
A Framework for Solving Parabolic Partial
Differential Equations on Discrete Domains

by

Leticia Mattos Da Silva
B.S., University of California, Los Angeles (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Leticia Mattos Da Silva. All rights reserved. The author hereby
grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce,
preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Leticia Mattos Da Silva
Department of Electrical Engineering and Computer Science
May 19, 2023

Certified by: Justin Solomon
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee for Graduate Students



2



A Framework for Solving Parabolic Partial Differential

Equations on Discrete Domains

by

Leticia Mattos Da Silva

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We introduce a framework for solving a class of parabolic partial differential equations
on triangle mesh surfaces, including the Hamilton-Jacobi equation and the Fokker-
Planck equation. Certain PDE in this class often have nonlinear or stiff terms that
cannot be resolved with standard methods on triangle mesh surfaces. To address this
challenge, we leverage a splitting integrator combined with a convex optimization step
to solve these PDE. Our machinery can be used to compute entropic approximation
of optimal transport distances on geometric domains, overcoming the numerical
limitations of the state-of-the-art method. In addition, we demonstrate the versatility
of our method on a number of linear and nonlinear PDE that appear in diffusion tasks
in geometry processing.
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Introduction

The analysis of partial differential equations (PDE) is a ubiquitous technique in

computer graphics, geometry processing, and adjacent fields. In particular, parabolic

PDE describe a wide variety of phenomena. For example, instances of the Hamilton-

Jacobi equation model the time evolution of flame front propagation and the evolution

of functions undergoing nonlinear diffusion. The Fokker-Planck equation describes the

evolution of density functions driven by stochastic processes. Both of these equations

have recently provided important means to study problems in image processing,

computer vision, statistics, and machine learning [Osher et al., 2023, Mokrov et al.,

2021, Wang and Hancock, 2008, Leatham et al., 2022]. Hence, methods for accurately

and efficiently solving this class of PDE over geometric domains is a central goal in

geometry processing.

Myriad numerical algorithms have been proposed for solving PDE in geometry

processing. Unfortunately, the most popular algorithms are unsuitable for important

regimes, such as capturing infinitesimal or nonlinear phenomena. For instance, the

convolutional Wasserstein distance method for barycenter computation [Solomon et al.,

2015] is built on tiny amounts of diffusion. The aforementioned method, however,

relies on heuristics for choosing diffusion times that are not too small–leading to

numerical inaccuracies–and not too large–creating approximations that quantitatively

appear wrong. Moreover, nonlinear PDE that describe certain types of flow also

require special care. Indeed, explicit integrators used for these PDE require time step

restrictions to avoid numerical instability, and implicit integration schemes are no

longer equivalent to solving a single linear system of equations, turning out to be too
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expensive.

To address these limitations, we propose a framework leveraging a splitting inte-

gration strategy and an appropriate spatial discretization to solve parabolic PDE over

discrete geometric domains. The splitting allows us to leverage the implicit integration

of a well-known PDE, the heat equation, and use a convex relaxation to deal with the

challenging piece of the parabolic PDE. Empirically, our method improves performance

compared to the state-of-the-art in geometry processing. We apply our framework to

challenging parabolic PDE: log-domain heat diffusion, the nonlinear 𝐺-equation, and

the Fokker-Planck equation, all of which we solve efficiently on a variety of domains

and time steps.

Contributions. Our main contributions are:

• A framework to solve linear and nonlinear parabolic PDE on triangle mesh

surfaces with efficiency matching that of conventional methods in geometry

processing.

• A log-domain diffusion algorithm that improves performance of geometry pro-

cessing methods relying on tiny amounts of diffusion, demonstrated on optimal

transport tasks.

• We apply our framework to the 𝐺-equation and the Fokker-Planck equation on

triangle grids and surface meshes for various initial conditions and time steps,

as well as different choices of vector fields and viscosity values.
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Related Work

2.1 Second-order Parabolic PDE

Second-order parabolic PDE are a general extension of the heat equation. The solutions

to PDE in this class are in some ways related to the solutions of the heat equation;

these equations appear in close applications where the object of interest is the density

of a quantity on a domain, evolving forward in time. While the heat equation is a

well-studied PDE with a wide array of tools available to solve it on discrete domains,

second-order parabolic PDE in general are more challenging, in particular in the

presence of additional terms that add nonlinearity or chaotic behaviour.

The typical strategy for spatial discretization of second-order parabolic PDE are

Garlekin methods [Evans, 2010]. Common numerical integration techniques are finite

difference schemes, including forward Euler, explicit Runge-Kutta formulas, backward

Euler, and the Crank-Nicolson method. Still, many PDE in this family cannot be

efficiently solved on triangle meshes with these discretization methods. Some of the

difficulties that arise include: the strong stiffness of certain equations in this family is

not suitable for methods such as Runge-Kutta [Sommeijer et al., 1998]; equations such

as the Hamilton-Jacobi do not have a conservative form, making it difficult to write

out fluxes for discontinuous Garlekin methods adapted to irregular domains [Yan and

Osher, 2011].
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2.1.1 Heat diffusion and entropy-regularized optimal transport

The entropy-regularized approximation of transport distances provides a method for

solving various optimal transportation problems by realizing them as optimization

problems in the space of probability measures equipped with the Kullback-Leibler

(KL) divergence. We refer the reader to [Villani, 2003] for a complete introduction to

the optimal transportation problem, which roughly seeks to transport all the mass

from a source distribution to a target distribution with minimal cost. Benamou et al.

[2015] links entropy-regularized transport to minimizing a KL divergence.

Cuturi [2013] proposed a fast computational method to compute transport distances

using entropic regularization based on the Sinkhorn algorithm. Solomon et al. [2015]

extended this work by showing that the kernel in the Sinkhorn algorithm for the

2-Wasserstein distance can be approximated with the heat kernel, which can be

computed using PDE solution techniques over geometric domains. This perspective is

also echoed in Schrödinger bridge formulations of transport, whose static form includes

an identical substitution of the heat kernel [Léonard, 2014].

2.1.2 𝐺-equation

The 𝐺-equation is a level-set Hamilton-Jacobi equation introduced by F.A. Williams

in [Buckmaster, 1985] to model turbulent-flame propagation in combustion theory.

While some finite difference schemes have succeeded in solving various cases of the 𝐺-

equation on regular grids [Liu et al., 2013], no study to our knowledge has considered

the 𝐺-equation on triangle surface meshes. Several challenges arise in the latter

setting: for certain values of flow intensity, the constraint on time step—given by the

Courant–Friedrichs–Lewy (CFL) condition—is quite restrictive on explicit methods;

and the nonlinearity of the equation yields an open problem for implicit methods.

2.1.3 Fokker–Planck equation

The Fokker-Planck equation is a linear parabolic partial differential equation describing

the time evolution of the probability density function of a process driven by a stochastic
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differential equation (SDE). Processes driven by SDE appear in many contexts,

including mathematical finance [Boghosian, 2014], in which methods for numerically

solving the Fokker-Planck equation are highly valued. The Fokker-Planck equation also

has applications in computer vision and image processing [Smolka and Wojciechowski,

1997, Leatham et al., 2022].

2.2 PDE-driven geometry processing

PDE are a fundamental component of many geometry processing algorithms. PDE-

based approaches have been used for surface fairing [Desbrun et al., 1999, Bobenko

and Schröder, 2005], surface reconstruction [Duan et al., 2004, Xu et al., 2006], and

physics-based simulation [Chen et al., 2013, O’Brien et al., 2002], to cite a few examples.

Hence, there has been a considerable amount of work focused on developing accurate

and robust PDE solvers. The most popular PDE methods, however, such as the

famous “heat method” for geodesic distance approximations [Crane et al., 2013], are

concerned with solving linear PDE problems.

2.3 Convex Optimization for Regularized Geodesics

Perhaps the closest related work to this thesis is [Edelstein et al., 2023], which proposes

a convex optimization framework for extracting regularized geodesic distances on

triangle meshes. We extend this convex optimization strategy to derive one of the steps

in a splitting technique to solve a larger class of equations. Their paper generalizes a

PDE-based result from [Belyaev and Fayolle, 2020] for distance function estimation to

general regularizers under some mild conditions. This kind of variational approach

for approximating distance functions on surfaces was first proposed and backed by

theoretical results in [Belyaev and Fayolle, 2015].

13
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Mathematical Preliminaries

3.1 General Preliminaries

Let ℳ ⊂ R3 be a surface embedded in R3, possibly with boundary 𝜕ℳ; we will use

𝑛̂(𝑥) to denote the unit normal to the boundary 𝜕ℳ at 𝑥 ∈ 𝜕ℳ. Take ∇ to be the

gradient operator and ∆ to be the Laplacian operator, with the convention that ∆

has nonnegative eigenvalues. We refer the reader to [do Carmo, 1976] for a general

introduction to Laplacian operators, which roughly map functions to their total second

derivative pointwise.

In this thesis we consider time-varying second-order parabolic PDE of the following

form:
𝜕𝑢

𝜕𝑡
= −𝜀∆𝑢+𝐻(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) (3.1)

where the unknown function 𝑢(𝑥, 𝑡) : ℳ× [0,∞) → R× R+ is twice differentiable on

ℳ, 𝜀 ≥ 0, and 𝐻(𝑥, 𝑝, 𝑞) is jointly convex in (𝑝, 𝑞) ∈ R× R3 for fixed 𝑥 ∈ ℳ.

We tackle the Cauchy problem for (3.1), that is, with a prescribed initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥), where 𝑢0 : ℳ → R is some scalar function, and boundary conditions

determining the behavior of 𝑢(𝑥, 𝑡) at 𝑥 ∈ 𝜕ℳ. Two common choices for boundary

conditions are Dirichlet conditions, which prescribe the values of 𝑢(𝑥, 𝑡) for all (𝑥, 𝑡) ∈

𝜕ℳ × (0,∞), and Neumann conditions, which specify ∇𝑢(𝑥, 𝑡) · 𝑛̂(𝑥) ≡ 0 for all

𝑥 ∈ 𝜕ℳ.

The parameter 𝜀 ≥ 0 in (3.1) is called the viscosity parameter. As 𝜀 → 0, the
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function 𝑢 converges to a solution of

𝜕𝑢

𝜕𝑡
= 𝐻(𝑥, 𝑢(𝑥),∇𝑢(𝑥)), (3.2)

which is known as the Hamilton-Jacobi equation [Evans, 2010]. This convergence

result is given by the stochastic differential game method in [Fleming and Souganidis,

1989].

3.2 Example PDE

Our framework arose in our study of functions 𝑢(𝑥, 𝑡) satisfying the following PDE,

which arises in the subsequent proposition:

𝜕𝑢

𝜕𝑡
= −∆𝑢+ ‖∇𝑢‖22. (3.3)

Note that for this equation, we have 𝐻(𝑥, 𝑝, 𝑞) = ‖𝑞‖22.

Proposition 3.2.1. Suppose 𝑣(𝑥, 𝑡) is such that 𝑣(𝑥, 𝑡) > 0 for all (𝑥, 𝑡) ∈ ℳ× [0,∞)

and 𝑣 satisfies the heat equation:

𝜕𝑣

𝜕𝑡
= −∆𝑣. (3.4)

Define 𝑢(𝑥, 𝑡) := log 𝑣(𝑥, 𝑡). Then, 𝑢(𝑥, 𝑡) satisfies (3.3). Moreover, if 𝑣 satisfies

Dirichlet or Neumann boundary conditions, then 𝑢 satisfies the same boundary condi-

tions up to applying log. In sum, 𝑢 satisfies the boundary conditions satisfied by 𝑣 up

to applying log.

This proposition is a direct result of the chain rule. It only applies to strictly positive

functions 𝑣(𝑥, 𝑡); by the maximum principle, it is sufficient to check 𝑣(𝑥, 0) > 0 to

guarantee this condition for all 𝑡 ∈ [0,∞). Also, 𝑢 is a supersolution to the heat

equation since clearly 𝜕𝑢/𝜕𝑡 ≥ −∆𝑢.

The overarching theme of this thesis is that the same procedure that solves (3.3)
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can be used to handle other parabolic problems. In particular, we consider three

choices of 𝐻:

3.2.1 Nonlinear diffusion

First, motivated by equation (3.3), we consider 𝐻(𝑥, 𝑝, 𝑞) = ‖𝑞‖22. In §6.1, we will

show that this Hamilton-Jacobi equation and Proposition 3.2.1 play a key role in

overcoming the limitations faced by methods relying in small amounts of diffusion to

compute entropy regularized transport distances on discrete domains.

3.2.2 G-equation

Second, we consider 𝐻(𝑥, 𝑝, 𝑞) = −Φ(𝑥) ·𝑞+‖𝑞‖2, which corresponds to the 𝐺-equation

(see §2.1.2):
𝜕𝑢

𝜕𝑡
= −Φ(𝑥) · ∇𝑢+ ‖∇𝑢‖2 − 𝜀∆𝑢. (3.5)

When 𝜀 = 0, this equation is known as the inviscid 𝐺-equation. For 𝜀 > 0, it

is known as the viscous 𝐺-equation. Certain types of incompressible flows are of

special interest in applications where the 𝐺-equation is found. In particular, the

two-dimensional cellular flow is defined as

Φ(𝑥) = (−𝐴 sin (2𝜋𝑥) cos (2𝜋𝑦), 𝐴 cos (2𝜋𝑥) sin (2𝜋𝑦)). (3.6)

3.2.3 Fokker-Planck equation

Finally, we consider 𝐻(𝑥, 𝑝, 𝑞) = 𝑝∇Φ(𝑥) + Φ(𝑥)𝑞, which corresponds to the Fokker-

Planck equation (see §2.1.3):

𝜕𝑢

𝜕𝑡
= 𝑢∇Φ(𝑥) + Φ(𝑥) · ∇𝑢− 𝜀∆𝑢. (3.7)

Here 𝑢 is the density function of the trajectories of the following SDE:

d𝑥 = −∇Φ(𝑥)d𝑡+
√
2𝜀 d𝑊, (3.8)
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where 𝑊 is a Wiener process. We refer the reader to [Medved et al., 2020] for a review

on the relationship between equations (3.7) and (3.8). The vector field Φ is typically

known as the drift vector and 𝜀 as the diffusion coefficient, but we will call the latter

the viscosity parameter for consistency throughout this thesis.
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Method

Let Ω = (𝑉,𝐸, 𝐹 ) be a triangle mesh with vertices 𝑉 ⊂ R3, edges 𝐸 ⊆ 𝑉 × 𝑉 , and

triangular faces 𝐹 ⊂ 𝑉 × 𝑉 × 𝑉 . In this section, we develop a general approach

to approximating solutions to equations of the form (3.1) on triangle meshes, given

𝑢(𝑥, 0) discretized on 𝑀 using one value per vertex, 𝑢0 ∈ R|𝑉 |. First, we describe

our method for time integration, and then, we define a spatio-dicretization strategy

suitable to the different terms associate with PDE of the form in (3.1).

4.1 Time Integration

In what follows, we give a brief overview of classical time integration approaches and

outline a method to address the challenges faced by classical approaches when solving

second-order parabolic PDE.

4.1.1 Classical approaches

Two typical means of solving PDE in time are explicit time integration, such as

the forward Euler method, and implicit integration, such as the backward Euler

method. Forward Euler often imposes a strict restriction (upper bound) on ℎ for

stability. Runge–Kutta and other variations of this integrator can improve stability

and accuracy of forward Euler integration, but almost all require that we take many

small steps (ℎ ≪ 1) to avoid introducing instability. Backward Euler is unconditionally

stable and first-order accurate in ℎ, which often suffices for small ℎ > 0. If the PDE
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contains a nonlinear term, however, backward Euler and related implicit integration

schemes are no longer equivalent to solving a single linear system of equations; in this

case, implicit integration leads to a nonlinear root-finding problem.

4.1.2 Strang splitting

We would like to leverage the effectiveness of implicit integration for the simplest version

of (3.1) where 𝐻 = 0, but without having to solve a nonlinear system of equations.

To this end, we propose using Strang–Marchuk splitting (also known as leapfrog or

Störmer–Verlet integration), originally proposed in [Strang, 1964, Marchuk, 1988].

Generically, operator splitting methods solve differential equations 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) + 𝑔(𝑥)

by alternating steps in which the terms 𝑓 and 𝑔 on the right-hand side are treated

individually. This splitting scheme is justified by the Lie–Trotter–Kato formula

[Trotter, 1959, Kato, 1974]. In our case, we choose a splitting so that one piece of the

splitting resembles solving the heat equation and the other benefits from the solution

techniques introduced in [Edelstein et al., 2023].

In particular, suppose 𝑢𝑛−1 ∈ R|𝑉 | is our estimate of 𝑢 at time ℎ(𝑛 − 1). We

estimate 𝑢𝑛 via the following three steps:

I. First, apply half a time step of implicit heat diffusion, approximating the solution

to 𝜕𝑢/𝜕𝑡 = −𝜀∆𝑢 at 𝑡 = ℎ(𝑛− 1) + ℎ/2:

𝑢(1)
𝑛 =

(︂
𝑀 + ℎ

𝜀𝐿

2

)︂−1

𝑀𝑢𝑛−1. (4.1)

II. Next, apply a full time step approximating the solution to 𝜕𝑢/𝜕𝑡 = 𝐻(𝑥, 𝑢,∇𝑢),

as detailed in §4.1.3, to obtain 𝑢
(2)
𝑛 ∈ R|𝑉 |.

III. Finally, apply a second half-step of implicit heat diffusion:

𝑢𝑛 =

(︂
𝑀 + ℎ

𝜀𝐿

2

)︂−1

𝑀𝑢(2)
𝑛 . (4.2)

Note that (4.1) and (4.2) solve the same linear system with different right-hand sides,

20



allowing us to pre-factor the matrix 𝑀 + ℎ𝜀𝐿/2 if we plan to apply our operator more

than once.

4.1.3 Strang-Marchuk splitting, step II

We extend the convex optimization problem in [Edelstein et al., 2023] to take a time

step of the first-order equation 𝜕𝑢/𝜕𝑡 = 𝐻(𝑥, 𝑢,∇𝑢), including the case where this is

a nonlinear first-order problem. In this section, we describe an implicit integrator

leveraging the fact that 𝐻(𝑥, 𝑝, 𝑞) is jointly convex in its arguments (𝑝, 𝑞).

In this step, our goal is to obtain 𝑢
(2)
𝑛 by integrating the first-order equation for

time ℎ starting at function 𝑢
(1)
𝑛 . The simplest implicit integration strategy is backward

Euler integration, which would solve the following root-find problem:

𝑢
(2)
𝑛 − 𝑢

(1)
𝑛

ℎ
= 𝐻(𝑥, 𝑢(2)

𝑛 ,∇𝑢(2)
𝑛 ). (4.3)

Here, we will assume the 𝑢
(𝑖)
𝑛 are functions on the surface ℳ, but an identical

formulation will apply after spatial discretization in §4.2. This problem is nonlinear

whenever 𝐻 is nonlinear, making it difficult to solve.

Instead, we observe that relaxing the equality in (4.3) to an inequality leads to a

convex constraint on the unknown function 𝑢
(2)
𝑛 . Taking inspiration from [Edelstein

et al., 2023], we arrive at the following optimization problem to advance forward in

time:

𝑢(2)
𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmin𝑢

∫︀
ℳ 𝑢(𝑥) dVol(𝑥)

subject to 𝐻(𝑥, 𝑢,∇𝑢)− 1
ℎ
(𝑢− 𝑢

(1)
𝑛 ) ≤ 0

for all 𝑥 ∈ ℳ.

(4.4)

Notice that the constraint in (4.4) yields a supersolution of the implicit problem (4.3).

Moreover, formulation (4.4) is a convex problem for 𝑢 since it has a linear objective

and a pointwise convex constraint.

While we leave formal proof of well-posedness of (4.4) before spatial discretization

to future work, we note that works like [Fathi, 2020] justify existence of viscosity

solutions to Hamilton-Jacobi equations like (4.3); from there, it may be possible to
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extend the argument in [Edelstein et al., 2023] to show that the inequality constraint

in our convex relaxation becomes tight. In the spatially-discrete case (see §4.2),

well-posedness of our convex program is immediate since it has a linear objective and

satisfiable convex constraints. Empirically, we find that our discretization of this time

step closely resembles ground-truth when it is available.

4.2 Spatial Discretization

In geometry processing, the most common discretization of the PDE on triangle

meshes uses the finite element method (FEM). Following [Botsch et al., 2010], take

𝐿 ∈ R|𝑉 |×|𝑉 | to be the cotangent Laplacian matrix associated to our mesh (with

appropriate boundary conditions), and take 𝑀 ∈ R|𝑉 |×|𝑉 | to be the diagonal matrix

of voronoi cell areas. Also, take 𝐺 ∈ R3|𝐹 |×|𝑉 | to be the matrix mapping vertex scalar

values to per face gradients.

We can approximate solutions to equation (3.1) by solving the ordinary differential

equation:
𝑑𝑢

𝑑𝑡
= −𝜀𝑀−1𝐿𝑢+𝐻(𝑥, 𝑢,𝐺𝑢). (4.5)

We will apply the Strang splitting strategy from §4.1.2 to this ODE, yielding steps

nearly identical to those outlined in the previous section.

If we use a naïve piecewise-linear finite element method (FEM) to discretize (3.1)

spatially, the 𝜕𝑢/𝜕𝑡 and −𝜀∆𝑢 terms are associated to the vertices of our mesh, while

𝐻(𝑥, 𝑢,𝐺𝑢) includes terms that are associated to both the vertices (𝑥, 𝑢) and the

triangular faces (𝐺𝑢). Hence, we propose an alternate spatio-discretization strategy

to map any face valued quantities in 𝐻 to per vertex values. In particular, on a mesh,

we reformulate (4.5) via

𝑑𝑢𝑖

𝑑𝑡
= −𝜀(𝑀−1𝐿𝑢(𝑡))𝑖 + 𝜔𝑖

∑︁
𝑗∼𝑖

𝑎𝑗𝐻𝑖𝑗(𝑢𝑖(𝑡), (𝐺𝑢)𝑗(𝑡)). (4.6)

where 𝜔𝑖 = 1/∑︀𝑗∼𝑖 𝑎𝑗 and 𝑎𝑖 is the area of the triangle 𝑗 in the one-ring neighborhood

of vertex 𝑖. The right-hand side of equation (4.6) is convex whenever 𝐻𝑖𝑗 is jointly
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convex in its inputs. Hence, our discretizations below of (3.2), (3.5), and (3.7) are

convex since 𝐻𝑖𝑗 is convex by design whenever 𝐻 is convex in the continuous case.

Next, we define 𝐻 discretized as a per-vertex quantity for each of the three example

PDE given in sections §3.2.1–§3.2.3.

4.2.1 Nonlinear diffusion

We can now discretize 𝐻 = ‖𝑞‖22 on the right-hand side of (3.3) as follows

𝐻𝑖 = 𝜔𝑖

∑︁
𝑗∼𝑖

3∑︁
𝑘=1

(𝐺𝑘𝑢⊙𝐺𝑘𝑢)𝑗 (4.7)

where ⊙ denotes element-wise multiplication, 𝐺𝑘 ∈ R|𝐹 |×|𝑉 | is the matrix mapping

a function on the vertices 𝑉 of our mesh to the 𝑘th components of its per-triangle

gradient, and 𝑊 is the diagonal matrix whose elements are the weights 𝜔𝑖.

4.2.2 G-equation

Similarly, we can discretize the 𝐻 function for (3.5) as follows

𝐻𝑖 = 𝜔𝑖

∑︁
𝑗∼𝑖

(︁∑︀3
𝑘=1(−Φ𝑘 ⊙𝐺𝑘𝑢)𝑗 +

√︁∑︀3
𝑘=1(𝐺𝑘𝑢)𝑗 ⊙ (𝐺𝑘𝑢)𝑗

)︁
, (4.8)

where Φ𝑘 ∈ R|𝐹 | is the 𝑘th component of a vector field Φ(𝑥) ∈ R3|𝐹 |.

4.2.3 Fokker-Planck equation

Finally, discretize the divergence operator ∇· by 𝐺T𝑀𝐹 ∈ R|𝑉 |×3|𝐹 |, where 𝑀𝐹 is the

diagonal matrix of triangle areas. The per-vertex discretization of the 𝐻 functional

on the right-hand side of equation (3.7) becomes:

𝐻𝑖 = (𝑢⊙ (𝐺T𝑀𝐹Φ))𝑖 + 𝜔𝑖

∑︁
𝑗∼𝑖

3∑︁
𝑘=1

(Φ𝑘 ⊙𝐺𝑘𝑢)𝑗. (4.9)

23



24



Implementation Details

After introducing the spatial discretization techniques from §4.2, our nonlinear time

step (4.4) becomes a finite-dimensional convex optimization problem:

minimize
𝑢
(2)
𝑛

∑︀
𝑖

(︀
𝑢
(2)
𝑛

)︀
𝑖

subject to 𝐻 − 𝑢
(2)
𝑛 + 𝑢

(1)
𝑛 ≤ 0,

(5.1)

where 𝐻 denotes the convex function of 𝑢 and its gradients (see §4.2.1-§4.2.3).

Our implementation uses the CVX software library [Grant and Boyd, 2014, 2008]

equipped with the default conic solver SDPT3 [Toh et al., 1999, Tütüncü et al., 2003].

To be concrete, we formulate the convex optimization problem for each of the example

parabolic PDE of the form in (3.1) as follows:

Nonlinear diffusion In this case, we have quadratic constraints:

argmin𝑢(2)

∑︀
𝑖

(︀
𝑢
(2)
𝑛

)︀
𝑖

subject to 𝜔𝑖

∑︀
𝑗∼𝑖

∑︀3
𝑘=1(𝐺𝑘𝑢⊙𝐺𝑘𝑢)𝑗 − 𝑢

(2)
𝑛 + 𝑢

(1)
𝑛 ≤ 0,

𝑖 = 1, . . . , |𝑉 |.

(5.2)

While the program above is convex, the constraints involve general convex quadratic

forms. It can be more efficient to convert such programs to second-order cone program

(SOCP) standard form, an optimized form for standard solvers like SDPT3. Hence,

we reformulate the above quadratic constraint as a second-order cone. In particular,
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algebraic manipulation shows that (5.2) is equivalent to the following constraints⃦⃦⃦⃦
⃦⃦ (1−𝑧𝑗)/2

(𝐺𝑢)𝑗

⃦⃦⃦⃦
⃦⃦
2

≤ (1 + 𝑧𝑗)

2
, 𝑗 = 1, . . . , |𝐹 | (5.3)

ℎ 𝜔𝑖

∑︀
𝑗∼𝑖 𝑧𝑗 −

(︀
𝑢
(2)
𝑛

)︀
𝑖
+
(︀
𝑢
(1)
𝑛

)︀
𝑖
≤ 0, 𝑖 = 1, . . . , |𝑉 |. (5.4)

G-equation In this case, we simply have constraints using norms, which is already in

SOCP form. Hence, we can use the conic solver efficiently without further reformulation.

We implement our optimization as follows

argmin𝑢(2)

∑︀
𝑖

(︀
𝑢
(2)
𝑛

)︀
𝑖

subject to 𝜔𝑖

∑︀
𝑗∼𝑖

(︀
−
∑︀3

𝑘=1(Φ𝑘 ⊙𝐺𝑘𝑢)𝑗 + ‖(𝐺𝑢)𝑗‖2
)︀

−𝑢
(2)
𝑛 + 𝑢

(1)
𝑛 ≤ 0, 𝑖 = 1, . . . , |𝑉 |.

(5.5)

Fokker-Planck equation This equation is linear and requires no reformulation.

Its implementation becomes:

argmin𝑢(2)

∑︀
𝑖

(︀
𝑢
(2)
𝑛

)︀
𝑖

subject to (𝑢⊙ (𝐺T𝑀𝐹Φ))𝑖 + 𝜔𝑖

∑︀
𝑗∼𝑖

∑︀3
𝑘=1(Φ𝑘 ⊙𝐺𝑘𝑢)𝑗

−𝑢
(2)
𝑛 + 𝑢

(1)
𝑛 ≤ 0, 𝑖 = 1, . . . , |𝑉 |.

(5.6)
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Experiments and Applications

Our experiments were carried out in Matlab 2023a, on a macOS machine with 32GB

memory. All tests were run with solver tolerance 𝜖1/2, where 𝜖 = 2.22−16 is the machine

precision. For the unit triangle grid with 131,072 triangles and 66,049 vertices, our

implementation takes on average 60 seconds to solve equation (5.2).

6.1 Nonlinear Diffusion

The “log-sum-exp” trick is a standard method used to stabilize numerical algorithms,

including the Sinkhorn algorithm when using small amounts of entropy. This compu-

tation, however, is not possible using the method adapted to triangle meshes proposed

in [Solomon et al., 2015], which corresponds to taking the logarithm of a function

undergoing tiny amounts of heat diffusion. We advocate for using our numerical

framework and Proposition 3.2.1 to solve (3.3) in order to compute the result of heat

diffusion on triangle meshes directly in the logarithmic domain, rather than diffusing

in the linear domain and then taking the logarithm.

Figure 6-1: Interpolation between a conference logo and the map of Australia via our
log-domain Wasserstein barycenter on a 300× 300 triangle grid.
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Figure 6-2: Wasserstein barycenters (green) between two distributions on the unit
line (grey) with 1,000 elements for varying pairs of weights. Our method obtains
these barycenters for a tiny amount of entropy, i.e., 𝛾 = 10−7, whereas the method in
Solomon et al. [2015] fails.

In Figure 6-3, we demonstrate how our log-domain diffusion algorithm is capable

of computing Wasserstein barycenters for very small amounts of entropy. The method

in [Solomon et al., 2015] fails to output a result for entropy values 𝛾 = 10−7 or smaller.

Even before its failure cases, the Wasserstein barycenters obtained via convolutional

method look qualitatively wrong for a number of entropy values, while our method

remains numerically stable and obtains the expected visual results given three Gaussian

distributions (shown on the left) as inputs.

A similar result is shown in Figure 6-2, where the displacement interpolation

between two Gaussian distributions on the line is shown. For the entropy value

𝛾 = 10−7, our method obtains the barycenters for various pairs of weights as seen on

the plot, while the convolutional method in [Solomon et al., 2015] fails to output a

result.

Figure 6-4 shows that as the mesh is refined, the solutions to 5.2 converge to

the numerical solution of highest resolution. In this experiment, we solve nonlinear

diffusion of the logarithm of a Gaussian distribution centered at (0.5, 0.5) on the unit

grid with time step ℎ = 10−6 for 2𝑘 number of time steps, 𝑘 = 1, . . . , 10. We start

with a triangle unit grid with 128 triangle faces and vary its density via upsampling,

each iteration of the upsampling increases the number of triangle faces by 4 times.

The mesh with highest resolution has 131,072 triangle faces.
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Figure 6-3: Entropic regularization can smooth out true Wasserstein distances creating
approximations of the barycenter that qualitatively appear wrong. We present a
method for logarithmic diffusion, which leads to sharper interpolants. Here, the
Wasserstein barycenter of three input distributions (left) on a mesh with 99,994
triangle faces and 49,999 vertices is shown for different entropy values.

Figure 6-4: Error curves shown for different number of time steps. Each error curve is
a function of the mean edge length in meshes obtained via upsampling. The solution
converges to the highest resolution solution, and the error increases for larger number
of steps given a fixed mean edge length. The mean edge length is shown in logarithmic
scale.
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Figure 6-5: Level-sets of the 𝐺-equation under cellular flow obtained via our method
with varying values of viscosity 𝜀.

6.2 𝐺-Equation

Typically, applications of the 𝐺-equation aim to understand the behavior of its function

level-sets over time under incompressible flows. In Figure 6-5, we show level-set results

for cellular flow (see equation (3.6)) with initial condition 𝑢(𝑥, 0) = 𝑃 · 𝑥, where

𝑃 = (1, 0), obtained via our method in a grid with 20,000 triangle faces. We show

that our method remains stable under varying amounts of viscosity, including the

inviscid case when 𝜀 = 0.

In addition, we show in Figure 6-6 that our method can be used to obtain numerical

solutions for the 𝐺-equation on triangle surface meshes. In this example, we evolve the

𝐺-equation with initial condition 𝑢(𝑥, 0) = 𝑃 · 𝑥, where 𝑃 = (1, 0, 0), on the discrete

torus given a velocity field Φ(𝑥) = 𝐴(− sin(2𝜋𝑥) cos(2𝜋𝑦), sin(2𝜋𝑥) sin(2𝜋𝑦), 0), where

𝐴 = 2. The vicosity value for this experiment is 𝜀 = 10−3.
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Figure 6-6: Time evolution of the 𝐺-equation (3.5) on the discrete torus with 200,000
triangle faces and 100,000 vertices under Kolmogorov flow using our method.

Figure 6-7: Time evolution of the Fokker-Planck equation (3.7) on a 100×100 triangle
grid, obtained using our method, under constant drift (top), shear flow (middle), and
no drift (bottom).

6.3 Fokker–Planck Equation

Given a velocity vector field Φ ∈ R|𝑉 |×3|𝐹 | defined per face on an underlying computa-

tional mesh, we can use our framework to obtain the numerical time evolution of the

Fokker-Planck equation.

Following the expository article by Medved et al. [2020], in Figure 6-7, we demon-

strate the use of our method for the time evolution of the Fokker-Planck equation

in the following three cases: with no drift, under a constant drift in the positive 𝑥

direction, and under shear flow. The viscosity parameter used in all three cases is

𝜀 = 10−3 and the initial condition is a Gaussian distribution centered at (0.5, 0.5); the
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Figure 6-8: Time evolution of the Fokker-Planck equation (3.7) on the discrete torus
with 200,000 triangle faces and 100,000 vertices under Kolmogorov flow using our
method.

Figure 6-9: The effect of varying the viscosity parameter in the Fokker-Planck equation.
Here, the equation is shown evolving in time on the discrete sphere with viscosity
𝜀 = 10−4 (top row), 𝜀 = 10−3 (middle row), and 𝜀 = 10−2 (bottom row).

grid has 20,000 triangle faces.

Figure 6-8 shows the time evolution of the Fokker-Planck for a constant viscosity

value of 𝜀 = 10−4 on a torus with 200,000 triangle faces and 100,000 vertices. The

flow used in this application is known as Komolgorov flow; it is defined as Φ(𝑥) =

(𝐴 sin(𝑧), 0, 0), where for the example shown in the figure 𝐴 = 8; the initial condition

is 𝑢(𝑥, 0) = sin ((16/𝜋))𝑥 cos ((16/𝜋)𝑦).

In Figures 6-10 and 6-9, we demonstrate the use of our method for the Fokker-

Planck equation under varying viscosity with initial condition 𝑢(𝑥, 0) =
√︁

40
32𝜋

𝑥(−2𝑦2)𝑧
𝑟4

,

where 𝑟 is the radius of the sphere. The flow chosen in Figure 6-10 is Φ(𝑥) =

(0,−𝑧, 𝑦) normalized and scaled along the sphere. In Figure 6-9, the flow is defined by

Φ(𝑥) = (−𝐴 sin(2𝜋𝑥) cos(2𝜋𝑦), 𝐴 sin(2𝜋𝑥) sin(2𝜋𝑦), 0), where 𝐴 = 8 for this particular

example.
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Figure 6-10: The effect of varying the viscosity parameter in the Fokker-Planck
equation on a sphere with 81,920 triangle faces and 40,962 vertices. Here, the equation
is shown evolving in time on the discrete sphere with viscosity 𝜀 = 10−4 (top row),
𝜀 = 10−3 (middle row), and 𝜀 = 10−2 (bottom row).
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Discussion and Conclusion

PDE appear everywhere in geometry processing and second-order parabolic PDE are

no exception. While simpler PDE, such as the heat equation, count on a wide array

of adequate tools, more general parabolic PDE are a challenge to standard methods

of time integration and discretization schemes. Our work establishes an effective time

integration and spatio-discretization strategy to solve this class of PDE under mild

assumptions on triangle mesh surfaces.

An immediate avenue for future work is to derive an optimization algorithm to

solve the problem in (4.4) along the lines of Edelstein et al. [2023] and compare it

to our current off-the-shelf solution using CVX. Another line of future work is to

extend our results to higher order parabolic equations with Laplacian terms, such

as the Kuramoto–Sivashinsky equation. Several theoretical and numerical questions

remain open to implement implement this extension. Within the realm of second-

order parabolic PDE of the form 3.1, future work includes trying to solve system of

coupled equations using our framework. In the specific case of the Fokker-Planck

equations, further experimental work includes extending results to other versions of

the Fokker-Planck equation, and using the solutions obtained via our method together

with the relationship to (3.8) to simulate Brownian motion on triangle surface meshes.
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