends on the error term, or

“noise” being small. Homomorphic operations can increase the noise in a ciphertext,

and if it becomes too large, the ciphertext will not be decryptable.

Homomorphic addition can be performed in this scheme by simply adding the

polynomials in the ciphertexts togethers. For two ciphertexts cx and cy:

(cx0, cx1)⊕ (cy0, cy1) = ([cx0 + cy0]q, [cx1 + cy1]q)

Here, the normal addition operator represents polynomial addition, which can

be performed by adding each coefficient. Thus, the ⊕ operation is linear in the

size of the polynomial, n.

The noise in the resulting ciphertext is the sum of the noise in the two input

24

ciphertexts.

Homomorphic plaintext-ciphertext multiplication can be performed in this

scheme by multiplying each of the two ciphertext polynomials by the plaintext poly-

nomial. For plaintext p and ciphertext c:

p ? c = (p · c0, p · c1)

Here, the normal multiplication operator represents polynomial multiplication.

This can be done by performing polynomial multiplication in the standard way, but

it is typically done by using a Number Theoretic Transform (NTT) [18]. Performing

an NTT on two polynomials allows them to be multiplied coefficient-wise. By then

performing an inverse-NTT, the resulting polynomial will be the same as if the polyno-

mials had been multiplied in the standard way. Since many ciphertexts or plaintexts

will be reused in multiple ? operations, the NTT operation can be bulk-applied to all

cipher and plaintexts before and after a large computation. In this case, the ? op-

eration will effectively boil down to coefficient-wise multiplication, making

it linear in the size of the polynomial.

The noise in the resulting ciphertext is the magnitude of the plaintext p times the

noise in the ciphertext c.

Homomorphic ciphertext-ciphertext multiplication is more complicated.

The initial multiplication step produces not two, but three polynomials. A relineariza-

tion step is required to reformat the ciphertext into two polynomials [10]. Overall,

the computational cost of this operation is equivalent to about 4 + 2l polynomial

multiplications, where l = blogT qc for a chosen base T [10]. l is usually 5 [21].

The noise in the resulting ciphertext is t times the sum of the noise in the two

input ciphertexts.

RGSW Encryption

An RGSW plaintext is also a polynomial, as in BFV encryption. However, an RGSW

ciphertext is constructed as follows. For a base parameter B and length parameter l,

25

the gadget vector g is defined as:

g(`×1) = (Blog q / logB−1, Blog q / logB−2, ..., Blog q / logB−`)T

The gadget matrix G is:

G = I2 ∨ g =





g 0

0 g





A ciphertext that encrypts a message m is then:

C = [Z +m ·G]q

where each row of Z ∈ R(2`×2) is a BFV encryption of 0. The bottom half of

the matrix C is very similar to ` BFV ciphertexts encrypting base B decompositions

of the plaintext m, except that the factor of ∆ has not been multiplied by m. The

details of these decompositions are not important for this thesis, but they can be used

to decrypt the ciphertext [21].

Due to the relationship between RGSW and BFV encryption, a new operation

is possible: External Product. This operation multiplies an RGSW ciphertext cx

and BFV ciphertext cy, and returns a BFV ciphertext. The computational cost is

equivalent to 2` polynomial multiplications. The noise of the output ciphertext is

B times the noise of cx plus the noise of cy. Since the noise growth of the external

product is less compared to that of normal BFV ciphertext-ciphertext multiplication,

it is a good replacement for the ⊗ operation in private information retrieval.

2.1.3 OnionPIR

OnionPIR, like most PIR schemes, uses the basic pieces of §2.1.1 and §2.1.2. The

main improvements that OnionPIR makes are to reduce the response size and com-

putational cost compared to other modern PIR algorithms [21].

In order to reduce noise growth, other algorithms such as SealPIR do not use ho-

momorphic ciphertext-ciphertext multiplications. Instead, once one dimension of the

26

database matrix is processed, the resulting ciphertexts are split into F (the cipher-

text expansion factor) ciphertexts. These ciphertexts are then treated as plaintexts

for the next step, so that instead of ciphertext-ciphertext multiplication with the

next portion of the query, plaintext-ciphertext multiplication is performed. However,

when the matrix is split into d dimensions, this results in a response size of F d−1 ci-

phertexts (compared to a single ciphertext when ciphertext-ciphertext multiplications

can be used). Remember that if noise growth is uncontrolled, ciphertexts cannot be

decrypted, and the noise compounds over the multiplications in all d dimensions.

As a solution to this problem, OnionPIR uses the external product operation

instead of BFV ciphertext-ciphertext multiplications. The query contains RGSW

ciphertexts instead of BFV ciphertexts so they can be used in the external product

operation with the intermediate ciphertext matrices produced from multiplying the

last dimension. The lower noise growth of the external product operation allows

its use without compromising the ciphertexts, so the final response can be a single

ciphertext. The lower noise growth also provides headroom to increase t, reducing

the ciphertext expansion factor F and further reducing the response size.

To keep computational costs low, the first dimension remains a BFV computation

- specifically, a BFV plaintext-ciphertext multiplication. The first dimension is also

made larger than the subsequent dimensions to ensure that the bulk of the compu-

tation is in that dimension, and the larger computational cost associated with the

external product multiplications in other dimensions is not a bottleneck. One other

caveat is needed for the first dimension, which is that each plaintext in the database

and each ciphertext in the first query is decomposed into two parts. When a decom-

posed plaintext is multiplied with a decomposed ciphertext, the dot product is taken

between them. This decomposition is to help control noise.

The reference OnionPIR implementation uses a first PIR dimension size of 256,

and subsequent dimension sizes of 4 [22]. The number of dimensions for the database

depends on the database size. In general, there are tradeoffs for making the number

of dimensions larger. The first dimension matrix multiplication must always calcu-

late across the entire database, and the subsequent matrix multiplications are extra

27

computations that add to the total computation cost. Although the first dimension

is the most expensive, the subsequent dimensions do add some computational cost

(especially since they are ciphertext-ciphertext multiplications in OnionPIR). On the

other hand, by increasing the dimension size, the request size decreases, since you can

now send multiple shorter vectors instead of one long query vector. OnionPIR’s prac-

tical choice was made primarily for the purpose of reducing request size. By making

the number of dimensions dependent on the size of the database, the request size is

logarithmic in the size of the database. Since OnionPIR keeps the other dimensions

small (4 compared to the first dimensions size of 256), and each dimension reduces

the size of the matrices that need to be multiplied, the bottleneck will mainly be in

the first dimension and the computational cost is essentially still linear in the size of

the database despite the extra computations for each dimension. Other PIR schemes

make different tradeoffs for the dimensionality.

2.1.4 Other PIR Schemes

Many modern PIR schemes have similarities in the basic scheme they follow - many

follow §2.1.1 closely. They also rely on homomorphic encryption schemes, most of

which use similar fundamentals. Here I catalog some PIR schemes, as well as one

example of a near-storage accelerator for a PIR scheme, to display some of these

similarities as well as their differences and the tradeoffs each make. Many of these

similarities and differences will become relevant as we apply our own near-storage

accelerator to these schemes.

SealPIR

SealPIR’s main contribution to single-query PIR is in reducing the query size. In-

stead of sending a one-hot vector (i.e. encryptions of 0s and 1s) to the server, the

client instead encrypts the index i of the database record they are requesting. The

plaintext the client encrypts is the monomial xi. The server then performs an obliv-

ious expansion procedure that creates the necessary one-hot vector from the client’s

28

encryption of i.

As mentioned in §2.1.3, SealPIR treats the database as a multi-dimensional ma-

trix. The client sends an encryption of an index for each axis of that matrix based

on which record they are requesting. After multiplying the database with the first

one-hot expanded query vector, SealPIR expands each ciphertext in the resulting

vector into F ciphertexts, and treats them as plaintexts for the next round of mul-

tiplication. Thus, all multiplications will be plaintext-ciphertext multiplications to

keep noise growth small. The response size in SealPIR is F d−1 ciphertexts.

MulPIR

MulPIR introduces various techniques to reduce the request and response size of

SealPIR [2]. In BFV encryption, the first polynomial in the ciphertext is a random

polynomial drawn from Rq. Instead of sending this polynomial as part of the query,

the client can send the random seed used to generate it, and the server can re-generate

it. This reduces the query size by about half.

MulPIR also uses a technique called modulus switching on the final ciphertexts

in the PIR response to make them as small as possible. This technique decreases the

size of the ciphertexts at the cost of increasing the noise. Since the ciphertexts will

only be used once for decryption purposes, they can be decreased in size as much as

possible while still being decryptable.

MulPIR uses homomorphic ciphertext-ciphertext multiplications to reduce the

response size to one ciphertext. This decreases the response size at the expense of a

higher computational cost.

SimplePIR

SimplePIR uses a different encryption scheme than many others discussed in this

section, but it is based on the same RLWE concepts. Here, a vector is chosen as

the secret key. A matrix A and error vector e are chosen at random. For ciphertext

modulus q and plaintext modulus p, the ciphertext for a vector µ is:

29

E(µ) = (A, c) = (A, As+ e+ bq /pc · µ)

.

SimplePIR considers the database as a
√

N by
√

N matrix D, and the client

submits two encrypted query vectors which are one-hot vectors encoding the row and

column indices of the desired record in the matrix. Note that unlike BFV encryption,

the entire vector is encrypted rather than each element of the vector being a separate

ciphertext [15].

This encryption scheme is linearly homomorphic, meaning the database D can

be multiplied by query vector q straightforwardly under encryption - E(D · q) =

D · E(q). In other words, the ? operation is simple multiplication. Both elements of

the encrypted vector, A and c, are multiplied by D. This costs one matrix-matrix

and one matrix-vector multiplication.

SimplePIR additionally proposes that the client reuses the matrix A over multiple

queries. Then, the server can calculate D · A once, and the client can download this

value as a “hint”. Only the matrix-vector multiplications would need to occur for

every subsequent query.

This scheme has very high throughput at the cost of downloading a the hint once

per client.

FastPIR

FastPIR is a PIR scheme created with the goal of low latency and high throughput in

mind, since it was geared towards a voice-calling application where real-time response

times are critical [1]. FastPIR uses BFV ciphertext operations for their computational

efficiency.

As in other PIR methods, the query is a one-hot vector for the row of the record in

the database. However, FastPIR does not use one ciphertext to encode each element

of these vectors. Instead, the entire one-hot vector is encoded into a single plaintext

and then encrypted. If there are more database records than the size of a plaintext,

30

multiple plaintexts are needed to encode the query. The plaintexts for the database

also include multiple elements of the database per plaintext. A BFV multiply oper-

ation is used to multiply these plaintexts and ciphertexts such that the result is an

encryption of the elementwise multiplication of the underlying plaintexts. By multi-

plying the one-hot query vector with a database vector, the result is an encryption of

many zeros and the requested record. Packing multiple indices of the one-hot vector

into a single plaintext reduces request size.

The database will have multiple columns of data in each record. As a result of the

multiplications, there will be one encrypted vector with a single piece of data (and

many zeros) per column. To save response space, the FastPIR algorithm uses a BFV

rotate operation to rotate these vectors such that the data land at different indices in

each vector. These vectors can then be added together to combine data from multiple

columns into a single encrypted vector, which is returned to the client.

INSPIRE

The INSPIRE system is a near-storage hardware accelerator for the FastPIR algo-

rithm [19]. The INSPIRE system makes changes to the FastPIR protocol that make

it more amenable to hardware acceleration. The original FastPIR organizes vector

rotations in a recursive manner, whereas INSPIRE organizes them in an iterative

manner that is faster and more amenable to hardware solutions.

The INSPIRE protocol also partitions the database into “groups” and each group

into “blocks”, and uses queries that target these groups and blocks. The database is

streamed into the hardware, where the answers are first aggregated at the block level,

then combined at the group level, and finally rotations are performed to collect results

from each database column. The actual homomorphic cryptographic operations that

must be performed are computed on a dedicated hardware unit. This hardware unit

can perform operations on the long ciphertexts required by the INSPIRE protocol by

breaking down large ciphertexts into smaller ones. Another dedicated hardware unit

is used to accelerate a step of the homomorphic rotations.

This hardware was able to achieve an impressive 22.9x speedup compared to the

31

software changes to the protocol alone.

2.2 Timeloop

In designing a hardware accelerator for a PIR algorithm, there are two main consider-

ations we made. One is the massive amount of data being processed, and the second

is the optimization of the individual calculations. To help process large amounts of

data, it is helpful to have a hardware accelerator with a storage hierarchy - i.e. the

database lives on disk, but parts of the data are successively pulled onto DRAM,

SRAM, and registers, and finally the computational units to perform the necessary

cryptographic operations. Data which is reused does not necessarily have to be ac-

cessed again multiple times from the slower levels of the storage hierarchy if it exists

at the faster levels of the storage hierarchy when it is needed.

Timeloop is an infrastructure capable of evaluating different such hardware archi-

tectures for a specific design problem and determining what the best way to arrange

data on the different storage levels is, and in what order to access the data to do the

computations. Timeloop will then report the number of cycles taken for the entire

computation, the area of the architecture, and the energy taken to do the computa-

tion, among many other relevant statistics. By testing many different architecture

designs, Timeloop can be used to find a good design for a particular computational

problem.

2.2.1 Problem

Timeloop is designed for Deep Neural Network (DNN) problems, but it has appli-

cations in many problems that can be expressed as a nested loop. This includes

various types of matrix and tensor multiplications and convolutions [24]. A problem

(“workload”) is expressed in timeloop using a form of einsum notation [23].

In einsum notation, summations are left out and implied by the fact that certain

indices only appear on one side of the equation. For example, the matrix multiply of

A and B can be written as:

32

Cn×m = An×p
· Bp×m

Ci,j =

p
∑

k=0

Ai,k · Bk ,j

In einsum notation, this would be:

Ci,j = Ai,k · Bk ,j

This can simplify the notation for complex convolutions and multiplications when

there are many different indices.

To define such a problem in timeloop, all indices should be specified (here, these

are i, j, and k). This is called the “operation space”, as it defines the entire space

over which computations occur.

Then, all tensors should be specified. These are the “data spaces”. For each tensor,

a “projection” must be specified, which defines the relation between that data space

and the operation space. In other words, how the tensor is indexed by the dimensions

(in this case i, j, and k) in the operation space. For tensor C, it is indexed by the

pair [i, j], for example.

Finally, the problem must be concretized by assigning the bounds of each dimen-

sion in the operation space. This in turn defines the size of each tensor in the data

space.

2.2.2 Architecture

An architecture in Timeloop consists of a storage hierarchy “tree” of several levels,

culminating in compute unit “leaves”. This can be defined by specifying the type of

storage appearing at each level and the number of instances of each [24].

For example, you may specify that your storage hierarchy begins with a large

DRAM (where all data is initially resident). That DRAM connects to two SRAM

buffer units, each of which connects to four register files, each of which connects to

a compute unit. To specify this structure in Timeloop, you can specify the total

33

number of storage units at each level.

For each type of storage, microarchitectural attributes can be specified that affect

its functioning in the system. For example, the datawidth, bandwidth, and total size

of the storage unit can be specified.

With smart data access patterns, such a storage hierarchy can be used to take

advantage of data reuse in a certain problem space. By loading a data value into

a lower tier of the storage hierarchy, expensive DRAM accesses can be avoided on

every access to that same location, replacing them with faster SRAM or register file

accesses. This will become even more important when exploring applications to PIR,

where the top tier of memory accesses is to the Disk, which is slower than DRAM

and works best if reads and writes are performed in very large chunks at a time.

2.2.3 Mapping

A mapping in Timeloop describes the way in which the operation space is split into

tiles and the order in which those tiles are delivered to each level of the memory

hierarchy [24]. A tile is a portion of the operation or data spaces, based on looping

through just part of the bounds of one or more of the dimensions.

Recall our matrix example:

Ci,j = Ai,k · Bk ,j

Suppose we instantiate this with concrete bounds for i, j , k, denoted i = 16, j = 8,

k = 4.

For instance, in our matrix example, a tile could be the resulting operation and

data spaces from using only half of all values of i. Thus, we would use all values from

i = 0 to 7 in one tile, and the second tile would contain all values form i = 8 to 15.

In terms of the data spaces, this tile would contain half the matrix C, half the

matrix A, and the entire matrix B.

In a Timeloop mapping, you can specify that on the highest level of storage (say,

the DRAM level), the operation space would be split into tiles in this manner to

34

be delivered to the next level of storage (say, the SRAM level). In timeloop, this is

specified by stating that this level of storage has factor “2” for the “i” dimension, and

factor “1” for all other dimensions (since the other dimensions are not being split).

In addition to specifying which tiles must be delivered to the next level of storage,

a timeloop mapping must also specify in what order. For the above example, there is

only one dimension across which the tiling is occuring, so tiles will simply be delivered

in order across that dimension. However, data can be tiled across multiple dimensions

at once.

For example, we can tile in both the i and j dimensions (say, with a factor of 2

again). Now, there are four tiles to deliver to the next level, and we have two choices

as to how to deliver them.

Option 1 would be:

for i’ in range(2):

for j’ in range(2):

deliver tile i’, j’

Option 2 would be:

for j’ in range(2):

for i’ in range(2):

deliver tile i’, j’

The ordering of these tiles in Matrix C are show in Figure 2-3.

So, at every level of storage, a timeloop mapping specifies both the tiling factors

of all dimensions - this determines how many tiles there are and how they are defined

across dimensions - and the ordering of the dimensions - this determines how tiles are

delivered to the next level of storage.

A full example of a mapping is located in Appendix A.

2.2.4 Mapper

Timeloop can iterate through all legal mappings for an architecture and check which

are the best on certain metrics, such as cycle count or energy [24]. This is accom-

35

Matrix C

Option 1 Option 2

Tile 0 Tile 1

Tile 2 Tile 3

Matrix C

Tile 0 Tile 2

Tile 1 Tile 3

Figure 2-3: Matrix C Tiling Comparison

plished by checking every possible reordering of the dimensions at each storage level,

and every possible dimension factor at each level (so long as their product is the

overall dimension bound). Each mapping must be checked for validity by enforcing

that data for a tile being stored at each level can actually fit in the storage allotted

at that level.

Each mapping is evaluated by determining how many cycles it will take to deliver

tiles and do the computation itself. Delivering tiles and doing computations can

happen in parallel across different storage levels, assuming double buffering. Cycle

counts are limited by the number of computations that must be done, the size of tiles

to deliver, and the bandwidths of various storage components.

Each mapping is also evaluated on the energy consumed by these operations.

Each primitive operation, such as an individual read/write from a storage unit, or an

individual computation from a compute unit, is evaluated through a program called

Accelergy, which takes in the architecture specifications (such as size, datawidth, etc),

and determines the energy for these operations. Timeloop then determines the overall

energy by adding up the number of these operations which must occur over the course

of the entire calculation.

36

Timeloop can iterate through every possible mapping for small mapspaces, but

for larger mapspaces, there are also flags to stop the search early if a certain number

of consecutive invalid or suboptimal mappings have been found. Timeloop also has

options to search the mapspace linearly, randomly, or a mix of the two. When finished,

the timeloop mapper reports the statistics for the best mapping.

2.2.5 Design Space Tool

Timeloop is also able to assist in exploring design spaces through the design-space

tool [8]. This tool allows for sweeping over various architectural variables, such as the

sizes and numbers of storage units. For each architecture, it runs the timeloop mapper

and finds the best mapping. This allows the user to easily compare architectures for

speed and energy on the same problem.

This will be especially relevant for the our case of PIR, where it is not immediately

clear what architectures will yield the best results. Timeloop’s automation will make

it easy to iterate over many architectures at once.

37

38

Chapter 3

Application Characteristics

To determine the best design of a hardware accelerator, first we explored the runtime

characteristics of OnionPIR when running with large database. We profiled the disk

bandwidth while OnionPIR was running to determine if it was saturated by the

application, as this has implications for the design of hardware accelerators as well.

We found that with modest parallelization, disk bandwidth would be saturated on

modern SSDs, so the best choice of hardware accelerator is a near-storage hardware

accelerator.

We also determined the specific operation which was taking the most runtime.

This operation turned out to be the query-database and query-intermediate cipher-

text multiplications that occur during OnionPIR. These are effectively matrix-vector

multiplications, but where each element of the matrix and vector are RGSW or BFV

ciphertexts. Those ciphertexts turn out to be matrices of their own due to the defini-

tion of RGSW ciphertexts and the decomposition occuring in OnionPIR. Inside those

matrices are several polynomials.

Finally, we explored the extensibility of the OnionPIR bottleneck operation to

other PIR schemes, as this informs if the hardware accelerator would be more widely

applicable. Several PIR schemes also share a main operation which is also a “matrix-

of-matrix-of-many-polynomial” multiplication, making this operation possibly exten-

sible to other protocols.

39

3.1 Disk Bandwidth Profiling

In order to run OnionPIR on large database sizes, where we would like to optimize its

performance, we first had to modify the OnionPIR source code. The source code was

originally created to keep the entire database in memory. We modified this to store

the database instead in files on disk, using the mmap command to map the database

into virtual memory [20].

To profile OnionPIR, we ran OnionPIR with a database size larger than physical

memory and ran the iostat tool to determine how much disk bandwidth was taken up

by the program [17]. Our tests revealed that approximately 650MB/s disk bandwidth

was used by OnionPIR.

In comparison, we also ran the disk benchmarking tool fio [11]. We used the fio

tool to test the speed of the disk on our machine by running a sequential read test.

This revealed a maximum disk bandwidth of around 1000MB/s. The disk on this

machine is a modern SSD.

OnionPIR is currently a single-threaded program, with many opportunities for

parallelism. This test reveals that if OnionPIR is parallelized, it will quickly saturate

the disk bandwidth and fail to see continued benefit from further parallelism. Because

of this, we chose to design a near-storage hardware accelerator. A near-storage accel-

erator can take advantage of the internal bandwidth of the SSD, rather than being

limited to the external bandwidth. In addition, by placing the computation directly

near disk, the data does not have to travel through the entire memory hierarchy of

caches and DRAM to reach the CPU before computation can begin. Since disk band-

width can easily become a limiting factor in OnionPIR, a near-storage accelerator

makes sense in our design.

3.2 Runtime Profiling

We profiled OnionPIR using the callgrind tool, which constructs a callgraph and

counts the costs of various functions running within a program [6]. This allows for

40

determination of where a program spends most of its time.

We profiled OnionPIR running on a Linux virtual machine that was allocated

8GB memory, using a 32GB database. This ensured that OnionPIR would be tested

in an environment where it would be required to read from disk, as would likely be

the case in a large-scale production application of OnionPIR.

We found that OnionPIR spent 75.55% of the time in the external product func-

tion. See Table 3.1 for the results. This function is used in both the first dimension

and subsequent dimensions to do the underlying matrix multiplications. In the first

dimension, it is used to perform the ciphertext-plaintext multiplications between the

first query vector and the database matrix. In subsequent dimensions, it is used to

perform the external product ciphertext-ciphertext multiplications between an RGSW

query vector and an intermediate ciphertext matrix. 99.4% of the external product

multiplication effort is spent in the first dimension.

Percentage of Cycles Function
42.69% Polynomial Multiplication
21.34% Polynomial Addition
11.52% Other
75.55% External Product (Total)

Table 3.1: Cachegrind Results

3.3 Basic Operation

The responsibility of the external product function is to do the RGSW-BFV ciphertext-

ciphertext external product multiplications that occur during the matrix-vector mul-

tiplications of OnionPIR [22].

In dimensions past the first, the vector being multiplied is an RGSW one-hot

vector, and the matrix is an intermediate matrix of BFV ciphertexts. Recall the

parameter ` for the RGSW cryptosystem - the size of an RGSW ciphertext matrix

is 2`× 2, with each element of the matrix being a polynomial. The other parameter

for the cryptosystem is the base B. In order to use the RGSW external product

operation, the BFV ciphertexts are decomposed, base B, into ` · 2 = 2` polynomials.

41

This setup is done in between each successive dimension computation. From here,

the external product operation between the RGSW ciphertext c1 (a 2` × 2 matrix)

and the BFV ciphertexts (effectively a 2`× 1 matrix) c2 is the matrix multiplication

cT1 · c2.

Each element within the matrix that needs to be multiplied and added during

this matrix multiplication is a polynomial. The polynomial additions can be accom-

plished by adding the coefficients element-wise modulo q (the ciphertext modulus),

and the multiplications can be accomplished by multiplying the coefficients element-

wise modulo q if an NTT is applied as a pre-processing step and an inverse NTT as

a post-processing step.

However, each ciphertext or plaintext matrix element is actually not a single

polynomial, but multiple polynomials, one per ciphertext modulus. Thus far, we have

been assuming one modulus q for the entire system. However, OnionPIR uses multiple

coefficient moduli, storing one polynomial for each. Thus, each multiplication and

addition operation must be repeated for each polynomial within the matrix element.

The first dimension does not use ciphertext-ciphertext multiplications, since the

database consists of plaintexts. However, it can still use the same external product

function. The BFV ciphertexts for this dimension are decomposed as well, except

instead of decomposition base B they are decomposed into 2 parts, forming a 2 × 2

matrix. The plaintexts are also decomposed in a similar way, forming a 2× 1 matrix.

These match the dimensions of the RGSW external product operations if ` were set

to 1. This means that the operations occurring in the first dimension and subsequent

dimensions are exactly the same, just operating over different matrices and vectors.

For simplicity, we will assume that the query vector ciphertexts are pre-transformed

to be 2 × 2` matrices. Then, what we have as the bottleneck operation is a matrix-

vector multiplication, where each element of the matrix and vector are themselves

matrices and vectors, and where elements of those matrices and vectors are lists of

several polynomials. To keep this as generalizable as possible, we will not make

any assumptions about the dimensions of these matrices. With this in mind, this

operation can be defined by the following einsum.

42

×

Database

Query Intermediate Ciphertext

2ℓ

2

12ℓ

2

1

RGSW Ciphertext

OR

Decomposed BFV Ciphertext

Decomposed BFV Ciphertext

OR

Decomposed BFV Plaintext

BFV Ciphertext
Polynomials

Different

Coefficient

Moduli

=

Figure 3-1: OnionPIR Basic Operation

Cm,n,p,q ,c,d = Am,j,p,k ,c,d · Bj,n,k ,q ,c,d

Here:

• m represents the row in matrices A or C

• n represents the column in matrices B or C

• p represents the sub-row (row in the sub-matrix) in A or C

• q represents the sub-column (column in the sub-matrix) in B or C

• c represents the coefficient modulus

• d represents the polynomial coefficient

• j is a summation index which is the column in A and row in B

• k is a summation index which is the sub-column in A and sub-row in B

This operation is shown in Figure 3-1 for OnionPIR and in general in Figure 3-2.

Let the bounds for these dimensions be M , N , P , Q, C , D , J , and K respectively.

In OnionPIR, the polynomials typically have degree 4096, so D = 4096. There are

typically 2 coefficient moduli, so C = 2. Since the sub-matrices are 2× 2` and 2`× 1,

43

Matrix A Matrix C

Matrix B

×

Sub-Matrix Polynomials

Different

Coefficient

Moduli

J

J

M

N

Sub-Matrix

Sub-MatrixK

P

Q

K

Q

P

D

C

=

Figure 3-2: Generic Basic Operation

and ` is 1 for the first dimension operation, P = 2, Q = 1, and K = 2. K would

change for different values of `, such as in subsequent dimensions where ` = 5 (and

K = 10). A will be a query vector, so M = 1. N and J depend on the size of the

database and which dimension the operation is being applied in. As an example, for

a 64GB database, the first dimension will have J = 256 and N = 2048.

It is important to note here that the products and sums implied by this einsum

are not integer multiplication and addition, but integer multiplication and addition

modulo specific coefficient moduli. Which modulus to perform an operation under

depends on the value of c. Each computation in the einsum takes the product of

some element of A and some element of B, adds the value for some element of C,

and stores this back into that element of C. This operation is called a “multiply-and-

accumulate”.

44

3.4 Applicability to Other PIR Schemes

We find that our operation is similar to the main operations found in some other PIR

schemes. This hardware accelerator may therefore improve the speeds of not just

OnionPIR, but other PIR schemes as well.

PIR Scheme M N P Q J K C D

SealPIR 1
√

records 2 1
√

records 1 2 4096
MulPIR - - - - - - - -

SimplePIR
√

records 1 1 1
√

records 1 1 1
FastPIR 1 columns 2 1 ptxts/column 1 2 4096

Table 3.2: Applicability of Basic Operation to Other PIR Schemes

3.4.1 SealPIR

SealPIR uses BFV ciphertexts and plaintexts and does not use decomposition. Each

BFV ciphertext-plaintext multiplication, since it occurs under NTT, can be trivially

viewed as a matrix multiplication between the BFV ciphertext (a 2×1 matrix of poly-

nomials) and the BFV plaintext (a 1× 1 matrix of polynomials). Once SealPIR has

performed the setup before each dimension, which consists of splitting the ciphertexts

into F ciphertexts to be treated as plaintexts, the main operation per dimension is

a matrix-vector multiplication of ciphertexts and plaintexts, so our operation can be

applied. Based on the ciphertext-plaintext matrix sizes, P = 2, Q = 1, and K = 1.

The degree of the polynomials in SealPIR is 4096, so D = 4096. M = 1 since A is

used for the query vector. N depends on which dimension is being processed and the

size of the database, as does J . For the first dimension, they will be the square root

of the database size. [3].

3.4.2 MulPIR

MulPIR uses BFV ciphertext-ciphertext multiplications. These are more complex

than the RGSW-BFV external product of BFV ciphertext-plaintext operations, and

involve relinearization to reduce the ciphertext size from 3 to 2 polynomials after the

45

initial multiplication. As such, there is no easy way to use our operation in MulPIR,

which relies on the ability to do elementwise multiplication and addition over the

polynomial coefficients [2].

3.4.3 SimplePIR

SimplePIR’s main operation is a matrix-vector multiplication [15]. Thus, our opera-

tion is straightforwardly applicable by setting all sub-matrix dimensions to 1. That is,

P = 1, Q = 1, K = 1. In addition, there are no polynomials and only one coefficient

modulus, so D = 1 and C = 1. The value of N = 1, since B will be a vector. The

values of M and J will depend on the size of the matrix and vector being multiplied

in SimplePIR, i.e. the size of the database.

SimplePIR will likely not benefit (and may be hindered by) any optimizations

to our design specific to the fact that submatrices and polynomials exist within the

matrices being multiplied.

3.4.4 FastPIR

In FastPIR, each database column contains several BFV plaintext vectors. The query

is also several BFV ciphertext vectors, which together make up a one-hot vector

selecting an row index from the database. The plaintexts from the database column

are multiplied by the ciphertexts from the query vector and added together to form the

result for a column. This happens for each column, making up a matrix multiplication

across the entire database. The BFV plaintexts and ciphertexts, as discussed in §3.4.1,

can be considered sub-matrices for the purposes of our operation. For a database with

c columns and p plaintexts per database column, we can set P = 2, Q = 1, K = 1,

M = 1, N = c, J = p.

46

Chapter 4

Hardware Accelerator Design

4.1 Overview

Our proposed hardware design is a near-storage accelerator operating at 2GHz located

in an SSD. Our design is pictured in Figure 4-1.

Our accelerator relies on a storage hierarchy starting with an SSD and DRAM

unit. Beyond the DRAM will be a hierarchy of SRAMs and register files that aims

to take advantage of data reuse. Each unit in the storage hierarchy fans out into

potentially multiple other storage units in the hierarchy level below it; exactly how

high this fan-out is for each level is a detail to be determined in §6.

The leaves of this storage hierarchy are computational units that perform a multiply-

and-accumulate operation with modulo. This is the main computation that is needed

in the bottleneck operation of OnionPIR. We designed a 6-stage computation unit

that can be pipelined further to achieve the desired clock time.

Since each computation depends not just on the data being operated on, but also

on a modulus, a separate small structure is kept that stores modulus information. In

OnionPIR and other PIR algorithms, there are typically very few coefficient moduli.

Based on the tiling and loop ordering, the moduli selector unit will be responsible

for selecting which moduli to apply to each computation. We anticipate very lower

energy and area overhead for this structure.

The host will be responsible for setting up the dataflows within this hardware by

47

SSD

DRAM

SRAMs

Register Files

Compute Units

Moduli

Register

Moduli Selector

On-Chip

Off-Chip

Figure 4-1: Overview of Hardware

sending a pre-determined dataflow schedule to a hardware scheduler unit that selects

which data will be transferred between which storage units at what times during the

computation.

4.2 Compute Unit

The compute unit needs to perform a multiply-and-accumulate, modulo some number

which is different potentially every cycle (depending on the ordering of the loops to

compute the einsum). The compute unit has inputs a, b, c, n, and m, an accumulator

register, and an output. Each cycle, the compute unit calculates a new product (a

times b for some previous inputs a and b, due to pipelining) and adds it to the accu-

mulator register (modulo n). The compute unit outputs the value of the accumulator

register. The input m will be explained in §4.2.1.

The compute unit also has a reset signal and a refresh signal. The reset signal

simply resets all register values to zero. The refresh signal starts a new sum with a

new modulo, beginning with the current product plus c, in the accumulator register,

48

rather than adding to the current sum.

The compute unit will have two overall stages; one for the “multiply” step and one

for the “accumulate” (addition) step. The compute unit is shown in Figure 4-2.

4.2.1 Multiplication

Algorithm

To multiply two numbers in hardware, we use the Barrett Reduction algorithm de-

scribed in [4]. We will be multiplying two 64-bit numbers (a and b) and reducing the

result modulo a third 64-bit number, n.

For simplicity, let the intermediate 128-bit product p = a · b. Our goal is to find

the result r, where:

r = p mod n

We can write this using the definition of modulo, and floor division:

q := bp/nc

r = p− q · n

Where we are now subtracting from p a whole number of ns to find the remainder

on division by n. The first step, dividing p by n, is expensive in hardware, so we

instead choose to replace division by n with multiplication by m and division by 2k

(accomplished with a shift) such that m/2k is as close to 1/n as possible. This is

achieved by setting m =
⌊

2k/n
⌋

. We set the value of k to 128 in order to find the

modulo of a 128-bit number p.

Now, our modulo calculation is:

p := a · b

q := b(p ·m) >> kc

49

Multiply Unit

Addition Unit

Accumulator

n ac mbreset refresh

64 64 64 64 128

S
h

if
t

R
e

g
is

te
r

a b mn

out

refresh

n
c

a n b

out

reset

reset

reset

reset

out

64

0 1

n’

01

reset

Figure 4-2: Compute Unit

50

!" # $ % &

' #" ! % () * (Part 1)

' #" ! % () * (Part 2)

' % +

, -. "!"/"' % +"012 +3

a b mn

64 64 64 128

out

64

reset

Figure 4-3: Multiply Unit

r = p− q · n

However, since m is only an approximation, q may be 1 too small. Thus, it is

possible that to complete the modulo operation, an extra subtraction by n is needed.

The full operation is then:

p := a · b

q := b(p ·m) >> kc

r = p− q · n

r =







r − n, if r ≥ n

r, if r < n







51

Hardware

The multiplication unit contains four basic stages, displayed in Figure 4-3. The first

stage calculates the initial product a · b. This product is 128 bits. The second stage

calculates the product p · m. This product is 256 bits. It is shifted by k, which is

equal to 128, so only the top 128 bits of this product need to be saved. The third

stage calculates the product q · n. Even though q is 128 bits and n is 64 bits, this

product will be strictly less than p (which is 128 bits), so we can safely store only the

lower 128 bits of this product. The final stage subtracts this q · n product from p, as

well as an additional n if necessary.

As an additional optimization, the largest stage - the 128 bit by 128 bit multi-

plication of p and m - can be split into two stages. Each of these 128 bit numbers

is split into an upper and lower half. In the first stage, the product of every pair of

halves is taken. These are all 64 by 64 bit multiplications. In the second stage, these

products are summed at the appropriate bit locations to form the final product.

Additional pipelining is discussed in §4.2.5.

4.2.2 Addition

Modulo addition is simple to implement in hardware. Our goal is to implement the

operation r = a+ b mod n in hardware, assuming that a and b are already reduced

modulo n (i.e. both are less than n). This can be accomplished by simply performing

the sum, and subtracting n if the result is greater than or equal to n:

s := a+ b

r =







s− n, if s ≥ n

s, if s < n







The addition unit does not require the extra input m. This operation can be

directly implemented in hardware in a single stage with a comparator, multiplexer,

and adder, as shown in Figure 4-4.

52

a b n

64 64 64

out

64

+
65

>

–

0 1

!"#$ % & ' ($)*+ ,-

Figure 4-4: Addition Unit

4.2.3 Refresh

To ensure the computation unit can continually process inputs every cycle without

pause, we add a refresh input. This input indicates that the current inputs are to

start a new sum with a new moduli. The refresh input is passed into a shift register,

copying its value across the many stages of computation in the multiplication unit.

When the multiplication result is ready, the refresh register is checked.

If it is set, the c input (also passed through a shift register to get to this point)

is passed into the addition stage. If not, the accumulator is passed into the addi-

tion stage. The other input to the addition stage is the product computed by the

multiplication stage. Either way, the result of the addition stage is passed into the

accumulator register. If the refresh input is set, a new coefficient moduli will also be

used for the multiplication and addition.

The benefit of this scheme depends on the ultimate loop ordering. If different

locations in the C array are accessed on every cycle, then the refresh input will

always be true, and the accumulator register will be of little use. However, if the

same location in the C array is accessed repeatedly, the accumulator register can be

used to accumulate a sum for that location in C, only needing to provide a new value

53

for the c input and read the output of the computation unit when the location in C

is changed. This can reduce the need for reads and writes at the lowest level of the

storage hierarchy, which may save a small amount of energy.

4.2.4 Synthesis

We used verilator [27] to simulate this modulo multiply-and-accumulate unit, and

yosys [30] to synthesize it. We found the critical path of the computation unit to be

3442.00 ps. This is equivalent to a clock speed of 291MHz. This computation unit is

slower than DRAM speeds. DDR5 can operate at speeds of 3.2GHz [25].

4.2.5 Pipelining

To improve the speed of the computation unit, the additions and multiplications can

be highly pipelined into individual full-adder units. A full-adder unit is a hardware

adder that takes in two 1 bit numbers and a 1 bit carry and outputs a 1 bit sum and

a 1 bit carry. These 1-bit adders can be chained together to create larger adders, and

those larger adders can be chained together to create multipliers.

Typically, adders and multipliers are not actually created by chaining together full

adders linearly, but logarithmically to improve delay. No matter how they are chained

together, though, a pipeline stage could be shortened to be the length of only a single

full adder. An example of this type of pipeline for a linear adder is shown in Figure

4-5 and for a linear multiplier is shown in Figure 4-6. For an N -bit linear adder, this

type of pipelining produces N stages. For an N -bit linear multiplier (which produces

a 2N -bit output), this type of pipelining produces 3N − 4 stages.

The comparators used in our design can also be pipelined in a similar way, with

individual 1-bit comparator units being separated into pipeline stages, as shown in

Figure 4-7.

Since our computation unit is made primarily of full adders (through the adders

and multipliers), comparators, and multiplexers, it is a prime candidate for pipelining

in this way. A single full adder, as synthesized through yosys is 153.58 ps. A single

54

Full Adder

!! "!

#!

$!Full Adder

!" ""

#"

Full Adder

!# "#

##

Full Adder

!$ "$

#$

Full Adder

!% "%

#%

Full Adder

!& "&

#&

#'

Figure 4-5: Pipelined Adder

Half Adder

!!"" !""!

Full Adder

!!"# !"""

Full Adder

!!"$!""#

Full Adder

!!"% !""$

Full Adder

!!"& !""%

Half Adder

!""& !!"!

Half Adder

!#"!

Full Adder

!#""

Full Adder

!#"#

Full Adder

!#"$

Full Adder

!#"%

Full Adder

!#"&

Half Adder

!$"!

Full Adder

!$""

Full Adder

!$"#

Full Adder

!$"$

Full Adder

!$"%

Full Adder

!$"&

Half Adder

!%"!

Full Adder

!%""

Full Adder

!%"#

Full Adder

!%"$

Full Adder

!%"%

Full Adder

!%"&

Half Adder

!&"!

Full Adder

!&""

Full Adder

!&"#

Full Adder

!&"$

Full Adder

!&"%

Full Adder

!&"&

#!#"
###$#%#&#'#(#)#*

#"!#""

Figure 4-6: Pipelined Multiplier

55

1-bit

Comparator

!! "!

1-bit

Comparator

!" ""

1-bit

Comparator

!# "#

1-bit

Comparator

!$ "$

1-bit

Comparator

!% "%

1-bit

Comparator

!& "&

0

1

#$!

%&!

#$"

%&"

#$#

%&#

#$$

%&$

#$%

%&%

#$&

Figure 4-7: Pipelined Comparator

1-bit comparator unit is 100.32 ps. To be conservative, we will say that the entire

computation unit can be pipelined in this manner to a clock period of 500ps.

This will greatly increase the pipeline depth. For instance, if using a linear multi-

plier, the 128-bit by 128-bit multiplication stage, which used to be a single cycle, will

now take 380 (albeit, smaller) cycles. However, if the entire system - i.e. including

the storage hierarchy - is also well pipelined, the latency of the computation unit

should not matter as much as the clock period, which we have reduced through this

pipelining exercise.

By reducing the clock period to 500ps, we allow the system to run at 2GHz.

4.3 Storage Hierarchy

The storage hierarchy is shown in Figure 4-8. The top level of the storage hierarchy

is an NVME SSD. We make the assumption that it has an approximately 10GB/s

internal bandwidth. This assumption is justified by using the SSD simulator MQSim

[28]. We simulated a sequential read workload with average request size of 16KB using

an SSD with 16 flash channels, with the assumption that the channel transfer rate

has approximately doubled since the simulator’s publication. This achieved external

bandwidths of 1.9GB/s, which is similar to those seen in modern SSDs.

The next level of the storage hierarchy is the DRAM. SSDs typically contain on-

chip DRAM, which is used in duties such as block mapping in the flash translation

56

SSD

DRAMSRAM

Register File

Compute

Unit

Register File

Compute

Unit

Register File

Compute

Unit

…

…

SRAM

Register File

Compute

Unit

Register File

Compute

Unit

Register File

Compute

Unit

…

SRAM

Register File

Compute

Unit

Register File

Compute

Unit

Register File

Compute

Unit

…

Figure 4-8: Storage Hierarchy

layer. Past research has proposed repurposing this DRAM for other uses, and having

the host take over the mapping duties [5] [7]. Our design will take advantage of this,

and assume access to a 4GB on-chip DRAM store. We assume that the DRAM will

be DDR5.

The next level of the storage hierarchy is SRAM. The DRAM level may fan out to

several SRAMs. Since the SRAM will expect fills of tiles from the DRAM level, the

SRAM should be constructed to at least match the bandwidth of the DRAM level.

DDR5 can serve four 32-bit words per cycle, or 128 bits [9]. The SRAMs are also

required to fill tiles to the next level of storage, which is potentially many register

files. A reasonable datawidth for the SRAM is 256 bits, as this exceeds the DRAM

read bandwidth, and it can serve several 64-bit words per cycle to the the register

files it fans out to, if those register files happen to require consecutive data.

The next level of the storage hierarchy is register files. The SRAM level may fan

out to several register files. Register files are responsible for accepting tiles from the

SRAM level, and accepting reads and writes from the computation units. To that

end, the register file is provided with 3 read ports (to read values from elements of A,

B, and C each cycle), and 2 write ports (one for fills from SRAM, and one for writes

57

!"

Moduli Register

Counter Rollover Value

+1

>
0

1 0

Index Num Moduli

+

>
0

1 0

"

!

Figure 4-9: Moduli Selector Unit

from the computation unit back to C). Each register file is connected to exactly one

computation unit, which it delivers data to.

4.4 Moduli

The moduli register and selector unit is shown in Figure 4-9. The moduli register

contains the set of moduli available to the entire matrix calculation, both n and pre-

computed m values. This is 192 bits of storage per moduli. Only a modest amount

of storage would be required to support the vast majority of use cases.

Just as the storage hierarchy is responsible for delivering the data values a and

b to the computation unit, the moduli selector unit is responsible for delivering the

values n and m. This will follow an extremely predictable pattern based on the

loop ordering and tiling. With any loop ordering or tiling, the moduli will be cycled

through. How often moduli need to be switched depends on the exact loop ordering

and tiling. Based on this pattern, the moduli selector unit need only consist of an

index register to keep track of the current modulus, a counter register to determine

when to rollover to the next modulus, and a multiplexer to select the current modulus

values as output. The moduli selector unit will also need registers to keep track of the

58

counter value that should initialize a rollover, and the number of coefficient moduli,

both of which should be initialized at the beginning of a computation. The size of the

counter register can be decided by the expected range of repeats of the same modulus

given a specific loop ordering and tiling, once an optimal looping ordering is found in

§6.

59

60

Chapter 5

Space Exploration

5.1 High-Level Strategy

Now that we have specified our computational problem and architecture, there are

several variables left undefined. Parts of the architecture storage hierarchy are un-

specified, and the way in which the einsum problem actually runs on that hierarchy is

also not defined. In particular, the sizes and fanouts of units in the storage hierarchy,

and the loop ordering and tiling of the einsum problem must be defined.

At a high level, we will define a range of reasonable values for the storage level

sizes and fanouts. For each possible architecture, we will run the timeloop tool to

obtain the best mapping (i.e. loop ordering and tiling). From the Timeloop tool,

we obtain details about the area of the architecture, the energy required to run the

mapping on the architecture, and the number of cycles it will take. Since PIR is

primarily limited by speed, we will compare architectures by their cycle counts, and

for those with the same or similar cycle counts, we will compare their area-energy

products to see which architectures are best.

61

5.2 Space Definition

5.2.1 Architecture

For each of the unspecified architecture attributes, we swept through a range of

potential values that it could take on. From the minimum to maximum value, we

stepped exponentially, multiplying by two each time. We swept through the following

values:

• Size of each SRAM: 32KB - 64MB

• Size of each Register File: 32 - 4096 Registers (64 bits each)

• Total number of SRAMs: 1 - 32

• Total number of Register Files/Compute Units: 1 - 1024

From this large search space, it was clear that the optimal number of SRAMs is

2, and the optimal number of Register Files/Compute Units is 2. We also noticed

that the most optimal designs did not require much area, so expanded a new search

space to include smaller SRAMs and register files. These decisions will be discussed

further in §6. This refined search space is as follows:

• Size of each SRAM: 2KB - 64MB

• Size of each Register File: 4 - 4096 Registers (64 bits each)

• Total number of SRAMs: Fixed at 2

• Total number of Register Files/Compute Units: Fixed at 2

5.2.2 Mappings

For loop reorderings and tilings, there is a large space to explore. We used Timeloop

to explore this space in a random way, stopping after finding 500 consecutive valid

mappings which are suboptimal (i.e. the cycle count is higher than the current best

62

mapping, or cycle count is equivalent with a higher energy). We found this gave

reasonable results and increasing this number did not find much better mappings.

Timeloop frequently finds invalid mappings - this happens when the mapping, for

example, implies that more data must be stored in a storage unit than there is space

available. These are skipped over and do not count towards this suboptimal total.

5.3 Implementation

Architecture space sweeps are implemented in timeloop’s design-space tool [8]. This

tool takes in the existing architecture definition and constructs new architectures for

every possible combination of the architecture attributes you are sweeping over. For

each architecture, the tool runs timeloop’s normal mapper to find the best mapping.

In order to use this tool for our use case, we had to add several features.

5.3.1 Memory Restriction

First, our architecture search space was at many times during this research quite

large. The original design space tool constructed each architecture in memory before

applying the timeloop mapper to each one in turn. We made a modification to

construct these architectures on-the-fly so that only one is kept in memory at a time,

allowing it to work for much larger architecture spaces.

5.3.2 Constraints

Timeloop’s architecture allows specification of the total number of instances of each

storage unit. Our architecture search space includes sweeping over the number of

instances of both SRAMs and register files. This allows for absurd cases where the

number of SRAMs is more than the number of register files, so the SRAMs cannot

fanout to the register files.

To control for these cases, we added user-specified constraints into the design

space tool and specified that the number of instances of SRAMs must be less than or

63

equal to the number of instances of register files.

These constraints skip evaluating any architecture that violates them. For our

purposes, these are invalid architectures, but these constraints can also be used for

architectures that a user wishes not to explore but that are otherwise within the

search space.

5.3.3 Disk

Timeloop natively supports the highest level of the storage hierarchy being an unlimited-

size DRAM. With the large amount of data required in PIR, the highest level of stor-

age in our application must be an SSD disk. We added a Disk component to Timeloop,

to be available in the same unlimited capacity that DRAM was, and allowed DRAM

to be limited in size.

We also added energy estimations for the new Disk component to Accelergy [31],

from which Timeloop derives its energy and area calculations. The DRAM area

estimation in Accelergy was set to 0 (since it was an unlimited DRAM with no real

footprint), and the energy estimation did not depend on the size of the DRAM. We

modified these to use the CACTI program [29] to estimate DRAM area and energy

based on the specified size of DRAM and DRAM type (e.g. DDR5, DDR4, LPDDR,

etc).

64

Chapter 6

Evaluation Results

After collecting and analyzing data from Timeloop, we found the best architecture

to have two SRAMs of size 4KB, each of which feeds into a single register file of size

32. This optimal architecture is paired with an optimal mapping that iterates over

the J and N indices at the register file level.

The OnionChopper accelerator performs very well on OnionPIR for large databases,

with speeds close to disk bandwidth speeds and the majority of energy consumption

deriving from necessary SSD accesses. Our accelerator presents an almost 300-fold

improvement over speeds on a general-purpose processor. In addition, these bene-

fits carry over to other PIR algorithms, with most differences in speed and energy

consumption occurring at small database sizes.

6.1 Initial Architecture Sweep

We performed an initial architecture sweep over a large space of register file and

SRAM sizes and number of instances. We primarily wanted to optimize for speed, so

the first result we examined was the number of cycles taken by different architectures

to compute the results.

As seen in Figure 6-1, the number of cycles taken by the different architectures is

clustered mostly around 1.7 × 1010 and 1.3 × 1010. Investigating further, the reason

for this becomes clear: these two clusters are both defined by the bandwidth limits

65

the SSD must still deliver all of the data in the A, B, and C matrices to the rest of

the storage hierarchy at least once.

The size of A is M · J · P · K · C · D = 8, 388, 608 elements. The size of B is

J ·N ·K ·Q ·C ·D = 8, 589, 934, 592 elements. The size of C is M ·N ·P ·Q ·C ·D =

33, 554, 432 elements. The total size is |A| + |B| + |C| = 8, 631, 877, 632 elements.

Each element has 64 bits, or 8 bytes. The total size of all data that must be served is

therefore 69, 055, 021, 056 bytes, or 64.3125 GB. The SSD can deliver 10 GB/s, so at

a clock speed of 2GHz, this amount of data will take at least 12, 862, 500, 500 cycles.

This explains the cluster of architectures around 1.3×1010 on the graph in Figure 6-1,

as these are the architectures with multiple compute units that are limited instead

by the bandwidth of the SSD.

In fact, any architecture with at least 2 compute units will be limited by the SSD,

since upon splitting the computational work in half the amount of cycles necessary

to devote to it is less than the amount of cycles required to bring in the data to

process. Any additional compute units are purely wasteful. There are then truly only

two types of storage hierarchies to consider: those with two SRAMs, feeding into

one compute unit and register file each, or those with one SRAM that feeds into two

compute units and register files.

We examined the data, comparing similar such architectures with the same register

file sizes and total SRAM sizes. That is, for example, comparing an architecture with

64KB in one SRAM or split into two 32KB SRAMs. We found that the energy used

by the SRAMs is smaller in the case where the SRAMs are split in half. Although

the number of cycles required for the entire system remains the same, the number

of cycles required for the SRAMs is higher when combined. This is because one

SRAM cannot service any requests in parallel, whereas when split, both SRAMs can

process requests at the same time (e.g. reads from their respective register file units).

This results in the SRAMs spending a higher proportion of time idling rather than

spending energy.

Based on this initial analysis, we concluded that the optimal design has 2 SRAMs

and 2 Register Files/Compute Units. Taking an initial look at the area and energy

67

the trends observed, this means that by making our architectures larger (primarily

by increasing the size of the SRAM), we are for the most part not reducing energy

consumption caused by inefficiencies in data reuse, only increasing energy due to the

larger energy consumption per access. This means that even at the smallest SRAM

sizes tested, we are adequately providing a buffer for reuse of data that prevents

unnecessary DRAM accesses. Further decreasing SRAM size is not reasonable, as

at the smallest size it is already only 2KB with 64 rows. Fewer than 64 rows is

not supported by the Accelergy plugin used to compute the energy estimates for the

SRAM.

Small changes to the size of the register file do not impact the area much but may

impact the reuse patterns. For the smallest SRAM sizes, we investigate this impact.

Data is plotted in Figure 6-5.

We find there is a general trend of larger energies with larger register files. We

also find that there is a slight dip in the energy consumption around a register file

depth of 16 or 32, where both smaller or larger register files consume more energy.

Smaller register files likely have poor reuse, leading to higher energy consumption.

Larger register files have more energy consumption due to their larger footprint and

multiplexers. Note that any fewer than 8 registers, and the cycle count becomes too

high, so these architectures have been eliminated.

For the overall area-energy product, the optimal architecture turns out to have

a small SRAM size (32768 bits, or 4KB), and a 32-register register file. This is

consistent with the analysis above, a 4KB SRAM is one of the smallest tested and 32

registers is at a low point in the graphs in Figure 6-5.

The overall optimal architecture is shown in Figure 6-6.

6.3 Mapping

The Timeloop tool, in addition to outputting statistics that were useful in determining

the optimal architecture, also determined the optimal mapping on which to run that

architecture. In fact, the number of cycles and the energy the computation took to

70

SSD

DRAM

SRAM

Register File

Compute

Unit

SRAM

Register File

Compute

Unit

Moduli

Register

Moduli Selector

On-Chip

Off-Chip

Figure 6-6: Overall Optimal Architecture

run on a given architecture are dependent on the loop ordering and tiling (or mapping)

of the problem on the architecture.

With 8 different loop variables, and large loop bounds, there was a very large

search space for tilings and loop orderings, and it was not reasonable to explore the

entire space. Thus, there was a certain amount of randomness in whether or not the

optimal mapping found by Timeloop was truly the optimal mapping.

We tried adding the additional constraints to Timeloop to perform either an

“output-stationary” or “input-stationary” mapping. For our architecture, this means

that at the register-file level, the mapping repeatedly accesses either the same output

(or input) element, and only changes the other matrix elements involved in compu-

tations. These types of mappings tend to be more efficient, so may lead Timeloop to

find a better answer by exploring a smaller space.

Timeloop’s answers in this smaller space were mostly on-par with its answers in

the full mapping space, and it did not find any more efficient mappings.

The best mapping was found in the original space, which we present here. The

number of elements present from each array at each level is listed at the top of the

tiling loops for that level.

72

SSD [A: 8388608 B: 8589934592 C: 33554432]

−−

| f o r D in [0 : 3 2)

DRAM [A: 262144 B: 268435456 C: 1048576]

−−

| f o r C in [0 : 2)

| f o r K in [0 : 2)

| f o r D in [0 : 1 2 8)

| f o r J in [0 : 8)

| f o r N in [0 : 5 1 2)

| f o r J in [0 : 2) (Spa t i a l)

SRAM [A: 32 B: 64 C: 8]

−−

| f o r J in [0 : 2)

| f o r N in [0 : 2)

| f o r P in [0 : 2)

Reg i s t e r F i l e [A: 8 B: 16 C: 2]

−−

| f o r J in [0 : 8)

| f o r N in [0 : 2)

As another reminder of the problem:

Cm,n,p,q ,c,d = Am,j,p,k ,c,d · Bj,n,k ,q ,c,d

Tiling of D (the coefficients of the polynomials) is concentrated at the DRAM

level and SSD level. Tiling of N (the columns of B and C) is also concentrated at the

73

DRAM level. Tiling of J (the columns of A and rows of B) occurs across the storage

hierarchy. Tiling of the coefficient moduli occurs at the outer loop of the DRAM

level, separating the two polynomials in each pair.

For this particular mapping, the coefficient moduli change very rarely. Thus, for

the moduli selector, a large counter would be required to control the rollover of the

moduli index. The counter needs to be able to count up to on the order of the number

of computations. A reasonable assumption is that this number should fit in a 64 bit

integer, so we should allocate 64 bits for the coefficient moduli counter.

6.4 Evaluation Statistics

For a 64GB database, our design took 12,833,318,209 cycles. At 2GHz, this is equiv-

alent to 6.4 seconds. This time will not be affected much by latencies in the sys-

tems; even though timeloop does not account for the startup latencies, even very

deep pipelines will be dwarfed by the total number of cycles taken. Running on a

MacBook Pro laptop with a 2.9 GHz 6-Core Intel Core i9 and 32 GB memory in

an Ubuntu virtual machine allocated 2 processors with 8GB of memory, the same

calculation takes 29 minutes, an improvement of 271.9×.

Our design used 169.09 J. This means that it was consuming 26.35W during the

computation, 33.43% of which was used by the compute units and 64.99% of which

is used by the SSD.

Our design is 6.87mm2 in area. The compute units contribute 99.54% of this area.

Most of the remaining area is taken up by the SRAMs, with a negligible amount from

the register files. The DRAM and SSD are not counted in this total.

6.5 Different Database Sizes

We evaluated the OnionChopper architecture on various database sizes for the key

bottleneck operation in the OnionPIR algorithm. This is plotted in Figure 6-7 and

6-8. We found that it maintained a high speed on all database sizes and in particular,

74

80

Chapter 7

Limitations and Future Work

There are several factors that our work does not take into account. One such factor

is the modeling of the Disk level of the storage hierarchy. For the DRAM and SRAM

levels, Timeloop considers the total number of accesses to these storage units and

assumes that the number of cycles these accesses will take is equal to the number

of accesses. Then, if the bandwidth of these storage units does not permit this high

of an access rate, the number of cycles is appropriately increased. Timeloop does

not take into account whether the accesses are sequentially or randomly distributed.

We extended Timeloop with a Disk level and used the same modelling. For Disk,

the difference between sequential and random accesses can have a significant effect

on delay and breaks the assumption that these accesses can be served with the same

bandwidth. This is an area for future research to determine if this has an effect on the

optimal tiling of data from the SSD level, or if it degrades the modelled performance

of the accelerator.

Our modeling of the energy consumption from disk accesses is also an overestimate.

We used data from the power consumption of NVME SSDs when sequentially reading

and writing [16] [12]. This overestimates the energy consumption by including energy

consumed by the entire system. However, since most of the various architectures and

mappings explored used the same number of SSD accesses, this energy did not need

to be overly precise for our comparison purposes.

Timeloop assumes our storage hierarchy and compute units are pipelined and

81

double-buffered or use buffets [24]. To achieve the speeds suggested by the results

in §6.4, these double buffers or buffets would need to be implemented in order to

guarantee that all levels of the storage hierarchy can operate in parallel. If double

buffering is used, this would use additional area and some additional energy as storage

units would need to be duplicated so that one can be independently filled with the

next tile as the other is drawing from the current tile.

The loop tilings and reorderings present a very large search space, due to the large

number of loop dimensions (8), and large number of factorings of each dimension

(leading to a large number of possible tilings). It was not practical to search through

the entire space for every architecture candidate, or even for a single architecture. Our

search may therefore have likely not identified the single best mapping in the search

space for each architecture. This also means that the best architecture identified by

our search may not have truly been the best. Based on our analysis of trends in

§6.1 and §6.2, it is likely that at least a similar architecture in the space is the true

optimum according to our criteria. However, further research may reveal a better

architecture.

We designed our architecture based on a 10GB/s SSD. Further research is required

to determine how the speed of the SSD affects the best architecture design and its

throughput.

We optimized primarily for OnionPIR on a 64GB database. As seen in §6.5 and

§6.6, this extends well to other database sizes and other PIR algorithms. However,

because of our optimization approach, the speed and energy consumption does get

worse by a small amount on small database sizes. Further research is required to

design a system that works just as well on small and large database sizes.

An area for future work may be in exploring changes to the design of the accelera-

tor for a protocol which batches several client requests and processes them at the same

time, thus requiring fewer overall accesses to the database. This would involve matrix

multiplications, so our accelerator is likely already a good fit, but future research may

reveal different optimizations specific to the new dimension sizes and reuse patterns

involved.

82

Our modeling of the computation unit in Accelergy assumes full pipelining of all

multipliers, adders, and comparators in each stage. We do not consider the interac-

tion between each stage, which leads to many extra registers between stages where

computations could be started earlier. This increases our energy and area estimates.

We may also be overly-aggressive with our pipelining in general. It may be possible

to meet the 2GHz target speed without pipelining each full adder and comparator

unit down to a single stage, which could reduce the energy and area requirements.

Since the compute units comprise a reasonable amount of the energy consumption

and the vast majority of the area requirements in our system, future research could

focus on this area for improvement.

We did not implement the fine details of this accelerator, nor test it in hardware.

Details such as the setup of the moduli registers and initialization of a computation

require some hardware components and software interaction. The impact of these

operations was not modeled as part of the latency of computation, although it should

be mostly constant regardless of the size of the database. Since our accelerator has

not been physically implemented, we cannot be sure it behaves exactly as modelled.

83

84

Chapter 8

Conclusion

We designed OnionChopper, a near-storage accelerator for the OnionPIR protocol.

Our accelerator consists of a storage hierarchy and compute units which together

stream data from an SSD disk to do arithmetic calculations modulo various integers.

For the main bottleneck operation in this protocol, our accelerator improves the

speed drastically, allowing the operation to run at speeds equivalent to the SSD

bandwidth. OnionChopper is extensible to any large database size, as well as other

PIR protocols, all achieving similar speeds. Our accelerator is also quite energy

efficient, with a majority of the energy usage coming from the necessary SSD accesses,

and the accelerator itself eliminating the need for any repeated SSD accesses to the

same element. During computation on a 64GB database, 26.45W is consumed. Our

accelerator is small, fitting within 6.87mm2.

Realtime applications such as streaming or voice calling require a low server re-

sponse time and a low server response size in order to work effectively. OnionPIR

provides a small response size, and OnionChopper can greatly improve the response

time to make such realtime applications feasible. Since OnionChopper is also extensi-

ble to other schemes, new PIR protocols based on the same concepts of homomorphic

encryption that improve upon request size, response size, response time, or other as-

pects of the protocol may also be able to take advantage of this accelerator to gain

an automatic boost in response time.

85

86

Appendix A

Example Timeloop Mapping

The following is an example of a Timeloop Mapping for a matrix multiplication

problem:

Ci,j = Ai,k · Bk ,j

Suppose we instantiate this with concrete bounds for i, j , k, denoted i = 16, j = 8,

k = 4. Also suppose we have an architecture with a DRAM main memory, an SRAM

global buffer, and 4 register files.

A possible mapping could be as follows:

mapping:

- target: MainMemory

type: temporal

factors: I=2 J=1 K=2

permutation: JKI

- target: GlobalBuffer

type: temporal

factors: I=4 J=2 K=1

permutation: JKI

87

- target: GlobalBuffer

type: spatial

factors: I=1 J=4 K=1

permutation: JKI

- target: RegisterFile

type: temporal

factors: I=2 J=1 K=2

permutation: JKI

This mapping says that main memory will deliver 4 tiles to the SRAM, in the

i → k order, with factors of 2 for both i and k. For each tile the SRAM gets, the

SRAM will deliver 8 tiles to the register files, in the i → j order, with a factor of 4

for i and 2 for j. There are multiple register files, so each tile that gets delivered can

further be divided into four tiles, in this case along the j dimension. Finally, for each

tile it gets, the register file will deliver 4 tiles to the computation unit, with a factor

of 2 in the i dimension and 2 in the k dimension, in the i → k order. Each of these

tiles will be enough to perform one single computation - i.e. one element from A, one

element from B, and one element from C.

88

Bibliography

[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-

abh Gupta. Addra: Metadata-private voice communication over fully untrusted

infrastructure. In 15th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 21), pages 313–329. USENIX Association, July 2021.

[2] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schopp-

mann, Karn Seth, and Kevin Yeo. Communication–Computation trade-offs in

PIR. In 30th USENIX Security Symposium (USENIX Security 21), pages 1811–

1828. USENIX Association, August 2021.

[3] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with compressed

queries and amortized query processing. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 962–979, 2018.

[4] Paul Barrett. Implementing the rivest shamir and adleman public key encryption

algorithm on a standard digital signal processor. In Proceedings on Advances in

Cryptology—CRYPTO ’86, page 311–323, Berlin, Heidelberg, 1987. Springer-

Verlag.

[5] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. LightNVM: The linux

Open-Channel SSD subsystem. In 15th USENIX Conference on File and Stor-

age Technologies (FAST 17), pages 359–374, Santa Clara, CA, February 2017.

USENIX Association.

[6] Callgrind: A call-graph generating cache and branch prediction profiler, 2022.

[7] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and Sungjin Lee. Light-

store: Software-defined network-attached key-value drives. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’19, page 939–953, New York,

NY, USA, 2019. Association for Computing Machinery.

[8] NVIDIA Corporation. Timeloop github repository. https://github.com/

NVlabs/timeloop, 2019.

[9] Ddr5 sdram. https://media-www.micron.com/-/media/client/global/

documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf?rev=

3210029bd0f44952852e9f7134d83315, 2020.

89

https://github.com/NVlabs/timeloop
https://github.com/NVlabs/timeloop
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf?rev=3210029bd0f44952852e9f7134d83315
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf?rev=3210029bd0f44952852e9f7134d83315
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf?rev=3210029bd0f44952852e9f7134d83315

[10] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.

iacr.org/2012/144.

[11] Fio - flexible i/o tester rev. 3.33. https://fio.readthedocs.io/en/latest/

fio_doc.html, 2017.

[12] Firecuda 510 ssd datasheet. https://www.seagate.com/content/

dam/seagate/migrated-assets/www-content/datasheets/pdfs/

firecuda-510-ssd-DS1999-5-2101US-en_US.pdf, Jan 2021.

[13] Matthew Green, Watson Ladd, and Ian Miers. A protocol for privately reporting

ad impressions at scale. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, page 1591–1601, New York,

NY, USA, 2016. Association for Computing Machinery.

[14] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo

Alvisi, and Michael Walfish. Scalable and private media consumption with pop-

corn. Cryptology ePrint Archive, Paper 2015/489, 2015. https://eprint.iacr.

org/2015/489.

[15] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-

john, and Vinod Vaikuntanathan. One server for the price of two: Simple and

fast single-server private information retrieval. Cryptology ePrint Archive, Paper

2022/949, 2022. https://eprint.iacr.org/2022/949.

[16] Jacob Hicks. How many watts does an ssd use? https://devicetests.com/

how-many-watts-does-an-ssd-use, Dec 2022.

[17] Iostat(1) - linux man page. https://linux.die.net/man/1/iostat.

[18] Kim Laine. Simple encrypted arithmetic library 2.3.1. https://www.microsoft.

com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf, Nov

2017.

[19] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trin-

abh Gupta, Yufei Ding, and Yuan Xie. Inspire: In-storage private information re-

trieval via protocol and architecture co-design. In Proceedings of the 49th Annual

International Symposium on Computer Architecture, ISCA ’22, page 102–115,

New York, NY, USA, 2022. Association for Computing Machinery.

[20] Mmap(2) - linux manual page. https://man7.org/linux/man-pages/man2/

mmap.2.html, Mar 2021.

[21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response

efficient single-server pir. Cryptology ePrint Archive, Paper 2021/1081, 2021.
https://eprint.iacr.org/2021/1081.

[22] Onionpir. https://github.com/mhmughees/Onion-PIR, 2022.

90

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/firecuda-510-ssd-DS1999-5-2101US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/firecuda-510-ssd-DS1999-5-2101US-en_US.pdf
https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/firecuda-510-ssd-DS1999-5-2101US-en_US.pdf
https://eprint.iacr.org/2015/489
https://eprint.iacr.org/2015/489
https://eprint.iacr.org/2022/949
https://devicetests.com/how-many-watts-does-an-ssd-use
https://devicetests.com/how-many-watts-does-an-ssd-use
https://linux.die.net/man/1/iostat
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://eprint.iacr.org/2021/1081
https://github.com/mhmughees/Onion-PIR

[23] Angshuman Parashar, Jenny Huang, Joel Emer, Nellie Wu, Michael Gilbert,

Po-An Tsai, and Tanner Andrulis. Overview.

[24] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W. Keckler, and Joel Emer. Timeloop: A systematic approach to dnn

accelerator evaluation. In 2019 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 304–315, 2019.

[25] Scott Schlachter and Brian Drake. Introducing micron® ddr5 sdram: More than

a generational update. https://www.micron.com/-/media/client/global/

documents/products/white-paper/ddr5_more_than_a_generational_

update_wp.pdf?la=en, 2019.

[26] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, April

2020. Microsoft Research, Redmond, WA.

[27] Wilson Snyder. Verilator user’s guide. https://verilator.org/guide/

latest/, 2022.

[28] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose,

and Onur Mutlu. MQSim: A framework for enabling realistic studies of modern

Multi-Queue SSD devices. In 16th USENIX Conference on File and Storage

Technologies (FAST 18), pages 49–66, Oakland, CA, February 2018. USENIX

Association.

[29] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Nor-

man P Jouppi. Cacti 5.1. https://www.hpl.hp.com/techreports/2008/

HPL-2008-20.pdf, Apr 2008.

[30] Claire Wolf. Yosys open synthesis suite. https://yosyshq.net/yosys/.

[31] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An architecture-

level energy estimation methodology for accelerator designs. In 2019 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 1–8, 2019.

91

https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://github.com/Microsoft/SEAL
https://verilator.org/guide/latest/
https://verilator.org/guide/latest/
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf
https://yosyshq.net/yosys/

	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background and Related Work
	Private Information Retrieval
	Basic Scheme
	Homomorphic Encryption
	OnionPIR
	Other PIR Schemes

	Timeloop
	Problem
	Architecture
	Mapping
	Mapper
	Design Space Tool

	Application Characteristics
	Disk Bandwidth Profiling
	Runtime Profiling
	Basic Operation
	Applicability to Other PIR Schemes
	SealPIR
	MulPIR
	SimplePIR
	FastPIR

	Hardware Accelerator Design
	Overview
	Compute Unit
	Multiplication
	Addition
	Refresh
	Synthesis
	Pipelining

	Storage Hierarchy
	Moduli

	Space Exploration
	High-Level Strategy
	Space Definition
	Architecture
	Mappings

	Implementation
	Memory Restriction
	Constraints
	Disk

	Evaluation Results
	Initial Architecture Sweep
	Refined Architecture Sweep
	Mapping
	Evaluation Statistics
	Different Database Sizes
	Different PIR Algorithms

	Limitations and Future Work
	Conclusion
	Example Timeloop Mapping

