

Near-Optimal Learning in Sequential Games

By

Tiancheng Yu

B.E., Tsinghua University (2018)

M.S. Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer

Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Tiancheng Yu. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an open-

access license.

Authored by: Tiancheng Yu

 Department of Electrical Engineering and Computer Science

 May 19, 2023

Certified by: Suvrit Sra

Esther and Harold E. Edgerton Career Development Associate

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by: Leslie A. Kolodziejski

 Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

Near-Optimal Learning in Sequential Games

by

Tiancheng Yu

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Decision making is ubiquitous, and some problems become particularly challenging
due to their sequential nature, where later decisions depend on earlier ones. While
humans have been attempting to solve sequential decision making problems for a
long time, modern computational and machine learning techniques are needed to find
the optimal decision rule. One popular approach is the reinforcement learning (RL)
perspective, in which an agent learns the optimal decision rule by receiving rewards
based on its actions.

In the presence of multiple learning agents, sequential decision making problems
become sequential games. In this setting, the learning objective shifts from finding
an optimal decision rule to finding a Nash equilibrium, where none of the agents can
increase their reward by unilaterally switching to another decision rule. To handle
both the sequential nature of the problem and the presence of the other learning
agents, multi-agent RL tasks require even more data than supervised learning and
single-agent RL tasks. Consequently, sample efficiency becomes a critical concern for
the success of multi-agent RL.

In this thesis, I study argubly the most fundamental problems of learning in
sequential games:

1. (Lower bound) How many samples are necessary to find a Nash equilibrium
in a sequential game, no matter what learning algorithm is used?

2. (Upper bound) How to design (computationally) efficient learning algorithms
with sharp sample complexity guarantees?

When the upper and lower bounds match each other, (minimax) optimal learning
is achieved. It turns out utilizing structures of sequential games is the key towards
optimal learning. In this thesis, we investigate near-optimal learning in two types of
sequential games:

1. (Markov games) All the agents can observe the underlying states (Chapter 2)
and,

2. (Extensive-form games) Different agents can have different observations given
the same state (Chapter 5).

To achieve near-optimal learning, a series of novel algorithmic idea and analytical
tools will be introduced, such as

1. (Adaptive uncertainty quantification) Sharp uncertainty quantification of
the value function estimations to design near-optimal exploration bonus (Chap-
ter 3),

2. (Certified policy) A non-uniform and step-wise reweighting of historical poli-
cies to produce approximate Nash equilibrium policies (Chapter 4),

3. (Balanced exploration) Achieing optimal exploration of a game tree based
on the size of the subtrees (Chapter 6),

4. (Log-partition function reformulation) Re-interpreting classical algorithms
as computing gradients of a log-partition function (Chapter 7),

which may be of independent interest.

Thesis Supervisor: Suvrit Sra
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Constantinos Daskalakis
Title: Avanessians Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Chi Jin
Title: Assistant Professor of Electrical and Computer Engineering
Princeton University

Acknowledgments

First of all, I’m deeply grateful to be supported by the following funding sources during

my PhD years: EECS Jae S. Lim Fellowship, NSF BIGDATA grant (6937242), NSF

CAREER grant (6940395) and NSF CCF-2112665 (TILOS AI Research Institute).

I would like to take this opportunity to express my deep gratitude to my commit-

tee members for their invaluable support and guidance throughout the thesis process.

Their constructive feedback and insightful comments have been instrumental in shap-

ing the structure of this thesis, and I am truly grateful for their time and effort.

I feel incredibly fortunate to have had Suvrit as my advisor. From the moment I

joined his group meeting during the visit days five years ago, I knew that I had found

the perfect academic home. Although we no longer have free breakfast during group

meetings, the atmosphere remains as inspiring as ever. Suvrit has created a culture

where everyone is both humble and ambitious, and I have greatly benefited from the

diverse perspectives of my fellow group members. Through countless discussions and

collaborations, I have grown as a researcher and as a person. I am grateful for the

many ways in which these interactions have shaped my research interests and even

my life.

Throughout my PhD journey, my appreciation for Suvrit has grown monotonically.

He has been a generous and supportive mentor from the very beginning, providing

me with opportunities that have shaped my research trajectory. For example, Suvrit

supported my visit to Princeton, where I had the chance to work with Chi and later

meet other brilliant co-authors from MSR and the west coast. Beyond his support,

I have been impressed by Suvrit’s sense of humor and his unwavering perseverance

in the face of challenges. As I reflect on our time together, I realize that Suvrit is

exactly the kind of person I aspire to become in the future.

Chi has been my most important collaborator, and I am deeply grateful for his

influence on my research trajectory. It was through his paper [Jin et al., 2018] that

I first became interested in RL theory, and it was his suggestion to explore game

theory that truly sparked my fascination with this research topic. Although I was

initially skeptical about the plan, I soon realized that it was one of the best decisions

I have ever made. Through our collaboration, I have gained a deeper understanding

of the field and developed new skills that have been instrumental in my research.

I am grateful for Chi’s guidance and friendship, and I look forward to continued

collaborations in the future.

I feel incredibly fortunate that Costis agreed to join my committee, and I am

grateful for his insights and comments on my research. It has been a fantastic oppor-

tunity to learn from such an accomplished researcher, and I appreciate his willingness

to share his expertise with me.

Half of my PhD journey has taken place during the pandemic, which has posed

unique challenges. However, I am lucky to have had the support of superb collabora-

tors who have been instrumental in helping me navigate this difficult time. Some of

the most important lessons I have learned during my PhD journey have come from

these brilliant minds. Beyond their academic contributions, these individuals are also

fantastic people who have made our conversations engaging and enlightening. Among

my collaborators, there are a few who have been particularly important to me, and I

would like to acknowledge them separately for their contributions to my research and

personal growth.

I am grateful to have had Prof. Yuan Shen as my undergraduate thesis supervisor.

As one of the first few undergraduate students to work in his lab, I was privileged

to receive a great deal of guidance from him. He played an instrumental role in

helping me to find my passion for research topics, and his mentorship was invaluable

in teaching me how to write and present my research. His famous quote is

You spend 1/3 time on research, 1/3 on writing and 1/3 on presenting.

Prof. Yanjun Han has been a role model for me since my first year in college. His

most important inspiration to me is the idea that studying in an engineering school

does not restrict one from becoming a skilled theoretician or mathematician. His

ability to bridge the gap between intuition and implementation has always impressed

me, and his work has shown me the value of interdisciplinary research.

During my visit to Stanford in 2017 summer, Prof. Jiantao Jiao served as my

mentor and introduced me to the fascinating world of high-dimensional statistics.

Through our collaboration, I discovered how elegant tools from different disciplines

can be applied to problems that initially appear unrelated. Working with Jiantao

was an eye-opening experience that taught me the importance of interdisciplinary

research and showed me how to approach complex problems with both creativity and

rigor.

I first met Dr. Yu Bai during my visit to Princeton in 2019, and little did I know

that our collaboration would extend far beyond that initial meeting. Some of the

most brilliant ideas I have had during my PhD journey were the result of our late-

night discussions. I feel previledged to have had the opportunity to work with such a

talented and dedicated collaborator.

I had the pleasure of collaborating with Qinghua Liu, a fellow PhD student, since

our research project on reward-free learning in Markov games in 2020. Although we

had known each other since our undergraduate days, this was the first time we had

the opportunity to work together on a project. I was impressed by Qinghua’s talent

for understanding complicated and unstructured concepts and producing simple and

elegant results. He has become my most reliable collaborator, and every joint project

with him has been an unforgettable experience. I am confident that Qinghua will

become a superstar in whatever area he chooses to work on in the future.

Brabeeba is the most inspiring and thought-provoking person I have ever met.

His eagerness to learn, explore, and understand is infectious, and he is more than

generous to share his ideas and energy. I consider myself fortunate to have such a

friend and mentor who embodies many of the most valuable human qualities that I

cherish.

Although I only collaborated with Chi-Ning Chou on one paper, we’ve recycled it

more times than all of my other papers combined. Chi-Ning’s unwavering passion and

confidence in the project is the main reason we haven’t given up yet, and he’s always

willing to lead revisions and brainstorm new ideas for potential venues. It’s been

amazing to see how the original draft has evolved over the years through this endeavor.

Chi-Ning’s attitude towards research and life is truly inspiring, as he remains unfazed

by setbacks and uncertainties. He’s shown me the ideal approach to facing challenges

and pursuing one’s passions.

Yi Tian and Prof. Jingzhao Zhang have been invaluable colleagues in my PhD

journey. Being in the same office with them has allowed us to develop a close working

relationship, and they have become my go-to collaborators whenever I need to discuss

anything related to control or optimization. What I admire most about them is their

research style of deriving important theoretical questions from empirical experiments,

which is a less popular approach in the theory community.

I also want to acknowledge my collaboration with Prof. Kaiqing Zhang and

Mingyang Liu, which unfortunately started relatively late in my PhD. I regret not

having started working with them earlier. The most impressive thing about Kaiqing

is his ability to cover a vast amount of literature, spanning different domains and

subjects. It’s amazing to see how he can quickly grasp the key insights of a paper and

connect them to other works in seemingly unrelated fields. His breadth of knowledge

has been invaluable to our collaborations, and I feel very fortunate to have had the

opportunity to work with him.

In addition to academic research, I had the opportunity to do two internships

during my PhD which were incredibly helpful in broadening my horizons on the

industry side. I would like to express my gratitude to my brilliant mentors, Hongyi

Zhang at Bytedance and Yifei Ma at AWS AI, for their patient guidance in helping

a newbie like me navigate online auction and recommender systems. I would also

like to thank my colleagues Dr. Fei Feng and Dr. Ge Liu for introducing me to the

AWS AI personalized team. Their support and encouragement helped make these

experiences both rewarding and unforgettable.

In addition to my co-authors, I would also like to express my appreciation to the

many individuals who have supported me throughout my academic journey. Their

encouragement, advice, and assistance have been invaluable. Their contributions have

made a significant difference, and I am honored to have had them in my corner.

When I first came to MIT, I was fortunate to receive many helpful suggestions

from more senior PhDs, such as Chengtao Li, Matthew Staib, Lijie Chen, Xijia Zheng

and Zhi Xu. I also gained a lot of inspiration from my cohorts, especially Yunzong

Xu, Renbo Zhao, Xiyu Zhai, Liangyuan Na, Jason Liang, Yichen Yang, and Ji Lin.

Additionally, I received a great deal of support from the MITCSSA community, of

which I am so happy to have become a part. I would like to express my gratitude to

all of my friends there, especially Zhuoran Han, Hongyin Luo, Lei Xu, Zhichu Ren,

and Xinyi Gu.

During my five years at MIT, I had the privilege of living in Sidney Pacific grad-

uate residence hall. Throughout my stay, I was fortunate to have three wonderful

roommates, Baichuan Mo, Pingchuan Ma, and Yung-Sung Chuang, who have be-

come an integral part of my life. I am grateful for their company and support, and

it’s saddening to bid them farewell as I move on to the next chapter of my life.

Finally, I want to express my deepest appreciation to my family. None of them

have any experience in research, but they have supported my PhD journey in every

way possible. Due to external factors beyond our control, we have been unable to see

each other for nearly five years. However, despite the distance, I have found myself

growing closer to them than ever before. I have come to appreciate their wisdom

and mindset, and have been surprised to discover how similar I have become to my

parents. Their unwavering support and love have been a constant source of strength

and motivation throughout my PhD journey.

12

Contents

1 Introduction 23

1.1 Overview of results . 27

1.1.1 Near-optimal learning in Markov games 28

1.1.2 Near-optimal learning in extensive-form games 30

1.1.3 Beyond optimal learning in sequential games 32

1.2 Related work . 34

1.2.1 Learning in Markov games . 34

1.2.2 Learning in extensive-form games 38

1.3 Open problems and future work . 40

1.3.1 Remaining issues in optimal learning in sequential games . . . 40

1.3.2 Beyond tabular sequential games 42

1.3.3 Beyond Nash equilibrium: learning to cooperate 45

2 Markov Games: Preliminaries 47

2.1 Game formulation . 48

2.1.1 Policy . 49

2.1.2 Value . 50

2.1.3 Best response and strategy modification 51

2.2 Equilibria . 52

2.3 Two-player Zero-sum games . 53

2.3.1 Minimiax theorem . 54

2.3.2 Bellman optimality equations 56

2.4 Learning objectives . 57

13

2.5 Hardness results . 58

2.5.1 Computational hardness . 58

2.5.2 Statistical hardness in unknown games 61

3 Markov Games: Model-based Learning 65

3.1 Player coordination . 66

3.2 Optimistic Nash Value Iteration . 68

3.2.1 Algorithm description . 68

3.2.2 Overview of techniques . 69

3.2.3 Theoretical guarantees . 73

3.3 Reward-free Learning . 75

3.3.1 Algorithm description . 76

3.3.2 Theoretical guarantees . 77

3.4 Multi-player general-sum games . 79

3.4.1 Multiplayer optimistic Nash value iteration 79

3.4.2 Multiplayer reward-free learning 81

4 Markov Games: Model-free Learning 83

4.1 V-Learning Algorithm . 85

4.1.1 Training algorithm . 85

4.1.2 Output policy . 87

4.1.3 Single-agent guarantees . 88

4.2 Two-player Zero-sum Markov Games 90

4.2.1 Finding Nash equilibria . 90

4.3 Multiplayer General-sum Markov Games 91

4.3.1 Finding coarse correlated equilibria 92

4.3.2 Finding correlated equilibria 93

4.4 Monotonic V-Learning . 95

4.5 Online learning in unknown Markov Games 97

4.5.1 The V-ol algorithm . 97

4.5.2 Multi-player general-sum games 101

14

5 Extensive-form Games: Prelimiaries 105

5.1 Game Formulation . 106

5.2 Regret and Nash Equilibrium . 109

5.3 Φ-regret minimization and the Φ-hedge algorithm 112

5.4 Extensive-form trigger regret and EFCE 113

5.4.1 Tree-Form Adversarial Markov Decision Processes 114

5.4.2 Extensive-form trigger regret 116

5.4.3 From trigger regret to Extensive-Form Correlated Equilibrium

(EFCE) . 117

5.5 Lower bounds . 118

6 Extensive-form Games: 2p0s case 119

6.1 Balanced exploration policy . 120

6.2 Online Mirror Descent . 123

6.2.1 Balanced dilated KL . 123

6.2.2 Algorithm and theoretical guarantee 125

6.3 Counterfactual Regret Minimization 127

6.3.1 Algorithm description . 128

6.3.2 Theoretical guarantee . 129

6.3.3 Balanced CFR with regret matching 132

6.4 Extension to multi-player games . 134

7 Extensive-form Games: general case 137

7.1 Efficient Φ-Hedge for Trigger Regret Minimization 139

7.1.1 Efficient implementation of ΦTr-Hedge algorithm 139

7.1.2 Equivalence to FTRL and OMD 141

7.1.3 Regret bound under full feedback and bandit feedback 143

7.2 Balanced EFCE-OMD for bandit feedback 144

7.2.1 Algorithms . 146

7.2.2 Theoretical guarantees . 147

7.2.3 Equivalence to FTRL and OMD 149

15

7.3 Equivalence with existing algorithms 150

7.3.1 Equivalence of OMD and Vertex MWU 151

7.3.2 Equivalence between OMD and “Kernelized MWU” 152

A Proofs for Chapter 2 155

A.1 Proof of Proposition 5 . 155

A.2 Proof of Proposition 6 . 156

A.3 Proof of the computational hardness 156

A.3.1 Markov game construction . 157

A.3.2 A series of computationally hard problems 158

A.3.3 Putting them together . 160

A.3.4 Proofs of Hardness Against Adversarial Opponents 160

A.4 Proof of the statistical hardness . 161

B Proofs for Chapter 3 167

B.1 Proof for Section 3.2 – Optimistic Nash Value Iteration 167

B.1.1 Proof of Theorem 16 . 167

B.1.2 Proof of Theorem 17 . 174

B.2 Proof for Section 3.3 – Reward-Free Learning 179

B.2.1 Proof of Theorem 18 . 179

B.2.2 Vanilla Nash Value Iteration 185

B.2.3 Proof of Theorem 19 . 185

B.3 Proof for Section 3.4.2 – Multi-player General-sum Markov Games . . 193

B.3.1 Proof of Theorem 20 . 193

B.3.2 Proof of Theorem 21 . 198

C Proof for Chapter 4 205

C.1 Notations and Basic Lemmas . 205

C.1.1 Notations . 205

C.1.2 Basic lemmas . 206

C.2 Proofs for Computing CCE in General-sum MGs 207

16

C.3 Proofs for Computing CE in General-sum MGs 213

C.4 Proofs for MDPs and Two-player Zero-sum MGs 217

C.5 Proofs for Monotonic V-learning . 218

C.6 Adversarial Bandit with Weighted External Regret 221

C.7 Adversarial Bandit with Weighted Swap Regret 227

C.8 Proof for the V-ol algorithm . 233

C.8.1 Upper confidence bound on the minimax value function 234

C.8.2 Proof of Theorem 27 . 236

D Proofs for Chapter 5 239

D.1 Properties of the game . 239

D.1.1 Properties for Section 5.1 . 239

D.1.2 Properties for Section 5.4 . 241

D.2 Bounds for regret minimizers . 242

D.2.1 Hedge . 242

D.2.2 Regret Matching . 243

D.2.3 Φ-Hedge . 245

D.3 Equivalence to classical definitions of EFGs 246

D.3.1 Reduction from classical definition of EFGs to TFAMDP . . . 247

D.4 Proof of Theorem 35 . 249

E Proofs for Chapter 6 253

E.1 Proofs of balanced exploration policy 253

E.2 Proofs for Balanced dilated KL . 254

E.3 Proofs for Section 6.2 . 255

E.3.1 Efficient implementation for Update (6.10) 255

E.3.2 Proof of Theorem 42 . 258

E.3.3 A concentration result . 259

E.3.4 Proof of Lemma 124 . 262

E.3.5 Proof of Lemma 125 . 263

E.3.6 Proof of Lemma 126 . 264

17

E.4 Proofs for Section 6.3 . 272

E.4.1 Counterfactual regret decomposition 272

E.4.2 Proof of Theorem 44 . 274

E.4.3 Proof of Lemma 136 . 277

E.4.4 Proof of Lemma 137 . 279

E.4.5 Proof of Lemma 138 . 281

E.4.6 Proof of Theorem 46 . 285

E.5 Proofs for Section 6.4 . 289

E.5.1 Proof of Theorem 49 . 290

F Proofs for Chapter 7 291

F.1 Proofs for Section 7.1.1 & 7.1.2 . 291

F.1.1 Incremental (OMD) form of Algorithm 13 291

F.1.2 Proof of Lemma 50 . 293

F.1.3 Proof of Lemma 51 . 293

F.1.4 Runtime of Algorithm 13 . 295

F.1.5 Proof of Lemma 53 . 295

F.2 Proofs for Section 7.1.3 . 297

F.2.1 Proof of Theorem 54 . 297

F.2.2 Proof of Theorem 55 . 297

F.3 Proof of Theorem 58 . 302

F.3.1 Some preparations . 304

F.3.2 Proof of Lemma 146 . 305

F.3.3 Bound on two bias terms . 319

F.4 Equivalence between Vertex MWU and OMD 323

18

List of Figures

1-1 Reinforcement learning takes an end-to-end (right) instead of rule-

based (left) decision making approach. 24

1-2 Self-play (right) v.s. playing against human expert (left). 24

1-3 Two factors that contribute to the non-stationarity of the decision mak-

ing process: non-stationary environments (left) and strategic oppo-

nents (right). 25

1-4 Nash equilibrium: no agent can improve her own utility by uni-laterally

changing her own policy. 26

1-5 A roadmap of the results presented in this section. 27

1-6 An intuitive comparison between Nash-VI (left) and Nash V-learning

(right): The Nash-VI algorithm is more like an orchestra. There is

a conductor – the centralized estimator and planner, to first estimate

the MG based on observations from both players, and then compute

the NE and inform all the players. On the contrary, Nash V-learning

is more like chamber music where each player update her own decision

rule based on her own observations. 30

1-7 A raod map of the results presented in this section. 32

1-8 An illustration of the Blackwell approachability approach. 33

1-9 Tabular RL (left) v.s. RL with function approximation (right). 33

2-1 An illustration of MGs. 48

2-2 Illustration of the MDP 𝑀𝑋,𝑌 . For 𝑦 ∈ {0, 1}, 𝑦′ stands for 1− 𝑦. . . 62

3-1 A graphical view of the upper and lower bounds. 70

19

3-2 Insight I: Sharper confidence bound in the next step induces less uncer-

tainty. The value function estimations are the same for both instances,

but the left instance has higher uncertainty in the next step so we would

expect the uncertinty is also higher in the current step. 71

3-3 Insight II: Lower variance of estimations induces less uncertainty. The

value length of confidence bounds are the same for both instances, but

the left instance has higher variance in value function estimation in

the next step so we would expect the uncertinty is also higher in the

current step. 73

4-1 A comparison between the conventional online-to-batch conversion (left)

and the certified policy (right). While conventional online-to-batch

conversion uses uniform weighting and episode-wise average, certified

policy uses non-uniform re-weighting and step-wise average. 88

5-1 An illustration of imperfect information through the example of poker.

Here we consider a toy example with four different states. Each player

is dealt either 72o or AAs. The min player’s cards are on the top and

the max player’s cards are at the bottom. 106

5-2 An illustration of EFGs. 107

6-1 An illustration of the balanced exploration policy: sampling probability

is propotional to the size of the sub game-tree rooted at the action. . 121

6-2 A comparison between IXOMD (left) and balanced OMD (right). . . 127

6-3 A comparison between CFR and MCCFR: instead of update the whole

game tree, it only updates the policies on a trajectory. 129

7-1 The naive reduction from EFGs to NFGs induces a exponential blow-up.138

A-1 𝑀(𝑋, 𝑌): “Combination lock” MDP specified by 𝑋 and 𝑌 . For 𝑦 ∈

{0, 1}, 𝑦′ stands for 1− 𝑦. 163

20

List of Tables

1.1 Comparison with existing results for two-player zero-sum Markov games.

The Nash-VI algorithm matches the lower bound in terms of the de-

pendence on horizon while the Nash V-learning algorithm matches the

lower bound w.r.t. the other key parameters. 29

1.2 Comparison of model-based and model-free method in multi-player

general-sum Markov games. 29

1.3 Sample complexity (number of episodes required) for learning 𝜀-NE

intwo-player zero-sum Extensive-form games from bandit feedback. . 31

A.1 Transition kernel of the hard instance. 157

A.2 Reward of the hard instance. 157

A.3 transition function of the state 𝑠𝑖,ℎ for the hard instance of Markov

games. 165

21

22

Chapter 1

Introduction

Decision-making is everywhere, ranging from choosing a life partner, trading stocks,

to driving a car. The decision maker, or agent, needs to take specific actions sequen-

tially to maximize her reward. Most of the time, the agent also needs to leverage

contextual information. Decision-making in modern society has become more and

more challenging as the complexity of candidate options, contextual observations, se-

quential structures, and, most importantly, the underlying dynamics that govern the

decision-making process evolve rapidly. Therefore, the traditional approach to deci-

sion making, systematically modeling the problem and then solving it, is no longer

possible.

A prevailing trend to handle such complexity is learning a decision-making model

through data, i.e., the reinforcement learning (RL) approach. In a standard RL

setting, the agent tries to learn a rule (the policy) to execute different actions under

each different context (the state), only using the payoff (the reward) as feedback.

This is a sharp contrast from the the conventional rule-based approach, where human

experts hand craft decision rules based on their understanding of the task. See a

comparison of rule-based and end-to-end decision making in Figure 1-1.

As a significant distinction from supervised learning, data is no longer drawn inde-

pendently from a fixed distribution but collected following the policy. Therefore, an

efficient RL algorithm requires the agent not only to maximize the reward (exploita-

tion) but also to collect data from unvisited states (exploration). This is especially

23

Figure 1-1: Reinforcement learning takes an end-to-end (right) instead of rule-based
(left) decision making approach.

Figure 1-2: Self-play (right) v.s. playing against human expert (left).

the case when the RL agnets learn an decision rule by playing with each other instead

of playing against human experts. See a comparison between self-play and playing

against human expert in Figure 1-2.

The quality and diversity of the drawn data directly influence the performance

of the policy learned by RL. Thus, strategic exploration is essential for RL. The

influence of exploration is even more significant for complicated tasks, to which an

extensive line of literature is committed. Unlike supervised learning, the agent is

sometimes encouraged to visit states that have been rarely visited before, even if this

will temporarily lead to a lower reward.

On the other hand, strategic exploration also makes the overall procedure so-

phisticated and vulnerable to non-stationarity because the agent may get confused

about whether the current low reward is due to exploration or data poisoning and

environmental change. See Figure 1-3 for an illustration.

Concretely, two leading factors that contribute to the non-stationrity are:

24

Figure 1-3: Two factors that contribute to the non-stationarity of the decision making
process: non-stationary environments (left) and strategic opponents (right).

∙ (Non-stationary Environments) When the environment is non-stationary,

the performance of RL algorithms can deteriorate quickly. In an otherwise

stationary environment, even if the reward is perturbed slightly, popular off-

the-shelf RL algorithms can be highly sub-optimal. Such non-stationarity is

ubiquitous, ranging from adaptive reward engineering, malicious manipulation,

simulation-to-real transition, or dataset poisoning. This issue is studied in my

master thesis [Jin et al., 2020a,b] by modeling the non-stationarity explicitly.

∙ (Strategic Opponents) Modern decision-making scenarios often involve more

than one agent. Even though the environment does not change, the other

agents can adapt their policies consistently. This can happen in either cooper-

ative tasks, where joint coordination is tricky in general, or competitive cases,

where players’ utility has confliction with each other, and every player wants to

exploit the others. This topic will be the focus of this PhD thesis, by consid-

ering learning in sequential games, instead of a single-agent sequential decision

making problem.

Handling non-stationarity properly requires the agent to perform (near-) opti-

mally, even in the presence of other strategic agents. To guarantee the safety and

adaptivity properties crucial in practice, we need to achieve optimal learning in such

challenging conditions.

Compared with a single-agent sequential decision making problem, learning in

sequential games involves new formulations and challenges beyond standard RL, and

25

Figure 1-4: Nash equilibrium: no agent can improve her own utility by uni-laterally
changing her own policy.

thus requires new mathematical and algorithmic tools.

For example, the standard notion of optimality no longer helps because the perfor-

mance of an agent depends on both her own strategy and the other agents’ strategy.

As a result, we will use the notion of equilibrium instead. Informally speaking, a

strategy profile of all the players constitutes a Nash equilibrium if no agent can im-

prove her own utility by uni-laterally changing her policy. The key learning objective

in sequential games is to find a Nash equilibrium.

Just like the other machine learning paradigms, RL agents are hungry for data.

To measure the amount of data required to perform near-optimally, we use sample

complexity to quantify the number of samples required to guarantee certain perfor-

mance criteria. As a result, minimizing sample complexity is arguably one of the most

fundamental problems behind the success of RL. This thesis aims to understand this

problem:

What is the fundamental limit of sample complexity of finding an

equilibrium in sequential games, and how to achieve it using

computationally efficient algorithms?

When the fundamental limit is achieved by certain algorithm, we know the learning

algorithm cannot be improved anymore. We call the corresponding learning algorithm

a minimax optimal learning algorithm. In this thesis, we study minimax optimal

26

Figure 1-5: A roadmap of the results presented in this section.

learning in two of the best-known examples of sequential games: Markov games (MGs)

and Extensive-form games (EFGs).

Remark 1. From now on, we will use the wording "player" instead of "agent" and

"return" instead of "reward". These choice is more consistent with the convention of

game theory, but essentially makes no difference in mearning.

1.1 Overview of results

Before delving into the detailed problem formulations and solutions, we first go

through the main results of this thesis, and compare with the existing results. This

section serves as both a result overview and a guidance on the content of each chap-

ters. See Figure 1-5 for a graphical roadmap.

All of the content in this thesis has already been published in peer-review con-

ferences, except Jin et al. [2021b] which is under minor review by a jorunal at the

time when this thesis is written. We give pointers to the original papers when the

corresponding result is presented below.

27

1.1.1 Near-optimal learning in Markov games

In Chapter 2 we introduce the learning problem formulation for Markov games. We

present two hardness results: one computational lower bound from Bai et al. [2020]

and one statistical lower bound from Tian et al. [2021]. This rules out the possibility

of controlling the sample complexity through regret minimization directly, which is

the common practice in the literature of learning in games.

To break the regret minimization barrier, we propose two different workarounds.

∙ In Chapter 3, we coordinate all the players through a centralized model estima-

tion to minimize the regret. By carefully quantifing the estimation uncertainty

in a novel way and combine the estimated model with the calssical value it-

eration, we propose a new algorithm called Nash value iteration (Nash-VI).

Because we explicitly estiamte the transition (model), the approach is referred

to as model-based in literature. The content of this chapter is based on Liu

et al. [2021].

∙ In Chapter 4, we introduce a new technique called certified policy to combine

historical policies in a way different from the conventional online-to-batch con-

version. Using the policies generated by local regret minimization subproce-

dures, we propose a new algorithm called Nash V-learning. Since we do not

estimate the transition explicitly but only through updating certain value func-

tion, the approach is referred to as model-free. The content of this chapter is

based on Bai et al. [2020], Tian et al. [2021], Jin et al. [2021b].

The new methods (colored in light gray) are compared with existing results in

Table 1.1. Here we consider the sample complexity of learning an 𝜀-approximation of

a Nash equilibirum in a two-player zero-sum Markov games with 𝑆 states, 𝐴 actions

for the max-player, 𝐵 actions for the min-players and horizon 𝐻. See a formal

definition of Nash equilibira in Section 2.

The main difference between the model-based and model-free methods is: the

model-based method achieves better dependence on the horizon while the model-free

method improves 𝒪̃(𝐴𝐵) to 𝒪̃(𝐴+𝐵). To see why this improvement is significant, we

28

Method Sample complexity

VI-ULCB [Bai and Jin, 2020] 𝒪̃ (𝐻4𝑆2𝐴𝐵/𝜀2)

OMVI-SM [Xie et al., 2020] 𝒪̃ (𝐻4𝑆3𝐴3𝐵3/𝜀2)

Nash Q-learning [Bai et al., 2020] 𝒪̃ (𝐻5𝑆𝐴𝐵/𝜀2)

Nash-VI [Liu et al., 2021] 𝒪̃ (𝐻3𝑆𝐴𝐵/𝜀2)

Nash V-learning [Bai et al., 2020, Jin et al., 2021b] 𝒪̃ (𝐻5𝑆(𝐴+𝐵)/𝜀2)

Lower bound [Bai and Jin, 2020] 𝛺 (𝐻3𝑆(𝐴+𝐵)/𝜀2)

Table 1.1: Comparison with existing results for two-player zero-sum Markov games.
The Nash-VI algorithm matches the lower bound in terms of the dependence on
horizon while the Nash V-learning algorithm matches the lower bound w.r.t. the
other key parameters.

Method Correlated Equilibrium
(CE)

Coarse Correlated
Equilibrium (CCE)

Nash-VI [Liu et al., 2021] 𝒪̃ (𝐻4𝑆2
∏︀

𝑖𝐴𝑖/𝜀
2) 𝒪̃ (𝐻4𝑆2

∏︀
𝑖𝐴𝑖/𝜀

2)

Nash V-learnig [Jin et al., 2021b] 𝒪̃ (𝐻5𝑆max𝑖𝐴𝑖/𝜀
2) 𝒪̃ (𝐻5𝑆max𝑖𝐴

2
𝑖 /𝜀

2)

Table 1.2: Comparison of model-based and model-free method in multi-player
general-sum Markov games.

need to think about the more general multi-player games, where each player 𝑖 ∈ [𝑚]

has an action set of size 𝐴𝑖. We present the sample complexity of learning correlated

equilibrium and coarse correlated equilibrium in Table 1.2.

The sample complexity of model-based method grows exponentially as the number

of players 𝑚 increases, while the sample complexity of model-free method only de-

pends on the maximum of the action set across players, which is much more favorable

in the presence of a large number of players.

To conclude the results of learning in MGs, let us make a more detailed compar-

ison between Nash-VI and Nash V-learning (See Table 1.2). In Nash VI, there is

a centralized estimator and planner, to first estimate the MG based on observations

from both players, and then compute the equilibria and inform all the players. On the

contrary, Nash V-learning is decentralized, and each player updates her own decision

rule based on her observations. Since the underlying MG is not estimated explic-

itly, V-learning is a model-free algorithm. See Figure 1-6 for an intuitive comparison

29

Figure 1-6: An intuitive comparison between Nash-VI (left) and Nash V-learning
(right): The Nash-VI algorithm is more like an orchestra. There is a conductor – the
centralized estimator and planner, to first estimate the MG based on observations
from both players, and then compute the NE and inform all the players. On the
contrary, Nash V-learning is more like chamber music where each player update her
own decision rule based on her own observations.

between model-based and model-free methods.

As we have seen from the sample complexity result, Nash-VI is preferable for

longer horizons, while V-learning works better given more players or larger action

sets. Also, since centralized model estimation and equilibrium computation is not

needed, V-learning embraces a simpler and symmetric update rule for each player,

which makes the deployment easier, communication-free, and computationally more

efficient.

1.1.2 Near-optimal learning in extensive-form games

In Chapter 5 we introduce the learning problem formulation for imperfect-information

extensive-form games. A lower bound from Bai et al. [2022b] is presented to char-

acterized the fundamental limit of learning an 𝜀-Nash equilibrium in extensive-form

games.

In Chapter 6, we study the near-optimal learning algorithms under the two-player

zero-sum game setting. The content is based on Bai et al. [2022b] and the resulting

sample compelxity is compared with the exsiting methods in the Table 1.3. Here

we consider learning an 𝜀-Nash Equilibrium in a two-player zero-sum Extensive-form

game, with 𝑋 information sets and 𝐴 actions for the max player, 𝑌 information sets

30

Algorithm OMD CFR Sample Complexity

Zhang and Sandholm [2021] - (model-based) ̃︀𝒪 (𝑆2𝐴𝐵/𝜀2)

Farina and Sandholm [2021] X ̃︀𝒪(poly (𝑋, 𝑌,𝐴,𝐵) /𝜀4)

Farina et al. [2021b] X ̃︀𝒪 ((𝑋4𝐴3 + 𝑌 4𝐵3) /𝜀2)

Kozuno et al. [2021] X ̃︀𝒪 ((𝑋2𝐴+ 𝑌 2𝐵) /𝜀2)

Balanced OMD (Algorithm 10) X ̃︀𝒪 ((𝑋𝐴+ 𝑌 𝐵) /𝜀2)

Balanced CFR (Algorithm 11) X ̃︀𝒪 ((𝑋𝐴+ 𝑌 𝐵) /𝜀2)

Lower bound (Theorem 35) - - Ω ((𝑋𝐴+ 𝑌 𝐵) /𝜀2)

Table 1.3: Sample complexity (number of episodes required) for learning 𝜀-NE intwo-
player zero-sum Extensive-form games from bandit feedback.

and 𝐵 actions for the min player, and 𝑆 unobservable hidden states.

Most of the algorithms in the table are either an instance of online mirror descent

(OMD) or counterfectual regret minimization (CFR). See Chapter 6 for a more de-

tailed description on these two types of algorithms. The only exception is the first

row, which is a model-based algorithm. The disadvantage is that it requires some

“cheating” power in the training process by observing the state directly, and its sam-

ple complexity depends on 𝑆 instead of 𝑋 and 𝑌 . It could be the case that 𝑋 and

𝑌 are very small but 𝑆 is very large, which makes the form of sample complexity not

favorable.

The two rows in gray are algorithms proposed in our work. They combine a novel

technique called balanced exploration policy with OMD and CFR separately.

Comparing the upper and lower bounds, both balanced OMD and balanced CFR

could achieve near-optimal sample complexity. They are the first line of algorithms

that achieve linear dependence on the number of information sets, which answers an

open question proposed in Kozuno et al. [2021].

In Chapter 7 we exntend the above sharp sample complexity bounds to multi-

player general-sum games. We develop the first line of learning Extensive-form cor-

related equilibria (EFCEs) with near-optimal sample complexity. The result is a

consequence of dual reformulation, by interpreting the calssical Φ-hedge algorithm

31

Figure 1-7: A raod map of the results presented in this section.

as computing gradient of a log-partition function. The reformulation helps extend

algorithms on normal-form games to EFGs. Besides improving the sample efficiency,

it also simplifies the presentation and proof of some existing results and helps us

discover new connections between known algorithms. The content of this chapter is

based on Bai et al. [2022a].

1.1.3 Beyond optimal learning in sequential games

Although sample efficiency is arguably the most fundamental problem for RL, it is by

no means the only important problem. There are some other exciting projects that I

pursued during my PhD years, on other aspects of learning in sequential games. To

make the presentation of this thesis more succinct, I decided not to include them in

full detail, but to give a brief overview here for those who might be interested. See

Figure 1-7 for a graphical roadmap.

Mutli-objective games. So far we only consider a scalar utility function and un-

constrained problem. Sometimes we have multiple (vectorized) utility function or a

constraint to satisfy. See Figure 1-8 for an illustration of the learning objective.

32

Figure 1-8: An illustration of the Blackwell approachability approach.

Figure 1-9: Tabular RL (left) v.s. RL with function approximation (right).

This is considered in Yu et al. [2021], by extending the classical notion of Blackwell

approachability [Blackwell, 1956] to the RL setting. The framework can also be

applied to constrained MGs to develop near-optimal sample complexity.

Function approximation. In either self-play or online learning setting, if the num-

ber of states is vast, then even maintaining a policy for each state is impossible.

Therefore one has to use function approximation. See Figure 1-9 for a comparison

between the tabular and function approximation settings for RL.

We first distinguish a key complexity measure, multi-agent Bellman-Eluder dimen-

sion for Markov games Jin et al. [2022]. Using multi-agent Bellman-Eluder dimension

to quantify the complexity of the function class, we design a novel exploiter-based

33

algorithm for learning the Nash equilibrium with sharp sample complexity. In each

episode, the exploiter serves as the “strongest” opponent to facilitate the learning of

our agent by pessimistic planning based on value function elimination.

Last iterate guarantee. All of the algorithms considered in this thesis have the

following feature: we take different policies in different episodes and average them in

a certain way to find an output policy that is guaranteed to be an approximate Nash

equilibrium policy. A more ambitious goal is to make this guarantee on the policy used

in the last episode directly, without any averaging scheme. This motivates a long line

of work [Wei et al., 2021a,b, Lee et al., 2021, Daskalakis and Panageas, 2019, Golowich

et al., 2020b,a, Cai et al., 2022, Cen et al., 2023]. In particular our work Liu et al.

[2023] takes a regularization perspective and achieve this goal in IIEFGs.

1.2 Related work

In this section, we overview the literature on learning in sequential games.

1.2.1 Learning in Markov games

Although there has been much recent work in RL for continuous state spaces [see, e.g.,

Jiang et al., 2017, Jin et al., 2020c, Zanette et al., 2020, Jin et al., 2021a, Xie et al.,

2020, Jin et al., 2022], this setting is beyond our scope. We will focus on theoretical

results for the tabular setting, where the numbers of states and actions are finite.

Markov games. Markov Game (MG), also known as stochastic game [Shapley,

1953], is a popular model in multi-agent RL [Littman, 1994]. Early works have

mainly focused on finding Nash equilibria of MGs under strong assumptions, such as

known transition and reward [Littman, 2001, Hu and Wellman, 2003, Hansen et al.,

2013, Wei et al., 2021a], or certain reachability conditions [Wei et al., 2017, 2021b]

(e.g., having access to simulators [Jia et al., 2019, Sidford et al., 2020, Zhang et al.,

2020a]) that alleviate the challenge in exploration. We remark that, while Wei et al.

34

[2017] studies the infinite-horizon average-reward setting, a recently refined analysis

tailored to the episodic setting shows that the algorithms proposed in Wei et al. [2017]

can learn Nash equilibria in two-player zero-sum MGs without additional reachability

assumptions in 𝒪̃(𝐻4𝑆2𝐴1𝐴2/𝜀
2) [Wei, 2021].

A recent line of works provides non-asymptotic guarantees for learning two-player

zero-sum tabular MGs without further structural assumptions. Bai and Jin [2020] and

Xie et al. [2020] develop the first provably-efficient learning algorithms in MGs based

on optimistic value iteration. Liu et al. [2021] improves upon these works and achieves

best-known sample complexity for finding an 𝜀-Nash equilibrium—𝒪(𝐻3𝑆𝐴1𝐴2/𝜀
2)

episodes.

For multiplayer general-sum tabular MGs, Liu et al. [2021] is the only existing

work that provides non-asymptotic guarantees in the exploration setting. It proposes

centralized model-based algorithms based on value iteration, and shows that Nash

equilibria (although computationally inefficient), CCE and CE can be all learned

within 𝒪(𝐻4𝑆2
∏︀𝑚

𝑗=1𝐴𝑗/𝜀
2) episodes. Note this result suffers from the curse of mul-

tiagents.

V-learning, initially coupled with the FTRL algorithm as adversarial bandit sub-

routine, was first proposed in Bai et al. [2020], for finding Nash equilibria in the

two-player zero-sum setting. During the preparation of the submission Jin et al.

[2021b], we noted two very recent independent works Song et al. [2022a], Mao and

Başar [2023], whose results partially overlap with the results of Jin et al. [2021b]

in the multiplayer general-sum setting. In particular, Mao and Başar [2023] use V-

learning with stabilized online mirror descent as adversarial bandit subroutine, and

learn 𝜀-CCE in 𝒪(𝐻6𝑆𝐴/𝜀2) episodes, where 𝐴 = max𝑗∈[𝑚]𝐴𝑗. The complexity is

𝐻 times larger than what is required in Theorem 24. Song et al. [2022a] considers

similar V-learning style algorithms for learning both 𝜀-CCE and 𝜀-CE. For the lat-

ter objective, they require 𝒪(𝐻6𝑆𝐴2/𝜀2) episodes which is again one 𝐻 factor larger

than what is required in Theorem 25. We remark that both parallel works have not

presented V-learning as a generic class of algorithms which can be coupled with any

adversarial bandit algorithm with suitable regret guarantees in a black-box fashion.

35

We also notice a number of related works that appeared after the initial confer-

ence publication of Bai et al. [2020], including [Kao et al., 2022, Mao et al., 2022,

Liu et al., 2022, Zhan et al., 2023, Erez et al., 2022, Daskalakis et al., 2022]. Kao

et al. [2022] consider fully cooperative two-player games with a sequential structure

with the goal of learning the joint optimal policy in a decentralized fashion. This is

a drastically different setting and is not directly comparable to this work. Mao et al.

[2022] propose a stage-based variant of V-learning algorithm so that any standard

no-regret adversarial bandit algorithm can be used in place of the no-weighted-regret

algorithm employed in Jin et al. [2021b]. Their modified algorithms recover the rates

in Theorem 24 and 25. Liu et al. [2022] and Zhan et al. [2023] consider the com-

plexity of no-regret learning against adversarial opponents for tabular and function

approximation Markov games respectively. Their positive result mostly applies when

competing against the best Markov policy in hindsight, while in Jin et al. [2021b] our

definition of equilibria compares with the best general policy in hindsight. Erez et al.

[2022] develop a computationally efficient algorithm for learning CE, but requires ad-

ditional structural assumptions to prove statistical efficiency. Daskalakis et al. [2022]

consider a more challenging task than the one addressed in Jin et al. [2021b], namely

learning Markov CCE — CCE policies that are history-independent given the current

state. As a trade-off for their stronger solution concept, their algorithm is much more

sophisticated and requires a larger number of samples.

Normal-form games. A normal-form game (NFG) is one of the most basic game

forms studied in the game theory literature Osborne and Rubinstein [1994]. It can be

viewed as Markov games without any states or transition. A fully decentralized algo-

rithm that breaks the curse of multiagents is known in the setting of strategic-form

games. By independently running a no-regret (or no-swap-regret) algorithm for all

agents, one can find Nash Equilibria (in the two-player zero-sum setting), correlated

equilibria and coarse correlated equilibria (in the multiplayer general-sum setting)

in a number of samples that only scales with max𝑖∈[𝑚]𝐴𝑖 Cesa-Bianchi and Lugosi

[2006], Hart and Mas-Colell [2000], Blum and Mansour [2007]. However, such suc-

36

cesses do not directly extend to the Markov games due to the additional temporal

structures involving both states and transition. In particular, there is no computa-

tionally efficient no-regret algorithm for Markov games Radanovic et al. [2019], Bai

et al. [2020].

Decentralized MARL. There is a long line of empirical works on decentralized

MARL [see, e.g., Lowe et al., 2017, Iqbal and Sha, 2019, Sunehag et al., 2018, Rashid

et al., 2018, Son et al., 2019]. A majority of these works focus on the cooperative

setting. They additionally attack the challenge where each agent can only observe

a part of the underlying state, which is beyond the scope of Jin et al. [2021b]. For

theoretical results, Zhang et al. [2018] consider the cooperative setting while Sayin

et al. [2021] study the two-player zero-sum Markov games. Both develop decentralized

MARL algorithms but provide only asymptotic guarantees. Daskalakis et al. [2020]

analyze the convergence rate of independent policy gradient method in episodic two-

player zero-sum MGs. Their result requires the additional reachability assumptions

(concentrability) which alleviates the difficulty of exploration.

Single-agent RL. There is a rich literature on reinforcement learning in MDPs

[see e.g., Jaksch et al., 2010, Osband et al., 2016, Azar et al., 2017, Dann et al., 2017,

Strehl et al., 2006, Jin et al., 2018, 2021a]. MDPs are special cases of Markov games,

where only a single agent interacts with a stochastic environment. For the tabular

episodic setting with nonstationary dynamics and no simulators, the best sample com-

plexity achieved by existing model-based and model-free algorithms are 𝒪̃(𝐻3𝑆𝐴/𝜀2)

(achieved by value iteration Azar et al. [2017]) and 𝒪̃(𝐻4𝑆𝐴/𝜀2) (achieved by Q-

learning Jin et al. [2018]), respectively, where 𝑆 is the number of states, 𝐴 is the

number of actions, 𝐻 is the length of each episode. Both of them (nearly) match the

lower bound Ω(𝐻3𝑆𝐴/𝜀2) Jaksch et al. [2010], Osband and Van Roy [2016], Jin et al.

[2018].

37

1.2.2 Learning in extensive-form games

Regret minimization in EFG from full feedback. A line of work considers

external regret minimization in EFGs from full feedback [Zinkevich et al., 2007, Celli

et al., 2019b, Burch et al., 2019, Farina et al., 2021a, Zhou et al., 2020]. In particu-

lar, Zhou et al. [2020] achieves ̃︀𝒪(√𝑋𝑇) external regret. The recent work of Farina

et al. [2022b] develops the first algorithm to achieve ̃︀𝒪(‖Π‖1polylog𝑇) external re-

gret in EFGs by converting it to an NFG and invoking the fast rate of Optimistic

Hedge [Daskalakis et al., 2021], along with an efficient implementation via the “kernel

trick”. Our Φ-regret framework covers their algorithm as a special case, and we fur-

ther show that their algorithm (along with its efficient implementation) is equivalent

to the standard OMD with dilated entropy.

The notion of Extensive-Form Correlated Equilibria (EFCE) in EFGs was intro-

duced in Von Stengel and Forges [2008]. Optimization-based algorithms for comput-

ing computing EFCEs in multi-player EFGs from full feedback have been proposed

in Huang and von Stengel [2008], Farina et al. [2019].

Gordon et al. [2008] first proposed to use uncoupled EFCE-regret minimization

dynamics to compute EFCE; however, they do not explain how to efficiently imple-

ment each iteration of the dynamics. Recent works Celli et al. [2020], Farina et al.

[2022a], Morrill et al. [2021], Song et al. [2022b] developed uncoupled EFCE regret

minimization learning dynamics with efficient implementation; All of these algorithms

are based on counterfactual regret decomposition [Zinkevich et al., 2007] and min-

imizing each trigger regret (first considered by Dudík and Gordon [2009], Gordon

et al. [2008]) using a different regret minimizer. Celli et al. [2020] decomposed the

regret to each laminar subtree, but they did not give an explicit regret bound. Farina

et al. [2022a] decomposed the regret to each trigger sequence and used CFR type

algorithm to minimize the regret on each trigger sequence and achieved an 𝑂̃(
√
𝑋2𝑇)

EFCE-regret bound. Morrill et al. [2021], Song et al. [2022b] decomposed the regret

to each information set and use regret minimization algorithms with time-selection

functions Blum and Mansour [2007], Khot and Ponnuswami [2008] to minimize the

38

regret on each information set, giving ̃︀𝒪(√𝑋2𝑇) and ̃︀𝒪(√𝑋𝑇) regret bounds re-

spectively. In Bai et al. [2022a], we show that the simple Φ-Hedge algorithm, which

has an efficient implementation and an intuitive interpretation, can also achieve the

state-of-art ̃︀𝒪(√𝑋𝑇) regret bound in the full feedback setting.

Regret minimization in EFG from bandit feedback. Minimizing the exter-

nal regret in EFGs from bandit feedback is considered in a more recent line of

work [Lanctot et al., 2009, Farina et al., 2020b, Farina and Sandholm, 2021, Fa-

rina et al., 2021b, Zhou et al., 2019, Zhang and Sandholm, 2021, Kozuno et al., 2021,

Bai et al., 2022b]. Dudík and Gordon [2009] consider sample-based learning of EFCE

in succinct extensive-form games; however, their algorithm relies on an approximate

Markov-Chain Monte-Carlo sampling subroutine that does not lead to a sample com-

plexity guarantee.

A concurrent work by Song et al. [2022b] also achieves ̃︀𝒪(𝑋/𝜀2) sample complex-

ity for learning EFCE under bandit feedback (when only highlighting 𝑋) using the

Balanced 𝐾-EFR algorithm. Our work achieves the same linear in 𝑋 sample com-

plexity, but using a very different algorithm (Balanced EFCE-OMD). We also remark

that the algorithm of [Song et al., 2022b] cannot minimize the EFCE-regret against

adversarial opponents from bandit feedback like our algorithm, as their algorithm

requires playing multiple episodes against a fixed opponent, which is infeasible when

the opponent is adversarial.

Φ-regret minimization and correlated equilibrium. The Φ-regret minimiza-

tion framework was introduced in Greenwald and Jafari [2003] and Stoltz and Lugosi

[2007]. In particular, Greenwald and Jafari [2003] showed that uncoupled no Φ-regret

dynamics leads to Φ-correlated equilibria, a generalized notion of correlated equilib-

ria introduced by Aumann [1974]. Stoltz and Lugosi [2007] then developed a family

of Φ-regret minimization algorithms using the fixed-point method (including the Φ-

Hedge algorithm considered in Bai et al. [2022a]), and derived explicit regret bounds.

Two important special cases of Φ-regret are the internal regret and swap regret in

39

normal-form games Stoltz and Lugosi [2005], Blum and Mansour [2007]. A recent line

of work developed algorithms with 𝒪(polylog𝑇) swap regret bound in normal-form

games Anagnostides et al. [2022a,b].

1.3 Open problems and future work

Despite the endeavour of the community of learning in sequential games and the

progress in recent years, there are still many issue remaining unclear. In this section,

I will overview some of the most relevant and exiciting open problems in learning in

sequential games.

1.3.1 Remaining issues in optimal learning in sequential games

We begin with some technical issues that are most relevant to the scope of the thesis.

Interestingly, most of the gap is related to one common theme: the model-based

approach achieves better dependence on 𝑇 (or 𝜀) and 𝐻, and model-free approach

achieves better dependence on the number of actions of each players. Is there a way

to achieve the best-of-both-worlds?

Optimal sample complexity of learning in MGs. As presented in Table 1.1,

Nash-VILiu et al. [2021] achieves optimal dependence on 𝑆 and 𝐻, but not on 𝐴 and

𝐵, while Nash V-learning achieves optiaml dependence on 𝑆, 𝐴 and 𝐵, but not on

𝐻. Is it possible to improve either of the two algorithms to achieve optimality for all

of the parameters?

For model-based methods, intuitively since the size of the model depends on 𝐴𝐵,

it seems very unlikely that we can actually achieve 𝐴+𝐵 sample complexity. However

it is also hard to rule out this possibility rigorously because it is not clear how to define

the class of model-based algorithm formally to prove a lower bound. For example, if

one just runs V-learning but estimates the model at the same time, does it count as

“model-based”? We indeed have some negative result, though. In Liu et al. [2021], we

showed that the sample complexity of a closely related problem, reward-free learning,

40

is at least 𝐴𝐵.

For model-free methods, the current gap seems more like an artifact. In the

single-agent setting, there are some techniques to improve the dependence on horizon

for model-free algorithms. For example, using a Bernstein-type optimistic bonus Jin

et al. [2018] and a reference estimation [Zhang et al., 2020c] can both shave off an

𝐻 factor in the sample complexity bound. However, in the game setting, it is not at

all clear how to combine these techniques with regret minimization procedure as we

have used in V-learning type of algorithms.

Optimal learning in potential MGs. There is one important instance of multi-

player general-sum games called potential games [Monderer and Shapley, 1996]

that characterizes players with a shared utility, and whose Nash equilibrium can be

found in polynomial time. A recent line of work focuses on sample-efficient learning in

Markov potential game and in particular Song et al. [2022a] develops a 𝒪(𝜀−3) sample

complexity bound, and the dependence on the other paramters is polynomial, which

is favorable when the number of players increases. In each episode, the algorithms

re-collect data to estimate the value function, and much of the data are not reused

later, which results in the sub-optimal 𝒪(𝜀−3) bound. On the other hand, we can

use the general algorithm as in Liu et al. [2021] to achieve 𝒪(𝜀−2) sample complexity,

but the dependence on the other paramters is exponential, as a consequence of the

model-based planning.

Naturally, one may wonder if we can achieve best of both world: achieving 𝒪(𝜀−2)

sample complexity and polynomial dependence on the other parameters at the same

time. Unluckily the answer is unclear at the time of this thesis.

A closely realted setting is congestion game [Milchtaich, 1996], where the question

can be answered affirmatively in Cui et al. [2022]. However, the classical reduction

from a congestion game to a potential game may involve an exponential blow-up, so

this positive result itself cannot answer the above question directly.

41

Online learning in MGs. Here comes the third example of the best-of-both-worlds

type of question, but in a online learning setting. If we consider online learning in

Markov games, as we will show in Section 2.5, competing with optimal policy in

hindsight is provably hard. Hence we can only expect to compete with the Nash

equilibirum policy, which serves as a stationary and thus weaker baseline.

However, even in this scenario, the minimax regret is still open. Following a

model-based approach as in Liu et al. [2021], we can achieve 𝒪
√
𝑇 regret but the

dependence on the number of players is exponential. On the other hand, following

the V-ol algorithm in Section 4.5.1, the sample complexity is almost free of the

number players involved, but the dependence on 𝑇 is only 𝒪(𝑇 2/3). Again, the open

question is: can we achieve 𝒪
√
𝑇 regret and polynomial dependence on the number

of players?

Fully model-free learning. The last open problem regrading optimal sample

complexity has a different flavor. In the original formulation of the balanced explo-

ration policy as introduced in Section 6.1, we have to know the game tree stucture

in advance (at least from each players’ perspective), to design such policies. In a

follow-up paper Fiegel et al. [2022], a surrogate is proposed to avoid this issue. In

particular, the surrogate only depends on information sets that has been visited so

far and the historical policies. However, the cost is to pay an additional 𝐻 factor in

sample complexity. This induces an interesting question, whether knowing the tree

structure changing the difficulty of the problem. If so, how much is the gap and how

should we understand the value of knowing the tree structure?

1.3.2 Beyond tabular sequential games

All of the results presented in this thesis are focusing on the tabular setting, where the

number of state and actions are finite. However in many large-scale problems, even

though the number of state and actions are finite, it is formidably large so that even

linear dependence on the number of state and actions is unrealistic. The standard

approach to handle such large state spaces is by using function approximation. As

42

long as the size of the function class (usually in terms of a certain kind of covering

number) is controllable and the sample complexity has a sharp dependence (hopefully

linear) on the size, then function approximation approach could give a much more

practical and scalable solution. In this section, we discuss the challenge of extending

the results in tabular setting to the function approximation setting.

Statistical-computational gap of general function approximation. Although

Jin et al. [2022] achieving near-optimal satistical efficiency in many problems, the im-

plementation involves solving a complex optimization problem. This problem appears

even in the single agent setting. In fact, none of the existing general function approx-

imation RL algorithms with polynomial sample complexity guarantee, such as Jin

et al. [2021a], Du et al. [2021], Foster et al. [2021] can be implemented in polynomial

time. Hence a natural question is: does the statistical-computational gap exist for

RL with function approximation?

There are two standard assumptions used in the analysis of the function approxi-

mation RL algorithms:

∙ Realizability: the ground truth value function or Q-value function can indeed

be approximated the function class.

∙ Completeness: the function class itself has some closeness property such that

the value function from the class will also induce some other value function from

the class.

Only under the realizability condition, there is a line of research demonstrating

the computational hardness of the problem when the function class only contains

linear function. In particular, as pointed out in Kane et al. [2022], the statistical-

computational gap exists. However, when completeness is also enforced, it is not clear

if such a gap still exists.

On the other hand, one may wonder if the hard optimization problem introduce

in Jin et al. [2022] can be solved either in certain special cases or heuristically. This

is an exciting question that I have devoted a lot of effort to during my PhD time but

43

did not make much progress. In practice one prefers to try out simiplified exploration

scheme.

Linearly parametrized sequential games. There is indeed a well-studied func-

tion approximation setting for RL algorithms, at least for single agent scenario —-

linear MDP (or low-rank MDP) Jin et al. [2020c]. We already know only linearly

parametrized value function is not enough. In a linear MG, the whole transition and

reward are fully linearly parametrized and the completeness condition is naturally

satisfied. Even better, the optimization problem can be solved efficiently so Jin et al.

[2022] translates to an computationally efficient algorithms, which is not that surpris-

ing because Xie et al. [2020] already contains a similar result for linear MG with a

worse sample complexity.

A more interesting and also ambitious task is to extend the result in Bai et al.

[2020], i.e., the Nash Q-learning and Nash V-learning algorithms, to the linear MG

setting, which is partially solved by a recent work by Wang et al. [2023]. One im-

portant difference in their assumptions is to use “marginalized” feature and make the

transition and reward multi-linearly depending on the features.

Principled function approximation in EFGs. When the state itself is not

obsevable, we do not have a optimal substructure property, which makes principled

function approximation much harder. In MGs we can approximate the optimal value

function for each state action pair, but such quantity even does not exist for EFGs.

Maybe the most fundamental question is: what do we really want to approximate

here? Practitioners approximate the counterfactual values through neural networks,

but these quantities depend on the policy used and keep changing all the time. As

a result, it is hard to give any theoretical guarantee for such function approximation

algorithms.

44

1.3.3 Beyond Nash equilibrium: learning to cooperate

All of the techniques we present in the thesis serves the same purpose: learning not to

regret, which can be translated to certain equilibrium guarantees. However, finding

an equilibrium is not the whole story of learning in games. In many case we also want

to learn to cooperate.

The most famous example is the prisoner’s dilemma. It is well known that the

only Nash equilibrium is to betray all the time. However, if both players can learn

to cooperate, then the average utility will be much higher. Of course, this is only

possible if the other player is willing to cooperate. The question is: how can we

adjust to different type of player, embrace cooperation when possible and avoid being

exploited by “bad” players?

This is a fascinating problem that I have given a lot of thoughts to during the past

years. To solve this problem we have to first introduce a new framework and make it

a well-defined question. Conventional notions of regret, Nash equilibrium and social

welfare may still be relevant, but we definitely need to introduce some new measures

of the adaptivity we want.

At the end of the day, the ideal algorithm should be able to satisfy two conditions:

it is able to adapt to different type of players and when it is deployed on both players,

it should facilitate the players to cooperate efficiently. I believe such “learning to

cooperate” power is a crucial component of the general artificial intelligence sought

by researchers.

45

46

Chapter 2

Markov Games: Preliminaries

Modern artificial intelligence (AI) faces a variety of challenges that can be framed

as multi-agent reinforcement learning (MARL) problems. In MARL, agents must

learn how to make a series of decisions in the presence of other agents whose actions

may impact the outcome. This dynamic environment requires agents to adapt their

strategies to those of other agents, putting an additional layer of complexity to the

problem.

Modern MARL systems have achieved significant success recently on a rich set of

traditionally challenging tasks, including the game of GO [Silver et al., 2016, 2017],

Poker [Brown and Sandholm, 2019], real-time strategy games [Vinyals et al., 2019,

OpenAI, 2018], decentralized controls or multiagent robotics systems [Brambilla et al.,

2013], autonomous driving [Shalev-Shwartz et al., 2016], as well as complex social sce-

narios such as hide-and-seek [Baker et al., 2020]. While single-agent RL has been the

focus of recent intense theoretical study, MARL has been comparatively underex-

plored, which leaves several fundamental questions open even in the basic model of

Markov games Shapley [1953] with finitely many states and actions.

This chapter presents an overview of Markov games (MGs), including their for-

mulation and associated learning problems. The framework is accompanied by two

hardness results, ruling out the possibility of achiving no-regret learning in Markov

games in general.

47

Figure 2-1: An illustration of MGs.

2.1 Game formulation

We consider the model of Markov Games [Shapley, 1953] (also known as stochastic

games in the literature) in its most generic—multiplayer general-sum form. Formally,

we denote a tabular episodic MG with𝑚 players by a tuple MG(𝐻,𝒮, {𝒜𝑖}𝑚𝑖=1,P, {𝑟𝑖}𝑚𝑖=1),

where 𝐻 and 𝒮 denote the length of each episode and the state space with |𝒮| = 𝑆. 𝒜𝑖
denotes the action space for the 𝑖𝑡, (ℎ) player and |𝒜𝑖| = 𝐴𝑖. We let 𝑎 := (𝑎1, · · · , 𝑎𝑚)

denote the (tuple of) joint actions by all 𝑚 players, and 𝒜 = 𝒜1 × . . . × 𝒜𝑚.

P = {Pℎ}ℎ∈[𝐻] is a collection of transition matrices, so that Pℎ(·|𝑠,𝑎) gives the distri-

bution of the next state if actions 𝑎 are taken at state 𝑠 at step ℎ, and 𝑟𝑖 = {𝑟𝑖,ℎ}ℎ∈[𝐻]

is a collection of reward functions for the 𝑖th player, so that 𝑟𝑖,ℎ(𝑠,𝑎) ∈ [0, 1] gives

the deterministic reward received by the 𝑖th player if actions 𝑎 are taken at state 𝑠

at step ℎ. Our results directly generalize to random reward functions, since learning

transitions is more difficult than learning rewards. See Figure 2-1 for an illustration

of the decision-making process descibed.

We remark that since the relation among the rewards of different agents can be

arbitrary, this model of MGs incorporates both cooperation and competition.

In each episode, we start with a fixed initial state 𝑠1. While we assume a fixed

initial state for notational simplicity, our results readily extend to the setting where

48

the initial state is sampled from a fixed initial distribution. At each step ℎ ∈ [𝐻],

each player 𝑖 observes state 𝑠ℎ ∈ 𝒮, picks action 𝑎𝑖,ℎ ∈ 𝒜𝑖 simultaneously, and receives

her own reward 𝑟𝑖,ℎ(𝑠ℎ,𝑎ℎ). Then the environment transitions to the next state

𝑠ℎ+1 ∼ Pℎ(·|𝑠ℎ,𝑎ℎ). The episode ends when 𝑠𝐻+1 is reached.

Notice each agent may or may not observe the actions played by other players

in this process. When the actions of the other players are observed, we call it an

informed game [Tian et al., 2021], and otherwise we call it an unknown game

[Cesa-Bianchi and Lugosi, 2006]. The model-based approach introduced in Chapter 3

only works in informed games while the model-free approach introduced in Chapter 4

also works in unknown games.

2.1.1 Policy

A (random) policy 𝜋𝑖 of the 𝑖th player is a set of 𝐻 maps 𝜋𝑖 :=
{︀
𝜋𝑖,ℎ : Ω × (𝒮 ×

𝒜)ℎ−1×𝒮 → 𝒜𝑖
}︀
ℎ∈[𝐻]

, where 𝜋𝑖,ℎ maps a random sample 𝜔 from a probability space

Ω and a history of length ℎ—say 𝜏ℎ := (𝑠1,𝑎1, · · · , 𝑠ℎ), to an action in 𝒜𝑖. To execute

policy 𝜋𝑖, we first draw a random sample 𝜔 at the beginning of the episode. Then,

at each step ℎ, the 𝑖𝑡, (ℎ) player simply takes action 𝜋𝑖,ℎ(𝜔, 𝜏ℎ). We note here 𝜔 is

shared among all steps ℎ ∈ [𝐻]. 𝜔 encodes both the correlation among steps and

the individual randomness of each step. We further say a policy 𝜋𝑖 is deterministic if

𝜋𝑖,ℎ(𝜔, 𝜏ℎ) = 𝜋𝑖,ℎ(𝜏ℎ) which is independent of the choice of 𝜔.

In game theory literature, policies are usually called strategies. To be consitent

with some common terms, we will use these two words interchangably when needed.

An important subclass of policy is Markov policy, which can be defined as 𝜋𝑖 :={︀
𝜋𝑖,ℎ : Ω×𝒮 → 𝒜𝑖

}︀
ℎ∈[𝐻]

. Instead of depending on the entire history, a Markov policy

takes actions only based on the current state. Furthermore, the randomness in each

step of Markov policy is independent. Therefore, when it is clear from the context, we

write Markov policy as 𝜋𝑖 :=
{︀
𝜋𝑖,ℎ : 𝒮 → Δ𝒜𝑖

}︀
ℎ∈[𝐻]

, where Δ𝒜𝑖
denotes the simplex

over 𝒜𝑖. We also use notation 𝜋𝑖,ℎ(𝑎|𝑠) to denote the probability of the 𝑖𝑡, (ℎ) agent

taking action 𝑎 at state 𝑠 at step ℎ.

A joint (potentially correlated) policy is a set of policies {𝜋𝑖}𝑚𝑖=1, where the same

49

random sample 𝜔 is shared among all agents, which we denote as 𝜋 = 𝜋1⊙𝜋2⊙. . .⊙𝜋𝑚.

We also denote 𝜋−𝑖 = 𝜋1⊙. . . 𝜋𝑖−1⊙𝜋𝑖+1⊙. . .⊙𝜋𝑚 to be the joint policy excluding the

𝑖𝑡, (ℎ) player. A special case of joint policy is the product policy where the random

sample has special form 𝜔 = (𝜔1, . . . , 𝜔𝑚), and for any 𝑖 ∈ [𝑚], 𝜋𝑖 only uses the

randomness in 𝜔𝑖, which is independent of remaining {𝜔𝑗}𝑗 ̸=𝑖, which we denote as

𝜋 = 𝜋1 × 𝜋2 × . . .× 𝜋𝑚.

2.1.2 Value

We define the value function 𝑉 𝜋
𝑖,1(𝑠1) as the expected cumulative reward that the

𝑖𝑡, (ℎ) player will receive if the game starts at initial state 𝑠1 at the 1st step and all

players follow joint policy 𝜋:

𝑉 𝜋
𝑖,1(𝑠1) := E𝜋

[︁∑︀𝐻
ℎ=1 𝑟𝑖,ℎ(𝑠ℎ,𝑎ℎ)

⃒⃒⃒
𝑠1

]︁
. (2.1)

where the expectation is taken over the randomness in transition and the random

sample 𝜔 in policy 𝜋.

We also define 𝑄𝜋
𝑖,ℎ : 𝒮 × 𝒜 → R to be the 𝑄-value function at step ℎ so that

𝑄𝜋
𝑖,ℎ(𝑠,𝑎) gives the cumulative rewards received under policy 𝜋, starting from (𝑠,𝑎)

at step ℎ:

𝑄𝜋
𝑖,ℎ(𝑠,𝑎) := E𝜋

[︁∑︀𝐻
ℎ′=ℎ 𝑟𝑖,ℎ′(𝑠ℎ′ ,𝑎ℎ′)

⃒⃒⃒
𝑠ℎ = 𝑠,𝑎ℎ = 𝑎

]︁
. (2.2)

For simplicity, we define operator Pℎ as [Pℎ𝑉](𝑠,𝑎) := E𝑠′∼Pℎ(·|𝑠,𝑎)𝑉 (𝑠′) for any value

function 𝑉 . We also use notation [D𝜋𝑄](𝑠) := E𝑎∼𝜋(·|𝑠)𝑄(𝑠,𝑎) for any action-value

function 𝑄.

By definition of value functions, we have the Bellman equation

𝑄𝑖,𝜋
𝑖,ℎ(𝑠,𝑎) = (𝑟𝑖,ℎ + Pℎ𝑉 𝜋

𝑖,ℎ+1)(𝑠,𝑎), 𝑉 𝜋
𝑖,ℎ(𝑠) = (D𝑎𝑄

𝜋
𝑖,ℎ)(𝑠)

for all (𝑠,𝑎, ℎ) ∈ 𝒮×𝒜×ℬ× [𝐻]×𝑚, and at the (𝐻+1)th step we have 𝑉 𝜋
𝑖,𝐻+1(𝑠) = 0

for all 𝑠 ∈ 𝒮.

50

2.1.3 Best response and strategy modification

For any strategy 𝜋−𝑖, the best response of the 𝑖𝑡, (ℎ) player is defined as a policy of

the 𝑖𝑡, (ℎ) player which is independent of the randomness in 𝜋−𝑖, and achieves the

highest value for herself conditioned on all other players deploying 𝜋−𝑖. In symbol,

the best response is the maximizer of max𝜋′
𝑖
𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,1 (𝑠1) whose value we also denote

as 𝑉 †,𝜋−𝑖

𝑖,1 (𝑠1) for simplicity. By its definition, we know the best response can always

be achieved at deterministic policies. We call a policy 𝜋𝑖 an 𝜀-best response if

max
𝜋′
𝑖

𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,1 (𝑠1)− 𝑉 𝜋𝑖×𝜋−𝑖

𝑖,1 (𝑠1) ≤ 𝜀. (2.3)

A strategy modification 𝜑𝑖 for the 𝑖𝑡, (ℎ) player is a set of maps 𝜑𝑖 := {𝜑𝑖,ℎ :

(𝒮 × 𝒜)ℎ−1 × 𝒮 × 𝒜𝑖 → 𝒜𝑖}, where 𝜑𝑖,ℎ can depend on the history 𝜏ℎ and maps

actions in 𝒜𝑖 to different actions in 𝒜𝑖. For any policy of the 𝑖𝑡, (ℎ) player 𝜋𝑖, the

modified policy (denoted as 𝜑𝑖◇𝜋𝑖) changes the action 𝜋𝑖,ℎ(𝜔, 𝜏ℎ) under random sample

𝜔 and history 𝜏ℎ to 𝜑𝑖(𝜏ℎ, 𝜋𝑖,ℎ(𝜔, 𝜏ℎ)).

Here, we only introduce the deterministic strategy modification for simplicity of

notation, which is sufficient for discussion in the context of this thesis. The random

strategy modification can also be defined by introducing randomness in 𝜑𝑖 which is

independent of randomness in 𝜋𝑖 and 𝜋−𝑖. It can be shown that the best strategy

modification can always be deterministic.

For any joint policy 𝜋, we define the best strategy modification of the 𝑖𝑡, (ℎ) player

as the maximizer of max𝜑𝑖 𝑉
(𝜑𝑖◇𝜋𝑖)⊙𝜋−𝑖

𝑖,1 (𝑠1).

Different from the best response, which is completely independent of the random-

ness in 𝜋−𝑖, the best strategy modification changes the policy of the 𝑖𝑡, (ℎ) player while

still utilizing the shared randomness among 𝜋𝑖 and 𝜋−𝑖. Therefore, the best strategy

modification is more powerful than the best response: formally one can show that

max𝜑𝑖 𝑉
(𝜑𝑖◇𝜋𝑖)⊙𝜋−𝑖

𝑖,1 (𝑠1) ≥ max𝜋′
𝑖
𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,1 (𝑠1) for any policy 𝜋.

51

2.2 Equilibria

A special case of Markov game is Markov Decision Process (MDP). One can show

there always exists an optimal policy 𝜋⋆ = argmax𝜋 𝑉
𝜋
1 (𝑠1). Denote the value of the

optimal policy as 𝑉 ⋆. The optimality criteria for a policy in MDPs is to maximize

the expected return, or put it another way, minimize the gap between the optimal

policy. Quantitatively, we call a policy 𝜀-optimal policy 𝜋 if 𝑉 ⋆
1 (𝑠1)− 𝑉 𝜋

1 (𝑠1) ≤ 𝜀.

The optimality criteria for Markov games is more involved since an optimal policy

in the above sense does not necessarily exist. On the countrary, we will consider the

notion of equilibrium.

For Markov games, there are three common notions of equilibira in the game

theory literature—Nash Equilibrium, Correlated Equilibrium and Coarse Correlated

Equilibrium.

First, a Nash equilibrium is defined as a product policy where no player can

increase her value by changing only her own policy. Formally,

Definition 2 (Nash Equilibrium). A product policy 𝜋 is a Nash equilibrium if

max
𝑖∈[𝑚]

(𝑉
†,𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) = 0.

A product policy 𝜋 is an 𝜀-approximate Nash equilibrium if max𝑖∈[𝑚] (𝑉
†,𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) ≤

𝜀.

We remark that, even for a game with known parameters P(·|·) and 𝑟(·), the Nash

equilibrium in general has been proved PPAD-hard to compute Daskalakis [2013]. As

a result, although Nash equilibrium is conceptually the most natural and simple

notion, we have to consider other equilibria due to computational feasibility.

Second, a coarse correlated equilibrium is defined as a joint (potentially correlated)

policy where no player can increase her value by playing a different independent

strategy. In symbol,

52

Definition 3 (Coarse Correlated Equilibrium). A joint policy 𝜋 is a CCE if

max
𝑖∈[𝑚]

(𝑉
†,𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) = 0.

A joint policy 𝜋 is a 𝜀-approximate CCE if max𝑖∈[𝑚] (𝑉
†,𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) ≤ 𝜀.

The only difference between Definition 2 and Definition 3 is that Nash equilibrium

requires the policy 𝜋 to be a product policy while CCE does not. Thus, it is clear

that CCE is a relaxed notion of Nash equilibrium, and a Nash equilibrium is always

a CCE.

Finally, a correlated equilibrium is defined as a joint (potentially correlated) policy

where no player can increase her value by using a strategy modification. In symbol,

Definition 4 (Correlated Equilibrium). A joint policy 𝜋 is a CE if

max
𝑖∈[𝑚]

max
𝜑𝑖

(𝑉
(𝜑𝑖◇𝜋𝑖)⊙𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) = 0.

A joint policy 𝜋 is a 𝜀-approximate CE if max𝑖∈[𝑚] max𝜑𝑖 (𝑉
(𝜑𝑖◇𝜋𝑖)⊙𝜋−𝑖

𝑖,1 − 𝑉 𝜋
𝑖,1)(𝑠1) ≤ 𝜀.

In Markov games, we also have that a Nash equilibrium is a CE, and a CE is a

CCE.

Proposition 5 (Nash ⊂ CE ⊂ CCE). In Markov games, any 𝜀-approximate Nash

equilibrium is an 𝜀-approximate CE, and any 𝜀-approximate CE is an 𝜀-approximate

CCE.

2.3 Two-player Zero-sum games

When can a Nash equilibrium can be computed in polynomial time? The best-known

case is Two-player Zero-sum (2p0s) games and as a result it will be discussed sepa-

rately in many parts of the thesis. We remark 2p0s game is not the only interesting

game setting where Nash equilibrium can be computed efficiently. For example, in

games where all the players share the same utility function, we can also find a Nash

53

equilibrium in polynoimial time [Song et al., 2022a]. This fully cooperative case is a

special case of potential game, but we will not discuss these cases in this thesis. In

this thesis, we only present results for finding Nash equilibria in two-player zero-sum

MGs.

As the name suggests, in a 2p0s Markov game, the second player’s reward is just

the first player’s negative, i.e., 𝑟2,ℎ = −𝑟1,ℎ. We call the first player the max-player

(with action set |𝒜| ≤ 𝐴) and the second player the min-player (with action set

|ℬ| ≤ 𝐵). As a result we can only consider the utility of the max-player and drop the

subscript on player (usually using 𝑖 above) for simplicity.

Technically, to ensure 𝑟2,ℎ ∈ [0, 1], we choose 𝑟2,ℎ = 1−𝑟1,ℎ. We note that adding a

constant to the reward function has no effect on the equilibria. As a result sometimes

people also use the term two-player constant-sum to embrace this generality.

2.3.1 Minimiax theorem

The Nash equilibrium can be find efficiently in 2p0s games because there are many

important properties that only hold in 2p0s games. We will discuss some of the

most significant ones here and leave the more invovled ones later when we cover the

algorithmic aspect of MGs.

For any policy of the max-player 𝜇, there exists a best response of the min-player,

which is a policy 𝜈†(𝜇) satisfying 𝑉 𝜇,𝜈†(𝜇)
ℎ (𝑠) = inf𝜈 𝑉

𝜇,𝜈
ℎ (𝑠) for any (𝑠, ℎ) ∈ 𝒮 × [𝐻].

We denote 𝑉 𝜇,†
ℎ := 𝑉

𝜇,𝜈†(𝜇)
ℎ . By symmetry, we can also define 𝜇†(𝜈) and 𝑉 †,𝜈

ℎ . It is

further known [cf. Filar and Vrieze, 2012] that there exist policies 𝜇⋆, 𝜈⋆ that are

optimal against the best responses of the opponents, in the sense that

𝑉 𝜇⋆,†
ℎ (𝑠) = sup𝜇 𝑉

𝜇,†
ℎ (𝑠), 𝑉 †,𝜈⋆

ℎ (𝑠) = inf𝜈 𝑉
†,𝜈
ℎ (𝑠), for all (𝑠, ℎ).

These optimal strategies (𝜇⋆, 𝜈⋆) are exactly the Nash equilibria of the Markov game,

which satisfies the following minimax equation

sup𝜇 inf𝜈 𝑉
𝜇,𝜈
ℎ (𝑠) = 𝑉 𝜇⋆,𝜈⋆

ℎ (𝑠) = inf𝜈 sup𝜇 𝑉
𝜇,𝜈
ℎ (𝑠).

54

Notice the minimax theorem here is different from the one for matrix games, i.e.

max𝜑min𝜓 𝜑
⊤𝐴𝜓 = min𝜓max𝜑 𝜑

⊤𝐴𝜓 for any matrix 𝐴, since here 𝑉 𝜇,𝜈
ℎ (𝑠) is in gen-

eral not bilinear in 𝜇, 𝜈.

We further abbreviate the values of Nash equilibrium 𝑉 𝜇⋆,𝜈⋆

ℎ and 𝑄𝜇⋆,𝜈⋆

ℎ as 𝑉 ⋆
ℎ and

𝑄⋆
ℎ.

In 2p0s games we have a better way to quantify the optimality of a pair of policy

(̂︀𝜇, ̂︀𝜈) using the gap between their performance and the performance of the optimal

strategy (i.e., Nash equilibrium) when playing against the best responses respectively:

𝑉 †,̂︀𝜈
1 (𝑠1)− 𝑉 ̂︀𝜇,†

1 (𝑠1) =
[︁
𝑉 †,̂︀𝜈
1 (𝑠1)− 𝑉 ⋆

1 (𝑠1)
]︁
+
[︁
𝑉 ⋆
1 (𝑠1)− 𝑉

̂︀𝜇,†
1 (𝑠1)

]︁
.

A pair of general policies (̂︀𝜇, ̂︀𝜈) is an 𝜀-approximate Nash equilibrium, if

𝑉 †,̂︀𝜈
1 (𝑠1)− 𝑉 ̂︀𝜇,†

1 (𝑠1) ≤ 𝜀.

The existence of the value of a 2p0s games makes it possible to compute Nash

Equilibrium through CCEs. To describe this result we first restate the definition of

CCE (Definition 3) after rescaling. For any pair of matrices 𝑃,𝑄 ∈ [0, 1]𝑛×𝑚, the

subroutine CCE(𝑃,𝑄) returns a distribution 𝜋 ∈ Δ𝑛×𝑚 that satisfies:

E(𝑎,𝑏)∼𝜋𝑃 (𝑎, 𝑏) ≥ max
𝑎⋆

E(𝑎,𝑏)∼𝜋𝑃 (𝑎
⋆, 𝑏), E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏) ≤ min

𝑏⋆
E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏

⋆) (2.4)

We make three remarks on CCE. First, a CCE always exists since a Nash equilibrium

for a general-sum game with payoff matrices (𝑃,𝑄) is also a CCE defined by (𝑃,𝑄),

and a Nash equilibrium always exists. Second, a CCE can be efficiently computed,

since above constraints (2.4) for CCE can be rewritten as 𝑛 + 𝑚 linear constraints

on 𝜋 ∈ Δ𝑛×𝑚, which can be efficiently resolved by standard linear programming

algorithm. Third, a CCE in general-sum games needs not to be a Nash equilibrium.

However, a CCE in zero-sum games is guaranteed to be a Nash equalibrium.

Proposition 6. Let 𝜋 = CCE(𝑄,𝑄), and (𝜇, 𝜈) be the marginal distribution over

both players’ actions induced by 𝜋. Then (𝜇, 𝜈) is a Nash equilibrium for payoff matrix

𝑄.

55

Intuitively, a CCE procedure can be used in Nash Q-learning for finding an approx-

imate Nash equilibrium, because the values of upper confidence and lower confidence

(𝑄 and 𝑄) will be eventually very close, so that the preconditions of Proposition 6

becomes approximately satisfied.

2.3.2 Bellman optimality equations

Now we are ready to present the Bellman optimality equations for the value functions

of the best responses and the Nash equilibrium.

Best responses. For any Markov policy 𝜇 of the max-player, by definition, we have

the following Bellman equations for values of its best response:

𝑄𝜇,†
ℎ (𝑠, 𝑎, 𝑏) = (𝑟ℎ + Pℎ𝑉 𝜇,†

ℎ+1)(𝑠, 𝑎, 𝑏), 𝑉 𝜇,†
ℎ (𝑠) = inf

𝜈∈Δℬ
(D𝜇ℎ×𝜈𝑄

𝜇,†
ℎ)(𝑠),

for all (𝑠, 𝑎, 𝑏, ℎ) ∈ 𝒮 ×𝒜× ℬ × [𝐻], where 𝑉 𝜇,†
𝐻+1(𝑠) = 0 for all 𝑠 ∈ 𝒮.

Similarly, for any Markov policy 𝜈 of the min-player, we also have the following

symmetric version of Bellman equations for values of its best response:

𝑄†,𝜈
ℎ (𝑠, 𝑎, 𝑏) = (𝑟ℎ + Pℎ𝑉 †,𝜈

ℎ+1)(𝑠, 𝑎, 𝑏), 𝑉 †,𝜈
ℎ (𝑠) = sup

𝜇∈Δ𝒜

(D𝜇×𝜈ℎ𝑄
†,𝜈
ℎ)(𝑠).

for all (𝑠, 𝑎, 𝑏, ℎ) ∈ 𝒮 ×𝒜× ℬ × [𝐻], where 𝑉 †,𝜈
𝐻+1(𝑠) = 0 for all 𝑠 ∈ 𝒮.

Nash equilibria. Finally, by definition of Nash equilibria in Markov games, we

have the following Bellman optimality equations:

𝑄⋆
ℎ(𝑠, 𝑎, 𝑏) =(𝑟ℎ + Pℎ𝑉 ⋆

ℎ+1)(𝑠, 𝑎, 𝑏)

𝑉 ⋆
ℎ (𝑠) = sup

𝜇∈Δ𝒜

inf
𝜈∈Δℬ

(D𝜇×𝜈𝑄
⋆
ℎ)(𝑠) = inf

𝜈∈Δℬ
sup
𝜇∈Δ𝒜

(D𝜇×𝜈𝑄
⋆
ℎ)(𝑠)

for all (𝑠, 𝑎, 𝑏, ℎ) ∈ 𝒮 ×𝒜× ℬ × [𝐻], where 𝑉 ⋆
𝐻+1(𝑠) = 0 for all 𝑠 ∈ 𝒮.

56

2.4 Learning objectives

How do we measure the performance of a learning algorithm in Markov games? In this

section we will cover the two most common learning objectives: regret minimization

and sample complexity (of learning an equilibrium).

Online learning The most natural idea to measure the performance of a learning

algorithm is to compare with the best response to the min-player’s policy in aver-

age. This motivates the defition of regret competing against the best fixed policy in

hindsight:

Regret(𝐾) := sup
𝜇

𝐾∑︁
𝑘=1

(︀
𝑉 𝜇,𝜈𝑘

1 (𝑠1)− 𝑉 𝜇𝑘,𝜈𝑘

1 (𝑠1)
)︀
, (2.5)

where the superscript 𝑘 denotes the corresponding objects in the 𝑘-th episode. Al-

though we use this compact notation, the regret depends on both 𝜇𝑘 and 𝜈𝑘.

In the online learning setting, our goal is to maximize the expected cumulative

return, or equivalently, to minimize the regret. We call a learning algorithm if the

regret grows sublinearly in 𝐾, as the average regret will converge to zero in long run.

Notice this criteria is purely unilateral and imposes no assumption on the min-

player. Also it measures the performance in 𝐾 consecutive episodes instead of a single

policy.

Self-play Another common of reinforcement learning is to design algorithms for

Markov games that can find an 𝜀-approximate Nash equilibrium, CE or CCE using a

number of episodes that is small in its dependency on 𝑆,𝐴,𝐵,𝐻 as well as 1/𝜀 . An

upper bound of this number of episodes is known as PAC sample complexity bound,

or sample complexity for short.

The self-play setting is closely related to the learning agents trained through

comepeting with each other (For example, Silver et al. [2016]). Here we can con-

trol all of the agents instead of just one of them. Different from the online learning

setting, we no longer care about the return in the training process but only the output

57

policy at the end of the training process, which is not totally reasonable but simplifies

the formulation greatly.

Online-to-batch conversion Interestingly, the two notions introduced above are

closely related. In MDPs, any sublinear regret algorithm can be directly converted

to a polynomial-sample PAC algorithm via the standard online-to-batch conversion.

For example, see Jin et al. [2018].

For games, the intuition remains valid but things become more technical. Roughly

speaking, if we have a sublinear regret bound, it will translate into a polynomial-

sample PAC bound for learning CCE in general games or NE in 2p0s games. For

CE, we need stronger notion of regret defined through policy modifications. We will

present the formal reductions later when needed.

2.5 Hardness results

The most common approach to establish PAC-learning results for MDP and matrix

games is to first control the regret and then use the online-to-batch conversion as we

introduced in Section 2.4. However, this approach does not work for Markov games.

In this section, we present two hardness results for achieving sublinear regret in 2p0s

Markov games when playing against adversarial opponents, which rules out a popular

approach to design algorithms for finding Nash equilibria.

2.5.1 Computational hardness

We begin with a computational hardness result, showing computing the best response

against an opponent with a fixed unknown policy is hard. This will imply achieving

sublinear regret in Markov games when playing against adversarial opponents is also

computationally hard.

Computing the best response We say an algorithm is a polynomial time algo-

rithm for learning the best response if for any policy of the opponent 𝜈, and for any

58

𝜀 > 0, the algorithm finds the 𝜀-approximate best response of policy 𝜈 (Defined in

Equation (2.3)) with probability at least 1/2, in time polynomial in 𝑆,𝐻,𝐴,𝐵, 𝜀−1.

We can show the following hardness result for finding the best response in poly-

nomial time.

Theorem 7 (Hardness for learning the best response). There exists a Markov game

with deterministic transitions and rewards defined for any horizon 𝐻 ≥ 1 with 𝑆 = 2,

𝐴 = 2, and 𝐵 = 2, such that if there exists a polynomial time algorithm for learning

the best response for this Markov game, then there exists a polynomial time algorithm

for learning parity with noise (see problem description in Appendix A.3).

We remark that learning parity with noise is a notoriously difficult problem that

has been used to design efficient cryptographic schemes. It is conjectured by the

community to be hard.

Conjecture 8 (Kearns [1998]). There is no polynomial time algorithm for learning

party with noise.

Theorem 7 with Conjecture 8 demonstrates the fundamental difficulty—if not

strict impossibility—of designing a polynomial time for learning the best responses

in Markov games.

The intuitive reason for such computational hardness is that, while the underlying

system has Markov transitions, the opponent can play policies that encode long-term

correlations with non-Markovian nature, such as parity with noise, which makes it

very challenging to find the best response. It is known that learning many other

sequential models with long-term correlations (such as hidden Markov models or

partially observable MDPs) is as hard as learning parity with noise Mossel and Roch

[2005].

Actually, if the opponent is restricted to only play Markov policies, then learning

the best response is as easy as learning a optimal policy in the standard single-agent

Markov decision process, where efficient algorithms are known to exist. Nevertheless,

when the opponent can as well play any policy which may be non-Markovian, as shown

59

in Theorem 7, finding the best response against those policies is computationally

challenging.

Playing Against Adversarial Opponent Theorem 7 directly implies the diffi-

culty for achieving sublinear regret in Markov games when playing against adversarial

opponents in Markov games. Our construction of hard instances in the proof of The-

orem 7 further allows the adversarial opponent to only play Markov policies in each

episode.

Since playing against adversarial opponent is a different problem with independent

interest, we present the full result here.

Without loss of generality, we still consider the setting where the algorithm can

only control the max-player, while the min-player is an adversarial opponent. In the

beginning of every episode 𝑘, both players pick their own policies 𝜇𝑘 and 𝜈𝑘, and

execute them throughout the episode. The adversarial opponent can possibly pick

her policy 𝜈𝑘 adaptive to all the observations in the earlier episodes.

We say an algorithm for the learner is a polynomial time no-regret algorithm if

there exists a 𝛿 > 0 such that for any adversarial opponent, and any fixed 𝐾 > 0,

the algorithm outputs policies {𝜇𝑘}𝐾𝑘=1 which satisfies the following, with probability

at least 1/2, in time polynomial in 𝑆,𝐻,𝐴,𝐵,𝐾.

R(𝐾) = sup
𝜇

𝐾∑︁
𝑘=1

𝑉 𝜇,𝜈𝑘

1 (𝑠1)−
𝐾∑︁
𝑘=1

𝑉 𝜇𝑘,𝜈𝑘

1 (𝑠1) ≤ poly(𝑆,𝐻,𝐴,𝐵)𝐾1−𝛿 (2.6)

Theorem 7 directly implies the following hardness result for achieving no-regret

against adversarial opponents, a result that first appeared in [Radanovic et al., 2019].

Corollary 9 (Hardness for playing against adversarial opponent). There exists a

Markov game with deterministic transitions and rewards defined for any horizon 𝐻 ≥

1 with 𝑆 = 2, 𝐴 = 2, and 𝐵 = 2, such that if there exists a polynomial time no-

regret algorithm for this Markov game, then there exists a polynomial time algorithm

for learning parity with noise (see problem description in Appendix A.3). The claim

remains to hold even if we restrict the adversarial opponents in the Markov game to

60

be non-adaptive, and to only play Markov policies in each episode.

Similar to Theorem 7, Corollary 9 combined with Conjecture 8 demonstrates the

fundamental difficulty of designing a polynomial time no-regret algorithm against

adversarial opponents for Markov games.

2.5.2 Statistical hardness in unknown games

In unknown Markov games, where each agent cannot access the other agents’ actions,

we can establish a stronger statistical hardness result. In this section, we show that,

competing against the best policy in hindsight is statistically intractable in general.

In particular, we show that in this case, the regret has to be either linear in 𝐾 or

exponential in 𝐻.

Theorem 10 (Statistical hardness for online learning in unknown MGs). For any

𝐻 ≥ 2 and 𝐾 ≥ 1, there exists a two-player zero-sum MG with horizon 𝐻, |𝑆| ≤ 2,

|𝐴| ≤ 2, |𝐵| ≤ 4 such that any algorithm for unknown MGs suffers the following

worst-case one-sided regret:

sup
𝜇

∑︁𝐾

𝑘=1

(︁
𝑉 𝜇,𝜈𝑘

1 (𝑠1)− E𝜇𝑘𝑉 𝜇𝑘,𝜈𝑘

1 (𝑠1)
)︁
≥ Ω

(︀
min

{︀√
2𝐻𝐾,𝐾

}︀)︀
.

In particular, any algorithm has to suffer linear regret unless 𝐾 ≥ Ω(2𝐻).

Proof Sketch We start by considering online learning in (single-agent) MDPs,

where the reward and transition function in each episode are adversarially determined,

and the goal is to compete against the best (fixed) policy in hindsight. In the following

lemma we show that this problem is statistically hard; see Lemma 64 in the Appendix

A.4 for its formal statement.

Lemma 11. (informal) For any algorithm, there exists a sequence of single agent

MDPs with horizon 𝐻, 𝑆 = 𝑂(𝐻) states and 𝐴 = 𝑂(1) actions, such that the regret

defined against the best policy in hindsight is Ω(min{
√
2𝐻𝐾,𝐾}).

61

...
High

Low

Figure 2-2: Illustration of the MDP 𝑀𝑋,𝑌 . For 𝑦 ∈ {0, 1}, 𝑦′ stands for 1− 𝑦.

We now briefly explain how this family of hard MDPs is constructed, which is in-

spired by the “combination lock” MDP [Du et al., 2019]. Every MDP 𝑀𝑋,𝑌 is specified

by two 𝐻-bit strings: 𝑋, 𝑌 ∈ {0, 1}𝐻 . The states are {𝑠0,0, 𝑠0,1, 𝑠1,1, · · · , 𝑠0,𝐻 , 𝑠1,𝐻}.

As shown in Figure 2-2, 𝑀𝑋,𝑌 has a layered structure, and the reward is nonzero

only at the final layer. The only way to achieve the high reward is to follow the path

𝑠0,0 → 𝑠𝑦1,1 → · · · 𝑠𝑦𝐻 ,𝐻 . Thus, the corresponding optimal policy is 𝜋(𝑠𝑤,ℎ) = 𝑥ℎ ⊕𝑤,

which is only a function of 𝑋. Here, ⊕ denotes the bitwise exclusive or operator.

Now, in each episode, 𝑌 is chosen from a uniform distribution over {0, 1}𝐻 while

𝑋 is fixed. When the player interacts with 𝑀𝑋,𝑌 , since 𝑌 is uniformly random, it gets

no effective feedback from the observed transitions, and the only informative feedback

is the reward at the end. However, achieving the high reward requires guessing every

bit of 𝑋 correctly. This “needle in a haystack” situation makes the problem as hard

as a multi-armed bandit problem with 2𝐻 arms. The regret lower bound immediately

follows.

Next, we use the hard family of MDPs in Lemma 64 to prove Theorem 10 by

reducing the adversarial MDP problem to online learning in unknown MGs. The

construction is straightforward. The state space and the action space for the max-

player are the same as that in the original MDP family. The min-player has control

over the transition function and reward at each step, and executes a policy such that

the induced MDP for the max-player is the same as 𝑀𝑋,𝑌 . This is possible using only

𝐵 = 𝑂(1) actions as 𝑀𝑋,𝑌 has a layered structure. Online learning in unknown MGs

62

then simulates the online learning in the adversarial MDP problem, and thus has the

same regret lower bound.

63

64

Chapter 3

Markov Games: Model-based

Learning

One prevalent approach towards solving multi-agent RL is model-based methods, that

is, to use the existing visitation data to build an estimate of the model (i.e. transition

dynamics and rewards), run an offline planning algorithm on the estimated model to

obtain the policy, and play the policy in the environment. Such a principle underlies

some of the earliest single-agent online RL algorithms such as E3 [Kearns and Singh,

2002] and RMax [Brafman and Tennenholtz, 2002], and is conceptually appealing

for multi-agent RL too since the multi-agent structure does not add complexity onto

the model estimation part and only requires an appropriate multi-agent planning

algorithm (such as value iteration for games [Shapley, 1953]) in a black-box fashion.

On the other hand, model-free methods do not directly build estimates of the model,

but instead directly estimate the value functions or action-value (Q) functions of

the problem at the optimal/equilibrium policies, and play the greedy policies with

respect to the estimated value functions. Model-free algorithms have also been well

developed for multi-agent RL such as friend-or-foe Q-Learning [Littman, 2001] and

Nash Q-Learning [Hu and Wellman, 2003].

While both model-based and model-free algorithms have been shown to be prov-

ably efficient in multi-agent RL in a recent line of work [Bai and Jin, 2020, Xie

et al., 2020, Bai et al., 2020], a more precise understanding of the optimal sample

65

complexities within these two types of algorithms (respectively) is still lacking. In

the specific setting of two-player zero-sum Markov games, the current best sample

complexity for model-based algorithms is achieved by the VI-ULCB (Value Itera-

tion with Upper/Lower Confidence Bounds) algorithm [Bai and Jin, 2020, Xie et al.,

2020]: In a tabular Markov game with 𝑆 states, {𝐴,𝐵} actions for the two players,

and horizon length 𝐻, VI-ULCB is able to find an 𝜀-approximate Nash equilibrium

policy in 𝒪̃(𝐻4𝑆2𝐴𝐵/𝜀2) episodes of game playing. However, compared with the

information-theoretic lower bound Ω(𝐻3𝑆(𝐴 + 𝐵)/𝜀2), this rate has suboptimal de-

pendencies on all of 𝐻, 𝑆, and 𝐴,𝐵. In contrast, the current best sample complexity

for model-free algorithms is achieved by Nash V-Learning [Bai et al., 2020], which

finds an 𝜀-approximate Nash policy in 𝒪̃(𝐻6𝑆(𝐴+𝐵)/𝜀2) episodes. Compared with

the lower bound, this is tight except for a poly(𝐻) factor, which may seemingly sug-

gest that model-free algorithms could be superior to model-based ones in multi-agent

RL. However, such a conclusion would be in stark contrast to the single-agent MDP

setting, where it is known that model-based algorithms are able to achieve minimax

optimal sample complexities [Jaksch et al., 2010, Azar et al., 2017]. It naturally arises

whether model-free algorithms are indeed superior in multi-agent settings, or whether

the existing analyses of model-based algorithms are not tight. This motivates us to

ask the following question:

How sample-efficient are model-based algorithms in multi-agent RL?

In this chapter, we advance the theoretical understandings of multi-agent RL by

presenting a sharp analysis of model-based algorithms on Markov games. Our core

contribution is the design of a new model-based algorithm Optimistic Nash Value

Iteration (Nash-VI) that achieves an almost optimal sample complexity for zero-sum

Markov games and improves significantly over existing model-based approaches.

3.1 Player coordination

The lower bound presented in Section 2.5.1 and Section 2.5.2 rule out the possiblity

of controlling the sampling complexity through regret (defined in Equation (2.5))

66

minimization, by designing an independent learning algorithm for each of the players.

In this section, we present the first workaround, by taking a model-based approach.

Concretely, we coordinate the players through a centralized model estimator.

The main difference between independent learning and player coordination is : In-

dependent learning is actually an overshoot because using the Nash Folklore theorem

itself does not require the learning dynamics for each of the player is independent.

Although independent learning has its own advantages, we have seen achieving low

regret through independent learning is provably hard. As long as we have a smart

way to coordinate the players and prove under such coordination the regret can be

controlled, we can essentially achieve the same goal.

How to achieve such coordination? Model-based approach is the most ideal choice.

Although we do not know the underlying MG, we can estimate the state transition

probabilities through samples and provide an estimated MG. Then we can use a

centralized planner to find the equilibrium of this estimated MG and if the estimation

is good enough, the regret for all the players must be low because the their policy

should be already very close to a Nash equilibrium.

To make the presentation simpler, we will use a new and stronger form of regret

which is more suitable for model-based learning. Through the classical online-to-batch

conversion, the regret guarantees can again be translated into sample complexity re-

sults that we are looking for. The definition of regret for 2p0s games used throughout

this chapter is given below, which we will denote by Nash regret.

Definition 12 (Nash Regret in 2p0s games). Let (𝜇𝑘, 𝜈𝑘) denote the policies deployed

by the algorithm in the 𝑘th episode. After a total of 𝐾 episodes, the regret is defined

as

R(𝐾) =
𝐾∑︁
𝑘=1

(𝑉 †,𝜈𝑘
1 − 𝑉 𝜇𝑘,†

1)(𝑠1).

Similarly we can define the counterparts for general games as below.

Definition 13 (Nash-regret in general-sum MGs). Let 𝜋𝑘 denote the (product) policy

deployed by the algorithm in the 𝑘th episode. After a total of 𝐾 episodes, the regret

67

is defined as

RNash(𝐾) =
𝐾∑︁
𝑘=1

max
𝑖∈[𝑚]

(𝑉
†,𝜋𝑘

−𝑖

1,𝑖 − 𝑉 𝜋𝑘

1,𝑖)(𝑠1).

Definition 14 (CCE-regret in general-sum MGs). Let policy 𝜋𝑘 denote the (corre-

lated) policy deployed by the algorithm in the 𝑘th episode. After a total of 𝐾 episodes,

the regret is defined as

RCCE(𝐾) =
𝐾∑︁
𝑘=1

max
𝑖∈[𝑚]

(𝑉
†,𝜋𝑘

−𝑖

1,𝑖 − 𝑉 𝜋𝑘

1,𝑖)(𝑠1).

Definition 15 (CE-regret in multiplayer Markov games). Let policy 𝜋𝑘 denote the

policy deployed by the algorithm in the 𝑘th episode. After a total of 𝐾 episodes, the

regret is defined as

RCE(𝐾) =
𝐾∑︁
𝑘=1

max
𝑖∈[𝑚]

max
𝜑∈Φ𝑖

(𝑉 𝜑◇𝜋𝑘

1,𝑖 − 𝑉 𝜋𝑘

1,𝑖)(𝑠1).

To make the exposition more accessible, we will first present the algorithms and

theoretical guarantees for two-player zero-sum games, where the presentation is

relatively simpler, and then consider general games.

3.2 Optimistic Nash Value Iteration

In this section, we present our main algorithm—Optimistic Nash Value Iteration

(Nash-VI), and provide its theoretical guarantee.

3.2.1 Algorithm description

We describe our Nash-VI Algorithm 1. In each episode, the algorithm can be decom-

posed into two parts.

∙ Line 3-15 (Optimistic planning from the estimated model): Performs value itera-

tion with bonus using the empirical estimate of the transition ̂︀P, and computes

68

a new (joint) policy 𝜋 which is “greedy” with respect to the estimated value

functions;

∙ Line 18-21 (Play the policy and update the model estimate): Executes the

policy 𝜋, collects samples, and updates the estimate of the transition ̂︀P.

At a high-level, this two-phase strategy is standard in the majority of model-based

RL algorithms, and also underlies provably efficient model-based algorithms such

as UCBVI for single-agent (MDP) setting [Azar et al., 2017] and VI-ULCB for the

two-player Markov game setting [Bai and Jin, 2020]. However, VI-ULCB has two

undesirable drawbacks: the sample complexity is not tight in any of 𝐻, 𝑆, and 𝐴,𝐵

dependency, and its computational complexity is PPAD-complete (a complexity class

conjectured to be computationally hard [Daskalakis, 2013]).

As we elaborate in the following, our Nash-VI algorithm differs from VI-ULCB in

a few important technical aspects, which allows it to significantly improve the sample

complexity over VI-ULCB, and ensures that our algorithm terminates in polynomial

time.

Before digging into explanations of techniques, we remark that line 16-17 is only

used for computing the output policies. It chooses policy 𝜋out to be the policy in the

episode with minimum gap (𝑉 1 − 𝑉 1)(𝑠1). Our final output policies (𝜇out, 𝜈out) are

simply the marginal policies of 𝜋out. That is, for all (𝑠, ℎ) ∈ 𝒮 × [𝐻], 𝜇out
ℎ (·|𝑠) :=∑︀

𝑏∈ℬ 𝜋
out
ℎ (·, 𝑏|𝑠), and 𝜈out

ℎ (·|𝑠) :=
∑︀

𝑎∈𝒜 𝜋
out
ℎ (𝑎, ·|𝑠).

3.2.2 Overview of techniques

Auxiliary bonus 𝛾. The major improvement over VI-ULCB [Bai and Jin, 2020]

comes from the use of a different style of bonus term 𝛾 (line 9), in addition to the

standard bonus 𝛽 (line 8), in value iteration steps (line 10-11). See Figure 3-1 for an

illustration.

This is also the main technical contribution of our Nash-VI algorithm. This aux-

iliary bonus 𝛾 is computed by applying the empirical transition matrix ̂︀Pℎ to the gap

69

Figure 3-1: A graphical view of the upper and lower bounds.

at the next step 𝑉 ℎ+1 − 𝑉 ℎ+1, This is very different from standard bonus 𝛽, which is

typically designed according to the concentration inequalities.

The main purpose of these value iteration steps (line 10-11) is to ensure that the

estimated values 𝑄ℎ and 𝑄
ℎ

are with high probability the upper bound and the lower

bound of the 𝑄-value of the current policy when facing best responses (see Lemma

68 and 70 for more details). To do so, prior work [Bai and Jin, 2020] only adds bonus

𝛽, which needs to be as large as Θ̃(
√︀
𝑆/𝑡). In contrast, the inclusion of auxiliary

bonus 𝛾 in our algorithm allows a much smaller choice for bonus 𝛽—which scales

only as 𝒪̃(
√︀

1/𝑡)—while still maintaining valid confidence bounds. This technique

alone brings down the sample complexity to 𝒪̃(𝐻4𝑆𝐴𝐵/𝜀2), removing an entire 𝑆

factor compared to VI-ULCB. Furthermore, the coefficient in 𝛾 is only 𝑐/𝐻 for some

absolute constant 𝑐, which ensures that the introduction of error term 𝛾 would hurt

the overall sample complexity only up to a constant factor. See Figure 3-2 for an

illustration.

We remark that the current policy is stochastic. This is different from the single-

agent setting, where the algorithm only seeks to provide an upper bound of the value

of the optimal policy where the optimal policy is not random. Due to this difference,

the techniques of Azar et al. [2017] cannot be directly applied here.

70

Figure 3-2: Insight I: Sharper confidence bound in the next step induces less uncer-
tainty. The value function estimations are the same for both instances, but the left
instance has higher uncertainty in the next step so we would expect the uncertinty is
also higher in the current step.

Bernstein concentration. Our Nash-VI allows two choices of the bonus function

𝛽 = Bonus(𝑡, ̂︀𝜎2):

⎧⎨⎩Hoeffding type: 𝑐(
√︀
𝐻2𝜄/𝑡+𝐻2𝑆𝜄/𝑡),

Bernstein type: 𝑐(
√︀̂︀𝜎2𝜄/𝑡+𝐻2𝑆𝜄/𝑡),

(3.1)

where ̂︀𝜎2 is the estimated variance, 𝜄 is the logarithmic factors and 𝑐 is absolute

constant. The ̂︀V in line 8 is the empirical variance operator defined as ̂︀Vℎ𝑉 =̂︀Pℎ𝑉 2 − (̂︀Pℎ𝑉)2 for any 𝑉 ∈ [0, 𝐻]𝑆. The design of both bonuses stem from the

Hoeffding and Bernstein concentration inequalities. Further, the Bernstein bonus

uses a sharper concentration, which saves an 𝐻 factor in sample complexity compared

to the Hoeffding bonus (similar to the single-agent setting [Azar et al., 2017]). This

further reduces the sample complexity to 𝒪̃(𝐻3𝑆𝐴𝐵/𝜀2) which matches the lower

bound in all 𝐻,𝑆, 𝜀 factors. See Figure 3-3 for an illustration.

Coarse Correlated Equilibrium (CCE). The prior algorithm VI-ULCB [Bai

and Jin, 2020] computes the “greedy” policy with respect to the estimated value

functions by directly computing the Nash equilibrium for the 𝑄-value at each step

ℎ. However, since the algorithm maintains both the upper confidence bound and

71

Algorithm 1 Optimistic Nash Value Iteration (Nash-VI)

1: Initialize: for any (𝑠, 𝑎, 𝑏, ℎ), 𝑄ℎ(𝑠, 𝑎, 𝑏)← 𝐻,
𝑄
ℎ
(𝑠, 𝑎, 𝑏)← 0, Δ← 𝐻, 𝑁ℎ(𝑠, 𝑎, 𝑏)← 0.

2: for episode 𝑘 = 1, . . . , 𝐾 do
3: for step ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for (𝑠, 𝑎, 𝑏) ∈ 𝒮 ×𝒜× ℬ do
5: 𝑡← 𝑁ℎ(𝑠, 𝑎, 𝑏).
6: if 𝑡 > 0 then
7: 𝑈ℎ+1 ← (𝑉 ℎ+1 + 𝑉 ℎ+1)/2.
8: 𝛽 ← Bonus(𝑡, ̂︀Vℎ[𝑈ℎ+1](𝑠, 𝑎, 𝑏)).
9: 𝛾 ← (𝑐/𝐻)̂︀Pℎ(𝑉 ℎ+1 − 𝑉 ℎ+1)(𝑠, 𝑎, 𝑏).

10: 𝑄ℎ(𝑠, 𝑎, 𝑏)← min{(𝑟ℎ + ̂︀Pℎ𝑉 ℎ+1)(𝑠, 𝑎, 𝑏) + 𝛾 + 𝛽,𝐻}.
11: 𝑄

ℎ
(𝑠, 𝑎, 𝑏)← max{(𝑟ℎ + ̂︀Pℎ𝑉 ℎ+1)(𝑠, 𝑎, 𝑏)− 𝛾 − 𝛽, 0}.

12: for 𝑠 ∈ 𝒮 do
13: 𝜋ℎ(·, ·|𝑠)← CCE(𝑄ℎ(𝑠, ·, ·), 𝑄ℎ

(𝑠, ·, ·)).
14: 𝑉 ℎ(𝑠)← (D𝜋ℎ𝑄ℎ)(𝑠).
15: 𝑉 ℎ(𝑠)← (D𝜋ℎ𝑄ℎ

)(𝑠).
16: if (𝑉 1 − 𝑉 1)(𝑠1) < Δ then
17: Δ← (𝑉 1 − 𝑉 1)(𝑠1) and 𝜋out ← 𝜋.
18: for step ℎ = 1, . . . , 𝐻 do
19: Take action (𝑎ℎ, 𝑏ℎ) ∼ 𝜋ℎ(·, ·|𝑠ℎ), observe reward 𝑟ℎ and next state 𝑠ℎ+1.
20: Add 1 to 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ) and 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ, 𝑠ℎ+1).
21: ̂︀Pℎ(·|𝑠ℎ, 𝑎ℎ, 𝑏ℎ)← 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ, ·)/𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ).
22: Output the marginal policies of 𝜋out: (𝜇out, 𝜈out).

lower confidence bound of the 𝑄-value, this leads to the requirement to compute

the Nash equilibrium for a two-player general-sum matrix game, which is in general

PPAD-complete [Daskalakis, 2013].

To overcome this computational challenge, we compute a relaxation of the Nash

equilibrium—Coarse Correlated Equalibirum (CCE)—instead, a technique first in-

troduced by Xie et al. [2020] to address reinforcement learning problems in Markov

Games. Formally, for any pair of matrices 𝑄,𝑄 ∈ [0, 𝐻]𝐴×𝐵, CCE(𝑄,𝑄) returns a

distribution 𝜋 ∈ Δ𝒜×ℬ such that⎧⎪⎨⎪⎩
E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏) ≥ max

𝑎⋆
E(𝑎,𝑏)∼𝜋𝑄(𝑎

⋆, 𝑏),

E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏) ≤ min
𝑏⋆

E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏
⋆).

(3.2)

72

Figure 3-3: Insight II: Lower variance of estimations induces less uncertainty. The
value length of confidence bounds are the same for both instances, but the left instance
has higher variance in value function estimation in the next step so we would expect
the uncertinty is also higher in the current step.

Intuitively, in a CCE the players choose their actions in a potentially correlated way

such that no one can benefit from unilateral unconditional deviation. A CCE always

exists, since Nash equilibrium is also a CCE and a Nash equilibrium always exists.

Furthermore, a CCE can be computed by linear programming in polynomial time.

We remark that different from Nash equilibrium where the policies of each player

are independent, the policies given by CCE are in general correlated for each player.

Therefore, executing such a policy (line 19) requires the cooperation of two players.

3.2.3 Theoretical guarantees

Now we are ready to present the theoretical guarantees for Algorithm 1. We let

𝜋𝑘 denote the policy computed in line 13 in the 𝑘th episode, and 𝜇𝑘, 𝜈𝑘 denote the

marginal policy of 𝜋𝑘 for each player.

Theorem 16 (Nash-VI with Hoeffding bonus). For any 𝑝 ∈ (0, 1], letting 𝜄 =

log(𝑆𝐴𝐵𝑇/𝑝), then with probability at least 1 − 𝑝, Algorithm 1 with Hoeffding type

bonus (3.1) (with some absolute 𝑐 > 0) achieves:

73

∙ The output policies (𝜇out, 𝜈out) satisfy (𝑉 †,𝜈out
1 − 𝑉 𝜇out,†

1)(𝑠1) ≤ 𝜀 if we choose

𝐾 ≥ Ω

(︂
𝐻4𝑆𝐴𝐵𝜄

𝜀2
+
𝐻3𝑆2𝐴𝐵𝜄2

𝜀

)︂
.

∙ The algorithm has regret bound

R(𝐾) =
𝐾∑︁
𝑘=1

(𝑉 †,𝜈𝑘
1 − 𝑉 𝜇𝑘,†

1)(𝑠1) ≤ 𝒪(
√
𝐻3𝑆𝐴𝐵𝑇𝜄+𝐻3𝑆2𝐴𝐵𝜄2),

where 𝑇 = 𝐾𝐻 is the total number of steps played within 𝐾 episodes.

Theorem 16 provides both a sample complexity bound and a regret bound for

Nash-VI to find an 𝜀-approximate Nash equilibrium. For small 𝜀 ≤ 𝐻/(𝑆𝜄), the

sample complexity scales as 𝒪̃(𝐻4𝑆𝐴𝐵/𝜀2). Similarly, for large 𝑇 ≥ 𝐻3𝑆3𝐴𝐵𝜄3, the

regret scales as 𝒪̃(
√
𝐻3𝑆𝐴𝐵𝑇). Theorem 16 is significant in that it improves the

sample complexity of the model-based algorithm in Markov games from 𝑆2 to 𝑆 (and

the regret from 𝑆 to
√
𝑆). This is achieved by adding the new auxiliary bonus 𝛾 in

value iteration steps as explained in Section 3.2.1. The proof of Theorem 16 can be

found in Appendix B.1.1.

Our next theorem states that when using Bernstein bonus instead of Hoeffding

bonus as in (3.1), the sample complexity of Nash-VI algorithm can be further im-

proved by a 𝐻 factor in the leading order term (and the regret improved by a
√
𝐻

factor).

Theorem 17 (Nash-VI with the Bernstein bonus). For any 𝑝 ∈ (0, 1], letting 𝜄 =

log(𝑆𝐴𝐵𝑇/𝑝), then with probability at least 1 − 𝑝, Algorithm 1 with Bernstein type

bonus (3.1) (with some absolute 𝑐 > 0) achieves:

∙ The output policies (𝜇out, 𝜈out) satisfy (𝑉 †,𝜈out
1 − 𝑉 𝜇out,†

1)(𝑠1) ≤ 𝜀 if we choose

𝐾 ≥ Ω

(︂
𝐻3𝑆𝐴𝐵𝜄

𝜀2
+
𝐻3𝑆2𝐴𝐵𝜄2

𝜀

)︂
.

74

∙ The algorithm has regret bound

R(𝐾) =
𝐾∑︁
𝑘=1

(𝑉 †,𝜈𝑘
1 − 𝑉 𝜇𝑘,†

1)(𝑠1) ≤ 𝒪(
√
𝐻2𝑆𝐴𝐵𝑇𝜄+𝐻3𝑆2𝐴𝐵𝜄2),

where 𝑇 = 𝐾𝐻 is the total number of steps played within 𝐾 episodes.

Compared with the information-theoretic sample complexity lower bound Ω(𝐻3𝑆(𝐴+

𝐵)𝜄/𝜀2) and regret lower bound Ω(
√︀
𝐻2𝑆(𝐴+𝐵)𝑇) [Bai and Jin, 2020], when 𝜀 is

small, Nash-VI with Bernstein bonus achieves the optimal dependency on all of𝐻,𝑆, 𝜀

up to logarithmic factors in both the sample complexity and the regret, and the only

gap that remains open is a 𝐴𝐵/(𝐴 + 𝐵) ≤ min {𝐴,𝐵} factor. The proof of Theo-

rem 17 can be found in Appendix B.1.2.

3.3 Reward-free Learning

In this section, we modify our model-based algorithm Nash-VI for the reward-free

exploration setting.

Formally, reward-free learning has two phases: In the exploration phase, the

agent collects a dataset of transitions 𝒟 = {(𝑠𝑘,ℎ, 𝑎𝑘,ℎ, 𝑏𝑘,ℎ, 𝑠𝑘,ℎ+1)}(𝑘,ℎ)∈[𝐾]×[𝐻] from

a Markov game ℳ without the guidance of reward information. After the explo-

ration, in the planning phase, for each task 𝑖 ∈ [𝑁], 𝒟 is augmented with stochastic

reward information to become 𝒟𝑖 = {(𝑠𝑘,ℎ, 𝑎𝑘,ℎ, 𝑏𝑘,ℎ, 𝑠𝑘,ℎ+1, 𝑟𝑘,ℎ)}(𝑘,ℎ)∈[𝐾]×[𝐻], where

𝑟𝑘,ℎ is sampled from some unknown reward distribution with expectation equal to

𝑟𝑖ℎ(𝑠𝑘,ℎ, 𝑎𝑘,ℎ, 𝑏𝑘,ℎ). Here, 𝑟𝑖 denotes the unknown reward function of the 𝑖th task. The

goal is to compute nearly-optimal policies for 𝑁 tasks underℳ simultaneously given

the augmented datasets {𝒟𝑖}𝑖∈[𝑁].

There are strong practical motivations for considering the reward-free setting.

∙ In applications such as robotics, we face multiple tasks in sequential systems

with shared transition dynamics (i.e. the world) but very different rewards.

There, we prefer to learn the underlying transition independent of reward in-

formation.

75

Algorithm 2 Optimistic Value Iteration with Zero Reward (VI-Zero)
Require: Bonus 𝛽𝑡.
1: Initialize: for any (𝑠, 𝑎, 𝑏, ℎ), ̃︀𝑉ℎ(𝑠, 𝑎, 𝑏)← 𝐻, Δ← 𝐻, 𝑁ℎ(𝑠, 𝑎, 𝑏)← 0.
2: for episode 𝑘 = 1, . . . , 𝐾 do
3: for step ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for (𝑠, 𝑎, 𝑏) ∈ 𝒮 ×𝒜× ℬ do
5: 𝑡← 𝑁ℎ(𝑠, 𝑎, 𝑏).
6: if 𝑡 > 0 then
7: ̃︀𝑄ℎ(𝑠, 𝑎, 𝑏)← min{(̂︀Pℎ̃︀𝑉ℎ+1)(𝑠, 𝑎, 𝑏) + 𝛽𝑡, 𝐻}.
8: for 𝑠 ∈ 𝒮 do
9: 𝜋ℎ(𝑠)← argmax(𝑎,𝑏)∈𝒜×ℬ ̃︀𝑄ℎ(𝑠, 𝑎, 𝑏).

10: ̃︀𝑉ℎ(𝑠)← (D𝜋ℎ
̃︀𝑄ℎ)(𝑠).

11: if ̃︀𝑉1(𝑠1) < Δ then
12: Δ← ̃︀𝑉1(𝑠1) and ̂︀Pout ← ̂︀P.
13: for step ℎ = 1, . . . , 𝐻 do
14: Take action (𝑎ℎ, 𝑏ℎ) ∼ 𝜋ℎ(·, ·|𝑠ℎ), observe next state 𝑠ℎ+1.
15: Add 1 to 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ) and 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ, 𝑠ℎ+1).
16: ̂︀Pℎ(·|𝑠ℎ, 𝑎ℎ, 𝑏ℎ)← 𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ, ·)/𝑁ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ).
17: Output ̂︀Pout.

∙ From the algorithm design perspective, decoupling exploration and planning

(i.e. performing exploration without reward information) can be valuable for

designing new algorithms in more challenging settings (e.g., with function ap-

proximation).

3.3.1 Algorithm description

We now describe our algorithm for reward-free learning in zero-sum Markov games.

Exploration phase. In the first phase of reward-free learning, we deploy algorithm

Optimistic Value Iteration with Zero Reward (VI-Zero, Algorithm 2). This algorithm

differs from the reward-aware Nash-VI (Algorithm 1) in two important aspects. First,

we use zero reward in the exploration phase (Line 7), and only maintains an upper

bound of the (reward-free) value function instead of both upper and lower bounds.

Second, our exploration policy is the maximizing (instead of CCE) policy of the value

function (Line 9). We remark that the ̃︀𝑄ℎ(𝑠, 𝑎, 𝑏) maintained in the algorithm 2 is no

longer an upper bound for any actual value function (as it has no reward), but rather a

76

measure of uncertainty or suboptimality that the agent may suffer—if she takes action

(𝑎, 𝑏) at state 𝑠 and step ℎ, and makes decisions by utilizing the empirical estimatê︀P in the remaining steps (see a rigorous version of this statement in Lemma 75).

Finally, the empirical transition ̂︀P of the episode that minimizes ̃︀𝑉1(𝑠1) is outputted

and passed to the planning phase.

Planning phase. After obtaining the estimate of tranisiton ̂︀P, our planning algo-

rithm is rather simple. For the 𝑖th task, let ̂︀𝑟𝑖 be the empirical estimate of 𝑟𝑖 computed

using the 𝑖th augmented dataset 𝒟𝑖. Then we compute the Nash equilibrium of the

Markov gameℳ(̂︀P, ̂︀𝑟𝑖) with estimated transition ̂︀P and reward ̂︀𝑟𝑖. Since both ̂︀P and̂︀𝑟𝑖 are known exactly, this is a pure computation problem without any sampling error

and can be efficiently solved by simple planning algorithms such as the vanilla Nash

value iteration without optimism (see Appendix B.2.2 for more details).

3.3.2 Theoretical guarantees

Now we are ready to state our theoretical guarantees for reward-free learning. It

claims that the empirical transition ̂︀Pout outputted by VI-Zero is close to the true

transition P, in the sense that any Nash equilibrium of the ℳ(̂︀P, ̂︀𝑟𝑖) (𝑖 ∈ [𝑁]) is

also an approximate Nash equilibrium of the true underlying Markov gameℳ(P, 𝑟𝑖),

where ̂︀𝑟𝑖 is the empirical estimate of 𝑟𝑖 computed using 𝒟𝑖.

Theorem 18 (Sample complexity of VI-Zero). There exists an absolute constant

𝑐, for any 𝑝 ∈ (0, 1], 𝜀 ∈ (0, 𝐻], 𝑁 ∈ N, if we choose bonus 𝛽𝑡 = 𝑐(
√︀
𝐻2𝜄/𝑡 +

𝐻2𝑆𝜄/𝑡) with 𝜄 = log(𝑁𝑆𝐴𝐵𝑇/𝑝) and 𝐾 ≥ 𝑐(𝐻4𝑆𝐴𝐵𝜄/𝜀2+𝐻3𝑆2𝐴𝐵𝜄2/𝜀), then with

probability at least 1 − 𝑝, the output ̂︀Pout of Algorithm 2 satisfies: For any 𝑁 fixed

reward functions 𝑟1, . . . , 𝑟𝑁 , a Nash equilibrium of Markov game ℳ(̂︀Pout, ̂︀𝑟𝑖) is also

an 𝜀-approximate Nash equilibrium of the true Markov gameℳ(P, 𝑟𝑖) for all 𝑖 ∈ [𝑁].

Theorem 18 shows that, when 𝜀 is small, VI-Zero only needs 𝒪̃(𝐻4𝑆𝐴𝐵/𝜀2) sam-

ples to learn an estimate of the transition ̂︀Pout, which is accurate enough to learn

the approximate Nash equilibrium for any 𝑁 fixed rewards. The most important

77

advantage of reward-free learning comes from the sample complexity only scaling

polylogarithmically with respect to the number of tasks or reward functions 𝑁 . This

is in sharp contrast to the reward-aware algorithms (e.g. Nash-VI), where the algo-

rithm has to be rerun for each different task, and the total sample complexity must

scale linearly in 𝑁 . In exchange for this benefit, compared to Nash-VI, VI-Zero loses

a factor of 𝐻 in the leading term of sample complexity since we cannot use Bernstein

bonus anymore due to the lack of reward information. VI-Zero also does not have a

regret guarantee, since again without reward information, the exploration policies are

naturally sub-optimal. The proof of Theorem 18 can be found in Appendix B.2.1.

Connections with reward-free learning in MDPs. Since MDPs are special

cases of Markov games, our algorithm VI-Zero directly applies to the single-agent

setting, and yields a sample complexity similar to existing results [Zhang et al., 2020b,

Wang et al., 2020].

However, distinct from existing results which require both the exploration algo-

rithm and the planning algorithm to be specially designed to work together, our

algorithm allows an arbitrary planning algorithm as long as it computes the Nash

equilibrium of a Markov game with known transition and reward. Therefore, our

results completely decouple the exploration and the planning.

Lower bound for reward-free learning. Finally, we comment that despite the

sample complexity in Theorem 18 scaling as 𝐴𝐵 instead of 𝐴+𝐵, our next theorem

states that unlike the general reward-aware setting, this 𝐴𝐵 scaling is unavoidable

in the reward-free setting. This reveals an intrinsic gap between the reward-free and

reward-aware learning: An 𝐴+𝐵 dependency is only achievable via sampling schemes

that are reward-aware. A similar lower bound is also presented in Zhang et al. [2020a]

for the discounted setting with a different hard instance construction.

Theorem 19 (Lower bound for reward-free learning of Markov games). There exists

an absolute constant 𝑐 > 0 such that for any 𝜀 ∈ (0, 𝑐], there exists a family of Markov

games M(𝜀) satisfying that: for any reward-free algorithm A using 𝐾 ≤ 𝑐𝐻2𝑆𝐴𝐵/𝜀2

78

episodes, there exists a Markov game ℳ ∈ M(𝜀) such that if we run A on ℳ and

output policies (̂︀𝜇, ̂︀𝜈), then with probability at least 1/4, we have (𝑉 †,̂︀𝜈
1 −𝑉

̂︀𝜇,†
1)(𝑠1) ≥ 𝜀.

This lower bound shows that the sample complexity in Theorem 18 is optimal in

𝑆, 𝐴,𝐵, and 𝜀. The proof of Theorem 19 can be found in Appendix B.2.3.

3.4 Multi-player general-sum games

In this section, we generalize the algorithms and their theoretical guarantees to general

games.

3.4.1 Multiplayer optimistic Nash value iteration

Here we present the Multi-Nash-VI algorithm, which is an extension of Algorithm 1

for multi-player general-sum Markov games.

The Equilibrium subroutine. Our Equilibrium subroutine in Line 11 could

be taken from either one of the {Nash,CE,CCE} subroutines for one-step games.

When using Nash, we compute the Nash equilibrium of a one-step multi-player

game (see, e.g., Berg and Sandholm [2016] for an overview of the available algo-

rithms); the worst-case computational complexity of such a subroutine will be PPAD-

hard [Daskalakis, 2013]. When using CE or CCE, we find CEs or CCEs of the one-step

games respectively, which can be solved in polynomial time using linear programming.

However, the policies found are not guaranteed to be a product policy. We remark

that in Algorithm 1 we used the CCE subroutine for finding Nash in two-player zero-

sum games, which seemingly contrasts the principle of using the right subroutine for

finding the right equilibrium, but nevertheless works as the Nash equilibrium and

CCE are equivalent in zero-sum games.

Now we are ready to present the theoretical guarantees for Algorithm 3. We let

𝜋𝑘 denote the policy computed in line 11 of Algorithm 3 in the 𝑘th episode.

79

Algorithm 3 Multiplayer Optimistic Nash Value Iteration (Multi-Nash-VI)

1: Initialize: for any (𝑠,𝑎, ℎ, 𝑖), 𝑄ℎ,𝑖(𝑠,𝑎) ← 𝐻, 𝑄
ℎ,𝑖
(𝑠,𝑎) ← 0, Δ ← 𝐻,

𝑁ℎ(𝑠,𝑎)← 0.
2: for episode 𝑘 = 1, . . . , 𝐾 do
3: for step ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for (𝑠,𝑎) ∈ 𝒮 ×𝒜1 × · · · × 𝒜𝑚 do
5: 𝑡← 𝑁ℎ(𝑠,𝑎);
6: if 𝑡 > 0 then
7: for player 𝑖 = 1, 2, . . . ,𝑚 do
8: 𝑄ℎ,𝑖(𝑠,𝑎)← min{(𝑟ℎ,𝑖 + ̂︀Pℎ𝑉 ℎ+1,𝑖)(𝑠,𝑎) + 𝛽𝑡, 𝐻}.
9: 𝑄

ℎ,𝑖
(𝑠,𝑎)← max{(𝑟ℎ,𝑖 + ̂︀Pℎ𝑉 ℎ+1,𝑖)(𝑠,𝑎)− 𝛽𝑡, 0}.

10: for 𝑠 ∈ 𝒮 do
11: 𝜋ℎ(·|𝑠)← Equilibrium(𝑄ℎ,1(𝑠, ·), 𝑄ℎ,2(𝑠, ·), · · · , 𝑄ℎ,𝑀(𝑠, ·)).
12: for player 𝑖 = 1, 2, . . . ,𝑚 do
13: 𝑉 ℎ,𝑖(𝑠)← (D𝜋ℎ𝑄ℎ,𝑖)(𝑠); 𝑉 ℎ,𝑖(𝑠)← (D𝜋ℎ𝑄ℎ,𝑖

)(𝑠).
14: if max𝑖∈[𝑚](𝑉 1,𝑖 − 𝑉 1,𝑖)(𝑠1) < Δ then
15: Δ← max𝑖∈[𝑚](𝑉 1,𝑖 − 𝑉 1,𝑖)(𝑠1) and 𝜋out ← 𝜋.
16: for step ℎ = 1, . . . , 𝐻 do
17: Take action 𝑎ℎ ∼ 𝜋ℎ(·|𝑠ℎ), observe reward 𝑟ℎ and next state 𝑠ℎ+1.
18: Add 1 to 𝑁ℎ(𝑠ℎ,𝑎ℎ) and 𝑁ℎ(𝑠ℎ,𝑎ℎ, 𝑠ℎ+1).
19: ̂︀Pℎ(·|𝑠ℎ,𝑎ℎ)← 𝑁ℎ(𝑠ℎ,𝑎ℎ, ·)/𝑁ℎ(𝑠ℎ,𝑎ℎ).
20: Output 𝜋out.

Theorem 20 (Multi-Nash-VI). There exists an absolute constant 𝑐, for any 𝑝 ∈

(0, 1], let 𝜄 = log(𝑆𝐴𝐵𝑇/𝑝), then with probability at least 1 − 𝑝, Algorithm 3 with

bonus 𝛽𝑡 = 𝑐
√︀
𝑆𝐻2𝜄/𝑡 and Equilibrium being one of {Nash,CE,CCE} satisfies

(repsectively):

∙ 𝜋out is an 𝜀-approximate {Nash,CE,CCE}, if the number of episodes 𝐾 ≥

Ω(𝐻4𝑆2(
∏︀𝑚

𝑖=1𝐴𝑖)𝜄/𝜀
2).

∙ R{Nash,CE,CCE}(𝐾) ≤ 𝒪(
√︀
𝐻3𝑆2(

∏︀𝑚
𝑖=1𝐴𝑖)𝑇𝜄).

In the situation where the Equilibrium subroutine is taken as Nash, Theo-

rem 20 provides the sample complexity bound of Multi-Nash-VI algorithm to find an

𝜀-approximate Nash equilibrium and its regret bound. Compared with our earlier re-

sult in two-player zero-sum games (Theorem 16), here the sample complexity scales as

𝑆2𝐻4 instead of 𝑆𝐻3. This is because the auxiliary bonus and Bernstein concentra-

80

Algorithm 4 Multiplayer Optimistic Value Iteration with Zero Reward (Multi-VI-
Zero)

1: Initialize: for any (𝑠,𝑎, ℎ), ̃︀𝑉ℎ(𝑠,𝑎)← 𝐻, Δ← 𝐻, 𝑁ℎ(𝑠,𝑎)← 0.
2: for episode 𝑘 = 1, . . . , 𝐾 do
3: for step ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for (𝑠,𝑎) ∈ 𝒮 ×𝒜1 × · · · × 𝒜𝑚 do
5: 𝑡← 𝑁ℎ(𝑠,𝑎).
6: if 𝑡 > 0 then
7: ̃︀𝑄ℎ(𝑠,𝑎)← min{(̂︀Pℎ̃︀𝑉ℎ+1)(𝑠,𝑎) + 𝛽𝑡, 𝐻}.
8: for 𝑠 ∈ 𝒮 do
9: 𝜋ℎ(𝑠)← argmax𝑎∈𝒜1×···×𝒜𝑚

̃︀𝑄ℎ(𝑠,𝑎).
10: ̃︀𝑉ℎ(𝑠)← (D𝜋ℎ

̃︀𝑄ℎ)(𝑠).
11: if ̃︀𝑉1(𝑠1) < Δ then
12: Δ← ̃︀𝑉1(𝑠1) and ̂︀Pout ← ̂︀P.
13: for step ℎ = 1, . . . , 𝐻 do
14: take action 𝑎ℎ ∼ 𝜋ℎ(·, ·|𝑠ℎ), observe next state 𝑠ℎ+1.
15: add 1 to 𝑁ℎ(𝑠ℎ,𝑎ℎ) and 𝑁ℎ(𝑠ℎ,𝑎ℎ, 𝑠ℎ+1).
16: ̂︀Pℎ(·|𝑠ℎ,𝑎ℎ)← 𝑁ℎ(𝑠ℎ,𝑎ℎ, ·)/𝑁ℎ(𝑠ℎ,𝑎ℎ).
17: Output ̂︀Pout.

tion technique do not apply here. Furthermore, the sample complexity is proportional

to
∏︀𝑚

𝑖=1𝐴𝑖, which increases exponentially as the number of players increases.

Runtime of Algorithm 3 We remark that while the Nash guarantee is the strongest

among the three guarantees presented in Theorem 20, the runtime of Algorithm 3 in

the Nash case is not guaranteed to be polynomial and in the worst case PPAD-

hard (due to the hardness of the Nash subroutine). In contrast, the CE and CCE

guarantees are weaker, but the corresponding algorithms are guaranteed to finish in

polynomial time.

3.4.2 Multiplayer reward-free learning

We can also generalize VI-Zero to the multiplayer setting and obtain Algorithm 4,

Multi-VI-Zero, which is almost the same as VI-Zero except that its exploration bonus

𝛽𝑡 is larger than that of VI-Zero by a
√
𝑆 factor.

Similar to Theorem 18, we have the following theoretical guarantee claiming that

81

any {Nash,CCE,CE} of theℳ(̂︀P, ̂︀𝑟𝑖) (𝑖 ∈ [𝑁]) is also an approximate {Nash,CCE,CE}

of the true Markov game ℳ(P, 𝑟𝑖), where ̂︀Pout is the empirical transition outputted

by Algorithm 4 and ̂︀𝑟𝑖 is the empirical estimate of 𝑟𝑖.

Theorem 21 (Multi-VI-Zero). There exists an absolute constant 𝑐, for any 𝑝 ∈ (0, 1],

𝜀 ∈ (0, 𝐻], 𝑁 ∈ N, if we choose bonus 𝛽𝑡 = 𝑐
√︀
𝐻2𝑆𝜄/𝑡 with 𝜄 = log(𝑁𝑆𝐴𝐵𝑇/𝑝) and

𝐾 ≥ 𝑐(𝐻4𝑆2(
∏︀𝑚

𝑖=1𝐴𝑖)𝜄/𝜀
2), then with probability at least 1− 𝑝, the output ̂︀Pout of Al-

gorithm 4 has the following property: for any 𝑁 fixed reward functions 𝑟1, . . . , 𝑟𝑁 , any

{Nash,CCE,CE} of Markov gameℳ(̂︀Pout, ̂︀𝑟𝑖) is also an 𝜀-approximate {Nash,CCE,CE}

of the true Markov game ℳ(P, 𝑟𝑖) for all 𝑖 ∈ [𝑁].

The proof of Theorem 21 can be found in Appendix B.3.2. It is worth mention-

ing that the empirical Markov game ℳ(̂︀Pout, ̂︀𝑟𝑖) may have multiple {Nash equilib-

ria,CCEs,CEs} and Theorem 21 ensures that all of them are 𝜀-approximate {Nash

equilibria,CCEs,CEs} of the true Markov game. Also, note that the sample complex-

ity here is quadratic in the number of states because we are using the exploration

bonus 𝛽𝑡 =
√︀
𝐻2𝑆𝜄/𝑡 that is larger than usual by a

√
𝑆 factor.

82

Chapter 4

Markov Games: Model-free Learning

Chapter 3 introduces a sample-efficient method for learning in Markov games using

a model-based approach. While this approach offers promise, it also presents several

challenges that have to be addressed.

One such challenge is the curse of multiagents—let 𝐴𝑖 be the number of actions

for the 𝑖-th player, then the number of possible joint actions (as well as the number of

parameters to specify a Markov game) scales with
∏︀𝑚

𝑖=1𝐴𝑖, which grows exponentially

with the number of agents 𝑚. This remains to be a bottleneck even for the best

existing algorithms for learning Markov games. In fact, a majority of these algorithms

adapt the classical single-agent algorithms, such as value iteration or Q-learning, into

the multiagent setting Bai et al. [2020], Liu et al. [2021], whose sample complexity

scales at least linearly with respect to
∏︀𝑚

𝑖=1𝐴𝑖. This is prohibitively large in practice

even for fairly small multiagent applications, say only ten agents are involved with

ten actions available for each agent.

Another remaining challenge is to design decentralized algorithms. While a cen-

tralized algorithm requires the existence of a centralized controller which gathers all

information and jointly optimizes the policies of all agents, a decentralized algorithm

allows each agent to only observe her own actions and rewards while optimizing her

own policy independently. Decentralized algorithms are usually preferred over cen-

tralized algorithms in practice since

83

1. Decentralized algorithms are typically easier to implement as we only need to

implement single-agent algorithms for each player without complex interactions;

2. Decentralized algorithms are more versatile as the individual learners are indif-

ferent to the interaction and the number of other agents; and

3. They are also faster in the systems where communication is the bottleneck, due

to less communication required.

While several provable decentralized MARL algorithms have been developed [see,

e.g., Zhang et al., 2018, Sayin et al., 2021, Daskalakis et al., 2020], they either have

only asymptotic guarantees or work only under certain reachability assumptions (see

Section 1.2). The existing provably efficient algorithms for general Markov games

(without further assumptions) are exclusively centralized algorithms [Bai and Jin,

2020, Xie et al., 2020, Liu et al., 2021].

This motivates us to ask the following open question:

Can we design decentralized MARL algorithms that break the curse of

multiagents?

This chapter addresses both challenges mentioned above, and provides the first

positive answer to this question in the basic setting of tabular episodic Markov games.

We propose a new class of single-agent RL algorithms—V-learning, which converts

any adversarial bandit algorithm with suitable regret guarantees into an RL algo-

rithm. Similar to the classical Q-learning algorithm, V-learning also performs incre-

mental updates to the values. Different from Q-learning, V-learning only maintains

the V-value functions instead of the Q-value functions. We remark that the number

of parameters of Q-value functions in MARL is 𝒪(𝑆
∏︀𝑚

𝑖=1𝐴𝑖), where 𝑆 is the number

of states, while the number of parameters of V-value functions is only 𝒪(𝑆). This

key difference allows V-learning to be readily extended to the MARL setting by sim-

ply letting all agents run V-learning independently, which gives a fully decentralized

algorithm.

84

Algorithm 5 V-learning

1: Initialize: for any (𝑠, 𝑎, ℎ), 𝑉ℎ(𝑠)← 𝐻 + 1− ℎ, 𝑁ℎ(𝑠)← 0, 𝜋ℎ(𝑎|𝑠)← 1/𝐴.
2: for episode 𝑘 = 1, . . . , 𝐾 do
3: receive 𝑠1.
4: for step ℎ = 1, . . . , 𝐻 do
5: take action 𝑎ℎ ∼ 𝜋ℎ(·|𝑠ℎ), observe reward 𝑟ℎ and next state 𝑠ℎ+1.
6: 𝑡 = 𝑁ℎ(𝑠ℎ)← 𝑁ℎ(𝑠ℎ) + 1.
7: 𝑉ℎ(𝑠ℎ)← (1− 𝛼𝑡)𝑉ℎ(𝑠ℎ) + 𝛼𝑡(𝑟ℎ + 𝑉ℎ+1(𝑠ℎ+1) + 𝛽𝑡).
8: 𝑉ℎ(𝑠ℎ)← min{𝐻 + 1− ℎ, 𝑉ℎ(𝑠ℎ)}.
9: 𝜋ℎ(·|𝑠ℎ)← Adv_Bandit_Update(𝑎ℎ,

𝐻−𝑟ℎ−𝑉ℎ+1(𝑠ℎ+1)

𝐻
) on (𝑠ℎ, ℎ)-th adver-

sarial bandit.

4.1 V-Learning Algorithm

In this section, we introduce the V-learning algorithm as a new class of single-agent

RL algorithms, which converts any adversarial bandit algorithm with suitable regret

guarantees into an RL algorithm. We also present its theoretical guarantees for finding

a nearly optimal policy in the single-agent setting.

4.1.1 Training algorithm

To begin with, we describe the V-learning algorithm (Algorithm 5). It maintains

a value 𝑉ℎ(𝑠), a counter 𝑁ℎ(𝑠), and a policy 𝜋ℎ(·|𝑠) for each state 𝑠 and step ℎ, and

initializes them to be the max value, 0, and uniform distribution respectively. V-

learning also instantiates 𝑆×𝐻 different adversarial bandit algorithms—one for each

(𝑠, ℎ) pair. At each step ℎ in each episode 𝑘, the algorithm performs three major

steps:

∙ Policy execution (Line 5-6): the algorithm takes action 𝑎ℎ according to the

maintained 𝜋ℎ, then observes the reward 𝑟ℎ and the next state 𝑠ℎ+1, and in-

creases the counter 𝑁ℎ(𝑠ℎ) by 1.

∙ 𝑉 -value update (Line 7-8): the algorithm performs incremental update to the

value function:

𝑉ℎ(𝑠ℎ)← (1− 𝛼𝑡)𝑉ℎ(𝑠ℎ) + 𝛼𝑡(𝑟ℎ + 𝑉ℎ+1(𝑠ℎ+1) + 𝛽𝑡) (4.1)

85

Protocol 6 Adversarial Bandit Algorithm
1: Initialize: for any 𝑏, 𝜃1(𝑏)← 1/𝐵.
2: for step 𝑡 = 1, . . . , 𝑇 do
3: adversary chooses loss ℓ𝑡.
4: take action 𝑏𝑡 ∼ 𝜃𝑡, observe noisy bandit-feedback ℓ̃𝑡(𝑏𝑡).
5: 𝜃𝑡+1 ← Adv_Bandit_Update(𝑏𝑡, ℓ̃𝑡(𝑏𝑡)).

where 𝛼𝑡 is the learning rate, and 𝛽𝑡 is the bonus to promote optimism (and

exploration). The choices of both quantities will be specified later. Next, we

simply update 𝑉ℎ as a truncated version of 𝑉ℎ.

∙ Policy update (Line 9): the algorithm feeds the action 𝑎ℎ and its “loss” 𝐻−𝑟ℎ−𝑉ℎ+1(𝑠ℎ+1)

𝐻

to the (𝑠ℎ, ℎ)-th adversarial bandit algorithm, and receives the updated policy

𝜋ℎ(·|𝑠ℎ).

Throughout this paper, we will always use the following learning rate 𝛼𝑡. We

also define an auxiliary sequence {𝛼𝑖𝑡}𝑡𝑖=1 based on the learning rate, which will be

frequently used across the paper.

𝛼𝑡 =
𝐻 + 1

𝐻 + 𝑡
, 𝛼0

𝑡 =
𝑡∏︁

𝑗=1

(1− 𝛼𝑗), 𝛼𝑖𝑡 = 𝛼𝑖

𝑡∏︁
𝑗=𝑖+1

(1− 𝛼𝑗). (4.2)

We remark that our incremental update (4.1) bears significant similarity to Q-learning,

and our choice of learning rate is precisely the same as the choice in Q-learning [Jin

et al., 2018]. However, a key difference is that the V-learning algorithm maintains

V-value functions instead of Q-value functions. This is crucial when extending V-

learning to the multiplayer setting where the number of parameters of Q-value func-

tions becomes 𝒪(𝐻𝑆
∏︀𝑚

𝑖=1𝐴𝑖) while the number of parameters of V-value functions

is only 𝒪(𝐻𝑆). Since V-learning does not use action-value functions, it resorts to

adversarial bandit algorithms to update its policy.

Adv_Bandit_Update subroutine: Consider a multi-arm bandit problem with

adversarial loss, where we denote the action set by ℬ with |ℬ| = 𝐵. At round 𝑡,

the learner picks a strategy (distribution over actions) 𝜃𝑡 ∈ Δℬ, and the adversary

86

Algorithm 7 Executing Output Policy ̂︀𝜋 of V-learning

1: sample 𝑘 ← Uniform([𝐾]).
2: for step ℎ = 1, . . . , 𝐻 do
3: observe 𝑠ℎ, and set 𝑡← 𝑁𝑘

ℎ (𝑠ℎ).
4: set 𝑘 ← 𝑘𝑖ℎ(𝑠ℎ), where 𝑖 ∈ [𝑡] is sampled with probability 𝛼𝑖𝑡.
5: take action 𝑎ℎ ∼ 𝜋𝑘ℎ(·|𝑠ℎ).

chooses a loss vector ℓ𝑡 ∈ [0, 1]𝐵. Then the learner takes an action 𝑏𝑡 that is sam-

pled from distribution 𝜃𝑡, and receives a noisy bandit-feedback ℓ̃𝑡(𝑏𝑡) ∈ [0, 1] where

E[ℓ̃𝑡(𝑏𝑡)|ℓ𝑡, 𝑏𝑡] = ℓ𝑡(𝑏𝑡). Then, the adversarial bandit algorithm performs updates

based on 𝑏𝑡 and ℓ̃𝑡(𝑏𝑡), and outputs the strategy for next round 𝜃𝑡+1, which we ab-

stract as 𝜃𝑡+1 ← Adv_Bandit_Update(𝑏𝑡, ℓ̃𝑡(𝑏𝑡)) (see Protocol 6).

4.1.2 Output policy

We define the final output policy ̂︀𝜋 of V-learning by how to execute this policy (see

Algorithm 7). Let 𝑉 𝑘, 𝑁𝑘, 𝜋𝑘 be the value, counter and policy maintained by the V-

learning algorithm at the beginning of episode 𝑘. The output policy maintains a scalar

𝑘, which is initially uniformly sampled from [𝐾]. At each step ℎ, after observing 𝑠ℎ, ̂︀𝜋
plays a mixture of policy {𝜋𝑘𝑖ℎ (·|𝑠ℎ)}𝑡𝑖=1 with corresponding probability {𝛼𝑖𝑡}𝑡𝑖=1 defined

in (4.2). Here 𝑡 = 𝑁𝑘
ℎ (𝑠ℎ) is the number of times 𝑠ℎ is visited at step ℎ at the beginning

of episode 𝑘, and 𝑘𝑖 is short for 𝑘𝑖ℎ(𝑠ℎ) which is the index of the episode when 𝑠ℎ is

visited at step ℎ for the 𝑖-th time. After that, ̂︀𝜋 sets 𝑘 to be the index 𝑘𝑖ℎ(𝑠ℎ) whose

policy is just played within the mixture, and continues the same process for the next

step. This mixture form of output policy ̂︀𝜋 is mainly due to the incremental updates of

V-learning. One can show that, if omitting the optimistic bonus, 𝑉 𝐾
1 (𝑠1) computed

in the V-learning algorithm is a stochastic estimate of the value of policy ̂︀𝜋. See

Figure 4-1 for a comparison between the certified policy techinique and conventional

online-to-batch conversion.

We remark that ̂︀𝜋 is not a Markov policy, but a general random policy (see

Definition in Section 2.1.1), which can be written as a set of maps {𝜋ℎ : Ω×𝒮ℎ → 𝒜𝑖}.

The choice of action at each step ℎ depends on a joint randomness 𝜔 ∈ Ω which is

87

Figure 4-1: A comparison between the conventional online-to-batch conversion (left)
and the certified policy (right). While conventional online-to-batch conversion uses
uniform weighting and episode-wise average, certified policy uses non-uniform re-
weighting and step-wise average.

shared among all steps, and the history of past states (𝑠1, . . . , 𝑠ℎ). In Section 4.4, we

will further introduce a simple monotone technique that allows V-learning to output

a Markov policy in both the single-agent and the two-player zero-sum setting.

4.1.3 Single-agent guarantees

We first state our requirement for the adversarial bandit algorithm used in V-learning,

which is to have a high probability weighted external regret guarantee as follows. The

weights {𝛼𝑖𝑡}𝑡𝑖=1 are defined in (4.2).

Assumption 1. For any 𝑡 ∈ N and any 𝛿 ∈ (0, 1), with probability at least 1− 𝛿, we

have

max
𝜃∈Δℬ

𝑡∑︁
𝑖=1

𝛼𝑖𝑡[⟨𝜃𝑖, ℓ𝑖⟩ − ⟨𝜃, ℓ𝑖⟩] ≤ 𝜉(𝐵, 𝑡, log(1/𝛿)). (4.3)

We further assume the existence of an upper bound Ξ(𝐵, 𝑡, log(1/𝛿)) ≥
∑︀𝑡

𝑡′=1 𝜉(𝐵, 𝑡
′, log(1/𝛿))

where

∙ 𝜉(𝐵, 𝑡, log(1/𝛿)) is non-decreasing in 𝐵 for any 𝑡, 𝛿;

∙ Ξ(𝐵, 𝑡, log(1/𝛿)) is concave in 𝑡 for any 𝐵, 𝛿.

88

Assumption 1 can be satisfied by modifying many existing algorithms with un-

weighted external regret to the weighted setting. In particular, we prove that the

Follow-the-Regularized-Leader (FTRL) algorithm (Algorithm 19) satisfies the As-

sumption 1 with bounds

𝜉(𝐵, 𝑡, log(1/𝛿)) ≤ 𝒪(
√︀
𝐻𝐵 log(𝐵/𝛿)/𝑡), Ξ(𝐵, 𝑡, log(1/𝛿)) ≤ 𝒪(

√︀
𝐻𝐵𝑡 log(𝐵/𝛿)).

The 𝐻 factor comes into the bounds because our choice of weights {𝛼𝑖𝑡} in (4.2)

involves 𝐻. We refer readers to Appendix C.6 for more details.

We are now ready to introduce the theoretical guarantees of V-learning for finding

near-optimal policies in the single-agent setting.

Theorem 22. Suppose subroutine Adv_Bandit_Update satisfies Assumption 1.

For any 𝛿 ∈ (0, 1) and 𝐾 ∈ N, let 𝜄 = log(𝐻𝑆𝐴𝐾/𝛿). Choose learning rate 𝛼𝑡

according to (4.2) and bonus {𝛽𝑡}𝐾𝑡=1 so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑖 = Θ(𝐻𝜉(𝐴, 𝑡, 𝜄) +

√︀
𝐻3𝜄/𝑡)

for any 𝑡 ∈ [𝐾]. Then, with probability at least 1 − 𝛿, after running Algorithm 5 for

𝐾 episodes, the output policy ̂︀𝜋 of Algorithm 7 satisfies

𝑉 ⋆
1 (𝑠1)− 𝑉 ̂︀𝜋

1 (𝑠1) ≤ 𝒪((𝐻2𝑆/𝐾) · Ξ(𝐴,𝐾/𝑆, 𝜄) +
√︀
𝐻5𝑆𝜄/𝐾).

In particular, when instantiating subroutine Adv_Bandit_Update by FTRL (Al-

gorithm 19), we can choose 𝛽𝑡 = 𝑐 ·
√︀
𝐻3𝐴𝜄/𝑡 for some absolute constant 𝑐, where

𝑉 ⋆
1 (𝑠1)− 𝑉 ̂︀𝜋

1 (𝑠1) ≤ 𝒪(
√︀
𝐻5𝑆𝐴𝜄/𝐾).

The special cases of Theorem 22 and Theorem 23 (when the subroutine is instanti-

ated by FTRL) were firstly presented [Bai et al., 2020], with an additional
√
𝐻 factor

in the error due to a looser choice of hyperparameter.

Theorem 22 characterizes how fast the suboptimality of ̂︀𝜋 decreases with respect

to the total number of episodes 𝐾. In particular, to obtain an 𝜀-optimal output

policy ̂︀𝜋, we only need to use a number of episodes 𝐾 = 𝒪̃(𝐻5𝑆𝐴/𝜀2). This is 𝐻2

factor larger than the information-theoretic lower bound Ω(𝐻3𝑆𝐴/𝜀2) in this setting

[Jin et al., 2018]. We remark that one extra 𝐻 factor is due to the incremental

89

update and the use of learning rate in (4.2) which is exactly the same for Q-learning

algorithm [Jin et al., 2018]. The other 𝐻 factor can be potentially improved by using

refined first-order regret bound in V-learning. A first-order regret bound Agarwal

et al. [2017] is a data-dependent regret bound that depends on the minimum total

loss incurred instead of the total number of steps. This makes it possible to further

combine the current analysis with Bernstein-type concentration and a sharper total

variance bound Azar et al. [2017]. We leave this as future work.

While V-learning seems to be no better than classical value iteration or Q-learning

in the single-agent setting, its true power starts to show up in the multiagent setting:

Value iteration and Q-learning require highly nontrivial efforts to adapt them to the

multiagent setting, and by design they suffer from the curse of multiagents [Bai et al.,

2020, Liu et al., 2021]. In the following sections, we will show that V-learning can be

directly extended to the multiagent setting by simply letting all agents run V-learning

independently. Furthermore, V-learning breaks the curse of multiagents.

4.2 Two-player Zero-sum Markov Games

In this section, we provide the sample efficiency guarantee for V-learning to find Nash

equilibria in two-player zero-sum Markov games.

4.2.1 Finding Nash equilibria

In the two-player zero-sum setting, we have two agents whose rewards satisfy 𝑟1,ℎ =

−𝑟2,ℎ for any ℎ ∈ [𝐻]. Our algorithm is simply that both agents run V-learning

(Algorithm 5) independently with learning rate 𝛼𝑡 as specified in (4.2). Each player

𝑗 will uses her own set of bonus {𝛽𝑗,𝑡} that depends on the number of her actions

and will be specified later. To execute the output policy, both agents simply execute

Algorithm 7 independently using their own intermediate policies computed by V-

learning.

We have the following theorem for V-learning. For clean presentation, we denote

𝐴 = max𝑗∈[2]𝐴𝑗.

90

Theorem 23. Suppose subroutine Adv_Bandit_Update satisfies Assumption 1.

For any 𝛿 ∈ (0, 1) and 𝐾 ∈ N, let 𝜄 = log(𝐻𝑆𝐴𝐾/𝛿). Choose learning rate

𝛼𝑡 according to (4.2) and bonus {𝛽𝑗,𝑡}𝐾𝑡=1 of the 𝑗-th player so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 =

Θ(𝐻𝜉(𝐴𝑗, 𝑡, 𝜄)+
√︀
𝐻3𝜄/𝑡) for any 𝑡 ∈ [𝐾]. After running Algorithm 5 for 𝐾 episodes,

let ̂︀𝜋1, ̂︀𝜋2 be the output policies by Algorithm 7 for each player. Then with probability

at least 1− 𝛿, the product policy ̂︀𝜋 = ̂︀𝜋1 × ̂︀𝜋2 satisfies

max
𝑗∈[2]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪((𝐻2𝑆/𝐾) · Ξ(𝐴,𝐾/𝑆, 𝜄) +

√︀
𝐻5𝑆𝜄/𝐾).

When instantiating Adv_Bandit_Update by FTRL (Algorithm 19), we can

choose 𝛽𝑗,𝑡 = 𝑐 ·
√︀
𝐻3𝐴𝑗𝜄/𝑡 for some absolute constant 𝑐, which leads to

max
𝑗∈[2]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪(

√︀
𝐻5𝑆𝐴𝜄/𝐾).

Theorem 23 claims that, to find an 𝜀−approximate Nash equilibrium, we only

need to use a number of episodes 𝐾 = 𝒪̃(𝐻5𝑆𝐴/𝜀2), where 𝐴 = max𝑗∈[2]𝐴𝑗. In con-

trast, value iteration or Q-learning-based algorithms require at least Ω(𝐻3𝑆𝐴1𝐴2/𝜀
2)

episodes to find Nash equilibria Bai et al. [2020], Liu et al. [2021]. Furthermore, V-

learning is a fully decentralized algorithm. To our best knowledge, V-learning is the

only algorithm up to today that achieves sample complexity linear in 𝐴 for finding

Nash equilibrium in two-player zero-sum Markov games.

We remark that V-learning only performs 𝒪(1) operations and calls subroutine

Adv_Bandit_Update once every time a new sample is observed. As long as the

adversarial bandit algorithm used in V-learning is computationally efficient (which is

the case for FTRL), V-learning itself is also computationally efficient.

4.3 Multiplayer General-sum Markov Games

In multiplayer general-sum games, finding Nash equilibria is computationally hard

in general (which is technically PPAD-complete Daskalakis [2013]). In this section,

91

we focus on finding two commonly-used alternative notions of equilibria in the game

theory—coarse correlated equilibria and correlated equilibria. Both are relaxed no-

tions of Nash equilibria.

4.3.1 Finding coarse correlated equilibria

The algorithm for finding CCE is again running V-learning (Algorithm 5) indepen-

dently for each agent 𝑗 with learning rate 𝛼𝑡 (as specified in (4.2)) and bonus {𝛽𝑗,𝑡}

(to be specified later). The major difference from the case of finding Nash equilibria

is that CCE and CE require the output policy to be a joint correlated policy. We

achieve this correlation by feeding the same random seed to all agents at the very

beginning when they execute the output policy according to Algorithm 7. That is,

while training can be done in a fully decentralized fashion, we require one round of

communication at the beginning of the execution to broadcast the shared random

seed. After that, each agent can simply execute her own output policy indepen-

dently. During the execution, since the states visited are shared among all agents,

shared random seed allows the same index 𝑖 to be sampled across all agents in the

Step 4 of Algorithm 7 at every step. We denote this correlated joint output policy aŝ︀𝜋 = ̂︀𝜋1 ⊙ . . .⊙ ̂︀𝜋𝑚.

We remark that to specify a correlated policy in general, we need to specify the

probability for taking all action combinations (𝑎1, . . . , 𝑎𝑚) for each (𝑠, ℎ). This re-

quires at least Ω(𝐻𝑆
∏︀𝑚

𝑗=1𝐴𝑗) space, which grows exponentially with the number of

agents 𝑚. The way V-learning specifies the joint policy only requires agents to store

their own intermediate counters and policies computed during training. This only

takes a total of 𝒪(𝐻𝑆𝐾(
∑︀𝑚

𝑗=1𝐴𝑗)) space, which scales only linearly with the number

of agents. Our approach dramatically improves over the former approach in space

complexity when the number of agents is large.

We now present the guarantees for V-learning to learn a CCE as follows. Let

𝐴 = max𝑗∈[𝑚]𝐴𝑗.

Theorem 24. Suppose subroutine Adv_Bandit_Update satisfies Assumption 1.

92

For any 𝛿 ∈ (0, 1) and 𝐾 ∈ N, let 𝜄 = log(𝑚𝐻𝑆𝐴𝐾/𝛿). Choose learning rate

𝛼𝑡 according to (4.2) and bonus {𝛽𝑗,𝑡}𝐾𝑡=1 of the 𝑗-th player so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 =

Θ(𝐻𝜉(𝐴𝑗, 𝑡, 𝜄) +
√︀
𝐻3𝜄/𝑡) for any 𝑡 ∈ [𝐾]. After all the players running Algorithm 5

for 𝐾 episodes, let ̂︀𝜋𝑗 be the output policy by Algorithm 7 for the 𝑗-th player. Then

with probability at least 1− 𝛿, the joint policy ̂︀𝜋 = ̂︀𝜋1 ⊙ . . .⊙ ̂︀𝜋𝑚 satisfies

max
𝑗∈[𝑚]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪((𝐻2𝑆/𝐾) · Ξ(𝐴,𝐾/𝑆, 𝜄) +

√︀
𝐻5𝑆𝜄/𝐾).

When instantiating Adv_Bandit_Update by FTRL (Algorithm 19), we can choose

𝛽𝑗,𝑡 = 𝑐 ·
√︀
𝐻3𝐴𝑗𝜄/𝑡 for some absolute constant 𝑐, which leads to

max
𝑗∈[𝑚]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪(

√︀
𝐻5𝑆𝐴𝜄/𝐾).

Theorem 24 claims that, to find an 𝜀−approximate CCE, V-learning only needs to

use a number of episodes 𝐾 = 𝒪̃(𝐻5𝑆𝐴/𝜀2), where 𝐴 = max𝑗∈[𝑚]𝐴𝑗. This is in sharp

contrast to the prior results for multiplayer general-sum Markov games, which use

value-iteration-based algorithms, and require at least Ω(𝐻4𝑆2(
∏︀𝑚

𝑖=1𝐴𝑖)/𝜀
2) episodes

Liu et al. [2021]. As a result, V-learning is the first algorithm that breaks the curse

of multiagents for finding CCE in Markov games.

4.3.2 Finding correlated equilibria

The algorithm for finding CE is almost the same as the algorithm for finding CCE

except that we now require a different Adv_Bandit_Update subroutine, which

has the following high probability weighted swap regret guarantee.

Assumption 2. For any 𝑡 ∈ N and any 𝛿 > 0, with probability at least 1 − 𝛿, we

have

max
𝜓∈Ψ

𝑡∑︁
𝑖=1

𝛼𝑖𝑡[⟨𝜃𝑖, 𝑙𝑖⟩ − ⟨𝜓 ◇ 𝜃𝑖, 𝑙𝑖⟩] ≤ 𝜉sw(𝐵, 𝑡, log(1/𝛿)). (4.4)

We assume the existence of an upper bound Ξsw(𝐵, 𝑡, log(1/𝛿)) ≥
∑︀𝑡

𝑡′=1 𝜉sw(𝐵, 𝑡
′, log(1/𝛿))

where

93

∙ 𝜉sw(𝐵, 𝑡, log(1/𝛿)) is non-decreasing in 𝐵 for any 𝑡, 𝛿;

∙ Ξsw(𝐵, 𝑡, log(1/𝛿)) is concave in 𝑡 for any 𝐵, 𝛿.

Here Ψ denotes the set {𝜓 : ℬ → ℬ} which consists of all maps from actions in

ℬ to actions in ℬ. Meanwhile, for any 𝜃 ∈ Δℬ, the term 𝜓 ◇ 𝜃 ∈ Δℬ denotes the

distribution over actions where 𝜓 ◇ 𝜃(𝑏) =
∑︀

𝑏′:𝜓(𝑏′)=𝑏 𝜃(𝑏
′). We note that bounded

swap regret is a stronger requirement compared to bounded external regret as in

(4.3), since by maximizing over a subset of functions in Ψ which map all actions in

ℬ to one single action, we recover the external regret by (4.4).

Assumption 2 can be satisfied by modifying many existing algorithms with exter-

nal regret to the swap regret setting. In particular, we prove that the Follow-the-

Regularized-Leader for swap regret (FTRL_swap) algorithm (Algorithm 20) satisfies

Assumption 2 with bounds

𝜉sw(𝐵, 𝑡, log(1/𝛿)) ≤ 𝒪(𝐵
√︀
𝐻 log(𝐵/𝛿)/𝑡), Ξsw(𝐵, 𝑡, log(1/𝛿)) ≤ 𝒪(𝐵

√︀
𝐻𝑡 log(𝐵/𝛿)).

Both bounds have one extra
√
𝐵 factor compared to the counterparts in external

regret. We refer readers to Appendix C.7 for more details.

We now present the guarantees for V-learning to learn a CCE as follows. Let

𝐴 = max𝑗∈[𝑚]𝐴𝑗.

Theorem 25. Suppose subroutine Adv_Bandit_Update satisfies Assumption 2.

For any 𝛿 ∈ (0, 1) and 𝐾 ∈ N, let 𝜄 = log(𝑚𝐻𝑆𝐴𝐾/𝛿). Choose learning rate

𝛼𝑡 according to (4.2) and bonus {𝛽𝑗,𝑡}𝐾𝑡=1 of the 𝑗-th player so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 =

Θ(𝐻𝜉sw(𝐴𝑗, 𝑡, 𝜄) +
√︀
𝐻3𝜄/𝑡) for any 𝑡 ∈ [𝐾]. After all the players running Algorithm

5 for 𝐾 episodes, let ̂︀𝜋𝑗 be the output policy by algorithm 7 for the 𝑗-th player. Then

with probability at least 1− 𝛿, the joint policy ̂︀𝜋 = ̂︀𝜋1 ⊙ . . .⊙ ̂︀𝜋𝑚 satisfies

max
𝑗∈[𝑚]

max
𝜑𝑗

[𝑉
𝜑𝑗◇̂︀𝜋
𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋

𝑗,1(𝑠1)] ≤ 𝒪((𝐻2𝑆/𝐾) · Ξsw(𝐴,𝐾/𝑆, 𝜄) +
√︀
𝑆𝐻5𝜄/𝐾).

When instantiating Adv_Bandit_Update by FTRL_swap (Algorithm 20), we can

94

choose 𝛽𝑗,𝑡 = 𝑐 · 𝐴𝑗
√︀
𝐻3𝜄/𝑡 for some absolute constant 𝑐, which leads to

max
𝑗∈[𝑚]

max
𝜑𝑗

[𝑉
𝜑𝑗◇̂︀𝜋
𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋

𝑗,1(𝑠1)] ≤ 𝒪(𝐴
√︀
𝐻5𝑆𝜄/𝐾).

Theorem 25 claims that, to find an 𝜀−approximate CE, V-learning only needs to

use a number of episodes 𝐾 = 𝒪̃(𝐻5𝑆𝐴2/𝜀2), where 𝐴 = max𝑗∈[𝑚]𝐴𝑗. It has an extra

𝐴 multiplicative factor compared to the sample complexity of finding CCE, since CE

is a subset of CCE thus finding CE is expected to be more difficult. Nevertheless, the

sample complexity presented here is far better than value-iteration-based algorithms,

which requires at least Ω(𝐻4𝑆2(
∏︀𝑚

𝑖=1𝐴𝑖)/𝜀
2) episodes for finding CE Liu et al. [2021].

V-learning is also the first algorithm that breaks the curse of multiagents for finding

CE in Markov games.

4.4 Monotonic V-Learning

In the previous sections, we present the V-learning algorithm whose output policy

(Algorithm 7) is a nested mixture of Markov policies. Storing such an output policy

requires 𝒪(𝐻𝑆𝐴𝑗𝐾) space for the 𝑗-th player. In Section 4.3, we argue this approach

has a significant advantage over directly storing a general correlated policy when the

number of agents is large. Nevertheless, this space complexity can be undesirable

when the number of agents is small.

In this section, we introduce a simple monotonic technique to V-learning, which

allows each agent to output a Markov policy when finding Nash equilibria in the two-

player zero-sum setting. Storing a Markov policy only takes 𝒪(𝐻𝑆𝐴𝑗) space for the

𝑗-th player. A similar result for the single-agent setting can be immediately obtained

by setting the second player in the Markov game to be a dummy player with only a

single action to choose from.

95

Monotonic update Monotonic V-learning is almost the same as V-learning with

only the Line 8 in Algorithm 5 changed to

𝑉ℎ(𝑠ℎ)← min{𝐻 + 1− ℎ, 𝑉ℎ(𝑠ℎ), 𝑉ℎ(𝑠ℎ)}. (4.5)

This step guarantees 𝑉ℎ(𝑠ℎ) to monotonically decrease at each step. This is helpful

because in two-player zero-sum Markov games, all Nash equilibria share a unique

value which we denote as 𝑉 ⋆. By design, we can prove that the V-values maintained

in V-learning are high probability upper bounds of 𝑉 ⋆ (Lemma 96). This monotonic

update allows our V-value estimates to always get closer to 𝑉 ⋆ after each update,

which improves the accuracy of our V-value estimates.

Markov output policy For an arbitrary fixed (𝑠, ℎ) ∈ 𝒮 × [𝐻], let 𝑡1 be the last

episode when the value 𝑉1,ℎ(𝑠) is updated (i.e., strictly decreases), and let 𝑡2 be the

last episode when the value 𝑉2,ℎ(𝑠) is updated. Then the output policy for this (𝑠, ℎ)

has the following form.

𝜋̃1,ℎ(·|𝑠) :=
𝑡2∑︁
𝑖=1

𝛼𝑖𝑡2𝜋
𝑘𝑖

1,ℎ(·|𝑠), 𝜋̃2,ℎ(·|𝑠) :=
𝑡1∑︁
𝑖=1

𝛼𝑖𝑡1𝜋
𝑘𝑖

2,ℎ(·|𝑠), (4.6)

where 𝑘𝑖 denotes the index of episode when state 𝑠 is visited at step ℎ is visited for

the 𝑖th time. Recall that 𝜋𝑘𝑗,ℎ(·|𝑠) is the policy maintained by the 𝑗-th player at the

beginning of the 𝑘-th episode when she runs V-learning. That is, the new output

policy is simply the weighted average of policies computed in the V-learning at each

(𝑠, ℎ) pair. Clearly, the policies 𝜋̃1 and 𝜋̃2 defined by (4.6) are Markov policies.

We remark that although the execution of 𝜋̃1 and 𝜋̃2 can be fully decentralized,

in (4.6) the computation of 𝜋̃1,ℎ(·|𝑠) depends on 𝑡2 while the computation of 𝜋̃2,ℎ(·|𝑠)

depends on 𝑡1. That is, two players need to communicate at the end the indexes of

the most recent episodes when their 𝑉 -values are updated. As a result, monotonic

V-learning is not fully decentralized.

Theorem 26. Monotonic V-learning with output policy 𝜋̃ = 𝜋̃1 × 𝜋̃2 as specified by

96

(4.6) has the same theoretical guarantees as Theorem 23 with the same choices of

hyperparamters.

Theorem 26 asserts that V-learning can be modified to output Markov policies

when finding Nash equilibria of two-player zero-sum Markov games. As a special case,

the same technique and results directly apply to the single-agent setting.

4.5 Online learning in unknown Markov Games

Model-free methods have many advantages. We have already seen one of them: the

sample complexity grow mild as the number of agents is increasing and thus we aviod

the curse of mutli-agency. In this section, we will touch another advantage of

model-free learning: the learning process is fully decentralized and each agent does

not need to observe the action chosen by the other agents. As a result, we can use

a variant of V-learning to do online learning in unknown Markov games. Due to the

hardness result presented in Section 2.5.2, we will need to work with a more modest

goal. That is, to minimize the following regret against the minimax value of the game,

which has appeared in prior works [Brafman and Tennenholtz, 2002, Xie et al., 2020]:

Regret(𝐾) :=
∑︁𝐾

𝑘=1

(︀
𝑉 *
1 (𝑠

𝑘
1)− 𝑉

𝜇𝑘,𝜈𝑘

1 (𝑠𝑘1)
)︀
. (4.7)

4.5.1 The V-ol algorithm

In this section, we introduce the V-ol algorithm and its regret guarantees for

online learning in two-player zero-sum unknown Markov games. We show that not

only can we achieve a sublinear regret in this challenging setting, but the regret bound

can be independent of the size of the opponent’s action space as well.

The V-ol algorithm. V-ol is a variant of V-learning algorithms. Bai et al. [2020]

first propose V-sp as a near-optimal algorithm for the self-play setting of two-player

zero-sum MGs. See the discussion at the end of this section for a detailed comparison

between V-ol and V-sp.

97

Algorithm 8 Optimistic Nash V-learning for Online Learning (V-ol)
1: Require: Learning rate {𝛼𝑡}𝑡≥1, exploration bonus {𝛽𝑡}𝑡≥1, policy update pa-

rameter {𝜂𝑡}𝑡≥1

2: Initialize: for any ℎ ∈ [𝐻], 𝑠 ∈ 𝒮ℎ, 𝑎 ∈ 𝒜ℎ, 𝑉ℎ(𝑠)← 𝐻, 𝐿ℎ(𝑠, 𝑎)← 0, 𝑁ℎ(𝑠)← 0,
𝜇ℎ(𝑎|𝑠)← 1/|𝒜ℎ|.

3: for episode 𝑘 = 1, . . . , 𝐾 do
4: Receive 𝑠1
5: for step ℎ = 1, . . . , 𝐻 do
6: Take action 𝑎ℎ ∼ 𝜇ℎ(·|𝑠ℎ)
7: Observe return 𝑟ℎ and next state 𝑠ℎ+1

8: Increase counter 𝑡 = 𝑁ℎ(𝑠ℎ)← 𝑁ℎ(𝑠ℎ) + 1
9: 𝑉ℎ(𝑠ℎ)← (1− 𝛼𝑡)𝑉ℎ(𝑠ℎ) + 𝛼𝑡(𝑟ℎ + 𝑉ℎ+1(𝑠ℎ+1) + 𝛽𝑡)

10: for all actions 𝑎 ∈ 𝒜ℎ do
11: 𝑙ℎ(𝑠ℎ, 𝑎)← (𝐻 − 𝑟ℎ − 𝑉ℎ+1(𝑠ℎ+1))I(𝑎ℎ = 𝑎)/(𝜇ℎ(𝑎ℎ|𝑠ℎ) + 𝜂𝑡)
12: 𝐿ℎ(𝑠ℎ, 𝑎)← (1− 𝛼𝑡)𝐿ℎ(𝑠ℎ, 𝑎) + 𝛼𝑡𝑙ℎ(𝑠ℎ, 𝑎)
13: Update policy 𝜇 by

𝜇ℎ(·|𝑠ℎ)←
exp{−𝜂𝑡𝐿ℎ(𝑠ℎ, ·)/𝛼𝑡}∑︀
𝑎 exp{−𝜂𝑡𝐿ℎ(𝑠ℎ, 𝑎)/𝛼𝑡}

In V-ol (Algorithm 8), at each time step ℎ, the player interacts with the envi-

ronment, performs an incremental update to 𝑉ℎ, and updates its policy 𝜇ℎ. Note

that the estimated value function 𝑉ℎ is only used for the intermediate loss 𝑙ℎ(𝑠ℎ, ·)

in this time step, but not used in decision making. To encourage exploration in less

visited states, we add a bonus term 𝛽𝑡. The update rule is optimistic, i.e., 𝑉ℎ is an

upper confidence bound (UCB) on the minimax value 𝑉 *
ℎ of the MG. Then the player

samples the action according to the exponentially weighted averaged loss 𝐿ℎ(𝑠ℎ, ·),

which is a popular decision rule in adversarial environments [Auer et al., 1995].

Intuition behind V-learning. Most existing provably efficient tabular RL algo-

rithms learn a Q-table (table consisting of Q-values). However, since state-action

pairs are necessary for updating the Q-table, for online learning in MGs, algorithms

based on it inevitably require observing the opponent’s actions and are thus inappli-

cable to unknown MGs. In contrast, V-ol does not need to maintain the Q-table at

all and bypasses this challenge naturally.

Moreover, learning a Q-value function in two-player Markov games usually results

98

in a regret or sample complexity that depends on its size 𝑆𝐴𝐵, whether in the self-play

setting, such as VI-ULCB [Bai and Jin, 2020] and Q-sp [Bai et al., 2020], OMNI-VI-

offline [Xie et al., 2020], or in the online setting, such as OMNI-VI-online [Xie et al.,

2020] and Q-ol [Tian et al., 2021]. In contrast, V-learning is promising in removing

the dependence on 𝐵, as formalized in Theorem 27.

Favoring more recent samples. Despite the above noted advantages of V-learning,

the V-sp algorithm [Bai et al., 2020] may have a regret bound that is linear in 𝐾, as

indicated by (4.9) in Theorem 27. To resolve this problem, we adopt a different set

of hyperparameters to learn more aggressively by giving more weight to more recent

samples. Concretely, for the self-play setting, Bai et al. [2020] specify the following

hyperparameters for V-sp:

𝛼𝑡 =
𝐻+1
𝐻+𝑡

, 𝛽𝑡 = 𝑐

√︁
𝐻4𝐴𝜄
𝑡
, 𝜂𝑡 =

√︁
log𝐴
𝐴𝑡

,

where 𝜄 is a log factor defined later. For the online setting, we set these hyperparam-

eters as:

𝛼𝑡 =
𝐺𝐻+1
𝐺𝐻+𝑡

, 𝛽𝑡 = 𝑐

√︁
𝐺𝐻3𝐴𝜄

𝑡
, 𝜂𝑡 =

√︁
𝐺𝐻 log𝐴

𝐴𝑡
, (4.8)

where 𝐺 ≥ 1 is a quantity that we tune. Ostensibly, these changes may appear small,

but they are essential to attaining a sublinear regret.

Compared with 𝛼𝑡 = 1/𝑡, the learning rate 𝛼𝑡 = 𝐻+1/𝐻+𝑡 first proposed in [Jin et al.,

2018] already favors more recent samples. Here we go one step further: our algorithm

learns even more aggressively by taking 𝛼𝑡 = 𝐺𝐻+1/𝐺𝐻+𝑡 with 𝐺 ≥ 1. Moreover, we

choose a larger 𝜂𝑡 to make our algorithm care more about more recently incurred loss.

𝛽𝑡 is set accordingly to achieve optimism.

We call this variant of V-learning V-ol, for which we prove the following regret

guarantees.

Theorem 27 (Regret bounds). For any 𝑝 ∈ (0, 1), let 𝜄 = log(𝐻𝑆𝐴𝐾/𝑝). If we run

V-ol with our hyperparameter specification (4.8) for some large constant 𝑐 and 𝐺 ≥ 1

99

in an online two-player zero-sum MG, then with probability at least 1− 𝑝, the regret

in 𝐾 episodes satisfies

Regret(𝐾) = 𝒪
(︀√

𝐺𝐻5𝑆𝐴𝐾𝜄+𝐾𝐻/𝐺+𝐻2𝑆
)︀
. (4.9)

In particular, by taking 𝐺 = 𝐻−1(𝐾/𝑆𝐴)1/3 if 𝐾 ≥ 𝐻3𝑆𝐴 and 𝐺 = 𝐾1/3 otherwise,

with probability at least 1− 𝑝, the regret satisfies

Regret(𝐾) =

⎧⎪⎨⎪⎩𝒪̃
(︀
𝐻2𝑆

1
3𝐴

1
3𝐾

2
3 +𝐻2𝑆

)︀
, if 𝐾 ≥ 𝐻3𝑆𝐴,

𝒪̃
(︀√

𝐻5𝑆𝐴𝐾
2
3 +𝐻2𝑆

)︀
, otherwise.

Theorem 27 shows that a sublinear regret against the minimax value of the MG

is achievable for online learning in unknown MGs. As expected, the regret bound

does not depend on the size of the opponent’s action space 𝐵. This independence of

𝐵 is particularly significant for large 𝐵, as is the case where our player plays with

multiple opponents. Note that although in Theorem 27 setting the parameter 𝐺

requires knowledge of 𝐾 beforehand, we can use a standard doubling trick to bypass

this requirement.

Remark 28. In V-sp the parameter 𝐺 is set to be 1. Then our choice of 𝜂𝑡 becomes√︀
𝐻 log𝐴/𝐴𝑡,

√
𝐻 times the original policy update parameter. If the other player also

adopts the new
√︀

𝐻 log𝐵/𝐵𝑡 policy update parameter, then the sample complexity of

V-sp can actually be improved upon [Bai et al., 2020] by an 𝐻 factor to 𝒪̃(𝐻5𝑆(𝐴+

𝐵)/𝜀2).

Comparison between V-ol and V-sp.

1. To achieve near-optimal sample complexity in the self-play setting, V-sp needs

to construct upper and lower confidence bounds not only for the minimax value

of the game, but also for the best response values. As a result, it uses a compli-

cated certified policy technique, and must store the whole history of states and

policies in the past 𝐾 episodes for resampling. By comparing with the minimax

100

value directly, we can make V-ol provably efficient without extracting a certi-

fied policy. Therefore, V-ol only needs 𝒪(𝐻𝑆𝐴) space instead of 𝒪(𝐻𝑆𝐴𝐾),

and the resampling procedure is no more necessary.

2. A key feature of the proof in [Bai et al., 2020] is to make full use of a symmetric

structure, which naturally arises because in the self-play setting we can control

both players to follow the same learning algorithm. However, this property no

longer holds for the online setting, and we must take a different proof route.

Algorithmically, we need to learn more aggressively to make V-ol provably

efficient.

3. V-ol also works in multi-player general-sum MGs—see Section 4.5.2.

4.5.2 Multi-player general-sum games

In this section, we extend the regret guarantees of V-ol to multi-player general-

sum MGs, demonstrating the generality of our algorithm. Informally, we have the

following corollary.

Corollary 29. (informal) If we run V-ol with our hyperparameter specificified in (4.8)

for our player in an online multi-player general-sum MG, then with high probability,

for sufficiently large 𝐾,

Regret(𝐾) = 𝒪̃
(︀
𝐻2𝑆

1
3𝐴

1
3𝐾

2
3 +𝐻2𝑆

)︀
,

where 𝐴 denotes the size of our player’s action space.

The above corollary highlights the significance of removing the dependence on 𝐵

in the regret bound. In particular, in a multi-player game the size of the opponents’

joint action space 𝐵 grows exponentially in the number of opponents, whereas the

regret of V-ol only depends on the size of our player’s action space 𝐴. The savings

arise because V-ol bypasses the need to learn Q-tables, and the multi-player setting

makes no real difference in our analysis. To formally present the construction, we

need to first introduce some notation.

101

Consider the 𝑚-player general-sum MG

MG𝑚(𝒮, {𝒜𝑖}𝑚𝑖=1,P, {𝑟𝑖}𝑚𝑖=1, 𝐻), (4.10)

where 𝒮, 𝐻 follow from the same definition in two-player zero-sum MGs, and

– for each 𝑖 ∈ [𝑚], player 𝑖 has its own action space 𝒜𝑖 =
⋃︀
ℎ∈[𝐻]𝒜𝑖,ℎ and return

function 𝑟𝑖 = {𝑟𝑖,ℎ : 𝒮ℎ ×
⨂︀𝑚

𝑖=1𝒜𝑖,ℎ → [0, 1]}𝑚𝑖=1, and aims to maximize its own

cumulative return (here
⨂︀

denotes the Cartesian product of sets);

– P is a collection of transition functions {Pℎ : 𝒮ℎ ×
⨂︀𝑚

𝑖=1𝒜𝑖,ℎ → Δ(𝒮ℎ+1)}ℎ∈[𝐻].

Like in two-player MGs, let

𝑆 := sup
ℎ∈[𝐻]

|𝒮ℎ|, 𝐴𝑖 := sup
ℎ∈[𝐻]

|𝒜𝑖, ℎ| for all 𝑖 ∈ [𝑚].

Online learning in an unknown multi-player general-sum MG can be reduced to that in

a two-player zero-sum MG. Concretely, suppose we are player 1, then online learning

in unknown MGs (4.10) is indistinguishable from that in the two-player zero-sum MG

specified by (𝒮,𝒜1,ℬ,P, 𝑟1, 𝐻) where ℬ =
⨂︀𝑚

𝑖=2𝒜𝑖, since we only observe and care

about player 1’s return. For all states 𝑠 ∈ 𝒮1, define the value function using 𝑟1 as

𝑉 𝜇,𝜈
ℎ (𝑠) := E𝜇,𝜈 [

∑︁𝐻

ℎ′=ℎ
𝑟1,ℎ′(𝑠ℎ′ , 𝑎ℎ′ , 𝑏ℎ′)|𝑠ℎ = 𝑠],

and define the minimax value of player 1 as

𝑉 *
1 (𝑠) := max

𝜇
min
𝜈
𝑉 𝜇,𝜈
1 (𝑠) = min

𝜈
max
𝜇

𝑉 𝜇,𝜈
1 (𝑠),

which is no larger than the value at the Nash equilibrium of the multi-player general-

sum MG. Then we define the regret against the minimax value of player 1 as

Regret(𝐾) :=
∑︁𝐾

𝑘=1

(︀
𝑉 *
1 (𝑠

𝑘
1)− 𝑉

𝜇𝑘,𝜈𝑘

1 (𝑠𝑘1)
)︀
.

We argue that this notion of regret is reasonable since we have control of only player

102

1 and all opponents may collude to compromise our performance. Then immediately

we obtain the following corollary from Theorem 27.

Corollary 30 (Regret bound in multi-player MGs). For any 𝑝 ∈ (0, 1), let 𝜄 =

log(𝐻𝑆𝐴𝐾/𝑝). If we run V-ol with our hyperparameter specification (4.8) for some

large constant 𝑐 and the above choice of 𝐺 for player 1 in the online multi-player

general-sum MG (4.10), then with probability at least 1− 𝑝, the regret in 𝐾 episodes

satisfies

Regret(𝐾) =

⎧⎪⎨⎪⎩𝒪̃
(︀
𝐻2𝑆

1
3𝐴

1
3
1𝐾

2
3 +𝐻2𝑆

)︀
, if 𝐾 ≥ 𝐻3𝑆𝐴1,

𝒪̃
(︀√

𝐻5𝑆𝐴1𝐾
2
3 +𝐻2𝑆

)︀
, otherwise.

In the online informed setting, the same equivalence to a two-player zero-sum

MG holds, since the other players’ actions we observe can be seen as a single action

(𝑎𝑖)
𝑚
𝑖=2, and whether we observe the other players’ returns does not help us decide our

policies to maximize our own cumulative return. In this setting, the regret bound in

[Xie et al., 2020] becomes 𝒪̃(
√︀
𝐻3𝑆3

∏︀𝑚
𝑖=1𝐴

3
𝑖𝑇), which depends exponentially on 𝑚.

On the other hand, since the online informed setting has stronger assumptions than

online learning in unknown MGs, the 𝒪̃(𝐻2𝑆1/3𝐴
1/3
1 𝐾2/3) regret bound of V-ol carries

over, which has no dependence on 𝑚. This sharp contrast highlights the importance

of achieving a regret independent of the size of the opponent’s action space.

Furthermore, since in V-ol we only need to update the value function (which has

𝐻𝑆 entries), rather than update the Q-table (which has𝐻𝑆
∏︀𝑚

𝑖=1𝐴𝑖 entries) as in [Xie

et al., 2020], we can also improve the time and space complexity by an exponential

factor in 𝑚.

103

104

Chapter 5

Extensive-form Games: Prelimiaries

Imperfect Information Games—games where players can only make decisions based on

partial information about the true underlying state of the game—constitute an impor-

tant challenge for modern artificial intelligence. The celebrated notion of Imperfect-

Information Extensive-Form games (IIEFGs) [Kuhn, 1953] offers a formulation for

games with both imperfect information and sequential play. IIEFGs have been widely

used for modeling real-world imperfect information games such as Poker [Heinrich

et al., 2015, Moravvcík et al., 2017, Brown and Sandholm, 2018], Bridge [Tian et al.,

2020], Scotland Yard [Schmid et al., 2021], etc, and achieving strong performances

therein. See Figure 5-1 for an illustration of the imperfect information in the context

of poker.

This section introduces the problem formulation of imperfect-information extensive-

form games (IIEFGs) and the corresponding regret minimization framework. To sim-

plify the presentation, we first introduce the standard external regret and CCE (or

Nash equilibrium for 2p0s games), and subsequently discuss the more complex con-

cepts of trigger regret and EFCE. Additionally, we provide a lower bound from Bai

et al. [2022b] that characterize the minimum number of episodes required to learn the

corresponding equilibria in IIEFGs.

105

Max-player view Min-player view

Figure 5-1: An illustration of imperfect information through the example of poker.
Here we consider a toy example with four different states. Each player is dealt either
72o or AAs. The min player’s cards are on the top and the max player’s cards are at
the bottom.

5.1 Game Formulation

We consider two-player zero-sum IIEFGs using the formulation via Partially Observ-

able Markov Games (POMGs), following [Kozuno et al., 2021]. In the following, Δ(𝒜)

denotes the probability simplex over a set 𝒜.

Partially observable Markov games We consider finite-horizon, tabular, two-

player zero-sum Markov Games with partial observability, which can be described as

a tuple POMG(𝐻,𝒮,𝒳 ,𝒴 ,𝒜,ℬ,P, 𝑟), where

∙ 𝐻 is the horizon length;

∙ 𝒮 =
⋃︀
ℎ∈[𝐻] 𝒮ℎ is the (underlying) state space with |𝒮ℎ| = 𝑆ℎ and

∑︀𝐻
ℎ=1 𝑆ℎ = 𝑆;

∙ 𝒳 =
⋃︀
ℎ∈[𝐻]𝒳ℎ is the space of information sets (henceforth infosets) for the

max-player with |𝒳ℎ| = 𝑋ℎ and 𝑋 :=
∑︀𝐻

ℎ=1𝑋ℎ. At any state 𝑠ℎ ∈ 𝒮ℎ, the

max-player only observes the infoset 𝑥ℎ = 𝑥(𝑠ℎ) ∈ 𝒳ℎ, where 𝑥 : 𝒮 → 𝒳 is the

emission function for the max-player;

∙ 𝒴 =
⋃︀
ℎ∈[𝐻] 𝒴ℎ is the space of infosets for the min-player with |𝒴ℎ| = 𝑌ℎ and

𝑌 :=
∑︀𝐻

ℎ=1 𝑌ℎ. An infoset 𝑦ℎ and the emission function 𝑦 : 𝒮 → 𝒴 are defined

similarly.

106

Figure 5-2: An illustration of EFGs.

∙ 𝒜, ℬ are the action spaces for the max-player and min-player respectively, with

|𝒜| = 𝐴 and |ℬ| = 𝐵. While this assumes the action space at each infoset have

equal sizes, our results can be extended directly to the case where each infoset

has its own action space with (potentially) unequal sizes.

∙ P = {𝑝0(·) ∈ Δ(𝒮1)} ∪ {𝑝ℎ(·|𝑠ℎ, 𝑎ℎ, 𝑏ℎ) ∈ Δ(𝒮ℎ+1)}(𝑠ℎ,𝑎ℎ,𝑏ℎ)∈𝒮ℎ×𝒜×ℬ, ℎ∈[𝐻−1] are

the transition probabilities, where 𝑝1(𝑠1) is the probability of the initial state

being 𝑠1, and 𝑝ℎ(𝑠ℎ+1|𝑠ℎ, 𝑎ℎ, 𝑏ℎ) is the probability of transitting to 𝑠ℎ+1 given

state-action (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) at step ℎ;

∙ 𝑟 = {𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ) ∈ [0, 1]}(𝑠ℎ,𝑎ℎ,𝑏ℎ)∈𝒮ℎ×𝒜×ℬ are the (random) reward functions

with mean 𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ).

See Figure 5-2 for an illustration of the decision-making process described.

Policies, value functions As we consider partially observability, each player’s

policy can only depend on the infoset rather than the underlying state. A policy for

the max-player is denoted by 𝜇 = {𝜇ℎ(·|𝑥ℎ) ∈ Δ(𝒜)}ℎ∈[𝐻],𝑥ℎ∈𝒳ℎ
, where 𝜇ℎ(𝑎ℎ|𝑥ℎ) is

the probability of taking action 𝑎ℎ ∈ 𝒜 at infoset 𝑥ℎ ∈ 𝒳ℎ. Similarly, a policy for

the min-player is denoted by 𝜈 = {𝜈ℎ(·|𝑦ℎ) ∈ Δ(ℬ)}ℎ∈[𝐻],𝑦ℎ∈𝒴ℎ
. A trajectory for the

107

max player takes the form (𝑥1, 𝑎1, 𝑟1, 𝑥2, . . . , 𝑥𝐻 , 𝑎𝐻 , 𝑟𝐻), where 𝑎ℎ ∼ 𝜇ℎ(·|𝑥ℎ), and

the rewards and infoset transitions depend on the (unseen) opponent’s actions and

underlying state transition.

The overall game value for any (product) policy (𝜇, 𝜈) is denoted by 𝑉 𝜇,𝜈 :=

E𝜇,𝜈
[︁∑︀𝐻

ℎ=1 𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)
]︁
. The max-player aims to maximize the value, whereas the

min-player aims to minimize the value.

Tree structure and perfect recall We use a POMG with tree structure and

the perfect recall assumption as our formulation for IIEFGs, following [Kozuno et al.,

2021]. The class of tree-structured, perfece-recall POMGs is able to express all perfect-

recall IIEFGs (defined in [Osborne and Rubinstein, 1994]) that additionally satisfy the

timeability condition [Jakobsen et al., 2016], a mild condition that roughly requires

that infosets for all players combinedly could be partitioned into ordered “layers", and

is satisfied by most real-world games of interest [Kovavrík et al., 2022]. Further, our

algorithms can be directly generalized to any perfect-recall IIEFG (not necessarily

timeable), as we only require each player’s own game tree to be timeable (which holds

for any perfect-recall IIEFG), similar as existing OMD/CFR type algorithms [Zinke-

vich et al., 2007, Farina et al., 2020b]. We assume that our POMG has a tree structure:

For any ℎ and 𝑠ℎ ∈ 𝒮ℎ, there exists a unique history (𝑠1, 𝑎1, 𝑏1, . . . , 𝑠ℎ−1, 𝑎ℎ−1, 𝑏ℎ−1)

of past states and actions that leads to 𝑠ℎ. We also assume that both players have

perfect recall : For any ℎ and any infoset 𝑥ℎ ∈ 𝒳ℎ for the max-player, there exists

a unique history (𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) of past infosets and max-player actions that

leads to 𝑥ℎ (and similarly for the min-player). We further define 𝒞ℎ′(𝑥ℎ, 𝑎ℎ) ⊂ 𝒳ℎ′ to

be the set of all infosets in the ℎ′-the step that are reachable from (𝑥ℎ, 𝑎ℎ), and define

𝒞ℎ′(𝑥ℎ) = ∪𝑎ℎ∈𝒜𝒞ℎ′(𝑥ℎ, 𝑎ℎ). Finally, define 𝒞(𝑥ℎ, 𝑎ℎ) := 𝒞ℎ+1(𝑥ℎ, 𝑎ℎ) as a shorthand

for immediately reachable infosets.

With the tree structure and perfect recall, under any product policy (𝜇, 𝜈), the

probability of reaching state-action (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) at step ℎ takes the form

P𝜇,𝜈(𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑝1:ℎ(𝑠ℎ)𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝜈1:ℎ(𝑦ℎ, 𝑏ℎ), (5.1)

108

where we have defined the sequence-form transition probability as

𝑝1:ℎ(𝑠ℎ) := 𝑝0(𝑠1)
∏︁

ℎ′≤ℎ−1

𝑝ℎ′(𝑠ℎ′+1|𝑠ℎ′ , 𝑎ℎ′ , 𝑏ℎ′),

where {𝑠ℎ′ , 𝑎ℎ′ , 𝑏ℎ′}ℎ′≤ℎ−1 are the histories uniquely determined from 𝑠ℎ by the tree

structure, and the sequence-form policies as

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) :=
ℎ∏︁

ℎ′=1

𝜇ℎ′(𝑎ℎ′|𝑥ℎ′), 𝜈1:ℎ(𝑦ℎ, 𝑏ℎ) :=
ℎ∏︁

ℎ′=1

𝜈ℎ′(𝑏ℎ′ |𝑦ℎ′),

where 𝑥ℎ′ = 𝑥(𝑠ℎ′) and 𝑦ℎ′ = 𝑦(𝑠ℎ′) are the infosets for the two players (with

{𝑥ℎ′ , 𝑎ℎ′}ℎ≤ℎ−1 are uniquely determined by 𝑥ℎ by perfect recall, and similar for {𝑦ℎ′ , 𝑏ℎ′}ℎ≤ℎ−1).

We let Πmax denote the set of all possible policies for the max player (Πmin for

the min player). In the sequence form representation, Πmax is a convex compact

subset of R𝑋𝐴 specified by the constraints 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) ≥ 0 and
∑︀

𝑎ℎ∈𝒜 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) =

𝜇1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) for all (ℎ, 𝑥ℎ, 𝑎ℎ), where (𝑥ℎ−1, 𝑎ℎ−1) is the unique pair of prior

infoset and action that reaches 𝑥ℎ (understanding 𝜇0(𝑥0, 𝑎0) = 𝜇0(∅) = 1).

5.2 Regret and Nash Equilibrium

We consider two standard learning goals: Regret and Nash Equilibrium. For the

regret, we focus on the max-player, and assume there is an arbitrary (potentially

adversarial) opponent as the min-player who may determine her policy 𝜈𝑡 based on

all past information (including knowledge of 𝜇𝑡) before the 𝑡-th episode starts. Then,

the two players play the 𝑡-th episode jointly using (𝜇𝑡, 𝜈𝑡). The goal for the max-

player’s is to design policies {𝜇𝑡}𝑇𝑡=1 that minimizes the regret against the best fixed

policy in hindsight:

R𝑇 := max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

(︁
𝑉 𝜇†,𝜈𝑡 − 𝑉 𝜇𝑡,𝜈𝑡

)︁
. (5.2)

109

We say a product policy (𝜇, 𝜈) is an 𝜀-approximate Nash equilibrium (𝜀-NE) if

NEGap(𝜇, 𝜈) := max
𝜇†∈Πmax

𝑉 𝜇†,𝜈 − min
𝜈†∈Πmin

𝑉 𝜇,𝜈† ≤ 𝜀,

i.e. 𝜇 and 𝜈 are each other’s 𝜀-approximate best response.

Definition of average policies For two-player zero-sum IIEFGs, we define the

average policy of the max-player 𝜇 = 1
𝑇

∑︀𝑇
𝑡=1 𝜇

𝑡 (in conditional form) by

𝜇ℎ(𝑎ℎ|𝑥ℎ) :=
∑︀𝑇

𝑡=1 𝜇
𝑡
1:ℎ (𝑥ℎ, 𝑎ℎ)∑︀𝑇

𝑡=1 𝜇
𝑡
1:ℎ−1 (𝑥ℎ)

, (5.3)

for any ℎ and (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ ×𝒜. It is straightforward to check that this 𝜇 is exactly

the averaging of 𝜇𝑡 in the sequence-form representation (see e.g. [Kozuno et al., 2021,

Theorem 1]):

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) =
1

𝑇

𝑇∑︁
𝑡=1

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) for all (ℎ, 𝑥ℎ, 𝑎ℎ). (5.4)

Both expressions above can be used as the definition interchangably. The average

policy of the min-player 𝜈 = 1
𝑇

∑︀𝑇
𝑡=1 𝜈

𝑡 is defined similarly.

Online-to-batch conversion It is a standard result that sublinear regret for both

players ensures that the pair of average policies (𝜇, 𝜈) is an approximate NE (see

e.g. [Kozuno et al., 2021, Theorem 1]):

Proposition 31 (Regret to Nash conversion). For any sequence of policies {𝜇𝑡}𝑇𝑡=1 ∈

Πmax and {𝜈𝑡}𝑇𝑡=1 ∈ Πmin, the average policies 𝜇 := 1
𝑇

∑︀𝑇
𝑡=1 𝜇

𝑡 and 𝜈 := 1
𝑇

∑︀𝑇
𝑡=1 𝜈

𝑡

(averaged in the sequence form, cf. (5.4)) satisfy

NEGap(𝜇, 𝜈) =
R𝑇

max +R𝑇
min

𝑇
,

110

where

R𝑇
max := max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

(𝑉 𝜇†,𝜈𝑡 − 𝑉 𝜇𝑡,𝜈𝑡), R𝑇
min := max

𝜈†∈Πmin

𝑇∑︁
𝑡=1

(𝑉 𝜇𝑡,𝜈𝑡 − 𝑉 𝜇𝑡,𝜈†)

denote the regret for the two players respectively.

Therefore, an approximate NE can be learned by letting both players play some

sublinear regret algorithm against each other in a self-play fashion.

Bandit feedback Throughout this paper, we consider the interactive learning (ex-

ploration) setting with bandit feedback, where the max-player determines the policy

𝜇𝑡, the opponent determines 𝜈𝑡 (either adversarially or by running some learning

algorithm, depending on the context) unknown to the max-player, and the two play-

ers play an episode of the game using policy (𝜇𝑡, 𝜈𝑡). The max player observes the

trajectory (𝑥𝑡1, 𝑎
𝑡
1, 𝑟

𝑡
1, . . . , 𝑥

𝑡
𝐻 , 𝑎

𝑡
𝐻 , 𝑟

𝑡
𝐻) of her own infosets and rewards, but not the

opponent’s infosets, actions, or the underlying states.

Conversion to online linear regret minimization The reaching probability

decomposition (5.1) implies that the value function 𝑉 𝜇,𝜈 is bilinear in (the sequence

form of) (𝜇, 𝜈). Thus, fixing a sequence of opponent’s policies {𝜈𝑡}𝑇𝑡=1, we have the

linear representation

𝑉 𝜇,𝜈𝑡 =
𝐻∑︁
ℎ=1

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)
∑︁

𝑠ℎ∈𝑥ℎ,𝑏ℎ∈ℬ

𝑝1:ℎ(𝑠ℎ)𝜈
𝑡
1:ℎ(𝑦(𝑠ℎ), 𝑏ℎ)𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ).

Therefore, defining the loss function for round 𝑡 as

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) :=
∑︁

𝑠ℎ∈𝑥ℎ,𝑏ℎ∈ℬ

𝑝1:ℎ(𝑠ℎ)𝜈
𝑡
1:ℎ(𝑦(𝑠ℎ), 𝑏ℎ)(1− 𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)) (5.5)

the regret R𝑇 (5.2) can be written as

R𝑇 = max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀
, (5.6)

111

where the inner product ⟨·, ·⟩ is over the sequence form:

⟨︀
𝜇, ℓ𝑡

⟩︀
:=

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

for any 𝜇 ∈ Πmax.

5.3 Φ-regret minimization and the Φ-hedge algorithm

Now we introduce the Φ-regret in full generality. Consider a generic linear regret

minimization problem on a policy set Π ⊂ R𝑑
≥0 with respect to a policy modification

set Φ ⊂ R𝑑×𝑑. Here Π is a convex compact subset of R𝑑, and Φ is a convex compact

subset of R𝑑×𝑑, where each 𝜑 ∈ Φ is a policy modification function which is a linear

transformation from R𝑑 to R𝑑 that maps Π to itself (𝜑(Π) ⊆ Π). For any algorithm

that plays policies {𝜇𝑡}𝑇𝑡=1 within 𝑇 rounds and receives loss functions {ℓ𝑡}𝑇𝑡=1 ⊂ R𝑑
≥0,

the Φ-regret is defined as

RegΦ(𝑇) := sup𝜑∈Φ ⟨𝜇𝑡 − 𝜑𝜇𝑡, ℓ𝑡⟩ . (5.7)

The Φ-regret subsumes the vanilla regret (i.e. external regret) as a special case by

taking Φ to be the set of all constant modifications Φext := {𝜑𝜇⋆ : 𝜇⋆ ∈ Π} where

𝜑𝜇⋆𝜇 = 𝜇⋆ for all 𝜇 ∈ Π. Another widely studied example is the swap regret [Blum

and Mansour, 2007] (and the closely related internal regret [Foster and Vohra, 1998])

for normal-form games, where Π = Δ𝑑 is the probability simplex over 𝑑 actions,

and Φ is the set of all stochastic matrices (i.e. those mapping Δ𝑑 to itself). A

primary motivation for minimizing the Φ-regret is for computing various types of

Correlated Equilibria (CEs) in multi-player games using the online-to-batch conver-

sion (see e.g. [Cesa-Bianchi and Lugosi, 2006]), which has been established in many

games and has been a cornerstone in the online learning and games literature.

Φ-Hedge algorithm A widely used strategy for minimizing the Φ-regret is to use

any (black-box) linear regret minimization algorithm on the Φ set to produce a se-

112

Algorithm 9 Φ-Hedge

Require: Finite vertex set Φ0 ⊂ R𝑑×𝑑 such that conv(Φ0) = Φ; Learning rate 𝜂.
1: Initialize 𝑝1 ∈ ΔΦ0 with 𝑝1𝜑 = 1/|Φ0| for 𝜑 ∈ Φ0.
2: for iteration 𝑡 = 1, . . . , 𝑇 do
3: Compute 𝜑𝑡 =

∑︀
𝜑∈Φ0

𝑝𝑡𝜑𝜑.
4: Set policy 𝜇𝑡 to be the fixed point of equation 𝜇𝑡 = 𝜑𝑡𝜇𝑡.
5: Receive loss function ℓ𝑡 ∈ R𝑑

≥0, suffer loss ⟨𝜇𝑡, ℓ𝑡⟩.
6: Update 𝑝𝑡+1

𝜑 ∝𝜑 𝑝𝑡𝜑 · exp{−𝜂 ⟨𝜑𝜇𝑡, ℓ𝑡⟩}.

quence of {𝜑𝑡}𝑇𝑡=1 ⊂ Φ, combined with the fixed point technique (e.g. [Stoltz and

Lugosi, 2005])—Output policy 𝜇𝑡 that satisfies the fixed-point equation 𝜑𝑡𝜇𝑡 = 𝜇𝑡 in

each round 𝑡. In the common scenario where Φ is the convex hull of a finite number

of vertices, i.e. Φ = conv(Φ0) where Φ0 is a finite subset of Φ, a standard regret

minimization algorithm over Φ is Hedge (a.k.a. Exponential Weights) [Arora et al.,

2012], leading to the Φ-Hedge algorithm (Algorithm 9).

It is a standard result ([Stoltz and Lugosi, 2007], see also Lemma 118) that Algo-

rithm 9 achieves Φ-regret bound

RegΦ(𝑇) ≤ log |Φ0|
𝜂

+ 𝜂
2

∑︀𝑇
𝑡=1

∑︀
𝜑∈Φ0

𝑝𝑡𝜑(⟨𝜑𝜇𝑡, ℓ𝑡⟩)
2
. (5.8)

By choosing 𝜂 > 0, this result implies a quite desirable bound

RegΦ(𝑇) ≤ 𝐿
√︀

2 log |Φ0| · 𝑇

in the full-feedback setting (assuming bounded loss ⟨𝜑𝜇𝑡, ℓ𝑡⟩ ≤ 𝐿), and can also be

used to prove regret bounds in the bandit-feedback setting.

5.4 Extensive-form trigger regret and EFCE

To consider Φ-regret minimization in IIEFGs, it is favorable to reformuate the frame-

work. For the purpose of this work, we consider an alternative formulation of EFGs—

Tree-Form Adversarial Markov Decision Processes (TFAMDP). This model is equiva-

lent to studying EFGs from the perspective of a single player, while treating all other

113

players as adversaries who can change both transitions and rewards in each round.

See Appendix D.3 for the details on the equivalence between TFAMDPs and IIEFGs.

5.4.1 Tree-Form Adversarial Markov Decision Processes

Tree-form adversarial MDP We consider an episodic, tabular TFAMDP which

consists of the followings (𝐻,𝒳 ,𝒜, 𝒯 , {𝑝𝑡}𝑡≥1, {𝑅𝑡}𝑡≥1). Here 𝐻 ∈ N+ is the horizon

length; 𝒳 = {𝒳ℎ}ℎ∈[𝐻] and 𝒳ℎ is the space of information sets (henceforth infosets)

at step ℎ with size |𝒳ℎ| = 𝑋ℎ and
∑︀𝐻

ℎ=1𝑋ℎ = 𝑋; 𝒜 is the action space with size

|𝒜| = 𝐴. Next, 𝒯 = {𝒞(𝑥, 𝑎)}(𝑥,𝑎)∈𝒳×𝒜 defines the tree structure over the infosets

and actions, where 𝒞(𝑥ℎ, 𝑎ℎ) ⊂ 𝒳ℎ+1 denotes the set of immediate children of (𝑥ℎ, 𝑎ℎ).

Furthermore, {𝒞(𝑥ℎ, 𝑎ℎ)}(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜 forms a partition of 𝒳ℎ+1. It directly follows

from the tree structure of TFAMDP that the player has perfect recall, i.e., for any

infoset 𝑥ℎ ∈ 𝒳ℎ, there is a unique history (𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) that leads to 𝑥ℎ.

Furthermore, 𝑝𝑡 = {𝑝𝑡ℎ}ℎ∈{0}∪[𝐻]; 𝑝𝑡0(·) ∈ Δ𝒳1 is the initial distribution over 𝒳1 at

episode 𝑡; 𝑝𝑡ℎ(·|𝑥ℎ, 𝑎ℎ) is the transition probability from (𝑥ℎ, 𝑎ℎ) to its immediate

children 𝒞(𝑥ℎ, 𝑎ℎ) at episode 𝑡; 𝑅𝑡 = {𝑅𝑡
ℎ}ℎ∈[𝐻]. Finally, reward 𝑅𝑡

ℎ(·|𝑥ℎ, 𝑎ℎ) is the

distribution of the stochastic reward 𝑟 ∈ [0, 1] received at (𝑥ℎ, 𝑎ℎ) at episode 𝑡, with

expectation 𝑅𝑡

ℎ(𝑥ℎ, 𝑎ℎ).

At the beginning of episode 𝑡, an adversary will first choose the initial distribution

𝑝𝑡0, transition {𝑝𝑡ℎ}ℎ∈[𝐻], and reward distribution {𝑅𝑡
ℎ}ℎ∈[𝐻]. Then in the bandit feed-

back setting, at each step ℎ, the player observes the current infoset 𝑥ℎ, takes an action

𝑎ℎ, receives a bandit feedback of the reward 𝑟𝑡ℎ ∼ 𝑅𝑡
ℎ(·|𝑥ℎ, 𝑎ℎ), and the environment

transitions to the next state 𝑥ℎ+1 ∼ 𝑝𝑡ℎ(·|𝑥ℎ, 𝑎ℎ).

Policies We use 𝜇 = {𝜇ℎ(·|𝑥ℎ)}ℎ∈[𝐻],𝑥ℎ∈𝒳ℎ
to denote a policy, where each 𝜇ℎ(·|𝑥ℎ) ∈

Δ𝒜 is the action distribution at infoset 𝑥ℎ. We say 𝜇 is a deterministic policy if

𝜇ℎ(·|𝑥ℎ) takes some single action with probability 1 for any (ℎ, 𝑥ℎ). Let Π denote

the set of all possible policies. We denote the sequence form representation of policy

𝜇 ∈ Π by

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) :=
∏︀ℎ

ℎ′=1 𝜇ℎ′(𝑎ℎ′ |𝑥ℎ′), (5.9)

114

where (𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) is the unique history of 𝑥ℎ. We also identify 𝜇 as a

vector in R𝑋𝐴
≥0 , whose (𝑥ℎ, 𝑎ℎ)-th entry is equal to its sequence form 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ). Let

‖Π‖1 := max𝜇∈Π ‖𝜇‖1, which admits bound ‖Π‖1 ≤ 𝑋 but can in addition be smaller

(See Lemma 113 for detail).

Expected loss function Given any policy 𝜇𝑡 at round 𝑡, the total expected loss

received at round 𝑡 (which equals to 𝐻 minus the total rewards within round 𝑡) is

given by ⟨𝜇𝑡, ℓ𝑡⟩ :=
∑︀

ℎ,𝑥ℎ,𝑎ℎ
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ

𝑡
ℎ(𝑥ℎ, 𝑎ℎ),

where the loss function for the 𝑡-th round is given by ℓ𝑡 = {ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}ℎ,𝑥ℎ,𝑎ℎ ∈

R𝑋𝐴
≥0 :

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 𝑝𝑡0(𝑥1)
∏︀ℎ−1

ℎ′=1 𝑝
𝑡
ℎ′(𝑥ℎ′+1|𝑥ℎ′ , 𝑎ℎ′)[1−𝑅

𝑡

ℎ(𝑥ℎ, 𝑎ℎ)], (5.10)

where (𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) is the unique history that leads to 𝑥ℎ. In the full feedback

setting, the learner is further capable of observing the full loss vector ℓ𝑡 ∈ R𝑋𝐴
≥0 at the

end of each round 𝑡.

Subtree and subtree policies For any 𝑔 ≤ ℎ, 𝑥𝑔 ∈ 𝒳𝑔, 𝑥ℎ ∈ 𝒳ℎ, and any action

𝑎𝑔, 𝑎ℎ ∈ 𝒜, we say 𝑥ℎ or (𝑥ℎ, 𝑎ℎ) is in the subtree rooted at 𝑥𝑔, written as 𝑥ℎ ⪰ 𝑥𝑔 or

(𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔, if 𝑥𝑔 is either equal to 𝑥ℎ or is a part of the unique preceding history

(𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) which leads to 𝑥ℎ. Similarly, we say 𝑥ℎ or (𝑥ℎ, 𝑎ℎ) is in the

subtree of (𝑥𝑔, 𝑎𝑔), written as 𝑥ℎ ≻ (𝑥𝑔, 𝑎𝑔) or (𝑥ℎ, 𝑎ℎ) ⪰ (𝑥𝑔, 𝑎𝑔), if (𝑥𝑔, 𝑎𝑔) is either

equal to (𝑥ℎ, 𝑎ℎ) (only in the latter case), or is a part of the unique preceding history

(𝑥1, 𝑎1, . . . , 𝑥ℎ−1, 𝑎ℎ−1) which leads to 𝑥ℎ.

For any 𝑔 ∈ [𝐻], and any infoset 𝑥𝑔 ∈ 𝒳𝑔, we use 𝜇𝑥𝑔 = {𝜇𝑥𝑔ℎ (·|𝑥ℎ) ∈ Δ𝒜 : 𝑥ℎ ⪰ 𝑥𝑔}

to denote a subtree policy rooted at 𝑥𝑔.

We use Π𝑥𝑔 and 𝒱𝑥𝑔 to denote the set of all subtree policies and the set of all de-

terministic subtree policies rooted at 𝑥𝑔. We denote the sequence form representation

of 𝜇𝑥𝑔 ∈ Π𝑥𝑔 by:

𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ) =

⎧⎪⎨⎪⎩
∏︀ℎ

ℎ′=𝑔 𝜇
𝑥𝑔
ℎ′ (𝑎ℎ′|𝑥ℎ′) if (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔,

0 otherwise.

115

Similarly, we can also identify any subtree policy 𝜇𝑥𝑔 ∈ Π𝑥𝑔 as a vector in R𝑋𝐴
≥0 , whose

(𝑥ℎ, 𝑎ℎ)-th entry is equal to its sequence form 𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ) (which is non-zero only on

the subtree rooted at 𝑥𝑔).

5.4.2 Extensive-form trigger regret

The notion of trigger regret is introduced in [Gordon et al., 2008, Celli et al., 2020,

Farina et al., 2022a]. An (extensive-form) trigger modification 𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔 is a policy

modification that modifies any policy 𝜇 ∈ Π as follows: When 𝑥𝑔 is visited and

𝑎𝑔 is about to be taken (by 𝜇), we say 𝑥𝑔𝑎𝑔 is triggered, in which case the subtree

policy rooted at 𝑥𝑔 is then replaced by 𝑚𝑥𝑔 ∈ Π𝑥𝑔 . One can verify that the trigger

modification 𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔 can be written as a linear transformation that maps from Π

to Π:

𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔 := (𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔) +𝑚𝑥𝑔𝑒⊤𝑥𝑔𝑎𝑔 ∈ R𝑋𝐴×𝑋𝐴.

Here, 𝐸⪰𝑥𝑔𝑎𝑔 is a diagonal matrix with diagonal entry 1 at all (𝑥ℎ, 𝑎ℎ) satisfying

(𝑥ℎ, 𝑎ℎ) ⪰ (𝑥𝑔, 𝑎𝑔), and zero otherwise, and 𝑒𝑥𝑔𝑎𝑔 ∈ R𝑋𝐴 is an indicator vector whose

only non-zero entry is 1 at (𝑥𝑔, 𝑎𝑔). We say 𝜑𝑥𝑔𝑎𝑔→𝑣𝑥𝑔 is a deterministic trigger mod-

ification if 𝑣𝑥𝑔 ∈ 𝒱𝑥𝑔 is a deterministic subtree policy. We denote the set of all

deterministic trigger modifications and its convex hull as ΦTr
0 and ΦTr respectively,

where

ΦTr
0 :=

⋃︁
𝑔,𝑥𝑔 ,𝑎𝑔

⋃︁
𝑣𝑥𝑔∈𝒱𝑥𝑔

{︀
𝜑𝑥𝑔𝑎𝑔→𝑣𝑥𝑔

}︀
, ΦTr = conv

{︀
ΦTr

0

}︀
. (5.11)

The (extensive-form) trigger regret is then defined as the difference in the total loss

when comparing against the best extensive-form trigger modification in hindsight.

We note that the trigger regret is a special case of Φ-regret (5.7) with Φ = ΦTr.

Definition 32 (Extensive-Form Trigger Regret). For any algorithm that plays poli-

cies 𝜇𝑡 ∈ Π at round 𝑡 ∈ [𝑇], the extensive-form trigger regret (also the EFCE-regret)

116

is defined as

RegTr(𝑇) := max𝜑∈ΦTr

∑︀𝑇
𝑡=1 ⟨𝜇𝑡 − 𝜑𝜇𝑡, ℓ𝑡⟩ . (5.12)

5.4.3 From trigger regret to Extensive-Form Correlated Equi-

librium (EFCE)

The importance of extensive-form trigger regret is in its connection to computing

EFCE: By standard online-to-batch conversion [Celli et al., 2020, Farina et al., 2022a],

if all players have low trigger regret (with RegTr𝑖 (𝑇) for the 𝑖th player), then the average

joint policy 𝜋 is an 𝜀-EFCE, where 𝜀 = max𝑖∈[𝑚] Reg
Tr
𝑖 (𝑇)/𝑇 . We remark in passing

by taking Φ = Φext, low Φ-regret implies learning (Normal-Form) Coarse Correlated

Equilibria in EFGs, as well as Nash Equilibria in the two-player zero-sum setting [Bai

et al., 2022b].

Concretely, for any product policy 𝜋 = {𝜋𝑖}𝑖∈[𝑚], let ℓ𝜋−𝑖 denote the expected

loss function for the 𝑖th player if that the other players play policy 𝜋−𝑖. We define

a correlated policy 𝜋 as a probability distribution over product policies, i.e. 𝜋 ∼ 𝜋

gives a product policy 𝜋.

An EFCE of the game is defined as follows [Celli et al., 2020, Farina et al., 2022a].

Definition 33 (Extensive-form correlated equilibrium). A correlated policy 𝜋 is an

𝜀-approximate Extensive-Form Correlated Equilibrium (EFCE) of the EFG if

max
𝑖∈[𝑚]

max
𝜑∈ΦEFCE

𝑖

E𝜋∼𝜋(⟨𝜑𝜋𝑖, ℓ𝜋−𝑖⟩ − ⟨𝜋𝑖, ℓ𝜋−𝑖⟩) ≤ 𝜀.

We say 𝜋 is an (exact) EFCE if the above is equality.

When the game is played with product policies for 𝑇 rounds, suppose the product

policy at round 𝑡 is 𝜋𝑡, the extensive-form trigger regret (5.12) for the 𝑖th player

becomes

RegTr𝑖 (𝑇) = max
𝜑∈ΦEFCE

𝑖

𝑇∑︁
𝑡=1

⟨
𝜑𝜋𝑡𝑖 − 𝜋𝑡𝑖 , ℓ𝜋

𝑡
−𝑖

⟩
.

117

The following online-to-batch lemma for EFCE is standard, see e.g. [Celli et al., 2020].

Lemma 34 (Online-to-batch for EFCE). Let {𝜋𝑡 = (𝜋𝑡𝑖)𝑖∈[𝑛]}𝑡∈[𝑇] be a sequence of

product policies for all players over 𝑇 rounds. Then, for the average (correlated)

policy 𝜋 = Unif({𝜋𝑡}𝑇𝑡=1) is an 𝜀-EFCE, where 𝜀 = max𝑖∈[𝑚] Reg
Tr
𝑖 (𝑇)/𝑇 .

5.5 Lower bounds

We accompany our results with information-theoretic lower bounds showing that our̃︀𝒪(√𝐻3𝑋𝐴𝑇) regret and ̃︀𝒪(𝐻3(𝑋𝐴 + 𝑌 𝐵)/𝜀2) sample complexity are both near-

optimal modulo poly(𝐻) and log factors.

Theorem 35 (Lower bound for learning IIEFGs). For any 𝐴 ≥ 2, 𝐻 ≥ 1, we have

(𝑐 > 0 is an absolute constant)

1. (Regret lower bound) For any algorithm that controls the max player and plays

policies {𝜇𝑡}𝑇𝑡=1 where 𝑇 ≥ 𝑋𝐴, there exists a game with 𝐵 = 1 on which

E
[︀
R𝑇
]︀
= E

[︃
max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀]︃
≥ 𝑐 ·

√
𝑋𝐴𝑇.

2. (PAC lower bound for learning NE) For any algorithm that controls both players

and outputs a final policy (̂︀𝜇, ̂︀𝜈) with 𝑇 episodes of play, and any 𝜀 ∈ (0, 1], there

exists a game on which the algorithm suffers from E[NEGap(̂︀𝜇, ̂︀𝜈)] ≥ 𝜀, unless

𝑇 ≥ 𝑐 · (𝑋𝐴+ 𝑌 𝐵)/𝜀2.

The proof of Theorem 35 (deferred to Appendix D.4) constructs a hard instance

with 𝑋 = Θ(𝑋𝐻) = Θ(𝐴𝐻−1) that is equivalent to 𝐴𝐻-armed bandit problems, and

follows by a reduction to standard bandit lower bounds. We remark that our lower

bounds are tight in 𝑋 but did not explicitly optimize the 𝐻 dependence (which is

typically lower-order compared to 𝑋).

118

Chapter 6

Extensive-form Games: 2p0s case

A central question in IIEFGs is the problem of finding a Nash equilibrium (NE) [Nash,

1950] in a two-player zero-sum IIEFG with perfect recall. There is an extensive line

of work for solving this problem with full knowledge of the game (or full feedback),

by either reformulating as a linear program [Koller and Megiddo, 1992, Von Stengel,

1996, Koller et al., 1996], first-order optimization methods [Hoda et al., 2010, Kroer

et al., 2015, 2018, Munos et al., 2020, Lee et al., 2021], or Counterfactual Regret

Minimization [Zinkevich et al., 2007, Lanctot et al., 2009, Johanson et al., 2012,

Tammelin, 2014, Schmid et al., 2019, Burch et al., 2019].

However, in the more challenging bandit feedback setting where the game is not

known and can only be learned from random observations by repeated playing, the

optimal sample complexity (i.e., the number of episodes required to play) for learning

an NE in IIEFGs remains open. Various approaches have been proposed recently for

solving this, including model-based exploration [Zhou et al., 2019, Zhang and Sand-

holm, 2021], Online Mirror Descent with loss estimation [Farina et al., 2021b, Kozuno

et al., 2021], and Monte-Carlo Counterfactual Regret Minimization (MCCFR) [Lanc-

tot et al., 2009, Farina et al., 2020b, Farina and Sandholm, 2021]. In a two-player

zero-sum IIEFG with 𝑋, 𝑌 information sets (infosets) and 𝐴, 𝐵 actions for the two

players respectively, the current best sample complexity for learning an 𝜀-approximate

NE is ̃︀𝒪((𝑋2𝐴+ 𝑌 2𝐵)/𝜀2) achieved by a sample-based variant of Online Mirror De-

scent with implicit exploration [Kozuno et al., 2021]. However, this sample complexity

119

scales quadratically in 𝑋, 𝑌 and still has a gap from the information-theoretic lower

bound Ω((𝑋𝐴 + 𝑌 𝐵)/𝜀2) which only scales linearly. This gap is especially concern-

ing from a practical point of view as the number of infosets is often the dominating

measure of the game size in large real-world IIEFGs [Johanson, 2013].

In this Chapter, we resolve this open question by presenting the first line of al-

gorithms that achieve ̃︀𝒪((𝑋𝐴+ 𝑌 𝐵)/𝜀2) sample complexity for learning 𝜀-NE in an

IIEFG. The key algorithmic ingredient is thr balanced exploration policy, which

paces learning rate in different information sets based on the scale of the subtree.

Combining it with two existing framework: Online mirror descent (OMD) and coun-

terfectual regret minimization (CFR), we develop two different algorithms achieving

near-optimal sample complexity. The technique is later extended to learning CCEs

in general games.

6.1 Balanced exploration policy

Our algorithms make crucial use of the following balanced exploration policies. See

Figure 6-1 for an illustration of the balanced exploration policy.

Definition 36 (Balanced exploration policy). For any 1 ≤ ℎ ≤ 𝐻, the (max-player’s)

balanced exploration policy for layer ℎ, denoted as 𝜇⋆,ℎ ∈ Πmax, is defined as

𝜇⋆,ℎℎ′ (𝑎ℎ′ |𝑥ℎ′) :=

⎧⎪⎨⎪⎩
|𝒞ℎ(𝑥ℎ′ , 𝑎ℎ′)|
|𝒞ℎ(𝑥ℎ′)|

, ℎ′ ∈ {1, . . . , ℎ− 1},

1/𝐴, ℎ′ ∈ {ℎ, . . . , 𝐻}.
(6.1)

In words, at time steps ℎ′ ≤ ℎ − 1, the policy 𝜇⋆,ℎ plays actions proportionally to

their number of descendants within the ℎ-th layer of the game tree. Then at time

steps ℎ′ ≥ ℎ, it plays the uniform policy.

Note that there are 𝐻 such balanced policies, one for each layer ℎ ∈ [𝐻]. The

balanced policy for layer ℎ = 𝐻 is equivalent to the balanced strategy of Farina et al.

[2020b] (cf. their Section 4.2 and Appendix A.3) which plays actions proportionally to

their number descendants within the last (terminal) layer. The balanced policies for

120

Figure 6-1: An illustration of the balanced exploration policy: sampling probability
is propotional to the size of the sub game-tree rooted at the action.

layers ℎ ≤ 𝐻− 1 generalize theirs by also counting the number of descendants within

earlier layers. We remark in passing that the key feature of 𝜇⋆,ℎ for our analyses is

its balancing property, which we state in Lemma 37.

Lemma 37 (Balancing property of 𝜇⋆,ℎ). For any max-player’s policy 𝜇 ∈ Πmax and

any ℎ ∈ [𝐻], we have

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
= 𝑋ℎ𝐴.

Lemma 37 states that 𝜇⋆,ℎ is a good exploration policy in the sense that the

distribution mismatch between it and any 𝜇 ∈ Πmax has bounded 𝐿1 norm. Further,

the bound 𝑋ℎ𝐴 is non-trivial—For example, if we replace 𝜇⋆,ℎ1:ℎ with the uniform policy

𝜇unif
1:ℎ (𝑥ℎ, 𝑎ℎ) = 1/𝐴ℎ, the left-hand side can be as large as 𝑋ℎ𝐴

ℎ in the worst case.

Interpretation as a transition probability We now provide an intepretation of

the balanced exploration policy 𝜇⋆,ℎ1:ℎ: its inverse 1/𝜇⋆,ℎ1:ℎ can be viewed as the (product)

of a “transition probability” over the game tree for the max player. As a consequence,

this interpretation also provides an alternative proof of Lemma 37.

121

For any 1 ≤ ℎ ≤ 𝐻 and 1 ≤ 𝑘 ≤ ℎ− 1, denote

𝑝⋆,ℎ𝑘 (𝑥𝑘+1|𝑥𝑘, 𝑎𝑘) := |𝒞ℎ(𝑥𝑘+1)|/|𝒞ℎ(𝑥𝑘, 𝑎𝑘)|

using the convention that |𝒞ℎ(𝑥ℎ)| = 1. By this definition, 𝑝⋆,ℎ𝑘 (·|𝑥𝑘, 𝑎𝑘) is a probability

distribution over 𝒞ℎ(𝑥𝑘, 𝑎𝑘) and can be interpreted as a balanced transition probability

from (𝑥𝑘, 𝑎𝑘) to 𝑥𝑘+1. We further denote the sequence form of the balanced transition

probability by

𝑝⋆,ℎ1:ℎ(𝑥ℎ) =
|𝒞ℎ(𝑥1)|
𝑋ℎ

ℎ−1∏︁
𝑘=1

𝑝⋆,ℎ𝑘 (𝑥𝑘+1|𝑥𝑘, 𝑎𝑘) =
|𝒞ℎ(𝑥1)|
𝑋ℎ

ℎ−1∏︁
𝑘=1

|𝒞ℎ(𝑥𝑘+1)|
|𝒞ℎ(𝑥𝑘, 𝑎𝑘)|

. (6.2)

Lemma 38. For any (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ ×𝒜, the sequence form of the transition 𝑝⋆,ℎ1:ℎ(𝑥ℎ)

and the sequence form of balanced exploration strategy 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) are related by

𝑝⋆,ℎ1:ℎ(𝑥ℎ) =
1

𝑋ℎ𝐴 · 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
. (6.3)

Furthermore, for any max player’s policy 𝜇 ∈ Πmax and any ℎ ∈ [𝐻], we have

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
⋆,ℎ
1:ℎ(𝑥ℎ) = 1. (6.4)

Proof of Lemma 38 By the definition of the balanced transition probability as

in Eq. (6.2) and the balanced exploration strategy as in Eq. (6.1), we have

1

𝑋ℎ𝐴 · 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
=

1

𝑋ℎ𝐴

ℎ−1∏︁
𝑘=1

|𝒞ℎ(𝑥𝑘)|
|𝒞ℎ(𝑥𝑘, 𝑎𝑘)|

× 𝐴 =
|𝒞ℎ(𝑥1)|
𝑋ℎ

ℎ−1∏︁
𝑘=1

|𝒞ℎ(𝑥𝑘+1)|
|𝒞ℎ(𝑥𝑘, 𝑎𝑘)|

= 𝑝⋆,ℎ1:ℎ(𝑥ℎ).

where the second equality used the property that |𝒞ℎ(𝑥ℎ)| = 1. This proves Eq. (6.3).

The proof of Eq. (6.4) is similar to the proof of Lemma 110 (a).

122

Alternative proof of Lemma 37 Lemma 37 follows as a direct consequence of

Eq. (6.3) and (6.4) in Lemma 38.

Requirement on knowing the tree structure The construction of 𝜇⋆,ℎ requires

knowing the number of descendants |𝒞ℎ(𝑥ℎ′ , 𝑎ℎ′)|, which depends on the structure

of the game tree for the max player. By this “structure” we refer to the parenting

structure of the game tree only (which 𝑥ℎ+1 is reachable from which (𝑥ℎ, 𝑎ℎ)), not the

transition probabilities and rewards.Therefore, our algorithms that use 𝜇⋆,ℎ requires

knowing this tree structure beforehand. Although there exist algorithms that do not

require knowing such tree structure beforehand [Zhang and Sandholm, 2021, Kozuno

et al., 2021], this requirement is relatively mild as the structure can be extracted

efficiently from just one tree traversal. We also remark our algorithms using the

balanced policies do not impose any additional requirements on the game tree, such

as the existence of a policy with lower bounded reaching probabilities at all infosets.

6.2 Online Mirror Descent

We now present our first algorithm Balanced Online Mirror Descent (Balanced OMD)

and its theoretical guarantees.

6.2.1 Balanced dilated KL

At a high level, OMD algorithms work by designing loss estimators (typically using

importance weighting) and solving a regularized optimization over the constraint

set in each round that involves the loss estimator and a distance function as the

regularizer. OMD has been successfully deployed for solving IIEFGs by using various

dilated distance generating functions over the policy set Πmax [Kroer et al., 2015].

The main ingredient of our algorithm is the balanced dilated KL, a new distance

measure between policies in IIEFGs.

Definition 39 (Balanced dilated KL). The balanced dilated KL distance between

123

two policies 𝜇, 𝜈 ∈ Πmax is defined as

Dbal(𝜇‖𝜈) :=
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log

𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜈ℎ(𝑎ℎ|𝑥ℎ)

. (6.5)

The balanced dilated KL is a reweighted version of the dilated KL (a.k.a. the

dilated entropy distance-generating function) that has been widely used for solving

IIEFGs [Hoda et al., 2010, Kroer et al., 2015]:

D(𝜇‖𝜈) =
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) log
𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜈ℎ(𝑎ℎ|𝑥ℎ)

. (6.6)

Compared with (6.6), our balanced dilated KL (6.5) introduces an additional reweight-

ing term 1/𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) that depends on the balanced exploration policy 𝜇⋆,ℎ (6.1).

This reweighting term is in general different for each (𝑥ℎ, 𝑎ℎ), which at a high level

will introduce a balancing effect into our algorithm. The main advantage of intro-

ducing the balanced KL is that we can give a tighter upper bound as characterized

in Lemma 40 .

Lemma 40 (Bound on balanced dilated KL). Let 𝜇unif ∈ Πmax denote the uniform

policy: 𝜇unif
ℎ (𝑎ℎ|𝑥ℎ) = 1/𝐴 for all (ℎ, 𝑥ℎ, 𝑎ℎ). Then we have

max
𝜇†∈Πmax

Dbal(𝜇†‖𝜇unif) ≤ 𝑋𝐴 log𝐴.

Interpretation of balanced dilated KL We present an interpretation of the

balanced dilated KL (6.5) as a KL distance between the reaching probabilities under

the “balanced transition” (6.2) on the max player’s game tree.

For any policy 𝜇 ∈ Πmax, we define its balanced transition reaching probability

P𝜇,⋆ℎ (𝑥ℎ, 𝑎ℎ) as

P𝜇,⋆ℎ (𝑥ℎ, 𝑎ℎ) = 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
⋆,ℎ
1:ℎ(𝑥ℎ). (6.7)

This is a probability measure on 𝒳ℎ×𝒜 ensured by Lemma 38. For any two probability

distribution 𝑝 and 𝑞, we denote KL(𝑝‖𝑞) to be their KL divergence.

124

Lemma 41. For any tuple of max-player’s policies 𝜇, 𝜈 ∈ Πmax, we have

Dbal(𝜇‖𝜈) =
𝐻∑︁
ℎ=1

(𝑋ℎ𝐴)KL(P𝜇1:ℎ,⋆ℎ ‖P𝜇1:ℎ−1𝜈ℎ,⋆
ℎ). (6.8)

6.2.2 Algorithm and theoretical guarantee

We now describe our Balanced OMD algorithm in Algorithm 10. Our algorithm is a

variant of the IXOMD algorithm of Kozuno et al. [2021] by using the balanced dilated

KL. At a high level, it consists of the following steps:

∙ Line 3 & 5 (Sampling): Play an episode using policy 𝜇𝑡 (against the opponent 𝜈𝑡)

and observe the trajectory. Then construct the loss estimator using importance

weighting and IX bonus [Neu, 2015]:

̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} · (1− 𝑟𝑡ℎ)
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

. (6.9)

Note that the IX bonus 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) on the denominator makes (6.9) a slightly

downward biased estimator of the true loss ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) defined in (5.5).

∙ Line 6 (Update policy): Update 𝜇𝑡+1 by OMD with loss estimator ̃︀ℓ𝑡 and the

balanced dilated KL distance function. Due to the sparsity of ̃︀ℓ𝑡, this update

admits an efficient implementation that updates the conditional form 𝜇𝑡ℎ(·|𝑥ℎ)

at the visited infoset 𝑥ℎ = 𝑥𝑡ℎ only (described in Algorithm 23).

We are now ready to present the theoretical guarantees for the Balanced OMD

algorithm.

Theorem 42 (Regret bound for Balanced OMD). Algorithm 10 with learning rate

𝜂 =
√︀
𝑋𝐴 log𝐴/(𝐻3𝑇) and IX parameter 𝛾 =

√︀
𝑋𝐴𝜄/(𝐻𝑇) achieves the following

regret bound with probability at least 1− 𝛿:

R𝑇 ≤ 𝒪
(︁√

𝐻3𝑋𝐴𝑇𝜄
)︁
,

where 𝜄 := log(3𝐻𝑋𝐴/𝛿) is a log factor.

125

Algorithm 10 Balanced OMD (max-player)
Require: Learning rate 𝜂 > 0; IX parameter 𝛾 > 0.
1: Initialize 𝜇1

ℎ(𝑎ℎ|𝑥ℎ)← 1/𝐴ℎ for all (ℎ, 𝑥ℎ, 𝑎ℎ).
2: for Episode 𝑡 = 1, . . . , 𝑇 do
3: Play an episode using 𝜇𝑡, observe a trajectory

(𝑥𝑡1, 𝑎
𝑡
1, 𝑟

𝑡
1, . . . , 𝑥

𝑡
𝐻 , 𝑎

𝑡
𝐻 , 𝑟

𝑡
𝐻).

4: for ℎ = 𝐻, . . . , 1 do
5: Construct loss estimator

{︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

by

̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)← 1
{︀
(𝑥𝑡ℎ, 𝑎

𝑡
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︀
· (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
.

6: Update policy

𝜇𝑡+1 ← argmin
𝜇∈Πmax

⟨
𝜇, ̃︀ℓ𝑡⟩+

1

𝜂
Dbal(𝜇‖𝜇𝑡) (6.10)

using the efficient implementation in Algorithm 23.

Letting both players run Algorithm 10, the following corollary for learning NE

follows immediately from the regret-to-Nash conversion (Proposition 31).

Corollary 43 (Learning NE using Balanced OMD). Suppose both players run Al-

gorithm 10 (and its min player’s version) against each other for 𝑇 rounds, with

choices of 𝜂, 𝛾 specified in Theorem 42. Then, for any 𝜀 > 0, the average policy

(𝜇, 𝜈) = (1
𝑇

∑︀𝑇
𝑡=1 𝜇

𝑡, 1
𝑇

∑︀𝑇
𝑡=1 𝜈

𝑡) achieves NEGap(𝜇, 𝜈) ≤ 𝜀 with probability at least

1− 𝛿, as long as the number of episodes

𝑇 ≥ 𝒪
(︀
𝐻3(𝑋𝐴+ 𝑌 𝐵)𝜄/𝜀2

)︀
,

where 𝜄 := log(3𝐻(𝑋𝐴+ 𝑌 𝐵)/𝛿) is a log factor.

Theorem 42 and Corollary 43 are the first to achieve ̃︀𝒪(poly(𝐻) ·
√
𝑋𝐴𝑇) regret

and ̃︀𝒪(poly(𝐻) · (𝑋𝐴 + 𝑌 𝐵)/𝜀2) sample complexity for learning an 𝜀-approximate

NE for IIEFGs. Notably, the sample complexity scales only linearly in 𝑋, 𝑌 and

improves significantly over the best known ̃︀𝒪((𝑋2𝐴 + 𝑌 2𝐵)/𝜀2)) achieved by the

126

Figure 6-2: A comparison between IXOMD (left) and balanced OMD (right).

IXOMD algorithm of [Kozuno et al., 2021] by a factor of max {𝑋, 𝑌 }. See Figure 6-2

for an illustration of the difference between IXOMD and balanced OMD.

Overview of techniques The proof of Theorem 42 (deferred to Appendix E.3.2)

follows the usual analysis of OMD algorithms where the key is to bound a distance

term and an algorithm-specific “stability” like term (cf. Lemma 126 and its proof).

Compared with existing OMD algorithms using the original dilated KL [Kozuno et al.,

2021], our balanced dilated KL creates a “balancing effect” that preserves the distance

term (Lemma 40) and shaves off an 𝑋 factor in the stability term (Lemma 133 & 134),

which combine to yield a
√
𝑋 improvement in the final regret bound.

6.3 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2007] is another widely

used class of algorithms for solving IIEFGs. In this section, we present a new variant

Balanced CFR that also achieves sharp sample complexity guarantees. See Figure 6-3

for an illustration of CFR and its sample-based version, Mento Carlo CFR (MCCFR).

Different from OMD, CFR-type algorithms maintain a “local” regret minimizer

at each infoset 𝑥ℎ that aims to minimize the immediate counterfactual regret at that

infoset:

Rimm,𝑇
ℎ (𝑥ℎ) := max

𝜇∈Δ(𝒜)

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇(·), 𝐿𝑡ℎ(𝑥ℎ, ·)

⟩︀
,

127

where 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) is the counterfactual loss function

𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) := ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) +
𝐻∑︁

ℎ′=ℎ+1

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)×𝒜

𝜇𝑡(ℎ+1):ℎ′(𝑥ℎ′ , 𝑎ℎ′)ℓ
𝑡
ℎ′(𝑥ℎ′ , 𝑎ℎ′).

(6.11)

Controlling all the immediate counterfactual regrets Rimm,𝑇
ℎ (𝑥ℎ) will also control the

overall regret of the game R𝑇 , as guaranteed by the counterfactual regret decomposi-

tion [Zinkevich et al., 2007] (see also our Lemma 135).

6.3.1 Algorithm description

Our Balanced CFR algorithm, described in Algorithm 11, can be seen as an instan-

tiation of the Monte-Carlo CFR (MCCFR) framework [Lanctot et al., 2009] that

incorporates the balanced policies in its sampling procedure. Algorithm 11 requires

regret minimization algorithms 𝑅𝑥ℎ for each 𝑥ℎ as its input, and performs the follow-

ing steps in each round:

∙ Line 4-6 (Sampling): Play 𝐻 episodes using policies
{︀
𝜇𝑡,(ℎ)

}︀
ℎ∈[𝐻]

, where each

𝜇𝑡,(ℎ) = (𝜇⋆,ℎ1:ℎ𝜇
𝑡
ℎ+1:𝐻) is a mixture of the balanced exploration policy 𝜇⋆,ℎ with

the current maintained policy 𝜇𝑡 over time steps. Then, compute ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)
by (6.13) that are importance-weighted unbiased estimators of the true coun-

terfactual loss 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) in (6.11).

∙ Line 8 (Update regret minimizers): For each (ℎ, 𝑥ℎ), send the loss estimators

{̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎)}𝑎∈𝒜 to the local regret minimizer 𝑅𝑥ℎ , and obtain the updated policy

𝜇𝑡+1
ℎ (·|𝑥ℎ).

Similar as existing CFR-type algorithms, Balanced CFR has the flexibility of

allowing different choices of regret minimization algorithms as 𝑅𝑥ℎ . We will consider

two concrete instantiations of 𝑅𝑥ℎ as Hedge and Regret Matching in the following

subsection.

128

Figure 6-3: A comparison between CFR and MCCFR: instead of update the whole
game tree, it only updates the policies on a trajectory.

6.3.2 Theoretical guarantee

To obtain a sharp guarantee for Balanced CFR, we first instantiate 𝑅𝑥ℎ as the Hedge

algorithm (a.k.a. Exponential Weights, or mirror descent with the entropic regular-

izer; cf. Algorithm 21). Specifically, we let each 𝑅𝑥ℎ be the Hedge algorithm with

learning rate 𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎).Note that this quantity depends on 𝑥ℎ but not 𝑎. With this

choice, Line 8 of Algorithm 11 takes the following explicit form:

𝜇𝑡+1
ℎ (𝑎|𝑥ℎ) ∝𝑎 𝜇𝑡ℎ(𝑎|𝑥ℎ) · 𝑒−𝜂𝜇

⋆,ℎ
1:ℎ(𝑥ℎ,𝑎)·̃︀𝐿𝑡

ℎ(𝑥ℎ,𝑎). (6.12)

We are now ready to present the theoretical guarantees for the Balanced CFR algo-

rithm.

Theorem 44 (“Regret” bound for Balanced CFR). Suppose the max player plays

Algorithm 11 where each 𝑅𝑥ℎ is instantiated as the Hedge algorithm (6.12) with

𝜂 =
√︀
𝑋𝐴𝜄/(𝐻3𝑇). Then, the policies 𝜇𝑡 achieve the following “regret” bound with

probability at least 1− 𝛿:

̃︀R𝑇 := max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀
≤ 𝒪(

√
𝐻3𝑋𝐴𝑇𝜄),

where 𝜄 = log(10𝑋𝐴/𝛿) is a log factor.

The ̃︀𝒪(√𝐻3𝑋𝐴𝑇) “regret” achieved by Balanced CFR matches that of Balanced

OMD. However, we emphasize that the quantity ̃︀R𝑇 is not strictly speaking a regret,

129

Algorithm 11 Balanced CFR (max-player)
Require: Regret minimization algorithm 𝑅𝑥ℎ for all (ℎ, 𝑥ℎ).
1: Initialize policy 𝜇1

ℎ(𝑎ℎ|𝑥ℎ)← 1/𝐴 for all (ℎ, 𝑥ℎ, 𝑎ℎ).
2: for round 𝑡 = 1, . . . , 𝑇 do
3: for ℎ = 1, . . . ,𝐻 do
4: Set policy 𝜇𝑡,(ℎ) ← (𝜇⋆,ℎ1:ℎ𝜇

𝑡
ℎ+1:𝐻).

5: Play an episode using 𝜇𝑡,(ℎ) × 𝜈𝑡, observe a trajectory

(𝑥
𝑡,(ℎ)
1 , 𝑎

𝑡,(ℎ)
1 , 𝑟

𝑡,(ℎ)
1 , · · · , 𝑥𝑡,(ℎ)𝐻 , 𝑎

𝑡,(ℎ)
𝐻 , 𝑟

𝑡,(ℎ)
𝐻).

6: Compute loss estimators for all (ℎ, 𝑥ℎ, 𝑎ℎ):

̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 1
{︁
(𝑥
𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(︃
𝐻 − ℎ+ 1−

𝐻∑︁
ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃
. (6.13)

7: for all ℎ ∈ [𝐻] and 𝑥ℎ ∈ 𝒳ℎ do
8: Update the regret minimizer at 𝑥ℎ and obtain policy:

𝜇𝑡+1
ℎ (·|𝑥ℎ)← 𝑅𝑥ℎ .Update({̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎)}𝑎∈𝒜). (6.14)

as it measures performance of the policy {𝜇𝑡} maintained in the Balanced CFR algo-

rithm, not the sampling policy 𝜇𝑡,(ℎ) that the Balanced CFR algorithm have actually

played. Nevertheless, we remark that such a form of “regret” bound is the common

type of guarantee for all existing MCCFR type algorithms [Lanctot et al., 2009, Farina

et al., 2020b].

Self-play of Balanced CFR Balanced CFR can also be turned into a PAC algo-

rithm for learning 𝜀-NE, by letting the two players play Algorithm 11 against each

other for 𝑇 rounds of self-play using the following protocol: Within each round, the

max player plays policies
{︀
𝜇𝑡,(ℎ)

}︀𝐻
ℎ=1

while the min player plays the fixed policy 𝜈𝑡;

then symmetrically the min player plays
{︀
𝜈𝑡,(ℎ)

}︀𝐻
ℎ=1

while the max player plays the

fixed 𝜇𝑡. Overall, each round plays 2𝐻 episodes.

Theorem 44 directly implies the following corollary for the above self-play algo-

rithm on learning 𝜀-NE, by the regret-to-Nash conversion (Proposition 31).

Corollary 45 (Learning NE using Balanced CFR). Let both players play Algo-

130

rithm 11 in a self-play fashion against each other for 𝑇 rounds, where each 𝑅𝑥ℎ is in-

stantiated as the Hedge algorithm (6.12) with 𝜂 specified in Theorem 44. Then, for any

𝜀 > 0, the average policy (𝜇, 𝜈) = (1
𝑇

∑︀𝑇
𝑡=1 𝜇

𝑡, 1
𝑇

∑︀𝑇
𝑡=1 𝜈

𝑡) achieves NEGap(𝜇, 𝜈) ≤ 𝜀

with probability at least 1− 𝛿, as long as

𝑇 ≥ 𝒪(𝐻3(𝑋𝐴+ 𝑌 𝐵)𝜄/𝜀2),

where 𝜄 := log(10(𝑋𝐴+ 𝑌 𝐵)/𝛿) is a log factor. The total amount of episodes played

is at most

2𝐻 · 𝑇 = 𝒪(𝐻4(𝑋𝐴+ 𝑌 𝐵)𝜄/𝜀2).

Corollary 45 shows that Balanced CFR requires ̃︀𝒪(𝐻4(𝑋𝐴 + 𝑌 𝐵)/𝜀2) episodes

for learning an 𝜀-NE, which is 𝐻 times larger than Balanced OMD but otherwise also

near-optimal with respect to the lower bound (Theorem 35) modulo an ̃︀𝒪(poly(𝐻))

factor. This improves significantly over the current best sample complexity achieved

by CFR-type algorithms, which are either poly(𝑋, 𝑌,𝐴,𝐵)/𝜀4 [Farina and Sandholm,

2021], or potentially poly(𝑋, 𝑌,𝐴,𝐵)/𝜀2 using the MCCFR framework of [Lanctot

et al., 2009, Farina et al., 2020b] but without any known such instantiation.

Overview of techniques The proof of Theorem 44 (deferred to Appendix E.4.2)

follows the usual analysis pipeline for MCCFR algorithms that decomposes the overall

regret ̃︀R𝑇 into combinations of immediate counterfactual regrets Rimm,𝑇
ℎ (𝑥ℎ), and

bounds each by regret bounds (of the regret minimizer 𝑅𝑥ℎ) plus concentration terms.

We adopt a sharp application of this pipeline by using a tight counterfactual regret

decomposition (Lemma 135), as well as using the balancing property of 𝜇⋆,ℎ which

yields sharp bounds on both the regret and concentration terms (Lemma 136-138).

We remark that our techniques can also be used for analyzing CFR type algorithms

in the full-feedback setting. Concretely, we provide a sharp 𝒪(
√︀
𝐻3‖Πmax‖1 log𝐴 · 𝑇)

regret bound for a “vanilla" CFR algorithm in the full full-feedback setting, matching

the result of [Zhou et al., 2020, Lemma 2].

131

6.3.3 Balanced CFR with regret matching

Many real-world applications of CFR-type algorithms use Regret Matching [Hart

and Mas-Colell, 2000] instead of Hedge as the regret minimizer, due to its practical

advantages such as learning-rate free and pruning effects [Tammelin, 2014, Burch

et al., 2019].

In this section, we show that Balanced CFR instantiated with Regret Matching

enjoys ̃︀𝒪(√𝐻3𝑋𝐴2𝑇) “regret” and ̃︀𝒪((𝐻4(𝑋𝐴2 + 𝑌 𝐵2)/𝜀2) sample complexity for

learning 𝜀-NE (Theorem 46 & Corollary 47). The sample complexity is also sharp in

𝑋, 𝑌 , though is 𝐴 (or 𝐵) times worse than the Hedge version, which is expected due

to the difference between the regret minimizers.

We consider instantiating Line 8 of Algorithm 11 using the following Regret Match-

ing algorithm

𝜇𝑡+1
ℎ (𝑎|𝑥ℎ) =

[︀
𝑅𝑡
𝑥ℎ
(𝑎)
]︀
+∑︀

𝑎′∈𝒜
[︀
𝑅𝑡
𝑥ℎ
(𝑎′)
]︀
+

,

where 𝑅𝑡
𝑥ℎ
(𝑎) :=

𝑡∑︁
𝜏=1

⟨
𝜇𝜏ℎ(·|𝑥ℎ), ̃︀𝐿𝜏ℎ(𝑥ℎ, ·)⟩− ̃︀𝐿𝜏ℎ(𝑥ℎ, 𝑎) for all 𝑎 ∈ 𝒜.

(6.15)

as the regret minimization sub-routine for each information set. See Algorithm 12 for

the full version.

We now present the main theoretical guarantees for Balanced CFR with regret

matching. The proof of Theorem 46 can be found in Section E.4.6.

Theorem 46 (“Regret” bound for Balanced CFR with Regret Matching). Suppose the

max player plays Algorithm 11 where each 𝑅𝑥ℎ is instantiated as the Regret Match-

ing algorithm (6.15). Then the policies 𝜇𝑡 achieve the following regret bound with

probability at least 1− 𝛿:

̃︀R𝑇 := max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀
≤ 𝒪(

√
𝐻3𝑋𝐴2𝑇𝜄),

where 𝜄 = log(10𝑋𝐴/𝛿) is a log factor. Further, each round plays 𝐻 episodes against

𝜈𝑡 (so that the total number of episodes played is 𝐻𝑇).

132

Algorithm 12 Balanced CFR with Regret Matching (max player)
Require: Learning rate 𝜂 > 0.
1: Initialize policies 𝜇1

ℎ(𝑎ℎ|𝑥ℎ)← 1/𝐴 for all (ℎ, 𝑥ℎ, 𝑎ℎ).
2: for iteration 𝑡 = 1, . . . , 𝑇 do
3: for ℎ = 1, . . . ,𝐻 do
4: Set policy 𝜇𝑡,(ℎ) ← (𝜇⋆,ℎ1:ℎ𝜇

𝑡
ℎ+1:𝐻).

5: Play an episode using 𝜇𝑡,(ℎ) × 𝜈𝑡, observe trajectory

(𝑥
𝑡,(ℎ)
1 , 𝑎

𝑡,(ℎ)
1 , 𝑟

𝑡,(ℎ)
1 , · · · , 𝑥𝑡,(ℎ)𝐻 , 𝑎

𝑡,(ℎ)
𝐻 , 𝑟

𝑡,(ℎ)
𝐻).

6: Compute loss estimators for all (ℎ, 𝑥ℎ, 𝑎ℎ):

̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 1
{︁
(𝑥
𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

×

(︃
𝐻 − ℎ+ 1−

𝐻∑︁
ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃
.

7: for all ℎ ∈ [𝐻] and 𝑥ℎ ∈ 𝒳ℎ do
8: Update policy at 𝑥ℎ using Regret Matching:

𝜇𝑡+1
ℎ (𝑎|𝑥ℎ) =

[︀
𝑅𝑡
𝑥ℎ
(𝑎)
]︀
+∑︀

𝑎′∈𝒜
[︀
𝑅𝑡
𝑥ℎ
(𝑎′)
]︀
+

,

where 𝑅𝑡
𝑥ℎ
(𝑎) :=

𝑡∑︁
𝜏=1

⟨
𝜇𝜏ℎ(·|𝑥ℎ), ̃︀𝐿𝜏ℎ(𝑥ℎ, ·)⟩− ̃︀𝐿𝜏ℎ(𝑥ℎ, 𝑎) for all 𝑎 ∈ 𝒜.

We then have the following corollary directly by the regret-to-Nash conversion

(Proposition 31).

Corollary 47 (Learning Nash using Balanced CFR with Regret Matching). Letting

both players play Algorithm 11 in a self-play fashion against each other for 𝑇 rounds,

where each 𝑅𝑥ℎ is instantiated as the Regret Matching algorithm (6.15). Then, for any

𝜀 > 0, the average policy (𝜇, 𝜈) = (1
𝑇

∑︀𝑇
𝑡=1 𝜇

𝑡, 1
𝑇

∑︀𝑇
𝑡=1 𝜈

𝑡) achieves NEGap(𝜇, 𝜈) ≤ 𝜀

with probability at least 1− 𝛿, as long as

𝑇 ≥ 𝒪(𝐻3(𝑋𝐴2 + 𝑌 𝐵2)𝜄/𝜀2),

where 𝜄 := log(10(𝑋𝐴+ 𝑌 𝐵)/𝛿) is a log factor. The total amount of episodes played

133

is at most

2𝐻 · 𝑇 = 𝒪(𝐻4(𝑋𝐴2 + 𝑌 𝐵2)𝜄/𝜀2).

6.4 Extension to multi-player games

In this section, we show that our Balanced OMD and Balanced CFR generalize di-

rectly to learning Coarse Correlated Equilibria (CCE) in multi-player general-sum

games.

We consider an 𝑚-player general-sum IIEFG with 𝑋𝑖 infosets and 𝐴𝑖 actions for

the 𝑖-th player. Let 𝑉𝑖 denote the game value (expected cumulative reward) for the

𝑖-th player.

Definition 48 (NFCCE). A joint policy 𝜋 (for all players) is an 𝜀-approximate

Normal-Form Coarse Correlated Equilibrium (NFCCE) if

CCEGap(𝜋) := max
𝑖∈[𝑚]

(︁
max
𝜋†
𝑖∈Π𝑖

𝑉
𝜋†
𝑖 ,𝜋−𝑖

𝑖 − 𝑉 𝜋
𝑖

)︁
≤ 𝜀,

i.e., no player can gain more than 𝜀 in her own reward by deviating from 𝜋 and playing

some other policy on her own.

We remark that the NFCCE differs from other types of Coarse Correlated Equi-

libria in the literature such as the EFCCE [Farina et al., 2020a]. Such distinctions

only exist for (Coarse) Correlated Equilibria and not for the NE studied in the pre-

vious sections. Using the known connection between no-regret and NFCCE [Celli

et al., 2019a], we can learn an 𝜀-NFCCE in an multi-player IIEFG sample-efficiently

by letting all players run either Balanced CFR or Balanced OMD in a self-play fash-

ion. In the following, we let {𝜋𝑡𝑖}
𝑇
𝑡=1 denote the policies maintained by player 𝑖, and

𝜋𝑡 :=
∏︀𝑚

𝑖=1 𝜋
𝑡
𝑖 denote their joint policy in the 𝑡-th round.

Theorem 49 (Learning NFCCE sample-efficiently using Balanced OMD / Balanced

CFR). We have

134

1. (Balanced OMD) Let all players play Algorithm 10 for 𝑇 rounds with learning

rate 𝜂 =
√︀
𝑋𝑖𝐴𝑖 log𝐴𝑖/(𝐻3𝑇) and IX parameter 𝛾 =

√︀
𝑋𝑖𝐴𝑖𝜄/(𝐻𝑇) for the

𝑖-th player. Then for any 𝜀 > 0, the average policy 𝜋 uniformly sampled from

{𝜋𝑡}𝑇𝑡=1 satisfies CCEGap(𝜋) ≤ 𝜀 with probability at least 1 − 𝛿, as long as the

number of episodes

𝑇 ≥ 𝒪
(︁
𝐻3𝜄

(︁
max
𝑖∈[𝑚]

𝑋𝑖𝐴𝑖

)︁
/𝜀2
)︁
,

where 𝜄 := log(3𝐻
∑︀𝑚

𝑖=1𝑋𝑖𝐴𝑖/𝛿) is a log factor.

2. (Balanced CFR) Let all players play Algorithm 11 in the same self-play fash-

ion as Corollary 45 for 𝑇 rounds, with 𝑅𝑥ℎ instantiated as Hedge (6.12) with

learning rate 𝜂 =
√︀
𝑋𝑖𝐴𝑖𝜄/(𝐻3𝑇) for the 𝑖-th player. Then for any 𝜀 > 0, the

average policy 𝜋 uniformly sampled from {𝜋𝑡}𝑇𝑡=1 satisfies CCEGap(𝜋) ≤ 𝜀 with

probability at least 1− 𝛿, as long as 𝑇 ≥ 𝒪
(︀
𝐻3𝜄(max𝑖∈[𝑚]𝑋𝑖𝐴𝑖)/𝜀

2
)︀
. The total

number of episodes played is at most

𝑚𝐻 · 𝑇 = 𝒪
(︁
𝐻4𝑚𝜄 ·

(︁
max
𝑖∈[𝑚]

𝑋𝑖𝐴𝑖

)︁
/𝜀2
)︁
.

where 𝜄 := log(10
∑︀𝑚

𝑖=1𝑋𝑖𝐴𝑖/𝛿) is a log factor.

For both algorithms, the number of episodes for learning an 𝜀-NFCCE scales

linearly with max𝑖∈[𝑚]𝑋𝑖𝐴𝑖 (with Balanced CFR having an additional 𝐻𝑚 factor

than Balanced OMD), compared to the best existing max𝑖∈[𝑚]𝑋
2
𝑖 𝐴𝑖 dependence (e.g.

by self-playing IXOMD [Kozuno et al., 2021]). The proof of Theorem 49 is in Ap-

pendix E.5.1.

135

136

Chapter 7

Extensive-form Games: general case

In multi-player general-sum EFGs, computing an approximate Nash equilibrium (NE)

is PPAD-hard [Daskalakis et al., 2009] and thus likely intractable. A reasonable and

computationally tractable solution concept in general-sum EFGs is the extensive-form

correlated equilibria (EFCE) [Von Stengel and Forges, 2008, Gordon et al., 2008, Celli

et al., 2020, Farina et al., 2022a]. It is known that, as long as each player runs an

uncoupled dynamics minimizing a suitable EFCE-regret, their average joint policy

will converge to an EFCE [Greenwald and Jafari, 2003].

Existing algorithms of minimizing the EFCE-regret are mostly built upon the

regret decomposition techniques [Zinkevich et al., 2007], which utilize the structure of

the game and the set of policy modifications [Celli et al., 2020, Morrill et al., 2021,

Farina et al., 2022a, Song et al., 2022b]. For example, Morrill et al. [2021] decomposes

the EFCE-regret to local regrets at each information set (infoset) with each of them

handled by a local regret minimizer; Farina et al. [2022a] utilizes the trigger structure

of the policy modification set to decompose the regret to external-like regrets.

There are at least two alternative approaches to designing regret minimization

algorithms for EFGs.

∙ The first is to convert a EFG to a normal-form game (NFG) and use NFG-

based algorithms such as Φ-Hedge [Greenwald and Jafari, 2003]. This approach

typically admits simple algorithm designs and sharp regret bounds by directly

137

Figure 7-1: The naive reduction from EFGs to NFGs induces a exponential blow-up.

translating existing results in NFGs [Stoltz and Lugosi, 2007]. However, the

conversion introduces an exponential blow-up in the game size, and makes such

algorithms computationally intractable in general (See Figure 7-1 for an illustra-

tion). The computational efficiency of these NFG-based algorithms is recently

investigated by Farina et al. [2022b] in the external regret minimization prob-

lem, who provided an efficient implementation of an NFG-based algorithm using

“kernel tricks”.

∙ The second is to use Online Mirror Descent (OMD) algorithms via suitably

designed regularizers over the parameter space. This approach has been suc-

cessfully implemented in minimizing the external regret [Kroer et al., 2015] but

not yet generalized to the EFCE-regret, as it remains unclear how to design

suitable regularizers for the policy modification space.

In this chapter, we develop the first line of EFCE-regret minimization algorithms

along both lines of approaches above, and identify an equivalence between them.

We consider EFCE-regret minimization in EFGs with 𝑋 infosets, 𝐴 actions, and

maximum 𝐿1-norm of sequence-form policies bounded by ‖Π‖1 (cf. Section 5.4 for

the formal definition).

138

7.1 Efficient Φ-Hedge for Trigger Regret Minimiza-

tion

In this section, we study the Φ-Hedge algorithm (Algorithm 9) for minimizing the

trigger regret. Naively, Algorithm 9 requires maintaining and updating 𝑝𝑡 ∈ ΔΦ0 (cf.

Line 6), whose computational cost is linear in |ΦTr
0 | which can be exponential in 𝑋

in the worst case. Notice |ΦTr
0 | is at least the number of deterministic policies of the

game, which could be 𝐴𝑂(𝑋) in the worst case. We begin by deriving an efficient

implementation of the iterate 𝜑𝑡 ∈ Φ (of Line 3) directly by exploiting the structure

of ΦTr
0 .

7.1.1 Efficient implementation of ΦTr-Hedge algorithm

We first use a standard trick to convert the computation of 𝜑𝑡 (Line 3 & 6, Algo-

rithm 9) in Φ-Hedge to evaluating the gradient of a suitable log-partition function.

This is stated in the lemma below (for any generic Φ0), whose proof can be found in

Appendix F.1.2.

Lemma 50 (Conversion to log-partition function). Define the log-partition function

𝐹Φ0 : R𝑑×𝑑 → R

𝐹Φ0(𝑀) := log
∑︁
𝜑∈Φ0

exp{− ⟨𝜑,𝑀⟩}. (7.1)

Then Line 3 of Φ-Hedge (Algorithm 9) has a closed-form update for all 𝑡 ≥ 1:

𝜑𝑡 = −∇𝐹Φ0

(︃
𝜂

𝑡−1∑︁
𝑠=1

𝑀 𝑠

)︃
= −

∑︀
𝜑∈Φ0

exp
{︀
− 𝜂

⟨︀
𝜑,
∑︀𝑡−1

𝑠=1𝑀
𝑠
⟩︀ }︀
𝜑∑︀

𝜑∈Φ0
exp

{︀
− 𝜂

⟨︀
𝜑,
∑︀𝑡−1

𝑠=1𝑀
𝑠
⟩︀ }︀ , 𝑀 𝑡 := ℓ𝑡(𝜇𝑡)⊤.

(7.2)

Eq. (7.2) suggests a strategy for evaluating 𝜑𝑡 = −∇𝐹Φ0(𝜂
∑︀𝑡−1

𝑠=1𝑀
𝑠)—So long

as the vertex set Φ0 has some structure that allows efficient evaluation of the sum

of exponentials on the numerators and denominators (i.e. faster than naive sum), 𝜑𝑡

139

may be computed directly in sublinear in |Φ0| time, and there is no need to maintain

the underlying distribution 𝑝𝑡 ∈ ΔΦ0 .

The following lemma enables such an efficient computation for the log-partition

function 𝐹Tr := 𝐹ΦTr (and its gradient) associated with the trigger modification set

Φ = ΦTr. This lemma (proof deferred to Appendix F.1.3) is a consequence of the

specific structure of Φ0 (cf. (5.11)), whose elements are indexed by a sequence 𝑥𝑔𝑎𝑔

and a deterministic subtree policy 𝑣𝑥𝑔 ∈ 𝒱𝑥𝑔 .

Lemma 51 (Recursive expression of 𝐹Tr and ∇𝐹Tr). For any loss matrix 𝑀 ∈

R𝑋𝐴×𝑋𝐴, the EFCE log-partition function can be written as

𝐹Tr(𝑀) = log
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
exp

{︁
−
⟨︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀

⟩︀
+ 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)

}︁
, (7.3)

where for any 𝑥ℎ ⪰ 𝑥𝑔,

𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀) := log
∑︀

𝑎ℎ
exp

{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
}︁
. (7.4)

Furthermore, define 𝜆 = (𝜆𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 ∈ Δ𝑋𝐴 and 𝑚 = (𝑚𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 with

𝑚𝑥𝑔𝑎𝑔 ∈ Π𝑥𝑔 (and also identified as a vector in R𝑋𝐴) as

𝜆𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁
−
⟨︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀

⟩︀
+ 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)

}︁
, (7.5)

𝑚𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
}︁
, (7.6)

then we have

−∇𝐹Tr(𝑀) = 𝜑(𝜆,𝑚) :=
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜆𝑥𝑔𝑎𝑔(𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔). (7.7)

Above, 𝜆 = (𝜆𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 ∈ Δ𝑋𝐴 is a probability distribution over 𝒳 ×𝒜, and

𝑚 = (𝑚𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 ∈ ℳ ≡
∏︀

𝑔,𝑥𝑔𝑎𝑔
Π𝑥𝑔𝑎𝑔 is a collection of subtree policies 𝑚𝑥𝑔𝑎𝑔 ,

where each 𝑚𝑥𝑔𝑎𝑔 ∈ Π𝑥𝑔 is a subtree policy that specifies an action distribution

𝑚𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) for every 𝑥ℎ ⪰ 𝑥𝑔, and can be identified with a vector in R𝑋𝐴 (c.f.

Section 5.4).

140

Algorithm 13 EFCE-OMD (FTRL form; equivalent OMD form in Algorithm 24)
Require: Learning rate 𝜂 > 0.
1: for 𝑡 = 1, 2, . . . , 𝑇 do
2: For each 𝑥𝑔𝑎𝑔 ∈ 𝒳 × 𝒜, from the reverse order of 𝑥ℎ, compute 𝑚𝑡

𝑥𝑔𝑎𝑔 ,ℎ
(𝑎ℎ|𝑥ℎ)

and 𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ

(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
− 𝜂

∑︀𝑡−1
𝑠=1𝑀

𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︀

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹
𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
,

(7.8)

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

= log
∑︀

𝑎ℎ
exp

{︁
− 𝜂

∑︀𝑡−1
𝑠=1𝑀

𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︀

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹
𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
,

(7.9)

3: Compute 𝜆𝑡𝑥𝑔𝑎𝑔 as

𝜆𝑡𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁
− 𝜂

⟨︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,

∑︀𝑡−1
𝑠=1𝑀

𝑠
⟩︀
+ 𝐹 𝑡

𝑥𝑔𝑎𝑔 ,𝑥𝑔

}︁
. (7.10)

4: Compute 𝜑𝑡 = 𝜑(𝜆𝑡,𝑚𝑡) where 𝜑 is in Eq. (7.7).
5: Compute the policy 𝜇𝑡, which is a solution of the fixed point equation 𝜑𝑡𝜇𝑡 = 𝜇𝑡.

6: Receive loss ℓ𝑡 = {ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}(𝑥ℎ,𝑎ℎ)∈𝒳×𝒜 ∈ R𝑋𝐴
≥0 .

7: Compute matrix loss 𝑀 𝑡 = ℓ𝑡(𝜇𝑡)⊤ ∈ R𝑋𝐴×𝑋𝐴
≥0 .

The recursive structure in Lemma 51 offers a roadmap for evaluating (𝜆,𝑚) and

thus ∇𝐹Tr(𝑀) in 𝑂(𝑋2𝐴2) time (formal statement in Appendix F.1.4). Applying

Lemma 51 with 𝑀 = 𝜂
∑︀𝑡−1

𝑠=1𝑀
𝑠 gives an efficient implementation of (7.2), i.e. the

Φ-Hedge algorithm with Φ = ΦTr. For clarity, we summarize this in Algorithm 13.

We remark that the parameters (𝜆𝑡,𝑚𝑡) therein can also be expressed in terms of

(𝜆𝑡−1,𝑚𝑡−1) and 𝑀 𝑡−1, which we present in Algorithm 24 (the equivalent “OMD”

form) in Appendix F.1.1. We also note that the fixed point equation 𝜑𝑡𝜇 = 𝜇 in

Line 5 can be solved in 𝑂(𝑋2𝐴2) time [Farina et al., 2022a, Corollary 4.15].

7.1.2 Equivalence to FTRL and OMD

We now show that Algorithm 13 is equivalent to FTRL and OMD with suitable dilated

entropies and divergences (hence the name EFCE-OMD). To achieve this goal we first

need to introduce the subtree dilated entropy and subtree dilated KL divergence, a

141

variant of dilated entropy and dilated KL divergence introduced in Hoda et al. [2010],

Kroer et al. [2015], Kozuno et al. [2021]. Here the modification we made is that we

allow these quantities to be rooted at any infoset 𝑥𝑔. The original version is recovered

when the choose the full game tree as the subtree. These quantities were used to

define the trigger dilated entropy and trigger dilated KL divergence as in Section

7.1.2.

Definition 52 (Dilated entropy and Dilated KL divergence). The dilated entropy

𝐻𝑥𝑔 rooted at 𝑥𝑔 of subtree policy 𝜇𝑥𝑔 ∈ Π𝑥𝑔 is defined as

𝐻𝑥𝑔(𝜇
𝑥𝑔) :=

𝐻∑︁
ℎ=𝑔

∑︁
(𝑥ℎ,𝑎ℎ)⪰𝑥𝑔

𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ) log 𝜇

𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ). (7.11)

The dilated KL divergence𝐷𝑥𝑔 rooted at 𝑥𝑔 between two subtree policies 𝜇𝑥𝑔 , 𝜈𝑥𝑔 ∈

Π𝑥𝑔 is defined as

𝐷𝑥𝑔(𝜇
𝑥𝑔‖𝜈𝑥𝑔) :=

𝐻∑︁
ℎ=𝑔

∑︁
(𝑥ℎ,𝑎ℎ)⪰𝑥𝑔

𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ) log

𝜇
𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ)
𝜈
𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ)

. (7.12)

We define the trigger dilated entropy function and trigger dilated KL divergence

function over (𝜆,𝑚) ∈ Δ𝑋𝐴 ×ℳ as

𝐻Tr(𝜆,𝑚) := 𝐻(𝜆) +
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜆𝑥𝑔𝑎𝑔𝐻𝑥𝑔(𝑚𝑥𝑔𝑎𝑔),

𝐷Tr(𝜆,𝑚‖𝜆′,𝑚′) := 𝐷KL(𝜆‖𝜆′) +
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜆𝑥𝑔𝑎𝑔𝐷𝑥𝑔(𝑚𝑥𝑔𝑎𝑔‖𝑚′

𝑥𝑔𝑎𝑔),

where 𝐻(·) and 𝐷KL(·‖·) are the (negative) Shannon entropy and KL divergence; and

for any 𝑥𝑔, 𝐻𝑥𝑔(·) is the dilated entropy, and 𝐷𝑥𝑔(·‖·) is the dilated KL divergence

Hoda et al. [2010], both for the subtree rooted at 𝑥𝑔 defined above in Definition 52.

Lemma 53 (Equivalent formulations of ΦTr-hedge). For any sequence of loss func-

tions {𝑀 𝑡}𝑡≥1, the iterates (𝜆𝑡,𝑚𝑡) in Algorithm 13 (i.e. (7.8)-(7.10)) are equivalent

to (i.e. satisfy) the following FTRL update on 𝐻Tr and OMD update on 𝐷Tr:

(𝜆𝑡,𝑚𝑡) = argmin𝜆,𝑚

[︁
𝜂
⟨︀
𝜑(𝜆,𝑚),

∑︀𝑡−1
𝑠=1𝑀

𝑠
⟩︀
+𝐻Tr(𝜆,𝑚)

]︁
, (7.13)

142

(𝜆𝑡,𝑚𝑡) = argmin𝜆,𝑚

[︁
𝜂 ⟨𝜑(𝜆,𝑚),𝑀 𝑡−1⟩+𝐷Tr(𝜆,𝑚‖𝜆𝑡−1,𝑚𝑡−1)

]︁
. (7.14)

The proof of Lemma 53 follows directly by the concrete forms of (𝜆𝑡,𝑚𝑡) in (7.8)-

(7.10), and can be found in Appendix F.1.5.

7.1.3 Regret bound under full feedback and bandit feedback

We now present the regret bounds of Algorithm 13. We emphasize that these regret

bounds are simple consequence of the generic bound for Φ-Hedge in (5.8), and their

proofs do not depend on the actual implementation of Algorithm 13 developed in the

preceding two subsections. We first consider the full feedback setting, where the full

expected loss vector ℓ𝑡 ∈ R𝑋𝐴
≥0 is received after each episode.

Theorem 54 (Regret bound of EFCE-OMD under full feedback). Running Algorithm

13 with 𝜂 = 𝒪(
√︀
‖Π‖1𝜄/(𝐻2𝑇)) achieves the following trigger regret bound

RegTr(𝑇) ≤ 𝒪
(︀√︀

𝐻2‖Π‖1𝜄𝑇
)︀
,

where 𝜄 := log(𝑋𝐴) is a log factor.

The proof of Theorem 54 is simply by applying (5.8) and observing that log(ΦTr
0) ≤

‖Π‖1 log𝐴 + log(𝑋𝐴) (see Appendix F.2.1). This theorem shows that the ΦTr-

Hedge algorithm gives ̃︀𝒪(√𝑋𝑇) trigger regret bound, which matches the information-

theoretic lower bound Ω(
√
𝑋𝑇) [Zhou et al., 2020, Theorem 2] up to a ̃︀𝒪(poly(𝐻))

factor, and is slightly better than the ̃︀𝒪(√𝑋𝐴𝑇) upper bound of [Song et al., 2022b,

Corollary F.3] though their definition of EFCE-regret is slightly stricter (thus higher)

than ours.

In the bandit feedback setting, the learner only observes her own rewards and

infosets. In this case we replace ℓ𝑡 in Algorithm 13 with the following loss estimator

(with IX bonus 𝛾) proposed in [Kozuno et al., 2021]:

̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)/(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾). (7.15)

143

We show that EFCE-OMD achieves the following guarantee in the bandit feedback

setting (proof in Appendix F.2.2). The proof follows by plugging the loss estimator̃︀ℓ𝑡 into (5.8) and additionally bounding concentrations (which we remark is a better

strategy than using a naive bandit-based loss estimator in the corresponding NFG

space).

Theorem 55 (Regret bound of EFCE-OMD under bandit feedback). Run Algo-

rithm 13 with loss estimator {̃︀ℓ𝑡}𝑇𝑡=1 (7.15), 𝜂 =
√︀
‖Π‖1 log𝐴/(𝐻𝑋𝐴𝑇), and 𝛾 =√︀

‖Π‖1𝜄/(𝑋𝐴𝑇). Then we have the following trigger regret bound with probability at

least 1− 𝛿:

RegTr(𝑇) ≤ 𝒪
(︀√︀

𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇
)︀
,

where 𝜄 = log(3𝑋𝐴/𝛿) is a log term.

To our best knowledge, Theorem 55 gives the first trigger regret bound against

adversarial opponents and bandit feedback. This ̃︀𝒪(√︀𝑋𝐴‖Π‖1𝑇) rate is
√
𝑋𝐴 worse

than Theorem 54 (ignoring 𝐻 and log factors), and is at most ̃︀𝒪(√𝑋2𝐴𝑇) using

‖Π‖1 ≤ 𝑋.

7.2 Balanced EFCE-OMD for bandit feedback

We now build upon the EFCE-OMD algorithm (Algorithm 13) to develop a new

algorithm, Balanced EFCE-OMD, and show that it achieves near-optimal extensive-

form trigger regret guarantee under bandit feedback. Here we discuss the two key

modifications in the algorithm design, and defer the full algorithm description to

Algorithm 14 .

Key modification I: “Rebalancing” the log-partition function Building on

the balancing technique introduced in Ch apter 6, we start from Eq. (7.3) and (7.4)

of the log partition function, and rescale the inner functions 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ using balanced

exploration policies {𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)}𝑔,𝑥ℎ,𝑎ℎ , and rescale the outer function 𝐹Tr by 𝑋𝐴.

144

Concretely, for any matrix 𝑀 ∈ R𝑋𝐴×𝑋𝐴, we define the balanced EFCE log-partition

function as

𝐹Tr
bal(𝑀) := 𝑋𝐴 log

∑︀
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁

1
𝑋𝐴

[︀
−
⟨︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀

⟩︀
+ 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)
]︀}︁
, (7.16)

where for any 𝑥ℎ ⪰ 𝑥𝑔 (using 𝜇⋆,ℎ𝑔:ℎ := 𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ) as shorthand, which depends on 𝑥ℎ

but not 𝑎ℎ),

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(𝑀) :=
1

𝜇⋆,ℎ𝑔:ℎ
log
∑︁
𝑎ℎ

exp
{︁
𝜇⋆,ℎ𝑔:ℎ

[︀
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
]︀}︁
.

(7.17)

Key modification II: New loss estimator under bandit feedback We use

an adaptive family of bandit-based loss estimators {̃︀ℓ𝑡,𝑥𝑔𝑎𝑔}𝑥𝑔𝑎𝑔 ⊂ R𝑋𝐴
≥0 , one for each

(𝑥𝑔, 𝑎𝑔) ∈ 𝒳 ×𝒜, defined as

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ) :=
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})
,

(7.18)

where 𝜇𝑡𝑥𝑔𝑎𝑔 := 𝜇𝑡1:𝑔(𝑥𝑔, 𝑎𝑔) for shorthand. The main difference of (7.18) over (7.15) is

in the adaptive IX bonus term on the denominator that scales with 𝛾 but is different

for each 𝑥𝑔𝑎𝑔. We then place each 𝜇𝑡𝑥𝑔𝑎𝑔
̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 into the 𝑥𝑔𝑎𝑔-th column of a matrix

loss estimator ̃︁𝑀 𝑡, or in matrix form,

̃︁𝑀 𝑡 :=
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜇𝑡𝑥𝑔𝑎𝑔

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔 .
With (7.16)-(7.18) at hand, our algorithm Balanced EFCE-OMD is defined as the

negative gradient of 𝐹Tr
bal evaluated at the cumulative loss estimators:

𝜑𝑡 = −∇𝐹Tr
bal

(︁
𝜂
∑︀𝑡−1

𝑠=1
̃︁𝑀 𝑠
)︁
, ∀𝑡 ≥ 1, (7.19)

145

Algorithm 14 Balanced EFCE-OMD (FTRL form; equivalent OMD form in Algo-
rithm 15)

Require: Learning rate 𝜂, balanced exploration policy {𝜇⋆,ℎ}ℎ∈[𝐻].
1: for 𝑡 = 1, 2, . . . , 𝑇 do
2: For each 𝑥𝑔𝑎𝑔 ∈ 𝒳 × 𝒜, from the reverse order of 𝑥ℎ, compute 𝑚𝑡

𝑥𝑔𝑎𝑔 ,ℎ
(𝑎ℎ|𝑥ℎ)

and 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

(︁
− 𝜂

𝑡−1∑︁
𝑠=1

̃︁𝑀 𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
,

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

:=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

∑︁
𝑎ℎ∈𝒜

exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

×
[︀
−

𝑡∑︁
𝑠=1

̃︁𝑀 𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
.

3: Compute 𝜆𝑡+1
𝑥𝑔𝑎𝑔 as

𝜆𝑡𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

(︁
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,

𝑡−1∑︁
𝑠=1

̃︁𝑀 𝑠⟩+ 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁}︁
. (7.20)

4: Compute 𝜑𝑡 = 𝜑(𝜆𝑡,𝑚𝑡), where 𝜑 is as defined in Eq. (7.7).
5: Find a 𝜇𝑡 to be a solution of the fixed point equation 𝜇𝑡 = 𝜑𝑡𝜇𝑡.
6: Play policy 𝜇𝑡, observe trajectory (𝑥𝑡ℎ, 𝑎

𝑡
ℎ, 𝑟

𝑡
ℎ)ℎ∈[𝐻].

7: Form vector loss estimator ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 = {̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ)}𝑥ℎ𝑎ℎ for each (𝑔, 𝑥𝑔𝑎𝑔) as in
Eq. (7.18).

8: Compute matrix loss estimator ̃︁𝑀 𝑡 =
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜇𝑡𝑥𝑔𝑎𝑔

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔 .
and 𝜇𝑡 ∈ Π solves the fixed point equation 𝜑𝑡𝜇𝑡 = 𝜇𝑡. Similar as EFCE-OMD, (7.19)

also admits efficient implementations in both FTRL and OMD form (cf. Algorithm 14

& 15). The corresponding (𝜆𝑡,𝑚𝑡) is also equivalent to running a FTRL/OMD al-

gorithm with respect to a balanced dilated entropy/KL-divergence over 𝜑 ∈ ΦTr (cf.

Lemma 61 and Appendix 7.2.3 for details).

7.2.1 Algorithms

In this section, we present the algorithms omitted in Section 7.2. We begin with

the Balanced EFCE-OMD (in FTRL form) as in Algorithm 14. This algorithm is

146

actually equivalent to the algorithm as in Eq. (7.19) because of the following lemma,

whose proof is similar to Lemma 51.

Lemma 56. For any loss matrix 𝑀 ∈ R𝑋𝐴×𝑋𝐴
≥0 , recall that the balanced EFCE log-

partition function as defined in Eq. (7.16)). Let 𝜆 = (𝜆𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 ∈ Δ𝑋𝐴 and

𝑚 = (𝑚𝑥𝑔𝑎𝑔)𝑥𝑔𝑎𝑔∈𝒳×𝒜 ∈ℳ be

𝜆𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

(︁
− 𝜂

⟨︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀

⟩︀
+ 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁}︁
(7.21)

𝑚𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

(︁
− 𝜂𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
.

(7.22)

then we have −∇𝐹Tr
bal(𝑀) = 𝜑(𝜆,𝑚), where 𝜑 is as defined in Eq. (7.7).

We also present an efficient update of (𝜆𝑡+1,𝑚𝑡+1) from (𝜆𝑡,𝑚𝑡), which gives the

OMD form of the Balanced EFCE-OMD algorithm as in Algorithm 15. Notice the

initialization of Balanced EFCE-OMD is different from EFCE-OMD (Algorithm 24)

due to the presence of the balanced exploration policy. Algorithm 14 and Algorithm 15

are indeed equivalent due to the following lemma, whose proof is similar to that of

Lemma 140.

Lemma 57. Given the same sequence of 𝑀 𝑡, Algorithm 14 and Algorithm 15 outputs

the same 𝜆𝑡 and 𝑚𝑡 and thus the same 𝜑𝑡.

7.2.2 Theoretical guarantees

We now present the theoretical guarantee of Algorithm 14 (proof in Appendix F.3).

Theorem 58. Balanced EFCE-OMD (Algorithm 14) with 𝜂 =
√︀
𝑋𝐴𝜄/𝐻4𝑇 and

𝛾 = 2
√︀
𝑋𝐴𝜄/𝐻2𝑇 achieves the following extensive-form trigger regret bound with

probability at least 1− 𝛿:

RegTr(𝑇) ≤ 𝒪
(︀√

𝐻4𝑋𝐴𝑇𝜄
)︀
,

where 𝜄 = log(10𝑋𝐴/𝛿) is a log term.

147

Algorithm 15 Balanced EFCE-OMD (OMD form; equivalent FTRL form in Algo-
rithm 14)

Require: Learning rate 𝜂, balanced exploration policy {𝜇⋆,ℎ}ℎ∈[𝐻].
1: Initialize 𝜆1𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp{(𝑋⪰𝑥𝑔/𝑋) log𝐴}, and 𝑚1

𝑥𝑔𝑎𝑔 ,ℎ
(𝑎ℎ|𝑥ℎ) = 1/𝐴, for all

(𝑔, 𝑥𝑔, 𝑎𝑔, ℎ, 𝑥ℎ, 𝑎ℎ) with 𝑔 ≤ ℎ.
2: for 𝑡 = 1, 2, . . . , 𝑇 do
3: Compute 𝜑𝑡 = 𝜑(𝜆𝑡,𝑚𝑡), where 𝜑 is as defined in Eq. (7.7).
4: Find a 𝜇𝑡 to be a solution of the fixed point equation 𝜇𝑡 = 𝜑𝑡𝜇𝑡.
5: Play policy 𝜇𝑡, observe trajectory (𝑥𝑡ℎ, 𝑎

𝑡
ℎ, 𝑟

𝑡
ℎ)ℎ∈[𝐻].

6: Form vector loss estimator ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 = {̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ)}𝑥ℎ𝑎ℎ for each (𝑔, 𝑥𝑔𝑎𝑔) as in
Eq. (7.18).

7: Compute matrix loss estimator ̃︁𝑀 𝑡 =
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜇𝑡𝑥𝑔𝑎𝑔

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔 .
8: For each 𝑥𝑔𝑎𝑔 ∈ 𝒳 × 𝒜, from the reverse order of 𝑥ℎ, compute 𝑚𝑡

𝑥𝑔𝑎𝑔 ,ℎ
(𝑎ℎ|𝑥ℎ)

and 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

𝑚𝑡+1
𝑥𝑔𝑎𝑔 ,ℎ

(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ 𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)(︁

− 𝜂̃︁𝑀 𝑡
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

̃︀𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
,

̃︀𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

:=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

∑︁
𝑎ℎ∈𝒜

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

×
[︀
− ̃︁𝑀 𝑡

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

̃︀𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
.

9: Compute 𝜆𝑡+1
𝑥𝑔𝑎𝑔 as

𝜆𝑡+1
𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 𝜆

𝑡
𝑥𝑔𝑎𝑔 exp

{︁ 1

𝑋𝐴

(︁
− 𝜂

⟨
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,̃︁𝑀 𝑡

⟩
+ ̃︀𝐹 ⋆,𝑡

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁}︁
. (7.23)

The ̃︀𝒪(√𝑋𝐴𝑇) trigger regret asserted in Theorem 58 improves over Theorem 55

by a factor of
√︀
‖Π‖1, and matches the information-theoretic lower bound up to

poly(𝐻) and log factors. As the trigger regret is lower bounded by the vanilla (ex-

ternal) regret, [Bai et al., 2022b, Theorem 6] implies an Ω(
√
𝑋𝐴𝑇) lower bound for

the trigger regret as well under bandit feedback. By the online-to-batch conversion

(Lemma 34), Theorem 58 also implies an ̃︀𝒪(𝐻4𝑋𝐴/𝜀2) sample complexity for learn-

ing EFCE under bandit feedback (assuming same game sizes for all 𝑚 players). This

improves over the best known ̃︀𝒪(𝑚𝐻6𝑋𝐴2/𝜀2) sample complexity in the recent work

of Song et al. [2022b]. We remark though that the 1-EFR algorithm of [Song et al.,

148

2022b] actually finds an “1-EFCE” which is slightly stronger than our EFCE defined

via trigger modifications.

Overview of techniques The proof of Theorem 58 is significantly more challenging

than that of Theorem 55, even though the algorithm itself is designed by appearingly

simple modifications. The happens since Algorithm 14, unlike Algorithm 13, no

longer necessarily corresponds to any normal-form algorithm. The technical crux of

the proof is to bound the nonlinear part of 𝐹Tr
bal (with respect to the losses), which we

do by carefully controlling a series of second-order terms utilizing the balanced policies

within 𝐹Tr
bal and the new adaptive IX bonus within {ℓ𝑡,𝑥𝑔𝑎𝑔}𝑥𝑔𝑎𝑔 (Lemma 150-153).

7.2.3 Equivalence to FTRL and OMD

Similar as Section 7.1.2, we show that the Balanced EFCE-OMD algorithm (Algo-

rithm 14) is equivalent to FTRL with the balanced trigger dilated entropy, and OMD

with the balanced dilated KL divergence, both over the (𝜆,𝑚) parametrization.

We first introduce Balanced dilated entropy and balanced dilated KL divergence,

and their trigger versions as below.

Definition 59 (Balanced dilated entropy and balanced dilated KL divergence). The

balanced dilated entropy 𝐻bal
𝑥𝑔 rooted at 𝑥𝑔 of subtree policy 𝜇𝑥𝑔 ∈ Π𝑥𝑔 is defined as

𝐻bal
𝑥𝑔 (𝜇

𝑥𝑔) :=
𝐻∑︁
ℎ=𝑔

∑︁
(𝑥ℎ,𝑎ℎ)⪰𝑥𝑔

𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log 𝜇

𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ). (7.24)

The balanced dilated KL divergence 𝐷bal
𝑥𝑔 rooted at 𝑥𝑔 between two subtree policies

𝜇𝑥𝑔 , 𝜈𝑥𝑔 ∈ Π𝑥𝑔 is defined as

𝐷bal
𝑥𝑔 (𝜇

𝑥𝑔‖𝜈𝑥𝑔) :=
𝐻∑︁
ℎ=𝑔

∑︁
(𝑥ℎ,𝑎ℎ)⪰𝑥𝑔

𝜇
𝑥𝑔
𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

𝜇
𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ)
𝜈
𝑥𝑔
ℎ (𝑎ℎ|𝑥ℎ)

. (7.25)

Definition 60 (Balanced trigger dilated entropy and balanced trigger dilated KL

divergence). The balanced trigger dilated entropy function on (𝜆,𝑚) ∈ Δ𝑋𝐴 ×ℳ is

149

defined as

𝐻Tr
bal(𝜆,𝑚) = 𝑋𝐴 ·𝐻(𝜆) +

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑥𝑔𝑎𝑔𝐻
bal
𝑥𝑔 (𝑚𝑥𝑔𝑎𝑔). (7.26)

The balanced trigger dilated KL divergence function on (𝜆,𝑚), (𝜆′,𝑚′) ∈ Δ𝑋𝐴 ×ℳ

is defined as

𝐷Tr
bal(𝜆,𝑚‖𝜆′,𝑚′) = 𝑋𝐴 ·𝐷KL(𝜆‖𝜆′) +

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑥𝑔𝑎𝑔𝐷
bal
𝑥𝑔 (𝑚𝑥𝑔𝑎𝑔‖𝑚′

𝑥𝑔𝑎𝑔). (7.27)

The following lemma shows that the Balanced EFCE-OMD (Algorithm 14 and

15) are essentially FTRL with the balanced trigger dilated entropy, and OMD with

the balanced tirgger dilated KL divergence. The proof of this lemma is similar to

that of Lemma 53.

Lemma 61 (Equivalent of Balanced EFCE-OMD to OMD/FTRL on (𝜆,𝑚)). For

any sequence of loss functions {̃︁𝑀 𝑡}𝑡≥1, the algorithm as in Eq. (7.19) is equivalent

to (i.e. satisfy) the following FTRL update on 𝐻Tr
bal and OMD update on 𝐷Tr

bal:

(𝜆𝑡+1,𝑚𝑡+1) = argmin𝜆,𝑚

[︁
𝜂
⟨
𝜑(𝜆,𝑚),

∑︀𝑡
𝑠=1
̃︁𝑀 𝑠
⟩
+𝐻Tr

bal(𝜆,𝑚)
]︁
, (7.28)

(𝜆𝑡+1,𝑚𝑡+1) = argmin𝜆,𝑚

[︁
𝜂
⟨
𝜑(𝜆,𝑚),̃︁𝑀 𝑡

⟩
+𝐷Tr

bal(𝜆,𝑚‖𝜆𝑡,𝑚𝑡)
]︁
, (7.29)

with 𝜑𝑡+1 = 𝜑(𝜆𝑡+1,𝑚𝑡+1).

7.3 Equivalence with existing algorithms

Interestingly, some of the algorithms we develop in this chapter is equivalent to some

known algorithms which is not implemented efficiently. We present these connections

in this section.

150

7.3.1 Equivalence of OMD and Vertex MWU

As another illustration of our framework, we now choose Φ = Φext = conv{Φext
0 }

to be the set of external policy modifications, which modify any policy to some

deterministic policy. In this case, the Φext-Hedge algorithm minimizes the external

regret in EFGs. In this section, we show that Φext-Hedge, same as the vertex MWU

algorithm considered in Farina et al. [2022b], is actually equivalent to the OMD with

dilated entropy Hoda et al. [2010]. Let {ℓ𝑡}𝑡≥1 ⊂ R𝑋𝐴
≥0 be an arbitrary sequence of

loss vectors.

Vertex MWU We use 𝒱 to denote all the deterministic sequence-form policies,

which can also be viewed as the vertex set of the policy set Π.

A simple reformulation (cf. Appendix F.4) shows that Φext-Hedge (Algorithm 9)

gives the vertex MWU algorithm considered by Farina et al. [2022b]

𝜇𝑡 =
∑︀

𝑣∈𝒱 𝑝
𝑡
𝑣 · 𝑣 and 𝑝𝑡𝑣 ∝𝑣 exp

{︀
−𝜂
⟨︀
𝑣,
∑︀𝑡−1

𝑠=1 ℓ
𝑠
⟩︀}︀
. (7.30)

OMD with dilated entropy Another popular algorithm for external regret min-

imization is the OMD algorithm on the sequence-form policy space with the dilated

entropy [Hoda et al., 2010, Kroer et al., 2015]:

𝜇𝑡 = argmin
𝜇∈Π

[︀
𝜂
⟨︀
𝜇, ℓ𝑡−1

⟩︀
+𝐷∅(𝜇‖𝜇𝑡−1)

]︀
, (7.31)

𝐷∅(𝜇‖𝜈) :=
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) log
𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜈ℎ(𝑎ℎ|𝑥ℎ)

. (7.32)

Theorem 62 (Equivalence of OMD and Vertex MWU). For any sequence of loss

vectors {ℓ𝑡}𝑡≥1, OMD with dilated entropy is equivalent to Vertex MWU, that is,

(7.31) and (7.30) give the same {𝜇𝑡}𝑡≥1.

The proof of Theorem 62 can be found in Appendix F.4.

151

7.3.2 Equivalence between OMD and “Kernelized MWU”

Our proof also reveals that the efficient implementation of Vertex MWU developed

by Farina et al. [2022b] using the “kernel trick” is actually equivalent to the stan-

dard linear-time efficient implementation of OMD with dilated entropy. Concretely,

Farina et al. [2022b] design another efficient implementation of the Vertex MWU algo-

rithm (7.30) via the “kernel trick”, which they term as the Kernelized MWU algorithm

(Algorithm 1 in [Farina et al., 2022b]). Their Algorithm 1 is an optimistic algorithm

with a “prediction vector”. Here we are referring to their non-optimistic version where

the prediction vectors are set to zero. As Theorem 62 shows that Vertex MWU is

equivalent to standard OMD, the Kernelized MWU algorithm is also equivalent to

standard OMD.

In this section, we further show that the implementation in Kernelized MWU is

also “equivalent” to the standard linear-time implementation of OMD (Algorithm 25),

by showing that the key intermediate quantities in both implementations are also

equivalent.

Since the notation used in Farina et al. [2022b] is slightly different from ours, we

first describe their key intermediate quantities using our notation. Their exponential

weight 𝑏𝑡 ∈ R𝑋𝐴 is defined by

𝑏𝑡(𝑥ℎ, 𝑎ℎ) = exp{−𝜂
𝑡∑︁

𝑠=1

ℓ𝑠ℎ(𝑥ℎ, 𝑎ℎ)}.

Then, their kernel function 𝐾 : R𝑋𝐴 × R𝑋𝐴 → R is defined by

𝐾𝑥𝑔(𝑏, 𝑏
′) =

∑︁
𝑣∈𝒱𝑥𝑔

∑︁
(𝑥ℎ,𝑎ℎ)∈𝑣

𝑏(𝑥ℎ, 𝑎ℎ)𝑏
′(𝑥ℎ, 𝑎ℎ),

where (𝑥ℎ, 𝑎ℎ) ∈ 𝑣 is a shorthand notation meaning that (𝑥ℎ, 𝑎ℎ) is such that 𝑣1:ℎ(𝑥ℎ, 𝑎ℎ) =

1.

We will also use 1 ∈ R𝑋𝐴 to denote the all-ones vector in R𝑋𝐴. [Farina et al.,

2022b, Proposition 5.3] shows that the output policy 𝜇𝑡 of kernelized OMWU can be

152

written in conditional-form as

𝜇𝑡(𝑎ℎ|𝑥ℎ) =
𝑏𝑡−1(𝑥ℎ, 𝑎ℎ)

∏︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)𝐾𝑥ℎ+1

(𝑏𝑡−1,1)

𝐾𝑥ℎ(𝑏
𝑡−1,1)

.

The key step within Farina et al. [2022b]’s Kernelized MWU implementation is the

recursive evaluation of the quantity 𝐾𝑥ℎ(𝑏
𝑡−1,1) in the bottom-up order over 𝑥ℎ ∈ 𝒳 ,

whereas our Algorithm 25’s key step is the recursive evaluation of 𝐹 𝑡
𝑥ℎ

in the bottom-

up order over 𝑥ℎ ∈ 𝒳ℎ in (F.25).

The following proposition shows that these two quantities are exactly equivalent,

thereby showing the equivalence of the two implementations.

Proposition 63. We have for all 𝑥ℎ ∈ 𝒳 and all 𝑡 ≥ 1 that

𝐾𝑥ℎ(𝑏
𝑡−1,1) = exp{𝐹 𝑡

𝑥ℎ
}.

Proof. We prove this by induction for ℎ = 𝐻+1, · · · , 1. For ℎ = 𝐻+1, 𝐾𝑥ℎ(𝑏
𝑡−1,1) =

1 and 𝐹 𝑡
𝑥ℎ

= 0 by definition. If the claim holds for ℎ + 1, then by Theorem 5.2 of

Farina et al. [2022b],

𝐾𝑥ℎ(𝑏
𝑡−1,1) =

∑︁
𝑎ℎ

exp{−𝜂
𝑡−1∑︁
𝑠=1

ℓ𝑠(𝑥ℎ, 𝑎ℎ)}
∏︁

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐾𝑥ℎ+1
(𝑏𝑡−1,1)

=
∑︁
𝑎ℎ

exp{−𝜂
𝑡−1∑︁
𝑠=1

ℓ𝑠(𝑥ℎ, 𝑎ℎ) +
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹 𝑡
𝑥ℎ+1
}

=exp{𝐹 𝑡
𝑥ℎ
}.

153

154

Appendix A

Proofs for Chapter 2

A.1 Proof of Proposition 5

Proof. We prove two claims separately.

For Nash ⊂ CE, let 𝜋 = 𝜋1 × 𝜋2 × · · ·𝜋𝑚 be an 𝜀-approximate Nash equilibrium,

then

max
𝜑𝑖

𝑉
(𝜑𝑖◇𝜋𝑖)×𝜋−𝑖

𝑖,1 (𝑠1)
(𝑎)
= max

𝜋′
𝑖

𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,1 (𝑠1)
(𝑏)

≤ 𝑉 𝜋
𝑖,1(𝑠1) + 𝜀.

Step (a) is because that 𝜋 is a product policy, where the randomness of different agents

are completely independent. In this case, maximizing over strategy modification 𝜑𝑖

is equivalent to maximizing over a new independent policy. Step (b) directly follows

from 𝜋 being an 𝜀-approximate Nash equilibrium. By definition, this proves that 𝜋 is

also an 𝜀-approximate CE.

For CE ⊂ CCE, let 𝜋 = 𝜋1 ⊙ 𝜋2 ⊙ · · · 𝜋𝑚 be an 𝜀-approximate CE, then we have

max
𝜋′
𝑖

𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,1 (𝑠1)
(𝑐)

≤ max
𝜑𝑖

𝑉
(𝜑𝑖◇𝜋𝑖)⊙𝜋−𝑖

𝑖,1 (𝑠1)
(𝑑)

≤ 𝑉 𝜋
𝑖,1(𝑠1) + 𝜀.

Step (c) is because by definition of strategy modification 𝜑𝑖 := {𝜑𝑖,ℎ : (𝒮 × 𝒜)ℎ−1 ×

𝒮 × 𝒜𝑖 → 𝒜𝑖}, we can consider a subset of strategy modification 𝜑′
𝑖 := {𝜑′

𝑖,ℎ :

(𝒮 × 𝒜)ℎ−1 × 𝒮 → 𝒜𝑖} which modifies the policy ignoring whatever the action 𝜋𝑖

155

takes. It is not hard to see that maxmizing over the strategy modification in this

subset is equivalent to maximizing over a new independent policy 𝜋′
𝑖. Therefore,

maximizing over all strategy modification is greater or equal to maximizing over 𝜋′
𝑖.

Finally, step (d) follows from 𝜋 being an 𝜀-approximate CE. By definition, this proves

that 𝜋 is also an 𝜀-approximate CCE.

A.2 Proof of Proposition 6

Proof. Let 𝑁⋆ be the value of Nash equilibrium for 𝑄. Since 𝜋 = CCE(𝑄,𝑄), by

definition, we have:

E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏) ≥max
𝑎⋆

E(𝑎,𝑏)∼𝜋𝑄(𝑎
⋆, 𝑏) = max

𝑎⋆
E𝑏∼𝜈𝑄(𝑎⋆, 𝑏) ≥ 𝑁⋆

E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏) ≤min
𝑏⋆

E(𝑎,𝑏)∼𝜋𝑄(𝑎, 𝑏
⋆) = min

𝑏⋆
E𝑎∼𝜇𝑄(𝑎, 𝑏⋆) ≤ 𝑁⋆

This gives:

max
𝑎⋆

E𝑏∼𝜈𝑄(𝑎⋆, 𝑏) = min
𝑏⋆

E𝑎∼𝜇𝑄(𝑎, 𝑏⋆) = 𝑁⋆

which finishes the proof.

A.3 Proof of the computational hardness

In this section we give the proof of the computational hardness results in Section 2.5.1,

Theorem 7 and Corollary 9. Our proof is inspired by a computational hardness result

for adversarial MDPs in [Yadkori et al., 2013, Section 4.2], which constructs a family

of adversarial MDPs that are computationally as hard as an agnostic parity learning

problem.

Section A.3.1, A.3.2, A.3.3 will be devoted to prove Theorem 7, while Corollary 9

is proved in Section A.3.4. Towards proving Theorem 7, we will:

∙ (Section A.3.1) Construct a Markov game.

∙ (Section A.3.2) Define a series of problems where a solution in problem implies

156

another.

∙ (Section A.3.3) Based on the believed computational hardness of learning paries

with noise (Conjecture 8), we conclude that finding the best response of non-

Markov policies is computationally hard.

A.3.1 Markov game construction

We now describe a Markov game inspired the adversarial MDP in [Yadkori et al.,

2013, Section 4.2]. We define a Markov game in which we have 2𝐻 states, {𝑖0, 𝑖1}𝐻𝑖=2,

10 (the initial state) and ⊥ (the terminal state)In Yadkori et al. [2013] the states

are denoted by {𝑖𝑎, 𝑖𝑏}𝐻𝑖=2 instead. Here we slightly change the notation to make

it different from the notation of the actions. In each state the max-player has two

actions 𝑎0 and 𝑎1, while the min-player has two actions 𝑏0 and 𝑏1. The transition

kernel is deterministic and the next state for steps ℎ ≤ 𝐻 − 1 is defined in Table A.1:

State/Action (𝑎0, 𝑏0) (𝑎0, 𝑏1) (𝑎1, 𝑏0) (𝑎1, 𝑏1)
𝑖0 (𝑖+ 1)0 (𝑖+ 1)0 (𝑖+ 1)0 (𝑖+ 1)1
𝑖1 (𝑖+ 1)1 (𝑖+ 1)0 (𝑖+ 1)1 (𝑖+ 1)1

Table A.1: Transition kernel of the hard instance.

At the 𝐻-th step, i.e. states 𝐻0 and 𝐻1, the next state is always ⊥ regardless

of the action chosen by both players. The reward function is always 0 except at the

𝐻-th step. The reward is determined by the action of the min-player, defined by

State/Action (·, 𝑏0) (·, 𝑏1)
𝐻0 1 0
𝐻1 0 1

Table A.2: Reward of the hard instance.

At the beginning of every episode 𝑘, both players pick their own policies 𝜇𝑘 and

𝜈𝑘, and execute them throughout the episode. The min-player can possibly pick her

policy 𝜈𝑘 adaptive to all the observations in the earlier episodes. The only difference

from the standard Markov game protocol is that the actions of the min-player except

157

the last step will be revealed at the beginning of each episode, to match the setting in

agnostic learning parities (Problem 2 below). Therefore we are actually considering

a easier problem (for the max-player) and the lower bound naturally applies.

A.3.2 A series of computationally hard problems

We first introduce a series of problems and then show how the reduction works.

Problem 1 The max-player 𝜀-approximates the best reponse for any general policy

𝜈 in the Markov game defined in Appendix A.3.1 with probability at least 1/2, in

poly(𝐻, 1/𝜀) time.

Problem 2 Let 𝑥 = (𝑥1, · · · , 𝑥𝑛) be a vector in {0,1}𝑛, 𝑇 ⊆ [𝑛] and 0 < 𝛼 <

1/2.The parity of 𝑥 on 𝑇 is the boolean function 𝜑𝑇 (𝑥) = ⊕𝑖∈𝑇𝑥𝑖. In words, 𝜑𝑇 (𝑥)

outputs 0 if the number of ones in the subvector (𝑥𝑖)𝑖∈𝑇 is even and 1 otherwise. A

uniform query oracle for this problem is a randomized algorithm that returns a random

uniform vector 𝑥, as well as a noisy classification 𝑓(𝑥) which is equal to 𝜑𝑇 (𝑥) w.p. 𝛼

and 1−𝜑𝑇 (𝑥) w.p. 1−𝛼. All examples returned by the oracle are independent. The

learning parity with noise problem consists in designing an algorithm with access to

the oracle such that,

∙ (Problem 2.1) w.p at least 1/2, find a (possibly random) function ℎ : {0, 1}𝑛 →

{0, 1} satisy Eℎ𝑃𝑥[ℎ(𝑥) ̸= 𝜑𝑇 (𝑥)] ≤ 𝜀, in poly(𝑛, 1/𝜀) time.

∙ (Problem 2.2) w.p at least 1/4, find ℎ : {0, 1}𝑛 → {0, 1} satisy 𝑃𝑥[ℎ(𝑥) ̸=

𝜑𝑇 (𝑥)] ≤ 𝜀, in poly(𝑛, 1/𝜀) time.

∙ (Problem 2.3) w.p at least 1 − 𝑝, find ℎ : {0, 1}𝑛 → {0, 1} satisy 𝑃𝑥[ℎ(𝑥) ̸=

𝜑𝑇 (𝑥)] ≤ 𝜀, in poly(𝑛, 1/𝜀, 1/𝑝) time.

We remark that Problem 2.3 is the formal definition of learning parity with noise

[Mossel and Roch, 2005, Definition 2], which is conjectured to be computationally

hard in the community (see also Conjecture 8).

158

Problem 2.3 reduces to Problem 2.2 Step 1: Repeatly apply algorithm for

Problem 2.2 ℓ times to get ℎ1, . . . , ℎℓ such that min𝑖 𝑃𝑥[ℎ𝑖(𝑥) ̸= 𝜑𝑇 (𝑥)] ≤ 𝜀 with

probability at least 1− (3/4)ℓ. This costs poly(𝑛, ℓ, 1/𝜀) time. Let 𝑖⋆ = argmin𝑖 err𝑖

where err𝑖 = 𝑃𝑥[ℎ𝑖(𝑥) ̸= 𝜑𝑇 (𝑥)].

Step 2: Construct estimators using 𝑁 additional data (𝑥(𝑗), 𝑦(𝑗))
𝑁

𝑗=1,

̂︁err𝑖 := 1
𝑁

∑︀𝑁
𝑗=1 I{ℎ𝑖(𝑥(𝑗)) ̸= 𝑦(𝑗)} − 𝛼

1− 2𝛼
.

Pick ̂︀𝑖 = argmin𝑖 ̂︁err𝑖. When 𝑁 ≥ log(1/𝑝)/𝜀2, with probability at least 1 − 𝑝/2, we

have

max
𝑖
|̂︁err𝑖 − err𝑖| ≤

𝜀

1− 2𝛼
.

This means that

err̂︀𝑖 ≤ ̂︁err̂︀𝑖 + 𝜀

1− 2𝛼
≤ ̂︁err𝑖⋆ + 𝜀

1− 2𝛼
≤ err𝑖⋆ +

2𝜀

1− 2𝛼
≤ 𝑂(1)𝜀.

This step uses poly(𝑛,𝑁, ℓ) = poly(𝑛, 1/𝜀, log(1/𝑝), ℓ) time.

Step 3: Pick ℓ = log(1/𝑝), we are guaranteed that good events in step 1 and step

2 happen with probability ≥ 1− 𝑝/2 and altogether happen with probability at least

1 − 𝑝. The total time used is poly(𝑛, 1/𝜀, log(1/𝑝)). Note better dependence on 𝑝

than required.

Problem 2.2 reduces to Problem 2.1: If we have an algorithm that gives

Eℎ∼𝒟𝑃𝑥[ℎ(𝑥) ̸= 𝜑𝑇 (𝑥)] ≤ 𝜀 with probability 1/2. Then if we sample ̂︀ℎ ∼ 𝒟, by

Markov’s inequality, we have with probability ≥ 1/4 that

𝑃𝑥[̂︀ℎ(𝑥) ̸= 𝜑𝑇 (𝑥)] ≤ 2𝜀

Problem 2.1 reduces to Problem 1: Consider the Markov game constructed

above with 𝐻 − 1 = 𝑛. The only missing piece we fill up here is the policy 𝜈 of

the min-player, which is constructed as following. The min-player draws a sample

159

(𝑥, 𝑦) from the uniform query oracle, then taking action 𝑏0 at the step ℎ ≤ 𝐻 − 1 if

𝑥ℎ = 0 and 𝑏1 otherwise. For the 𝐻-th step, the min-player take action 𝑏0 if 𝑦 = 0

and 𝑏1 otherwise. Also notice the policy ̂︀𝜇 of the max-player can be descibed by a set̂︀𝑇 ⊆ [𝐻] where he takes action 𝑎1 at step ℎ if ℎ and 𝑎0 otherwise. As a result, the

max-player receive non-zero result iff 𝜑̂︀𝑇 (𝑥) = 𝑦.

In the Markov game, we have 𝑉 ̂︀𝜇,𝜈
1 (𝑠1) = P(𝜑̂︀𝑇 (𝑥) = 𝑦). As a result, the optimal

policy 𝜇* corresponds to the true parity set 𝑇 . As a result,

(𝑉 †,𝜈
1 − 𝑉 ̂︀𝜇,𝜈

1)(𝑠1) = P𝑥,𝑦(𝜑𝑇 (𝑥) = 𝑦)− P𝑥,𝑦(𝜑̂︀𝑇 (𝑥) = 𝑦) ≤ 𝜀

by the 𝜀-approximation guarantee.

Also notice

P𝑥,𝑦(𝜑̂︀𝑇 (𝑥) ̸= 𝑦)− P𝑥,𝑦(𝜑𝑇 (𝑥) ̸= 𝑦)

=(1− 𝛼)P𝑥(𝜑̂︀𝑇 (𝑥) ̸= 𝜑𝑇 (𝑥)) + 𝛼P𝑥(𝜑̂︀𝑇 (𝑥) = 𝜑𝑇 (𝑥))− 𝛼

=(1− 2𝛼)P𝑥(𝜑̂︀𝑇 (𝑥) ̸= 𝜑𝑇 (𝑥))

This implies:

P𝑥(𝜑̂︀𝑇 (𝑥) ̸= 𝜑𝑇 (𝑥)) ≤
𝜀

1− 2𝛼

A.3.3 Putting them together

So far, we have proved that Solving Problem 1 implies solving Problem 2.3, where

Problem 1 is the problem of learning 𝜀-approximate best response in Markov games

(the problem we are interested in), and Problem 2.3 is precisely the problem of learn-

ing parity with noise Mossel and Roch [2005]. This concludes the proof.

A.3.4 Proofs of Hardness Against Adversarial Opponents

Corollary 9 is a direct consequence of Theorem 7, as we will show now.

160

Proof of Corollary 9. We only need to prove a polynomial time no-regret algorithm

also learns the best response in a Markov game where the min-player following non-

Markov policy 𝜈. Then the no-regret guarantee implies,

𝑉 †,𝜈
1 (𝑠1)−

1

𝐾

𝐾∑︁
𝑘=1

𝑉 𝜇𝑘,𝜈
1 (𝑠1) ≤ poly(𝑆,𝐻,𝐴,𝐵)𝐾−𝛿

where 𝜇𝑘 is the policy of the max-player in the 𝑘-th episode. If we choose ̂︀𝜇 uniformly

randomly from {𝜇𝑘}𝐾𝑘=1, then

𝑉 †,𝜈
1 (𝑠1)− 𝑉 ̂︀𝜇,𝜈

1 (𝑠1) ≤ poly(𝑆,𝐻,𝐴,𝐵)𝐾−𝛿.

Choosing 𝜀 = poly(𝑆,𝐻,𝐴,𝐵)𝐾−𝛿, 𝐾 = poly(𝑆,𝐻,𝐴,𝐵, 1/𝜀) and the running

time of the no-regret algorithm is still poly(𝑆,𝐻,𝐴,𝐵, 1/𝜀) to learn the 𝜀-approximate

best response.

To see that the Corollary 9 remains to hold for policies that are Markovian in each

episode and non-adaptive, we can take the hard instance in Theorem 7 and let 𝜈𝑘

denote the min-player’s policy in the 𝑘-th episode. Note that each 𝜈𝑘 is Markovian

and non-adaptive on the observations in previous episodes. If there is a polynomial

time no-regret algorithm against such
{︀
𝜈𝑘
}︀
, then by the online-to-batch conversion

similar as the above, the mixture of {𝜇𝑘}𝐾𝑘=1 learns a best response against 𝜈 in

polynomial time.

A.4 Proof of the statistical hardness

In this section we prove the statistical lower bounds in Section 2.5.2, Theorem 10 and

Lemma 11.

The lower bound builds on the following lower bound for adversarial MDPs where

both the transition and the reward function of each episode are chosen adversarially.

We state it here as a formal version of Lemma 11.

161

Lemma 64 (Lower bound for adversarial MDPs). For any horizon 𝐻 ≥ 2 and 𝐾 ≥ 1,

there exists a family of MDPsℳ with horizon 𝐻, state space {𝑆ℎ}ℎ≤𝐻 with |𝑆ℎ| ≤ 2,

action space {𝐴ℎ}ℎ≤𝐻 with |𝐴ℎ| ≤ 2, and reward 𝑟ℎ ∈ [0, 1] such that the following is

true: for any algorithm that deploys policy 𝜇𝑘 in episode 𝑘, we have

sup
𝑀1,··· ,𝑀𝐾∈ℳ

sup
𝜇

𝐾∑︁
𝑘=1

(︁
𝑉 𝜇
𝑀𝑘

(𝑠0)− E𝜇𝑘𝑉
𝜇𝑘

𝑀𝑘
(𝑠0)

)︁
≥ Ω(min

{︁√
2𝐻𝐾,𝐾

}︁
),

where 𝑉 *
𝑀𝑘

refers to the optimal value function of MDP 𝑀𝑘.

As we shall see in our proof of Lemma 64, the optimal policies for 𝑀𝑘 are the

same, so Lemma 64 indeed implies a lower bound on the regret defined against the

best stationary policy in hindsight.

Proof. Our construction is inspired by the “combination lock” MDP [Du et al., 2019].

Let us redefine the horizon length as 𝐻 + 1 (so that 𝐻 ≥ 1) and let ℎ start from 0.

We now define our family of MDPs.

Definition 65 (MDP 𝑀𝑋,𝑌,𝜀). For any pair of bit strings 𝑋 = (𝑥1, . . . , 𝑥𝐻) ∈ {0, 1}𝐻 ,

𝑌 = (𝑦1, . . . , 𝑦𝐻) ∈ {0, 1}𝐻 and any 𝜀 ∈ (0, 1), the MDP 𝑀𝑋,𝑌,𝜀 is defined as follows.

1. The state space is 𝑆0 = {𝑠0} and 𝑆ℎ = {𝑠0,ℎ, 𝑠1,ℎ} for all 1 ≤ ℎ ≤ 𝐻. The MDP

starts at 𝑠0 deterministically and terminates at 𝑠0,𝐻 or 𝑠1,𝐻 .

2. The action space is 𝐴ℎ = {0, 1} for all 0 ≤ ℎ ≤ 𝐻.

3. The transition is defined as follows:

∙ 𝑠0 transitions to 𝑠0,1 or 𝑠1,1 with probability at least 1/2 each, regardless

of the action taken.

∙ For any 1 ≤ ℎ ≤ 𝐻 − 1, 𝑠𝑦ℎ,ℎ transitions to 𝑠𝑦ℎ+1,ℎ+1 deterministically

if 𝑎ℎ = 𝑥ℎ ⊕ 𝑦ℎ (“correct state” in combination lock), and transitions to

𝑠1−𝑦ℎ+1,ℎ+1 deterministically if 𝑎ℎ = 1− 𝑥ℎ ⊕ 𝑦ℎ.

∙ For any 1 ≤ ℎ ≤ 𝐻 − 1, 𝑠1−𝑦ℎ,ℎ transitions to 𝑠1−𝑦ℎ+1,ℎ+1 deterministically

regardless of the action taken (“wrong state” in combination lock).

162

4. The reward is 𝑟ℎ ≡ 0 for all 0 ≤ ℎ ≤ 𝐻 − 1. At step 𝐻, we have

∙ 𝑟𝐻(𝑠𝑦𝐻 ,𝐻) ∼ Ber(1/2 + 𝜀),

∙ 𝑟𝐻(𝑠1−𝑦𝐻 ,𝐻) ∼ Ber(1/2− 𝜀).

A visualization for the MDP specified by 𝑋, 𝑌 and 𝜀 is shown in Figure A-1.

...

Figure A-1: 𝑀(𝑋, 𝑌): “Combination lock” MDP specified by 𝑋 and 𝑌 . For 𝑦 ∈
{0, 1}, 𝑦′ stands for 1− 𝑦.

It is straightforward to see that the optimal value function of this MDP is 1/2(1/2+

𝜀)+1/2(1/2− 𝜀) = 1/2, and the only way to achieve higher reward than 1/2− 𝜀 is by

following the path of “good states”: (𝑠0, 𝑠𝑦1,1, · · · , 𝑠𝑦ℎ,ℎ, · · · , 𝑠𝑦𝐻 ,𝐻). The corresponding

optimal policy is 𝜋*(𝑠𝑤,ℎ) = 𝑤 ⊕ 𝑥ℎ, which is independent of 𝑌 .

Random sequence of MDPs is as hard as a 2𝐻-armed bandit. We now

consider any fixed (but unknown) 𝑋 ∈ {0, 1}𝐻 and draw 𝐾 independent samples

𝑌𝑘 ∼ Unif({0, 1}𝐻) for 1 ≤ 𝑘 ≤ 𝐾. We argue that if we provide 𝑀𝑘 := 𝑀𝑋,𝑌𝑘,𝜀

in episode 𝑘 (with some appropriate choice of 𝜀), then the problem is as hard as a

2𝐻-armed bandit problem with (minimum) suboptimality gap 𝜀, and thus must have

the desired regret lower bound.

Our first claim is that, on average over 𝑌𝑘, the trajectory seen by the algorithm

is equivalent (equal in distribution) to the following “completely random” MDP: each

state 𝑠{0,1},ℎ transitions to 𝑠{0,1},ℎ+1 with probability at least 1/2 regardless of the

actions taken; and the reward is 𝑟𝐻 ∼ Ber(1/2) if 𝐴 = 𝑋 ⊕ 𝑌 and 𝑟𝐻 ∼ Ber(1/2− 𝜀)

if 𝐴 ̸= 𝑋 ⊕ 𝑌 , where 𝐴 = {𝑎1, . . . , 𝑎ℎ} are the actions taken in steps 1 through

163

𝐻. Indeed, consider the transition starting from 𝑠𝑦ℎ,ℎ. Since 𝑦ℎ+1 ∼ Ber(1/2), the

transition probability to 𝑠0,ℎ+1 and 𝑠1,ℎ+1 must be 1/2 each, regardless of the action

taken. The claim about the reward follows from the definition of the MDP.

We now construct a bandit instance, and show that solving this bandit problem

can be reduced to online learning in the sequence of MDPs above. The bandit instance

has 2𝐻 arms indexed by {0, 1}𝐻 . The arm indexed by 𝑋 gives reward Ber(1/2), and

otherwise the reward is Ber(1/2− 𝜀). Now, for any algorithm solving the adversarial

MDP problem, consider the following induced algorithm for the bandit problem.

Algorithm 16 Reducing bandits to adversarial MDPs
1: for 𝑘 = 1, . . . , 𝐾 do
2: Sample 𝑌 ∼ Unif({0, 1}𝐻).
3: Simulate the adversarial MDP algorithm by showing the trajectory

(𝑠0, 𝑠𝑦1,1, . . . , 𝑠𝑦𝐻 ,𝐻).
4: Denote the action sequence by 𝐴 = (𝑎1, . . . , 𝑎𝐻).
5: Play 𝐴⊕ 𝑌 in the bandit environment.
6: Show the received bandit reward to the adversarial MDP algorithm as the last

step reward.

We now argue that the interaction seen by the adversarial MDP algorithm is

identical in distribution to the sequence 𝑀𝑋,𝑌𝑘,𝜀. The trajectory is drawn from a

uniform distribution, which is the same as that generated by 𝑀𝑋,𝑌𝑘,𝜀. The reward is

high, i.e. Ber(1/2), if and only if 𝐴⊕𝑌 = 𝑋, which is equivalent to 𝐴 = 𝑋⊕𝑌 . This

is also the case in the adversarial MDP problem, since playing the action sequence

𝑋 ⊕ 𝑌 corresponds to playing the optimal policy 𝜋*(𝑠𝑦ℎ,ℎ) = 𝑥ℎ ⊕ 𝑦ℎ.

Therefore, the regret achieved by the induced algorithm in the bandit environ-

ment would be equal (in distribution) to the regret achieved by this algorithm in

the adversarial MDP environment. Applying classical lower bounds on stochastic

bandits [Lattimore and Szepesvári, 2020, Chapter 15] (which corresponds to taking

𝜀 = 𝜀𝐻,𝐾 := min
{︁√︀

2𝐻/𝐾, 1/4
}︁

), we obtain

sup
𝑋∈{0,1}𝐻

E𝑌1,...,𝑌𝑘∼Unif({0,1}𝐻)

[︃
𝐾∑︁
𝑘=1

(︁
𝑉 *
𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾

(𝑠0)− E𝜇𝑘𝑉 𝜇𝑘

𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾
(𝑠0)

)︁]︃
≥ Ω(min

{︁√
2𝐻𝐾,𝐾

}︁
),

164

where E𝜇𝑘 denotes the randomness in the algorithm execution (which includes the

randomness of the realized transitions and rewards that were used by the algorithm

to determine 𝜇𝑘). Note that for the MDP 𝑀𝑋,𝑌𝑘,𝜀𝐻 ,𝑇 , the optimal policy is dictated

by 𝑋 and independent of 𝑌𝑘 (hence independent of 𝑘). Thus, the previous lower

bound can rewritten as a comparison with the best policy in hindsight:

sup
𝑋∈{0,1}𝐻

sup
𝜇

E𝑌1,...,𝑌𝑘∼Unif({0,1}𝐻)

[︃
𝐾∑︁
𝑘=1

(︁
𝑉 𝜇
𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾

(𝑠0)− E𝜇𝑘𝑉 𝜇𝑘

𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾
(𝑠0)

)︁]︃
≥ Ω(min

{︁√
2𝐻𝐾,𝐾

}︁
).

The adversarial MDP problem is as hard as the above random sequence

of MDPs. Define ℳ :=
{︁
𝑀𝑋,𝑌,𝜀𝐻,𝐾

: 𝑋, 𝑌 ∈ {0, 1}𝐻
}︁

. As the minimax regret is

lower bounded by the average regret over any prior distribution of MDPs, the above

lower bound implies the following minimax lower bound

sup
𝑀𝑘∈ℳ

sup
𝜇

[︃
𝐾∑︁
𝑘=1

(︁
𝑉 𝜇
𝑀𝑘

(𝑠0)− E𝜇𝑘𝑉 𝜇𝑘

𝑀𝑘
(𝑠0)

)︁]︃
≥ Ω(min

{︁√
2𝐻𝐾,𝐾

}︁
)

for any adversarial MDP algorithm.

Proof of Theorem 1. With Lemma 64 in hand, we are in a position to prove the main

theorem.

Our proof follows by defining a two-player Markov game and a set of min-player

policies
{︀
𝜈𝑘
}︀

such that the transitions and rewards seen by the max-player are exactly

equivalent to the MDP 𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾
constructed in Lemma 64. Indeed, we augment the

MDP 𝑀𝑋,𝑌𝑘,𝜀𝐻,𝐾
with a set of min-player actions ℬℎ = {1, 2, 3, 4}, and redefine the

transition such that from any 𝑠𝑖,ℎ where 𝑖 ∈ {0, 1} and 1 ≤ ℎ ≤ 𝐻 − 1, the Markov

game transitions according to Table A.3.

𝑎/𝑏 1 2 3 4
0 𝑠𝑖,ℎ+1 𝑠1−𝑖,ℎ+1 𝑠𝑖,ℎ+1 𝑠1−𝑖,ℎ+1

1 𝑠𝑖,ℎ+1 𝑠1−𝑖,ℎ+1 𝑠1−𝑖,ℎ+1 𝑠𝑖,ℎ+1

Table A.3: transition function of the state 𝑠𝑖,ℎ for the hard instance of Markov games.

165

Such an action set ℬℎ is powerful enough to reproduce all the possible transitions

in the original single-player MDP. We then define 𝜈𝑘 as the policy such that the

transition follows exactly 𝑀𝑋,𝑌𝑘 . The reward function is determined only by states

and thus remains the same. Therefore, Lemma 64 implies the following one-sided

regret bound for the max-player:

sup
𝜈𝑘

sup
𝜇

𝐾∑︁
𝑘=1

(︁
𝑉 𝜇,𝜈𝑘(𝑠0)− E𝜇𝑘𝑉 𝜇𝑘,𝜈𝑘(𝑠0)

)︁
≥ Ω(min

{︁√
2𝐻𝐾,𝐾

}︁
),

which is the desired result.

166

Appendix B

Proofs for Chapter 3

B.1 Proof for Section 3.2 – Optimistic Nash Value

Iteration

B.1.1 Proof of Theorem 16

We denote 𝑉 𝑘, 𝑄𝑘, 𝜋𝑘, 𝜇𝑘 and 𝜈𝑘 1 for values and policies at the beginning of the

𝑘-th episode. In particular, 𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏) is the number we have visited the state-action

tuple (𝑠, 𝑎, 𝑏) at the ℎ-th step before the 𝑘-th episode. 𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏, 𝑠

′) is defined by

the same token. Using this notation, we can further define the empirical transition

by ̂︀P𝑘ℎ(𝑠′|𝑠, 𝑎, 𝑏) := 𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏, 𝑠

′)/𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏). If 𝑁𝑘

ℎ (𝑠, 𝑎, 𝑏) = 0, we set ̂︀P𝑘ℎ(𝑠′|𝑠, 𝑎, 𝑏) =
1/𝑆.

As a result, the bonus terms can be written as

𝛽𝑘ℎ(𝑠, 𝑎, 𝑏) := 𝐶

(︃√︃
𝜄𝐻2

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
(B.1)

𝛾𝑘ℎ(𝑠, 𝑎, 𝑏) :=
𝐶

𝐻
̂︀Pℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏) (B.2)

for some large absolute constant 𝐶 > 0.

1recall that (𝜇𝑘
ℎ, 𝜈

𝑘
ℎ) are the marginal distributions of 𝜋𝑘

ℎ.

167

Lemma 66. Let 𝑐1 be some large absolute constant. Define event 𝐸0 to be: for all

ℎ, 𝑠, 𝑎, 𝑏, 𝑠′ and 𝑘 ∈ [𝐾],

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|[(̂︀P𝑘ℎ − Pr

ℎ
)𝑉 ⋆

ℎ+1](𝑠, 𝑎, 𝑏)| ≤ 𝑐1

√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

,

|(̂︀P𝑘ℎ − Pr
ℎ
)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝑐1

⎛⎝√︃min{Prℎ(𝑠′ | 𝑠, 𝑎, 𝑏), ̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)}𝜄
max{𝑁𝑘

ℎ (𝑠, 𝑎, 𝑏), 1}
+

𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠.
We have Pr(𝐸1) ≥ 1− 𝑝.

Proof. The proof is standard and folklore: apply standard concentration inequalities

and then take a union bound. For completeness, we provide the proof of the second

one here.

Consider a fixed (𝑠, 𝑎, 𝑏, ℎ) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts,

the environment samples {𝑠(1), 𝑠(2), . . . , 𝑠(𝐾)} independently from Prℎ(· | 𝑠, 𝑎, 𝑏); (b)

during the interaction between the agent and environment, the 𝑖th time the agent

reaches (𝑠, 𝑎, 𝑏, ℎ), the environment will make the agent transit to 𝑠(𝑖). Note that the

randomness induced by this interaction procedure is exactly the same as the original

one, which means the probability of any event in this context is the same as in the

original problem. Therefore, it suffices to prove the target concentration inequality in

this ’easy’ context. Denote by ̂︀P(𝑡)
ℎ (· | 𝑠, 𝑎, 𝑏) the empirical estimate of Prℎ(· | 𝑠, 𝑎, 𝑏)

calculated using {𝑠(1), 𝑠(2), . . . , 𝑠(𝑡)}. For a fixed 𝑡 and 𝑠′, by applying the Bernstein

inequality and its empirical version, we have with probability at least 1− 𝑝/𝑆2𝐴𝐵𝑇 ,

|(Pr
ℎ
−̂︀P(𝑡)

ℎ)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝒪

⎛⎝√︃min{Prℎ(𝑠′ | 𝑠, 𝑎, 𝑏), ̂︀P(𝑡)
ℎ (𝑠′ | 𝑠, 𝑎, 𝑏)}𝜄

𝑡
+
𝜄

𝑡

⎞⎠.
Now we can take a union bound over all 𝑠, 𝑎, 𝑏, ℎ, 𝑠′ and 𝑡 ∈ [𝐾], and obtain that

168

with probability at least 1− 𝑝, for all 𝑠, 𝑎, 𝑏, ℎ, 𝑠′ and 𝑡 ∈ [𝐾],

|(Pr
ℎ
−̂︀P(𝑡)

ℎ)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝒪

⎛⎝√︃min{Prℎ(𝑠′ | 𝑠, 𝑎, 𝑏), ̂︀P(𝑡)
ℎ (𝑠′ | 𝑠, 𝑎, 𝑏)}𝜄

𝑡
+
𝜄

𝑡

⎞⎠.
Note that the agent can reach each (𝑠, 𝑎, 𝑏, ℎ) for at most𝐾 times, this directly implies

that the third inequality also holds with probability at least 1− 𝑝.

We begin with an auxiliary lemma bounding the lower-order term.

Lemma 67. Suppose event 𝐸0 holds, then there exists absolute constant 𝑐2 such that:

if function 𝑔(𝑠) satisfies |𝑔|(𝑠) ≤ (𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠) for all 𝑠, then

|(̂︀P𝑘ℎ − Pℎ)𝑔(𝑠, 𝑎, 𝑏)|

≤𝑐2
(︂

1

𝐻
min{̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏),Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)}+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︂
.

Proof. By triangle inequality,

|(̂︀P𝑘ℎ − Pℎ)𝑔(𝑠, 𝑎, 𝑏)|

≤
∑︁
𝑠′

|(̂︀P𝑘ℎ − Pℎ)(𝑠′|𝑠, 𝑎, 𝑏)||𝑔|(𝑠′)

≤
∑︁
𝑠′

|(̂︀P𝑘ℎ − Pℎ)(𝑠′|𝑠, 𝑎, 𝑏)|(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

′)

(𝑖)

≤𝒪

⎛⎝∑︁
𝑠′

(

√︃
𝜄̂︀P𝑘ℎ(𝑠′|𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

′)

⎞⎠
(𝑖𝑖)

≤𝒪

(︃∑︁
𝑠′

(
̂︀P𝑘ℎ(𝑠′|𝑠, 𝑎, 𝑏)

𝐻
+

𝐻𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

′)

)︃

≤𝒪

(︃̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)

𝐻
+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
,

where (𝑖) is by the second inequality in event 𝐸0 and (𝑖𝑖) is by AM-GM inequality.

169

This proves the empirical version. Similarly, we can show

|(̂︀P𝑘ℎ − Pℎ)𝑔(𝑠, 𝑎, 𝑏)| ≤ 𝒪

(︃
Prℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)

𝐻
+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
,

Combining the two bounds completes the proof.

Now we can prove the upper and lower bounds are indeed upper and lower bounds

of the best reponses.

Lemma 68. Suppose event 𝐸0 holds. Then for all ℎ, 𝑠, 𝑎, 𝑏 and 𝑘 ∈ [𝐾], we have

⎧⎨⎩𝑄
𝑘

ℎ(𝑠, 𝑎, 𝑏) ≥ 𝑄†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏) ≥ 𝑄𝜇𝑘,†

ℎ (𝑠, 𝑎, 𝑏) ≥ 𝑄𝑘

ℎ
(𝑠, 𝑎, 𝑏),

𝑉
𝑘

ℎ(𝑠) ≥ 𝑉 †,𝜈𝑘
ℎ (𝑠) ≥ 𝑉 𝜇𝑘,†

ℎ (𝑠) ≥ 𝑉 𝑘
ℎ(𝑠).

(B.3)

Proof. The proof is by backward induction. Suppose the bounds hold for the 𝑄-values

in the (ℎ + 1)th step, we now establish the bounds for the 𝑉 -values in the (ℎ + 1)th

step and 𝑄-values in the ℎth-step. For any state 𝑠:

𝑉
𝑘

ℎ+1(𝑠) = D𝜋𝑘
ℎ+1
𝑄
𝑘

ℎ+1(𝑠)

≥ max
𝜇

D𝜇×𝜈𝑘ℎ+1
𝑄
𝑘

ℎ+1(𝑠)

≥ max
𝜇

D𝜇×𝜈𝑘ℎ+1
𝑄†,𝜈𝑘
ℎ+1(𝑠) = 𝑉 †,𝜈𝑘

ℎ+1 (𝑠).

(B.4)

Similarly, we can show 𝑉 𝑘
ℎ+1(𝑠) ≤ 𝑉 𝜇𝑘,†

ℎ+1 (𝑠). Therefore, we have: for all 𝑠,

𝑉
𝑘

ℎ+1(𝑠) ≥ 𝑉 †,𝜈𝑘
ℎ+1 (𝑠) ≥ 𝑉 ⋆

ℎ+1(𝑠) ≥ 𝑉 𝜇𝑘,†
ℎ+1 (𝑠) ≥ 𝑉 𝑘

ℎ+1(𝑠).

170

Now consider an arbitrary triple (𝑠, 𝑎, 𝑏) in the ℎth step. We have

(𝑄
𝑘

ℎ −𝑄
†,𝜈𝑘
ℎ)(𝑠, 𝑎, 𝑏)

≥min

{︂
(̂︀P𝑘ℎ𝑉 𝑘

ℎ+1 − Pℎ𝑉 †,𝜈𝑘
ℎ+1 + 𝛽𝑘ℎ + 𝛾𝑘ℎ)(𝑠, 𝑎, 𝑏), 0

}︂
≥min

{︂
(̂︀P𝑘ℎ𝑉 †,𝜈𝑘

ℎ+1 − Pℎ𝑉 †,𝜈𝑘
ℎ+1 + 𝛽𝑘ℎ + 𝛾𝑘ℎ)(𝑠, 𝑎, 𝑏), 0

}︂
=min

{︂
(̂︀P𝑘ℎ − Pℎ)(𝑉 †,𝜈𝑘

ℎ+1 − 𝑉
⋆
ℎ+1)(𝑠, 𝑎, 𝑏)⏟ ⏞

(𝐴)

+ (̂︀P𝑘ℎ − Pℎ)𝑉 ⋆
ℎ+1(𝑠, 𝑎, 𝑏)⏟ ⏞

(𝐵)

+ (𝛽𝑘ℎ + 𝛾𝑘ℎ)(𝑠, 𝑎, 𝑏), 0

}︂
.

(B.5)

Invoking Lemma 67 with 𝑔 = 𝑉 †,𝜈𝑘
ℎ+1 − 𝑉 ⋆

ℎ+1,

|(𝐴)| ≤ 𝒪

(︃̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)

𝐻
+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
.

By the first inequality in event 𝐸0,

|(𝐵)| ≤ 𝒪

(︃√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
.

Plugging the two inequalities above back into (B.5) and recalling the definition of 𝛽𝑘ℎ
and 𝛾𝑘ℎ, we obtain 𝑄

𝑘

ℎ(𝑠, 𝑎, 𝑏) ≥ 𝑄†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏). Similarly, we can show 𝑄𝑘

ℎ
(𝑠, 𝑎, 𝑏) ≤

𝑄𝜇𝑘,†
ℎ (𝑠, 𝑎, 𝑏).

Finally we come to the proof of Theorem 16.

Proof of Theorem 16. Suppose event 𝐸0 holds. We first upper bound the regret. By

Lemma 68, the regret can be upper bounded by

∑︁
𝑘

(𝑉 †,𝜈𝑘
1 (𝑠𝑘1)− 𝑉

𝜇𝑘,†
1 (𝑠𝑘1)) ≤

∑︁
𝑘

(𝑉
𝑘

1(𝑠
𝑘
1)− 𝑉 𝑘

1(𝑠
𝑘
1)).

171

For brevity’s sake, we define the following notations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ𝑘
ℎ := (𝑉

𝑘

ℎ − 𝑉 𝑘
ℎ)(𝑠

𝑘
ℎ),

𝜁𝑘ℎ := Δ𝑘
ℎ − (𝑄

𝑘

ℎ −𝑄𝑘

ℎ
)(𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ),

𝜉𝑘ℎ := Pℎ(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)−Δ𝑘

ℎ+1.

(B.6)

Let ℱ𝑘ℎ be the 𝜎-field generated by the following random variables:

{(𝑠𝑗𝑖 , 𝑎
𝑗
𝑖 , 𝑏

𝑗
𝑖 , 𝑟

𝑗
𝑖)}(𝑖,𝑗)∈[𝐻]×[𝑘−1]

⋃︁
{(𝑠𝑘𝑖 , 𝑎𝑘𝑖 , 𝑏𝑘𝑖 , 𝑟𝑘𝑖)}𝑖∈[ℎ−1]

⋃︁
{𝑠𝑘ℎ}.

It’s easy to check 𝜁𝑘ℎ and 𝜉𝑘ℎ are martingale differences with respect to ℱ𝑘ℎ . With

a slight abuse of notation, we use 𝛽𝑘ℎ to refer to 𝛽𝑘ℎ(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ) and 𝑁𝑘

ℎ to refer to

𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ) in the following proof.

We have

Δ𝑘
ℎ =𝜁

𝑘
ℎ +

(︁
𝑄
𝑘

ℎ −𝑄𝑘

ℎ

)︁ (︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
≤𝜁𝑘ℎ + 2𝛽𝑘ℎ + 2𝛾𝑘ℎ +

̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

(︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
(𝑖)

≤𝜁𝑘ℎ + 2𝛽𝑘ℎ + 2𝛾𝑘ℎ + Pℎ(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

(︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
+ 𝑐2

(︃
Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

𝐻
+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

)︃
(𝑖𝑖)

≤𝜁𝑘ℎ + 2𝛽𝑘ℎ + Pℎ(𝑉
𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

(︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
+ 2𝑐2𝐶

(︃
Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

𝐻
+

𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

)︃

≤𝜁𝑘ℎ +
(︂
1 +

2𝑐2𝐶

𝐻

)︂
Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

(︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
+ 4𝑐2𝐶

(︃√︃
𝜄𝐻2

max{𝑁𝑘
ℎ , 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

)︃

=𝜁𝑘ℎ +

(︂
1 +

2𝑐2𝐶

𝐻

)︂
𝜉𝑘ℎ +

(︂
1 +

2𝑐2𝐶

𝐻

)︂
Δ𝑘
ℎ+1 + 4𝑐2𝐶

(︃√︃
𝜄𝐻2

max{𝑁𝑘
ℎ , 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

)︃

where (𝑖) and (𝑖𝑖) follow from Lemma 67.

172

Define 𝑐3 := 1 + 2𝑐2𝐶 and 𝜅 := 1 + 𝑐3/𝐻. Recursing this argument for ℎ ∈ [𝐻]

and summing over 𝑘,

𝐾∑︁
𝑘=1

Δ𝑘
1 ≤

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

[︃
𝜅ℎ−1𝜁𝑘ℎ + 𝜅ℎ𝜉𝑘ℎ +𝒪

(︃√︃
𝜄𝐻2

max{𝑁𝑘
ℎ , 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

)︃]︃
.

By Azuma-Hoeffding inequality, with probability at least 1− 𝑝,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝜅ℎ−1𝜁𝑘ℎ ≤ 𝒪
(︁
𝐻
√
𝐻𝐾𝜄

)︁
= 𝒪

(︁√
𝐻2𝑇𝜄

)︁
,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝜅ℎ𝜉𝑘ℎ ≤ 𝒪
(︁
𝐻
√
𝐻𝐾𝜄

)︁
= 𝒪

(︁√
𝐻2𝑇𝜄

)︁
.

(B.7)

By pigeon-hole argument,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1√︀
max{𝑁𝑘

ℎ , 1}
≤

∑︁
𝑠,𝑎,𝑏,ℎ: 𝑁𝐾

ℎ (𝑠,𝑎,𝑏)>0

𝑁𝐾
ℎ (𝑠,𝑎,𝑏)∑︁
𝑛=1

1√
𝑛
+𝐻𝑆𝐴𝐵

≤𝒪
(︁√

𝐻𝑆𝐴𝐵𝑇 +𝐻𝑆𝐴𝐵
)︁
,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1

max{𝑁𝑘
ℎ , 1}

≤
∑︁

𝑠,𝑎,𝑏,ℎ: 𝑁𝐾
ℎ (𝑠,𝑎,𝑏)>0

𝑁𝐾
ℎ (𝑠,𝑎,𝑏)∑︁
𝑛=1

1

𝑛
+𝐻𝑆𝐴𝐵 ≤ 𝒪(𝐻𝑆𝐴𝐵𝜄).

Put everything together, with probability at least 1 − 2𝑝 (one 𝑝 comes from

Pr(𝐸0) ≥ 1− 𝑝 and the other is for equation (B.7)),

𝐾∑︁
𝑘=1

(𝑉 †,𝜈𝑘
1 (𝑠𝑘1)− 𝑉

𝜇𝑘,†
1 (𝑠𝑘1)) ≤ 𝒪

(︁√
𝐻3𝑆𝐴𝐵𝑇𝜄+𝐻3𝑆2𝐴𝐵𝜄2

)︁

For the PAC guarantee, recall that we choose 𝜋out = 𝜋𝑘
⋆ such that

𝑘⋆ := argmin
𝑘

(︁
𝑉
𝑘

1 − 𝑉 𝑘
1

)︁
(𝑠1) .

173

As a result,

(𝑉 †,𝜈𝑘⋆

1 − 𝑉 𝜇𝑘
⋆
,†

1)(𝑠1) ≤ (𝑉
𝑘⋆

1 − 𝑉 𝑘⋆

1)(𝑠1) ≤
1

𝐾
𝒪
(︁√

𝐻3𝑆𝐴𝐵𝑇𝜄+𝐻3𝑆2𝐴𝐵𝜄2
)︁
,

which concludes the proof.

B.1.2 Proof of Theorem 17

We use the same notation as in Appendix B.1.1 except the form of bonus. Besides,

we define the empirical variance operator

̂︀V𝑘
ℎ𝑉 (𝑠, 𝑎, 𝑏) := Var𝑠′∼̂︀P𝑘

ℎ(·|𝑠,𝑎,𝑏)
𝑉 (𝑠′)

and the true (population) variance operator

Vℎ𝑉 (𝑠, 𝑎, 𝑏) := Var𝑠′∼Pℎ(·|𝑠,𝑎,𝑏)𝑉 (𝑠′)

for any function 𝑉 ∈ Δ𝑆. If 𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏) = 0, we simply set ̂︀V𝑘

ℎ𝑉 (𝑠, 𝑎, 𝑏) := 𝐻2

regardless of the choice of 𝑉 .

As a result, the bonus terms can be written as

𝛽𝑘ℎ(𝑠, 𝑎, 𝑏) := 𝐶

⎛⎝√︃𝜄̂︀V𝑘
ℎ[(𝑉

𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠ (B.8)

for some absolute constant 𝐶 > 0.

Lemma 69. Let 𝑐1 be some large absolute constant. Define event 𝐸1 to be: for all

174

ℎ, 𝑠, 𝑎, 𝑏, 𝑠′ and 𝑘 ∈ [𝐾],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|[(̂︀P𝑘ℎ − Pr
ℎ
)𝑉 ⋆

ℎ+1](𝑠, 𝑎, 𝑏)| ≤ 𝑐1

⎛⎝√︃ ̂︀V𝑘
ℎ𝑉

⋆
ℎ+1(𝑠, 𝑎, 𝑏)𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠,
|(̂︀P𝑘ℎ − Pr

ℎ
)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝑐1

⎛⎝√︃min{Prℎ(𝑠′ | 𝑠, 𝑎, 𝑏), ̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)}𝜄
max{𝑁𝑘

ℎ (𝑠, 𝑎, 𝑏), 1}
+

𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠,
‖(̂︀P𝑘ℎ − Pr

ℎ
)(· | 𝑠, 𝑎, 𝑏)‖1 ≤ 𝑐1

√︃
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

.

We have Pr(𝐸1) ≥ 1− 𝑝.

The proof of Lemma 69 is highly similar to that of Lemma 66. Specifically, the

first two can be proved by following basically the same argument in Lemma 66; the

third one is standard (e.g., equation (12) in Azar et al. [2017]). We omit the proof

here.

Since the proof of Lemma 67 does not depend on the form of the bonus, it can

also be applied in this section. As in Appendix B.1.1, we will prove the upper and

lower bounds are indeed upper and lower bounds of the best reponses.

Lemma 70. Suppose event 𝐸1 holds. Then for all ℎ, 𝑠, 𝑎, 𝑏 and 𝑘 ∈ [𝐾], we have

⎧⎨⎩𝑄
𝑘

ℎ(𝑠, 𝑎, 𝑏) ≥ 𝑄†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏) ≥ 𝑄𝜇𝑘,†

ℎ (𝑠, 𝑎, 𝑏) ≥ 𝑄𝑘

ℎ
(𝑠, 𝑎, 𝑏),

𝑉
𝑘

ℎ(𝑠) ≥ 𝑉 †,𝜈𝑘
ℎ (𝑠) ≥ 𝑉 𝜇𝑘,†

ℎ (𝑠) ≥ 𝑉 𝑘
ℎ(𝑠).

(B.9)

Proof. The proof is by backward induction and very similar to that of Lemma 68.

Suppose the bounds hold for the 𝑄-values in the (ℎ+ 1)th step, we now establish the

bounds for the 𝑉 -values in the (ℎ+ 1)th step and 𝑄-values in the ℎth-step.

The proof for the 𝑉 -values is the same as (B.4).

For the 𝑄-values, the decomposition (B.5) still holds and (𝐴) is bounded using

Lemma 67 as before. The only difference is that we need to bound (𝐵) more carefully.

175

First, by the first inequality in event 𝐸1,

|(𝐵)| ≤ 𝒪

⎛⎝√︃ ̂︀V𝑘
ℎ𝑉

⋆
ℎ+1(𝑠, 𝑎, 𝑏)𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠ .

By the relation of 𝑉 -values in the (ℎ+ 1)th step,

|[̂︀V𝑘
ℎ(𝑉

𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2]− ̂︀V𝑘

ℎ𝑉
⋆
ℎ+1|(𝑠, 𝑎, 𝑏)

≤|[̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2]

2 − (̂︀P𝑘ℎ𝑉 ⋆
ℎ+1)

2|(𝑠, 𝑎, 𝑏)

+ |̂︀P𝑘ℎ[(𝑉 𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2]

2 − ̂︀P𝑘ℎ(𝑉 ⋆
ℎ+1)

2|(𝑠, 𝑎, 𝑏)

≤4𝐻̂︀P𝑘ℎ|(𝑉 𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2− 𝑉 ⋆

ℎ+1|(𝑠, 𝑎, 𝑏)

≤4𝐻̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏),

(B.10)

which implies√︃
𝜄̂︀V𝑘

ℎ𝑉
⋆
ℎ+1(𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

≤

√︃
𝜄[̂︀V𝑘

ℎ[(𝑉
𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2] + 4𝐻̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

≤

√︃
𝜄̂︀V𝑘

ℎ[(𝑉
𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+

√︃
4𝜄𝐻̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

(𝑖)

≤

√︃
𝜄̂︀V𝑘

ℎ[(𝑉
𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

𝐻
+

4𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

,

(B.11)

where (𝑖) is by AM-GM inequality.

Plugging the above inequalities back into (B.5) and recalling the definition of 𝛽𝑘ℎ
and 𝛾𝑘ℎ completes the proof.

We need one more lemma to control the error of the empirical variance estimator:

Lemma 71. Suppose event 𝐸1 holds. Then for all ℎ, 𝑠, 𝑎, 𝑏 and 𝑘 ∈ [𝐾], we have

|̂︀V𝑘
ℎ[(𝑉

𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2]− Vℎ𝑉

𝜋𝑘

ℎ+1|(𝑠, 𝑎, 𝑏)

176

≤4𝐻 Pr
ℎ
(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏) +𝒪

(︂
1 +

𝐻4𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︂
.

Proof. By Lemma 70, we have 𝑉 𝑘

ℎ(𝑠) ≥ 𝑉 𝜋𝑘

ℎ (𝑠) ≥ 𝑉 𝑘
ℎ(𝑠). As a result,

|̂︀V𝑘
ℎ[(𝑉

𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2]− Vℎ𝑉

𝜋𝑘

ℎ+1|(𝑠, 𝑎, 𝑏)

=|[̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)

2/4− Pℎ(𝑉 𝜋𝑘

ℎ+1)
2](𝑠, 𝑎, 𝑏)

− [(̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1))

2/4− (Pℎ𝑉 𝜋𝑘

ℎ+1)
2](𝑠, 𝑎, 𝑏)|

≤[̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1)
2 − Pℎ(𝑉 𝑘

ℎ+1)
2 − (̂︀P𝑘ℎ𝑉 𝑘

ℎ+1)
2 + (Pℎ𝑉

𝑘

ℎ+1)
2](𝑠, 𝑎, 𝑏)

≤[|(̂︀P𝑘ℎ − Pℎ)(𝑉
𝑘

ℎ+1)
2|+ |Pℎ[(𝑉

𝑘

ℎ+1)
2 − (𝑉 𝑘

ℎ+1)
2]|

+ |(̂︀P𝑘ℎ𝑉 𝑘
ℎ+1)

2 − (Pℎ𝑉 𝑘
ℎ+1)

2|+ |(Pℎ𝑉 𝑘
ℎ+1)

2 − (Pℎ𝑉
𝑘

ℎ+1)
2|](𝑠, 𝑎, 𝑏)

These terms can be bounded separately by using event 𝐸1:

|(̂︀P𝑘ℎ − Pℎ)(𝑉
𝑘

ℎ+1)
2|(𝑠, 𝑎, 𝑏) ≤𝐻2‖(̂︀P𝑘ℎ − Pr

ℎ
)(· | 𝑠, 𝑎, 𝑏)‖1

≤𝒪(𝐻2

√︃
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

),

|Pℎ[(𝑉
𝑘

ℎ+1)
2 − (𝑉 𝑘

ℎ+1)
2]|(𝑠, 𝑎, 𝑏) ≤2𝐻[Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)](𝑠, 𝑎, 𝑏),

|(̂︀P𝑘ℎ𝑉 𝑘
ℎ+1)

2 − (Pℎ𝑉 𝑘
ℎ+1)

2|(𝑠, 𝑎, 𝑏) ≤2𝐻[(̂︀P𝑘ℎ − Pℎ)𝑉 𝑘
ℎ+1](𝑠, 𝑎, 𝑏)

≤𝒪(𝐻2

√︃
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

),

|(Pℎ𝑉 𝑘
ℎ+1)

2 − (Pℎ𝑉
𝑘

ℎ+1)
2|(𝑠, 𝑎, 𝑏) ≤2𝐻[Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)](𝑠, 𝑎, 𝑏).

Combining with

𝐻2

√︃
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

≤ 1 +
𝐻4𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

completes the proof.

Finally we come to the proof of Theorem 17.

Proof of Theorem 17. Suppose event 𝐸1 holds. We define Δ𝑘
ℎ, 𝜁𝑘ℎ abd 𝜉𝑘ℎ as in the

177

proof of Theorem 16. As before we have

Δ𝑘
ℎ ≤𝜁𝑘ℎ +

(︁
1 +

𝑐3
𝐻

)︁
Pℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)

(︀
𝑠𝑘ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ

)︀
+ 4𝑐2𝐶

⎛⎝√︃𝜄̂︀V𝑘
ℎ[(𝑉

𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2](𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

max{𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ), 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ), 1}

⎞⎠ .

(B.12)

By Lemma 71,√︃
𝜄̂︀V𝑘

ℎ[(𝑉
𝑘

ℎ+1 + 𝑉 𝑘
ℎ+1)/2](𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

≤𝒪

⎛⎝√︃ 𝜄Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠, 𝑎, 𝑏) + 𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+

√︃
𝐻𝜄Prℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻2
√
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠
≤𝑐4

⎛⎝√︃ 𝜄Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠, 𝑎, 𝑏) + 𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
Prℎ(𝑉

𝑘

ℎ+1 − 𝑉 𝑘
ℎ+1)(𝑠, 𝑎, 𝑏)

𝐻
+

𝐻2
√
𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠,
(B.13)

where 𝑐4 is some absolute constant. Define 𝑐5 := 4𝑐2𝑐4𝐶 + 𝑐3 and 𝜅 := 1 + 𝑐5/𝐻.

Plugging (B.13) back into (B.12), we have

Δ𝑘
ℎ

≤𝜅Δ𝑘
ℎ+1 + 𝜅𝜉𝑘ℎ + 𝜁𝑘ℎ +𝒪

(︂√︃
𝜄Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

+

√︂
𝜄

𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

+
𝐻2𝑆𝜄

𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

)︂}︃
.

(B.14)

Recursing this argument for ℎ ∈ [𝐻] and summing over 𝑘,

𝐾∑︁
𝑘=1

Δ𝑘
1

≤
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

[︂
𝜅ℎ−1𝜁𝑘ℎ + 𝜅ℎ𝜉𝑘ℎ +𝒪

⎛⎝√︃𝜄Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

max{𝑁𝑘
ℎ , 1}

+

√︂
𝜄

max{𝑁𝑘
ℎ , 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ , 1}

⎞⎠]︂.

The remaining steps are the same as that in the proof of Theorem 16 except that

we need to bound the sum of variance term.

178

By Cauchy-Schwarz,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

√︃
Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)

max{𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ), 1}

≤

⎯⎸⎸⎷ 𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

Vℎ𝑉 𝜋𝑘

ℎ+1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ) ·

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

1

max{𝑁𝑘
ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ), 1}

.

By the Law of total variation and standard martingale concentration (see Lemma

C.5 in Jin et al. [2018] for a formal proof), with probability at least 1− 𝑝, we have

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

Vℎ𝑉
𝜋𝑘

ℎ+1(𝑠
𝑘
ℎ, 𝑎

𝑘
ℎ, 𝑏

𝑘
ℎ)≤𝒪

(︀
𝐻𝑇 +𝐻3𝜄

)︀
.

Putting all relations together, we obtain that with probability at least 1− 2𝑝 (one 𝑝

comes from Pr(𝐸1) ≥ 1−𝑝 and the other comes from the inequality for bounding the

variance term),

R(𝐾) =
𝐾∑︁
𝑘=1

(𝑉 †,𝜈𝑘
1 − 𝑉 𝜇𝑘,†

1)(𝑠1) ≤ 𝒪(
√
𝐻2𝑆𝐴𝐵𝑇𝜄+𝐻3𝑆2𝐴𝐵𝜄2).

Rescaling 𝑝 completes the proof.

B.2 Proof for Section 3.3 – Reward-Free Learning

B.2.1 Proof of Theorem 18

In this section, we prove Theorem 18 for the single reward function case, i.e., 𝑁 = 1.

The proof for multiple reward functions (𝑁 > 1) simply follows from taking a union

bound, that is, replacing the failure probability 𝑝 by 𝑁𝑝.

Let (𝜇𝑘, 𝜈𝑘) be an arbitrary Nash-equilibrium policy of ̂︁ℳ𝑘 := (̂︀P𝑘, ̂︀𝑟𝑘), where ̂︀P𝑘
and ̂︀𝑟𝑘 are our empirical estimate of the transition and the reward at the beginning

of the 𝑘-th episode in Algorithm 2, respectively. We use 𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏) to denote the

number we have visited the state-action tuple (𝑠, 𝑎, 𝑏) at the ℎ’=th step before the

179

𝑘-th episode. And the bonus used in the 𝑘-th episode can be written as

𝛽𝑘ℎ(𝑠, 𝑎, 𝑏) := 𝐶

(︃√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

)︃
, (B.15)

where 𝜄 = log(𝑆𝐴𝐵𝑇/𝑝) and 𝐶 is some large absolute constant.

We use ̂︀𝑄𝑘 and ̂︀𝑉 𝑘 to denote the empirical optimal value functions of ̂︁ℳ𝑘 as

following.

⎧⎪⎨⎪⎩
̂︀𝑄𝑘
ℎ(𝑠, 𝑎, 𝑏) = (̂︀P𝑘ℎ̂︀𝑉ℎ+1)(𝑠, 𝑎, 𝑏) + ̂︀𝑟𝑘ℎ(𝑠, 𝑎, 𝑏),̂︀𝑉 𝑘
ℎ (𝑠) = max

𝜇
min
𝜈

D𝜇×𝜈 ̂︀𝑄𝑘
ℎ(𝑠).

(B.16)

Since (𝜇𝑘, 𝜈𝑘) is a Nash-equilibrium policy of ̂︁ℳ𝑘, we also have ̂︀𝑉 𝑘
ℎ (𝑠) = D𝜇𝑘×𝜈𝑘 ̂︀𝑄𝑘

ℎ(𝑠).

We begin with stating a useful property of matrix game that will be frequently

used in our analysis. Since its proof is quite simple, we omit it here.

Lemma 72. Let X,Y,Z ∈ R𝐴×𝐵 and Δ𝑑 be the 𝑑-dimensional simplex. Suppose

|X−Y| ≤ Z, where the inequality is entry-wise. Then⃒⃒⃒⃒
max
𝜇∈△𝐴

min
𝜈∈△𝐵

𝜇⊤X𝜈 − max
𝜇∈△𝐴

min
𝜈∈△𝐵

𝜇⊤Y𝜈

⃒⃒⃒⃒
≤ max

𝑖,𝑗
Z𝑖𝑗. (B.17)

Lemma 73. Let 𝑐1 be some large absolute constant such that 𝑐21 + 𝑐1 ≤ 𝐶. Define

event 𝐸1 to be: for all ℎ, 𝑠, 𝑎, 𝑏, 𝑠′ and 𝑘 ∈ [𝐾],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|[(̂︀P𝑘ℎ − Pr
ℎ
)𝑉 ⋆

ℎ+1](𝑠, 𝑎, 𝑏)| ≤
𝑐1
10

√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

,

|(̂︀𝑟𝑘ℎ − 𝑟ℎ)(𝑠, 𝑎, 𝑏)| ≤ 𝑐1
10

√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

,

|(̂︀P𝑘ℎ − Pr
ℎ
)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝑐1

10

⎛⎝√︃ ̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)𝜄
max{𝑁𝑘

ℎ (𝑠, 𝑎, 𝑏), 1}
+

𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

⎞⎠.
(B.18)

We have Pr(𝐸1) ≥ 1− 𝑝.

Proof. The proof is standard: apply concentration inequalities and then take a union

180

bound. For completeness, we provide the proof of the third one here.

Consider a fixed (𝑠, 𝑎, 𝑏, ℎ) tuple.

Let’s consider the following equivalent random process: (a) before the agent starts,

the environment samples {𝑠(1), 𝑠(2), . . . , 𝑠(𝐾)} independently from Prℎ(· | 𝑠, 𝑎, 𝑏); (b)

during the interaction between the agent and the environment, the 𝑖th time the agent

reaches (𝑠, 𝑎, 𝑏, ℎ), the environment will make the agent transit to 𝑠(𝑖). Note that the

randomness induced by this interaction procedure is exactly the same as the original

one, which means the probability of any event in this context is the same as in the

original problem. Therefore, it suffices to prove the target concentration inequality in

this ’easy’ context. Denote by ̂︀P(𝑡)
ℎ (· | 𝑠, 𝑎, 𝑏) the empirical estimate of Prℎ(· | 𝑠, 𝑎, 𝑏)

calculated using {𝑠(1), 𝑠(2), . . . , 𝑠(𝑡)}. For a fixed 𝑡 and 𝑠′, by the empirical Bernstein

inequality, we have with probability at least 1− 𝑝/𝑆2𝐴𝐵𝑇 ,

|(Pr
ℎ
−̂︀P(𝑡)

ℎ)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝒪

⎛⎝√︃̂︀P(𝑡)
ℎ (𝑠′ | 𝑠, 𝑎, 𝑏)𝜄

𝑡
+
𝜄

𝑡

⎞⎠.
Now we can take a union bound over all 𝑠, 𝑎, 𝑏, ℎ, 𝑠′ and 𝑡 ∈ [𝐾], and obtain that

with probability at least 1− 𝑝, for all 𝑠, 𝑎, 𝑏, ℎ, 𝑠′ and 𝑡 ∈ [𝐾],

|(Pr
ℎ
−̂︀P(𝑡)

ℎ)(𝑠′ | 𝑠, 𝑎, 𝑏)| ≤ 𝒪

⎛⎝√︃̂︀P(𝑡)
ℎ (𝑠′ | 𝑠, 𝑎, 𝑏)𝜄

𝑡
+
𝜄

𝑡

⎞⎠.
Note that the agent can reach each (𝑠, 𝑎, 𝑏, ℎ) for at most 𝐾 times, so we conclude

the third inequality also holds with probability at least 1− 𝑝.

The following lemma states that the empirical optimal value functions are close

to the true optimal ones, and their difference is controlled by the exploration value

functions calculated in Algorithm 2.

Lemma 74. Suppose event 𝐸1 (defined in Lemma 73) holds. Then for all ℎ, 𝑠, 𝑎, 𝑏

181

and 𝑘 ∈ [𝐾], we have,⎧⎪⎨⎪⎩
⃒⃒⃒ ̂︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏)−𝑄⋆
ℎ(𝑠, 𝑎, 𝑏)

⃒⃒⃒
≤ ̃︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏),⃒⃒⃒ ̂︀𝑉 𝑘
ℎ (𝑠)− 𝑉 ⋆

ℎ (𝑠)
⃒⃒⃒
≤ ̃︀𝑉 𝑘

ℎ (𝑠).
(B.19)

Proof. Let’s prove by backward induction on ℎ. The case of ℎ = 𝐻+1 holds trivially.

Assume the conclusion hold for (ℎ+ 1)-th step. For ℎ-th step,

⃒⃒⃒ ̂︀𝑄𝑘
ℎ(𝑠, 𝑎, 𝑏)−𝑄⋆

ℎ(𝑠, 𝑎, 𝑏)
⃒⃒⃒

≤ min{
⃒⃒⃒
[(̂︀P𝑘ℎ − Pr

ℎ
)𝑉 ⋆

ℎ+1](𝑠, 𝑎, 𝑏)
⃒⃒⃒
+ |(̂︀𝑟𝑘ℎ − 𝑟ℎ)(𝑠, 𝑎, 𝑏)|

+
⃒⃒⃒
[̂︀P𝑘ℎ(̂︀𝑉 𝑘

ℎ+1 − 𝑉 ⋆
ℎ+1)](𝑠, 𝑎, 𝑏)

⃒⃒⃒
, 𝐻}

(𝑖)

≤ min
{︁
𝛽𝑘ℎ(𝑠, 𝑎, 𝑏) + (̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠, 𝑎, 𝑏), 𝐻
}︁

(𝑖𝑖)
= ̃︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏),

(B.20)

where (𝑖) follows from the induction hypothesis and event 𝐸1, and (𝑖𝑖) follows from the

definition of ̃︀𝑄𝑘
ℎ. By Lemma 72, we immediately obtain |̂︀𝑉 𝑘

ℎ (𝑠)−𝑉 ⋆
ℎ (𝑠)| ≤ ̃︀𝑉 𝑘

ℎ (𝑠).

Now, we are ready to establish the key lemma in our analysis using Lemma 74.

Lemma 75. Suppose event 𝐸1 (defined in Lemma 73) holds. Then for all ℎ, 𝑠, 𝑎, 𝑏

and 𝑘 ∈ [𝐾], we have

⎧⎨⎩| ̂︀𝑄
𝑘
ℎ(𝑠, 𝑎, 𝑏)−𝑄

†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏)| ≤ 𝛼ℎ ̃︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏),

|̂︀𝑉 𝑘
ℎ (𝑠)− 𝑉

†,𝜈𝑘
ℎ (𝑠)| ≤ 𝛼ℎ̃︀𝑉 𝑘

ℎ (𝑠),
(B.21)

and ⎧⎨⎩| ̂︀𝑄
𝑘
ℎ(𝑠, 𝑎, 𝑏)−𝑄

𝜇𝑘,†
ℎ (𝑠, 𝑎, 𝑏)| ≤ 𝛼ℎ ̃︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏),

|̂︀𝑉 𝑘
ℎ (𝑠)− 𝑉

𝜇𝑘,†
ℎ (𝑠)| ≤ 𝛼ℎ̃︀𝑉 𝑘

ℎ (𝑠),
(B.22)

where 𝛼𝐻+1 = 0 and 𝛼ℎ = [(1 + 1
𝐻
)𝛼ℎ+1 +

1
𝐻
] ≤ 4.

Proof. We only prove the first set of inequalities. The second one follows exactly the

same. Again, the proof is by performing backward induction on ℎ. It is trivial to see

the conclusion holds for (𝐻 +1)-th step with 𝛼𝐻+1 = 0. Now, assume the conclusion

182

holds for (ℎ+ 1)-th step. For ℎ-th step,

| ̂︀𝑄𝑘
ℎ(𝑠, 𝑎, 𝑏)−𝑄

†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏)|

≤min

{︂
|[(̂︀P𝑘ℎ − Pr

ℎ
)(𝑉 †,𝜈𝑘

ℎ+1 − 𝑉
⋆
ℎ+1)](𝑠, 𝑎, 𝑏)|+ |(̂︀P𝑘ℎ − Pr

ℎ
)𝑉 ⋆

ℎ+1(𝑠, 𝑎, 𝑏)|

+ |(̂︀𝑟𝑘ℎ − 𝑟ℎ)(𝑠, 𝑎, 𝑏)|+ |[̂︀Pℎ(̂︀𝑉 𝑘
ℎ+1 − 𝑉

†,𝜈𝑘
ℎ+1)](𝑠, 𝑎, 𝑏)|, 𝐻

}︂
≤min

{︂
|[(̂︀P𝑘ℎ − Pr

ℎ
)(𝑉 †,𝜈𝑘

ℎ+1 − 𝑉
⋆
ℎ+1)](𝑠, 𝑎, 𝑏)|⏟ ⏞

(𝑇1)

+𝑐1

√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+ |[̂︀Pℎ(̂︀𝑉 𝑘
ℎ+1 − 𝑉

†,𝜈𝑘
ℎ+1)](𝑠, 𝑎, 𝑏)|⏟ ⏞

(𝑇2)

, 𝐻

}︂
,

(B.23)

where the second inequality follows from the definition of event 𝐸1.

We can control the term (𝑇1) by combining Lemma 74 and the induction hy-

pothesis to bound |𝑉 †,𝜈𝑘
ℎ+1 − 𝑉 ⋆

ℎ+1|, and then applying the third inequality in event 𝐸1:

(𝑇1) ≤
∑︁
𝑠′

|̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)− Pr
ℎ
(𝑠′ | 𝑠, 𝑎, 𝑏)||𝑉 †,𝜈𝑘

ℎ+1 − 𝑉
⋆
ℎ+1(𝑠

′)|

≤
∑︁
𝑠′

|̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)− Pr
ℎ
(𝑠′ | 𝑠, 𝑎, 𝑏)|

(︁
|𝑉 †,𝜈𝑘
ℎ+1 − ̂︀𝑉 𝑘

ℎ+1(𝑠
′)|+ |̂︀𝑉 𝑘

ℎ+1 − 𝑉 ⋆
ℎ+1(𝑠

′)|
)︁

≤
∑︁
𝑠′

|̂︀P𝑘ℎ(𝑠′ | 𝑠, 𝑎, 𝑏)− Pr
ℎ
(𝑠′ | 𝑠, 𝑎, 𝑏)|(𝛼ℎ+1 + 1)̃︀𝑉 𝑘

ℎ+1

≤(𝛼ℎ+1 + 1)

𝐻
(̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠, 𝑎, 𝑏) +
𝑐21(𝛼ℎ+1 + 1)𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

.

(B.24)

The term (𝑇2) is bounded by directly applying the induction hypothesis

|[̂︀Pℎ(̂︀𝑉 𝑘
ℎ+1 − 𝑉

†,𝜈𝑘
ℎ+1)](𝑠, 𝑎, 𝑏)| ≤ 𝛼ℎ+1[̂︀Pℎ̃︀𝑉 𝑘

ℎ+1](𝑠, 𝑎, 𝑏). (B.25)

183

Plugging (B.24) and (B.25) into (B.23), we obtain

⃒⃒⃒ ̂︀𝑄𝑘
ℎ(𝑠, 𝑎, 𝑏)−𝑄

†,𝜈𝑘
ℎ (𝑠, 𝑎, 𝑏)

⃒⃒⃒
≤min

{︂
(1 +

1

𝐻
)𝛼ℎ+1 +

1

𝐻
[̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1](𝑠, 𝑎, 𝑏) + 𝑐1

√︃
𝐻2𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

+
𝑐21(𝛼ℎ+1 + 1)𝐻2𝑆𝜄

max{𝑁𝑘
ℎ (𝑠, 𝑎, 𝑏), 1}

, 𝐻

}︂
(𝑖)

≤min

{︂(︂
(1 +

1

𝐻
)𝛼ℎ+1 +

1

𝐻

)︂
[̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1](𝑠, 𝑎, 𝑏) + 𝛽𝑘ℎ(𝑠, 𝑎, 𝑏), 𝐻

}︂
(𝑖𝑖)

≤
(︂
(1 +

1

𝐻
)𝛼ℎ+1 +

1

𝐻

)︂̃︀𝑄𝑘
ℎ(𝑠, 𝑎, 𝑏),

(B.26)

where (𝑖) follows from the definition of 𝛽𝑘ℎ, and (𝑖𝑖) follows from the definition of ̃︀𝑄𝑘
ℎ.

Therefore, by (B.26), choosing 𝛼ℎ = [(1 + 1
𝐻
)𝛼ℎ+1 +

1
𝐻
] suffices for the purpose of

induction.

Now, let’s prove the inequality for 𝑉 functions.

|(̂︀𝑉 𝑘
ℎ − 𝑉

†,𝜈𝑘
ℎ)(𝑠)| (𝑖)= | max

𝜇∈△𝐴

(D𝜇,𝜈𝑘
̂︀𝑄𝑘
ℎ)(𝑠)− max

𝜇∈△𝐴

(D𝜇,𝜈𝑘𝑄
†,𝜈𝑘
ℎ)(𝑠)|

(𝑖𝑖)

≤ max
𝑎,𝑏

[︁
𝛼ℎ ̃︀𝑄𝑘

ℎ(𝑠, 𝑎, 𝑏)
]︁
= 𝛼ℎ̃︀𝑉 𝑘

ℎ (𝑠),

(B.27)

where (𝑖) follows from the definition of ̂︀𝑉 𝑘
ℎ and 𝑉 †,𝜈𝑘

ℎ , and (𝑖𝑖) uses (B.26) and Lemma

72.

Theorem 76 (Guarantee for UCB-VI from Azar et al. [2017]). For any 𝑝 ∈ (0, 1],

choose the exploration bonus 𝛽𝑡 in Algrothm 2 as (B.15). Then, with probability at

least 1− 𝑝,
𝐾∑︁
𝑘=1

̃︀𝑉 𝑘
1 (𝑠1) ≤ 𝒪(

√
𝐻4𝑆𝐴𝐾𝜄+𝐻3𝑆2𝐴𝜄2).

Proof of Theorem 18. Recall that out = argmin𝑘∈[𝐾]
̃︀𝑉 𝑘
ℎ (𝑠). By Lemma 75 and The-

orem 76, with probability at least 1− 2𝑝,

𝑉 †,𝜈out

ℎ (𝑠)− 𝑉 𝜇out,†
ℎ (𝑠) ≤|𝑉 †,𝜈out

ℎ (𝑠)− ̂︀𝑉 out
ℎ (𝑠)|+ |̂︀𝑉 out

ℎ (𝑠)− 𝑉 𝜇out,†
ℎ (𝑠)|

≤8̃︀𝑉 out
ℎ (𝑠) ≤ 𝒪(

√︂
𝐻4𝑆𝐴𝜄

𝐾
+
𝐻3𝑆2𝐴𝜄2

𝐾
).

(B.28)

184

Rescaling 𝑝 completes the proof.

B.2.2 Vanilla Nash Value Iteration

Here, we provide one optional algorithm, Vanilla Nash VI, for computing the Nash

equilibrium policy for a known model. Its only difference from the value iteration

algorithm for MDPs is that the maximum operator is replaced by the minimax oper-

ator in Line 7. We remark that the Nash equilibrium for a two-player zero-sum game

can be computed in polynomial time.

Algorithm 17 Vanilla Nash Value Iteration

1: Input: model ̂︁ℳ = (̂︀P, ̂︀𝑟).
2: Initialize: for all (𝑠, 𝑎, 𝑏), 𝑉𝐻+1(𝑠, 𝑎, 𝑏)← 0.
3: for step ℎ = 𝐻,𝐻 − 1, . . . , 1 do
4: for (𝑠, 𝑎, 𝑏) ∈ 𝒮 ×𝒜× ℬ do
5: 𝑄ℎ(𝑠, 𝑎, 𝑏)← [̂︀Pℎ𝑉ℎ+1](𝑠, 𝑎, 𝑏) + ̂︀𝑟ℎ(𝑠, 𝑎, 𝑏).
6: for 𝑠 ∈ 𝒮 do
7: (̂︀𝜇ℎ(· | 𝑠), ̂︀𝜈ℎ(· | 𝑠))← NASH-ZERO-SUM(𝑄ℎ(𝑠, ·, ·)).
8: 𝑉ℎ(𝑠)← ̂︀𝜇ℎ(· | 𝑠)⊤𝑄ℎ(𝑠, ·, ·)̂︀𝜈ℎ(· | 𝑠).
9: Output (̂︀𝜇, ̂︀𝜈)← {(̂︀𝜇ℎ(· | 𝑠), ̂︀𝜈ℎ(· | 𝑠))}(ℎ,𝑠)∈[𝐻]×𝒮 .

By recalling the definition of best responses in Section 2.3.2, one can directly see

that the output policy (̂︀𝜇, ̂︀𝜈) is a Nash equilibrium for ̂︁ℳ.

B.2.3 Proof of Theorem 19

In this section, we first prove a Θ(𝐴𝐵/𝜀2) lower bound for reward-free learning of

matrix games, i.e., 𝑆 = 𝐻 = 1, and then generalize it to Θ(𝑆𝐴𝐵𝐻2/𝜀2) for reward-

free learning of Markov games.

Reward-free learning of matrix games

In the matrix game, let the max-player pick row and the min-player pick column. We

consider the following family of Bernoulli matrix games

M(𝜀) :=
{︀
ℳ𝑎⋆𝑏⋆ ∈ R𝐴×𝐵}︀ , (B.29)

185

where in matrix gameℳ𝑎⋆𝑏⋆ , the reward is sampled from Bernoulli(ℳ𝑎⋆𝑏⋆

𝑎𝑏) if the max-

player picks the 𝑎-th row and the min-player picks the 𝑏-th column. Here ℳ𝑎⋆𝑏⋆

𝑎𝑏 :=

1
2
+ (1− 2 · 1{𝑎 ̸= 𝑎⋆&𝑏 = 𝑏⋆})𝜀 for any (𝑎⋆, 𝑏⋆) ∈ [𝐴]× [𝐵].

Min-player

Max-player

action 1 . . . 𝑏⋆ − 1 𝑏⋆ 𝑏⋆ + 1 . . . 𝐵

1 + . . . + − + . . . +
...

...
...

...

𝑎⋆ − 1 + . . . + − + . . . +

𝑎⋆ + . . . + + + . . . +

𝑎⋆ + 1 + . . . + − + . . . +
...

...
...

...

𝐴 + . . . + − + . . . +

(B.30)

Above, we visualize ℳ𝑎⋆𝑏⋆ by using + and − to represent 1/2 + 𝜀 and 1/2 − 𝜀,

respectively. It is direct to see that the optimal (Nash equilibrium) policy for the

max-player is always picking the 𝑎⋆-th row. If the max-player picks the 𝑎⋆-th row

with probability smaller than 2/3, it is at least 𝜀/10 suboptimal.

Lemma 77. Consider an arbitrary fixed matrix gameℳ𝑎⋆𝑏⋆ from M(𝜀) and 𝑁 ∈ N.

If there exists an algorithm 𝒜 such that when running on ℳ𝑎⋆𝑏⋆, it uses at most

𝑁 samples and outputs an 𝜀/10-optimal policy with probability at least 𝑝, then there

exists an algorithm ̂︀𝒜 that can identify 𝑎⋆ with probability at least 𝑝 using at most 𝑁

samples.

Proof. We simply define ̂︀𝒜 as running algorithm 𝒜 and choosing the most played row

by its output policy as the guess for 𝑎⋆. Because any 𝜀/10-optimal policy must play 𝑎⋆

with probability at least 2/3, we obtain ̂︀𝒜 will correctly identify 𝑎⋆ with probability

at least 𝑝.

Lemma 77 directly implies that in order to prove the desired lower bound for

reward-free matrix games:

186

Claim 1. for any reward-free algorithm 𝒜 using at most 𝑁 = 𝐴𝐵/(103𝜀2) samples,

there exists a matrix gameℳ𝑎⋆𝑏⋆ in M(𝜀) such that when running 𝒜 onℳ𝑎⋆𝑏⋆, it will

output a policy that is at least 𝜀/10 suboptimal for the max-player with probability at

least 1/4,

it suffices to prove the following claim:

Claim 2. for any reward-free algorithm ̂︀𝒜 using at most 𝑁 = 𝐴𝐵/(103𝜀2) samples,

there exists a matrix game ℳ𝑎⋆𝑏⋆ in M(𝜀) such that when running ̂︀𝒜 on ℳ, it will

fail to identify the optimal row with probability at least 1/4.

Remark 78. By Lemma 77, the existence of such ’ideal’ 𝒜 implies the existence of

an ’ideal’ ̂︀𝒜, so to prove such ’ideal’ 𝒜 does not exist (Claim 1), it suffices to show

such ’ideal’ ̂︀𝒜 does not exist (Claim 2).

Proof of Claim 2. WLOG, we assume ̂︀𝒜 is deterministic. Since ̂︀𝒜 is reward-free,

being deterministic means that in the exploration phase algorithm ̂︀𝒜 always pulls each

arm (𝑎, 𝑏) for some fixed 𝑛(𝑎, 𝑏) times (because there is no information revealed in this

phase), and in the planning phase it outputs a guess for 𝑎⋆, which is a deterministic

function of the reward information revealed.

We define the following notations:

∙ 𝐿: the stochastic reward information revealed after algorithm ̂︀𝒜’s pulling.

∙ Pr⋆: the probability measure induced by picking ℳ𝑎⋆𝑏⋆ uniformly at random

from M(𝜀) and then running ̂︀𝒜 onℳ.

∙ Pr𝑎𝑏: the probability measure induced by running ̂︀𝒜 onℳ𝑎𝑏.

∙ Pr0𝑏: the probability measure induced by running 𝒜 on matrixℳ0𝑏, whose 𝑏-th

column are all (1/2− 𝜀)’s and other columns are all (1/2 + 𝜀)’s.2

∙ 𝑓(𝐿): the output of ̂︀𝒜 based on the stochastic reward information 𝐿 revealed.

More precisely, 𝑓 is function mapping from [0, 1]𝑁 to [𝐴].

2We comment that matrixℳ0𝑏 does not belong to M(𝜀).

187

We have

Pr
⋆
(𝑓(𝐿) ̸= 𝑎⋆) ≥ 1

𝐴𝐵

∑︁
𝑎,𝑏

Pr
0𝑏
(𝑓(𝐿) ̸= 𝑎)− 1

𝐴𝐵

∑︁
𝑎,𝑏

‖Pr
𝑎𝑏
(𝐿 = ·)− Pr

0𝑏
(𝐿 = ·)‖1

≥ 1− 1

𝐴
− 1

𝐴𝐵

∑︁
𝑎,𝑏

√︁
2KL(Pr

0𝑏
‖Pr
𝑎𝑏
)

= 1− 1

𝐴
− 1

𝐴𝐵

∑︁
𝑎,𝑏

√︃
2𝑛(𝑎, 𝑏)[(

1

2
− 𝜀) log

1
2
− 𝜀

1
2
+ 𝜀

+ (
1

2
+ 𝜀) log

1
2
+ 𝜀

1
2
− 𝜀

]

≥ 1− 1

𝐴
− 10

𝐴𝐵

∑︁
𝑎,𝑏

√︀
𝑛(𝑎, 𝑏)𝜀2

≥ 1− 1

𝐴
−
√︂

100𝑁𝜀2

𝐴𝐵
,

(B.31)

where the second inequality follows from
∑︀

𝑎,𝑏 Pr0𝑏(𝑓(𝐿) ̸= 𝑎) =
∑︀

𝑎,𝑏[1−Pr0𝑏(𝑓(𝐿) =

𝑎)] = 𝐵(𝐴 − 1) and Pinsker’s inequality. Finally, plugging in 𝑁 = 𝐴𝐵/(103𝜀2)

concludes the proof.

Remark 79. The arguments in proving Claim 2 basically follows the same line in

proving lower bounds for multi-arm bandits [e.g., see Lattimore and Szepesvári, 2020].

Reward-free learning of Markov games

Now let’s generalize the Θ(𝐴𝐵/𝜀2) lower bound for reward-free learning of matrix

games to Θ(𝑆𝐴𝐵𝐻2/𝜀2) for reward-free learning of Markov games. We can follow

the same way of generalizing a lower bound for multi-arm bandits to a lower bound

for MDPs [see e.g., Dann and Brunskill, 2015, Lattimore and Szepesvári, 2020, Zhang

et al., 2020b].

Proof sketch. Given the family of Bernoulli matrix games M(·) defined in

(B.29), we simply construct a Markov game to consist of 𝑆𝐻 Bernoulli matrix games

{𝑀 𝑠,ℎ}(𝑠,ℎ)∈[𝑆]×[𝐻] where 𝑀 𝑠,ℎ’s are sampled independently and identically from the

uniform distribution over M(𝜀/𝐻). We will define the transition measure to be totally

’uniform at random’ so that in each episode the agent will always reach each 𝑀 𝑠,ℎ

with probability 1/𝑆 (it is not 1/(𝑆𝐻) because in each episode the agent can visit 𝐻

matrix games). As a result, to guarantee 𝜀-optimality, the output policy must be at

188

least 2𝜀/𝐻-optimal for at least 𝑆𝐻/2 different 𝑀 𝑠,ℎ’s. Recall Claim 1 shows learning

a 2𝜀/𝐻-optimal policy for a single 𝑀 𝑠,ℎ requires Ω(𝐻2𝐴𝐵/𝜀2) samples. Therefore,

we need Ω(𝐻3𝐴𝐵/𝜀2) samples in total for learning 𝑆𝐻/2 different 𝑀 𝑠,ℎ’s.

Below, we provide a rigorous proof where the constants may be slightly different

from those in our sketch. We remark that although the notations we will use are

involved, they are only introduced for rigorousness and there is no real technical

difficulty or new informative idea in the following proof.

Construction We define the following family of Markov games:

J(𝜀) :=
{︀
𝒥 (𝑎⋆, 𝑏⋆) : (𝑎⋆, 𝑏⋆) ∈ [𝐴]𝐻×𝑆 × [𝐵]𝐻×𝑆}︀ , (B.32)

where MG 𝒥 (𝑎⋆, 𝑏⋆) is defined as

∙ States and actions: 𝒥 (𝑎⋆, 𝑏⋆) is a finite-horizon MG with 𝑆 + 1 states and

of length 𝐻 + 1. There is a fixed initial state 𝑠0 in the first step, 𝑆 states

{𝑠1, . . . , 𝑠𝑆} in the remaining steps. The two players have 𝐴 and 𝐵 actions,

respectively.

∙ Rewards: there is no reward in the first step. For the remaining steps ℎ ∈

{2, . . . , 𝐻 + 1}, if the agent takes action (𝑎, 𝑏) at state 𝑠𝑖 in the ℎth step, it will

receive a binary reward sampled from

Bernoulli
(︁1
2
+ (1− 2 · 1{𝑎 ̸= 𝑎⋆ℎ−1,𝑖&𝑏 = 𝑏⋆ℎ−1,𝑖})

𝜀

𝐻

)︁

∙ Transitions: The agent always starts at a fixed initial state 𝑠0 in the first step

Regardless of the current state, actions and index of steps, the agent will always

transit to one of 𝑠1, . . . , 𝑠𝑆 uniformly at random.

It is direct to see that 𝒥 (𝑎⋆, 𝑏⋆) is a collection of 𝑆𝐻 matrix games from M(𝜀/𝐻).

Therefore, the optimal policy for the max-player is to always pick action 𝑎⋆ℎ−1,𝑖 when-

ever it reaches state 𝑠𝑖 at step ℎ (ℎ ≥ 2).

189

Formal proof of Theorem 19. Now, let’s use J(𝜀) to prove the Θ(𝑆𝐴𝐵𝐻2/𝜀2)

lower bound (in terms of number of episodes) for reward-free learning of Markov

games. We start by proving an analogue of Lemma 77.

Lemma 80. Consider an arbitrary fixed matrix game 𝒥 (𝑎⋆, 𝑏⋆) from J(𝜀) and 𝑁 ∈ N.

If an algorithm 𝒜 can output a policy that is at most 𝜀/103 suboptimal with probability

at least 𝑝 using at most 𝑁 samples, then there exists an algorithm ̂︀𝒜 that can correctly

identify at least 𝑆𝐻−⌊𝑆𝐻/500⌋ entries of 𝑎⋆ with probability at least 𝑝 using at most

𝑁 samples.

Proof. Denote by 𝜋 the output policy for the max player. Denote by 𝑍 the collection

of (ℎ, 𝑖)’s in [𝐻]× [𝑆] such that 𝜋ℎ+1(𝑎
⋆
ℎ,𝑖 | 𝑠𝑖) ≤ 2/3.

Observe that each time the max player picks a suboptimal action, it will incur an

2𝜀/𝐻 suboptimality in expectation. As a result, if 𝜋 is at most 𝜀/103-suboptimal, we

must have
1

𝑆

∑︁
(ℎ,𝑖)∈𝑍

(1− 𝜋ℎ+1(𝑎
⋆
ℎ,𝑖 | 𝑠𝑖))×

2𝜀

𝐻
≤ 𝜀

103
,

which implies |𝑍| ≤ 𝑆𝐻/500, that is, for at most ⌊𝑆𝐻/500⌋ different (ℎ, 𝑖)’s, 𝜋ℎ+1(𝑎
⋆
ℎ,𝑖 |

𝑠𝑖) ≤ 2/3. Therefore, we can simply pick argmax𝑎 𝜋ℎ+1(𝑎 | 𝑠𝑖) as the guess for 𝑎⋆ℎ,𝑖.

Since policy 𝜋 is at most 𝜀/103 suboptimal with probability at least 𝑝, our guess will

be correct for at least 𝑆𝐻 − ⌊𝑆𝐻/500⌋ different (𝑠, ℎ) pairs also with probability no

smaller than 𝑝.

Similar to the funtion of Lemma 77, Lemma 80 directly implies that in order to

prove the desired lower bound for reward-free learning of Markov games:

Claim 3. for any reward-free algorithm 𝒜 that interacts with the environment for at

most 𝐾 = 𝑆𝐴𝐵𝐻2/(104𝜀2) episodes, there exists 𝒥 ∈ J(𝜀) such that when running

𝒜 on 𝒥 , it will output a policy that is at least 𝜀/103 suboptimal for the max-player

with probability at least 1/4,

it suffices to prove the following claim:

190

Claim 4. for any reward-free learning algorithm ̂︀𝒜 that interacts with the environ-

ment for at most 𝐾 = 𝐴𝐵𝑆𝐻2/(104𝜀2) episodes, there exists 𝒥 ∈ J(𝜀) such that

when running ̂︀𝒜 on 𝒥 , it will fail to correctly identify 𝑎⋆ℎ,𝑖 for at least ⌊𝑆𝐻/500⌋+ 1

different (ℎ, 𝑖) pairs with probability at least 1/4.

Proof of Claim 4. Denote by Pr⋆ (E⋆) the probability measure (expectation) induced

by picking 𝒥 uniformly at random from J(𝜀) and then running ̂︀𝒜 on 𝒥 . Denote by

𝑛wrong the number of (𝑠, ℎ) pairs for which ̂︀𝒜 fails to identify the optimal actions.

Denote by errorℎ,𝑖 the indicator function of the event that ̂︀𝒜 fails to identify the

optimal action for (ℎ+ 1, 𝑖).

We prove by contradiction. Suppose for any 𝒥 ∈ J(𝜀), ̂︀𝒜 can identify the optimal

actions for at least 𝑆𝐻 −⌊𝑆𝐻/500⌋ different (𝑠, ℎ) pairs with probability larger than

3/4. Then we have

E⋆[𝑛wrong] ≤
1

4
× 𝑆𝐻 +

3

4
×
⌊︂
𝑆𝐻

500

⌋︂
≤ 101𝑆𝐻

400
.

Since
∑︀

(ℎ,𝑖)∈[𝐻]×[𝑆] E⋆[errorℎ,𝑖] = E⋆[𝑛wrong], there must exists (ℎ′, 𝑖′) ∈ [𝐻]× [𝑆] such

that E⋆[errorℎ′,𝑖′] ≤ 101/400. However, in the following, we show that for every

(ℎ, 𝑖) ∈ [𝐻]× [𝑆], E⋆[errorℎ,𝑖] ≥ 1/3. As a result, we obtain a contraction and Claim

4 holds. In the remainder of this section, we will prove for every (ℎ, 𝑖) ∈ [𝐻] × [𝑆],

E⋆[errorℎ,𝑖] ≥ 1/3.

WLOG, we assume ̂︀𝒜 is deterministic. It suffices to consider an arbitrary fixed

(ℎ′, 𝑖′) pair and prove E⋆[errorℎ′,𝑖′] ≥ 1/3.

For technical reason, we introduce a new MG 𝒥−(ℎ′,𝑖′)(𝑎
⋆, 𝑏⋆) as below:

∙ States, actions and transitions: same as 𝒥 (𝑎⋆, 𝑏⋆).

∙ Rewards: there is no reward in the first step. For the remaining steps ℎ ∈

{2, . . . , 𝐻 + 1}, if the agent takes action (𝑎, 𝑏) at state 𝑠𝑖 in the ℎth step such

that (ℎ− 1, 𝑖) ̸= (ℎ′, 𝑖′), it will receive a binary reward sampled from

Bernoulli
(︁1
2
+ (1− 2 · 1{𝑎 ̸= 𝑎⋆ℎ−1,𝑖&𝑏 = 𝑏⋆ℎ−1,𝑖})

𝜀

𝐻

)︁
,

191

otherwise it will receive a binary reward sampled from

Bernoulli
(︁1
2
+ (1− 2 · 1{𝑏 = 𝑏⋆ℎ−1,𝑖})

𝜀

𝐻

)︁
.

Remark 81. Briefly speaking, 𝒥−(ℎ′,𝑖′)(𝑎
⋆, 𝑏⋆) is the same as 𝒥 (𝑎⋆, 𝑏⋆) except the

matrix game embedded at state 𝑠𝑖′ at step ℎ′+1, where for the max player all its actions

are equivalently bad 3. Finally, we remark that 𝒥−(ℎ′,𝑖′)(𝑎
⋆, 𝑏⋆) is independent of

𝑎⋆ℎ′,𝑖′.

To proceed, we introduce (and recall) the following notations:

∙ 𝑛(𝑎, 𝑏): the number of times ̂︀𝒜 picks action (𝑎, 𝑏) at state 𝑠𝑖′ at step (ℎ′ + 1)

within 𝐾 episode.

∙ Pr𝑎⋆𝑏⋆ (E𝑎⋆𝑏⋆): the probability measure (expectation) induced by running algo-

rithm ̂︀𝒜 on 𝒥 (𝑎⋆, 𝑏⋆).

∙ Pr−𝑎⋆𝑏⋆ (E−
𝑎⋆𝑏⋆): the probability measure (expectation) induced by running algo-

rithm ̂︀𝒜 on 𝒥−(ℎ′,𝑖′)(𝑎
⋆, 𝑏⋆) .

∙ Pr⋆ (E⋆) the probability measure (expectation) induced by picking 𝒥 (𝑎⋆, 𝑏⋆)

uniformly at random from J(𝜀) and running ̂︀𝒜 on 𝒥 (𝑎⋆, 𝑏⋆).

∙ 𝐿: the whole interaction trajectory of states, actions and rewards produced by

algorithm ̂︀𝒜 within 𝐾 episodes.

∙ 𝑓(𝐿): the guess of ̂︀𝒜 for 𝑎⋆ℎ′,𝑖′ based on 𝐿.

The key observation here is that for any (𝑎, 𝑏) ∈ [𝐴]× [𝐵] and (𝑎⋆, 𝑏⋆) ∈ [𝐴]𝐻×𝑆×

[𝐵]𝐻×𝑆, the expectation E−
𝑎⋆𝑏⋆ [𝑛(𝑎, 𝑏)] is independent of (𝑎⋆, 𝑏⋆) because the agent

does not receive any reward information when interacting with the environment and

the transition dynamics of different 𝒥−(ℎ′,𝑖′)(𝑎
⋆, 𝑏⋆)’s are exactly the same. For sim-

plicity of notation, we denote this expectation by 𝑚(𝑎, 𝑏). Moreover, note that

3A graphic illustration based on (B.30) would be replacing the column [−, . . . ,−,+,−, . . . ,−]⊤
with a column of all −’s in the matrix game embedded at state 𝑠𝑖′ at step ℎ′ + 1.

192

∑︀
𝑎,𝑏𝑚(𝑎, 𝑏) = 𝐾/𝑆 because the agent always reach state 𝑠𝑖′ in step (ℎ′ + 1) with

probability 1/𝑆 regardless of the actions taken.

By mimicking the arguments in (B.31), we have

E⋆[errorℎ′,𝑖′] = Pr
⋆
(𝑓(𝐿) ̸= 𝑎⋆ℎ′,𝑖′)

=
1

(𝐴𝐵)𝑆𝐻

∑︁
(𝑎⋆,𝑏⋆)∈[𝐴]𝐻×𝑆×[𝐵]𝐻×𝑆

Pr
𝑎⋆𝑏⋆

(𝑓(𝐿) ̸= 𝑎⋆ℎ′,𝑖′)

≥ 1

(𝐴𝐵)𝑆𝐻

∑︁
𝑎⋆,𝑏⋆

(︂
−
Pr
𝑎⋆𝑏⋆

(𝑓(𝐿) ̸= 𝑎⋆ℎ′,𝑖′)−
⃦⃦⃦⃦

−
Pr
𝑎⋆𝑏⋆

(𝐿 = ·)− Pr
𝑎⋆𝑏⋆

(𝐿 = ·)
⃦⃦⃦⃦
1

)︂
= 1− 1

𝐴
− 1

(𝐴𝐵)𝑆𝐻

∑︁
𝑎⋆,𝑏⋆

⃦⃦⃦⃦
−
Pr
𝑎⋆𝑏⋆

(𝐿 = ·)− Pr
𝑎⋆𝑏⋆

(𝐿 = ·)
⃦⃦⃦⃦

≥ 1− 1

𝐴
− 1

(𝐴𝐵)𝑆𝐻

∑︁
𝑎⋆,𝑏⋆

√︂
2KL(

−
Pr
𝑎⋆𝑏⋆

(𝐿 = ·), Pr
𝑎⋆𝑏⋆

(𝐿 = ·))

= 1− 1

𝐴
− 1

(𝐴𝐵)𝑆𝐻

∑︁
𝑎⋆,𝑏⋆

√︃
2𝑚(𝑎⋆ℎ′,𝑖′ , 𝑏

⋆
ℎ′,𝑖′)

[︀
(
1

2
− 𝜀

𝐻
) log

1
2
− 𝜀

𝐻
1
2
+ 𝜀

𝐻

+ (
1

2
+

𝜀

𝐻
) log

1
2
+ 𝜀

𝐻
1
2
− 𝜀

𝐻

]︀
= 1− 1

𝐴
− 1

𝐴𝐵

∑︁
(𝑎,𝑏)∈[𝐴]×[𝐵]

√︃
2𝑚(𝑎, 𝑏)

[︀
(
1

2
− 𝜀

𝐻
) log

1
2
− 𝜀

𝐻
1
2
+ 𝜀

𝐻

+ (
1

2
+

𝜀

𝐻
) log

1
2
+ 𝜀

𝐻
1
2
− 𝜀

𝐻

]︀
≥ 1− 1

𝐴
− 10

𝐴𝐵

∑︁
𝑎,𝑏

√︂
𝑚(𝑎, 𝑏)

𝜀2

𝐻2

≥ 1− 1

𝐴
− 10𝜀

𝐴𝐵𝐻

√︃
𝐴𝐵

∑︁
𝑎,𝑏

𝑚(𝑎, 𝑏) = 1− 1

𝐴
−
√︂

100𝐾𝜀2

𝑆𝐴𝐵𝐻2
.

(B.33)

Plugging in 𝐾 = 𝑆𝐴𝐵𝐻2/(104𝜀2) completes the proof.

B.3 Proof for Section 3.4.2 – Multi-player General-

sum Markov Games

B.3.1 Proof of Theorem 20

NE Version In this part, we prove Theorem 20 (NE version). As before, we begin

with proving the optimistic estimations are indeed upper bounds of the corresponding

193

V-value and Q-value functions.

Lemma 82. With probability 1− 𝑝, for any (𝑠,𝑎, ℎ, 𝑖) and 𝑘 ∈ [𝐾]:

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ 𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) , 𝑄𝑘

ℎ,𝑖
(𝑠,𝑎) ≤ 𝑄𝜋𝑘

ℎ,𝑖 (𝑠,𝑎) , (B.34)

𝑉
𝑘

ℎ,𝑖 (𝑠) ≥ 𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠) , 𝑉 𝑘
ℎ,𝑖 (𝑠) ≤ 𝑉 𝜋𝑘

ℎ,𝑖 (𝑠) . (B.35)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻 +1 to ℎ = 1. For the

base case, we know at the (𝐻 + 1)-th step,𝑉 𝑘

𝐻+1,𝑖 (𝑠) = 𝑉
†,𝜋𝑘

−𝑖

𝐻+1,𝑖 (𝑠) = 0. Now, assume

the inequality (B.35) holds for the (ℎ+1)-th step, for the ℎ-th step, by the definition

of 𝑄-functions,

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎)−𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) =
[︁̂︀P𝑘ℎ𝑉 𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︁
Pℎ𝑉

†,𝜋𝑘
−𝑖

ℎ+1,𝑖

]︁
(𝑠,𝑎) + 𝛽𝑡

=̂︀P𝑘ℎ (︁𝑉 𝑘

ℎ+1,𝑖 − 𝑉
†,𝜋𝑘

−𝑖

ℎ+1,𝑖

)︁
(𝑠,𝑎)⏟ ⏞

(𝐴)

+
(︁̂︀P𝑘ℎ − Pℎ

)︁
𝑉

†,𝜋𝑘
−𝑖

ℎ+1,𝑖 (𝑠,𝑎)⏟ ⏞
(𝐵)

+ 𝛽𝑡.

By induction hypothesis, for any 𝑠′,
(︁
𝑉
𝑘

ℎ+1,𝑖 − 𝑉
†,𝜋𝑘

−𝑖

ℎ+1,𝑖

)︁
(𝑠′) ≥ 0, and thus (𝐴) ≥ 0.

By uniform concentration [e.g., Lemma 12 in Bai and Jin, 2020], (𝐵) ≤ 𝐶
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) =

𝛽𝑡. Putting everything together we have 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) − 𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) ≥ 0. The second

inequality can be proved similarly.

Now assume inequality (B.34) holds for the ℎ-th step, by the definition of 𝑉 -

functions and Nash equilibrium,

𝑉
𝑘

ℎ,𝑖 (𝑠) = D𝜋𝑘𝑄
𝑘

ℎ,𝑖 (𝑠) = max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄
𝑘

ℎ,𝑖 (𝑠) .

By Bellman equation,

𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠) = max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄

†,𝜋𝑘
−𝑖

ℎ,𝑖 (𝑠) .

Since by induction hypothesis, for any (𝑠,𝑎), 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ 𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎). As a

194

result, we also have 𝑉 𝑘

ℎ,𝑖 (𝑠) ≥ 𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠), which is exactly inequality (B.35) for the

ℎ-th step. The second inequality can be proved similarly.

Proof of Theorem 20. Let us focus on the 𝑖-th player and ignore the subscript when

there is no confusion. To bound

max
𝑖

(︁
𝑉

†,𝜋𝑘
−𝑖

1,𝑖 − 𝑉 𝜋𝑘

1,𝑖

)︁ (︀
𝑠𝑘ℎ
)︀
≤ max

𝑖

(︁
𝑉
𝑘

1,𝑖 − 𝑉 𝑘
1,𝑖

)︁ (︀
𝑠𝑘ℎ
)︀
,

we notice the following propogation:⎧⎪⎨⎪⎩
(𝑄

𝑘

ℎ,𝑖 −𝑄𝑘

ℎ,𝑖
)(𝑠,𝑎) ≤ ̂︀P𝑘ℎ(𝑉 𝑘

ℎ+1,𝑖 − 𝑉 𝑘
ℎ+1,𝑖)(𝑠,𝑎) + 2𝛽𝑘ℎ(𝑠,𝑎),

(𝑉 ℎ,𝑖 − 𝑉 ℎ,𝑖)(𝑠) = [D𝜋ℎ(𝑄
𝑘

ℎ,𝑖 −𝑄𝑘

ℎ,𝑖
)](𝑠).

(B.36)

We can define ̃︀𝑄𝑘
ℎ and ̃︀𝑉 𝑘

ℎ recursively by ̃︀𝑉 𝑘
𝐻+1 = 0 and

⎧⎨⎩̃︀𝑄
𝑘
ℎ(𝑠,𝑎) =

̂︀P𝑘ℎ̃︀𝑉 𝑘
ℎ+1(𝑠,𝑎) + 2𝛽𝑘ℎ(𝑠,𝑎),̃︀𝑉 𝑘

ℎ (𝑠) = [D𝜋ℎ
̃︀𝑄𝑘
ℎ](𝑠).

(B.37)

Then we can prove inductively that for any 𝑘, ℎ, 𝑠 and 𝑎 we have⎧⎪⎨⎪⎩
max
𝑖

(𝑄
𝑘

ℎ,𝑖 −𝑄𝑘

ℎ,𝑖
)(𝑠,𝑎) ≤ ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

max
𝑖

(𝑉 ℎ,𝑖 − 𝑉 ℎ,𝑖)(𝑠) ≤ ̃︀𝑉 𝑘
ℎ (𝑠).

(B.38)

Thus we only need to bound
∑︀𝐾

𝑘=1
̃︀𝑉 𝑘
1 (𝑠). Define the shorthand notation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛽𝑘ℎ := 𝛽𝑘ℎ(𝑠
𝑘
ℎ,𝑎

𝑘
ℎ),

Δ𝑘
ℎ := ̃︀𝑉 𝑘

ℎ (𝑠
𝑘
ℎ),

𝜁𝑘ℎ := [D𝜋𝑘
̃︀𝑄𝑘
ℎ]
(︀
𝑠𝑘ℎ
)︀
− ̃︀𝑄𝑘

ℎ(𝑠
𝑘
ℎ,𝑎

𝑘
ℎ),

𝜉𝑘ℎ := [Pℎ̃︀𝑉 𝑘
ℎ+1](𝑠

𝑘
ℎ,𝑎

𝑘
ℎ)−Δ𝑘

ℎ+1.

(B.39)

195

We can check 𝜁𝑘ℎ and 𝜉𝑘ℎ are martingale difference sequences. As a result,

Δ𝑘
ℎ =D𝜋𝑘

̃︀𝑄𝑘
ℎ

(︀
𝑠𝑘ℎ
)︀

=𝜁𝑘ℎ + ̃︀𝑄𝑘
ℎ

(︀
𝑠𝑘ℎ,𝑎

𝑘
ℎ

)︀
=𝜁𝑘ℎ + 2𝛽𝑘ℎ + [̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1]
(︀
𝑠𝑘ℎ,𝑎

𝑘
ℎ

)︀
≤𝜁𝑘ℎ + 3𝛽𝑘ℎ + [Pℎ̃︀𝑉 𝑘

ℎ+1]
(︀
𝑠𝑘ℎ,𝑎

𝑘
ℎ

)︀
=𝜁𝑘ℎ + 3𝛽𝑘ℎ + 𝜉𝑘ℎ +Δ𝑘

ℎ+1.

Recursing this argument for ℎ ∈ [𝐻] and taking the sum,

𝐾∑︁
𝑘=1

Δ𝑘
1 ≤

𝐾∑︁
𝑘=1

(︀
𝜁𝑘ℎ + 3𝛽𝑘ℎ + 𝜉𝑘ℎ

)︀
≤ 𝑂

⎛⎝𝑆
⎯⎸⎸⎷𝐻3𝑇𝜄

𝑀∏︁
𝑖=1

𝐴𝑖

⎞⎠ .

CCE Version The proof is very similar to the NE version. Specifically, the only

part that uses the properties of NE there is Lemma 82. We prove a counterpart here.

Lemma 83. With probability 1− 𝑝, for any (𝑠,𝑎, ℎ, 𝑖) and 𝑘 ∈ [𝐾]:

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ 𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) , 𝑄𝑘

ℎ,𝑖
(𝑠,𝑎) ≤ 𝑄𝜋𝑘

ℎ,𝑖 (𝑠,𝑎) , (B.40)

𝑉
𝑘

ℎ,𝑖 (𝑠) ≥ 𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠) , 𝑉 𝑘
ℎ,𝑖 (𝑠) ≤ 𝑉 𝜋𝑘

ℎ,𝑖 (𝑠) . (B.41)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻 +1 to ℎ = 1. For the

base case, we know at the (𝐻 + 1)-th step, 𝑉 𝑘

𝐻+1,𝑖 (𝑠) = 𝑉
†,𝜋𝑘

−𝑖

𝐻+1,𝑖 (𝑠) = 0. Now, assume

the inequality (B.35) holds for the (ℎ+1)-th step, for the ℎ-th step, by the definition

of 𝑄-functions,

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎)−𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) =
[︁̂︀P𝑘ℎ𝑉 𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︁
Pℎ𝑉

†,𝜋𝑘
−𝑖

ℎ+1,𝑖

]︁
(𝑠,𝑎) + 𝛽𝑡

=̂︀P𝑘ℎ (︁𝑉 𝑘

ℎ+1,𝑖 − 𝑉
†,𝜋𝑘

−𝑖

ℎ+1,𝑖

)︁
(𝑠,𝑎)⏟ ⏞

(𝐴)

+
(︁̂︀P𝑘ℎ − Pℎ

)︁
𝑉

†,𝜋𝑘
−𝑖

ℎ+1,𝑖 (𝑠,𝑎)⏟ ⏞
(𝐵)

+ 𝛽𝑡.

196

By induction hypothesis, for any 𝑠′,
(︁
𝑉
𝑘

ℎ+1,𝑖 − 𝑉
†,𝜋𝑘

−𝑖

ℎ+1,𝑖

)︁
(𝑠′) ≥ 0, and thus (𝐴) ≥

0. By uniform concentration, (𝐵) ≤ 𝐶
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) = 𝛽𝑡. Putting everything

together we have 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎)−𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎) ≥ 0. The second inequality can be proved

similarly.

Now assume inequality (B.40) holds for the ℎ-th step, by the definition of 𝑉 -

functions and CCE,

𝑉
𝑘

ℎ,𝑖 (𝑠) = D𝜋𝑘𝑄
𝑘

ℎ,𝑖 (𝑠) ≥ max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄
𝑘

ℎ,𝑖 (𝑠) .

By Bellman equation,

𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠) = max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄

†,𝜋𝑘
−𝑖

ℎ,𝑖 (𝑠) .

Since by induction hypothesis, for any (𝑠,𝑎), 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ 𝑄
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠,𝑎). As a

result, we also have 𝑉 𝑘

ℎ,𝑖 (𝑠) ≥ 𝑉
†,𝜋𝑘

−𝑖

ℎ,𝑖 (𝑠), which is exactly inequality (B.35) for the

ℎ-th step. The second inequality can be proved similarly.

CE Version The proof is very similar to the NE version. Specifically, the only part

that uses the properties of NE there is Lemma 82. We prove a counterpart here.

Lemma 84. With probability 1− 𝑝, for any (𝑠,𝑎, ℎ, 𝑖) and 𝑘 ∈ [𝐾]:

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ max
𝜑∈Φ𝑖

𝑄𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎) , 𝑄𝑘

ℎ,𝑖
(𝑠,𝑎) ≤ 𝑄𝜋𝑘

ℎ,𝑖 (𝑠,𝑎) , (B.42)

𝑉
𝑘

ℎ,𝑖 (𝑠) ≥ max
𝜑∈Φ𝑖

𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠) , 𝑉 𝑘
ℎ,𝑖 (𝑠) ≤ 𝑉 𝜋𝑘

ℎ,𝑖 (𝑠) . (B.43)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻 + 1 to ℎ = 1. For

the base case, we know at the (𝐻 + 1)-th step, 𝑉 𝑘

𝐻+1,𝑖 (𝑠) = max
𝜑
𝑉 𝜑◇𝜋𝑘

𝐻+1,𝑖 (𝑠) = 0.

Now, assume the inequality (B.35) holds for the (ℎ+1)-th step, for the ℎ-th step, by

197

definition of 𝑄-functions,

𝑄
𝑘

ℎ,𝑖 (𝑠,𝑎)−max
𝜑
𝑄𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎)

=
[︁̂︀P𝑘ℎ𝑉 𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︂
Pℎmax

𝜑
𝑉 𝜑◇𝜋𝑘

ℎ+1,𝑖

]︂
(𝑠,𝑎) + 𝛽𝑡

=̂︀P𝑘ℎ(︂𝑉 𝑘

ℎ+1,𝑖 −max
𝜑
𝑉 𝜑◇𝜋𝑘

ℎ+1,𝑖

)︂
(𝑠,𝑎)⏟ ⏞

(𝐴)

+
(︁̂︀P𝑘ℎ − Pℎ

)︁
max
𝜑
𝑉 𝜑◇𝜋𝑘

ℎ+1,𝑖 (𝑠,𝑎)⏟ ⏞
(𝐵)

+ 𝛽𝑡.

By induction hypothesis, for any 𝑠′,
(︂
𝑉
𝑘

ℎ+1,𝑖 −max
𝜑
𝑉 𝜑◇𝜋𝑘

ℎ+1,𝑖

)︂
(𝑠′) ≥ 0, and thus

(𝐴) ≥ 0. By uniform concentration, (𝐵) ≤ 𝐶
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) = 𝛽𝑡. Putting every-

thing together we have 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) −max
𝜑
𝑄𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ 0. The second inequality can

be proved similarly.

Now assume inequality (B.42) holds for the ℎ-th step, by the definition of 𝑉 -

functions and CE,

𝑉
𝑘

ℎ,𝑖 (𝑠) = D𝜋𝑘𝑄
𝑘

ℎ,𝑖 (𝑠) = max
𝜑

D𝜑◇𝜋𝑘𝑄
𝑘

ℎ,𝑖 (𝑠) .

By Bellman equation,

max
𝜑
𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠) = max
𝜑

D𝜑◇𝜋𝑘max
𝜑′
𝑄𝜑′◇𝜋𝑘

ℎ,𝑖 (𝑠) .

Since by induction hypothesis, for any (𝑠,𝑎), 𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) ≥ max
𝜑
𝑄𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎). As a

result, we also have 𝑉 𝑘

ℎ,𝑖 (𝑠) ≥ max
𝜑
𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠), which is exactly inequality (B.35) for

the ℎ-th step. The second inequality can be proved similarly.

B.3.2 Proof of Theorem 21

In this section, we prove each theorem for the single reward function case, i.e., 𝑁 = 1.

The proof for the case of multiple reward functions (𝑁 > 1) simply follows from taking

a union bound, that is, replacing the failure probability 𝑝 by 𝑁𝑝.

198

NE version Let (𝜇𝑘, 𝜈𝑘) be an arbitrary Nash-equilibrium policy of ̂︁ℳ𝑘 := (̂︀P𝑘, ̂︀𝑟𝑘),
where ̂︀P𝑘 and ̂︀𝑟𝑘 are our empirical estimate of the transition and the reward at the

beginning of the 𝑘-th episode in Algorithm 4. Given an arbitrary Nash equilibrium

𝜋𝑘 of ̂︁ℳ𝑘, we use ̂︀𝑄𝑘
ℎ,𝑖 and ̂︀𝑉 𝑘

ℎ,𝑖 to denote its value functions of the 𝑖-th player at the

ℎ-th step in ̂︁ℳ𝑘.

We prove the following two lemmas, which together imply the conclusion about

Nash equilibriums in Theorem 21 as in the proof of Theorem 18.

Lemma 85. With probability 1− 𝑝, for any (ℎ, 𝑠,𝑎, 𝑖) and 𝑘 ∈ [𝐾], we have

⎧⎨⎩| ̂︀𝑄
𝑘
ℎ,𝑖(𝑠,𝑎)−𝑄𝜋𝑘

ℎ,𝑖(𝑠,𝑎)| ≤ ̃︀𝑄𝑘
ℎ(𝑠,𝑎),

|̂︀𝑉 𝑘
ℎ,𝑖(𝑠)− 𝑉 𝜋𝑘

ℎ,𝑖 (𝑠)| ≤ ̃︀𝑉 𝑘
ℎ (𝑠).

(B.44)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻+1 to ℎ = 1. For base

case, we know at the (𝐻 + 1)-th step,̂︀𝑉 𝑘
𝐻+1,𝑖 = 𝑉 𝜋𝑘

𝐻+1,𝑖 =
̂︀𝑄𝑘
𝐻+1,𝑖 = 𝑄𝜋𝑘

𝐻+1,𝑖 = 0. Now,

assume the conclusion holds for the (ℎ + 1)-th step, for the ℎ-th step, by definition

of 𝑄- functions,

⃒⃒⃒ ̂︀𝑄𝑘
ℎ,𝑖 (𝑠,𝑎)−𝑄𝜋𝑘

ℎ,𝑖 (𝑠,𝑎)
⃒⃒⃒

≤
⃒⃒⃒[︁̂︀P𝑘ℎ̂︀𝑉 𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︁
Pℎ𝑉 𝜋𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)

⃒⃒⃒
+
⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒

≤
⃒⃒⃒̂︀P𝑘ℎ (︁̂︀𝑉 𝑘

ℎ+1,𝑖 − 𝑉 𝜋𝑘

ℎ+1,𝑖

)︁
(𝑠,𝑎)

⃒⃒⃒
⏟ ⏞

(𝐴)

+
⃒⃒⃒(︁̂︀P𝑘ℎ − Pℎ

)︁
𝑉 𝜋𝑘

ℎ+1,𝑖 (𝑠,𝑎)
⃒⃒⃒
+
⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒⏟ ⏞

(𝐵)

By the induction hypothesis,

(𝐴) ≤ ̂︀P𝑘ℎ ⃒⃒⃒ ̂︀𝑉 𝑘
ℎ+1,𝑖 − 𝑉 𝜋𝑘

ℎ+1,𝑖

⃒⃒⃒
(𝑠,𝑎) ≤ (̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎).

By uniform concentration [e.g., Lemma 12 in Bai and Jin, 2020], (𝐵) ≤
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) =

𝛽𝑡. Putting everything together we have

⃒⃒⃒
𝑄𝜋𝑘

ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘
ℎ,𝑖 (𝑠,𝑎)

⃒⃒⃒
≤ min

{︁
(̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎) + 𝛽𝑡, 𝐻
}︁
= ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

199

which proves the first inequality in (B.44). The inequality for 𝑉 functions follows

directly by noting that the value functions are computed using the same policy 𝜋𝑘.

Lemma 86. With probability 1− 𝑝, for any (ℎ, 𝑠,𝑎, 𝑖, 𝑘), we have

⎧⎨⎩| ̂︀𝑄
𝑘
ℎ,𝑖(𝑠,𝑎)−𝑄

𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)| ≤ ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

|̂︀𝑉 𝑘
ℎ,𝑖(𝑠)− 𝑉

𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠)| ≤ ̃︀𝑉 𝑘
ℎ (𝑠).

(B.45)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻 +1 to ℎ = 1. For the

base case, we know at the (𝐻 + 1)-th step,̂︀𝑉 𝑘
𝐻+1,𝑖 = 𝑉

𝜋𝑘
−𝑖,†

𝐻+1,𝑖 =
̂︀𝑄𝑘
𝐻+1,𝑖 = 𝑄

𝜋𝑘
−𝑖,†
𝐻+1,𝑖 = 0.

Now, assume the conclusion holds for the (ℎ + 1)-th step, for the ℎ-th step, by

definition of the 𝑄 functions,

⃒⃒⃒ ̂︀𝑄𝑘
ℎ,𝑖 (𝑠,𝑎)−𝑄

𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)

⃒⃒⃒
=
⃒⃒⃒[︁̂︀P𝑘ℎ̂︀𝑉 𝑘

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︁
Pℎ𝑉

𝜋𝑘
−𝑖,†

ℎ+1,𝑖

]︁
(𝑠,𝑎)

⃒⃒⃒
+
⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒

≤
⃒⃒⃒̂︀P𝑘ℎ (︁̂︀𝑉 𝑘

ℎ+1,𝑖 − 𝑉
𝜋𝑘
−𝑖,†

ℎ+1,𝑖

)︁
(𝑠,𝑎)

⃒⃒⃒
⏟ ⏞

(𝐴)

+
⃒⃒⃒(︁̂︀P𝑘ℎ − Pℎ

)︁
𝑉
𝜋𝑘
−𝑖,†

ℎ+1,𝑖 (𝑠,𝑎)
⃒⃒⃒
+
⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒⏟ ⏞

(𝐵)

By the induction hypothesis,

(𝐴) ≤ ̂︀P𝑘ℎ ⃒⃒⃒ ̂︀𝑉 𝑘
ℎ+1,𝑖 − 𝑉

𝜋𝑘
−𝑖,†

ℎ+1,𝑖

⃒⃒⃒
(𝑠,𝑎) ≤ (̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎).

By uniform concentration, (𝐵) ≤
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) = 𝛽𝑡. Putting everything

together we have

⃒⃒⃒
𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘

ℎ,𝑖 (𝑠,𝑎)
⃒⃒⃒
≤ min

{︁
(̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎) + 𝛽𝑡, 𝐻
}︁
= ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

which proves the first inequality in (B.45). It remains to show the inequality for

𝑉 -functions also hold in the ℎ-th step.

Since 𝜋𝑘 is a Nash-equilibrium policy, we have

̂︀𝑉 𝑘
ℎ,𝑖 (𝑠) = max

𝜇
D𝜇×𝜋𝑘

−𝑖

̂︀𝑄𝑘
ℎ,𝑖 (𝑠) .

200

By Bellman equation,

𝑉
𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠) = max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠) .

Combining the two equations above, and utilizing the bound we just proved for

𝑄 functions, we obtain

⃒⃒⃒ ̂︀𝑉 𝑘
ℎ,𝑖 (𝑠)− 𝑉

𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠)
⃒⃒⃒
≤
⃒⃒⃒⃒
max
𝜇

D𝜇×𝜋𝑘
−𝑖

̂︀𝑄𝑘
ℎ,𝑖 (𝑠)−max

𝜇
D𝜇×𝜋𝑘

−𝑖
𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠)

⃒⃒⃒⃒
≤max

𝑎

̃︀𝑄𝑘
ℎ(𝑠,𝑎) = ̃︀𝑉 𝑘

ℎ (𝑠),

which completes the whole proof.

CCE version The proof is almost the same as that for Nash equilibriums. We will

reuse Lemma 85 and prove an analogue of Lemma 86. The conclusion for CCEs will

follow directly by combining the two lemmas as in the proof of Theorem 18.

Lemma 87. With probability 1− 𝑝, for any (ℎ, 𝑠,𝑎, 𝑖) and 𝑘 ∈ [𝐾], we have

⎧⎨⎩𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘

ℎ,𝑖(𝑠,𝑎) ≤ ̃︀𝑄𝑘
ℎ(𝑠,𝑎),

𝑉
𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠)− ̂︀𝑉 𝑘
ℎ,𝑖(𝑠) ≤ ̃︀𝑉 𝑘

ℎ (𝑠).
(B.46)

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻+1 to ℎ = 1. For base

case, we know at the (𝐻 + 1)-th step,̂︀𝑉 𝑘
𝐻+1,𝑖 = 𝑉

𝜋𝑘
−𝑖,†

𝐻+1,𝑖 =
̂︀𝑄𝑘
𝐻+1,𝑖 = 𝑄

𝜋𝑘
−𝑖,†
𝐻+1,𝑖 = 0. Now,

assume the conclusion holds for the (ℎ + 1)-th step, for the ℎ-th step, by definition

of 𝑄 -functions,

𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘

ℎ,𝑖 (𝑠,𝑎)

≤
[︁
Pℎ𝑉

𝜋𝑘
−𝑖,†

ℎ+1,𝑖

]︁
(𝑠,𝑎)−

[︁̂︀P𝑘ℎ̂︀𝑉 𝑘
ℎ+1,𝑖

]︁
(𝑠,𝑎) +

⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒

≤̂︀P𝑘ℎ (︁𝑉 𝜋𝑘
−𝑖,†

ℎ+1,𝑖 − ̂︀𝑉 𝑘
ℎ+1,𝑖

)︁
(𝑠,𝑎)⏟ ⏞

(𝐴)

+
(︁
Pℎ − ̂︀P𝑘ℎ)︁𝑉 𝜋𝑘

−𝑖,†
ℎ+1,𝑖 (𝑠,𝑎) +

⃒⃒
𝑟ℎ(𝑠, 𝑎)− ̂︀𝑟𝑘ℎ(𝑠, 𝑎)⃒⃒⏟ ⏞

(𝐵)

.

By the induction hypothesis, (𝐴) ≤ (̂︀P𝑘ℎ̃︀𝑉 𝑘
ℎ+1)(𝑠,𝑎).

201

By uniform concentration, (𝐵) ≤
√︀
𝑆𝐻2𝜄/𝑁𝑘

ℎ (𝑠,𝑎) = 𝛽𝑡. Putting everything

together we have

𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘

ℎ,𝑖 (𝑠,𝑎) ≤ min
{︁
(̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎) + 𝛽𝑡, 𝐻
}︁
= ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

which proves the first inequality in (B.46). It remains to show the inequality for

𝑉 -functions also hold in the ℎ-th step.

Since 𝜋𝑘 is a CCE, we have

̂︀𝑉 𝑘
ℎ,𝑖 (𝑠) ≥ max

𝜇
D𝜇×𝜋𝑘

−𝑖

̂︀𝑄𝑘
ℎ,𝑖 (𝑠) .

Observe that 𝑉 𝜋𝑘
−𝑖,†

ℎ,𝑖 obeys the Bellman optimality equation, so we have

𝑉
𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠) = max
𝜇

D𝜇×𝜋𝑘
−𝑖
𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠) .

Combining the two equations above, and utilizing the bound we just proved for

𝑄-functions, we obtain

𝑉
𝜋𝑘
−𝑖,†

ℎ,𝑖 (𝑠)− ̂︀𝑉 𝑘
ℎ,𝑖 (𝑠) ≤max

𝜇
D𝜇×𝜋𝑘

−𝑖
𝑄
𝜋𝑘
−𝑖,†
ℎ,𝑖 (𝑠)−max

𝜇
D𝜇×𝜋𝑘

−𝑖

̂︀𝑄𝑘
ℎ,𝑖 (𝑠)

≤max
𝑎

̃︀𝑄𝑘
ℎ(𝑠,𝑎) = ̃︀𝑉 𝑘

ℎ (𝑠),

which completes the whole proof.

CE version The proof is almost the same as that for Nash equilibriums. We will

reuse Lemma 85 and prove an analogue of Lemma 86. The conclusion for CEs will

follow directly by combining the two lemmas as in the proof of Theorem 18.

Lemma 88. With probability 1− 𝑝, for any (ℎ, 𝑠,𝑎, 𝑖), 𝑘 ∈ [𝐾] and strategy modifi-

cation 𝜑 for player 𝑖, we have

⎧⎨⎩𝑄
𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘
ℎ,𝑖(𝑠,𝑎) ≤ ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠)− ̂︀𝑉 𝑘
ℎ,𝑖(𝑠) ≤ ̃︀𝑉 𝑘

ℎ (𝑠).
(B.47)

202

Proof. For each fixed 𝑘, we prove this by induction from ℎ = 𝐻 +1 to ℎ = 1. For the

base case, we know at the (𝐻 + 1)-th step, ̂︀𝑉 𝑘
𝐻+1,𝑖 = 𝑉 𝜑◇𝜋𝑘

𝐻+1,𝑖 =
̂︀𝑄𝑘
𝐻+1,𝑖 = 𝑄𝜑◇𝜋𝑘

𝐻+1,𝑖 = 0.

Now, assume the conclusion holds for the (ℎ+1)-th step, for the ℎ-th step, following

exactly the same argument as Lemma 87, we can show

𝑄𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠,𝑎)− ̂︀𝑄𝑘
ℎ,𝑖 (𝑠,𝑎) ≤ min

{︁
(̂︀P𝑘ℎ̃︀𝑉 𝑘

ℎ+1)(𝑠,𝑎) + 𝛽𝑡, 𝐻
}︁
= ̃︀𝑄𝑘

ℎ(𝑠,𝑎),

which proves the first inequality in (B.47). It remains to show the inequality for

𝑉 -functions also hold in the ℎ-th step.

Since 𝜋𝑘 is a CE, we have

̂︀𝑉 𝑘
ℎ,𝑖 (𝑠) = max

𝜑ℎ,𝑠

D𝜑ℎ,𝑠◇𝜋𝑘
̂︀𝑄𝑘
ℎ,𝑖 (𝑠) ,

where the maximum is take over all possible functions from 𝒜𝑖 to itself.

Observe that 𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 obeys the Bellman optimality equation, so we have

𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠) = max
𝜑ℎ,𝑠

D𝜑ℎ,𝑠◇𝜋𝑘𝑄
𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠) .

Combining the two equations above, and utilizing the bound we just proved for

𝑄-functions, we obtain

𝑉 𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠)− ̂︀𝑉 𝑘
ℎ,𝑖 (𝑠) = max

𝜑ℎ,𝑠

D𝜑ℎ,𝑠◇𝜋𝑘𝑄
𝜑◇𝜋𝑘

ℎ,𝑖 (𝑠)−max
𝜑ℎ,𝑠

D𝜑ℎ,𝑠◇𝜋𝑘
̂︀𝑄𝑘
ℎ,𝑖 (𝑠)

≤ max
𝑎

̃︀𝑄𝑘
ℎ(𝑠,𝑎) = ̃︀𝑉 𝑘

ℎ (𝑠),

which completes the whole proof.

203

204

Appendix C

Proof for Chapter 4

C.1 Notations and Basic Lemmas

C.1.1 Notations

In this subsection, we introduce some notations that will be frequently used in ap-

pendixes. Recall that we use 𝑉 𝑘, 𝑁𝑘, 𝜋𝑘 to denote the value, counter and policy

maintained by V-learning algorithm at the beginning of the episode 𝑘.

We also introduce a new policy ̂︀𝜋𝑘ℎ for a single agent (defined by its execution in

Algorithm 18), which can be viewed as a part of the output policy in Algorithm 7.

The definition of ̂︀𝜋𝑘ℎ is very similar to ̂︀𝜋 except two differences: (1) ̂︀𝜋𝑘ℎ is a policy for

step ℎ, . . . , 𝐻 while ̂︀𝜋 is a policy for step 1, . . . , 𝐻; (2) in ̂︀𝜋 the initial value of 𝑘 is

sampled uniformly at random from [𝐾] at the very beginning while in ̂︀𝜋𝑘ℎ the initial

value of 𝑘 is given.

We remark that ̂︀𝜋𝑘ℎ is a non-Markov policy that does not depends on history before

to the ℎ𝑡, (ℎ) step. In symbol, we can express this class of policy as 𝜋𝑗 := {𝜋𝑗,ℎ′ :

Ω× (𝒮 ×𝒜)ℎ′−ℎ × 𝒮 → 𝒜𝑗}𝐻ℎ′=ℎ. We call this class of policy the policy starting from

the ℎ𝑡, (ℎ) step, and denote it as Πℎ. Similar to Section 2.1.1, we can also define joint

policy 𝜋 = 𝜋1⊙ . . .⊙ 𝜋𝑚 and product policy 𝜋 = 𝜋1× . . .× 𝜋𝑚 for policies in Πℎ. We

205

Algorithm 18 Executing Policy ̂︀𝜋𝑘ℎ
1: for step ℎ′ = ℎ, ℎ+ 1, . . . , 𝐻 do
2: observe 𝑠ℎ′ , and set 𝑡← 𝑁𝑘

ℎ′(𝑠ℎ′).
3: set 𝑘 ← 𝑘𝑖ℎ′(𝑠ℎ′), where 𝑖 ∈ [𝑡] is sampled with probability 𝛼𝑖𝑡.
4: take action 𝑎ℎ′ ∼ 𝜋𝑘ℎ′(·|𝑠ℎ′).

can also define value 𝑉 𝜋
ℎ (𝑠) for joint policy 𝜋 ∈ Πℎ as

𝑉 𝜋
𝑖,ℎ(𝑠) := E𝜋

[︁∑︀𝐻
ℎ′=ℎ 𝑟𝑖,ℎ′(𝑠ℎ′ ,𝑎ℎ′)

⃒⃒⃒
𝑠ℎ = 𝑠

]︁
.

This allows us to define the corresponding best response of 𝜋−𝑖 as the maximizer of

max𝜋′
𝑖∈Πℎ

𝑉
𝜋′
𝑖×𝜋−𝑖

𝑖,ℎ (𝑠). We also denote this maximum value as 𝑉 †,𝜋−𝑖

𝑖,ℎ (𝑠). We define

the strategy modification for policies starting from the ℎ𝑡, (ℎ) step as 𝜑𝑖 := {𝜑𝑖,ℎ′ :

(𝒮 ×𝒜)ℎ′−ℎ×𝒮 ×𝒜𝑖 → 𝒜𝑖}𝐻ℎ′=ℎ, and denote the set of such strategy modification as

Φℎ.

Finally, for simplicity of notation, we define two operators P and D as follows:⎧⎪⎨⎪⎩Pℎ[𝑉](𝑠,𝑎) = E𝑠′∼Pℎ(·|𝑠,𝑎)[𝑉 (𝑠′)],

D𝜋[𝑄](𝑠) = E𝑎∼𝜋(·|𝑠)[𝑄(𝑠,𝑎)],

(C.1)

for any value function 𝑉 , 𝑄 and any one-step Markov policy 𝜋.

C.1.2 Basic lemmas

Here we present some basic lemmas that will be used in the proofs of different the-

orems. We start by introducing some useful properties of sequence {𝛼𝑖𝑡} defined in

(4.2).

Lemma 89. ([Jin et al., 2018, Lemma 4.1],[Tian et al., 2021, Lemma 2]) The fol-

lowing properties hold for 𝛼𝑖𝑡:

1. 1√
𝑡
≤
∑︀𝑡

𝑖=1
𝛼𝑖
𝑡√
𝑖
≤ 2√

𝑡
and 1

𝑡
≤
∑︀𝑡

𝑖=1
𝛼𝑖
𝑡

𝑖
≤ 2

𝑡
for every 𝑡 ≥ 1.

2. max𝑖∈[𝑡] 𝛼
𝑖
𝑡 ≤ 2𝐻

𝑡
and

∑︀𝑡
𝑖=1(𝛼

𝑖
𝑡)

2 ≤ 2𝐻
𝑡

for every 𝑡 ≥ 1.

206

3.
∑︀∞

𝑡=𝑖 𝛼
𝑖
𝑡 = 1 + 1

𝐻
for every 𝑖 ≥ 1.

Finally, we have the following lemma which express the 𝑉 maintained in V-learning

in the form of weighted sum of earlier updates.

Lemma 90. Consider an arbitrary fixed (𝑠, ℎ, 𝑘) tuple. Let 𝑡 = 𝑁𝑘
ℎ (𝑠) denote the

number of times 𝑠 is visited at step ℎ at the beginning of episode 𝑘, and suppose 𝑠 was

previously visited at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step. Then the two V-values

𝑉 and 𝑉 in Algorithm 5 satisfy the following equation:

𝑉 𝑘
𝑗,ℎ(𝑠) = 𝛼0

𝑡 (𝐻 − ℎ+ 1) +
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑗,𝑖

]︁
, 𝑗 ∈ [𝑚]. (C.2)

Proof of Lemma 90. The proof follows directly from the update rule in Line 7 Algo-

rithm 5. Note that 𝛼0
𝑡 is equal to zero for any 𝑡 > 1 and equal to one for 𝑡 = 0.

C.2 Proofs for Computing CCE in General-sum MGs

In this section, we give complete proof of Theorem 24. To avoid repeatedly state the

condition of Theorem 24 in each lemma, we will

∙ use condition of the adversarial bandit sub-procudure (Assumption 1) and

∙ set the bonus {𝛽𝑗,𝑡}𝐾𝑡=1 of the 𝑗𝑡, (ℎ) player so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 = Θ(𝐻𝜉(𝐴𝑗, 𝑡, 𝜄)+√︀

𝐻3𝜄/𝑡) for any 𝑡 ∈ [𝐾].

throughout the whole section.

Proof overview. To prove Theorem 24, we need to bound the sum

𝐾∑︁
𝑘=1

max
𝑗

[𝑉
†,̂︀𝜋𝑘

−𝑗,1

𝑗,1 − 𝑉 ̂︀𝜋𝑘
1

𝑗,1](𝑠1).

By introducing a pessimistic estimation 𝑉 as in Equation (C.3) and Equation (C.4),

we first upper and lower bound the value functions by 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉

†,̂︀𝜋𝑘
−𝑗,ℎ

𝑗,ℎ (𝑠) (Lemma 92)

207

and 𝑉 𝑘
𝑗,ℎ(𝑠) ≤ 𝑉

̂︀𝜋𝑘
ℎ

𝑗,ℎ (𝑠) (Lemma 93). As a result, it remains to bound
∑︀𝐾

𝑘=1max𝑗(𝑉
𝑘
𝑗,1−

𝑉 𝑘
𝑗,1)(𝑠1) which we handle at the end of this section.

The following Lemma is a direct consequence of Assumption 1, which will play an

important role in our later analysis.

Lemma 91. Under Assumption 1, the following event is true with probability at least

1− 𝛿: for any (𝑠, ℎ, 𝑘) ∈ 𝒮 × [𝐻]× [𝐾], let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose 𝑠 was previously

visited at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step, then for all 𝑗 ∈ [𝑚]

max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) ≤ 𝐻𝜉(𝐴𝑗, 𝑡, 𝜄),

where 𝜄 = log(𝑚𝐻𝑆𝐴𝐾/𝛿).

Proof of Lemma 91. By Assumption 1 and the adversarial bandit update step in

Algorithm 5, we have that with probability at least 1 − 𝛿, for any (𝑠, ℎ, 𝑘, 𝑗) ∈

𝒮 × [𝐻]× [𝐾]× [𝑚],

max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︃
𝐻 − 𝑟𝑗,ℎ − Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

𝐻

)︃
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︃
𝐻 − 𝑟𝑗,ℎ − Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

𝐻

)︃
(𝑠)

≤ 𝜉(𝐴𝑗, 𝑡, 𝜄),

which implies the desired result by simple algebraic transformation.

Then we show 𝑉 is actually an optimistic estimation of the value function of player

𝑗’th best response to the output policy.

Lemma 92 (Optimism). For any 𝛿 ∈ (0, 1], with probability at least 1 − 𝛿, for any

(𝑠, ℎ, 𝑘, 𝑗) ∈ 𝒮 × [𝐻]× [𝐾]× [𝑚], 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉

†,̂︀𝜋𝑘
−𝑗,ℎ

𝑗,ℎ (𝑠).

Proof of Lemma 92. We prove by backward induction. The claim is satisfied for

ℎ = 𝐻 + 1 because by definition they are both zero. Suppose it is true for ℎ+ 1 and

consider a fixed state 𝑠. It suffices to show 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉

†,̂︀𝜋𝑘
−𝑗,ℎ

𝑗,ℎ (𝑠) because 𝑉 𝑘
𝑗,ℎ(𝑠) =

min{𝑉 𝑘
𝑗,ℎ(𝑠), 𝐻 − ℎ + 1}. Let 𝑡 = 𝑁𝑘

ℎ (𝑠) and suppose 𝑠 was previously visited at

208

episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step. Then using Lemma 90,

𝑉 𝑘
𝑗,ℎ(𝑠)

= 𝛼0
𝑡𝐻 +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑗,𝑖

]︁
(𝑖)

≥
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡𝛽𝑗,𝑖 −𝒪

(︃√︂
𝐻3𝜄

𝑡

)︃
(𝑖𝑖)

≥ max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡𝛽𝑗,𝑖 −𝒪

(︃√︂
𝐻3𝜄

𝑡

)︃
−𝐻𝜉(𝐴𝑗, 𝑡, 𝜄)

(𝑖𝑖𝑖)

≥ max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)

(𝑖𝑣)

≥ max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︂
𝑟𝑗,ℎ + Pℎ𝑉

†,̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ+1

)︂
(𝑠)

(𝑣)

≥ 𝑉
†,̂︀𝜋𝑘

−𝑗,ℎ

𝑗,ℎ (𝑠)

where (𝑖) is by martingale concentration and Lemma 2, (𝑖𝑖) is by Lemma 91, (𝑖𝑖𝑖) is

by the definition of 𝛽𝑗,𝑖, and (𝑖𝑣) is by induction hypothesis.

Finally, we remark that (𝑣) is not directly from Bellman equation since ̂︀𝜋𝑘−𝑗,ℎ is

non-Markov policy, and the best reponse of a non-Markov policy is not necessary a

Markov policy. We prove (𝑣) as follows. Recall definitions for policies in Πℎ as in

Appendix C.1. By the definition, we have

𝑉
†,̂︀𝜋𝑘

−𝑗,ℎ

𝑗,ℎ (𝑠) =max
𝜇∈Πℎ

𝑉
𝜇×̂︀𝜋𝑘

−𝑗,ℎ

𝑗,ℎ (𝑠)

(𝑎)
= max

𝜇ℎ
max

𝜇(ℎ+1):𝐻

𝑡∑︁
𝑖=1

𝛼𝑖𝑡E𝑎∼𝜇ℎ×𝜋𝑘𝑖
−𝑗,ℎ

(︂
𝑟𝑗,ℎ(𝑠,𝑎) + E𝑠′𝑉

𝜇(ℎ+1):𝐻 ,̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ+1 (𝑠,𝑎, 𝑠′)

)︂
(𝑏)

≤max
𝜇ℎ

𝑡∑︁
𝑖=1

𝛼𝑖𝑡E𝑎∼𝜇ℎ×𝜋𝑘𝑖
−𝑗,ℎ

(︂
𝑟𝑗,ℎ(𝑠,𝑎) + E𝑠′ max

𝜇(ℎ+1):𝐻

𝑉
𝜇(ℎ+1):𝐻 ,̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ+1 (𝑠,𝑎, 𝑠′)

)︂
(𝑐)
=max

𝜇ℎ

𝑡∑︁
𝑖=1

𝛼𝑖𝑡E𝑎∼𝜇ℎ×𝜋𝑘𝑖
−𝑗,ℎ

(︂
𝑟𝑗,ℎ(𝑠,𝑎) + E𝑠′𝑉

†,̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ+1 (𝑠′)

)︂

=max
𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︂
𝑟𝑗,ℎ + Pℎ𝑉

†,̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ+1

)︂
(𝑠)

209

where 𝑉 𝜋
𝑗,ℎ+1(𝑠,𝑎, 𝑠

′) for policy 𝜋 ∈ Πℎ is defined as:

𝑉 𝜋
𝑗,ℎ+1(𝑠,𝑎, 𝑠

′) := E𝜋
[︁∑︀𝐻

ℎ′=ℎ+1 𝑟𝑗,ℎ′(𝑠ℎ′ ,𝑎ℎ′)
⃒⃒⃒
𝑠ℎ = 𝑠,𝑎ℎ = 𝑎, 𝑠ℎ+1 = 𝑠′

]︁
.

Step (a) uses the relation between ̂︀𝜋𝑘−𝑗,ℎ and {̂︀𝜋𝑘𝑖−𝑗,ℎ+1}𝑖. Step (b) pushes max inside

summation and expectation. Step (c) is because the Markov nature of Markov game

and that {̂︀𝜋𝑘𝑖−𝑗,ℎ+1}𝑖 are policies that does not depend on history at step ℎ, we know the

maximization over 𝜇(ℎ+1):𝐻 is achieved at policies in Πℎ+1. This finishes the proof.

To proceed with the analysis, we need to introduce two pessimistic V-estimations

˜
𝑉 and 𝑉 that are defined similarly as 𝑉 and 𝑉 . Formally, let 𝑡 = 𝑁𝑘

ℎ (𝑠) denote the

number of times 𝑠 is visited at step ℎ at the beginning of episode 𝑘, and suppose 𝑠

was previously visited at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step. Then

˜
𝑉 𝑘
𝑗,ℎ(𝑠) =

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1)− 𝛽𝑗,𝑖
]︁
, (C.3)

𝑉 𝑘
𝑗,ℎ(𝑠) = max{0,

˜
𝑉 𝑘
𝑗,ℎ(𝑠)}, (C.4)

for any player 𝑗 ∈ [𝑚] and 𝑘 ∈ [𝐾]. We also set 𝑉 𝑘
𝑗,𝐻+1(𝑠) = 0 for any 𝑘, 𝑗 and 𝑠.

We emphasize that
˜
𝑉 and 𝑉 are defined only for the purpose of analysis. Neither do

they influence the decision made by each agent, nor do the agents need to maintain

these quantities when running V-learning.

Equipped with the lower estimations, we are ready to lower bound 𝑉 ̂︀𝜋𝑘
ℎ

𝑗,ℎ .

Lemma 93 (Pessimism). For any 𝛿 ∈ (0, 1], with probability at least 1 − 𝛿, the

following holds for any (𝑠, ℎ, 𝑘, 𝑗) ∈ 𝒮 × [𝐻]× [𝐾]× [𝑚], 𝑉 𝑘
𝑗,ℎ(𝑠) ≤ 𝑉

̂︀𝜋𝑘
ℎ

𝑗,ℎ (𝑠).

Proof of Lemma 93. We prove by backward induction. The claim is satisfied for ℎ =

𝐻+1 because by definition they are both zero. Suppose it is true for ℎ+1 and consider

a fixed state 𝑠. It suffices to show
˜
𝑉 𝑘
𝑗,ℎ(𝑠) ≤ 𝑉

̂︀𝜋𝑘
ℎ

𝑗,ℎ (𝑠) because 𝑉 𝑘
𝑗,ℎ(𝑠) = max{

˜
𝑉 𝑘
𝑗,ℎ(𝑠), 0}.

Let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose 𝑠 was previously visited at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the

210

ℎ-th step. Then by Equation C.3,

˜
𝑉 𝑘
𝑗,ℎ(𝑠) =

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1)− 𝛽𝑗,𝑖
]︁

(𝑖)

≤
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡𝛽𝑗,𝑖 +𝒪

(︃√︂
𝐻3𝜄

𝑡

)︃
(𝑖𝑖)

≤
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)

(𝑖𝑖𝑖)

≤
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︂
𝑟ℎ + Pℎ𝑉

̂︀𝜋𝑘𝑖

ℎ
𝑗,ℎ+1

)︂
(𝑠)

= 𝑉
̂︀𝜋𝑘
ℎ

𝑗,ℎ (𝑠)

where (𝑖) is by martingale concentration, (𝑖𝑖) is by the definition of 𝛽𝑗,𝑖, and (𝑖𝑖𝑖) is

by induction hypothesis.

To prove Theorem 24, it remains to bound the gap
∑︀𝐾

𝑘=1 max𝑗(𝑉
𝑘
𝑗,1 − 𝑉 𝑘

𝑗,1)(𝑠1).

Proof of Theorem 24. Consider player 𝑗, we define 𝛿𝑘𝑗,ℎ := 𝑉 𝑘
𝑗,ℎ(𝑠

𝑘
ℎ) − 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ) ≥ 0.

The non-negativity here is a simple consequence of the update rule and induction.

We want to bound 𝛿𝑘ℎ := max𝑗 𝛿
𝑘
𝑗,ℎ. Let 𝑛𝑘ℎ = 𝑁𝑘

ℎ

(︀
𝑠𝑘ℎ
)︀

and suppose 𝑠𝑘ℎ was previously

visited at episodes 𝑘1, . . . , 𝑘𝑛𝑘
ℎ < 𝑘 at the ℎ-th step. Now by the update rule of 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ)

and 𝑉 𝑘
𝑗,ℎ(𝑠

𝑘
ℎ),

𝛿𝑘𝑗,ℎ =𝑉
𝑘
𝑗,ℎ(𝑠

𝑘
ℎ)− 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ)

≤𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ

[︁(︁
𝑉 𝑘𝑖

𝑗,ℎ+1 − 𝑉 𝑘𝑖

𝑗,ℎ+1

)︁(︁
𝑠𝑘

𝑖

ℎ+1

)︁
+ 2𝛽𝑗,𝑖

]︁

=𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

𝑗,ℎ+1 +𝒪(𝐻𝜉(𝐴𝑗, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

where in the last step we have used
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 = Θ(𝐻𝜉(𝐴𝑗, 𝑡, 𝜄) +

√︀
𝐻3𝜄/𝑡).

Now by taking maximum w.r.t. 𝑗 on both sides and notice 𝜉(𝐵, 𝑡, 𝜄) is non-

211

decreasing in 𝐵, we have

𝛿𝑘ℎ ≤𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1 +𝒪(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ).

Summing the first two terms w.r.t. 𝑘 and use Lemma 89,

𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
ℎ
𝐻 =

𝐾∑︁
𝑘=1

𝐻I
{︀
𝑛𝑘ℎ = 0

}︀
≤ 𝑆𝐻,

𝐾∑︁
𝑘=1

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1

(𝑖)

≤
𝐾∑︁
𝑘′=1

𝛿𝑘
′

ℎ+1

∞∑︁
𝑖=𝑛𝑘′

ℎ +1

𝛼
𝑛𝑘′
ℎ
𝑖

(𝑖𝑖)

≤
(︂
1 +

1

𝐻

)︂ 𝐾∑︁
𝑘=1

𝛿𝑘ℎ+1.

where (𝑖) is by regrouping the summands. Notice for any 𝑘′ ∈ [𝐾], 𝛿𝑘′ℎ+1 appears in

the summation only with 𝑘 > 𝑘′. The first time it appears we have 𝑛𝑘ℎ = 𝑛𝑘
′

ℎ + 1, the

second time 𝑛𝑘ℎ = 𝑛𝑘
′

ℎ + 2 and so on. Taking the sum first with respect to 𝑘′ instead

of 𝑘 gives the desired upper bound.

Putting them together,

𝐾∑︁
𝑘=1

𝛿𝑘ℎ =
𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
ℎ
𝐻 +

𝐾∑︁
𝑘=1

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1 +
𝐾∑︁
𝑘=1

𝒪(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

≤𝐻𝑆 +

(︂
1 +

1

𝐻

)︂ 𝐾∑︁
𝑘=1

𝛿𝑘ℎ+1 +
𝐾∑︁
𝑘=1

𝒪(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

Recursing this argument for ℎ ∈ [𝐻] gives

𝐾∑︁
𝑘=1

𝛿𝑘1 ≤ 𝑒𝑆𝐻2 + 𝑒

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝒪(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

By pigeonhole argument,

𝐾∑︁
𝑘=1

(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ) =𝒪 (1)

∑︁
𝑠

𝑁𝐾
ℎ (𝑠)∑︁
𝑛=1

(︃
𝐻𝜉(𝐴, 𝑛, 𝜄) +

√︂
𝐻3𝜄

𝑛

)︃

212

≤𝒪 (1)
∑︁
𝑠

(︂
𝐻Ξ(𝐴,𝑁𝐾

ℎ (𝑠) , 𝜄) +
√︁
𝐻3𝑁𝐾

ℎ (𝑠)𝜄

)︂
≤𝒪

(︁
𝐻𝑆Ξ(𝐴,𝐾/𝑆, 𝜄) +

√
𝐻3𝑆𝐾𝜄

)︁
,

where in the last step we have used concavity.

Finally take the sum w.r.t. ℎ ∈ [𝐻] we have

𝐾∑︁
𝑘=1

max
𝑗

[𝑉 𝑘
𝑗,1 − 𝑉 𝑘

𝑗,1](𝑠1) ≤ 𝒪
(︁
𝐻2𝑆Ξ(𝐴,𝐾/𝑆, 𝜄) +

√
𝐻5𝑆𝐾𝜄

)︁
,

which implies

max
𝑗∈[𝑚]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪((𝐻2𝑆/𝐾) · Ξ(𝐴,𝐾/𝑆, 𝜄) +

√︀
𝐻5𝑆𝜄/𝐾).

C.3 Proofs for Computing CE in General-sum MGs

In this section, we give complete proof of Theorem 25. To avoid repeatedly state the

condition of Theorem 25 in each lemma, we will

∙ use condition of the adversarial bandit sub-procudure (Assumption 2) and

∙ set the bonus {𝛽𝑗,𝑡}𝐾𝑡=1 of the 𝑗𝑡, (ℎ) player so that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 = Θ(𝐻𝜉sw(𝐴𝑗, 𝑡, 𝜄)+√︀

𝐻3𝜄/𝑡) for any 𝑡 ∈ [𝐾].

throughout the whole section.

We begin with a swap regret version of Lemma 91.

Lemma 94. The following event is true with probability at least 1 − 𝛿: for any

(𝑠, ℎ, 𝑘) ∈ 𝒮 × [𝐻] × [𝐾], let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose 𝑠 was previously visited at

episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step, then for all 𝑗 ∈ [𝑚]

max
𝜑𝑗

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜑𝑗◇𝜋𝑘𝑖
𝑗,ℎ×𝜋

𝑘𝑖
−𝑗,ℎ

[︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

]︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)

213

≤ 𝐻𝜉sw(𝐴𝑗, 𝑡, 𝜄),

where 𝜄 = log(𝑚𝐾𝐻𝐴𝑆/𝛿).

Proof of Lemma 94. By Assumption 2 and the adversarial bandit update step in

Algorithm 5, we have that with probability at least 1 − 𝛿, for any (𝑠, ℎ, 𝑘, 𝑗) ∈

𝒮 × [𝐻]× [𝐾]× [𝑚],

max
𝜑𝑗

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜑𝑗◇𝜋𝑘𝑖
𝑗,ℎ×𝜋

𝑘𝑖
−𝑗,ℎ

(︃
𝐻 − 𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

𝐻

)︃
(𝑠)

−
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︃
𝐻 − 𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

𝐻

)︃
(𝑠) ≤ 𝜉sw(𝐴𝑗, 𝑡, 𝜄).

We begin with proving 𝑉 is actually an optimistic estimation of the value function

under best response.

Lemma 95 (Optimism). For any 𝛿 ∈ (0, 1), with probability at least 1−𝛿, the follow-

ing holds for any (𝑠, ℎ, 𝑘, 𝑗) ∈ 𝒮 × [𝐻]× [𝐾]× [𝑚], 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ max𝜑𝑗 𝑉

(𝜑𝑗◇̂︀𝜋𝑘
𝑗,ℎ)⊙̂︀𝜋𝑘

−𝑗,ℎ

𝑗,ℎ (𝑠).

Proof of Lemma 95. We prove by backward induction. The claim is satisfied for

ℎ = 𝐻 + 1 because by definition they are both zero. Suppose it is true for ℎ+ 1 and

consider a fixed state 𝑠. It suffices to show 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ max𝜑𝑗 𝑉

(𝜑𝑗◇̂︀𝜋𝑘
𝑗,ℎ)⊙̂︀𝜋𝑘

−𝑗,ℎ

𝑗,ℎ (𝑠) because

𝑉 𝑘
𝑗,ℎ(𝑠) = min{𝑉 𝑘

𝑗,ℎ(𝑠), 𝐻−ℎ+1}. Let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose 𝑠 was previously visited

at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step. Then using Lemma 90,

𝑉 𝑘
𝑗,ℎ(𝑠) =𝛼

0
𝑡 (𝐻 − ℎ+ 1) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑗,𝑖

]︁
(𝑖)

≥
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡𝛽𝑗,𝑖 −𝒪

(︃√︂
𝐻3𝜄

𝑡

)︃
(𝑖𝑖)

≥ max
𝜑𝑗

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D(𝜑𝑗◇𝜋𝑘𝑖
𝑗,ℎ)×𝜋

𝑘𝑖
−𝑗,ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡𝛽𝑗,𝑖

−𝒪

(︃√︂
𝐻3𝜄

𝑡

)︃
−𝐻𝜉sw(𝐴𝑗, 𝑡, 𝜄)

214

(𝑖𝑖𝑖)

≥ max
𝜑𝑗

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D(𝜑𝑗◇𝜋𝑘𝑖
𝑗,ℎ)×𝜋

𝑘𝑖
−𝑗,ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)

(𝑖𝑣)

≥ max
𝜑𝑗

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D(𝜑𝑗◇𝜋𝑘𝑖
𝑗,ℎ)×𝜋

𝑘𝑖
−𝑗,ℎ

(︃
𝑟ℎ + Pℎmax

𝜑′𝑗

𝑉
(𝜑′𝑗◇̂︀𝜋𝑘𝑖

𝑗,ℎ+1)⊙̂︀𝜋𝑘𝑖

−𝑗,ℎ+1

𝑗,ℎ

)︃
(𝑠)

(𝑣)

≥max
𝜑𝑗

𝑉
(𝜑𝑗◇̂︀𝜋𝑘

𝑗,ℎ)⊙̂︀𝜋𝑘
−𝑗,ℎ

𝑗,ℎ (𝑠)

where (𝑖) is by martingale concentration and Lemma 2, (𝑖𝑖) is by Lemma 94, (𝑖𝑖𝑖) is

by the definition of 𝛽𝑗,𝑖, and (𝑖𝑣) is by induction hypothesis. Finally, (𝑣) follows from

a similar reasoning as in the proof of Lemma 92, which we omit here.

We still need to lower bound 𝑉
̂︀𝜋𝑘
ℎ

𝑗,ℎ . To do this, we estimate
˜
𝑉 and 𝑉 defined by

Equation (C.3) and Equation (C.4). Lemma 93 shows these quantities are indeed the

lower bounds we need.

To prove Theorem 25, it remains to bound the gap
∑︀𝐾

𝑘=1 max𝑗(𝑉
𝑘
𝑗,1 − 𝑉 𝑘

𝑗,1)(𝑠1).

This is actually the same as the concluding part of the proof Theorem 24, except

changing Ξ to Ξsw. For completeness we still keep a shortened version of full proof

here.

Proof of Theorem 25. Consider player 𝑗, we define 𝛿𝑘𝑗,ℎ := 𝑉 𝑘
𝑗,ℎ(𝑠

𝑘
ℎ) − 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ) ≥ 0.

The non-negativity here is a simple consequence of the update rule and induction.

We want to bound 𝛿𝑘ℎ := max𝑗 𝛿
𝑘
𝑗,ℎ. Let 𝑛𝑘ℎ = 𝑁𝑘

ℎ

(︀
𝑠𝑘ℎ
)︀

and suppose 𝑠𝑘ℎ was previously

visited at episodes 𝑘1, . . . , 𝑘𝑛𝑘
ℎ < 𝑘 at the ℎ-th step. Now by the update rule of 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ)

and 𝑉 𝑘
𝑗,ℎ(𝑠

𝑘
ℎ),

𝛿𝑘𝑗,ℎ =𝑉
𝑘
𝑗,ℎ(𝑠

𝑘
ℎ)− 𝑉 𝑘

𝑗,ℎ(𝑠
𝑘
ℎ)

≤𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ

[︁(︁
𝑉 𝑘𝑖

𝑗,ℎ+1 − 𝑉 𝑘𝑖

𝑗,ℎ+1

)︁(︁
𝑠𝑘

𝑖

ℎ+1

)︁
+ 2𝛽𝑗,𝑖

]︁

=𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

𝑗,ℎ+1 +𝒪(𝐻𝜉sw(𝐴𝑗, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

where in the last step we have used
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 = Θ(𝐻𝜉sw(𝐴𝑗, 𝑡, 𝜄) +

√︀
𝐻3𝜄/𝑡).

215

Now by taking maximum w.r.t. 𝑗 on both sides and notice 𝜉sw(𝐵, 𝑡, 𝜄) is non-

decreasing in 𝐵, we have

𝛿𝑘ℎ ≤𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1 +𝒪(𝐻𝜉sw(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ).

Summing the first two terms w.r.t. 𝑘,

𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
ℎ
𝐻 =

𝐾∑︁
𝑘=1

𝐻I
{︀
𝑛𝑘ℎ = 0

}︀
≤ 𝑆𝐻,

𝐾∑︁
𝑘=1

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1

(𝑖)

≤
𝐾∑︁
𝑘′=1

𝛿𝑘
′

ℎ+1

∞∑︁
𝑖=𝑛𝑘′

ℎ +1

𝛼
𝑛𝑘′
ℎ
𝑖

(𝑖𝑖)

≤
(︂
1 +

1

𝐻

)︂ 𝐾∑︁
𝑘=1

𝛿𝑘ℎ+1.

where (𝑖) is by changing the order of summation and (𝑖𝑖) is by Lemma 89. Putting

them together,

𝐾∑︁
𝑘=1

𝛿𝑘ℎ =
𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
ℎ
𝐻 +

𝐾∑︁
𝑘=1

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1 +
𝐾∑︁
𝑘=1

𝒪(𝐻𝜉sw(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

≤𝐻𝑆 +

(︂
1 +

1

𝐻

)︂ 𝐾∑︁
𝑘=1

𝛿𝑘ℎ+1 +
𝐾∑︁
𝑘=1

𝒪(𝐻𝜉sw(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

Recursing this argument for ℎ ∈ [𝐻] gives

𝐾∑︁
𝑘=1

𝛿𝑘1 ≤ 𝑒𝑆𝐻2 + 𝑒

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=1

𝒪(𝐻𝜉sw(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

By pigeonhole argument,

𝐾∑︁
𝑘=1

(𝐻𝜉sw(𝐴, 𝑛
𝑘
ℎ, 𝜄) +

√︁
𝐻3𝜄/𝑛𝑘ℎ) =𝒪 (1)

∑︁
𝑠

𝑁𝐾
ℎ (𝑠)∑︁
𝑛=1

(︃
𝐻𝜉sw(𝐴, 𝑛, 𝜄) +

√︂
𝐻3𝜄

𝑛

)︃

≤𝒪 (1)
∑︁
𝑠

(︂
𝐻Ξsw(𝐴,𝑁

𝐾
ℎ (𝑠) , 𝜄) +

√︁
𝐻3𝑁𝐾

ℎ (𝑠)𝜄

)︂
≤𝒪

(︁
𝐻𝑆Ξsw(𝐴,𝐾/𝑆, 𝜄) +

√
𝐻3𝑆𝐾𝜄

)︁
,

216

where in the last step we have used concavity.

Finally take the sum w.r.t. ℎ ∈ [𝐻] we have

𝐾∑︁
𝑘=1

max
𝑗

[𝑉 𝑘
𝑗,1 − 𝑉 𝑘

𝑗,1](𝑠1) ≤ 𝒪
(︁
𝐻2𝑆Ξsw(𝐴,𝐾/𝑆, 𝜄) +

√
𝐻5𝑆𝐾𝜄

)︁
,

which implies

max
𝑗∈[𝑚]

[𝑉
†,̂︀𝜋−𝑗

𝑗,1 (𝑠1)− 𝑉 ̂︀𝜋
𝑗,1(𝑠1)] ≤ 𝒪((𝐻2𝑆/𝐾) · Ξsw(𝐴,𝐾/𝑆, 𝜄) +

√︀
𝐻5𝑆𝜄/𝐾).

C.4 Proofs for MDPs and Two-player Zero-sum MGs

In this section, we prove the main theorems for V-learning in the setting of single-

agent (MDPs) and two-player zero-sum MGs.

Proof of Theorem 23. To begin with, we notice an equivalent definition of two-player

zero-sum MGs is that the reward function satisfies 𝑟1,ℎ = 1− 𝑟2,ℎ for all ℎ ∈ [𝐻]. The

reason we use this definition instead of the common version 𝑟1,ℎ = −𝑟2,ℎ is we want

to make it consistent with our assumption that the reward function takes value in

[0, 1] for any player. Although this definition does not satisfy the zero-sum condition,

its Nash equilibria are the same as those of the zero-sum version because adding a

constant to the reward function of player 2 per step will not change the dynamics of

the game.

In order to show ̂︀𝜋 = ̂︀𝜋1 × ̂︀𝜋2 is an approximate Nash policy, it suffices to control

max
𝜋1

𝑉 𝜋1,̂︀𝜋2
1,1 (𝑠1)−min

𝜋2
𝑉 ̂︀𝜋1,𝜋2
1,1 (𝑠1).

Since 𝑟1,ℎ = 1− 𝑟2,ℎ for all ℎ ∈ [𝐻], with probability at least 1− 𝛿

max
𝜋1

𝑉 𝜋1,̂︀𝜋2
1,1 (𝑠1)−min

𝜋2
𝑉 ̂︀𝜋1,𝜋2
1,1 (𝑠1)

217

=max
𝜋1

𝑉 𝜋1,̂︀𝜋2
1,1 (𝑠1)−

(︂
𝐻 −max

𝜋2
𝑉 ̂︀𝜋1,𝜋2
2,1 (𝑠1)

)︂
=

(︂
max
𝜋1

𝑉 𝜋1,̂︀𝜋2
1,1 (𝑠1)− 𝑉 ̂︀𝜋1⊙̂︀𝜋2

1,1 (𝑠1)

)︂
+

(︂
max
𝜋2

𝑉 ̂︀𝜋1,𝜋2
2,1 (𝑠1)− 𝑉 ̂︀𝜋1⊙̂︀𝜋2

2,1 (𝑠1)

)︂
≤𝒪((𝐻2𝑆/𝐾) · Ξ(𝐴,𝐾/𝑆, 𝜄) +

√︀
𝐻5𝑆𝜄/𝐾),

where the last inequality follows from Theorem 24. The reason we can use Theorem

24 here is the precondition of Theorem 23 is a special case of the precondition of

Theorem 24.

Proof of Theorem 22. Since MDPs is a subclass of two-player zero-sum MGs by sim-

ply choosing the action set of the second player to be a singleton, it suffices to only

prove Theorem 23, from which the single-agent guarantee, Theorem 22 trivially fol-

lows.

C.5 Proofs for Monotonic V-learning

In this section, we prove Theorem 26. The algorithm is V-learning with monotonic

update, and the setting we consider is two-player zero-sum Markov games. As before,

we assume 𝑟1,ℎ(𝑠, 𝑎) = 1−𝑟2,ℎ(𝑠, 𝑎) for all 𝑠, 𝑎, ℎ. The reason for assuming 𝑟1,ℎ(𝑠, 𝑎) =

1− 𝑟2,ℎ(𝑠, 𝑎) instead of 𝑟1,ℎ(𝑠, 𝑎) = −𝑟2,ℎ(𝑠, 𝑎) can be found in Appendix C.4.

For two player zero-sum MGs, we can define its minimax value function (Nash

value function) by the following Bellman equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑉 ⋆
𝑗,ℎ(𝑠) = max𝜋𝑗,ℎ min𝜋−𝑗,ℎ

D𝜋𝑗,ℎ×𝜋−𝑗,ℎ
[𝑄⋆

𝑗,ℎ](𝑠),

𝑄⋆
𝑗,ℎ(𝑠,𝑎) = 𝑟𝑗,ℎ(𝑠,𝑎) + Pℎ[𝑉 ⋆

𝑗,ℎ+1](𝑠,𝑎),

𝑉 ⋆
𝑗,𝐻+1(𝑠) = 𝑄⋆

𝑗,𝐻+1(𝑠,𝑎) = 0.

(C.5)

Lemma 96 (Optimism of V-estimates). With probability at least 1 − 𝛿, for any

(𝑠, ℎ, 𝑘, 𝑗) ∈ 𝒮 × [𝐻]× [𝐾]× [2],

𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉 𝑘

𝑗,ℎ(𝑠) ≥ 𝑉
†,𝜋̃−𝑗

𝑗,ℎ (𝑠) ≥ 𝑉 ⋆
𝑗,ℎ(𝑠), (C.6)

218

where 𝑉 ⋆
𝑗,ℎ is the minimax (Nash) value function defined above.

Proof of Lemma 96. Note that 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉 𝑘

𝑗,ℎ(𝑠) is straightforward by the update rule

of V-learning, and 𝑉 †,𝜋̃−𝑗

𝑗,ℎ (𝑠) ≥ 𝑉 ⋆
𝑗,ℎ(𝑠) directly follows from the definition of minimax

value function. Therefore, we only need to prove the second inequality. We do this

by backward induction.

The claim is true for ℎ = 𝐻 + 1. Assume for any 𝑠 and 𝑘, 𝑉 𝑘
𝑗,ℎ+1(𝑠) ≥ 𝑉

†,𝜋̃−𝑗

𝑗,ℎ+1 (𝑠).

For a fixed (𝑠, ℎ, 𝑘) ∈ 𝒮 × [𝐻] × [𝐾], let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose 𝑠 was previously

visited in episode 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎ-th step. By Bellman equation,

𝑉
†,𝜋̃−𝑗

𝑗,ℎ (𝑠)

≤𝛼0
𝑡 (𝐻 − ℎ+ 1) + max

𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉

†,𝜋̃−𝑗

𝑗,ℎ+1

)︁
(𝑠)

≤𝛼0
𝑡 (𝐻 − ℎ+ 1) + max

𝜇

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜋𝑘𝑖
−𝑗,ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠)

≤𝛼0
𝑡 (𝐻 − ℎ+ 1) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜋𝑘𝑖
ℎ

(︁
𝑟𝑗,ℎ + Pℎ𝑉 𝑘𝑖

𝑗,ℎ+1

)︁
(𝑠) +𝐻𝜉(𝐴𝑗, 𝑡, 𝜄)

≤𝛼0
𝑡 (𝐻 − ℎ+ 1) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟𝑗,ℎ(𝑠,𝑎

𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

𝑗,ℎ+1(𝑠
𝑘𝑖

ℎ+1)
]︁
+𝒪

(︃√︂
2𝐻3𝜄

𝑡

)︃
+𝐻𝜉(𝐴𝑗, 𝑡, 𝜄)

where the second inequality follows from our induction hypothesis and the monotonic-

ity of 𝑉 𝑘, the third inequality follows from Lemma 91, and the last one follows from

martingale concentration as well as Lemma 89. By Lemma 90 and the precondition

of Theorem 26, we know the RHS is no larger than 𝑉 𝑘
𝑗,ℎ(𝑠). Note that 𝑉 𝑘 can be

equivalently defined as

𝑉 𝑘
𝑗,ℎ(𝑠) = min{min

𝑡∈[𝑘]
𝑉 𝑡
𝑗,ℎ(𝑠), 𝐻 − ℎ+ 1},

we conclude 𝑉 𝑘
𝑗,ℎ(𝑠) ≥ 𝑉

†,𝜋̃−𝑗

𝑗,ℎ (𝑠) for any 𝑘 ∈ [𝐾].

Now we are ready to prove Theorem 26.

219

Proof of Theorem 26. By the monotonicity of 𝑉 and Lemma 96

𝑉 †,𝜋̃2
1,1 (𝑠1)−min

𝜋2
𝑉 𝜋̃1×𝜋2
1,1 (𝑠1) = 𝑉 †,𝜋̃2

1,1 (𝑠1)−
(︁
𝐻 − 𝑉 †,𝜋̃1

2,1 (𝑠1)
)︁

≤ 𝑉 𝐾
1,1(𝑠1) + 𝑉 𝐾

2,1(𝑠1)−𝐻

≤ 1

𝐾

𝐾∑︁
𝑘=1

(︀
𝑉 𝑘
1,1(𝑠1) + 𝑉 𝑘

2,1(𝑠1)−𝐻
)︀

≤ 1

𝐾

𝐾∑︁
𝑘=1

(︁
𝑉 𝑘
1,1(𝑠1) + 𝑉 𝑘

2,1(𝑠1)−𝐻
)︁
,

where the first equality follows from the definition of two-player zero-sum game, i.e.,

𝑟1,ℎ = 1− 𝑟2,ℎ.

Now we can mimic the proof of Theorem 24. Define 𝛿𝑘ℎ := 𝑉 𝑘
1,ℎ(𝑠

𝑘
ℎ) + 𝑉 𝑘

2,ℎ(𝑠
𝑘
ℎ) −

(𝐻 − ℎ+ 1). The non-negativity here follows from Lemma 96 as below

𝑉 𝑘
1,ℎ(𝑠

𝑘
ℎ) + 𝑉 𝑘

2,ℎ(𝑠
𝑘
ℎ)− (𝐻 − ℎ+ 1) ≥𝑉 ⋆

1,ℎ(𝑠
𝑘
ℎ) + 𝑉 ⋆

2,ℎ(𝑠
𝑘
ℎ)− (𝐻 − ℎ+ 1)

=(𝐻 − ℎ+ 1)− (𝐻 − ℎ+ 1) = 0.

Let 𝑛𝑘ℎ = 𝑁𝑘
ℎ

(︀
𝑠𝑘ℎ
)︀

and suppose 𝑠𝑘ℎ was previously visited at episodes 𝑘1, . . . , 𝑘𝑛𝑘
ℎ < 𝑘

at the ℎ-th step. By Lemma 90 and the fact that 𝑟1,ℎ = 1− 𝑟2,ℎ for all ℎ, we have

𝛿𝑘ℎ =𝑉 𝑘
1,ℎ(𝑠

𝑘
ℎ) + 𝑉 𝑘

2,ℎ(𝑠
𝑘
ℎ)− (𝐻 − ℎ+ 1)

=2𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ

[︁(︁
𝑉 𝑘𝑖

1,ℎ+1 − 𝑉 𝑘𝑖

2,ℎ+1

)︁(︁
𝑠𝑘

𝑖

ℎ+1

)︁
− (𝐻 − ℎ) + 𝛽1,𝑖 + 𝛽2,𝑖

]︁

=2𝛼0
𝑛𝑘
ℎ
𝐻 +

𝑛𝑘
ℎ∑︁

𝑖=1

𝛼𝑖𝑛𝑘
ℎ
𝛿𝑘

𝑖

ℎ+1 +𝒪(𝐻𝜉(𝐴, 𝑛𝑘ℎ, 𝜄) +
√︁
𝐻3𝜄/𝑛𝑘ℎ)

where in the last step we used
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑗,𝑖 = Θ(𝐻𝜉(𝐴𝑗, 𝑡, 𝜄) +

√︀
𝐻3𝜄/𝑡).

The remaining steps follow exactly the same as the proof of Theorem 24. As a

result, we obtain

𝑉 †,𝜋̃2
1,1 (𝑠1)−min

𝜋̃2
𝑉 𝜋̃1×𝜋̃2
1,1 (𝑠1) ≤

1

𝐾

𝐾∑︁
𝑘=1

(︁
𝑉 𝑘
1,1(𝑠1) + 𝑉 𝑘

2,1(𝑠1)−𝐻
)︁

220

Algorithm 19 FTRL for Weighted External Regret (FTRL)
1: Initialize: for any 𝑏 ∈ ℬ, 𝜃1(𝑏)← 1/𝐵.
2: for episode 𝑡 = 1, . . . , 𝐾 do
3: Take action 𝑏𝑡 ∼ 𝜃𝑡(·), and observe loss 𝑙̃𝑡(𝑏𝑡).
4: ̂︀𝑙𝑡(𝑏)← 𝑙̃𝑡(𝑏𝑡)I{𝑏𝑡 = 𝑏}/(𝜃𝑡(𝑏) + 𝛾𝑡) for all 𝑏 ∈ ℬ.
5: 𝜃𝑡+1(𝑏) ∝ exp[−(𝜂𝑡/𝑤𝑡) ·

∑︀𝑡
𝑖=1𝑤𝑖

̂︀𝑙𝑖(𝑏)]
≤ 𝒪

(︃
𝐻2𝑆

𝐾
· Ξ(𝐴,𝐾/𝑆, 𝜄) +

√︂
𝐻5𝑆𝜄

𝐾

)︃
,

which completes the proof.

C.6 Adversarial Bandit with Weighted External Re-

gret

In this section, we present a Follow-the-Regularized-Leader (FTRL) style algorithm

that achieves low weighted (external) regret for the adversarial bandit problem. Al-

though FTRL is a classial algorithm in the adversarial bandit literature, we did not

find a good reference of FTRL with changing step size, weighted regret and high

probability bound. For completeness of this work, we provide detailed derivations

here.

We present the FTRL algorithm in Algorithm 19. In Corollary 97, we prove that

FTRL satisfies the Assumption 1 with good regret bounds. Recall that 𝐵 is the

number of actions, and our normalization condition requires loss 𝑙̃𝑡 ∈ [0, 1]𝐵 for any

𝑡.

Corollary 97. By choosing hyperparameter 𝑤𝑡 = 𝛼𝑡
(︀∏︀𝑡

𝑖=2 (1− 𝛼𝑖)
)︀−1

and 𝜂𝑡 = 𝛾𝑡 =√︁
𝐻 log𝐵
𝐵𝑡

, FTRL (Algorithm 19) satisfies Assumption 1 with

𝜉(𝐵, 𝑡, log(1/𝛿)) = 10
√︀
𝐻𝐵 log(𝐵/𝛿)/𝑡, Ξ(𝐵, 𝑡, log(1/𝛿)) = 20

√︀
𝐻𝐵𝑡 log(𝐵/𝛿)

To prove Corollary 97, we show a more general weighted regret guarantee which

works for any set of weights {𝑤𝑖}∞𝑖=1 in addition to {𝛼𝑖𝑡}𝑡𝑖=1. In particular, a general

221

weighted regret is defined as

ℛ(𝑡) = max
𝜃⋆

𝑡∑︁
𝑖=1

𝑤𝑖 ⟨𝜃𝑖 − 𝜃⋆, 𝑙𝑖⟩ (C.7)

Theorem 98. For any 𝑡 ≤ 𝐾, following Algorithm 19, if 𝜂𝑖 ≤ 2𝛾𝑖 and 𝜂𝑖 is non-

increasing for all 𝑖 ≤ 𝑡, let 𝜄 = log(𝐵/𝛿) , then with probability 1− 3𝛿, we have

ℛ(𝑡) ≤ 𝑤𝑡 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄+𝐵

𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 +max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

We postpone the proof of theorem 98 to the end of this section. We first show

how to obtain Corollary 97 from Theorem 98.

Proof of Corollary 97. The weights {𝑤𝑡}𝐾𝑡=1 we choose satisfy a nice property: for any

𝑡 we have
𝑤𝑖
𝑤𝑗

=
𝛼𝑖𝑡
𝛼𝑗𝑡
.

We prove this for 𝑖 ≤ 𝑗 and the other case is similar. By definition,

𝑤𝑖
𝑤𝑗

=
𝛼𝑖
𝛼𝑗

𝑗∏︁
𝑘=𝑖+1

(1− 𝛼𝑘),

and
𝛼𝑖𝑡
𝛼𝑗𝑡

=
𝛼𝑖
𝛼𝑗

𝑗∏︁
𝑘=𝑖+1

(1− 𝛼𝑘).

We can easily verify that the RHS are the same.

Define ℛ̃(𝑡) := max𝜃∈Δℬ

∑︀𝑡
𝑖=1 𝛼

𝑖
𝑡[⟨𝜃𝑖, ℓ𝑖⟩−⟨𝜃, ℓ𝑖⟩]. By plugging 𝑤𝑡 = 𝛼𝑡

(︀∏︀𝑡
𝑖=2 (1− 𝛼𝑖)

)︀−1

into Theorem 98, and using the property above, we have the regret guarantee

ℛ̃(𝑡) ≤ 𝛼𝑡 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝛼
𝑖
𝑡 +

1

2
𝛼𝑡𝜄+𝐵

𝑡∑︁
𝑖=1

𝛾𝑖𝛼
𝑖
𝑡 +

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

(𝛼𝑖𝑡)
2
+ 𝛼𝑡𝜄/𝛾𝑡.

By choosing 𝜂𝑡 = 𝛾𝑡 =
√︁

𝐻 log𝐵
𝐵𝑡

and using Lemma 89, we can further upper bound

222

the regret by

ℛ̃(𝑡) ≤(𝐻 + 1) log𝐵

𝐻 + 𝑡

√︃
𝐵𝑡

𝐻 log𝐵
+

3

2

√︀
𝐻𝐵 log𝐵

𝑡∑︁
𝑖=1

𝛼𝑖𝑡√
𝑡

+
(𝐻 + 1) 𝜄

2 (𝐻 + 𝑡)
+

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

(𝛼𝑖𝑡)
2
+

(𝐻 + 1) 𝜄

(𝐻 + 𝑡)

√︃
𝐵𝑡

𝐻 log𝐵

≤2
√︂
𝐻𝐵 log𝐵

𝑡
+ 3

√︂
𝐻𝐵 log𝐵

𝑡
+
𝐻𝜄

𝑡
+ 2

√︂
𝐻𝜄

𝑡
+ 2

√︂
𝐻𝐵 log𝐵

𝑡

≤9
√︀
𝐻𝐵𝜄/𝑡+𝐻𝜄/𝑡.

To further simplify the above upper bound, consider two cases:

∙ If 𝐻𝜄/𝑡 ≤ 1,
√︀
𝐻𝜄/𝑡 ≥ 𝐻𝜄/𝑡 and thus ℛ̃(𝑡) ≤ 10

√︀
𝐻𝐵𝜄/𝑡.

∙ If 𝐻𝜄/𝑡 ≥ 1,
√︀
𝐻𝐵𝜄/𝑡 ≥ 1 ≥ ℛ̃(𝑡) where the last step is by the definition of

ℛ̃(𝑡). Therefore we have ℛ̃(𝑡) ≤
√︀
𝐻𝐵𝜄/𝑡.

Combining the two cases above gives ℛ̃(𝑡) ≤ 10
√︀
𝐻𝐵𝜄/𝑡.

Finally, we pick 𝜉(𝐵, 𝑡, log(1/𝛿)) := 10
√︀
𝐻𝐵𝜄/𝑡, which is non-decreasing in 𝐵.

Since
∑︀𝑡

𝑡′=1 𝜉(𝐵, 𝑡, log(1/𝛿)) ≤ 20
√
𝐻𝐵𝑡𝜄, we choose Ξ(𝐵, 𝑡, log(1/𝛿)) = 20

√
𝐻𝐵𝑡𝜄,

which is concave in 𝑡.

To prove Theorem 98, we first note that the weighted regret (C.7) can be decom-

posed into three terms

𝑡∑︁
𝑖=1

𝑤𝑖 ⟨𝜃𝑖 − 𝜃⋆, 𝑙𝑖⟩ =
𝑡∑︁
𝑖=1

𝑤𝑖 ⟨𝜃𝑖 − 𝜃⋆, 𝑙𝑖⟩

=
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖 − 𝜃⋆,̂︀𝑙𝑖⟩⏟ ⏞
(𝐴)

+
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 − ̂︀𝑙𝑖⟩⏟ ⏞
(𝐵)

+
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃⋆,̂︀𝑙𝑖 − 𝑙𝑖⟩⏟ ⏞
(𝐶)

(C.8)

The rest of this section is devoted to bounding three terms above. We begin with

the following useful lemma adapted from Lemma 1 in Neu [2015], which is crucial in

achieving high probability guarantees.

223

Lemma 99. For any sequence of coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑡 s.t. 𝑐𝑖 ∈ [0, 2𝛾𝑖]
𝐵 is ℱ𝑖-

measurable, we have with probability 1− 𝛿,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝑐𝑖,̂︀𝑙𝑖 − 𝑙𝑖⟩ ≤ max

𝑖≤𝑡
𝑤𝑖𝜄.

Proof of Lemma 99. Define 𝑤 = max𝑖≤𝑡𝑤𝑖. By definition,

𝑤𝑖̂︀𝑙𝑖 (𝑏) =𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝜃𝑖 (𝑏) + 𝛾𝑖

≤ 𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝜃𝑖 (𝑏) +

𝑤𝑖 𝑙̃𝑖(𝑏)I{𝑏𝑖=𝑏}
𝑤

𝛾𝑖

=
𝑤

2𝛾𝑖

2𝛾𝑖𝑤𝑖 𝑙̃𝑖(𝑏)I{𝑏𝑖=𝑏}
𝑤𝜃𝑖(𝑏)

1 + 𝛾𝑖𝑤𝑖 𝑙̃𝑖(𝑏)I{𝑏𝑖=𝑏}
𝑤𝜃𝑖(𝑏)

(𝑖)

≤ 𝑤

2𝛾𝑖
log

(︃
1 +

2𝛾𝑖𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝑤𝜃𝑖 (𝑏)

)︃

where (𝑖) follows from 𝑧
1+𝑧/2

≤ log (1 + 𝑧) for all 𝑧 ≥ 0.

Defining the sum ̂︀𝑆𝑖 = 𝑤𝑖
𝑤

⟨
𝑐𝑖,̂︀𝑙𝑖⟩ , 𝑆𝑖 = 𝑤𝑖

𝑤
⟨𝑐𝑖, 𝑙𝑖⟩ ,

we have

E𝑖
[︁
exp

(︁̂︀𝑆𝑖)︁]︁ ≤ E𝑖

[︃
exp

(︃∑︁
𝑏

𝑐𝑖 (𝑏)

2𝛾𝑖
log

(︃
1 +

2𝛾𝑖𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝑤𝜃𝑖 (𝑏)

)︃)︃]︃
(𝑖)

≤ E𝑖

[︃∏︁
𝑏

(︃
1 +

𝑐𝑖 (𝑏)𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝑤𝜃𝑖 (𝑏)

)︃]︃

= E𝑖

[︃
1 +

∑︁
𝑏

𝑐𝑖 (𝑏)𝑤𝑖𝑙̃𝑖 (𝑏) I {𝑏𝑖 = 𝑏}
𝑤𝜃𝑖 (𝑏)

]︃
= 1 + 𝑆𝑖 ≤ exp (𝑆𝑖)

where (𝑖) follows from 𝑧1 log (1 + 𝑧2) ≤ log (1 + 𝑧1𝑧2) for any 0 ≤ 𝑧1 ≥ 1 and 𝑧2 ≥ −1.

Note that here we are using the condition 𝑐𝑖 (𝑏) ≤ 2𝛾𝑖 for all 𝑏 ∈ [𝐵].

Equipped with the above bound, we can now prove the concentration result.

P

[︃
𝑡∑︁
𝑖=1

(︁̂︀𝑆𝑖 − 𝑆𝑖)︁ ≥ 𝜄

]︃
= P

[︃
exp

[︃
𝑡∑︁
𝑖=1

(︁̂︀𝑆𝑖 − 𝑆𝑖)︁]︃ ≥ 𝐵

𝛿

]︃

224

≤ 𝛿

𝐵
E𝑡

[︃
exp

[︃
𝑡∑︁
𝑖=1

(︁̂︀𝑆𝑖 − 𝑆𝑖)︁]︃]︃

≤ 𝛿

𝐵
E𝑡−1

[︃
exp

[︃
𝑡−1∑︁
𝑖=1

(︁̂︀𝑆𝑖 − 𝑆𝑖)︁]︃𝐸𝑡 [︁exp(︁̂︀𝑆𝑡 − 𝑆𝑡)︁]︁]︃

≤ 𝛿

𝐵
E𝑡−1

[︃
exp

[︃
𝑡−1∑︁
𝑖=1

(︁̂︀𝑆𝑖 − 𝑆𝑖)︁]︃]︃

≤ · · · ≤ 𝛿

𝐵
.

We conclude the proof by taking a union bound.

With Lemma 99, we can bound the three terms (𝐴),(𝐵) and (𝐶) in (C.8) sepa-

rately as below.

Lemma 100. For any 𝑡 ∈ [𝐾], suppose 𝜂𝑖 ≤ 2𝛾𝑖 for all 𝑖 ≤ 𝑡. Then with probability

at least 1− 𝛿, for any 𝜃⋆ ∈ Δ𝐵,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖 − 𝜃⋆,̂︀𝑙𝑖⟩ ≤ 𝑤𝑡 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄.

Proof of Lemma 100. We use the standard analysis of FTRL with changing step size,

see for example Exercise 28.13 in Lattimore and Szepesvári [2020]. Notice the essential

step size is 𝜂𝑡/𝑤𝑡,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖 − 𝜃⋆,̂︀𝑙𝑖⟩ ≤ 𝑤𝑡 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖

⟨
𝜃𝑖,̂︀𝑙2𝑖⟩

≤ 𝑤𝑡 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

∑︁
𝑏∈ℬ

𝜂𝑖𝑤𝑖̂︀𝑙𝑖 (𝑏)
(𝑖)

≤ 𝑤𝑡 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

∑︁
𝑏∈ℬ

𝜂𝑖𝑤𝑖𝑙𝑖 (𝑏) +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄

≤ 𝑤𝑡 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄

where (𝑖) is by using Lemma 99 with 𝑐𝑖(𝑏) = 𝜂𝑖 for any 𝑏. The any-time guarantee is

justifed by taking union bound.

225

Lemma 101. For any 𝑡 ∈ [𝐾], with probability 1− 𝛿,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 − ̂︀𝑙𝑖⟩ ≤ 𝐵

𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 .

Proof of Lemma 101. We further decopose it into

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 − ̂︀𝑙𝑖⟩ =

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 − E𝑖̂︀𝑙𝑖⟩+

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖,E𝑖̂︀𝑙𝑖 − ̂︀𝑙𝑖⟩.

The first term is bounded by

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 − E𝑖̂︀𝑙𝑖⟩ =

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖, 𝑙𝑖 −

𝜃𝑖
𝜃𝑖 + 𝛾𝑖

𝑙𝑖

⟩

=
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖,

𝛾𝑖
𝜃𝑖 + 𝛾𝑖

𝑙𝑖

⟩
≤ 𝐵

𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖.

To bound the second term, notice

⟨
𝜃𝑖,̂︀𝑙𝑖⟩ ≤∑︁

𝑏∈ℬ

𝜃𝑖 (𝑏)
I {𝑏𝑡 = 𝑏}
𝜃𝑖(𝑏) + 𝛾𝑖

≤
∑︁
𝑏∈ℬ

I {𝑏𝑖 = 𝑏} = 1,

thus {𝑤𝑖
⟨
𝜃𝑖,E𝑖̂︀𝑙𝑖 − ̂︀𝑙𝑖⟩}𝑡𝑖=1 is a bounded martingale difference sequence w.r.t. the

filtration {ℱ𝑖}𝑡𝑖=1. By Azuma-Hoeffding,

𝑡∑︁
𝑖=1

⟨
𝜃𝑖,E𝑖̂︀𝑙𝑖 − ̂︀𝑙𝑖⟩ ≤

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 .

Lemma 102. For any 𝑡 ∈ [𝐾], with probability 1 − 𝛿, for any 𝜃⋆ ∈ Δ𝐵, if 𝛾𝑖 is

non-increasing in 𝑖,
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃⋆,̂︀𝑙𝑖 − 𝑙𝑖⟩ ≤ max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

226

Proof of Lemma 102. Define a basis {𝑒𝑗}𝐵𝑗=1 of R𝐵 by

𝑒𝑗 (𝑏) =

⎧⎪⎨⎪⎩1 if 𝑎 = 𝑗

0 otherwise

Then for all the 𝑗 ∈ [𝐵], we can apply Lemma 99 with 𝑐𝑖 = 𝛾𝑡𝑒𝑗. Sincee 𝑐𝑖(𝑏) ≤

𝛾𝑡 ≤ 𝛾𝑖, the condition in Lemma 99 is satisfied. As a result,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝑒𝑗,̂︀𝑙𝑖 − 𝑙𝑖⟩ ≤ max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

Since any 𝜃⋆ is a convex combination of {𝑒𝑗}𝐵𝑗=1, by taking the union bound over

𝑗 ∈ [𝐵], we have
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃⋆,̂︀𝑙𝑖 − 𝑙𝑖⟩ ≤ max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

Finally we are ready to prove Theorem 98.

Proof of Theorem 98. Note the conditions in Lemma 100 and Lemma 102 are sat-

isfied by assumptions. Recall the regret decomposition (C.8). By bounding (𝐴) in

Lemma 100, (𝐵) in Lemma 101 and (𝐶) in Lemma 102, with probability 1− 3𝛿, we

have that

ℛ(𝑡) ≤𝑤𝑡 log𝐵
𝜂𝑡

+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄+𝐵
𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 +max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

C.7 Adversarial Bandit with Weighted Swap Regret

In this section, we adapt Follow-the-Regularized-Leader (FTRL) algorithm that achieves

low weighted swap regret for the adversarial bandit problem. We follow a similar tech-

227

Algorithm 20 FTRL for Weighted Swap Regret (FTRL_swap)
1: Initialize: for any 𝑏 ∈ ℬ, 𝜃1(𝑏)← 1/𝐵.
2: for episode 𝑡 = 1, . . . , 𝐾 do
3: Take action 𝑏𝑡 ∼ 𝜃𝑡(·), and observe loss 𝑙̃𝑡(𝑏𝑡).
4: for each action 𝑏 ∈ ℬ do
5: ̂︀𝑙𝑡(·|𝑏)← 𝜃𝑡(𝑏)𝑙̃𝑡(𝑏𝑡)I{𝑏𝑡 = ·}/(𝜃𝑡(·) + 𝛾𝑡).
6: 𝜃𝑡+1(·|𝑏) ∝ exp[−(𝜂𝑡/𝑤𝑡) ·

∑︀𝑡
𝑖=1𝑤𝑖

̂︀𝑙𝑖(·|𝑏)]
7: Set 𝜃𝑡+1 such that 𝜃𝑡+1(·) =

∑︀
𝑎 𝜃𝑡+1(𝑏)𝜃𝑡+1(·|𝑏).

nique presented in Blum and Mansour [2007] which adapts external regret algorithms

to swap regret algorithms for the unweighted case.

We present the FTRL_swap algorithm in Algorithm 20. Different from FTRL

(Algorithm 19), FTRL_swap maintains an additional 𝐵 ×𝐵 matrix 𝜃𝑡(·|·), and uses

its eigenvector when taking actions. The matrix will be updated similarly to FTRL,

with a subtle difference that the loss estimator here ̂︀ℓ𝑡(·|𝑏) is 𝜃𝑡(𝑏) times the loss

estimator ̂︀ℓ𝑡(·) in the FTRL algorithm (Line 4 in Algorithm 19).

In Corollary 103, we prove that FTRL_swap satisfies the Assumption 2 with good

swap regret bounds. Recall that 𝐵 is the number of actions, and our normalization

condition requires loss 𝑙̃𝑡 ∈ [0, 1]𝐵 for any 𝑡.

Corollary 103. By choosing hyperparameter 𝑤𝑡 = 𝛼𝑡
(︀∏︀𝑡

𝑖=2 (1− 𝛼𝑖)
)︀−1

and 𝜂𝑡 =

𝛾𝑡 =
√︁

𝐻 log𝐵
𝑡

, FTRL_swap (Algorithm 20) satisfies Assumption 2 with

𝜉sw(𝐵, 𝑡, log(1/𝛿)) = 10𝐵
√︀
𝐻 log(𝐵2/𝛿)/𝑡, Ξsw(𝐵, 𝑡, log(1/𝛿)) = 20𝐵

√︀
𝐻𝑡 log(𝐵2/𝛿)

Again, we prove Corollary 103 by showing a more general weighted swap regret

guarantee which works for any set of weights {𝑤𝑖}∞𝑖=1 in addition to {𝛼𝑖𝑡}𝑡𝑖=1. A general

weighted swap regret is defined as

ℛswap(𝑡) := min
𝜓∈Ψ

𝑡∑︁
𝑖=1

𝑤𝑖[⟨𝜃𝑖, 𝑙𝑖⟩ − ⟨𝜓 ◇ 𝜃𝑖, 𝑙𝑖⟩]. (C.9)

Theorem 104. For any 𝑡 ≤ 𝐾, following Algorithm 20, if 𝜂𝑖 ≤ 2𝛾𝑖 and 𝜂𝑖 is non-

228

increasing for all 𝑖 ≤ 𝑡, let 𝜄 = log(𝐵2/𝛿), then with probability 1− 3𝛿, we have

ℛswap(𝑡)

≤𝑤𝑡𝐵 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄+𝐵
𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +𝐵

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 +

𝐵𝜄

𝛾𝑡
max
𝑖≤𝑡

𝑤𝑖

We postpone the proof of Theorem 104 to the end of this section. We show first

how Theorem 104 directly implies Corollary 103.

Proof of Corollary 103. As shown in the proof of Corollary 97, the weights {𝑤𝑡}𝐾𝑡=1

we choose satisfies a nice property: for any 𝑡 we have

𝑤𝑖
𝑤𝑗

=
𝛼𝑖𝑡
𝛼𝑗𝑡
.

Define ℛ̃swap(𝑡) := max𝜓∈Ψ
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡[⟨𝜃𝑖, 𝑙𝑖⟩ − ⟨𝜓 ◇ 𝜃𝑖, 𝑙𝑖⟩]. Plugging our choice of 𝑤𝑖 =

𝛼𝑡
(︀∏︀𝑡

𝑖=2 (1− 𝛼𝑖)
)︀−1

into Theorem 104, we have

ℛ̃swap(𝑡) ≤
𝛼𝑡𝐵 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝛼
𝑖
𝑡 +

1

2
𝛼𝑡𝜄

+𝐵
𝑡∑︁
𝑖=1

𝛾𝑖𝛼
𝑖
𝑡 +𝐵

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

(𝛼𝑖𝑡)
2
+𝐵𝛼𝑡𝜄/𝛾𝑡.

By choosing 𝜂𝑡 = 𝛾𝑡 =
√︁

𝐻 log𝐵
𝑡

and using Lemma 89, we can further upper bound

the swap regret by

ℛ̃swap(𝑡) ≤
(𝐻 + 1)𝐵 log𝐵

𝐻 + 𝑡

√︂
𝑡

𝐻 log𝐵
+

3𝐵

2

√︀
𝐻 log𝐵

𝑡∑︁
𝑖=1

𝛼𝑖𝑡√
𝑡

+
(𝐻 + 1) 𝜄

2 (𝐻 + 𝑡)
+𝐵

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

(𝛼𝑖𝑡)
2
+𝐵

(𝐻 + 1) 𝜄

(𝐻 + 𝑡)

√︂
𝑡

𝐻 log𝐵

≤2𝐵
√︂
𝐻
log𝐵

𝑡
+ 3𝐵

√︂
𝐻 log𝐵

𝑡
+
𝐻𝜄

𝑡
+ 2𝐵

√︂
𝐻𝜄

𝑡
+ 2𝐵

√︂
𝐻 log𝐵

𝑡

≤9𝐵
√︀
𝐻𝜄/𝑡+𝐻𝜄/𝑡.

229

To further simplify the above upper bound, consider two cases:

∙ If 𝐻𝜄/𝑡 ≤ 1,
√︀
𝐻𝜄/𝑡 ≥ 𝐻𝜄/𝑡 and thus ℛ̃swap(𝑡) ≤ 10𝐵

√︀
𝐻𝜄/𝑡.

∙ If 𝐻𝜄/𝑡 ≥ 1, 𝐵
√︀
𝐻𝜄/𝑡 ≥ 1 ≥ ℛ̃swap(𝑡) where the last step is by the definition of

ℛ̃swap(𝑡). Therefore we have ℛ̃swap(𝑡) ≤ 𝐵
√︀
𝐻𝜄/𝑡.

Combine the above two cases, ℛ̃swap(𝑡) ≤ 10𝐵
√︀
𝐻𝜄/𝑡.

Finally, we pick 𝜉sw(𝐵, 𝑡, log(1/𝛿)) := 10𝐵
√︀
𝐻𝜄/𝑡, which is non-decreasing in 𝐵.

On the other hand, since
∑︀𝑡

𝑡′=1 𝜉sw(𝐵, 𝑡, log(1/𝛿)) ≤ 20𝐵
√
𝐻𝑡𝜄, we choose

Ξsw(𝐵, 𝑡, log(1/𝛿)) = 20𝐵
√
𝐻𝑡𝜄,

which is concave in 𝑡.

To prove Theorem 104, we again first decompose the swap regret. We first note

that by Line 7 of Algorithm 20, we have:

𝑤𝑖⟨𝜃𝑖, 𝑙𝑖⟩ =
∑︁
𝑏∈ℬ

𝑤𝑖⟨𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)⟩.

On the other hand, by the definition of strategy modification Ψ, we have

min
𝜓∈Ψ

𝑡∑︁
𝑖=1

𝑤𝑖⟨𝜓 ◇ 𝜃𝑖, 𝑙𝑖⟩ =
∑︁
𝑏∈ℬ

min
𝜃⋆(·|𝑏)

𝑡∑︁
𝑖=1

𝑤𝑖𝜃𝑖(𝑏) · ⟨𝜃⋆(·|𝑏), 𝑙𝑖(·)⟩.

Therefore, we have the following decomposition of the swap regret

ℛswap(𝑡) :=min
𝜓∈Ψ

𝑡∑︁
𝑖=1

𝑤𝑖[⟨𝜃𝑖, 𝑙𝑖⟩ − ⟨𝜓 ◇ 𝜃𝑖, 𝑙𝑖⟩] =
∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖[⟨𝜃𝑖(·|𝑏)− 𝜃⋆(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖⟩]

=
∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏)− 𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)⟩⏟ ⏞

(𝐴)

(C.10)

+
∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− ̂︀𝑙𝑖(·|𝑏)⟩⏟ ⏞

(𝐵)

230

+
∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)− 𝜃𝑖(𝑏)𝑙𝑖(·)⟩⏟ ⏞

(𝐶)

(C.11)

For the remaining proof, we bound term (𝐴), (𝐵), (𝐶) separately in Lemma 105,

Lemma 106, Lemma 107.

Lemma 105. For any 𝑡 ∈ [𝐾], suppose 𝜂𝑖 ≤ 2𝛾𝑖 for all 𝑖 ≤ 𝑡. The with probability

1− 𝛿, for any 𝜃⋆,

∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏)− 𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)⟩ ≤ 𝑤𝑡𝐵 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄.

Proof of Lemma 105. Similar to Lemma 100, we have,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏)− 𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)⟩

≤𝑤𝑡 log𝐵
𝜂𝑡

+
1

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖

⟨
𝜃𝑖(·|𝑏),̂︀𝑙2𝑖 (·|𝑏)⟩

=
𝑤𝑡 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

∑︁
𝑏′∈ℬ

𝜂𝑖𝑤𝑖𝜃𝑖(𝑏
′|𝑏)𝜃

2
𝑖 (𝑏)𝑙̃

2
𝑖 (𝑏𝑖)I{𝑏𝑖 = 𝑏′}

(𝜃𝑖(𝑏′) + 𝛾𝑖)2

≤𝑤𝑡 log𝐵
𝜂𝑡

+
1

2

𝑡∑︁
𝑖=1

∑︁
𝑏′∈ℬ

𝜂𝑖𝑤𝑖
𝜃𝑖(𝑏

′|𝑏)𝜃𝑖(𝑏)
𝜃𝑖(𝑏′)

̂︀𝑙𝑖(𝑏′|𝑏)
𝜃𝑖(𝑏)

Summing over 𝑏 and using the fact that
∑︀

𝑏∈ℬ 𝜃𝑖(𝑏
′|𝑏)𝜃𝑖(𝑏) = 𝜃𝑖(𝑏

′),

∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏)− 𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)⟩ ≤ 𝑤𝑡𝐵 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

∑︁
𝑏′∈ℬ

𝜂𝑖𝑤𝑖
̂︀𝑙𝑖(𝑏′|𝑏)
𝜃𝑖(𝑏)

(𝑖)

≤ 𝑤𝑡𝐵 log𝐵

𝜂𝑡
+

1

2

𝑡∑︁
𝑖=1

∑︁
𝑏′∈ℬ

𝜂𝑖𝑤𝑖𝑙𝑖 (𝑏
′) +

1

2
max
𝑖≤𝑡

𝑤𝑖𝜄

≤ 𝑤𝑡𝐵 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄

where (𝑖) is by using Lemma 99 with 𝑐𝑖(𝑏) = 𝜂𝑖. Notice the quantity
̂︀𝑙𝑖(𝑏′|𝑏)
𝜃𝑖(𝑏)

actually

231

doesn’t depend on 𝑏, so it is well-defined even after we take the summation with

respect to 𝑏. The any-time guarantee is justified by taking union bound.

Lemma 106. For any 𝑡 ∈ [𝐾], with probability 1− 𝛿 ,

∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− ̂︀𝑙𝑖(·|𝑏)⟩ ≤ 𝐵

𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +𝐵

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 .

Proof of Lemma 106. We further decompose it into

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− ̂︀𝑙𝑖(·|𝑏)⟩

=
𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− E𝑖̂︀𝑙𝑖(·|𝑏)⟩+

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏),E𝑖̂︀𝑙𝑖(·|𝑏)− ̂︀𝑙𝑖(·|𝑏)⟩.

The first term is bounded by

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− E𝑖̂︀𝑙𝑖(·|𝑏)⟩ =

𝑡∑︁
𝑖=1

𝑤𝑖𝜃𝑖(𝑏)

⟨
𝜃𝑖(·|𝑏), (1−

𝜃𝑖(·)
𝜃𝑖(·) + 𝛾𝑖

)𝑙𝑖(·)
⟩

=
𝑡∑︁
𝑖=1

𝑤𝑖𝜃𝑖(𝑏)

⟨
𝜃𝑖(·|𝑏),

𝛾𝑖
𝜃𝑖(·) + 𝛾𝑖

𝑙𝑖

⟩
.

So by taking the sum with respect to 𝑏, we have

∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏), 𝜃𝑖(𝑏)𝑙𝑖(·)− E𝑖̂︀𝑙𝑖(·|𝑏)⟩ ≤∑︁

𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖𝜃𝑖(𝑏)

⟨
𝜃𝑖(·|𝑏),

𝛾𝑖
𝜃𝑖(·) + 𝛾𝑖

𝑙𝑖

⟩

≤
∑︁
𝑏′∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖𝛾𝑖𝑙𝑖(𝑏
′)

≤𝐵
𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖.

To bound the second term, notice 𝜃𝑖(𝑏′|𝑏)𝜃𝑖 (𝑏) ≤ 𝜃𝑖(𝑏
′) for any 𝑏, 𝑏′ ∈ ℬ,

⟨
𝜃𝑖(·|𝑏),̂︀𝑙𝑖(·|𝑏)⟩ ≤∑︁

𝑏′∈ℬ

𝜃𝑖(𝑏
′|𝑏)𝜃𝑖 (𝑏)

I {𝑏𝑡 = 𝑏′}
𝜃𝑖(𝑏′) + 𝛾𝑖

≤
∑︁
𝑏′∈ℬ

I {𝑏𝑖 = 𝑏′} = 1,

232

thus {𝑤𝑖
⟨
𝜃𝑖(·|𝑏),E𝑖̂︀𝑙𝑖(·|𝑏)− ̂︀𝑙𝑖(·|𝑏)⟩}𝑡𝑖=1 is a bounded martingale difference sequence

w.r.t. the filtration {ℱ𝑖}𝑡𝑖=1. By Azuma-Hoeffding,

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃𝑖(·|𝑏),E𝑖̂︀𝑙𝑖(·|𝑏)− ̂︀𝑙𝑖(·|𝑏)⟩ ≤

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 .

The proof is completed by taking the summation with respect to 𝑏 and a union

bound.

Lemma 107. For any 𝑡 ∈ [𝐾], suppose 𝛾𝑖 is non-increasing in 𝑖, then with probability

1− 𝛿, and any 𝜃⋆,

∑︁
𝑏∈ℬ

𝑡∑︁
𝑖=1

𝑤𝑖

⟨
𝜃⋆(·|𝑏),̂︀𝑙𝑖(·|𝑏)− 𝜃𝑖(𝑏)𝑙𝑖(·)⟩ ≤ 𝐵max

𝑖≤𝑡
𝑤𝑖𝜄/𝛾𝑡.

Proof of Lemma 107. The proof follows from Lemma 102 and taking the summation

with respect to 𝑏.

Finally, we are ready to prove Theorem 104.

Proof of Theorem 104. Recall the decomposition of swap regret (C.11). We bound

(𝐴) in Lemma 105, (𝐵) in Lemma 106 and (𝐶) in Lemma 107. Putting everything

together, we have

ℛswap(𝑡)

≤𝑤𝑡𝐵 log𝐵

𝜂𝑡
+
𝐵

2

𝑡∑︁
𝑖=1

𝜂𝑖𝑤𝑖 +
1

2
max
𝑖≤𝑡

𝑤𝑖𝜄+𝐵
𝑡∑︁
𝑖=1

𝛾𝑖𝑤𝑖 +𝐵

⎯⎸⎸⎷2𝜄
𝑡∑︁
𝑖=1

𝑤2
𝑖 +

𝐵max𝑖≤𝑡𝑤𝑖𝜄

𝛾𝑡
.

C.8 Proof for the V-ol algorithm

Throughout this section, let 𝜄 = log(𝐻𝑆𝐴𝐾/𝑝).

233

C.8.1 Upper confidence bound on the minimax value function

Lemma 108 (V-learning lemma). In Algorithm 8, let 𝑡 = 𝑁𝑘
ℎ (𝑠) and suppose state

𝑠 ∈ 𝒮ℎ was previously visited at episodes 𝑘1, . . . , 𝑘𝑡 < 𝑘 at the ℎth step. For any

𝑝 ∈ (0, 1), let 𝜄 = log(𝐻𝑆𝐴𝐾/𝑝). Choose 𝜂𝑡 =
√︀

𝐺𝐻 log𝐴/𝐴𝑡. Then with probability at

least 1− 𝑝, for any 𝑡 ∈ [𝐾], ℎ ∈ [𝐻] and 𝑠 ∈ 𝒮ℎ, there exists a constant 𝑐 such that

max
𝜇∈Δ𝒜

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇,𝜈𝑘
𝑖

ℎ

[︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1

]︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

(︁
𝑟ℎ(𝑠, 𝑎

𝑘𝑖

ℎ , 𝑏
𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

ℎ+1(𝑠
𝑘𝑖

ℎ+1)
)︁
≤ 𝑐

√︂
𝐺𝐻3𝐴𝜄

𝑡
.

(C.12)

Proof. By the Azuma-Hoeffding inequality and Lemma 89,

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘
𝑖

ℎ ×𝜈𝑘𝑖ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1

)︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[︁
𝑟ℎ

(︁
𝑠, 𝑎𝑘

𝑖

ℎ , 𝑏
𝑘𝑖

ℎ

)︁
+ 𝑉 𝑘𝑖

ℎ+1

(︁
𝑠𝑘

𝑖

ℎ+1

)︁]︁
≤ 2

√︂
𝐺𝐻3𝜄

𝑡
.

So we only need to bound

𝑅*
𝑡 := max

𝜇∈Δ𝒜

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇×𝜈𝑘𝑖ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1

)︁
(𝑠)−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘
𝑖

ℎ ×𝜈𝑘𝑖ℎ

(︁
𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1

)︁
(𝑠).

(C.13)

By taking 𝑤𝑖 = 𝛼𝑖𝑡 in [Bai et al., 2020, Lemma 17],

𝑅*
𝑡 ≤

3𝐻𝛼𝑡𝑡 log𝐴

𝜂𝑡
+

3𝐴

2

∑︁𝑡

𝑖=1
𝜂𝑖𝛼

𝑖
𝑡 +

√︂
2𝜄
∑︁𝑡

𝑖=1
(𝛼𝑖𝑡)

2

(𝑖)

≤3𝐻𝛼𝑡𝑡
√︁

𝐴𝑡 log𝐴
𝐺𝐻

+
3

2

√︀
𝐺𝐻𝐴 log𝐴

∑︁𝑡

𝑖=1

𝛼𝑖𝑡√
𝑖
+

√︂
2𝜄
∑︁𝑡

𝑖=1
(𝛼𝑖𝑡)

2

(𝑖𝑖)

≤3𝐻 𝐺𝐻+1
𝐺𝐻+𝑡

√︁
𝐴𝑡 log𝐴
𝐺𝐻

+ 3
√︁

𝐺𝐻𝐴 log𝐴
𝑡

+ 2
√︁

𝐺𝐻𝜄
𝑡

≤𝑐
√︁

𝐺𝐻𝐴𝜄
𝑡

for some constant 𝑐, where (𝑖) is by setting 𝜂𝑡 =
√︁

𝐺𝐻 log𝐴
𝐴𝑡

and (𝑖𝑖) is by Lemma 89.

Taking union bound w.r.t. all (𝑡, 𝑠, ℎ) ∈ [𝐾]× 𝒮 × [𝐻] concludes the proof.

We comment that the quantity 𝑅*
𝑡 is actually 𝐻 times the LHS in the inequality

of [Bai et al., 2020, Lemma 17]. See Appendix F and Algorithm 9 in Bai et al. [2020]

234

for a detailed reduction from MG to adversarial bandit problem. Furthermore, in [Bai

et al., 2020] there are actually two parameters 𝜂𝑡 and 𝛾𝑡. Here we just take 𝛾𝑡 = 𝜂𝑡 for

simplicity. Finally, the proof of [Bai et al., 2020, Lemma 17] requires that 𝜂𝑖 ≤ 2𝛾𝑖

for all 𝑖 ≤ 𝑡 [Bai et al., 2020, Lemma 19] and that 𝛾𝑡 is nondecreasing in 𝑡 [Bai et al.,

2020, Lemma 21], which are both satisfied by our specification of 𝜂𝑡.

Lemma 109 (Upper confidence bound). In Algorithm 8, for any 𝑝 ∈ (0, 1), let

𝜄 = log(𝐻𝑆𝐴𝐾/𝑝) and choose 𝛽𝑡 = 𝑐
√︀
𝐺𝐻3𝐴𝜄/𝑡 for some large constant 𝑐. Then with

probability at least 1− 𝑝, 𝑉 *
ℎ (𝑠) ≤ 𝑉 𝑘

ℎ (𝑠) for all 𝑘 ∈ [𝐾], ℎ ∈ [𝐻] and 𝑠 ∈ 𝒮ℎ.

Proof. The proof is similar to that of [Bai et al., 2020, Lemma 15], except that we

need to deal with an extra parameter 𝐺 here.

Let 𝑘𝑖ℎ(𝑠) denote the index of the episode where 𝑠 ∈ 𝒮ℎ is observed at step ℎ for

the 𝑖th time. Where there is no ambiguity, we use 𝑘𝑖 as a shorthand for 𝑘𝑖ℎ(𝑠). Let 𝑠𝑘ℎ
be the state actually observed in the algorithm at step ℎ in episode 𝑘. For our choice

of 𝛽𝑖, we have
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑖 = Θ(𝐺𝐻2

√︀
𝐴𝜄/𝑡) by Lemma 89.

Recall that

𝑉 𝑘
ℎ (𝑠) := 𝛼0

𝑡𝐻 +
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

(︁
𝑟ℎ(𝑠, 𝑎

𝑘𝑖

ℎ , 𝑏
𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑖

)︁
,

𝑉 *
ℎ (𝑠) := D𝜇*ℎ,𝜈

*
ℎ
[𝑟ℎ + Pℎ𝑉 *

ℎ+1](𝑠).

For ℎ = 𝐻 + 1 the UCB vacuously holds. To apply backward induction, assume

that 𝑉 *
ℎ+1 ≤ 𝑉 𝑘

ℎ+1 holds entrywise. Then by definition, for any 𝑠 ∈ 𝒮ℎ,

𝑉 *
ℎ (𝑠) = max

𝜇∈Δ𝒜ℎ

min
𝜈∈Δℬℎ

D𝜇,𝜈 [𝑟ℎ + Pℎ𝑉 *
ℎ+1](𝑠)

(𝑖)
= max

𝜇∈Δ𝒜ℎ

∑︁𝑡

𝑖=1
𝛼𝑖𝑡 min

𝜈∈Δℬℎ

D𝜇,𝜈 [𝑟ℎ + Pℎ𝑉 *
ℎ+1](𝑠)

≤ max
𝜇∈Δ𝒜ℎ

∑︁𝑡

𝑖=1
𝛼𝑖𝑡D𝜇,𝜈𝑘

𝑖
ℎ
[𝑟ℎ + Pℎ𝑉 *

ℎ+1](𝑠)

(𝑖𝑖)

≤ max
𝜇∈Δ𝒜ℎ

∑︁𝑡

𝑖=1
𝛼𝑖𝑡D𝜇,𝜈𝑘

𝑖
ℎ
[𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠)
(𝑖𝑖𝑖)

≤ 𝑉 𝑘
ℎ (𝑠),

where (𝑖) follows from
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡 = 1, in (𝑖𝑖) we apply the induction assumption, and

235

(𝑖𝑖𝑖) holds with probability at least 1 − 𝑝 by the V-learning lemma (Lemma 108)

and that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑡 = Θ(

√︀
𝐺𝐻3𝐴𝜄/𝑡) because of our choice of 𝛽𝑡 and Property 1 of

{𝛼𝑖𝑡} in Lemma 89. Inductively we have 𝑉 *
ℎ (𝑠) ≤ 𝑉 𝑘

ℎ (𝑠) for all 𝑘 ∈ [𝐾], ℎ ∈ [𝐻] and

𝑠 ∈ 𝒮ℎ.

C.8.2 Proof of Theorem 27

Proof. In the proof below, we use ‘.’ to denote ‘≤’ hiding some constants. Recall

that

𝑉 𝜇𝑘,𝜈𝑘

ℎ (𝑠𝑘ℎ) = D𝜇𝑘ℎ,𝜈
𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ).

Then define 𝛿𝑘ℎ := (𝑉 𝑘
ℎ − 𝑉

𝜇𝑘,𝜈𝑘

ℎ)(𝑠𝑘ℎ). By definition,

𝛿𝑘ℎ = 𝛼0
𝑡𝐻 +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

(︁
𝑟ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘𝑖

ℎ , 𝑏
𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑖

)︁
− D𝜇𝑘ℎ,𝜈

𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ)

(𝑖)
= 𝛼0

𝑡𝐻 +
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

(︁
𝑟ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘𝑖

ℎ , 𝑏
𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

ℎ+1(𝑠
𝑘𝑖

ℎ+1) + 𝛽𝑖

)︁
−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘𝑖 ,𝜈𝑘𝑖 [𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠
𝑘
ℎ)

+
𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘𝑖 ,𝜈𝑘𝑖 [𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠
𝑘
ℎ)− D𝜇𝑘ℎ,𝜈

𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ)

(𝑖𝑖)

. 𝛼0
𝑡𝐻 +

√︁
𝐺𝐻3𝐴𝜄

𝑡
+

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘𝑖 ,𝜈𝑘𝑖 [𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠
𝑘
ℎ)− D𝜇𝑘ℎ,𝜈

𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ),

where in (𝑖) we add and subtract the same term, and (𝑖𝑖) follows from the property of

𝛽𝑖 that
∑︀𝑡

𝑖=1 𝛼
𝑖
𝑡𝛽𝑖 = Θ(

√︀
𝐺𝐻3𝐴𝜄/𝑡) and the fact that by the Azuma-Hoeffding inequality

and Property 2 of Lemma 89,

𝑡∑︁
𝑖=1

𝛼𝑖𝑡

(︁
𝑟ℎ(𝑠

𝑘
ℎ, 𝑎

𝑘𝑖

ℎ , 𝑏
𝑘𝑖

ℎ) + 𝑉 𝑘𝑖

ℎ+1(𝑠
𝑘𝑖

ℎ+1)
)︁
−

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘𝑖 ,𝜈𝑘𝑖 [𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠
𝑘
ℎ) .

√︁
𝐺𝐻3𝜄
𝑡
.

By the same regrouping technique as that in [Jin et al., 2018],

𝐾∑︁
𝑘=1

𝑡∑︁
𝑖=1

𝛼𝑖𝑡D𝜇𝑘𝑖 ,𝜈𝑘𝑖 [𝑟ℎ + Pℎ𝑉 𝑘𝑖

ℎ+1](𝑠
𝑘
ℎ) ≤

𝐾∑︁
𝑘′=1

D𝜇𝑘′ ,𝜈𝑘′ [𝑟ℎ + Pℎ𝑉 𝑘′

ℎ+1](𝑠
𝑘
ℎ)

∞∑︁
𝑡=𝑛𝑘′

ℎ

𝛼
𝑛𝑘′
ℎ
𝑡

236

≤ (1 + 1
𝐺𝐻

)
𝐾∑︁
𝑘=1

D𝜇𝑘,𝜈𝑘 [𝑟ℎ + Pℎ𝑉 𝑘
ℎ+1](𝑠

𝑘
ℎ).

Substituting the above back into the bound on 𝛿𝑘ℎ and taking sum over 𝑘 ∈ [𝐾], we

obtain

𝐾∑︁
𝑘=1

𝛿𝑘ℎ

.
𝐾∑︁
𝑘=1

(︂
𝛼0
𝑡𝐻 +

√︁
𝐺𝐻3𝐴𝜄

𝑡
+ (1 + 1

𝐺𝐻
)D𝜇𝑘,𝜈𝑘 [𝑟ℎ + Pℎ𝑉 𝑘

ℎ+1](𝑠
𝑘
ℎ)− D𝜇𝑘ℎ,𝜈

𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ)

)︂
(𝑖)
=

𝐾∑︁
𝑘=1

(︂
𝛼0
𝑡𝐻 +

√︁
𝐺𝐻3𝐴𝜄

𝑡
+ (1 + 1

𝐺𝐻
)(𝛿𝑘ℎ+1 + 𝛾𝑘ℎ) +

1
𝐺𝐻

D𝜇𝑘ℎ,𝜈
𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ)

)︂
(𝑖𝑖)

≤
𝐾∑︁
𝑘=1

(︂
𝛼0
𝑡𝐻 +

√︁
𝐺𝐻3𝐴𝜄

𝑡
+ (1 + 1

𝐺𝐻
)(𝛿𝑘ℎ+1 + 𝛾𝑘ℎ) +

1
𝐺

)︂
,

where in (𝑖) we define the martingale difference term 𝛾𝑘ℎ := D𝜇𝑘ℎ,𝜈
𝑘
ℎ
[Pℎ(𝑉 𝑘

ℎ+1−𝑉
𝜇𝑘,𝜈𝑘

ℎ+1)](𝑠𝑘ℎ)−

(𝑉 𝑘
ℎ+1 − 𝑉

𝜇𝑘,𝜈𝑘

ℎ+1)(𝑠𝑘ℎ+1) and (𝑖𝑖) follows from that

D𝜇𝑘ℎ,𝜈
𝑘
ℎ
[𝑟ℎ + Pℎ𝑉 𝜇𝑘,𝜈𝑘

ℎ+1](𝑠𝑘ℎ) ≤ 𝐻.

Recursively,

𝐾∑︁
𝑘=1

𝛿𝑘1 . (1 + 1
𝐺𝐻

)𝐻
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

(︂
𝛼0
𝑡𝐻 +

√︁
𝐺𝐻3𝐴𝜄

𝑡
+ (1 + 1

𝐺𝐻
)𝛾𝑘ℎ +

1
𝐺

)︂
.

Now we bound each term in
∑︀𝐾

𝑘=1 𝛿
𝑘
1 separately by standard techniques in [Jin et al.,

2018, Xie et al., 2020]:

𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
ℎ
𝐻 ≤

𝐾∑︁
𝑘=1

𝐻 · I(𝑛𝑘ℎ = 0) ≤ 𝐻𝑆,

𝐾∑︁
𝑘=1

√︁
𝐺𝐻3𝐴𝜄
𝑛𝑘
ℎ

= 𝐺𝐻2
√
𝐴𝜄

𝐾∑︁
𝑘=1

√︁
1
𝑛𝑘
ℎ
≤
√
𝐺𝐻3𝐴𝜄

∑︁
𝑠∈𝒮ℎ

𝑛𝐾
ℎ (𝑠)∑︁
𝑛=1

√︁
1
𝑛
.
√
𝐺𝐻3𝑆𝐴𝐾𝜄),

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝛾𝑘ℎ .
√
𝐻3𝐾𝜄,

237

where the second line follows from a pigeonhole argument and the third line follows

from the Azuma-Hoeffding inequality. Combining the above bounds, we obtain

Regret(𝐾) ≤
𝐾∑︁
𝑘=1

𝛿𝑘1 . 𝐻2𝑆 +
√
𝐺𝐻5𝑆𝐴𝐾𝜄+𝐺−1𝐾𝐻.

If 𝐾 ≥ 𝐻3𝑆𝐴 then we take we take 𝐺 = 1
𝐻
(𝐾
𝑆𝐴

)1/3; otherwise we take 𝐺 = 𝐾
1
3 .

Then the following regret bounds holds:

Regret(𝐾) =

⎧⎪⎨⎪⎩𝒪̃
(︀
𝐻2𝑆

1
3𝐴

1
3𝐾

2
3 +𝐻2𝑆

)︀
, if 𝐾 ≥ 𝐻3𝑆𝐴,

𝒪̃
(︀√

𝐻5𝑆𝐴𝐾
2
3 +𝐻2𝑆

)︀
, otherwise.

238

Appendix D

Proofs for Chapter 5

D.1 Properties of the game

D.1.1 Properties for Section 5.1

For any opponent (min-player) policy 𝜈 ∈ Πmin, define

𝑝𝜈1:ℎ(𝑥ℎ) :=
∑︁
𝑠ℎ∈𝑥ℎ

𝑝1:ℎ(𝑠ℎ)𝜈1:ℎ−1(𝑦(𝑠ℎ−1), 𝑏ℎ−1) for all ℎ ∈ [𝐻], 𝑥ℎ ∈ 𝒳ℎ.

Intuitively, 𝑝𝜈1:ℎ(𝑥ℎ) measures the environment and the opponent’s contribution in the

reaching probability of 𝑥ℎ.

Lemma 110 (Properties of 𝑝𝜈1:ℎ(𝑥ℎ)). The following holds for any 𝜈 ∈ Πmin:

1. For any policy 𝜇 ∈ Πmax, we have

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
𝜈
1:ℎ(𝑥ℎ) = 1.

2. 0 ≤ 𝑝𝜈1:ℎ(𝑥ℎ) ≤ 1 for all ℎ, 𝑥ℎ.

Proof. For (a), notice that

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
𝜈
1:ℎ(𝑥ℎ) =

∑︁
𝑠ℎ∈𝑥ℎ

𝑝1:ℎ(𝑠ℎ) · 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝜈1:ℎ−1(𝑦(𝑠ℎ−1), 𝑏ℎ−1)

239

=
∑︁
𝑠ℎ∈𝑥ℎ

P𝜇,𝜈(visit (𝑠ℎ, 𝑎ℎ)) = P𝜇,𝜈(visit (𝑥ℎ, 𝑎ℎ)).

Summing over all (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ×𝒜, the right hand side sums to one, thereby showing

(a).

For (b), fix any 𝑥ℎ ∈ 𝒳ℎ. Clearly 𝑝𝜈1:ℎ(𝑥ℎ) ≥ 0. Choose any 𝑎ℎ ∈ 𝒜, and choose

policy 𝜇𝑥ℎ,𝑎ℎ ∈ Πmax such that 𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥ℎ, 𝑎ℎ) = 1 (such 𝜇𝑥ℎ,𝑎ℎ exists, for example, by

deterministically taking all actions prescribed in infoset 𝑥ℎ at all ancestors of 𝑥ℎ). For

this 𝜇𝑥ℎ,𝑎ℎ , using (a), we have

𝑝𝜈1:ℎ(𝑥ℎ) = 𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥ℎ, 𝑎ℎ) · 𝑝𝜈1:ℎ(𝑥ℎ) ≤
∑︁

(𝑥′ℎ,𝑎
′
ℎ)∈𝒳ℎ×𝒜

𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥′ℎ, 𝑎
′
ℎ) · 𝑝𝜈1:ℎ(𝑥′ℎ) = 1.

This shows part (b).

Corollary 111. For any policy 𝜇 ∈ Πmax and ℎ ∈ [𝐻], we have

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ) ≤ 1.

Proof. Notice by definition

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) =
∑︁

𝑠ℎ∈𝑥ℎ,𝑏ℎ∈ℬℎ

𝑝1:ℎ(𝑠ℎ)𝜈
𝑡
1:ℎ(𝑦(𝑠ℎ), 𝑏ℎ)(1− 𝑟ℎ(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)) ≤ 𝑝𝜈1:ℎ(𝑥ℎ),

and the result is implied by Lemma 110 (b).

Lemma 112. For any ℎ ∈ [𝐻], the counterfactual loss function 𝐿𝑡ℎ defined in (6.11)

satisfies the bound

1. For any policy 𝜇 ∈ Πmax, we have

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝐿
𝑡
ℎ(𝑥ℎ, 𝑎ℎ) ≤ 𝐻 − ℎ+ 1.

240

2. For any (ℎ, 𝑥ℎ, 𝑎ℎ), we have

0 ≤ 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) ≤ 𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) · (𝐻 − ℎ+ 1).

Proof. Part (a) follows from the fact that

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝐿
𝑡
ℎ(𝑥ℎ, 𝑎ℎ) = E𝜇,𝜈𝑡

[︃
𝐻∑︁

ℎ′=ℎ

𝑟ℎ′

]︃
≤ 𝐻 − ℎ+ 1,

where the first equality follows from the definition of the loss functions ℓℎ and 𝐿ℎ

in (5.5), (6.11).

For part (b), the nonnegativity follows clearly by definition. For the upper bound,

take any policy 𝜇𝑥ℎ,𝑎ℎ ∈ Πmax such that 𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥ℎ, 𝑎ℎ) = 1. We then have

𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) = 𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥ℎ, 𝑎ℎ)𝐿
𝑡
ℎ(𝑥ℎ, 𝑎ℎ) = E𝜇𝑥ℎ,𝑎ℎ ,𝜈𝑡

[︃
1 {visit 𝑥ℎ, 𝑎ℎ} ·

𝐻∑︁
ℎ′=ℎ

𝑟ℎ′

]︃

= P𝜇𝑥ℎ,𝑎ℎ ,𝜈𝑡(visit 𝑥ℎ, 𝑎ℎ) · E𝜇𝑥ℎ,𝑎ℎ ,𝜈𝑡

[︃
𝐻∑︁

ℎ′=ℎ

𝑟ℎ′

⃒⃒⃒⃒
visit 𝑥ℎ, 𝑎ℎ

]︃
≤ 𝜇𝑥ℎ,𝑎ℎ1:ℎ (𝑥ℎ, 𝑎ℎ)𝑝

𝜈𝑡

1:ℎ(𝑥ℎ) · (𝐻 − ℎ+ 1) = 𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) · (𝐻 − ℎ+ 1).

D.1.2 Properties for Section 5.4

For any ℎ < ℎ′ and 𝑥ℎ ∈ 𝒳ℎ, we let 𝒞ℎ′(𝑥ℎ, 𝑎ℎ) ≡ {𝑥 ∈ 𝒳ℎ′ : 𝑥 ≻ (𝑥ℎ, 𝑎ℎ)} and

𝒞ℎ′(𝑥ℎ) ≡ {𝑥 ∈ 𝒳ℎ′ : 𝑥 ⪰ 𝑥ℎ} = ∪𝑎ℎ∈𝒜𝒞ℎ′(𝑥ℎ, 𝑎ℎ) denote the infosets within the

ℎ′-th step that are reachable from (i.e. children of) 𝑥ℎ or (𝑥ℎ, 𝑎ℎ), respectively. For

shorthand, let 𝒞(𝑥ℎ, 𝑎ℎ) := 𝒞ℎ+1(𝑥ℎ, 𝑎ℎ) and 𝒞(𝑥ℎ) := 𝒞ℎ+1(𝑥ℎ) denote the set of

immediate children.

We define 𝑋⪰𝑥ℎ for any 𝑥ℎ ∈ 𝒳ℎ as

𝑋⪰𝑥ℎ :=
𝐻∑︁

ℎ′=ℎ

|𝒞ℎ′(𝑥ℎ)|. (D.1)

241

It can be interpreted as the number of infosets in the subtree rooted at 𝑥ℎ.

Lemma 113. The 𝐿1 norm of a sequence form is upper bounded by ‖Π‖1 ≤ 𝑋.

Proof. We can prove ‖Π𝑥ℎ‖ ≤ 𝑋⪰𝑥ℎ for all ℎ ∈ [0, 𝐻] and 𝑥ℎ ∈ 𝒳ℎ by backward

induction over ℎ = 𝐻, · · · , 1, 0. When ℎ = 𝐻, for each infoset 𝑥ℎ, the sequence form

is just a probability distribution, which sums up to ‖Π𝑥ℎ‖1 = 1 = |𝑋⪰𝑥ℎ |. If the claim

holds for ℎ + 1, consider an infoset 𝑥ℎ in the ℎ-th level. By induction hypothesis we

have

‖Π𝑥ℎ‖1 = max
𝑎ℎ

∑︁
𝑥ℎ+1⪰(𝑥ℎ,𝑎ℎ)

‖Π𝑥ℎ+1‖1 ≤ max
𝑎ℎ

∑︁
𝑥ℎ+1⪰(𝑥ℎ,𝑎ℎ)

|𝑋⪰𝑥ℎ+1
| ≤ |𝑋⪰𝑥ℎ|.

So the equation above holds for any 𝑥ℎ. Setting 𝑥ℎ = ∅ gives ‖Π‖1 ≤ 𝑋 which

completes the proof.

Lemma 114. We have |ΦEFCE
0 | ≤ 𝑋𝐴‖Π‖1+1.

Proof. By Proposition 5.1 of Farina et al. [2022b], 𝒱 ≤ 𝐴‖Π‖1 . Since there are at most

𝑋𝐴 different infoset-action pair to be trigger, we have |ΦEFCE
0 | ≤ 𝑋𝐴‖Π‖1+1.

D.2 Bounds for regret minimizers

Here we collect regret bounds for various regret minimization algorithms on the prob-

ability simplex. For any algorithm that plays policy 𝑝𝑡 in the 𝑡-th round and observes

loss vector {ℓ𝑡(𝑎)}𝑎∈[𝐴] ∈ R𝐴
≥0, define its regret as

Regret(𝑇) := max
𝑝⋆∈Δ([𝐴])

𝑇∑︁
𝑡=1

⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ⟨𝑝⋆, ̃︀ℓ𝑡⟩ .

D.2.1 Hedge

The following regret bound for Hedge is standard, see, e.g. [Lattimore and Szepesvári,

2020, Proposition 28.7].

242

Algorithm 21 Regret Minimization with Hedge (Hedge)
Require: Learning rate 𝜂 > 0.
1: Initialize 𝑝1(𝑎)← 1/𝐴 for all 𝑎 ∈ [𝐴].
2: for iteration 𝑡 = 1, . . . , 𝑇 do
3: Receive loss vector

{︁̃︀ℓ𝑡(𝑎)}︁
𝑎∈[𝐴]

.

4: Update action distribution via mirror descent:

𝑝𝑡+1(𝑎) ∝𝑎 𝑝𝑡(𝑎) exp
(︁
−𝜂̃︀ℓ𝑡(𝑎))︁.

Lemma 115 (Regret bound for Hedge). Algorithm 21 with learning rate 𝜂 > 0

achieves regret bound

Regret(𝑇) ≤ log𝐴

𝜂
+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

𝑝𝑡(𝑎)̃︀ℓ𝑡(𝑎)2.
D.2.2 Regret Matching

Algorithm 22 Regret Minimization with Regret Matching (RegretMatching)
1: Initialize 𝑝1(𝑎)← 1/𝐴 and 𝑅0(𝑎)← 0 for all 𝑎 ∈ [𝐴].
2: for iteration 𝑡 = 1, . . . , 𝑇 do
3: Receive loss vector

{︁̃︀ℓ𝑡(𝑎)}︁
𝑎∈[𝐴]

.

4: Update instantaneous regret and cumulative regret for all 𝑎 ∈ [𝐴]:

𝑟𝑡(𝑎)←
⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎) and 𝑅𝑡(𝑎)← 𝑅𝑡−1(𝑎) + 𝑟𝑡(𝑎).

5: Compute action distribution by regret matching:

𝑝𝑡+1(𝑎)←
[𝑅𝑡(𝑎)]+∑︀

𝑎′∈[𝐴] [𝑅𝑡(𝑎′)]+
=

[︁∑︀𝑇
𝑡=1

⟨
𝑝𝑡, ℓ̃𝑡

⟩
− ̃︀ℓ𝑡(𝑎)]︁

+∑︀
𝑎′∈[𝐴]

[︁∑︀𝑇
𝑡=1

⟨
𝑝𝑡, ℓ̃𝑡

⟩
− ̃︀ℓ𝑡(𝑎′)]︁

+

.

In the edge case where [𝑅𝑡(𝑎)]+ = 0 for all 𝑎 ∈ [𝐴], set 𝑝𝑡+1(𝑎) ← 1/𝐴 to be
the uniform distribution.

The following regret bound for Regret Matching is standard, see, e.g. [Cesa-

Bianchi and Lugosi, 2006, Brown and Sandholm, 2014]. For completeness, here we

provide a proof along with an alternative form of bound useful for our purpose (Re-

243

mark 117). Note that here 𝜂 is not the learning rate but rather an arbitrary positive

value (i.e. the right-hand side is an upper bound on the regret for any 𝜂 > 0).

Algorithm 22 itself does not require any learning rate.

Lemma 116 (Regret bound for Regret Matching). Algorithm 22 achieves the follow-

ing regret bound for any 𝜂 > 0:

Regret(𝑇) ≤
[︁ 𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

(︁⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎))︁2]︁1/2 ≤ 1

𝜂
+
𝜂

4

𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

(︁⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎))︁2.

Proof. By the fact that (𝑎+ 𝑏)2+ ≤ 𝑎2+ + 2𝑎+𝑏+ 𝑏2, we have

[𝑅𝑡(𝑎)]
2
+ ≤ [𝑅𝑡−1(𝑎)]

2
+ + 2[𝑅𝑡−1(𝑎)]+𝑟𝑡(𝑎) + 𝑟𝑡(𝑎)

2. (D.2)

Then by the definition of 𝑝𝑡(𝑎) and 𝑟𝑡(𝑎), we have

∑︁
𝑎∈[𝐴]

[𝑅𝑡−1(𝑎)]+𝑟𝑡(𝑎) =
∑︁
𝑎∈[𝐴]

[𝑅𝑡−1(𝑎)]+

(︁ ∑︁
𝑎′∈[𝐴]

𝑝𝑡(𝑎
′)̃︀ℓ𝑡(𝑎′)− ̃︀ℓ𝑡(𝑎))︁

=
∑︁
𝑎∈[𝐴]

[𝑅𝑡−1(𝑎)]+̃︀ℓ𝑡(𝑎)−∑︁
𝑎∈[𝐴]

[𝑅𝑡−1(𝑎)]+̃︀ℓ𝑡(𝑎) = 0.
(D.3)

Then summing over 𝑎 in Eq. (D.2) and using Eq. (D.3), we get

∑︁
𝑎∈[𝐴]

[𝑅𝑇 (𝑎)]
2
+ ≤

∑︁
𝑎∈[𝐴]

[𝑅𝑇−1(𝑎)]
2
+ + 2

∑︁
𝑎∈[𝐴]

[𝑅𝑇−1(𝑎)]+𝑟𝑇 (𝑎) +
∑︁
𝑎∈[𝐴]

𝑟𝑇 (𝑎)
2

=
∑︁
𝑎∈[𝐴]

[𝑅𝑇−1(𝑎)]
2
+ +

∑︁
𝑎∈[𝐴]

𝑟𝑇 (𝑎)
2 ≤

𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

𝑟𝑡(𝑎)
2.

Using that max𝑎𝑅𝑇 (𝑎) ≤ max𝑎[𝑅𝑇 (𝑎)]+ ≤ (
∑︀

𝑎∈[𝐴][𝑅𝑇 (𝑎)]
2
+)

1/2 gives the regret

bound

Regret(𝑇) = max
𝑎∈[𝐴]

𝑅𝑇 (𝑎) ≤

⎛⎝ 𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

𝑟𝑡(𝑎)
2

⎞⎠1/2

=

⎛⎝ 𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

(︁⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎))︁2

⎞⎠1/2

.

The claimed bound with 𝜂 follows directly from the inequality
√
𝑧 ≤ 1/𝜂 + 𝜂𝑧/4 for

244

any 𝜂 > 0, 𝑧 ≥ 0.

Remark 117. The quantity
∑︀

𝑎∈[𝐴]

(︁⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎))︁2 above can be upper bounded

as

∑︁
𝑎∈[𝐴]

(︁⟨
𝑝𝑡, ̃︀ℓ𝑡⟩− ̃︀ℓ𝑡(𝑎))︁2 ≤ ∑︁

𝑎∈[𝐴]

(︂⟨
𝑝𝑡, ̃︀ℓ𝑡⟩2 + ̃︀ℓ𝑡(𝑎)2)︂

= 𝐴
⟨
𝑝𝑡, ̃︀ℓ𝑡⟩2 + ‖̃︀ℓ𝑡‖22 ≤ 𝐴

∑︁
𝑎∈[𝐴]

(︁
𝑝𝑡(𝑎)̃︀ℓ𝑡(𝑎)2 + (1/𝐴)̃︀ℓ𝑡(𝑎)2)︁

= 2𝐴
∑︁
𝑎∈[𝐴]

𝑝𝑡(𝑎)̃︀ℓ𝑡(𝑎)2,
where 𝑝𝑡(𝑎) = [𝑝𝑡(𝑎) + (1/𝐴)]/2 is a probability distribution over [𝐴].

As a consequence, we get an upper bound on the regret of Regret Matching algo-

rithm by

Regret(𝑇) ≤ 1

𝜂
+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝑎∈[𝐴]

(𝐴𝑝𝑡(𝑎))̃︀ℓ𝑡(𝑎)2.
Comparing to the bound of Hedge (Lemma 115), the above regret bound for Regret

Matching has a similar form except for replacing log𝐴 by 1 and replacing 𝑝𝑡 by 𝐴𝑝𝑡.

D.2.3 Φ-Hedge

The following lemma is standard and gives a Φ-regret bound of the Φ-Hedge algo-

rithm.

Lemma 118 (Regret bound for Φ-Hedge). For strategy modification vertex set Φ0,

step size 𝜂, and total steps 𝑇 , running Algorithm 9 gives

RegΦ(𝑇) ≤ log |Φ0|
𝜂

+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝜑∈Φ0

𝑝𝑡𝜑
(︀
⟨𝜑𝜇𝑡, ℓ𝑡⟩

)︀2
.

Proof. We have

RegΦ(𝑇) = sup
𝜑∈Φ

𝑇∑︁
𝑡=1

⟨𝜇𝑡 − 𝜑𝜇𝑡, ℓ𝑡⟩ (𝑖)= sup
𝜑∈Φ

𝑇∑︁
𝑡=1

⟨𝜑𝑡𝜇𝑡 − 𝜑𝜇𝑡, ℓ𝑡⟩

245

(𝑖𝑖)
= sup

𝑝∈ΔΦ0

𝑇∑︁
𝑡=1

∑︁
𝜑∈Φ0

(︀
𝑝𝑡𝜑⟨𝜑𝜇𝑡, ℓ𝑡⟩ − 𝑝𝜑⟨𝜑𝜇𝑡, ℓ𝑡⟩

)︀
.

Above, (i) uses the fixed point equation 𝜑𝑡𝜇𝑡 = 𝜇𝑡 (Line 4), and (ii) uses the fact

that Φ = conv{Φ0}. Note that the above expression is exactly the regret of {𝑝𝑡}𝑇𝑡=1,

where the loss vector in the 𝑡-th round is {⟨𝜑𝜇𝑡, ℓ𝑡⟩}𝜑∈Φ0 . Further, the update rule

of 𝑝𝑡 (Line 6) coincides with Hedge algorithm. So by the standard regret bound for

Hedge, see, e.g. (Lattimore and Szepesvári [2020], Proposition 28.7), we have

RegΦ(𝑇) = sup
𝑝∈ΔΦ0

𝑇∑︁
𝑡=1

∑︁
𝜑∈Φ0

(︀
𝑝𝑡𝜑⟨𝜑𝜇𝑡, ℓ𝑡⟩ − 𝑝𝜑⟨𝜑𝜇𝑡, ℓ𝑡⟩

)︀
≤ log |Φ0|

𝜂
+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝜑∈Φ0

𝑝𝜑
(︀
⟨𝜑𝜇𝑡, ℓ𝑡⟩

)︀2
.

This proves the lemma.

The following Freedman’s inequality can be found in [Agarwal et al., 2014, Lemma

9].

Lemma 119 (Freedman’s inequality). Suppose random variables {𝑋𝑡}𝑇𝑡=1 is a martin-

gale difference sequence, i.e. 𝑋𝑡 ∈ ℱ𝑡 where {ℱ𝑡}𝑡≥1 is a filtration, and E[𝑋𝑡|ℱ𝑡−1] =

0. Suppose 𝑋𝑡 ≤ 𝑅 almost surely for some (non-random) 𝑅 > 0. Then for any

𝜆 ∈ (0, 1/𝑅], we have with probability at least 1− 𝛿 that

𝑇∑︁
𝑡=1

𝑋𝑡 ≤ 𝜆 ·
𝑇∑︁
𝑡=1

E
[︀
𝑋2
𝑡 |ℱ𝑡−1

]︀
+

log(1/𝛿)

𝜆
.

D.3 Equivalence to classical definitions of EFGs

We first formally define Extensive-Form Games (EFGs). We then show that solving

EFGs with adversarial opponents can be reduced to solving Tree-Formed AMDP. See

Section 5.1 for the classical definition of IIEFGs.

246

D.3.1 Reduction from classical definition of EFGs to TFAMDP

In this section, we show that solving EFGs with adversarial opponents can be reduced

to solving TFAMDP. Formally, we prove the following proposition.

Proposition 120. For any EFG (i.e. POMG with tree structure and perfect recall as-

sumptions) (𝐻,𝒮,𝒳 ,𝒴 ,𝒜,ℬ,P, 𝑟) with adversarial opponents’ policies {𝜈𝑡}𝑡≥1, there

exists an adversarial MDP (𝐻̃, 𝒳̃ , 𝒜̃, 𝒯) with adversarial transition {𝑝𝑡 = {𝑝𝑡ℎ}ℎ∈{0}∪[𝐻]}𝑡≥1

and reward {𝑅̃𝑡 = {𝑅̃𝑡
ℎ}ℎ∈[𝐻]}𝑡≥1, so that for any policy sequences {𝜇𝑡}𝑡≥1, their joint

distributions over the learner’s trajectory 𝑃 (𝑥1, 𝑎1, 𝑥2, 𝑎2, . . . , 𝑥𝐻 , 𝑎𝐻 , 𝑟) are exactly

the same for all episodes 𝑡 ≥ 1.

We remark that the joint distribution 𝑃 (𝑥1, 𝑎1, 𝑥2, 𝑎2, . . . , 𝑥𝐻 , 𝑎𝐻 , 𝑟) gives a com-

plete description about what the first player can obtain from the dynamic systems

in both models. The joint distributions being the same for two models means that

information-theoretically, the learner has no way to distinguish the two models, thus

proving their equivalence.

Proof of Proposition 120. In this section, we will use the notation in its original form

𝒳 ,𝒜, 𝑝, 𝑟 to denote the quantity in EFGs while use their tilded form 𝒳̃ , 𝒜̃, 𝑝, 𝑅̃ to

denote the corresponding quantity in tree-form AMDP. It is not hard to see that in

order to prove Proposition 120 for all 𝑡 ≥ 1, it suffices to prove for a fixed 𝑡 it is true.

Construction of AMDP we construct the corresponding AMDP using EFGs in

the following way: we let 𝐻̃ = 𝐻, 𝒳̃ = 𝒳 , 𝒜̃ = 𝒜. Since EFG satisfies perfect recall

assumption, which defines the immediate children function 𝒞. We use the precisely

same child function to define the tree structure 𝒯 in AMDP. We define the adversarial

transition according to the following equations:

𝑝𝑡1(𝑥1) :=
∑︁
𝑠1∈𝑥1

𝑝1(𝑠1),

𝑝𝑡ℎ(𝑥ℎ+1|𝑥ℎ, 𝑎ℎ) :=
∑︀

𝑠ℎ+1∈𝑥ℎ+1

∑︀
𝑏ℎ+1∈ℬ 𝑝1:ℎ+1(𝑠ℎ+1)𝜈

𝑡
1:ℎ+1(𝑦ℎ+1(𝑠ℎ+1), 𝑏ℎ+1)∑︀

𝑠ℎ∈𝑥ℎ

∑︀
𝑏ℎ∈ℬ 𝑝1:ℎ(𝑠ℎ)𝜈

𝑡
1:ℎ(𝑦ℎ(𝑠ℎ), 𝑏ℎ)

,

247

where 𝑦ℎ+1(𝑠ℎ+1) and 𝑦ℎ(𝑠ℎ) are the infoset of opponent at (ℎ+ 1)-th and ℎ-th steps

given state 𝑠ℎ+1 and 𝑠ℎ respectively. We also define the adversarial reward distribution

𝑅̃𝑡
𝐻(·|𝑥𝐻 , 𝑎𝐻) such that it gives the following distribution over reward 𝑟 ∈ [0, 1] for

any fixed (𝑥𝐻 , 𝑎𝐻)

𝑟 = 𝑟(𝑠𝐻 , 𝑎𝐻 , 𝑏𝐻) with probability
𝑝1:𝐻(𝑠𝐻)𝜈

𝑡
1:𝐻(𝑦𝐻(𝑠𝐻), 𝑏𝐻)∑︀

𝑠′𝐻∈𝑥𝐻

∑︀
𝑏′𝐻∈ℬ 𝑝1:𝐻(𝑠

′
𝐻)𝜈

𝑡
1:𝐻(𝑦𝐻(𝑠

′
𝐻), 𝑏

′
𝐻)
.

And we set the adversarial reward 𝑅̃𝑡
ℎ(·|𝑥ℎ, 𝑎ℎ) to be zero (almost surely) for all

ℎ ≤ 𝐻 − 1 and all (𝑥ℎ, 𝑎ℎ, 𝑡).

Proof of equivalence Denote 𝑃 𝜇,𝑡 as the probability of AMDP at episode 𝑡 with

policy 𝜇; denote 𝑃 𝜇,𝜈𝑡 as the probability of EFGs under policy 𝜇 and 𝜈𝑡. It is very

easy to check by induction over step ℎ, that for any ℎ ∈ [𝐻], and all policy 𝜇

simultaneously:

𝑃 𝜇,𝑡(𝑥ℎ, 𝑎ℎ) = 𝑃 𝜇,𝜈𝑡(𝑥ℎ, 𝑎ℎ) =
∑︁
𝑠ℎ∈𝑥ℎ

∑︁
𝑏ℎ∈ℬ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝1:ℎ(𝑠ℎ)𝜈
𝑡
1:ℎ(𝑦ℎ(𝑠ℎ), 𝑏ℎ).

This proves that the joint distribution:

𝑃 𝜇,𝑡(𝑥1, 𝑎1, . . . , 𝑥𝐻 , 𝑎𝐻) = 𝑃 𝜇,𝜈𝑡(𝑥1, 𝑎1, . . . , 𝑥𝐻 , 𝑎𝐻). (D.4)

Finally, the construction of adversarial reward is such that its conditional distribution

given (𝑥𝐻 , 𝑎𝐻) is exactly the same as the conditional distribution of the reward in the

EFG:

𝑅̃𝑡
𝐻(𝑟 = 𝑟(𝑠𝐻 , 𝑎𝐻 , 𝑏𝐻)|𝑥𝐻 , 𝑎𝐻) = 𝑃 𝜇,𝜈𝑡(𝑟 = 𝑟(𝑠𝐻 , 𝑎𝐻 , 𝑏𝐻)|𝑥𝐻 , 𝑎𝐻),

which immediately gives that:

𝑃 𝜇,𝑡(𝑟𝐻 |𝑥1, 𝑎1, . . . , 𝑥𝐻 , 𝑎𝐻) = 𝑃 𝜇,𝜈𝑡(𝑟|𝑥1, 𝑎1, . . . , 𝑥𝐻 , 𝑎𝐻). (D.5)

Combining (D.4) and (D.5), we finish the proof.

248

D.4 Proof of Theorem 35

Both the regret and PAC lower bounds follow from a direct reduction to stochastic

multi-armed bandits. For completeness, we first state the lower bound for stochastic

bandits [Lattimore and Szepesvári, 2020, Exercise 15.4 & Exercise 33.1] as follows.

Below, 𝑐 is an absolute constant.

Proposition 121 (Lower bound for stochastic bandits). Let 𝐾 ≥ 2 denote the num-

ber of arms.

1. (Regret lower bound) Suppose 𝑇 ≥ 𝐾. For any bandit algorithm that plays policy

𝜇𝑡 ∈ Δ([𝐾]) (either deterministic or random) in round 𝑡 ∈ [𝑇], there exists some

𝐾-armed stochastic bandit problem with Bernoulli rewards with mean vector

𝑟 ∈ [0, 1]𝐾, on which the algorithm suffers from the following lower bound on

the expected regret:

E

[︃
max

𝜇†∈Δ([𝐾])

𝑇∑︁
𝑡=1

⟨︀
𝜇† − 𝜇𝑡, 𝑟

⟩︀]︃
≥ 𝑐 ·

√
𝐾𝑇.

2. (PAC lower bound) For any bandit algorithm that plays for 𝑡 rounds and outputs

some policy ̂︀𝜇 ∈ Δ([𝐾]), there exists some 𝐾-armed stochastic bandit problem

with Bernoulli rewards with some mean vector 𝑟 ∈ [0, 1]𝐾, on which policy ̂︀𝜇 is

at least 𝜀 away from optimal:

E
[︂

max
𝜇†∈Δ([𝐾])

⟨︀
𝜇† − ̂︀𝜇, 𝑟⟩︀]︂ ≥ 𝜀,

unless 𝑇 ≥ 𝑐𝐾/𝜀2.

We now construct a class of IIEFGs with 𝑋𝐻 = 𝐴𝐻−1 (the minimal possible

number of infosets), and show that any algorithm that solves this class of games will

imply an algorithm for stochastic bandits with 𝐴𝐻 arms with the same regret/PAC

bounds, from which Theorem 35 follows.

Our construction is as follows: For any 𝐴 ≥ 2 and 𝐻 ≥ 1, we let 𝑆ℎ = 𝐴ℎ−1 for all

ℎ ∈ [𝐻] (in particular, 𝑆1 = 1) and 𝐵 = 1 (so that there is no opponent effectively).

249

By the tree structure, each state is thus uniquely determined by all past actions

𝑠ℎ = (𝑎1, . . . , 𝑎ℎ−1), and the transition is deterministic: ((𝑎1, . . . , 𝑎ℎ−1), 𝑎ℎ) ∈ 𝒮ℎ ×𝒜

transits to (𝑎1, . . . , 𝑎ℎ) ∈ 𝒮ℎ+1 with probability one. Further, we let 𝑥ℎ = 𝑥(𝑠ℎ) = 𝑠ℎ,

so that there is no partial observability, and thus 𝒳ℎ = 𝒮ℎ for all ℎ. Only the 𝐻-th

layer yields a Bernoulli reward with some mean 𝑟𝑎1:𝐻 := E[𝑟𝐻(𝑎1:𝐻−1, 𝑎𝐻)] ∈ [0, 1], for

all 𝑎1:𝐻 ∈ 𝒳𝐻 . The reward is zero within all previous layers.

Under this model, the expected reward under any policy 𝜇 ∈ Πmax can be suc-

cinctly written as

⟨𝜇, 𝑟⟩ =
∑︁

(𝑥𝐻 ,𝑎𝐻)∈𝒳𝐻×𝒜

𝜇1:𝐻(𝑥𝐻 , 𝑎𝐻)E[𝑟𝐻(𝑥ℎ, 𝑎𝐻)] =
∑︁

𝑎1:𝐻∈𝒜𝐻

𝜇1:𝐻(𝑎1:𝐻)𝑟𝑎1:𝐻 .

This expression coincides with the expression for the expected reward of an 𝐴𝐻-armed

stochastic bandit problem.

Now, for any algorithm Alg achieving regret R𝑇 on IIEFGs, we claim we can

use it to design an algorithm for solving any 𝐴𝐻-armed stochastic bandit problem

with Bernoulli rewards, and achieve the same regret. Indeed, given any 𝐴𝐻-armed

bandit problem, we rename its arms as a sequence 𝑎1:𝐻 = (𝑎1, . . . , 𝑎𝐻) ∈ 𝒜𝐻 . Now,

we instantiate an instance of Alg on a simulated IIEFG with the above structure.

Whenever Alg plays policy 𝜇𝑡 ∈ Πmax, we query an arm 𝑎1:𝐻 using policy 𝜇𝑡1:𝐻(·) ∈

Δ(𝒜𝐻) in the bandit problem. Then, upon receiving the reward 𝑟𝑡 from the bandit

problem, we give the feedback that the game transitted to infoset 𝑎1:𝐻 and yielded

reward 𝑟𝑡. By the above equivalence, the regret R𝑇 within this simulated game is

exactly the same as the regret for the bandit problem.

Therefore, for 𝑇 ≥ 𝐴𝐻 , we can apply Proposition 121(a) to show that for any

such Alg, there exists one such IIEFG, on which

E
[︀
R𝑇
]︀
≥ 𝑐 ·

√
𝐴𝐻𝑇 = 𝑐

√︀
𝑋𝐻𝐴𝑇 ≥ 𝑐

√
𝑋𝐴𝑇,

where the last inequality follows from the fact that 𝑋 ≤ 𝑋𝐻(1+1/𝐴+1/𝐴2+ · · ·) ≤

𝑋𝐻/(1− 1/𝐴) ≤ 2𝑋𝐻 by perfect recall. This shows part (a).

250

Part (b) (PAC lower bound) follows similarly from Proposition 121(b). Using

the same reduction, we can show for any algorithm that controls both players and

outputs policy (̂︀𝜇, ̂︀𝜈) ∈ Πmax × Πmin, there exists one such game of the above form

(where only the max player affects the game) where the algorithm suffers from the

PAC lower bound

E[NEGap(̂︀𝜇, ̂︀𝜈)] = E
[︂
max
𝜇∈Πmax

𝑉 𝜇†,̂︀𝜈 − 𝑉 ̂︀𝜇,̂︀𝜈]︂ ≥ 𝜀

unless 𝑇 ≥ 𝑐𝑋𝐴/𝜀2. The symmetrical construction for the min player implies that

there exists some game on which E[NEGap(̂︀𝜇, ̂︀𝜈)] ≥ 𝜀 unless 𝑇 ≥ 𝑐𝑌 𝐵/𝜀2.

Therefore, if 𝑇 < 𝑐(𝑋𝐴+𝑌 𝐵)/(2𝜀2), at least one of 𝑇 ≥ 𝑐𝑋𝐴/𝜀2 and 𝑇 ≥ 𝑐𝑌 𝐵/𝜀2

has to be false, for which we obtain a game where the expected duality gap is at least

𝜀. This shows part (b).

251

252

Appendix E

Proofs for Chapter 6

E.1 Proofs of balanced exploration policy

Proof of Lemma 37. We have

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

=
∑︁

𝑥ℎ−1,𝑎ℎ−1

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒞(𝑥ℎ−1,𝑎ℎ−1)×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) · 𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) · (1/𝐴)

(𝑖)
= 𝐴 ·

∑︁
𝑥ℎ−1,𝑎ℎ−1

∑︁
𝑥ℎ∈𝒞(𝑥ℎ−1,𝑎ℎ−1)

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

= 𝐴 ·
∑︁

𝑥ℎ−1,𝑎ℎ−1

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
· |𝒞ℎ(𝑥ℎ−1, 𝑎ℎ−1)|

(𝑖𝑖)
= 𝐴 ·

∑︁
𝑥ℎ−2,𝑎ℎ−2

∑︁
(𝑥ℎ−1,𝑎ℎ−1)∈𝒞(𝑥ℎ−2,𝑎ℎ−2)×𝒜

𝜇1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)𝜇ℎ−1(𝑎ℎ−1|𝑥ℎ−1)

𝜇⋆,ℎ1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2) · |𝒞ℎ(𝑥ℎ−1, 𝑎ℎ−1)|/|𝒞ℎ(𝑥ℎ−1)|
· |𝒞ℎ(𝑥ℎ−1, 𝑎ℎ−1)|

= 𝐴 ·
∑︁

𝑥ℎ−2,𝑎ℎ−2

∑︁
(𝑥ℎ−1,𝑎ℎ−1)∈𝒞(𝑥ℎ−2,𝑎ℎ−2)×𝒜

𝜇1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)𝜇ℎ−1(𝑎ℎ−1|𝑥ℎ−1)

𝜇⋆,ℎ1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)
· |𝒞ℎ(𝑥ℎ−1)|

= 𝐴 ·
∑︁

𝑥ℎ−2,𝑎ℎ−2

∑︁
(𝑥ℎ−1,𝑎ℎ−1)∈𝒞(𝑥ℎ−2,𝑎ℎ−2)×𝒜

𝜇1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)𝜇ℎ−1(𝑎ℎ−1|𝑥ℎ−1)

𝜇⋆,ℎ1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)
· |𝒞ℎ(𝑥ℎ−1)|

(𝑖𝑖𝑖)
= 𝐴 ·

∑︁
𝑥ℎ−2,𝑎ℎ−2

𝜇1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)

𝜇⋆,ℎ1:(ℎ−2)(𝑥ℎ−2, 𝑎ℎ−2)
· |𝒞ℎ(𝑥ℎ−2, 𝑎ℎ−2)|

253

= . . .

= 𝐴 ·
∑︁
𝑥1,𝑎1

𝜇1(𝑎1|𝑥1)
|𝒞ℎ(𝑥1, 𝑎1)|/|𝒞ℎ(𝑥1)|

· |𝒞ℎ(𝑥1, 𝑎1)|

= 𝐴 ·
∑︁
𝑥1,𝑎1

𝜇1(𝑎1|𝑥1) · |𝒞ℎ(𝑥1)|

= 𝐴 ·
∑︁
𝑥1

|𝒞ℎ(𝑥1)| = 𝐴 · |𝒞ℎ(∅)| = 𝑋ℎ𝐴.

Above, (i) used the definition of 𝜇⋆,ℎℎ and the fact that
∑︀

𝑎ℎ∈𝒜 𝜇ℎ(𝑎ℎ|𝑥ℎ) = 1 for any 𝜇,

𝑥ℎ; (ii) used the definition of 𝜇⋆,ℎℎ−1; (iii) used the fact that
∑︀

𝑥ℎ−1∈𝒞(𝑥ℎ−2,𝑎ℎ−2)
|𝒞ℎ(𝑥ℎ−1)| =

|𝒞ℎ(𝑥ℎ−2, 𝑎ℎ−2)| which follows by the additivity of the number of descendants; and the

rest followed by performing the same operations repeatedly.

The following corollary is similar to the lower bound in [Farina et al., 2020b,

Appendix A.3].

Corollary 122. We have

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ≥
1

𝑋ℎ𝐴

for any ℎ ∈ [𝐻] and (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ ×𝒜.

Proof. Choose some deterministic policy 𝜇 s.t. 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ) = 1 in Lemma 37 and

noticing each term in the summation is non-negative,

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
≤ 𝑋ℎ𝐴.

E.2 Proofs for Balanced dilated KL

Proof of Lemma 40. We have

max
𝜇†∈Πmax

Dbal(𝜇†‖𝜇unif) = max
𝜇†∈Πmax

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log

𝜇†
ℎ(𝑎ℎ|𝑥ℎ)

𝜇unif
ℎ (𝑎ℎ|𝑥ℎ)

254

= max
𝜇†∈Πmax

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(︁
log 𝜇†

ℎ(𝑎ℎ|𝑥ℎ) + log𝐴
)︁

(𝑖)

≤ log𝐴
𝐻∑︁
ℎ=1

max
𝜇†∈Πmax

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖)
= log𝐴

𝐻∑︁
ℎ=1

𝑋ℎ𝐴 = 𝑋𝐴 log𝐴,

where (𝑖) is because 𝜇†
ℎ(𝑎ℎ|𝑥ℎ) log 𝜇

†
ℎ(𝑎ℎ|𝑥ℎ) ≤ 0 (recalling that each sequence form

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ) contains the term 𝜇†

ℎ(𝑎ℎ|𝑥ℎ)), and (𝑖𝑖) uses the balancing property of 𝜇⋆,ℎ

(Lemma 37).

Proof of Lemma 41. By Eq. (6.7) and by the definition of KL divergence, we have

(𝑋ℎ𝐴)D
kl(P𝜇1:ℎ,⋆ℎ ‖P𝜇1:ℎ−1𝜈ℎ,⋆

ℎ)

= (𝑋ℎ𝐴)
∑︁

(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
⋆,ℎ
1:ℎ(𝑥ℎ) log

[︁ 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
⋆,ℎ
1:ℎ(𝑥ℎ)

𝜇1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)𝜈ℎ(𝑥ℎ|𝑎ℎ)𝑝⋆,ℎ1:ℎ(𝑥ℎ)

]︁
=

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log
[︁𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜈ℎ(𝑎ℎ|𝑥ℎ)

]︁
,

(E.1)

where the last equality is by Lemma 38. Comparing with the definition of Dbal as in

Eq. (6.5) concludes the proof.

E.3 Proofs for Section 6.2

E.3.1 Efficient implementation for Update (6.10)

Lemma 123. Algorithm 23 indeed solves the optimization problem (6.10):

𝜇𝑡+1 ← argmin
𝜇∈Πmax

⟨
𝜇, ̃︀ℓ𝑡⟩+

1

𝜂
D(𝜇‖𝜇𝑡).

Proof. First, by the sparsity of the loss estimator ̃︀ℓ𝑡 (cf. (6.9)), the above objective

255

Algorithm 23 Implementation of Balanced OMD update
Require: Current policy 𝜇𝑡; Trajectory (𝑥𝑡1, 𝑎

𝑡
1, . . . , 𝑥

𝑡
𝐻 , 𝑎

𝑡
𝐻); learning rate 𝜂 > 0;

Loss vector
{︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}︁

ℎ,𝑥ℎ,𝑎ℎ
that is non-zero only on (𝑥ℎ, 𝑎ℎ) = (𝑥𝑡ℎ, 𝑎

𝑡
ℎ).

1: Set 𝑍𝑡𝐻+1 ← 1.
2: for ℎ = 𝐻, . . . , 1 do
3: Compute normalization constant

𝑍𝑡ℎ ← 1− 𝜇𝑡ℎ(𝑎
𝑡
ℎ|𝑥𝑡ℎ) + 𝜇𝑡ℎ(𝑎

𝑡
ℎ|𝑥𝑡ℎ) · exp

(︃
−𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)
̃︀ℓ𝑡ℎ(𝑥𝑡ℎ, 𝑎𝑡ℎ) + 𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ) log𝑍

𝑡
ℎ+1

𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

)︃
.

4: Update policy at 𝑥𝑡ℎ:

𝜇𝑡+1
ℎ (𝑎ℎ|𝑥𝑡ℎ)←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜇𝑡ℎ(𝑎ℎ|𝑥𝑡ℎ) · exp

(︃
−𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)
̃︀ℓ𝑡ℎ(𝑥𝑡ℎ, 𝑎𝑡ℎ) + 𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ) log𝑍

𝑡
ℎ+1

𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

− log𝑍𝑡ℎ

)︃
if 𝑎ℎ = 𝑎𝑡ℎ,

𝜇𝑡ℎ(𝑎ℎ|𝑥𝑡ℎ) · exp(− log𝑍𝑡ℎ) otherwise.

5: Set 𝜇𝑡+1
ℎ (·|𝑥ℎ)← 𝜇𝑡ℎ(·|𝑥ℎ) for all 𝑥ℎ ∈ 𝒳ℎ ∖

{︀
𝑥𝑡ℎ
}︀
.

Ensure: Updated policy 𝜇𝑡+1.

can be written succinctly as

⟨
𝜇, ̃︀ℓ𝑡⟩+

1

𝜂
D(𝜇‖𝜇𝑡) (E.2)

=
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

[︃̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ) + 1

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log

𝜇ℎ(𝑎ℎ|𝑥ℎ)
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

]︃

=
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ

𝜇1:ℎ−1(𝑥ℎ)

[︃⟨
𝜇ℎ(·|𝑥ℎ), ̃︀ℓ𝑡ℎ (𝑥ℎ, ·)⟩+

KL (𝜇ℎ(·|𝑥ℎ)||𝜇𝑡ℎ(·|𝑥ℎ))
𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

]︃

=
𝐻∑︁
ℎ=1

{𝜇1:ℎ−1(𝑥
𝑡
ℎ)

[︃
𝜇ℎ(𝑎

𝑡
ℎ|𝑥𝑡ℎ)̃︀ℓ𝑡ℎ (︀𝑥𝑡ℎ, 𝑎𝑡ℎ)︀+ KL (𝜇ℎ(·|𝑥ℎ)||𝜇𝑡ℎ(·|𝑥ℎ))

𝜂𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

]︃

+
∑︁
𝑥ℎ ̸=𝑥𝑡ℎ

𝜇1:ℎ−1(𝑥ℎ)
KL (𝜇ℎ(·|𝑥ℎ)||𝜇𝑡ℎ(·|𝑥ℎ))

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
}. (E.3)

We now show the equivalence by backward induction over ℎ = 𝐻, . . . , 1. For ℎ = 𝐻,

we can optimize over the 𝐻-th layer directly to see

𝜇𝑡+1
𝐻 (𝑎𝐻 |𝑥𝑡𝐻) ∝𝑎𝐻 𝜇𝑡𝐻(𝑎𝐻 |𝑥𝑡𝐻) exp

{︁
−𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎ℎ)

̃︀ℓ𝑡𝐻(𝑥𝑡𝐻 , 𝑎𝐻)}︁
256

= 𝜇𝑡𝐻(𝑎𝐻 |𝑥𝑡𝐻) exp
{︁
−𝜂̃︀ℓ𝑡𝐻(𝑥𝑡𝐻 , 𝑎𝐻)− log𝑍𝑡

𝐻

}︁
,

where 𝑍𝑡
𝐻 > 0 is the normalization constant. For all non-visited 𝑥𝐻 ̸= 𝑥𝑡𝐻 , by

equation (E.3) and non-negativity of KL divergence, the object must be minimized

at 𝜇𝑡+1
𝐻 (·|𝑥𝐻) = 𝜇𝑡ℎ(·|𝑥𝐻).

If the claim holds from layer ℎ + 1 to 𝐻, consider the ℎ-th layer. Plug in the

proved optimizer after layer ℎ, the objective (E.3) can be written as

𝐻∑︁
ℎ′=1

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

[︃̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , 𝑎ℎ′) + 1

𝜂𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)
log

𝜇ℎ′(𝑎ℎ′ |𝑥ℎ′)
𝜇𝑡ℎ′(𝑎ℎ′ |𝑥ℎ′)

]︃

=
𝐻∑︁
ℎ′=1

∑︁
𝑥ℎ′

𝜇1:ℎ′−1(𝑥ℎ′)

[︃⟨
𝜇ℎ′(·|𝑥ℎ′), ̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , ·)⟩+

KL (𝜇ℎ′(·|𝑥ℎ′)||𝜇𝑡ℎ′(·|𝑥ℎ′))
𝜂𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

]︃

=
ℎ∑︁

ℎ′=1

∑︁
𝑥ℎ′

𝜇1:ℎ′−1(𝑥ℎ′)

[︃⟨
𝜇ℎ′(·|𝑥ℎ′), ̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , ·)⟩+

KL (𝜇ℎ′(·|𝑥ℎ′)||𝜇𝑡ℎ′(·|𝑥ℎ′))
𝜂𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

]︃

+
𝐻∑︁

ℎ′=ℎ+1

[︃
𝜇1:ℎ′(𝑥

𝑡
ℎ′ , 𝑎

𝑡
ℎ′) log𝑍

𝑡
ℎ′+1

𝜂𝜇⋆,ℎ
′+1

1:ℎ′+1(𝑥
𝑡
ℎ′+1, 𝑎

𝑡
ℎ′+1)

−
𝜇1:ℎ′−1(𝑥

𝑡
ℎ′−1, 𝑎

𝑡
ℎ′−1) log𝑍

𝑡
ℎ′

𝜂𝜇⋆,ℎ
′

1:ℎ′(𝑥
𝑡
ℎ′ , 𝑎

𝑡
ℎ′)

]︃

=
ℎ∑︁

ℎ′=1

∑︁
𝑥ℎ′

𝜇1:ℎ′−1(𝑥ℎ′)

[︃⟨
𝜇ℎ′(·|𝑥ℎ′), ̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , ·)⟩+

KL (𝜇ℎ′(·|𝑥ℎ′)||𝜇𝑡ℎ′(·|𝑥ℎ′))
𝜂𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

]︃

−
𝜇1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ) log𝑍

𝑡
ℎ+1

𝜂𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

=
ℎ−1∑︁
ℎ′=1

∑︁
𝑥ℎ′

𝜇1:ℎ′−1(𝑥ℎ′)

[︃⟨
𝜇ℎ′(·|𝑥ℎ′), ̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , ·)⟩+

KL (𝜇ℎ′(·|𝑥ℎ′)||𝜇𝑡ℎ′(·|𝑥ℎ′))
𝜂𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

]︃

+ 𝜇1:ℎ−1(𝑥
𝑡
ℎ)

[︃
𝜇ℎ(𝑎

𝑡
ℎ|𝑥𝑡ℎ)

(︁̃︀ℓ𝑡ℎ (︀𝑥𝑡ℎ, 𝑎𝑡ℎ)︀− log𝑍𝑡
ℎ+1

𝜂𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

)︁
+

KL (𝜇ℎ(·|𝑥𝑡ℎ)||𝜇𝑡ℎ(·|𝑥𝑡ℎ))
𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎ℎ)

]︃

+
∑︁
𝑥ℎ ̸=𝑥𝑡ℎ

𝜇1:ℎ−1(𝑥ℎ)
KL (𝜇ℎ(·|𝑥ℎ)||𝜇𝑡ℎ(·|𝑥ℎ))

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
.

Thus in the ℎ layer we can optimize by setting

𝜇𝑡+1
ℎ (𝑎ℎ|𝑥𝑡ℎ)

=
𝜇𝑡ℎ(𝑎ℎ|𝑥𝑡ℎ)

𝑍𝑡
ℎ

exp

{︃
−

[︃
𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎ℎ)

̃︀ℓ𝑡ℎ(𝑥𝑡ℎ, 𝑎ℎ)− 𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

log𝑍𝑡
ℎ+1

]︃
1
{︀
𝑎ℎ = 𝑎𝑡ℎ

}︀}︃
.

257

For all non-visited 𝑥ℎ ̸= 𝑥𝑡ℎ, by non-negativity of KL divergence, the object must be

minimized at 𝜇𝑡+1
ℎ (·|𝑥ℎ) = 𝜇𝑡ℎ(·|𝑥ℎ). This is exactly the update rule in Algorithm 23.

E.3.2 Proof of Theorem 42

Decompose the regret as

R𝑇 = max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀
(E.4)

≤
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − ̃︀ℓ𝑡⟩⏟ ⏞
BIAS1

+ max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨
𝜇†, ̃︀ℓ𝑡 − ℓ𝑡⟩⏟ ⏞

BIAS2

+ max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨
𝜇𝑡 − 𝜇†, ̃︀ℓ𝑡⟩⏟ ⏞

REGRET

. (E.5)

We now state three lemmas that bound each of the three terms above. Their

proofs are presented in Section E.3.4, E.3.5, and E.3.6 respectively. Below, 𝜄 :=

log(3𝐻𝑋𝐴/𝛿) denotes a log factor.

Lemma 124 (Bound on BIAS1). With probability at least 1− 𝛿/3, we have

BIAS1 ≤ 𝐻
√
2𝑇𝜄+ 𝛾𝐻𝑇.

Lemma 125 (Bound on BIAS2). With probability at least 1− 𝛿/3, we have

BIAS2 ≤ 𝑋𝐴𝜄/𝛾.

Lemma 126 (Bound on REGRET). With probability at least 1− 𝛿/3, we have

REGRET ≤ 𝑋𝐴 log𝐴

𝜂
+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾
.

Putting the bounds together, we have that with probability at least 1− 𝛿,

R𝑇 ≤ 𝑋𝐴 log𝐴

𝜂
+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾
+𝐻
√
2𝑇𝜄+ 𝛾𝐻𝑇 +

𝑋𝐴𝜄

𝛾
.

258

Set 𝜂 =
√︁

𝑋𝐴 log𝐴
𝐻3𝑇

and 𝛾 =
√︁

𝑋𝐴𝜄
𝑇𝐻

, we have

R𝑇 ≤ 6
√
𝑋𝐴𝐻3𝑇𝜄+𝐻𝑋𝐴𝜄.

Additionally, recall the naive bound R𝑇 ≤ 𝐻𝑇 on the regret (which follows as

⟨𝜇𝑡, ℓ𝑡⟩ ∈ [0, 𝐻] for any 𝜇 ∈ Πmax, 𝑡 ∈ [𝑇]), we get

R𝑇 ≤ min
{︁
6
√
𝑋𝐴𝐻3𝑇𝜄+𝐻𝑋𝐴𝜄,𝐻𝑇

}︁
≤ 𝐻𝑇 ·min

{︁
6
√︀
𝑋𝐴𝐻𝜄/𝑇 +𝑋𝐴𝜄/𝑇, 1

}︁
.

For 𝑇 > 𝐻𝑋𝐴𝜄, the min above is upper bounded by 7
√︀
𝐻𝑋𝐴𝜄/𝑇 . For 𝑇 ≤ 𝐻𝑋𝐴𝜄,

the min above is upper bounded by 1 ≤ 7
√︀
𝐻𝑋𝐴𝜄/𝑇 . Therefore, we always have

R𝑇 ≤ 𝐻𝑇 · 7
√︀
𝐻𝑋𝐴𝜄/𝑇 = 7

√
𝐻3𝑋𝐴𝑇𝜄.

This is the desired result.

The rest of this section is devoted to proving the above three lemmas.

E.3.3 A concentration result

We begin by presenting a useful concentration result. This result is a variant of [Kozuno

et al., 2021, Lemma 3] and [Neu, 2015, Lemma 1] suitable to our loss estimator (6.9)

where the IX bonus on the denominator depends on (𝑥ℎ, 𝑎ℎ).

Lemma 127. For some fixed ℎ ∈ [𝐻], let 𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ) ∈
[︁
0, 2𝛾𝜇⋆,ℎ1:ℎ (𝑥ℎ, 𝑎ℎ)

]︁
be ℱ 𝑡−1-

measurable random variable for each (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ ×𝒜. Then with probability 1− 𝛿,

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁ ≤ log (1/𝛿) .

Proof. Define the unbiased importance sampling estimator

̂︀ℓ𝑡ℎ := 1− 𝑟𝑡ℎ
𝜇𝑡1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)
· 1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
.

259

We first have

̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ) = 1− 𝑟𝑡ℎ
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

· 1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
≤ 1− 𝑟𝑡ℎ
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) (1− 𝑟𝑡ℎ)

· 1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
≤ 1

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) (1− 𝑟𝑡ℎ)1 {𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ} /𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
1 + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) (1− 𝑟𝑡ℎ)1 {𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ} /𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)

=
1

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)

1 + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖)

≤ 1

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log
(︁
1 + 2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁ ,
where (𝑖) is because for any 𝑧 ≥ 0, 𝑧

1+𝑧/2
≤ log (1 + 𝑧).

As a result, we have the following bound on the moment generating function:

E

{︃
exp

{︃∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)

}︃
|ℱ 𝑡−1

}︃

≤E

{︃
exp

{︃∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)

2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log
(︁
1 + 2𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁
}︃
|ℱ 𝑡−1

}︃
(𝑖)

≤E

{︃
exp

{︃∑︁
𝑥ℎ,𝑎ℎ

log
(︁
1 + 𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)

̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁
}︃
|ℱ 𝑡−1

}︃

=E

{︃∏︁
𝑥ℎ,𝑎ℎ

(︁
1 + 𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)

̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁|ℱ 𝑡−1

}︃
(𝑖𝑖)
=E

{︃
1 +

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)|ℱ 𝑡−1

}︃

=1 +
∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ) ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

≤E

{︃
exp

{︃∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ) ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

}︃
|ℱ 𝑡−1

}︃
,

where (𝑖) is because 𝑧 log (1 + 𝑧′) ≤ log (1 + 𝑧𝑧′) for any 0 ≤ 𝑧 ≤ 1 and 𝑧′ > −1, and

(𝑖𝑖) follows from the fact that for any ℎ, at most one of ̂︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) is non-zero, so the

cross terms disappear.

260

Repeating the above argument,

E

{︃
exp

{︃
𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃}︃

≤E{exp

{︃
𝑇−1∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃

· E

{︃
exp

{︃∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑇ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑇ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑇ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃
|ℱ𝑇−1

}︃
}

≤E

{︃
exp

{︃
𝑇−1∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃}︃

≤ · · · ≤ 1.

Therefore, we can apply the Markov inequality and get

P

{︃
𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁ > log (1/𝛿)

}︃

=P

{︃
exp

{︃
𝑇−1∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃
> 1/𝛿

}︃

≤𝛿 · E

{︃
exp

{︃
𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

}︃}︃
≤ 𝛿.

This is the desired result.

Corollary 128. We have

1. For some fixed ℎ ∈ [𝐻] and (𝑥ℎ, 𝑎ℎ), let 𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ) ∈
[︁
0, 2𝛾𝜇⋆,ℎ1:ℎ (𝑥ℎ, 𝑎ℎ)

]︁
be

ℱ 𝑡−1-measurable random variable. Then with probability 1− 𝛿,

𝑇∑︁
𝑡=1

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁ ≤ log (1/𝛿) .

2. For some fixed ℎ ∈ [𝐻] and 𝑥ℎ, let 𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ) ∈
[︁
0, 2𝛾𝜇⋆,ℎ1:ℎ (𝑥ℎ, 𝑎ℎ)

]︁
be ℱ 𝑡−1-

261

measurable random variable for each 𝑎ℎ ∈ 𝒜. Then with probability 1− 𝛿,

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁ ≤ log (1/𝛿) .

Proof. For (a), using Lemma 127 with (𝛼𝑡ℎ)
′
(𝑥′ℎ, 𝑎

′
ℎ) = 𝛼𝑡ℎ (𝑥

′
ℎ, 𝑎

′
ℎ)1 {𝑥′ℎ = 𝑥ℎ, 𝑎

′
ℎ = 𝑎ℎ},

𝑇∑︁
𝑡=1

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ (𝑥ℎ, 𝑎ℎ))︁

=
𝑇∑︁
𝑡=1

∑︁
𝑥′ℎ,𝑎

′
ℎ

𝛼𝑡ℎ (𝑥ℎ, 𝑎ℎ)1 {𝑥′ℎ = 𝑥ℎ, 𝑎
′
ℎ = 𝑎ℎ}

[︁̃︀ℓ𝑡(𝑥′ℎ, 𝑎′ℎ)− ℓ𝑡(𝑥′ℎ, 𝑎′ℎ)]︁ ≤ log (1/𝛿) .

Claim (b) can proved similarly.

E.3.4 Proof of Lemma 124

We further decompose BIAS1 to two terms by

BIAS1 =
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − ̃︀ℓ𝑡⟩ =

𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁⟩

⏟ ⏞
(𝐴)

+
𝑇∑︁
𝑡=1

⟨
𝜇𝑡,E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁
− ̃︀ℓ𝑡⟩⏟ ⏞

(𝐵)

.

To bound (𝐴), plug in the definition of loss estimator,

𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁⟩

=
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)

[︃
ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)−

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

]︃

=
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

[︃
𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

]︃

≤
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖)

≤
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝛾 =𝛾𝐻𝑇,

262

where (𝑖) is by using Corollary 111 with policy 𝜇⋆,ℎ for each layer ℎ.

To bound (𝐵), first notice

⟨
𝜇𝑡, ̃︀ℓ𝑡⟩ =

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
(1− 𝑟𝑡ℎ)1 {𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ}
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

≤
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
=

𝐻∑︁
ℎ=1

1 = 𝐻.

Then by Azuma-Hoeffding, with probability at least 1− 𝛿/3,

𝑇∑︁
𝑡=1

⟨
𝜇𝑡,E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁
− ̃︀ℓ𝑡⟩ ≤ 𝐻

√︀
2𝑇 log(3/𝛿) ≤ 𝐻

√
2𝑇𝜄.

Combining the bounds for (A) and (B) gives the desired result.

E.3.5 Proof of Lemma 125

We have

BIAS2 = max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨
𝜇†, ̃︀ℓ𝑡 − ℓ𝑡⟩

= max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁
= max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁
= max

𝜇†∈Πmax

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

𝑇∑︁
𝑡=1

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

(𝑖)

≤ log (𝑋𝐴/𝛿)

𝛾

𝐻∑︁
ℎ=1

max
𝜇†∈Πmax

∑︁
𝑥ℎ,𝑎ℎ

𝜇†
1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖)

≤ 𝜄

𝛾

𝐻∑︁
ℎ=1

𝑋ℎ𝐴 = 𝑋𝐴𝜄/𝛾,

where (𝑖) is by applying Corollary 128 for each (𝑥ℎ, 𝑎ℎ) pair and taking union bound,

and (𝑖𝑖) is by Lemma 37.

263

E.3.6 Proof of Lemma 126

We begin by stating the following lemma, which roughly speaking relates the task of

bounding the regret to bounding the term
⟨
𝜇, ̃︀ℓ𝑡⟩+ 1

𝜂𝜇⋆,11:1(𝑥
𝑡
1,𝑎1)

log𝑍𝑡
1.

Lemma 129. For any policy 𝜇 ∈ Πmax,

D(𝜇‖𝜇𝑡+1)− D(𝜇‖𝜇𝑡) = 𝜂
⟨
𝜇, ̃︀ℓ𝑡⟩+

1

𝜇⋆,11:1(𝑥
𝑡
1, 𝑎1)

log𝑍𝑡
1.

Proof. By definition of D and the conditional form update rule in Algorithm 10,

D(𝜇‖𝜇𝑡+1)− D(𝜇‖𝜇𝑡)

=
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
log

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇𝑡+1
ℎ (𝑎ℎ|𝑥ℎ)

=
𝐻∑︁
ℎ=1

∑︁
𝑎ℎ

𝜇1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

log
𝜇𝑡ℎ(𝑎ℎ|𝑥𝑡ℎ)
𝜇𝑡+1
ℎ (𝑎ℎ|𝑥𝑡ℎ)

=
𝐻∑︁
ℎ=1

𝜇1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ)

𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ)

[︃
𝜂𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)
̃︀ℓ 𝑡ℎ − 𝜇⋆,ℎ1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)

𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

log𝑍𝑡
ℎ+1

]︃

+
𝐻∑︁
ℎ=1

∑︁
𝑎ℎ

𝜇1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎ℎ)

log𝑍𝑡
ℎ

=𝜂
𝐻∑︁
ℎ=1

𝜇1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ)
̃︀ℓ 𝑡ℎ(𝑥𝑡ℎ, 𝑎𝑡ℎ)− 𝐻∑︁

ℎ=1

𝜇1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ)

𝜇⋆,ℎ+1
1:ℎ+1(𝑥

𝑡
ℎ+1, 𝑎

𝑡
ℎ+1)

log𝑍𝑡
ℎ+1

+
𝐻∑︁
ℎ=1

𝜇1:ℎ−1(𝑥
𝑡
ℎ−1, 𝑎

𝑡
ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ)

log𝑍𝑡
ℎ

=𝜂
⟨
𝜇, ̃︀ℓ𝑡⟩+

1

𝜇⋆,11:1(𝑥
𝑡
1, 𝑎1)

log𝑍𝑡
1.

Additional notation We introduce the following notation for convenience through-

out the rest of this subsection. Define

𝛽𝑡ℎ := 𝜂𝜇⋆,ℎ1:ℎ(𝑥
𝑡
ℎ, 𝑎

𝑡
ℎ).

264

For simplicity, when there is no confusion, we write

𝜇𝑡ℎ := 𝜇𝑡ℎ(𝑎
𝑡
ℎ|𝑥𝑡ℎ), 𝜇𝑡ℎ:ℎ′ :=

ℎ′∏︁
ℎ′′=ℎ

𝜇𝑡ℎ′′ ,

and ̃︀ℓ𝑡ℎ := ̃︀ℓ𝑡ℎ (︀𝑥𝑡ℎ, 𝑎𝑡ℎ)︀ = 1− 𝑟𝑡ℎ
𝜇𝑡1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ) + 𝛾𝜇⋆1:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)
.

Define the normalized log-partition function as

Ξ𝑡ℎ :=
1

𝛽𝑡ℎ
log𝑍𝑡

ℎ =
1

𝛽𝑡ℎ
log
(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1 − ̃︀ℓ𝑡ℎ)︁]︁)︁ .

Note that this value can be seen as an 𝐻-variate function of the loss estimator{︁̃︀ℓ𝑡ℎ}︁
ℎ∈[𝐻]

. To make this dependence more clear, for any ̃︀ℓ ∈ [0,∞)𝐻 , we define

the function {Ξ𝑡ℎ (·)}
𝐻
ℎ=1 recursively by

Ξ𝑡ℎ

(︁̃︀ℓℎ:𝐻)︁ :=

⎧⎪⎨⎪⎩
log
(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
−𝛽𝑡ℎ̃︀ℓℎ]︁)︁ /𝛽𝑡ℎ if ℎ = 𝐻,

log
(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξℎ+1

(︁̃︀ℓℎ+1:𝐻

)︁
− ̃︀ℓℎ)︁]︁)︁ /𝛽𝑡ℎ otherwise.

We also overload the notation by Ξ𝑡ℎ

(︁̃︀ℓ)︁ = Ξ𝑡ℎ

(︁̃︀ℓℎ:𝐻)︁ and Ξ𝑡ℎ = Ξ𝑡ℎ

(︁̃︀ℓ𝑡)︁, where ̃︀ℓ𝑡
is the actual loss estimator. Note that, importantly, Ξ𝑡ℎ(

̃︀ℓℎ:𝐻) has a compositional

structure: It is a function of ̃︀ℓℎ (ℎ-th entry of the loss) and Ξ𝑡ℎ+1 (which is itself a

function of ̃︀ℓℎ+1:𝐻). This compositional structure is key to proving bounds on its

gradients and Hessians.

The rest of this subsection is organized as follows. In Section E.3.6, we bound the

gradients and Hessians of the function Ξ𝑡1(·) in an entry-wise fashion, and then use

the Mean-Value Theorem to give a bound on Ξ𝑡1 = Ξ𝑡1(
̃︀ℓ𝑡) (Lemma 133). We then

combine this result with Lemma 129 to prove the main lemma that bounds REGRET

(Section E.3.6).

265

Bounding Ξ𝑡1

Lemma 130. For ̃︀ℓ ∈ [0,∞)𝐻 and any ℎ ∈ [𝐻], Ξ𝑡ℎ
(︁̃︀ℓ)︁ ≤ 0. Furthermore, Ξ𝑡ℎ (0) =

0.

Proof. We show the first claim by backward induction. For ℎ = 𝐻,

Ξ𝑡𝐻

(︁̃︀ℓ𝐻)︁ = log
(︁
1− 𝜇𝑡𝐻 + 𝜇𝑡𝐻 exp

[︁
−𝛽𝑡𝐻̃︀ℓ𝐻]︁)︁ /𝛽𝑡𝐻 ≤ log

(︀
1− 𝜇𝑡𝐻 + 𝜇𝑡𝐻

)︀
/𝛽𝑡𝐻 ≤ 0,

because ̃︀ℓ𝑡𝐻 ≥ 0.

Assume Ξ𝑡ℎ+1

(︁̃︀ℓ)︁ ≤ 0, then for the previous step ℎ,

Ξ𝑡ℎ

(︁̃︀ℓℎ:𝐻)︁ = log
(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓℎ+1:𝐻

)︁
− ̃︀ℓℎ)︁]︁)︁ /𝛽𝑡ℎ

≤ log
(︀
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ

)︀
/𝛽𝑡ℎ ≤ 0.

The second claim follows as all inequalities become equalities at ̃︀ℓ = 0.

Lemma 131 (Bounds on first derivatives). For ̃︀ℓ ∈ [0, 1]𝐻 and any ℎ ∈ [𝐻], the

derivatives are bounded by

0 ≤ 𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ+1

≤ 𝜇𝑡ℎ and − 𝜇𝑡ℎ ≤
𝜕Ξ𝑡ℎ

𝜕̃︀ℓℎ ≤ 0.

Furthermore,

𝜕Ξ𝑡ℎ

𝜕̃︀ℓℎ′
⃒⃒⃒⃒
̃︀ℓ=0

=

⎧⎨⎩− 𝜇
𝑡
ℎ:ℎ′ if ℎ′ ≥ ℎ,

0 otherwise.

Proof. By chain rule and the compositional structure of the functions Ξ𝑡ℎ(·), for any

ℎ′ ≥ ℎ,
𝜕Ξ𝑡ℎ

𝜕̃︀ℓℎ′ = 𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ′

· 𝜕Ξ
𝑡
ℎ′

𝜕̃︀ℓℎ′ =

(︃
ℎ′−1∏︁
ℎ′′=ℎ

𝜕Ξ𝑡ℎ′′

𝜕Ξ𝑡ℎ′′+1

)︃
· 𝜕Ξ

𝑡
ℎ′

𝜕̃︀ℓℎ′ .
For any ℎ, the derivatives are bounded by

𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ+1

=
𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁ ∈
[︀
0, 𝜇𝑡ℎ

]︀
,

266

𝜕Ξ𝑡ℎ

𝜕̃︀ℓℎ = −
𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁ ∈
[︀
−𝜇𝑡ℎ, 0

]︀
.

The inequalities hold because the function 𝑓 (𝑧) = 𝜇𝑡ℎ𝑧

1−𝜇𝑡ℎ+𝜇
𝑡
ℎ𝑧

= 1− 1−𝜇𝑡ℎ
1−𝜇𝑡ℎ+𝜇

𝑡
ℎ𝑧

is increas-

ing on 𝑧 ∈ [0, 1], and exp
[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁ ∈ [0, 1] by Lemma 130.

Putting them together, at ̃︀ℓ = 0, the derivative is just 𝜕Ξ𝑡
ℎ

𝜕̃︀ℓℎ′
⃒⃒⃒
̃︀ℓ𝑡=0

= −𝜇𝑡ℎ:ℎ′ if ℎ′ ≥ ℎ.

If ℎ′ < ℎ, since Ξ𝑡ℎ only depends on loss in the later layers, 𝜕Ξ𝑡
ℎ

𝜕̃︀ℓℎ′ |̃︀ℓ𝑡=0 = 0.

Lemma 132 (Bounds on second derivatives). For ̃︀ℓ ∈ [0, 1]𝐻 and any ℎ ∈ [𝐻], if

ℎ′ ≥ ℎ and ℎ′′ ≥ ℎ, the second-order derivatives are bounded by

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ ≤
min{ℎ′,ℎ′′}∑︁
ℎ′′′=ℎ

𝛽𝑡ℎ′′′𝜇
𝑡
ℎ:ℎ′𝜇

𝑡
ℎ′′′+1:ℎ′′ =

min{ℎ′,ℎ′′}∑︁
ℎ′′′=ℎ

𝛽𝑡ℎ′′′𝜇
𝑡
ℎ:ℎ′′′𝜇

𝑡
ℎ′′′+1:ℎ′𝜇

𝑡
ℎ′′′+1:ℎ′′ .

Otherwise 𝜕2Ξ𝑡
ℎ

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ = 0.

Proof. By symmetry of the second derivatives and the right-hand side with respect

to ℎ′ and ℎ′′, it suffices to prove the claim for ℎ′′ ≥ ℎ′ only.

By chain rule and the compositional structure of the functions Ξ𝑡ℎ(·),

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ = 𝜕2Ξ𝑡ℎ

𝜕Ξ𝑡ℎ′𝜕
̃︀ℓℎ′′ · 𝜕Ξ

𝑡
ℎ′

𝜕̃︀ℓℎ′ +
𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ′

· 𝜕2Ξ𝑡ℎ′

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ .
If ℎ′′ = ℎ′ = ℎ,

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓ2ℎ =𝛽𝑡ℎ𝜇
𝑡
ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁ 1− 𝜇𝑡ℎ{︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁}︁2

≤𝛽𝑡ℎ𝜇𝑡ℎ.

If ℎ′ = ℎ, ℎ′′ > ℎ,

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓℎ𝜕̃︀ℓℎ′′ = −
(1− 𝜇𝑡ℎ)𝛽𝑡ℎ𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁)︁2 ·
𝜕Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′′ ≤ 𝛽𝑡ℎ𝜇
𝑡
ℎ:ℎ′′ .

267

If ℎ < ℎ′ < ℎ′′, we can compute the Hessian by induction. Notice once ℎ′ > ℎ we

have
𝜕Ξ𝑡ℎ

𝜕̃︀ℓℎ′ = 𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ+1

·
𝜕Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′ .
Take second derivative,

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ = 𝜕Ξ𝑡ℎ
𝜕Ξ𝑡ℎ+1

·
𝜕2Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′⏟ ⏞
(𝑖)

+
𝜕2Ξ𝑡ℎ

𝜕Ξ𝑡ℎ+1𝜕
̃︀ℓℎ′′ · 𝜕Ξ

𝑡
ℎ+1

𝜕̃︀ℓℎ′⏟ ⏞
(𝑖𝑖)

.

We first bound the second term,

(𝑖𝑖) =
(1− 𝜇𝑡ℎ)𝛽𝑡ℎ𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁(︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁)︁2 ·
𝜕Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′′ · 𝜕Ξ
𝑡
ℎ+1

𝜕̃︀ℓℎ′
≤ 𝛽𝑡ℎ𝜇

𝑡
ℎ · 𝜇𝑡ℎ+1:ℎ′′ · 𝜇𝑡ℎ+1:ℎ′

≤ 𝛽𝑡ℎ𝜇
𝑡
ℎ:ℎ′𝜇

𝑡
ℎ+1:ℎ′′ .

The first term can be simplified to

(𝑖) ≤
𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁
1− 𝜇𝑡ℎ + 𝜇𝑡ℎ exp

[︁
𝛽𝑡ℎ

(︁
Ξ𝑡ℎ+1

(︁̃︀ℓ)︁− ̃︀ℓℎ)︁]︁
𝜕2Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ ≤ 𝜇𝑡ℎ
𝜕2Ξ𝑡ℎ+1

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ .
Now plug in 𝜕2Ξ𝑡

ℎ′

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ ≤ 𝛽𝑡ℎ′𝜇
𝑡
ℎ′:ℎ′′ and backward induction from ℎ′ to ℎ gives:

𝜕2Ξ𝑡ℎ

𝜕̃︀ℓℎ′𝜕̃︀ℓℎ′′ ≤
ℎ′∑︁

ℎ′′′=ℎ

𝛽𝑡ℎ′′′𝜇
𝑡
ℎ:ℎ′𝜇

𝑡
ℎ′′′+1:ℎ′′ .

We can check this expression is also correct for the above special cases when ℎ′ = ℎ.

The second claim holds because Ξ𝑡ℎ only depends on loss in the later layers.

Lemma 133 (Bound on Ξ𝑡1). We have

Ξ𝑡1 ≤ −
⟨
𝜇𝑡, ̃︀ℓ𝑡⟩+

𝜂𝐻

2

𝐻∑︁
ℎ=1

⎛⎝ 𝐻∑︁
ℎ′=ℎ

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′ , 𝑎ℎ′)

̃︀ℓ𝑡ℎ′ (𝑥ℎ′ , 𝑎ℎ′)
⎞⎠.

268

Proof. We apply the Mean-value Theorem to function Ξ𝑡1

(︁̃︀ℓ)︁ at ̃︀ℓ = 0,

Ξ𝑡1 = Ξ𝑡1

(︁̃︀ℓ𝑡)︁ = Ξ𝑡1 (0) +
⟨
∇̃︀ℓΞ𝑡1⃒⃒̃︀ℓ=0

, ̃︀ℓ𝑡⟩+
1

2

⟨
∇2̃︀ℓ Ξ𝑡1

⃒⃒̃︀ℓ=𝜉𝑡 ̃︀ℓ𝑡, ̃︀ℓ𝑡⟩ ,
where 𝜉𝑡 lies on the line segment between 0 and ̃︀ℓ𝑡.

By Lemma 130, the initial term is just zero. By Lemma 131, the first-order term

is just −
⟨
𝜇𝑡, ̃︀ℓ𝑡⟩.

It thus remains to bound the second-order term. Applying the entry-wise upper

bounds in Lemma 132 at ℎ = 1 (which hold uniformly at all nonnegative loss values,

including 𝜉𝑡), we have

⟨
∇2̃︀ℓ Ξ𝑡1

⃒⃒̃︀ℓ=𝜉𝑡 ̃︀ℓ𝑡, ̃︀ℓ𝑡⟩ =
𝐻∑︁
ℎ=1

𝐻∑︁
ℎ′=1

𝜕2Ξ𝑡1

𝜕̃︀ℓℎ𝜕̃︀ℓℎ′
⃒⃒⃒⃒
̃︀ℓ=𝜉𝑡
̃︀ℓ𝑡ℎ̃︀ℓ𝑡ℎ′

(𝑖)

≤
𝐻∑︁
ℎ=1

𝐻∑︁
ℎ′=1

min{ℎ,ℎ′}∑︁
ℎ′′=1

𝛽𝑡ℎ′′𝜇
𝑡
1:ℎ𝜇

𝑡
ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ̃︀ℓ𝑡ℎ′
=

𝐻∑︁
ℎ=1

𝜇𝑡1:ℎ
̃︀ℓ𝑡ℎ 𝐻∑︁

ℎ′=1

min{ℎ,ℎ′}∑︁
ℎ′′=1

𝛽𝑡ℎ′′𝜇
𝑡
ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ′
(𝑖𝑖)

≤𝐻max
ℎ∈[𝐻]

𝐻∑︁
ℎ′=1

min{ℎ,ℎ′}∑︁
ℎ′′=1

𝛽𝑡ℎ′′𝜇
𝑡
ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ′
=𝐻

𝐻∑︁
ℎ′=1

ℎ′∑︁
ℎ′′=1

𝛽𝑡ℎ′′𝜇
𝑡
ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ′
=𝐻

𝐻∑︁
ℎ′′=1

𝐻∑︁
ℎ′=ℎ′′

𝛽𝑡ℎ′′𝜇
𝑡
ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ′
=𝜂𝐻

𝐻∑︁
ℎ′′=1

(︃
𝐻∑︁

ℎ′=ℎ′′

𝜇⋆,ℎ
′′

1:ℎ′′

(︀
𝑥𝑡ℎ′ , 𝑎

𝑡
ℎ′

)︀
𝜇𝑡ℎ′′+1:ℎ′

̃︀ℓ𝑡ℎ′
)︃

(𝑖𝑖𝑖)
= 𝜂𝐻

𝐻∑︁
ℎ′′=1

⎛⎝ 𝐻∑︁
ℎ′=ℎ′′

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇⋆,ℎ
′′

1:ℎ′′ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ′′+1:ℎ′ (𝑥ℎ′ , 𝑎ℎ′)

̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)
⎞⎠,

where (𝑖) is by Lemma 132; (𝑖𝑖) follows from the bound

𝐻∑︁
ℎ=1

𝜇𝑡1:ℎ
̃︀ℓ𝑡ℎ = 𝐻∑︁

ℎ=1

𝜇𝑡1:ℎ ·
1− 𝑟𝑡ℎ

𝜇𝑡1:ℎ + 𝛾𝜇⋆,ℎ1:ℎ

≤ 𝐻;

269

and (𝑖𝑖𝑖) is because ̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′) = 0 at all (𝑥ℎ′ , 𝑎ℎ′) ̸= (𝑥𝑡ℎ′ , 𝑎
𝑡
ℎ′).

Lemma 134. With probability at least 1− 𝛿/3,

𝑇∑︁
𝑡=1

Ξ𝑡1 ≤ −
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ̃︀ℓ𝑡⟩+ 𝜂𝐻3𝑇 +

𝜂𝑋𝐴𝐻2𝜄

𝛾
,

where 𝜄 := log(𝐻/𝛿).

Proof. Using Lemma 133 and take the summation with respect to 𝑡 ∈ [𝑇] we have

𝑇∑︁
𝑡=1

Ξ𝑡1 ≤ −
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ̃︀ℓ𝑡⟩+

𝜂𝐻

2

𝐻∑︁
ℎ=1

𝐻∑︁
ℎ′=ℎ

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ′,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′, 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

̃︀ℓ𝑡ℎ′ (𝑥ℎ′, 𝑎ℎ′)⏟ ⏞
:=Δ𝑡

ℎ,ℎ′

.

(E.6)

Observe that the random variables Δ𝑡
ℎ,ℎ′ satisfy the following:

∙ Δ𝑡
ℎ,ℎ′ ≤ 𝑋ℎ′𝐴/𝛾 almost surely:

Δ𝑡
ℎ,ℎ′ =

∑︁
𝑥ℎ′,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

(1− 𝑟𝑡ℎ′)1 {𝑥ℎ′ = 𝑥𝑡ℎ′ , 𝑎ℎ′ = 𝑎𝑡ℎ′}
𝜇𝑡1:ℎ′ (𝑥ℎ′, 𝑎ℎ′) + 𝛾𝜇⋆,ℎ

′

1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

≤1

𝛾

∑︁
𝑥ℎ′,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

𝜇⋆,ℎ
′

1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

(𝑖)

≤ 𝑋ℎ′𝐴

𝛾
,

where (𝑖) is by using Lemma 37 with the mixture of 𝜇⋆,ℎ and 𝜇𝑡.

∙ E[Δ𝑡
ℎ,ℎ′|ℱ𝑡−1] ≤ 1, where ℱ𝑡−1 is the 𝜎-algebra containing all information after

iteration 𝑡− 1:

E[Δ𝑡
ℎ,ℎ′|ℱ𝑡−1] =

∑︁
𝑥ℎ′,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′) ℓ

𝑡
ℎ′ (𝑥ℎ′, 𝑎ℎ′)

(𝑖)

≤ 1,

where (𝑖) is by using Corollary 111 with the mixture policy of 𝜇⋆,ℎ and 𝜇𝑡.

∙ The conditional variance E[(Δ𝑡
ℎ,ℎ′)

2|ℱ𝑡−1] can be bounded as

E[(Δ𝑡
ℎ,ℎ′)

2|ℱ𝑡−1]

270

(𝑖)
=
∑︁
𝑥ℎ′,𝑎ℎ′

⎡⎣(︃𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

(1− 𝑟𝑡ℎ′)1 {𝑥ℎ′ = 𝑥𝑡ℎ′ , 𝑎ℎ′ = 𝑎𝑡ℎ′}
𝜇𝑡1:ℎ′ (𝑥ℎ′, 𝑎ℎ′) + 𝛾𝜇⋆,ℎ

′

1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

)︃2
⎤⎦

≤
∑︁
𝑥ℎ′,𝑎ℎ′

(︃
𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

𝜇𝑡1:ℎ′ (𝑥ℎ′, 𝑎ℎ′) + 𝛾𝜇⋆,ℎ
′

1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

)︃2

𝜇𝑡1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

≤1

𝛾

∑︁
𝑥ℎ′,𝑎ℎ′

𝜇⋆,ℎ1:ℎ (𝑥ℎ′ , 𝑎ℎ′)𝜇
𝑡
ℎ+1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

𝜇⋆,ℎ
′

1:ℎ′ (𝑥ℎ′, 𝑎ℎ′)

(𝑖𝑖)

≤ 𝑋ℎ′𝐴

𝛾
,

where (𝑖) follows from the fact that for any ℎ, at most one of indicators is

non-zero, so the cross terms disappear and (𝑖𝑖) is using Corollary 111 with the

mixture policy of 𝜇⋆,ℎ and 𝜇𝑡.

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to

get that, with probability at least 1 − 𝛿/3, for some fixed 𝜆ℎ,ℎ′ ∈ (0, 𝛾/𝑋ℎ′𝐴], the

following holds simultaneously for all ℎ, ℎ′:

𝑇∑︁
𝑡=1

Δ𝑡
ℎ,ℎ′ ≤

𝜆ℎ,ℎ′𝑋ℎ′𝐴𝑇

𝛾
+

2 log(𝐻/𝛿)

𝜆ℎ,ℎ′
+ 𝑇,

Take 𝜆ℎ,ℎ′ = 𝛾/𝑋ℎ′𝐴, we have

𝑇∑︁
𝑡=1

Δ𝑡
ℎ,ℎ′ ≤

𝑋ℎ′𝐴 · 2 log(𝐻/𝛿)
𝛾

+ 2𝑇.

Plug into equation (E.6), we have

𝑇∑︁
𝑡=1

Ξ𝑡1 ≤ −
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ̃︀ℓ𝑡⟩+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾
,

where 𝜄 := log(𝐻/𝛿) is a log factor.

Proof of main lemma

By Lemma 129, for any policy 𝜇† ∈ Πmax,

1

𝜂

(︀
D(𝜇†‖𝜇𝑡+1)− D(𝜇†‖𝜇𝑡)

)︀
=
⟨
𝜇†, ̃︀ℓ𝑡⟩+ Ξ𝑡1.

271

Taking the summation w.r.t. 𝑡 ∈ [𝑇] and using Lemma 134, we have with probability

at least 1− 𝛿/3, the following holds simultaneously over all 𝜇† ∈ Πmax:

1

𝜂

(︀
D(𝜇†‖𝜇𝑇)− D(𝜇†‖𝜇1

)︀
) =

𝑇∑︁
𝑡=1

⟨
𝜇†, ̃︀ℓ𝑡⟩+

𝑇∑︁
𝑡=1

Ξ𝑡1

≤
𝑇∑︁
𝑡=1

⟨
𝜇† − 𝜇𝑡, ̃︀ℓ𝑡⟩+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾
.

Rerranging the terms we have

max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨
𝜇𝑡 − 𝜇†, ̃︀ℓ𝑡⟩ ≤ max

𝜇†∈Πmax

1

𝜂

(︀
D(𝜇†‖𝜇1)− D(𝜇†‖𝜇𝑇)

)︀
+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾

≤ max
𝜇†∈Πmax

1

𝜂
D(𝜇†‖𝜇1) + 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾

≤𝑋𝐴 log𝐴

𝜂
+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

𝛾
,

where the last inequality above follows by recalling that 𝜇1 is taken to be the uniform

policy (𝜇1
ℎ(𝑎ℎ|𝑥ℎ) = 1/𝐴 for all (ℎ, 𝑥ℎ, 𝑎ℎ)) in Algorithm 10, and applying the bound

on the balanced dilated KL (Lemma 40). This proves Lemma 126.

E.4 Proofs for Section 6.3

E.4.1 Counterfactual regret decomposition

Define the immediate counterfactual regret at any 𝑥ℎ ∈ 𝒳ℎ, ℎ ∈ [𝐻] as

Rimm,𝑇
ℎ (𝑥ℎ) = max

𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), 𝐿

𝑡
ℎ(𝑥ℎ, ·)

⟩
, (E.7)

where 𝐿𝑡ℎ(·, ·) is the counterfactual loss function defined in (6.11):

𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) := ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) +
𝐻∑︁

ℎ′=ℎ+1

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)×𝒜

𝜇𝑡(ℎ+1):ℎ′(𝑥ℎ′ , 𝑎ℎ′)ℓ
𝑡
ℎ′(𝑥ℎ′ , 𝑎ℎ′).

272

Lemma 135 (Counterfactual regret decomposition). We have ̃︀R𝑇 ≤
∑︀𝐻

ℎ=1R
𝑇
ℎ , where

R𝑇
ℎ :=

∑︁
𝑥1∈𝒳1

max
𝑎1∈𝒜
· · ·

∑︁
𝑥ℎ−1∈𝒞(𝑥ℎ−2,𝑎ℎ−2)

max
𝑎ℎ−1∈𝒜

∑︁
𝑥ℎ∈𝒞(𝑥ℎ−1,𝑎ℎ−1)

Rimm,𝑇
ℎ (𝑥ℎ),

= max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·Rimm,𝑇
ℎ (𝑥ℎ).

Proof. The bound ̃︀R𝑇 ≤
∑︀𝐻

ℎ=1 R
𝑇
ℎ with the sum-max form expression for ̃︀R𝑇

ℎ has

already implicitly appeared in the proof of [Zinkevich et al., 2007, Theorem 3], albeit

with their slightly different formulation of extensive-form games (turn-based games

with reward only in the last round). For completeness, here we provide a proof under

our formulation.

We first show the bound with the 𝜇 form expression for R𝑇
ℎ , which basically follows

by a performance decomposition argument. We have

̃︀R𝑇 = max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨︀
𝜇𝑡 − 𝜇†, ℓ𝑡

⟩︀
= max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

⟨
𝜇†
1:ℎ−1𝜇

𝑡
ℎ:𝐻 − 𝜇

†
1:ℎ𝜇

𝑡
ℎ+1:𝐻 , ℓ

𝑡
⟩

≤
𝐻∑︁
ℎ=1

max
𝜇†∈Πmax

𝑇∑︁
𝑡=1

⟨
𝜇†
1:ℎ−1𝜇

𝑡
ℎ:𝐻 − 𝜇

†
1:ℎ𝜇

𝑡
ℎ+1:𝐻 , ℓ

𝑡
⟩

⏟ ⏞
:=R𝑇

ℎ

.

Note that each term R𝑇
ℎ measures the performance difference between 𝜇†

1:ℎ−1𝜇
𝑡
ℎ:𝐻 and

𝜇†
1:ℎ𝜇

𝑡
ℎ+1:𝐻 :

R𝑇
ℎ = max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

E𝑠ℎ∼𝜇†1:ℎ−1×𝜈𝑡

[︃
E𝑎ℎ∼𝜇𝑡(·|𝑥ℎ)

[︃
𝐻∑︁
ℎ′=1

𝑟ℎ′

]︃
− E𝑎ℎ∼𝜇†(·|𝑥ℎ)

[︃
𝐻∑︁
ℎ′=1

𝑟ℎ′

]︃]︃
(𝑖)
= max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

E𝑠ℎ∼𝜇†1:ℎ−1×𝜈𝑡

[︃
E𝑎ℎ∼𝜇𝑡(·|𝑥ℎ)

[︃
𝐻∑︁

ℎ′=ℎ

𝑟ℎ′

]︃
− E𝑎ℎ∼𝜇†(·|𝑥ℎ)

[︃
𝐻∑︁

ℎ′=ℎ

𝑟ℎ′

]︃]︃
(𝑖𝑖)
= max

𝜇†∈Πmax

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ∈𝒳ℎ

𝜇†
1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) ·

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), 𝐿

𝑡
ℎ(𝑥ℎ, ·)

⟩
273

= max
𝜇†∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇†
1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) ·Rimm,𝑇

ℎ (𝑥ℎ).

Above, (i) follows as the rewards for the first ℎ − 1 steps are the same for the two

expectations; (ii) follows by definition of the counterfactual loss function (cumulative

loss multiplied by the opponent and environment’s policy / transition probabilities,

as well as the max player’s own policy from step ℎ onward). The claim (with the 𝜇

form expression) thus follows by renaming the dummy variable 𝜇† as 𝜇.

To verify that the second expression is equivalent to the first expression, it suffices

to notice that the max over 𝜇1:ℎ−1 ∈ Πmax consists of separable optimization problems

over 𝜇ℎ′(·|𝑥ℎ′) over all 𝑥ℎ′ ∈ 𝒳ℎ′ , ℎ′ ≤ ℎ − 1, due to the perfect recall assumption

(different (𝑥ℎ′ , 𝑎ℎ′) leads to disjoint subtrees). Therefore, we can rewrite the above as

R𝑇
ℎ =

∑︁
𝑥1∈𝒳1

max
𝜇1(·|𝑥1)∈Δ(𝒜)

∑︁
𝑎1∈𝒜

𝜇1(𝑎1|𝑥1)
∑︁

𝑥2∈𝒞(𝑥1,𝑎1)

· · ·

∑︁
𝑥ℎ−1∈𝒞(𝑥ℎ−2,𝑎ℎ−2)

max
𝜇ℎ−1(·|𝑥ℎ−1)∈Δ(𝒜)

∑︁
𝑎ℎ−1∈𝒜

𝜇ℎ−1(𝑎ℎ−1|𝑥ℎ−1)
∑︁

𝑥ℎ∈𝒞(𝑥ℎ−1,𝑎ℎ−1)

Rimm,𝑇
ℎ (𝑥ℎ).

Further noticing (backward recursively) that each max over the action distribution is

achieved at a single action yields the claimed sum-max form expression.

E.4.2 Proof of Theorem 44

We now prove our main theorem on the regret of the CFR algorithm.

By Lemma 135, we have ̃︀R𝑇 ≤
∑︀𝐻

ℎ=1 R
𝑇
ℎ , where for any ℎ ∈ [𝐻] we have

R𝑇
ℎ = max

𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)R
imm,𝑇
ℎ (𝑥ℎ)

= max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) max
𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), 𝐿

𝑡
ℎ(𝑥ℎ, ·)

⟩
≤ max

𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) max
𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), ̃︀𝐿𝑡ℎ(𝑥ℎ, ·)⟩⏟ ⏞

:=̃︀Rimm,𝑇
ℎ (𝑥ℎ)

274

+ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ), 𝐿𝑡ℎ(𝑥ℎ, ·)− ̃︀𝐿𝑡ℎ(𝑥ℎ, ·)⟩

+ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) max
𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇†
ℎ(·|𝑥ℎ), ̃︀𝐿𝑡ℎ(𝑥ℎ, ·)− 𝐿𝑡ℎ(𝑥ℎ, ·)⟩

(𝑖)
= max

𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)̃︀Rimm,𝑇
ℎ (𝑥ℎ)⏟ ⏞

:=REGRETℎ

+ max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
[︁
𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁⏟ ⏞

:=BIAS1ℎ

+ max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)
𝑇∑︁
𝑡=1

[︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁⏟ ⏞
:=BIAS2ℎ

= REGRETℎ + BIAS1
ℎ + BIAS2

ℎ.

Above, the simplification of the BIAS2
ℎ part in (i) uses the fact that the inner max

over 𝜇†
ℎ(·|𝑥ℎ) and the outer max over 𝜇1:(ℎ−1) are separable and thus can be merged

into a single max over 𝜇1:ℎ.

We now state three lemmas that bound each term above. Their proofs are deferred

to Sections E.4.3-E.4.5.

Lemma 136 (Bound on BIAS1
ℎ). For any sequence of opponents’ policies 𝜈𝑡 ∈ ℱ𝑡−1,

using the estimator ̃︀𝐿ℎ in (6.13), with probability 1− 𝛿/10, we have

𝐻∑︁
ℎ=1

BIAS1
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝜄,

where 𝜄 = log(10𝑋/𝛿).

Lemma 137 (Bound on BIAS2
ℎ). For any sequence of opponents’ policies 𝜈𝑡 ∈ ℱ𝑡−1,

using the estimator ̃︀𝐿ℎ in (6.13), with probability 1− 𝛿/10, we have

𝐻∑︁
ℎ=1

BIAS2
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝐴𝜄,

275

where 𝜄 = log(10𝑋𝐴/𝛿).

Lemma 138 (Bound on REGRETℎ). Choosing 𝜂 =
√︀
𝑋𝐴𝜄/(𝐻3𝑇), we have that

with probability at least 1− 𝛿/10 (over the randomness within the loss estimator ̃︀𝐿𝑡ℎ),
𝐻∑︁
ℎ=1

REGRETℎ ≤ 2
√
𝐻3𝑋𝐴𝑇𝜄+

√︀
𝐻𝑋3𝐴3𝜄3/(4𝑇),

where 𝜄 = log(10𝑋𝐴/𝛿).

Combining Lemma 136, 137, and 138, we obtain the following: Choosing 𝜂 =√︀
𝑋𝐴𝜄/(𝐻3𝑇), with probability at least 1− 3𝛿/10 ≥ 1− 𝛿, we have

̃︀R𝑇 ≤
𝐻∑︁
ℎ=1

R𝑇
ℎ ≤

𝐻∑︁
ℎ=1

REGRETℎ +
𝐻∑︁
ℎ=1

BIAS1
ℎ +

𝐻∑︁
ℎ=1

BIAS2
ℎ

≤ 6
√
𝐻3𝑋𝐴𝑇𝜄+ 2𝐻𝑋𝐴𝜄+

√︀
𝐻𝑋3𝐴3𝜄3/(4𝑇).

Additionally, recall the naive bound ̃︀R𝑇 ≤ 𝐻𝑇 on the regret (which follows as

⟨𝜇𝑡, ℓ𝑡⟩ ∈ [0, 𝐻] for any 𝜇 ∈ Πmax, 𝑡 ∈ [𝑇]), we get

̃︀R𝑇 ≤ min
{︁
6
√
𝐻3𝑋𝐴𝑇𝜄+ 2𝐻𝑋𝐴𝜄+

√︀
𝐻𝑋3𝐴3𝜄3/4𝑇 ,𝐻𝑇

}︁
≤ 𝐻𝑇 ·min

{︁
6
√︀
𝐻𝑋𝐴𝜄/𝑇 + 2𝑋𝐴𝜄/𝑇 +

√︀
𝑋3𝐴3𝜄3/(4𝐻𝑇 3), 1

}︁
.

For 𝑇 > 𝐻𝑋𝐴𝜄, the min above is upper bounded by 9
√︀
𝐻𝑋𝐴𝜄/𝑇 . For 𝑇 ≤ 𝐻𝑋𝐴𝜄,

the min above is upper bounded by 1 ≤ 9
√︀
𝐻𝑋𝐴𝜄/𝑇 . Therefore, we always have

̃︀R𝑇 ≤ 𝐻𝑇 · 9
√︀
𝐻𝑋𝐴𝜄/𝑇 = 9

√
𝐻3𝑋𝐴𝑇𝜄.

This is the desired result.

276

E.4.3 Proof of Lemma 136

Rewrite BIAS1
ℎ as

BIAS1
ℎ = max

𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

·
𝑇∑︁
𝑡=1

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ) ·

[︁
𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

= max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
·

𝑇∑︁
𝑡=1

̃︀Δ𝑥ℎ
𝑡 ,

where the random variable ̃︀Δ𝑥ℎ
𝑡 is defined by

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

[︃
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝐿

𝑡
ℎ(𝑥ℎ, 𝑎ℎ)−

(︃
𝐻 − ℎ+ 1−

𝐻∑︁
ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁]︃
(E.8)

Observe that the random variables ̃︀Δ𝑥ℎ
𝑡 satisfy the following:

∙ ̃︀Δ𝑥ℎ
𝑡 ≤ 𝐻 almost surely:

̃︀Δ𝑥ℎ
𝑡 ≤

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

· 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝐿
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

=
∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝜇
⋆,ℎ
1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)𝐿

𝑡
ℎ(𝑥ℎ, 𝑎ℎ) ≤ 𝐻.

Above, the last bound follows from Lemma 110(a).

∙ E[̃︀Δ𝑥ℎ
𝑡 |ℱ𝑡−1] = 0, where ℱ𝑡−1 is the 𝜎-algebra containing all information after

iteration 𝑡− 1;

∙ The conditional variance E[(̃︀Δ𝑥ℎ
𝑡)2|ℱ𝑡−1] can be bounded as

E
[︂(︁̃︀Δ𝑥ℎ

𝑡

)︁2 ⃒⃒⃒
ℱ𝑡−1

]︂

≤ E

⎡⎣∑︁
𝑎ℎ∈𝒜

(︃
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

)︃2

·

(︃
𝐻 − ℎ+ 1−

𝐻∑︁
ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃2

1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁ ⃒⃒⃒
ℱ𝑡−1

⎤⎦
277

≤ 𝐻2
∑︁
𝑎ℎ∈𝒜

(︃
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

)︃2

· P𝜇
⋆,ℎ
1:ℎ ,𝜈

𝑡
(︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

)︁

= 𝐻2
∑︁
𝑎ℎ∈𝒜

(︃
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

)︃2

· 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝑝
𝜈𝑡

1:ℎ(𝑥ℎ)

= 𝐻2
∑︁
𝑎ℎ∈𝒜

(︃
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ)

)︃
⏟ ⏞

≤𝐴

·𝜇⋆,ℎ1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) · 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ)

≤ 𝐻2𝐴 ·
∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) · 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ).

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to get

that, for any fixed 𝜆 ∈ (0, 1/𝐻], with probability at least 1−𝛿/10, the following holds

simultaneously for all (ℎ, 𝑥ℎ):

𝑇∑︁
𝑡=1

̃︀Δ𝑥ℎ
𝑡 ≤ 𝜆𝐻2𝐴

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) ·
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) +
𝜄

𝜆
,

where 𝜄 := log(10𝑋/𝛿) is a log factor. Plugging this bound into (E.8) yields that, for

all ℎ ∈ [𝐻],

BIAS1
ℎ = max

𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
·

𝑇∑︁
𝑡=1

̃︀Δ𝑥ℎ
𝑡

≤ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
·

[︃
𝜆𝐻2𝐴

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1) ·
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) +
𝜄

𝜆

]︃

≤ 𝜆𝐻2𝐴 · max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ)

+
𝜄

𝜆
· max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

(𝑖)
= 𝜆𝐻2𝐴𝑇 +

𝜄

𝜆
· 1
𝐴

max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

(𝜇1:(ℎ−1)𝜇
unif
ℎ)(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖)
= 𝜆𝐻2𝐴𝑇 +

𝜄

𝜆
·𝑋ℎ.

278

Above, (i) used the fact that
∑︀

(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜 𝜇1:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈

𝑡

1:ℎ(𝑥ℎ) = 1 for

any 𝜇 ∈ Πmax and any 𝑡 ∈ [𝑇] (Lemma 110(a)), as well as the fact that 𝜇⋆,ℎℎ (𝑎ℎ|𝑥ℎ) =

𝜇unif
ℎ (𝑎ℎ|𝑥ℎ) := 1/𝐴; (ii) used the balancing property of 𝜇⋆,ℎ1:ℎ (Lemma 37). Combining

the bounds for all ℎ ∈ [𝐻], we get that with probability at least 1− 𝛿/10,

𝐻∑︁
ℎ=1

BIAS1
ℎ ≤ 𝜆𝐻3𝐴𝑇 +

𝑋𝜄

𝜆
.

Choosing

𝜆 = min

{︃√︂
𝑋𝜄

𝐻3𝐴𝑇
,
1

𝐻

}︃
≤ 1

𝐻
,

we obtain the bound

𝐻∑︁
ℎ=1

BIAS1
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝜄.

This is the desired result.

E.4.4 Proof of Lemma 137

The proof strategy is similar to Lemma 136. We can rewrite BIAS2
ℎ as

BIAS2
ℎ = max

𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
·

𝑇∑︁
𝑡=1

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
[︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

= max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
·

𝑇∑︁
𝑡=1

Δ𝑥ℎ,𝑎ℎ
𝑡 ,

where the last equality used the definition of the loss estimator ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) in (6.13)

and the random variable Δ𝑥ℎ,𝑎ℎ
𝑡 is defined by

[︃(︃
𝐻 − ℎ+ 1−

𝐻∑︁
ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
− 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝐿

𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

]︃
(E.9)

279

.

Observe that the random variables Δ𝑥ℎ,𝑎ℎ
𝑡 satisfy the following:

∙ Δ𝑥ℎ,𝑎ℎ
𝑡 ≤ 𝐻 almost surely.

∙ E[Δ(𝑥ℎ,𝑎ℎ)
𝑡 |ℱ𝑡−1] = 0, where ℱ𝑡−1 is the 𝜎-algebra containing all information after

iteration 𝑡−1. This follows as the episode was sampled using 𝜇𝑡,(ℎ) = 𝜇⋆,ℎ1:ℎ𝜇
𝑡
ℎ+1:𝐻 ,

as well as the definition of 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) in (6.11).

∙ The conditional variance E[(Δ(𝑥ℎ,𝑎ℎ)
𝑡)2|ℱ𝑡−1] can be bounded as

E
[︂(︁

Δ
(𝑥ℎ,𝑎ℎ)
𝑡

)︁2 ⃒⃒⃒
ℱ𝑡−1

]︂

≤E

⎡⎣(︃𝐻 − ℎ+ 1−
𝐻∑︁

ℎ′=ℎ

𝑟
𝑡,(ℎ)
ℎ′

)︃2

1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁ ⃒⃒⃒
ℱ𝑡−1

⎤⎦
≤ 𝐻2P𝜇

⋆,ℎ
1:ℎ ,𝜈

𝑡
(︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

)︁
= 𝐻2𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝑝

𝜈𝑡

1:ℎ(𝑥ℎ).

Therefore, we can apply Freedman’s inequality (Lemma 119) and union bound to get

that, for any fixed 𝜆 ∈ (0, 1/𝐻], with probability at least 1−𝛿/10, the following holds

simultaneously for all (ℎ, 𝑥ℎ, 𝑎ℎ):

𝑇∑︁
𝑡=1

Δ
(𝑥ℎ,𝑎ℎ)
𝑡 ≤ 𝜆𝐻2𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ·

𝑇∑︁
𝑡=1

𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) +
𝜄

𝜆
,

where 𝜄 := log(10𝑋𝐴/𝛿) is a log factor. Plugging this bound into (E.9) yields that,

for all ℎ ∈ [𝐻],

BIAS2
ℎ = max

𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
·

𝑇∑︁
𝑡=1

Δ𝑥ℎ,𝑎ℎ
𝑡

≤ max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
·

[︃
𝜆𝐻2𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ·

𝑇∑︁
𝑡=1

𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) +
𝜄

𝜆

]︃

≤ 𝜆𝐻2 · max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)
𝑇∑︁
𝑡=1

𝑝𝜈
𝑡

1:ℎ(𝑥ℎ) +
𝜄

𝜆
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

280

(𝑖)
= 𝜆𝐻2𝑇 +

𝜄

𝜆
·𝑋ℎ𝐴.

Above, (i) used the fact that
∑︀

(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜 𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
𝜈𝑡

1:ℎ(𝑥ℎ) = 1 for any 𝜇 ∈ Πmax

and any 𝑡 ∈ [𝑇] (Lemma 110(a)), as well as the balancing property of 𝜇⋆,ℎ1:ℎ (Lemma 37).

Combining the bounds for all ℎ ∈ [𝐻], we get that with probability at least 1− 𝛿/10,

𝐻∑︁
ℎ=1

BIAS2
ℎ ≤ 𝜆𝐻3𝑇 +

𝑋𝐴𝜄

𝜆
.

Choosing

𝜆 = min

{︃√︂
𝑋𝐴𝜄

𝐻3𝑇
,
1

𝐻

}︃
≤ 1

𝐻
,

we obtain the bound

𝐻∑︁
ℎ=1

BIAS2
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝐴𝜄.

This is the desired result.

E.4.5 Proof of Lemma 138

Recall that for all (ℎ, 𝑥ℎ), we have implemented Line 8 of Algorithm 11 as the

Hedge algorithm (Algorithm 21) with learning rate 𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎) and loss vector{︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎)}︁
𝑎∈𝒜

(cf. (6.12)). Therefore, applying Lemma 115, the standard regret

281

bound for Hedge, we get for arbitrary 𝑎 ∈ 𝒜

̃︀Rimm,𝑇
ℎ (𝑥ℎ) = max

𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), ̃︀𝐿𝑡ℎ(𝑥ℎ, ·)⟩

≤ log𝐴

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
+
𝜂

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ)

(︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁2
(𝑖)
=

log𝐴

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)

+
𝜂

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ) ·

(︁
𝐻 − ℎ+ 1−

∑︀𝐻
ℎ′=ℎ 𝑟

𝑡,(ℎ)
ℎ′

)︁2
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
(︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

)︁2
≤ log𝐴

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
+
𝜂𝐻2

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ·
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

.

(E.10)

Above, (i) used the form of ̃︀𝐿𝑡ℎ in (6.13). Plugging this into the definition of REGRETℎ,

we have

REGRETℎ = max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)̃︀Rimm,𝑇
ℎ (𝑥ℎ)

≤ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
log𝐴

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)⏟ ⏞
Iℎ

+ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
𝜂𝐻2

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ·
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)⏟ ⏞

IIℎ

.

(E.11)

We first calculate term Iℎ. We have

Iℎ
(𝑖)
=

log𝐴

𝜂
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

1

𝐴ℎ
·
𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

=
log𝐴

𝜂
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

(𝜇1:(ℎ−1)𝜇
unif
ℎ)(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖)
=

log𝐴

𝜂
·𝑋ℎ𝐴 =

𝑋ℎ𝐴 log𝐴

𝜂
,

282

where (i) follows by splitting the sum over 𝑎ℎ and using the fact that 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎) does

not depend on 𝑎; (ii) follows from the balancing property of 𝜇⋆,ℎ1:ℎ (Lemma 37).

Next, we bound term IIℎ. We have

IIℎ

=
𝜂𝐻2

2
max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ·
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

=
𝜂𝐻2

2
max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) · 1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
⏟ ⏞

:=Δ
𝑥ℎ
𝑡

.

(E.12)

The last equality above used the fact that 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) does not depend on 𝑎ℎ (cf. (6.1)).

Observe that the random variables Δ
𝑥ℎ
𝑡 satisfy the following:

∙ Δ
𝑥ℎ
𝑡 ∈ [0, 1] almost surely;

∙ E[Δ𝑥ℎ
𝑡 |ℱ𝑡−1] =

∑︀
𝑎ℎ∈𝒜 𝜇

⋆,ℎ
1:ℎ(𝑥ℎ, 𝑎ℎ)·𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈

𝑡

1:ℎ(𝑥ℎ), where ℱ𝑡−1 is the 𝜎-algebra

containing all information after iteration 𝑡− 1;

∙ The conditional variance Var[Δ𝑥ℎ
𝑡 |ℱ𝑡−1] can be bounded as

Var
[︁
Δ
𝑥ℎ
𝑡

⃒⃒⃒
ℱ𝑡−1

]︁
≤ E

[︁(︀
Δ
𝑥ℎ
𝑡

)︀2 ⃒⃒⃒ℱ𝑡−1

]︁
= E

[︃∑︁
𝑎ℎ∈𝒜

(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁ ⃒⃒⃒
ℱ𝑡−1

]︃

=
∑︁
𝑎ℎ∈𝒜

(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2 · P𝜇⋆,ℎ1:ℎ×𝜈
𝑡
(︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

)︁
=
∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ·
(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2 · 𝑝𝜈𝑡1:ℎ(𝑥ℎ).
Therefore, we can apply Freedman’s inequality (Lemma 119) and a union bound to

obtain that, for any 𝜆 ∈ (0, 1], with probability at least 1− 𝛿/10, the following holds

283

simultaneously for all (ℎ, 𝑥ℎ):

𝑇∑︁
𝑡=1

Δ
𝑥ℎ
𝑡 −

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈

𝑡

1:ℎ(𝑥ℎ)

≤ 𝜆 ·
𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ·
(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2 · 𝑝𝜈𝑡1:ℎ(𝑥ℎ) + 𝜄

𝜆
,

where 𝜄 := log(10𝑋/𝛿) is a log factor. Plugging this bound into (E.12) yields that,

for all ℎ ∈ [𝐻],

IIℎ ≤
𝜂𝐻2

2
· max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈

𝑡

1:ℎ(𝑥ℎ)

+
𝜂𝐻2

2
· max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)

·

[︃
𝜆

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) ·
(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2 · 𝑝𝜈𝑡1:ℎ(𝑥ℎ) + 𝜄

𝜆

]︃
(𝑖)

≤ 𝜂𝐻2

2
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ)

+
𝜂𝐻2

2
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) · 𝜆
𝑇∑︁
𝑡=1

(︀
𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)

)︀2 · 𝑝𝜈𝑡1:ℎ(𝑥ℎ)
+
𝜂𝐻2

2
· 𝜄
𝜆
· max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)

(𝑖𝑖)

≤ 𝜂𝐻2

2
(1 + 𝜆) · max

𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)𝑝𝜈
𝑡

1:ℎ(𝑥ℎ)

+
𝜂𝐻2

2
· 𝜄
𝜆
· max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

(𝜇1:(ℎ−1)𝜇
unif
ℎ)(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖𝑖)
=

𝜂𝐻2

2
(1 + 𝜆)𝑇 +

𝜂𝐻2

2
· 𝜄
𝜆
·𝑋ℎ𝐴.

Above, (i) used again the fact that 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎) = 𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) for any 𝑎, 𝑎ℎ ∈ 𝒜; (ii)

used the fact that 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ≤ 1; (iii) used the fact that

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

(𝜇1:(ℎ−1)𝜇
𝑡
ℎ)(𝑥ℎ, 𝑎ℎ)𝑝

𝜈𝑡

1:ℎ(𝑥ℎ) = 1

284

for any 𝜇 ∈ Πmax and any 𝑡 ∈ [𝑇] (Lemma 110(a)), as well as the balancing property

of 𝜇⋆,ℎ1:ℎ (Lemma 37).

Combining the bounds for Iℎ and IIℎ, we obtain that

𝐻∑︁
ℎ=1

REGRETℎ ≤
𝐻∑︁
ℎ=1

(Iℎ + IIℎ)

≤
𝐻∑︁
ℎ=1

[︂
𝑋ℎ𝐴 log𝐴

𝜂
+
𝜂𝐻2

2
(1 + 𝜆)𝑇 +

𝜂𝐻2𝑋ℎ𝐴𝜄

2𝜆

]︂
≤ 𝑋𝐴𝜄

𝜂
+
𝜂𝐻3

2
𝑇 +

𝜂𝐻2

2

[︂
𝜆 ·𝐻𝑇 +

𝑋𝐴𝜄

𝜆

]︂
,

where we have redefined the log factor 𝜄 := log(10𝑋𝐴/𝛿). Choosing 𝜆 = 1, the above

can be upper bounded by

𝑋𝐴𝜄

𝜂
+ 𝜂𝐻3𝑇 +

𝜂𝐻2𝑋𝐴𝜄

2
.

Further choosing 𝜂 =
√︀
𝑋𝐴𝜄/(𝐻3𝑇), we obtain the bound

𝐻∑︁
ℎ=1

REGRETℎ ≤ 2
√
𝐻3𝑋𝐴𝑇𝜄+

√︀
𝐻𝑋3𝐴3𝜄3/(4𝑇).

This is the desired result.

E.4.6 Proof of Theorem 46

The proof is similar as Theorem 44, except for plugging in the regret bound for Regret

Matching instead of Hedge.

285

First, by Lemma 135, we have ̃︀R𝑇 ≤
∑︀𝐻

ℎ=1 R
𝑇
ℎ , where for any ℎ ∈ [𝐻] we have

R𝑇
ℎ ≤ max

𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)̃︀Rimm,𝑇
ℎ (𝑥ℎ)⏟ ⏞

:=REGRETℎ

+ max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)
𝑇∑︁
𝑡=1

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)
[︁
𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁⏟ ⏞

:=BIAS1ℎ

+ max
𝜇∈Πmax

∑︁
(𝑥ℎ,𝑎ℎ)∈𝒳ℎ×𝒜

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)
𝑇∑︁
𝑡=1

[︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)− 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁⏟ ⏞
:=BIAS2ℎ

= REGRETℎ + BIAS1
ℎ + BIAS2

ℎ,

(E.13)

where the definition of ̃︀Rimm,𝑇
ℎ (𝑥ℎ), 𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) are at the beginning of Section E.4.1

and the definition of ̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ) are given by Algorithm 11.

To upper bound BIAS1
ℎ and BIAS2

ℎ, we use the same strategy as the proof of

Lemma 136 and 137 (whose proofs are independent of the regret minimizer), so that

we have the same bound as in Lemma 136 and 137: with probability at least 1− 𝛿/5,

we have

𝐻∑︁
ℎ=1

BIAS1
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝜄,

𝐻∑︁
ℎ=1

BIAS2
ℎ ≤ 2

√
𝐻3𝑋𝐴𝑇𝜄+𝐻𝑋𝐴𝜄, (E.14)

where 𝜄 = log(10𝑋𝐴/𝛿).

To upper bound REGRETℎ, we use the same strategy as the proof of Lemma 138

as in Section E.4.5. First, applying the regret bound for Regret Matching (Lemma 116

286

& Remark 117), we get (below 𝑎 ∈ 𝒜 is arbitrary, and 𝜂 > 0 is also arbitrary)

̃︀Rimm,𝑇
ℎ (𝑥ℎ) = max

𝜇†ℎ(·|𝑥ℎ)

𝑇∑︁
𝑡=1

⟨
𝜇𝑡ℎ(·|𝑥ℎ)− 𝜇

†
ℎ(·|𝑥ℎ), ̃︀𝐿𝑡ℎ(𝑥ℎ, ·)⟩

≤ 1

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
+
𝜂

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) · 𝐴𝜇
𝑡
ℎ(𝑎ℎ|𝑥ℎ)

(︁̃︀𝐿𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁2

≤ 1

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)
+
𝜂𝐻2

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝐴 · 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ·
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

,

(E.15)

where 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) = (𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ)+ (1/𝐴))/2 is a probability distribution over [𝐴]. Com-

paring the right hand side of Eq. (E.15) with the right hand side of Eq. (E.10), we

can see that there is only one difference which is 𝐴 · 𝜇𝑡ℎ versus 𝜇𝑡ℎ. Plugging this into

the definition of REGRETℎ, we have

REGRETℎ = max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1)̃︀Rimm,𝑇
ℎ (𝑥ℎ)

≤ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
1

𝜂𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎)⏟ ⏞
Iℎ

+ max
𝜇∈Πmax

∑︁
𝑥ℎ∈𝒳ℎ

𝜇1:(ℎ−1)(𝑥ℎ−1, 𝑎ℎ−1) ·
𝜂𝐻2

2
·

𝑇∑︁
𝑡=1

∑︁
𝑎ℎ∈𝒜

𝐴 · 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ·
1
{︁
(𝑥

𝑡,(ℎ)
ℎ , 𝑎

𝑡,(ℎ)
ℎ) = (𝑥ℎ, 𝑎ℎ)

}︁
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)⏟ ⏞

IIℎ

.

(E.16)

Comparing Eq. (E.16) with Eq. (E.11), we can see that Iℎ in Eq. (E.16) is the same

as Iℎ in Eq. (E.11), and IIℎ in Eq. (E.16) and (E.11) only have one difference which

is also 𝐴 · 𝜇𝑡ℎ versus 𝜇𝑡ℎ. Using the same argument as in the former proof, we have

Iℎ =
𝑋ℎ𝐴

𝜂
.

Furthermore, using the same argument as in the former proof, we can show that the

upper bound of IIℎ in Eq. (E.16) is at most 𝐴 times the upper bound of IIℎ in Eq.

287

(E.11). This gives for any 𝜆 ∈ (0, 1), with probability at least 1− 𝛿/10, we have

IIℎ ≤
𝜂𝐻2𝐴

2
(1 + 𝜆)𝑇 +

𝜂𝐻2

2
· 𝜄
𝜆
·𝑋ℎ𝐴

2.

Combining the bounds for Iℎ and IIℎ, we obtain that

𝐻∑︁
ℎ=1

REGRETℎ ≤
𝐻∑︁
ℎ=1

(Iℎ + IIℎ) ≤
𝑋𝐴

𝜂
+
𝜂𝐻3𝐴

2
𝑇 +

𝜂𝐻2𝐴

2

[︂
𝜆 ·𝐻𝑇 +

𝑋𝐴𝜄

𝜆

]︂
,

Choosing 𝜆 = 1 and choosing 𝜂 =
√︀
𝑋𝜄/(𝐻3𝑇), with probability at least 1 − 𝛿/10,

we obtain the bound

𝐻∑︁
ℎ=1

REGRETℎ ≤ 2
√
𝐻3𝑋𝐴2𝑇𝜄+

√︀
𝐻𝑋3𝐴4𝜄3/(4𝑇). (E.17)

This bound is
√
𝐴 times larger than the bound of

∑︀𝐻
ℎ=1 REGRETℎ as in Lemma 138.

Combining Eq. (E.13), (E.14) and (E.17), we obtain the following: with proba-

bility at least 1− 3𝛿/10 ≥ 1− 𝛿, we have

̃︀R𝑇 ≤
𝐻∑︁
ℎ=1

R𝑇
ℎ ≤

𝐻∑︁
ℎ=1

REGRETℎ +
𝐻∑︁
ℎ=1

BIAS1
ℎ +

𝐻∑︁
ℎ=1

BIAS2
ℎ

≤ 6
√
𝐻3𝑋𝐴2𝑇𝜄+ 2𝐻𝑋𝐴𝜄+

√︀
𝐻𝑋3𝐴4𝜄3/(4𝑇).

Additionally, recall the naive bound ̃︀R𝑇 ≤ 𝐻𝑇 on the regret (which follows as

⟨𝜇𝑡, ℓ𝑡⟩ ∈ [0, 𝐻] for any 𝜇 ∈ Πmax, 𝑡 ∈ [𝑇]), we get

̃︀R𝑇 ≤ min
{︁
6
√
𝐻3𝑋𝐴2𝑇𝜄+ 2𝐻𝑋𝐴𝜄+

√︀
𝐻𝑋3𝐴4𝜄3/4𝑇 ,𝐻𝑇

}︁
≤ 𝐻𝑇 ·min

{︁
6
√︀
𝐻𝑋𝐴2𝜄/𝑇 + 2𝑋𝐴𝜄/𝑇 +

√︀
𝑋3𝐴4𝜄3/(4𝐻𝑇 3), 1

}︁
.

For 𝑇 > 𝐻𝑋𝐴2𝜄, the min above is upper bounded by 9
√︀
𝐻𝑋𝐴2𝜄/𝑇 . For 𝑇 ≤ 𝐻𝑋𝐴2𝜄,

the min above is upper bounded by 1 ≤ 9
√︀
𝐻𝑋𝐴2𝜄/𝑇 . Therefore, we always have

̃︀R𝑇 ≤ 𝐻𝑇 · 9
√︀
𝐻𝑋𝐴2𝜄/𝑇 = 9

√
𝐻3𝑋𝐴2𝑇𝜄.

288

This is the desired result.

E.5 Proofs for Section 6.4

Regret and CCE Similar as how regret minimization in two-player zero-sum games

leads to an approximate Nash equilibrium (Proposition 31), in multi-player general-

sum games, regret minimization is known to lead to an approximate NFCCE. Let

{𝜋𝑡}𝑇𝑡=1 denote a sequence of joint policies (for all players) over 𝑇 rounds. The regret

of the 𝑖-th player is defined by

R𝑇
𝑖 := max

𝜋†
𝑖∈Π𝑖

𝑇∑︁
𝑡=1

(︂
𝑉
𝜋†
𝑖 ,𝜋

𝑡
−𝑖

𝑖 − 𝑉 𝜋𝑡

𝑖

)︂
.

where Π𝑖 denotes the set of all possible policies for the 𝑖-th player.

Using online-to-batch conversion, it is a standard result that sub-linear regret for

all the players ensures that the average policy 𝜋 is an approximate NFCCE [Celli

et al., 2019a].

Proposition 139 (Regret-to-CCE conversion for multi-player general-sum games).

Let the average policy 𝜋 be defined as playing a policy within {𝜋𝑡}𝑇𝑡=1 uniformly at

random, then we have

CCEGap(𝜋) =
max𝑖∈[𝑚] R

𝑇
𝑖

𝑇
.

We include a short justification for this standard result here for completeness.

Proof. By definition of 𝜋, we have for any 𝑖 ∈ [𝑚] and 𝜋†
𝑖 ∈ Π𝑖 that

𝑉
𝜋†
𝑖 ,𝜋−𝑖

𝑖 − 𝑉 𝜋
𝑖 =

1

𝑇

𝑇∑︁
𝑡=1

(︂
𝑉
𝜋†
𝑖 ,𝜋

𝑡
−𝑖

𝑖 − 𝑉 𝜋𝑡

𝑖

)︂
.

Taking the max over 𝜋†
𝑖 ∈ Π𝑖 and 𝑖 ∈ [𝑚] on both sides yields the desired result.

289

E.5.1 Proof of Theorem 49

It is straightforward to see that the regret guarantees for Balanced OMD (Theorem 42)

and Balanced CFR (Theorem 44) also hold in multi-player general-sum games (e.g.

by modeling all other players as a single opponent). Therefore, the regret-to-CCE

conversion in Proposition 139 directly implies that, letting 𝜋 denote the joint policy

of playing a uniformly sampled policy within {𝜋𝑡}𝑇𝑡=1, we have for Balanced OMD

that

CCEGap(𝜋) ≤ 𝒪
(︂
max𝑖∈[𝑚]

√
𝐻3𝑋𝑖𝐴𝑖𝜄𝑇

𝑇

)︂
= 𝒪

(︃√︃
𝐻3

(︂
max
𝑖∈[𝑚]

𝑋𝑖𝐴𝑖

)︂
𝜄/𝑇

)︃
,

with probability at least 1 − 𝛿, where 𝜄 := log(3𝐻
∑︀𝑚

𝑖=1𝑋𝑖𝐴𝑖/𝛿) is a log factor.

Choosing 𝑇 ≥ ̃︀𝒪(︀𝐻3
(︀
max𝑖∈[𝑚]𝑋𝑖𝐴𝑖

)︀
𝜄/𝜀2

)︀
ensures that the right-hand side is at most

𝜀. This shows part (a). A similar argument can be done for the Balanced CFR

algorithm to show part (b).

290

Appendix F

Proofs for Chapter 7

F.1 Proofs for Section 7.1.1 & 7.1.2

F.1.1 Incremental (OMD) form of Algorithm 13

We first present an incremental update of (𝜆𝑡+1,𝑚𝑡+1) from (𝜆𝑡,𝑚𝑡) as in Algo-

rithm 24. We set the initial values of these variables as

𝜆1𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁
𝐹 0
𝑥𝑔

}︁
, 𝑚1

𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁ ∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 0
𝑥ℎ+1

}︁
, (F.1)

where for any 𝑥ℎ ⪰ 𝑥𝑔, 𝐹 0
𝑥ℎ

is recursively defined as

𝐹 0
𝑥ℎ

:= log
∑︁
𝑎ℎ∈𝒜

exp
{︁ ∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹 0
𝑥ℎ+1

}︁
.

Here 𝐹 0
𝑥ℎ

has an intuitive meaning: it is the logarithm of the number of deter-

ministic sequence-form policies starting from 𝑥ℎ, and can be computed by the above

sum-product formulation.

Algorithm 24 is computationally more efficient than Algorithm 13 when the loss

estimator is sparse. For example, with bandit feedback, we need to update the loss

matrix for at most 𝐻 infoset-action pairs, and thus incur at most 𝐻3 operations

in Algorithm 24. On the contrary, Algorithm 13 requires 𝑂((𝑋𝐴)2) operations to

291

Algorithm 24 EFCE-OMD (OMD form; equivalent FTRL form in Algorithm 13)
Require: Learning rate 𝜂.
1: Initialize 𝜆1𝑥𝑔𝑎𝑔 , and 𝑚1

𝑥𝑔𝑎𝑔 ,ℎ
(𝑎ℎ|𝑥ℎ), for all (𝑔, 𝑥𝑔, 𝑎𝑔, ℎ, 𝑥ℎ, 𝑎ℎ) with 𝑔 ≤ ℎ using

Eq. (F.1).
2: for 𝑡 = 1, 2, . . . , 𝑇 do
3: Compute 𝜑𝑡 = 𝜑(𝜆𝑡,𝑚𝑡) where 𝜑 is in Eq. (7.7).
4: Compute the policy 𝜇𝑡, which is a solution of the fixed point equation 𝜇 = 𝜑𝑡𝜇.

5: Receive loss ℓ𝑡 = {ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}(𝑥ℎ,𝑎ℎ)∈𝒳×𝒜 ∈ R𝑋𝐴
≥0 .

6: Compute matrix loss 𝑀 𝑡 = ℓ𝑡(𝜇𝑡)⊤ ∈ R𝑋𝐴×𝑋𝐴
≥0 .

7: For each 𝑥𝑔𝑎𝑔 ∈ 𝒳 × 𝒜, from the reverse order of 𝑥ℎ, compute 𝑚𝑡+1
𝑥𝑔𝑎𝑔 ,ℎ

(𝑎ℎ|𝑥ℎ)
and ̃︀𝐹 𝑡

𝑥𝑔𝑎𝑔 ,𝑥ℎ

𝑚𝑡+1
𝑥𝑔𝑎𝑔 ,ℎ

(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ 𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
− 𝜂𝑀 𝑡

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
,

̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

= log
∑︁
𝑎ℎ∈𝒜

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
− 𝜂𝑀 𝑡

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
,

8: Compute 𝜆𝑡+1
𝑥𝑔𝑎𝑔 as

𝜆𝑡+1
𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 𝜆

𝑡
𝑥𝑔𝑎𝑔 exp

{︁
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀

𝑡⟩+ ̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔

}︁
.

update the policy in each iteration.

We now prove that Algorithm 24 and Algorithm 13 are actually equivalent.

Lemma 140. Given the same sequence of 𝑀 𝑡, Algorithm 13 and Algorithm 24 outputs

the same 𝜆𝑡 and 𝑚𝑡 and thus the same 𝜑𝑡.

Proof. We only need to prove for any 𝑥𝑔𝑎𝑔, 𝑥ℎ and 𝑡, 𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

=
∑︀𝑡

𝑠=1
̃︀𝐹 𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ

. Then

𝜆𝑡 and 𝑚𝑡 will be the same in Algorithm 13 and Algorithm 24.

We prove the above claim by induction. For the base case, the claim clearly holds

if ℎ = 𝐻 +1 or 𝑡 = 1 by definition. Assume this holds at 𝑡− 1 and ℎ+1, then at the

ℎ-th step in Algorithm 24,

̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

= log
∑︁
𝑎ℎ∈𝒜

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
− 𝜂𝑀 𝑡

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
292

= log
∑︁
𝑎ℎ∈𝒜

exp
{︁
− 𝜂

𝑡∑︁
𝑠=1

𝑀 𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁

− log
∑︁
𝑎ℎ∈𝒜

exp
{︁
− 𝜂

𝑡−1∑︁
𝑠=1

𝑀 𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 𝑡−1
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

}︁
=𝐹 𝑡

𝑥𝑔𝑎𝑔 ,𝑥ℎ
− 𝐹 𝑡−1

𝑥𝑔𝑎𝑔 ,𝑥ℎ
.

Thus 𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

=
∑︀𝑡

𝑠=1
̃︀𝐹 𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ

. We completes the proof by noticing at 𝐻 +1 step,

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝐻+1

= ̃︀𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝐻+1

= 0.

F.1.2 Proof of Lemma 50

By Line 6 of Algorithm 9, we have

𝑝𝑡+1
𝜑 =

𝑝𝑡𝜑 · exp{−𝜂⟨𝜑𝜇𝑡, ℓ𝑡⟩}∑︀
𝜑′ 𝑝

𝑡
𝜑′ · exp{−𝜂⟨𝜑′𝜇𝑡, ℓ𝑡⟩}

=
𝑝𝑡𝜑 · exp{−𝜂⟨𝜑,𝑀 𝑡⟩}∑︀
𝜑′ 𝑝

𝑡
𝜑′ · exp{−𝜂⟨𝜑′,𝑀 𝑡⟩}

. (F.2)

Repeating this update and using the uniform initialization, we have

𝑝𝑡+1
𝜑 =

exp{−𝜂⟨𝜑,
∑︀𝑡

𝑠=1𝑀
𝑠⟩}∑︀

𝜑′ exp{−𝜂⟨𝜑′,
∑︀𝑡

𝑠=1𝑀
𝑠⟩}

.

As a result, we have

𝜑𝑡 =
∑︁
𝜑

𝑝𝑡𝜑𝜑 =

∑︀
𝜑 exp{−𝜂⟨𝜑,

∑︀𝑡−1
𝑠=1𝑀

𝑠⟩}𝜑∑︀
𝜑 exp{−𝜂⟨𝜑,

∑︀𝑡−1
𝑠=1𝑀

𝑠⟩}
= −∇𝐹Φ0

(︃
𝜂

𝑡−1∑︁
𝑠=1

𝑀 𝑠

)︃
. (F.3)

This proves the lemma.

F.1.3 Proof of Lemma 51

For any 𝑥ℎ ⪰ 𝑥𝑔, we define 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀) by

𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀) := log
∑︁

𝑚𝑥𝑔𝑎𝑔∈𝒱𝑥ℎ

exp(−⟨𝑚𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,𝑀⟩).

Note that for any 𝜑 ∈ ΦTr
0 , there exists a unique (𝑔, 𝑥𝑔, 𝑎𝑔,𝑚𝑥𝑔𝑎𝑔) ∈ [𝐻]×𝒳 ×𝒜×

293

𝒱𝑥𝑔 such that 𝜑 = 𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔𝑎𝑔
. As a consequence, we have

𝐹 EFCE(𝑀) = log
∑︁

𝜑∈ΦEFCE
0

exp(−⟨𝜑,𝑀⟩)

= log
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

∑︁
𝑚𝑥𝑔𝑎𝑔∈𝒱𝑥𝑔

exp(−⟨𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔𝑎𝑔
,𝑀⟩)

= log
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

∑︁
𝑚𝑥𝑔𝑎𝑔∈𝒱𝑥𝑔

exp(−⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,𝑀⟩)

= log
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁
− ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀⟩+ 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)

}︁
.

It remains to evaluate 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀) recurrently, which is handled by the structure

of 𝒱𝑥ℎ as follows:

𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀)

= log
∑︁

𝑚𝑥𝑔𝑎𝑔∈𝒱𝑥ℎ

exp(−⟨𝑚𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,𝑀⟩)

= log
∑︁
𝑎ℎ∈𝒜

exp
{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

∑︁
𝑚𝑥ℎ+1𝑎ℎ+1

∈𝒱𝑥ℎ+1

exp(−⟨𝑚𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,𝑀⟩)

}︁
= log

∑︁
𝑎ℎ∈𝒜

exp
{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1
(𝑀)

}︁
.

This proves Eq. (7.3) and (7.4).

Calculating the gradient, we have

−∇𝐹 EFCE(𝑀)

=

∑︀
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁
− ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀⟩+ 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)

}︁[︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 −∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀)

]︀
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
exp

{︁
− ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,𝑀⟩+ 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀)

}︁
=
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑥𝑔 ,𝑎𝑔
[︀
𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 −∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀)

]︀
. (F.4)

It remains to compute ∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀). By the recurrent formula, we have

−∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀)

294

=

∑︀
𝑎ℎ∈𝒜 exp

{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
}︁[︀
𝑒𝑥ℎ𝑎ℎ𝑒

⊤
𝑥𝑔𝑎𝑔 −

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
]︀

∑︀
𝑎ℎ∈𝒜 exp

{︁
−𝑀𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔 +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(𝑀)
}︁

=
∑︁
𝑎ℎ∈𝒜

𝑚𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ)
[︀
𝑒𝑥ℎ𝑎ℎ𝑒

⊤
𝑥𝑔𝑎𝑔 +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

(−∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ+1
)(𝑀)

]︀
.

This gives a recursion formula for −∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀). Solving this recursion formula, we

get

−∇𝐹𝑥𝑔𝑎𝑔 ,𝑥ℎ(𝑀) = 𝑚𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

Plugging this into Eq. (F.4) completes the proof.

F.1.4 Runtime of Algorithm 13

Here we explain how Lemma 51 and its execution in Algorithm 13 is an 𝑂(𝑋2𝐴2) time

(in floating-point operations) efficient implementation of −∇𝐹Tr(𝑀) for any matrix

𝑀 ∈ R𝑋𝐴×𝑋𝐴.

First, the function value 𝐹Tr(𝑀) can be recursively evaluated using (7.3) & (7.4),

where we first evaluate (7.4) for any 𝑥𝑔𝑎𝑔 ∈ 𝒳 ×𝒜 recursively in a bottom-up fashion

over {𝑥ℎ : 𝑥ℎ ⪰ 𝑥𝑔} (i.e. the subtree rooted at 𝑥𝑔) up until 𝑥ℎ = 𝑥𝑔, and then plug

in the resulting values of 𝐹𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝑀) into (7.3) to obtain 𝐹Tr(𝑀). This process costs

𝑂(𝑋𝐴) operations for each 𝑥𝑔𝑎𝑔, so in total costs 𝑂(𝑋2𝐴2) operations. Second, (7.5)-

(7.7) show that the gradient can be obtained without much extra cost: By (7.7),

−∇𝐹Tr(𝑀) is determined by the parameters (𝜆,𝑚), which then by (7.5) & (7.6) are

exactly the ratios of the recursive log-sum-exps which we already evaluated in the

previous step, and thus can be directly yielded (with cost of the same-order) while

evaluating 𝐹Tr(𝑀). So the total runtime of the recursive computations in Lemma 51

(i.e. Algorithm 13) is 𝑂(𝑋2𝐴2).

F.1.5 Proof of Lemma 53

We check solving optimization problem (7.13) will result in exactly the same form of

Algorithm 13. The OMD form (7.14) is similar.

295

Using the definition of 𝐻EFCE(𝜆,𝑚), the objective function in (7.13) can be written

as

𝐻(𝜆) +
∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑥𝑔𝑎𝑔

[︃
𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,

𝑡∑︁
𝑠=1

𝑀 𝑠⟩+ 𝜂⟨𝑚𝑥𝑔𝑎𝑔 ,
𝑡∑︁

𝑠=1

𝑀 𝑠
·,𝑥𝑔𝑎𝑔⟩+𝐻𝑥𝑔(𝑚𝑥𝑔𝑎𝑔)

]︃
.

First fix 𝜆· and consider 𝑚𝑥𝑔𝑎𝑔 , which is just to minimize 𝜂⟨𝑚𝑥𝑔𝑎𝑔 ,
∑︀𝑡

𝑠=1𝑀
𝑠
·,𝑥𝑔𝑎𝑔⟩+

𝐻𝑥𝑔(𝑚𝑥𝑔𝑎𝑔).

This is similar to form studied in Appendix B of Kozuno et al. [2021] (or see

Lemma 157 for a full proof), which implies that, the optimum is achieved at

𝑚𝑡+1
𝑥𝑔𝑎𝑔 ,ℎ

(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁ 𝑡∑︁

𝑠=1

[︀
− 𝜂𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
,

where

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

= log
∑︁
𝑎ℎ∈𝒜

exp
{︁ 𝑡∑︁

𝑠=1

[︀
− 𝜂𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
.

Plug in the optimal 𝑚𝑥𝑔𝑎𝑔 , the object now becomes

𝐻(𝜆) +
∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑥𝑔𝑎𝑔

[︃
𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,

𝑡∑︁
𝑠=1

𝑀 𝑠⟩ − 𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔

]︃
.

This is a standard KL-regularized linear optimization problem on simplex. The

optimum is achieved at

𝜆𝑡+1
𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp

{︁
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,

𝑡∑︁
𝑠=1

𝑀 𝑠⟩+ 𝐹 𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔

}︁
.

This gives the update of 𝜆𝑡+1 and 𝑚𝑡+1 as in Algorithm 13. This completes the

proof.

296

F.2 Proofs for Section 7.1.3

F.2.1 Proof of Theorem 54

Using regret bound of Φ-Hedge algorithm (Lemma 118), we get

RegTr(𝑇) ≤ log |ΦEFCE
0 |
𝜂

+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑
(︀
⟨𝜑𝜇𝑡, ℓ𝑡⟩

)︀2
(𝑖)

≤ log |ΦEFCE
0 |
𝜂

+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑𝐻
2 =

log |ΦEFCE
0 |
𝜂

+
𝜂𝐻2𝑇

2
.

Here, (i) uses ⟨𝜑𝜇𝑡, ℓ𝑡⟩ ∈ [0, 𝐻]. Note that ΦEFCE
0 :=

⋃︀
𝑔,𝑥𝑔𝑎𝑔

⋃︀
𝑣𝑥𝑔∈𝒱𝑥𝑔

{︀
𝜑𝑥𝑔𝑎𝑔→𝑣𝑥𝑔

}︀
has

cardinality upper bounded by |ΦEFCE
0 | ≤ 𝑋𝐴‖Π‖1+1 by Lemma 114. Substitute this

into the regret bound, we have

RegTr(𝑇) ≤ log(𝑋𝐴‖Π‖1+1)

𝜂
+
𝜂𝐻2𝑇

2
≤ 2‖Π‖1𝜄

𝜂
+
𝜂𝐻2𝑇

2
,

where 𝜄 = log(𝑋𝐴) is a log-term. Choosing 𝜂 = 2
√︀
‖Π‖1𝜄/(𝐻2𝑇) gives RegTr(𝑇) ≤

2
√︀
𝐻2‖Π‖1𝜄𝑇 , which completes the proof.

F.2.2 Proof of Theorem 55

For the loss estimator ̃︀ℓ, we have the following lemma (see Lemma 3 in Kozuno et al.

[2021]):

Lemma 141. Let 𝛿 ∈ (0, 1) and 𝛾 ∈ (0,∞). Fix ℎ ∈ [𝐻], and let 𝛼(𝑥ℎ, 𝑎ℎ) ∈ [0, 2𝛾]

be some constant for each (𝑥ℎ, 𝑎ℎ) ∈ 𝒳ℎ ×𝒜. Then with probability at least 1− 𝛿, we

have

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ∈𝒳ℎ,𝑎ℎ∈𝒜

𝛼(𝑥ℎ, 𝑎ℎ)
(︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ))︁ ≤ log

1

𝛿
.

297

Proof of Theorem 55. We have

RegTr(𝑇) = max
𝜑∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜇𝑡 − 𝜑𝜇𝑡, ℓ𝑡⟩

≤
𝑇∑︁
𝑡=1

⟨𝜇𝑡, ℓ𝑡 − ̃︀ℓ𝑡⟩⏟ ⏞
BIAS1

+ max
𝜑∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝜇𝑡, ̃︀ℓ𝑡 − ℓ𝑡⟩⏟ ⏞
BIAS2

+ max
𝜑∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜇𝑡 − 𝜑𝜇𝑡, ̃︀ℓ𝑡⟩⏟ ⏞
REGRET

.

We use the following three lemmas to bound the terms above respectively. In

these lemmas, 𝜄 = log(3𝑋𝐴/𝛿) is a log factor.

Lemma 142 (Bound on BIAS1). With probability at least 1− 𝛿/3, we have

BIAS1 ≤ 𝐻
√
2𝑇𝜄+ 𝛾𝑋𝐴𝑇.

Lemma 143 (Bound on BIAS2). With probability at least 1− 𝛿/3, we have

BIAS2 ≤ ‖Π‖1𝜄/𝛾.

Lemma 144 (Bound on REGRET). With probability at least 1− 𝛿/3, we have

REGRET ≤ log |ΦEFCE
0 |/𝜂 + 𝜂𝐻𝑋𝐴𝑇 + 𝜂𝐻𝑋𝐴𝜄/𝛾..

Lemma 142, 143, and 144 bound bias terms and regret term respectively. Using

these lemmas, we have with probability at least 1− 𝛿,

RegTr(𝑇) ≤ log |ΦEFCE
0 |
𝜂

+ 𝜂𝐻𝑋𝐴𝑇 + 𝜂𝐻𝑋𝐴𝜄/𝛾 + ‖Π‖1𝜄/𝛾 +𝐻
√
2𝑇𝜄+ 𝛾𝑋𝐴𝑇.

Because |ΦEFCE
0 | ≤ 𝑋𝐴‖Π‖1+1, we further have

RegTr(𝑇) ≤ 2‖Π‖1𝜄
𝜂

+ 𝜂𝐻𝑋𝐴𝑇 + 𝜂𝐻𝑋𝐴𝜄/𝛾 + ‖Π‖1𝜄/𝛾 +𝐻
√
2𝑇𝜄+ 𝛾𝑋𝐴𝑇.

298

Choosing 𝛾 =
√︀
‖Π‖1𝜄/(𝑋𝐴𝑇) and 𝜂 =

√︀
‖Π‖1𝜄/(𝐻𝑋𝐴𝑇) gives

RegTr(𝑇) ≤ 5
√︀
𝐻𝑋𝐴‖Π‖1𝑇𝜄+𝑋𝐴𝜄

√
𝐻 +𝐻

√
2𝑇𝜄

≤ 𝒪(
√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇 +𝑋𝐴𝜄

√
𝐻),

where we uses ‖Π‖1 ≥ 𝐻. Notice that there is a “trivial” bound RegTr(𝑇) ≤ 𝐻𝑇 .

For 𝑇 ≥ 𝑋𝐴𝜄/‖Π‖1, we have 𝑋𝐴𝜄
√
𝐻 ≤

√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇 , which gives RegTr ≤

𝒪(
√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇); For 𝑇 ≤ 𝑋𝐴𝜄/‖Π‖1, we have 𝐻𝑇 ≤

√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇 , which

gives RegTr ≤ 𝐻𝑇 ≤ 𝒪(
√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇). Therefore, we always have

RegTr ≤ 𝒪(
√︀
𝐻𝑋𝐴‖Π‖1𝜄 · 𝑇).

This completes the proof.

Here, we give the proofs of the lemmas we used above.

Proof of Lemma 142. We further decompose BIAS1 to two terms by

BIAS1 =
𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − ̃︀ℓ𝑡⟩ =

𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁⟩

⏟ ⏞
(𝐴)

+
𝑇∑︁
𝑡=1

⟨
𝜇𝑡,E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁
− ̃︀ℓ𝑡⟩⏟ ⏞

(𝐵)

.

To bound (𝐴), plug in the definition of loss estimator,

𝑇∑︁
𝑡=1

⟨
𝜇𝑡, ℓ𝑡 − E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁⟩

=
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)

[︂
ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)−

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾

]︂

=
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ
𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

[︂
𝛾

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾

]︂

≤ 𝛾

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) ≤ 𝛾𝑋𝐴𝑇,

where the last inequality is by ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) ∈ [0, 1].

299

To bound (𝐵), first notice

⟨
𝜇𝑡, ̃︀ℓ𝑡⟩ =

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} · (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾

≤
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
=

𝐻∑︁
ℎ=1

1 = 𝐻.

Then by Azuma-Hoeffding, with probability at least 1− 𝛿/3, we have

𝑇∑︁
𝑡=1

⟨
𝜇𝑡,E

{︁̃︀ℓ𝑡|ℱ 𝑡−1
}︁
− ̃︀ℓ𝑡⟩ ≤ 𝐻

√︀
2𝑇 log(3/𝛿) ≤ 𝐻

√
2𝑇𝜄.

Combining the bounds for (A) and (B) gives the desired result.

Proof of Lemma 143. We have with probability at least 1− 𝛿/3,

BIAS2 = max
𝜑∈ΦEFCE

𝑇∑︁
𝑡=1

⟨
𝜑𝜇𝑡, ̃︀ℓ𝑡 − ℓ𝑡⟩

= max
𝜑∈ΦEFCE

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

= max
𝜑∈ΦEFCE

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝛾

𝑇∑︁
𝑡=1

𝛾
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

(𝑖)

≤ log (3𝑋𝐴/𝛿)

𝛾
max
𝜑∈ΦEFCE

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

≤ ‖Π‖1𝜄/𝛾,

where (𝑖) is by applying Lemma 141 for each (𝑥ℎ, 𝑎ℎ) pair. To be more specific, we

choose 𝛼(𝑥′ℎ, 𝑎′ℎ) = 𝛾1 {(𝑥′ℎ, 𝑎′ℎ) = (𝑥ℎ, 𝑎ℎ)}, then Lemma 141 yields that

𝑇∑︁
𝑡=1

𝛾
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁ ≤ log

3𝑋𝐴

𝛿

with probability at least 1− 𝛿/(3𝑋𝐴). Then taking union bound gives the inequality

in (𝑖).

300

Proof of Lemma 144. Note that by Lemma 118, we have

REGRET ≤ log |ΦTr
0 |

𝜂
+
𝜂

2

𝑇∑︁
𝑡=1

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑(⟨𝜑𝜇𝑡, ̃︀ℓ𝑡⟩)2.

To bound the second term, we have

𝑇∑︁
𝑡=1

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑(⟨𝜑𝜇𝑡, ̃︀ℓ𝑡⟩)2
≤ 2

∑︁
ℎ′≥ℎ

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑(𝜑𝜇
𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾
̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)

≤ 2
∑︁
ℎ′≥ℎ

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

∑︁
𝜑∈ΦTr

0

𝑝𝑡𝜑(𝜑𝜇
𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)

(𝑖)
= 2

∑︁
ℎ′≥ℎ

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)
(𝑖𝑖)

≤ 2
∑︁
ℎ′≥ℎ

(︁ 𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′) +𝑋ℎ𝐴𝜄/𝛾
)︁

≤ 2𝐻𝑋𝐴𝑇 + 2𝐻𝑋𝐴𝜄/𝛾,

where (𝑖) uses that 𝜇𝑡 is the solution of the fixed point equation 𝜇𝑡 =
∑︀

𝜑∈ΦTr
0
𝑝𝑡𝜑𝜑𝜇

𝑡;

(𝑖𝑖) is by Lemma 141, which gives

𝑇∑︁
𝑡=1

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

𝛾
(︁̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)− ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′))︁ ≤ log

3𝑋𝐴

𝛿

with probability at least 1−𝛿/(3𝑋𝐴) (choosing 𝛼(𝑥′ℎ, 𝑎′ℎ) = 𝛾1 {(𝑥′ℎ, 𝑎′ℎ) ∈ 𝒞ℎ′(𝑥ℎ, 𝑎ℎ)}

in the lemma). Then taking union bound yields that (𝑖𝑖) holds with probability at

least 1− 𝛿/3.

Finally, putting everything together, the lemma is proved.

301

F.3 Proof of Theorem 58

Here we restate the theorem for convenience.

Theorem 145 (Sample complexity under bandit feedback). Run Balanced EFCE-

OMD (Algorithm 14) with 𝜂 =
√︀
𝑋𝐴𝜄/𝐻4𝑇 and 𝛾 = 2

√︀
𝑋𝐴𝜄/𝐻2𝑇 . Then with

probability at least 1− 𝛿, we have the following extensive-form trigger regret bound,

RegTr(𝑇) ≤ 200
√
𝑋𝐴𝐻4𝑇𝜄,

where 𝜄 = log(10𝐻𝑋𝐴/𝛿) is the log factor.

Proof. By the fixed point property of our algorithm, we have the regret decomposition

RegTr(𝑇)

= sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜇𝑡 − 𝜑⋆𝜇𝑡, ℓ𝑡⟩

= sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝑡𝜇𝑡 − 𝜑⋆𝜇𝑡, ℓ𝑡⟩

= sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝑡 − 𝜑⋆, ℓ𝑡(𝜇𝑡)⊤⟩

≤ sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝑡 − 𝜑⋆,̃︁𝑀 𝑡⟩⏟ ⏞
˜REGRET

EFCE
(𝑇)

+
𝑇∑︁
𝑡=1

⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤ − ̃︁𝑀 𝑡⟩⏟ ⏞
BIAS1

+ sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑⋆,̃︁𝑀 𝑡 − ℓ𝑡(𝜇𝑡)⊤⟩⏟ ⏞
BIAS2

.

We bound the term ˜REGRET
EFCE

(𝑇), BIAS1, and BIAS2 in the following lemmas,

whose proofs are presented in Section F.3.2 and F.3.3.

Lemma 146 (Bound on ˜REGRET
EFCE

(𝑇)). Assume that 𝛾 ≥ 2𝜂𝐻. We have with

probability at least 1− 𝛿/3 that

˜REGRET
EFCE

(𝑇) ≤ 𝑋𝐴 log(𝑋𝐴2)

𝜂
+ 22𝜂𝐻4𝑇 +

38𝜂𝐻3𝑋𝐴𝜄

𝛾
,

where 𝜄 = log(10𝐻𝑋𝐴/𝛿) is the log factor.

302

Lemma 147 (Bound on BIAS1). We have with probability at least 1− 𝛿/3 that

BIAS1 ≤ 2𝛾𝐻2𝑇 + 2𝐻
√
𝑇𝜄,

where 𝜄 = log(3/𝛿) is the log factor.

Lemma 148 (Bound on BIAS2). We have with probability at least 1− 𝛿/3 that

BIAS2 ≤
𝑋𝐴𝜄

𝛾
,

where 𝜄 = log(3𝑋𝐴/𝛿) is the log factor.

By these three lemmas, whenever 𝛾 ≥ 2𝜂𝐻, we have

RegTr(𝑇) ≤ 𝑋𝐴 log(𝑋𝐴2)

𝜂
+ 22𝜂𝐻4𝑇 +

38𝜂𝐻3𝑋𝐴𝜄

𝛾
+ 2𝛾𝐻2𝑇 + 2𝐻

√
𝑇𝜄+

𝑋𝐴𝜄

𝛾
.

Taking 𝜂 =
√︀
𝑋𝐴𝜄/𝐻4𝑇 and 𝛾 = 2

√︀
𝑋𝐴𝜄/𝐻2𝑇 , we get

RegTr(𝑇) ≤ 100
[︁√

𝑋𝐴𝐻4𝑇𝜄+𝐻2𝑋𝐴𝜄
]︁
.

Notice that there is the “trivial” bound RegTr(𝑇) ≤ 𝐻𝑇 . For 𝑇 ≥ 𝑋𝐴𝜄, we have

𝐻2𝑋𝐴𝜄 ≤
√
𝑋𝐴𝐻4𝑇𝜄, which gives RegTr ≤ 200

√
𝐻4𝑋𝐴𝑇𝜄; For 𝑇 ≤ 𝑋𝐴𝜄, we have

𝐻𝑇 ≤
√
𝑋𝐴𝐻4𝑇𝜄, which gives RegTr ≤ 𝐻𝑇 ≤

√
𝐻4𝑋𝐴𝑇𝜄. Therefore, we always

have

RegTr ≤ 200
√
𝐻4𝑋𝐴𝑇𝜄.

This gives the desired bound.

The rest of this section is organized as follows. We introduce some notations

in Section F.3.1. In Section F.3.2, we bound the regret term ˜REGRET
EFCE

(𝑇). In

Section F.3.3, we bound the two bias terms BIAS1 and BIAS2.

303

F.3.1 Some preparations

Note that 𝑚𝑡
𝑥𝑔𝑎𝑔 ∈ Π𝑥𝑔 is a subtree policy rooted at 𝑥𝑔, we denote

𝑚𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ) :=

ℎ∏︁
ℎ′=𝑔

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ′(𝑎

′
ℎ|𝑥′ℎ),

where (𝑥𝑔, 𝑎𝑔, 𝑎𝑔+1, 𝑎𝑔+1, · · · , 𝑥ℎ−1, 𝑎ℎ−1) is the unique history leading to (𝑥ℎ, 𝑎ℎ).

Note that we have 𝜑𝑡 =
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
𝜆𝑡𝑥𝑔𝑎𝑔(𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 + 𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔) and 𝜑𝑡𝜇𝑡 = 𝜇𝑡.

These two equations give

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔𝐸⪰𝑥𝑔𝑎𝑔𝜇
𝑡 =

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔𝜇
𝑡
𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ∈ R𝑋𝐴. (F.5)

As a consequence, for any 𝑥𝑔𝑎𝑔, we have

𝜆𝑡𝑥𝑔𝑎𝑔𝜇
𝑡
𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ≤

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔𝜇
𝑡 = 𝜇𝑡. (F.6)

Here 𝜆𝑡𝑥𝑔𝑎𝑔 ∈ Δ𝑋𝐴, 𝜇
𝑡
𝑥𝑔𝑎𝑔 = 𝜇𝑡1:𝑔(𝑥𝑔, 𝑎𝑔) are two scalers, and 𝑚𝑡

𝑥𝑔𝑎𝑔 ∈ Π𝑥𝑔 and 𝜇𝑡 ∈ Π

are two vectors of length 𝑋𝐴. The ≤ above is understood in an entrywise sense.

We also define (recall that {𝑝𝑡ℎ}ℎ∈{0}∪[𝐻],𝑡≥1 are the adversarial probability transi-

tion function)

𝑝𝑡(𝑥ℎ) := 𝑝𝑡0(𝑥1)
ℎ−1∏︁
ℎ′=1

𝑝𝑡ℎ′(𝑥ℎ′+1|𝑥ℎ′ , 𝑎ℎ′). (F.7)

Note that 𝑝𝑡(𝑥ℎ) ∈ [0, 1]. Furthermore, for any policy 𝜇 ∈ Π and any (ℎ, 𝑡), we have

∑︁
𝑥ℎ,𝑎ℎ

𝜇1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
𝑡(𝑥ℎ, 𝑎ℎ) = 1, (F.8)

as the left-hand side is the probability of visiting some (𝑥ℎ, 𝑎ℎ) in episode 𝑡 using

policy 𝜇.

304

F.3.2 Proof of Lemma 146

Recall that ˜REGRET
EFCE

(𝑇) is defined as

˜REGRET
EFCE

(𝑇) := sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝑡 − 𝜑⋆,̃︁𝑀 𝑡⟩.

First, we claim that

sup
𝜑⋆∈ΦEFCE

⟨−𝜑⋆,𝑀⟩ = sup
𝜑⋆∈ΦEFCE

0

⟨−𝜑⋆,𝑀⟩ ≤ 1

𝜂
𝐹 EFCE
bal (𝑀).

for any 𝑀 ∈ R𝑋𝐴×𝑋𝐴. Indeed, the first equation follows from ΦEFCE = conv
{︀
ΦTr

0

}︀
.

The inequality is due to the following argument: for any fixed 𝑀 , the maximizer

𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔𝑎𝑔
∈ ΦEFCE

0 specifies a trigger sequence 𝑥𝑔𝑎𝑔 and a deterministic subtree

policy 𝑚𝑥𝑔𝑎𝑔 starting from 𝑥𝑔. Replacing all the sums by this realization in the

formula of 𝐹 EFCE
bal (c.f. Eq. (7.16)) and 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥ℎ
(c.f. Eq. (7.17)) exactly gives

⟨−𝜑𝑥𝑔𝑎𝑔→𝑚𝑥𝑔𝑎𝑔
,𝑀⟩ = sup𝜑⋆∈ΦEFCE

0
⟨−𝜑⋆,𝑀⟩. This proves the claim.

This claim gives

˜REGRET
EFCE

(𝑇)

= sup
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨𝜑𝑡 − 𝜑⋆,̃︁𝑀 𝑡⟩ = sup
𝜑⋆∈ΦEFCE

⟨−𝜑⋆,
𝑇∑︁
𝑡=1

̃︁𝑀 𝑡⟩+
𝑇∑︁
𝑡=1

⟨𝜑𝑡,̃︁𝑀 𝑡⟩

≤ 1

𝜂
𝐹 EFCE
bal

(︁ 𝑇∑︁
𝑡=1

̃︁𝑀 𝑡
)︁
+

𝑇∑︁
𝑡=1

⟨𝜑𝑡,̃︁𝑀 𝑡⟩ = 1

𝜂
𝐹 EFCE
bal (0) +

𝑇∑︁
𝑡=1

𝐷𝑡,

(F.9)

where 𝐷𝑡 is given by

𝐷𝑡 =
1

𝜂
𝐹 EFCE
bal

(︁
𝜂

𝑡∑︁
𝑠=1

̃︁𝑀 𝑠
)︁
− 1

𝜂
𝐹 EFCE
bal

(︁
𝜂
𝑡−1∑︁
𝑠=1

̃︁𝑀 𝑠
)︁
+ ⟨𝜑𝑡,̃︁𝑀 𝑡⟩. (F.10)

The following lemma gives bound on the initial entropy 𝐹 EFCE
bal (0) with proof in

Section F.3.2.

305

Lemma 149 (Bound on initial entropy). We have

𝐹 EFCE
bal (0) = 𝑋𝐴 log

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

exp{[𝑋⪰𝑥𝑔𝐴 log𝐴]/𝑋𝐴} ≤ 𝑋𝐴 log(𝑋𝐴2). (F.11)

The following lemma gives a reformulation of the stability term 𝐷𝑡 with proof in

Section F.3.2.

Lemma 150 (Reformulation of stability term via incremental update). We have

𝐷𝑡 = 𝐹
𝑡
/𝜂 + ⟨𝜑𝑡,̃︁𝑀 𝑡⟩, (F.12)

where we have

𝐹
𝑡
= 𝑋𝐴 log

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

[︀
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,̃︁𝑀 𝑡⟩+ 𝐹 ⋆,𝑡

𝑥𝑔𝑎𝑔 ,𝑥𝑔

]︀}︁
, (F.13)

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

∑︁
𝑎ℎ∈𝒜

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

·
[︀
− 𝜂 𝜇𝑡𝑥𝑔𝑎𝑔̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ)⏟ ⏞

=̃︁𝑀𝑡
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
, ∀(𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔,

(F.14)

and (note that 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0) is as defined in Eq. (7.17) by plugging in 𝑀 = 0)

𝜆𝑡𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0) +

1

𝑋𝐴

𝑡−1∑︁
𝑠=1

(︁
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,̃︁𝑀 𝑠⟩+ 𝐹 ⋆,𝑠

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁}︁
,

(F.15)

𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

𝑡−1∑︁
𝑠=1

(︁
− 𝜂 𝜇𝑠𝑥𝑔𝑎𝑔̃︀ℓ𝑠,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ)⏟ ⏞

=̃︁𝑀𝑠
𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔

+
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆,𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
.

(F.16)

306

To upper bound 𝐷𝑡, note that we have

𝐷𝑡 = 𝐹
𝑡
/𝜂 + ⟨𝜑𝑡,̃︁𝑀 𝑡⟩

= ⟨𝜑𝑡,̃︁𝑀 𝑡⟩+ 𝑋𝐴

𝜂
log

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

[︀
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩+Δ𝑡
𝑥𝑔𝑎𝑔

]︀}︁
,

where Δ𝑡
𝑥𝑔𝑎𝑔 is given by

Δ𝑡
𝑥𝑔𝑎𝑔

:= 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

+ 𝜂⟨𝑚𝑡
𝑥𝑔𝑎𝑔𝜇

𝑡
𝑥𝑔𝑎𝑔 ,

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔⟩
= 𝐹 ⋆,𝑡

𝑥𝑔𝑎𝑔 ,𝑥ℎ
+ 𝜂⟨𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩.
(F.17)

Note that −𝜂⟨𝑚𝑡
𝑥𝑔𝑎𝑔𝜇

𝑡
𝑥𝑔𝑎𝑔 ,

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔⟩ will be the linear term in the Taylor expansion of

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

over variable ̃︀ℓ𝑡 at 0, so Δ𝑡
𝑥𝑔𝑎𝑔 can be understood as the nonlinear part within

𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔 . By convexity of 𝐹 ⋆,𝑡

𝑥𝑔𝑎𝑔 ,𝑥ℎ
as a function of ̃︀ℓ𝑡, we have Δ𝑡

𝑥𝑔𝑎𝑔 ≥ 0. Furthermore,

we have the following almost sure upper bound of sup𝑔,𝑥𝑔𝑎𝑔 Δ
𝑡
𝑥𝑔𝑎𝑔 with proof in Section

F.3.2.

Lemma 151 (Bound on sup𝑔,𝑥𝑔𝑎𝑔 Δ
𝑡
𝑥𝑔𝑎𝑔). We have for all 𝑡 ∈ [𝑇] that, almost surely,

1

𝑋𝐴
sup
𝑔,𝑥𝑔𝑎𝑔

Δ𝑡
𝑥𝑔𝑎𝑔 ≤

2𝜂2

𝛾2
𝐻2.

Given this lemma, we further assume that 𝛾 ≥ 2𝐻𝜂 so that 1
𝑋𝐴

sup𝑔,𝑥𝑔𝑎𝑔 Δ
𝑡
𝑥𝑔𝑎𝑔 ≤ 1.

Now we use elementary inequalities log(1 + 𝑥) ≤ 𝑥 and

𝑒−𝑥+𝑐 ≤ 1− (𝑥− 𝑐) + 𝑒

2
(𝑥− 𝑐)2 ≤ 1− (𝑥− 𝑐) + 𝑒(𝑥2 + 𝑐2), ∀𝑥 ≥ 0, 𝑐 ≤ 1,

and (taking 𝑐 = Δ𝑡
𝑥𝑔𝑎𝑔 for each (𝑔, 𝑥𝑔𝑎𝑔) below) we get

log
∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

[︀
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩+Δ𝑡
𝑥𝑔𝑎𝑔

]︀}︁
≤
∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴

[︀
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩+Δ𝑡
𝑥𝑔𝑎𝑔

]︀}︁
− 1

≤
{︁ ∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔

(︁
1 +

1

𝑋𝐴

[︀
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩+Δ𝑡
𝑥𝑔𝑎𝑔

]︀
307

+
𝑒

𝑋2𝐴2

[︀
𝜂2⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2 + (Δ𝑡
𝑥𝑔𝑎𝑔)

2
]︀}︁
− 1

= − 𝜂

𝑋𝐴
⟨𝜑𝑡,̃︁𝑀 𝑡⟩+ 1

𝑋𝐴

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔Δ
𝑡
𝑥𝑔𝑎𝑔

+
𝑒

𝑋2𝐴2

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔

(︁
𝜂2⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2 + (Δ𝑡
𝑥𝑔𝑎𝑔)

2
)︁
.

This gives that

𝐷𝑡

≤ 1

𝜂

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔Δ
𝑡
𝑥𝑔𝑎𝑔 +

𝑒

𝜂𝑋𝐴

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔

(︁
𝜂2⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2 + (Δ𝑡
𝑥𝑔𝑎𝑔)

2
)︁

(𝑖)

≤ 1

𝜂

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔Δ
𝑡
𝑥𝑔𝑎𝑔

(︂
1 +

𝑒

𝑋𝐴
sup
𝑔,𝑥𝑔𝑎𝑔

Δ𝑡
𝑥𝑔𝑎𝑔

)︂
+

𝑒𝜂

𝑋𝐴

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2

(𝑖𝑖)

≤ 4

𝜂

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔Δ
𝑡
𝑥𝑔𝑎𝑔⏟ ⏞

I𝑡

+
𝑒𝜂

𝑋𝐴

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2⏟ ⏞
II𝑡

.

(F.18)

In the line of inequality above, (i) used Δ𝑡
𝑥𝑔𝑎𝑔 ≥ 0, and (ii) used Lemma 151 and

𝛾 ≥ 2𝜂𝐻.

Next, we use the following lemmas to bound
∑︀𝑇

𝑡=1 I𝑡 and
∑︀𝑇

𝑡=1 II𝑡, with proofs in

Section F.3.2 and F.3.2.

Lemma 152 (Bound on
∑︀𝑇

𝑡=1 I𝑡). With probability at least 1− 𝛿/10, we have

𝑇∑︁
𝑡=1

I𝑡 ≤ 16𝜂𝐻3𝑇 +
32𝜂𝐻3𝑋𝐴𝜄

𝛾
,

where 𝜄 := log(10𝐻/𝛿) is the log factor.

Lemma 153 (Bound on
∑︀𝑇

𝑡=1 II𝑡). With probability at least 1− 𝛿/10, we have

𝑇∑︁
𝑡=1

II𝑡 ≤ 6𝜂𝐻𝑇 +
6𝜂𝐻𝑋𝐴𝜄

𝛾
,

308

where 𝜄 := log(10𝑋𝐴/𝛿) is the log factor.

Combining Eq. (F.9), Lemma 149 and 150, Eq. (F.18), and Lemma 152 and 153,

we have

˜REGRET
EFCE

(𝑇) ≤ 𝑋𝐴 log(𝑋𝐴2)

𝜂
+ 22𝜂𝐻4𝑇 +

38𝜂𝐻3𝑋𝐴𝜄

𝛾

with probability at least 1 − 𝛿/3, where 𝜄 := log(10𝑋𝐴𝐻/𝛿) is the log factor. This

completes the proof of Lemma 146.

Proof of Lemma 149

Proof of Lemma 149. By the definition of balanced EFCE log-partition function (see

(7.16) and (7.17)), we have

𝐹Tr
bal(0) = 𝑋𝐴 log

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁ 1

𝑋𝐴

[︀
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0)

]︀}︁
,

where for any 𝑥ℎ ⪰ 𝑥𝑔,

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0) =
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log
∑︁
𝑎ℎ

exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

[︀ ∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(0)
]︀}︁
.

(F.19)

So we only need to prove that 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0) = 𝑋⪰𝑥𝑔𝐴 log𝐴. In fact, we can use backward

induction to prove the following: for any 𝑥𝑔 ∈ 𝒳𝑔 and 𝑥ℎ ∈ 𝒞ℎ(𝑥𝑔), we have

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0) =
𝐻∑︁

ℎ′=ℎ

𝒞ℎ′(𝑥ℎ)
𝜇⋆:ℎ

′
𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)

𝐴 log𝐴, (F.20)

(with convention 𝜇⋆,ℎ
′

𝑔:𝑔−1 = 1) where 𝑥ℎ−1, 𝑎ℎ−1 is uniquely determined as 𝑥𝑔 ⪯ (𝑥ℎ−1, 𝑎ℎ−1) ≺

𝑥ℎ. It is easy to see that, choosing 𝑥ℎ = 𝑥𝑔 in (F.20) gives 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0) = 𝑋⪰𝑥𝑔𝐴 log𝐴.

Next we prove (F.20). We use backward induction on ℎ. When ℎ = 𝐻, from

309

(F.19), for any 𝑥𝐻 ∈ 𝒞𝐻(𝑥𝑔), we have

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝐻

(0) =
1

𝜇⋆,𝐻𝐻 (𝑎𝐻 |𝑥𝐻)
log𝐴 = 𝐴 log𝐴.

Now suppose (F.20) is true for ℎ+ 1 for an ℎ ∈ [𝑔,𝐻 − 1]. By the recursive formula

and the induction hypothesis, for any 𝑥ℎ, we have

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0)

=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log
∑︁
𝑎ℎ

exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

[︀ ∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

(0)
]︀}︁

=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log
∑︁
𝑎ℎ

exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

[︀ ∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐻∑︁
ℎ′=ℎ+1

|𝒞ℎ′(𝑥ℎ+1)|
𝜇⋆,ℎ

′

𝑔:ℎ (𝑥ℎ, 𝑎ℎ)
𝐴 log𝐴

]︀}︁
.

Then by the definition of the balanced policies (6.1), we have

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

|𝒞ℎ′(𝑥ℎ+1)|
𝜇⋆,ℎ

′

𝑔:ℎ (𝑥ℎ, 𝑎ℎ)

=

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) |𝒞ℎ′(𝑥ℎ+1)|
𝜇⋆,ℎ

′

𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)
· |𝒞ℎ

′(𝑥ℎ)|
|𝒞ℎ′(𝑥ℎ, 𝑎ℎ)|

=
|𝒞ℎ′(𝑥ℎ)|

𝜇⋆,ℎ
′

𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)
,

which is also independent of 𝑎ℎ. So we have

𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0)

=
1

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

{︃
𝐴 · exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

[︀ 𝐻∑︁
ℎ′=ℎ+1

|𝒞ℎ′(𝑥ℎ)|
𝜇⋆,ℎ

′

𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)
𝐴 log𝐴

]︀}︁}︃

=
log𝐴

𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
+

𝐻∑︁
ℎ′=ℎ+1

|𝒞ℎ′(𝑥ℎ)|
𝜇⋆,ℎ

′

𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)
𝐴 log𝐴

=
𝐻∑︁

ℎ′=ℎ

𝒞ℎ′(𝑥ℎ)
𝜇⋆:ℎ

′
𝑔:ℎ−1(𝑥ℎ−1, 𝑎ℎ−1)

𝐴 log𝐴.

This proves (F.20), and thus we proved the first equation in Eq. (F.11). The in-

equality in Eq. (F.11) is direct since exp{[𝑋⪰𝑥𝑔𝐴 log𝐴]/𝑋𝐴} ≤ 𝐴. This proves the

lemma.

310

Proof of Lemma 150

Proof of Lemma 150. We only need to verify that

𝐹
𝑡
:= 𝐹 EFCE

bal

(︁
𝜂

𝑡∑︁
𝑠=1

̃︁𝑀 𝑠
)︁
− 𝐹 EFCE

bal

(︁
𝜂
𝑡−1∑︁
𝑠=1

̃︁𝑀 𝑠
)︁

(F.21)

can be computed via recursive formulas (F.13)-(F.16).

Define

𝐺⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

:= 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(︃
𝜂

𝑡∑︁
𝑠=1

̃︁𝑀 𝑠

)︃
− 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥ℎ

(︃
𝜂

𝑡−1∑︁
𝑠=1

̃︁𝑀 𝑠

)︃
.

By the definition of 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

as in Eq. (7.17), we have

𝐺⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

=
1

𝜇⋆𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

· log

∑︀
𝑎ℎ∈𝒜 exp

{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)×

{︁
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0) +
∑︀𝑡

𝑠=1

[︀
− 𝜂̃︁𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+
∑︀

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)𝐺
⋆,𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁}︁
∑︀

𝑎ℎ∈𝒜 exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)×

{︁
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0) +
∑︀𝑡−1

𝑠=1

[︀
− 𝜂̃︁𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+
∑︀

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)𝐺
⋆,𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁}︁
=

1

𝜇⋆𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
log

∑︁
𝑎ℎ∈𝒜

𝑛𝑡𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)×

[︀
− 𝜂̃︁𝑀 𝑡

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐺⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

]︀}︁
,

where

𝑛𝑡𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)𝐹

⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0)

+ 𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)
𝑡−1∑︁
𝑠=1

(︁
− 𝜂̃︁𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐺⋆,𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
.

Because 𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ) and 𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(0) are independent of 𝑎ℎ for any (𝑥ℎ, 𝑎ℎ) ⪰ (𝑥𝑔, 𝑎𝑔)

(see proof of Lemma 149), we have

𝑛𝑡𝑥𝑔𝑎𝑔 ,ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
𝜇⋆,ℎ𝑔:ℎ(𝑥ℎ, 𝑎ℎ)

𝑡−1∑︁
𝑠=1

(︁
− 𝜂̃︁𝑀 𝑠

𝑥ℎ𝑎ℎ,𝑥𝑔𝑎𝑔
+

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ)

𝐺⋆,𝑠
𝑥𝑔𝑎𝑔 ,𝑥ℎ+1

)︁}︁
.

So 𝐺⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

and 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

(c.f. Eq. (F.14)) have the same recursive formula, which

311

means that 𝐺⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

= 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

for any 𝑥𝑔𝑎𝑔 and 𝑥ℎ ⪰ 𝑥𝑔.

Finally, by the definition of 𝐹 𝑡 as in Eq. (F.21) and the definition of 𝐹 EFCE
bal as in

Eq. (7.16), we have

𝐹
𝑡

= 𝑋𝐴 log

∑︀
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁

1
𝑋𝐴

[︀
− ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 , 𝜂

∑︀𝑡
𝑠=1
̃︁𝑀 𝑠⟩+ 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝜂
∑︀𝑡

𝑠=1
̃︁𝑀 𝑠)

]︀}︁
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
exp

{︁
1
𝑋𝐴

[︀
− ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 , 𝜂

∑︀𝑡−1
𝑠=1
̃︁𝑀 𝑠⟩+ 𝐹 ⋆

𝑥𝑔𝑎𝑔 ,𝑥𝑔(𝜂
∑︀𝑡−1

𝑠=1
̃︁𝑀 𝑠)

]︀}︁
= 𝑋𝐴 log

∑︀
𝑔,𝑥𝑔 ,𝑎𝑔

exp
{︁

1
𝑋𝐴
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0)

}︁
exp

{︁
1
𝑋𝐴

[︀∑︀𝑡
𝑠=1

(︁
−⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 , 𝜂 ̃︁𝑀 𝑠⟩+ 𝐹 ⋆,𝑠

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁]︀}︁
∑︀

𝑔,𝑥𝑔 ,𝑎𝑔
exp

{︁
1
𝑋𝐴
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0)

}︁
exp

{︁
1
𝑋𝐴

[︀∑︀𝑡−1
𝑠=1

(︁
−⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 , 𝜂 ̃︁𝑀 𝑠⟩+ 𝐹 ⋆,𝑠

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁]︀}︁
= 𝑋𝐴 log

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔 exp

{︂
1

𝑋𝐴
[−𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,̃︁𝑀 𝑡⟩+ 𝐹 ⋆,𝑡

𝑥𝑔𝑎𝑔 ,𝑥𝑔]

}︂
,

where

𝜆𝑡𝑥𝑔𝑎𝑔 ∝𝑥𝑔𝑎𝑔 exp
{︁ 1

𝑋𝐴
𝐹 ⋆
𝑥𝑔𝑎𝑔 ,𝑥𝑔(0) +

1

𝑋𝐴

𝑡−1∑︁
𝑠=1

(︁
− 𝜂⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 ,̃︁𝑀 𝑠⟩+ 𝐹 ⋆,𝑠

𝑥𝑔𝑎𝑔 ,𝑥𝑔

)︁}︁
.

This proves the lemma.

Bound on Δ𝑡
𝑥𝑔𝑎𝑔 via Hessian

The following lemma can be proved similar to Lemma D.11 in Bai et al. [2022b] by

calculating the Hessian of Δ𝑡
𝑥𝑔𝑎𝑔 with respect to ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 . This result is the starting

point of both Lemma 151 and Lemma 152.

Lemma 154 (Bound on Δ𝑡
𝑥𝑔𝑎𝑔). We have, almost surely,

Δ𝑡
𝑥𝑔𝑎𝑔 ≤ 2𝜂2

∑︁
𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥
𝑡
ℎ′′ , 𝑎

𝑡
ℎ′′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥

𝑡
ℎ′ , 𝑎

𝑡
ℎ′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥

𝑡
ℎ, 𝑎

𝑡
ℎ)

× ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥𝑡ℎ, 𝑎
𝑡
ℎ)
̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ′ (𝑥𝑡ℎ′ , 𝑎

𝑡
ℎ′) · (𝜇𝑡𝑥𝑔𝑎𝑔)

21
{︀
(𝑥𝑡ℎ′ , 𝑎

𝑡
ℎ′) ⪰ (𝑥𝑡ℎ, 𝑎

𝑡
ℎ) ⪰ 𝑥𝑔

}︀
≤ 2𝜂2

∑︁
𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)(𝜇

𝑡
𝑥𝑔𝑎𝑔)

2

× 1 {𝑥𝑡ℎ, 𝑎𝑡ℎ = 𝑥ℎ, 𝑎ℎ}
(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔}))

312

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′}
(𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔}))

× 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔} .

Proof. First, notice that 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

has a similar form as Ξ𝑡1 in Appendix D.6 of Bai

et al. [2022b] with three minor differences:

∙ 𝑚𝑡
𝑥𝑔𝑎𝑔 ,ℎ

is used instead of 𝜇𝑡ℎ for layer ℎ,

∙ 𝜇𝑡𝑥𝑔𝑎𝑔̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ is used instead of ̃︀ℓ𝑡ℎ 1 for layer ℎ,

∙ We terminate the induction argument earlier at (𝑥𝑔, 𝑎𝑔) instead of the root of

the full tree.

Therefore Δ𝑡
𝑥𝑔𝑎𝑔 defined as below (cf. (F.17)) is exactly the non-linear part (i.e. re-

mainder term of the first-order Taylor expansion with respect to 𝜇𝑡𝑥𝑔𝑎𝑔̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 around

0) within 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥𝑔 :

Δ𝑡
𝑥𝑔𝑎𝑔

:= 𝐹 ⋆,𝑡
𝑥𝑔𝑎𝑔 ,𝑥ℎ

+ 𝜂⟨𝑚𝑡
𝑥𝑔𝑎𝑔𝜇

𝑡
𝑥𝑔𝑎𝑔 ,

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔⟩.
Further taking the above differences into account and following exactly the same

analysis as in Appendix D.6.1 of Bai et al. [2022b], we get the inequality as claimed.

Proof of Lemma 151

Proof of Lemma 151. By Lemma 154, for any 𝑥𝑔𝑎𝑔, we have

Δ𝑡
𝑥𝑔𝑎𝑔

≤ 2𝜂2
∑︁

𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)(𝜇

𝑡
𝑥𝑔𝑎𝑔)

2

× 1 {𝑥𝑡ℎ, 𝑎𝑡ℎ = 𝑥ℎ, 𝑎ℎ}
(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔}))

1This is defined in Bai et al. [2022b]. The only difference of ̃︀ℓ𝑡ℎ from ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔

ℎ is that there is no
𝛾𝜇𝑡

𝑥𝑔𝑎𝑔
𝑚𝑡

𝑥𝑔𝑎𝑔,𝑔:ℎ
(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔} in the denominator and the indicator function in the numerator.

313

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′}
(𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔}))

× 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔}

≤ 2𝜂2
∑︁

𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)(𝜇

𝑡
𝑥𝑔𝑎𝑔)

2

× 1 {𝑥𝑡ℎ, 𝑎𝑡ℎ = 𝑥ℎ, 𝑎ℎ}
𝛾𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)
× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′}

𝛾𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)
× 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔}

≤ 2𝜂2

𝛾2

∑︁
𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇𝑡𝑥𝑔𝑎𝑔𝜇
⋆,ℎ′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)
1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ 𝑥𝑔}

(𝑖)

≤ 2𝜂2

𝛾2

∑︁
𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

𝜇𝑡1:𝑔−1(𝑥𝑔−1, 𝑎𝑔−1)𝜇
⋆,ℎ′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ 𝑥𝑔}

𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

(𝑖𝑖)

≤ 2𝜂2

𝛾2

∑︁
𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

𝑋ℎ′𝐴

≤ 2𝜂2

𝛾2
𝐻2𝑋𝐴.

Here, (i) uses that

𝜇𝑡𝑥𝑔𝑎𝑔 = 𝜇𝑡1:𝑔(𝑥𝑔, 𝑎𝑔) ≤ 𝜇𝑡1:𝑔−1(𝑥𝑔−1, 𝑎𝑔−1),

and (ii) uses the property of the balanced policy as in Lemma 37, and observing that

𝜇𝑡1:𝑔−1(𝑥𝑔−1, 𝑎𝑔−1)𝜇
⋆,ℎ′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ 𝑥𝑔}

is bounded by some sequence form policy over steps 1 : ℎ′.

Taking supremum over 𝑥𝑔𝑎𝑔, we get

1

𝑋𝐴
sup
𝑔,𝑥𝑔𝑎𝑔

Δ𝑡
𝑥𝑔𝑎𝑔 ≤

2𝜂2

𝛾2
𝐻2.

This proves the lemma.

314

Proof of Lemma 152

Proof of Lemma 152. We first upper bound I𝑡:

I𝑡 ≤8𝜂
∑︁

𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔𝜇
⋆,ℎ′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)(𝜇

𝑡
𝑥𝑔𝑎𝑔)

2

× 1 {𝑥𝑡ℎ, 𝑎𝑡ℎ = 𝑥ℎ, 𝑎ℎ}
(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔}))

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′}
(𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔}))

× 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔}

(𝑖)

≤8𝜂
∑︁

𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔𝜇

𝑡
1:ℎ(𝑥ℎ, 𝑎ℎ)

× 1 {𝑥𝑡ℎ, 𝑎𝑡ℎ = 𝑥ℎ, 𝑎ℎ}
(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔}))

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′}
(𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔}))

× 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔}

≤8𝜂
∑︁

𝑔≤ℎ≤ℎ′≤𝐻

ℎ∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′} × 1 {(𝑥ℎ′ , 𝑎ℎ′) ⪰ (𝑥ℎ, 𝑎ℎ) ⪰ 𝑥𝑔}
(𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔}))

=8𝜂𝐻
∑︁

𝑔≤ℎ′≤𝐻

ℎ′∑︁
ℎ′′=𝑔

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′} × 1 {𝑥ℎ′ ⪰ 𝑥𝑔}
𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′))

(𝑖𝑖)
=8𝜂𝐻

∑︁
𝑔≤ℎ′≤𝐻

ℎ′∑︁
ℎ′′=𝑔

̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ .

Here, (i) used the fact that 𝜆𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)𝜇
𝑡
𝑥𝑔𝑎𝑔 ≤ 𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) as shown in Eq.

(F.6). Moreover, in (ii), we define

̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ =

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔

315

× 1 {𝑥𝑡ℎ′ , 𝑎𝑡ℎ′ = 𝑥ℎ′ , 𝑎ℎ′} × 1 {𝑥ℎ′ ⪰ 𝑥𝑔}
𝜇𝑡1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾(𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ′

(𝑥ℎ′ , 𝑎ℎ′))

As a result, the random variable ̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ satisfies the following properties:

[leftmargin=1.5pc]

∙ ̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ ≤ 𝑋ℎ′𝐴/𝛾 almost surely. First,

̃︀Δ𝑡
𝑔,ℎ,ℎ′′ ≤

1

𝛾

∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︀
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔1 {𝑥ℎ′ ⪰ 𝑥𝑔}

𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)
.

Notice that (for this fixed 𝑔, ℎ′′)

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔1 {𝑥ℎ′ ⪰ 𝑥𝑔} (F.22)

is the sequence-form of a certain policy at (𝑥ℎ′ , 𝑎ℎ′), where the policy is defined

as follows: First, take policy 𝜇𝑡1:𝑔 and arrive at some 𝑥𝑔 ∈ 𝒳𝑔. Let 𝑎𝑔 be the

action sampled from 𝜇𝑡𝑔(·|𝑥𝑔). Then, starting from 𝑥𝑔, discard 𝑎𝑔 and instead

take policy 𝜇⋆,ℎ
′′

𝑔:ℎ′′𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:𝐻 until the end of the game. One may check that

the sequence-form of this policy is indeed given by (F.22). Therefore, we havẽ︀Δ𝑡
𝑔,ℎ,ℎ′′ ≤ 𝑋ℎ′𝐴/𝛾 by the balancing property of 𝜇⋆,ℎ

′

1:ℎ′ (Lemma 37).

∙ E[̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ |ℱ𝑡−1] ≤ 1: we have

E[̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ |ℱ𝑡−1]

≤
∑︁
𝑥ℎ′ ,𝑎ℎ′

∑︁
𝑥𝑔𝑎𝑔

𝜇⋆,ℎ
′′

𝑔:ℎ′′(𝑥ℎ′′ , 𝑎ℎ′′)𝑚
𝑡
𝑥𝑔𝑎𝑔 ,ℎ′′+1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)𝜇

𝑡
𝑥𝑔𝑎𝑔𝑝

𝑡(𝑥ℎ′)1 {𝑥ℎ′ ⪰ 𝑥𝑔} = 1.

Above, the last equality used again the fact that (F.22) is the sequence-form of

a policy.

∙ E[(̃︀Δ𝑡
𝑔,ℎ′,ℎ′′)

2|ℱ𝑡−1] ≤ 𝑋ℎ′𝐴/𝛾: note that ̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ is non-negative, so by the al-

316

most sure bound that ̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ ≤ 𝑋ℎ′𝐴/𝛾, we have

E[(̃︀Δ𝑡
𝑔,ℎ′,ℎ′′)

2|ℱ𝑡−1] ≤ E[̃︀Δ𝑡
𝑔,ℎ′,ℎ′′ |ℱ𝑡−1] ·𝑋ℎ′𝐴/𝛾 ≤ 𝑋ℎ′𝐴/𝛾.

By Freedman’s inequality (Lemma 119) and taking the union bound, with prob-

ability at least 1− 𝛿/(10𝐻3) and some fixed 𝜆 ≤ 𝛾/(𝑋ℎ′𝐴), we get

𝑇∑︁
𝑡=1

̃︀Δ𝑡
𝑔,ℎ,ℎ′′ ≤ 𝑇 +

𝜆𝑋ℎ′𝐴𝑇

𝛾
+

4 log(𝐻/𝛿)

𝜆
.

Taking 𝜆 = 𝛾/(𝑋ℎ′𝐴), we have

𝑇∑︁
𝑡=1

̃︀Δ𝑡
𝑔,ℎ,ℎ′′ ≤ 2𝑇 +

4𝑋ℎ′𝐴 log(𝐻/𝛿)

𝛾
.

Finally summing up ̃︀Δ𝑡
𝑔,ℎ,ℎ′′ over 𝑔, ℎ, ℎ′′ and taking the union bound, we have

with probability at least 1− 𝛿/10, we have

𝑇∑︁
𝑡=1

I𝑡 ≤ 16𝜂𝐻4𝑇 +
32𝜂𝐻3𝑋𝐴𝜄

𝛾
,

where 𝜄 := log(10𝐻/𝛿) is the log-factor. This proves the lemma.

Proof of Lemma 153

Proof. First, recall that the matrix loss estimator is defined as

̃︁𝑀 𝑡 :=
∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜇𝑡𝑔,𝑥𝑔𝑎𝑔
̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔

, and the vector loss estimator is computed by

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ) =
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})
.

317

We define a vector ̃︀ℓ𝑡 = {̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}(𝑥ℎ,𝑎ℎ)∈𝒳×𝒜 ∈ R𝑋𝐴
≥0 as

̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) := 1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

. (F.23)

Then we have for any (𝑡, 𝑥𝑔𝑎𝑔), (𝑥ℎ, 𝑎ℎ) that

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ) ≤ ̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ).

Then ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩ can be upper bounded as follows:

⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩

= ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

∑︁
ℎ,𝑥ℎ𝑎ℎ

𝜇𝑡𝑥ℎ𝑎ℎ
̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥ℎ𝑎ℎ⟩

≤ ⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︀ℓ𝑡 ∑︁
ℎ,𝑥ℎ,𝑎ℎ

𝜇𝑡𝑥ℎ𝑎ℎ𝑒
⊤
𝑥ℎ𝑎ℎ
⟩

= ⟨𝜑𝑥𝑔𝑎𝑔→𝑚𝑡
𝑥𝑔𝑎𝑔

, ̃︀ℓ𝑡(𝜇𝑡)⊤⟩
=

𝐻∑︁
ℎ=1

∑︁
ℎ,𝑥ℎ𝑎ℎ

(𝜑𝑥𝑔𝑎𝑔→𝑚𝑡
𝑥𝑔𝑎𝑔

𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ),
where we have used 𝜑𝑥𝑔𝑎𝑔→𝑚𝑡

𝑥𝑔𝑎𝑔
:= 𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 + 𝑚𝑡

𝑥𝑔𝑎𝑔𝑒
⊤
𝑥𝑔𝑎𝑔 to denote the EFCE

modification triggered at (𝑥𝑔, 𝑎𝑔) and then playing the policy 𝑚𝑡
𝑥𝑔𝑎𝑔 . Also, ⟨𝐼 −

𝐸⪰𝑥𝑔𝑎𝑔 +𝑚
𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩ ≥ 0 as both matrices have non-negative entries. As a result,

we get that

𝑇∑︁
𝑡=1

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2

≤
𝑇∑︁
𝑡=1

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔

(︁
⟨𝜑𝑥𝑔𝑎𝑔→𝑚𝑡

𝑥𝑔𝑎𝑔
𝜇𝑡, ̃︀ℓ𝑡⟩)︁2

≤ 2
𝑇∑︁
𝑡=1

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔

∑︁
1≤ℎ≤ℎ′≤𝐻

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

(𝜑𝑥𝑔𝑎𝑔→𝑚𝑡
𝑥𝑔𝑎𝑔

𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)1 {(𝑥𝑡ℎ′ , 𝑎𝑡ℎ′) = (𝑥ℎ′ , 𝑎ℎ′)} · (1− 𝑟𝑡ℎ) · (1− 𝑟𝑡ℎ′)

(𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ))(𝜇
𝑡
1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) + 𝛾𝜇⋆,ℎ

′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′))

318

≤ 2
∑︁

1≤ℎ≤ℎ′≤𝐻

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔(𝜑𝑥𝑔𝑎𝑔→𝑚𝑡
𝑥𝑔𝑎𝑔

𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)

(𝑖)
= 2

∑︁
1≤ℎ≤ℎ′≤𝐻

𝑇∑︁
𝑡=1

∑︁
𝑥ℎ,𝑎ℎ

∑︁
(𝑥ℎ′ ,𝑎ℎ′)∈𝒞ℎ′ (𝑥ℎ,𝑎ℎ)

̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)
≤ 2𝐻

𝑇∑︁
𝑡=1

∑︁
ℎ′,𝑥ℎ′ ,𝑎ℎ′

̃︀ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)
(𝑖𝑖)

≤ 2𝐻
𝑇∑︁
𝑡=1

∑︁
ℎ′,𝑥ℎ′ ,𝑎ℎ′

ℓ𝑡ℎ′(𝑥ℎ′ , 𝑎ℎ′)⏟ ⏞
≤1

+2𝐻
∑︁

ℎ′,𝑥ℎ′ ,𝑎ℎ′

log(10𝑋𝐴/𝛿)

𝛾𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′)

(𝑖𝑖𝑖)

≤ 2𝐻𝑋𝐴𝑇 + 2𝐻
∑︁

ℎ′,𝑥ℎ′ ,𝑎ℎ′

𝜄 ·𝑋ℎ′𝐴/𝛾

≤ 2𝐻𝑋𝐴𝑇 + 2𝐻𝑋2𝐴2𝜄/𝛾.

Above, (𝑖) uses that 𝜇𝑡 is the solution of the fixed point equation 𝜇 =
∑︀

𝑥𝑔𝑎𝑔
𝜆𝑡𝑥𝑔 ,𝑎𝑔(𝐼−

𝐸⪰𝑥𝑔𝑎𝑔 +𝑚
𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔)𝜇; (𝑖𝑖) is by [Bai et al., 2022b, Corollary D.6] for each (ℎ′, 𝑥ℎ′ , 𝑎ℎ′)

with probability 1−𝛿/(10𝑋𝐴) and a union bound; (iii) uses 𝜇⋆,ℎ
′

1:ℎ′(𝑥ℎ′ , 𝑎ℎ′) ≥ 1/(𝑋ℎ′𝐴)

by Corollary 122. Therefore, we have with probability at least 1− 𝛿/10 that

𝑇∑︁
𝑡=1

II𝑡 =
𝑒𝜂

𝑋𝐴
·

𝑇∑︁
𝑡=1

∑︁
𝑔,𝑥𝑔𝑎𝑔

𝜆𝑡𝑥𝑔𝑎𝑔⟨𝐼 − 𝐸⪰𝑥𝑔𝑎𝑔 +𝑚𝑡
𝑥𝑔𝑎𝑔𝑒

⊤
𝑥𝑔𝑎𝑔 ,

̃︁𝑀 𝑡⟩2

≤ 𝑒𝜂

𝑋𝐴

(︀
2𝐻𝑋𝐴𝑇 + 2𝐻𝑋2𝐴2𝜄/𝛾

)︀
≤ 6𝜂𝐻𝑇 + 6𝜂𝐻𝑋𝐴𝜄/𝛾.

This proves the lemma.

F.3.3 Bound on two bias terms

Proof of Lemma 147. First, recall that the matrix loss estimator gives

̃︁𝑀 𝑡 =
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜇𝑡𝑥𝑔𝑎𝑔
̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔

319

and the vector loss estimator is computed by

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔ℎ (𝑥ℎ, 𝑎ℎ) =
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})
.

Then we decompose BIAS1 as

BIAS1 =
𝑇∑︁
𝑡=1

⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤ − ̃︁𝑀 𝑡⟩

=
𝑇∑︁
𝑡=1

⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤ − E
[︁̃︁𝑀 𝑡|ℱ𝑡−1

]︁
⟩⏟ ⏞

(𝐴)

+
𝑇∑︁
𝑡=1

⟨𝜑𝑡,E
[︁̃︁𝑀 𝑡|ℱ𝑡−1

]︁
− ̃︁𝑀 𝑡⟩⏟ ⏞

(𝐵)

.

We first the second term (𝐵) by Azuma-Hoeffding inequality. Recall the definition

of ̃︀ℓ𝑡 in (F.23). We immediately have ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 ≤ ̃︀ℓ𝑡 pointwisely, so we can upper bound

⟨𝜑𝑡,̃︁𝑀 𝑡⟩ by

⟨𝜑𝑡,̃︁𝑀 𝑡⟩ ≤ ⟨𝜑𝑡,
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜇𝑡𝑥𝑔𝑎𝑔
̃︀ℓ𝑡𝑒⊤𝑥𝑔𝑎𝑔⟩ = ⟨𝜑𝑡𝜇𝑡, ̃︀ℓ𝑡⟩ = ⟨𝜇𝑡, ̃︀ℓ𝑡⟩,

where the last equality comes from fixed point equation 𝜇𝑡 = 𝜑𝑡𝜇𝑡. Then we have

⟨𝜑𝑡,̃︁𝑀 𝑡⟩ ≤ ⟨𝜇𝑡, ̃︀ℓ𝑡⟩
=

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} · (1− 𝑟𝑡ℎ)
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

≤
𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

1
{︀
𝑥ℎ = 𝑥𝑡ℎ, 𝑎ℎ = 𝑎𝑡ℎ

}︀
=

𝐻∑︁
ℎ=1

1 = 𝐻.

As a consequence, by Azuma-Hoeffding inequality, with probability at least 1− 𝛿/10,

we have
𝑇∑︁
𝑡=1

⟨𝜑𝑡,E
[︁̃︁𝑀 𝑡|ℱ𝑡−1

]︁
− ̃︁𝑀 𝑡⟩ ≤ 𝐻

√︀
2𝑇 log(10/𝛿) ≤ 𝐻

√
2𝑇𝜄.

Then we turn to bound the first term (𝐴). Denote ℓ𝑡,𝑥𝑔𝑎𝑔 = E
[︁̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 |ℱ𝑡−1

]︁
and

320

plug in the definition of ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 , we get

⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤ − E
[︁̃︁𝑀 𝑡|ℱ𝑡−1

]︁
⟩

=⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤⟩ −
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

⟨𝜑𝑡, 𝜇𝑡𝑥𝑔𝑎𝑔ℓ
𝑡,𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔⟩

=
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

⟨𝜑𝑡𝑒𝑥𝑔𝑎𝑔𝜇𝑡𝑥𝑔𝑎𝑔 , ℓ
𝑡 − ℓ𝑡,𝑥𝑔𝑎𝑔⟩.

Note that by the definition of the loss estimator as in Eq. (5.10), we have

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) = 𝑝𝑡(𝑥ℎ)[1−𝑅
𝑡

ℎ(𝑥ℎ, 𝑎ℎ)] ≤ 𝑝𝑡(𝑥ℎ),

where we recall the definition of 𝑝𝑡(𝑥ℎ) in (F.7).

Moreover, the ℓ𝑡,𝑥𝑔𝑎𝑔(𝑥ℎ, 𝑎ℎ) is related to ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) by a rescaling

ℓ𝑡,𝑥𝑔𝑎𝑔(𝑥ℎ, 𝑎ℎ) =
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)ℓ

𝑡
ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})
.

So we get

⟨𝜑𝑡, ℓ𝑡(𝜇𝑡)⊤ − E
[︁̃︁𝑀 𝑡|ℱ𝑡−1

]︁
⟩

=
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

∑︁
ℎ,𝑥ℎ,𝑎ℎ

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)

×
𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})

≤𝛾
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

∑︁
ℎ,𝑥ℎ,𝑎ℎ

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)𝜇

⋆,ℎ
1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝

𝑡(𝑥ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})

+ 𝛾
∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

∑︁
ℎ,𝑥ℎ,𝑎ℎ

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)𝜇

𝑡
𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔} 𝑝𝑡(𝑥ℎ)
𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾(𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔})
.

The first term admits an upper bound

𝛾
∑︁

ℎ,𝑥ℎ,𝑎ℎ

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)
𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝

𝑡(𝑥ℎ)

321

(𝑖)
= 𝛾

∑︁
ℎ,𝑥ℎ,𝑎ℎ

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)𝑝
𝑡(𝑥ℎ)

(𝑖𝑖)
= 𝛾𝐻.

Here, (𝑖) uses 𝜇𝑡 = 𝜑𝑡𝜇𝑡 and (𝑖𝑖) uses Eq. (F.8).

The second term can be upper bounded by

𝛾
∑︁

ℎ,𝑥ℎ,𝑎ℎ

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔 ,𝑥ℎ⪰𝑥𝑔

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)𝜇

𝑡
𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)𝑝
𝑡(𝑥ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)

≤ 𝛾
∑︁

ℎ,𝑥ℎ,𝑎ℎ

⎛⎝ ∑︁
𝑔,𝑥𝑔 ,𝑎𝑔 ,𝑥ℎ⪰𝑥𝑔

𝜇𝑡𝑥𝑔𝑎𝑔(𝜑
𝑡𝑒𝑥𝑔𝑎𝑔)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ)

⎞⎠ ·
⎛⎝ ∑︁
𝑔,𝑥𝑔 ,𝑎𝑔 ,𝑥ℎ⪰𝑥𝑔

𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)𝑝

𝑡(𝑥ℎ)

⎞⎠
(𝑖)

≤ 𝛾
∑︁

ℎ,𝑥ℎ,𝑎ℎ

∑︁
𝑔,𝑥𝑔 ,𝑎𝑔 ,𝑥ℎ⪰𝑥𝑔

𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)𝑝

𝑡(𝑥ℎ)

= 𝛾
∑︁

ℎ,𝑥ℎ,𝑎ℎ

ℎ∑︁
𝑔=1

∑︁
𝑥𝑔𝑎𝑔

𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔} · 𝑝𝑡(𝑥ℎ)

= 𝛾
∑︁

1≤𝑔≤ℎ≤𝐻

∑︁
𝑥ℎ,𝑎ℎ

∑︁
𝑥𝑔𝑎𝑔

𝜇𝑡𝑥𝑔𝑎𝑔𝑚
𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔} · 𝑝𝑡(𝑥ℎ)

(𝑖𝑖)

≤ 𝛾𝐻2.

Here, the inequality in (𝑖) also uses 𝜇𝑡 = 𝜑𝑡𝜇𝑡; (ii) used the fact for any fixed

𝑔,
∑︀

𝑥𝑔𝑎𝑔
𝜇𝑡𝑥𝑔𝑎𝑔𝑚

𝑡
𝑥𝑔𝑎𝑔 ,𝑔:ℎ

(𝑥ℎ, 𝑎ℎ)1 {𝑥ℎ ⪰ 𝑥𝑔} is the sequence-form of a policy, similar

as (F.22).

Taking summation over 𝑡 = 1, 2, · · · , 𝑇 , we have

(𝐴) ≤ 2𝛾𝐻2𝑇.

Combined with the bound on (𝐵), we have

BIAS1 ≤ 2𝛾𝐻2𝑇 + 2𝐻
√
𝑇𝜄.

This completes the proof of this lemma.

Proof of Lemma 148. Recall the definition of ̃︀ℓ𝑡 in (F.23). We have ̃︀ℓ𝑡,𝑥𝑔𝑎𝑔 ≤ ̃︀ℓ𝑡 point-

322

wisely, so we have

⟨𝜑⋆,̃︁𝑀 𝑡 − ℓ𝑡(𝜇𝑡)⊤⟩ = ⟨𝜑⋆,
∑︁
𝑔,𝑥𝑔𝑎𝑔

̃︀ℓ𝑡,𝑥𝑔𝑎𝑔𝜇𝑡𝑥𝑔𝑎𝑔𝑒⊤𝑥𝑔𝑎𝑔 − ℓ𝑡(𝜇𝑡)⊤⟩
≤ ⟨𝜑⋆, ̃︀ℓ𝑡(𝜇𝑡)⊤ − ℓ𝑡(𝜇𝑡)⊤⟩ = ⟨𝜑⋆𝜇𝑡, ̃︀ℓ𝑡 − ℓ𝑡⟩.

Then we can get that with probability at least 1− 𝛿/3

BIAS2 ≤ max
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

⟨
𝜑⋆𝜇𝑡, ̃︀ℓ𝑡 − ℓ𝑡⟩

= max
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑⋆𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

= max
𝜑⋆∈ΦEFCE

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑⋆𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁
= max

𝜑⋆∈ΦEFCE

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑⋆𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

𝑇∑︁
𝑡=1

𝛾𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)
[︁̃︀ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)− ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)]︁

(𝑖)

≤ log (3𝑋𝐴/𝛿)

𝛾
max

𝜑⋆∈ΦEFCE

𝐻∑︁
ℎ=1

∑︁
𝑥ℎ,𝑎ℎ

(𝜑⋆𝜇𝑡)1:ℎ(𝑥ℎ, 𝑎ℎ)

𝜇⋆,ℎ1:ℎ(𝑥ℎ, 𝑎ℎ)

(𝑖𝑖)
=

𝜄

𝛾

𝐻∑︁
ℎ=1

𝑋ℎ𝐴 = 𝑋𝐴𝜄/𝛾,

where (i) is a high probability bound by applying Corollary D.6 in Bai et al. [2022b]

for each (𝑥ℎ, 𝑎ℎ) pair and taking union bound, and (ii) is by the balancing property

of 𝜇⋆,ℎ. This proves the lemma.

F.4 Equivalence between Vertex MWU and OMD

In this section we prove Theorem 62. Our proof is based on Algorithm 25, which

is just (the efficient implementation of) the standard OMD algorithm with dilated

entropy regularizer in FTRL form [Kroer et al., 2015]. Indeed, Lemma 157 show that

its output policy {𝜇𝑡}𝑡≥1 is the same as (7.31). Then, Lemma 155 & 156 show that

its output policy {𝜇𝑡}𝑡≥1 is the same as (7.30). These together imply the equivalence

323

Algorithm 25 OMD (FTRL form)
Require: Learning rate 𝜂 > 0.
1: for 𝑡 = 1, 2, . . . , 𝑇 do
2: Compute 𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) and 𝐹 𝑡

𝑥ℎ
in the bottom-up order over 𝑥ℎ ∈ 𝒳 :

𝜇𝑡ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
− 𝜂

∑︀𝑡−1
𝑠=1 ℓ

𝑠
ℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹

𝑡
𝑥ℎ+1

}︁
, (F.24)

𝐹 𝑡
𝑥ℎ

= log
∑︀

𝑎ℎ
exp

{︁
− 𝜂

∑︀𝑡−1
𝑠=1 ℓ

𝑠
ℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹

𝑡
𝑥ℎ+1

}︁
. (F.25)

3: Receive loss ℓ𝑡 = {ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ)}(𝑥ℎ,𝑎ℎ)∈𝒳×𝒜 ∈ R𝑋𝐴
≥0 .

of (7.31) and (7.30), thereby proving Theorem 62.

The rest of this subsection is devoted to stating and proving Lemma 155-157.

Remark on optimistic algorithms As pointed out in Farina et al. [2022b], The-

orem 62 does not depend on the concrete values of {ℓ𝑡}𝑡≥1. As a result, the equiv-

alence also holds for the optimistic version of the algorithms (where the algorithms

are fed with loss functions {2ℓ𝑡 − ℓ𝑡−1}𝑡≥1, with ℓ0 := 0) which achieves an faster

𝒪(poly(log 𝑇)) regret. In words: The Kernelized OMWU algorithm of Farina et al.

[2022b] is equivalent to an Optimistic OMD algorithm with the dilated KL distance.

Lemma 155 (Conversion to log-partition function). Define the log-partition function

𝐹 𝒱 : R𝑋𝐴 → R

𝐹 𝒱(ℓ) := log
∑︀

𝑣∈𝒱 exp{− ⟨𝑣, ℓ⟩}. (F.26)

Then update (7.30) has a closed-form update for all 𝑡 ≥ 1:

𝜇𝑡 = −∇𝐹 𝒱(︀𝜂∑︀𝑡−1
𝑠=1 ℓ

𝑠
)︀
= −

∑︀
𝑣∈𝒱 exp

{︀
−𝜂⟨𝑣,∑︀𝑡−1

𝑠=1 ℓ
𝑠⟩
}︀
𝑣∑︀

𝑣∈𝒱 exp
{︀
−𝜂⟨𝑣,∑︀𝑡−1

𝑠=1 ℓ
𝑠⟩
}︀ . (F.27)

Proof. By (7.30),

𝜇𝑡 =
∑︁
𝑣

𝑝𝑡𝑣𝑣 =

∑︀
𝜑 exp{−𝜂

⟨︀
𝑣,
∑︀𝑡−1

𝑠=1 ℓ
𝑠
⟩︀
}𝑣∑︀

𝑣 exp{−𝜂
⟨︀
𝑣,
∑︀𝑡−1

𝑠=1 ℓ
𝑠
⟩︀
}

= −∇𝐹 𝒱

(︃
𝜂

𝑡−1∑︁
𝑠=1

ℓ𝑠

)︃
.

324

Lemma 156 (Recursive expression of 𝐹 𝒱 and ∇𝐹 𝒱). For any loss matrix ℓ ∈

R𝑋𝐴, the log-partition function can be written as 𝐹 𝒱(ℓ) = 𝐹𝜑(ℓ) where 𝐹𝑥ℎ(ℓ) :=

log
∑︀

𝑣∈𝒱𝑥ℎ exp{− ⟨𝑣, ℓ⟩} can be computed recurrently by 𝐹𝑥𝐻+1
(·) = 0 and

𝐹𝑥ℎ(ℓ) := log
∑︀

𝑎ℎ
exp

{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹𝑥ℎ+1

(ℓ)
}︁
. (F.28)

Furthermore, define a (sequence form) policy 𝜇 by

𝜇(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp
{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ,𝑎ℎ) 𝐹𝑥ℎ+1

(ℓ)
}︁
, (F.29)

then we have

−∇𝐹 𝒱(ℓ) = 𝜇. (F.30)

Proof. We first show (F.28). Using the structure of 𝒱𝑥ℎ ,

𝐹𝑥ℎ(ℓ) = log
∑︁
𝑣∈𝒱𝑥ℎ

exp{− ⟨𝑣, ℓ⟩}

= log
∑︁

𝑎ℎ∈𝒜𝑥ℎ

exp
{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

∑︁
𝑣∈𝒱𝑥ℎ+1

exp{− ⟨𝑣, ℓ⟩}
}︁
.

= log
∑︁

𝑎ℎ∈𝒜𝑥ℎ

exp
{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︁
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹𝑥ℎ+1
(ℓ)
}︁
.

Next we show (F.30). Taking the gradient,

−∇𝐹𝑥ℎ(ℓ)

=

∑︀
𝑎ℎ∈𝒜𝑥ℎ

exp
{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥ℎ+1

(ℓ)
}︁
[𝑒𝑥ℎ𝑎ℎ −

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)∇𝐹𝑥ℎ+1

(ℓ)]∑︀
𝑎ℎ∈𝒜𝑥ℎ

exp
{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥ℎ+1

(ℓ)
}︁

=
∑︁

𝑎ℎ∈𝒜𝑥ℎ

𝜇ℎ(𝑎ℎ|𝑥ℎ)[𝑒𝑥ℎ𝑎ℎ +
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

(−∇𝐹𝑥ℎ+1
)(ℓ)].

For any 𝑥ℎ, repeat the above process along the treeplex, the contribution of the

325

production of 𝜇(·|·) will be the sequence form. As a result, −∇𝐹 𝒱(ℓ) = 𝜇, which

completes the proof.

Lemma 157. The policy 𝜇𝑡 in Algorithm 25 is the optimizer of the optimization

problem

argmin𝜇∈Π𝑥ℎ

[︀
𝜂
⟨︀
𝜇,
∑︀𝑡−1

𝑠=1 ℓ
𝑠
⟩︀
+𝐻𝑥ℎ(𝜇)

]︀
for all 𝑥ℎ simultaneously. Furthermore,

min𝜇∈Π𝑥ℎ

[︀
𝜂
⟨︀
𝜇,
∑︀𝑡−1

𝑠=1 ℓ
𝑠
⟩︀
+𝐻𝑥ℎ(𝜇)

]︀
= −𝐹𝑥ℎ

(︀∑︀𝑡−1
𝑠=1 ℓ

𝑠
)︀
.

The result is known in the literature (e.g. Kroer et al. [2015]) and its proof is

similar to Appendix B of Kozuno et al. [2021], which focuses on the special case when

the loss function is the bandit-based loss estimator (7.15):

ℓ𝑡ℎ(𝑥ℎ, 𝑎ℎ) :=
1 {(𝑥𝑡ℎ, 𝑎𝑡ℎ) = (𝑥ℎ, 𝑎ℎ)} (1− 𝑟𝑡ℎ)

𝜇𝑡1:ℎ(𝑥ℎ, 𝑎ℎ) + 𝛾
.

For completeness, we include a proof for generic loss here.

Proof. We prove by induction for ℎ = 𝐻, · · · , 1. For ℎ = 𝐻, since there is no

further decisions to be make, this is just a linear optimization problem with entropy

regularizer on simplex. As a result, 𝜇𝐻(𝑎𝐻 |𝑥𝐻) ∝𝑎𝐻 exp{−ℓ𝐻(𝑥𝐻 , 𝑎𝐻)} as desired

and the minimum is − log
∑︀

𝑎𝐻
exp

{︁
− ℓ𝐻(𝑥𝐻 , 𝑎𝐻)

}︁
= −𝐹𝑥𝐻 (ℓ).

If the claim holds for levels after ℎ + 1, consider the ℎ-th level. Plug in the

optimizer after the ℎ+1-th level, the optimization problem in the sub-tree rooted at

𝑥ℎ becomes

argmin
𝜇∈Π𝑥ℎ

⎡⎣∑︁
𝑎ℎ

𝜇ℎ(𝑎ℎ|𝑥ℎ)(ℓℎ(𝑥ℎ, 𝑎ℎ)−
∑︁

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ)

𝐹𝑥ℎ+1
(ℓ))

⎤⎦,
which is again a linear optimization problem with entropy regularizer on simplex. As

a result, 𝜇ℎ(𝑎ℎ|𝑥ℎ) ∝𝑎ℎ exp{−ℓℎ(𝑥ℎ, 𝑎ℎ) +
∑︀

𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥ℎ+1
(ℓ))} as desired and the

minimum is − log
∑︀

𝑎ℎ
exp

{︁
− ℓℎ(𝑥ℎ, 𝑎ℎ) +

∑︀
𝑥ℎ+1∈𝒞(𝑥ℎ𝑎ℎ) 𝐹𝑥ℎ+1

(ℓ))
}︁
= −𝐹𝑥ℎ(ℓ).

326

Bibliography

A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster:
A fast and simple algorithm for contextual bandits. In International Conference
on Machine Learning, pages 1638–1646. PMLR, 2014.

A. Agarwal, A. Krishnamurthy, J. Langford, H. Luo, et al. Open problem: First-
order regret bounds for contextual bandits. In Conference on Learning Theory,
pages 4–7. PMLR, 2017.

I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sand-
holm. Near-optimal no-regret learning for correlated equilibria in multi-player
general-sum games. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 736–749, 2022a.

I. Anagnostides, G. Farina, C. Kroer, C.-W. Lee, H. Luo, and T. Sandholm. Un-
coupled learning dynamics with 𝑂(log 𝑇) swap regret in multiplayer games. 35:
3292–3304, 2022b.

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of computing, 8(1):121–164, 2012.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th
Annual Foundations of Computer Science, pages 322–331. IEEE, 1995.

R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of
mathematical Economics, 1(1):67–96, 1974.

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 263–272. JMLR. org, 2017.

Y. Bai and C. Jin. Provable self-play algorithms for competitive reinforcement learn-
ing. In International conference on machine learning, pages 551–560. PMLR, 2020.

Y. Bai, C. Jin, and T. Yu. Near-optimal reinforcement learning with self-play. In
Advances in Neural Information Processing Systems, 2020.

327

Y. Bai, C. Jin, S. Mei, Z. Song, and T. Yu. Efficient Φ-regret minimization in
extensive-form games via online mirror descent. Advances in Neural Information
Processing Systems, 2022a.

Y. Bai, C. Jin, S. Mei, and T. Yu. Near-optimal learning of extensive-form games
with imperfect information. In International Conference on Machine Learning,
pages 1337–1382. PMLR, 2022b.

B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mor-
datch. Emergent tool use from multi-agent autocurricula. In International Confer-
ence on Learning Representations, 2020.

K. Berg and T. Sandholm. Exclusion method for finding Nash equilibrium in multi-
player games. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pages 1417–1418, 2016.

D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 1956.

A. Blum and Y. Mansour. From external to internal regret. Journal of Machine
Learning Research, 8(6), 2007.

R. I. Brafman and M. Tennenholtz. R-max: a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3
(Oct):213–231, 2002.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

N. Brown and T. Sandholm. Regret transfer and parameter optimization. In Work-
shops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

N. Brown and T. Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018.

N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365
(6456):885–890, 2019.

N. Burch, M. Moravcik, and M. Schmid. Revisiting CFR+ and alternating updates.
Journal of Artificial Intelligence Research, 64:429–443, 2019.

Y. Cai, A. Oikonomou, and W. Zheng. Finite-time last-iterate convergence for learn-
ing in multi-player games. In Advances in Neural Information Processing Systems,
2022.

A. Celli, S. Coniglio, and N. Gatti. Computing optimal ex ante correlated equilibria
in two-player sequential games. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pages 909–917, 2019a.

328

A. Celli, A. Marchesi, T. Bianchi, and N. Gatti. Learning to correlate in multi-player
general-sum sequential games. Advances in Neural Information Processing Systems,
32, 2019b.

A. Celli, A. Marchesi, G. Farina, and N. Gatti. No-regret learning dynamics for
extensive-form correlated equilibrium. Advances in Neural Information Processing
Systems, 33, 2020.

S. Cen, Y. Chi, S. S. Du, and L. Xiao. Faster last-iterate convergence of policy
optimization in zero-sum Markov games. 2023.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge univer-
sity press, 2006.

Q. Cui, Z. Xiong, M. Fazel, and S. S. Du. Learning in congestion games with bandit
feedback. In Advances in Neural Information Processing Systems, 2022.

C. Dann and E. Brunskill. Sample complexity of episodic fixed-horizon reinforcement
learning. In Advances in Neural Information Processing Systems, pages 2818–2826,
2015.

C. Dann, T. Lattimore, and E. Brunskill. Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning. In Advances in Neural Information
Processing Systems, pages 5713–5723, 2017.

C. Daskalakis. On the complexity of approximating a Nash equilibrium. ACM Trans-
actions on Algorithms (TALG), 9(3):23, 2013.

C. Daskalakis and I. Panageas. Last-iterate convergence: Zero-sum games and con-
strained min-max optimization. In 10th Innovations in Theoretical Computer Sci-
ence (ITCS) conference, ITCS 2019, 2019.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of com-
puting a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

C. Daskalakis, D. J. Foster, and N. Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing
systems, 33:5527–5540, 2020.

C. Daskalakis, M. Fishelson, and N. Golowich. Near-optimal no-regret learning in
general games. Advances in Neural Information Processing Systems, 34, 2021.

C. Daskalakis, N. Golowich, and K. Zhang. The complexity of Markov equilibrium
in stochastic games. arXiv preprint arXiv:2204.03991, 2022.

S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford. Provably
efficient RL with Rich Observations via Latent State Decoding. In International
Conference on Machine Learning, pages 1665–1674, 2019.

329

S. Du, S. Kakade, J. Lee, S. Lovett, G. Mahajan, W. Sun, and R. Wang. Bilinear
classes: A structural framework for provable generalization in RL. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

M. Dudík and G. J. Gordon. A sampling-based approach to computing equilibria in
succinct extensive-form games. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 151–160, 2009.

L. Erez, T. Lancewicki, U. Sherman, T. Koren, and Y. Mansour. Regret minimiza-
tion and convergence to equilibria in general-sum Markov games. arXiv preprint
arXiv:2207.14211, 2022.

G. Farina and T. Sandholm. Model-free online learning in unknown sequential decision
making problems and games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 5381–5390, 2021.

G. Farina, C. K. Ling, F. Fang, and T. Sandholm. Correlation in extensive-form
games: Saddle-point formulation and benchmarks. Advances in Neural Information
Processing Systems, 32, 2019.

G. Farina, T. Bianchi, and T. Sandholm. Coarse correlation in extensive-form games.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
1934–1941, 2020a.

G. Farina, C. Kroer, and T. Sandholm. Stochastic regret minimization in extensive-
form games. In International Conference on Machine Learning, pages 3018–3028.
PMLR, 2020b.

G. Farina, C. Kroer, and T. Sandholm. Faster game solving via predictive blackwell
approachability: Connecting regret matching and mirror descent. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 5363–5371,
2021a.

G. Farina, R. Schmucker, and T. Sandholm. Bandit linear optimization for sequential
decision making and extensive-form games. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 5372–5380, 2021b.

G. Farina, A. Celli, A. Marchesi, and N. Gatti. Simple uncoupled no-regret learning
dynamics for extensive-form correlated equilibrium. Journal of the ACM, 69(6):
1–41, 2022a.

G. Farina, C.-W. Lee, H. Luo, and C. Kroer. Kernelized multiplicative weights for
0/1-polyhedral games: Bridging the gap between learning in extensive-form and
normal-form games. In International Conference on Machine Learning, pages 6337–
6357. PMLR, 2022b.

C. Fiegel, P. Ménard, T. Kozuno, R. Munos, V. Perchet, and M. Valko. Adapt-
ing to game trees in zero-sum imperfect information games. arXiv preprint
arXiv:2212.12567, 2022.

330

J. Filar and K. Vrieze. Competitive Markov decision processes. Springer Science &
Business Media, 2012.

D. J. Foster, S. M. Kakade, J. Qian, and A. Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

D. P. Foster and R. V. Vohra. Asymptotic calibration. Biometrika, 85(2):379–390,
1998.

N. Golowich, S. Pattathil, and C. Daskalakis. Tight last-iterate convergence rates for
no-regret learning in multi-player games. Advances in neural information processing
systems, 33:20766–20778, 2020a.

N. Golowich, S. Pattathil, C. Daskalakis, and A. Ozdaglar. Last iterate is slower than
averaged iterate in smooth convex-concave saddle point problems. In Conference
on Learning Theory, pages 1758–1784. PMLR, 2020b.

G. J. Gordon, A. Greenwald, and C. Marks. No-regret learning in convex games. In
Proceedings of the 25th international conference on Machine learning, pages 360–
367, 2008.

A. Greenwald and A. Jafari. A general class of no-regret learning algorithms and
game-theoretic equilibria. In Learning theory and kernel machines, pages 2–12.
Springer, 2003.

T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. Journal
of the ACM (JACM), 60(1):1–16, 2013.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equi-
librium. Econometrica, 68(5):1127–1150, 2000.

J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form games.
In International conference on machine learning, pages 805–813. PMLR, 2015.

S. Hoda, A. Gilpin, J. Pena, and T. Sandholm. Smoothing techniques for computing
Nash equilibria of sequential games. Mathematics of Operations Research, 35(2):
494–512, 2010.

J. Hu and M. P. Wellman. Nash Q-learning for general-sum stochastic games. Journal
of machine learning research, 4(Nov):1039–1069, 2003.

W. Huang and B. von Stengel. Computing an extensive-form correlated equilibrium in
polynomial time. In International Workshop on Internet and Network Economics,
pages 506–513. Springer, 2008.

S. Iqbal and F. Sha. Actor-attention-critic for multi-agent reinforcement learning. In
International Conference on Machine Learning, pages 2961–2970. PMLR, 2019.

331

S. K. Jakobsen, T. B. Sørensen, and V. Conitzer. Timeability of extensive-form
games. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 191–199, 2016.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Z. Jia, L. F. Yang, and M. Wang. Feature-based Q-learning for two-player stochastic
games. arXiv preprint arXiv:1906.00423, 2019.

N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contex-
tual decision processes with low Bellman rank are pac-learnable. In International
Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems, pages 4868–4878, 2018.

C. Jin, T. Jin, H. Luo, S. Sra, and T. Yu. Learning adversarial Markov decision pro-
cesses with bandit feedback and unknown transition. In International Conference
on Machine Learning, pages 4860–4869. PMLR, 2020a.

C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pages
4870–4879. PMLR, 2020b.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning
with linear function approximation. In Conference on Learning Theory, pages
2137–2143, 2020c.

C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of
RL problems, and sample-efficient algorithms. Advances in Neural Information
Processing Systems, 2021a.

C. Jin, Q. Liu, Y. Wang, and T. Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent RL. arXiv preprint arXiv:2110.14555, 2021b.

C. Jin, Q. Liu, and T. Yu. The power of exploiter: Provable multi-agent RL in large
state spaces. In International Conference on Machine Learning, pages 10251–10279.
PMLR, 2022.

M. Johanson. Measuring the size of large no-limit poker games. arXiv preprint
arXiv:1302.7008, 2013.

M. Johanson, N. Bard, M. Lanctot, R. G. Gibson, and M. Bowling. Efficient Nash
equilibrium approximation through Monte Carlo counterfactual regret minimiza-
tion. In AAMAS, pages 837–846. Citeseer, 2012.

D. Kane, S. Liu, S. Lovett, and G. Mahajan. Computational-statistical gap in rein-
forcement learning. In Conference on Learning Theory, pages 1282–1302. PMLR,
2022.

332

H. Kao, C.-Y. Wei, and V. Subramanian. Decentralized cooperative reinforcement
learning with hierarchical information structure. In International Conference on
Algorithmic Learning Theory, pages 573–605. PMLR, 2022.

M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

S. Khot and A. K. Ponnuswami. Minimizing wide range regret with time selection
functions. In COLT, pages 81–86, 2008.

D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive
form. Games and economic behavior, 4(4):528–552, 1992.

D. Koller, N. Megiddo, and B. Von Stengel. Efficient computation of equilibria for
extensive two-person games. Games and economic behavior, 14(2):247–259, 1996.

V. Kovavrík, M. Schmid, N. Burch, M. Bowling, and V. Lisỳ. Rethinking formal
models of partially observable multiagent decision making. Artificial Intelligence,
303:103645, 2022.

T. Kozuno, P. Ménard, R. Munos, and M. Valko. Model-free learning for two-player
zero-sum partially observable Markov games with perfect recall. In Advances in
Neural Information Processing Systems, 2021.

C. Kroer, K. Waugh, F. Kilinç-Karzan, and T. Sandholm. Faster first-order methods
for extensive-form game solving. In Proceedings of the Sixteenth ACM Conference
on Economics and Computation, pages 817–834, 2015.

C. Kroer, G. Farina, and T. Sandholm. Solving large sequential games with the
excessive gap technique. Advances in neural information processing systems, 31,
2018.

H. W. Kuhn. Extensive games and the problem of information. In Contributions
to the Theory of Games (AM-28), Volume II, pages 193–216. Princeton University
Press, 1953.

M. Lanctot, K. Waugh, M. Zinkevich, and M. H. Bowling. Monte Carlo sampling for
regret minimization in extensive games. In NIPS, pages 1078–1086, 2009.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press,
2020.

C.-W. Lee, C. Kroer, and H. Luo. Last-iterate convergence in extensive-form games.
Advances in Neural Information Processing Systems, 34:14293–14305, 2021.

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

333

M. L. Littman. Friend-or-foe Q-learning in general-sum games. In ICML, volume 1,
pages 322–328, 2001.

M. Liu, A. Ozdaglar, T. Yu, and K. Zhang. The power of regularization in solving
extensive-form games. 2023.

Q. Liu, T. Yu, Y. Bai, and C. Jin. A sharp analysis of model-based reinforcement
learning with self-play. In International Conference on Machine Learning, pages
7001–7010. PMLR, 2021.

Q. Liu, Y. Wang, and C. Jin. Learning Markov games with adversarial opponents: Ef-
ficient algorithms and fundamental limits. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 14036–14053. PMLR, 17–23 Jul 2022.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in
neural information processing systems, 30, 2017.

W. Mao and T. Başar. Provably efficient reinforcement learning in decentralized
general-sum markov games. Dynamic Games and Applications, 13(1):165–186,
2023.

W. Mao, L. Yang, K. Zhang, and T. Basar. On improving model-free algorithms for
decentralized multi-agent reinforcement learning. In International Conference on
Machine Learning, pages 15007–15049. PMLR, 2022.

I. Milchtaich. Congestion games with player-specific payoff functions. Games and
economic behavior, 13(1):111–124, 1996.

D. Monderer and L. S. Shapley. Potential games. Games and economic behavior, 14
(1):124–143, 1996.

M. Moravvcík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis,
K. Waugh, M. Johanson, and M. Bowling. Deepstack: Expert-level artificial intel-
ligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

D. Morrill, R. D’Orazio, M. Lanctot, J. R. Wright, M. Bowling, and A. R. Greenwald.
Efficient deviation types and learning for hindsight rationality in extensive-form
games. In International Conference on Machine Learning, pages 7818–7828. PMLR,
2021.

E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov mod-
els. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 366–375, 2005.

R. Munos, J. Perolat, J.-B. Lespiau, M. Rowland, B. De Vylder, M. Lanctot, F. Tim-
bers, D. Hennes, S. Omidshafiei, A. Gruslys, et al. Fast computation of Nash equi-
libria in imperfect information games. In International Conference on Machine
Learning, pages 7119–7129. PMLR, 2020.

334

J. F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36(1):48–49, 1950.

G. Neu. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. In Advances in Neural Information Processing Systems, pages 3168–3176,
2015.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

I. Osband and B. Van Roy. On lower bounds for regret in reinforcement learning.
arXiv preprint arXiv:1608.02732, 2016.

I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pages 2377–
2386. PMLR, 2016.

M. J. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994.

G. Radanovic, R. Devidze, D. Parkes, and A. Singla. Learning to collaborate in
Markov decision processes. In International Conference on Machine Learning, pages
5261–5270, 2019.

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. White-
son. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pages 4295–4304.
PMLR, 2018.

M. Sayin, K. Zhang, D. Leslie, T. Basar, and A. Ozdaglar. Decentralized Q-learning
in zero-sum Markov games. Advances in Neural Information Processing Systems,
34:18320–18334, 2021.

M. Schmid, N. Burch, M. Lanctot, M. Moravcik, R. Kadlec, and M. Bowling. Variance
reduction in Monte Carlo counterfactual regret minimization (VR-MCCFR) for
extensive form games using baselines. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 2157–2164, 2019.

M. Schmid, M. Moravcik, N. Burch, R. Kadlec, J. Davidson, K. Waugh, N. Bard,
F. Timbers, M. Lanctot, Z. Holland, et al. Player of games. arXiv preprint
arXiv:2112.03178, 2021.

S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

L. S. Shapley. Stochastic games. Proceedings of the national academy of sciences, 39
(10):1095–1100, 1953.

A. Sidford, M. Wang, L. Yang, and Y. Ye. Solving discounted stochastic two-player
games with near-optimal time and sample complexity. In International Conference
on Artificial Intelligence and Statistics, pages 2992–3002. PMLR, 2020.

335

https://blog.openai.com/openai-five/

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. nature, 529(7587):484,
2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of Go without human
knowledge. nature, 550(7676):354–359, 2017.

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning.
In International Conference on Machine Learning, pages 5887–5896. PMLR, 2019.

Z. Song, S. Mei, and Y. Bai. When can we learn general-sum markov games with a
large number of players sample-efficiently? In International Conference on Learning
Representations, 2022a.

Z. Song, S. Mei, and Y. Bai. Sample-efficient learning of correlated equilibria in
extensive-form games. In Advances in Neural Information Processing Systems,
2022b.

G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Machine
Learning, 59(1):125–159, 2005.

G. Stoltz and G. Lugosi. Learning correlated equilibria in games with compact sets
of strategies. Games and Economic Behavior, 59(1):187–208, 2007.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free
reinforcement learning. In International Conference on Machine Learning, pages
881–888, 2006.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning based on team reward. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 2085–2087, 2018.

O. Tammelin. Solving large imperfect information games using CFR+. arXiv preprint
arXiv:1407.5042, 2014.

Y. Tian, Q. Gong, and Y. Jiang. Joint policy search for multi-agent collaboration
with imperfect information. Advances in Neural Information Processing Systems,
33:19931–19942, 2020.

Y. Tian, Y. Wang, T. Yu, and S. Sra. Online learning in unknown Markov games. In
International Conference on Machine Learning, pages 10279–10288. PMLR, 2021.

336

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

B. Von Stengel. Efficient computation of behavior strategies. Games and Economic
Behavior, 14(2):220–246, 1996.

B. Von Stengel and F. Forges. Extensive-form correlated equilibrium: Definition and
computational complexity. Mathematics of Operations Research, 33(4):1002–1022,
2008.

R. Wang, S. S. Du, L. Yang, and R. R. Salakhutdinov. On reward-free reinforce-
ment learning with linear function approximation. Advances in neural information
processing systems, 33:17816–17826, 2020.

Y. Wang, Q. Liu, Y. Bai, and C. Jin. Breaking the curse of multiagency: Provably
efficient decentralized multi-agent RL with function approximation. arXiv preprint
arXiv:2302.06606, 2023.

C.-Y. Wei. Analysis of UCSG in the finite-horizon setting. Personal Communication.,
2021.

C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Online reinforcement learning in stochastic
games. In Advances in Neural Information Processing Systems, pages 4987–4997,
2017.

C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo. Linear last-iterate convergence in
constrained saddle-point optimization. In International Conference on Learning
Representations, 2021a.

C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo. Last-iterate convergence of decen-
tralized optimistic gradient descent/ascent in infinite-horizon competitive Markov
games. In Conference on learning theory, pages 4259–4299. PMLR, 2021b.

Q. Xie, Y. Chen, Z. Wang, and Z. Yang. Learning zero-sum simultaneous-move
Markov games using function approximation and correlated equilibrium. In Con-
ference on learning theory, pages 3674–3682. PMLR, 2020.

Y. A. Yadkori, P. L. Bartlett, V. Kanade, Y. Seldin, and C. Szepesvári. Online
learning in Markov decision processes with adversarially chosen transition proba-
bility distributions. In Advances in neural information processing systems, pages
2508–2516, 2013.

T. Yu, Y. Tian, J. Zhang, and S. Sra. Provably efficient algorithms for multi-objective
competitive RL. In International Conference on Machine Learning, pages 12167–
12176. PMLR, 2021.

337

A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill. Learning near optimal
policies with low inherent Bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR, 2020.

W. Zhan, J. D. Lee, and Z. Yang. Decentralized optimistic hyperpolicy mirror de-
scent: Provably no-regret learning in Markov games. International Conference on
Learning Representations, 2023.

B. H. Zhang and T. Sandholm. Finding and certifying (near-) optimal strategies
in black-box extensive-form games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 5779–5788, 2021.

K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference
on Machine Learning, pages 5872–5881. PMLR, 2018.

K. Zhang, S. M. Kakade, T. Başar, and L. F. Yang. Model-based multi-agent RL
in zero-sum Markov games with near-optimal sample complexity. arXiv preprint
arXiv:2007.07461, 2020a.

X. Zhang, Y. Ma, and A. Singla. Task-agnostic exploration in reinforcement learning.
Advances in Neural Information Processing Systems, 33:11734–11743, 2020b.

Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learningvia
reference-advantage decomposition. Advances in Neural Information Processing
Systems, 33:15198–15207, 2020c.

Y. Zhou, J. Li, and J. Zhu. Posterior sampling for multi-agent reinforcement learning:
solving extensive games with imperfect information. In International Conference
on Learning Representations, 2019.

Y. Zhou, T. Ren, J. Li, D. Yan, and J. Zhu. Lazy-CFR: fast and near-optimal regret
minimization for extensive games with imperfect information. In International
Conference on Learning Representations, 2020.

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in
games with incomplete information. Advances in neural information processing
systems, 20:1729–1736, 2007.

338

	Introduction
	Overview of results
	Near-optimal learning in Markov games
	Near-optimal learning in extensive-form games
	Beyond optimal learning in sequential games

	Related work
	Learning in Markov games
	Learning in extensive-form games

	Open problems and future work
	Remaining issues in optimal learning in sequential games
	Beyond tabular sequential games
	Beyond Nash equilibrium: learning to cooperate

	Markov Games: Preliminaries
	Game formulation
	Policy
	Value
	Best response and strategy modification

	Equilibria
	Two-player Zero-sum games
	Minimiax theorem
	Bellman optimality equations

	Learning objectives
	Hardness results
	Computational hardness
	Statistical hardness in unknown games

	Markov Games: Model-based Learning
	Player coordination
	Optimistic Nash Value Iteration
	Algorithm description
	Overview of techniques
	Theoretical guarantees

	Reward-free Learning
	Algorithm description
	Theoretical guarantees

	Multi-player general-sum games
	Multiplayer optimistic Nash value iteration
	Multiplayer reward-free learning

	Markov Games: Model-free Learning
	V-Learning Algorithm
	Training algorithm
	Output policy
	Single-agent guarantees

	Two-player Zero-sum Markov Games
	Finding Nash equilibria

	Multiplayer General-sum Markov Games
	Finding coarse correlated equilibria
	Finding correlated equilibria

	Monotonic V-Learning
	Online learning in unknown Markov Games
	The V-ol algorithm
	Multi-player general-sum games

	Extensive-form Games: Prelimiaries
	Game Formulation
	Regret and Nash Equilibrium
	-regret minimization and the -hedge algorithm
	Extensive-form trigger regret and EFCE
	Tree-Form Adversarial Markov Decision Processes
	Extensive-form trigger regret
	From trigger regret to Extensive-Form Correlated Equilibrium (EFCE)

	Lower bounds

	Extensive-form Games: 2p0s case
	Balanced exploration policy
	Online Mirror Descent
	Balanced dilated KL
	Algorithm and theoretical guarantee

	Counterfactual Regret Minimization
	Algorithm description
	Theoretical guarantee
	Balanced CFR with regret matching

	Extension to multi-player games

	Extensive-form Games: general case
	Efficient -Hedge for Trigger Regret Minimization
	Efficient implementation of Tr-Hedge algorithm
	Equivalence to FTRL and OMD
	Regret bound under full feedback and bandit feedback

	Balanced EFCE-OMD for bandit feedback
	Algorithms
	Theoretical guarantees
	Equivalence to FTRL and OMD

	Equivalence with existing algorithms
	Equivalence of OMD and Vertex MWU
	Equivalence between OMD and ``Kernelized MWU''

	Proofs for Chapter 2
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of the computational hardness
	Markov game construction
	A series of computationally hard problems
	Putting them together
	Proofs of Hardness Against Adversarial Opponents

	Proof of the statistical hardness

	Proofs for Chapter 3
	Proof for Section 3.2 – Optimistic Nash Value Iteration
	Proof of Theorem 16
	Proof of Theorem 17

	Proof for Section 3.3 – Reward-Free Learning
	Proof of Theorem 18
	Vanilla Nash Value Iteration
	Proof of Theorem 19

	Proof for Section 3.4.2 – Multi-player General-sum Markov Games
	Proof of Theorem 20
	Proof of Theorem 21

	Proof for Chapter 4
	Notations and Basic Lemmas
	Notations
	Basic lemmas

	Proofs for Computing CCE in General-sum MGs
	Proofs for Computing CE in General-sum MGs
	Proofs for MDPs and Two-player Zero-sum MGs
	Proofs for Monotonic V-learning
	Adversarial Bandit with Weighted External Regret
	Adversarial Bandit with Weighted Swap Regret
	Proof for the V-ol algorithm
	Upper confidence bound on the minimax value function
	Proof of Theorem 27

	Proofs for Chapter 5
	Properties of the game
	Properties for Section 5.1
	Properties for Section 5.4

	Bounds for regret minimizers
	Hedge
	Regret Matching
	-Hedge

	Equivalence to classical definitions of EFGs
	Reduction from classical definition of EFGs to TFAMDP

	Proof of Theorem 35

	Proofs for Chapter 6
	Proofs of balanced exploration policy
	Proofs for Balanced dilated KL
	Proofs for Section 6.2
	Efficient implementation for Update (6.10)
	Proof of Theorem 42
	A concentration result
	Proof of Lemma 124
	Proof of Lemma 125
	Proof of Lemma 126

	Proofs for Section 6.3
	Counterfactual regret decomposition
	Proof of Theorem 44
	Proof of Lemma 136
	Proof of Lemma 137
	Proof of Lemma 138
	Proof of Theorem 46

	Proofs for Section 6.4
	Proof of Theorem 49

	Proofs for Chapter 7
	Proofs for Section 7.1.1 & 7.1.2
	Incremental (OMD) form of Algorithm 13
	Proof of Lemma 50
	Proof of Lemma 51
	Runtime of Algorithm 13
	Proof of Lemma 53

	Proofs for Section 7.1.3
	Proof of Theorem 54
	Proof of Theorem 55

	Proof of Theorem 58
	Some preparations
	Proof of Lemma 146
	Bound on two bias terms

	Equivalence between Vertex MWU and OMD

