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Abstract

Decision making is ubiquitous, and some problems become particularly challenging
due to their sequential nature, where later decisions depend on earlier ones. While
humans have been attempting to solve sequential decision making problems for a
long time, modern computational and machine learning techniques are needed to find
the optimal decision rule. One popular approach is the reinforcement learning (RL)
perspective, in which an agent learns the optimal decision rule by receiving rewards
based on its actions.

In the presence of multiple learning agents, sequential decision making problems
become sequential games. In this setting, the learning objective shifts from finding
an optimal decision rule to finding a Nash equilibrium, where none of the agents can
increase their reward by unilaterally switching to another decision rule. To handle
both the sequential nature of the problem and the presence of the other learning
agents, multi-agent RL tasks require even more data than supervised learning and
single-agent RL tasks. Consequently, sample efficiency becomes a critical concern for
the success of multi-agent RL.

In this thesis, I study argubly the most fundamental problems of learning in
sequential games:

1. (Lower bound) How many samples are necessary to find a Nash equilibrium
in a sequential game, no matter what learning algorithm is used?

2. (Upper bound) How to design (computationally) efficient learning algorithms
with sharp sample complexity guarantees?

When the upper and lower bounds match each other, (minimax) optimal learning
is achieved. It turns out utilizing structures of sequential games is the key towards
optimal learning. In this thesis, we investigate near-optimal learning in two types of
sequential games:

1. (Markov games) All the agents can observe the underlying states (Chapter 2)
and,



2. (Extensive-form games) Different agents can have different observations given
the same state (Chapter 5).

To achieve near-optimal learning, a series of novel algorithmic idea and analytical
tools will be introduced, such as

1. (Adaptive uncertainty quantification) Sharp uncertainty quantification of
the value function estimations to design near-optimal exploration bonus (Chap-
ter 3),

2. (Certified policy) A non-uniform and step-wise reweighting of historical poli-
cies to produce approximate Nash equilibrium policies (Chapter 4),

3. (Balanced exploration) Achieing optimal exploration of a game tree based
on the size of the subtrees (Chapter 6),

4. (Log-partition function reformulation) Re-interpreting classical algorithms
as computing gradients of a log-partition function (Chapter 7),

which may be of independent interest.
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Chapter 1

Introduction

Decision-making is everywhere, ranging from choosing a life partner, trading stocks,
to driving a car. The decision maker, or agent, needs to take specific actions sequen-
tially to maximize her reward. Most of the time, the agent also needs to leverage
contextual information. Decision-making in modern society has become more and
more challenging as the complexity of candidate options, contextual observations, se-
quential structures, and, most importantly, the underlying dynamics that govern the
decision-making process evolve rapidly. Therefore, the traditional approach to deci-
sion making, systematically modeling the problem and then solving it, is no longer
possible.

A prevailing trend to handle such complexity is learning a decision-making model
through data, i.e., the reinforcement learning (RL) approach. In a standard RL
setting, the agent tries to learn a rule (the policy) to execute different actions under
each different context (the state), only using the payoff (the reward) as feedback.
This is a sharp contrast from the the conventional rule-based approach, where human
experts hand craft decision rules based on their understanding of the task. See a
comparison of rule-based and end-to-end decision making in Figure 1-1.

As a significant distinction from supervised learning, data is no longer drawn inde-
pendently from a fixed distribution but collected following the policy. Therefore, an
efficient RL algorithm requires the agent not only to maximize the reward (exploita-

tion) but also to collect data from unvisited states (exploration). This is especially
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Figure 1-1: Reinforcement learning takes an end-to-end (right) instead of rule-based
(left) decision making approach.

Figure 1-2: Self-play (right) v.s. playing against human expert (left).

the case when the RL agnets learn an decision rule by playing with each other instead
of playing against human experts. See a comparison between self-play and playing
against human expert in Figure 1-2.

The quality and diversity of the drawn data directly influence the performance
of the policy learned by RL. Thus, strategic exploration is essential for RL. The
influence of exploration is even more significant for complicated tasks, to which an
extensive line of literature is committed. Unlike supervised learning, the agent is
sometimes encouraged to visit states that have been rarely visited before, even if this
will temporarily lead to a lower reward.

On the other hand, strategic exploration also makes the overall procedure so-
phisticated and vulnerable to non-stationarity because the agent may get confused
about whether the current low reward is due to exploration or data poisoning and
environmental change. See Figure 1-3 for an illustration.

Concretely, two leading factors that contribute to the non-stationrity are:
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Figure 1-3: Two factors that contribute to the non-stationarity of the decision making
process: non-stationary environments (left) and strategic opponents (right).

e (Non-stationary Environments) When the environment is non-stationary,
the performance of RL algorithms can deteriorate quickly. In an otherwise
stationary environment, even if the reward is perturbed slightly, popular off-
the-shelf RL algorithms can be highly sub-optimal. Such non-stationarity is
ubiquitous, ranging from adaptive reward engineering, malicious manipulation,
simulation-to-real transition, or dataset poisoning. This issue is studied in my

master thesis [Jin et al., 2020a,b| by modeling the non-stationarity explicitly.

(Strategic Opponents) Modern decision-making scenarios often involve more
than one agent. Even though the environment does not change, the other
agents can adapt their policies consistently. This can happen in either cooper-
ative tasks, where joint coordination is tricky in general, or competitive cases,
where players’ utility has confliction with each other, and every player wants to
exploit the others. This topic will be the focus of this PhD thesis, by consid-
ering learning in sequential games, instead of a single-agent sequential decision

making problem.

Handling non-stationarity properly requires the agent to perform (near-) opti-

mally, even in the presence of other strategic agents. To guarantee the safety and

adaptivity properties crucial in practice, we need to achieve optimal learning in such

challenging conditions.

Compared with a single-agent sequential decision making problem, learning in

sequential games involves new formulations and challenges beyond standard RL, and
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Figure 1-4: Nash equilibrium: no agent can improve her own utility by uni-laterally
changing her own policy.

thus requires new mathematical and algorithmic tools.

For example, the standard notion of optimality no longer helps because the perfor-
mance of an agent depends on both her own strategy and the other agents’ strategy.
As a result, we will use the notion of equilibrium instead. Informally speaking, a
strategy profile of all the players constitutes a Nash equilibrium if no agent can im-
prove her own utility by uni-laterally changing her policy. The key learning objective
in sequential games is to find a Nash equilibrium.

Just like the other machine learning paradigms, RL agents are hungry for data.
To measure the amount of data required to perform near-optimally, we use sample
complezity to quantify the number of samples required to guarantee certain perfor-
mance criteria. As a result, minimizing sample complexity is arguably one of the most
fundamental problems behind the success of RL. This thesis aims to understand this

problem:

What s the fundamental limit of sample complezity of finding an
equilibrium in sequential games, and how to achieve it using

computationally efficient algorithms?

When the fundamental limit is achieved by certain algorithm, we know the learning
algorithm cannot be improved anymore. We call the corresponding learning algorithm

a minimax optimal learning algorithm. In this thesis, we study minimax optimal
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Figure 1-5: A roadmap of the results presented in this section.

learning in two of the best-known examples of sequential games: Markov games (MGs)

and Extensive-form games (EFGs).

Remark 1. From now on, we will use the wording "player" instead of "agent" and

"

"return" instead of "reward”. These choice is more consistent with the convention of

game theory, but essentially makes no difference in mearning.

1.1 Overview of results

Before delving into the detailed problem formulations and solutions, we first go
through the main results of this thesis, and compare with the existing results. This
section serves as both a result overview and a guidance on the content of each chap-
ters. See Figure 1-5 for a graphical roadmap.

All of the content in this thesis has already been published in peer-review con-
ferences, except Jin et al. [2021b] which is under minor review by a jorunal at the
time when this thesis is written. We give pointers to the original papers when the

corresponding result is presented below.
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1.1.1 Near-optimal learning in Markov games

In Chapter 2 we introduce the learning problem formulation for Markov games. We
present two hardness results: one computational lower bound from Bai et al. [2020]
and one statistical lower bound from Tian et al. [2021]. This rules out the possibility
of controlling the sample complexity through regret minimization directly, which is
the common practice in the literature of learning in games.

To break the regret minimization barrier, we propose two different workarounds.

e In Chapter 3, we coordinate all the players through a centralized model estima-
tion to minimize the regret. By carefully quantifing the estimation uncertainty
in a novel way and combine the estimated model with the calssical value it-
eration, we propose a new algorithm called Nash value iteration (Nash-VI).
Because we explicitly estiamte the transition (model), the approach is referred
to as model-based in literature. The content of this chapter is based on Liu

et al. [2021].

e In Chapter 4, we introduce a new technique called certified policy to combine
historical policies in a way different from the conventional online-to-batch con-
version. Using the policies generated by local regret minimization subproce-
dures, we propose a new algorithm called Nash V-learning. Since we do not
estimate the transition explicitly but only through updating certain value func-
tion, the approach is referred to as model-free. The content of this chapter is

based on Bai et al. [2020], Tian et al. [2021], Jin et al. [2021D].

The new methods (colored in light gray) are compared with existing results in
Table 1.1. Here we consider the sample complexity of learning an e-approximation of
a Nash equilibirum in a two-player zero-sum Markov games with S states, A actions
for the max-player, B actions for the min-players and horizon H. See a formal
definition of Nash equilibira in Section 2.

The main difference between the model-based and model-free methods is: the
model-based method achieves better dependence on the horizon while the model-free

method improves O(AB) to O(A+ B). To see why this improvement is significant, we
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Method Sample complexity

VI-ULCB [Bai and Jin, 2020] O (H*S?AB/&?)
OMVI-SM [Xie et al., 2020] O (H*S*AB3/&?)
Nash Q-learning [Bai et al., 2020] O (HPSAB/e?)
Nash-VT [Liu et al., 2021] O (H*SAB/e?)

Nash V-learning [Bai et al., 2020, Jin et al., 2021b] | O (H°S(A + B)/<?)
Lower bound [Bai and Jin, 2020] Q2 (H3S(A+ B)/&?)

Table 1.1: Comparison with existing results for two-player zero-sum Markov games.
The Nash-VI algorithm matches the lower bound in terms of the dependence on
horizon while the Nash V-learning algorithm matches the lower bound w.r.t. the
other key parameters.

Method Correlated Equilibrium | Coarse Correlated

erho (CE) Equilibrium (CCE)
Nash-VI [Liu et al., 2021] O (H*S? ], Ai/<?) O (H*S?T], Ai/<?)
Nash V-learnig [Jin et al., 2021b| O (H%S max; A;/<?) O (H®S max; A2 /e?)

Table 1.2:  Comparison of model-based and model-free method in multi-player
general-sum Markov games.

need to think about the more general multi-player games, where each player i € [m]
has an action set of size A;. We present the sample complexity of learning correlated

equilibrium and coarse correlated equilibrium in Table 1.2.

The sample complexity of model-based method grows exponentially as the number
of players m increases, while the sample complexity of model-free method only de-
pends on the maximum of the action set across players, which is much more favorable

in the presence of a large number of players.

To conclude the results of learning in MGs, let us make a more detailed compar-
ison between Nash-VI and Nash V-learning (See Table 1.2). In Nash VI, there is
a centralized estimator and planner, to first estimate the MG based on observations
from both players, and then compute the equilibria and inform all the players. On the
contrary, Nash V-learning is decentralized, and each player updates her own decision
rule based on her observations. Since the underlying MG is not estimated explic-

itly, V-learning is a model-free algorithm. See Figure 1-6 for an intuitive comparison
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Figure 1-6: An intuitive comparison between Nash-VI (left) and Nash V-learning
(right): The Nash-VI algorithm is more like an orchestra. There is a conductor — the
centralized estimator and planner, to first estimate the MG based on observations
from both players, and then compute the NE and inform all the players. On the
contrary, Nash V-learning is more like chamber music where each player update her
own decision rule based on her own observations.

between model-based and model-free methods.

As we have seen from the sample complexity result, Nash-VI is preferable for
longer horizons, while V-learning works better given more players or larger action
sets. Also, since centralized model estimation and equilibrium computation is not
needed, V-learning embraces a simpler and symmetric update rule for each player,
which makes the deployment easier, communication-free, and computationally more

efficient.

1.1.2 Near-optimal learning in extensive-form games

In Chapter 5 we introduce the learning problem formulation for imperfect-information
extensive-form games. A lower bound from Bai et al. [2022b] is presented to char-
acterized the fundamental limit of learning an e-Nash equilibrium in extensive-form
games.

In Chapter 6, we study the near-optimal learning algorithms under the two-player
zero-sum game setting. The content is based on Bai et al. [2022b] and the resulting
sample compelxity is compared with the exsiting methods in the Table 1.3. Here
we consider learning an e-Nash Equilibrium in a two-player zero-sum Extensive-form

game, with X information sets and A actions for the max player, Y information sets
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Algorithm OMD | CFR | Sample Complexity

Zhang and Sandholm [2021] - (model-based) O (S?AB/e?)
Farina and Sandholm [2021] v O(poly (X,Y, A, B) /%)
Farina et al. [2021D] v O ((X*A3 +Y*B3) /e2)
Kozuno et al. [2021] v O ((X2A+Y?B) /e?)
Balanced OMD (Algorithm 10) | v/ O (XA+YB) /)
Balanced CFR (Algorithm 11) v O(XA+YB)/e?)
Lower bound (Theorem 35) - - Q(XA+YB)/e?)

Table 1.3: Sample complexity (number of episodes required) for learning e-NE intwo-
player zero-sum Extensive-form games from bandit feedback.

and B actions for the min player, and S unobservable hidden states.

Most of the algorithms in the table are either an instance of online mirror descent
(OMD) or counterfectual regret minimization (CFR). See Chapter 6 for a more de-
tailed description on these two types of algorithms. The only exception is the first
row, which is a model-based algorithm. The disadvantage is that it requires some
“cheating” power in the training process by observing the state directly, and its sam-
ple complexity depends on S instead of X and Y. It could be the case that X and
Y are very small but S is very large, which makes the form of sample complexity not

favorable.

The two rows in gray are algorithms proposed in our work. They combine a novel
technique called balanced exploration policy with OMD and CFR separately.
Comparing the upper and lower bounds, both balanced OMD and balanced CFR
could achieve near-optimal sample complexity. They are the first line of algorithms
that achieve linear dependence on the number of information sets, which answers an
open question proposed in Kozuno et al. [2021].

In Chapter 7 we exntend the above sharp sample complexity bounds to multi-
player general-sum games. We develop the first line of learning Extensive-form cor-
related equilibria (EFCEs) with near-optimal sample complexity. The result is a

consequence of dual reformulation, by interpreting the calssical ®-hedge algorithm
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Figure 1-7: A raod map of the results presented in this section.

as computing gradient of a log-partition function. The reformulation helps extend
algorithms on normal-form games to EFGs. Besides improving the sample efficiency,
it also simplifies the presentation and proof of some existing results and helps us
discover new connections between known algorithms. The content of this chapter is

based on Bai et al. [2022a].

1.1.3 Beyond optimal learning in sequential games

Although sample efficiency is arguably the most fundamental problem for RL, it is by
no means the only important problem. There are some other exciting projects that I
pursued during my PhD years, on other aspects of learning in sequential games. To
make the presentation of this thesis more succinct, I decided not to include them in
full detail, but to give a brief overview here for those who might be interested. See

Figure 1-7 for a graphical roadmap.

Mutli-objective games. So far we only consider a scalar utility function and un-
constrained problem. Sometimes we have multiple (vectorized) utility function or a

constraint to satisfy. See Figure 1-8 for an illustration of the learning objective.
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Figure 1-9: Tabular RL (left) v.s. RL with function approximation (right).

This is considered in Yu et al. [2021], by extending the classical notion of Blackwell
approachability [Blackwell, 1956] to the RL setting. The framework can also be

applied to constrained MGs to develop near-optimal sample complexity.

Function approximation. In either self-play or online learning setting, if the num-
ber of states is vast, then even maintaining a policy for each state is impossible.
Therefore one has to use function approximation. See Figure 1-9 for a comparison

between the tabular and function approximation settings for RL.

We first distinguish a key complexity measure, multi-agent Bellman-Eluder dimen-
sion for Markov games Jin et al. [2022]. Using multi-agent Bellman-Eluder dimension

to quantify the complexity of the function class, we design a novel exploiter-based
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algorithm for learning the Nash equilibrium with sharp sample complexity. In each
episode, the exploiter serves as the “strongest” opponent to facilitate the learning of

our agent by pessimistic planning based on value function elimination.

Last iterate guarantee. All of the algorithms considered in this thesis have the
following feature: we take different policies in different episodes and average them in
a certain way to find an output policy that is guaranteed to be an approximate Nash
equilibrium policy. A more ambitious goal is to make this guarantee on the policy used
in the last episode directly, without any averaging scheme. This motivates a long line
of work [Wei et al., 2021a,b, Lee et al., 2021, Daskalakis and Panageas, 2019, Golowich
et al., 2020b,a, Cai et al., 2022, Cen et al., 2023]. In particular our work Liu et al.

[2023] takes a regularization perspective and achieve this goal in ITEFGs.

1.2 Related work

In this section, we overview the literature on learning in sequential games.

1.2.1 Learning in Markov games

Although there has been much recent work in RL for continuous state spaces [see, e.g.,
Jiang et al., 2017, Jin et al., 2020c, Zanette et al., 2020, Jin et al., 2021a, Xie et al.,
2020, Jin et al., 2022|, this setting is beyond our scope. We will focus on theoretical

results for the tabular setting, where the numbers of states and actions are finite.

Markov games. Markov Game (MG), also known as stochastic game [Shapley,
1953], is a popular model in multi-agent RL [Littman, 1994]. Early works have
mainly focused on finding Nash equilibria of MGs under strong assumptions, such as
known transition and reward [Littman, 2001, Hu and Wellman, 2003, Hansen et al.,
2013, Wei et al., 2021al, or certain reachability conditions [Wei et al., 2017, 2021b]
(e.g., having access to simulators [Jia et al., 2019, Sidford et al., 2020, Zhang et al.,
2020a]) that alleviate the challenge in exploration. We remark that, while Wei et al.
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[2017| studies the infinite-horizon average-reward setting, a recently refined analysis
tailored to the episodic setting shows that the algorithms proposed in Wei et al. [2017]
can learn Nash equilibria in two-player zero-sum MGs without additional reachability
assumptions in O(H*S%A; A, /e?) [Wei, 2021].

A recent line of works provides non-asymptotic guarantees for learning two-player
zero-sum tabular MGs without further structural assumptions. Bai and Jin [2020] and
Xie et al. [2020] develop the first provably-efficient learning algorithms in MGs based
on optimistic value iteration. Liu et al. [2021] improves upon these works and achieves
best-known sample complexity for finding an e-Nash equilibrium—Q(H?SA; Ay /&?)
episodes.

For multiplayer general-sum tabular MGs, Liu et al. [2021] is the only existing
work that provides non-asymptotic guarantees in the exploration setting. It proposes
centralized model-based algorithms based on value iteration, and shows that Nash
equilibria (although computationally inefficient), CCE and CE can be all learned
within O(H*S? [[_, A;/€?) episodes. Note this result suffers from the curse of mul-

tiagents.

V-learning, initially coupled with the FTRL algorithm as adversarial bandit sub-
routine, was first proposed in Bai et al. [2020], for finding Nash equilibria in the
two-player zero-sum setting. During the preparation of the submission Jin et al.
[2021b], we noted two very recent independent works Song et al. [2022a|, Mao and
Bagar [2023], whose results partially overlap with the results of Jin et al. [2021Db]
in the multiplayer general-sum setting. In particular, Mao and Bagar [2023] use V-
learning with stabilized online mirror descent as adversarial bandit subroutine, and
learn e-CCE in O(H%SA/<?) episodes, where A = maxjem A;. The complexity is
H times larger than what is required in Theorem 24. Song et al. [2022a] considers
similar V-learning style algorithms for learning both e-CCE and ¢-CE. For the lat-
ter objective, they require O(H%SA?/e?) episodes which is again one H factor larger
than what is required in Theorem 25. We remark that both parallel works have not
presented V-learning as a generic class of algorithms which can be coupled with any

adversarial bandit algorithm with suitable regret guarantees in a black-box fashion.
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We also notice a number of related works that appeared after the initial confer-
ence publication of Bai et al. [2020], including [Kao et al., 2022, Mao et al., 2022,
Liu et al., 2022, Zhan et al., 2023, Erez et al., 2022, Daskalakis et al., 2022|. Kao
et al. [2022] consider fully cooperative two-player games with a sequential structure
with the goal of learning the joint optimal policy in a decentralized fashion. This is
a drastically different setting and is not directly comparable to this work. Mao et al.
[2022| propose a stage-based variant of V-learning algorithm so that any standard
no-regret adversarial bandit algorithm can be used in place of the no-weighted-regret
algorithm employed in Jin et al. [2021b]. Their modified algorithms recover the rates
in Theorem 24 and 25. Liu et al. [2022] and Zhan et al. [2023] consider the com-
plexity of no-regret learning against adversarial opponents for tabular and function
approximation Markov games respectively. Their positive result mostly applies when
competing against the best Markov policy in hindsight, while in Jin et al. [2021b] our
definition of equilibria compares with the best general policy in hindsight. Erez et al.
[2022] develop a computationally efficient algorithm for learning CE, but requires ad-
ditional structural assumptions to prove statistical efficiency. Daskalakis et al. [2022]
consider a more challenging task than the one addressed in Jin et al. [2021b]|, namely
learning Markov CCE — CCE policies that are history-independent given the current
state. As a trade-off for their stronger solution concept, their algorithm is much more

sophisticated and requires a larger number of samples.

Normal-form games. A normal-form game (NFG) is one of the most basic game
forms studied in the game theory literature Osborne and Rubinstein [1994]. It can be
viewed as Markov games without any states or transition. A fully decentralized algo-
rithm that breaks the curse of multiagents is known in the setting of strategic-form
games. By independently running a no-regret (or no-swap-regret) algorithm for all
agents, one can find Nash Equilibria (in the two-player zero-sum setting), correlated
equilibria and coarse correlated equilibria (in the multiplayer general-sum setting)
in a number of samples that only scales with max;c,, A; Cesa-Bianchi and Lugosi

[2006], Hart and Mas-Colell [2000], Blum and Mansour [2007]. However, such suc-
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cesses do not directly extend to the Markov games due to the additional temporal
structures involving both states and transition. In particular, there is no computa-
tionally efficient no-regret algorithm for Markov games Radanovic et al. [2019], Bai

et al. [2020].

Decentralized MARL. There is a long line of empirical works on decentralized
MARL [see, e.g., Lowe et al., 2017, Igbal and Sha, 2019, Sunehag et al., 2018, Rashid
et al., 2018, Son et al., 2019]. A majority of these works focus on the cooperative
setting. They additionally attack the challenge where each agent can only observe
a part of the underlying state, which is beyond the scope of Jin et al. [2021b|. For
theoretical results, Zhang et al. [2018] consider the cooperative setting while Sayin
et al. [2021] study the two-player zero-sum Markov games. Both develop decentralized
MARL algorithms but provide only asymptotic guarantees. Daskalakis et al. [2020]
analyze the convergence rate of independent policy gradient method in episodic two-
player zero-sum MGs. Their result requires the additional reachability assumptions

(concentrability) which alleviates the difficulty of exploration.

Single-agent RL. There is a rich literature on reinforcement learning in MDPs
[see e.g., Jaksch et al., 2010, Osband et al., 2016, Azar et al., 2017, Dann et al., 2017,
Strehl et al., 2006, Jin et al., 2018, 2021a]. MDPs are special cases of Markov games,
where only a single agent interacts with a stochastic environment. For the tabular
episodic setting with nonstationary dynamics and no simulators, the best sample com-
plexity achieved by existing model-based and model-free algorithms are O(H3SA/<?)
(achieved by value iteration Azar et al. [2017]) and O(H*SA/e?) (achieved by Q-
learning Jin et al. [2018]), respectively, where S is the number of states, A is the
number of actions, H is the length of each episode. Both of them (nearly) match the
lower bound Q(H?®SA/e?) Jaksch et al. [2010], Osband and Van Roy [2016], Jin et al.
2018].
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1.2.2 Learning in extensive-form games

Regret minimization in EFG from full feedback. A line of work considers
external regret minimization in EFGs from full feedback [Zinkevich et al., 2007, Celli
et al., 2019b, Burch et al., 2019, Farina et al., 2021a, Zhou et al., 2020|. In particu-
lar, Zhou et al. [2020] achieves O(v/XT) external regret. The recent work of Farina
et al. [2022b] develops the first algorithm to achieve O(||II||;polylogT’) external re-
gret in EFGs by converting it to an NFG and invoking the fast rate of Optimistic
Hedge |Daskalakis et al., 2021], along with an efficient implementation via the “kernel
trick”. Our ®-regret framework covers their algorithm as a special case, and we fur-
ther show that their algorithm (along with its efficient implementation) is equivalent

to the standard OMD with dilated entropy.

The notion of Extensive-Form Correlated Equilibria (EFCE) in EFGs was intro-
duced in Von Stengel and Forges [2008]. Optimization-based algorithms for comput-
ing computing EFCEs in multi-player EFGs from full feedback have been proposed
in Huang and von Stengel [2008|, Farina et al. [2019].

Gordon et al. [2008] first proposed to use uncoupled EFCE-regret minimization
dynamics to compute EFCE; however, they do not explain how to efficiently imple-
ment each iteration of the dynamics. Recent works Celli et al. [2020], Farina et al.
[2022a], Morrill et al. [2021], Song et al. [2022b] developed uncoupled EFCE regret
minimization learning dynamics with efficient implementation; All of these algorithms
are based on counterfactual regret decomposition |Zinkevich et al., 2007] and min-
imizing each trigger regret (first considered by Dudik and Gordon [2009|, Gordon
et al. [2008]) using a different regret minimizer. Celli et al. [2020] decomposed the
regret to each laminar subtree, but they did not give an explicit regret bound. Farina
et al. [2022a] decomposed the regret to each trigger sequence and used CFR type
algorithm to minimize the regret on each trigger sequence and achieved an O(\/W )
EFCE-regret bound. Morrill et al. [2021], Song et al. [2022b] decomposed the regret
to each information set and use regret minimization algorithms with time-selection

functions Blum and Mansour [2007]|, Khot and Ponnuswami [2008| to minimize the
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regret on each information set, giving O(v/X2T) and O(vXT) regret bounds re-
spectively. In Bai et al. [2022a], we show that the simple ®-Hedge algorithm, which
has an efficient implementation and an intuitive interpretation, can also achieve the

state-of-art 5(\/ XT) regret bound in the full feedback setting.

Regret minimization in EFG from bandit feedback. Minimizing the exter-
nal regret in EFGs from bandit feedback is considered in a more recent line of
work [Lanctot et al., 2009, Farina et al., 2020b, Farina and Sandholm, 2021, Fa-
rina et al.; 2021b, Zhou et al., 2019, Zhang and Sandholm, 2021, Kozuno et al., 2021,
Bai et al., 2022b]. Dudik and Gordon [2009] consider sample-based learning of EFCE
in succinct extensive-form games; however, their algorithm relies on an approximate
Markov-Chain Monte-Carlo sampling subroutine that does not lead to a sample com-
plexity guarantee.

A concurrent work by Song et al. [2022b] also achieves O(X /2) sample complex-
ity for learning EFCE under bandit feedback (when only highlighting X') using the
Balanced K-EFR algorithm. Our work achieves the same linear in X sample com-
plexity, but using a very different algorithm (Balanced EFCE-OMD). We also remark
that the algorithm of [Song et al., 2022b| cannot minimize the EFCE-regret against
adversarial opponents from bandit feedback like our algorithm, as their algorithm
requires playing multiple episodes against a fixed opponent, which is infeasible when

the opponent is adversarial.

®-regret minimization and correlated equilibrium. The ®-regret minimiza-
tion framework was introduced in Greenwald and Jafari [2003| and Stoltz and Lugosi
[2007]. In particular, Greenwald and Jafari [2003] showed that uncoupled no ®-regret
dynamics leads to ®-correlated equilibria, a generalized notion of correlated equilib-
ria introduced by Aumann [1974]. Stoltz and Lugosi [2007] then developed a family
of ®-regret minimization algorithms using the fixed-point method (including the -
Hedge algorithm considered in Bai et al. [2022a]), and derived explicit regret bounds.

Two important special cases of ®-regret are the internal regret and swap regret in
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normal-form games Stoltz and Lugosi [2005], Blum and Mansour [2007]. A recent line
of work developed algorithms with O(polylogT’) swap regret bound in normal-form

games Anagnostides et al. [2022a,b].

1.3 Open problems and future work

Despite the endeavour of the community of learning in sequential games and the
progress in recent years, there are still many issue remaining unclear. In this section,
I will overview some of the most relevant and exiciting open problems in learning in

sequential games.

1.3.1 Remaining issues in optimal learning in sequential games

We begin with some technical issues that are most relevant to the scope of the thesis.
Interestingly, most of the gap is related to one common theme: the model-based
approach achieves better dependence on T' (or €) and H, and model-free approach
achieves better dependence on the number of actions of each players. Is there a way

to achieve the best-of-both-worlds?

Optimal sample complexity of learning in MGs. As presented in Table 1.1,
Nash-VILiu et al. [2021] achieves optimal dependence on S and H, but not on A and
B, while Nash V-learning achieves optiaml dependence on S, A and B, but not on
H. Is it possible to improve either of the two algorithms to achieve optimality for all
of the parameters?

For model-based methods, intuitively since the size of the model depends on AB,
it seems very unlikely that we can actually achieve A+ B sample complexity. However
it is also hard to rule out this possibility rigorously because it is not clear how to define
the class of model-based algorithm formally to prove a lower bound. For example, if
one just runs V-learning but estimates the model at the same time, does it count as
“model-based”? We indeed have some negative result, though. In Liu et al. [2021], we

showed that the sample complexity of a closely related problem, reward-free learning,
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is at least AB.

For model-free methods, the current gap seems more like an artifact. In the
single-agent setting, there are some techniques to improve the dependence on horizon
for model-free algorithms. For example, using a Bernstein-type optimistic bonus Jin
et al. [2018] and a reference estimation [Zhang et al., 2020c| can both shave off an
H factor in the sample complexity bound. However, in the game setting, it is not at
all clear how to combine these techniques with regret minimization procedure as we

have used in V-learning type of algorithms.

Optimal learning in potential M Gs. There is one important instance of multi-
player general-sum games called potential games [Monderer and Shapley, 1996]
that characterizes players with a shared utility, and whose Nash equilibrium can be
found in polynomial time. A recent line of work focuses on sample-efficient learning in
Markov potential game and in particular Song et al. [2022a] develops a O(¢7?) sample
complexity bound, and the dependence on the other paramters is polynomial, which
is favorable when the number of players increases. In each episode, the algorithms
re-collect data to estimate the value function, and much of the data are not reused
later, which results in the sub-optimal O(¢7®) bound. On the other hand, we can
use the general algorithm as in Liu et al. [2021] to achieve O(¢™2) sample complexity,
but the dependence on the other paramters is exponential, as a consequence of the

model-based planning.

Naturally, one may wonder if we can achieve best of both world: achieving O(g~?)
sample complexity and polynomial dependence on the other parameters at the same

time. Unluckily the answer is unclear at the time of this thesis.

A closely realted setting is congestion game [Milchtaich, 1996], where the question
can be answered affirmatively in Cui et al. [2022]. However, the classical reduction
from a congestion game to a potential game may involve an exponential blow-up, so

this positive result itself cannot answer the above question directly.
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Online learning in MGs. Here comes the third example of the best-of-both-worlds
type of question, but in a online learning setting. If we consider online learning in
Markov games, as we will show in Section 2.5, competing with optimal policy in
hindsight is provably hard. Hence we can only expect to compete with the Nash
equilibirum policy, which serves as a stationary and thus weaker baseline.

However, even in this scenario, the minimax regret is still open. Following a
model-based approach as in Liu et al. [2021], we can achieve OVT regret but the
dependence on the number of players is exponential. On the other hand, following
the V-OL algorithm in Section 4.5.1, the sample complexity is almost free of the
number players involved, but the dependence on T is only O(T?/3). Again, the open
question is: can we achieve Ov/T regret and polynomial dependence on the number

of players?

Fully model-free learning. The last open problem regrading optimal sample
complexity has a different flavor. In the original formulation of the balanced explo-
ration policy as introduced in Section 6.1, we have to know the game tree stucture
in advance (at least from each players’ perspective), to design such policies. In a
follow-up paper Fiegel et al. [2022], a surrogate is proposed to avoid this issue. In
particular, the surrogate only depends on information sets that has been visited so
far and the historical policies. However, the cost is to pay an additional H factor in
sample complexity. This induces an interesting question, whether knowing the tree
structure changing the difficulty of the problem. If so, how much is the gap and how

should we understand the value of knowing the tree structure?

1.3.2 Beyond tabular sequential games

All of the results presented in this thesis are focusing on the tabular setting, where the
number of state and actions are finite. However in many large-scale problems, even
though the number of state and actions are finite, it is formidably large so that even
linear dependence on the number of state and actions is unrealistic. The standard

approach to handle such large state spaces is by using function approximation. As
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long as the size of the function class (usually in terms of a certain kind of covering
number) is controllable and the sample complexity has a sharp dependence (hopefully
linear) on the size, then function approximation approach could give a much more
practical and scalable solution. In this section, we discuss the challenge of extending

the results in tabular setting to the function approximation setting.

Statistical-computational gap of general function approximation. Although
Jin et al. [2022] achieving near-optimal satistical efficiency in many problems, the im-
plementation involves solving a complex optimization problem. This problem appears
even in the single agent setting. In fact, none of the existing general function approx-
imation RL algorithms with polynomial sample complexity guarantee, such as Jin
et al. [2021a], Du et al. [2021], Foster et al. [2021] can be implemented in polynomial
time. Hence a natural question is: does the statistical-computational gap exist for
RL with function approximation?

There are two standard assumptions used in the analysis of the function approxi-

mation RL algorithms:

e Realizability: the ground truth value function or Q-value function can indeed

be approximated the function class.

e Completeness: the function class itself has some closeness property such that
the value function from the class will also induce some other value function from

the class.

Only under the realizability condition, there is a line of research demonstrating
the computational hardness of the problem when the function class only contains
linear function. In particular, as pointed out in Kane et al. [2022], the statistical-
computational gap exists. However, when completeness is also enforced, it is not clear
if such a gap still exists.

On the other hand, one may wonder if the hard optimization problem introduce
in Jin et al. [2022] can be solved either in certain special cases or heuristically. This

is an exciting question that I have devoted a lot of effort to during my PhD time but
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did not make much progress. In practice one prefers to try out simiplified exploration

scheme.

Linearly parametrized sequential games. There is indeed a well-studied func-
tion approximation setting for RL algorithms, at least for single agent scenario —-
linear MDP (or low-rank MDP) Jin et al. [2020c|. We already know only linearly
parametrized value function is not enough. In a linear MG, the whole transition and
reward are fully linearly parametrized and the completeness condition is naturally
satisfied. Even better, the optimization problem can be solved efficiently so Jin et al.
[2022] translates to an computationally efficient algorithms, which is not that surpris-
ing because Xie et al. [2020] already contains a similar result for linear MG with a

worse sample complexity.

A more interesting and also ambitious task is to extend the result in Bai et al.
[2020], i.e., the Nash Q-learning and Nash V-learning algorithms, to the linear MG
setting, which is partially solved by a recent work by Wang et al. [2023]. One im-
portant difference in their assumptions is to use “marginalized” feature and make the

transition and reward multi-linearly depending on the features.

Principled function approximation in EFGs. When the state itself is not
obsevable, we do not have a optimal substructure property, which makes principled
function approximation much harder. In MGs we can approximate the optimal value
function for each state action pair, but such quantity even does not exist for EFGs.
Maybe the most fundamental question is: what do we really want to approximate
here? Practitioners approximate the counterfactual values through neural networks,
but these quantities depend on the policy used and keep changing all the time. As
a result, it is hard to give any theoretical guarantee for such function approximation

algorithms.
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1.3.3 Beyond Nash equilibrium: learning to cooperate

All of the techniques we present in the thesis serves the same purpose: learning not to
regret, which can be translated to certain equilibrium guarantees. However, finding
an equilibrium is not the whole story of learning in games. In many case we also want
to learn to cooperate.

The most famous example is the prisoner’s dilemma. It is well known that the
only Nash equilibrium is to betray all the time. However, if both players can learn
to cooperate, then the average utility will be much higher. Of course, this is only
possible if the other player is willing to cooperate. The question is: how can we
adjust to different type of player, embrace cooperation when possible and avoid being
exploited by “bad” players?

This is a fascinating problem that I have given a lot of thoughts to during the past
years. To solve this problem we have to first introduce a new framework and make it
a well-defined question. Conventional notions of regret, Nash equilibrium and social
welfare may still be relevant, but we definitely need to introduce some new measures
of the adaptivity we want.

At the end of the day, the ideal algorithm should be able to satisfy two conditions:
it is able to adapt to different type of players and when it is deployed on both players,
it should facilitate the players to cooperate efficiently. I believe such “learning to
cooperate” power is a crucial component of the general artificial intelligence sought

by researchers.
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Chapter 2

Markov Games: Preliminaries

Modern artificial intelligence (AI) faces a variety of challenges that can be framed
as multi-agent reinforcement learning (MARL) problems. In MARL, agents must
learn how to make a series of decisions in the presence of other agents whose actions
may impact the outcome. This dynamic environment requires agents to adapt their
strategies to those of other agents, putting an additional layer of complexity to the

problem.

Modern MARL systems have achieved significant success recently on a rich set of
traditionally challenging tasks, including the game of GO [Silver et al., 2016, 2017],
Poker [Brown and Sandholm, 2019|, real-time strategy games [Vinyals et al., 2019,
OpenAl, 2018], decentralized controls or multiagent robotics systems [Brambilla et al.,
2013, autonomous driving [Shalev-Shwartz et al., 2016], as well as complex social sce-
narios such as hide-and-seek [Baker et al., 2020]. While single-agent RL has been the
focus of recent intense theoretical study, MARL has been comparatively underex-
plored, which leaves several fundamental questions open even in the basic model of

Markov games Shapley [1953] with finitely many states and actions.

This chapter presents an overview of Markov games (MGs), including their for-
mulation and associated learning problems. The framework is accompanied by two
hardness results, ruling out the possibility of achiving no-regret learning in Markov

games in general.
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Figure 2-1: An illustration of MGs.

2.1 Game formulation

We consider the model of Markov Games [Shapley, 1953] (also known as stochastic

games in the literature) in its most generic—multiplayer general-sum form. Formally,

we denote a tabular episodic MG with m players by a tuple MG(H, S, { A;},, P, {r;}1%,),

i=1
where H and S denote the length of each episode and the state space with |S| = S. A;
denotes the action space for the it, (h) player and |A;| = A;. Welet @ := (aq,- -+, an)
denote the (tuple of) joint actions by all m players, and A = A; X ... X A,,.
P = {Pp }ne[m is a collection of transition matrices, so that IP,(-|s, a) gives the distri-
bution of the next state if actions a are taken at state s at step h, and r; = {Ti,h}he[H]
is a collection of reward functions for the i® player, so that r;,(s,a) € [0,1] gives
the deterministic reward received by the i*! player if actions a are taken at state s
at step h. Our results directly generalize to random reward functions, since learning
transitions is more difficult than learning rewards. See Figure 2-1 for an illustration
of the decision-making process descibed.

We remark that since the relation among the rewards of different agents can be
arbitrary, this model of MGs incorporates both cooperation and competition.

In each episode, we start with a fixed initial state s;. While we assume a fixed

initial state for notational simplicity, our results readily extend to the setting where
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the initial state is sampled from a fixed initial distribution. At each step h € [H],
each player 7 observes state s;, € S, picks action a;;, € A; simultaneously, and receives
her own reward 7;(sp, an). Then the environment transitions to the next state
Shi1 ~ Pr(+|sn, an). The episode ends when sy is reached.

Notice each agent may or may not observe the actions played by other players
in this process. When the actions of the other players are observed, we call it an
informed game [Tian et al., 2021|, and otherwise we call it an unknown game
[Cesa-Bianchi and Lugosi, 2006]. The model-based approach introduced in Chapter 3
only works in informed games while the model-free approach introduced in Chapter 4

also works in unknown games.

2.1.1 Policy

A (random) policy m; of the i*" player is a set of H maps m; 1= {m,h c ) x (S x
A1 xS — Ai}h clm)’ where 7; ,, maps a random sample w from a probability space
) and a history of length h—say 7, :== (s1,a1,- - , sp,), to an action in A;. To execute
policy m;, we first draw a random sample w at the beginning of the episode. Then,
at each step h, the it, (h) player simply takes action ;5 (w, 7). We note here w is
shared among all steps h € [H]. w encodes both the correlation among steps and
the individual randomness of each step. We further say a policy 7; is deterministic it
min(w, ) = T 5 (1) which is independent of the choice of w.

In game theory literature, policies are usually called strategies. To be consitent
with some common terms, we will use these two words interchangably when needed.

An important subclass of policy is Markov policy, which can be defined as m; :=
{myh OxS — ‘Ai}h clm)’ Instead of depending on the entire history, a Markov policy
takes actions only based on the current state. Furthermore, the randomness in each
step of Markov policy is independent. Therefore, when it is clear from the context, we

write Markov policy as m; 1= {m,h S = Ay, where A 4, denotes the simplex

}he[H]’
over A;. We also use notation 7, ,(a|s) to denote the probability of the it, (h) agent
taking action a at state s at step h.

A joint (potentially correlated) policy is a set of policies {m;}7,, where the same
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random sample w is shared among all agents, which we denote as 7 = T, OT®. . .Om,,.
We also denote 7_; = m ©...m_1Om11©...Om, to be the joint policy excluding the
it, (h) player. A special case of joint policy is the product policy where the random
sample has special form w = (wy,...,wy), and for any i € [m], m; only uses the
randomness in w;, which is independent of remaining {w;},.;, which we denote as

T =71 XTo X ... X Ty

2.1.2 Value

We define the value function V;7(s1) as the expected cumulative reward that the
it, (h) player will receive if the game starts at initial state s; at the 15 step and all

players follow joint policy m:
Vzrl(sl) =E, Zthl ri,h(shaah)) 81] . (2.1)

where the expectation is taken over the randomness in transition and the random
sample w in policy 7.

We also define QF;, : & x A — R to be the Q-value function at step h so that

Tn(s,a) gives the cumulative rewards received under policy 7, starting from (s, a)

at step h:
Qfn(s,a) =E, [Zg:h Tin (Sw,aw)|sp=s,a,=al. (2.2)

For simplicity, we define operator P, as [P,V](s, a) := Eg.p,(|s,a)V (") for any value
function V. We also use notation [D.Q](s) := Eqr(|s@(s,a) for any action-value

function Q.

By definition of value functions, we have the Bellman equation
Qin(s,a) = (rin +PuVi)(s,a),  Vi(s) = (DaQf)(s)

for all (s,a, h) € S x Ax B x[H]xm, and at the (H +1)" step we have V;%;,(s) = 0

for all s € S.
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2.1.3 Best response and strategy modification

For any strategy m_;, the best response of the it, (h) player is defined as a policy of
the it, (h) player which is independent of the randomness in 7_;, and achieves the
highest value for herself conditioned on all other players deploying 7_;. In symbol,
the best response is the maximizer of max/ ‘/ﬁxmi(sl) whose value we also denote
as Vijrimi(sl) for simplicity. By its definition, we know the best response can always

be achieved at deterministic policies. We call a policy m; an e-best response if

max V1" (s1) = Vi (1) < e (23)

2

A strategy modification ¢; for the it, (h) player is a set of maps ¢; = {¢ip :
(8 x A" x 8§ x A; — A;}, where ¢;; can depend on the history 7, and maps
actions in A; to different actions in A;. For any policy of the it, (h) player m;, the
modified policy (denoted as ¢;om;) changes the action 7; 5, (w, 75,) under random sample

w and history 75, to ¢;(7h, T n(w, ).

Here, we only introduce the deterministic strategy modification for simplicity of
notation, which is sufficient for discussion in the context of this thesis. The random
strategy modification can also be defined by introducing randomness in ¢; which is
independent of randomness in 7; and 7m_;. It can be shown that the best strategy

modification can always be deterministic.

For any joint policy 7, we define the best strategy modification of the it, (h) player

as the maximizer of maxg, Vz(f OTIOT (1,

Different from the best response, which is completely independent of the random-
ness in m_;, the best strategy modification changes the policy of the it, (h) player while
still utilizing the shared randomness among m; and w_;. Therefore, the best strategy
modification is more powerful than the best response: formally one can show that

maxg, %ffiom)@ﬂ_i(sl) > max, Vﬂm_i(sl) for any policy 7.
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2.2 Equilibria

A special case of Markov game is Markov Decision Process (MDP). One can show
there always exists an optimal policy 7* = argmax, V"(s1). Denote the value of the
optimal policy as V*. The optimality criteria for a policy in MDPs is to maximize
the expected return, or put it another way, minimize the gap between the optimal
policy. Quantitatively, we call a policy e-optimal policy 7 if V*(s1) — V"(s1) < e.

The optimality criteria for Markov games is more involved since an optimal policy
in the above sense does not necessarily exist. On the countrary, we will consider the
notion of equilibrium.

For Markov games, there are three common notions of equilibira in the game
theory literature—Nash Equilibrium, Correlated Equilibrium and Coarse Correlated
Equilibrium.

First, a Nash equilibrium is defined as a product policy where no player can

increase her value by changing only her own policy. Formally,
Definition 2 (Nash Equilibrium). A product policy 7 is a Nash equilibrium if

ma (VI = Vi) (s1) = 0.
i€[m ’ ’
A product policy  is an e-approximate Nash equilibrium if max;e (Vi:riﬂ’i —Vi)(s1) <

E.

We remark that, even for a game with known parameters P(+|-) and r(-), the Nash
equilibrium in general has been proved PPAD-hard to compute Daskalakis [2013]. As
a result, although Nash equilibrium is conceptually the most natural and simple
notion, we have to consider other equilibria due to computational feasibility.

Second, a coarse correlated equilibrium is defined as a joint (potentially correlated)
policy where no player can increase her value by playing a different independent

strategy. In symbol,
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Definition 3 (Coarse Correlated Equilibrium). A joint policy 7 is a CCE if

max (V™ = V)(s1) = 0.

A joint policy 7 is a e-approximate CCE if max;cfy, (V;’Tfr‘i —V7)(s1) <e.

The only difference between Definition 2 and Definition 3 is that Nash equilibrium
requires the policy 7 to be a product policy while CCE does not. Thus, it is clear
that CCE is a relaxed notion of Nash equilibrium, and a Nash equilibrium is always
a CCE.

Finally, a correlated equilibrium is defined as a joint (potentially correlated) policy

where no player can increase her value by using a strategy modification. In symbol,

Definition 4 (Correlated Equilibrium). A joint policy 7 is a CE if

e e (V77— V) (1) = 0.
i€lm i ’ ’

A joint policy 7 is a e-approximate CE if max;¢[,,,) maxg, (V(d’iom)@mi —V7)(s1) <e.

1y

In Markov games, we also have that a Nash equilibrium is a CE, and a CE is a

CCE.

Proposition 5 (Nash ¢ CE C CCE). In Markov games, any e-approximate Nash
equilibrium is an e-approximate CE, and any e-approzimate CE is an e-approximate

CCE.

2.3 Two-player Zero-sum games

When can a Nash equilibrium can be computed in polynomial time? The best-known
case is Two-player Zero-sum (2p0s) games and as a result it will be discussed sepa-
rately in many parts of the thesis. We remark 2p0Os game is not the only interesting
game setting where Nash equilibrium can be computed efficiently. For example, in

games where all the players share the same utility function, we can also find a Nash
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equilibrium in polynoimial time [Song et al., 2022a|. This fully cooperative case is a
special case of potential game, but we will not discuss these cases in this thesis. In
this thesis, we only present results for finding Nash equilibria in two-player zero-sum
MGs.

As the name suggests, in a 2p0s Markov game, the second player’s reward is just
the first player’s negative, i.e., ro, = —71,. We call the first player the max-player
(with action set |A| < A) and the second player the min-player (with action set
|B| < B). As a result we can only consider the utility of the max-player and drop the
subscript on player (usually using i above) for simplicity.

Technically, to ensure o, € [0, 1], we choose 13, = 1—7r; ;. We note that adding a
constant to the reward function has no effect on the equilibria. As a result sometimes

people also use the term two-player constant-sum to embrace this generality.

2.3.1 Minimiax theorem

The Nash equilibrium can be find efficiently in 2p0Os games because there are many
important properties that only hold in 2p0s games. We will discuss some of the
most significant ones here and leave the more invovled ones later when we cover the
algorithmic aspect of MGs.

For any policy of the max-player pu, there exists a best response of the min-player,
which is a policy vf(u) satisfying Vh“’yf(“)(s) = inf, V}""(s) for any (s,h) € S x [H].
We denote V/“T .= V! Vi), By symmetry, we can also define uf(v) and V. Tt is
further known [cf. Filar and Vrieze, 2012| that there exist policies p*, v* that are

optimal against the best responses of the opponents, in the sense that
VIl (s) = sup,, VT (s), V¥ (s) = inf, V1" (s), for all (s, h).

These optimal strategies (u*, v*) are exactly the Nash equilibria of the Markov game,

which satisfies the following minimax equation

sup,, inf, V" (s) = VY (s) = inf,, sup, V" (s).
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Notice the minimax theorem here is different from the one for matrix games, i.e.
max, ming ¢’ A = miny, max, ¢ Ay for any matrix A, since here V/*"(s) is in gen-
eral not bilinear in u,v.

We further abbreviate the values of Nash equilibrium V}* " and Q‘,j*’”* as V¥ and
@3-

In 2p0s games we have a better way to quantify the optimality of a pair of policy
(i1, V) using the gap between their performance and the performance of the optimal

strategy (i.e., Nash equilibrium) when playing against the best responses respectively:
V(1) = V(1) = (VP (1) = Vi) | + [V (sn) = VL (s1).

A pair of general policies (ji,7) is an e-approximate Nash equilibrium, if
Vi (s1) = Vi (s1) < e

The existence of the value of a 2p0s games makes it possible to compute Nash
Equilibrium through CCEs. To describe this result we first restate the definition of
CCE (Definition 3) after rescaling. For any pair of matrices P,Q € [0,1]™™, the
subroutine CCE(P, Q) returns a distribution 7 € A,,.,, that satisfies:

E(a,b)Nﬂ'P(aa b) 2 H}L%X E(a,b)NWP(a*7 b)a E(a,b)NﬂQ(a7 b) S H})ll’l E(a,b)wﬂQ(a7 b*) (24)

We make three remarks on CCE. First, a CCE always exists since a Nash equilibrium
for a general-sum game with payoff matrices (P, Q) is also a CCE defined by (P, @),
and a Nash equilibrium always exists. Second, a CCE can be efficiently computed,
since above constraints (2.4) for CCE can be rewritten as n + m linear constraints
on m € A,xm, which can be efficiently resolved by standard linear programming
algorithm. Third, a CCE in general-sum games needs not to be a Nash equilibrium.

However, a CCE in zero-sum games is guaranteed to be a Nash equalibrium.

Proposition 6. Let 7 = CCE(Q, Q), and (u,v) be the marginal distribution over
both players’ actions induced by w. Then (u,v) is a Nash equilibrium for payoff matriz

Q.
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Intuitively, a CCE procedure can be used in Nash Q-learning for finding an approx-
imate Nash equilibrium, because the values of upper confidence and lower confidence
(Q and Q) will be eventually very close, so that the preconditions of Proposition 6

becomes approximately satisfied.

2.3.2 Bellman optimality equations

Now we are ready to present the Bellman optimality equations for the value functions

of the best responses and the Nash equilibrium.

Best responses. For any Markov policy p of the max-player, by definition, we have

the following Bellman equations for values of its best response:

Q’Z’T(Sv a, b) - (Th + PthﬁTl)(s, a, b), Vh“’T(S) - inf (DﬂhXVQ;LL7T)(S)7

vEAR

for all (s,a,b,h) € S x A x B x [H], where Vlﬂl(s) =0forall s eS.

Similarly, for any Markov policy v of the min-player, we also have the following

symmetric version of Bellman equations for values of its best response:

Q1 (s,a,0) = (rn + PV )(s,0,0),  Vi(s) = sup (D, Q) (5).

HEA A

for all (s,a,b,h) € S x A x B x [H], where V" (s) = 0 for all s € S.

Nash equilibria. Finally, by definition of Nash equilibria in Markov games, we

have the following Bellman optimality equations:

Qi (s, a,0) =(rn +PpVii1)(s, a,0)

Vir(s) = sup inf (D, Q5)(s) = inf sup (D, Q)(s)

HEA 4 veEAR veEAR HEA 4
for all (s,a,b,h) € S x A x B x [H], where V};,,(s) =0 for all s € S.
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2.4 Learning objectives

How do we measure the performance of a learning algorithm in Markov games? In this
section we will cover the two most common learning objectives: regret minimization

and sample complexity (of learning an equilibrium).

Online learning The most natural idea to measure the performance of a learning
algorithm is to compare with the best response to the min-player’s policy in aver-
age. This motivates the defition of regret competing against the best fixed policy in
hindsight:

Regret(K) == sup Y (VI (s1) = VI (s1)), (2.5)

Hok=1
where the superscript k& denotes the corresponding objects in the k-th episode. Al-
though we use this compact notation, the regret depends on both ;% and v*.

In the online learning setting, our goal is to maximize the expected cumulative
return, or equivalently, to minimize the regret. We call a learning algorithm if the
regret grows sublinearly in K, as the average regret will converge to zero in long run.

Notice this criteria is purely unilateral and imposes no assumption on the min-
player. Also it measures the performance in K consecutive episodes instead of a single

policy.

Self-play Another common of reinforcement learning is to design algorithms for
Markov games that can find an e-approximate Nash equilibrium, CE or CCE using a
number of episodes that is small in its dependency on S, A, B, H as well as 1/e . An
upper bound of this number of episodes is known as PAC sample complexity bound,
or sample complexity for short.

The self-play setting is closely related to the learning agents trained through
comepeting with each other (For example, Silver et al. [2016]). Here we can con-
trol all of the agents instead of just one of them. Different from the online learning

setting, we no longer care about the return in the training process but only the output
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policy at the end of the training process, which is not totally reasonable but simplifies

the formulation greatly.

Online-to-batch conversion Interestingly, the two notions introduced above are
closely related. In MDPs, any sublinear regret algorithm can be directly converted
to a polynomial-sample PAC algorithm via the standard online-to-batch conversion.
For example, see Jin et al. [2018].

For games, the intuition remains valid but things become more technical. Roughly
speaking, if we have a sublinear regret bound, it will translate into a polynomial-
sample PAC bound for learning CCE in general games or NE in 2p0s games. For
CE, we need stronger notion of regret defined through policy modifications. We will

present the formal reductions later when needed.

2.5 Hardness results

The most common approach to establish PAC-learning results for MDP and matrix
games is to first control the regret and then use the online-to-batch conversion as we
introduced in Section 2.4. However, this approach does not work for Markov games.
In this section, we present two hardness results for achieving sublinear regret in 2p0s
Markov games when playing against adversarial opponents, which rules out a popular

approach to design algorithms for finding Nash equilibria.

2.5.1 Computational hardness

We begin with a computational hardness result, showing computing the best response
against an opponent with a fixed unknown policy is hard. This will imply achieving
sublinear regret in Markov games when playing against adversarial opponents is also

computationally hard.

Computing the best response We say an algorithm is a polynomial time algo-

rithm for learning the best response if for any policy of the opponent v, and for any
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e > 0, the algorithm finds the e-approximate best response of policy v (Defined in
Equation (2.3)) with probability at least 1/2, in time polynomial in S, H, A, B, .
We can show the following hardness result for finding the best response in poly-

nomial time.

Theorem 7 (Hardness for learning the best response). There ezists a Markov game
with deterministic transitions and rewards defined for any horizon H > 1 with S = 2,
A =2, and B = 2, such that if there exists a polynomial time algorithm for learning
the best response for this Markov game, then there exists a polynomial time algorithm

for learning parity with noise (see problem description in Appendix A.3).

We remark that learning parity with noise is a notoriously difficult problem that
has been used to design efficient cryptographic schemes. It is conjectured by the

community to be hard.

Conjecture 8 (Kearns [1998]). There is no polynomial time algorithm for learning

party with noise.

Theorem 7 with Conjecture 8 demonstrates the fundamental difficulty—if not
strict impossibility—of designing a polynomial time for learning the best responses
in Markov games.

The intuitive reason for such computational hardness is that, while the underlying
system has Markov transitions, the opponent can play policies that encode long-term
correlations with non-Markovian nature, such as parity with noise, which makes it
very challenging to find the best response. It is known that learning many other
sequential models with long-term correlations (such as hidden Markov models or
partially observable MDPs) is as hard as learning parity with noise Mossel and Roch
[2005].

Actually, if the opponent is restricted to only play Markov policies, then learning
the best response is as easy as learning a optimal policy in the standard single-agent
Markov decision process, where efficient algorithms are known to exist. Nevertheless,

when the opponent can as well play any policy which may be non-Markovian, as shown
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in Theorem 7, finding the best response against those policies is computationally

challenging.

Playing Against Adversarial Opponent Theorem 7 directly implies the diffi-
culty for achieving sublinear regret in Markov games when playing against adversarial
opponents in Markov games. Our construction of hard instances in the proof of The-
orem 7 further allows the adversarial opponent to only play Markov policies in each
episode.

Since playing against adversarial opponent is a different problem with independent
interest, we present the full result here.

Without loss of generality, we still consider the setting where the algorithm can
only control the max-player, while the min-player is an adversarial opponent. In the
beginning of every episode k, both players pick their own policies ;¥ and v*, and
execute them throughout the episode. The adversarial opponent can possibly pick
her policy v* adaptive to all the observations in the earlier episodes.

We say an algorithm for the learner is a polynomial time no-regret algorithm if
there exists a 6 > 0 such that for any adversarial opponent, and any fixed K > 0,
the algorithm outputs policies {z*}X | which satisfies the following, with probability
at least 1/2; in time polynomial in S, H, A, B, K.

K K

R(K) =sup > VI (s1) = D V""" (s1) < poly(S, H, A, B)K' (2.6)
Hog=1 k=1

Theorem 7 directly implies the following hardness result for achieving no-regret

against adversarial opponents, a result that first appeared in [Radanovic et al., 2019].

Corollary 9 (Hardness for playing against adversarial opponent). There ezists a
Markov game with deterministic transitions and rewards defined for any horizon H >
1 with S =2, A =2, and B = 2, such that if there exists a polynomial time no-
regret algorithm for this Markov game, then there exists a polynomial time algorithm
for learning parity with noise (see problem description in Appendixz A.3). The claim

remains to hold even if we restrict the adversarial opponents in the Markov game to
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be non-adaptive, and to only play Markov policies in each episode.

Similar to Theorem 7, Corollary 9 combined with Conjecture 8 demonstrates the
fundamental difficulty of designing a polynomial time no-regret algorithm against

adversarial opponents for Markov games.

2.5.2 Statistical hardness in unknown games

In unknown Markov games, where each agent cannot access the other agents’ actions,
we can establish a stronger statistical hardness result. In this section, we show that,
competing against the best policy in hindsight is statistically intractable in general.
In particular, we show that in this case, the regret has to be either linear in K or

exponential in H.

Theorem 10 (Statistical hardness for online learning in unknown MGs). For any
H > 2 and K > 1, there exists a two-player zero-sum MG with horizon H, |S| < 2,
|A] < 2, |B| < 4 such that any algorithm for unknown MGs suffers the following

worst-case one-sided regret:
supz (" (s0) = Ba ™ (1)) 2 Q(min{ V27K, K}).
In particular, any algorithm has to suffer linear regret unless K > Q(2).

Proof Sketch We start by considering online learning in (single-agent) MDPs,
where the reward and transition function in each episode are adversarially determined,
and the goal is to compete against the best (fixed) policy in hindsight. In the following
lemma we show that this problem is statistically hard; see Lemma 64 in the Appendix

A 4 for its formal statement.

Lemma 11. (informal) For any algorithm, there exists a sequence of single agent
MDPs with horizon H, S = O(H) states and A = O(1) actions, such that the regret
defined against the best policy in hindsight is Q(min{v2H{ K K}).
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Figure 2-2: Tllustration of the MDP My y. For y € {0,1}, ¥/ stands for 1 — y.

We now briefly explain how this family of hard MDPs is constructed, which is in-
spired by the “combination lock” MDP [Du et al., 2019]. Every MDP My y is specified
by two H-bit strings: X,Y € {0,1}7. The states are {so0, S0.1,51.1," " , S0.H, S1.0 }-
As shown in Figure 2-2, Mxy has a layered structure, and the reward is nonzero
only at the final layer. The only way to achieve the high reward is to follow the path
S0,0 = Sy;,1 =+ Sy, m- Thus, the corresponding optimal policy is m(sy.,) = ) G w,
which is only a function of X. Here, & denotes the bitwise exclusive or operator.

Now, in each episode, Y is chosen from a uniform distribution over {0, 1}* while
X is fixed. When the player interacts with My y, since Y is uniformly random, it gets
no effective feedback from the observed transitions, and the only informative feedback
is the reward at the end. However, achieving the high reward requires guessing every
bit of X correctly. This “needle in a haystack” situation makes the problem as hard
as a multi-armed bandit problem with 2 arms. The regret lower bound immediately

follows.

Next, we use the hard family of MDPs in Lemma 64 to prove Theorem 10 by
reducing the adversarial MDP problem to online learning in unknown MGs. The
construction is straightforward. The state space and the action space for the max-
player are the same as that in the original MDP family. The min-player has control
over the transition function and reward at each step, and executes a policy such that
the induced MDP for the max-player is the same as My y. This is possible using only

B = O(1) actions as Mx y has a layered structure. Online learning in unknown MGs
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then simulates the online learning in the adversarial MDP problem, and thus has the

same regret lower bound.
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Chapter 3

Markov Games: Model-based

Learning

One prevalent approach towards solving multi-agent RL is model-based methods, that
is, to use the existing visitation data to build an estimate of the model (i.e. transition
dynamics and rewards), run an offline planning algorithm on the estimated model to
obtain the policy, and play the policy in the environment. Such a principle underlies
some of the earliest single-agent online RL algorithms such as E3 [Kearns and Singh,
2002] and RMax [Brafman and Tennenholtz, 2002], and is conceptually appealing
for multi-agent RL too since the multi-agent structure does not add complexity onto
the model estimation part and only requires an appropriate multi-agent planning
algorithm (such as value iteration for games [Shapley, 1953]) in a black-box fashion.
On the other hand, model-free methods do not directly build estimates of the model,
but instead directly estimate the value functions or action-value (Q) functions of
the problem at the optimal/equilibrium policies, and play the greedy policies with
respect to the estimated value functions. Model-free algorithms have also been well
developed for multi-agent RL such as friend-or-foe Q-Learning [Littman, 2001| and
Nash Q-Learning [Hu and Wellman, 2003|.

While both model-based and model-free algorithms have been shown to be prov-
ably efficient in multi-agent RL in a recent line of work [Bai and Jin, 2020, Xie

et al., 2020, Bai et al., 2020], a more precise understanding of the optimal sample
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complexities within these two types of algorithms (respectively) is still lacking. In
the specific setting of two-player zero-sum Markov games, the current best sample
complexity for model-based algorithms is achieved by the VI-ULCB (Value Itera-
tion with Upper/Lower Confidence Bounds) algorithm [Bai and Jin, 2020, Xie et al.,
2020]: In a tabular Markov game with S states, {A, B} actions for the two players,
and horizon length H, VI-ULCB is able to find an e-approximate Nash equilibrium
policy in O(H*S?AB/e?) episodes of game playing. However, compared with the
information-theoretic lower bound Q(H?S(A + B)/e?), this rate has suboptimal de-
pendencies on all of H, S, and A, B. In contrast, the current best sample complexity
for model-free algorithms is achieved by Nash V-Learning [Bai et al., 2020], which
finds an e-approximate Nash policy in O(H®S(A + B)/e?) episodes. Compared with
the lower bound, this is tight except for a poly(H) factor, which may seemingly sug-
gest that model-free algorithms could be superior to model-based ones in multi-agent
RL. However, such a conclusion would be in stark contrast to the single-agent MDP
setting, where it is known that model-based algorithms are able to achieve minimax
optimal sample complexities [Jaksch et al., 2010, Azar et al., 2017|. It naturally arises
whether model-free algorithms are indeed superior in multi-agent settings, or whether
the existing analyses of model-based algorithms are not tight. This motivates us to

ask the following question:
How sample-efficient are model-based algorithms in multi-agent RL?

In this chapter, we advance the theoretical understandings of multi-agent RL by
presenting a sharp analysis of model-based algorithms on Markov games. Our core
contribution is the design of a new model-based algorithm Optimistic Nash Value
Iteration (Nash-VI) that achieves an almost optimal sample complexity for zero-sum

Markov games and improves significantly over existing model-based approaches.

3.1 Player coordination

The lower bound presented in Section 2.5.1 and Section 2.5.2 rule out the possiblity
of controlling the sampling complexity through regret (defined in Equation (2.5))
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minimization, by designing an independent learning algorithm for each of the players.
In this section, we present the first workaround, by taking a model-based approach.
Concretely, we coordinate the players through a centralized model estimator.

The main difference between independent learning and player coordination is : In-
dependent learning is actually an overshoot because using the Nash Folklore theorem
itself does not require the learning dynamics for each of the player is independent.
Although independent learning has its own advantages, we have seen achieving low
regret through independent learning is provably hard. As long as we have a smart
way to coordinate the players and prove under such coordination the regret can be
controlled, we can essentially achieve the same goal.

How to achieve such coordination? Model-based approach is the most ideal choice.
Although we do not know the underlying MG, we can estimate the state transition
probabilities through samples and provide an estimated MG. Then we can use a
centralized planner to find the equilibrium of this estimated MG and if the estimation
is good enough, the regret for all the players must be low because the their policy
should be already very close to a Nash equilibrium.

To make the presentation simpler, we will use a new and stronger form of regret
which is more suitable for model-based learning. Through the classical online-to-batch
conversion, the regret guarantees can again be translated into sample complexity re-
sults that we are looking for. The definition of regret for 2p0s games used throughout

this chapter is given below, which we will denote by Nash regret.

Definition 12 (Nash Regret in 2p0s games). Let (u*, v*) denote the policies deployed
by the algorithm in the k" episode. After a total of K episodes, the regret is defined

as

RK) =Y (VP — 1) (s).

k=1
Similarly we can define the counterparts for general games as below.

Definition 13 (Nash-regret in general-sum MGs). Let 7% denote the (product) policy
deployed by the algorithm in the k' episode. After a total of K episodes, the regret
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is defined as

)

K
7rk,- T
Fasn () = D (Vi = Vi) (s0)
k=

Definition 14 (CCE-regret in general-sum MGs). Let policy ©* denote the (corre-
lated) policy deployed by the algorithm in the k' episode. After a total of K episodes,
the regret is defined as
K - .
Rece(K) = ) max(Vy; " = V7 )(s1).

P 1€[m]

Definition 15 (CE-regret in multiplayer Markov games). Let policy 7% denote the
policy deployed by the algorithm in the & episode. After a total of K episodes, the

regret is defined as

K
Ree(K) =Y maxmax( V5™ — V7)(s).

—1 i€ [m] ped;

To make the exposition more accessible, we will first present the algorithms and
theoretical guarantees for two-player zero-sum games, where the presentation is

relatively simpler, and then consider general games.

3.2 Optimistic Nash Value Iteration

In this section, we present our main algorithm—Optimistic Nash Value Iteration

(Nash-VI), and provide its theoretical guarantee.

3.2.1 Algorithm description

We describe our Nash-VI Algorithm 1. In each episode, the algorithm can be decom-

posed into two parts.

e Line 3-15 (Optimistic planning from the estimated model): Performs value itera-

tion with bonus using the empirical estimate of the transition ]IA”, and computes
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a new (joint) policy 7 which is “greedy” with respect to the estimated value

functions;

e Line 18-21 (Play the policy and update the model estimate): Executes the

policy 7, collects samples, and updates the estimate of the transition P.

At a high-level, this two-phase strategy is standard in the majority of model-based
RL algorithms, and also underlies provably efficient model-based algorithms such
as UCBVI for single-agent (MDP) setting [Azar et al., 2017] and VI-ULCB for the
two-player Markov game setting [Bai and Jin, 2020]. However, VI-ULCB has two
undesirable drawbacks: the sample complexity is not tight in any of H, S, and A, B
dependency, and its computational complexity is PPAD-complete (a complexity class
conjectured to be computationally hard [Daskalakis, 2013]).

As we elaborate in the following, our Nash-VI algorithm differs from VI-ULCB in
a few important technical aspects, which allows it to significantly improve the sample
complexity over VI-ULCB, and ensures that our algorithm terminates in polynomial
time.

Before digging into explanations of techniques, we remark that line 16-17 is only
used for computing the output policies. It chooses policy " to be the policy in the

v

out , are

episode with minimum gap (V1 — V)(s1). Our final output policies (i out)

simply the marginal policies of 7. That is, for all (s,h) € S x [H], ug™(-|s) :=

2 e (5 bls), and v (c]s) i= 32 c 4 i (a, o]5)-

3.2.2 Overview of techniques

Auxiliary bonus v. The major improvement over VI-ULCB [Bai and Jin, 2020]
comes from the use of a different style of bonus term « (line 9), in addition to the
standard bonus f (line 8), in value iteration steps (line 10-11). See Figure 3-1 for an
illustration.

This is also the main technical contribution of our Nash-VI algorithm. This aux-

iliary bonus v is computed by applying the empirical transition matrix @h to the gap
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Figure 3-1: A graphical view of the upper and lower bounds.

at the next step V41—V, +1, This is very different from standard bonus 3, which is

typically designed according to the concentration inequalities.

The main purpose of these value iteration steps (line 10-11) is to ensure that the
estimated values @,, and Qh are with high probability the upper bound and the lower
bound of the Q-value of the current policy when facing best responses (see Lemma
68 and 70 for more details). To do so, prior work [Bai and Jin, 2020] only adds bonus
/3, which needs to be as large as ©(1/S/t). In contrast, the inclusion of auxiliary
bonus v in our algorithm allows a much smaller choice for bonus g—which scales
only as O(y/1/t)—while still maintaining valid confidence bounds. This technique
alone brings down the sample complexity to O(H*SAB/e?), removing an entire S
factor compared to VI-ULCB. Furthermore, the coefficient in v is only ¢/H for some
absolute constant ¢, which ensures that the introduction of error term v would hurt
the overall sample complexity only up to a constant factor. See Figure 3-2 for an

illustration.

We remark that the current policy is stochastic. This is different from the single-
agent setting, where the algorithm only seeks to provide an upper bound of the value
of the optimal policy where the optimal policy is not random. Due to this difference,

the techniques of Azar et al. [2017] cannot be directly applied here.
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Figure 3-2: Insight I: Sharper confidence bound in the next step induces less uncer-
tainty. The value function estimations are the same for both instances, but the left
instance has higher uncertainty in the next step so we would expect the uncertinty is
also higher in the current step.

Bernstein concentration. Our Nash-VI allows two choices of the bonus function

8 = BONUS(t,0?):

Hoeffding type: c(\/H2/t + H>Su/t),

(3.1)
Bernstein type: c(\/32/t + H?Su/t),

where 72

is the estimated variance, ¢ is the logarithmic factors and c is absolute
constant. The V in line 8 is the empirical variance operator defined as WA/hV =
P,V2 — (P,V)? for any V € [0,H]S. The design of both bonuses stem from the
Hoeffding and Bernstein concentration inequalities. Further, the Bernstein bonus
uses a sharper concentration, which saves an H factor in sample complexity compared
to the Hoeffding bonus (similar to the single-agent setting [Azar et al., 2017]). This
further reduces the sample complexity to O(H*SAB/e?) which matches the lower

bound in all H, S, e factors. See Figure 3-3 for an illustration.

Coarse Correlated Equilibrium (CCE). The prior algorithm VI-ULCB |[Bai
and Jin, 2020] computes the “greedy” policy with respect to the estimated value
functions by directly computing the Nash equilibrium for the @)-value at each step

h. However, since the algorithm maintains both the upper confidence bound and
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Algorithm 1 Optimistic Nash Value Iteration (Nash-VI)

1: Initialize: for any (s,a,b, h), Q,(s,a,b) < H,
Qh(s,a,b) +— 0, A<« H, Ny(s,a,b) < 0.
2: for episode k =1,..., K do

3 for steph=H,H—1,...,1do

4 for (s,a,b) € S x A x B do

5 t < Np(s,a,b).

6: if t > 0 then

7 Uns1 < (Vi ‘J:Kthl)/z'

8 B < BoNus(t, Vi [Up+1](s, a,b)).

9: v+ (¢/H)Pp(Viyq — K,ﬁrl)(s, a,b).

10: Q,,(s,a,b) < min{(r, + ]Iihvhﬂ)(s, a,b)+~v+ 5, H}.
11: Qh(s, a,b) < max{(r, + PyV,.1)(s,a,b) —v — 53,0}
12: for s € S do

13: Th(s,+|s) < CCE(Qh(s,-,-),Qh(s,-,-)).

14: Vi(s) < (D, Qp)(s).

15: Vi(s) ¢ (Dr, @, )(s)-

16: if (Vl — Kl)(sl) < A then

17: A+ (Vi —V,)(s1) and 70 < 7.

18: forsteph=1,...,H do

19: Take action (ap, by) ~ m4(+, <|sn), observe reward r, and next state sp. .
20: édd 1 to Nh(s;“ ap, bh) and Nh(Sh, ap, by, Sh—&—l)‘

21: ]P’h(-|sh, ap, bh) — Nh(Sh, ap, bh, -)/Nh(sh, ap, bh)

22: Output the marginal policies of 7" (p°", o).

lower confidence bound of the ()-value, this leads to the requirement to compute
the Nash equilibrium for a two-player general-sum matrix game, which is in general

PPAD-complete [Daskalakis, 2013].

To overcome this computational challenge, we compute a relaxation of the Nash
equilibrium— Coarse Correlated Equalibirum (CCE)—instead, a technique first in-
troduced by Xie et al. [2020] to address reinforcement learning problems in Markov
Games. Formally, for any pair of matrices @,Q c [0, H|**B, CCE(Q, Q) returns a

distribution m € A 45 such that

E(a,b)ww@(aa b) > H%L%X E(a,b)wﬂ@(a*v b)a

E(mb)wﬂg<a, b) < IIll)lIl E(mb)wﬂg<a7 b*)

(3.2)
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Figure 3-3: Insight II: Lower variance of estimations induces less uncertainty. The
value length of confidence bounds are the same for both instances, but the left instance
has higher variance in value function estimation in the next step so we would expect
the uncertinty is also higher in the current step.

Intuitively, in a CCE the players choose their actions in a potentially correlated way
such that no one can benefit from unilateral unconditional deviation. A CCE always
exists, since Nash equilibrium is also a CCE and a Nash equilibrium always exists.
Furthermore, a CCE can be computed by linear programming in polynomial time.
We remark that different from Nash equilibrium where the policies of each player
are independent, the policies given by CCE are in general correlated for each player.

Therefore, executing such a policy (line 19) requires the cooperation of two players.

3.2.3 Theoretical guarantees

Now we are ready to present the theoretical guarantees for Algorithm 1. We let
7% denote the policy computed in line 13 in the £ episode, and u*, /¥ denote the

marginal policy of 7" for each player.

Theorem 16 (Nash-VI with Hoeffding bonus). For any p € (0,1], letting + =
log(SABT/p), then with probability at least 1 — p, Algorithm 1 with Hoeffding type

bonus (3.1) (with some absolute ¢ > 0) achieves:
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e The output policies (u°", v satisfy (Vi™"™" — V"N (s1) < e if we choose

4 302 2
KZQ(HSfBL+HSABL).

€ €

e The algorithm has regret bound

K
R(K) = (W — V") (s1) < O(VH*SABT. + H*S?AB?),

k=1

where T'= K H 1is the total number of steps played within K episodes.

Theorem 16 provides both a sample complexity bound and a regret bound for
Nash-VI to find an e-approximate Nash equilibrium. For small ¢ < H/(St), the
sample complexity scales as O(H*SAB/e?). Similarly, for large T > H3S®AB/?, the
regret scales as O(vVH3SABT). Theorem 16 is significant in that it improves the
sample complexity of the model-based algorithm in Markov games from S? to S (and
the regret from S to v/S ). This is achieved by adding the new auxiliary bonus v in
value iteration steps as explained in Section 3.2.1. The proof of Theorem 16 can be
found in Appendix B.1.1.

Our next theorem states that when using Bernstein bonus instead of Hoeffding
bonus as in (3.1), the sample complexity of Nash-VI algorithm can be further im-
proved by a H factor in the leading order term (and the regret improved by a v H

factor).

Theorem 17 (Nash-VI with the Bernstein bonus). For any p € (0,1], letting + =
log(SABT /p), then with probability at least 1 — p, Algorithm 1 with Bernstein type

bonus (3.1) (with some absolute ¢ > 0) achieves:

e The output policies (u°", 1) satisfy (Vi"™" — V"N (s1) < & if we choose

3 3a2 2
KZQ(HSABL+HSABL>.

g2 €
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e The algorithm has regret bound

K
R(K) =Y (V" — V") (s1) < OWVH2SABT .+ H*S*AB/?),

k=1

where T'= K H 1is the total number of steps played within K episodes.

Compared with the information-theoretic sample complexity lower bound Q(H3S(A+

B)u/e?) and regret lower bound Q(y/H2S(A + B)T) [Bai and Jin, 2020], when ¢ is
small, Nash-VI with Bernstein bonus achieves the optimal dependency on all of H, S, ¢
up to logarithmic factors in both the sample complexity and the regret, and the only
gap that remains open is a AB/(A + B) < min{A, B} factor. The proof of Theo-

rem 17 can be found in Appendix B.1.2.

3.3 Reward-free Learning

In this section, we modify our model-based algorithm Nash-VI for the reward-free
exploration setting.

Formally, reward-free learning has two phases: In the exploration phase, the
agent collects a dataset of transitions D = {(Skn, @k,h, Okhs Skht1) } (kp)e[k]x[m] from
a Markov game M without the guidance of reward information. After the explo-
ration, in the planning phase, for each task i € [N], D is augmented with stochastic
reward information to become D’ = { (k1> Qs Ok Skt 1> o) Jkop) e[ [H], Where
Tk 1s sampled from some unknown reward distribution with expectation equal to
r2(3k7h, Qg by b ). Here, r* denotes the unknown reward function of the i*" task. The
goal is to compute nearly-optimal policies for N tasks under M simultaneously given
the augmented datasets {D'}ie(n).

There are strong practical motivations for considering the reward-free setting.

e In applications such as robotics, we face multiple tasks in sequential systems
with shared transition dynamics (i.e. the world) but very different rewards.
There, we prefer to learn the underlying transition independent of reward in-

formation.
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Algorithm 2 Optimistic Value Iteration with Zero Reward (VI-Zero)

Require: Bonus f;. B
1: Initialize: for any (s,a,b,h), Vi(s,a,b) < H, A < H, Ny(s,a,b) + 0.
2: for episode k =1,..., K do
3: forsteph=H, H—-1,...,1do

4: for (s,a,b) € S x Ax B do

5: t < Nu(s,a,b).

6: if t >0 then o

7: Qn(s,a,b) + min{(P,Vj41)(s,a,b) + B, H}.
8: for s € S do N

9: 71;1(8) ¢ Arg Max(qp)edxs Qn(s,a,b).

10: ~Vh(8) — (Dﬂth>(S>

11 if Vi(s1) < A then

12: A < Vi(s1) and Pt « P

13: forsteph=1,...,H do

14: Take action (ap, by) ~ m4(+, +|sn), observe next state sp41.
15: édd 1 to Nh(Sh, ap, bh) and Nh(sh, ap, bh, 8h+1).
16: ]P)h('|/8\h, ap, bh) — Nh(sh, ap, bh, -)/Nh(sh, ap, bh)

17: Output Pout.

e From the algorithm design perspective, decoupling exploration and planning
(i.e. performing exploration without reward information) can be valuable for
designing new algorithms in more challenging settings (e.g., with function ap-

proximation).

3.3.1 Algorithm description

We now describe our algorithm for reward-free learning in zero-sum Markov games.

Exploration phase. In the first phase of reward-free learning, we deploy algorithm
Optimistic Value Iteration with Zero Reward (VI-Zero, Algorithm 2). This algorithm
differs from the reward-aware Nash-VI (Algorithm 1) in two important aspects. First,
we use zero reward in the exploration phase (Line 7), and only maintains an upper
bound of the (reward-free) value function instead of both upper and lower bounds.
Second, our exploration policy is the maximizing (instead of CCE) policy of the value
function (Line 9). We remark that the Q,(s, a, b) maintained in the algorithm 2 is no

longer an upper bound for any actual value function (as it has no reward), but rather a
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measure of uncertainty or suboptimality that the agent may suffer—if she takes action
(a,b) at state s and step h, and makes decisions by utilizing the empirical estimate
P in the remaining steps (see a rigorous version of this statement in Lemma 75).
Finally, the empirical transition P of the episode that minimizes XNfl(sl) is outputted

and passed to the planning phase.

Planning phase. After obtaining the estimate of tranisiton @, our planning algo-
rithm is rather simple. For the i'" task, let 7 be the empirical estimate of 7* computed
using the i augmented dataset D?. Then we compute the Nash equilibrium of the
Markov game M(I@, 7) with estimated transition P and reward 7. Since both P and
7¢ are known exactly, this is a pure computation problem without any sampling error

and can be efficiently solved by simple planning algorithms such as the vanilla Nash

value iteration without optimism (see Appendix B.2.2 for more details).

3.3.2 Theoretical guarantees

Now we are ready to state our theoretical guarantees for reward-free learning. It
claims that the empirical transition pout outputted by VI-Zero is close to the true
transition P, in the sense that any Nash equilibrium of the M(P,7) (i € [N]) is
also an approximate Nash equilibrium of the true underlying Markov game M (P, r?),

where 77 is the empirical estimate of r* computed using D"

Theorem 18 (Sample complexity of VI-Zero). There exists an absolute constant
¢, for any p € (0,1], € € (0,H], N € N, if we choose bonus B; = c(/H?*/t +
H?2Su/t) with . =1og(NSABT /p) and K > ¢(H*SAB./e*+ H3S?AB.?/¢), then with
probability at least 1 — p, the output Pout of Algorithm 2 satisfies: For any N fized
reward functions r*,..., N, a Nash equilibrium of Markov game M(@OUt, ) is also

an e-approzimate Nash equilibrium of the true Markov game M(P,r*) for all i € [N].

Theorem 18 shows that, when ¢ is small, VI-Zero only needs O(H*SAB/&?) sam-
ples to learn an estimate of the transition ]/PSO‘“, which is accurate enough to learn

the approximate Nash equilibrium for any N fixed rewards. The most important
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advantage of reward-free learning comes from the sample complexity only scaling
polylogarithmically with respect to the number of tasks or reward functions N. This
is in sharp contrast to the reward-aware algorithms (e.g. Nash-VI), where the algo-
rithm has to be rerun for each different task, and the total sample complexity must
scale linearly in N. In exchange for this benefit, compared to Nash-VI, VI-Zero loses
a factor of H in the leading term of sample complexity since we cannot use Bernstein
bonus anymore due to the lack of reward information. VI-Zero also does not have a
regret guarantee, since again without reward information, the exploration policies are

naturally sub-optimal. The proof of Theorem 18 can be found in Appendix B.2.1.

Connections with reward-free learning in MDPs. Since MDPs are special
cases of Markov games, our algorithm VI-Zero directly applies to the single-agent
setting, and yields a sample complexity similar to existing results [Zhang et al., 2020b,
Wang et al., 2020].

However, distinct from existing results which require both the exploration algo-
rithm and the planning algorithm to be specially designed to work together, our
algorithm allows an arbitrary planning algorithm as long as it computes the Nash
equilibrium of a Markov game with known transition and reward. Therefore, our

results completely decouple the exploration and the planning.

Lower bound for reward-free learning. Finally, we comment that despite the
sample complexity in Theorem 18 scaling as AB instead of A 4+ B, our next theorem
states that unlike the general reward-aware setting, this AB scaling is unavoidable
in the reward-free setting. This reveals an intrinsic gap between the reward-free and
reward-aware learning: An A+ B dependency is only achievable via sampling schemes
that are reward-aware. A similar lower bound is also presented in Zhang et al. [2020a]

for the discounted setting with a different hard instance construction.

Theorem 19 (Lower bound for reward-free learning of Markov games). There exists
an absolute constant ¢ > 0 such that for any € € (0, c|, there exists a family of Markov

games M(e) satisfying that: for any reward-free algorithm A using K < cH*SAB/&?
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episodes, there exists a Markov game M € IM(e) such that if we run A on M and
output policies (i, V), then with probability at least 1/4, we have (VlT’ﬁ—Vl‘A"T)(sl) > €.

This lower bound shows that the sample complexity in Theorem 18 is optimal in

S, A, B, and . The proof of Theorem 19 can be found in Appendix B.2.3.

3.4 Multi-player general-sum games

In this section, we generalize the algorithms and their theoretical guarantees to general

games.

3.4.1 Multiplayer optimistic Nash value iteration

Here we present the Multi-Nash-VI algorithm, which is an extension of Algorithm 1

for multi-player general-sum Markov games.

The EQUILIBRIUM subroutine. Our EQUILIBRIUM subroutine in Line 11 could
be taken from either one of the {NASH, CE, CCE} subroutines for one-step games.
When using NASH, we compute the Nash equilibrium of a one-step multi-player
game (see, e.g., Berg and Sandholm [2016] for an overview of the available algo-
rithms); the worst-case computational complexity of such a subroutine will be PPAD-
hard [Daskalakis, 2013]. When using CE or CCE, we find CEs or CCEs of the one-step
games respectively, which can be solved in polynomial time using linear programming.
However, the policies found are not guaranteed to be a product policy. We remark
that in Algorithm 1 we used the CCE subroutine for finding Nash in two-player zero-
sum games, which seemingly contrasts the principle of using the right subroutine for
finding the right equilibrium, but nevertheless works as the Nash equilibrium and
CCE are equivalent in zero-sum games.

Now we are ready to present the theoretical guarantees for Algorithm 3. We let

7% denote the policy computed in line 11 of Algorithm 3 in the " episode.
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Algorithm 3 Multiplayer Optimistic Nash Value Iteration (Multi-Nash-VI)

1: Initialize: for any (s,a, h,i), Q,.(s,a) < H, Q, (s,a) < 0, A «+ H,
Ny(s,a) « 0.
2: for episode k =1,..., K do

3 for steph=H,H—1,...,1do

4 for (s,a) e S x A; x --- x A, do

5 t < Np(s,a);

6: if ¢ > 0 then

7: for player 1 =1,2,...,m do

8 Qpi(s,a) < min{(ry,; + ]lithH,i)(s, a)+ B, H}.

9: Qhﬂ-(sv Cl) — max{(rh’i + thh+1,i)(87 CL) — ﬁt, 0}

10: for s € S do

11: Th(+[s) = EQUILIBRIUM(Q), 1 (5, ), @pa(5,), -, Qpar(s, 7))
12: for player : = 1,2,...,m do
13: Vii(s) <= (Dr, Qni)(5); - Vpi(s) < (Dr, Q, ) (5)-
14:  if max;epm (Vii— V,.:)(s1) < A then
15: A+ maxie (Vi — Vi) (s1) and 7% < 7.
16: forsteph=1,...,H do
17: Take action ay, ~ m,(+|sy), observe reward ry, and next state sp1.
18: édd 1 to Nh(Sh, CLh) and Nh(Sh, a, 8h+1>.
19: Ph(-|sh,ah) < Nh(sh,ah,-)/Nh(sh,ah).

20: Output 7°".

Theorem 20 (Multi-Nash-VI). There exists an absolute constant c, for any p €
(0,1], let © = log(SABT/p), then with probability at least 1 — p, Algorithm 3 with
bonus 3; = C\/STZL/t and EQUILIBRIUM being one of {NASH, CE, CCE} satisfies
(repsectively):

o 7 4s an e-approvimate { NASH,CE,CCE}, if the number of episodes K >
QUHS* (T2, Aie/e?).

o Rynash,ce,cce}(K) < O(VH3S2(TT2, Ai)Te).

In the situation where the EQUILIBRIUM subroutine is taken as NASH, Theo-
rem 20 provides the sample complexity bound of Multi-Nash-VI algorithm to find an
e-approximate Nash equilibrium and its regret bound. Compared with our earlier re-
sult in two-player zero-sum games (Theorem 16), here the sample complexity scales as

S?H* instead of SH3. This is because the auxiliary bonus and Bernstein concentra-
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Algorithm 4 Multiplayer Optimistic Value Iteration with Zero Reward (Multi-VI-
Zero)

1: Initialize: for any (s,a,h), Vi(s,a) < H, A < H, Ny(s,a) < 0.
2: for episode k =1,..., K do
3: forsteph=H,H—-1,...,1do

4: for (s,a) e S x A x---x A, do

o: t Nh(S, a).

6: if t> 0 then s

7 Qn(s,a) < min{(P,Vii1)(s,a) + B, H}.
8: for s € S do N

9: Th(8) ¢ arg maXaee, <. xA,, @n(s; @).

10: ~Vh(s) — (D, Qn)(9).

11: if Vi(s1) < A then

12: A + Vi(s,) and Pt « P.

13: forsteph=1,...,H do

14: take action aj, ~ (-, -|sy), observe next state sj. 1.
15: add 1 to Nh(sh,ah) and Nh(sh,ah, Sh+1).

16: Ph('|§\h,ah) — Nh(sh,ah,~)/Nh(sh,ah).

17: Output P°U,

tion technique do not apply here. Furthermore, the sample complexity is proportional

to [~ A;, which increases exponentially as the number of players increases.

Runtime of Algorithm 3 We remark that while the Nash guarantee is the strongest
among the three guarantees presented in Theorem 20, the runtime of Algorithm 3 in
the Nash case is not guaranteed to be polynomial and in the worst case PPAD-
hard (due to the hardness of the NASH subroutine). In contrast, the CE and CCE
guarantees are weaker, but the corresponding algorithms are guaranteed to finish in

polynomial time.

3.4.2 Multiplayer reward-free learning

We can also generalize VI-Zero to the multiplayer setting and obtain Algorithm 4,
Multi-VI-Zero, which is almost the same as VI-Zero except that its exploration bonus

B, is larger than that of VI-Zero by a v/S factor.

Similar to Theorem 18, we have the following theoretical guarantee claiming that
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any {NASH,CCE,CE} of the M (P, 7) (i € [N]) is also an approximate {NAsH,CCE,CE}
of the true Markov game M (P, %), where Pout is the empirical transition outputted

by Algorithm 4 and 7% is the empirical estimate of r’.

Theorem 21 (Multi-VI-Zero). There exists an absolute constant ¢, for any p € (0, 1],
e € (0,H], N €N, if we choose bonus f; = cy/H2St/t with v = log(NSABT/p) and
K > c(H*S*(TT, Ai)e/€?), then with probability at least 1 — p, the output Pout of Al-
gorithm 4 has the following property: for any N fized reward functionsr',.... v, any
{NAsH,CCE,CE} of Markov game M(@’“t, ) is also an e-approzimate { NAsH,CCE,CE}

of the true Markov game M(P,r") for all i € [N].

The proof of Theorem 21 can be found in Appendix B.3.2. It is worth mention-
ing that the empirical Markov game M(fﬁ’out,?") may have multiple {Nash equilib-
ria,CCEs,CEs} and Theorem 21 ensures that all of them are e-approximate {Nash
equilibria, CCEs,CEs} of the true Markov game. Also, note that the sample complex-
ity here is quadratic in the number of states because we are using the exploration

bonus 3, = /H2St/t that is larger than usual by a /S factor.
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Chapter 4

Markov Games: Model-free Learning

Chapter 3 introduces a sample-efficient method for learning in Markov games using
a model-based approach. While this approach offers promise, it also presents several

challenges that have to be addressed.

One such challenge is the curse of multiagents—let A; be the number of actions
for the i-th player, then the number of possible joint actions (as well as the number of
parameters to specify a Markov game) scales with []}", A;, which grows exponentially
with the number of agents m. This remains to be a bottleneck even for the best
existing algorithms for learning Markov games. In fact, a majority of these algorithms
adapt the classical single-agent algorithms, such as value iteration or Q-learning, into
the multiagent setting Bai et al. [2020], Liu et al. [2021], whose sample complexity
scales at least linearly with respect to [];-, A;. This is prohibitively large in practice
even for fairly small multiagent applications, say only ten agents are involved with

ten actions available for each agent.

Another remaining challenge is to design decentralized algorithms. While a cen-
tralized algorithm requires the existence of a centralized controller which gathers all
information and jointly optimizes the policies of all agents, a decentralized algorithm
allows each agent to only observe her own actions and rewards while optimizing her
own policy independently. Decentralized algorithms are usually preferred over cen-

tralized algorithms in practice since
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1. Decentralized algorithms are typically easier to implement as we only need to

implement single-agent algorithms for each player without complex interactions;

2. Decentralized algorithms are more versatile as the individual learners are indif-

ferent to the interaction and the number of other agents; and

3. They are also faster in the systems where communication is the bottleneck, due

to less communication required.

While several provable decentralized MARL algorithms have been developed |[see,
e.g., Zhang et al., 2018, Sayin et al., 2021, Daskalakis et al., 2020|, they either have
only asymptotic guarantees or work only under certain reachability assumptions (see
Section 1.2). The existing provably efficient algorithms for general Markov games
(without further assumptions) are exclusively centralized algorithms [Bai and Jin,
2020, Xie et al., 2020, Liu et al., 2021].

This motivates us to ask the following open question:

Can we design decentralized MARL algorithms that break the curse of

multiagents?

This chapter addresses both challenges mentioned above, and provides the first
positive answer to this question in the basic setting of tabular episodic Markov games.
We propose a new class of single-agent RL algorithms—V-learning, which converts
any adversarial bandit algorithm with suitable regret guarantees into an RL algo-
rithm. Similar to the classical Q-learning algorithm, V-learning also performs incre-
mental updates to the values. Different from Q-learning, V-learning only maintains
the V-value functions instead of the Q-value functions. We remark that the number
of parameters of Q-value functions in MARL is O(S[[~, A;), where S is the number
of states, while the number of parameters of V-value functions is only O(S). This
key difference allows V-learning to be readily extended to the MARL setting by sim-
ply letting all agents run V-learning independently, which gives a fully decentralized

algorithm.
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Algorithm 5 V-LEARNING
1: Initialize: for any (s,a, h), Vi(s) < H +1—h, Nu(s) < 0, my(als) < 1/A.
2: for episode k =1,..., K do
3:  receive sj.
4: forsteph=1,...,H do
5: take action aj, ~ m,(+|sn), observe reward 7, and next state sp.
6: t= Nh(Sh) — Nh(Sh) + 1.
7: /
8
9

Vii(sn) <= (1 — ) Viu(sn) + ay(rn + Vi1 (sna1) + B).-
Vh<5h) < IIllIl{H +1-— h, Vh(Sh)}.

7h(-|sn) < ADV_BANDIT UPDATE(ay, H"“’L“?’;“(Sh“)) on (s, h)-th adver-

sarial bandit.

4.1 V-Learning Algorithm

In this section, we introduce the V-learning algorithm as a new class of single-agent
RL algorithms, which converts any adversarial bandit algorithm with suitable regret
guarantees into an RL algorithm. We also present its theoretical guarantees for finding

a nearly optimal policy in the single-agent setting.

4.1.1 Training algorithm

To begin with, we describe the V-learning algorithm (Algorithm 5). It maintains
a value Vj,(s), a counter Nj(s), and a policy m(-|s) for each state s and step h, and
initializes them to be the max value, 0, and uniform distribution respectively. V-
learning also instantiates S x H different adversarial bandit algorithms—one for each
(s,h) pair. At each step h in each episode k, the algorithm performs three major

steps:

e Policy execution (Line 5-6): the algorithm takes action a, according to the
maintained 7, then observes the reward r, and the next state s,.;, and in-

creases the counter Ny(s,) by 1.

e V-value update (Line 7-8): the algorithm performs incremental update to the

value function:

Vi(sn) < (1 — a)Vi(sn) + ci(rn + Vigi (sne1) + B) (4.1)
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Protocol 6 ADVERSARIAL BANDIT ALGORITHM
1: Initialize: for any b, 6,(b) < 1/B.
2: forstept=1,...,7T do
3:  adversary chooses loss /;.
4:  take action b; ~ 6, observe noisy bandit-feedback gt(bt).
5. 0441 < ADV_BANDIT UPDATE(b, {y(b;)).

where «; is the learning rate, and [, is the bonus to promote optimism (and
exploration). The choices of both quantities will be specified later. Next, we

simply update V}, as a truncated version of Vi

» H=rp=Vit1(Sht1)

e Policy update (Line 9): the algorithm feeds the action ay, and its “loss 7

to the (sp, h)-th adversarial bandit algorithm, and receives the updated policy

7Th(-|8h).

Throughout this paper, we will always use the following learning rate ay. We
also define an auxiliary sequence {a!}!_; based on the learning rate, which will be

frequently used across the paper.

H+1 : ‘
ap = —0, a?:H(l—aj), a;:aiH(l—aj). (4.2)

H+t
We remark that our incremental update (4.1) bears significant similarity to Q-learning,
and our choice of learning rate is precisely the same as the choice in Q-learning [Jin
et al., 2018|. However, a key difference is that the V-learning algorithm maintains
V-value functions instead of Q-value functions. This is crucial when extending V-
learning to the multiplayer setting where the number of parameters of Q-value func-
tions becomes O(HS [}, A;) while the number of parameters of V-value functions
is only O(HS). Since V-learning does not use action-value functions, it resorts to

adversarial bandit algorithms to update its policy.

ADV_BANDIT UPDATE subroutine: Consider a multi-arm bandit problem with
adversarial loss, where we denote the action set by B with |B| = B. At round ¢,

the learner picks a strategy (distribution over actions) 6, € Ag, and the adversary
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Algorithm 7 EXECUTING OUTPUT POLICY T OF V-LEARNING

1: sample k <— Uniform([K]).

2: for step h=1,...,H do

3:  observe s, and set t < NF(sp,).

4:  set k + ki (sp), where i € [t] is sampled with probability a.
5. take action aj, ~ 75 (+|sp).

chooses a loss vector ¢; € [0,1]5. Then the learner takes an action b; that is sam-
pled from distribution 6;, and receives a noisy bandit-feedback ¢;(b;) € [0, 1] where
E[l,(b;)|;,b] = £,(b). Then, the adversarial bandit algorithm performs updates
based on b, and Et(bt), and outputs the strategy for next round 6;,1, which we ab-

stract as 0,1 < ADV_BANDIT UPDATE(by, ;(b;)) (see Protocol 6).

4.1.2 Output policy

We define the final output policy 7 of V-learning by how to execute this policy (see
Algorithm 7). Let V¥ N* 7% be the value, counter and policy maintained by the V-
learning algorithm at the beginning of episode k. The output policy maintains a scalar
k, which is initially uniformly sampled from [K]. At each step h, after observing sj,,
plays a mixture of policy {m}" (-|s;)}/_, with corresponding probability {a/}!_, defined
in (4.2). Heret = N (sy,) is the number of times sy, is visited at step h at the beginning
of episode k, and k' is short for £} (s,) which is the index of the episode when sy, is
visited at step h for the i-th time. After that, 7 sets k to be the index k! (s;,) whose
policy is just played within the mixture, and continues the same process for the next
step. This mixture form of output policy 7 is mainly due to the incremental updates of
V-learning. One can show that, if omitting the optimistic bonus, V¥ (s;) computed
in the V-learning algorithm is a stochastic estimate of the value of policy 7. See
Figure 4-1 for a comparison between the certified policy techinique and conventional
online-to-batch conversion.

We remark that 7 is not a Markov policy, but a general random policy (see
Definition in Section 2.1.1), which can be written as a set of maps {m), : Q@ xS" — A;}.

The choice of action at each step h depends on a joint randomness w € €2 which is
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Figure 4-1: A comparison between the conventional online-to-batch conversion (left)
and the certified policy (right). While conventional online-to-batch conversion uses
uniform weighting and episode-wise average, certified policy uses non-uniform re-
weighting and step-wise average.

shared among all steps, and the history of past states (si,...,s,). In Section 4.4, we
will further introduce a simple monotone technique that allows V-learning to output

a Markov policy in both the single-agent and the two-player zero-sum setting.

4.1.3 Single-agent guarantees

We first state our requirement for the adversarial bandit algorithm used in V-learning,
which is to have a high probability weighted external regret guarantee as follows. The

weights {a!}l_, are defined in (4.2).

Assumption 1. For any t € N and any ¢ € (0, 1), with probability at least 1 — 4, we

have :

Jaax Z a[(0:. 6:) — (0. 6:)] < &(B, t,log(1/d)). (4.3)

We further assume the existence of an upper bound Z(B, t,log(1/6)) > S°i,_, £(B, ¢, log(1/9))

where
e £(B,t,1og(1/d)) is non-decreasing in B for any ¢, d;

e =(B,t,log(1/6)) is concave in t for any B, .
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Assumption 1 can be satisfied by modifying many existing algorithms with un-
weighted external regret to the weighted setting. In particular, we prove that the
Follow-the-Regularized-Leader (FTRL) algorithm (Algorithm 19) satisfies the As-

sumption 1 with bounds

£(B,t,10g(1/9)) < O(VHBlog(B/)/t), E(B,tlog(1/6)) < O(y/HBtlog(B/s)).

The H factor comes into the bounds because our choice of weights {ai} in (4.2)
involves H. We refer readers to Appendix C.6 for more details.
We are now ready to introduce the theoretical guarantees of V-learning for finding

near-optimal policies in the single-agent setting.

Theorem 22. Suppose subroutine ADV_BANDIT UPDATE satisfies Assumption 1.
For any 6 € (0,1) and K € N, let + = log(HSAK/§). Choose learning rate oy
according to (4.2) and bonus {1, so that S\ aif; = O(HE(A, t,1) + /H3./t)
for any t € [K|. Then, with probability at least 1 — &, after running Algorithm &5 for
K episodes, the output policy T of Algorithm 7 satisfies

Vi(s1) — Vi (s1) < O((H*S/K) - Z(A, K/S, 1) + /H?S./K).

In particular, when instantiating subroutine ADV_BANDIT UPDATE by FTRL (Al-

gorithm 19), we can choose By = ¢ - \/H3AL/t for some absolute constant ¢, where
Vi (s1) = Vi (s1) < O(VHSSAY/K).

The special cases of Theorem 22 and Theorem 23 (when the subroutine is instanti-
ated by FTRL) were firstly presented [Bai et al., 2020], with an additional v/ H factor
in the error due to a looser choice of hyperparameter.

Theorem 22 characterizes how fast the suboptimality of 7 decreases with respect
to the total number of episodes K. In particular, to obtain an e-optimal output
policy 7, we only need to use a number of episodes K = O(H°SA/e?). This is H?
factor larger than the information-theoretic lower bound Q(H?SA/e?) in this setting

[Jin et al., 2018]. We remark that one extra H factor is due to the incremental
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update and the use of learning rate in (4.2) which is exactly the same for Q-learning
algorithm [Jin et al., 2018]. The other H factor can be potentially improved by using
refined first-order regret bound in V-learning. A first-order regret bound Agarwal
et al. [2017] is a data-dependent regret bound that depends on the minimum total
loss incurred instead of the total number of steps. This makes it possible to further
combine the current analysis with Bernstein-type concentration and a sharper total
variance bound Azar et al. [2017]. We leave this as future work.

While V-learning seems to be no better than classical value iteration or Q-learning
in the single-agent setting, its true power starts to show up in the multiagent setting:
Value iteration and Q-learning require highly nontrivial efforts to adapt them to the
multiagent setting, and by design they suffer from the curse of multiagents [Bai et al.,
2020, Liu et al., 2021]. In the following sections, we will show that V-learning can be
directly extended to the multiagent setting by simply letting all agents run V-learning

independently. Furthermore, V-learning breaks the curse of multiagents.

4.2 Two-player Zero-sum Markov Games

In this section, we provide the sample efficiency guarantee for V-learning to find Nash

equilibria in two-player zero-sum Markov games.

4.2.1 Finding Nash equilibria

In the two-player zero-sum setting, we have two agents whose rewards satisfy r =
—roy for any h € [H|. Our algorithm is simply that both agents run V-learning
(Algorithm 5) independently with learning rate «; as specified in (4.2). Each player
J will uses her own set of bonus {f;;} that depends on the number of her actions
and will be specified later. To execute the output policy, both agents simply execute
Algorithm 7 independently using their own intermediate policies computed by V-
learning.

We have the following theorem for V-learning. For clean presentation, we denote

A = maxcp Aj.
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Theorem 23. Suppose subroutine ADV_BANDIT UPDATE satisfies Assumption 1.
For any § € (0,1) and K € N, let « = log(HSAK/§). Choose learning rate
ay according to (4.2) and bonus {B;,}5, of the j-th player so that S\_ oif;; =
O(HE(Aj, t, 1) ++/H3/t) for any t € [K]. After running Algorithm 5 for K episodes,
let 71, o be the output policies by Algorithm 7 for each player. Then with probability

at least 1 — 0, the product policy T = T X Ty satisfies

max[VT’f’j (51) = VT,

. s ,1
je J

(51)] S O((H?*S/K) - Z(A,K/S,1) + /HSL/K).

When instantiating ADV_BANDIT UPDATE by FTRL (Algorithm 19), we can
choose ;¢ = ¢ - \/H3A i/t for some absolute constant ¢, which leads to

max[V7 7 (s1) — Vi (s1)] < O(V/H3SAJK).

J€[2]

Theorem 23 claims that, to find an e—approximate Nash equilibrium, we only
need to use a number of episodes K = O(H*SA/e?), where A = max;cz 4;. In con-
trast, value iteration or Q-learning-based algorithms require at least Q(H3SA; Ay /e?)
episodes to find Nash equilibria Bai et al. [2020], Liu et al. [2021]. Furthermore, V-
learning is a fully decentralized algorithm. To our best knowledge, V-learning is the
only algorithm up to today that achieves sample complexity linear in A for finding
Nash equilibrium in two-player zero-sum Markov games.

We remark that V-learning only performs O(1) operations and calls subroutine
ADV_BANDIT UPDATE once every time a new sample is observed. As long as the
adversarial bandit algorithm used in V-learning is computationally efficient (which is

the case for FTRL), V-learning itself is also computationally efficient.

4.3 Multiplayer General-sum Markov Games

In multiplayer general-sum games, finding Nash equilibria is computationally hard

in general (which is technically PPAD-complete Daskalakis [2013]). In this section,
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we focus on finding two commonly-used alternative notions of equilibria in the game
theory—coarse correlated equilibria and correlated equilibria. Both are relaxed no-

tions of Nash equilibria.

4.3.1 Finding coarse correlated equilibria

The algorithm for finding CCE is again running V-learning (Algorithm 5) indepen-
dently for each agent j with learning rate a; (as specified in (4.2)) and bonus {5;,}
(to be specified later). The major difference from the case of finding Nash equilibria
is that CCE and CE require the output policy to be a joint correlated policy. We
achieve this correlation by feeding the same random seed to all agents at the very
beginning when they execute the output policy according to Algorithm 7. That is,
while training can be done in a fully decentralized fashion, we require one round of
communication at the beginning of the execution to broadcast the shared random
seed. After that, each agent can simply execute her own output policy indepen-
dently. During the execution, since the states visited are shared among all agents,
shared random seed allows the same index ¢ to be sampled across all agents in the
Step 4 of Algorithm 7 at every step. We denote this correlated joint output policy as
T=T10...0Tpny.

We remark that to specify a correlated policy in general, we need to specify the
probability for taking all action combinations (ai,...,a,) for each (s,h). This re-
quires at least Q(HS H;n:l A;) space, which grows exponentially with the number of
agents m. The way V-learning specifies the joint policy only requires agents to store
their own intermediate counters and policies computed during training. This only
takes a total of O(HSK (Y 7", A;)) space, which scales only linearly with the number
of agents. Our approach dramatically improves over the former approach in space
complexity when the number of agents is large.

We now present the guarantees for V-learning to learn a CCE as follows. Let

A= Hlane[m} Aj.

Theorem 24. Suppose subroutine ADV_BANDIT _UPDATE satisfies Assumption 1.
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For any § € (0,1) and K € N, let « = log(mHSAK/§). Choose learning rate
a; according to (4.2) and bonus {B;:}5, of the j-th player so that S i_ oif;; =
O(HE(Aj,t, 1) +\/H3u/t) for any t € [K]. After all the players running Algorithm 5
for K episodes, let T; be the output policy by Algorithm 7 for the j-th player. Then
with probability at least 1 — 0§, the joint policy T =71 ® ... O T, satisfies

max[VT A
J€[m]

j(sl) - Vfl(sl)] < O((HQS/K) E(Av K/Sv L) + H5SL/K)'

When instantiating ADV_BANDIT UPDATE by FTRL (Algorithm 19), we can choose
Bji = c-\/H3A;L/t for some absolute constant c, which leads to

max [V, (s1) — Vi (s1)] < O(VHSA/K).

J€[m]

Theorem 24 claims that, to find an e—approximate CCE, V-learning only needs to
use a number of episodes K = O(H®SA/e?), where A = maXje[m) A;j. This is in sharp
contrast to the prior results for multiplayer general-sum Markov games, which use
value-iteration-based algorithms, and require at least Q(H*S?*([];~, A;)/e*) episodes
Liu et al. [2021]. As a result, V-learning is the first algorithm that breaks the curse

of multiagents for finding CCE in Markov games.

4.3.2 Finding correlated equilibria

The algorithm for finding CE is almost the same as the algorithm for finding CCE
except that we now require a different ADV_BANDIT UPDATE subroutine, which

has the following high probability weighted swap regret guarantee.

Assumption 2. For any £ € N and any 6 > 0, with probability at least 1 — ¢, we

have

max Z Q[(0;, 1) — (10 0 0;,1))] < Eaw(B, t,10g(1/6)). (4.4)

We assume the existence of an upper bound Z., (B, t,log(1/08)) > 37, _, &w(B, ', log(1/4))

where
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o & (B, t,log(1/d)) is non-decreasing in B for any ¢, ¢;
o = (B,t,log(1/0)) is concave in t for any B, 0.

Here ¥ denotes the set {¢ : B — B} which consists of all maps from actions in
B to actions in B. Meanwhile, for any § € Apg, the term ¢ ¢ 6 € Ag denotes the
distribution over actions where ¢ o 6(b) = >, ;—, 0(0'). We note that bounded
swap regret is a stronger requirement compared to bounded external regret as in
(4.3), since by maximizing over a subset of functions in ¥ which map all actions in
B to one single action, we recover the external regret by (4.4).

Assumption 2 can be satisfied by modifying many existing algorithms with exter-
nal regret to the swap regret setting. In particular, we prove that the Follow-the-
Regularized-Leader for swap regret (FTRL _swap) algorithm (Algorithm 20) satisfies

Assumption 2 with bounds
€ (B,1,108(1/0)) < O(B\/HI0g(BJ0)1), (B, 1,108(1/6)) < O(B/HE1og(B/]3)).

Both bounds have one extra v/ B factor compared to the counterparts in external
regret. We refer readers to Appendix C.7 for more details.
We now present the guarantees for V-learning to learn a CCE as follows. Let

A= mane[m} A]

Theorem 25. Suppose subroutine ADV_BANDIT UPDATE satisfies Assumption 2.
For any § € (0,1) and K € N, let « = log(mHSAK/§). Choose learning rate
a; according to (4.2) and bonus {B;:}5, of the j-th player so that S \_ oif;; =
O(HEw(Aj,t,0) + \/H3/t) for any t € [K]. After all the players running Algorithm
5 for K episodes, let ; be the output policy by algorithm 7 for the j-th player. Then
with probability at least 1 — 0, the joint policy T =71 ® ... O T, satisfies

max max[V5 " (s1) — V7 (s1)] < Zsul4, L) + t/K).
VT (51) = Vii(s1)] < O((H2S/K) - Eoul A, K/S,0) + v/SHL/K)

j€lm]  ¢;
When instantiating ADV__BANDIT UPDATE by FTRL swap (Algorithm 20), we can
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choose B; = c¢- Aj\/H3/t for some absolute constant c, which leads to

maxmax[\/ﬁfﬁ(sl) — Vji(sl)] < O(AVH’SL/K).

JEM] ¢;

Theorem 25 claims that, to find an e—approximate CE, V-learning only needs to
use a number of episodes K = O(H?SA?/e?), where A = maXje[m A;. It has an extra
A multiplicative factor compared to the sample complexity of finding CCE, since CE
is a subset of CCE thus finding CE is expected to be more difficult. Nevertheless, the
sample complexity presented here is far better than value-iteration-based algorithms,
which requires at least Q(H*S?*(J]", A;)/e?) episodes for finding CE Liu et al. [2021].
V-learning is also the first algorithm that breaks the curse of multiagents for finding

CE in Markov games.

4.4 Monotonic V-Learning

In the previous sections, we present the V-learning algorithm whose output policy
(Algorithm 7) is a nested mixture of Markov policies. Storing such an output policy
requires O(HSA; K) space for the j-th player. In Section 4.3, we argue this approach
has a significant advantage over directly storing a general correlated policy when the
number of agents is large. Nevertheless, this space complexity can be undesirable

when the number of agents is small.

In this section, we introduce a simple monotonic technique to V-learning, which
allows each agent to output a Markov policy when finding Nash equilibria in the two-
player zero-sum setting. Storing a Markov policy only takes O(HSA;) space for the
j-th player. A similar result for the single-agent setting can be immediately obtained
by setting the second player in the Markov game to be a dummy player with only a

single action to choose from.
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Monotonic update Monotonic V-learning is almost the same as V-learning with

only the Line 8 in Algorithm 5 changed to
Vh(Sh) <— Hlln{H +1-— h, f/h(sh), Vh(sh)}. (45)

This step guarantees Vj,(sp) to monotonically decrease at each step. This is helpful
because in two-player zero-sum Markov games, all Nash equilibria share a unique
value which we denote as VV*. By design, we can prove that the V-values maintained
in V-learning are high probability upper bounds of V* (Lemma 96). This monotonic
update allows our V-value estimates to always get closer to V* after each update,

which improves the accuracy of our V-value estimates.

Markov output policy For an arbitrary fixed (s,h) € S x [H], let t; be the last
episode when the value V ;(s) is updated (i.e., strictly decreases), and let t5 be the
last episode when the value V55, (s) is updated. Then the output policy for this (s, h)

has the following form.

Ton(: g at27r1h )y Tan(: E ozt17r2h (4.6)

where k' denotes the index of episode when state s is visited at step h is visited for
the i time. Recall that Tf’ »(-|s) is the policy maintained by the j-th player at the
beginning of the k-th episode when she runs V-learning. That is, the new output
policy is simply the weighted average of policies computed in the V-learning at each
(s,h) pair. Clearly, the policies 7; and 79 defined by (4.6) are Markov policies.

We remark that although the execution of 7; and 75 can be fully decentralized,
in (4.6) the computation of 7y 5(-|s) depends on t5 while the computation of 7o (+|s)
depends on t;. That is, two players need to communicate at the end the indexes of
the most recent episodes when their V-values are updated. As a result, monotonic

V-learning is not fully decentralized.

Theorem 26. Monotonic V-learning with output policy @ = 71 X Ty as specified by
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(4.6) has the same theoretical guarantees as Theorem 23 with the same choices of

hyperparamters.

Theorem 26 asserts that V-learning can be modified to output Markov policies
when finding Nash equilibria of two-player zero-sum Markov games. As a special case,

the same technique and results directly apply to the single-agent setting.

4.5 Online learning in unknown Markov Games

Model-free methods have many advantages. We have already seen one of them: the
sample complexity grow mild as the number of agents is increasing and thus we aviod
the curse of mutli-agency. In this section, we will touch another advantage of
model-free learning: the learning process is fully decentralized and each agent does
not need to observe the action chosen by the other agents. As a result, we can use
a variant of V-learning to do online learning in unknown Markov games. Due to the
hardness result presented in Section 2.5.2, we will need to work with a more modest
goal. That is, to minimize the following regret against the minimax value of the game,

which has appeared in prior works [Brafman and Tennenholtz, 2002, Xie et al., 2020]:
K * k 1%
Regret(K) i= Y (VW (sh) = VI (). (@.7)

4.5.1 The V-oOL algorithm

In this section, we introduce the V-OL algorithm and its regret guarantees for
online learning in two-player zero-sum unknown Markov games. We show that not
only can we achieve a sublinear regret in this challenging setting, but the regret bound

can be independent of the size of the opponent’s action space as well.

The V-oL algorithm. V-OL is a variant of V-learning algorithms. Bai et al. [2020]
first propose V-SP as a near-optimal algorithm for the self-play setting of two-player
zero-sum MGs. See the discussion at the end of this section for a detailed comparison

between V-OL and V-SP.
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Algorithm 8 Optimistic Nash V-learning for Online Learning (V-OL)

1: Require: Learning rate {a;}:>1, exploration bonus {3;};>1, policy update pa-
rameter {7 }+>1

2: Initialize: for any h € [H],s € Sy,a € Ap, Vi(s) < H, Lj(s,a) < 0, Ny(s) < 0,
pn(als) <= 1/[Anl.

3: for episode k =1,...,K do

4:  Receive s1

5. forsteph=1,...,H do

6: Take action ap, ~ up(+|sn)

7 Observe return r, and next state spyq

8: Increase counter t = Nj(sp) < Np(sp) + 1

9: Vi(sn) <= (1 — ) Vi(sn) + ae(rn + Vg1 (sn1) + 5Br)
10: for all actions a € A;, do

11: In(sn,a) < (H =11 — Vi (snga)) Man = a) /(pn(an|sn) + ne)
12: Lp(sp,a) < (1 — ;) Lp(sp, a) + ayly(sn, a)

13: Update policy p by

exp{—iLn(sn, )/}
20 XP{=nLn(sn,a)/cu}

pn(-lsn)

In V-oL (Algorithm 8), at each time step h, the player interacts with the envi-
ronment, performs an incremental update to V},, and updates its policy u,. Note
that the estimated value function V}, is only used for the intermediate loss I (sp, -)
in this time step, but not used in decision making. To encourage exploration in less
visited states, we add a bonus term ;. The update rule is optimistic, i.e., V}, is an
upper confidence bound (UCB) on the minimax value V;* of the MG. Then the player
samples the action according to the exponentially weighted averaged loss Ly(sp, -),

which is a popular decision rule in adversarial environments [Auer et al., 1995].

Intuition behind V-learning. Most existing provably efficient tabular RL algo-
rithms learn a Q-table (table consisting of Q-values). However, since state-action
pairs are necessary for updating the Q-table, for online learning in MGs, algorithms
based on it inevitably require observing the opponent’s actions and are thus inappli-
cable to unknown MGs. In contrast, V-OL does not need to maintain the Q-table at
all and bypasses this challenge naturally.

Moreover, learning a Q-value function in two-player Markov games usually results
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in a regret or sample complexity that depends on its size SAB, whether in the self-play
setting, such as VI-ULCB [Bai and Jin, 2020] and Q-SP |Bai et al., 2020], OMNI-VI-
offline [Xie et al., 2020], or in the online setting, such as OMNI-VI-online [Xie et al.,
2020] and Q-OL [Tian et al., 2021]. In contrast, V-learning is promising in removing

the dependence on B, as formalized in Theorem 27.

Favoring more recent samples. Despite the above noted advantages of V-learning,
the V-sp algorithm [Bai et al., 2020] may have a regret bound that is linear in K, as
indicated by (4.9) in Theorem 27. To resolve this problem, we adopt a different set
of hyperparameters to learn more aggressively by giving more weight to more recent
samples. Concretely, for the self-play setting, Bai et al. [2020] specify the following
hyperparameters for V-Sp:

H+1 _ H*AL _
— H+t) Pt T o = At

where ¢ is a log factor defined later. For the online setting, we set these hyperparam-

eters as:

/GH3A / GH log A
Qy = G’H—l—t’ ﬂt L —A;)g y (48)

where GG > 1 is a quantity that we tune. Ostensibly, these changes may appear small,
but they are essential to attaining a sublinear regret.

Compared with oy = /s, the learning rate oy = #+1/m4+¢ first proposed in |Jin et al.,
2018]| already favors more recent samples. Here we go one step further: our algorithm
learns even more aggressively by taking a;, = GH+1/gH++ with G > 1. Moreover, we
choose a larger n; to make our algorithm care more about more recently incurred loss.
By is set accordingly to achieve optimism.

We call this variant of V-learning V-OL, for which we prove the following regret

guarantees.

Theorem 27 (Regret bounds). For any p € (0,1), let ¢ = log(H5AK/p). If we run

V-OL with our hyperparameter specification (4.8) for some large constant ¢ and G > 1
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i an online two-player zero-sum MG, then with probability at least 1 — p, the regret

i K episodes satisfies
Regret(K) = O(VGHSAK.+ KH/G + H*S). (4.9)

In particular, by taking G = H ' (K/SA)"® if K > H3SA and G = K'* otherwise,

with probability at least 1 — p, the regret satisfies

O(H?S5ASK3 + H?S), if K > H3SA,
Regret(K) = ¢
OV H3SAKS + H2S), otherwise.

Theorem 27 shows that a sublinear regret against the minimax value of the MG
is achievable for online learning in unknown MGs. As expected, the regret bound
does not depend on the size of the opponent’s action space B. This independence of
B is particularly significant for large B, as is the case where our player plays with
multiple opponents. Note that although in Theorem 27 setting the parameter G
requires knowledge of K beforehand, we can use a standard doubling trick to bypass

this requirement.

Remark 28. In V-SP the parameter G s set to be 1. Then our choice of ny becomes
\/WA/AL VH times the original policy update parameter. If the other player also
adopts the new \/WB/Bt policy update parameter, then the sample complexity of
V-SP can actually be improved upon [Bai et al., 2020/ by an H factor to @(HE’S(AJr

B)/&?).

Comparison between V-OL and V-spP.

1. To achieve near-optimal sample complexity in the self-play setting, V-SP needs
to construct upper and lower confidence bounds not only for the minimaz value
of the game, but also for the best response values. As a result, it uses a compli-
cated certified policy technique, and must store the whole history of states and

policies in the past K episodes for resampling. By comparing with the minimax
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value directly, we can make V-OL provably efficient without extracting a certi-
fied policy. Therefore, V-OL only needs O(HSA) space instead of O(HSAK),

and the resampling procedure is no more necessary.

2. A key feature of the proof in [Bai et al., 2020] is to make full use of a symmetric
structure, which naturally arises because in the self-play setting we can control
both players to follow the same learning algorithm. However, this property no
longer holds for the online setting, and we must take a different proof route.
Algorithmically, we need to learn more aggressively to make V-OL provably

efficient.

3. V-0L also works in multi-player general-sum MGs—see Section 4.5.2.

4.5.2 Multi-player general-sum games

In this section, we extend the regret guarantees of V-OL to multi-player general-
sum MGs, demonstrating the generality of our algorithm. Informally, we have the

following corollary.

Corollary 29. (informal) If we run V-OL with our hyperparameter specificified in (4.8)
for our player in an online multi-player general-sum MG, then with high probability,

for sufficiently large K,
Regret(K) = O(H2S3AS K3 + H2S),

where A denotes the size of our player’s action space.

The above corollary highlights the significance of removing the dependence on B
in the regret bound. In particular, in a multi-player game the size of the opponents’
joint action space B grows exponentially in the number of opponents, whereas the
regret of V-OL only depends on the size of our player’s action space A. The savings
arise because V-OL bypasses the need to learn Q-tables, and the multi-player setting
makes no real difference in our analysis. To formally present the construction, we

need to first introduce some notation.
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Consider the m-player general-sum MG
MGm(S7 {Ai};ila]]?): {Ti}zrihH): (410)

where S, H follow from the same definition in two-player zero-sum MGs, and

— for each i € [m], player i has its own action space A; = (J,¢ (s Ain and return
function r; = {r;p : Sp x Qiry Aipn — [0,1]}2,, and aims to maximize its own

cumulative return (here () denotes the Cartesian product of sets);

— P is a collection of transition functions {Py, : S, x Q" Ain = A(Shi1) bhem).

Like in two-player MGs, let

S = sup S|, A;:= sup |A;, k| for all i € [m].
he[H] he[H]

Online learning in an unknown multi-player general-sum MG can be reduced to that in
a two-player zero-sum MG. Concretely, suppose we are player 1, then online learning
in unknown MGs (4.10) is indistinguishable from that in the two-player zero-sum MG
specified by (S, Ay, B,P,r1, H) where B = )", A;, since we only observe and care

about player 1’s return. For all states s € &1, define the value function using r; as

H
1,0 (Sh’7 ap, bh’)|5h - 5]7

Vii(s) =Ky [Z

h'=h

and define the minimax value of player 1 as

Vi (s) := max min V/*"(s) = min max V" (s),
poow v

which is no larger than the value at the Nash equilibrium of the multi-player general-

sum MG. Then we define the regret against the minimax value of player 1 as

Regret(K) = 3 (V(sh) — V¥ (s}).

We argue that this notion of regret is reasonable since we have control of only player
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1 and all opponents may collude to compromise our performance. Then immediately

we obtain the following corollary from Theorem 27.

Corollary 30 (Regret bound in multi-player MGs). For any p € (0,1), let + =
log(HSAK/p). If we run V-OL with our hyperparameter specification (4.8) for some
large constant ¢ and the above choice of G for player 1 in the online multi-player
general-sum MG (4.10), then with probability at least 1 — p, the regret in K episodes

satisfies

O(H?SAJ K3 + H2S), if K > H3SA,,
Regret(K) =
O(\/HE’SAlK% + HQS), otherwise.

In the online informed setting, the same equivalence to a two-player zero-sum
MG holds, since the other players’ actions we observe can be seen as a single action
(a;),, and whether we observe the other players’ returns does not help us decide our
policies to maximize our own cumulative return. In this setting, the regret bound in

[Xie et al., 2020] becomes O(+/H3S3 [, A?T), which depends exponentially on m.

On the other hand, since the online informed setting has stronger assumptions than
online learning in unknown MGs, the O(H25"*A/* K¥*) regret bound of V-OL carries
over, which has no dependence on m. This sharp contrast highlights the importance
of achieving a regret independent of the size of the opponent’s action space.
Furthermore, since in V-OL we only need to update the value function (which has
H S entries), rather than update the Q-table (which has HS [}, A; entries) as in [Xie
et al., 2020], we can also improve the time and space complexity by an exponential

factor in m.
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Chapter 5

Extensive-form Games: Prelimiaries

Imperfect Information Games—games where players can only make decisions based on
partial information about the true underlying state of the game—constitute an impor-
tant challenge for modern artificial intelligence. The celebrated notion of Imperfect-
Information Extensive-Form games (IIEFGs) |[Kuhn, 1953] offers a formulation for
games with both imperfect information and sequential play. IIEFGs have been widely
used for modeling real-world imperfect information games such as Poker |Heinrich
et al., 2015, Moravvcik et al., 2017, Brown and Sandholm, 2018], Bridge [Tian et al.,
2020], Scotland Yard [Schmid et al., 2021], etc, and achieving strong performances
therein. See Figure 5-1 for an illustration of the imperfect information in the context

of poker.

This section introduces the problem formulation of imperfect-information extensive-
form games (ITEFGs) and the corresponding regret minimization framework. To sim-
plify the presentation, we first introduce the standard external regret and CCE (or
Nash equilibrium for 2p0s games), and subsequently discuss the more complex con-
cepts of trigger regret and EFCE. Additionally, we provide a lower bound from Bai
et al. [2022b] that characterize the minimum number of episodes required to learn the

corresponding equilibria in [IEFGs.
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Figure 5-1: An illustration of imperfect information through the example of poker.
Here we consider a toy example with four different states. Each player is dealt either
720 or AAs. The min player’s cards are on the top and the max player’s cards are at
the bottom.

5.1 Game Formulation

We consider two-player zero-sum ITEFGs using the formulation via Partially Observ-
able Markov Games (POMGs), following [Kozuno et al., 2021]. In the following, A(.A)

denotes the probability simplex over a set A.

Partially observable Markov games We consider finite-horizon, tabular, two-
player zero-sum Markov Games with partial observability, which can be described as

a tuple POMG(H, S, X, Y, A, B,P,r), where
e H is the horizon length;
o S =Upe Sn is the (underlying) state space with [S,| = S), and Z;?:l Sp=35;

e X = Ue & is the space of information sets (henceforth infosets) for the
magz-player with |X,] = X;, and X = S37_ X),. At any state s, € Sy, the
max-player only observes the infoset z;, = x(sp) € &), where z : § — X is the

emission function for the max-player;

o) = Uhe[H] YV, is the space of infosets for the min-player with |V, = Y}, and
Y = Zthl Yh. An infoset y, and the emission function y : § — )Y are defined

similarly.
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Figure 5-2: An illustration of EFGs.

e A, B are the action spaces for the max-player and min-player respectively, with
|A| = A and |B| = B. While this assumes the action space at each infoset have
equal sizes, our results can be extended directly to the case where each infoset

has its own action space with (potentially) unequal sizes.

o P = {po(-) € A(S1)} U{pn(-[sh, an, br) € A(Sni1)}(sn,anbn)eSnxAxB, he[H-1] are
the transition probabilities, where p;(s;) is the probability of the initial state
being s, and py(Spi1|Sk, an, by) is the probability of transitting to sj41 given

state-action (sp, ap,by) at step h;

o r = {rn(sn,an,bn) € [0, 1]}, 4, b)es, xaxp are the (random) reward functions

with mean 7p,(sp, an, by,).

See Figure 5-2 for an illustration of the decision-making process described.

Policies, value functions As we consider partially observability, each player’s
policy can only depend on the infoset rather than the underlying state. A policy for
the max-player is denoted by p = {un(-|zn) € A(A) }hein)anex,, Where pp(ap|zy) is
the probability of taking action a; € A at infoset x; € A},. Similarly, a policy for
the min-player is denoted by v = {vi(-|yn) € A(B) e ey, A trajectory for the
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max player takes the form (xy,ay,r1, 22, ..., 25, ag,7y), where ap ~ uy(-|zy), and
the rewards and infoset transitions depend on the (unseen) opponent’s actions and
underlying state transition.

The overall game value for any (product) policy (u,v) is denoted by V¥ :=
E,. Zthl Tr(Sh, an, bh)]. The max-player aims to maximize the value, whereas the

min-player aims to minimize the value.

Tree structure and perfect recall We use a POMG with tree structure and
the perfect recall assumption as our formulation for ITEFGs, following [Kozuno et al.,
2021]. The class of tree-structured, perfece-recall POMGs is able to express all perfect-
recall ITEFGs (defined in [Osborne and Rubinstein, 1994|) that additionally satisfy the
timeability condition [Jakobsen et al., 2016|, a mild condition that roughly requires
that infosets for all players combinedly could be partitioned into ordered “layers", and
is satisfied by most real-world games of interest [Kovavrik et al., 2022]. Further, our
algorithms can be directly generalized to any perfect-recall IIEFG (not necessarily
timeable), as we only require each player’s own game tree to be timeable (which holds
for any perfect-recall IIEFG), similar as existing OMD/CFR type algorithms |Zinke-
vich et al., 2007, Farina et al., 2020b]. We assume that our POMG has a tree structure:
For any h and s, € S, there exists a unique history (s, aq,b1,...,Sp-1,@n-1,bn_1)
of past states and actions that leads to s,. We also assume that both players have
perfect recall: For any h and any infoset z; € &), for the max-player, there exists
a unique history (z1,a1,...,xn_1,a,_1) of past infosets and max-player actions that
leads to zj (and similarly for the min-player). We further define Cy/(xp, ap) C X to
be the set of all infosets in the h'-the step that are reachable from (x, ay), and define
Cr(xp) = Ua,eaCh/(xp, ap). Finally, define C(zy,an) = Chy1(zh, ap) as a shorthand
for immediately reachable infosets.

With the tree structure and perfect recall, under any product policy (u,v), the

probability of reaching state-action (sp,an, by) at step h takes the form

PR (spy an, bn) = prn(Sk) pn(Th, an)vin (Yn, br), (5.1)
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where we have defined the sequence-form transition probability as

pra(sn) = po(s1) H P (Swrsa|sws an, i),
h<h—1

where {su/, ap, by }y/o), are the histories uniquely determined from s; by the tree

structure, and the sequence-form policies as

h h
pun(@n, an) = [T s lawlon),  vinln.bn) = T v (Owlyw),
=1 h=1
where xp = x(sp) and yp = y(sp) are the infosets for the two players (with

{xn, an}, <1 are uniquely determined by x;, by perfect recall, and similar for {y, by }, < hot)-

We let 1. denote the set of all possible policies for the max player (I, for
the min player). In the sequence form representation, I, is a convex compact
subset of R4 specified by the constraints ji1.; (x5, ay) > 0 and ZaheA pin(Th, ap) =
t1n—1(zn_1,ap_1) for all (h,zp,an), where (xj_1,a,_1) is the unique pair of prior

infoset and action that reaches z;, (understanding po(xo, ag) = po(0) = 1).

5.2 Regret and Nash Equilibrium

We consider two standard learning goals: Regret and Nash Equilibrium. For the
regret, we focus on the max-player, and assume there is an arbitrary (potentially
adversarial) opponent as the min-player who may determine her policy v* based on
all past information (including knowledge of 1if) before the ¢-th episode starts. Then,
the two players play the t-th episode jointly using (u',v'). The goal for the max-
player’s is to design policies {yt}le that minimizes the regret against the best fixed

policy in hindsight:

RT .= max (V“T’”t — V“t’”t) (5.2)



We say a product policy (p, ) is an e-approximate Nash equilibrium (e-NE) if

NEGap(p,v) :== max Ve omin VA <e

HT Ellmax vt €llmin

i.e. p and v are each other’s e-approximate best response.

Definition of average policies For two-player zero-sum ITEFGs, we define the

average policy of the max-player 1w = %ZtT:l p! (in conditional form) by

Zt 1 Nl h (Th, an)

Sy M () (5.3)

Ay (an|zy) =

for any h and (xp,a) € &), x A. It is straightforward to check that this & is exactly
the averaging of y' in the sequence-form representation (see e.g. [Kozuno et al., 2021,

Theorem 1]):

T

1
T (zh, ap) =7 Zui w(xn,ap)  for all (h,xp, ap). (5.4)

Both expressions above can be used as the definition interchangably. The average

policy of the min-player 7 = :lp Zthl V' is defined similarly.

Online-to-batch conversion [t is a standard result that sublinear regret for both
players ensures that the pair of average policies (&, 7) is an approximate NE (see

e.g. [Kozuno et al., 2021, Theorem 1|):

Proposition 31 (Regret to Nash conversion). For any sequence of policies {,ut}tT:1 €
IIhax and {Vt}thl € Iin, the average policies 11 = %23:1 putoand v = %23:1 vt
(averaged in the sequence form, cf. (5.4)) satisfy

R + RL;

NEGap(ﬁ, ﬁ) max = min ’
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where

T T
ML = max Z(V“T’”t—‘/“t’”t), ML, = max Z(V“t’”t—V“t’”T)

max min
}LTGHmax =1 VTEHmin =1

denote the regret for the two players respectively.

Therefore, an approximate NE can be learned by letting both players play some

sublinear regret algorithm against each other in a self-play fashion.

Bandit feedback Throughout this paper, we consider the interactive learning (ex-
ploration) setting with bandit feedback, where the max-player determines the policy
ut, the opponent determines ' (either adversarially or by running some learning
algorithm, depending on the context) unknown to the max-player, and the two play-
ers play an episode of the game using policy (u',r'). The max player observes the
trajectory (zt,a%,rt, ... a%, aly, ) of her own infosets and rewards, but not the

opponent’s infosets, actions, or the underlying states.

Conversion to online linear regret minimization The reaching probability
decomposition (5.1) implies that the value function V*" is bilinear in (the sequence
form of) (u,v). Thus, fixing a sequence of opponent’s policies {yt}thl, we have the

linear representation

H
V”’"tzz Z prn(xn, ap) Z pra(su)vr, (y(sn), br)Th(Sk, an, by).

h=1 (wh,ah)EXhX.A Shexh,bhEB

Therefore, defining the loss function for round t as

Glwn,an) = Y pralsn)vinylsn), ba)(1 = Ta(sn, an, bn)) (5.5)

ShEZ‘h,bhEB

the regret BT (5.2) can be written as

= max Z<u pt 0ty (5.6)

NT Ellmax
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where the inner product (-, -) is over the sequence form:

H

(p, ") == Z Z pan (T, an ), (T, ap)

h=1 xp,ap

for any p € I jax.

5.3 ®P-regret minimization and the ®-hedge algorithm

Now we introduce the ®-regret in full generality. Consider a generic linear regret
minimization problem on a policy set 11 C R‘éo with respect to a policy modification
set ® C R Here II is a convex compact subset of R?, and ® is a convex compact
subset of R¥4, where each ¢ € ® is a policy modification function which is a linear
transformation from R? to R? that maps II to itself (¢(II) C II). For any algorithm
that plays policies {};_, within T rounds and receives loss functions {¢/}/_ RZ,,

the ®-regret is defined as

Reg®(T)) = supyeq (1" — op', ') . (5.7)

The ®-regret subsumes the vanilla regret (i.e. external regret) as a special case by
taking ® to be the set of all constant modifications ®* := {¢,, : . € II} where
¢urpo = p* for all g € II. Another widely studied example is the swap regret [Blum
and Mansour, 2007| (and the closely related internal regret |[Foster and Vohra, 1998|)
for normal-form games, where II = A, is the probability simplex over d actions,
and @ is the set of all stochastic matrices (i.e. those mapping A, to itself). A
primary motivation for minimizing the ®-regret is for computing various types of
Correlated Equilibria (CEs) in multi-player games using the online-to-batch conver-
sion (see e.g. [Cesa-Bianchi and Lugosi, 2006]), which has been established in many

games and has been a cornerstone in the online learning and games literature.

®-Hedge algorithm A widely used strategy for minimizing the ®-regret is to use

any (black-box) linear regret minimization algorithm on the ® set to produce a se-
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Algorithm 9 ®-Hedge

Require: Finite vertex set ®; C R?? such that conv(®y) = ®; Learning rate 7.
1: Initialize p' € Ag, with pj = 1/|®] for ¢ € By.
2: for iterationt =1,...,7T do
3. Compute ¢' = > o Py

Set policy p! to be the fixed point of equation u' = ¢’

Receive loss function ¢ € RY, suffer loss (uf, ¢*).

Update pi" oy pl, - exp{—n (o', £)}.

quence of {¢'}L, C ®, combined with the fived point technique (e.g. [Stoltz and
Lugosi, 2005])—Output policy u' that satisfies the fixed-point equation ¢’ = u in
each round ¢. In the common scenario where ® is the convex hull of a finite number
of vertices, i.e. ® = conv(®y) where ®q is a finite subset of ®, a standard regret
minimization algorithm over ® is Hedge (a.k.a. Exponential Weights) [Arora et al.,
2012|, leading to the ®-Hedge algorithm (Algorithm 9).

It is a standard result ([Stoltz and Lugosi, 2007], see also Lemma 118) that Algo-

rithm 9 achieves ®-regret bound

Reg®(T) < ©Ell 4 2570 | 3 cq, ({01! €1)". (5.8)

By choosing 1 > 0, this result implies a quite desirable bound
Reg®(T) < L+/2log |®o| - T

in the full-feedback setting (assuming bounded loss (¢u’, ') < L), and can also be
used to prove regret bounds in the bandit-feedback setting.

5.4 Extensive-form trigger regret and EFCE

To consider ®-regret minimization in I[TEFGs, it is favorable to reformuate the frame-
work. For the purpose of this work, we consider an alternative formulation of EFGs—
Tree-Form Adversarial Markov Decision Processes (TFAMDP). This model is equiva-
lent to studying EFGs from the perspective of a single player, while treating all other

113



players as adversaries who can change both transitions and rewards in each round.

See Appendix D.3 for the details on the equivalence between TFAMDPs and IIEFGs.

5.4.1 Tree-Form Adversarial Markov Decision Processes

Tree-form adversarial MDP We consider an episodic, tabular TFAMDP which
consists of the followings (H, X, A, T,{p'}+>1, {R'}+>1). Here H € N, is the horizon
length; X = { &} }rep) and &), is the space of information sets (henceforth infosets)
at step h with size |X,| = X, and Y1, X;, = X; A is the action space with size
|A| = A. Next, T = {C(z,a)}(s,0)cxrxa defines the tree structure over the infosets
and actions, where C(z,, ap) C X1 denotes the set of immediate children of (z,, ay).
Furthermore, {C(z4,an)}(zy.an)cx, x4 forms a partition of Ajy1. It directly follows
from the tree structure of TFAMDP that the player has perfect recall, i.e., for any
infoset z, € A}, there is a unique history (xy,aq,...,2x5_1,a5_1) that leads to z.
Furthermore, p' = {p}, }reroruim; Ph(-) € Ay, is the initial distribution over X; at
episode t; pl(-|zp,an) is the transition probability from (zp,as) to its immediate
children C(zy,a;) at episode t; R = {R} }ren). Finally, reward R} (-|xy,ap) is the
distribution of the stochastic reward r € [0, 1] received at (x5, ap) at episode t, with
expectation }_%Z(xh, ap).

At the beginning of episode t, an adversary will first choose the initial distribution
pY, transition {p}, }rem, and reward distribution {R}, } (). Then in the bandit feed-
back setting, at each step h, the player observes the current infoset xj, takes an action
an, receives a bandit feedback of the reward rf ~ R} (-|zy,a), and the environment

transitions to the next state x4 1 ~ pi (-|zn, an).

Policies  We use pt = {{in(-[%n) }e(p) 2, e, t0 denote a policy, where each ju,(-|zp) €
A4 is the action distribution at infoset z;,. We say p is a deterministic policy if
tn(+|zn) takes some single action with probability 1 for any (h,xp). Let II denote
the set of all possible policies. We denote the sequence form representation of policy
w € 11 by

pan(@n, an) == [y i (ane|ae), (5.9)
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where (z1,ay,...,25_1,a,_1) is the unique history of z;,. We also identify u as a
vector in R)Z(({‘, whose (zp,, ap)-th entry is equal to its sequence form .5 (zp, ap). Let
|I||; := max,er ||p|]1, which admits bound ||II||; < X but can in addition be smaller

(See Lemma 113 for detail).

Expected loss function Given any policy p' at round ¢, the total expected loss
received at round ¢ (which equals to H minus the total rewards within round t) is
given by (u, 0) := 3, o Wik (@, an) (2, an),

where the loss function for the t-th round is given by ¢ = {¢} (xp, an) bnay.ay €
R

O (xny an) = ph() [T, Pl (i [on, an)[1 = Ry (2n, an)], (5.10)

where (21, a1, ..., Zs_1,a,_1) is the unique history that leads to xy. In the full feedback
setting, the learner is further capable of observing the full loss vector ¢! € R)Z(()‘l at the

end of each round ¢.

Subtree and subtree policies For any g < h, x, € X, x), € X}, and any action
ag,an € A, we say xp, or (z,a) is in the subtree rooted at x,, written as xj > x, or
(h,ap) = x4, if 2, is either equal to x), or is a part of the unique preceding history
(x1,a1,...,Tp_1,ap_1) which leads to z;,. Similarly, we say zj or (xp,as) is in the
subtree of (x4, a,), written as x), > (x4, a,) or (xpn,ap) = (x4, ay), if (x4, a,) is either
equal to (xy,ap) (only in the latter case), or is a part of the unique preceding history
(x1,a1,...,Tp_1,ap—1) which leads to z.

For any g € [H], and any infoset 2, € X, we use u*s = {11, (-|zn) € A : xp = 24}
to denote a subtree policy rooted at z,.

We use [1*9 and V*¢ to denote the set of all subtree policies and the set of all de-

terministic subtree policies rooted at z,. We denote the sequence form representation

of p*s € I1%s by:

vy TL_y i (awlaw)  if (zn,an) = @,
H’g:h(l‘ha ah) —
0 otherwise.
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Similarly, we can also identify any subtree policy p*s € I1%9 as a vector in R)Z(()“, whose
(xp, ap)-th entry is equal to its sequence form ,u;"h (zn, ap) (which is non-zero only on

the subtree rooted at z,).

5.4.2 Extensive-form trigger regret

The notion of trigger regret is introduced in [Gordon et al., 2008, Celli et al., 2020,
Farina et al., 2022a|. An (eatensive-form) trigger modification ¢g,q,—sm=s is a policy
modification that modifies any policy p € II as follows: When z, is visited and
ay is about to be taken (by p), we say x4a, is triggered, in which case the subtree
policy rooted at z, is then replaced by m®*s € II*s. One can verify that the trigger
modification ¢g,q, +m=s can be written as a linear transformation that maps from II
to 1I:

. xg T XAxXA
Pagag—mes = (I = Evgoa,) +m %€y.0, € R )

Here, By, q, is a diagonal matrix with diagonal entry 1 at all (zj,a;) satisfying
(zn, an) = (24, a,), and zero otherwise, and e, ,, € R¥4 is an indicator vector whose
only non-zero entry is 1 at (xg,ay). We say ¢, q,—0ms is a deterministic trigger mod-
ification if v® € V® is a deterministic subtree policy. We denote the set of all
deterministic trigger modifications and its convex hull as ®]" and ®™ respectively,

where

= U U {gbxgag_wzg }, o= COHV{(I)E)”}. (5.11)

g,xg,ag vTIEVTY
The (extensive-form) trigger regret is then defined as the difference in the total loss
when comparing against the best extensive-form trigger modification in hindsight.

We note that the trigger regret is a special case of ®-regret (5.7) with ® = ™.

Definition 32 (Extensive-Form Trigger Regret). For any algorithm that plays poli-
cies p* € I at round t € [T], the extensive-form trigger regret (also the EFCE-regret)
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is defined as
Reg™(T) 1= maxgeqn Y,y (1 — p', ). (5.12)

5.4.3 From trigger regret to Extensive-Form Correlated Equi-
librium (EFCE)

The importance of extensive-form trigger regret is in its connection to computing
EFCE: By standard online-to-batch conversion [Celli et al., 2020, Farina et al., 2022a],
if all players have low trigger regret (with Reg;"(T') for the i*" player), then the average
joint policy 7 is an e-EFCE, where ¢ = max;c[m Reg!"(T)/T. We remark in passing
by taking ® = &=t low ®-regret implies learning (Normal-Form) Coarse Correlated
Equilibria in EFGs, as well as Nash Equilibria in the two-player zero-sum setting [Bai
et al., 2022b].

Concretely, for any product policy m = {m}ie[m], let ™~ denote the expected
loss function for the " player if that the other players play policy m_;. We define
a correlated policy 7 as a probability distribution over product policies, i.e. @ ~ 7
gives a product policy .

An EFCE of the game is defined as follows [Celli et al., 2020, Farina et al., 2022a].

Definition 33 (Extensive-form correlated equilibrium). A correlated policy 7 is an

e-approximate Extensive-Form Correlated Equilibrium (EFCE) of the EFG if

]EWN? iagﬂ-ii - i7£7r7i S .
max max, ((pms, £77) = (mi, 7)) < €

We say 7 is an (exact) EFCE if the above is equality.

When the game is played with product policies for T" rounds, suppose the product
policy at round ¢ is 7!, the extensive-form trigger regret (5.12) for the i*" player
becomes

T
Reg/"(T) = max <¢)7T5t — 7! €”3i> :

A 7 17
EFCE
PEPETCE
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The following online-to-batch lemma for EFCE is standard, see e.g. [Celli et al., 2020].

Lemma 34 (Online-to-batch for EFCE). Let {n" = (7})icin) }1eim) be a sequence of
product policies for all players over T rounds. Then, for the average (correlated)

policy @ = Unif({n'}L_,) is an e-EFCE, where ¢ = maxc(n, Reg! (T)/T.

5.5 Lower bounds

We accompany our results with information-theoretic lower bounds showing that our
O(VH3X AT) regret and O(H3(XA + Y B)/<?) sample complexity are both near-
optimal modulo poly(H) and log factors.

Theorem 35 (Lower bound for learning IIEFGs). For any A > 2, H > 1, we have

(c > 0 is an absolute constant)

1. (Regret lower bound) For any algorithm that controls the maz player and plays
policies {/Lt}tT:1 where T' > X A, there exists a game with B =1 on which

T
E[%T]:E max <,ut—,uT,€t> >c-VXAT.

,U«Tenmax =1
2. (PAC lower bound for learning NE) For any algorithm that controls both players

and outputs a final policy (fi, V) with T episodes of play, and any e € (0, 1], there

exists a game on which the algorithm suffers from E[NEGap(i, V)] > €, unless

T>c- (XA+YB)/e

The proof of Theorem 35 (deferred to Appendix D.4) constructs a hard instance
with X = O(Xy) = O(A”1) that is equivalent to A¥-armed bandit problems, and
follows by a reduction to standard bandit lower bounds. We remark that our lower
bounds are tight in X but did not explicitly optimize the H dependence (which is
typically lower-order compared to X).
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Chapter 6

Extensive-form Games: 2p0s case

A central question in IIEFGs is the problem of finding a Nash equilibrium (NE) [Nash,
1950] in a two-player zero-sum IIEFG with perfect recall. There is an extensive line
of work for solving this problem with full knowledge of the game (or full feedback),
by either reformulating as a linear program [Koller and Megiddo, 1992, Von Stengel,
1996, Koller et al., 1996], first-order optimization methods [Hoda et al., 2010, Kroer
et al., 2015, 2018, Munos et al., 2020, Lee et al., 2021|, or Counterfactual Regret
Minimization [Zinkevich et al., 2007, Lanctot et al., 2009, Johanson et al., 2012,
Tammelin, 2014, Schmid et al., 2019, Burch et al., 2019].

However, in the more challenging bandit feedback setting where the game is not
known and can only be learned from random observations by repeated playing, the
optimal sample complexity (i.e., the number of episodes required to play) for learning
an NE in [TEFGs remains open. Various approaches have been proposed recently for
solving this, including model-based exploration [Zhou et al., 2019, Zhang and Sand-
holm, 2021|, Online Mirror Descent with loss estimation |[Farina et al., 2021b, Kozuno
et al., 2021], and Monte-Carlo Counterfactual Regret Minimization (MCCFR) [Lanc-
tot et al., 2009, Farina et al., 2020b, Farina and Sandholm, 2021|. In a two-player
zero-sum [TEFG with X, Y information sets (infosets) and A, B actions for the two
players respectively, the current best sample complexity for learning an e-approximate
NE is O((X2A + Y2B)/e?) achieved by a sample-based variant of Online Mirror De-

scent with implicit exploration [Kozuno et al., 2021|. However, this sample complexity
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scales quadratically in X, Y and still has a gap from the information-theoretic lower
bound Q((X A + Y B)/e?) which only scales linearly. This gap is especially concern-
ing from a practical point of view as the number of infosets is often the dominating
measure of the game size in large real-world IIEFGs [Johanson, 2013].

In this Chapter, we resolve this open question by presenting the first line of al-
gorithms that achieve O((X A + Y B)/¢2) sample complexity for learning e-NE in an
ITEFG. The key algorithmic ingredient is thr balanced exploration policy, which
paces learning rate in different information sets based on the scale of the subtree.
Combining it with two existing framework: Online mirror descent (OMD) and coun-
terfectual regret minimization (CFR), we develop two different algorithms achieving
near-optimal sample complexity. The technique is later extended to learning CCEs

in general games.

6.1 Balanced exploration policy

Our algorithms make crucial use of the following balanced exploration policies. See

Figure 6-1 for an illustration of the balanced exploration policy.

Definition 36 (Balanced exploration policy). For any 1 < h < H, the (max-player’s)

balanced exploration policy for layer h, denoted as p*" € L.y, is defined as

M7 Wefl,...,h—1}
i (awln) = Calaw) (6.1)
1/A, Welh,. .. H}.

In words, at time steps A’ < h — 1, the policy u*" plays actions proportionally to
their number of descendants within the h-th layer of the game tree. Then at time

steps b’ > h, it plays the uniform policy.

Note that there are H such balanced policies, one for each layer h € [H]. The
balanced policy for layer h = H is equivalent to the balanced strategy of Farina et al.
[2020b] (cf. their Section 4.2 and Appendix A.3) which plays actions proportionally to

their number descendants within the last (terminal) layer. The balanced policies for
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u(ailx) u(aslx)

Figure 6-1: An illustration of the balanced exploration policy: sampling probability
is propotional to the size of the sub game-tree rooted at the action.

layers h < H — 1 generalize theirs by also counting the number of descendants within
earlier layers. We remark in passing that the key feature of p*" for our analyses is

its balancing property, which we state in Lemma 37.

Lemma 37 (Balancing property of u*"). For any maz-player’s policy ji € .y and
any h € [H], we have

Z Ml:h(xh7ah> _ XhA

*,h(x a
(z,an) X x A H1:n\Lhs Qh

Lemma 37 states that p*" is a good exploration policy in the sense that the
distribution mismatch between it and any p € 1, has bounded L; norm. Further,
the bound X} A is non-trivial—For example, if we replace M?Z with the uniform policy

unif

it (g, ap) = 1/AR, the left-hand side can be as large as X, A" in the worst case.

Interpretation as a transition probability We now provide an intepretation of
the balanced exploration policy ,ufzz: its inverse 1/ ,ufzz can be viewed as the (product)
of a “transition probability” over the game tree for the max player. As a consequence,

this interpretation also provides an alternative proof of Lemma 37.
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Forany 1 <h< H and 1 <k < h — 1, denote

Py (@it | T ar) = [Ch(zrsa)|/|Ch(r, ar)]

using the convention that |Cy, ()| = 1. By this definition, p}"(-|zx, ax) is a probability
distribution over Cp,(z, ax) and can be interpreted as a balanced transition probability
from (xg, ax) to xx1. We further denote the sequence form of the balanced transition
probability by

h
p;h(

Ch(z1)| = |Ch(zhss)]
2
$k+1|$k=a’f) X}, H |Ch(5(7k7ak:)| 02

Lemma 38. For any (zy,a5) € X, x A, the sequence form of the transition p}) ()

and the sequence form of balanced exploration strategy u;},i(xh, ap) are related by

1
*,h
. XnA - iy (@n, an)

Furthermore, for any mazx player’s policy u € oy and any h € [H|, we have

> malwn an)pin(en) = 1. (6.4)

(Th,an)EXR XA

Proof of Lemma 38 By the definition of the balanced transition probability as
in Eq. (6.2) and the balanced exploration strategy as in Eq. (6.1), we have

1 ’Ch I‘k ’Ch 1 | ‘Ch $k+1 %R
X A= =p(x
XpA -1 (zn, an) XhA H s Cn (ks ax)| Xh H L Cn (ks ar)| nln).

where the second equality used the property that |C(z,)| = 1. This proves Eq. (6.3).
The proof of Eq. (6.4) is similar to the proof of Lemma 110 (a). O
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Alternative proof of Lemma 37 Lemma 37 follows as a direct consequence of

Eq. (6.3) and (6.4) in Lemma 38. O

Requirement on knowing the tree structure The construction of p*" requires
knowing the number of descendants |Cp(zps,an )|, which depends on the structure
of the game tree for the max player. By this “structure” we refer to the parenting
structure of the game tree only (which xj; is reachable from which (x,a)), not the
transition probabilities and rewards.Therefore, our algorithms that use p*" requires
knowing this tree structure beforehand. Although there exist algorithms that do not
require knowing such tree structure beforehand [Zhang and Sandholm, 2021, Kozuno
et al., 2021|, this requirement is relatively mild as the structure can be extracted
efficiently from just one tree traversal. We also remark our algorithms using the
balanced policies do not impose any additional requirements on the game tree, such

as the existence of a policy with lower bounded reaching probabilities at all infosets.

6.2 Online Mirror Descent

We now present our first algorithm Balanced Online Mirror Descent (Balanced OMD)

and its theoretical guarantees.

6.2.1 Balanced dilated KL

At a high level, OMD algorithms work by designing loss estimators (typically using
importance weighting) and solving a regularized optimization over the constraint
set in each round that involves the loss estimator and a distance function as the
regularizer. OMD has been successfully deployed for solving ITEFGs by using various
dilated distance generating functions over the policy set I, [Kroer et al., 2015].
The main ingredient of our algorithm is the balanced dilated KL, a new distance

measure between policies in I[IEFGs.

Definition 39 (Balanced dilated KL). The balanced dilated KL distance between
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two policies p, v € Il ,x is defined as

H
a H1:n\Th, An pn(Gn T
D) = 3 3 A o L) 69
h=1 zp,ap Hy. h(xhuah) Vp\Qh|Th

The balanced dilated KL is a reweighted version of the dilated KL (a.k.a. the
dilated entropy distance-generating function) that has been widely used for solving

[TEFGs |[Hoda et al., 2010, Kroer et al., 2015]:

aplx
D(pl[v) Z Z (T, ap) log ———= pnanln) (6.6)

h=1 xp,ap (CLh’.Z'h)

Compared with (6.6), our balanced dilated KL (6.5) introduces an additional reweight-
ing term 1/ uﬁZ(azh,ah) that depends on the balanced exploration policy p*"* (6.1).
This reweighting term is in general different for each (xy,a;), which at a high level
will introduce a balancing effect into our algorithm. The main advantage of intro-
ducing the balanced KL is that we can give a tighter upper bound as characterized

in Lemma 40 .

Lemma 40 (Bound on balanced dilated KL). Let p™ € I, denote the uniform

policy: ™ (ap|zyn) = 1/A for all (h,xy,ap). Then we have

max D" (uf||p™i) < X Alog A.

,UfT €llmax

Interpretation of balanced dilated KL We present an interpretation of the
balanced dilated KL (6.5) as a KL distance between the reaching probabilities under
the “balanced transition” (6.2) on the max player’s game tree.

For any policy pu € .., we define its balanced transition reaching probability
Pl (xn, ap) as

P (xn, an) = pn(Th, ah)PIZZ(Ih)- (6.7)

This is a probability measure on X} X A ensured by Lemma 38. For any two probability
distribution p and ¢, we denote KL(pl|¢q) to be their KL divergence.
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Lemma 41. For any tuple of maz-player’s policies p, v € 1.y, we have
H
D™ (ully) = S (Xn AYKL (RS [Py, (6.8)
h=1

6.2.2 Algorithm and theoretical guarantee

We now describe our Balanced OMD algorithm in Algorithm 10. Our algorithm is a
variant of the IXOMD algorithm of Kozuno et al. [2021] by using the balanced dilated

KL. At a high level, it consists of the following steps:

e Line 3 & 5 (Sampling): Play an episode using policy u' (against the opponent v/*)
and observe the trajectory. Then construct the loss estimator using importance

weighting and IX bonus [Neu, 2015]:

1 {(xh’a’h) (zn,an)} - (1 — Th)
18 (T, an) + v h(xhv an)

gt (S(Zh, CLh) (69)
Note that the IX bonus ”y,u’{;Z(a:h, ap) on the denominator makes (6.9) a slightly

downward biased estimator of the true loss ¢ (x5, as) defined in (5.5).

e Line 6 (Update policy): Update pt' by OMD with loss estimator ¢/ and the
balanced dilated KL distance function. Due to the sparsity of Zt, this update
admits an efficient implementation that updates the conditional form u} (|zs)

at the visited infoset x, = @}, only (described in Algorithm 23).

We are now ready to present the theoretical guarantees for the Balanced OMD

algorithm.

Theorem 42 (Regret bound for Balanced OMD). Algorithm 10 with learning rate
n=+/XAlog A/(H3T) and IX parameter v = \/XAc/(HT) achieves the following

regret bound with probability at least 1 — J:
R < O(\/H3XATL>,

where ¢ :=1og(3HXA/J) is a log factor.
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Algorithm 10 Balanced OMD (max-player)
Require: Learning rate nn > 0; IX parameter v > 0.
1: Initialize ) (ap|zp) < 1/Ayp, for all (h,zp, ap).
2: for Episode t =1,...,7T do
3:  Play an episode using u!, observe a trajectory

(zf,al vl . 2ty aly, ).
4: forh=H,...,1do
: Construct loss estimator {Zt Ty, a }
(@, an) (zh,an)EXR XA
t 1{(z}, a3,) = (zp,ap)} - (1 —1})
KZ(mh,ah) — { th h *,h} h ]
Nl:h(xha an) + 7#1:;1(3%, an)
6: Update policy
~ 1
p e argmin (ju, ) + —DP () (6.10)
;Ufenmax ,'7

using the efficient implementation in Algorithm 23.

Letting both players run Algorithm 10, the following corollary for learning NE

follows immediately from the regret-to-Nash conversion (Proposition 31).

Corollary 43 (Learning NE using Balanced OMD). Suppose both players run Al-
gorithm 10 (and its min player’s version) against each other for T rounds, with
choices of n,~ specified in Theorem 42. Then, for any € > 0, the average policy
(7,7) = (3 ST /Lt,%thzl V') achieves NEGap(z,7) < € with probability at least

1—9, as long as the number of episodes
T>O(H*(XA+YB)/e?),

where v :=log(3H(XA+ Y B)/d) is a log factor.

Theorem 42 and Corollary 43 are the first to achieve O(poly(H) - vV X AT) regret
and O(poly(H) - (XA + Y B)/e?) sample complexity for learning an e-approximate
NE for IIEFGs. Notably, the sample complexity scales only linearly in X, ¥ and
improves significantly over the best known O((X2A4 + Y2B)/e2)) achieved by the
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Figure 6-2: A comparison between IXOMD (left) and balanced OMD (right).

IXOMD algorithm of [Kozuno et al., 2021] by a factor of max {X,Y}. See Figure 6-2
for an illustration of the difference between IXOMD and balanced OMD.

Overview of techniques The proof of Theorem 42 (deferred to Appendix E.3.2)
follows the usual analysis of OMD algorithms where the key is to bound a distance
term and an algorithm-specific “stability” like term (cf. Lemma 126 and its proof).
Compared with existing OMD algorithms using the original dilated KL [Kozuno et al.,
2021], our balanced dilated KL creates a “balancing effect” that preserves the distance
term (Lemma 40) and shaves off an X factor in the stability term (Lemma 133 & 134),

which combine to yield a v X improvement in the final regret bound.

6.3 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) |Zinkevich et al., 2007| is another widely
used class of algorithms for solving ITEFGs. In this section, we present a new variant
Balanced CFR that also achieves sharp sample complexity guarantees. See Figure 6-3
for an illustration of CFR and its sample-based version, Mento Carlo CFR (MCCFR).

Different from OMD, CFR-type algorithms maintain a “local” regret minimizer
at each infoset x; that aims to minimize the immediate counterfactual regret at that

infoset:

Ry () = prenAa}j)Z<uh Jan) = 1), Li(wn, )
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where L} (xp, ap) is the counterfactual loss function

H

Ll;L(th an) = 52(%, an) + Z Z thﬂ);h/(xhu ah')g}ir(ﬁhu ap).

h'=h+1 (zh/,ah/)éch/ (.Th,ah) x A

(6.11)

Controlling all the immediate counterfactual regrets %ihmm’T(xh) will also control the
overall regret of the game R”, as guaranteed by the counterfactual regret decomposi-

tion |Zinkevich et al., 2007] (see also our Lemma 135).

6.3.1 Algorithm description

Our Balanced CFR algorithm, described in Algorithm 11, can be seen as an instan-
tiation of the Monte-Carlo CFR (MCCFR) framework |Lanctot et al., 2009] that
incorporates the balanced policies in its sampling procedure. Algorithm 11 requires
regret minimization algorithms R,, for each zj, as its input, and performs the follow-

ing steps in each round:

e Line 4-6 (Sampling): Play H episodes using policies {ut’(h)} helH) where each

B = (b 1) is a mizture of the balanced exploration policy p*" with

1
the current maintained policy u! over time steps. Then, compute Z%(xh,ah)
by (6.13) that are importance-weighted unbiased estimators of the true coun-

terfactual loss L! (z,a) in (6.11).

e Line 8 (Update regret minimizers): For each (h,z}), send the loss estimators

{Zg (@, @) }aca to the local regret minimizer R, , and obtain the updated policy

().

Similar as existing CFR-type algorithms, Balanced CFR has the flexibility of
allowing different choices of regret minimization algorithms as R,,. We will consider
two concrete instantiations of R,, as Hedge and Regret Matching in the following

subsection.
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b) MCCFR /\,

Figure 6-3: A comparison between CFR and MCCFR: instead of update the whole
game tree, it only updates the policies on a trajectory.

6.3.2 Theoretical guarantee

To obtain a sharp guarantee for Balanced CFR, we first instantiate R,, as the Hedge
algorithm (a.k.a. Exponential Weights, or mirror descent with the entropic regular-
izer; cf. Algorithm 21). Specifically, we let each R,, be the Hedge algorithm with
learning rate nu;’,;(mh, a).Note that this quantity depends on xj, but not a. With this
choice, Line 8 of Algorithm 11 takes the following explicit form:

i (alwn) o<q pf (alwy) - e T, (6.12)
We are now ready to present the theoretical guarantees for the Balanced CFR algo-

rithm.

Theorem 44 (“Regret” bound for Balanced CFR). Suppose the max player plays
Algorithm 11 where each R, 1is instantiated as the Hedge algorithm (6.12) with

n = /XA/(H3T). Then, the policies u* achieve the following “regret” bound with
probability at least 1 — J:

T
RT = max Z (p' —pl 0y < O(VH3X AT),
=1

NT eHmax _

where ¢+ = log(10X A/d) is a log factor.

The O(VH3XAT) “regret” achieved by Balanced CFR matches that of Balanced
OMD. However, we emphasize that the quantity RT is not strictly speaking a regret,
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Algorithm 11 Balanced CFR (max-player)

Require: Regret minimization algorithm R, for all (h,xp).
1: Initialize policy ) (ap|zp) < 1/A for all (h, zp, ap).
2: forround t =1,...,7 do
3: forh=1,...,H do
4: Set policy pb() « (,U,TZZ/J,Z_,’_LH).
5 Play an episode using p(" x vt, observe a trajectory

(ziv(h)’ ai:(h)’ 7‘1157(h), e :L.tv(h)’ at7(h)’ T,?{(h))
6: Compute loss estimators for all (h, zp, ap):

E'}L(:ch, ap) =

1 {(l‘f{(h)aaﬁi(h)) = ($h,ah)} (

h
wp (T, an)

H
H-h+1-Y" rf;f“). (6.13)

h/=h

=1

for all h € [H] and xp, € A}, do
Update the regret minimizer at x; and obtain policy:

1%

P (|zp) < Ry, UPDATE({LY, (24, ) }ac)- (6.14)

as it measures performance of the policy {u'} maintained in the Balanced CFR algo-
rithm, not the sampling policy p>") that the Balanced CFR algorithm have actually
played. Nevertheless, we remark that such a form of “regret” bound is the common
type of guarantee for all existing MCCFR type algorithms |Lanctot et al., 2009, Farina
et al., 2020b].

Self-play of Balanced CFR Balanced CFR can also be turned into a PAC algo-
rithm for learning e-NE, by letting the two players play Algorithm 11 against each
other for T" rounds of self-play using the following protocol: Within each round, the
max player plays policies { pt’(h)}thl while the min player plays the fixed policy v/*;
then symmetrically the min player plays {yt’(h)}thl while the max player plays the
fixed pf. Overall, each round plays 2H episodes.

Theorem 44 directly implies the following corollary for the above self-play algo-

rithm on learning e-NE, by the regret-to-Nash conversion (Proposition 31).

Corollary 45 (Learning NE using Balanced CFR). Let both players play Algo-
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rithm 11 in a self-play fashion against each other for T' rounds, where each R,, is in-
stantiated as the Hedge algorithm (6.12) with n specified in Theorem 44. Then, for any
e > 0, the average policy (i, 7) = (3 S, z ST V) achieves NEGap(fi, 7) < ¢
with probability at least 1 — 9, as long as

T > O(H*(XA+YB)/s?),

where ¢ :=1og(10(X A+ Y B)/d) is a log factor. The total amount of episodes played

18 at most
2H -T = O(H*(XA+YB)i/e%).

Corollary 45 shows that Balanced CFR requires O(H*(X A + Y B)/e?) episodes
for learning an e-NE, which is H times larger than Balanced OMD but otherwise also
near-optimal with respect to the lower bound (Theorem 35) modulo an O(poly(H))
factor. This improves significantly over the current best sample complexity achieved
by CFR-type algorithms, which are either poly(X,Y, A, B)/e* |[Farina and Sandholm,
2021], or potentially poly(X,Y, A, B)/e? using the MCCFR framework of [Lanctot
et al., 2009, Farina et al., 2020b| but without any known such instantiation.

Overview of techniques The proof of Theorem 44 (deferred to Appendix E.4.2)
follows the usual analysis pipeline for MCCFR algorithms that decomposes the overall
regret My into combinations of immediate counterfactual regrets ™™ (2,), and
bounds each by regret bounds (of the regret minimizer R,, ) plus concentration terms.
We adopt a sharp application of this pipeline by using a tight counterfactual regret
decomposition (Lemma 135), as well as using the balancing property of pu*" which

yields sharp bounds on both the regret and concentration terms (Lemma 136-138).

We remark that our techniques can also be used for analyzing CFR type algorithms

in the full-feedback setting. Concretely, we provide a sharp O(y/H3||ILyax |1 log A - T)
regret bound for a “vanilla" CFR algorithm in the full full-feedback setting, matching
the result of [Zhou et al., 2020, Lemma 2.
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6.3.3 Balanced CFR with regret matching

Many real-world applications of CFR-type algorithms use Regret Matching [Hart
and Mas-Colell, 2000| instead of Hedge as the regret minimizer, due to its practical
advantages such as learning-rate free and pruning effects [Tammelin, 2014, Burch
et al., 2019].

In this section, we show that Balanced CFR instantiated with Regret Matching
enjoys O(VH3X A?T) “regret” and O((H*(XA? + Y B2)/e?) sample complexity for
learning e-NE (Theorem 46 & Corollary 47). The sample complexity is also sharp in
X,Y, though is A (or B) times worse than the Hedge version, which is expected due
to the difference between the regret minimizers.

We consider instantiating Line 8 of Algorithm 11 using the following Regret Match-

ing algorithm

(7, ()]
ﬂ?—l(a’xh) = - L Z, )
Za’efl [Rwh( )}_5_ (615)
where R (a):= Z <u2(-|xh),z,€(:)§h, )> - ZE(mh,a) for all a € A.

as the regret minimization sub-routine for each information set. See Algorithm 12 for
the full version.
We now present the main theoretical guarantees for Balanced CFR with regret

matching. The proof of Theorem 46 can be found in Section E.4.6.

Theorem 46 (“Regret” bound for Balanced CFR with Regret Matching). Suppose the
max player plays Algorithm 11 where each R,, is instantiated as the Regret Match-
ing algorithm (6.15). Then the policies p' achieve the following regret bound with
probability at least 1 — )

= max Z<p pt 0y < O(VH3X ATy,

MT GHmax

where 1 =1og(10X A/9) is a log factor. Further, each round plays H episodes against
vt (so that the total number of episodes played is HT ).
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Algorithm 12 Balanced CFR with Regret Matching (max player)

Require: Learning rate n > 0.
1: Initialize policies u} (ap|xp) < 1/A for all (h,zp, ap).
2: for iteration t =1,...,7 do
3: forh=1,...,H do
. R
4: Set policy pb(") « ()
5: Play an episode using p>" x vt observe trajectory

(b QB 60 b nm) nn))

t7
7a1 IR [ s g

6: Compute loss estimators for all (h, zp, ap):

1{ @™, ax™) = (zn,an)} (
X

h
Mfih(fh, an)

H
Lt (2, an) = H—h+1- er;,("))

h'=h

7. for all h € [H] and z}, € A}, do

8: Update policy at xj using Regret Matching:
Rz, (a)]
w(alan) = T

Paea B, ()]}

t
where R. (a):=Y <u;(.\xh), L7 (xn, .)> —Ii(zp,a) forallae A

=1

We then have the following corollary directly by the regret-to-Nash conversion

(Proposition 31).

Corollary 47 (Learning Nash using Balanced CFR with Regret Matching). Letting
both players play Algorithm 11 in a self-play fashion against each other for T rounds,
where each Ry, is instantiated as the Regret Matching algorithm (6.15). Then, for any
e > 0, the average policy (i, 7) = (5 ST 1 ST vt achieves NEGap(7, 7) < ¢
with probability at least 1 — 9, as long as

T>O(H* (XA +YB?)/e%),

where v :==1og(10(X A+ Y B)/6) is a log factor. The total amount of episodes played
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18 at most

2H -T = O(H*(XA* + Y B?)/<?).

6.4 Extension to multi-player games

In this section, we show that our Balanced OMD and Balanced CFR generalize di-
rectly to learning Coarse Correlated Equilibria (CCE) in multi-player general-sum
games.

We consider an m-player general-sum IIEFG with X, infosets and A; actions for
the i-th player. Let V; denote the game value (expected cumulative reward) for the

1-th player.

Definition 48 (NFCCE). A joint policy 7 (for all players) is an e-approximate
Normal-Form Coarse Correlated Equilibrium (NFCCE) if

TI'T -

CCEGap(m) := max ( max V, " — I/;”) <e,
Ze[m] T{'IEH,L'

i.e., no player can gain more than ¢ in her own reward by deviating from 7 and playing

some other policy on her own.

We remark that the NFCCE differs from other types of Coarse Correlated Equi-
libria in the literature such as the EFCCE [Farina et al., 2020a]. Such distinctions
only exist for (Coarse) Correlated Equilibria and not for the NE studied in the pre-
vious sections. Using the known connection between no-regret and NFCCE [Celli
et al., 2019a|, we can learn an e-NFCCE in an multi-player IIEFG sample-efficiently
by letting all players run either Balanced CFR or Balanced OMD in a self-play fash-
ion. In the following, we let {Wf}thl denote the policies maintained by player ¢, and

nt =[]~ m denote their joint policy in the ¢-th round.

Theorem 49 (Learning NFCCE sample-efficiently using Balanced OMD / Balanced
CFR). We have
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1. (Balanced OMD) Let all players play Algorithm 10 for T rounds with learning
rate n = \/XZ-AZ- log A;/(H3T) and IX parameter v = /X;A;/(HT) for the

i-th player. Then for any € > 0, the average policy ™ uniformly sampled from

{m"}I_, satisfies CCEGap(7) < e with probability at least 1 — &, as long as the
number of episodes

T>0 <H3L<max XiAi>/52>,

1€[m)|
where v :=1og(3H Y " | X;A;/6) is a log factor.

2. (Balanced CFR) Let all players play Algorithm 11 in the same self-play fash-
ion as Corollary 45 for T rounds, with R,, instantiated as Hedge (6.12) with
learning rate n = \/W for the i-th player. Then for any ¢ > 0, the
average policy T uniformly sampled from {m'}L_, satisfies CCEGap(7) < € with
probability at least 1 — 6, as long as T > (’)(H?’L(maxie[m] XiAZ-)/SQ). The total
number of episodes played is at most

mH - T = O<H4mL- <maXXZ~Ai>/€2).

1€[m)|
where 1 :=10g(10Y 7", X;A;/9) is a log factor.

For both algorithms, the number of episodes for learning an e-NFCCE scales
linearly with max;cp, X;A; (with Balanced CFR having an additional Hm factor
than Balanced OMD), compared to the best existing max;epm X7 A; dependence (e.g.
by self-playing IXOMD [Kozuno et al., 2021]). The proof of Theorem 49 is in Ap-
pendix E.5.1.
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Chapter 7

Extensive-form Games: general case

In multi-player general-sum EFGs, computing an approximate Nash equilibrium (NE)
is PPAD-hard |Daskalakis et al., 2009] and thus likely intractable. A reasonable and
computationally tractable solution concept in general-sum EFGs is the extensive-form
correlated equilibria (EFCE) [Von Stengel and Forges, 2008, Gordon et al., 2008, Celli
et al., 2020, Farina et al., 2022a]. It is known that, as long as each player runs an
uncoupled dynamics minimizing a suitable EFCE-regret, their average joint policy
will converge to an EFCE [Greenwald and Jafari, 2003].

Existing algorithms of minimizing the EFCE-regret are mostly built upon the
regret decomposition techniques |Zinkevich et al., 2007|, which utilize the structure of
the game and the set of policy modifications |Celli et al., 2020, Morrill et al., 2021,
Farina et al., 2022a, Song et al., 2022b|. For example, Morrill et al. [2021] decomposes
the EFCE-regret to local regrets at each information set (infoset) with each of them
handled by a local regret minimizer; Farina et al. [2022a] utilizes the trigger structure
of the policy modification set to decompose the regret to external-like regrets.

There are at least two alternative approaches to designing regret minimization

algorithms for EFGs.

e The first is to convert a EFG to a normal-form game (NFG) and use NFG-
based algorithms such as ®-Hedge [Greenwald and Jafari, 2003]. This approach
typically admits simple algorithm designs and sharp regret bounds by directly
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Figure 7-1: The naive reduction from EFGs to NFGs induces a exponential blow-up.

translating existing results in NFGs [Stoltz and Lugosi, 2007]. However, the
conversion introduces an exponential blow-up in the game size, and makes such
algorithms computationally intractable in general (See Figure 7-1 for an illustra-
tion). The computational efficiency of these NFG-based algorithms is recently
investigated by Farina et al. [2022b] in the external regret minimization prob-
lem, who provided an efficient implementation of an NFG-based algorithm using

“kernel tricks”.

e The second is to use Online Mirror Descent (OMD) algorithms via suitably
designed regularizers over the parameter space. This approach has been suc-
cessfully implemented in minimizing the external regret [Kroer et al., 2015] but
not yet generalized to the EFCE-regret, as it remains unclear how to design

suitable regularizers for the policy modification space.

In this chapter, we develop the first line of EFCE-regret minimization algorithms
along both lines of approaches above, and identify an equivalence between them.
We consider EFCE-regret minimization in EFGs with X infosets, A actions, and
maximum L;-norm of sequence-form policies bounded by ||II]|; (cf. Section 5.4 for

the formal definition).
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7.1 Efficient ®-Hedge for Trigger Regret Minimiza-
tion

In this section, we study the ®-Hedge algorithm (Algorithm 9) for minimizing the
trigger regret. Naively, Algorithm 9 requires maintaining and updating p' € Ag, (cf.
Line 6), whose computational cost is linear in |®]"| which can be exponential in X
in the worst case. Notice |®["| is at least the number of deterministic policies of the
game, which could be A°®) in the worst case. We begin by deriving an efficient
implementation of the iterate ¢' € ® (of Line 3) directly by exploiting the structure
of ®fr.

7.1.1 Efficient implementation of ®"-Hedge algorithm

We first use a standard trick to convert the computation of ¢' (Line 3 & 6, Algo-
rithm 9) in ®-Hedge to evaluating the gradient of a suitable log-partition function.
This is stated in the lemma below (for any generic @), whose proof can be found in

Appendix F.1.2.

Lemma 50 (Conversion to log-partition function). Define the log-partition function

Foo R4 5 R

Fo(M) = log 3 exp{— (6, M)}. (7.1)
IS
Then Line 8 of ®-Hedge (Algorithm 9) has a closed-form update for all t > 1:

Ay e R N M 2 G AC RS N
¢l = —VF (n;M> S w e (=0 (o} M= (h)T

(7.2)

Eq. (7.2) suggests a strategy for evaluating ¢! = —VE®(p 22;11 M?*)—So long
as the vertex set ®; has some structure that allows efficient evaluation of the sum

of exponentials on the numerators and denominators (i.e. faster than naive sum), ¢*
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may be computed directly in sublinear in |®g| time, and there is no need to maintain
the underlying distribution p' € Ag, .

The following lemma enables such an efficient computation for the log-partition
function FT := F®" (and its gradient) associated with the trigger modification set
® = & This lemma (proof deferred to Appendix F.1.3) is a consequence of the
specific structure of @, (cf. (5.11)), whose elements are indexed by a sequence z,a,

and a deterministic subtree policy v € V%9,

Lemma 51 (Recursive expression of F'" and VE). For any loss matriv M €

RXAXXA “the EFCE log-partition function can be written as

FT(M) =108 54,0, 0 { = (I = Brrgays M)+ Frpa,a, (M)}, (7.3)

where for any xy, = x4,

Foyayn (M) i=log ¥, exp { — Mayanisgay + Dar s cctonany Frotoans: (M)}. (7.4)

Furthermore, define X = (Ayya,)z,a0exxA € Axa and m = (My,a,)ejagcxx4 With

Mg ,a, € U™ (and also identified as a vector in R*4) as

)\mgag Ongag €xXp { - <I - Etxgaga M> + Fxgag,xg (M)}> (75)

mxgag,h(ah‘xh) Kay, €XP { - Mxhah,xgag + th+1ec(xh’ah) ngag,thrl (M)}; (76)

then we have

—~VFT(M) = ¢\, m) = Aogag (I = Ergya, + mxgage;rgag). (7.7)

9,Zg,0g

Above, A = (Ay,a,)zga,exxa € Axa is a probability distribution over X' x A, and
m = (Mgyya,)z,a,exxa € M = Hg’xgag [1%9% is a collection of subtree policies my,q,,
where each m, ., € II®7 is a subtree policy that specifies an action distribution
Mg, a,n(an|zy) for every x;, = x,, and can be identified with a vector in RX4 (cf.

Section 5.4).
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Algorithm 13 EFCE-OMD (FTRL form; equivalent OMD form in Algorithm 24)

Require: Learning rate n > 0.
1: fort=1,2,...,7 do
2:  For each x40, € X x A, from the reverse order of xy,, compute m., , ,(an|zn)
and F!

Tgag,Tp

t
mq:gag,h<ah|xh) Kqy, €XP { -n Z :thah Tgag + thJrleC(xh ap) :z:gag xh+1}
(7.8)
t t—1 s
quaq 5 10g Zah eXp { n Z Machah Tgag + th_HeC(xh ap) acqag xh+1}a
(7.9)

3. Compute A} , as

Noyay Xegay @0 { =1 (T = Brpyo, S M)+ FL, b (110)

4:  Compute ¢' = ¢p(A', m") where ¢ is in Eq. (7.7).

5. Compute the policy p!, which is a solution of the fixed point equation ¢'u’ = .
Receive loss 0" = {0} (zh, an) } (2, ,an)cxxa € Rg{‘.

Compute matrix loss M* = £/(p')" € REX,

The recursive structure in Lemma 51 offers a roadmap for evaluating (A, m) and
thus VFT(M) in O(X?2A?) time (formal statement in Appendix F.1.4). Applying
Lemma 51 with M = 53> '_] M* gives an efficient implementation of (7.2), i.e. the
d-Hedge algorithm with ® = ®'". For clarity, we summarize this in Algorithm 13.
We remark that the parameters (A, m') therein can also be expressed in terms of
(AL mt=h) and M*!) which we present in Algorithm 24 (the equivalent “OMD”
form) in Appendix F.1.1. We also note that the fixed point equation ¢’y = p in
Line 5 can be solved in O(X?2A?) time [Farina et al., 2022a, Corollary 4.15|.

7.1.2 Equivalence to FTRL and OMD

We now show that Algorithm 13 is equivalent to FTRL and OMD with suitable dilated
entropies and divergences (hence the name EFCE-OMD). To achieve this goal we first

need to introduce the subtree dilated entropy and subtree dilated KL divergence, a
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variant of dilated entropy and dilated KL divergence introduced in Hoda et al. [2010],
Kroer et al. [2015], Kozuno et al. [2021|. Here the modification we made is that we
allow these quantities to be rooted at any infoset x,. The original version is recovered
when the choose the full game tree as the subtree. These quantities were used to
define the trigger dilated entropy and trigger dilated KL divergence as in Section
7.1.2.

Definition 52 (Dilated entropy and Dilated KL divergence). The dilated entropy

H,, rooted at x, of subtree policy % € II% is defined as

H
fg (T, an) log p,? (an|n). (7.11)
h=

9 (zn,an)zzg

The dilated KL divergence D, rooted at x, between two subtree policies ", v% €

II*9 is defined as

an|T
D, (1% |[v7) := z S i 1og“h<h' ) (712)

h=g (zp,ap)=x4 o (ah|xh)

We define the trigger dilated entropy function and trigger dilated KL divergence

function over (A\,m) € Axa x M as
HTI’(A’ m) = H(/\) + Zg,zq7aq )\xgangg (mxgag)’

‘DTr()\7 mH/\/? m/) = DKL()\H)\/) + Zg,mg,ag )\xgagDIg (mxgagHm;gag),

where H(-) and Dk (+||-) are the (negative) Shannon entropy and KL divergence; and
for any x,, H,,(-) is the dilated entropy, and D, (-||-) is the dilated KL divergence
Hoda et al. [2010], both for the subtree rooted at x, defined above in Definition 52.

Lemma 53 (Equivalent formulations of ®™-hedge). For any sequence of loss func-
tions {M'}>1, the iterates (A',m') in Algorithm 13 (i.e. (7.8)-(7.10)) are equivalent
to (i.e. satisfy) the following FTRL update on H™ and OMD update on D™ :

(A", m') = argmin,,, [7) {p(A\,m), > : VMY + HT(A, m)] (7.13)
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(A',m') = argmin,,, |7 (p(X,m), M*"1) + DTV()\,mH)\t_l,mt_l)]. (7.14)

The proof of Lemma 53 follows directly by the concrete forms of (A, m") in (7.8)-
(7.10), and can be found in Appendix F.1.5.

7.1.3 Regret bound under full feedback and bandit feedback

We now present the regret bounds of Algorithm 13. We emphasize that these regret
bounds are simple consequence of the generic bound for ®-Hedge in (5.8), and their
proofs do not depend on the actual implementation of Algorithm 13 developed in the
preceding two subsections. We first consider the full feedback setting, where the full

expected loss vector (' € R)Z((f‘ is received after each episode.

Theorem 54 (Regret bound of EFCE-OMD under full feedback). Running Algorithm
13 with n = O(\/||1||1¢/(H?T)) achieves the following trigger regret bound

Res™(T) < O(v/ [ T),

where ¢ :=log(X A) is a log factor.

The proof of Theorem 54 is simply by applying (5.8) and observing that log(®]") <
IT1]]; log A + log(X A) (see Appendix F.2.1). This theorem shows that the ®T'-
Hedge algorithm gives 6(\/% ) trigger regret bound, which matches the information-
theoretic lower bound Q(vXT) [Zhou et al., 2020, Theorem 2| up to a O(poly(H))
factor, and is slightly better than the (5(\/@) upper bound of [Song et al., 2022b,
Corollary F.3| though their definition of EFCE-regret is slightly stricter (thus higher)
than ours.

In the bandit feedback setting, the learner only observes her own rewards and
infosets. In this case we replace ¢! in Algorithm 13 with the following loss estimator

(with IX bonus v) proposed in [Kozuno et al., 2021]:

Cy(wn, an) i= 1{(w),, aj,) = (zn, an)} (1 =73)/ (uip(zn, an) + 7). (7.15)
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We show that EFCE-OMD achieves the following guarantee in the bandit feedback
setting (proof in Appendix F.2.2). The proof follows by plugging the loss estimator
¢ into (5.8) and additionally bounding concentrations (which we remark is a better
strategy than using a naive bandit-based loss estimator in the corresponding NFG

space).

Theorem 55 (Regret bound of EFCE-OMD under bandit feedback). Run Algo-
rithm 13 with loss estimator {¢'}T_, (7.15), n = VI log A/(HXAT), and v =
VIl1e/(XAT). Then we have the following trigger regret bound with probability at

least 1 —§:

Reg"(T) < O(VHXA||1e- T),

where « = log(3X A/d) is a log term.

To our best knowledge, Theorem 55 gives the first trigger regret bound against
adversarial opponents and bandit feedback. This (5(\/W ) rate is v/ X A worse
than Theorem 54 (ignoring H and log factors), and is at most O(vVX2AT) using
I < X.

7.2 Balanced EFCE-OMD for bandit feedback

We now build upon the EFCE-OMD algorithm (Algorithm 13) to develop a new
algorithm, Balanced FFCE-OMD, and show that it achieves near-optimal extensive-
form trigger regret guarantee under bandit feedback. Here we discuss the two key
modifications in the algorithm design, and defer the full algorithm description to

Algorithm 14 .

Key modification I: “Rebalancing” the log-partition function Building on
the balancing technique introduced in Ch apter 6, we start from Eq. (7.3) and (7.4)
of the log partition function, and rescale the inner functions F ., ., using balanced

exploration policies {uZ;Z(xh, an)}tgan.an, and rescale the outer function F™" by X A.
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Concretely, for any matrix M € R¥4*X4 we define the balanced EFCE log-partition

function as

FI(M) = XAlog Y, , , exp {ﬁ [ = (I = Brayays M) + FL, o (M)] } (7.16)

where for any z;, > z, (using ,u;;Z = u;Z(LEh, ap) as shorthand, which depends on z},

but not ay),
* 1 *,h *
Fxgag,xh (M> = *,h lOg Z exp {lug:h[ - Mmhah,xgag + Z Fxgag,mh+1 (M)} }
g:h ap zp41€C(Than)

Key modification II: New loss estimator under bandit feedback We use
an adaptive family of bandit-based loss estimators {Zt“g“g }aga, C REE, one for each

(zg4,ay) € X x A, defined as

1{(z}, ah) = (xn,an)} (1 —1})
1o (s an) 4 Y (g (ny an) + gl o ml o (@n, an)1 {z, = 24})

(7.18)

0,7 (an, ap) =

where i, , = ui. (7, a,) for shorthand. The main difference of (7.18) over (7.15) is
in the adaptive IX bonus term on the denominator that scales with ~ but is different
for each z,a,. We then place each u;gaﬁ%% into the z,a,-th column of a matrix

loss estimator M, or in matrix form,

At t Jhxgag T
M= ngmgaag ’U/xgagg exgag'

With (7.16)-(7.18) at hand, our algorithm Balanced EFCE-OMD is defined as the

negative gradient of F\| evaluated at the cumulative loss estimators:
o = ~VEL(n M), w1, (7.19)
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Algorithm 14 Balanced EFCE-OMD (FTRL form; equivalent OMD form in Algo-
rithm 15)

Require: Learning rate n, balanced exploration policy {,u*’h}he[m.
1: fort=1,2,...,7T do

2:

t
For each zga, € X x A, from the reverse order of x, compute mj, , ,(an|zs)
and FX

Tgag,Th

t *,t
mxgag (ah|mh) XKq), €XP {lugh Lhy An < n E , mhah :rgag E : Fxgag,rh+1> }7

Th4+1€C(2h,an)
1
%1 o *,h
Fl’gagvxh T %k log E CeXp {:ug;h(xha a'h)
lug:h(xha ah) apcA

t

X [ - Z M;hah,:pgag + Z F;;tag,zh+1] }

s=1 zn41€C(zRan)

Compute A7} - as

t—1

1 —
A;gag O(:rgag exp {ﬂ( - 7]<I - Etzgaga Z MS + F;gtag xg) } (720)

s=1

Compute o' = ¢(A',m'), where ¢ is as defined in Eq. (7.7).
Find a i to be a solution of the fixed point equation u' = ¢ut.
Play policy u*, observe traJectory (zh, a5 ) nepm)-
Form vector loss estimator £5%s% = {77 (1, a,)},, .. for each (g, z4a,) as in
Eq. (7.18).
.

: : Nt _ t Ai‘,x a
Compute matrix loss estimator M"=%_ i o (""%e, , .

and p' € TI solves the fixed point equation ¢'u’ = p'. Similar as EFCE-OMD, (7.19)

also admits efficient implementations in both FTRL and OMD form (cf. Algorithm 14

& 15).

The corresponding (A, m') is also equivalent to running a FTRL/OMD al-

gorithm with respect to a balanced dilated entropy/KL-divergence over ¢ € @™ (cf.

Lemma 61 and Appendix 7.2.3 for details).

7.2.1 Algorithms

In this section, we present the algorithms omitted in Section 7.2. We begin with

the Balanced EFCE-OMD (in FTRL form) as in Algorithm 14. This algorithm is
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actually equivalent to the algorithm as in Eq. (7.19) because of the following lemma,

whose proof is similar to Lemma 51.

Lemma 56. For any loss matrix M &€ ]R)Z%MXA, recall that the balanced EFCE log-
partition function as defined in Eq. (7.16)). Let X = (Ay,a,)ejapexxA € Axa and

m= (mxgag)xgageXX.A € M be

ﬂ( — (I = Brsya,, M) +F$gag,xg>} (7.21)

*,h *
ngag,h(ah|xh) K, €XP {lu“g:h(xha a’h)( - nMxhah,xgag + E Fajgag7xh+1> }

xp+1€C(Th,an)

1
)\xgag Kzgag eXp{

(7.22)

then we have —VF (M) = ¢(\,m), where ¢ is as defined in Eq. (7.7).

We also present an efficient update of (A1, m!*1) from (A\f, m'), which gives the
OMD form of the Balanced EFCE-OMD algorithm as in Algorithm 15. Notice the
initialization of Balanced EFCE-OMD is different from EFCE-OMD (Algorithm 24)
due to the presence of the balanced exploration policy. Algorithm 14 and Algorithm 15
are indeed equivalent due to the following lemma, whose proof is similar to that of

Lemma 140.

Lemma 57. Given the same sequence of M*, Algorithm 14 and Algorithm 15 outputs

the same X' and m' and thus the same ¢'.

7.2.2 Theoretical guarantees

We now present the theoretical guarantee of Algorithm 14 (proof in Appendix F.3).

Theorem 58. Balanced EFCE-OMD (Algorithm 14) with n = /X Au/H*T and
v = 24/ XAL/H?T achieves the following extensive-form trigger regret bound with
probability at least 1 — J:

Reg"(T) < O(VH*XAT),

where © = log(10X A/d) is a log term.
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Algorithm 15 Balanced EFCE-OMD (OMD form; equivalent FTRL form in Algo-
rithm 14)

Require: Learning rate n, balanced exploration policy {,u*’h}he[m.
1. Initialize )\igag Xaga, €XPL(Xirs,/X)log A}, and migag’h(ahmh) = 1/A, for all
(97 Ly, g, h> Th, ah) with g <h.
2: fort=1,2,...,7T do

3:  Compute ¢' = ¢(\';m'), where ¢ is as defined in Eq. (7.7).

4:  Find a p' to be a solution of the fixed point equation u' = ¢'put.

5. Play policy pu!, observe trajectory (zh, ab,, ) nem)-

6:  Form vector loss estimator ¢*s% = {Zth’xgag (@h, an) }apa, for each (g,z4a,) as in
Eq. (7.18).

7. Compute matrix loss estimator M* =37l , (H7a%e] .

8  For each z4a, € X x A, from the reverse order of xy,, compute m., , ,(an|zp)
and Fxt

glg,lh

m s anlen) oo, ml . a(anten) exp { (o, an)

At 2 : Tk, t
( - nM:vhah,acgag + F‘Tgag@thl) }7
$h+1€c($h,ah)

~ 1 h
F;s’zzg@h = *,h log Z m:tvgag,h(a’h|xh) €xXp {#;;h(l’ha ah)
Mg:h(xh’ ah) ap€A

It Tt
X |: - Ml‘hahyxgag + Z Fxgagal'h+1i| }

Thi1 EC(I;Lah)

9:  Compute \,'} as

1 — ~
/\gig Xzyaq )\;gag exp {ﬁ( —-n <I — By yya, Mt> + Fafg’flgwg) } (7.23)

The 5( X AT) trigger regret asserted in Theorem 58 improves over Theorem 55
by a factor of \/m, and matches the information-theoretic lower bound up to
poly(H) and log factors. As the trigger regret is lower bounded by the vanilla (ex-
ternal) regret, [Bai et al., 2022b, Theorem 6] implies an (v X AT) lower bound for
the trigger regret as well under bandit feedback. By the online-to-batch conversion
(Lemma 34), Theorem 58 also implies an O(H*X A/e?) sample complexity for learn-
ing EFCE under bandit feedback (assuming same game sizes for all m players). This
improves over the best known O(mH®X A%/e?) sample complexity in the recent work

of Song et al. [2022b]. We remark though that the 1-EFR algorithm of [Song et al.,
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2022b] actually finds an “1-EFCE” which is slightly stronger than our EFCE defined

via trigger modifications.

Overview of techniques The proof of Theorem 58 is significantly more challenging
than that of Theorem 55, even though the algorithm itself is designed by appearingly
simple modifications. The happens since Algorithm 14, unlike Algorithm 13, no
longer necessarily corresponds to any normal-form algorithm. The technical crux of
the proof is to bound the nonlinear part of F[, (with respect to the losses), which we
do by carefully controlling a series of second-order terms utilizing the balanced policies

within £} and the new adaptive IX bonus within {¢**s%}, . (Lemma 150-153).

7.2.3 Equivalence to FTRL and OMD

Similar as Section 7.1.2, we show that the Balanced EFCE-OMD algorithm (Algo-
rithm 14) is equivalent to FTRL with the balanced trigger dilated entropy, and OMD
with the balanced dilated KL divergence, both over the (A, m) parametrization.

We first introduce Balanced dilated entropy and balanced dilated KL divergence,

and their trigger versions as below.

Definition 59 (Balanced dilated entropy and balanced dilated KL divergence). The
balanced dilated entropy Hp?' rooted at x4 of subtree policy u®s € T1% is defined as

ngh($h7ah) x
HE (i) Z > g (anfan) (7.24)
h= g(a:h ah)t:c /J’gh h’ h

The balanced dilated KL divergence Dg;' rooted at z, between two subtree policies

w*o,v* € 1% is defined as

H Zg x
 (xp,a 9
D2 (s |) - E: E: o, @0) 1o 153 (@nlan) (7.25)

=g (xh,an)= “;Z(x’w an) v’ (an|wn)

Definition 60 (Balanced trigger dilated entropy and balanced trigger dilated KL

divergence). The balanced trigger dilated entropy function on (A\,m) € Axs X M is
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defined as
HI (A m) = XA -HN) + > Aya, H (14,0,)- (7.26)
9:Zg,Qg

The balanced trigger dilated KL divergence function on (A, m), (N, m’) € Axa x M

is defined as

Dg—£|(>\, m”/\/? m,) = XA- DKL(AH)‘,) + Z Axgang;ZI(mxgagHm;gag)’ <727>

9,Tg,0g

The following lemma shows that the Balanced EFCE-OMD (Algorithm 14 and
15) are essentially FTRL with the balanced trigger dilated entropy, and OMD with
the balanced tirgger dilated KL divergence. The proof of this lemma is similar to

that of Lemma 53.

Lemma 61 (Equivalent of Balanced EFCE-OMD to OMD/FTRL on (A, m)). For
any sequence of loss functions {Mt}tzl, the algorithm as in Eq. (7.19) is equivalent

to (i.e. satisfy) the following FTRL update on HJ, and OMD update on D[IY,:

(AL mtth) = arg miny,,, [17 <gb()\, m), 2221 Ms> + HbTarl()\,m)], (7.28)

(A m! ) = argmin,, , [77 <¢()\, m), Mt> + Dg—;()\,mH)\t,mt)}, (7.29)

with ¢t+1 — ¢(}\t+1’ mt—o—l)‘

7.3 Equivalence with existing algorithms

Interestingly, some of the algorithms we develop in this chapter is equivalent to some
known algorithms which is not implemented efficiently. We present these connections

in this section.
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7.3.1 Equivalence of OMD and Vertex MWU

As another illustration of our framework, we now choose ® = & = conv{®*}
to be the set of external policy modifications, which modify any policy to some
deterministic policy. In this case, the ®**-Hedge algorithm minimizes the external
regret in EFGs. In this section, we show that ®®*-Hedge, same as the vertex MWU
algorithm considered in Farina et al. [2022b], is actually equivalent to the OMD with
dilated entropy Hoda et al. [2010]. Let {Et}t21 C R)Z((;‘ be an arbitrary sequence of

loss vectors.

Vertex MWU We use V to denote all the deterministic sequence-form policies,

which can also be viewed as the vertex set of the policy set II.

A simple reformulation (cf. Appendix F.4) shows that ®**-Hedge (Algorithm 9)
gives the vertex MWU algorithm considered by Farina et al. [2022b]

Mt = Z’UEV pf} v and pf; Xy €XP {_77 <U, Zi;ll £S>} (730)

OMD with dilated entropy Another popular algorithm for external regret min-
imization is the OMD algorithm on the sequence-form policy space with the dilated
entropy |Hoda et al., 2010, Kroer et al., 2015]:

= arg min (7 {p, €71 + Dy (|~ 1)], (7.31)
fn(an|xn)

E g Tp,ap)lo 7.32

Dy(pllv) Loz ah,ulh hy an) log ———— Un(anlan) ( )

Theorem 62 (Equivalence of OMD and Vertex MWU). For any sequence of loss
vectors {{'};>1, OMD with dilated entropy is equivalent to Vertex MWU, that is,
(7.31) and (7.30) give the same {u'},,.

The proof of Theorem 62 can be found in Appendix F.4.
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7.3.2 Equivalence between OMD and “Kernelized MWU”

Our proof also reveals that the efficient implementation of Vertex MWU developed
by Farina et al. [2022b] using the “kernel trick” is actually equivalent to the stan-
dard linear-time efficient implementation of OMD with dilated entropy. Concretely,
Farina et al. [2022b] design another efficient implementation of the Vertex MWU algo-
rithm (7.30) via the “kernel trick”, which they term as the Kernelized MWU algorithm
(Algorithm 1 in |Farina et al., 2022b|). Their Algorithm 1 is an optimistic algorithm
with a “prediction vector”. Here we are referring to their non-optimistic version where
the prediction vectors are set to zero. As Theorem 62 shows that Vertex MWU is
equivalent to standard OMD, the Kernelized MWU algorithm is also equivalent to
standard OMD.

In this section, we further show that the implementation in Kernelized MWU is
also “equivalent” to the standard linear-time implementation of OMD (Algorithm 25),
by showing that the key intermediate quantities in both implementations are also

equivalent.

Since the notation used in Farina et al. [2022b] is slightly different from ours, we

first describe their key intermediate quantities using our notation. Their exponential

weight bt € R¥4 is defined by

t
V' (xp, ap) = exp{—n Z 0 (zh,an)}-
s=1
Then, their kernel function K : RX4 x R¥4 — R is defined by

xg b bl Z Z b xh,ah :ch,ah)

veEVTI (xp,ap)€EV

where (xp,, ay) € v is a shorthand notation meaning that (z,, ay) is such that vy, (xp, a) =

1.

We will also use 1 € R¥4 to denote the all-ones vector in R¥4. |Farina et al.,

2022b, Proposition 5.3| shows that the output policy u' of kernelized OMWU can be
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written in conditional-form as

bt—l(xh’ ah) Hmh+1ec($hah) Kthrl (bt_l’ 1)
K, (b-1,1) '

pH(ap|xy) =

The key step within Farina et al. [2022b]’s Kernelized MWU implementation is the
recursive evaluation of the quantity K,, (b**, 1) in the bottom-up order over z;, € X,
whereas our Algorithm 25’s key step is the recursive evaluation of F;h in the bottom-
up order over xp, € &}, in (F.25).

The following proposition shows that these two quantities are exactly equivalent,

thereby showing the equivalence of the two implementations.

Proposition 63. We have for all x,, € X and allt > 1 that

Ka}h (bt—l’ 1) = eXp{Féh}.

Proof. We prove this by induction for h = H+1,---,1. For h = H+1, K,, (b'""',1) =
1 and F;h = 0 by definition. If the claim holds for A + 1, then by Theorem 5.2 of
Farina et al. [2022D],

(1) Zexp{ T)ZE (zh,an)} H K, (071 1)

Z‘h+1€C(1’hah)
:Zexp{—anS(Ih,ah) + Z Faﬁhﬂ}
an, s=1 zh+1€C(xRan)

= exp{Féh }.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Proposition 5

Proof. We prove two claims separately.

For Nash C CE, let 71 = 7 X my X ---m,, be an e-approximate Nash equilibrium,

then

. _ (®)
max V;fflwﬁm“(sl) @ max szx “(s1) < V7(s1) e

2
z i

Step (a) is because that 7 is a product policy, where the randomness of different agents
are completely independent. In this case, maximizing over strategy modification ¢;
is equivalent to maximizing over a new independent policy. Step (b) directly follows
from 7 being an e-approximate Nash equilibrium. By definition, this proves that 7 is

also an e-approximate CE.

For CE C CCE, let t=m ©m ® - -7, be an e-approximate CE, then we have

X (c) T NOT (d)
ma,meLfX ‘(s )<I%&XV¢NZ@_( 1) < Vii(s1) +e

i

Step (c) is because by definition of strategy modification ¢; := {¢; 5, : (S x A)"~1 x
S x Ai — A}, we can consider a subset of strategy modification ¢ = {¢, :

(S x A1 xS — A;} which modifies the policy ignoring whatever the action m;
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takes. It is not hard to see that maxmizing over the strategy modification in this
subset is equivalent to maximizing over a new independent policy 7). Therefore,
maximizing over all strategy modification is greater or equal to maximizing over ;.
Finally, step (d) follows from 7 being an e-approximate CE. By definition, this proves
that 7 is also an e-approximate CCE. O

A.2 Proof of Proposition 6

Proof. Let N* be the value of Nash equilibrium for @). Since 7 = CCE(Q, @), by

definition, we have:

E(p~rQ(a,b) > m@X]E(a,b)NWQ(a*, b) = max Ep,Q(a*,b) > N*
]E(a,b)NﬂQ(a7 b) < Héln E(a,b)NWQ(aa b*) = Hgll’l EaNMQ(aa b*) < N*
This gives:
max [Ey, Q(a*,b) = Hgn]EaNMQ(a, b*) = N*

which finishes the proof. O

A.3 Proof of the computational hardness

In this section we give the proof of the computational hardness results in Section 2.5.1,
Theorem 7 and Corollary 9. Our proof is inspired by a computational hardness result
for adversarial MDPs in [Yadkori et al., 2013, Section 4.2|, which constructs a family
of adversarial MDPs that are computationally as hard as an agnostic parity learning
problem.

Section A.3.1, A.3.2, A.3.3 will be devoted to prove Theorem 7, while Corollary 9

is proved in Section A.3.4. Towards proving Theorem 7, we will:
e (Section A.3.1) Construct a Markov game.

e (Section A.3.2) Define a series of problems where a solution in problem implies
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another.

e (Section A.3.3) Based on the believed computational hardness of learning paries
with noise (Conjecture 8), we conclude that finding the best response of non-

Markov policies is computationally hard.

A.3.1 Markov game construction

We now describe a Markov game inspired the adversarial MDP in [Yadkori et al.,

H

2013, Section 4.2]. We define a Markov game in which we have 2H states, {io, i1 };_,,

1o (the initial state) and L (the terminal state)In Yadkori et al. [2013] the states
are denoted by {z’a,ib}fiz instead. Here we slightly change the notation to make
it different from the notation of the actions. In each state the max-player has two
actions ag and a;, while the min-player has two actions by and b;. The transition

kernel is deterministic and the next state for steps h < H — 1 is defined in Table A.1:

State/Action | (ag,bo) | (ao,b1) | (a1,b0) | (a1,b1)
io (i+1)o | (i4+1)o | (i4+1)o | (i4+1)s
i1 (i+1); | (i+1)o| (i4+1) | (i+1)

Table A.1: Transition kernel of the hard instance.

At the H-th step, i.e. states Hy and Hp, the next state is always L regardless
of the action chosen by both players. The reward function is always 0 except at the

H-th step. The reward is determined by the action of the min-player, defined by

State/Action | (-, bo) | (-, b1)
Hy 1 0
Hy 0 1

Table A.2: Reward of the hard instance.

At the beginning of every episode k, both players pick their own policies iy and
Vi, and execute them throughout the episode. The min-player can possibly pick her
policy v, adaptive to all the observations in the earlier episodes. The only difference

from the standard Markov game protocol is that the actions of the min-player except
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the last step will be revealed at the beginning of each episode, to match the setting in
agnostic learning parities (Problem 2 below). Therefore we are actually considering

a easier problem (for the max-player) and the lower bound naturally applies.

A.3.2 A series of computationally hard problems

We first introduce a series of problems and then show how the reduction works.

Problem 1 The max-player e-approximates the best reponse for any general policy
v in the Markov game defined in Appendix A.3.1 with probability at least 1/2, in
poly(H,1/e) time.

Problem 2 Let x = (z1,--,,) be a vector in {0,1}", T C [n] and 0 < a <
1/2.The parity of z on T is the boolean function ¢r (x) = @;erx;. In words, ¢r (z)
outputs 0 if the number of ones in the subvector (z;);er is even and 1 otherwise. A
uniform query oracle for this problem is a randomized algorithm that returns a random
uniform vector x, as well as a noisy classification f(z) which is equal to ¢7(x) w.p. «
and 1 — ¢7(x) w.p. 1 —a. All examples returned by the oracle are independent. The
learning parity with noise problem consists in designing an algorithm with access to

the oracle such that,

e (Problem 2.1) w.p at least 1/2, find a (possibly random) function i : {0,1}" —
{0,1} satisy E, P,[h(x) # ¢r(x)] < ¢, in poly(n, 1/e) time.

e (Problem 2.2) w.p at least 1/4, find h : {0,1}" — {0,1} satisy P.[h(z) #
o¢r(z)] < e, in poly(n,1/e) time.

e (Problem 2.3) w.p at least 1 — p, find h : {0,1}" — {0,1} satisy P.[h(z) #
¢r(z)] < e, in poly(n,1/e,1/p) time.

We remark that Problem 2.3 is the formal definition of learning parity with noise

[Mossel and Roch, 2005, Definition 2|, which is conjectured to be computationally

hard in the community (see also Conjecture 8).
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Problem 2.3 reduces to Problem 2.2 Step 1: Repeatly apply algorithm for
Problem 2.2 ¢ times to get hy,...,hy such that min; P[h;(z) # ¢r(z)] < e with
probability at least 1 — (3/4)¢. This costs poly(n, ¢, 1/¢) time. Let i, = argmin, err;
where err; = P.[h;(z) # ¢r(x)].

N

Step 2: Construct estimators using N additional data (z(),y)) =1

L Hhi(aY) £y} —a
err; = 1 — 90 .

Pick i = arg min, ért;. When N > log(1/p)/e?, with probability at least 1 — p/2, we

have
—_~ 6
max |err; — err;| < :
i — 2«
This means that
< err; + <ém, +——— < + 2 O(1)
err: < err; err; err; €
T =2 " 1 =27 " 1—-2a

This step uses poly(n, N, ¢) = poly(n, 1/e,log(1/p), £) time.

Step 3: Pick ¢ =log(1/p), we are guaranteed that good events in step 1 and step
2 happen with probability > 1 — p/2 and altogether happen with probability at least
1 — p. The total time used is poly(n,1/e,log(1/p)). Note better dependence on p

than required.

Problem 2.2 reduces to Problem 2.1: If we have an algorithm that gives
EnpPi[h(z) # ¢r(z)] < e with probability 1/2. Then if we sample h ~ D, by
Markov’s inequality, we have with probability > 1/4 that

~

Pylh(z) # ¢r(z)] < 2¢

Problem 2.1 reduces to Problem 1: Consider the Markov game constructed
above with H — 1 = n. The only missing piece we fill up here is the policy v of

the min-player, which is constructed as following. The min-player draws a sample
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(x,y) from the uniform query oracle, then taking action by at the step h < H — 1 if
xp, = 0 and by otherwise. For the H-th step, the min-player take action by if y = 0
and by otherwise. Also notice the policy fi of the max-player can be descibed by a set
T C [H] where he takes action a; at step h if h and ag otherwise. As a result, the
max-player receive non-zero result iff ¢-(z) = y.

In the Markov game, we have V" (s;) = P(¢s(x) = y). As a result, the optimal

policy p* corresponds to the true parity set T. As a result,
(Vi = VI")(s1) = Pay (ér(2) = y) = Pry(ds(x) = y) < e

by the e-approximation guarantee.

Also notice

Poy(07(x) # y) — Poy(dr(z) #y)
=(1 — a)P.(¢7(x) # ¢r(x)) + aP.(d5(x) = ér(z)) —
=(1 = 2a)P,(¢p5(x) # dr(x))

This implies:

€
1 -2«

Po(o7(x) # or(2)) <

A.3.3 Putting them together

So far, we have proved that Solving Problem 1 implies solving Problem 2.3, where
Problem 1 is the problem of learning s-approximate best response in Markov games
(the problem we are interested in), and Problem 2.3 is precisely the problem of learn-

ing parity with noise Mossel and Roch [2005]. This concludes the proof.

A.3.4 Proofs of Hardness Against Adversarial Opponents

Corollary 9 is a direct consequence of Theorem 7, as we will show now.
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Proof of Corollary 9. We only need to prove a polynomial time no-regret algorithm
also learns the best response in a Markov game where the min-player following non-

Markov policy v. Then the no-regret guarantee implies,

K
y 1 ko _
Vi (s1) — = ; VI (s1) < poly(S, H, A, B)K
where 11, is the policy of the max-player in the k-th episode. If we choose 1 uniformly

randomly from {,uk}kK:l, then
Vi (s1) — V" (s1) < poly(S, H, A, B)K .

Choosing ¢ = poly(S, H, A, B)K~°, K = poly(S, H, A, B,1/¢) and the running
time of the no-regret algorithm is still poly(S, H, A, B, 1/¢) to learn the e-approximate
best response.

To see that the Corollary 9 remains to hold for policies that are Markovian in each
episode and non-adaptive, we can take the hard instance in Theorem 7 and let v/*
denote the min-player’s policy in the k-th episode. Note that each v* is Markovian
and non-adaptive on the observations in previous episodes. If there is a polynomial
time no-regret algorithm against such {l/k}, then by the online-to-batch conversion
similar as the above, the mixture of {uk}le learns a best response against v in

polynomial time.

A.4 Proof of the statistical hardness

In this section we prove the statistical lower bounds in Section 2.5.2, Theorem 10 and
Lemma 11.

The lower bound builds on the following lower bound for adversarial MDPs where
both the transition and the reward function of each episode are chosen adversarially.

We state it here as a formal version of Lemma 11.
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Lemma 64 (Lower bound for adversarial MDPs). For any horizon H > 2 and K > 1,
there exists a family of MDPs M with horizon H, state space {Sy}n<g with |S| < 2,
action space {Ap} <y with |Ap| < 2, and reward ry, € [0,1] such that the following is

true: for any algorithm that deploys policy p* in episode k, we have

sup  sup i (Vﬁk(so) - EMVA’}Z(SO)> > Q(min {\/W, K}),

My, MgeM w57
where Vi refers to the optimal value function of MDP M.

As we shall see in our proof of Lemma 64, the optimal policies for M, are the
same, so Lemma 64 indeed implies a lower bound on the regret defined against the

best stationary policy in hindsight.

Proof. Our construction is inspired by the “combination lock” MDP [Du et al., 2019].
Let us redefine the horizon length as H + 1 (so that H > 1) and let h start from 0.
We now define our family of MDPs.

Definition 65 (MDP My y..). For any pair of bit strings X = (z1,...,zy) € {0,1}",

Y = (y1,...,ym) € {0, 1}H and any € € (0,1), the MDP My y. is defined as follows.

1. The state space is Sop = {so} and Sy, = {son, 514} for all 1 < h < H. The MDP

starts at sy deterministically and terminates at so 7 or sq p.
2. The action space is A, = {0,1} forall 0 < h < H.
3. The transition is defined as follows:
e sy transitions to so; or s;; with probability at least 1/2 each, regardless

of the action taken.

e For any 1 < h < H — 1, sy, 5 transitions to sy, 11 deterministically
if ap, = x, @ yp (“correct state” in combination lock), and transitions to

81—y, ,1,ht1 deterministically if ap =1 — x5, © yp.

e Forany 1 <h < H —1, s;_y, , transitions to s;_,, , »+1 deterministically

regardless of the action taken (“wrong state” in combination lock).
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4. The reward is r, =0 for all 0 < h < H — 1. At step H, we have

o ry(sy,.m)~ Ber(1/2+4¢),

o ry(s1_y, )~ Ber(1/2 —¢).

A visualization for the MDP specified by X, Y and ¢ is shown in Figure A-1.

961 SR 962697/2 T DY
Sy S L

\ \\\

R T R

Figure A-1: M(X,Y): “Combination lock” MDP specified by X and Y. For y €
{0,1}, ¢/ stands for 1 —y.

It is straightforward to see that the optimal value function of this MDP is 1/2(1/2+
e)+1/2(1/2—¢) = 1/2, and the only way to achieve higher reward than 1/2 —¢ is by
following the path of “good states™ (o, Sy,.1,-** , Syp.h»*** » Syy, ). Lhe corresponding

optimal policy is m*(Sy,n) = w @ xp,, which is independent of Y.

Random sequence of MDPs is as hard as a 2”-armed bandit. We now
consider any fixed (but unknown) X € {0,1}" and draw K independent samples
Y, ~ Unif({O,l}H) for 1 < k < K. We argue that if we provide M}, := Mxy, .
in episode k (with some appropriate choice of ¢), then the problem is as hard as a
2H_armed bandit problem with (minimum) suboptimality gap €, and thus must have
the desired regret lower bound.

Our first claim is that, on average over Y}, the trajectory seen by the algorithm
is equivalent (equal in distribution) to the following “completely random” MDP: each
state sgo,1},n transitions to sg1},s41 With probability at least 1 /2 regardless of the

actions taken; and the reward is ry ~ Ber(1/2) if A= X @Y and ry ~ Ber(1/2 —¢)
if A4 X@Y, where A = {ay,...,a,} are the actions taken in steps 1 through
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H. Indeed, consider the transition starting from s,, 5. Since y,+1 ~ Ber(1/2), the
transition probability to sgp+1 and s1 41 must be 1/2 each, regardless of the action
taken. The claim about the reward follows from the definition of the MDP.

We now construct a bandit instance, and show that solving this bandit problem
can be reduced to online learning in the sequence of MDPs above. The bandit instance
has 27 arms indexed by {0, 1}H. The arm indexed by X gives reward Ber(1/2), and
otherwise the reward is Ber(1/2 — €). Now, for any algorithm solving the adversarial

MDP problem, consider the following induced algorithm for the bandit problem.

Algorithm 16 Reducing bandits to adversarial MDPs

1: for k=1,...,K do

2:  Sample Y ~ Unif({0,1}").

3:  Simulate the adversarial MDP algorithm by showing the trajectory
(805 Syy 15+ -+ Syp H)-
Denote the action sequence by A = (aq,...,ay).

. Play A®Y in the bandit environment.

6:  Show the received bandit reward to the adversarial MDP algorithm as the last

step reward.

We now argue that the interaction seen by the adversarial MDP algorithm is
identical in distribution to the sequence My y, .. The trajectory is drawn from a
uniform distribution, which is the same as that generated by Mxy, .. The reward is
high, i.e. Ber(1/2), if and only if A®Y = X, which is equivalent to A = X @Y. This
is also the case in the adversarial MDP problem, since playing the action sequence
X @Y corresponds to playing the optimal policy 7*(sy, n) = T © Yn.

Therefore, the regret achieved by the induced algorithm in the bandit environ-
ment would be equal (in distribution) to the regret achieved by this algorithm in
the adversarial MDP environment. Applying classical lower bounds on stochastic

bandits |Lattimore and Szepesvéari, 2020, Chapter 15| (which corresponds to taking

E=cepK = min{\/QH/K, 1/4}), we obtain

K
sup Eyl, L Y~Unif ({0,132 [Z( Mx vy e i So) E kVA’f[XY EHK($0)>]
xe{o, 13" k=1
Q(min{VQHK,K}),
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where E » denotes the randomness in the algorithm execution (which includes the
randomness of the realized transitions and rewards that were used by the algorithm
to determine p*). Note that for the MDP Myy, ., 7, the optimal policy is dictated
by X and independent of Y (hence independent of k). Thus, the previous lower

bound can rewritten as a comparison with the best policy in hindsight:

K
sup sup By, v umif{o.13") [Z ( Mx vier (s0) —E kVAlj[X . EHK(SO))]

xXe{o,1} w k=1
(min {v 20K, K})

The adversarial MDP problem is as hard as the above random sequence
of MDPs. Define M := {MX7Y7€H,K : XY €0, 1}H}. As the minimax regret is
lower bounded by the average regret over any prior distribution of MDPs, the above

lower bound implies the following minimax lower bound

K
sup sup Z (V“ (s0) = Ex V3, (80))] > Q(mln{\/QH K})
MipeM p k=1
for any adversarial MDP algorithm. [

Proof of Theorem 1. With Lemma 64 in hand, we are in a position to prove the main
theorem.

Our proof follows by defining a two-player Markov game and a set of min-player
policies {z/k} such that the transitions and rewards seen by the max-player are exactly
equivalent to the MDP Mx y, ., , constructed in Lemma 64. Indeed, we augment the
MDP Mx y, e, With a set of min-player actions Bj, = {1,2, 3,4}, and redefine the
transition such that from any s;, where i € {0,1} and 1 < h < H — 1, the Markov

game transitions according to Table A.3.

a/b 1 2 3 4
Si,h+1 | S1—i,h+1 | Sih+1 S1—i,h+1
1 Si,h+1 | S1—i,h+1 | S1—ih+1 | Sih+1

Table A.3: transition function of the state s; j, for the hard instance of Markov games.
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Such an action set By, is powerful enough to reproduce all the possible transitions
in the original single-player MDP. We then define v* as the policy such that the
transition follows exactly Mxy,. The reward function is determined only by states
and thus remains the same. Therefore, Lemma 64 implies the following one-sided

regret bound for the max-player:

sup supZK: <V””’k(so) - E“kvﬂk’yk<80>> > Q(min {\/ﬂ, K}),

k
v 12 k=1

which is the desired result. O
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Appendix B

Proofs for Chapter 3

B.1 Proof for Section 3.2 — Optimistic Nash Value

Iteration

B.1.1 Proof of Theorem 16

We denote V¥, QF, 7%, p¥ and v* ! for values and policies at the beginning of the
k-th episode. In particular, NJ(s, a,b) is the number we have visited the state-action
tuple (s,a,b) at the h-th step before the k-th episode. Nf(s,a,b,s') is defined by
the same token. Using this notation, we can further define the empirical transition
by f”ﬁ(sﬂs,a, b) := NF(s,a,b,s")/NF(s,a,b). If NF(s,a,b) =0, we set I/Esfl(s’|s,a,b) =
1/S.

As a result, the bonus terms can be written as

LH2 HQSL
Bi(s,a.b):=C (\/ max{NE(s.0,6). 1} max{N}(s.a.b) 1}> o

C~ —k
is,0.6) = B (Vhy = VE (50,0 (B

for some large absolute constant C' > 0.

recall that (uf,vF) are the marginal distributions of 7.
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Lemma 66. Let ¢; be some large absolute constant. Define event Ey to be: for all

h,s,a,b,s" and k € K],

(

~ H?,
PF — Pr)V* b)| <
H( h hr) h—i—l](s?aa )’ — Cl\/max{N,’f(s,a,b),l}’
~ in{Pry(s' | s,a,b),PE(s | s,a,b)}e L
Pk_P ! b)| < mln{ h Wy V), Iy s Wy
| (P, hr)(s | 5,a,0)| < \/ max{N¥(s,a,b), 1} + max{NF(s, @, b), 1}

\

We have Pr(E;) > 1 — p.

Proof. The proof is standard and folklore: apply standard concentration inequalities
and then take a union bound. For completeness, we provide the proof of the second

one here.
Consider a fixed (s, a,b, h) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts,
the environment samples {s™),s? ... s} independently from Pry(- | s,a,b); (b)
during the interaction between the agent and environment, the i*" time the agent
reaches (s, a, b, h), the environment will make the agent transit to s). Note that the
randomness induced by this interaction procedure is exactly the same as the original
one, which means the probability of any event in this context is the same as in the
original problem. Therefore, it suffices to prove the target concentration inequality in
this ’easy’ context. Denote by @g)(- | s,a,b) the empirical estimate of Pry(- | s,a,b)
calculated using {sM, s ... s®}. For a fixed ¢t and s’, by applying the Bernstein
inequality and its empirical version, we have with probability at least 1 — p/S?ABT,

min{Pry(s" | s,a,b),@g)(s’ | s,a,b)}e Lt
t t

(Pr—F))(s' | s,a,0)] < O \/

Now we can take a union bound over all s,a, b, h, s’ and ¢t € [K], and obtain that
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with probability at least 1 — p, for all s,a,b, h, s’ and t € [K],

~ in{P / b fp\)(t) / b
(Pr—BO)(s | 5.0,8) < O \/mm{ CALLULALALLL

L
t t

Note that the agent can reach each (s, a, b, h) for at most K times, this directly implies
that the third inequality also holds with probability at least 1 — p. O

We begin with an auxiliary lemma bounding the lower-order term.

Lemma 67. Suppose event Ey holds, then there exists absolute constant co such that:

if function g(s) satisfies |g|(s) < (V:H V5i.1)(s) for all s, then

’(@i - ]Ph)g(sv a, b)‘

H?S, )

I ==k —k
SCQ (E mln{PZ(Vh—f—l - Kfz—&—l)(& a, b)> ]P)h(vh—f—l - Kﬁ—&—l)(& a, b)} + maX{N}’f(s, a, b), 1}

Proof. By triangle inequality,

|(I/P\)Z - Ph)Q(‘Sv a, b)|
<D @ —By)(s'|s, a,b)]]g](s)

< DI = i)'l 0. DIV = Vi) ()

) s'|s,a,b) L .
<
=0 Z \/max{Nk (s,a,b),1} * max{NF (s, a, b)71})<vh+1 Vh-l—l)( s')
@ By(s'ls, . i »
< h ) &y
=7 %:( H +max{N,’j(5,a,b)71})<Vh+1 Vi)(s)
e
<O Py (Viy = Viia)(s,a,b) N H?S.
. 1 max{Nf(s.a,0), 1} )

where (7) is by the second inequality in event Fjy and (i7) is by AM-GM inequality.
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This proves the empirical version. Similarly, we can show

—k
~ Pr,(V, ., — V5. )(s,a,b) H?S.
]P)k _P b < +1 ~—h+1 y Wy
(B = Bu)g(s,a,b)] < O( 7] T e {NF(s,a,0),1) )
Combining the two bounds completes the proof. O

Now we can prove the upper and lower bounds are indeed upper and lower bounds

of the best reponses.

Lemma 68. Suppose event Eq holds. Then for all h,s,a,b and k € [K], we have

Qn(s,a,b) > Q" (s,a.b) > Qi F(s,a,b) > Q%(s,a,b),

. ) } (B.3)
Vi(s) = Vi (s) > VI (s) > Vi(s).

Proof. The proof is by backward induction. Suppose the bounds hold for the Q)-values
in the (h + 1)™ step, we now establish the bounds for the V-values in the (h + 1)

step and @Q-values in the ht"-step. For any state s:

—k —k
Viga(s) = Dw}jﬂ@hﬂ(s)
—k
ZmaxD, . Qia(s) (B.4)

vk vk
> mSXDqu;jHQI;H(S) = ij+1 (s).
Similarly, we can show V7, (s) <V} ff(s). Therefore, we have: for all s,

—k k N k)
Vh+1(3) > ijlrl (s) > Vh+1(3) > VhlfHT(S) > Kﬁ+1(3)~
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Now consider an arbitrary triple (s, a,b) in the h*® step. We have
—k Uk
(@ = Q1" )(s.a,b)

> min {(f”ﬁviﬂ — PV + B+ ) (s,a,0), 0}

> min {(H%VJ;’T —PuVY + BE 4+ F)(s.a,b), 0}

(. N
~~

(A) (B)

. = vk * ™ *
—nin { B~ P (2] — Vi) (ov00) + B~ BV (s,00) + (6 + ). 0.0).0}.

(B.5)

Invoking Lemma 67 with g = V}jflk — Vi

=~ —k
|(A)| < O <PZ<Vh+1 _KiJrl)(Saa?b) H2SL > '

I T e {NE(s,a,0), 1}

By the first inequality in event Ej,

H2%,
(B)]=0 (\/max{zv;;(s,a,b), 1}) ‘

Plugging the two inequalities above back into (B.5) and recalling the definition of 5}

and ¥, we obtain @:(s,a,b) > QL’”k(s,a,b). Similarly, we can show Q’:L(s,a, b) <
Q‘,ik’T(s,a,b). ]

Finally we come to the proof of Theorem 16.

Proof of Theorem 16. Suppose event E; holds. We first upper bound the regret. By
Lemma 68, the regret can be upper bounded by

ST (sh) — v (sh)) < STV (sE) — VR (sE)).

k
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For brevity’s sake, we define the following notations:

—k
AL = (Vi = Vi)(sh),
—k
gllf = A;CL - (Qh - Qk)(siv afw 62)7 (B6>
—k
52 = Ph(vthl Vh+1)(3h7 am bk) Aiﬂ-

Let FF be the o-field generated by the following random variables:

{(Swaz?bia z' ZJ [H]x[k— I]U{ Swaz’bf? ri) iG[h—l] U{Sﬁ}

It’s easy to check ¢} and & are martingale differences with respect to Fy. With
a slight abuse of notation, we use 8F to refer to BF(sF,al bf) and NF to refer to

NFE(sk ak, bF) in the following proof.

We have

—k
A =Gk (@~ @) (shoab. o)
= Tk
<G + 285 + 2 + B (Vi — Vi) (s, ai, b)
(i) s
<CE 4 288 4 29+ P (Vi — VL) (85, al, bF)

—k
Pr(Viiq — Vh+1)(32 a’h’bk> i H?Su
H max{NF, 1}

+ Co

(49) —k
SCi’f + 26}: + ]P)h(vh-H Vh+1) (5’27 afw bﬁi)

+ 2c,C Ph(vhﬂ Vi) (sh: ki, bF) H?S.
’ H max{NF, 1}
2¢5C —k
<ct+ (1+ 20 BT, - Vh) bk )

e LH? N H?S.
c
2 max{NF, 1} = max{N}, 1}

2c,C 2c,C LH? H?S.
(1422 ) b (14 222 ) Ak 4
Gt ( " H St “H )T T deC max{ N}, 1} * max{NF, 1}

where (i) and (éi) follow from Lemma 67.
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Define ¢3 := 1+ 2¢,C and k := 1 + ¢3/H. Recursing this argument for h € [H|

and summing over k,

K K H
H? H?S.
> h=1,k | . hek t .
E:Al—ZZ[E h+ﬁ£h+o< maX{N;]f,l}+maX{N;]f,1})]

KLk < O(H\/H—KL) _ O(\/H2—TL>
(B.7)
Khek < (’)(H\/ﬁ) _ o(\/ﬁ)

L 1 7
ZZ rnaux{]\f}’f,l}S Z %+HSAB

s,a,b,h: N}{((s,a,b)>0 n=1

<0 (\/HSABT n HSAB),

H N,f( s,a,b)
=1

K 1 (
Z max{NF, 1} = Z Z

k=1 h=1 s,a,bh: NE(s,a,0)>0 7

L HSAB < O(HSABY).
n

Put everything together, with probability at least 1 — 2p (one p comes from
Pr(Ey) > 1 — p and the other is for equation (B.7)),

K
SV (k) = (k) < (’)(\/H?’SABTL + H352ABL2>

k=1
For the PAC guarantee, recall that we choose 7°" = 7% such that

k* := arg min <V’f — K’f) (s1) .
k

173



As a result,
s _k*

* * 1
V=V s < (7 = V) (o0) < O(VAPSABT + H'S'ABE?).

which concludes the proof. O]

B.1.2 Proof of Theorem 17

We use the same notation as in Appendix B.1.1 except the form of bonus. Besides,

we define the empirical variance operator

i\ﬂgV(s, a,b) := Vars,N@;g(.‘&a’b)V(s’)
and the true (population) variance operator

ViV (s,a,b) :== Varg.p, (|sanV (s)

for any function V€ AS. If Nf(s,a,b) = 0, we simply set i\/fLV(s,a,b) = H?

regardless of the choice of V.

As a result, the bonus terms can be written as

; _ VE (Vi + VE0)/2(s,a,0) H2S,
By (s,a,b) :=C \/ max{NF (5, a.b), 1] (N5, a ). 1] (B.8)

for some absolute constant C' > 0.

Lemma 69. Let ¢; be some large absolute constant. Define event Ey to be: for all
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h,s,a,b,s" and k € [K],

(

~ VEVE (s, a,b) H.
Pj — Pr)Vy; b)| < T
[P hr) wl(s, 0.0 < e \/maX{N,’f(s,a,b), 1} * max{NF(s,a,b),1} |’
~ in{Pry(s' | s,a,b),PE(s | s,a,b)}e L
]P)k —P / bl < mln{ h s Wy st h s Uy
[P hr)(s [sab)l < \/ max{NF(s,a,b),1} * max{N}(s,a,b),1} |’
St

@k—P . b < :
||( h hr)( |S7a’ )Hl —Cl\/maX{N}’f(Sﬂab)J}

\

We have Pr(Ey) > 1 —p.

The proof of Lemma 69 is highly similar to that of Lemma 66. Specifically, the
first two can be proved by following basically the same argument in Lemma 66; the
third one is standard (e.g., equation (12) in Azar et al. [2017]). We omit the proof

here.

Since the proof of Lemma 67 does not depend on the form of the bonus, it can
also be applied in this section. As in Appendix B.1.1, we will prove the upper and

lower bounds are indeed upper and lower bounds of the best reponses.

Lemma 70. Suppose event Ey holds. Then for all h,s,a,b and k € [K], we have

Qn(s,a.0) > Q) (s,a.0) > Q) F(s,a.b) > Q"(s,a,b),

X X (B.9)
Vi(s) = VI (s) > Vi i(s) > Vi(s).

Proof. The proof is by backward induction and very similar to that of Lemma 68.
Suppose the bounds hold for the Q-values in the (h + 1) step, we now establish the
bounds for the V-values in the (h + 1) step and Q-values in the h''-step.

The proof for the V-values is the same as (B.4).
For the @-values, the decomposition (B.5) still holds and (A) is bounded using

Lemma 67 as before. The only difference is that we need to bound (B) more carefully.
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First, by the first inequality in event Ej,

VEVE (s, a,b) H.
B)| < 0 hVh+1\2 ™
(Bl < \/max{N,’f(s,a,b), 1} * max{NF(s,a,b),1}

By the relation of V-values in the (h + 1) step,

VE(V s+ Vh)/2 = ViV, (s, 0,0)
<|BE (Vo + V)22 = @5V (s, a,0)
+ 1B [(Visr + Vi) /22 = Bh(Viry )2l (5. 0,0) (B.10)
<4HIP)’,§|(Vh+1 + Vh+1)/2 — Viial(s,a,b)
<4HPH(V) = Vi) (s,a,b),

which implies

L@ZVh*H (s,a,b)
max{N}(s,a,b),1}

=k
k Vh+1 + Vh+1)/2] + 4HP§,(Vh+1 - KZH)](Sa a,b)
max{NF(s,a,b),1}

\/ A
\/ (Vi + Vho)/2(s,0.0) | \/4LH@2<VZ+1 —Vhl(s.0.b)

IN

IN

max{NF(s,a,b),1} max{NF(s,a,b),1}

~p 77k
Vh+1+vh+1)/2](5 a,b)  Pr(Viy — Vi) 4 A
max{N}(s,a,b),1} H max{N}(s,a,b),1}’
(B.11)

—~
.
~

IN

where (i) is by AM-GM inequality.
Plugging the above inequalities back into (B.5) and recalling the definition of S}

and ¥ completes the proof. m
We need one more lemma to control the error of the empirical variance estimator:

Lemma 71. Suppose event Ey holds. Then for all h,s,a,b and k € [K], we have

Skrrk
VE(Viyr + VE,)/2] = VRV (s, a,b)
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— H4
§4H f;l"(VZ_,rl - Ki-i—l)(sa a, b) + O (1 + St ) .

max{Nf(s,a,0), 1}

Proof. By Lemma 70, we have Vz(s) > V7™ (s) > VE(s). As a result,

VE(Viar + V572 = VaVi (s, a,0)
=B (Ve + Vho1)2/4 = Pu(Vi)) (5,0, )
— (B (Vs + VE1)2/4 = Vi) (s, 0.b)]
<[BE (Vi) = PV 0)2 = (BRVE 1) + BV (s, 0, )
<[I(B% — Pu)(Vyyr)2| + [Pl(Vryn)? — (V5,7

~ —k
PRV 5 11)” = BV 1)? + [PV ) = (BaV )] (5, 0, b)
These terms can be bounded separately by using event Ej:

~ _k A~
(P = Po) (Vi)?I(s, 0, 0) <H?|| (B, = Pr)(- | 5,0, b)llx

) St
<O(H \/maX{fo(S,a, b), 1})’

PA(Vir)? = (VD) (s,a,b) <2H[PL(V,y — VL )](s,a,b),

(BRV3)* = (BuVE)% (s, a,b) <2H[(B] — Pu)Vi (s, a,0)

, St
<O(H \/maX{N;]f(S, a,b), 1}>’

—k —k
PV 1)* = (PuVii0)?I(s, 0, 0) S2H[PR(V), g — Viry)](s,a,b).

Combining with

e St <14 H'S.
max{N}(s,a,0), 1} ~ | max{N}(s,a,0), 1}
completes the proof. O
Finally we come to the proof of Theorem 17.

Proof of Theorem 17. Suppose event E; holds. We define AF, ¢F abd £F as in the
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proof of Theorem 16. As before we have

Aﬁ Sg}]f + <1 + %) Ph(vlli+1 Vh+1) (Sm Qp,, bk)

L 4o WV [(Vh—i-l + Vi 1)/2)(sk, af, b) H?Su
? max{NF(sk aF bF) 1} max{NF(sk aF bF) 1}
(B.12)
By Lemma 71,
Vh+1 +V5.1)/2)(s,a,b)
maX{Nk (s,a,b), 1}
<0 VRV (s a,b) + 1 HLPI‘h(V:_H Vi1)(s,a,b) H?\/Su
max{NF(s,a,b),1} max{NF(s,a,b),1} max{N}(s,a,b),1}
- WLV (s,a,b) 41 N Prh(ViJr1 —Vi1)(s,a,b) N H?\/S1
= max{NF(s,a,b),1} H max{N}(s,a,b),1} |’
(B.13)
where ¢4 is some absolute constant. Define ¢5 := 4cocyC + ¢ and k := 1 4 ¢5/H.
Plugging (B.13) back into (B.12), we have
Ay,
Vi ViEE (s ak, bF) 0 H%S.
<A Eo ko LY h Vg1 (Shs Qg
B RG Gt Nllf(shaah>bk) " N,’f(sh,ah, bk) " Nf’f(shaahabk)
(B.14)

Recursing this argument for h € [H]| and summing over k,

K
> A

k=1

K H k
Va Vi (sF,ak, bY) L H?S.
< h—1 1k hek o0 L ht1\Shs Qg Op
= 2; {’f Ch + K& + \/ max{NF, 1} + max{NF, 1} * max{N}, 1}

The remaining steps are the same as that in the proof of Theorem 16 except that

we need to bound the sum of variance term.
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By Cauchy-Schwarz,

ii\/ thhﬁcl(shaahvbk)
st max{Nf(sf, aF b¥) 1}

<

H KX
ﬂk k
ZVth+1 Shaah7b ZZmaX{Nk Sh,a/h,bk) }

1 h=1 =1 h=1

]~

i

By the Law of total variation and standard martingale concentration (see Lemma

C.5 in Jin et al. [2018] for a formal proof), with probability at least 1 — p, we have

K H
Z > VRV (s af b <O(HT + H).
=1

h=1

Putting all relations together, we obtain that with probability at least 1 — 2p (one p
comes from Pr(£;) > 1 —p and the other comes from the inequality for bounding the

variance term),

K
=S W =) (s1) < O(VH?SABT + H*S?AB).

k=1

Rescaling p completes the proof. O

B.2 Proof for Section 3.3 — Reward-Free Learning

B.2.1 Proof of Theorem 18

In this section, we prove Theorem 18 for the single reward function case, i.e., N = 1.
The proof for multiple reward functions (N > 1) simply follows from taking a union
bound, that is, replacing the failure probability p by Np.

Let (1%, v%) be an arbitrary Nash-equilibrium policy of M = (]P’k ), where Pp*
and 7% are our empirical estimate of the transition and the reward at the beginning
of the k-th episode in Algorithm 2, respectively. We use NF(s,a,b) to denote the

number we have visited the state-action tuple (s, a,b) at the h’=th step before the
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k-th episode. And the bonus used in the k-th episode can be written as

H?, H?2S.
Bi(s,a,b) := C(\/max{N}’f(S, a,b), 1} * max{NF(s,a,b), 1})’ (B.15)

where ¢ = log(SABT/p) and C' is some large absolute constant.
We use @\k and V* to denote the empirical optimal value functions of M* as

following.

Qi (s,a,0) = (PiVii1)(s,a,b) + 7h(s,a,b),
V¥ (s) = max min Duxyéﬁ(s).

m

(B.16)

Since (u*, V%) is a Nash-equilibrium policy of /\7’2 we also have ?hk(s) = Dk Q\ﬁ(s)
We begin with stating a useful property of matrix game that will be frequently

used in our analysis. Since its proof is quite simple, we omit it here.

Lemma 72. Let X,Y,Z € RYB and Ay be the d-dimensional simplex. Suppose

X — Y| < Z, where the inequality is entry-wise. Then

max min g Xv — max min p' Y| < max Zi;. (B.17)
HEN A VEAR HEN A VEAR

Lemma 73. Let ¢; be some large absolute constant such that ¢ + ¢, < C. Define

event Ey to be: for all h,s,a,b,s" and k € [K],

(

H?%
e N (s, 0,5), 1}

» c1 H?,
_ b)| < —
|(T’h Th)(rS,aa )| = 10\/maX{N,’f(S,a,b),1}’

I/P\”“(s’ | s,a,b) L
Pt —P b = y "
=P | s.a.b)] < g \/ max(Nf(s.a.8). 1} max{Nf(s.a.0). 1}

(B.18)

™ * C1
(@~ Pr)Viisi](s,0,6)] < 1—0\/

\
We have Pr(E;) > 1 —p.

Proof. The proof is standard: apply concentration inequalities and then take a union
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bound. For completeness, we provide the proof of the third one here.
Consider a fixed (s, a,b, h) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts,
the environment samples {s",s?) .. sF)} independently from Pry(- | s,a,b); (b)
during the interaction between the agent and the environment, the i*" time the agent
reaches (s, a, b, h), the environment will make the agent transit to s&). Note that the
randomness induced by this interaction procedure is exactly the same as the original
one, which means the probability of any event in this context is the same as in the
original problem. Therefore, it suffices to prove the target concentration inequality in
this ’easy’ context. Denote by @:)(- | s,a,b) the empirical estimate of Pry(- | s,a,b)
calculated using {s",s? ... s®}. For a fixed t and s', by the empirical Bernstein

inequality, we have with probability at least 1 — p/S*ABT,

@,(f)(s’ | s,a,b)t 4t
t t

|(Pr—B})(s' | s,a,0) < O V

Now we can take a union bound over all s, a,b, h, s’ and t € [K], and obtain that

with probability at least 1 — p, for all s,a,b, h,s" and t € [K],

PY (s s,a,b)t 1
V(s s

(Br=B})(s' | 5,0,0)| < O J t

Note that the agent can reach each (s, a,b, h) for at most K times, so we conclude

the third inequality also holds with probability at least 1 — p. O

The following lemma states that the empirical optimal value functions are close
to the true optimal ones, and their difference is controlled by the exploration value

functions calculated in Algorithm 2.

Lemma 74. Suppose event E; (defined in Lemma 73) holds. Then for all h,s,a,b
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and k € [K]|, we have,

Qhls,a.) = Qis.a.)| < Bf(s.a.b),

(B.19)
V() = Virls)] < ViGs). o

Proof. Let’s prove by backward induction on h. The case of h = H +1 holds trivially.
Assume the conclusion hold for (h + 1)-th step. For h-th step,

Qh(s,a.) — Qis.a.b)|

< min][(B5 = POViiial(s,0,6)| + (75 = 7) (5, 0,0)]
h
I (B.20)
+ | PE T — Vi)(s,0,0)| 1)
(7) . k Sktrk (ﬁ) Nk
< min {Bh(sv a, b) + (]:thh+1)(87 a, b)7 H, = Qh(S; a, b)a

where (7) follows from the induction hypothesis and event £, and (i7) follows from the

definition of QF. By Lemma 72, we immediately obtain [V (s) — Vi*(s)| < Vik(s). O
Now, we are ready to establish the key lemma in our analysis using Lemma 74.

Lemma 75. Suppose event Ey (defined in Lemma 73) holds. Then for all h,s,a,b
and k € [K], we have

~ Lk ~
’Qz(s7 a, b) - Q}; (87 a, b)‘ S ath(s7 a, b)7

R . _ (B.21)
Vi (s) = Vi (s)] < anVif(s),
and
~ k ~
Qk S,CL,b _Q# d Sva7b San S,CL,b,
|Qn(s,a,b) = Q "'(s,a,b)| < @y (s, a,b) (B.22)

V() = ()] < anVif(s),
where a1 =0 and ap = [(1 + %)ahﬂ + %] <A4.
Proof. We only prove the first set of inequalities. The second one follows exactly the

same. Again, the proof is by performing backward induction on A. It is trivial to see

the conclusion holds for (H + 1)-th step with ay; = 0. Now, assume the conclusion
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holds for (h + 1)-th step. For h-th step,

Q% (s,a,b) — QI (s,a,b)]

. = llk * FaN *
< min {I[(PZ ~ POV = Vi)l(s,a,0)] + (B — PV (s,a,0)

~ —~ vk
1 = )(5 0 0)] + [Ba(Ts — ViE5](5.a,B), H}

B.23
7 (B.23)

max{N}(s,a,0), 1}

. 3 vk *
< min { [(PF — f;br)(VJ;Ll — Vi )l(s, a,b)] —1—01\/

(1)

I
+ BT~ Vi s b A,

(.

(T2)

where the second inequality follows from the definition of event FEj.

We can control the term (77) by combining Lemma 74 and the induction hy-
pothesis to bound |ijf1k — Vp5.1|, and then applying the third inequality in event F:

E vk *
(1) <D B5(s' | 5,0,6) = Pr(s' | 5,0, D)V = Vi ()
o vk 17 i *
<D B | s,a,0) = Pr(s’ | 5,0 0| (VY = V()] + 1V = Vi ()

< Z |PZ(S/ | $, a, b) - Phr(sl | $, a, b)|(ah+1 + l)vhk+1

(ape1 + 1) Aaps1 +1)H?S:

IN

(BRVi)(s,a,0) +

H max{NF(s,a,b),1}
(B.24)
The term (73) is bounded by directly applying the induction hypothesis
A~ ~ l/k A~ ~
[BL (Vi = ViEDI(s, 0,0)] < anga [PaVif ] (s, a,b). (B.25)
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Plugging (B.24) and (B.25) into (B.23), we obtain

Qh(s,0.0) = Q" (5,0.)

H?,
max{ N (5,0, 0), 1]

, 1 1~
< min {(1 + E)ah_i'_]_ + E[szhkﬂ](‘g’ a,b) + 61\/

cHane1 + 1) H?S, I
max{N}(s,a,b),1}’

(3) 1 1\ ~, ~
nin{ (14 lanes + 37 )BT 5.0.0) + GG, 1}

(B.26)

H H

|~

(41) 1 ~
S <<1 + _>ah+1 + E)sz(sa a, b);

where (i) follows from the definition of 8%, and (ii) follows from the definition of Q¥
Therefore, by (B.26), choosing oy, = [(1 + % )ant1 + 7] suffices for the purpose of
induction.
Now, let’s prove the inequality for V' functions.
5 vy @) 5 o
(Vi = ViP)(s)] = | max (D, ,+Qf)(s) — max (D, + Q)" )(s)|

HEA 4 HEA A

“ ) i (B.27)
< max [nQh(s.0.0)] = on T (s),

where (i) follows from the definition of ‘A/hk and VI ’"k, and (i7) uses (B.26) and Lemma

72. [l

Theorem 76 (Guarantee for UCB-VI from Azar et al. [2017]). For any p € (0,1],
choose the exploration bonus B in Algrothm 2 as (B.15). Then, with probability at

least 1 — p,
K

> Vi(s1) < O(WVH'SAKL + H*S?Ar%).

k=1
Proof of Theorem 18. Recall that out = arg mingex, ‘N/hk (s). By Lemma 75 and The-
orem 76, with probability at least 1 — 2p,

out

() IV () = Vi (s)] + [V (s) = VI 1)

B.28)
- HASA H3S2A,2 (
<8V (s) < O/ f; “ ‘i( Oy,
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Rescaling p completes the proof. O]

B.2.2 Vanilla Nash Value Iteration

Here, we provide one optional algorithm, Vanilla Nash VI, for computing the Nash
equilibrium policy for a known model. Its only difference from the value iteration
algorithm for MDPs is that the maximum operator is replaced by the minimax oper-
ator in Line 7. We remark that the Nash equilibrium for a two-player zero-sum game

can be computed in polynomial time.

Algorithm 17 Vanilla Nash Value Iteration

1: Input: model M= (@7?)

2: Initialize: for all (s,a,b), Vyi1(s,a,b) < 0.

3: forsteph=H,H—1,...,1do

4: for (s,a,0) € S x Ax B do
Qn(s,a,b) < [PpVii1](s,a,b) + rr(s,a,b).

for s € S do
(n(- | 8),7n(- | 8)) < NASH-ZERO-SUM(Q(s, -, -)).
Vi(s) = (- [ 8)TQn(s,+ )Tn(- | ).

: Output (2, 7) < {(zn(- | 8), V(- | 5)) }ns)elmxs-

By recalling the definition of best responses in Section 2.3.2, one can directly see

that the output policy (i, V) is a Nash equilibrium for M.

B.2.3 Proof of Theorem 19

In this section, we first prove a ©(AB/e?) lower bound for reward-free learning of
matrix games, i.e., S = H = 1, and then generalize it to ©(SABH?/e?) for reward-
free learning of Markov games.

Reward-free learning of matrix games

In the matrix game, let the max-player pick row and the min-player pick column. We

consider the following family of Bernoulli matrix games

M(e) = {MT" e RVFPY (B.29)
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where in matrix game M?*" | the reward is sampled from Bernoulli(M"") if the max-
player picks the a-th row and the min-player picks the b-th column. Here M%" :=
$+ (1 —2-1{a # a*&b = b*})e for any (a*,b*) € [A] x [B].

Min-player
action 1 ... ¥—1 b b*+1 ... B
1 + ... 4+ - 4+ .+
at—1 + ...+ = 4+ L+ (B.30)
Max-player

a + + o+ + -
a+1 + + -+ +

A 4+ ...+ - 4+ .+

Above, we visualize M%?" by using + and — to represent 1/2 + ¢ and 1/2 — &,
respectively. It is direct to see that the optimal (Nash equilibrium) policy for the
max-player is always picking the a*-th row. If the max-player picks the a*-th row

with probability smaller than 2/3, it is at least £/10 suboptimal.

Lemma 77. Consider an arbitrary fized matriz game M®*" from M(¢) and N € N.
If there exists an algorithm A such that when running on M®Y | it uses at most
N samples and outputs an e/10-optimal policy with probability at least p, then there
exists an algorithm A that can identify a* with probability at least p using at most N

samples.

Proof. We simply define A as running algorithm 4 and choosing the most played row
by its output policy as the guess for a*. Because any £/10-optimal policy must play a*
with probability at least 2/3, we obtain A will correctly identify a* with probability
at least p. O

Lemma 77 directly implies that in order to prove the desired lower bound for

reward-free matrix games:
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Claim 1. for any reward-free algorithm A using at most N = AB/(103¢?) samples,
there exists a matriz game MY in M(e) such that when running A on M it will
output a policy that is at least £/10 suboptimal for the maz-player with probability at
least 1/4,

it suffices to prove the following claim:

Claim 2. for any reward-free algorithm A using at most N = AB/(10%¢?) samples,
there exists a matriz game M®Y" in M(e) such that when running A on M, it will

fail to identify the optimal row with probability at least 1/4.

Remark 78. By Lemma 77, the existence of such “ideal’ A implies the existence of
an ‘ideal’ A, so to prove such ’ideal” A does not ezist (Claim 1), it suffices to show

such ideal’ A does not exist (Claim 2).

Proof of Claim 2. WLOG, we assume A is deterministic. Since A is reward-free,
being deterministic means that in the exploration phase algorithm A always pulls each
arm (a, b) for some fized n(a,b) times (because there is no information revealed in this
phase), and in the planning phase it outputs a guess for a*, which is a deterministic
function of the reward information revealed.

We define the following notations:
e [: the stochastic reward information revealed after algorithm A’s pulling.

Pr,: the probability measure induced by picking M®*" uniformly at random

from 9(e) and then running A on M.

Pr,,: the probability measure induced by running A on M,

Prg,: the probability measure induced by running A on matrix M®, whose b-th

column are all (1/2 — ¢)’s and other columns are all (1/2 + ¢)’s.?

f(L): the output of A based on the stochastic reward information L revealed.

More precisely, f is function mapping from [0, 1]V to [A].

2We comment that matrix M does not belong to 91(e).
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We have

Pr(f(L) #a) > 4 BRI #a) - =S IPHL =)~ Pr(L =),

* AB AB b b
1___EZ 2KL(Pr | Pr
1L LS b - o)l A RNLRRE bk
A AR £\ PRy TR 2 TR T
>1—l—1—02\/n(ab)62
- A ABZ ’
1 100N g2
>1-— = — :
=7 A AB
(B.31)

where the second inequality follows from ), Proy(f(L) # a) = >, ,[1 —Prop(f(L) =
a)] = B(A — 1) and Pinsker’s inequality. Finally, plugging in N = AB/(10%?)
concludes the proof. O

Remark 79. The arguments in proving Claim 2 basically follows the same line in

proving lower bounds for multi-arm bandits [e.g., see Lattimore and Szepesvdri, 2020).

Reward-free learning of Markov games

Now let’s generalize the ©(AB/e?) lower bound for reward-free learning of matrix
games to ©O(SABH?/e?) for reward-free learning of Markov games. We can follow
the same way of generalizing a lower bound for multi-arm bandits to a lower bound
for MDPs [see e.g., Dann and Brunskill, 2015, Lattimore and Szepesvari, 2020, Zhang
et al., 2020b].

Proof sketch. Given the family of Bernoulli matrix games 9t(-) defined in
(B.29), we simply construct a Markov game to consist of SH Bernoulli matrix games
{M S’h}(s,h)e[S]x[H] where M*"s are sampled independently and identically from the
uniform distribution over M(e/H). We will define the transition measure to be totally
"uniform at random’ so that in each episode the agent will always reach each M*"
with probability 1/5 (it is not 1/(SH) because in each episode the agent can visit H

matrix games). As a result, to guarantee e-optimality, the output policy must be at
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least 2¢/H-optimal for at least SH/2 different M*"’s. Recall Claim 1 shows learning
a 2¢/H-optimal policy for a single M*" requires Q(H?AB/e?) samples. Therefore,
we need Q(H®AB/e?) samples in total for learning SH/2 different M*"’s.

Below, we provide a rigorous proof where the constants may be slightly different
from those in our sketch. We remark that although the notations we will use are
involved, they are only introduced for rigorousness and there is no real technical

difficulty or new informative idea in the following proof.

Construction We define the following family of Markov games:
() = {T(a" b+ (a*,b") € [AJ<5 x [B]H*SY, (B.32)

where MG J (a*, b*) is defined as

e States and actions: J(a*,b") is a finite-horizon MG with S + 1 states and
of length H + 1. There is a fixed initial state sy in the first step, S states
{s1,...,8s} in the remaining steps. The two players have A and B actions,

respectively.

e Rewards: there is no reward in the first step. For the remaining steps h €
{2,..., H + 1}, if the agent takes action (a,b) at state s; in the ! step, it will
receive a binary reward sampled from

. 1 * * €
Bernoulh(E +(1=2-Ha#aj_;&b= h—17i}>ﬁ>
e Transitions: The agent always starts at a fixed initial state sq in the first step

Regardless of the current state, actions and index of steps, the agent will always

transit to one of sy, ..., sg uniformly at random.

It is direct to see that J(a*, b*) is a collection of S H matrix games from M(e/H).
Therefore, the optimal policy for the max-player is to always pick action aj_; ; when-

ever it reaches state s; at step h (h > 2).
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Formal proof of Theorem 19. Now, let’s use J(¢) to prove the ©(SABH?/e?)
lower bound (in terms of number of episodes) for reward-free learning of Markov

games. We start by proving an analogue of Lemma 77.

Lemma 80. Consider an arbitrary fived matriz game J (a*, b*) from J(e) and N € N.
If an algorithm A can output a policy that is at most € /103 suboptimal with probability
at least p using at most N samples, then there exists an algorithm A that can correctly
identify at least SH — | SH/500]| entries of a* with probability at least p using at most

N samples.

Proof. Denote by 7 the output policy for the max player. Denote by Z the collection
of (h,i)’s in [H] x [S] such that m,11(aj; | s:) < 2/3.

Observe that each time the max player picks a suboptimal action, it will incur an
2¢/H suboptimality in expectation. As a result, if 7 is at most £/103-suboptimal, we
must have

& 3 = mhalai, [50) x 7 < 1
(hi)eZ
which implies |Z| < SH /500, that is, for at most | SH/500] different (h, i)’s, w441 (aj ; |
si) < 2/3. Therefore, we can simply pick argmax, m,41(a | s;) as the guess for aj ;.
Since policy 7 is at most £/10% suboptimal with probability at least p, our guess will

be correct for at least SH — | SH/500] different (s, h) pairs also with probability no
smaller than p. O

Similar to the funtion of Lemma 77, Lemma 80 directly implies that in order to

prove the desired lower bound for reward-free learning of Markov games:

Claim 3. for any reward-free algorithm A that interacts with the environment for at
most K = SABH?/(10%¢?) episodes, there exists J € J(g) such that when running
A on J, it will output a policy that is at least €/10% suboptimal for the maz-player
with probability at least 1/4,

it suffices to prove the following claim:
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Claim 4. for any reward-free learning algorithm A that interacts with the environ-
ment for at most K = ABSH?/(10%?) episodes, there exists J € J(¢) such that
when running A on J, it will fail to correctly identify aj,; for at least [SH/500] +1
different (h,i) pairs with probability at least 1/4.

Proof of Claim 4. Denote by Pr, (E,) the probability measure (expectation) induced
by picking J uniformly at random from J(¢) and then running A on J. Denote by
Nwrong the number of (s, h) pairs for which A fails to identify the optimal actions.
Denote by errory; the indicator function of the event that A fails to identify the
optimal action for (h + 1,1).

We prove by contradiction. Suppose for any J € J(¢), A can identify the optimal
actions for at least SH — | SH/500] different (s, h) pairs with probability larger than
3/4. Then we have

1 3 |SH| _101SH
E* wron, S n H n S
[Pwrong] < 3 > SH + 7 {500J 400

Since Y, e (mx (5] B« erT0rn ;] = Ei[nwrong], there must exists (h',i) € [H] x [S] such
that E,[error, ;] < 101/400. However, in the following, we show that for every
(h,1) € [H] x [S], E,[errory ;] > 1/3. As a result, we obtain a contraction and Claim
4 holds. In the remainder of this section, we will prove for every (h,i) € [H] x [5],
E,[error, ;] > 1/3.

WLOG, we assume A is deterministic. It suffices to consider an arbitrary fized

(R',7") pair and prove E,[error ] > 1/3.

For technical reason, we introduce a new MG J_¢ i (a*, b*) as below:
e States, actions and transitions: same as J(a*, b*).

e Rewards: there is no reward in the first step. For the remaining steps h €
{2,...,H + 1}, if the agent takes action (a,b) at state s; in the ht" step such

that (h — 1,4) # (R/,7'), it will receive a binary reward sampled from

1
Bernoulli<§ +(1—-2-1{a # GZ—l,i&b = bZ—l,i})%>7
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otherwise it will receive a binary reward sampled from

(1 X 2
Bernoulh<§ +(1-2-1{b= h—l,i})ﬁ>‘

Remark 81. Briefly speaking, J—_v i (a*,b*) is the same as J(a*,b*) except the
matriz game embedded at state sy at step h'+1, where for the max player all its actions
are equivalently bad ®. Finally, we remark that J_ g i (a*,b*) is independent of

ap -
To proceed, we introduce (and recall) the following notations:

n(a,b): the number of times A picks action (a,b) at state sy at step (b + 1)

within K episode.

o Pryp (Eq+p+): the probability measure (expectation) induced by running algo-

rithm A on J(a*, b*).

o Pr_... (E,.,.): the probability measure (expectation) induced by running algo-

rithm A on T i (a*, b*) .

e Pr, (E,) the probability measure (expectation) induced by picking J(a*, b*)

uniformly at random from J(¢) and running Aon J (a*,b%).

e [: the whole interaction trajectory of states, actions and rewards produced by

algorithm A within K episodes.
e f(L): the guess of A for aj, . based on L.

The key observation here is that for any (a,b) € [A] x [B] and (a*, b*) € [AJ7*5 x
[B)1*5 | the expectation E_.,.[n(a,b)] is independent of (a*,b*) because the agent
does not receive any reward information when interacting with the environment and
the transition dynamics of different J_ 1y (a*, b*)’s are exactly the same. For sim-

plicity of notation, we denote this expectation by m(a,b). Moreover, note that

3A graphic illustration based on (B.30) would be replacing the column [—, ..., — +,—, ..., —]T

with a column of all —’s in the matrix game embedded at state s; at step b/ + 1.
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>apmla,b) = K/S because the agent always reach state sy in step (A’ + 1) with
probability 1/S regardless of the actions taken.
By mimicking the arguments in (B.31), we have
E,[errory o] = Pr(f(L) # ajy ;)
1 *
= (AB)SH Z alig*(f(L) 7& a’h’,i’)
(a* b*)E[A}HXSX[B]HXS
1 —
AB)SH Z (a*b* ) 7 @) = | Pr (b= = Br (L =") 1)
g Z = Pr (L =")
- A AB SH ~ a*b* - *lf*
21 a2 J 2KL(Py (L= ). Py (L =)
1 1 1 e 55— 1 ¢ s+
=1-= 2m(ay, ;. by, ) [(5 — =) log F—L + (5 + =0
A (ABSH*Z;* bl ~ g i ti 2 Tl
L e 1% ;
:1_Z_E Z 2m(a,b)[(§—ﬁ)logl+i~|—(—+ﬁ)10g 3]
(a,b)€[A]x[B] 2 T H I
1 10 g2
>1—-=—-— b)—
= T A 4B Eb: mla,0) g
1 10e 1 100K &2
>1——— AB b)=1———\/——.
=7 ABH\/ ;m(a’ ) A~ VsABH?
(B.33)
Plugging in K = SABH?/(10%¢?) completes the proof. O

B.3 Proof for Section 3.4.2 — Multi-player General-

sum Markov Games

B.3.1 Proof of Theorem 20

NE Version In this part, we prove Theorem 20 (NE version). As before, we begin

with proving the optimistic estimations are indeed upper bounds of the corresponding
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V-value and Q-value functions.

Lemma 82. With probability 1 — p, for any (s, a, h,i) and k € [K]:

Qhi(5.0) 2 Q7 (s,0), @ (s,0) < QL (s,0), (B.34)

Tk T’ﬂ—ii k wk
vh,z‘ (s) > Vh,i (s), Kh,z‘ (s) < vh,i (s). (B.35)

Proof. For each fixed k, we prove this by induction from h = H +1 to h = 1. For the
— _

base case, we know at the (H + 1)-th step,VI;IH,i (s) = VI_TI’JFI; (s) = 0. Now, assume

the inequality (B.35) holds for the (h+ 1)-th step, for the h-th step, by the definition

of Q-functions,

=k Tvﬂ'lii Ak_k Tyﬂ'lii
Qi (5,0) = Q7 (s,0) = BV ] (s,0) = [PV (s.0) + 6,

N 7k T’ﬂ'lji o 1‘,71—’11_
=P} <Vh+1,i - Vh—i—l,i) (s,a) + (Pﬁi - Ph) Vit (s,a) + By

(4) (B)

— ﬂk .
By induction hypothesis, for any ', (V:HJ — VJH’;) (s') > 0, and thus (A) > 0.
By uniform concentration [e.g., Lemma 12 in Bai and Jin, 2020], (B) < C'\/SH2/N}(s,a) =

J— 71']C .
Bi. Putting everything together we have Qfm (s,a) = Q; " (s;a) > 0. The second
inequality can be proved similarly.

Now assume inequality (B.34) holds for the h-th step, by the definition of V-

functions and Nash equilibrium,
—k —k —k
Vh,i (s) = ]D)Trk@h,z' (5) = mI?XDuXWEiQh,i (s)-
By Bellman equation,
b —7 T77T]i
Vi T (s)= m/f“XDuxw’iiQh,z‘ “(s).

— ﬂ'k.
Since by induction hypothesis, for any (s, a), sz (s,a) > QL:[Z (s,a). As a
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_ ok
result, we also have V’:w- (s) > VhTZ ~'(s), which is exactly inequality (B.35) for the

h-th step. The second inequality can be proved similarly. O

Proof of Theorem 20. Let us focus on the ¢-th player and ignore the subscript when

there is no confusion. To bound

mae (VI = ViT) (sh) < max (V5 = V4,) ().

)

we notice the following propogation:

—k =~k
(Qh,i - QZZ)(Sa a) < PZ(Vh—&-l,i - KZH,i)(Sa a)+ 25}?(& a),

o . (B.36)
(Vi = Voi)(s) = [Dr, (Qn; — @y DI(5).
We can define @ﬁ and \7hk recursively by ‘7}’} +1 =0 and
?Q(S, a’) = Pif\‘//hk—l-l(sv Cl,) + 2/8}];;('9’ (L), (B37)
Vi (s) = [Dr, Q3](5)-
Then we can prove inductively that for any k, h, s and a we have
Ak k Ak
maX(Qh,i - th)(s, a) < Q(s,a),
’ B ’ N (B.38)
max(Vai = V,:)(s) < Vi (s).
Thus we only need to bound Zle V[ (s). Define the shorthand notation
(
By = Bu(sh, ay),
AR = VR(sh),
heooR (B.39)

b= [DnQi] (sh) — Qhlsh, ap),

\filj = [thhkﬂ](sfm ay) — Aiﬂ-
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We can check ¢F and £F are martingale difference sequences. As a result,

Af =D Qk (sf)
=Cr + QF (sh. af)
=Cf+ 265 + [PEVE] (sh, al)
<G+ 365 + [PuVi] (55, af)

:ka; + 365 + 55 + AE—H'

Recursing this argument for h € [H| and taking the sum,

(Gr+38i+&) <0 S

1

> AT<

K K
k=1 k=

]

CCE Version The proof is very similar to the NE version. Specifically, the only

part that uses the properties of NE there is Lemma 82. We prove a counterpart here.

Lemma 83. With probability 1 — p, for any (s,a, h,i) and k € [K]:

Qhi(5.:0) > Q7 (s.0), QF (s.0) < Q] (s.a). (B.40)

Tk Tvﬂ'ﬁi k k
Vh,z' (s) > Vh,i (s), Kh,i (s) < Vi (s). (B.41)

Proof. For each fixed k, we prove this by induction from h = H 4+ 1 to h = 1. For the
J— 7rk .

base case, we know at the (H + 1)-th step, V];{H,i (s) = V;I’Jrfi (s) = 0. Now, assume

the inequality (B.35) holds for the (h + 1)-th step, for the h-th step, by the definition

of Q-functions,

tmk

—k k. ~ —k tk
Qi (5,0) = Q7 (s,0) = BV ] (s,0) = [PV (s.0) + 6,

E 7k T»T‘Jii o 1‘,71—’11_
=P <Vh+1,i - Vh—i—l,i) (s,a) + (Pi - Ph) Viiii (s,a) + By

J/ J/

-~ -~

(A) (B)
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_ ok
By induction hypothesis, for any s, (V:H’i - VJH’Z) (s') > 0, and thus (A) >

0. By uniform concentration, (B) < C\/SH?2./N}(s,a) = B;. Putting everything
together we have @:Z (s,a) — Qh’;rii (s,a) > 0. The second inequality can be proved
similarly.

Now assume inequality (B.40) holds for the h-th step, by the definition of V-
functions and CCE,

—k —k —k
Vh,i (S) = Dﬁth,i (S) > mﬂaXDuXﬂ"inh,i (8) :
By Bellman equation,

T,Wﬁi Tvﬂ'lii
Vh,i (s) = mgxmuxWﬁiQh,i (s).

_ ok
Since by induction hypothesis, for any (s, a), Qfm- (s,a) > Q); 7" (s,a). As a
ok,

result, we also have me» (s) > V,; " (s), which is exactly inequality (B.35) for the
h-th step. The second inequality can be proved similarly. ]

CE Version The proof is very similar to the NE version. Specifically, the only part

that uses the properties of NE there is Lemma 82. We prove a counterpart here.

Lemma 84. With probability 1 — p, for any (s, a, h,i) and k € [K]:

—k ﬂ_k -
Qh,i (87 a) > g}E%XQii (37 a’) ) Q:ﬂ (87 a’) < th (87 a) ) (B42)
Vii (5) > maxVi™ (s), Vi (s) < Vi (s). (B.43)

Proof. For each fixed k, we prove this by induction from h = H + 1 to h = 1. For
the base case, we know at the (H + 1)-th step, Vl;pru (s) = mq?xVHH’i (s) = 0.
Now, assume the inequality (B.35) holds for the (h + 1)-th step, for the h-th step, by
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definition of Q-functions,

—k -
Q1i (s, 0) — maxQyT (s,a)

— [@QV:H’Z} (s,a) — {thnghdfiﬂ (s,a) + B

J/

= —k Tk = ok
=Pk (Vhﬂ,i — mng,f:l,i) (s,a) + (Pﬁ — IP’h> mng,ffl,i (s,a) + f;.

~~ ~~

(4) (B)

: . : —k
By induction hypothesis, for any ¢, (Vh i mngfffZ) (s') > 0, and thus

(A) > 0. By uniform concentration, (B) < C'\/SH?2./Nf(s,a) = B;. Putting every-
thing together we have @fm (s,a) — mngfZﬂk (s,a) > 0. The second inequality can
be proved similarly.

Now assume inequality (B.42) holds for the h-th step, by the definition of V-

functions and CE,
—k —k —k
Vh,i (5) = Dw’“@h,i (s) = mgXDmnk Qh,i (s).

By Bellman equation,

mq?xv,ffﬂk (s) = m(?xDmﬂk mﬁth:fwk (s).
Since by induction hypothesis, for any (s, a), @il (s,a) > mgx@hf;ﬂk (s,a). As a
result, we also have V:Z (s) > mngh%fwk (s), which is exactly inequality (B.35) for

the h-th step. The second inequality can be proved similarly. n

B.3.2 Proof of Theorem 21

In this section, we prove each theorem for the single reward function case, i.e., N = 1.
The proof for the case of multiple reward functions (N > 1) simply follows from taking

a union bound, that is, replacing the failure probability p by Np.
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NE version Let (1%, %) be an arbitrary Nash-equilibrium policy of M = (IP”“ ™),
where P* and 7* are our empirical estimate of the transition and the reward at the
beginning of the k-th episode in Algorithm 4. Given an arbitrary Nash equilibrium
7k of M¥, we use @’fm and \7th to denote its value functions of the i-th player at the
h-th step in M.

We prove the following two lemmas, which together imply the conclusion about

Nash equilibriums in Theorem 21 as in the proof of Theorem 18.

Lemma 85. With probability 1 — p, for any (h, s, a,i) and k € [K], we have

Qk (s,a) — QF(s,a)| < Qk(s,a),

N . _ (B.44)
|th,i(5) - V}:z‘ (s)] < th(s).

Proof. For each fixed k, we prove this by induction from h = H+1 to h = 1. For base
case, we know at the (H + 1)-th step,l/}f’}H’i = VH”L,Z- = @’}{Jru = Q“HZM = 0. Now,
assume the conclusion holds for the (h + 1)-th step, for the h-th step, by definition

of - functions,

‘th S, a th (S a’)‘
<| [PZVW,J (s,0) = [PaViTlL,] (s,@)] + (s, @) = (s, 0)
S’@i <‘7hk+1,i - Vhwju) (s, a)‘ + ‘(I/P\)Z - Ph) Vhﬂ-:-cl i\sa ‘ + ‘Th (s,a) = Th(s, a)|

(4) (B)

By the induction hypothesis,

(A) <P | Vir, — Vh+lz (s,a) < BV (s, a).

By uniform concentration [e.g., Lemma 12 in Bai and Jin, 2020], (B) < \/SH?2/N}(s,a) =

B;. Putting everything together we have

Qpi (s.@) = Qf (s, @)| < min { BV (s.0) + 6, H | = G5, @),
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which proves the first inequality in (B.44). The inequality for V' functions follows

directly by noting that the value functions are computed using the same policy 7%. [

Lemma 86. With probability 1 — p, for any (h, s, a,i,k), we have

Ok (s,a) — Q1 (s,0)| < Qk(s, a),

Viei(s) = Vi T () < Vii(s).

Proof. For each fixed k, we prove this by induction from h = H 4+ 1 to h = 1. For the
~ ok ~ ok

base case, we know at the (H + 1)-th step,Vj,,, = VH;’I’L = Qi = QH_llT,i = 0.

Now, assume the conclusion holds for the (h + 1)-th step, for the h-th step, by

definition of the ) functions,

AN W’ii:T
Qi (s0) - Q7 (s.0)
Sk W]iin
| [BsVt ] s.0) = [PV (s.@)] + [ras,0) = Fi(s.a)
Slpﬁ <th+1,i - Vh+1,i> (s,a)‘ + ‘(Pi - Ph) Viiti (s,a,)‘ + |7’h(57a) - ?’ﬁ(s,a)‘
(A) (B)

By the induction hypothesis,

= > W}iivT k17
(A) <P ‘th-i-l,i —Vyiii| (s,@) < (BV)(s, a).

By uniform concentration, (B) < \/SH?2./Nf(s,a) = f3;. Putting everything

together we have

ﬁliiy'l' N . ~; ~ ~

v (5,0) = Qs (s, @) < min {BLVEL ) 5,0) + 6, H | = Qh(s, ),

which proves the first inequality in (B.45). It remains to show the inequality for
V-functions also hold in the h-th step.

k

Since 7" is a Nash-equilibrium policy, we have

th,i (s) = ml?XDumﬁiQZ,i (s).
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By Bellman equation,

WliivT i
Vh,i (S) = m/?X]DuXw’fiQh,i (8) :
Combining the two equations above, and utilizing the bound we just proved for

() functions, we obtain

7k

T 71'71. N 1)
T 6) = Vi (9] < D, G ()~ msDn 0127 ()

<max Qf(s, a) = Vi (s),
which completes the whole proof. O

CCE version The proof is almost the same as that for Nash equilibriums. We will
reuse Lemma 85 and prove an analogue of Lemma 86. The conclusion for CCEs will

follow directly by combining the two lemmas as in the proof of Theorem 18.

Lemma 87. With probability 1 — p, for any (h, s, a,i) and k € [K], we have
(B.46)

Proof. For each fixed k, we prove this by induction from h = H+1 to h = 1. For base
~ ok ~ ok

case, we know at the (H + 1)-th step,Vf,,,; = VH:{E = QY1 = QH’;’L = 0. Now,

assume the conclusion holds for the (h + 1)-th step, for the h-th step, by definition

of () -functions,

]iivT A
Z,i (s,a) — Qiz (s,a)

kot

< [Paviil] s.a) = [BEDEL] (5. 0) + [ras,0) = (s, )
o ﬂJiNT i L TFEZWT
SPIE (Vh+1,i - th+1,¢> (s,a) + <]P)h - Pi) Vh—i—l,i (s,a)+ {Th(sa a) — ?kh(sa a)‘.

[

-~ -~

(4) (B)
By the induction hypothesis, (A4) < (ﬁf’ﬁf/hkﬂ)(s, a).
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By uniform concentration, (B) < \/SH?2./Nf(s,a) = 3. Putting everything

together we have
ko Ak . kT k Ak
b (s,0) = QF (s, 0) < min { (BEVE ) (5, 0) + B, H | = Qh(s.a),

which proves the first inequality in (B.46). It remains to show the inequality for
V-functions also hold in the h-th step.

Since 7* is a CCE, we have
17k Nk
Vh,i (s) > mfxmuxﬂﬁiQh,i (s).

7Tk . . . .
Observe that V}, ; of obeys the Bellman optimality equation, so we have

Combining the two equations above, and utilizing the bound we just proved for

Q-functions, we obtain

7"51'71‘

~ ﬂ.lii’]t ~
Vh,i (s) — th,i (s) SmBXDMngQM (s) — ml?XDpxﬂ’in’Z,i (s)

<max Qf(s, a) = Vi (s),
which completes the whole proof. O

CE version The proof is almost the same as that for Nash equilibriums. We will
reuse Lemma 85 and prove an analogue of Lemma 86. The conclusion for CEs will

follow directly by combining the two lemmas as in the proof of Theorem 18.

Lemma 88. With probability 1 — p, for any (h,s,a,i), k € [K] and strategy modifi-

cation ¢ for player i, we have

k —~
ﬁ;ﬂ (Saa’) - Qz,i(saa) < Qf’;(s,a)?

. N _ (B.47)
Vij,)fﬁ (s) — Vhlfi(*S) < th(s)-
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Proof. For each fixed k, we prove this by induction from h = H +1 to h = 1. For the
base case, we know at the (H + 1)-th step, ‘A/IljJrM = Vﬁiﬁkl = @’}”u = Qfﬁ;ﬁz = 0.
Now, assume the conclusion holds for the (h + 1)-th step, for the h-th step, following

exactly the same argument as Lemma 87, we can show
ﬂ.k ~ . ~; ~ ~
v (s,0) = Qb (s.0) < min {(BYVE)(s.0) + 61, H | = Qf(s, a).

which proves the first inequality in (B.47). It remains to show the inequality for
V-functions also hold in the h-th step.

k

Since 7" is a CE, we have

th,z' (s) = maxquh,ka'fi,i (s),

¢h,s

where the maximum is take over all possible functions from A; to itself.

Observe that Vhd’f”k obeys the Bellman optimality equation, so we have

V™ (s) = IgaxDqsh,stfi ().
h,s

Combining the two equations above, and utilizing the bound we just proved for

Q-functions, we obtain

k ) k -~
V™ (s) = Vi (s) = rgaX%h,stfT (s) = rgrglang)h,stﬁ,i (s)
h,s h,s

< max Gl (s, @) = Vi(s),

which completes the whole proof. O
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Appendix C

Proof for Chapter 4

C.1 Notations and Basic Lemmas

C.1.1 Notations

In this subsection, we introduce some notations that will be frequently used in ap-
pendixes. Recall that we use V¥, N* 7% to denote the value, counter and policy

maintained by V-learning algorithm at the beginning of the episode k.

We also introduce a new policy 7y for a single agent (defined by its execution in
Algorithm 18), which can be viewed as a part of the output policy in Algorithm 7.
The definition of 7} is very similar to 7 except two differences: (1) 7F is a policy for
step h, ..., H while 7 is a policy for step 1,..., H; (2) in 7 the initial value of k is

sampled uniformly at random from [K] at the very beginning while in 7F the initial

value of k is given.

We remark that 7 is a non-Markov policy that does not depends on history before
to the ht, (h) step. In symbol, we can express this class of policy as m; = {7, :
Ox (Sx AN x 8§ — A }_, . We call this class of policy the policy starting from
the ht, (h) step, and denote it as IT,. Similar to Section 2.1.1, we can also define joint

policy m = m ®...® m,, and product policy m = m; X ... X 7, for policies in II;,. We
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Algorithm 18 EXECUTING PoLicy 7%
1: for step " =h,h+1,...,H do
2. observe sy, and set t < NF(sp).
3. set k < ki, (sp), where i € [t] is sampled with probability .
4 take action ap ~ 7 (+|sp).

can also define value V7 (s) for joint policy m € II;, as

‘/Zrh(s) = ]Eﬂ' [Zg:h Ti,h’<8h’7 ah/) Sp = 3:| .

This allows us to define the corresponding best response of 7_; as the maximizer of

{Xﬂ_i

maXerr, Vfl (s). We also denote this maximum value as X/J,’f_i(s). We define
the strategy modification for policies starting from the ht, (h) step as ¢; = {¢p;p :
(S x AP xS x A — A} _, . and denote the set of such strategy modification as
Dy,

Finally, for simplicity of notation, we define two operators P and D as follows:

Py, [V](Sv a) = ES,N]P)h("Sva) [V(S,)],

Dr[Q](s) = Eanr(1s[Q(s, @),

(C.1)

for any value function V', () and any one-step Markov policy .

C.1.2 Basic lemmas

Here we present some basic lemmas that will be used in the proofs of different the-

orems. We start by introducing some useful properties of sequence {a}} defined in

(4.2).

Lemma 89. (/Jin et al., 2018, Lemma 4.1],[Tian et al., 2021, Lemma 2[) The fol-

lowing properties hold for a:
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8. Y2, ab =14+ for every i > 1.

Finally, we have the following lemma which express the V maintained in V-learning

in the form of weighted sum of earlier updates.

Lemma 90. Consider an arbitrary fived (s, h, k) tuple. Let t = NF(s) denote the
number of times s is visited at step h at the beginning of episode k, and suppose s was
previously visited at episodes k', ..., k! < k at the h-th step. Then the two V-values
V and V in Algorithm 5 satisfy the following equation:

t
Vh(s) = 00(H = b4 1) + 30 [ryals, af) + Vi (shi) + 8], 7 € [l (C2)

Js
=1

Proof of Lemma 90. The proof follows directly from the update rule in Line 7 Algo-

rithm 5. Note that o is equal to zero for any ¢ > 1 and equal to one for t =0. [

C.2 Proofs for Computing CCE in General-sum MGs

In this section, we give complete proof of Theorem 24. To avoid repeatedly state the

condition of Theorem 24 in each lemma, we will

e use condition of the adversarial bandit sub-procudure (Assumption 1) and

e set the bonus {3;,}X, of the jt, (k) player so that ', aiB;; = O(HE(A; b, 1)+
VH3./t) for any t € [K].

throughout the whole section.

Proof overview. To prove Theorem 24, we need to bound the sum
=~ 7R 7k
D maxVy = V(o).
k=1

By introducing a pessimistic estimation V as in Equation (C.3) and Equation (C.4),

7k
we first upper and lower bound the value functions by V}, (s) > V;h “"(s) (Lemma 92)

207



and K;h(s) < Vf;’f (s) (Lemma 93). As a result, it remains to bound 35, max; (V-
K‘I;?l)(sl) which we handle at the end of this section.
The following Lemma is a direct consequence of Assumption 1, which will play an

important role in our later analysis.

Lemma 91. Under Assumption 1, the following event is true with probability at least
1—6: for any (s,h, k) € S x [H] x [K], let t = N (s) and suppose s was previously
visited at episodes k', ... k' <k at the h-th step, then for all j € [m]

¢ t
max Zl D, s (i + PVl (s)—z1 oD i (v + PV ) (s) < HE(A;,1,0),
where + = log(mHSAK/9).

Proof of Lemma 91. By Assumption 1 and the adversarial bandit update step in

Algorithm 5, we have that with probability at least 1 — 0, for any (s, h,k,j) €
S x [H] x [K] x [m],

t Kt t Kt
i H —rjn —PhVi i H —rjn = PaVih
mliix ZZ:; OétDW}]ii ( i (s) — ; at]D)um,iij’h i (s)

< g(Aj’t L)7

which implies the desired result by simple algebraic transformation. O]

Then we show V' is actually an optimistic estimation of the value function of player

7'th best response to the output policy.

Lemma 92 (Optimism). For any § € (0, 1], with probability at least 1 — 0, for any
7k

(3,1 ) € 8 x [H] x [K] x [m], V() 2 V5" (s).

Proof of Lemma 92. We prove by backward induction. The claim is satisfied for

h = H + 1 because by definition they are both zero. Suppose it is true for h + 1 and
~ 7

consider a fixed state s. It suffices to show V}},(s) > th “"(s) because Vi, (s) =

min{l;'jlfh(s),H — h+1}. Let t = NF(s) and suppose s was previously visited at
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episodes k', ... k! < k at the h-th step. Then using Lemma 90,
Vii(s)

= atH + Zat [7"] n(s, ah ) + Vi h+1(3h+1) + Bj,i]

=1

(i) <~ H3,
> Z &;Dﬂﬁi (7”]'7}1 + PV, i, h+1> + Z thﬁ]7 ( / >
=1

(@)

H3,
>maXZa;]D#X “ (rj,hHPh h—H) +Zatﬁﬂ— ( t)—Hg(Aj,t,L)

(424)
> maXZO‘t . (Tj,h + PV h+1) (s)

(i) iRk ) tgk
> maxz oziID)uX o (Tj’h + thj hJ;1] h+1> (s) > Vj,h I (s)

where (i) is by martingale concentration and Lemma 2, (i) is by Lemma 91, (ii7) is

by the definition of 3;;, and (iv) is by induction hypothesis.

Finally, we remark that (v) is not directly from Bellman equation since 7*; , is

non-Markov policy, and the best reponse of a non-Markov policy is not necessary a
Markov policy. We prove (v) as follows. Recall definitions for policies in II;, as in

Appendix C.1. By the definition, we have

Vﬁljj‘h(s) maXV Ijj’h(s)
j7h ﬂenh 7

i
(a H(h+1):H>T 7k h+1 /
= max max E olE . Tin(s,a) + Eg Vi1 (s, a, 8)

Hh o H(h41):H

(b) ) =k

7 H(h+1):HTZj p41 /
< max g B, ki | Tin(s,a) + By max Vi (s, a, s

B HhXT_jh Hehsrym 0
© : 1
i 7 X T 7j h+1
= H;lf:X E O‘t]an;lxw‘izjh (rj,h(s a)+EyV, bt (s ))
i=1 '

t
. Tﬂ'_
— ) . . Jyh+1
_mliix E at]D)uxw’fj . (T'J,h + PpV o (s)
i=1 '
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where V7, (s, a, s') for policy 7 € Il is defined as:
AN H /
‘/jTthl(S? a,s ) = EW [Zh’:h—i-l Tj,h’(sh’7 a,h/) Sp = S,ap — Qa, Sp+1 = S ] .

Step (a) uses the relation between 7%, and {/ﬁﬁljhﬂ}z Step (b) pushes max inside
summation and expectation. Step (c) is because the Markov nature of Markov game
and that {/ﬁﬁ] n+1 i are policies that does not depend on history at step h, we know the

maximization over fi,41). is achieved at policies in II;,1 ;. This finishes the proof. [

To proceed with the analysis, we need to introduce two pessimistic V-estimations
V and V that are defined similarly as V and V. Formally, let t = N ¥ (s) denote the
number of times s is visited at step h at the beginning of episode k, and suppose s

was previously visited at episodes k', ..., k! < k at the h-th step. Then

t

Vi(s) = D at [ranls, af) + V5 (k) — Bia). (C.3)

i=1

Vi(s) = max{0, Vi, ()}, (C.4)

for any player j € [m] and k € [K]. We also set V%, (s) = 0 for any k, j and s.
We emphasize that V and V are defined only for the purpose of analysis. Neither do
they influence the decision made by each agent, nor do the agents need to maintain
these quantities when running V-learning.

~k
. . . . s
Equipped with the lower estimations, we are ready to lower bound V/ ;.

Lemma 93 (Pessimism). For any 6 € (0,1], with probability at least 1 — §, the
following holds for any (s, h,k,j) € S x [H] x [K] x [m], K;h(s) < Vf}’?(s)

Proof of Lemma 93. We prove by backward induction. The claim is satisfied for h =

H +1 because by definition they are both zero. Suppose it is true for h+1 and consider
i

a fixed state s. It suffices to show VF (s) < V.}/(s) because V7, (s) = max{V}, (s), 0}.

Let t = NF (s) and suppose s was previously visited at episodes k!,... k' <k at the
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h-th step. Then by Equation C.3,

t

yj]fh(s) = Z at [TJ n(s, ah ) + Vj h+1(3h+1) B, Z]

i=1

< Z Ozt k,z <Th + th] h+1> Z Oétﬁ] i+ O ( [{:L>

(42)

< Zat ki (Th‘HPhVJ h+1>( )

(32)

< Zat i (rh—HPhV hﬂ)( )

7rk
=Viu(s)
where (7) is by martingale concentration, (4¢) is by the definition of f;;, and (i) is

by induction hypothesis. O]

To prove Theorem 24, it remains to bound the gap Zszl max; (V} — Vfl)(sl).

Proof of Theorem 24. Consider player j, we define 0%, = V}, (s}) — th(sﬁ) > 0.
The non-negativity here is a simple consequence of the update rule and induction.
We want to bound §F := max; 5] n- Let nf = NF (sf) and suppose s was previously
visited at episodes k', ..., k" < k at the h-th step. Now by the update rule of Vj’h(sh)

and Jﬁ:ﬁiil (:;ﬁi>7

5;?, Vh(8h> Vyh(8h>

ny,
SO‘?LQH + ZQZI;; [(Vg i1 — V5 h+1> (8’Z;1> + 2@'@}

nh

Kt -k 3 k
—Oén;cLH"‘ZO‘ (051 T OHE(A), ny, L) + vV H L/my)

where in the last step we have used Y>'_, aiB;; = O(HE(A ,t,1) + /H3L/1).

Now by taking maximum w.r.t. j on both sides and notice (B, t,t¢) is non-
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decreasing in B, we have

k

5F <a kH—i—Za kéﬁﬂ + O(HE(A,nf, 1) + / H3u/nk).

Summing the first two terms w.r.t. £ and use Lemma 89,

where (i) is by regrouping the summands. Notice for any k' € [K], 0¥, appears in

the summation only with & > k’. The first time it appears we have nf = n’fL/ + 1, the

second time nf = n¥ + 2 and so on. Taking the sum first with respect to &’ instead

of k gives the desired upper bound.

Putting them together,

K K
Z(S’,ﬁ :ZagﬁHjLZZa k5h+1+2(9 HE(A, 0y 1) + 1/ H3u/nk)

k=1 k=1 k=1 i=1

1 k k
<HS + (1 + E) ;&M + ;O(Hg(/l,nh, v) 4/ H3u/nk)

Recursing this argument for h € [H] gives

K H K
D of <eSH*+e> > O(HE(A,nf,1) + \/H3/nk)
k=1 h=1 k=1

By pigeonhole argument,

NE(s)

K
Z (HE(A,nf, ) + ) H3u/nk) = ZZ (HfANL H;L>
k=1 s
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<0 (1) Z (HE(A, NE(s),0) + \/H?’N,f((s)L)

S

<0 (HSE(A, K/S, 1)+ H3sm) ,

where in the last step we have used concavity.

Finally take the sum w.r.t. h € [H| we have
K
S max(Vly = VA )(s1) < O (H2SZ(A, K/S,0) + VHSKL)
j
k=1

which implies

1 AT 1 R
JI,IGI[a’X][ 71 (81) 7,1

(51)] S O((H*S/K) - Z(A,K/S,1) + /HSt/K).

C.3 Proofs for Computing CE in General-sum MGs

In this section, we give complete proof of Theorem 25. To avoid repeatedly state the

condition of Theorem 25 in each lemma, we will
e use condition of the adversarial bandit sub-procudure (Assumption 2) and

e set the bonus {8;,}X, of the jt, (h) player so that 3/, aif;; = O(Héw(Aj,t,0)+

VH3./t) for any t € [K].

throughout the whole section.

We begin with a swap regret version of Lemma 91.

Lemma 94. The following event is true with probability at least 1 — §: for any
(s,h,k) € S x [H] x [K], let t = NJ(s) and suppose s was previously visited at
episodes k', ... k' < k at the h-th step, then for all j € [m]

t t
max Y- 0D, e o [rinct BV | () = Do aiDp (ron + BV ) (9
=1

—Js -
=1
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S Hésw(Aja t? L)?

where ¢ = log(mK HAS/9).

Proof of Lemma 94. By Assumption 2 and the adversarial bandit update step in
Algorithm 5, we have that with probability at least 1 — §, for any (s, h,k,j) €
S x [H] x [K] x [m],

i H—r‘7h+thh1
maxzatﬂ))¢ okl ki ( . i% = | (s)

. H — Tjh + ]th
— E a;Dwai ( J H ]}H_l) (5) S fsw(Aj7t7 L)‘
i=1

]

We begin with proving V' is actually an optimistic estimation of the value function

under best response.

Lemma 95 (Optimism). For any § € (0, 1), with probability at least 1 —46, the follow-
ing holds for any (s, h, k, j) € § x [H] x [K] x [m], V},(s) > max,, V(%W”)@r h(s).

Proof of Lemma 95. We prove by backward induction. The claim is satisfied for
h = H + 1 because by definition they are both zero. Suppose it is true for A + 1 and

V(QSJWJ WO, "(s) because

consider a fixed state s. It suffices to show ‘7] (5) > maxy,
VE(s) = min{f/j’fh(s), H—h+1}. Let t = NF (s) and suppose s was previously visited

at episodes k', ... k' <k at the h-th step. Then using Lemma 90,
t

VE(s) =af(H = h+1) + 3 af [ranls, af) + Vi (ki) + Byl

i=1

) < . [H3,
Z Z Oé;]Dﬂ_Zi (Tjﬁ + th;']chrl) + Z Oétﬁj i ( ; )

(12) j
> maX Z WD) (gomt )k’ (Th + PrVj h+1> (s) + Z i
i=1

— O (H HT?’L) — HgSW(Aj,t, L)
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(47)
> maXZ Oét (¢JO7T ) ki (Th + th h+1> ( )

—J,h

(i) i

> maxZogt (gyomt ) i (Th + P, H(lz)aXV (@07 gh+1)®7r,J h+1> (S)

T jih

> maXV

(U) ¢g<>7|'] h)@ﬂ-_J n
S
s 2

where (7) is by martingale concentration and Lemma 2, (i7) is by Lemma 94, (i) is
by the definition of f3;;, and (iv) is by induction hypothesis. Finally, (v) follows from

a similar reasoning as in the proof of Lemma 92, which we omit here. O

We still need to lower bound thﬁ To do this, we estimate V' and V defined by
Equation (C.3) and Equation (C.4). Lemma 93 shows these quantities are indeed the
lower bounds we need.

To prove Theorem 25, it remains to bound the gap 1 | max; (V) — Kﬁl)(sl).
This is actually the same as the concluding part of the proof Theorem 24, except
changing = to =g,. For completeness we still keep a shortened version of full proof

here.

Proof of Theorem 25. Consider player j, we define 5;% = V;kh(sk) th(s’g) > 0.
The non-negativity here is a simple consequence of the update rule and induction.
We want to bound 6} := max; 6%,. Let nf = NF (s}) and suppose s} was previously
visited at episodes k!, ..., k™ < k at the h-th step. Now by the update rule of th(sﬁ)

and V]h(sh)

5;% :V}]fh(s ) — V] h(sh)

n;

SOé,%H + Zl@;;cl [(V; w1 — V5, h+1> (SZ;J + Qﬁj,i]
i

:agﬁH + Zaiﬁéﬂﬂ + O(HEw(Aj,nl 1) + 1/ H3u/nk)
i=1

where in the last step we have used Y'_, ai8;; = O(H& (A, t, 1) + /H3L/t).
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Now by taking maximum w.r.t. j on both sides and notice & (B,t,t¢) is non-

decreasing in B, we have

k
N

oF Sag,ﬁH + Z a;ﬁéﬁll + O(HEw (A, nf 1) + 1/ H31/nk).

i=1

Summing the first two terms w.r.t. k,

K 00 nﬁl (i) 1 K i
Z o k5h+1 Zéh—&-l Z ;" < (1 + E) ;5h+1-

where (i) is by changing the order of summation and (i7) is by Lemma 89. Putting

them together,

K K K K
Z(S,’.f ZQBLZH+ZZQ 50 +1+ZO(H€SW(A,T6§,L)+w/H3L/nﬁ)
k=1 k=1 k=1 i=1 k=1

K K
1 k k /
<HS + <1 + E) ,}1 Opg1 T ,51 O(HE&w(A,ny, 1) + £/ H3u/nk)

Recursing this argument for h € [H] gives
K H K
Zélf < eSH? +€ZZO Héw(A,nf, 1) + ) H3u/nk)

k=1 h=1 k=1

By pigeonhole argument,

ﬁ:(Hﬁsw(A,nZ,L) +\/Ho/nf) =0 (1) ) Z (Hgsw (A,n,0) + F)
<omy (H_swm NE )0 N

s

<0 <HSESW(A, K/S,0) + \/H3SKL) ,
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where in the last step we have used concavity.

Finally take the sum w.r.t. h € [H]| we have
K
S max(Vh — VA (1) < O (H2SZ.0(A, K/8,0) + VITSKL)
J
k=1

which implies

maX[Vij’j(sl) — V’?l(sl)] < O((H?S/K) - Zew(A, K/S,1) +\/H3SL/K).

jelml” > g

C.4 Proofs for MDPs and Two-player Zero-sum MGs

In this section, we prove the main theorems for V-learning in the setting of single-

agent (MDPs) and two-player zero-sum MGs.

Proof of Theorem 23. To begin with, we notice an equivalent definition of two-player
zero-sum MGs is that the reward function satisfies 71, = 1 —1ry), for all h € [H|. The
reason we use this definition instead of the common version r;j, = —ry), is we want
to make it consistent with our assumption that the reward function takes value in
[0, 1] for any player. Although this definition does not satisfy the zero-sum condition,
its Nash equilibria are the same as those of the zero-sum version because adding a
constant to the reward function of player 2 per step will not change the dynamics of
the game.

In order to show T = 7 X Ty is an approximate Nash policy, it suffices to control

max Vi (s1) — min V1™ (s1).
gt ’ T2 ’

Since ry, = 1 — 1oy, for all h € [H], with probability at least 1 — ¢

max V771" (s1) — min V7™ (sy)
T ’ T2 ’
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= max ‘/17511’%2(31) — <H — max V;ll’ﬁ(sl)>
T2 ’

T

= (oo V) = V(00 ) o (a7 o) = V™00

1

<O((H*S/K) -

[1]

(A, K/S,1) + VHSU/K),

where the last inequality follows from Theorem 24. The reason we can use Theorem

24 here is the precondition of Theorem 23 is a special case of the precondition of

Theorem 24. O

Proof of Theorem 22. Since MDPs is a subclass of two-player zero-sum MGs by sim-
ply choosing the action set of the second player to be a singleton, it suffices to only
prove Theorem 23, from which the single-agent guarantee, Theorem 22 trivially fol-

lows. O

C.5 Proofs for Monotonic V-learning

In this section, we prove Theorem 26. The algorithm is V-learning with monotonic
update, and the setting we consider is two-player zero-sum Markov games. As before,
we assume 71 (s, a) = 1 —7ry4(s, a) for all s,a, h. The reason for assuming r 5(s,a) =
1 — ro (s, a) instead of 11 4(s,a) = —ra (s, a) can be found in Appendix C.4.

For two player zero-sum MGs, we can define its minimax value function (Nash

value function) by the following Bellman equations

.
V}fh(s) = MaXyg,; , minﬂ—j,h Dﬂj,hxﬂ—j,h[ ;,h](s)a

Qin(s,a) =rjn(s, a) + Pu[V}14](s, @), (C.5)

\V;‘TH—H(S) = Q;,H+1<S7 a)=0.

Lemma 96 (Optimism of V-estimates). With probability at least 1 — ¢, for any
(s, h, k,j) € 8 x [H] x [K] x [2],

VE(s) > VE(s) > VT (s) > V7 (s), (C.6)

J
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where V4, is the minimaz (Nash) value function defined above.

Proof of Lemma 96. Note that f/th(s) > V;kh(s) is straightforward by the update rule
of V-learning, and V;;f‘j (5) > V;5,(s) directly follows from the definition of minimax
value function. Therefore, we only need to prove the second inequality. We do this

by backward induction.

The claim is true for h = H 4 1. Assume for any s and k, V}, ., (s) > V]T,Z:f (s).
For a fixed (s,h,k) € S x [H] x [K], let t = N} (s) and suppose s was previously
visited in episode k', ..., k! < k at the h-th step. By Bellman equation,

T, 7—j
Vj,h ’(s)
t
i ha
<) (H—h+1)+ ml?x ; OKt]D)UXWIiij’h (rj,h + Ph%7h+f> (s)
t
i k?
<) (H—h+1)+ mﬁ?X; atDumﬁij’h (Tj’h + IP’h‘/MH) (s)

t
Saf(H —h 1)+ 3 iy (rin + BaVin ) (5) + HE(A5,.0)

i=1
2H3,
<a)(H —h+1) +Zat [rjh +Vh+1(sh+1)] +0O (\/ ; ) + HE(Ajt0)

where the second inequality follows from our induction hypothesis and the monotonic-

ity of V¥, the third inequality follows from Lemma 91, and the last one follows from
martingale concentration as well as Lemma 89. By Lemma 90 and the precondition
of Theorem 26, we know the RHS is no larger than f/fh(s) Note that V* can be

equivalently defined as

VE (s) = mm{mmvt (s),H—h+1},

J’ telk]

we conclude V5, (s) > V;}Lﬁ’j(s) for any k € [K]. O

Now we are ready to prove Theorem 26.
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Proof of Theorem 26. By the monotonicity of V' and Lemma 96

VI () = min VD™ (s1) = VI (s1) = (H = Vi (1))

< Vii(s1) + Vali(s1) — H

Z (Vvlk,:l(sl) + Vzlfl(sl) - H)
k=1

IA
=)=

IA
==
™)~

(Vo) + Vi (s0) = ).

=
Il

1

where the first equality follows from the definition of two-player zero-sum game, i.e.,
T1,hn = 1-— T2.h-
Now we can mimic the proof of Theorem 24. Define &f = Vi, (sk) + Vi, (sk) —

(H — h +1). The non-negativity here follows from Lemma 96 as below

V(8 4+ Vi (s8) — (H — h+ 1) V2, (sh) + Vo (sk) — (H — h + 1)
=(H—-h+1)—(H-h+1)=0.

Let nf = Nf (sz) and suppose s¥ was previously visited at episodes k', . .., k™ < k

at the h-th step. By Lemma 90 and the fact that vy, =1 — 7y, for all h, we have

O =V (i) + Vo (i) — (H = h +1)

k
h

:2042;3]{ + Z aig [(‘N/lkhﬂ - f/2kh+1> (824-1) —(H —=h)+ B+ 52,1‘]

:204251-[—1—204 LOF Ko+ O(HE(A ny, ) + 1/ H3u/nk)

where in the last step we used Y°0_, aif;; = O(HE(A;j, t,1) + /H3L/1).
The remaining steps follow exactly the same as the proof of Theorem 24. As a

result, we obtain

K
) T X 1 v v
Vi (s1) — mwxwmggzomm+m@wﬁ>

k=1
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Algorithm 19 FTRL for Weighted External Regret (FTRL)
1: Initialize: for any b € B, 6,(b) < 1/B.
2: for episode t =1,..., K do 3
3:  Take action b; ~ 60,(-), and observe loss ;(b;).

4 y(b)  L(b)I{b = b}/(0,(b) + ) for all b € B.
5 Oy (b) o expl—(m/we) - Yoo, wili(D)]
<o (S 24 ks 12
— K — ) ) K J
which completes the proof. O

C.6 Adversarial Bandit with Weighted External Re-
gret

In this section, we present a Follow-the-Regularized-Leader (FTRL) style algorithm
that achieves low weighted (external) regret for the adversarial bandit problem. Al-
though FTRL is a classial algorithm in the adversarial bandit literature, we did not
find a good reference of FTRL with changing step size, weighted regret and high
probability bound. For completeness of this work, we provide detailed derivations
here.

We present the FTRL algorithm in Algorithm 19. In Corollary 97, we prove that
FTRL satisfies the Assumption 1 with good regret bounds. Recall that B is the
number of actions, and our normalization condition requires loss I, € [0, 1]" for any

t.

Corollary 97. By choosing hyperparameter w; = oy (H§:2 (1-— Ozi))fl and n, = v =
\/ 8B FTRL (Algorithm 19) satisfies Assumption 1 with

£(B,t,log(1/6)) = 10/HBlog(B/d)/t,  Z(B,t,log(1/8)) = 20/ H Btlog(B/d)

To prove Corollary 97, we show a more general weighted regret guarantee which

works for any set of weights {w;}3°, in addition to {a!}!_,. In particular, a general
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weighted regret is defined as

maxZwl ; (C.7)

Theorem 98. For any t < K, following Algorithm 19, if n; < 2v; and n; is non-
increasing for all i <t, let « = log(B/6) , then with probability 1 — 30, we have

logB B 1
R(t) < 852 4 N o + 5 5 maxw;t + BZ%wz

t
20)  w? 4+ maxw;t/v.
M 24 Z PR /e

i=1
We postpone the proof of theorem 98 to the end of this section. We first show
how to obtain Corollary 97 from Theorem 98.

Proof of Corollary 97. The weights {w;}X; we choose satisfy a nice property: for any

t we have
w; Oy

We prove this for ¢ < j and the other case is similar. By definition,

J
ﬂ - & (]- - Oék),
Wi Y

and .
ol
DY TT (11— ).
a,
i J k=it1

<.

We can easily verify that the RHS are the same.

Define R(t) := maxgen, S oy ai[(6:, £:)—(0,4,)]. By plugging w, = (ITiey (1 — )

into Theorem 98, and using the property above, we have the regret guarantee

~ loe B B
R(t)§&+— nil +

t
1 .
. 5 Sa+BY ol +
t

2

=1 =1

t
2t Z (al)® + i/,
i=1

By choosing 7, = v = 4/ H logB and using Lemma 89, we can further upper bound
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the regret by

. (H+1)logB
£) < N \/HBI B
R(t) <! H+t HlogB ©8 Z\/

(H+1)e (H+1) Bt
2(H+1) (H+t) \| HlogB

/HBlogB /HBlogB HL /HL /HBlogB

§9\/HBL t+ Hujt.

_|_

To further simplify the above upper bound, consider two cases:
o If Hi/t <1, /Hi/t > Hi/t and thus R(t) < 10\/HDBu/t.

o If Hi/t > 1, \/JHB/t > 1 > R (t) where the last step is by the definition of
R(t). Therefore we have R(t) < /HBu/t.

Combining the two cases above gives R(t) < 10n/HBu/t.
Finally, we pick £(B,t,log(1/§)) := 10y/H Bu/t, which is non-decreasing in B.
Since Y;,_, £(B,t,log(1/0)) < 20v/HBtt, we choose Z(B,t,log(1/8)) = 20v/HBt,

which is concave in t. O

To prove Theorem 98, we first note that the weighted regret (C.7) can be decom-

posed into three terms

t t
D wi (0 — 0%, L) => w; (6; — 6%,
=1 =1
t

:gwi<9i—9*,ﬁ>+2wi<w > Zw2<9*l_l>

=1
J/ A\
-~ -~ -~

(B) (©)

—~
Ny

(C.8)

The rest of this section is devoted to bounding three terms above. We begin with
the following useful lemma adapted from Lemma 1 in Neu [2015], which is crucial in

achieving high probability guarantees.

223



Lemma 99. For any sequence of coefficients ci,ca,...,c; s.t. ¢; € [0,2v]P is Fi-

measurable, we have with probability 1 — 6,
t
Zwi <ci, l; — li> < max w;t.
i=1 =t

Proof of Lemma 99. Define w = max;<; w;. By definition,

~ o wil; () T{b; = b} _ w;l; (b) 1{b; = b}

ili () = < -
wil; (b) 0i (b) + i 0; (b)—i_W%

2v;w4l ( )

(b)I{b;=b} )
w e @ w <_|_2%w“()]l{b—b}>
)

29,1 g il ( 1(1{)6 =b} — 27 wb; (b)

where (7) follows from <log(1+ z) for all z > 0.

1+ T+2/2

Defining the sum

we have

E, [exp <§Z>} <E; |exp (; 012(;:) log (1 + 27;w; 1@591%(;{)() = b}))]

where (i) follows from z; log (1 4 z2) < log (1 + 2122) for any 0 < z; > 1 and 2z > —1.
Note that here we are using the condition ¢; (b) < 2~; for all b € [B].

Equipped with the above bound, we can now prove the concentration result.

B
>
Y

P (5-5) 2] o [T (8- 5)

i=1 =1
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£ o (5. )|

S Etfl €xp <A’L - S’L)
L L =1 .
o
< < —.
- -~ B
We conclude the proof by taking a union bound. O

With Lemma 99, we can bound the three terms (A),(B) and (C) in (C.8) sepa-

rately as below.

Lemma 100. For any t € [K]|, suppose n; < 2v; for all i < t. Then with probability
at least 1 — &, for any 60* € AB,

t t
~ logB B 1
E w; <9i—¢9*,li> < %—k— n;w; + = max wt.
i=1 e 23 2 st
Proof of Lemma 100. We use the standard analysis of FTRL with changing step size,
see for example Exercise 28.13 in Lattimore and Szepesvéari [2020]. Notice the essential

step size is n;/wy,

t

L\ wilogB 1 7

i=1 e =
wylogB 1 i ~
< S LSS )
e i=1 beB
@) w;log B 1« 1
< Wi 108 — Z Z niw;l; (b) + = max w;t
Nt i—1 beB ‘
wylogB B ! 1

where (i) is by using Lemma 99 with ¢;(b) = n; for any b. The any-time guarantee is

justifed by taking union bound. O
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Lemma 101. For any t € [K]|, with probability 1 — 9,

t

zt:wz‘ <9iali —Z> < BZ%‘W +
=1

=1

Proof of Lemma 101. We further decopose it into
t t t

sz‘ <917 li —lAz> = Zwi <9¢, li — Ez/l\z> + sz’ <9i,Ez‘lAz‘ —lAz>

i=1 i=1 =1

The first term is bounded by

=)
\/
I

0,
i { O li — 7——1;
v < 0; + i >

¢
Vi
w;{ 0;, ——1; ) < B i W;.
< 9i+%> ;7

iwi <6i,li _E,
=1

. .
Il = |l o+
— —

To bound the second term, notice

<9?> A H{bt Z]I{b—b}_l

beB i

thus {w; <9,,El l; >}Z , is a bounded martingale difference sequence w.r.t. the
filtration {F;}!_;. By Azuma-Hoeffding,

Lemma 102. For any t € [K|, with probability 1 — &, for any 0* € AP, if v; is

NON-INcreasing in 1,
t

Zwi <0 i — li> < Hilgiwia/%.

i=1
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Proof of Lemma 102. Define a basis {ej}le of R? by

lifa=
ej (b) =
0 otherwise

Then for all the j € [B], we can apply Lemma 99 with ¢; = ye;. Sincee ¢;(b) <

v < 74, the condition in Lemma 99 is satisfied. As a result,

t

Zwi <ej, I, — li> < mgxwﬂ/%.
i=1 =
Since any 6* is a convex combination of {e; }le, by taking the union bound over

J € [B], we have
¢

i=1

Finally we are ready to prove Theorem 98.

Proof of Theorem 98. Note the conditions in Lemma 100 and Lemma 102 are sat-
isfied by assumptions. Recall the regret decomposition (C.8). By bounding (A) in
Lemma 100, (B) in Lemma 101 and (C) in Lemma 102, with probability 1 — 34, we
have that

loeB B 1
w%—— nw; + = maxwzo—i-BZ%wz—F

R(t
) =— 7 2

2 Z w? + max sz/%

=1

C.7 Adversarial Bandit with Weighted Swap Regret

In this section, we adapt Follow-the-Regularized-Leader (FTRL) algorithm that achieves

low weighted swap regret for the adversarial bandit problem. We follow a similar tech-
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Algorithm 20 FTRL for Weighted Swap Regret (FTRL _swap)
1: Initialize: for any b € B, 6,(b) < 1/B.
2: for episode t =1,..., K do
3:  Take action b; ~ 60;(-), and observe loss Zt(bt).
for each action b € B do
L(+|b) <= 0 (D)1 (be)I{y = -}/ (6u(-) + ).
041 (-1b) o< exp[—(m/we) - > iy wili(-[b)]
Set 0p+1 such that 0,41(-) = >, 0i41(0)0,11(+|b).

nique presented in Blum and Mansour [2007] which adapts external regret algorithms

to swap regret algorithms for the unweighted case.

We present the FTRL swap algorithm in Algorithm 20. Different from FTRL
(Algorithm 19), FTRL swap maintains an additional B x B matrix 6;(-|-), and uses
its eigenvector when taking actions. The matrix will be updated similarly to FTRL,
with a subtle difference that the loss estimator here Zt(\b) is 0;(b) times the loss
estimator Zt() in the FTRL algorithm (Line 4 in Algorithm 19).

In Corollary 103, we prove that FTRL swap satisfies the Assumption 2 with good
swap regret bounds. Recall that B is the number of actions, and our normalization

condition requires loss I, € [0, 1] for any t.

‘ -1
Corollary 103. By choosing hyperparameter w; = oy (HZ:Q (1-0w;))  andn =
Vi = Hk;gB, FTRL swap (Algorithm 20) satisfies Assumption 2 with

Eu(B,t,1og(1/6)) = 10B/H log(B2/6)/t, Z.w(B,t,log(1/6)) = 20B+/Htlog(B2/6)

Again, we prove Corollary 103 by showing a more general weighted swap regret
guarantee which works for any set of weights {w; }°; in addition to {a}}!_;. A general

weighted swap regret is defined as

t

stap<t) = I&g : U}ZKQ»L, lz> — <1/) < Qi, lz” (Cg>

Theorem 104. For any t < K, following Algorithm 20, if n; < 2v; and n; is non-
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increasing for all i < t, let « = log(B?/§), then with probability 1 — 35, we have

Rswap(t)

th logB B 1 B

—_ = sW; + —maxw;L + B aw; + By |20 w? + — maxw;
Nt 2 i=1 ! 2 st ;7 ; TSt

We postpone the proof of Theorem 104 to the end of this section. We show first
how Theorem 104 directly implies Corollary 103.

Proof of Corollary 103. As shown in the proof of Corollary 97, the weights {w;}X
we choose satisfies a nice property: for any ¢t we have

wi_ %

L
wj (;yt

Define Reyap(t) := maxyey >, @i[(0i,1;) — (b 0;,1;)]. Plugging our choice of w; =
ay (TTiey (1 — az))fl into Theorem 104, we have

a;BlogB B 1
— + Nk + 50t

ﬁswap (t) S

Mt 211

—i—BZ%athB QLZ al) +BatL/’yt

i=1 i=1

By choosing n; = v = 4/ @ and using Lemma 89, we can further upper bound
the swap regret by

i (H +1) Blog B L 358
- H1 B§
Reswap(t) < H+t HlogB \/TgZ 1\/‘
(H+1): (H+1) !
B2 B
Y En LE (o))" + (H+t) \ Hlog B

log B HlogB  H i3 Hlog B
<23,/Hi 384/ Og 2 QB,/ ' {9B Og

<9B\/H./t+ H./t.
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To further simplify the above upper bound, consider two cases:

o If Hi/t <1, \/Hi/t > Hi/t and thus stap ) < 10B\/H./t

o If Hi/t > 1, B\/Ht/t > 1 > Ryap(t) where the last step is by the definition of
Reewap(t). Therefore we have 7% ap(t) < By/Hu/t.

Combine the above two cases, stap ) < 10B\/H./
Finally, we pick &w(B,t,log(1/6)) := 10B+/H/t, which is non-decreasing in B.
On the other hand, since >_.,_, & (B, t,1og(1/8)) < 20Bv/Htt, we choose

Eaw(B,t,log(1/d)) = 20BV Ht,

which is concave in t. O

To prove Theorem 104, we again first decompose the swap regret. We first note

that by Line 7 of Algorithm 20, we have:

wi0;, 1) =Y wi{Bi(b), 6 (D)Li(-))-

beB
On the other hand, by the definition of strategy modification ¥, we have

t

glggl 1wl<zp<>(91,l Zar*mlrng“ (0 (-|b), Li(+))-

Therefore, we have the following decomposition of the swap regret

t

Rewap(t) :=min » w;[(0;, ;) — (¢ © 0;, )] Zzw (+16) = 67 (-[b), 0:(b)1)]

Ppew

i=1 beB i=1
—ZZM = 6°(10). L(1b)) (C.10)
beB i=1
0
S (B0, 6,000 - )
beB =1
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t

> wi <9*('|b) L(-[b) = 6:(b)Li(- )> (C.11)

beB i=1

J/

-~

(©)

For the remaining proof, we bound term (A), (B),(C) separately in Lemma 105,
Lemma 106, Lemma 107.

Lemma 105. For any t € [K], suppose n; < 27; for all i < t. The with probability
1—946, for any 0%,

Zzw%< [b) — 0%(-[b), 1 (|b)> thﬂ#%—g n,w,%—;maxwﬁ

beB i=1 i=1

Proof of Lemma 105. Similar to Lemma 100, we have,

t

S i (BiC-16) = 0*(10), L))

i=1

wtlogB _mel@z ,Z(lb)>

wilogB 1 ¢ — o 02(D)2(b)I{b; = b'}
7 2;;; O w) =0
(

-~

wlogB 1« 0;(b'0)0;(b) 1:(V/|b)
<——+5 niw; ;
AP D0 L v ()

Summing over b and using the fact that ), _, 0:(1'|b)6;(b) = 6,(¥),

wz< (1) — 0%(10). T (|b)> thlogB ZZ - ib/|b

beB i=1 =1 bveB
@) w,Blog B 1
< i — Z mel i + mawaL
i=1 v¥eB
wyBlogB B 1
<—+ = nw; + = maX (T
Ur 2 Y 2

where (i) is by using Lemma 99 with ¢;(b) = n;. Notice the quantity lig@(,ll)b) actually
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doesn’t depend on b, so it is well-defined even after we take the summation with

respect to b. The any-time guarantee is justified by taking union bound. n

Lemma 106. For any t € [K]|, with probability 1 —§ ,

> wi {Gi10), Gib)1i() — T[b) ) < BY yiwit By 2y

beB i=1

Proof of Lemma 106. We further decompose it into

t

> s (A1), (L) —Z(-\b)}

=3 (D), BO)C) ~ ELCID)) + Zwl< (16), ETiC16) ~ T [6))-

The first term is bounded by

t

> (B, 6.000) ~ BEC) = Zwu ) (A - 72 n6)
_Zw” <6~ 9()2%li>

So by taking the sum with respect to b, we have

Ziwi@i(-\b),@(b)li(-) > ZZU}” <§ )ﬁl»

beB =1 beB i=1

< Z Z w;yl; (V')

b’eB i=1

¢
<B Z ViW;.
i=1
To bound the second term, notice 6;(¥'|b); (b) < 6;(V) for any b,V € B,

<9 > S 0.(v'b)0, H{(bt) b}<Z]I{b — ¥} =1,

beB i beB

232



thus {w; <§1(]b),E£(]b) —l:(]b)> t_, is a bounded martingale difference sequence
w.r.t. the filtration {F;}!_;. By Azuma-Hoeffding,

t

S wi (B(10), BL([b) ~ (b)) <

=1

The proof is completed by taking the summation with respect to b and a union

bound. =

Lemma 107. For anyt € [K], suppose y; is non-increasing in i, then with probability
1 -9, and any 0%,
t

> > wi (8 C10). TC1) = Bi()() ) < Bmaxwit/.

beB i=1
Proof of Lemma 107. The proof follows from Lemma 102 and taking the summation
with respect to b. O

Finally, we are ready to prove Theorem 104.

Proof of Theorem 104. Recall the decomposition of swap regret (C.11). We bound
(A) in Lemma 105, (B) in Lemma 106 and (C) in Lemma 107. Putting everything

together, we have

Rewap ()
t ¢ t
wyBlogB B 1 B max;«; w;t
<——+ — Y nw;+-maxwie+ B Y yw,+ B2ty w4 ——TF—.
"t 23 2 st 121 221 Vi

C.8 Proof for the V-0OL algorithm

Throughout this section, let ¢ = log(HSAK/p).
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C.8.1 Upper confidence bound on the minimax value function

Lemma 108 (V-learning lemma). In Algorithm 8, let t = NF(s) and suppose state
s € 8, was previously visited at episodes k',... k' < k at the hth step. For any
€ (0,1), let v = log(HSAK/p). Choose n = +/CGHlogAlar. Then with probability at

least 1 —p, for any t € [K|, h € [H] and s € Sy, there exists a constant ¢ such that

t t

; i i i i GH3AL
max Z atDH oE [Th + PthH} (s) — Z a; <Th(8, ay’ by + th+1(sﬁ+1)> <c rat
i=1 =1
(C.12)

Proof. By the Azuma-Hoeffding inequality and Lemma 89,

t

¢

X i . i i GHBL
Zaiﬂ)%iwﬁi <7“h +Pthk+1> (s) — Zai [Th (s,ai ,b’,j) Vh+1 (sh+1>] < 24/ o
i=1

=1

So we only need to bound

t
£ = max Z ozﬂD) e (Th + IP’thkJ:1> (s) — Z O{éﬂ)”ﬁixyﬁi (Th + Pth’il) (s).

HEA 4 4 :
=1

(C.13)

By taking w; = ! in [Bai et al., 2020, Lemma 17,

3HaltlogA 3A t 2
e B
(4)

o t N2
<3Haj,/Aeed 4 = \/GHAlog § 2 :»,1 (o)
(@)
<3H(G;gii\/AtlogA_‘_3\/GHAlogA_|_2\/G’HL

SC /G]ZAL

for some constant ¢, where (7) is by setting 1, = \/% and (éi) is by Lemma 89.

R; <

Taking union bound w.r.t. all (¢,s,h) € [K] x S x [H]| concludes the proof.
We comment that the quantity Ry is actually H times the LHS in the inequality
of [Bai et al., 2020, Lemma 17|. See Appendix F and Algorithm 9 in Bai et al. [2020)]
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for a detailed reduction from MG to adversarial bandit problem. Furthermore, in [Bai
et al., 2020] there are actually two parameters 7, and ;. Here we just take v, = n, for
simplicity. Finally, the proof of [Bai et al., 2020, Lemma 17| requires that n; < 2v;
for all 4 <t |Bai et al., 2020, Lemma 19| and that 7; is nondecreasing in ¢ [Bai et al.,

2020, Lemma 21|, which are both satisfied by our specification of 7;. O

Lemma 109 (Upper confidence bound). In Algorithm 8, for any p € (0,1), let
v = log(HSAK/[p) and choose [y = cn/GH3AL/t for some large constant c. Then with
probability at least 1 — p, V;*(s) < VE(s) for all k € [K], h € [H] and s € Sp,.

Proof. The proof is similar to that of [Bai et al., 2020, Lemma 15|, except that we
need to deal with an extra parameter G here.

Let k! (s) denote the index of the episode where s € S, is observed at step h for
the ith time. Where there is no ambiguity, we use & as a shorthand for k¢ (s). Let s
be the state actually observed in the algorithm at step h in episode k. For our choice
of B;, we have Y_'_ i = O(GH?\/4/t) by Lemma 89.

Recall that

t
Vi(s) == alH + Y af (rals.af b)) + Vil (1) + 1)
=1
Vi (8) = Dys ur [rn + PuVi 4 ](s).

For h = H + 1 the UCB vacuously holds. To apply backward induction, assume
that V7, < th+1 holds entrywise. Then by definition, for any s € Sy,

Viils) = max min Dy [ra + PuViiya)(s)

Q) t

= i min D, P
urengfh i=1 O‘t,,?ggh wo[rn + PrViial(s)
¢
= /,L]:Erlgi( i=1 aiDu,u}ji [rn + PrViiq](s)
@) ¢ ; i (@)
< max - aiDﬂﬁyﬁi[rhjLIP’thH](s) < ViF(s),

where (i) follows from > '_, ai = 1, in (ii) we apply the induction assumption, and
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(74) holds with probability at least 1 — p by the V-learning lemma (Lemma 108)
and that Zzzl alBy = O(\/GH3Au/t) because of our choice of 3; and Property 1 of
{a!} in Lemma 89. Inductively we have V;*(s) < V/i(s) for all k € [K], h € [H] and
s € Sy. ]

C.8.2 Proof of Theorem 27

Proof. In the proof below, we use ‘<’ to denote ‘<’ hiding some constants. Recall

that
k Vk k7yk
Vi (sh) = Dyg oplra + PRV 1(sh).

Then define §F := (V}F — Vh“k’”k)(sﬁ). By definition,

k llk
O = afH + Z (s af' 05 + Vil (k) + i) = Dl + PRV ()

t
a) H + Z ( (shrak by ) + Vit (shr) + 5@) - ZaiDMki,yki [+ PuViya)(sh)

=1
+Zam i [+ PRV (5) — D k[?’h+]P’th “1(sh)

(41)

< QVH + 4/ GIRAL Zat]D) i i [h + PRVEL(E) = Dy i rn + PRV (sh),

where in (i) we add and subtract the same term, and (ii) follows from the property of
Bithat 3°'_, aif; = ©(y/GH*At) and the fact that by the Azuma-Hoeffding inequality
and Property 2 of Lemma 89,

t

t
Z a (rh(sﬁ, ay by ) + Vhﬁl@i:—l ) - Z aiﬂ)uki,yki [rn + PrVia) () S \ G%SL

i=1 1=1
By the same regrouping technique as that in [Jin et al., 2018,

K t K 00
. i , nk/
DD D lrn +PaVii)(s5) < 0Dy e frn + PuVii1(sh) > op”

=1 =1 /= — k'
k=1 1 k 1 t_nh
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K

L+ g7) Y Dy el + PuVili I(s).
k=1

IN

Substituting the above back into the bound on 6F and taking sum over k € [K], we

obtain

]~
=

B
Il
—

A
[™] =

k I/k
(a?H /A (14 D e[+ PRVEN(5E) = Dy [rn + PV ](s;j))

k=1

1=
]~

k yk
(a?H + /G (14 F2) (081 + ) + gDt lrn + PV ](sﬁ))
(abtt + /2 (4 b + b+ 8)

where in (i) we define the martingale difference term % := Dk [Ph(Vh’“H—Vh‘ﬁ”k)] (sF)—

(Vik, — Vh“fi”k)(sﬁﬂ) and (i7) follows from that

i

1

—~

]~

i)

<

B
Il

1

k I/k
Dye o[+ PRV (sh) < H.

Recursively,

Now we bound each term in Zle 6k separately by standard techniques in [Jin et al.,

2018, Xie et al., 2020]:

k=1 k=1

K K ny (s)

S —aHVAY [ < VEHA Vi < VEHSSAK),
k=1 k=1 s€S, n=1

K H

> > SVHK,,

k=1 h=1
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where the second line follows from a pigeonhole argument and the third line follows

from the Azuma-Hoeffding inequality. Combining the above bounds, we obtain

K
Regret(K) < Zéf < H?’S +VGHSAK.+ G 'KH.
k=1

1
If K > H*SA then we take we take G = £ (&5)"%; otherwise we take G = K3.

Then the following regret bounds holds:

O(H?S5 ASK5 + HS), if K > H*SA,
Regret(K) = ¢
(’)(\/ H5SAKS + HZS), otherwise.
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Appendix D

Proofs for Chapter 5

D.1 Properties of the game

D.1.1 Properties for Section 5.1

For any opponent (min-player) policy v € Iy, define

Py (xp) = Z pra(sp)vin—1(y(sp_1),bp_1) for all h € [H|, x}, € X.

SRLETH

Intuitively, py., (z5) measures the environment and the opponent’s contribution in the

reaching probability of x.
Lemma 110 (Properties of p¥, (z4)). The following holds for any v € Il ypy:

1. For any policy p € Il .k, we have

Z /Ll;h(xh, ah)pllj:h(xh) = 1

({Eh,ah)GXh x A

2. 0 <pi,(zn) <1 forall h,xp.

Proof. For (a), notice that

frn(@ns an)pip (n) = Z pun(sn) - pusn(@ns an) - vin—1(y(Sp-1), br-1)

SRETR
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= Z PHY(visit (sp,ap)) = PPV (visit (zn, ap)).

ShETH

Summing over all (xp,a;) € X), X A, the right hand side sums to one, thereby showing
(a).

For (b), fix any z), € Aj,. Clearly p/, (x,) > 0. Choose any a;, € A, and choose

Th,Ah

policy p*m® € Ilax such that pi%*" (zy,an) =1 (such p* exists, for example, by
deterministically taking all actions prescribed in infoset x, at all ancestors of x,). For

this p®»®  using (a), we have

pllj:h(xh) - N:f;hh,ah(xha ah) ' plf:h(xh) S Z /’szhh’ah ('r;w a%) pll/h<aj,h) =1
(x,,a7,)EXR XA

This shows part (b). O

Corollary 111. For any policy p € oy and h € [H], we have

Z foaen (T, an) (2, an) < 1.

(zh,an)EXR XA

Proof. Notice by definition

Gxnan) = > pralsn)Vialsn), ba) (1 = ru(sn, an, b)) < ply(on),

snExy,bnE€BY

and the result is implied by Lemma 110 (b). O

Lemma 112. For any h € [H], the counterfactual loss function L} defined in (6.11)
satisfies the bound

1. For any policy p € Il .y, we have

Z ulzh(xh,ah)LZ(a:h,ah) S H — h + 1.

(zh,an)EXR XA
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2. For any (h,xy,ap), we have

0 < Li(wn, an) < piy(xa) - (H = h+1).
Proof. Part (a) follows from the fact that

Z Nl:h(mha CLh)Lz (l’h, ah) - Eu,ut

(zh,an)EXR XA

H
Zrh/] SH—h—l—l,

h/=h
where the first equality follows from the definition of the loss functions ¢, and L,
in (5.5), (6.11).

For part (b), the nonnegativity follows clearly by definition. For the upper bound,
take any policy p™ € Il such that pi*" (zph, ap) = 1. We then have

H
Ly (xh, an) = %" (xn, an) Ly, (2h, an) = Epenan [1 {visit 2, az} - Z rh/]
h=h
H

= ]P"uxh,ah,l,t (ViSit T, ah) . Euxh,ahvyt [ E Ty
h'=h

visit zy, ah]

< pih (@, an)pi (o) - (H — h+ 1) = pl(zn) - (H — h+1).

D.1.2 Properties for Section 5.4

For any h < h' and z, € X&), we let Cp(xp,an) = {x € Xy : © > (vp,a,)} and
Cr(zp) = {z € X : v = x} = Uy, eaCh(xp,ap) denote the infosets within the
h/-th step that are reachable from (i.e. children of) xj or (zp,as), respectively. For
shorthand, let C(xp,ap) = Cpy1(zn,an) and C(xp) = Cpii(xp) denote the set of
immediate children.

We define X, for any z;, € &), as

H

Xea, = Y |Cu(an)]. (D.1)

h'=h
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It can be interpreted as the number of infosets in the subtree rooted at x;,.
Lemma 113. The L' norm of a sequence form is upper bounded by |||, < X.

Proof. We can prove |II*"|| < X,,, for all h € [0, H] and z;, € &) by backward
induction over h = H,--- ,1,0. When h = H, for each infoset xj, the sequence form
is just a probability distribution, which sums up to ||[I**||; = 1 = | X,, |. If the claim
holds for h + 1, consider an infoset z; in the h-th level. By induction hypothesis we

have

I fy =max Iy <max Y Xy < [ X, |

Thy12=(Th,an) Thy1=(Th,an)

So the equation above holds for any z,. Setting z;, = 0 gives ||II|l; < X which
completes the proof. n

Lemma 114. We have |®EFCE| < X Alltlhi+1,

Proof. By Proposition 5.1 of Farina et al. [2022b], V < Al Since there are at most

X A different infoset-action pair to be trigger, we have |®EFCE| < X AITh+1, O

D.2 Bounds for regret minimizers

Here we collect regret bounds for various regret minimization algorithms on the prob-
ability simplex. For any algorithm that plays policy p; in the ¢-th round and observes

loss vector {£(a)} e € RZ,, define its regret as

T

Regret(T) := max < ,Z>—<*,Z>.
grot(T) = I, L \PRT ) AP

D.2.1 Hedge

The following regret bound for Hedge is standard, see, e.g. [Lattimore and Szepesvari,

2020, Proposition 28.7].
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Algorithm 21 Regret Minimization with Hedge (HEDGE)

Require: Learning rate n > 0.
1: Initialize p;(a) < 1/A for all a € [A].
2: for iterationt =1,...,T do

3:  Receive loss vector {E(a)} .
a€lA]

4:  Update action distribution via mirror descent:

prer(a) o<, pi(@) exp (—nfa(a) ).

Lemma 115 (Regret bound for Hedge). Algorithm 21 with learning rate n > 0

achieves regret bound

log

Regret(T") <

l\Dld

D.2.2 Regret Matching

Algorithm 22 Regret Minimization with Regret Matching (REGRETMATCHING)

1: Initialize pi(a) - 1/A and Ro(a) < 0 for all a € [A].
2: for iterationt =1,...,7 do

3:  Receive loss vector {E(a)} .
a€lA]

4:  Update instantaneous regret and cumulative regret for all a € [A]:

ri(a) < <pt,£7t> - E(a) and  Ry(a) < Ry_1(a) + r(a).

5. Compute action distribution by regret matching:

e @, [l @) i),
et B gy [S0 (o — @)

In the edge case where [R;(a)], = 0 for all a € [A], set p;y1(a) < 1/A to be
the uniform distribution.

The following regret bound for Regret Matching is standard, see, e.g. [Cesa-
Bianchi and Lugosi, 2006, Brown and Sandholm, 2014|. For completeness, here we

provide a proof along with an alternative form of bound useful for our purpose (Re-
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mark 117). Note that here 7 is not the learning rate but rather an arbitrary positive
value (i.e. the right-hand side is an upper bound on the regret for any n > 0).

Algorithm 22 itself does not require any learning rate.

Lemma 116 (Regret bound for Regret Matching). Algorithm 22 achieves the follow-

ing regret bound for any n > 0:

| 3

Regret(T [Z Z <<pt,Zt> B Z(@)y] 1/2 %

t=1 a€[A]

125 () )"

Proof. By the fact that (a4 b)3 < a? + 2a.b+ b?, we have

[Re(a)i < [Re-a(@)5 + 2[Re-r(a)]47e(a) + re(a)®. (D.2)

Then by the definition of p;(a) and r(a), we have

S Rea@lird) = 3 Rea@ls (Y pla)ie) - i)

a€[A] a€[A] a’€[A]

= > [Ria(@)ilila) = > [Rier(a))li(a) = 0.

a€lA] a€[A]

Then summing over a in Eq. (D.2) and using Eq. (D.3), we get

Z [RT(CL)B_ < Z [Ry—1( + 2 Z Rp_1(a)]1rr(a) + Z T‘T(a)2

a€[A] a€lA] a€c[A]
T
= 2@k + 3 @’ <) Z
a€lA] a€lA] t=1 ac[A]

Using that max, Rr(a) < max,[Rr(a)ly < (3 ,cq[Rr(a)]3)? gives the regret
bound

1/2 1/2

Regret(T) = %?ﬁRT Z Z r(a Z Z (<pt,€t> — 0 ))2

t=1 a€[A] t=1 a€c[A]

The claimed bound with n follows directly from the inequality v/z < 1/n + nz/4 for
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any 7 >0, z > 0. [l

~ - 2
Remark 117. The quantity Zaew <<pt,€t> — &(a)) above can be upper bounded

as

Z <<pt,E> - Zt(a))2 < Z (<pt,zt>2 +Zt(a)2)

a€[A] a€[A]
7\? 7112 7 ()2 7 ()2
= A{pol) +10E <A (ml@)ia) +(1/4)0(0)?)
a€lA]

—24Y" p(a)li(a)?

a€lA]

where p,(a) = [pi(a) + (1/A)]/2 is a probability distribution over [A].
As a consequence, we get an upper bound on the regret of Regret Matching algo-

rithm by
1
Regret(T') < 7 gz Z (Ap,(a ( )2.

Comparing to the bound of Hedge (Lemma 115), the above regret bound for Regret
Matching has a similar form except for replacing log A by 1 and replacing p; by Ap,.

D.2.3 ®-Hedge

The following lemma is standard and gives a ®-regret bound of the ®-Hedge algo-

rithm.

Lemma 118 (Regret bound for ®-Hedge). For strategy modification vertex set @y,

step size n, and total steps T', running Algorithm 9 gives

Rea?(r) < 50 0SS 5 ot )

t=1 ¢ped

Proof. We have

T

T
0
Reg®(T) = sup Y (u' — gp', (') = sup > (o't — ou, 0
€® =1

PED 4y
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T
D osup S5 (ot 1) — pelent, ).
DN

Above, (i) uses the fixed point equation ¢'u’ = u' (Line 4), and (ii) uses the fact
that ® = conv{®,}. Note that the above expression is exactly the regret of {p'}L,,
where the loss vector in the t-th round is {(¢u’, (") }sca,. Further, the update rule
of p' (Line 6) coincides with Hedge algorithm. So by the standard regret bound for
Hedge, see, e.g. (Lattimore and Szepesvari [2020], Proposition 28.7), we have

Reg®(T) = sup Z > (phiou' 1) — polon'. 1)

PEAD) 11 4ea,

lOg|(1>o| Uzzp (o, £1)

t=1 pcdq

This proves the lemma. ]

The following Freedman’s inequality can be found in [Agarwal et al., 2014, Lemma

9).

Lemma 119 (Freedman’s inequality). Suppose random variables {Xt}thl s a martin-
gale difference sequence, i.e. Xy € Fy where {Fi},, is a filtration, and E[X,|F 1] =
0. Suppose X; < R almost surely for some (non-random) R > 0. Then for any
A € (0,1/R], we have with probability at least 1 — ¢ that

DX <A D E[XP|F] + log(1/9)

D.3 Equivalence to classical definitions of EFGs

We first formally define Extensive-Form Games (EFGs). We then show that solving
EFGs with adversarial opponents can be reduced to solving Tree-Formed AMDP. See
Section 5.1 for the classical definition of ITEFGs.
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D.3.1 Reduction from classical definition of EFGs to TFAMDP

In this section, we show that solving EFGs with adversarial opponents can be reduced

to solving TFAMDP. Formally, we prove the following proposition.

Proposition 120. For any EFG (i.e. POMG with tree structure and perfect recall as-
sumptions) (H,S, X, Y, A, B,P,r) with adversarial opponents’ policies {v'}i>1, there
exists an adversarial MDP (H, X, A, T') with adversarial transition {p' = {p} }nefoyom }i>1
and reward {R* = {R! }pepm }i>1, 0 that for any policy sequences {u'}is1, their joint
distributions over the learner’s trajectory P(xyi,ay,2a,as,...,xy,ay,1) are exactly

the same for all episodes t > 1.

We remark that the joint distribution P(x1,ay,xs,as,...,xy,ay, ) gives a com-
plete description about what the first player can obtain from the dynamic systems
in both models. The joint distributions being the same for two models means that
information-theoretically, the learner has no way to distinguish the two models, thus

proving their equivalence.

Proof of Proposition 120. In this section, we will use the notation in its original form
X, A, p,r to denote the quantity in EFGs while use their tilded form X, A,p, R to
denote the corresponding quantity in tree-form AMDP. It is not hard to see that in

order to prove Proposition 120 for all ¢ > 1, it suffices to prove for a fixed t it is true.

Construction of AMDP we construct the corresponding AMDP using EFGs in
the following way: we let H = H, X = X, A= A. Since EFG satisfies perfect recall
assumption, which defines the immediate children function C. We use the precisely
same child function to define the tree structure 7 in AMDP. We define the adversarial

transition according to the following equations:

pilay) == Z pi(s1),

S1€X1
D snircanss 2obpsreB Pt ($n40)V 1 (Uns1 (Sht), Opr)
Y sncan Dby en Prn(8n)VLg, (Un(sn), bn) ’

P (nilzn, ap) ==
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where yp,11(sp11) and y,(sp,) are the infoset of opponent at (h + 1)-th and h-th steps
given state s, and sj, respectively. We also define the adversarial reward distribution
R.L(-|zg, ay) such that it gives the following distribution over reward r € [0,1] for

any fixed (xy,agy)

pl:H(SH)Vf:H(yH(SH)a br)
ZS’HEmH Zb/HeB P (S (Y (sh), V)

r =r(sy,ay,by) with probability

And we set the adversarial reward RY(:|zj,as) to be zero (almost surely) for all

h < H —1 and all (zp,, a,t).

Proof of equivalence Denote P! as the probability of AMDP at episode ¢ with
policy j; denote P**" as the probability of EFGs under policy 1 and v*. It is very
easy to check by induction over step h, that for any h € [H], and all policy u

simultaneously:

Py, ap) = PP (zh,an) = > Y pren(@n, an)pra(sn)vh, (n(sn), bn).

SpExy bEB

This proves that the joint distribution:
p“’t(azl, ai, ..., TH,ay) = p#ﬂ/t(xl, A1y .., T, Q). (D.4)

Finally, the construction of adversarial reward is such that its conditional distribution

given (zy,ay) is exactly the same as the conditional distribution of the reward in the

EFG:

R’}{(r =r(sg,am, bp)|xy,ag) = P“”’t(r =r(sg,am, bp)|xy, an),

which immediately gives that:
pu’t(’l“H|I‘1, ai,...,Tq, aH) = P“’Vt(’l“|$1, ay,...,Tq, CLH). (D5)

Combining (D.4) and (D.5), we finish the proof. O
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D.4 Proof of Theorem 35

Both the regret and PAC lower bounds follow from a direct reduction to stochastic
multi-armed bandits. For completeness, we first state the lower bound for stochastic
bandits |[Lattimore and Szepesvari, 2020, Exercise 15.4 & Exercise 33.1] as follows.

Below, ¢ is an absolute constant.

Proposition 121 (Lower bound for stochastic bandits). Let K > 2 denote the num-

ber of arms.

1. (Regret lower bound) Suppose T > K. For any bandit algorithm that plays policy
ut € A([K]) (either deterministic or random) in round t € [T, there exists some
K-armed stochastic bandit problem with Bernoulli rewards with mean vector
r € [0,1)%, on which the algorithm suffers from the following lower bound on

the expected regret:

max Z</,L —,LLT' ¢c-VKT.

meA [K))

2. (PAC lower bound) For any bandit algorithm that plays for t rounds and outputs
some policy i € A([K]), there exists some K-armed stochastic bandit problem
with Bernoulli rewards with some mean vector r € [0, 1]%, on which policy [i is

at least € away from optimal:

T_
E ménAa(X < ,LL,T>

unless T > cK /&>,

We now construct a class of IIEFGs with Xy = A#~! (the minimal possible
number of infosets), and show that any algorithm that solves this class of games will
imply an algorithm for stochastic bandits with A¥ arms with the same regret/PAC
bounds, from which Theorem 35 follows.

Our construction is as follows: For any A > 2 and H > 1, we let S, = A"! for all

h € [H] (in particular, S; = 1) and B =1 (so that there is no opponent effectively).
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By the tree structure, each state is thus uniquely determined by all past actions
sp, = (a1, ...,ap_1), and the transition is deterministic: ((a1,...,an_1),a) € Sp X A
transits to (ay,...,an) € Spy1 with probability one. Further, we let z;, = z(s,) = sp,
so that there is no partial observability, and thus &) = S, for all A. Only the H-th
layer yields a Bernoulli reward with some mean 7, ,, := E[ry(a1.g—1,an)] € [0, 1], for

all a1.y € Xy. The reward is zero within all previous layers.

Under this model, the expected reward under any policy p € Il can be suc-

cinctly written as

(p,m) = > mn@aamBlra(enan)) = > (),

(zm,0m)EXHE XA a;.g€AT

This expression coincides with the expression for the expected reward of an A”-armed

stochastic bandit problem.

Now, for any algorithm Alg achieving regret AT on IIEFGs, we claim we can
use it to design an algorithm for solving any A-armed stochastic bandit problem
with Bernoulli rewards, and achieve the same regret. Indeed, given any A"-armed
bandit problem, we rename its arms as a sequence ai.y = (ag,...,ay) € A”. Now,
we instantiate an instance of Alg on a simulated IIEFG with the above structure.
Whenever Alg plays policy u' € Iyax, Wwe query an arm aj.g using policy p. ,(-) €
A(Af) in the bandit problem. Then, upon receiving the reward r* from the bandit
problem, we give the feedback that the game transitted to infoset a;.y and yielded
reward r*. By the above equivalence, the regret A7 within this simulated game is

exactly the same as the regret for the bandit problem.

Therefore, for T > A¥, we can apply Proposition 121(a) to show that for any
such Alg, there exists one such ITEFG, on which

E[R"] > ¢- VAIT = /Xy AT > VX AT,

where the last inequality follows from the fact that X < Xp(1+1/A+1/A4%+-..) <
Xu/(1—1/A) <2Xy by perfect recall. This shows part (a).
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Part (b) (PAC lower bound) follows similarly from Proposition 121(b). Using
the same reduction, we can show for any algorithm that controls both players and
outputs policy (&, V) € Hpax X i, there exists one such game of the above form

(where only the max player affects the game) where the algorithm suffers from the

PAC lower bound

E[NEGap(Z, )] = E| max |CRECI T
,LLE max
unless T' > ¢X A/e%. The symmetrical construction for the min player implies that
there exists some game on which E[NEGap(fi, V)] > € unless T > ¢Y B/,
Therefore, if T < ¢(X A+Y B)/(2¢?), at least one of T > ¢X A/e? and T > c¢Y B/&?
has to be false, for which we obtain a game where the expected duality gap is at least

e. This shows part (b). O
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Appendix E

Proofs for Chapter 6

E.1 Proofs of balanced exploration policy

Proof of Lemma 37. We have

Mlh xh,ah
2 e an) )

Th,0h ’ulh Lh, Ah

B Z Z P (h—1) (Th—1, an1) - pn(an|zn)
- *,h
Th—1,0h-1 (Th,an)EC(TH—_1,an-1) XA ’ul (h— 1)(xh_1’ ah_l) ’ (1/A)

Z Z ,Lti ;Lh 1)(551171, ahq)

Th—1,0h—1 TR EC(TH_1,an—1) 'U“l :(h— 1)(xh—17ah—1)

H1:(h— Th—1,Ap—1
=4 Z il(z 1)< ) “|Ch(zh—1, an-1)|
Th—1,ah—1 Ml:(h—l)(‘rh*la ahfl)

i
Sy oy
Th—2,0h—2 (Tp—1,0n—1)EC(Th_2,an_2) XA

H1:(h—2) (-2, an—2)pth—1(an—1|Tn_1)

Wy (P2, an—2) - Ch(wn_1, an_1)|/|Ch(zns)|

Ch(xp_1,an—1)]

(h—)(Th_a, ap— _1lap_1|Th_
—A. Z Z H1:(h 2)(h2 h2),uh 1(h1\ hl)

*,h
Th—2,0h—2 (Tp—1,an—1)EC(TH—2,a—2) X A H1:(h—2) (xh—27 ah—Q)

—A. Z Z Ml:(h—2)(xh72aah72),uh71<ah71|xh71)

*,h
Th—2,an—2 (Th—1,0h—1)EC(TH_2,ah—2) XA H1:(h—2) (mh*% ah72)

(m Z Ha( h 2)(% 2, Ap—2)

|Ch(Th—2, an—2)|
Th—2,Qh— 2“1 (h 2)(% 2, Ah—2
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pa(ar|z1)
=A- |Ch(z1, @
Z e anl/ica] )

= A- Z pa(ar]zy) - |Chly)]

x1,a1

= A2 [Culan)] = A- [Ca(0)] = XA,

Above, (i) used the definition of 1" and the fact that > apea tnlanlzy) = 1 for any p,
ap; (i) used the definition of 17", ; (iii) used the fact that Dy €Clan_nan_g) |Cr(Th-1)| =
|Ch(xp—2, an_2)| which follows by the additivity of the number of descendants; and the

rest followed by performing the same operations repeatedly. O

The following corollary is similar to the lower bound in [Farina et al., 2020b,

Appendix A.3].

Corollary 122. We have

1
XA

1050 (o, ap) >

for any h € [H] and (zp,ar) € &), X A.

Proof. Choose some deterministic policy p s.t. py.4(zh,a) = 1 in Lemma 37 and

noticing each term in the summation is non-negative,

/M;h(l‘h, ah)

1 < XA
Wi (Th, an)

E.2 Proofs for Balanced dilated KL

Proof of Lemma 40. We have

T
max Dbal(ﬂ H umf) — max Z :ulh Ih,ah /i’r]flgah‘xh)

11t Ellmax it €l 4= = uy h (xp, ah) it (ap|xp)
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H

.|.
5 (zh,a
= max Z W (log 1! (an|zn) + log A)
123 Ellmax h=1 x1,a1 /’Llh xh’ ah

(i) A f
<logA Z max Z —Mi:Z(Ih, an)
o i€l i (Th, ap)

H
@ logAZXhA = XAlog A,
h=1
where (i) is because ! (ap|zs)log uf (ap|zs) < 0 (recalling that each sequence form
,u];:h(:Bh, ap) contains the term u;rl(ah|xh)), and (ii) uses the balancing property of p*"

(Lemma 37). O

Proof of Lemma /1. By Eq. (6.7) and by the definition of KL divergence, we have

(XhA)DH(P,ZLm*HPZL}L_W;“*)
*,h
* W\ Th, A M
= (X, A) E pian (T, an )P () log[ p:n (T, an)pyy (Th) - ]
(zn,an)EXR XA ,ulzh—l(l'h_l7 ah_l)yh<xh|ah)p1:h(ajh)

Z (T, an) log [Mh(ah|xh)} ’

vn(an|zn)

*,h(x a )
(2 ,an) € x A H1:n\Lhs Qh

(E.1)
where the last equality is by Lemma 38. Comparing with the definition of D’ as in
Eq. (6.5) concludes the proof. O

E.3 Proofs for Section 6.2

E.3.1 Efficient implementation for Update (6.10)

Lemma 123. Algorithm 23 indeed solves the optimization problem (6.10):

~ 1
p*t = argmin (pr, ) + (g )
Henmax 77

Proof. First, by the sparsity of the loss estimator 0t (cf. (6.9)), the above objective
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Algorithm 23 Implementation of Balanced OMD update

Require: Current policy u'; Trajectory (z%,a},...,zt;, at;); learning rate n > 0;
Loss vector {Eﬁl(azh, ah)}h that is non-zero only on (zy,ap) = (2}, a}).
»Th,Ah

—_

. Set Zf*ﬂ-l «— 1.

2: forh=H,...,1do
3:  Compute normalization constant
xheto ot t
h ot fyin (@, ap) log Zy 4y
Zh 1~ siable) + (el - sxp (-W;h<xz, o )T} )+ P12 T ) 08 B )
g (Thg1s @)
. : t.
4:  Update policy at z}:

¢ ¢ xhy t NGt L “;Z(%vapbngtzﬂ ¢
pnan|zy) - exp | =nuyy, (@, ap)l (Th, an) + — 55— —logZ
Ml:h+1(xh+17 ah+1)

M?l(ah\%) — t
if ap, = ay,,
wh (ap|ah) - exp(—log Z}) otherwise.
50 Set ph (+|wp)  ph(+|xp) for all zp, € &, \ {t}.
Ensure: Updated policy u!*!.
can be written succinctly as
VG 1 t
(1 7) + DGuln) (E2)
H
~ 1
— Z Z fivn(@h, an) | €, (2h, an) + — log uil(ahmh)
h=1 zp,an Ny (Th, an) 11, (an|zn)
H
~ KL |z t(|a
=S wacaan) | (o). B (o) + Sk )
h=1 = MK, (Th, an)
H
o KL (g, (-|zp )] |27, (| n
=3 (i () lmamxzvz (a4, at) + KdenllzllinClzn)
KL |z Lo
+ Z Nl:h71<xh) (:U“h(*’|h h)||:uh( ’ h))} (ES)
zp#xh 77lul:h(xh? ah)
We now show the equivalence by backward induction over h = H,...,1. For h = H,

we can optimize over the H-th layer directly to see

it anlely) o iy (anlaly) exo { =t (et an) By (aly, an) |
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= pg(ap|zy) exp {—n%(:th, ay) — log qu} :

where Z! > 0 is the normalization constant. For all non-visited zy # zt;, by
equation (E.3) and non-negativity of KL divergence, the object must be minimized

t+1(

at iy (lew) = ph(len).

If the claim holds from layer h 4+ 1 to H, consider the h-th layer. Plug in the

proved optimizer after layer h, the objective (E.3) can be written as

H
P 1 "\ Ap | Tht
Z Z ,Ulzh’(ﬁh’a ah’) Ez, (ﬁh’; ah’) + 5 lOg :uil ( h ‘ h )
W=1zp a5 N (Tne, anr) fiy (an |z

- i Zuhhul(%h') <Mh'(‘!9€h')7572/ (n, ~)> + KL <“h’(’|i?h’)||/~62/('|$h/))

*,h
h=1 xp nlul:h/(xh/’ CLh/)

- Z Zmzh'—l(fﬂh’) <Mh’("93h')75~2/ (zp, ')> + KL wh'("?h’)HM%/('\l’h'))

*,h
h=1 x; Ny .y (xh/, ah/)

*,h/+1

+ Z [Nl (T, ap) log Zy, Nl:h/fl(xlifz’—ha;z’—l)loth/
b
. h’+1(xh’+1’ ah’+1> n#i:h’ (zh, ap)

=h+1

- Z Zﬂlzh’—l(lﬁh’) [<uh/(-|mh/),2§, (2, .)> + KL (Mh/('!ﬂlfh'”’HZ/('\%/))]

*,h
R'=1 zp nlulzh’(xh’? an)
t ot t
vt n(@h, ap) log Zy 4

M 41 Ih+1’ ah+1

- i: > pw—(aw) [<uh/(-|xh/),ﬁfz, (zh, .)> " KL (,Uh’("%}h/)"MZ,(.‘xh/))]

*,h
h'=1 Tyt T]/’thh/(xh/7 ah/)

~ log Z¢ KL ||l (|2t
+ :Ufl:h—l(xl;L) [Mh(amxlﬂ) (E]ﬁz (»Il;u G;L) - *ht+1 bl ) -+ (/*Lh<*7|h h)t| |Hh( | h))]
M. h+1(xh+l7 ah+1) Ny, (T, an)

o KL (pnlen) 1 (ln)
+ Z Nl:h_l( 77#1h<xhvah)

zp#xh
Thus in the h layer we can optimize by setting

py, (ana),)

t t *xh ¢

i (an|xy) wh = pin(h, an)

—_ h Zt h exp — nﬂl:h(xl}tUah)é?L(x;wah) _ *h+11h th t log Z;L+1
h Hni (Thg1s @)

1{ah:a;}}.
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For all non-visited z;, # x, by non-negativity of KL divergence, the object must be

t+1(

minimized at p; " (+|zp) = ph(|2,). This is exactly the update rule in Algorithm 23.

O
E.3.2 Proof of Theorem 42
Decompose the regret as
T
RT = max QAN E.4
Ao 2 (' = ul ) (E.4)
T B T B
< < 0 — €t>+ max < T,ft—€t>+ max < E_ T,€t>. E.5
; ILL 14 enmax =1 M*Enmax ; ,u ILL ( )
BIASl BIAS2 REGRET

We now state three lemmas that bound each of the three terms above. Their
proofs are presented in Section E.3.4, E.3.5, and E.3.6 respectively. Below, ¢ =
log(3H X A/J) denotes a log factor.

Lemma 124 (Bound on BIAS'). With probability at least 1 — 6/3, we have
BIAS' < HV2T. +~vHT.
Lemma 125 (Bound on BIAS?). With probability at least 1 — 6/3, we have
BIAS? < X Au/~.

Lemma 126 (Bound on REGRET). With probability at least 1 — 0/3, we have

XAlogA nH?X Av

REGRET < +nH*T +

Putting the bounds together, we have that with probability at least 1 — 9,

XAlog A H2X A XA
W < 22088 T+ T2 2 L gVAT 4+ yHT + 22
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XAlog A
H3T

XA

T we have

Set n = and v =
RT < 6VXAH3T, + HX As.

Additionally, recall the naive bound RT < HT on the regret (which follows as
<,ut7€t> € [O7H] for any p € Hmaxa te [T])a we get

RT < min {6\/XAH3TL + HX A, HT} < HT - min {6\/XAHL/T + X AT, 1}.

For T'> H X A, the min above is upper bounded by 7\/HX A¢/T. For T < HX A,
the min above is upper bounded by 1 < 74/HX A¢/T. Therefore, we always have

RT < HT -7\ /HXAL/T = TVH3X AT\

This is the desired result. O

The rest of this section is devoted to proving the above three lemmas.

E.3.3 A concentration result

We begin by presenting a useful concentration result. This result is a variant of [Kozuno
et al., 2021, Lemma 3] and |[Neu, 2015, Lemma 1] suitable to our loss estimator (6.9)

where the IX bonus on the denominator depends on (zy, ap).

Lemma 127. For some fized h € [H], let o, (zh,ap) € [0,27/&2 (zh,ap)| be Fi1-

measurable random variable for each (xp,an) € X, X A. Then with probability 1 — ¢,

SO ad Gwnan) (B (o on) — 6 (o)) < log (1/6).

t=1 xzp,ap
Proof. Define the unbiased importance sampling estimator

1—rt
/o=~ h _q xp =k, ap, =al .
F gy U e = )
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We first have

1—rh
pt o (@n, an) + Y (xn, an)
1—rh
@ ) + 0 (e, an) (10— rh)
1 2ypin(@n, an) (1= ) 1{wy = b, ap = af} /php (w0, an)

O (zp, ap) = 1{z, =2}, a, = a},}

< l{a:h :xz,ah :aZ}

T2y (an, an) L+ yuiy (e, an) (1 —14) 1{ay, = ob, an = al} /it (2, an)
— ]' 27#?2(‘%}” ah)‘@}fl(xfw ah)

Q’WTZZ(@’M an) 1+ 7#;2(%7 ap)lt (zp, ap)
(2) 1

S— log <1 + 27#1 h(xhn ah)&(l‘ha ah)) 3
27:“1 h(xh’ ah)

where (i) is because for any z > 0 <log(1+ z).

’1+/2

As a result, we have the following bound on the moment generating function:

E {exp { Z ab (zn, ap) €h (xp, ah)} ]Fl}

Th,Ah

al (xp,a . _
<E {exp { Z h*(h—hh) log (1 + 27#132(38,1, ah)@h(xh, ah)) } Va 1}

e 2711 (T an)

§]E {exp { Z log ( + ab (zn, an) Z,tl(azh, ah)) } ]Fl}

Tp,an
:]E { H (1 + az (l’h, ah) @(l‘h, ah)> |ft_1}
{1 -+ Z Oéh SL’h, (lh (Jih, CLh)|F }
Tp,an
=1+ Z Ozz ($h, ah) E%(l’h, ah)
<E {exp { Z ab (zn, ap) € (x, ah)} |.7-"t1} ,
Th,ap

where (i) is because zlog (1 + z') <log (1 + 22’) for any 0 < z <1 and 2’ > —1, and
(1) follows from the fact that for any h, at most one of Z’;L(xh, ay) is non-zero, so the

cross terms disappear.
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Repeating the above argument,

E {exp {z S o onsa) (B onran) — £, <whvah>)}}

t=1 xp,ap
T-1 5
<E{exp {Z Z aj, (xn, an) (52 (h, an) = 0, (zn, ah))}
t=1 xp,ap
E {exp { > af (@nan) (T (onsan) = 0F (on, m)} |fT-1}}
T-1 ) "
<E {GXP { Z aj, (wn, an) (fi (s an) — €, (2, Gh)) }}
t=1 xp,ap
<. o< 1

Therefore, we can apply the Markov inequality and get

P {Z Z ay, (xn, ar) (ZZ (wn, an) — €, (»’L’h,ah)> > 1085(1/5)}

t=1 xp,ap
T—1 N
=P {exp {Z Z ab (zn, ap) <E§L (zh, an) — 04 (xp, ah)> } > 1/5}
t=1 xp,apn
T ~
<5 E {exp {Z Z ozz (xh, ap) (EZ (zh,ap) — KZ (zp, ah)> }} < 4.
t=1 xp,ap
This is the desired result. O

Corollary 128. We have

1. For some fized h € [H| and (xp,ap), let o (z,a;) € [0,27;&’{;2 (xn,ap)| be

Ft=tmeasurable random variable. Then with probability 1 — 4,

T

D el enson) (B (o n) = 6 (o ) ) < log (1/0).

2. For some fized h € [H] and xy, let ol (zh,apn) € [0,27,@:2 (zp,ap)| be Fii-
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measurable random variable for each ap, € A. Then with probability 1 — 6,

Z Z ab (zn, ap) ( (xn,ap) — 0 (xh,ah)> <log(1/9).

t=1 apeA

Proof. For (a), using Lemma 127 with (o)’ (2}, a},) = o, (2}, a}) 1{x}, = 25, a) = as},

Z@h T, ap) ( (T, an) — gh(xmah))

:Z Z ab (zn, apn) L{z), = xp, a), = ap} [Zt(xﬁl,aﬁl) — Et(xﬁl,a%)] <log(1/4).

p— / /
=1z, ,aj,

Claim (b) can proved similarly. O

E.3.4 Proof of Lemma 124

We further decompose BIAS! to two terms by

pIAs! = 30 () = 30 (B i 1}>+t§;<w{w ),

~~ ~~

(4) (B)

J

To bound (A), plug in the definition of loss estimator,

)

Tp,a E Th,Q
Zﬂmxh,ah [ w(Th,an) — Pn (@n, an) ), (zn, an) ]

Nl:h@ha ah) + %um(xha ah)

]~

t=1

M’ﬂ IIM’H

H

1 h=1 Th,ap
H

h=

*,h
Y . Th, Qp
Z 115 (@n, an) 0y (2h, ap) ’ Hin( *h)
M1 h(-’ﬂh, ap) + 'Wﬁh(xh, ap)

o~
I

1 1 Ih,ap

H
Z Z ,}/H;Z(wh7ah)£§l($h,ah)

1 h=1 zp,ap

H
> v =HT,

1 h=

-

~+~
I

—~
.
~

-

t

sy
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where (i) is by using Corollary 111 with policy p*" for each layer h.
To bound (B), first notice

<Mt,zt> Z Z Mlh xh’ah)(l — Th) 1{zp, = xh,ah = ah}

h=1 z1,an 1o (Thy an) + ypl h(xh’ an)
<Z Z 1{xh—xh,ah—ah} Z =
h=1 xp,ap

Then by Azuma-Hoeffding, with probability at least 1 — §/3,

ZTXM E{” 7 1} €>§H 9T log(3/0) < HV2T.

t=1

Combining the bounds for (A) and (B) gives the desired result. O

E.3.5 Proof of Lemma 125

We have

BIAS? = max i</ﬂ,lﬁ—€t>

ILT Ellmax =1

— max ZZZ”M T, ap) [N (zh, an) — Eh(xh,ah)}

tell
HrE max S0 3 T 2 an

— max ZZZ /hh Th, ap)

i€l 4= 1= Y h (xh, ah)

= Inax ZZ ulhxh,ah Z’Y/hh Tp, ap) [gh(xhyah) l (l’h,ah)]

:
pEllmax 3 lxhah 7N1h Th, ap) =1

(Zg)log XA/5 . ui Z(Iha an)

= #€lmax 2= iy w(xn, an)

Yy (T, a) [Zﬁz(ﬂfhaah) - 52(%,%)}

(i1)
< L ZXhA = XA/,
T

where (i) is by applying Corollary 128 for each (z, a;) pair and taking union bound,
and (77) is by Lemma 37. O
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E.3.6 Proof of Lemma 126

We begin by stating the following lemma, which roughly speaking relates the task of

bounding the regret to bounding the term <,u, Zt> + W log Zt.
1:1 (%1501

Lemma 129. For any policy i € Iax,

D(pllut ) = Dpllt) = (. 0') +

Proof. By definition of D and the conditional form update rule in Algorithm 10,

t+1) _

D(N”M D(pl| ")

Nlh Th, ap) uZ(ah!xw
—Z > = log i

h=1 zp,an Nl h (Tn, an Hp (an|7n)

_Zzﬂlh xmah log uZ(ahka)
) W (anla)

h=1 ap pi (T, an Hp,

*he t ¢
M1 h mh: ah xh N\t Wi (@), aj) t
= E My, (@, ap)l, — S log Zj, 11
h—1 ﬂlh h?ah) M. h+1(5’3h+1vah+1)
t

+ Z il IZ“ ar) log Z},
h=1 an /hh Ly Ah
= > = firn(y,, aj,)
t t t t t ) t
= Z fian (T, ap )y (2, ay) — Z Whtl, ¢ log Zj, 11

h=1 o1 M (Th1, @)

H

+Zu1h 1 xh 17% 1) log Z!

h
—1 :ulh(xlwah)

~ 1
=n </L, Et> + M*l—t IOng.

Additional notation We introduce the following notation for convenience through-

out the rest of this subsection. Define

B = nuyp(ah, ap).
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For simplicity, when there is no confusion, we write

hl
t .ttt t S t
fy, = i (an] o), Bhop = | | Feper s
h''=h

and
~ ~ 1 o Tt
=0 (2t al) = h* .
(e 0h) = o G ey T s )

Define the normalized log-partition function as

1 1 o
=) = log 24 = —-log (1=l + i exp |8 (Zhr = ) ])
h h

Note that this value can be seen as an H-variate function of the loss estimator

{ZZ} - To make this dependence more clear, for any (€ [0,00), we define
helH
the function {Z} ()}f:1 recursively by

log (1= uh + i exp | ~B4n] ) /8 it h=H,

Ez (Zh:H> =

log (1 — b+ pb exp [5,2 (Eh+1 (ZhH:H) — Zhﬂ) /Bi otherwise.

We also overload the notation by =} (E) = =f (EH H) and =Zf = =l (ﬁ), where
is the actual loss estimator. Note that, importantly, E’;L(ZhH) has a compositional
structure: Tt is a function of ), (h-th entry of the loss) and = 41 (which is itself a
function of Zh—i—l: u). This compositional structure is key to proving bounds on its

gradients and Hessians.

The rest of this subsection is organized as follows. In Section E.3.6, we bound the
gradients and Hessians of the function Z(-) in an entry-wise fashion, and then use
the Mean-Value Theorem to give a bound on =, = Z! (') (Lemma 133). We then
combine this result with Lemma 129 to prove the main lemma that bounds REGRET
(Section E.3.6).
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Bounding =!

Lemma 130. For { € [0,00)" and any h € [H], = (Z) < 0. Furthermore, =} (0) =
0.

Proof. We show the first claim by backward induction. For h = H,
=k (ZH) = log (1 — My + pg exp [—%ZHD /By <log (1 — piy + ) /By <0,

7t
because £}; > 0.

Assume = 4 (@ < 0, then for the previous step h,

=t (Zh:H> —log (1 — pb 4l exp [6}1 (EZH <Zh+1:H) — Zh)D /B

<log (1 — py, + ) /B, < 0.

The second claim follows as all inequalities become equalities at {=0. n

Lemma 131 (Bounds on first derivatives). For £ € [0,11% and any h € [H], the

derivatives are bounded by

aEz t t aE';l
0< —— <, and —pu, <-—="<0
=1 " " Oty
Furthermore,
852 - /”LZZ}Z/ if h/ Z h’a
Oy 1i=g 0 otherwise.

Proof. By chain rule and the compositional structure of the functions Zi (+), for any

h > h,

— — — W1l A —
o=t B o=l 0=}, B ( 0=k, ) =1,

o, O=L, a0, =T T

h''=h

For any h, the derivatives are bounded by

oz, mheww B (Sha (0) -0 e [0, 4]
0=} 41 _1 — pb + plh exp [5}; (524-1 (Z) - Zh)] o
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o=t B 11}, €xXp [ﬁﬁ (EZH <Z> - Zh)]

= —— € [~ 0]
O 1=+ pexp |8 (S (7) = 0]
The inequalities hold because the function f (z) = % =1- % is increas-
h h h h

ing on z € [0, 1], and exp [5,’; (E',;H (Z) — Zhﬂ € [0,1] by Lemma 130.

~ =t
Putting them together, at £ = 0, the derivative is just ZZJ o= — b if R > h
w | gt=0 '
If A" < h, since =} only depends on loss in the later layers, %@:0 =0. O

Lemma 132 (Bounds on second derivatives). For { € [0,1]% and any h € [H], if

h > h and b > h, the second-order derivatives are bounded by

g2=t min{h’,h"} min{h’,h"}
—h E t t t E t t t t
= ~ S Bh///uh:h/uh///_i_l:h// — /Bh///uh:h///l/l/h///_i_l;h/l/l/h///_i_l;h//-
agh/agh// W =h R =h
2=t
Otherwise —2—b— = ()
00, 9ty

Proof. By symmetry of the second derivatives and the right-hand side with respect

to b’ and A", it suffices to prove the claim for h” > b’ only.

By chain rule and the compositional structure of the functions = (-),

2=t 2=t =t =t 2—t
= = T = o=

— = ——— =t =
c%hféfhu 8:2,8&// c%h/ a:h/ c%h/@&w

If h" =N =h,
ya _ o 1—
o6 =B, exp [6}2 (J‘“ @ Ehﬂ {1 — b, + i exp [55 (Ezﬂ @ - Zh)] }2
< Bt

If " =h,h" > h,

pm 0o [ (G (0]
i (e [ (G ()R]
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If h < h' < h”, we can compute the Hessian by induction. Notice once h' > h we

have
=t —t —t
0=}, B 0=}, . o=y, 41

by OZh1 00y

Take second derivative,

2—t —t 2=t 2—t =t
8 —h _ a_‘h . 8 —h+1 a —h . a“h—l—l

Olwdly 04y 00,00y 0=, 00y Ol

J/

(@) (i4)

We first bound the second term,

(1 — i) By, exp [ﬂi (EZH @ - Zh)] =

(i5) = B 0=
(1 — My, + 1, €Xp [Bz (EZH @ - Zh)]) Obyr Ol

t t t t
< Opup - Bpi1:nr - Bpt:n

t ot t
< /Bh:uh:h’:uh-&—lzh”'

The first term can be simplified to

t t (=t 7 — _
Hp XD [/Bh <uh+1 (Z) Ehﬂ 0”11 <t Pl

i o [ B () - ) 0t =00

=t
St

Now plug in =k~ < i}, and backward induction from b’ to h gives:
h/ h// .
=
= t t t
== < E B e Hor 1.
aéh/agh// h!"=h

We can check this expression is also correct for the above special cases when b’ = h.

The second claim holds because = only depends on loss in the later layers. O
Lemma 133 (Bound on Z). We have

H H
_ o\ nH .
E1 < - <Mta€t> + 777 DD D i @waw) v (@ aw) Gy (2w, an)

h=1 \h'=hxp,a,
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Proof. We apply the Mean-value Theorem to function =} <Z) at { = 0,

—_

g2 =5 (@) = =1 (0) + <V€“15 O’€t>+§< 22t éfgt,’gt>7

where &' lies on the line segment between 0 and I3

By Lemma 130, the initial term is just zero. By Lemma 131, the first-order term
is just — <,ut,gt>.
It thus remains to bound the second-order term. Applying the entry-wise upper

bounds in Lemma 132 at h = 1 (which hold uniformly at all nonnegative loss values,

including &'), we have

(vl B ) =33 2 a
Sl 000y |-, "

h'=1

min{h,h'}

H
Z Z Bh”:ul h:uh”_H h’g Eh’

1h'=1 h"=1
H min{h,h'}

ﬁhé Z Z Bh//#huﬂh/ft,

= h'=1 h'"=1
(id) H min{h,h'}

< Hmax Z Z Bty 1.0 Ly

he[H
e]h’l h''=1

H
=H Z Z BZ"MZ"H:MEM

h'=1h"=1

H H _
=H Z Z 52//#2/%1:}1/”'

h// 1 h/ h//

—T]H Z (Z ,LLl h” .ZU;L/ ah’) Mh//+1 h’gh’>

h// 1 h//

—
INS
=

M= M=

h

|M::

H

(i40) Y ~
=nH Z D> i @ aw) g (@, aw) Gy (@n, an) |

h'=1 \h'=h" zyr,ap

where (7) is by Lemma 132; (77) follows from the bound

ZM hgt Zﬂlh 1_Th*h < H;

h=1 h=1 1l + YL,
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and (7i7) is because Z’,ﬁb,(xh/, ap) =0 at all (zp, ap) # (ak,, al,). O

Lemma 134. With probability at least 1 — §/3,

88

T T
. XAH?
DI <=3 (W )+l T+ A

=1 =1
where v 1= log(H/J).

Proof. Using Lemma 133 and take the summation with respect to ¢t € [T we have

[1]

T
t=1 t=1

T H H T
~ nH
- Z <Mt7 €t> + o Zl Z Zl Z iy h (@hss an) 1hvons (Ths ) gh/ (@hs, an).-

hi= ThtyAht
NS

-~

At
'_Ah,h/

(E.6)

Observe that the random variables Afhh, satisfy the following:

o A}, < XAy almost surely:

) (1 — 702/) 1 {xh/ — SEZI, Qpy = 0/1;1//}

*,h t
Ajw =D i @ns aw) s (Tn, an) = v
K1y (xh/, ah/) + Y (iUh/; ah/)

Zhr,Ghs

< 3 1o (T, ah’)ﬂhﬂ a (Tnry ) ) Xy A

— I

Y tans :“1 R (l’h/, ans) ¥
where (i) is by using Lemma 37 with the mixture of p* hand pt.

o E[A] ,[Fi—1] <1, where F,_, is the o-algebra containing all information after
iteration ¢ — 1:
t *,h t t (%)
E[A | Fe1] = Z pain (Tns ) Pt (T ane) Oy (Tnrs ane) < 1,
Thiy@ht

where (i) is by using Corollary 111 with the mixture policy of u*" and p'.

e The conditional variance E[(A}, ,,)*|F;-1] can be bounded as

E[(A} )| Fe-1]
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(1 - 7’2/) ]_ {.Th/

=

i

—~

h
Z </,L,1:h (‘Ih/7 ah/) /’Lz—l—l:hl (xhh ah/)

ThisAhy

2
N l‘h/ ap M Lhry Ap
= Z ( 1h ) hl hl( / /))> Mﬁ:h/ (Thry anr)

,ul :ht (xhh ah/) + '7#1 1Y (xhh Qpy

ThysQhy

< Z /hh(fch’ ah’)ﬂhﬂ ht (Thrs ) i) Xh’A’

v i (T, an) g

ThysQhy

2
— ot 4t
=Ty, Qpr = ah’}>

/“Ltl:h/ (‘Thh a’h/) + ’Y,LLTZ: ($h/, ah,)

where (i) follows from the fact that for any h, at most one of indicators is

non-zero, so the cross terms disappear and (i) is using Corollary 111 with the

mixture policy of " and pu'.

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to

get that, with probability at least 1 — ¢/3, for some fixed Ap s

following holds simultaneously for all h, h':

M X AT 2log(H/o
3y, < AT 2l

+T
Y )\h,h/

Y

Take A\, = v/ XA, we have

ZAhh/ < Xh/A . 210g(H/5) 1 oT.
Y

Plug into equation (E.6), we have

t=1 t=1

where ¢ := log(H/J) is a log factor.

Proof of main lemma

By Lemma 129, for any policy u' € I ax,

(D) = Dt at)) = (uf, ) + =,

I | =

271

S (O, ’}//Xh/A], the



Taking the summation w.r.t. ¢ € [T] and using Lemma 134, we have with probability

at least 1 — §/3, the following holds simultaneously over all u' € Il ay:

81}

AT

t=1 t=1

T
Y 5 nH?X Av
Z<u u,€>+nHT+—7 )

t=1

MH

(D" = D))

I~

Rerranging the terms we have

T

i 1 nH2X A,
& - *,€t>< max — (D(u'||u') = D(u'||p")) +nHT + ———
XZ<” pll) < mex — (D(utet) =Dl [l47) + 1 -
1 H2X A
< max ~D(ul[|ut) + pHT + =22
MTEHmaxn
<2088 g A

where the last inequality above follows by recalling that u! is taken to be the uniform
policy (uj (ap|xy) = 1/A for all (h,zy,as)) in Algorithm 10, and applying the bound
on the balanced dilated KL (Lemma 40). This proves Lemma 126.

E.4 Proofs for Section 6.3

E.4.1 Counterfactual regret decomposition

Define the immediate counterfactual regret at any z;, € X, h € [H] as

R (wn) = max 3 (uh(len) — (o), Lhlen, ) (E.7)
W Clon) =1
where L} (-,-) is the counterfactual loss function defined in (6.11):
H

Ly (wn, an) = G, (xn, an) + > > Haysne (T @ )l (s ap ).

W=h+1 (z}s,ap,1)ECys (xh,an)x A
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Lemma 135 (Counterfactual regret decomposition). We have RT < Zthl RT, where

Ry, = max - - - Z max Z R (),

a1€A ap_1€A
T1E€EX] p_1€C(TH_2,an_2) zp€C(Th_1,an_1)
imm,T’
= max E :ulz(h—l)(xh—laah—l)'%h (xh).
pEIlmax
T EX

Proof. The bound R < 27 T with the sum-max form expression for Y has
already implicitly appeared in the proof of [Zinkevich et al., 2007, Theorem 3|, albeit
with their slightly different formulation of extensive-form games (turn-based games
with reward only in the last round). For completeness, here we provide a proof under

our formulation.

We first show the bound with the p form expression for R}, which basically follows

by a performance decomposition argument. We have

= max Z<p Tﬁt

HTGHmax —
T H
_ T t Tt t
= nax E E <M1~h 1/~Lh-H_/~L1~th+1-H7€>
pT€llmax
=1 h=1
H
< max E <N1h 1Hhat — Mlhuh+1H7£>-
pp H Ellmax 37

[ J/

o T
=07

Note that each term PR} measures the performance difference between ,u} 1My and

Iu-ll-:hluz-‘rl:H:

T H H
T _
Ry = Trgl?x EShN#I;hqxut EahNMt('ll‘h) E:Th' ahNHT (zn) Zrh/
12 max =1 h=1 h/=1
T H H
@) E E E
= max Y B e Bancren | 2w | = Bapt e | 2w
o max W =h hW=h

(i)
= frax Z Z Nlh 1(Th-1, an-1) - <N§L(|$h) Mh( 1), Ly (2h, >
pnre maxt 1 fEheXh
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= max > o @non, an) - R ().
prElmax

Above, (i) follows as the rewards for the first h — 1 steps are the same for the two
expectations; (ii) follows by definition of the counterfactual loss function (cumulative
loss multiplied by the opponent and environment’s policy / transition probabilities,
as well as the max player’s own policy from step h onward). The claim (with the u
form expression) thus follows by renaming the dummy variable uf as y.

To verify that the second expression is equivalent to the first expression, it suffices
to notice that the max over puy.,_1 € Il,ax consists of separable optimization problems
over fuyy(-|xp) over all xp € A, B < h — 1, due to the perfect recall assumption

(different (2, ay) leads to disjoint subtrees). Therefore, we can rewrite the above as

W= 2 i (fEEAA) Z ZCEVEDS

T1EAX] z2€C(x1,a1)
%imm,T
max ph—1(@h—1]Tnr-1) h (zh).
Bh-1(-|zn—1)EA(A)
zp_1€C(TH_2,an_2) ap—1€A xR €C(Tp_1,an-1)

Further noticing (backward recursively) that each max over the action distribution is

achieved at a single action yields the claimed sum-max form expression. O

E.4.2 Proof of Theorem 44

We now prove our main theorem on the regret of the CFR algorithm.

By Lemma 135, we have R” < Zle KT where for any h € [H] we have

= max Z ,ul h—1) l'h 1, Ap— 1)%lmmT(xh)

ell
)2 max = Xh

max Z f:(h—1)(Th-1, ap-1) max <N2('|xh>_M;('|$h)7L§L(xh»')>

MEHmax oredy ML('WL)

M- 11+

(1 Clan) = ih Clan), Thlon, )

s

max E p:(h—1)(Th—1, Gp—1) Max
“enm‘“‘ b (lacn)
TRHEX) h t

1

~
::SRIhmm’T(mh)
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T
+ max Y pgnet)(Thet, an 1>Z<uz<-|xh>,Lz<xh,->—Lzm,-))

Henmax .Z’hEXh —1
T
+ max Y pirgiet)(Tho1, apr) max Z<Mh |wn), L (@n, ) — L (wn, )>
N’el_[maxa7 cx I'LL(Ix}L —1
hEAXR -
max Z s (h—1)(Th—1, G- DR (2)
,U«Enmax
TREX, y
‘=REGRET),
T ~
+ max > ul;(hq)(:vh_hah_ﬂZu}i(ah!xh)[Li(ash,ah)—LZ(:vh,ah)
HE (zh,an)EXR XA t=1
':B‘IrAsl

T
+ max Z prn (T, ap) Z [Lh (zh, ap) L}fl(xh,ah)}

pEIImax
(Th,an)EXp XA t=1

(& J/

::BIAS%

= REGRET), + BIAS}, + BIAS;.

Above, the simplification of the BIAS} part in (i) uses the fact that the inner max
over HL(‘iUh) and the outer max over ji;.(,—1) are separable and thus can be merged
into a single max over fiy.p.

We now state three lemmas that bound each term above. Their proofs are deferred

to Sections E.4.3-E.4.5.

Lemma 136 (Bound on BIAS}). For any sequence of opponents’ policies vt € F,_1,
using the estimator Ly, in (6.13), with probability 1 — §/10, we have

H
> BIAS, < 2VH3X ATt + HX,
h=1

where ¢ = log(10X/§).

Lemma 137 (Bound on BIAS}). For any sequence of opponents’ policies vt € F,_1,

using the estimator Ly, in (6.13), with probability 1 — /10, we have

H
Y BIAS; < 2VH3XAT1+ HX A,
h=1
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where © = log(10X A/J).

Lemma 138 (Bound on REGRET)). Choosing n = /X At/(H3T), we have that

with probability at least 1 — /10 (over the randomness within the loss estimator Lt ),

H
> REGRET), < 2VH3X AT\ + \/HX3A33/(4T),

h=1

where © = log(10X A/J).

Combining Lemma 136, 137, and 138, we obtain the following: Choosing n =
VX Au/(H3T), with probability at least 1 —30/10 > 1 — §, we have

H H H H
R <) W] <> REGRET, + » BIAS, + ) BIAS;
h=1 h=1 h=1 h=1

< 6VH3X AT+ 2HX Av+ \/HX3A33/(4T).

Additionally, recall the naive bound RT < HT on the regret (which follows as

(ut, ') € 0, H] for any p € Iyay, t € [T]), we get

R < min {6\/H3XATL Y 2HX A+ /HX3A33/4T, HT}

< HT - min {6\/HXAL/T X AT + /X333 (AHTS), 1}.

For T'> HX A, the min above is upper bounded by 9/ HX Ac/T. For T < HX A,
the min above is upper bounded by 1 < 9y/HX A./T. Therefore, we always have

RT < HT - 9\/HXAL/T = 9VH3X AT.

This is the desired result. OJ
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E.4.3 Proof of Lemma 136

Rewrite BIAS; as

BIAS, = max Y pa:(h—1)(Th—1, Gh—1)

cllmax *,h
! * (zh,an)EXL XA /'Ll:(h—l)(xh*h a’hfl)

> Kooy (@no ans )i (anlen) - | L (@nsan) = L (an,an)|

t=1
H1:(h—1) (Th-1,an-1)
= max
EHmdx
K = 1y (h— 1)(% 1 ah-1) o

A"

Mq

where the random variable ﬁfh is defined by

ap€A ’uh ah|xh>

Qap|T *
Z uh n|7n) 1Z<xh,ah)Lh($h7ah) (H h+1—ZTt(h> { t,(h) aZ(h)):(xh,ah)}]

(E.8)

Observe that the random variables th satisfy the following:

o A < H almost surely:

1 (ap|xn)
Apr <y B | - i (@n, an) L, (xn, an)
ap€A /"Lh ah|Ih

= > hlanlzn)iiy, o (@no1, an1) L (wn, an) < H.
ap€A

Above, the last bound follows from Lemma 110(a).

o E[A|F,_1] = 0, where F,_; is the o-algebra containing all information after

iteration t — 1;

e The conditional variance E[(A?)2|F,_1] can be bounded as
~ N2
E[(Af’i) \E_l}
ACIEORY o)
ap|x
<) 3 (o) (ron1- 320 ) 1 {60 = o} e

aneA \Mn (an|zn h=h
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ah|xh

| /\

||
MMM

ah|$h

ah|mh

ahlxh

(e aner) - i (an] )Pl (o)

2
1 (an|zn) y
( o | (s an) - Y ()

ah|mh

J

I/t
Z #1h V(@ho1, an1) - g (anln) Pl (2n).
ap€A

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to get
that, for any fixed A € (0,1/H], with probability at least 1 —§/10, the following holds

simultaneously for all (h, xp):

- L
ZAh<>\H2AZM1h1xh l,ahl a’h|xhp1h'rh)+)\’

ap€A

IIM’%

where ¢ :=1log(10X/6) is a log factor. Plugging this bound into (E.8) yields that, for
all € [H],

BIAS) = max 3 HE0-(Eon o) Sy,

h
Enmax
a ThE€EX T (h— 1)(% 1, Gh— 1) t=1

L

A

T
Tho1, G )
< max Z = (h D (@ho1, dhe 1)' AH?A Z uliZ—1($h71;ah 1) Z (anlzn)plp(zn) + <

EHm X
K B TpE€EXR ’ul (h 1)(xh 1, Ah— 1) ap€A

T

2 E

< \H"A- rerllqax E pan—1(Th—1, ap_1 M (an|zn) plh (zn)
pEllmax (2,0 EXp X A t=1

L H1:(h—1 (xh—l ah—l)

+ — - max *2 ) ’
eHmax ’

. 2hEX) Ml:(h—l)(mh—l’ an-1)

i 1 gy ggumif ’
WANH2AT + & 7 max Z (11.(n *1)h,uh Y(xn, an)
A pEtme (Th,an)€X, x A {15, (Th, ar)

W) \H2AT + § X,
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Above, (i) used the fact that 3, x4 H1:a-1(Tn-1, an—1) ik (ap|xn)pts, (z) = 1 for
any i € Moy and any ¢ € [T] (Lemma 110(a)), as well as the fact that p}"(as|z,) =

unif

i (ap| ) := 1/4; (ii) used the balancing property of u} (Lemma 37). Combining
the bounds for all h € [H]|, we get that with probability at least 1 — §/10,

u 1 3 X
) “BIAS; < AHPAT + =
h=1
Choosing

) = i X 1 <1
TNV AT H( T H

we obtain the bound

H
> BIAS, < 2VH3X ATt + HX1.
h=1

This is the desired result. O

E.4.4 Proof of Lemma 137

The proof strategy is similar to Lemma 136. We can rewrite BIAS} as

N

. €T 7a N .
BIAS = mx 30 MRS ST, o) [EiGan ) L)
P (apan) X x A tin(Thyan) =

T

— max Z Ml:h(xfwah) . ZAtLEh,ah’

Ellmax *,h
g (xh,an)EXE XA Nl;h(xh, an) —1

where the last equality used the definition of the loss estimator L (i, as) in (6.13)

and the random variable A7"“" is defined by

H
[(H —h+1- Z T;{'(h)> 1 {(Iﬁ{(h)a af{(h)) = (@, ah)} - M:?Z(ivh, an) Ly, (xn, an)
h'=h
(E.9)
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Observe that the random variables A" satisfy the following:
o A < H almost surely.
o E[A; (wnan) |Fi—1] = 0, where F;_; is the o-algebra containing all information after

iteration ¢ —1. This follows as the episode was sampled using "™ = plhut )

as well as the definition of Lt (z,a;) in (6.11).

e The conditional variance E[(A"*))2|F,_;] can be bounded as

o[ (o) ]

H 2
<E (H —h+1-Y 'r’Z’,(h)> 1 {(x‘;(h), ay ™) = (x, ah)} ‘]—“H

h'=h

< P (0, ) = (1,00

= H*ii (zn, an) - Pl (o).

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to get
that, for any fixed A € (0,1/H], with probability at least 1 —§/10, the following holds

simultaneously for all (h, xy, ap):

T T
ZA(xhah < )‘Hzlhh xhaah Zp e
t=1

t=1

where ¢ := log(10X A/¢) is a log factor. Plugging this bound into (E.9) yields that,
for all h € [H],

BIAS} = max Z Han(n: a1)

wEmax
T (@n,an)€Xn x A . h(xha Clh —

Axh »ah

IMH

H1:h(Zhy Gp , ¢ t
<max Y0 PRIy ) S pt )+
HELlmax (zh,ah)EXhXA M1:h<$h,ah) t=1
T
¢ L M1;h($h ah)
SAHE mpx 3 o) oam) + 3 mex 30 ey
(2,0 EX XA =1 (wn.an)e Xy x A H1:n Ty h

280



O \H2T + % XA,

Above, (i) used the fact that Z(zh,ah)exth p:n (T, ah)p’l’fh(xh) =1 for any pu € I

and any t € [T] (Lemma 110(a)), as well as the balancing property of u}} (Lemma 37).

Combining the bounds for all h € [H], we get that with probability at least 1 — /10,

H

XA
> BIAS, < T + = L
h=1

Choosing

N\ - i XA 1 <1
T (T H

we obtain the bound
H
Y BIAS; < 2VH3XAT1+ HX Aw.
h=1

This is the desired result.

E.4.5 Proof of Lemma 138

Recall that for all (h,zj), we have implemented Line 8 of Algorithm 11 as the

HEDGE algorithm (Algorithm 21) with learning rate nufjﬁ(mh,a) and loss vector
{EZ(mh,a)} M (cf. (6.12)). Therefore, applying Lemma 115, the standard regret
ac
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bound for HEDGE, we get for arbitrary a € A

T
log A . ~ 2
< B LSS it an) - b (anlan) (T (on, )
nul:h($h7 CL) t=1 ancA

@ logA

- *,h
npy, (@n, a)
2
(H —h41-30 rh,h)> { a;{(h)) = (th,ah)}

23S i)t anlan) - ( TR

t=1 apcA >
t,(h)
log A nH a {('rh( ) (@h, a )}
~ *h Z Z lu‘h a‘h’xh .
77:“1;};(‘7'7” t=1 aneA Hy. h(xhv an)
(E.10)

Above, (i) used the form of Lt in (6.13). Plugging this into the definition of REGRET},,

we have

REGRET),; = max Z 1 (h— 1)(xh 1, Qp— 1)%lmmT($h)

ell
’ max LIJhEXh

logA
M. h(wha a)

TR EXY
A e
vV

In

max E H1:(h—1) % 1, Qh— 1)

,LLEHmax

T
+ max Z H1:(h—1) (Th-1,an-1) Z Z n(an|Tn) - *,h
P /ublfh(xhaah>

ell
12 max hEXh an cA .
h

-~

II

We first calculate term I;,. We have

i) 1 1 (h— 1, Qp
r, @084 Z 1 *1)h(96h 1,ap—1)
An 1y, (@ns an)

MGH X
g M (@h,an)€X x A

_logA Z (M1:(h71),uznif)($h, an)

- Imax “h
77 Menmax (xh,ah)EXhX.A /,Ll’h(.rh, ah)
i) log A XpAlog A
@ logA o, XapAlogA
Ui n

282



where (i) follows by splitting the sum over a;, and using the fact that uij(mh, a) does
not depend on a; (ii) follows from the balancing property of pf{;Z (Lemma 37).

Next, we bound term II,. We have

11,
h h
nH? . {(fz( ) ap ™) (:L'h,ah)}
o X f1:(n—1)(Th—1, Ap—1) - Z Z pi(anlzn) - )
peEllmax zhEXh =1 ahEA Mlh($h7 ah)
77H2 H1:(h—1) (h— 1,ah1 t(h
=5 mex D S5 sl 1{ @™, ;™) = @n.an) }
BT max X, Nlh Zh; @ =1 a4
_A"h

(E.12)

The last equality above used the fact that u}f (5, as) does not depend on ay, (cf. (6.1)).

Observe that the random variables A;" satisfy the following:
e A" €10,1] almost surely;

E[A"[Fioa] = Yo, ea iy (@ns an)-ph(anlzn)pty (1), where Fy_y is the o-algebra

containing all information after iteration ¢t — 1;

e The conditional variance Var[A;"|F,_;] can be bounded as

Var| A7 | | <E[(B7)| 7]
=E| > (vh(anlen))’1 {(@ " a;") = (0. n) | \ft_ll
ap€A
= 3 (hlanden)” - P (@5, ™) = (on, )
ap€A
= > win@nan) - (i (anlen)” - Pl (en)-
ap€A

Therefore, we can apply Freedman’s inequality (Lemma 119) and a union bound to

obtain that, for any A € (0, 1], with probability at least 1 — §/10, the following holds
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simultaneously for all (h, z):

T T
ZZ? Z Z th Thy an) -y (an]h)DY, h(mh)
t=1 apeA
h 2 t L
Y S when ) (dhankon) o) + T
t=1 apeA

where ¢ := log(10X/0) is a log factor. Plugging this bound into (E.12) yields that,
for all h € [H],

H1:(h—1) SUh 1, Ah— 1
11, < - Ierhax E g E Mlh Ty, ap) Mh(ah|xh)p1h(xh>
pESmax 2R, M1h Th,a) t=1 apcA
2
+77H e p1:(h-1) (Tho1, an-1)
2 /—LEHmax *’h(m a)
T EX), H1:p\Ths

T
A D (e, an) - (4t (anlan))” - w0, (n) + i

t=1 CLhE.A

< —/— - max P (h—1) (Th-1, Gh-1)
(zh,an)EX XA

ah|$h p1 :h fb’h)

IIM’%

H2 d 2 t
+ 5 max > ey (enenan) A Y (uhanlen)” - pla(an)

,LLEHmax
(zh,ap)EXL XA t=1
H? Th_1,0
+17 —~max ,Ulhl h1, h-1)
2 )\ MEHmdx :E]—LEXh ,LLl h(l’h, )
(i1) 7]H2 d
< T(l —i-)\)'urer%ﬁnfx Z P (h—1) (Th—1, Gh—1) Z (an|xn) plh (n)
(zh,an)EXR XA t=1
nH? (Ml:(h—l)ﬂh )(fiuah)
Py a2 P s Q)
max (mh,ah)EXhX.A I[,Llh xh, a/h
) nH? ?

H
1+ NT ”T-i-XhA.

2 A

Above, (i) used again the fact that p}l(zh,a) = @30 (24, ap) for any a,a, € A; (ii)
used the fact that uf (an|zs) < 1; (iil) used the fact that

Z (bt 1) (T an ) (1) = 1

(wh,ah)e.)('h x A
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for any p € .y and any ¢ € [T] (Lemma 110(a)), as well as the balancing property
of 13" (Lemma 37).

Combining the bounds for I, and II;, we obtain that

H
Y REGRET), < Z (I, + 11)
h=

—_

H

XpAlog A 77H2 nH?*X,Au

1+ M7+ ———

Z{ g (LENTH 3
h=1
3 2
SXAL+"12{ T+”§ {)\ HT+XAL}

n

where we have redefined the log factor ¢ := log(10X A/J). Choosing A = 1, the above
can be upper bounded by

XA H2X A
L nHPT %

Further choosing nn = /X At/(H?3T), we obtain the bound

H
> REGRET), < 2VH3X AT+ \/HX3A33/(4T).

h=1

This is the desired result. O

E.4.6 Proof of Theorem 46

The proof is similar as Theorem 44, except for plugging in the regret bound for Regret
Matching instead of Hedge.
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First, by Lemma 135, we have RT < ZhH:1 KR! where for any h € [H] we have

max Z p1:(h—1) (Th—1, Q- 1)9““% ’T<$h)

ell
'u max IhGXh
N 7

TV
:=REGRET),

+ max E P (h—1)(Th—1, Gn-1)
y2 max
(zp,an)EXR XA

IIMH

ah|xh [Lh(xh,ah) EI;L(CL’h,(lh)

J/

-—BIA81

pEIly;
e (xh,(lh)EXh x A

T
+ max Z pan(xh, an Z [Lh T, ap) LZ(iUh,ah)}
t=1

::BIAS%

— REGRET), + BIAS} + BIAS?,
(E.13)

where the definition of %zmm’T(:ch), Lt (zp,ap) are at the beginning of Section E.4.1

and the definition of Eﬁl(xh, ay) are given by Algorithm 11.

To upper bound BIAS; and BIAS}, we use the same strategy as the proof of
Lemma 136 and 137 (whose proofs are independent of the regret minimizer), so that
we have the same bound as in Lemma 136 and 137: with probability at least 1 —4§/5,

we have

H H
> BIAS), < 2VHPX AT+ HX., Y BIAS; <2VHSXAT.+ HX Ar, (E.14)
h=1 h=1

where ¢ = log(10X A/¢).

To upper bound REGRET},, we use the same strategy as the proof of Lemma 138
as in Section E.4.5. First, applying the regret bound for Regret Matching (Lemma 116
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& Remark 117), we get (below a € A is arbitrary, and n > 0 is also arbitrary)

(it Clon) = mhClan), T (an )

TMﬂ
Il

i)N%ihmm’T(:vh) = max
L Clen

j )
. . T 2
<] i s an) - AR (anfen) (o, an) Bl
5 1'h , h 3 .15
77”;;;,(37% a) 2 ; ahzezl | )
t,(h)  t,(h)
1 H2 T 1 {(l’h ah ) = (xhaa'h)}
St T DY A () , ’
77#1;h($h7a) t=1 apcA 'UJLhCBh’&h)

where 1}, (ap|zn) = (uh (an]zn) + (1/A))/2 is a probability distribution over [A]. Com-
paring the right hand side of Eq. (E.15) with the right hand side of Eq. (E.10), we
can see that there is only one difference which is A - 7zt versus u!. Plugging this into

the definition of REGRET},, we have

REGRETh = urerll_la:n}ix ZX H1:(h—1) (.Th,l, ahil)%ihmm,T(xh)
ThpEAY

1
> H%IaX Z H1:(h—1) $h 1, Gh— 1)
,LLE max thXh ’]’/Nlh( )

. S/
-~

In

T 1 (It,(h) a (h)) = (zh,0a )}

H { h h hs Qh

+ max p:(h—1)(Th-1, Qp-1) - —— E E iy, (ann) - .
HGHmaX x;h t—1 GA Ml’h<xh, ah)

-~

I,

(E.16)
Comparing Eq. (E.16) with Eq. (E.11), we can see that I, in Eq. (E.16) is the same
as I, in Eq. (E.11), and II, in Eq. (E.16) and (E.11) only have one difference which

is also A - @}, versus ). Using the same argument as in the former proof, we have

XpA
_—

I, =

Furthermore, using the same argument as in the former proof, we can show that the

upper bound of 1T, in Eq. (E.16) is at most A times the upper bound of II,, in Eq.
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(E.11). This gives for any A € (0, 1), with probability at least 1 — §/10, we have

H?A H?
e

Combining the bounds for I, and II;, we obtain that

H H

XA pHPA_ nH?A XA
3 REGRET, < > (I +11,) < == + = 2r 4 1 N-HT + 228
h=1 h=1 n 2 2 A

Choosing A = 1 and choosing n = /X ¢/(H3T'), with probability at least 1 — 6/10,

we obtain the bound

H
> REGRET), < 2VH X ATt + /HX?A%3 [(4T). (E.17)
h=1

This bound is v/A times larger than the bound of Zthl REGRET), as in Lemma 138.

Combining Eq. (E.13), (E.14) and (E.17), we obtain the following: with proba-
bility at least 1 —30/10 > 1 — ¢, we have

H H H H
R <) W] <> REGRET, + » BIAS, + ) BIAS;
h=1 h=1 h=1 h=1

< 6VH3X AT+ 2HX Av + / HX3A43/(4T).

Additionally, recall the naive bound RT < HT on the regret (which follows as

(1t 08 € [0, H] for any 1€ Ty, £ € [T), we get

ST < min {6\/H3XA2T1, Y 2HX A+ /HX3AL3/AT, HT}

< HT - min {6\/HXA2L/T OX AT + /X3A(AHTS), 1}.

For T > H X A?., the min above is upper bounded by 9/H X A2, /T. For T' < HX A%,
the min above is upper bounded by 1 < 9y/H X A2./T. Therefore, we always have

RT < HT - 9\/HX A2, /T = 9VH3 X AT\
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This is the desired result. O

E.5 Proofs for Section 6.4

Regret and CCE Similar as how regret minimization in two-player zero-sum games
leads to an approximate Nash equilibrium (Proposition 31), in multi-player general-
sum games, regret minimization is known to lead to an approximate NFCCE. Let
{Wt}thl denote a sequence of joint policies (for all players) over T rounds. The regret

of the i-th player is defined by
T Tt
T ._ T g jrt
R; .—HTlaXZ(‘/i Vi )

T, EHZ' =1

where II; denotes the set of all possible policies for the ¢-th player.

Using online-to-batch conversion, it is a standard result that sub-linear regret for
all the players ensures that the average policy 7 is an approximate NFCCE |[Celli
et al., 2019a).

Proposition 139 (Regret-to-CCE conversion for multi-player general-sum games).
Let the average policy ™ be defined as playing a policy within {Wt}thl uniformly at

random, then we have

max;em] RT

CCEGap(7) = T .

We include a short justification for this standard result here for completeness.

Proof. By definition of 7, we have for any ¢ € [m] and 7rl-T e II; that

T = 1 T Tt
| AR 7 gt (AN A
e gy ()

Taking the max over mr] € II; and i € [m] on both sides yields the desired result. [
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E.5.1 Proof of Theorem 49

It is straightforward to see that the regret guarantees for Balanced OMD (Theorem 42)
and Balanced CFR (Theorem 44) also hold in multi-player general-sum games (e.g.
by modeling all other players as a single opponent). Therefore, the regret-to-CCE
conversion in Proposition 139 directly implies that, letting 7 denote the joint policy
of playing a uniformly sampled policy within {ﬂ't}thl, we have for Balanced OMD
that

CCEGap(7) < (’)(

i€[m]

. H3X,A.T
maX;em) W) - (9<\/H3 (maxXiAi> L/T>>

with probability at least 1 — §, where ¢ := log(3H Y ", X;A;/d) is a log factor.
Choosing T' > (5(H 3 (maxepn) X;4;)¢/e?) ensures that the right-hand side is at most
e. This shows part (a). A similar argument can be done for the Balanced CFR

algorithm to show part (b). O
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Appendix F

Proofs for Chapter 7

F.1 Proofs for Section 7.1.1 & 7.1.2

F.1.1 Incremental (OMD) form of Algorithm 13

t

We first present an incremental update of (A1 m!™!) from (A, m!) as in Algo-

rithm 24. We set the initial values of these variables as

)\igag Xgga, €XP {ng}, migagvh(ah]xh) X, exp{ Z Fg?hﬂ}, (F.1)

a:h+1€C(a:h,ah)

where for any zj, = x,, F} is recursively defined as
h

th = log Z exp{ Z thH}.

ap€A zh+1€C(a:hah)

Here F:,E)h has an intuitive meaning: it is the logarithm of the number of deter-
ministic sequence-form policies starting from x5, and can be computed by the above
sum-product formulation.

Algorithm 24 is computationally more efficient than Algorithm 13 when the loss
estimator is sparse. For example, with bandit feedback, we need to update the loss
matrix for at most H infoset-action pairs, and thus incur at most H?® operations

in Algorithm 24. On the contrary, Algorithm 13 requires O((X A)?) operations to
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Algorithm 24 EFCE-OMD (OMD form; equivalent FTRL form in Algorithm 13)

Require: Learning rate 7.
1: Initialize A} Ja,0 and mz a alan|zy), for all (g,z,4, aq, h, zp, ap) with g < h using
Eq. (F.1).
2: fort=1,2,...,7T do
3:  Compute ¢' = ¢(A\',m') where ¢ is in Eq. (7.7).

4:  Compute the policy p!, which is a solution of the fixed point equation p = ¢'u.

Receive loss 0" = {0} (zh, an) } 2y ,an)cxxa € RXA.
Compute matrix loss M! = ¢¢(ut) " € RXAXXA.
41

For each z4a, € X x A, from the reverse order of x;, compute m,’, , (ax|zp)
and F!

Tgag,Th

m;ﬁig,h(ah‘xh) XKay, migag,h(ah|xh) exXp { Méhah,mgag + Z F:;gag,thrl }7

Thiyt EC(xh,ah)

It 2 : ¢ 2 : ot
xgag,xh IOg m ah"xh) exp { - nM:(:hah,xgag + Fxgag,a:h_H }7

ap€A p1€C(Th,an)

8  Compute A7} as

)\?;;q Xaryay )\igag exp{ — (I — Eryya,, M') + f;gag’wg}.

update the policy in each iteration.

We now prove that Algorithm 24 and Algorithm 13 are actually equivalent.

Lemma 140. Given the same sequence of M*, Algorithm 13 and Algorithm 24 outputs
the same X' and m' and thus the same ¢'.

=3, Fs Then

Proof. We only need to prove for any z,a,,x, and ¢, F! i

Tgag,Th
At and m! will be the same in Algorithm 13 and Algorithm 24.

We prove the above claim by induction. For the base case, the claim clearly holds
if h=H+ 1 ort =1 by definition. Assume this holds at ¢ — 1 and h + 1, then at the
h-th step in Algorithm 24,

ot _ 2 : t t } : t
Fa:gag,xh - IOg mxgag,h(ah|xh) exp { - nMxhah Tgag + Fmgag,zh+1}

ap€A xp+1€C(Th,an)

292



= log Z exp { —-n Z Mﬂﬁsh% Tgag + Z Fégag’thrl}

an€A zp11€C(Th,an)
t—1
R SECTEE) SIS SRS,
ap€EA s=1 xh+1€C(a:h,ah)
t t—1
_Fzgag Ty Fmgag,xh‘
Thus F; agan = 22:1 ﬁxga z,- We completes the proof by noticing at H + 1 step,
t _ It —
FxgangH - F$gagva+1 = 0. U

F.1.2 Proof of Lemma 50

By Line 6 of Algorithm 9, we have

S — Py -oxp{—n(op’, )} py-exp{—n{o, M")}
¢ Yyt exp{=n{ept 0}y X, - exp{—n(¢, MY}

(F.2)

Repeating this update and using the uniform initialization, we have

pt+1: eXp{—n<¢,Zi:1Ms>} .
P Yy exp{—n(¢, YL M#)}

As a result, we have

_Z¢exp{ e e MY A
¢’ = Z ¢¢ eXp{ (6, Zt 1M5>} =—VF <77;M> (F.3)

This proves the lemma. ]

F.1.3 Proof of Lemma 51

For any z;, = x4, we define F, ., ., (M) by

Fxgagvxh(M) = log Z eXp(_<mxgage;‘rgag’ M>)

ngag vah

Note that for any ¢ € ®(, there exists a unique (g, 4, ag, My,q,) € [H] x X X A X
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V¥ such that ¢ = ¢g,4 o~ Magay - As a consequence, we have

FEE(M) = log Y exp(—(¢, M))

EFCE
IS

= log Z Z eXp(_<¢zgag—>mxgag7M>)

gvl'g 7‘19 ngag EVIQ

:lOg Z Z exp(—(l - Eixgag + mxgage;"rgag’ M>)

g7$g 90'9 ng ag EVzg

= log > exp{ (I = Brypays M) + Frya, (M)},

9,Zg,0g

It remains to evaluate Fmg%xh(M ) recurrently, which is handled by the structure

of V*r as follows:

Fzgag,mh (M)

= log Z exp(—(mxgage;gag,]\/ﬁ)

Mzgag EVTh

=log Z exp{ — My ap wgay + Z Z exp(—(mxgage;rgag, M>)}

apcA Th41€C(THAR) Moy, | qay, q EVIIHT
= IOg E €exXp { - Mxhah,:rgag + E Fxgagazh+1 (M)}
an€A Tp+1€C(THan)

This proves Eq. (7.3) and (7.4).

Calculating the gradient, we have

. VFEFCE<M)
Zg,azg,ag exp { - <I - Eil’gag? M> + ngag:xg (M)} [I - Eil’gag a VFIgagvxh(M)]
Zg,xg,ag exXp { - <I - Eiwgag’ M> + Fzgag@g(M)}

= Y gy I = Eragay — VEFayaya, (M)]. (F.4)

9,Lg,0g

It remains to compute VF, (M). By the recurrent formula, we have

gQg,Th

- VFacgag,a:h (M)
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T
ZahEA exXp { - Mxhahvmgag + th+1€c(zhah) Fxgagvmh+l (M)} [ewhahexgag - Z:ph+1€C(xhah) V

F

TgQg,Th+1

(M)]

ZahGA exp { - Mxhah@gay + th+1€6’(mhah) Fxgagvfﬂh-&—l (M)}

-
= Z mg;gag,h((lh|l'h) [eihahewgag + Z (_VFxgag,xh+1)(M)] .
an€A zh+1€C(TRan)
This gives a recursion formula for —VFxgag,xh(]\/[ ). Solving this recursion formula, we
get
_VFa:gag,xh(M) - mxgageT

Tglg?

Plugging this into Eq. (F.4) completes the proof. O

F.1.4 Runtime of Algorithm 13

Here we explain how Lemma 51 and its execution in Algorithm 13 is an O(X?2A?) time
(in floating-point operations) efficient implementation of —VF T (M) for any matrix
M € RXAxXA

First, the function value F'7"(M) can be recursively evaluated using (7.3) & (7.4),
where we first evaluate (7.4) for any z,a, € X x A recursively in a bottom-up fashion
over {xy, : xp = x4} (i.e. the subtree rooted at ;) up until =), = z,, and then plug
in the resulting values of F, ,, ., (M) into (7.3) to obtain F"(M). This process costs
O(X A) operations for each z,a,, so in total costs O(X?A?) operations. Second, (7.5)-
(7.7) show that the gradient can be obtained without much extra cost: By (7.7),
—VFT (M) is determined by the parameters (\,m), which then by (7.5) & (7.6) are
exactly the ratios of the recursive log-sum-exps which we already evaluated in the
previous step, and thus can be directly yielded (with cost of the same-order) while

evaluating F7"(M). So the total runtime of the recursive computations in Lemma 51

(i.e. Algorithm 13) is O(X2A?).

F.1.5 Proof of Lemma 53

We check solving optimization problem (7.13) will result in exactly the same form of

Algorithm 13. The OMD form (7.14) is similar.
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Using the definition of HEFE(X,m), the objective function in (7.13) can be written

as

t

¢
H(\) + Z )‘xgag n{l — Eyriyay, Z M?) + 77<mxgaga Z Mfzgag> + H,, (m:cgag)

g,Tgag s=1 s=1

First fix \. and consider m,,,,, which is just to minimize 7(m;,q,, 2221 fogag> +

ng (mxgag ) .

This is similar to form studied in Appendix B of Kozuno et al. [2021]| (or see

Lemma 157 for a full proof), which implies that, the optimum is achieved at

t

it w(anlen) oa, oD { D0 [ = My ae ¥ D Pyl b

s=1 Th41€C(Th,an)

where

t

Flrrn =108 3 ep {3 [0+ D Fumn |

ap€A s=1 $h+1ec(xh7ah)

Plug in the optimal m, ., , the object now becomes

t
HO) + Y Avgay [n(f ~ Broyags p M) — Figag,xg] :

9,Tgag s=1

This is a standard KL-regularized linear optimization problem on simplex. The

optimum is achieved at

t
)\tx—"g_(]ig chgag exp { B /rl<[ - Etﬁgagﬂ Z Ms> + Fégag,wg}'

s=1

This gives the update of X1 and m!*™' as in Algorithm 13. This completes the

proof. O
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F.2 Proofs for Section 7.1.3

F.2.1 Proof of Theorem 54

Using regret bound of ®-Hedge algorithm (Lemma 118), we get

] log | PEFCE T
Reg™(T) < ‘ | nz Z P (o 1))

[\ |

(4) log |q)EFCE|

<

l\Dld

T
10g cI)EFCE T]H2T
£33 3 s = L

O—c

Here, (i) uses (¢u', ¢*) € [0, H]. Note that 7 := U, , . U,escyro {Pryap oo } has
cardinality upper bounded by |®EFCE| < X A+ by Lemma 114. Substitute this

into the regret bound, we have

T 1-+1 2 2
log(X A )+nHT<2WWu+nHT

Reg™(T) <

where ¢ = log(X A) is a log-term. Choosing n = 2/||I||1¢/(H2T) gives Reg"(T) <
H?2||T1||1¢T", which completes the proof. O

F.2.2 Proof of Theorem 55

For the loss estimator ¢, we have the following lemma (see Lemma 3 in Kozuno et al.

[2021]):

Lemma 141. Let § € (0,1) and v € (0,00). Fiz h € [H|, and let a(xp,ap) € [0,27]
be some constant for each (xy,ap) € Xy x A. Then with probability at least 1 —§, we

have

i 2 a(mh’ah)<€~"ﬁ1(xh’ah) - %(%,ah)) < 1og%.

t=1 zp€Xp,ap€A
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Proof of Theorem 55. We have

T
Tr _ t gt gt
Reg"(T') = o, 2 (W' =o', 05
T T T
A t t t t t t
<> (uht =0+ max ) (¢!, 0 =€)+ max ) (i - o' 0.
\t:1 J N t=1 V) N t=1 ,
BIjArSl BKSg RE(?‘E{ET

We use the following three lemmas to bound the terms above respectively. In

these lemmas, ¢ = log(3X A/0) is a log factor.

Lemma 142 (Bound on BIAS;). With probability at least 1 — /3, we have

BIAS, < HV2T:.+~vXAT.

Lemma 143 (Bound on BIAS,). With probability at least 1 — §/3, we have

Lemma 144 (Bound on REGRET). With probability at least 1 — /3, we have

REGRET < log |®5™F|/n + nHX AT +nHX Av/7..

Lemma 142, 143, and 144 bound bias terms and regret term respectively. Using

these lemmas, we have with probability at least 1 — ¢,
_ log|@fFes]

RegTr T) <
(T) p

NHXAT +nHXAv/y + |0||10/y + HV2Tt + v X AT.

Because |B5TE| < X AT+ we further have

_ 2

Reg™(T) < +nHXAT + nHX Av/y + |T|ve/y + HV2T 1 4+ yX AT.
n
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Choosing v = \/|[I[J1¢/(X AT) and n = /[[I1|[1¢/(HX AT) gives

Reg™(T) < 5\/HXA||,Tt + XAWH + HV2T.
< O(VHXA|O|,e- T + XAWH),

where we uses ||[II||; > H. Notice that there is a “trivial” bound Reg"(T') < HT.
For T > XAu/||T]|;, we have XAiwW/H < /HXA|T][;¢- T, which gives Reg' <
O(WVHXA|I||ye - T); For T < X Au/||11||;, we have HT < \/HXA||];¢ - T, which
gives Reg"" < HT < O(\/HXA|||;. - T). Therefore, we always have

Reg"" < O(VHXA|||1-T).

This completes the proof. n
Here, we give the proofs of the lemmas we used above.

Proof of Lemma 142. We further decompose BIAS; to two terms by

Brasy = 30 (i =) = 3 (o~ {F1R )+ 30 (i {7} - 7).

t=1 =1
> NS >
vV v

(4) (B)

To bound (A), plug in the definition of loss estimator,

- Zi > thnln, an) {ﬁg(:ch,ah) - “5:'1(“"17%)52(«’%@;1)}

1 (o, an) + v

B T H o )
E ZZ Z s ) 1) |::ut1;h<xh7ah)+’y:|
SoSTN l(an,an) < AXAT,

t=1 h=1 zp,ap

AN
)

where the last inequality is by ¢} (z,as) € [0, 1].
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To bound (B), first notice

<Ht,l7t> - Z Z 115 (h, an) L, 21:( (wnan)} (1 =73)

Th,Q

h=1 zp,ap hs h> +P>/

< E E {:ch—:ch,ah—ah} E =
h=1 xp,ap

Then by Azuma-Hoeffding, with probability at least 1 — ¢/3, we have
T
3 <,,L E {et |t 1} > < H+/2Tlog(3/3) < HV2T.
t=1

Combining the bounds for (A) and (B) gives the desired result. O

Proof of Lemma 143. We have with probability at least 1 — §/3,

T

BIAS; = max <¢pf/,ﬁ — €t>

HEFCE
e t=1

:¢£%%§EZZ > (o inlan, an) |G (e, an) = Ch(wn, an)]

=1 h=1 zp,ap
T

Z 925/1 1:h xhaah [ i
= E f 3 - g ) :|
qﬁg}b%g& el o t=1 ! " ah (xh ah)
(@) log (3X A/6)
S f IE%%E%E E g Qb,ul 1:h Ih,(lh)

h= 1$h ap
S HH”lL/77

where (i) is by applying Lemma 141 for each (xp,a;) pair. To be more specific, we

choose a(z}, ay) = y1{(x},a},) = (zn,an)}, then Lemma 141 yields that

T
~ 3XA
Z’y [E';l(xh, ap) — O (zp,an)| < log 5

t=1

with probability at least 1 —§/(3X A). Then taking union bound gives the inequality
in (4). 0
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Proof of Lemma 144. Note that by Lemma 118, we have

log\@Trl L a bt T2
REGRET < 52 > ph((eut, 1)

=1 d)eq)Tr

To bound the second term, we have

o> et )

t=1 ¢€¢Tr

Yy y y el

(xh, an) +
h'>h t=1 xp,ap (:Ch/ ah/)Ech/(CEh ap, ¢E<I>T" Iul th\"ho h v

S35 5D D DRI piL LT S

B xh) ah)
h2>h t=1 zp,an (x),7,a;,)E€Cys (xh,an) (j)G(DT"

HYYY Y A

W>h t=1 xp,ap (x)r,a5)ECL