
Systematic Modeling and Design of

Sparse Deep Neural Network Accelerators

by

Yannan Wu

B.S., Cornell University (2017)

S. M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2023

©2023 Yannan Wu. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright,

including to reproduce, preserve, distribute and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Yannan Wu

 Department of Electrical Engineering and Computer Science

 May 17, 2023

Certified by: Joel S. Emer

 Professor of Electrical Engineering and Computer Science

 Thesis Supervisor

Certified by: Vivienne Sze

 Associate Professor of Electrical Engineering and Computer Science

 Thesis Supervisor

Accepted by: Leslie A. Kolodziejski

 Professor of Electrical Engineering and Computer Science

 Chair, Department Committee on Graduate Students

2

Systematic Modeling and Design of

Sparse Deep Neural Network Accelerators

by

Yannan Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Sparse deep neural networks (DNNs) are an important computation kernel in many
data and computation-intensive applications (e.g., image classification, speech recog-
nition, and language processing). The sparsity in such kernels has motivated the
development of many sparse DNN accelerators. However, despite the abundant exist-
ing proposals, there has not been a systematic way to understand, model, and develop
various sparse DNN accelerators.

To address these limitations, this thesis first presents a taxonomy of sparsity-
related acceleration features to allow a systematic understanding of the sparse DNN
accelerator design space. Based on the taxonomy, it proposes Sparseloop, the first
analytical modeling tool for fast, accurate, and flexible evaluations of sparse DNN
accelerators, enabling early-stage exploration of the large and diverse sparse DNN
accelerator design space. Across representative accelerator designs and workloads,
Sparseloop achieves over 2000× faster modeling speed than cycle-level simulations,
maintains relative performance trends, and achieves ≤ 8% average modeling error.

Employing Sparseloop, this thesis studies the design space and presents HighLight,
an efficient and flexible sparse DNN accelerator. Specifically, HighLight accelerates
DNNs with a novel sparsity pattern, called hierarchical structured sparsity, with the
key insight that we can efficiently accelerate diverse degrees of sparsity (including
dense) by having them hierarchically composed of simple sparsity patterns. Compared
to existing works, HighLight achieves a geomean of upto 6.4× better energy-delay
product (EDP) across workloads with diverse sparsity degrees, and always sits on the
EDP-accuracy Pareto frontier for representative DNNs.

Thesis Supervisor: Joel S. Emer
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Vivienne Sze
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to express my deepest appreciation to my advisors Professor Joel Emer

and Professor Vivienne Sze for their support throughout my Ph.D. journey. Without

them, I will never be in the place I am today. I really appreciate their help in preparing

me to become a better researcher in every aspect. There have been many challenges

during the past few years, and no matter how hard the problem was, they have always

had trust in me and encouraged me to try again. In addition, I really appreciate the

many opportunities they gave me to stand in front of different audiences and sell my

research. Such exposures have really helped me learn to effectively communicate with

people, which is a skill that I will benefit from for the rest of my career. It has been

a truly rewarding experience to be their Ph.D. student for the past few years.

I would also like to thank my committee member Professor Daniel Sanchez for

taking the time to serve on my committee and providing insightful feedback on my

thesis as well as other projects and presentations in the past.

I was fortunate to collaborate with many excellent people during my time at MIT.

Thanks Po-An for the great help, insightful suggestions, and constant encouragement

for my two major Ph.D. projects. Thanks Angshu for teaching me the Timeloop

logistics. Thanks Saurav, Fisher, and Michael for the many interesting discussions

and paper-writing sessions.

I am grateful to spend the past years with the awesome EEMS group mem-

bers: Amr, Yu-Hsin, Zhengdong, James, Tien-Ju, Hsin-Yu, Gladynel, Peter, Soumya,

Jamie, Keshav, Tanner, Fisher, Zih-Sing, Dasong, Michael, and Andy. Thanks for all

the chats about the ups and downs in life, research, and literally anything. They are

definitely among the most crucial ones to help maintain my mental health during the

most stressful times.

Thank you to all my MIT and non-MIT friends for all the fun outings, dinner

gatherings, and random chats on various topics. Those have been really refreshing

experiences and really helped me to still be open to learning other things that are

not that closely related to the small circle I live in day-to-day.

5

I would also like to thank Janice for helping with all the lab logistics, allowing our

coffee hours and lab outings always go smoothly.

I would like to recognize my sponsors for supporting my research.

I could not have undertaken this journey without the constant support from my

husband Haoquan. Thanks for being there from literally my first day of class at MIT.

I really appreciate the time he spent listening to my random complaints, and always

being the one to come up with solutions to my problems. Thanks for teaching me to

always stay positive and enjoy life. I’m sure we together can make our life better and

better in the future.

Last but not least, a special thank you to my father Zeqing and mother Jiping.

Despite the long distance and the twelve-hour difference, they have always been there

for me. Thanks for always encouraging me to push on and offering help in every

aspect.

6

Contents

1 Introduction 19

1.1 Challenges and Limitations . 20

1.1.1 The Need for A Well-Organized Design Space 20

1.1.2 The Need for Early-Design-Stage Modeling Tool 21

1.1.3 The Need for Efficient and Flexible Designs 21

1.2 Thesis Contributions . 22

1.2.1 Systematic Description of Sparse DNN accelerators 23

1.2.2 Sparseloop Modeling Tool . 23

1.2.3 Hierarchical Structured Sparsity for DNN Workloads 24

1.2.4 Efficient and Flexible DNN Acceleration with HSS 24

1.3 Related Publications . 25

2 Background 27

2.1 Overview of Tensor Algebra in DNNs 27

2.1.1 The Basics . 27

2.1.2 Sparsity Patterns . 29

2.2 Overview of DNN Accelerators . 30

2.3 Overview of DNN Accelerator Modeling 32

2.3.1 Analytical Modeling Basics 33

2.3.2 Timeloop-Accelergy Modeling Framework 33

2.3.3 Limitations of Existing Analytical Modeling Approaches . . . 35

7

3 Design Space Classification 37

3.1 Motivation . 37

3.1.1 Large and Unstructured Design Space 37

3.1.2 Sparsity Impacts Design Behavior 38

3.2 High-Level Sparse Acceleration Features 40

3.2.1 Representation Format . 41

3.2.2 Gating . 42

3.2.3 Skipping . 45

3.3 Dataflow Choice is Orthogonal to

Sparsity-Aware Acceleration . 45

3.4 Describing Sparse DNN accelerators 46

3.5 Conclusions . 48

4 Sparseloop 49

4.1 Modeling Challenges . 49

4.2 Sparseloop Solutions to the Challenges 50

4.3 Sparseloop Framework . 52

4.4 Inputs . 52

4.5 Step One: Dataflow Modeling . 54

4.6 Step Two: Sparse Modeling . 54

4.6.1 Format-Agnostic Tensor Description 55

4.6.2 Statistical Density Models . 57

4.6.3 Format Analyzer . 58

4.6.4 Gating/Skipping Analyzer . 59

4.6.5 Traffic Post-processing . 60

4.7 Step Three: Micro-architectural Modeling 61

4.8 Evaluations . 61

4.8.1 Methodology . 62

4.8.2 Modeling Speed . 62

4.8.3 Validation . 63

8

4.9 Case Studies . 68

4.9.1 Investigating Next Generation Sparse Tensor Core 68

4.9.2 Co-design of Dataflow, SAFs and Sparsity 74

4.10 Related Work . 77

4.10.1 Cycle-level models . 77

4.10.2 Analytical models . 78

4.11 Conclusions . 78

5 Hierarchical Structured Sparsity 79

5.1 Precise Sparsity Specification . 79

5.1.1 Fibertree Abstraction . 80

5.1.2 Fibertree-based Sparsity Specification 81

5.2 Hierarchical Structured Sparsity . 84

5.2.1 General Concept . 84

5.2.2 DNN Sparsification with HSS 86

5.3 Conclusions . 87

6 HighLight Accelerator 89

6.1 Motivation . 90

6.1.1 Opportunities and Challenges 90

6.1.2 Limitations of Existing Accelerators 91

6.1.3 Need for a Flexible and Efficient Design 94

6.2 HighLight Overview . 95

6.2.1 Impact of Supported SAF at Each Rank 95

6.2.2 Impact of Per-rank Supported Patterns 96

6.2.3 Impact of Supported Number of Ranks 97

6.2.4 High Level Architecture . 98

6.3 A Deeper Dive Into HighLight . 99

6.3.1 DNNs Processed as Matrix Multiplication 99

6.3.2 Compression Format . 99

6.3.3 Hierarchical Skipping . 101

9

6.3.4 Exploiting Operand B Sparsity 104

6.4 Experimental Results . 105

6.4.1 Methodology . 105

6.4.2 HighLight Outperforms Prior Work 107

6.4.3 HighLight Provide Good Accuracy-Efficiency Trade-offs 109

6.4.4 Sparsity Tax Evaluation . 110

6.4.5 Case Study: Dual-Side Speedup 113

6.5 Related Work . 114

6.6 Conclusions . 116

7 Conclusion and Future Work 117

7.1 Summary of Contributions . 117

7.2 Future Work . 120

A Sparseloop Artifact 123

A.1 Artifact check-list (meta-information) 123

A.2 Description . 124

A.2.1 How to access . 124

A.3 Installation . 124

A.4 Evaluation and expected results . 124

A.5 Experiment customization . 125

A.6 Methodology . 125

10

List of Figures

1-1 Composing two sets of density degrees, S0 and S1, by multiplying the

fractions in each set. 25

2-1 Example sparse matrix multiplication kernel, which can be commonly

seen in fully connected layers in DNNs. We will use the following color

coding throughout the thesis — green: weight tensor; blue: input

activation tensor; red: output activation tensor. Blank spaces in the

tensors refer to locations with zeros. 28

2-2 Example sparse DNN accelerator architecture organization with three

levels of storage (i.e., main memory, global buffer, and buffer), parallel

compute (i.e., the multipliers), and network-on-chip (NoC). PE stands

for processing elements. Cgen and Calc are representative components

for storage access address generation. 31

2-3 The Timeloop-Accelergy analytical modeling framework [109] for dense

tensor accelerators. Timeloop [77] serves as a performance modeling

frontend, whereas Accelergy [108] serves as an energy and area estima-

tion backend. 34

3-1 Processing speed and energy efficiency of architectures with differ-

ent data representation support running sparse matrix multiplication

workloads. Design behavior is dependent on data representations and

tensor densities. 39

3-2 Example representation formats of a vector A. Purple vectors refer to

metadata used to identify the original locations of the nonzero values. 42

11

3-3 (a) Sparse dot product workload. (b) Example ways of processing the

example workload. Each row is an example processing schedule, and

each column corresponds to a step, and the hardware operations that

happen in the cycle are listed. 1st row: baseline dense processing

without SAFs; 2nd row: Gating applied to compute; 3rd row: Gating

applied to B reads based on A’s values; 4th row: Skipping applied to

B reads based on A’s values. 43

3-4 Example of combining compressed format, skipping, and gating SAFs

in one accelerator design. 47

4-1 Sparseloop High-Level Framework. 51

4-2 Example input specifications to Sparseloop. Blank spaces in the work-

load tensors refer to locations with zeros. The locations of zeros are

just for illustrative purposes. 53

4-3 (a) Example coordinate-space tiling for tensor A based on inputs spec-

ified in Fig. 4-2. The shades represent tiles processed at different time

steps. (b) Fiber tree representation of the tensor A. Each level of the

tree corresponds to a rank of the tensor and contains one or more fibers

that correspond to the rows or columns of the tensor. The leaves of

the tree are the (nonzero) data values of the tensor. 55

4-4 Various modules in sparse modeling step. Hashed red arrows refer to

inputs and outputs of this step. The modules are labeled with their

corresponding section numbers. 56

4-5 Fiber density probabilities for fibers with various shapes in a tensor

with 50% randomly distributed nonzeros. Different fiber shapes result

in different fiber occupancy distributions. 57

4-6 Example mappings that lead to intersections with different impact. . 59

4-7 Runtime activity validation for SCNN [78]. Achieves less than 1% error

for all components. 65

12

4-8 Processing latency validation for Eyeriss V2 processing element [17]

running MobileNet [46]. Among all the layers, we only show total

cycle counts for layers with more than 1% error. 66

4-9 Processing latency of dual-side sparse tensor core [107] running ma-

trix multiplication workloads with various operand tensor densities,

normalized to dense processing latency. Average error is 7.6%. 67

4-10 Modeled sparse tensor core architecture (including the SMEM in stream-

ing processor for a more holistic view) and example processing of a 2:4

structured workload. 69

4-11 Sparseloop’s analysis on the normalized total cycles spent and energy-

delay product for various designs of tensor core accelerator running

representative ResNet50 [36] layers pruned to various sparsity degrees.

The accelerators are controlled to have similar amount of hardware

resources. 71

4-12 Sparseloop’s analysis on bandwidth requirements for getting ideal speedup

for various operands and associated metadata (if any). 73

4-13 Normalized energy-delay product of different combinations of dataflow-

SAFs running matrix multiplications with various density degrees, which

are labeled with relevant example workloads. Sparseloop shows (1)

dataflow and SAFs should be co-designed to ensure potential savings;

(2) the correct combination needs to be chosen for different applications

to realize the potential savings. 76

5-1 (a) Example dense weight tensor. C : channels, R: kernel height, S : ker-

nel width. (b) Corresponding fibertree-based abstraction of the tensor.

Each dimension of the tensor corresponds to a level of the tree, referred

to as a Rank. 81

5-2 Fibertree-based representation of popular sparsity patterns applied to

the tensor in Fig. 5-1(a) . 82

13

5-3 Fibertree-based specification for an example two-rank HSS, whose spar-

sity pattern can be described as RS→C2→C1(3:4)→C0(2:4). Please

note that, for general HSS patterns, the choices of rank ordering, flat-

tening, and splitting are not limited to the ones shown in the example. 85

6-1 Normalized energy-delay product (EDP) of accelerators running two

types of DNNs, pruned Transformer-Big [102] and pruned ResNet50 [36].

While ensuring similar accuracy (within 0.5% difference), the DNNs

were structured pruned for STC [73] and HighLight (our work) and

unstructured pruned for DSTC. For both models, HighLight achieves

the lowest EDP while ensuring similar accuracy. 93

6-2 (a) Effectual computations in a dot product with 2:4 sparse vector 0

(v0) and dense vector 1 (v1). (b) Implementation of the muxing logic

for selecting four values from a block of eight values. 96

6-3 Comparison of designs with the same flexibility (15 sparsity degrees

across 0%-87.5%) but different numbers of ranks. SS shows great po-

tential for high flexibility and efficiency. (a) Design attributes and

normalized processing latency (markers indicate the discrete sparsity

degrees.) (b) Normalized muxing overhead. (c) High-level architec-

ture of HighLight, with modularized SAFs for each rank at different

architecture levels. 98

6-4 (a) Convolution represented as matrix multiplication with flattened

operand A (weights) and Toeplitz expanded operand B (input activa-

tions) [94]. M: number of filters; C: # of channels; R,S: height and

width of filter kernels; P,Q: height and width of outputs. (b) Loopnest

representation of HighLight’s dataflow. 100

6-5 Hierarchical CP compression for operand A row. 100

14

6-6 Down-sized architecture organization of HighLight with hierarchical

skipping SAF. The showcased processing flow is for the C1(2:4)→C0(2:4)

operand A in Fig. 6-5 and a dense operand B. Matched capitalized and

lower case letters indicate corresponding values. Boxes with triangles

are registers. 101

6-7 Operand B blocks bn to fetch at each processing step with operand A

having C1(2:4) or C1(2:3). 103

6-8 Operand B datamovement at Variable Fetch Management Unit (VFMU)

for the first three processing steps when operand A has a C1(2:3) spar-

sity. To output the correct operand B blocks, VFMU is configured to

shift by three positions per read. 104

6-9 Comparison of existing designs running workloads with operands with

different sparsity degrees. We compare the overall hardware efficiency

energy-delay-product (EDP), energy and speed of the designs. S2TA [64]

assumes both operands are structured. HighLight is always able to ef-

fectively exploit diverse sparsity degrees. *HighLight evaluated with

20% sparsity for conservative estimations. 108

6-10 Geomean of various metrics. HighLight achieves the best geomean

across all evaluated metrics. 109

6-11 EDP-Accuracy Loss Pareto frontier for ResNet50 [36], Transformer-

Big [102], and Deit-small [99]. Different markers refer to different ac-

celerators. HighLight is always on the accuracy-EDP Pareto frontier

and thus serves as a great candidate to support diverse DNNs with

high hardware efficiency while maintaining accuracy. 112

6-12 (a) Energy breakdown for 75% sparse operand A and dense operand

B. (b) HighLight area breakdown. HighLight introduce low sparsity

tax both in terms of energy and area. 113

6-13 Normalized processing speed of HighLight and HighLight with dual

side structured sparsity support, i.e., HighLight_DSSO. DSSO support

allows dual-side speedup for commonly shared sparsity degrees. . . . 114

15

16

List of Tables

2.1 Summary of terminologies related to tensor algebra basics. 28

3.1 Example representation formats and their hierarchical description based

on per-dimension formats. 42

3.2 Summary of representative sparse tensor accelerators described with

the proposed SAFs based on tensors from example target workloads.

For DNN: I: input activation, W: Weights, O: output activation. For

Matrix Multiplication (MM): A,B: operand tensors, Z: result tensor.

Note that the designs have different dataflows, which are not listed. . 46

4.1 Summary of density models supported by Sparseloop. New models can

be easily added via Sparseloop’s interface. 58

4.2 Computes simulated per host cycle (CPHC) for designs modeled by

Sparseloop. Compared to cycle-level tensor accelerator simulator STONNE [65],

which has less than 0.5 CPHC, Sparseloop is over 2000× faster. . . . 63

4.3 High-level summary of performed validations based on available data

from existing work. Overall, Sparseloop achieves 0.1% to 8% average

error across different accelerator designs. 64

4.4 Eyeriss [15] DRAM compression rate validation. 68

4.5 Choices for different design aspects: (a) dataflows (b) SAFs (represen-

tation formats and other minor SAFs are identical and thus are not

shown for simplicity) . 75

17

5.1 Informal conventional classification and the precise fibertree-based spec-

ifications for example sparsity patterns. For fibertree-based specifica-

tons, ranks without pruning rules, i.e., N/A rules in the figures, do not

have (). Partitioned ranks are indicated by appending a number to the

rank name, e.g., C is split into C1 and C0. Note that there could be

multiple G and H values allowed for each rank. 80

6.1 Comparison of designs from different DNN accelerator design cate-

gories. HSS stands for hierarchical structured sparsity. An ideal de-

sign should have a low sparsity tax to achieve high efficiency and a very

high number of supported sparsity degrees to achieve high flexibility. 91

6.2 Supported sparsity structures for each design. 106

6.3 Hardware resource allocation. GLB is partitioned to data and meta-

data storage for sparse designs. 106

18

Chapter 1

Introduction

Deep neural networks (DNNs) have brought important accuracy breakthroughs for

modern artificial intelligence applications [62] (e.g., image classification [36, 58], speech

recognition [26], and language processing [84, 102]). However, when being pro-

cessed on hardware, DNNs often introduce high latency and energy consumption

due to their data and computation-intensive nature. To efficiently process DNNs,

computer architects have proposed a variety of DNN accelerators, which focus on

exploiting DNN-specific properties (e.g., high data reuse) to improve hardware effi-

ciency [13, 18, 87, 86, 79, 11]. Nowadays, DNN accelerators have become indispensable

parts of both cloud and edge computing systems (e.g., Google TPU [51], NVIDIA

Tensor Core [74], Apple Neural Engine [71], and Tesla Dojo [95]).

Pioneering the development of next-generation DNN accelerators, researchers have

identified another promising characteristic in modern DNNs: they often involve sparse

tensors (i.e., multi-dimension arrays that contain various percentages of zeros). This

sparsity arises as a result of the complex interactions between various DNN optimiza-

tion techniques (e.g., the pruning of weight filters that clip certain weights to zeros [34]

and the use of activation functions that sets certain activations to zero [1, 42, 69]).

Such sparsity in DNNs introduces a significant number of ineffectual computations

(i.e., 𝑋 × 0 = 0 and 𝑋 +0 = 𝑋) which can be eliminated to enable further hardware

efficiency improvements [39]. As a result, in recent years, computer architects have

proposed DNN accelerators with diverse sparsity-related optimization techniques to

19

reduce hardware operations (e.g., memory accesses) associated with ineffectual com-

putations. We refer to these accelerators as sparse DNN accelerators.

The rapid growth of sparse DNN accelerator research makes it increasingly im-

portant for computer architects to clearly understand the contributions of existing

accelerator designs. In addition, it is often desirable for researchers to find a sys-

tematic way to develop novel designs that outperform existing work and have great

potential for production. This thesis aims to achieve such goals by proposing: (i)

sparse tensor accelerator modeling approaches, which enable systematic understand-

ing and rapid exploration of sparse tensor accelerators; (ii) efficient and flexible sparse

DNN accelerator designs, which are evaluated via the proposed modeling approaches.

1.1 Challenges and Limitations

We observe multiple challenges to more systematically approaching next-generation

sparse DNN accelerator design. In this section, we discuss such challenges and briefly

introduce the limitations of existing works.

1.1.1 The Need for A Well-Organized Design Space

In order to discover novel designs that meet our goals, it is important for researchers

to first have a systematic understanding of the existing sparse DNN accelerator

design space. Unfortunately, existing sparse DNN accelerator designs [15, 17, 78,

2, 81, 33, 73, 48, 24, 107, 31] often rely on design-specific terminologies to de-

scribe important design decisions. For example, SCNN [78] proposes a “PlanarTiled-

InputStationary-CartesianProduct" dataflow and “compressed-sparse-block" compres-

sion format. Compared to dense tensor accelerators, sparse DNN accelerators need to

consider many more design choices (e.g., different compression formats, different ways

to eliminate computes) and thus often have much more complex architectures. As a

result, it becomes challenging for researchers to appreciate the key insights associated

with each (set of) design choice(s) and draw a clear picture of the high-level insights,

let alone the ability to understand the lower-level sophisticated interactions among

20

the proposed design decisions. Thus, it is desirable for researchers to setup common

terminologies for clear and systematic descriptions of the sparse DNN accelerator

designs.

1.1.2 The Need for Early-Design-Stage Modeling Tool

In order to perform quantitative analysis to compare existing designs or in search of

a better design, it is important for researchers to have a generally applicable model-

ing framework for evaluations of diverse sparse DNN accelerators. However, existing

sparse DNN accelerator designs are often evaluated with design-specific simulators,

which are usually hard to modify to represent other implementation choices, not to

mention their unavailability to the public. Such a phenomenon makes it extremely

challenging for researchers to compare to existing designs, as the simulators often have

different assumptions about the hardware (e.g., technology nodes, level of memory

sub-system detail, etc.). In addition, design-specific simulators are often implemented

with much more detail than necessary for early-stage design space exploration (e.g.,

RTL simulations [17]). Although such simulations can introduce very accurate re-

sults, they often have slow simulation speeds. Such a detailed modeling approach

impedes researchers from performing fast early-stage design explorations to discover

new designs that can potentially outperform existing works. Thus, it is important for

the community to have flexible, fast, and accurate open-source modeling frameworks

to enable early design stage evaluation of sparse DNN accelerators.

1.1.3 The Need for Efficient and Flexible Designs

Although domain-specific accelerators are more efficient compared to general-purpose

processors (e.g., CPUs), it has often been challenging to design flexible accelerators to

support a diverse set of workloads in its target domain. Thus, there is a strong prag-

matic need for simultaneously efficient and flexible sparse DNN accelerator designs.

Specifically, modern DNN workloads can have tensors that are sometimes dense and

sometimes sparse with various sparsity degrees (i.e., discrete values of sparsity). As a

21

result, sparse DNN accelerators should make little assumptions about the sparsity de-

gree of the workloads and implement simple sparsity-related acceleration techniques

to provide disproportionate savings. However, existing sparse DNN accelerator de-

signs often trade efficiency for flexibility or vice versa. Specifically, some designs

focus on simple hardware acceleration that incurs low overhead but only translates

a limited set of sparsity degrees into hardware savings (e.g., the vector sparse tensor

core [126] only efficiently accelerates one specific sparsity pattern). On the other hand,

other sparse DNN accelerator designs focus on sophisticated hardware acceleration

implementations that are very flexible to translate arbitrarily distributed zeros into

hardware savings. However, their flexible support for arbitrarily distributed zeros of-

ten incurs considerable latency or energy overhead. The significant overhead can hurt

hardware performance when there is not enough sparsity (e.g., the dual-side sparse

tensor core [107] aims to accelerate arbitrary sparsity patterns, but employs costly

data movement). Therefore, there is a great need to develop efficient and flexible

designs that are capable of translating a wide range of many sparsity degrees into

reductions in energy and/or latency.

1.2 Thesis Contributions

We address the above-mentioned challenges by first proposing a systematic way to

classify and describe the sparse DNN accelerator design space. Based on the taxon-

omy, we present an open-source early-design-stage sparse DNN accelerator modeling

framework1 to enable systematic studies of new design points in the space. Finally,

we present an efficient and flexible sparse DNN accelerator that is evaluated with our

proposed modeling framework. Specifically, this thesis makes the following contribu-

tions.

1Sparseloop is available at http://sparseloop.mit.edu/.

22

http://sparseloop.mit.edu/

1.2.1 Systematic Description of Sparse DNN accelerators

To organize the unstructured design space of sparse DNN accelerators, this thesis first

introduces a well-defined abstraction that describes high-level sparse DNN accelerator

attributes for effective communications among researchers from different communi-

ties. Specifically, we propose a taxonomy to classify the sparsity-aware acceleration

techniques into three high-level sparse acceleration features (SAFs). The proposed

taxonomy provides a well-defined set of terminologies to qualitatively describe how a

sparse DNN accelerator translates sparsity into reductions in energy and/or latency,

without getting into implementation details. With the taxonomy, we show that we

can easily describe a variety of accelerators in a systematic fashion. This work is

discussed in our publications [113, 112] and Chapter 3.

1.2.2 Sparseloop Modeling Tool

Based on a clear understanding of the sparse DNN accelerator design space, we present

a systematic modeling tool, Sparseloop, for apples-to-apples comparisons and to get

deeper insights into the impact of various sparse DNN accelerator design decisions.

To allow easy characterization of either a single specific design or many designs as

part of design space exploration, Sparseloop provides the following capabilities:

• High flexibility: Sparseloop can model a diverse range of potential designs with

hardware support for different dataflows, compression formats, etc. Specifically,

our case studies demonstrate Sparseloop’s flexibility to quickly compare and

explore diverse designs with different architectures, dataflows, and SAFs running

various workloads.

• High speed: Sparseloop produces results quickly with a three-step progressive

modeling procedure. This is particularly important because properly charac-

terizing a specific design requires finding the best schedule, i.e., mapping, for

a given workload, which generally requires a search of a very large mapspace.

Specifically, Sparseloop’s modeling runs more than 2000× faster than a cycle-

level simulation.

23

• High accuracy: Sparseloop produces high-fidelity modeling results in both mapspace

and design space exploration. Specifically, Sparseloop maintains relative per-

formance trends and achieves 0.1% to 8% average error in terms of energy and

latency across representative DNN accelerators running different DNNs.

This work is discussed in Chapter 4.

1.2.3 Hierarchical Structured Sparsity for DNN Workloads

Numerous previous sparse DNN accelerator designs have proposed introducing vari-

ous hardware-friendly sparsity patterns into DNNs with the goal to improve hardware

performance while maintaining DNN accuracy. However, existing sparsity patterns of-

ten lead to undesirable flexibility and efficiency trade-offs in hardware (e.g., hardware

designed for a specific sparsity pattern only efficiently translates one sparsity degree

into hardware savings). We propose a novel class of sparsity patterns, called hier-

archical structured sparsity (HSS). HSS can systematically represent diverse sparsity

degrees (including dense) by hierarchically composing simple sparsity patterns. Since

simple sparsity patterns can be easily translated into hardware savings with simple

hardware, in addition to its flexibility, HSS also enables efficient low-cost hardware

acceleration.

Furthermore, to precisely define HSS and distinguish it from prior work, we pro-

pose an approach to precisely specify different sparsity patterns, allowing researchers

to clearly compare sparsity patterns in a qualitative fashion or in terms of their exact

zero-value locations. This work is discussed in Chapter 5.

1.2.4 Efficient and Flexible DNN Acceleration with HSS

Inspired by the concept of HSS, we propose a simultaneously efficient and flexible

DNN accelerator, HighLight, that is able to translate diverse sparsity degrees (in-

cluding dense) into reductions in energy and/or latency with low-overhead hardware.

The key insight of our design is that we leverage the properties of the multiplication

of fractions to: (i) represent diverse structured sparsity degrees and (ii) enable mod-

24

Figure 1-1: Composing two sets of density degrees, S0 and S1, by multiplying the
fractions in each set.

ularized low-sparsity-tax hardware support for each set of fractions to exploit the

structured sparsity degrees. Fig. 1-1 illustrates the idea of multiplication of fractions

with two composable sets of density degrees (where density = 1−sparsity) represented

as fractions. Composing the densities from S0 and S1 results in six density degrees.

Thus, hardware with modularized support for each set naturally supports all six de-

rived degrees.

Compared to existing works, HighLight achieves a geomean of up to 6.4× better

energy-delay product (EDP) across workloads with diverse sparsity degrees (including

dense), and always sits on the EDP-accuracy Pareto frontier for representative DNNs.

This work is discussed in Chapter 6.

1.3 Related Publications

The contributions of this thesis have resulted in multiple publications and unpublished

manuscripts that are either related to modeling methodology or accelerator designs.

Chapter 3 and Chapter 4 are based on three previous publications [112, 113, 109]:

• Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel

S. Emer, Sparseloop: An Analytical, Energy-Focused Design Space Exploration

Methodology for Sparse Tensor Accelerators, in IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2021

• Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Joel S. Emer, and Vivi-

enne Sze, Sparseloop: An Analytical Approach to Sparse Tensor Accelerator

Modeling, in IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2022.

25

• Yannan Nellie Wu, Vivienne Sze, and Joel S. Emer, An Architecture-Level

Energy and Area Estimator for Processing-In-Memory Accelerator Designs, in

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), 2020

Chapter 5 and Chapter 6 are based on a previous unpublished manuscript [110]:

• Yannan Nellie Wu, Po-An Tsai, Saurav Muralidharan, Angshuman Parashar,

Vivienne Sze, and Joel S. Emer, Highlight: Efficient and flexible DNN acceler-

ation with hierarchical structured sparsity, Under submission, 2023.

There are also publications [106, 32] and unpublished manuscripts [114] that are

not included in this thesis. They are done in close collaboration with other col-

leagues. My main contributions include participating in developing the general mod-

eling flows [106, 32] and proposing the high-level idea of integrating speculative exe-

cution into tiling strategies [114].

• Francis Wang, Yannan Nellie Wu, Matthew Woicik, Joel S. Emer, Vivienne Sze,

Architecture-Level Energy Estimation for Heterogeneous Computing Systems,

in IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2021.

• Michael Gilbert, Yannan Nellie Wu, Angshuman Parashar, Vivienne Sze, and

Joel S. Emer. Looptree: Enabling exploration of fused-layer dataflow accel-

erators. In 2023 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), 2023.

• Zi Yu Xue, Yannan Nellie Wu, Joel Emer, and Vivienne Sze. Accelerating sparse

tensor algebra by overbooking buffer capacity, Under submission, 2023.

26

Chapter 2

Background

2.1 Overview of Tensor Algebra in DNNs

Tensor algebra is one of the most important computation kernels in deep neural

networks (DNNs). In this section, we present basic background knowledge for (dense

and sparse) tensor algebra kernels and briefly introduce the sources of sparsity.

2.1.1 The Basics

Tensors are multi-dimensional arrays with an arbitrary number of dimensions. Fol-

lowing the conventions in [39, 75], we call a tensor with N dimensions an N-tensor

for brevity. For example, tensor A in Fig. 2-1 is a 2-tensor with dimensions M (i.e.,

rows) and K (i.e., columns). Each tensor has multiple points, each of which is asso-

ciated with a scalar value (e.g., there are 𝑀 × 𝐾 points in tensor A). Each point’s

location in the tensor can be described with a set of coordinates (e.g., e’s location in

tensor A can be described with coordinates 𝑚, 𝑘 = 3, 2, abbreviated as 𝐴3,2).

The shape of the tensor is defined by the number of distinct coordinates in each

dimension (e.g., tensor A has a shape of 𝑀 × 𝐾, where 𝑀 = 𝐾 = 4). As we

have introduced in Chapter 1, many applications involve sparse tensors (e.g., A in

Fig. 2-1 is a sparse tensor, with zeros indicated by the blank spaces). Thus, in

addition to tensor shapes, we are also interested in characterizing the nonzero values

27

Term Definition

tensors multidimensional arrays with an arbitrary number of dimensions
points scalar values inside a tensor
coordinates tuples that describe the locations of the points in the tensor
shape number of distinct coordinates in each dimension
occupancy number of nonzero values in the tensor
density percentage of nonzero values in the tensor
sparsity percentage of zero values in the tensor; 1-density

Table 2.1: Summary of terminologies related to tensor algebra basics.

Figure 2-1: Example sparse matrix multiplication kernel, which can be commonly seen
in fully connected layers in DNNs. We will use the following color coding throughout
the thesis — green: weight tensor; blue: input activation tensor; red: output activa-
tion tensor. Blank spaces in the tensors refer to locations with zeros.

in the tensor. We introduce the concept of tensor occupancy [94], which indicates the

number of nonzero values in the tensor (e.g., tensor A has an occupancy of six with

nonzeros a, b, c, d, e, f). We call the percentage of nonzero values in a tensor the

density of the tensor, and the percentage of zero values in a tensor the sparsity of the

tensor, which equals to 1− 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. Specifically, DNN layers involve input activation

tensors, weight tensors, and output activation tensors, whose shape and sparsity vary

from layer to layer within a DNN model and across DNN models. We summarize the

introduced terminologies in Table 2.1.

With the tensors described, it is important to precisely and succinctly specify the

application’s tensor algorithm, which defines the involved mathematical operations.

We can describe such algorithms with the well-known Einsum notation [29, 56]. For

example, the matrix multiplication kernel in Fig. 2-1 is specified as 𝑍𝑚,𝑛 = 𝐴𝑚,𝑘×𝐵𝑘,𝑛,

28

where the 𝐴 and 𝐵 values along the same 𝑘 dimension are reduced (i.e., contracted)

and the 𝑚 and 𝑛 dimensions are populated to the output tensor 𝑍. The reduction is

implicit in the Einsum notation without the summation symbol
∑︀

𝑘. Sparse tensor

algebra algorithms can introduce a significant number of ineffectual computations,

whose results can be easily derived by applying the simple algebraic equalities of

𝑋 × 0 = 0 and 𝑋 + 0 = 𝑋. For example, for the matrix multiplication kernel in

Fig. 2-1, 𝐴0,0 × 𝐵0,0 is one of the ineffectual operations since 𝐴0,0 = 0. Since the

Einsum notation does have limitations on the algorithms that it can represent, we

employ an extended version of the Einsum notation [39, 94] to express additional

computation kernels that are used in DNNs (e.g., convolution). Specifically, the

extended Einsum notation allows arithmetic operations on the indices of each tensor

(e.g., a one-dimensional convolution can be represented as 𝑂𝑝 = 𝐼𝑝+𝑟 × 𝐹𝑟).

2.1.2 Sparsity Patterns

Sparse DNNs can have sparse tensors with various distributions of zero value locations,

which we refer to as sparsity patterns. The sparsity patterns could arise due to the

nature of the DNNs, or intentionally be introduced into the tensors with the goal of

reducing the number of effectual operations and thus improve hardware performance.

At a high level, we can classify these sparsity patterns into unstructured sparsity or

structured sparsity.

Unstructured sparsity refers to an unconstrained distribution of zeros (i.e., any

point can have a zero). For example, in DNN workloads, unstructured sparsity can

naturally arise due to their use of non-linear activation functions [1, 42] that set

certain activations to zero. It can also be introduced via unstructured pruning [34,

63, 35], which eliminates unimportant weights by setting them to zero based on their

importance regardless of their locations.

By contrast, structured sparsity refers to distributions of zeros with spatial con-

straints (i.e., only certain points can have zeros). In DNN workloads, structured

sparsity is often introduced via structured pruning [37, 68, 72, 64], which eliminates

weights or activations within certain sub-tensors. For example, one of the most pop-

29

ular DNN structured sparsity patterns is the G:H sparsity pattern, which mandates

(at most) G elements to be nonzero within a block of H elements, and thus results in

a density of G/H. For example, NVIDIA sparse tensor core (STC) [73] employs a 2:4

pattern, which sparsifies two elements in every block of four elements [68], resulting

in 2/4 = 50% density and 100% − 50% = 50% sparsity.

2.2 Overview of DNN Accelerators

Due to the data and compute-intensive nature of DNNs, it is often inefficient to

process them on general-purpose processors (e.g., CPUs). Thus, many DNN accel-

erators have been designed that exploit DNN’s characteristics to improve hardware

efficiency). In this section, we discuss the basic concepts related to general (dense and

sparse) DNN accelerator design and briefly introduce the high-level opportunities for

sparsity-related acceleration in sparse DNN accelerators.

Architecture Organization DNN accelerators are often organized to have multi-

ple levels of storage for efficient on-chip data reuse, flexible networks-on-chip (NoCs)

for data communication, and a certain amount of processing elements (PEs) for paral-

lel computation. We also refer to the storage or compute levels as architecture levels.

Fig. 2-2 shows an example architecture organization with three levels of storage (i.e.,

Main Memory, Global Buffer, and Buffer), multiple PEs with multipliers for parallel

computation, and NoCs between storage levels or compute units. For each storage

level, the buffers are typically explicitly orchestrated with address generation logic

(e.g., the Cgen and Calc) that are responsible for generating statically configured

read and write addresses. Different tensor accelerators can choose to have a different

number of architecture levels, different storage capacities at each level, a different

number of parallel compute units, etc.

Dataflow and Mapping With the architecture organization defined, it is impor-

tant for computer architects to efficiently schedule the DNN workloads on the hard-

ware, i.e., find a good workload-hardware mapping. Different mappings can result in

30

Figure 2-2: Example sparse DNN accelerator architecture organization with three
levels of storage (i.e., main memory, global buffer, and buffer), parallel compute
(i.e., the multipliers), and network-on-chip (NoC). PE stands for processing elements.
Cgen and Calc are representative components for storage access address generation.

drastically different hardware performance (e.g., Timeloop [77] observes that, for a

layer in the VGG model [88], there is an 11× difference in energy efficiency when it

is being processed with different mappings). A specific accelerator architecture with

certain hardware implementation constraints (e.g., storage capacity, NoC flexibility)

can only support a specific set of mappings.

A key component of the mappings is their dataflow [14, 94]. At a high level, a

dataflow specifies the order of data transfers and computes in space and time. For

example, an A-stationary dataflow for the example workload in Fig. 2-1 can store

A in on-chip Buffers in Fig. 2-2, keep it stationary for reuse, and stream B and

Z from off-chip Main Memory to on-chip Buffers to perform the computations. A

particular accelerator architecture may support one or more dataflows. Please refer

to [94, 14, 77] for more detailed discussions of various DNN accelerator dataflows.

To increase data reuse, workload tensors are often partitioned into smaller sub-

31

tensors, which can be stored in smaller buffers in the memory hierarchy to significantly

reduce memory traffic [40]. We refer to such the partitioning strategy as tiling, and

the partitioned sub-tensors as tiles. Tiling strategies are also defined by the mappings.

Leveraging Sparsity Unlike dense tensor algebra, which requires the underly-

ing hardware to perform all computations specified by the algorithm, sparse tensor

algebra in sparse DNNs provides opportunities for hardware savings with its ineffec-

tual computations. Thus, in addition to considering the hardware organization and

dataflow choice, sparse DNN accelerators also pay significant attention to various

ways to eliminate hardware operations associated with ineffectual operations, includ-

ing both the actual arithmetic operations as well as the related data movement across

storage levels.

Specifically, based on application characteristics, different sparse DNN accelera-

tors often use different encoding to compress sparse tensors (e.g., bitmask encoding)

to only store nonzero values for storage capacity savings; and design different hard-

ware that exploits the encoding to eliminate operations associated with ineffectual

computations (e.g., intersection units). Hardware designed to exploit unstructured

sparse workloads often implements more sophisticated sparsity-related support to

exploit the arbitrary distributed nonzero values (e.g., high throughput intersection

units, costly workload balancing mechanisms). In contrast, hardware designed for

structured sparsity can rely on the defined structure and thus introduce less hard-

ware complexity.

2.3 Overview of DNN Accelerator Modeling

Modeling tools play an important role in facilitating researchers to get a quantitative

understanding of the performance of various designs running different workloads. In

this section, we introduce the basic concepts of analytical DNN accelerator modeling,

with a focus on the Timeloop-Accelergy analytical modeling framework [77, 108, 109].

32

2.3.1 Analytical Modeling Basics

Analytical modeling performs higher-level evaluations of the important components

(e.g., number of levels in the memory hierarchy and number of parallel compute units)

in the accelerator architecture and captures the high-level runtime activities of such

components (e.g., number of storage accesses) to produce accurate-enough modeling

results. Since these models work on abstracted hardware modules, they are usually

well-parameterized and modularized to support a wide range of architecture designs.

Thus, analytical models best serve researchers for performing early-stage evaluation

and exploration of a wide variety of dataflows or hardware architectures. Since this

thesis focuses on topics related to the early-stage modeling and design of sparse DNN

accelerators, analytical modeling approaches fit well into the picture.

2.3.2 Timeloop-Accelergy Modeling Framework

To demonstrate how an analytical modeling framework functions, we use the Timeloop-

Accelergy framework [77, 108, 109], one of the most widely used analytical dense

tensor accelerator modeling frameworks, as an example to briefly discuss the mod-

eling flow. Furthermore, our proposed analytical sparse DNN accelerator modeling

framework in Chapter 4 uses Timeloop-Accelergy as a basis, so this section also

serves as background preparation for Chapter 4.

As shown in Fig. 2-3, the framework takes in a tensor algebra kernel specification

(e.g., fully connected layers in DNNs can be specified as matrix multiplication kernels)

as an Einsum (as described in Sec. 2.1.1) and tensor shapes, the hardware architecture

organization specification, and a desired mapping specification to generate the total

energy consumption and cycle counts. Internally, the framework consists of two parts:

the Timeloop performance analysis frontend [77] and the Accelergy (and its plug-ins)

energy/area estimation backend [108].

33

Figure 2-3: The Timeloop-Accelergy analytical modeling framework [109] for dense
tensor accelerators. Timeloop [77] serves as a performance modeling frontend, whereas
Accelergy [108] serves as an energy and area estimation backend.

Timeloop Frontend

Given the workload and mapping, Timeloop is responsible for analyzing the traffic

seen by the components in the architecture (e.g., the number of reads to theGlobal

Buffer). To allow fast simulation speed, Timeloop exploits the fact that tensor algebra

algorithms induce regular storage access patterns and parallelism (i.e., all the compu-

tations, storage accesses, and NoC communication are well-defined by the mapping).

As a result, instead of simulating the entire execution flow, Timeloop analyzes only

the transient and steady-state behaviors of the system and analytically extrapolates

the full runtime activity. Such an analytical approach greatly reduces the amount of

simulation time, especially when the workloads involve large tensors.

Timeloop not only supports evaluations of user-defined mappings, it also provide

support for automatic mapspace exploration. More details about Timeloop can be

found in the paper [77].

Accelergy Backend

On the other hand, Accelergy is responsible for characterizing the per-operation en-

ergy costs, and area cost for the components in the provided architecture (e.g., every

34

read to the Global Buffer in Fig. 2-2 costs 10pJ). As a result, Accelergy is responsible

for more detailed micro-architecture characterization but does not get involved in

runtime activity analysis (i.e., Accelergy is oblivious of the workload and mapping).

As shown in Fig. 2-3, Accelergy has a flexible interface to communicate with various

energy/area estimation plug-ins that can be designed for different types of compo-

nents, different technology nodes, etc. More details about Accelergy can be found in

the papers [108, 109].

Internally, Accelergy receives the architecture specification from Timeloop, per-

forms estimations, and passes the per-operation energy and each component’s area

cost estimations to Timeloop to generate the final energy and area estimations.

2.3.3 Limitations of Existing Analytical Modeling Approaches

Although there exist various flexible analytical modeling frameworks for tensor accel-

erators, to the authors’ knowledge, existing works are all designed for dense tensor

accelerator modeling and either do not provide support for sparse DNN accelerators

at all [77, 109, 47, 85, 60, 54, 124], or only provide design-specific knobs for designers

to explore [115, 117]. For example, Procrustes [115] supports modeling of one com-

pression format for one operand only. In other words, no prior work aims to flexibly

model general sparse DNN accelerators with various sparsity-related accelerations

applied. Since at each architecture level, different sparsity-related accelerations can

introduce different amounts of savings and overhead, the lack of such trade-off anal-

ysis prevents designers from using such analytical models for sparse DNN accelerator

design space exploration.

35

36

Chapter 3

Design Space Classification

Despite the novelty of proposed sparse DNN accelerator designs, their use of design-

specific terminologies is often confusing for computer architects to internalize and

derive inspiration from, potentially hindering the evolution of next-generation tensor

accelerators. In this chapter, we first discuss the importance of understanding the de-

sign space and propose a new classification framework that simplifies how to describe

a specific design in a complex design space. We then demonstrate how prior designs

can be described in a straightforward manner.

3.1 Motivation

3.1.1 Large and Unstructured Design Space

Sparse DNN accelerators often employ different dataflows to exploit data reuse across

multiple storage levels and feature various sparsity-aware acceleration techniques to

eliminate data storage for zeros and ineffectual operations (IneffOps), i.e., arithmetic

operations and storage accesses associated with ineffectual computations. The vast

number of potential design choices leads to a large and diverse design space.

Nonetheless, there is little structure in the design space for sparse DNN accelera-

tors, as each prior design uses different terminology to describe a point in the design

space. We present the design decisions made by representative designs to show the

37

lack of uniformity in the descriptions of their architectures.

For example, Eyeriss [15] uses a row-stationary dataflow, run-length compression

for data stored in DRAM, and storage and compute units that stay idle for IneffOps.

With the same dataflow, Eyeriss V2 [17] employs a compressed sparse column en-

coding for both on-chip and DRAM data, and avoids spending cycles for IneffOps

by performing intersections near the compute units. When cycles must be spent

for ineffectual compute, Eyeriss V2 lets the hardware stay idle. SCNN [78] features a

PlanarTiled-InputStationary-CartesianProduct dataflow to eliminate ineffectual com-

putations without performing expensive intersections and employs compressed-sparse-

block encoding. ExTensor [39] proposes a hybrid dataflow and a hierarchical encod-

ing. It introduces the hierarchical-elimination acceleration technique, which aggres-

sively eliminates IneffOps at multiple storage levels long before data reaches compute.

Dual-side sparse tensor core (DSTC) [107] uses an output-stationary dataflow and

two-level BitMap encoding. It designs an operand-collector hardware unit tailored to

its dataflow to provide enough bandwidth after elimination of IneffOps. SparTen [33]

employs an output stationary dataflow, and introduces SparseMap encoding. SparTen

proposes its unique inner join hardware unit tailored to its dataflow and encoding to

eliminate cycles spent on IneffOps.

Since different accelerators propose different sets of implementation choices, of-

ten described in design-specific naming conventions, it is challenging for designers

to have a systematic understanding of the proposed dataflow and acceleration tech-

niques in the design space, let alone a modeling framework to compare these designs

systematically.

3.1.2 Sparsity Impacts Design Behavior

Evaluating the complex design space of sparse DNN accelerators is further compli-

cated by the impact of the tensor sparsity characteristics, which include the density

(i.e., percentage of nonzero values in each tensor, 1−sparsity) and the locations of

nonzero values in each tensor.

To demonstrate this entanglement, we compare two sparse DNN accelerator de-

38

Figure 3-1: Processing speed and energy efficiency of architectures with different
data representation support running sparse matrix multiplication workloads. Design
behavior is dependent on data representations and tensor densities.

signs supporting different data representations. For simplicity, both accelerators em-

ploy the same dataflow:

• Bitmask (Eyeriss-like): The first design supports bitmask encoding to represent

sparse operand tensors. Bitmask uses a single bit to encode whether each value

is nonzero or not. In each cycle, the design uses each bit to decide whether

its storage and compute units should stay idle to save energy, but it does not

improve processing speed.1

• Coordinate list (SCNN-like): The second design employs a coordinate list en-

coding [22, 94], which indicates the location of each nonzero value via a list

of its coordinates (i.e., the indices in each dimension). Since the coordinate

information directly points to the next effectual computation, the design only

spends cycles on effectual operations, thus saving both energy and time.

In Fig. 3-1, we compare the processing speed and energy efficiency of the two

designs running sparse matrix multiplication workloads of different densities. As

shown in Fig. 3-1, the best design choice is a function of the input density. Specifically,

since the bitmask-based design does not improve processing speed, with low-density
1Of course, there exist other designs that use bitmasks to save both energy and time [33, 120].

39

tensors, bitmask always runs slower than coordinate list. However, since coordinate

list needs to encode the exact coordinates with multiple bits, it incurs more significant

encoding overhead per nonzero value. As the tensors become denser, coordinate list

leads to lower energy efficiency and/or processing speed. Thus, for workloads with

density < 4%, coordinate list has better speedup and energy efficiency; as workload

tensors get denser, it gradually loses its advantage. This trend has also been observed

in Sigma [81].

Even just varying the input tensor density, we already see non-trivial interac-

tions between the benefits introduced by eliminated IneffOps and compressed sparse

tensors, and the overhead introduced by extra encoding information. A more in-

volved case study in Sec. 4.9.1 will further showcase the complex interactions between

dataflows, sparsity-aware acceleration techniques, and workload sparsity characteris-

tics, illustrating the importance of co-designing various design aspects. Thus, for

hardware designers to efficiently explore the trade-offs of various design decisions,

there is a strong need to have a fast modeling framework that, in addition to evalu-

ating various dataflows, recognizes the impact of the different acceleration techniques

and tensor sparsity characteristics on processing speed and energy efficiency.

3.2 High-Level Sparse Acceleration Features

To systematically describe sparse DNN accelerators in the design space, we classify

common sparsity-aware acceleration techniques into three orthogonal high-level cat-

egories:

• Representation format

• Gating IneffOps

• Skipping IneffOps

We call each category a sparse acceleration feature (SAF).

40

3.2.1 Representation Format

Representation format refers to the choice of encoding the locations of nonzero values

in the tensor. To describe a representation format, we adopt a hierarchical expression

that combines multiple per-dimension formats, similar to [56, 22, 94].

As shown in Fig. 3-2, we introduce several commonly used per-dimension formats

with an example 1D tensor, i.e., a vector. The most basic format is Uncompressed (U),

which represents the tensor with its exact values, thus directly showing the locations

of nonzero values. U is identical to the original vector. However, to save storage space,

and thus implicitly save energy (and time) associated with zero value accesses, sparse

DNN accelerators tend to employ compressed formats, which represent a tensor with

only nonzero values and some additional information about their original locations

or coordinate [56, 22, 94]. We call this information metadata. We introduce four

per-dimension compressed formats2.

• Coordinate Payload (CP): the coordinates of each nonzero value are encoded

with multiple bits. The payloads are either the nonzero value or a pointer to

another dimension. CP explicitly lists the coordinates and the corresponding

payloads.

• Bitmask (B): a single bit is used to encode whether each coordinate is nonzero

or not.

• Run Length Encoding (RLE): multiple bits are used to encode the run length,

which represents the number of zeros between nonzeros (e.g., an 𝑟-bit run length

can encode up to a 2𝑟 − 1 run of zeros).

• Uncompressed Offset Pairs (UOP): multiple bits are used to encode the start

(inclusive) and end (noninclusive) positions of nonzero values.

As shown in Table 3.1, full tensor representation formats can be described by

combing the per-dimension formats in a hierarchical fashion. For example, CSR

2Of course, many more per-dimension formats exist.

41

Figure 3-2: Example representation formats of a vector A. Purple vectors refer to
metadata used to identify the original locations of the nonzero values.

Example Classic

Representation Formats

Hierarchical

Description

Compressed Sparse Row (CSR) [83] UOP-CP
2D Coordinate List (COO) [98] CP2

Compressed Sparse Block (CSB) [9] UOP-CP-CP
3D Compressed Sparse Fibers (CSF) [89] CP-CP-CP

Table 3.1: Example representation formats and their hierarchical description based
on per-dimension formats.

(compressed sparse row) [83] can be described by UOP-CP : Top level UOP encodes

the start and end locations of the nonzeros in each row; bottom-level CP encodes the

exact column coordinates and its associated nonzeros. A format can also partition a

tensor dimension into multiple dimensions and/or flatten multiple tensor dimensions

into one. For example, 2D COO flattens multiple dimensions into one dimension

represented by CP with tuples as coordinates. We use a superscript to indicate the

number of flattened dimensions.

3.2.2 Gating

Gating exploits the existence of IneffOps by letting the storage and compute units

stay idle during the corresponding cycles. As a result, it saves energy but does not

change processing speed. Gating can be applied to both compute and storage units

in the architecture.

We use the dot-product workload with vectors A and B in Fig. 3-3a to illustrate

42

(a)

(b)

Figure 3-3: (a) Sparse dot product workload. (b) Example ways of processing the
example workload. Each row is an example processing schedule, and each column
corresponds to a step, and the hardware operations that happen in the cycle are
listed. 1st row: baseline dense processing without SAFs; 2nd row: Gating applied to
compute; 3rd row: Gating applied to B reads based on A’s values; 4th row: Skipping
applied to B reads based on A’s values.

43

the impact of gating. In a dot product, the corresponding entries in the same row

of each vector are multiplied together and accumulated into a scalar output (i.e.,

Z in Fig. 3-3a). At a high level, the ineffectual computations can be detected by

intersecting the two operand vectors. When there exists at least one zero in the pair

of operands, the computation is ineffectual.

Fig. 3-3b presents the processing steps for the example dot product. Each row

corresponds to a specific SAF implementation, each column is a processing step,

and each cell lists the operations happening at the step. The first row presents the

baseline processing without any SAFs applied, so it performs all the storage accesses

and computes are performed regardless of whether the corresponding computation is

ineffectual, and takes six steps to complete. The second row in Fig. 3-3b shows the

result of applying gating to compute units, 𝐺𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑢𝑡𝑒. The compute unit checks

whether operands are zeros and stays power-gated if at least one operand is zero.

When gating is applied to storage units, it can be based on one of two approaches:

(1) Leader-follower intersection checks one operand, and if this operand is zero,

it avoids accessing the other operand. We call the checked operand the leader and

the operand with gated access the follower. In our classification, gating based on

leader-follower intersection is represented by an arrow that points from the leader

to the follower (i.e., 𝐺𝑎𝑡𝑒 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ← 𝐿𝑒𝑎𝑑𝑒𝑟. The third row in Fig. 3-3b shows

𝐺𝑎𝑡𝑒𝐵 ← 𝐴). The leader-follow intersection approach may not eliminate all IneffOps

(e.g., step three in the example), and the savings introduced depend on the leader

operand’s sparsity characteristics.

(2) Double-sided intersection checks both operands (usually just via their asso-

ciated metadata), and if either of them is zero, it does not access either operands’

data. Double-sided intersection is represented with a double-sided arrow that points

to both operands (i.e., 𝑂𝑝𝑒𝑟𝑎𝑛𝑑0↔ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑1). Double-sided intersection eliminates

all IneffOps but may require more complex hardware.

In addition to reducing storage accesses, gating applied to a storage unit also leads

to implicit gating of the compute unit connected to it (e.g., step one in the third row

of Fig. 3-3b), as the compute unit can now use the check for the storage unit to

44

power-gate itself.

3.2.3 Skipping

Skipping refers to exploiting IneffOps by not spending the corresponding cycles. Since

skipping directly skips to the next effectual computation, it saves both energy and

time. Similar to gating, skipping can be applied to both the compute and storage

units.

When skipping is applied to compute units, the compute units directly look for

the next pair of operands until it finds effective computations to perform. When

skipping is applied to storage units, it can also be based on leader-follower intersec-

tion or double-sided intersection. However, instead of letting the storage stay idle,

with skipping applied, cycles are only spent on effectual accesses. The last row in

Fig. 3-3b shows an example implementation of skipping B reads based on A’s values

(𝑆𝑘𝑖𝑝 𝐵 ← 𝐴). Similar to gating, a leader-follower implementation of skipping can

still introduce some IneffOps, and skipping at storage can lead to implicit skipping at

the compute units. Since skipping needs to quickly locate the next effectual operation

to skip to, it usually requires more complex hardware than gating does (e.g., ExTen-

sor’s intersection unit implements smart look-ahead optimizations to locate effectual

operations in time [39]). Inefficient implementations can lead to more overhead than

savings in time and energy.

3.3 Dataflow Choice is Orthogonal to

Sparsity-Aware Acceleration

In addition to the SAFs, dataflow choice is another important decision made by var-

ious accelerators [14]. A taxonomy of dataflows for various tensor algebra workloads

has already been well-studied in existing work. For example, the DNN dataflow taxon-

omy proposed in [14, 94] and the matrix multiplication dataflow taxonomy proposed

in [119, 90, 76]).

45

Design Workload Format4 Gating/Skipping

Eyeriss

[15]
DNN

offchip: I/O: B-RLE W:U
onchip: I: UB O/W:U

Innermost Storage : 𝐺𝑎𝑡𝑒 𝑊 ← 𝐼, 𝐺𝑎𝑡𝑒 𝑂 ← 𝐼

Eyeriss V2

[17]
DNN I/W: B-UOP-CP O:U

Innermost Storage : 𝑆𝑘𝑖𝑝 𝑊 ← 𝐼, 𝑆𝑘𝑖𝑝 𝑂 ← 𝐼 &𝑊 ;
𝐺𝑎𝑡𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒

SCNN

[78]
DNN I/W: B-UOP-RLE O: U

Innermost Storage : 𝑆𝑘𝑖𝑝 𝑊 ← 𝐼, 𝑆𝑘𝑖𝑝 𝑂 ← 𝐼 &𝑊 ;
𝐺𝑎𝑡𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒

ExTensor

[39]
MM A/B: UOP-CP×5 Z: U All Storage : 𝑆𝑘𝑖𝑝 𝐴↔ 𝐵, 𝑆𝑘𝑖𝑝 𝑍 ← 𝐴&𝐵

DSTC

[107]
MM A/B: B-B Z: U

2𝑛𝑑-to-innermost & Innermost Storage :
𝑆𝑘𝑖𝑝 𝐴↔ 𝐵, 𝑆𝑘𝑖𝑝 𝑍 ← 𝐴&𝐵

Table 3.2: Summary of representative sparse tensor accelerators described with the
proposed SAFs based on tensors from example target workloads. For DNN: I: input
activation, W: Weights, O: output activation. For Matrix Multiplication (MM): A,B:
operand tensors, Z: result tensor. Note that the designs have different dataflows,
which are not listed.

We make the observation that the dataflow choice is orthogonal to the chosen

SAFs. Dataflows define the scheduling of data movement and compute in time and

space, and SAFs define the actual amount of data that is moved or number of com-

putes performed (i.e., where and when to perform data movement and compute). As

a result, the space of sparse DNN accelerators is the cross product of dataflow choices

and SAF choices (further information on how this impacts modeling is in Chapter 4).

Of course, a particular dataflow might work well with a specific SAF implementation,

leading to an efficient design, while another may not.

3.4 Describing Sparse DNN accelerators

General accelerator designs often implement multiple SAFs that work well with each

other to efficiently improve hardware performance. Fig. 3-4 illustrates the idea with

a simple example, for the same workload in Fig. 3-3a, Fig. 3-4 employs a CP repre-

sentation format for vector A, 𝑆𝑘𝑖𝑝 𝐵 ← 𝐴 and 𝐺𝑎𝑡𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒. By representing A

with CP, 𝑆𝑘𝑖𝑝 𝐵 ← 𝐴 is implemented by directly reading the appropriate B values

based on A’s metadata. Furthermore, by applying 𝐺𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑢𝑡𝑒, Fig. 3-4 eliminates

the compute unit’s IneffOps for cases with nonzero A and zero B.

46

Figure 3-4: Example of combining compressed format, skipping, and gating SAFs in
one accelerator design.

Realistic sparse DNN accelerators often feature multiple storage levels to exploit

data reuse opportunities and a set of spatial compute units for parallel computation.

Thus, to systematically describe each design, we need to define the SAFs imple-

mented at each level in the architecture. Based on our proposed classification, Ta-

ble 3.2 describes the acceleration techniques of the representative designs introduced

in Sec. 3.1.1.

For example, SCNN [78], a sparse DNN accelerator, uses a three-level, B-UOP-

RLE representation format3 to compress input activations (IA) and weights (W).

In the innermost storage level (i.e., the level closest to the compute units), SCNN

performs 𝑆𝑘𝑖𝑝𝑊 ← 𝐼𝐴 and 𝑆𝑘𝑖𝑝 𝑂𝐴← 𝐼𝐴&𝑊 , where OA refers to output activa-

tion. Gating is applied to compute units (i.e., 𝐺𝑎𝑡𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒), to eliminate leftover

IneffOps, similar to the strategy shown in Fig. 3-4. ExTensor [39] is an accelera-

tor for general sparse tensor algebra. We use matrix multiplication as an example

workload, which involves operand tensors A, B and result tensor Z. ExTensor parti-

tions and compresses tensors with a six-level format and performs 𝑆𝑘𝑖𝑝 𝐴 ↔ 𝐵 and

𝑆𝑘𝑖𝑝 𝑍 ← 𝐴&𝐵 at all storage levels.

In summary, we have demonstrated how this taxonomy allows the design-specific

terminologies in existing proposals to be translated into systematic descriptions. Fur-

thermore, it will also allow future sparse accelerators to be described accurately and

compared qualitatively in the same way.

3Some per-dimension formats are applied to partition or flattened dimensions.

47

3.5 Conclusions

Sparse DNN accelerators are important for efficiently processing many popular work-

loads. However, the lack of a unified description language and a modeling infrastruc-

ture to enable the exploration of various designs impedes further advances in this do-

main. This chapter proposes a systematic classification of sparsity-aware acceleration

techniques into three high-level sparse acceleration features (SAFs): representation

format, gating, and skipping. The proposed taxonomy of various sparse acceleration

features provides a well-defined terminology to describe how a sparse DNN accelerator

exploits sparsity qualitatively, without getting into implementation details. Thus, we

believe the proposed abstraction can facilitate succinct and effective communication

between researchers who are developing DNN accelerators.

48

Chapter 4

Sparseloop

The design space taxonomy in Chapter 3 lays the foundation for developing a general

modeling tool for sparse DNN accelerators. In this chapter, we introduce Sparseloop,

an analytical modeling framework that quantitatively evaluates the processing speed

and energy efficiency of sparse DNN accelerators. In this chaper, we will discuss the

challenges faced by sparse DNN accelerator modeling and Sparseloop’s key method-

ologies to address those challenges.

4.1 Modeling Challenges

Since workload data characteristics and SAF implementations can have a significant

impact on a sparse DNN accelerator’s performance, there are three key challenges

associated with ensuring the modeling framework’s speed, accuracy, and flexibility.

• Multiplicative factors of the design space: To faithfully model various

sparse DNN accelerator designs, the analysis framework needs to understand

the compound impact of their sparsity-specific design aspects (e.g., the diverse

SAFs shown in Table 3.2) together with general design aspects (e.g., architecture

topology, dataflow, etc.). Simultaneously modeling the interactions between a

considerable number of design aspects incurs high complexity, slowing down the

modeling process. Building specific models for each design cannot scale to cover

the entire design space, either.

49

• Tradeoff between accuracy and modeling speed: High fidelity modeling

requires time-consuming sparsity-dependent analysis. Since sparsity character-

istics impact a sparse accelerator’s performance, carefully examining the exact

data in each tensor could ensure accuracy. However, the downside of actual-data

based analysis is that it can cause intolerable slowdown during mapspace ex-

ploration, especially for workloads with numerous and evolving data sets (e.g.,

DNNs). On the other hand, ignoring workload’s sparsity characteristics allows

faster modeling but suffers from inaccurate results.

• Evolving designs/workloads: Finally, diverse and constantly evolving de-

signs/workloads require flexibility and extendability in the modeling framework.

Since the interactions between the processing schedules and workload data char-

acteristics are convoluted and core to accurate modeling results, the framework

must be flexible and modularized enough to allow easy extensions for future

designs/workloads.

4.2 Sparseloop Solutions to the Challenges

To solve the challenges, Sparseloop makes two important observations for sparse DNN

accelerator modeling: (1) the runtime behaviors (e.g., number of storage accesses and

computes) can be progressively modeled1; (2) the sparsity-dependent behaviors can

be statistically modeled with acceptable errors2.

Based on observation (1), to maintain modeling complexity, Sparseloop performs

progressive modeling of distinct design aspects with decoupled modeling steps: (i)

Sparseloop evaluates dataflow independent of SAFs, as the storage accesses and com-
1A prerequisite for progressive modeling is the target accelerator needs to perform explicit de-

coupled data orchestration [80], where the data reuse pattern is statically defined. This is often
the case for sparse DNN accelerators. However, general sparse tensor accelerators might not always
have statically defined data reuse (e.g., accelerators that employ caches introduce dynamic reuse of
data).

2A prerequisite of having acceptable errors with statistical modeling is that the locations of the
nonzero values in the workload tensors can be described with a distribution. Otherwise, an actual
data modeling approach that examines the exact data in the tiles needs to be employed. As we will
discuss later, Sparseloop does have support for examining actual data, but can come at the cost of
orders of magnitude slower modeling speed.

50

Figure 4-1: Sparseloop High-Level Framework.

putes introduced by the dataflow are irrelevant to how the IneffOps get eliminated;

(ii) Sparseloop evaluates SAFs independent of micro-architecture, as the number of

eliminated IneffOps introduced by the SAFs is orthogonal to the cost of performing

each elimination or the savings brought by each eliminated IneffOp. Thus, as Fig. 4-1

shows, Sparseloop’s modeling process is split into three steps, each with tractable

complexity.

• Dataflow modeling: analyzes the uncompressed data movement and dense

compute (i.e., dense traffic) incurred by the user-specified mapping input.

• Sparse modeling: analyzes and reflects the impact of SAFs by filtering the

dense traffic to produce sparse data movement and sparse compute (i.e., sparse

traffic).

• Micro-architecture modeling: analyzes the exact hardware operation cost

(e.g., multi-word storage access cost) and generates the final energy consump-

tion and processing speed based on the sparse traffic.

Based on observation (2), Sparseloop enables systematic recognition of the impact

of SAFs at the sparse modeling step. To balance accuracy and speed, sparse modeling

performs analysis based on statistical characterizations of nonzero value locations

in workload tensors and their sub-tensors, by leveraging various statistical density

51

models.

Finally, as shown in Fig. 4-1, to ensure extendability, the sparse modeling step in-

teracts with statistical density models and per-dimension format models as decoupled

modules so that these models can be extended to support future sparse workloads

and representation formats.

4.3 Sparseloop Framework

We first discuss the inputs to Sparseloop in Sec. 4.4, and describe the modeling steps

in Sec. 4.5, 4.6, and 4.7.

4.4 Inputs

As shown in Fig. 4-1, to generate the processing speed and energy consumption of

an accelerator design running a workload, Sparseloop needs four inputs: workload

specification, architecture specification, SAFs specification, and mapping or mapspace

constraints. Fig. 4-2 shows a set of example specifications to show the input semantics,

and more detailed syntax can be found at [111].

Workload specification describes the shape and statistical density characteristics

of the workload tensors (e.g., in Fig. 4-2, A is 4x4 and has a density of 25% with

a uniform distribution). Workload specification also includes the tensor algorithm

specification, which is based on the well-known Einsum notation [29, 56] (e.g., the

matrix multiplication kernel is specified as 𝑍𝑚,𝑛 = 𝐴𝑚,𝑘 × 𝐵𝑘,𝑛. More explanations

in Chapter 2.1.1). Sparseloop understands any algorithm described with an extended

Einsum notation, similar to existing works [77, 39].

Architecture specification describes the hardware organization of the architecture

(e.g., two levels of storage and four compute units) and the hardware attributes of

the component in the architecture (e.g., Global Buffer is 128kB).

SAFs specification describes the SAFs applied to the storage or compute levels

and the relevant attributes associated with each SAF (e.g., Fig. 4-2 specifies skipping

52

Figure 4-2: Example input specifications to Sparseloop. Blank spaces in the workload
tensors refer to locations with zeros. The locations of zeros are just for illustrative
purposes.

at Buffer, with A as the leader and B as the follower).

Mapping describes an exact schedule for processing the workload on the architec-

ture. It is represented by a set of loops [77]. Each iteration of the for loop represents

a time step, and the iterations in a parallel-for loop represent operations that hap-

pen simultaneously at different spatial instances (e.g., 𝑛1𝑠 loop shows that different

columns of B are simultaneously processed in four Buffers). Mapping also defines

how the tensors are tiled for reuse at different levels in the memory hierarchy (recall

from Sec. 2.1.1, tiling refers to partitioning the tensors into smaller sub-tensors to fit

in buffers of different capacities in the memory hierarchy).

Mapspace Constraints describes a set of constraints on allowed schedule (e.g.,

allowed loop orders). Sparseloop then explores the potential mappings that satisfy

the provided partial loops and locates the best one for a specific workload.

53

4.5 Step One: Dataflow Modeling

Dataflow modeling derives the uncompressed data movement and dense compute,

which we refer to as the dense traffic. Such dense analysis has been studied in several

existing works [77, 60, 47, 67, 85]. Since each modeling step in Sparseloop is well-

abstracted, various strategies can be plugged into Sparseloop’s modeling process. In

our implementation, we adopt Timeloop’s [77] strategy.

Dataflow modeling is performed based on an abstract architecture topology (e.g.,

Fig. 4-3(a) shows the abstract representation of the architecture in Fig. 4-2), workload

tensors’ shapes, and the specified mapping. According to the mapping, each workload

tensor is hierarchically partitioned into smaller tiles based on coordinates, with each

tile stored in a specific storage level, and this process is referred to as coordinate-space

tiling [94]. For example, in Fig. 4-3(a), at L1 (Global Buffer), the tensor A in Fig. 4-2

is partitioned into four tiles (with different shades of blue) based on the m1 for loop

in the mapping, each of which is a row of the tensor. Each tile is then sequentially

sent to L0 (Buffer). To derive the data movement for each storage level, dataflow

modeling analyzes the stationarity of the tiles and the amount of data transferred,

both temporally and spatially, between consecutive tiles. The number of computes

is derived based on the input tensor algorithm. More detailed description of dense

traffic calculations can be found in Timeloop [77].

4.6 Step Two: Sparse Modeling

The sparse modeling step is responsible for reflecting the overhead and savings in-

troduced by various SAFs. As shown in Fig. 4-4, sparse modeling first evaluates the

impact of SAFs locally on per-tile traffic with SAF-specific analyzers (i.e., the Gat-

ing/Skipping Analyzer and the Format Analyzer), and then post-processes the local

traffic with scaling to reflect SAFs’ impact on overall traffic.

Such decomposition of local and global traffic analysis allows sparse modeling to

reflect SAFs’ impact on top of the dense traffic to produce sparse traffic for storage

54

Figure 4-3: (a) Example coordinate-space tiling for tensor A based on inputs specified
in Fig. 4-2. The shades represent tiles processed at different time steps. (b) Fiber
tree representation of the tensor A. Each level of the tree corresponds to a rank of
the tensor and contains one or more fibers that correspond to the rows or columns of
the tensor. The leaves of the tree are the (nonzero) data values of the tensor.

and compute units. We now discuss how each module in Fig. 4-4 interacts with others

and the insight behind this design.

4.6.1 Format-Agnostic Tensor Description

As shown in Fig. 4-4, to allow tractable complexity and extendability, sparse model-

ing performs decoupled analysis of SAFs with different analyzers. Describing sparsity

characteristics independent of representation format is core to performing such decou-

pled analysis. We adopt the fibertree concept [94] to achieve format-agnostic tensor

description. In Fig. 4-3(b), we present the fibertree representation of the sparse tensor

A stored in L1 (Global Buffer) of Fig. 4-3(a). With the example, we first introduce

the key fibertree concepts relevant to Sparseloop.

In fibertree terminology, each dimension of a tensor is called a rank 3 and is named.

Thus this 2D tensor has 2 ranks, with Rank1 being the rows and named 𝑀 (),

3A rank can also correspond to split or flattened dimensions.

55

Figure 4-4: Various modules in sparse modeling step. Hashed red arrows refer to
inputs and outputs of this step. The modules are labeled with their corresponding
section numbers.

and Rank1 being the columns and named 𝐾. In Fig. 4-3(b), each level of the tree

corresponds to a tensor rank in a specific order. Each rank contains one or more

fibers, representing the rows or columns of the tensor. Each fiber contains a set of

coordinates and their associated payloads. For intermediate ranks, the payload is a

fiber from a lower rank (e.g., coordinate 0 in rank1 has a fiber in rank0 as its payload);

for the lowest rank, the payload is a simple value. By omitting the coordinate for all-

zero payloads (i.e., empty elements), a fibertree-based description accurately reflects

the tensor’s sparsity characteristics (e.g., rank1’s fiber having empty coordinate 2

indicates that the third row is all-zero).

Each fiber in the tree corresponds to a tile being processed. For example, in Fig. 4-

3, the first tile processed in L0 (Buffer) corresponds to the first fiber in Rank0. Thus,

fibertree-based description enables format-agnostic sparsity-dependent analysis: to

analyze the tiles of interest, the analyzers can examine the appropriate fibers to

56

Figure 4-5: Fiber density probabilities for fibers with various shapes in a tensor with
50% randomly distributed nonzeros. Different fiber shapes result in different fiber
occupancy distributions.

obtain sparsity information independent of the tensor’s representation format.

4.6.2 Statistical Density Models

Examining every fiber (thus analyzing the behavior of every tile) is too time-consuming

for mapspace and design space exploration. To enable faster analysis, Sparseloop per-

forms statistical characterizations of the fibers in the fibertree. As shown in Fig. 4-4,

Sparseloop can use various statistical density models of the workload tensor to derive

statistical density for fibers in each rank (e.g., for the example in Fig. 4-3(b), the

fibers in Rank0 have a density of 50% with a probability of 0.75 and a density of 0%

with a probability of 0.25). For a given density model, the derived statistical density

can differ significantly across fibers with different shapes (i.e., fibers from different

ranks in the tree). For example, Fig. 4-5 shows the distribution of fiber densities in a

tensor with uniformly distributed non-zero values. In a uniform distribution, a tile’s

shape varies inversely with the deviation in its density.

To estimate the density of fibers with a given shape, a density model either per-

forms coordinate-independent modeling (i.e., fibers at different coordinates have sim-

ilar density distributions) or coordinate-dependent modeling (i.e., fiber’s density is a

function of its coordinates). Sparseloop supports four popular density models: fixed-

structured, uniform, banded, and actual data. Table 4.1 describes their properties

and use cases in terms of relevant applications (e.g., randomly pruned DNNs [107]

57

Density Models Sparsity Pattern Example Applications

Fixed structured
Even distribution,

Coord. independent
Structurally pruned DNNs [73]

Uniform
Random distribution,
Coord. independent

Randomly pruned DNNs [107],
DNN activation sparsity

Banded
Diagonal distribution,

Coord. dependent
SuiteSparse [57],

Scientific simulations [8]

Actual Data
Non-statistical,

Coord. dependent
Graph analytics

with special patterns [43]

Table 4.1: Summary of density models supported by Sparseloop. New models can be
easily added via Sparseloop’s interface.

and scientific simulations [8]). The modularized implementation of density models

ensures Sparseloop’s extensibility to modeling of emerging workloads with different

nonzero value distributions.

4.6.3 Format Analyzer

With fibers statistically characterized, the format analyzer is responsible for deriving

the representation overhead for the tiles stored in different storage levels. Since dif-

ferent tiles correspond to different fibers, it’s important for the analyzer to identify

the tile in each storage and obtain the appropriate statistical characterization of the

corresponding fiber from the format-agnostic tensor characterization module.

As shown in Fig. 4-4, for each fiber, the analyzer statistically models the overhead

of each rank with the appropriate per-rank Format Model. Different formats intro-

duce different amounts of overhead. For example, the RLE format model calculates

the overhead based on the number of non-empty elements in the fiber, 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑅𝐿𝐸

= #𝑛𝑜𝑛-𝑒𝑚𝑝𝑡𝑦-𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 × 𝑟𝑢𝑛_𝑙𝑒𝑛𝑔𝑡ℎ_𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ; whereas, the bitmask (B) for-

mat model produces the same overhead regardless of fiber density, 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝐵 =

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠×1. The statistical format overhead allows Sparseloop to derive important

analytical estimations (e.g., the average and worst-case overhead). Sparseloop sup-

ports five per-rank format models: B, CP, UOP, RLE, and Uncompressed B, and thus

58

Figure 4-6: Example mappings that lead to intersections with different impact.

supports any representation format that can be described with these models. The

framework can be easily extended to support other formats.

4.6.4 Gating/Skipping Analyzer

The Gating/Skipping Analyzer evaluates the amount of eliminated IneffOps intro-

duced by each gating/skipping SAF. Since gating/skipping focuses on improving effi-

ciency for each tile being transferred and/or each compute being performed, regard-

less of the total number of operations, the analyzer evaluates the impact of SAFs

locally on per-tile traffic and breaks down the original per-tile dense traffic into three

fine-grained action types: (i) actually happened, (ii) are skipped, and (iii) are gated.

As discussed in Chapter 3, gating/skipping is based on various intersections, which

eliminate IneffOps by locating the empty tiles (i.e., tiles with all zeros). In a leader-

follower intersection, when the leader tile is empty, the IneffOps associated with

the follower are eliminated. In contrast, in a double-sided intersection, any tile being

empty leads to eliminations of IneffOps associated with the other tile. Since a double-

sided intersection can be modeled as a pair of leader-follower intersections (𝐵 ↔ 𝐴 =

𝐵 ← 𝐴 + 𝐴 ← 𝐵), we focus on discussing the modeling of SAFs based on leader-

follower intersections.

The key to modeling the amount of eliminated IneffOps introduced by a SAF

based on leader-follower intersection is to correctly identify the associated leader and

59

follower tiles, and thus the fibers representing the tiles in the fibertree. Since different

fibers can have a significantly different probability of being empty, the same SAF can

lead to different impacts. We observe that the leader and follower tiles of a specific

intersection can be determined based on the data reuse defined in the mapping. For

example, Fig. 4-6 shows two mappings that lead to different intersection behaviors for

𝑆𝑘𝑖𝑝 𝐵 ← 𝐴 at Buffer. In Mapping 1, since the innermost 𝑘0 loop iterates through

different pairs of A and B values, a specific 𝐵𝑘,𝑛 is only used to compute with a single

𝐴𝑚,𝑘. Thus, the leader tile is a single A value and the follower tile is a single B value

(i.e., if 𝐴𝑚,𝑘 is zero, the access to 𝐵𝑘,𝑛 will be eliminated). In contrast, in Mapping 2,

since the innermost 𝑚0 loop only iterates through different A values, a specific 𝐵𝑘,𝑛

is reused across 𝐴0,𝑘, 𝐴1,𝑘, 𝐴2,𝑘, and 𝐴3,𝑘 (i.e., a column of A). Thus, the leader tile

is 𝐴0:3,𝑘 and the follower tile is a single B value 𝐵𝑘,𝑛 (i.e., if the entire column of A

is empty, the access to 𝐵𝑘,𝑛 will be eliminated). Since it is less likely for the entire

column of A to be empty, under Mapping 2, 𝑆𝑘𝑖𝑝 𝐵 ← 𝐴 eliminates fewer IneffOps

(e.g., columns of A are never empty in Fig. 4-2).

Based on the mapping and the statistical fibertree characterization, the analyzer

defines the behaviors of each gating or skipping SAF, and derives a breakdown of the

original dense traffic for each tile into fine-grained action types (e.g., for each B tile

transferred from Buffer to Compute, there are 50% skipped reads, 50% actual reads,

0% gated reads). Furthermore, when a gating/skipping SAF is applied to upper

storage levels in the architecture, the analyzer propagates the savings introduced to

lower levels (e.g., for the architecture in Fig. 4-2, skipping at Global Buffer reduces

operations happened at both Buffer and Compute).

4.6.5 Traffic Post-processing

As shown in Fig. 4-4, after the analyzers evaluate the impact of their respective SAFs

based on per-tile traffic, sparse modeling performs post-processing to first reflect the

interactions between the SAFs (e.g., how much format overhead is skipped due to a

skipping SAF) and then scale the per-tile breakdowns based on the number of tiles

transferred to derive the final sparse traffic.

60

4.7 Step Three: Micro-architectural Modeling

As the last step in Sparseloop’s three-step evaluation process, micro-architecture mod-

eling first evaluates the validity of the provided mapping. A mapping is valid only

if the largest tiles, which are derived based on statistical tile densities and format

overheads, meet the capacity requirement of their corresponding storage levels. If

the mapping is valid, micro-architecture modeling evaluates the impact of micro-

architecture on generated sparse traffic. The analysis focuses on capturing general

micro-architectural characteristics (e.g., segmented block accesses for storage levels),

instead of the design-specific micro-architectural analysis (e.g., impact of an exact

routing protocol). The fine-grained sparse traffic was generated based on a minimum

access granularity, referred to as block size, of one at the sparse modeling step. How-

ever, for storage levels with block sizes larger than one, storage access segmentation

can happen due to poorly-aligned storage accesses (e.g., 10 reads of a storage unit

with a block size of four result in ⌈10/4⌉ = 3 block accesses, where the last two data

fetched in the last block access are invalid). For compressed tiles, the number of block

accesses is refined based on the statistical model of tile density.

Micro-architectural modeling then evaluates the processing speed and energy con-

sumption. For processing speed, cycles are spent for actual and gated storage accesses

and computes. The model considers available bandwidth at each level in the archi-

tecture to account for bandwidth throttling. For energy consumption, we use an the

Accelergy [108] energy estimation back end to evaluate the cost of each fine-grained

action, which is combined with its corresponding sparse traffic to derive accurate

energy consumption.

4.8 Evaluations

We first introduce our experimental methodology and then demonstrate that Sparseloop is

fast and accurate. Please note that we provide an open-source codebase for the eval-

uations and please refer to Appendix A for more information.

61

4.8.1 Methodology

Sparseloop is implemented in C++ on top of Timeloop[77], an analytical modeling

framework for dense tensor accelerators. Sparseloop reuses Timeloop’s dataflow anal-

ysis, adds the new sparse modeling step, and improves Timeloop’s micro-architectural

analysis to account for the impact of various fine-grained actions introduced by the

SAFs. As a result, Sparseloop allows modeling of both dense and sparse DNN ac-

celerators in one unified infrastructure. We use Accelergy [108, 109] as the energy

estimation back end. Sparseloop is also compatible with Timeloop’s mapspace explo-

ration mechanism, which iterates over the potential mappings in the mapspace and

selects the mapping with the best hardware performance for a specific accelerator de-

sign running a specific workload. Our implementation allows modeling of both dense

and sparse DNN accelerators in one unified infrastructure.

For DNN workloads, Sparseloop performs per-layer evaluations with the appropri-

ate dataflow and SAFs, and aggregates the results to derive the energy/latency for the

full network. This methodology is consistent with state-of-the-art tensor accelerator

modeling frameworks [77, 47, 60, 67]. Experimental results in the next sections are

all evaluated on an Intel Xeon Gold 6252 CPU.

4.8.2 Modeling Speed

Fast modeling speed allows designers to quickly explore each design’s large mapspace

as well as various designs. We evaluate Sparseloop’s modeling speed with the metric

computes simulated per host cycle (CPHC), which refers to the number of accelerator

computes simulated for each cycle in the host machine that runs the modeling frame-

work. CPHC carries similar information as MIPS (million instructions per second),

a popular metric for evaluating simulators for conventional processors.

Detailed cycle-level simulators often have CPHCs that are lower than 1. For

example, STONNE [65] has CHPCs that are less than 0.5 when running popular DNN

layers with various architecture configurations (e.g., the number of rows and columns

in the compute array). The main reasons include: i) instead of statistical analysis,

62

Accelerator Designs
Workloads

ResNet50 BERT-base VGG16 AlexNet

Eyeriss 5.2k 13.3k 53.8k 21.4k
Eyeriss V2 PE 2.7k 12.5k 20.4k 13.2k

SCNN 1.1k 4.3k 3.7k 5.2k

Table 4.2: Computes simulated per host cycle (CPHC) for designs modeled by
Sparseloop. Compared to cycle-level tensor accelerator simulator STONNE [65],
which has less than 0.5 CPHC, Sparseloop is over 2000× faster.

cycle-level simulators iterate through actual data to perform all computations, which

take significant time for large workloads with millions of computations such as DNNs;

ii) detailed control logic needs to be simulated for every cycle and all the components

(e.g., memory interface protocols, exact intersection checks).

Sparseloop achieves much higher CPHCs with its analytical modeling approach

since Sparseloop avoids performing analysis on all computations by performing sta-

tistical analysis on transient and steady state design behaviors only; and does not

simulate detailed cycle-level control logic. Table 4.2 shows Sparseloop’s CPHCs for ex-

ample DNN accelerators [15, 17, 78] running representative workloads [36, 27, 88, 58].

The CPHCs are dependent on accelerator architecture characteristics (e.g., SAFs com-

plexity, number of levels, etc.), employed dataflow, and DNN workload characteristics

(e.g., sparsity, tensor shapes, number of layers, etc.). For example, compared to Ey-

eriss V2 and SCNN, Eyeriss’ less powerful SAF support (more details in Table 3.2)

always introduces lower SAF modeling complexity and thus shorter modeling time,

leading to a higher CPHC. Overall, Sparseloop is over 2000× faster compared to

STONNE [65].

4.8.3 Validation

High modeling accuracy, in terms of both absolute values and relative trends, allows

designers to correctly analyze design trade-offs at an early stage. To demonstrate

Sparseloop’s accuracy, we validate on five well-known accelerator designs: SCNN [78],

Eyeriss [15], Eyeriss V2 [17], and dual-side sparse tensor core (DSTC) [107], and

63

Accelerator

Design

Baseline Model Average

Accuracy
Major Sources of Error

Source Type
Sparsity
Pattern

Output

SCNN Simulators obtained
from authors [78, 17]

Design-specific
Analytical

Statistical Runtime activities 99.9% None
Eyeriss V2 PE

Actual

Processing latency >98% Statistical approximations

Eyeriss
Results directly

from paper
or technical report

[15, 107, 73]

Real hardware
Compression rate
Energy savings

>95%
(1) Statistical approximations
(2) Approximated component
energy characterizations

DSTC

Cycle-level simulator
validated on
silicon [55]

Processing latency 92.4%
(1) Statistical approximations;
(2) Optimistic modeling
of microarchitectural details

STC Real hardware Processing latency 100%
None
(structured sparsity introduces
deterministic behaviors)

Table 4.3: High-level summary of performed validations based on available data from
existing work. Overall, Sparseloop achieves 0.1% to 8% average error across different
accelerator designs.

Sparse Tensor Core (STC) [73]. Overall, Sparseloop maintains relative trends

and achieves 0.1% to 8% average error. Based on available information from

existing work, validations are performed on baseline models that capture an increas-

ing amount of design details: from analytical models based on statistical sparsity

patterns to cycle-level models/real hardware designs based on actual sparsity pat-

terns. At a high-level, common sources of error include: 1) statistical approximation

of actual data; 2) approximated component characteristics; and 3) approximated im-

pact of design-specific micro-architectural implementations. Table 4.3 summarizes

the validations.

In the next sections, we present more detailed validation discussions. In order

to validate our work against prior works, we need to use the workloads reported in

those works, despite the reported workloads being old (though popular at the time

of the work’s publication) or different across designs. This is mainly due to the fact

that other workloads are either not available in the reported results or not directly

supported by the available simulators.

SCNN

We first validate Sparseloop on SCNN [78] with a customized simulator that was

used in the paper: it performs analytical modeling based on statistically character-

64

Figure 4-7: Runtime activity validation for SCNN [78]. Achieves less than 1% error
for all components.

ized data. SCNN baseline assumes uniform distribution and captures the runtime

activities of the components in the architecture (e.g., the number of reads and writes

to various storage levels). Fig. 4-7 shows the error rate of the runtime activities

for each component in the architecture. Sparseloop, running with a uniform density

model, is able to capture all runtime activities accurately with less than 1% error for

all components in the architecture.

Eyeriss V2

Since Eyeriss V2’s SAFs are implemented in its processing element (PE), we focus

on validating the PE based on a baseline model that performs actual sparsity pattern

based analytical modeling. To quantitatively demonstrate the sources of error, we

validate Sparseloop with both an actual-data density model and a uniform density

model.

Fig. 4-8 shows the validation on the number of cycle counts. In terms of total cycle

counts for processing the entire MobileNet [46], Sparseloop achieves more than 99%

accuracy and is able to capture the relative trends across different layers with both

density models. However, for layers with both sparse operands compressed, modeling

based on a uniform density model results in up to 7% error for layer27. Fig. 4-8

65

Figure 4-8: Processing latency validation for Eyeriss V2 processing element [17] run-
ning MobileNet [46]. Among all the layers, we only show total cycle counts for layers
with more than 1% error.

shows the layers with more than 1% error. The errors are mainly attributed to the

statistical approximation of the expected nonempty intersection ratio between two

sparse tensors, as the exact nonempty ratio deviates from case to case (e.g., when

both operands have identical nonzero value locations, the intersection nonempty ratio

is equal to the tensor densities). With an actual-data density model, Sparseloop ac-

counts for the exact intersections, and thus accurately captures the cycle counts (at

the cost of a slower modeling speed).

Dual-Side Sparse Tensor Core

For DSTC, the baselines are also obtained directly from the papers whose reported

results are based on a cycle-level simulator that is validated on real hardware [55].

We validate on the normalized processing latency running matrix multiplication work-

loads with various operand tensor density degrees, as shown in Fig. 4-9. We mod-

eled the tensors with a uniform density model, captured the performance trends

across density degrees, and obtained an average error of less than 8%. In addition

66

Figure 4-9: Processing latency of dual-side sparse tensor core [107] running matrix
multiplication workloads with various operand tensor densities, normalized to dense
processing latency. Average error is 7.6%.

to errors introduced by deviations from the expected nonempty intersection ratio,

Sparseloop also performs optimistic modeling of micro-architectural details. Specifi-

cally, Sparseloop assumes no storage bank conflicts but DSTC’s baseline results con-

tain bank conflicts when operand tensors are relatively sparse (e.g., 30% density),

thus introducing higher processing latency.

Eyeriss

We validate on Eyeriss [15] with baselines obtained from the paper and based on

taped-out silicon. We first validate DRAM compression rates for AlexNet [58], as

shown in Table 4.4. Overall, we achieve 1% error on average and the discrepancy

could be due to imperfect compression with the actual data. We also validate on the

PE array energy reduction ratio due to on-chip gating. Eyeriss claims that the energy

savings of the processing elements can achieve 45%. Our results show a max energy

efficiency improvement of 43%. The discrepancy could be due to PE components that

were not modeled.

67

Conv1 Conv2 Conv3 Conv4 Conv5

Eyeriss[15] 1.2 1.4 1.7 1.8 1.9
Sparseloop 1.2 1.4 1.7 1.9 1.9

Table 4.4: Eyeriss [15] DRAM compression rate validation.

Sparse Tensor Core

Finally, we validate the Ampere GPU’s sparse tensor core accelerator (STC) based on

publicly available architecture descriptions [21, 91, 73]. STC focuses on accelerating

structured sparse workloads with a 2:4 sparsity structure, which demands at most

two nonzero values in every block of four values. Fig. 4-10 shows the high-level

STC architecture and an example processing flow of a 2:4 structured sparse matrix

multiplication workload (algorithm defined in Fig. 4-2). We will discuss more details

about STC in Section 4.9.1.

To validate STC, we use the fixed structured density model parameterized with

the 2:4 structure along each channel to model the structured sparse weight tensor.

Existing work reports that STC achieves 2× speedup compared to dense process-

ing [73, 21, 91]. Because of the fully defined behaviors with the structured sparsity,

Sparseloop also produces an exact 2× speedup (STC design in Fig. 4-11), achieving

100% accuracy.

4.9 Case Studies

In this section, we demonstrate Sparseloop’s flexibility with two case studies. Similary,

more information about the open-source code base can be found in Appendix A.

4.9.1 Investigating Next Generation Sparse Tensor Core

In recent years, various techniques have been proposed to add sparsity support to ten-

sor core (TC). In this case study, we use Sparseloop to first compare two variations:

the commercialized NVIDIA STC [73] and a research-based proposal DSTC [107].

68

Figure 4-10: Modeled sparse tensor core architecture (including the SMEM in stream-
ing processor for a more holistic view) and example processing of a 2:4 structured
workload.

Based on the comparison, we then discuss the potential opportunities for next-

generation STC, and showcase an example design flow that uses Sparseloop to identify

current STC design’s limitations and explore various solutions to such limitations to

unlock more potential.

DSTC vs. NVIDIA STC

We perform an apples-to-apples comparison of the two designs. Since both designs are

TC-based, both architectures contain the SMEM-RF-Compute hierarchy as shown in

Fig. 4-10, and are controlled on allocated hardware resources, including compute, stor-

age capacity, and memory bandwidth. To model realistic systems, we only provision

a subset of a real GPU’s SMEM bandwidth to the accelerators, since other processes

running on the GPU share the same SMEM storage. At a high-level, DSTC employs

complex sparsity support and a special outer product dataflow to exploit arbitrary

sparsity in both operands to perform compression and skipping. In contrast,

STC ignores input sparsity and uses low-overhead sparsity support to compress and

69

perform skipping on weights with 2:4 structured sparsity only.

Fig. 4-11 compares the cycles spent and energy consumed by DSTC and STC

running ResNet50 [36] pruned to various sparsity degrees. ResNet50 contains sparse

weights (if pruned) and sparse inputs. Compared to STC, DSTC’s dataflow for sup-

porting arbitrary sparsity incurs a significant amount of data movement. As a re-

sult, when processing denser workloads (e.g., unpruned ResNet50 in this example or

BERT-like networks with dense input activations), even if DSTC is able to always

introduce lower cycles counts, the savings brought by SAFs cannot compensate for

the additional energy spent and thus the overall hardware efficiency is low. However,

STC provides very limited support for different workloads. Furthermore, for sparser

workloads (e.g., 25% dense ResNet50 in Fig. 4-11(a)), despite DSTC’s overhead, it’s

able to achieve a much higher overall efficiency because of the speedup introduced by

a significant amount of skipping.

Takeaway: STC and DSTC have different limitations, and neither is always

able to provide the better efficiency across workloads with different density

degrees.

Opportunities for STC

Only supporting 2:4 sparsity in the current STC design leads to missed opportuni-

ties, as many modern DNNs can be pruned to >50% sparsity (structured [126] or

unstructured [34]) while maintaining reasonable accuracy. Thus, one possible feature

for a next generation STC to have is to efficiently exploit the savings brought by

more sparsity degrees but still keep the sparsity structured to reduce SAF overhead.

Based on such observations, We will discuss some simple extensions to STC in the

next sections, and a more involved design in Chapter 6.

Naive STC Extension To Support More Ratios

In order to extend the existing STC to support more sparsity degrees, we first intro-

duce the existing high-level processing of STC running matrix multiplication work-

loads (algorithm defined in Fig. 4-2) with the default 2:4 structured sparsity. In the

70

Figure 4-11: Sparseloop’s analysis on the normalized total cycles spent and energy-
delay product for various designs of tensor core accelerator running representative
ResNet50 [36] layers pruned to various sparsity degrees. The accelerators are con-
trolled to have similar amount of hardware resources.

case of a DNN, tensor A in Fig. 4-2 corresponds to the structured sparse weights in

Fig. 4-10.

As shown in Fig. 4-10, the weight tensor is compressed with an offset-based coor-

dinate payload format, where each nonzero carries an offset coordinate to indicate its

position in the block of four values (e.g., the nonzero weight g is the third element

in its block, and thus carries a metadata of 2). This format matches our CP format

in earlier sections. The compressed weight tensor and the uncompressed input tensor

are stored in SMEM. For each iteration of processing, the weights, weight metadata,

and dense inputs are fetched out. However, since inputs are uncompressed, as shown

in Fig. 4-10, a tile with four weights corresponds to a tile with eight inputs. Thus, to

71

ensure correctness, a 4:2 selection needs to be performed on the inputs for each block

of four weights. Since only nonzero weights need to be processed, the 2:4 processing

is 2× faster than dense processing.

Thus, naively supporting more sparsity degrees in STC simply involves extending

the above-discussed sparsity support with input activation selection logic for more

ratios (e.g., 2:6 and 2:8). We name this naive extension as STC-flexible. As shown

in Fig. 4-11, Sparseloop’s modeling indicates that STC-flexible does support and in-

troduce extra energy reductions for lower density workloads. However, no desirable

speedup is obtained with the higher sparsity (e.g., theoretically, 2:6 structured spar-

sity should introduce 3× speedup).

Takeaway: Surprisingly, Sparseloop’s modeling shows that the naively ex-

tending the STC design to support more sparsity ratios does not lead to

theoretically achievable speedup.

Identify Design Limitations

STC-flexible’s approach does not improve performance due to SMEM bandwidth

limitation. Fig. 4-12 shows Sparseloop’s analysis on the required bandwidth for pro-

cessing workloads with various sparsity ratios. To ensure full utilization of the tensor

core, the same number of nonzero weights needs to be processed spatially regardless

of the workload sparsity (i.e., we always need 1× weights as shown in Fig. 4-12). As

discussed above, STC stores inputs in uncompressed format. Thus, the sparser the

weight tensor, the more inputs need to be fetched in a cycle (e.g., in Fig. 4-12, 4×

inputs need to be fetched for workloads with 2:8 sparse weights). In addition to the

bandwidth pressure imposed by inputs, the metadata also needs to be described with

more bits as the block size gets larger. The amount of additional metadata overhead

is dependent on the chosen representation format (e.g., run length encoding (RLE)

requires fewer bits than offset-based CP for 2:6 sparse workloads).

Takeaway: Sparseloop identifies the design’s performance is bottlenecked

by its limited bandwidth.

72

Figure 4-12: Sparseloop’s analysis on bandwidth requirements for getting ideal
speedup for various operands and associated metadata (if any).

Explore Solutions to Overcome Limitations

With Sparseloop, we can perform early design stage exploration on potential solutions.

Without loss of generality and for the ease of presentation, we discuss two example

directions with low-hanging fruit: 1) improve representation format support to reduce

metadata overhead; 2) introduce additional compression SAFs for inputs.

First, we evaluate if a different representation (compression) format can alleviate

the overhead introduced by metadata, especially for 2:6 structured sparsity. Thus, as

shown in Fig. 4-11, we enabled RLE support for STC-flexible to form STC-flexible-

rle. At a high-level, compared to the STC’s original CP support, RLE support

does provide similar or better processing speed. However, since the majority of the

overhead comes from transferring actual data, the benefits are too insignificant to

bring STC-flexible-rle over DSTC.

We then target the more important bottleneck: the uncompressed input data

traffic. To solve the problem, we added bitmask-based compression to input such

that both operands are compressed to form STC-flexible-rle-dualCompress design in

Fig. 4-11. To keep the compute easily synced, we did not add input-based skipping.

As a result, all of the obtained speedups come from bandwidth requirement reduction.

As shown in Fig. 4-11, STC-flexible-rle-dualCompress can actually introduce similar

speed even if it cannot exploit input sparsity for skipping. This is because even if

DSTC exploits both operands for speedup, its dataflow has more frequent streaming

of operands, introducing additional pressure to SMEM bandwidth as well. Overall,

as shown in Fig. 4-11, we derived STC-flexible-rle-dualCompress that, compared to

73

DSTC, always introduces lower energy consumption and has a similar processing

speed most of the time for the studied sparsity degrees.

Takeaway: Sparseloop identifies that bandwidth limitations can be allevi-

ated by applying compressed format SAF to both operands in the work-

load.

4.9.2 Co-design of Dataflow, SAFs and Sparsity

Looking beyond the deep learning workloads and tensor core accelerators discussed

in the previous case study, this section demonstrates how Sparseloop can be used

to study other matrix-matrix multiplication accelerator designs for general sparse

tensor algebra workloads. Specifically, we model workloads with more diverse sparsity

degrees and matrix-matrix multiplication accelerator designs that employ various

dataflows and SAFs. With a set of small-scale experiments, we show various broad

insights for designing sparse tensor accelerators for different applications: (1) the best

design for one application domain might not be the best for another; (2) combining

more energy or latency saving features together does not always make the design

more efficient. Thus, careful co-design of dataflow, SAFs and sparsity is necessary for

achieving desired latency/energy savings.

Design Choices

Workloads: We use matrix multiplication with sparse input tensors (spMspM) of

various density degrees as example workloads. spMspM, represented as 𝑍𝑚,𝑛 = 𝐴𝑚,𝑘×

𝐵𝑘,𝑛 as an Einsum, is an important kernel in many popular applications, such as

scientific simulations, graph algorithms and DNNs, each of which can have different

tensor density degrees.

Dataflows: Given a hardware budget of 256 compute units and 128KB on-chip

storage, we consider two choices shown in Table 4.5(a): (1) ReuseABZ that reuses all

tensors on-chip; (2) ReuseAZ that doesn’t have on-chip reuse for B.

SAFs: As shown in Table 4.5(b), we consider two sets of SAFs choices: (1) Innermost-

74

(a)

Dataflow Choices
Tensor Reuse

A B Z

ReuseABZ Innermost storage Shared buffer Innermost storage

ReuseAZ Innermost storage None Innermost storage

(b)

SAFs Choices
Operand Intersection

Off-chip On-chip

InnermostSkip None 𝑆𝑘𝑖𝑝𝐵 ↔ 𝐴

HierarchicalSkip 𝑆𝑘𝑖𝑝𝐵 ↔ 𝐴 𝑆𝑘𝑖𝑝𝐵 ↔ 𝐴

Table 4.5: Choices for different design aspects: (a) dataflows (b) SAFs (representation
formats and other minor SAFs are identical and thus are not shown for simplicity)

Skip that performs 𝑆𝑘𝑖𝑝𝐵 ↔ 𝐴 at the innermost on-chip storage (2) HierarchicalSkip

that hierarchically performs 𝑆𝑘𝑖𝑝𝐵 ↔ 𝐴 at DRAM and innermost storage to reduce

both off-chip and on-chip data movement.

Interactions Among Design Choices

Fig. 4-13 compares the energy-delay-product (EDP) of different dataflow-SAF com-

binations running spMspM with various A tensor density degrees. At each density

degree, the EDPs are normalized to ReuseABZ.InnermostSkip’s EDP.

We first make the observation that the best design for one application domain

might not be the best for another. For example, while ReuseABZ.InnermostSkip is

the best design for DNN workloads (i.e., A density >6%); for sparser workloads,

such as scientific simulations or graph algorithm, this design is sub-optimal due to its

large off-chip bandwidth requirement. On the other hand, ReuseAZ.HierarchicalSkip

performs the best with very sparse workloads (e.g., with less than 1% density) since

this design performs early off-chip traffic eliminations, but it fails to reduce EDP with

DNN workloads due to its inability to perform effective off-chip intersections on denser

75

Figure 4-13: Normalized energy-delay product of different combinations of dataflow-
SAFs running matrix multiplications with various density degrees, which are labeled
with relevant example workloads. Sparseloop shows (1) dataflow and SAFs should
be co-designed to ensure potential savings; (2) the correct combination needs to be
chosen for different applications to realize the potential savings.

operands and its lack of on-chip B reuse. Thus, a design’s dataflow-SAFs combinations

need to be chosen based on the target application’s sparsity characteristics to realize

potential savings.

We also show that combining more energy or latency saving features together does

not always make the design more efficient. For example, ReuseABZ.HierarchicalSkip

combines a dataflow that reuses all tensors with SAFs that skip both off-chip and

on-chip traffic to form a design with the most number of latency/energy savings

features. However, as shown in Fig. 4-13, ReuseABZ.HierarchicalSkip is never the

best design in terms of EDP. This is because the ReuseABZ dataflow prevents the

off-chip skipping SAF from eliminating B’s off-chip data movement. Specifically,

since ReuseABZ reuses each on-chip B tile for multiple A tiles, B tile transfers can

be eliminated by the off-chip skipping SAF only when all values in its corresponding

A tiles are zeros, which rarely happens.

76

Takeaway: Dataflow and SAFs need to be carefully co-designed to ensure

there exist opportunities for reasonable savings.

4.10 Related Work

There is ample prior work in modeling frameworks for tensor accelerator designs.

These models can be classified into two classes: cycle-level models and analytical

models.

4.10.1 Cycle-level models

One of the most popular classes of models is cycle-level models, which evaluate the

detailed per-cycle behaviors of potential designs (e.g., simulating the exact packets

arriving at an NoC router for each cycle). Many of them perform register-transfer-

level (RTL) analysis [103, 121, 70, 82], which include low-level hardware details (e.g.,

pipeline stages, storage interface protocols). The RTL implementations can then be

synthesized to target different platforms (e.g., ASIC, FPGA). There are also models

that perform cycle-level architectural analysis without RTL implementations (e.g.,

STONNE [65] implement cycle-level simulation in C++, which captures much fewer

hardware details).

The detailed simulations performed by such cycle-level models often lead to very

accurate results, making them good candidates for obtaining a deep understanding

of the design’s performance. On the other hand, their fine-grained modeling often

results in long simulation time [53, 12, 77], hindering early-stage design space ex-

ploration among the vast number of designs (e.g., a variety of dataflows to support).

Furthermore, cycle-level models are often not well-parameterized in terms of architec-

ture organizations, employed sparsity-related hardware optimizations, dataflow, etc.

These assumptions often make it hard to employ the existing model to evaluate the

diverse designs in the design space.

77

4.10.2 Analytical models

Unlike cycle-level models, analytical models perform higher-level evaluations without

considering per-cycle processing details of the design. Nonetheless, analytical models

still aim to capture the impactful activities of the components to produce accurate-

enough modeling results. Since these models work on abstracted hardware modules,

they are usually well-parameterized and modularized to support a wider range of

architecture designs. However, as discussed in Sec. 2.3, we find none of the existing

work systematically captures the impact of workload sparsity and various sparsity-

related hardware implementations [77, 109, 47, 85, 60, 54, 124].

4.11 Conclusions

This chapter presents Sparseloop, a fast, flexible, and accurate modeling framework

for sparse DNN accelerators. Based on the observation that the analyses of dataflow,

SAFs, and micro-architecture are orthogonal to each other, we design Sparseloop’s

internal analysis as three decoupled steps to keep its modeling complexity tractable.

To balance modeling accuracy and modeling speed, Sparseloop uses statistical char-

acterizations of tensors. Sparseloop is over 2000× faster than cycle-level simulations,

and models well-known sparse DNN accelerators with accurate relative trends and

0.1% to 8% average error. With case studies, we demonstrate that Sparseloop can be

used in accelerator design flows to help designers to compare and explore various de-

signs, identify performance bottlenecks (e.g., memory bandwidth), and reveal broad

design insights (e.g., co-design of sparsity, SAF and dataflow). Overall, Sparseloop

has become the first analytical modeling tool for sparse DNN accelerators. We expect

Sparseloop to become a popular, extendable tool can greatly facilitate the quantita-

tive understanding of various designs.

78

Chapter 5

Hierarchical Structured Sparsity

Numerous previous sparse DNN accelerator designs have proposed introducing vari-

ous hardware-friendly sparsity patterns into DNNs with the goal to improve hardware

performance while maintaining DNN accuracy. However, the existing sparsity pat-

terns often lead to undesirable flexibility and efficiency trade-offs in hardware (e.g.,

hardware designed for a specific sparsity pattern only efficiently translates one sparsity

degree into hardware savings). In this chapter, we introduce the idea of hierarchical

structured sparsity (HSS) to address such limitations in existing work.

5.1 Precise Sparsity Specification

To clearly compare existing sparsity patterns and distinguish our proposed HSS from

existing work, it is necessary to precisely describe various sparsity patterns. However,

conventional sparsity pattern classification approaches are often based on names that

provide an informal characterization of just the dimensions on which the pattern is

imposed, and thus fail to distinguish between different sparsity pattern proposals [6,

44] (e.g., the term sub-channel is repeatedly used to describe many different patterns

in Table 5.1).

To solve the problem, we propose a precise way of specifying various sparsity

patterns based on the fibertree abstraction [94]. As shown in Table 5.1, our specifica-

tion can easily distinguish between existing sparsity patterns and cleanly reflects the

79

Example

Pattern

Conventional

Classification

Fibertree-based Specification

Rank (<rule>)...

[34] Unstructured CRS(Unconstrained)

[37] (Fig. 5-2(a)) Channel C(Unconstrained)→R→S

[72] Sub-kernel C→RS(G:H), with any G, H

[68] (Fig. 5-2(b)) Sub-channel RS→C1→C0(2:4)

[126] Sub-channel RS→C1→C0(4:16)

[64] Sub-channel RS→C1→C0(G≤8:8)

Example

Two-rank HSS (Fig. 5-3)
Sub-channel

RS→CN-1→
CN-2(3:4)→...→C0(2:4)

Table 5.1: Informal conventional classification and the precise fibertree-based specifi-
cations for example sparsity patterns. For fibertree-based specificatons, ranks without
pruning rules, i.e., N/A rules in the figures, do not have (). Partitioned ranks are
indicated by appending a number to the rank name, e.g., C is split into C1 and C0.
Note that there could be multiple G and H values allowed for each rank.

properties of an example sparsity pattern that belongs to our proposed hierarchical

structured sparsity (HSS).

5.1.1 Fibertree Abstraction

The fibertree abstraction [94] provides a systematic and precise way to express the

sparsity in the tensors, without getting into the complications about how the tensor

is eventually stored in buffers (e.g., compressed or uncompressed). Since the sparsity

specification focuses on understanding the nature of the sparsity rather than how it

can be compressed, we use fibertrees as a basis for our proposed methodology.

For ease of presentation, we use the three-dimensional weight tensor in Fig. 5-1(a)

as an example, which has C channels, R rows, and S columns. Fig. 5-1(b) shows the

fibertree representation of the tensor. The fibertree has three levels, each of which is

referred to as a rank and corresponds to a dimension of the tensor (e.g., the lowest

rank, Rank0, corresponds to dimension S). Each rank contains multiple fibers, each

of which contains a set of coordinates and their associated payloads. For intermediate

80

Figure 5-1: (a) Example dense weight tensor. C : channels, R: kernel height, S : kernel
width. (b) Corresponding fibertree-based abstraction of the tensor. Each dimension
of the tensor corresponds to a level of the tree, referred to as a Rank.

ranks, the payload is a fiber from a lower rank (e.g., the first coordinate in Rank1 has

the first fiber in Rank0 as its payload); for a coordinate in Rank0, the payload is a

simple value (e.g., the first coordinate in Rank0 has the value 𝑎0 as its payload). For

a dense tensor, all of the coordinates exist and all of the payloads are nonempty (as

indicated by the solid brown circles) or nonzero (as indicated by the green squares

with alphabetical labels).

5.1.2 Fibertree-based Sparsity Specification

With the fibertree fundamentals presented, we now discuss how to use such an ab-

straction to describe sparsity in a tensor. Sparsity is introduced via pruning away

the coordinates in the dense fibertree. At a high level, to define a specific sparsity

pattern, a rank order needs to be specified and each rank is assigned a pruning rule.

The rule specifies if the coordinates in each of its fibers can be pruned away; if so,

whether there is a pattern that the per-fiber pruning should follow.

Coordinates in arbitrary ranks can be pruned away. Pruning a coordinate at the

lowest rank simply removes values, whereas pruning a coordinate at intermediate

ranks removes its fiber payload (i.e., the entire subtree associated with each coor-

81

dinate), implicitly pruning away all the associated lower-level coordinates. Because

of this chained effect, the introduced sparsity is conventionally known as structured

sparsity. Structured sparsity can have structures at different granularities, which are

impacted by the rank at which the pruning rules are defined.

(a) 𝐶(𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑)→ 𝑅→ 𝑆 (channel-based structured [38])

(b) 𝐶𝑅𝑆(𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑) (unstructured) [34]

(c) 𝑅𝑆 → 𝐶1 → 𝐶0(2 : 4) (2:4 structured [68]

Figure 5-2: Fibertree-based representation of popular sparsity patterns applied to the
tensor in Fig. 5-1(a)

82

For example, Fig. 5-2(a) shows the fibertree-based specification of the conven-

tionally known channel-based structured sparsity, which demands arbitrary channels

to be completely removed. The fibertree-based representation specifies the uncon-

strained pruning rule at the top rank C, as each removed coordinate corresponds to a

removed channel, which is indicated by the empty circles. We specify such a structure

as C(unconstrained)→R→S as shown in Table 5.1 and Fig. 5-2(a). The → defines

the higher to lower rank order, and ranks with pruning rules carry (<rule>). The

removal of the highest-rank coordinates results in all zeros in the corresponding chan-

nels. Since the removal of lower ranks is always implicit, the R and S lower ranks are

not associated with any explicit pruning rules and are thus not followed by (<rule>)

in the specification.

Furthermore, a sparsity pattern specification may involve altering the ranks in

the original tensor tree. To illustrate the idea, Fig. 5-2b shows the fibertree-based

specification of the conventional unstructured sparsity, which allows any coordinates

associated with actual values to be pruned away. Since the unstructured sparsity

pattern does not require any specific rank order, as shown in Fig. 5-2b, all the ranks

are flattened into a single CRS rank, which is specified with pruning that allows

unstructured removal of coordinates and thus turning the associated leaves into zero1.

This representation is specified as CRS(unconstrained) as shown in Table 5.1 and

Fig. 5-2(b).

A sparsity pattern specification can also involve partitioning the ranks for a con-

ventionally known sub-channel-based 2:4 structured sparsity [73]. Fig. 5-2(c) shows

the popular 2:4 structured sparsity that’s supported by NVIDIA sparse tensor core.

The original ranks are first reordered to have C as the lower rank. The R and S

ranks are flattened together into one RS rank, and the C rank is then partitioned

into two ranks, C1 and C0. The G:H-style sparsity structure is manifest by allowing

at most 2 non-zero values in each fiber of the C0 rank, which due to the partitioning

have exactly four coordinates. For a specific fiber, we refer to the total number of

1When being processed on the hardware, the flattened rank can be re-partitioned (or tiled) to
meet specific processing schedule supported by the acceelrator.

83

coordinates as its shape and the number of coordinates associated with nonzeros as

its occupancy. Thus, the fiber shape in C0 rank is defined by the denominator of

the fraction (i.e., H in C0(G:H) structured sparsity), and the max fiber occupancy is

defined by the numerator in the fraction. This sparsity pattern is thus specified as

RS→C1→C0(2:4).

As described in Table 5.1, our proposed fibertree-based specification allows pre-

cise descriptions of many existing work that were not easily distinguishable from

conventional sparsity pattern classification techniques.

5.2 Hierarchical Structured Sparsity

With the fibertree-based sparsity specifications, it is clear that existing work in Ta-

ble 5.1 all propose to apply different sparsity patterns to one rank. A natural ap-

proach to enhance such work to represent more sparsity degrees would be to introduce

sparsity patterns to multiple ranks, motivating the concept of hierarchical structured

sparsity (HSS).

5.2.1 General Concept

HSS allows multiple ranks, where each rank can its own sparsity pattern(s). Such a

hierarchy of sparsity patterns could lead to structured sparsity with more sparsity

degrees than only one rank with a very flexible sparsity pattern.

Since HSS allows more than one rank to be assigned with sparsity patterns, we

introduce the parameter N which describes the number of ranks with sparsity patterns

assigned. For each rank n where 0≤n≤N-1 and N≥1, a G:H pattern is assigned. G:H

ratios can be different for different ranks. We call an instance of HSS that contains

N ranks with sparsity patterns assigned an N-rank HSS2.

2Note that the associated fibertree can have more than N ranks.

84

Figure 5-3: Fibertree-based specification for an example two-rank HSS, whose sparsity
pattern can be described as RS→C2→C1(3:4)→C0(2:4). Please note that, for general
HSS patterns, the choices of rank ordering, flattening, and splitting are not limited
to the ones shown in the example.

Fibertree-based Specification

To more concretely illustrate the idea of HSS, we will refer to the fibertree-based

specification of an example two-rank HSS pattern for the rest of this section. However,

for general HSS patterns, the choices of rank ordering, flattening, and splitting are

not limited to the ones shown in the example.

As shown in Fig. 5-3, the example HSS pattern orders the ranks in R, S, C fashion,

similar to the one in Fig. 5-2(b). Unlike in Fig. 5-2(b), where the original C rank is

partitioned into two ranks, the example HSS pattern partitions the original C rank

into three ranks C2, C1, and C0, and assigns 3:4 and 2:4 to the lowest two ranks

C1, and C0, respectively. Such an example two-rank HSS pattern can be described

as RS→C2→C1(3:4)→C0(2:4). As shown in Table 5-2, the specification has more

than one rank with pruning rules assigned, resulting in qualitatively different sparsity

patterns compared to existing works. In fact, many existing sparsity patterns [68,

126, 64] are all degenerate instances of HSS, i.e., one-rank HSS.

Sparsity Degrees

Different ranks in a multi-rank HSS have sparsity structures with different granularity.

For example, in Fig. 5-3, the lowest C0 rank’s 2:4 structure is based on a single-

85

value granularity. Whereas the higher C1 rank’s 3:4 structure is based on a larger

granularity that’s the shape of the lower fiber. Thus, the 3:4 ratio describes whether

a fiber payload of each coordinate must contain all zeros or can contain nonzeros.

The overall sparsity degree of an HSS tensor can be derived from its sparsity

structures at each rank. For example, the two-rank HSS RS→C2→C1(3:4)→C0(2:4)

in Fig. 5-3 has a sparsity of 1− 3
4
× 2

4
= 0.625. In general, the overall sparsity degree

can be expressed as 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
∏︀𝑁−1

𝑛=0
𝐺𝑛

𝐻𝑛
, where Gn:Hn is the ratio assigned to

rank 𝑛. Thus, by assigning a different number of ranks and different G:H ratios at

each rank, HSS allows a flexible and systematic expression of various overall sparsity

degrees.

Note: for ease of presentation, we will succinctly specify all sparsity

patterns with only the ranks that have sparsity patterns assigned (e.g.,

RS→C1→C0(2:4) is simplified to C0(2:4)).

5.2.2 DNN Sparsification with HSS

Similar to all existing DNN sparsity patterns, HSS patterns can be introduced into

DNNs to produce sparse DNN models. The goal for HSS-based sparsification is to

ensure the most important nonzero values are preserved as much as possible.

To achieve the goal, we sparsify a dense tensor rank-by-rank in a lower-to-higher

fashion. For example, for a C1(3:4)→C0(2:4) HSS, we first apply the rank C0’s 2:4

pattern and then rank C1’s 3:4 pattern. For the lowest rank, we sparsify the values

with the smallest magnitude. For an intermediate rank, we prune coordinates whose

fiber payload has the smallest scaled L2 norm, defined as the average magnitude of

all values in the payload. Depending on the per-rank sparsity patterns, the flexibility

of HSS allows us to obtain sparse models with diverse sparsity degrees.

Since the introduced sparsity pattern is orthogonal to the pruning algorithm choice

(e.g., pruning on trained dense model [68], pruning from scratch [125], pruning with

value revival [63], etc.), it is the algorithm designer’s freedom to decide whether the

ranks are sparsified at once or gradually sparsified over the process. As we will show

in Sec. 6.4, even with a traditional pruning algorithm, DNN with HSS patterns can

86

maintain reasonable accuracy.

5.3 Conclusions

In this chapter, we propose a novel DNN sparsity pattern, hierarchical structured

sparsity (HSS), with the insight that we can systematically represent diverse spar-

sity degrees by hierarchically composing simple sparsity patterns. In addition, since

simple sparsity patterns can be easily translated into hardware savings with low-

overhead hardware implementations, the modularity of HSS enables efficient sparse

DNN accelerator designs.

87

88

Chapter 6

HighLight Accelerator

Modern deep neural networks (DNNs) can have weights and activation that are some-

times dense and sometimes sparse with various sparsity degrees (i.e., discrete values

of sparsity). This phenomenon is a result of complex interactions among various DNN

optimization techniques in a large DNN model design space. For example, activations

can be dense or sparse based on the choice of activation functions (e.g., ReLU [1] in-

troduces sparse activations, whereas Mish [69] can result in much denser activations).

Similarly, weights can be dense or sparse depending on how over-parameterized the

model architecture is (e.g., large models, such as ResNet50 [36], can sometimes be

pruned to 80% sparsity while still maintaining accuracy, but compact models, such

as EfficientNet [96], often requires dense weights to ensure accuracy).

As a result, we need a DNN accelerator that can translate any sparsity into effi-

ciency, resulting in a good accuracy-efficiency trade-off. Specifically, the accelerator

should be:

• Efficient : incurs low latency, energy, and area overhead cost, referred to as

having low sparsity tax, to implement the sparsity-related acceleration features.

The sparsity tax can come from extra control logic, lack of data reuse, etc.

• Flexible : supports diverse sparsity degrees (including dense). "Support" refers

to two capabilities: (i) process the DNN to produce functionally correct results;

(ii) translate weight and activation sparsity into reductions in energy and/or

89

latency.

Specifically, the accelerator has two goals: (i) for medium/high-sparsity DNNs, elim-

inate ineffectual operations (i.e., compute and data movement involving zeros) [39]

to introduce energy and/or latency savings; (ii) for low-sparsity DNNs, have similar

energy efficiency and latency as a purely dense accelerator (i.e., have a low sparsity

tax).

In this chapter, we will discuss our proposed HighLight accelerator1, which allows

simultaneously efficient and flexible processing of DNN workloads.

6.1 Motivation

6.1.1 Opportunities and Challenges

The zero values in sparse DNNs can introduce a significant number of ineffectual

computations, whose results can be easily derived by applying the simple algebraic

equalities of 𝑋 × 0 = 0 and 𝑋 + 0 = 𝑋, without reading all the operands or doing

the computations [39, 113]. Thus, ineffectual computations introduce promising op-

portunities for the accelerators to eliminate unnecessary hardware operations (i.e.,

buffer accesses and arithmetic calculations) to improve efficiency.

However, to translate such opportunities into hardware savings, the accelerator

faces the challenge of providing hardware support to identify when both operands

are non-zeros and evenly distribute them to parallel hardware components, referred

to as workload balancing. Workload balancing is important to ensure high utilization

of the available resources, thus allowing desired speedup. Often, the sparsity tax

associated with such hardware support is highly related to the sparsity patterns that

the accelerator aims to exploit.

90

Categories Repr. Designs Sparsity Tax Sparsity Degree Diversity

Dense TC [74] N/A N/A

Structured Sparse
STC [73] Very Low Low

S2TA [64] Medium Medium

Unstructured Sparse DSTC [107] High Very High

HSS Our Work Low High

Table 6.1: Comparison of designs from different DNN accelerator design categories.
HSS stands for hierarchical structured sparsity. An ideal design should have a low
sparsity tax to achieve high efficiency and a very high number of supported sparsity
degrees to achieve high flexibility.

6.1.2 Limitations of Existing Accelerators

Many sparse DNN accelerators [107, 78, 17, 15, 33, 24, 73, 64, 53, 126, 39, 76, 122, 81]

have been proposed to exploit ineffectual computations to reduce data movement and

compute for different sparsity patterns. At a high level, we can classify them into

unstructured sparse accelerators and structured sparse accelerators. In the following

sections, we discuss their limitations both qualitatively and quantitatively.

Unstructured Sparse Accelerators

Unstructured sparse accelerators have high flexibility to exploit arbitrarily distributed

zeros with any sparsity degree in a wide range. However, the hardware support for

unstructured sparsity introduces a high sparsity tax since it cannot make any assump-

tions about the locations of nonzero values when trying to identify and distribute

the effectual computations. Existing unstructured sparse accelerators either pay for

expensive intersections to identify the effectual computations (e.g., SparTen [33] em-

ploys a prefix sum logic that occupies 55% of its processing element area), or employ

dataflows that identify effectual computations without intersections but require large,

and thus expensive, accumulation buffers to hold the now randomly distributed out-

put (e.g., the costly dataflow employed by DSTC [107]). Furthermore, the number of

effectual computations varies significantly across sub-tensors within the workload and

1Named HighLight because it has two levels of gh structured sparsity.

91

across workloads, these accelerators can often only ensure perfect workload balance

for a limited set of sparsity (e.g., DSTC [107] only ensures perfect workload balancing

among columns of compute units when a sub-tensor’s occupancy is a multiple of 32).

Takeaway: unstructured sparse accelerators often support diverse sparsity

degrees with high sparsity tax.

Structured Sparse Accelerators

Structured sparse accelerators target DNNs with structured sparsity, which refers to

distributions of zeros with spatial constraints and is often introduced via structured

pruning [37, 68, 72, 64]. Structured sparsity can have different spatial constraints

for nonzero value locations. For example, one of the most popular structured spar-

sity patterns is the G:H sparsity pattern, which mandates (at most) G elements to be

nonzero within a block of H elements, and thus results in a density of G/H. For exam-

ple, NVIDIA Sparse Tensor Core (STC) [73] employs a 2:4 pattern, which sparsifies

two elements in every block of four elements [68], resulting in 50% sparsity2.

The predetermined constraints for nonzero value locations in structured sparsity

make it much easier for hardware to identify the locations of the nonzeros and evenly

distribute them to parallel hardware components (e.g., for G:H sparsity, the hardware

can evenly assign G nonzeros to G compute units to balance the workload). As a

result, accelerating a specific pattern is often efficient with a very low sparsity tax.

However, existing structured sparse tensor accelerators often only accelerate a very

limited set of sparsity patterns (i.e., a few sparsity degrees). For example, STC [73] is

only able to exploit the 2:4 pattern, whereas S2TA [64] exploits a few 𝐺 : 8 patterns

with design-specific constraints. For example, G has to be ≤ 4 for one of the operands

(i.e., weights or activations).

Takeaway: structured sparse accelerators often incur low sparsity tax but

only support a few sparsity degrees.

2STC allows more than two zeros for each block of four values, but its compression encoding only
allows 50% sparsity to be exploited.

92

Figure 6-1: Normalized energy-delay product (EDP) of accelerators running two types
of DNNs, pruned Transformer-Big [102] and pruned ResNet50 [36]. While ensur-
ing similar accuracy (within 0.5% difference), the DNNs were structured pruned for
STC [73] and HighLight (our work) and unstructured pruned for DSTC. For both
models, HighLight achieves the lowest EDP while ensuring similar accuracy.

Quantitative Comparison

To concretely demonstrate the limitations of each class of accelerators, without loss

of generalizability, we quantitatively compare representative designs allocated with

similar hardware resources: (i) DSTC-like [107]: targets unstructured sparse DNNs

with a high sparsity tax introduced by its costly dataflow; (ii) STC-like [73]: targets

DNNs with weights that are dense or 2:4 sparse, introducing low sparsity tax.

To compare the designs, we normalize their energy-delay-product (EDP) to a

dense accelerator, TC-like [74]. In particular, we evaluate their EDP running two

different DNN architectures, Transformer-Big [102] and ResNet50 [36]. For each DNN

architecture, while ensuring similar accuracy (which we define as <0.5% difference),

TC-like runs the dense version of the model, STC-like runs a structured pruned

version, and DSTC-like runs an unstructured pruned version. Fig. 6-1 shows the

EDP of the three designs running different DNNs.

Inflexibility of Structured Sparse Designs: As shown in Fig. 6-1, STC-like

93

is outperformed by DSTC-like when running ResNet50. This is because STC-like

is designed to only allow a maximum of 2× speedup with the 2:4 sparsity pattern.

Furthermore, even if ResNet50 has ∼60% sparse activations, STC-like cannot exploit

activation sparsity for speedup. On the other hand, DSTC-like is able to translate the

sparsity in both weights and activations into reductions in both processing speed and

energy consumption. Thus, even if STC-like has a low sparsity tax, when running

ResNet50, its inability to translate various sparsity degrees into hardware savings

results in higher EDP than DSTC-like.

Inefficiency of Unstructured Sparse Designs: DSTC-like is outperformed

by STC-like on Transformer-Big, as shown in Fig. 6-1. This is because DSTC-like’s

outer-product-based dataflow with expensive accumulation buffer has a high sparsity

tax. Since Transformer-Big has less than 10% average sparsity in activations, DSTC-

like’s savings are overshadowed by its expensive hardware support. Thus, even though

DSTC-like has high flexibility, when running Transformer-Big, its inefficient sparsity

support with high overhead results in higher EDP than STC-like does.

Takeaway: there is no existing sparse accelerator that always has lower

EDP for both DNNs due to their respective limitations.

6.1.3 Need for a Flexible and Efficient Design

To develop a flexible accelerator that is efficient for various DNNs with diverse spar-

sity degrees, we are in great need of a general design that is simultaneously flexible and

efficient. However, as already demonstrated by the DSTC-like and STC-like compar-

isons above, many existing sparse DNN designs tend to trade flexibility for efficiency

or vice versa, thus facing the challenge of not being able to meet both requirements.

To address this problem, we introduce a hardware-software co-design approach

motivated by a novel class of sparsity patterns: hierarchical structured sparsity

(HSS), which leverages multiple levels of G:H structured sparsity to express diverse

sparsity degrees in a multiplicative fashion. As shown in Fig. 6-1, while maintaining

accuracy with our HSS-based sparsification, our low-sparsity-tax HSS-based hardware

accelerator, HighLight, always provides lower EDP.

94

6.2 HighLight Overview

HSS unveils an organized HSS-based hardware design space, where each design can

be systematically developed by considering three aspects for each HSS operand:

• G:H patterns supported at a rank.

• the number of HSS ranks supported by the hardware.

• the acceleration techniques, referred to as sparse acceleration features (SAFs) [113],

supported at each rank.

In this section, we motivate HighLight’s high-level architecture by discussing the

impact of making different design decisions for the above design aspects.

6.2.1 Impact of Supported SAF at Each Rank

The accelerator can have different supported SAFs at a rank to translate sparsity into

different savings. Specifically, when there are ineffectual operations, the hardware can

employ

• Gating: lets the hardware stay idle to save energy. Gating often involves a

trivial sparsity tax (e.g., an AND gate).

• Skipping: fast forwards to the next effectual operation to save energy and

time. Skipping incurs a higher sparsity tax (e.g., muxing logic for leader-follower

intersections).

Since gating is undesirable for many latency-sensitive applications, we will focus on

discussing the impact of various design aspects assuming skipping as the supported

SAF.

Skipping is highly reliant on high utilization of the components to achieve the

desired speedup, so it is desirable to support G:H patterns with a fixed (set of) G

that is a factor of the number of parallel hardware units (e.g., with four processing

elements (PEs), it is desirable to support G=4 patterns, as all PEs can be utilized

95

with the four nonzeros in the block of H values, regardless of what H is). Thus,

as shown in Fig. 6-3(a), the example designs with skipping SAFs support sparsity

patterns with a fixed G value of two at each rank.

Takeaway: it’s more desirable to support skipping, which favors G:H pat-

terns with a G that’s a factor of the available number of hardware instances

to more easily ensure workload balancing with a high hardware utilization.

Figure 6-2: (a) Effectual computations in a dot product with 2:4 sparse vector 0 (v0)
and dense vector 1 (v1). (b) Implementation of the muxing logic for selecting four
values from a block of eight values.

6.2.2 Impact of Per-rank Supported Patterns

To implement skipping for a G:H pattern, additional hardware is needed. For exam-

ple, Fig. 6-2(a) shows a dot product workload with two vectors: vector 0 (v0) is 4:8

sparse, and vector 1 (v1) is dense. In order to only perform effectual computations

(i.e., skip the ineffectual computations), the accelerator needs an 8-to-4 muxing logic

to select the correct v1 values. In specific, as shown in Fig. 6-2(b), the 8-to-4 muxing

logic can be implemented with four 8-to-1 muxes. For example, the first 8-to-1 mux

selects A based on a ’s coordinate 0 . To ensure low latency, an 8-to-1 mux can be

implemented with two 4-to-1 muxes pipelined with a 2-to-1 mux.

Since an accelerator can be designed to support multiple G:H patterns with differ-

96

ent H values, the muxing sparsity tax increases as the largest supported H value (i.e.,

Hmax) increases. In specific, in order to support all possible patterns, the accelerator

needs G number of Hmax-to-1 muxes.

Takeaway: with a fixed G, the energy and area sparsity tax increases

approximately linearly with Hmax.

6.2.3 Impact of Supported Number of Ranks

Given a target flexibility, supporting more HSS ranks reduces the Hmax at each rank,

reducing the sparsity tax. In specific, due to the nature of fraction multiplications,

multi-rank HSS can easily represent a large number of sparsity degrees with a much

smaller Hmax at each rank by exploiting the composability of sparsity patterns. As

shown in Fig. 6-3(a), with both designs supporting 15 different sparsity degrees across

0% to 87.5%, compared to the one-rank HSS design S , which requires a Hmax of 16,

the two-rank HSS design SS only requires Hmax of 8 at Rank1 and a Hmax of 4 at

Rank0.

The sparsity support of a multi-rank HSS design is implemented at different archi-

tecture levels, each of which target a specific rank (e.g., as shown in Fig. 6-3(c), the

processing element (PE) array level implements Rank1 SAF to exploit Rank1 pat-

terns and the PE level implement Rank0 SAF to exploit Rank0 patterns). Fig. 6-3(b)

shows the normalized sparsity tax for the two HSS designs in terms of their muxing

overhead. Due to the reduced Hmax values at each rank, SS introduces > 2× less

muxing overhead (i.e., lower sparsity tax), while achieving the same flexibility as S .

Takeaway: Compared to the popular single-rank sparsity patterns sup-

ported in many existing works, hardware designed for multi-rank HSS can

achieve the same flexibility with a much lower sparsity tax.

97

Figure 6-3: Comparison of designs with the same flexibility (15 sparsity degrees
across 0%-87.5%) but different numbers of ranks. SS shows great potential for high
flexibility and efficiency. (a) Design attributes and normalized processing latency
(markers indicate the discrete sparsity degrees.) (b) Normalized muxing overhead.
(c) High-level architecture of HighLight, with modularized SAFs for each rank at
different architecture levels.

6.2.4 High Level Architecture

Fig. 6-3(c) shows the high-level architecture organization of our proposed HighLight

accelerator, a simultaneously efficient and flexible accelerator consisting of a memory

hierarchy and 1024 MAC s grouped into four PE arrays. HighLight supports DNNs

with two-rank HSS weights and unstructured sparse input activations. In terms of

98

SAF choices, HighLight implements modularized skipping SAF at different archi-

tecture levels to translate the two-rank HSS into energy and latency savings, and

performs gating on input activation’s sparsity to further reduce energy consumption.

We would like to point out that HighLight can be extended to support dual-HSS

operands, which can both be exploited to introduce latency savings. We will present

more discussions on the improvements as a case study in Sec. 6.4.5.

6.3 A Deeper Dive Into HighLight

In this section, we present more details on HighLight’s micro-architecture implemen-

tations. For ease of presentation, we will use a down-sized architecture with

two PEs and sparsity support for C1(2:{2≤H≤4})→C0(2:4) to discuss the

core ideas of the HighLight micro-architecture.

6.3.1 DNNs Processed as Matrix Multiplication

We design HighLight to process various layers in DNNs as matrix multiplications

(MM) workloads, as many existing works do [73, 126, 64, 50, 74, 100]. Thus, DNN

layers with MM kernels (e.g., fully connected layers) are represented as they originally

are. Whereas, as shown in Fig. 6-4(a), convolutional layers are represented as MM

by flattening the weight dimensions and performing a Toeplitz expansion on the

inputs [94] before sending to the accelerator for processing. Processing all layers as

matrix multiplications implies interchangeable operands. Hence, instead of referring

to the operands as weights and input activations, we refer to them as operands A and

B, where operand A is dense or HSS, and operand B is either dense or unstructured

sparse.

6.3.2 Compression Format

To correctly eliminate ineffectual hardware operations (i.e., buffer accesses and com-

putes associated with zeros), it is important to capture both ranks’ sparsity structure

99

Figure 6-4: (a) Convolution represented as matrix multiplication with flattened
operand A (weights) and Toeplitz expanded operand B (input activations) [94]. M:
number of filters; C: # of channels; R,S: height and width of filter kernels; P,Q:
height and width of outputs. (b) Loopnest representation of HighLight’s dataflow.

Figure 6-5: Hierarchical CP compression for operand A row.

with metadata. HighLight uses an offset-based coordinate representation (CP) [113]

format to describe the position of nonzero values/non-empty blocks at each rank.

Fig. 6-5 shows the metadata for an example C1(2:4)→C0(2:4) operand A tensor. For

Rank0, each nonzero value carries a CP to indicate its position in its block of H0

values (e.g., since a is at the first position in its block, it carries a 0 metadata).

For Rank1, each nonzero block carries a CP to indicate its relative position in the

H1 blocks (e.g., the first and third blocks have nonzeros and thus carry upper-level

metadata 0 and 2 .)

100

Figure 6-6: Down-sized architecture organization of HighLight with hierarchical skip-
ping SAF. The showcased processing flow is for the C1(2:4)→C0(2:4) operand A in
Fig. 6-5 and a dense operand B. Matched capitalized and lower case letters indicate
corresponding values. Boxes with triangles are registers.

6.3.3 Hierarchical Skipping

To achieve high utilization of the hardware, and thus fast processing speed, HighLight

employs a hierarchical skipping technique (i.e., both Rank1 SAF and Rank0 SAF

perform skipping based on their target rank’s sparsity structure, as shown in Fig. 6-6).

Thus, HighLight’s total speedup is the product of the speedup introduced

at each rank. To illustrate the ideas, we use the C1(2:4)→C0(2:4) operand A shown

in Fig. 6-5 and a dense operand B as an example workload. We will discuss the

support for a sparse B operand in Sec. 6.3.4.

101

HSS-Operand Stationary Dataflow

Before diving into the SAFs, we discuss the general processing flow of HighLight by

presenting its dataflow, which defines an accelerator’s scheduling of data movement

and compute in space and time [77]. To exploit the statically known sparsity struc-

ture to introduce desirable workload balancing, HighLight employs an HSS-operand

stationary dataflow, where each Rank0 block of A is held stationary in each PE for

reuse across different operand B values. As shown in Fig. 6-6, PE0 holds stationary

in registers the two nonzero values a , c in the first block of operand A. Each MAC

in the PE is responsible for working on one of the G nonzeros in its assigned block,

in specific, the MAC on the left in PE0 works on a , and the right MAC works on

c . The partial sums calculated at each MAC are first spatially accumulated across

the PEs in the same row and updated to the Register File. More dataflow details are

described in Fig. 6-4(b) based on the well-known loopnest representation [77, 15, 94].

Skipping SAF at Rank1

HighLight’s Rank1 Skipping SAF exploits the sparsity structure in Rank1 only. Specif-

ically, it is responsible for only distributing non-empty Rank1 blocks in operand A

and the corresponding blocks in operand B to the PEs for parallel processing. For

example, as shown in Fig. 6-6, only the nonzeros in the first block (i.e., a , c) and

the third block (i.e., j , k) in operand A are transferred to be processed at the PEs.

Since only half of the Rank1 blocks are non-empty in the example tensor, Rank1

Skipping SAF introduces a 2× speedup. Other sparsity patterns (degrees) in rank 1

can be exploited similarly to achieve different speedups.

Recall that Rank1 Skipping SAF is required to support sparsity patterns defined

by C1(2:{2≤ H≤4}). To maintain high utilization for different sparsity patterns

(degrees), each of the two PE s in Fig. 6-6 should always get a non-empty block of

operand A. To ensure correctness, different operand B data need to be selected for

computation for different supported sparsity patterns. Fig. 6-7 shows the operand B

blocks that need to be selected from at each processing step, with operand A having

102

Figure 6-7: Operand B blocks bn to fetch at each processing step with operand A
having C1(2:4) or C1(2:3).

HSS patterns with H=4 and H=3. We observe that different H values can require

differently sized operand B blocks to be fetched for selection. For example, H=4

requires a fetch of four blocks of operand B at each processing step (e.g., b0, b1, b2,

b3 at processing step 0), whereas H=3 requires a fetch of three operand B blocks.

To avoid unaligned GLB fetches for different H1 values, as shown in Fig. 6-6, High-

Light’s Rank1 Skipping SAF employs a Variable Fetch Management Unit (VFMU)

to allow variable length streaming access, which is a technique commonly used for

bitstream parsing (e.g., in the entropy coding for video compression [16, 93]). Specifi-

cally, VFMU includes a small buffer that stores the 2×Hmax blocks of operand B. The

buffer is written with data that are fetched from GLB in an aligned fashion and can

be configured with a shift signal to determine the offset position for the current read

to start. Fig. 6-8 describes the data movement at VMPU for the first three processing

steps when operand A has a G:H=2:3 sparsity at C1. The shift signal is configured

to three to allow the correct operand B blocks to be read out. Note that to keep the

output width uniform, there are always four blocks read out of the VMPU. However,

in the case of G:H=2:3, the last block is just a dummy padding that will never be

selected by the muxing logic in Rank1 Skipping SAF. The VMPU processing is trivial

to show for operand A with G:H=2:4, as all accesses are well aligned. Such variable

fetch support allows correct operand B to be fetched for different 2:H structures.

With the correctly shifted blocks, to avoid implementing wide muxes that select

from the entire blocks of data, VFMU employs 4-to-2 muxes to select the correct pair

of start and end addresses using the metadata from operand A. The addresses are

used to index into VFMU’s internal registers.

103

Figure 6-8: Operand B datamovement at Variable Fetch Management Unit (VFMU)
for the first three processing steps when operand A has a C1(2:3) sparsity. To output
the correct operand B blocks, VFMU is configured to shift by three positions per
read.

Skipping SAF at Rank0

As discussed above, each PE in HighLight works on a non-empty Rank1 block with

C0(2:4). To keep the two MACs busy in each PE, HighLight employs Rank0 skipping

SAF with a 4-to-2 muxing logic. As shown in Fig. 6-6, based on Rank0 ’s CP metadata,

the 4:2 mux in each PE selects the correct operand B for each MAC.

6.3.4 Exploiting Operand B Sparsity

So far, we have used a dense operand B in our example workloads to illustrate High-

Light’s processing flow. However, in DNN workloads, operand B for can be sparse due

to non-linear activation functions (e.g., ReLU) and/or activation pruning [64, 116].

HighLight exploits unstructured sparse operand B through gating and compression.

Operand B is compressed within a blocked CSR fashion, carrying metadata that in-

dicates the start and end addresses of each Rank1 block. Instead of always assuming

the start and end addresses for a dense operand B, the VFMU processes the metadata

of operand B to determine how much to shift for each block. The MAC unit in each

PE gates the operation for ineffectual operations to save energy.

104

6.4 Experimental Results

In this section, we discuss our experimental setup and present results related to the co-

designed hardware (i.e., HighLight) and the software (i.e., HSS-based sparsification).

6.4.1 Methodology

In this section, we introduce the baseline designs, workloads, and evaluation frame-

works for hardware modeling and DNN pruning.

Baseline designs

Given the abundant prior designs, we compare HighLight to state-of-the-art repre-

sentative designs in each category described in Table 6.1. Specifically, we evaluate

• TC [74] represents dense accelerators (e.g., [74, 50, 13]).

• STC [73] represents single-sided G:H structured sparse accelerators (e.g., [73,

126]).

• S2TA [64] represents dual-sided (i.e., both operands) G:H structured sparse

accelerators.

• DSTC [107] represents dual-sided unstructured sparse accelerators (e.g., [107,

78, 17, 53, 33]).

Table 6.2 describes more details on each design’s supported sparsity structures (if

any) for each operand.

To ensure fairness, as shown in Table 6.3, we allocate similar storage and com-

pute resources to all designs. Furthermore, all accelerators are designs that process

DNNs as matrix multiplications. Since matrix multiplications accelerators treat the

two operands interchangeably, we allow them to swap operands and report the best

hardware performance (e.g., since STC benefits from sparse operand A, we swap the

operands if operand B is sparse and A is dense).

105

Design
Supported Sparsity Patterns

Operand A Operand B

TC [74] dense

STC [73] dense; C0({G≤2}:4) dense

DSTC [107] dense; unstructured sparse

S2TA [64] C0({G≤4}:8) dense; C0({G≤8}:8)

HighLight
(our work)

dense;
C1(2:{2≤ H≤8})→C0(2:{2≤ H≤4})

dense;
unstructured sparse

Table 6.2: Supported sparsity structures for each design.

Design
Storage

Compute
GLB RF

TC [74] 320KB
4× 2 KB 4× 256STC [73] 256 + 64KB

DSTC [107] 256 + 64KB
S2TA [64] 256 + 64KB 64× 64B 64× 16

HighLight (our work) 256 + 64KB 4× 2KB 4× 256

Table 6.3: Hardware resource allocation. GLB is partitioned to data and metadata
storage for sparse designs.

Workloads

We evaluate two classes of workloads:

• Synthetic matrix multiplication with operand A and B matrices that are

1024-by-1024, a common shape in DNN workloads. A and B are of various

sparsity degrees: three different degrees for A: 0%, 50%, 75%, and four different

degrees for B: 0%, 25%, 50%, 75%. Synthetic workloads allow us to capture the

diverse sparsity characteristics in the DNN design space.

• Representative DNN models with distinct network architectures: the con-

volutional ResNet50 [36] and attention-based Deit-small [99] for image classifi-

cation trained on ImageNet [25] and the attention-based Transformer-Big [102]

for language translation trained on WMT16 EN-DE [7]. Actual DNN mod-

106

els allow us to take both accuracy and hardware performance impact into the

picture.

Evaluation Frameworks

Accelerator Modeling: we use the Sparseloop-Accelergy infrastructure [113, 108] to

model the accelerators. Sparseloop captures each accelerator’s cycle counts and com-

ponent runtime activities. We added a new density model to Sparseloop to capture

the characteristics of HSS. To characterize energy and area costs, we built Accelergy

estimation plug-ins for various components: (1) datapath components (e.g., adders

and SAF control): synthesized RTL with a 65nm PDK; (2) small SRAMs: 65nm

SRAM compiler; (3) for large SRAMs not supported by our compiler: CACTI [28].

DNN Pruning: we use Condensa [49] to introduce various sparsity patterns

to various DNNs, structured or unstructured. Since a good set of sparsity patterns

should allow reasonable accuracy recovery even without novel or advanced pruning

algorithms (e.g., special ways to perform hyper-parameter searches), we reuse the

pruning algorithm proposed for sparse tensor core (STC) [68]. Specifically, the al-

gorithm for STC first statically prunes a pre-trained dense DNN by masking the

appropriate weights and their gradients to zeros based on sparsity-pattern-specific

sparsification rules (e.g., the HSS-based rules in Sec. 5.2.2), and it then fine-tunes

the masked DNN to regain accuracy. To ensure fairness, all of our performed prun-

ing follows the same algorithm, and the same set of hyperparameters is used for all

sparsity patterns.

6.4.2 HighLight Outperforms Prior Work

We compare HighLight to existing designs running synthetic workloads to demon-

strate its flexibility and efficiency. In specific, its ability to always achieve high pro-

cessing efficiency for workloads with varying sparsity degrees.

Fig. 6-9 compares the processing latency, energy consumption, and energy-delay

product (EDP), a widely used metric for evaluating overall hardware performance in

107

Figure 6-9: Comparison of existing designs running workloads with operands with
different sparsity degrees. We compare the overall hardware efficiency energy-delay-
product (EDP), energy and speed of the designs. S2TA [64] assumes both operands
are structured. HighLight is always able to effectively exploit diverse sparsity degrees.
*HighLight evaluated with 20% sparsity for conservative estimations.

many existing works [45, 41, 61]. As shown in Fig. 6-9, different existing designs intro-

duce inefficient processing at different sparsity degrees. Specifically, (i) STC employs

simple acceleration with low sparsity tax for dense and 50% sparse workloads. How-

ever, STC’s limited sparsity support fails to exploit the available opportunities for

both speedup and energy for high sparsity workloads. (ii) DSTC introduces signif-

icant sparsity tax to identify effectual operations. In specific, it employs a dataflow

that requires a costly accumulation buffer that is frequently accessed. Thus, DSTC’s

high sparsity tax masks the sparsity-related savings for workloads with low sparsity.

Furthermore, DSTC also suffers from a not perfectly balanced workload due to the

unpredictable nature of unstructured sparsity (i.e., not all compute units are active).

(iii) S2TA requires both operands to be structured sparse and has limited flexibility

on the G values supported for each operand. For example, as shown in Table 6.3,

S2TA requires one of the operands to have {G≤4}:8 (i.e., cannot have more than 50%

108

Figure 6-10: Geomean of various metrics. HighLight achieves the best geomean across
all evaluated metrics.

sparsity). Thus, S2TA often fails to support or does not fully exploit the available

speedup for workloads with low/medium sparse operands.

On the other hand, HighLight is always able to efficiently exploit var-

ious sparsity degrees. HighLight’s per-rank skipping SAF and low-overhead hier-

archical compression format introduce brings low sparsity tax, specifically low energy

overhead. Furthermore, due to the structured sparsity, HighLight always achieves

theoretical speedup with perfect workload balancing. Thus, as shown in Fig. 6-9,

HighLight always achieves the best EDP and comparable-to-best processing speed

for all evaluated sparsity degrees. HighLight achieves the best geomean for all evalu-

ated metrics.

Fig. 6-10 shows each metrics’ geomean across the evaluated workloads. Com-

pared to existing designs, HighLight achieves better geomean for all eval-

uated metrics.

6.4.3 HighLight Provide Good Accuracy-Efficiency Trade-offs

To demonstrate HighLight provides good trade-offs between accuracy and efficiency,

we compare the EDP-accuracy loss relationship of various design approaches, as

shown in Fig. 6-11. In specific, we compare HighLight to multiple popular existing

co-design approaches: 1) dense (represented by the TC data points); 2) unstructured

sparse (represented by the DSTC data points); 3) C0(G:H) sparse (represented by

the STC and S2TA data points).

109

We evaluate three representative DNNs: ResNet50 [36], Transformer-Big [102],

and Deit-small [99]. For ResNet50, we prune all convolutional and fully-connected lay-

ers. For Transformer-big, we prune the feed-forward block and all projection weights.

For Deit-small, we pruned the feed-forward block and the output projection weights.

To ensure fairness, we use the same pruning algorithm as described in Sec. 6.4.1 for

all of the sparsity patterns, structured and unstructured.

Fig. 6-11 shows the EDP-accuracy loss relationship for the three DNN models,

with their weights pruned to different sparsity degrees. Ideally, we would like to

always have very low EDP and accuracy loss. Unfortunately, low EDP often requires

higher sparsity and thus leads to higher accuracy loss. The best design should excel at

balancing the trade-off, thus always sitting on the Pareto frontier of the EDP-accuracy

loss relationship.

Furthermore, the design should excel at the evaluated DNNs, which have different

sparsity characteristics. Specifically, ResNet50 has much sparser activations than

Transformer-big and Deit-small, and Deit-small has much fewer layers being pruned

due to its already small parameter count (compared to other vision transformers).

As shown in Fig. 6-11, HighLight always sits on the Pareto frontiers. STC only

delivers great accuracy-efficiency trade-off only at a single sparsity degree (i.e., 50%

sparse), S2TA fails to support attention-based models due to its incapability to pro-

cess purely dense layers, and DSTC can introduce worse-than-dense EDP due to its

high sparsity tax for the relatively dense models. Thus, HighLight serves as a

great candidate to support diverse DNNs with high hardware efficiency

while maintaining a reasonable accuracy loss.

6.4.4 Sparsity Tax Evaluation

Sparse DNN accelerators involve two types of sparsity tax: energy and area. Fig. 6-

12(a) shows the energy cost breakdown across the buffers, compute, and SAF com-

ponents in different architectures processing a workload with 75% operand A and

a dense operand B (i.e., one example set of bars from Fig. 6-9). Existing designs

either do not fully exploit the sparsity for energy savings (e.g., STC only recognizes

110

upto 50% sparsity) or introduce inefficient dataflows to trade-off its insignificant SAF

cost (e.g., DSTC suffers from significant accumulation traffic at RF due to its outer

produce style dataflow).

111

Figure 6-11: EDP-Accuracy Loss Pareto frontier for ResNet50 [36], Transformer-
Big [102], and Deit-small [99]. Different markers refer to different accelerators. High-
Light is always on the accuracy-EDP Pareto frontier and thus serves as a great can-
didate to support diverse DNNs with high hardware efficiency while maintaining
accuracy.

112

Figure 6-12: (a) Energy breakdown for 75% sparse operand A and dense operand B.
(b) HighLight area breakdown. HighLight introduce low sparsity tax both in terms
of energy and area.

Fig. 6-12(b) shows the area breakdown of HighLight, with the SAFs accounting

for only 5.7% of the design’s area. Thus, HighLight has low energy and area

sparsity tax.

6.4.5 Case Study: Dual-Side Speedup

As briefly discussed in Sec. 6.2.4, instead of keeping input activations to unstructured

sparse for energy savings only, one of the interesting improvements to HighLight is

to support dual structured sparse operands and exploit both operands for speedup

(i.e., dual-side speedup). In this section, we demonstrate how we can realize such

improvements.

We make the observation that an HSS-based accelerator can achieve dual-side

speedup with easy workload balancing by supporting multi-rank HSS operands with

alternating dense ranks (e.g., weights with C1(dense)→C0(2:4) and iacts with C1(2:4)→

C0(dense)). When processing such workloads, the SAF at each rank only needs to

perform dense-sparse intersections. In specific, for Rank1, skipping can be performed

by intersecting C1(2:4) in iacts with C1(dense) in weights. for Rank0, skipping can

be performed by intersecting C0(2:4) in weights with C0(dense) in iacts. Such dense-

sparse intersections by nature lead to a perfectly balanced workload [24].

113

Figure 6-13: Normalized processing speed of HighLight and HighLight with dual side
structured sparsity support, i.e., HighLight_DSSO. DSSO support allows dual-side
speedup for commonly shared sparsity degrees.

To implement such a design for workloads with dual side structure sparsity (DSSO),

we enhance the HighLight’s PE to allow skipping based on either operand by adding

a simple 2:1 muxing logic, referred to as HighLight_DSSO. Fig. 6-13 compares the

processing speed of the original HighLight design and HighLight_DSSO when a work-

load with operand A (weights) with C1(dense)→C0(2:4) and operand B that follows

C1(2:2≤H≤8)→C0(dense).

As shown in Fig. 6-13, HighLight_DSSO achieves 2× better processing

speed compared to HighLight for the commonly supported sparsity de-

grees. However, since HighLight_DSSO requires one rank to be dense to enable

perfect workload balancing, there are fewer sparsity degrees supported for operand

B by the design. In addition, although existing works have shown that it is possible

for DNNs with DSSO to maintain accuracy [64, 116, 19], DNNs with DSSO may still

require more advanced pruning techniques to recovery accuracy compared to single

HSS operand DNNs.

6.5 Related Work

There is ample prior work in designing accelerators for efficiently processing sparse

DNNs. These works either focus on co-designing sparsity patterns and hardware or

solely focus on hardware for existing pruned models. Co-design approaches involve

114

pruning DNNs to structured sparsity patterns that can be easily exploited by the

underlying hardware. The target underlying system can be existing dense systems

(maybe with relatively minor ISA updates) [72, 37, 20, 97, 125] (e.g., GPUs) or custom

accelerators [73, 126, 64, 59, 101] designed for the sparsity structure. The accelerators

can be designed either with conventional digital technology or emerging technology

(e.g., processing-in-memory accelerators [101]). To better recover accuracy loss due

to the enforced structure, some proposals have relatively relaxed structures and pre-

process the pruned models into more compact structures before sending them to

hardware (e.g., pack unstructured columns into compact blocks [59]). Since structured

sparsity has static nonzero values locations, the accelerators often have a low sparsity

tax but low flexibility.

On the other hand, accelerators designed for existing pruned models or general

sparse matrix multiplications often involve designing flexible sparsity support for un-

structured sparsity [78, 17, 15, 33, 53, 39, 76, 122, 81, 118, 52]. Since supporting

dynamic nonzero value locations requires extremely flexible hardware, these designs

often focus on different dataflows that reduce complexity, efficient auxiliary compo-

nents (e.g., fast intersection unit [39]) that alleviate the significant control overhead,

etc. Nonetheless, such accelerators often rely on the assumption that unstructured

pruning can introduce high (> 80%) sparsity to cancel out the cost of high sparsity

tax.

The concept of hierarchy is also used in compressed data representations [52, 104,

39]. However, this line of work often focuses on better workload partitioning to enable

efficient hardware processing, instead of using the hierarchy to provide flexibility

and/or modularity, which is the goal of HSS. In fact, their proposed sparsity patterns

are often unstructured or one-rank structured sparse (e.g., SMASH [52] employs two

levels of bitmask to represent unstructured sparse tensors), and target HPC/Graph

analytics applications, which often have much higher sparsity degrees, and thus are

less sensitive to high sparsity tax than DNNs.

115

6.6 Conclusions

Various optimization techniques introduce DNNs with weights and activations that

are dense or sparse with varying sparsity degrees. The diversity challenges the as-

sumptions made by existing DNN accelerators, which either focus on efficient but

limited sparsity support or require very sparse DNNs to pay off the high sparsity

tax required by their flexible sparsity support. This chapter addresses the impor-

tance of balancing accelerator flexibility and efficiency by proposing an accelerator,

named HighLight, that exploits hierchical structured sparsity (HSS) introduced in

Chapeter 5. Leveraging the modularity of HSS, HighLight achieves flexible sparsity

support with low sparsity tax. As a result, HighLight is efficient for diverse sparsity

degrees, including dense. In conjunction, we show that HSS allows DNN developers

to prune DNNs to various sparsity degrees while maintaining the target accuracy.

Compared to dense accelerators, HighLight achieves a geomean of 6.4× (and up to

20.4×) better energy delay product (EDP) across layers with diverse sparsity degrees

(including dense) and is at parity for dense DNN layers. Compared to sparse accel-

erators, HighLight achieves a geomean of 2.7× (and up to 5.9×) better EDP and is

at parity for sparse layers.

116

Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

Research on sparse DNN accelerator modeling and design promises significant hard-

ware efficiency improvements. This thesis makes the following contributions:

• Introduces a well-defined abstraction to describe high-level sparse

DNN accelerator attributes. Similar to how the widely used dataflow tax-

onomy [14] cleanly defines the high-level data movement choices for deep neural

network accelerators, the proposed taxonomy of various sparse acceleration fea-

tures provides a set of well-defined terminologies to describe how a sparse DNN

accelerator exploits sparsity qualitatively, without getting into implementation

details. Thus, our proposed taxonomy of sparse acceleration features facili-

tates succinct and effective communication between researchers from both the

hardware and software communities.

• Provides a systematic modeling tool to compare and gain insights

on the impact of various sparse DNN accelerator designs. Like other

widely-used flexible modeling tools (e.g., Gem5 [5] and GPGPU-sim [3]), the

proposed Sparseloop tool provides a common platform for computer architects

to easily compare various sparse DNN accelerators with user-defined parame-

terizations (e.g., iso-area comparison of existing designs). We have seen how a

117

popular, extendable tool can greatly facilitate the quantitative understanding

of various designs, and we expect Sparseloop has the potential to serve this

purpose for sparse DNN accelerators.

• Enables easy and proper characterizations of each sparse DNN accel-

erator by facilitating fast mapspace explorations. A proper accelerator

characterization requires finding the best scheduling strategy (i.e., the map-

ping), for each workload among thousands of available options. Thus, ensuring

the speed of each potential mapping evaluation is important. Like existing

widely used core modeling engines for mapspace exploration of other types of

accelerators (e.g., MAESTRO [60] for dense DNN accelerators), Sparseloop

helps designers characterize each sparse DNN accelerator by quickly iterating

over the large mapspace.

• Provides an artifact with the potential of having broad use across

academia and industry. Sparseloop is built on top of Timeloop [77], which

is already widely used for dense tensor accelerator evaluations. Sparseloop re-

ceived the MICRO-55 distinguished artifact award by contributing to the com-

munity with experimental setups for evaluating various sparse DNN accelerator

designs.

• Demonstrates two important insightful solutions to challenges faced

by many hardware modeling framework developers.

(1) Allow use of statistical characterizations for data-dependent analysis, in-

stead of performing analysis based on the exact data, to balance simulation

time and accuracy. This approach shortens simulation time significantly for

data-intensive workloads (e.g., DNNs and graph analytics).

(2) Perform progressive modeling to maintain tractable complexity and high

flexibility. Such a modeling style is particularly beneficial when the modeling

task requires analyses of interactions among a considerable number of design

aspects, which is often necessary for flexible hardware evaluation infrastructures.

118

• Presents a systematic way to precisely define the sparsity patterns

for effective comparison and exploration.

As more DNN sparsity patterns are proposed, it becomes increasingly impor-

tant to find a systematic way to precisely define sparsity patterns to facilitate

effective communication and help researchers more easily discover innovative

patterns that are qualitatively different from existing patterns. The proposed

fibertree-based specification allows a systematic and precise way to specify var-

ious existing sparsity patterns and motivated a novel sparsity pattern as pro-

posed by the thesis.

• Presents a novel class of sparsity patterns that enable efficient and

flexible DNN accelerators and ensures DNN accuracy.

A desired DNN sparsity pattern should be hardware-friendly to allow efficient

DNN acceleration with low overhead and flexible to represent diverse sparsity

degrees. The proposed concept of hierarchical structured sparsity (HSS) meets

both goals, with the key insight that we can systematically represent diverse

sparsity degrees by having them hierarchically composed of simple sparsity pat-

terns. HSS opens up great potential for both the hardware community to explore

efficient designs and for the software community to develop pruning algorithms

that target the HSS patterns.

• Present a simultaneously flexible and efficient DNN accelerator for

modern DNNs.

Motivated by HSS, this work presents an HSS-based accelerator design, called

HighLight, from an organized HSS-based hardware design space. HighLight’s

modularized design methodology of using simple hardware to accelerate different

sparsity patterns at different architecture levels enables simultaneously efficient

and flexible processing of DNNs with diverse sparsity degrees. Such a design

approach opens up a novel way to design flexible yet efficient DNN accelerators.

119

7.2 Future Work

There still exist many more opportunities in the topic of accelerator modeling and

design.

• Modeling of sparse fused-layer dataflows.

While Sparseloop is flexible to model many sparse DNN accelerators, it does

not provide modeling support for designs with fused-layer dataflow [66, 92, 105,

10, 30], which is a class of accelerators that are gaining popularity in recent

years. Since Sparseloop already provides important building blocks for sparse

acceleration feature analysis, an interesting and impactful extension of the tool

would be to support fused-layer dataflow modeling [32], taking sparse tensors

and acceleration features into account.

• Sparse DNN accelerator design with emerging technology.

Accelerator designs with emerging technology, such as in-memory/near-memory

computing and optical computing, is a relatively new research area. Even

though different technologies introduce different limitations, the core idea of

eliminating hardware operations associated with ineffectual computations in-

troduced by sparsity is still applicable such as accelerators. In addition, our

proposed Sparseloop framework does have a flexible energy estimation backend

that allows designers to take the special properties of such emerging technolo-

gies into account [109]. Thus, there are promising opportunities for designers

to explore potential sparse DNN accelerators with emerging technology using

Sparseloop.

• Generalization of proposed contributions to sparse tensor accelerators

beyond sparse DNN accelerators.

Sparse tensor algebra is a popular kernel in many applications beyond the

ones employing DNNs (e.g., graph algorithms [23, 57] and scientific simula-

tions [123, 4]). Thus, there are many unsolved research questions on whether

120

our proposed design space classification and modeling methodology can be ap-

plied to such accelerators. To facilitate such explorations, we have already

provided an example Sparseloop use case (Sec. 4.9.2) of modeling and studying

the interesting trade-offs for general sparse matrix-sparse matrix multiplication

kernels for workloads with sparsity degrees that are much higher than DNNs,

and thus can be accelerated with different approaches.

121

122

Appendix A

Sparseloop Artifact

In this appendix, we provide the source code of Sparseloop, its energy estimation

backend based on Accelergy [108], and input specifications to key experimental results

presented in the paper. To allow easy reproduction, we provide a docker environment

with all necessary dependencies, automated scripts, and a Jupyter notebook that in-

cludes detailed instructions on running the evaluations. The artifact can be executed

with any X86-64 machine with docker support and more than 10GB of disk space.

A.1 Artifact check-list (meta-information)

• Algorithm: Analytical modeling of sparse tensor accelerator performance (energy

and cycles).

• Program: C++, python.

• Run-time environment: Dockerfile.

• Hardware: Any X86-64 machine.

• Output: Plots or tables generated from scripts.

• Experiments: Analytical modeling of various sparse tensor accelerators running

various workloads.

• How much disk space required (approximately)?: 10GB

123

• How much time is needed to prepare workflow (approximately)?: Less than

30min if directly pulling docker image; less than 2 hours if building docker from the

source.

• How much time is needed to complete experiments (approximately)?: Less

than 1 hour to finish running all experiments in the provided default mode.

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: Yes, DOI 10.5281/zenodo.7027215

A.2 Description

A.2.1 How to access

The artifact is hosted both on github (https://github.com/Accelergy-Project/

micro22-sparseloop-artifact) and on an archival repository with DOI 10.5281/zen-

odo.7027215 (https://doi.org/10.5281/zenodo.7027215).

A.3 Installation

Since we provide a docker, the installation process mainly involves obtaining the

docker image that contains the dependencies, the compiled Sparseloop, and the energy

estimation backend. Please follow the provided instructions (https://github.com/

Accelergy-Project/micro22-sparseloop-artifact/blob/main/README.md) to ob-

tain and start the docker.

A.4 Evaluation and expected results

We provide a jupyter notebook in workspace/2022.micro. artifact/notebook/artifact_evaluations.ipynb

to guide through the evaluations. Please navigate to the notebook in your docker

Jupyter notebook file structure GUI.

124

https://github.com/Accelergy-Project/micro22-sparseloop-artifact
https://github.com/Accelergy-Project/micro22-sparseloop-artifact
https://doi.org/10.5281/zenodo.7027215
https://github.com/Accelergy-Project/micro22-sparseloop-artifact/blob/main/README.md
https://github.com/Accelergy-Project/micro22-sparseloop-artifact/blob/main/README.md

Each cell in the notebook provides the background, instructions, and commands

to run each evaluation with provided scripts. The evaluations include the following

key results from the paper:

• Comparison of performance and energy for accelerators supporting different

representation formats (Fig. 3-1).

• Validations on various sparse tensor accelerators (Fig. 4-8, Table 4.4, Fig. 4-9,

and the STC design in Fig. 4-11.)

• Example design flow using Sparseloop to perform apples-to-apples compari-

son, identify design limitations, and explore various solutions to the limitation

(Fig. 4-11).

The output of each evaluation will either produce a figure or the content of a table.

The easiest way to check validity is to compare the generated figure/table with the

ones in the paper. However, raw results can also be accessed in the

workspace/evaluation_setups folder. Please note that we had to use energy estimation

data based on public technology node instead of our proprietary technology node, so

the exact data might not match for certain evaluation(s). We explicitly point out

such cases in the notebook.

A.5 Experiment customization

The input specifications in the workspace/evaluation_setups folder can be updated

to specify different hardware setups (e.g., different buffer sizes). Moreover, we also

provide options in the scripts to enable map space search using Sparseloop (e.g., --

use_mapper option can be enabled).

A.6 Methodology

Submission, reviewing and badging methodology:

125

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

126

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

Bibliography

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR,
abs/1803.08375, 2018.

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-
right Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep
neural network computing. In Proceedings of the 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 1–13, 2016.

[3] Bakhoda et. al. Analyzing cuda workloads using a detailed gpu simulator. In
ISPASS, pages 163–174, 2009.

[4] Peter Benner. Numerical linear algebra for model reduction in control and
simulation. GAMM-Mitteilungen, 29(2):275–296, 2006.

[5] Binkert et. al. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, 2011.

[6] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V.
Guttag. What is the state of neural network pruning? In Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020.
mlsys.org, 2020.

[7] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurelie Neveol, Mariana Neves, Martin
Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco
Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 confer-
ence on machine translation. In Proceedings of the First Conference on Ma-
chine Translation, pages 131–198, Berlin, Germany, August 2016. Association
for Computational Linguistics.

[8] Ralph-Uwe Börner, Oliver G Ernst, and Stefan Güttel. Three-dimensional tran-
sient electromagnetic modelling using rational Krylov methods. Geophysical
Journal International (Geophys. J. Int), 202(3):2025–2043, 2015.

[9] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and
Charles E. Leiserson. Parallel sparse matrix-vector and matrix-transpose-vector

127

multiplication using compressed sparse blocks. In Proceedings of the 21st An-
nual Symposium on Parallelism in Algorithms and Architectures (SPAA), page
233–244, 2009.

[10] Xuyi Cai, Ying Wang, and Lei Zhang. Optimus: An operator fusion framework
for deep neural networks. ACM Trans. Embed. Comput. Syst., 22(1), oct 2022.

[11] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat
Muheim, and Luca Benini. Origami: A convolutional network accelerator. In
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI
’15, page 199–204, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[12] Prasanth Chatarasi, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer,
Tushar Krishna, and Vivek Sarkar. Marvel: A data-centric approach for map-
ping deep learning operators on spatial accelerators. ACM Transactions on
Architecture and Code Optimization (TACO), 19(1):1–26, 2021.

[13] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ASPLOS ’14, page 269–284, New York, NY, USA, 2014.
Association for Computing Machinery.

[14] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In Proceedings of
the 43rd Annual International Symposium on Computer Architecture (ISCA),
pages 367–379, 2016.

[15] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits (JSSC), 52(1):127–138, 2017.

[16] Yu-Hsin Chen and Vivienne Sze. A deeply pipelined cabac decoder for hevc
supporting level 6.2 high-tier applications. IEEE Transactions on Circuits and
Systems for Video Technology, 25(5):856–868, 2015.

[17] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile devices. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS),
9(2):292–308, 2019.

[18] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling
Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao:
A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 609–622, 2014.

128

[19] Brian Chmiel, Itay Hubara, Ron Banner, and Daniel Soudry. Optimal fine-
grained n:m sparsity for activations and neural gradients, 2022.

[20] Kyusik Choi and Hoeseok Yang. A gpu architecture aware fine-grain pruning
technique for deep neural networks. In Euro-Par 2021: Parallel Processing:
27th International Conference on Parallel and Distributed Computing, Lisbon,
Portugal, September 1–3, 2021, Proceedings, page 217–231, Berlin, Heidelberg,
2021. Springer-Verlag.

[21] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek
Khailany. The a100 datacenter gpu and ampere architecture. In Proceedings
of the IEEE International Solid-State Circuits Conference (ISSCC), volume 64,
pages 48–50, 2021.

[22] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format abstraction
for sparse tensor algebra compilers. Proceedings of the ACM on Programming
Languages (OOPSLA), 2:123:1–123:30, 2018.

[23] Timothy A Davis. Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra. ACM Transactions on Mathematical
Software (TOMS), 45(4):1–25, 2019.

[24] Chunhua Deng, Yang Sui, Siyu Liao, Xuehai Qian, and Bo Yuan. Gospa:
An energy-efficient high-performance globally optimized sparse convolutional
neural network accelerator. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (ISCA), pages 1110–1123, 2021.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[26] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide,
Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and
Alex Acero. Recent advances in deep learning for speech research at microsoft.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 8604–8608, 2013.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
arXiv:1810.04805, 2018.

[28] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran
Chen. Circuit and microarchitecture evaluation of 3d stacking magnetic ram
(mram) as a universal memory replacement. In 2008 45th ACM/IEEE Design
Automation Conference, pages 554–559, 2008.

[29] A. Einstein. The foundation of the general theory of relativity. Annalen der
Physik, 354(7):769–822, 1916.

129

[30] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis.
Tangram: Optimized coarse-grained dataflow for scalable nn accelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, page
807–820, New York, NY, USA, 2019. Association for Computing Machinery.

[31] Yizhao Gao, Baoheng Zhang, Xiaojuan Qi, and Hayden Kwok-Hay So. Dpacs:
Hardware accelerated dynamic neural network pruning through algorithm-
architecture co-design. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 237–251, New York, NY, USA, 2023.
Association for Computing Machinery.

[32] Michael Gilbert, Yannan Nellie Wu, Angshuman Parashar, Vivienne Sze, and
Joel S. Emer. Looptree: Enabling exploration of fused-layer dataflow accel-
erators. In 2023 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2023.

[33] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijayku-
mar. Sparten: A sparse tensor accelerator for convolutional neural networks.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 151–165, 2019.

[34] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
In Proceedings of the International Conference on Learning Representations
(ICLR), pages 1–14, 2016.

[35] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang,
Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, Bryan Catanzaro, and
William J. Dally. Dsd: Dense-sparse-dense training for deep neural networks,
2017.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. arXiv: 1512.03385, 2015.

[37] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks. In The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[38] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks. In Proceedings of the IEEE international conference on
computer vision, pages 1389–1397, 2017.

[39] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. Extensor:
An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual

130

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
319–333, 2019.

[40] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 319–
333, Columbus OH USA, October 2019. ACM.

[41] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W. Fletcher. Mind mappings: Enabling efficient algorithm-
accelerator mapping space search. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 943–958, New York, NY, USA, 2021. Association
for Computing Machinery.

[42] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic reg-
ularizers with gaussian error linear units. CoRR, abs/1606.08415, 2016.

[43] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. Nodetrix: a
hybrid visualization of social networks. IEEE Transactions on Visualization
and Computer Graphics (IEEE Trans Vis Comput Graph), 13(6):1302–1309,
2007.

[44] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra
Peste. Sparsity in deep learning: Pruning and growth for efficient inference and
training in neural networks. Journal of Machine Learning Research, 22(241):1–
124, 2021.

[45] Mark Horeni, Pooria Taheri, Po-An Tsai, Angshu Parashar, Joel Emer, and
Siddharth Joshi. Ruby: Improving Hardware Efficiency for Tensor Algebra Ac-
celerators Through Imperfect Factorization. In IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2022.

[46] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv:
1704.04861, 2017.

[47] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah,
James Demmel, John Wawrzynek, and Yakun Sophia Shao. Cosa: Schedul-
ing by constrained optimization for spatial accelerators. In Proceedings of the
48th Annual ACM/IEEE International Symposium on Computer Architecture
(ISCA), pages 554–566, 2021.

[48] Jun-Woo Jang, Sehwan Lee, Dongyoung Kim, Hyunsun Park, Ali Shafiee
Ardestani, Yeongjae Choi, Channoh Kim, Yoojin Kim, Hyeongseok Yu, Hamzah
Abdel-Aziz, Jun-Seok Park, Heonsoo Lee, Dongwoo Lee, Myeong Woo Kim,

131

Hanwoong Jung, Heewoo Nam, Dongguen Lim, Seungwon Lee, Joon-Ho Song,
Suknam Kwon, Joseph Hassoun, SukHwan Lim, and Changkyu Choi. Sparsity-
aware and re-configurable npu architecture for samsung flagship mobile soc. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 15–28, 2021.

[49] V. Joseph, G. L. Gopalakrishnan, S. Muralidharan, M. Garland, and A. Garg. A
programmable approach to neural network compression. IEEE Micro, 40(5):17–
25, 2020.

[50] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. SIGARCH Comput. Archit. News, 45(2):1–12, jun 2017.

[51] Jouppi et. al. In-datacenter performance analysis of a tensor processing unit.
In ISCA, page 1–12, 2017.

[52] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Ro-
knoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi,
Juan Gomez Luna, and Onur Mutlu. Smash: Co-designing software compres-
sion and hardware-accelerated indexing for efficient sparse matrix operations.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 600–614, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[53] Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw mapping
of dnn models on accelerators via genetic algorithm. In Proceedings of the
IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pages 1–9, 2020.

[54] Liu Ke, Xin He, and Xuan Zhang. Nnest: Early-stage design space exploration
tool for neural network inference accelerators. In Proceedings of the Interna-

132

tional Symposium on Low Power Electronics and Design (ISLPED), pages 1–6,
2018.

[55] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
Accel-sim: An extensible simulation framework for validated gpu modeling.
In Proceedings of the 47th ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), pages 473–486, 2020.

[56] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Ama-
rasinghe. Taco: A tool to generate tensor algebra kernels. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 943–948, 2017.

[57] Scott Kolodziej, Mohsen Mahmoudi Aznaveh, Matthew Bullock, Jarrett David,
Timothy Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. The
suitesparse matrix collection website interface. Journal of Open Source Software
(J. Open Source Softw.), 4:1–4, 2019.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), volume 25, 2012.

[59] H.T. Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convo-
lutional neural networks for efficient systolic array implementations: Column
combining under joint optimization. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 821–834, New York, NY, USA, 2019.
Association for Computing Machinery.

[60] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar.
Maestro: A data-centric approach to understand reuse, performance, and hard-
ware cost of dnn mappings. IEEE Micro, 40(3):20–29, 2020.

[61] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin
Chen, and Vikas Chandra. Heterogeneous dataflow accelerators for multi-dnn
workloads. In 2021 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA), pages 71–83. IEEE.

[62] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
44, 05 2015.

[63] Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, and Dan Roth. Pruning redundant
mappings in transformer models via spectral-normalized identity prior, 2020.

[64] Z. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina. S2ta: Exploiting structured
sparsity for energy-efficient mobile cnn acceleration. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 573–
586, apr 2022.

133

[65] Francisco Muñoz Matrínez, José L. Abellán, Manuel E. Acacio, and Tushar
Krishna. Stonne: Enabling cycle-level microarchitectural simulation for dnn
inference accelerators. IEEE Computer Architecture Letters (CAL), (01), 2021.

[66] Linyan Mei, Koen Goetschalckx, Arne Symons, and Marian Verhelst. Defines:
Enabling fast exploration of the depth-first scheduling space for dnn accelerators
through analytical modeling, 2023.

[67] Linyan Mei, Pouya Houshmand, Vikram Jain, Juan Sebastian P. Giraldo, and
Marian Verhelst. Zigzag: A memory-centric rapid DNN accelerator design space
exploration framework. arxiv:2007.11360, 2020.

[68] Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic,
Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. Accelerating sparse
deep neural networks. CoRR, abs/2104.08378, 2021.

[69] Diganta Misra. Mish: A self regularized non-monotonic neural activation func-
tion. CoRR, abs/1908.08681, 2019.

[70] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi. Design space exploration of
fpga-based deep convolutional neural networks. In Proceedings of the 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), pages 575–580,
2016.

[71] Apple Newsroom. The future is here: Iphone x.

[72] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. PatDNN: Achieving Real-Time DNN Execution on Mobile
Devices with Pattern-Based Weight Pruning, page 907–922. 2020.

[73] NVIDIA. Nvidia a100 tensor core gpu architecture. Technical report, NVIDIA,
2020.

[74] NVIDIA. Nvidia v100 tensor core gpu architecture. Technical report, NVIDIA,
2020.

[75] Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer, Kar-
tik Hegde, Po-An Tsai, Neal Crago, Aamer Jaleel, John D. Owens, Edgar
Solomonik, Joel Emer, and Christopher Fletcher. Accelerating sparse data
orchestration via dynamic reflexive tiling. In Proceedings of ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), volume 3, March 2023.

[76] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski. Outerspace: An outer product based
sparse matrix multiplication accelerator. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), pages 724–
736, 2018.

134

[77] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 304–315, 2019.

[78] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. Scnn: An accelerator for compressed-sparse convolutional
neural networks. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA), pages 27–40, 2017.

[79] Maurice Peemen, Arnaud A. A. Setio, Bart Mesman, and Henk Corporaal.
Memory-centric accelerator design for convolutional neural networks. In 2013
IEEE 31st International Conference on Computer Design (ICCD), pages 13–19,
2013.

[80] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik
Hegde, Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher,
and Joel Emer. Buffets: An Efficient and Composable Storage Idiom for Ex-
plicit Decoupled Data Orchestration. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 137–151, Providence RI USA, April 2019. ACM.

[81] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna. Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages 58–70, 2020.

[82] A. Rahman, S. Oh, J. Lee, and K. Choi. Design space exploration of fpga
accelerators for convolutional neural networks. In Proceedings of the Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1147–1152,
2017.

[83] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Society for
Industrial and Applied Mathematics, 2011.

[84] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. Recent advances in recurrent neural networks. arXiv preprint
arXiv:1801.01078, 2017.

[85] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew
Mattina, and Tushar Krishna. A systematic methodology for characterizing
scalability of dnn accelerators using scale-sim. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 58–68, 2020.

135

[86] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar,
Igor Durdanovic, Eric Cosatto, and Hans Peter Graf. A massively parallel
coprocessor for convolutional neural networks. In 2009 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors, pages
53–60, 2009.

[87] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. Simba: Scaling
deep-learning inference with multi-chip-module-based architecture. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’52, page 14–27, New York, NY, USA, 2019. Association for
Computing Machinery.

[88] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556, 2015.

[89] Shaden Smith and George Karypis. Tensor-matrix products with a compressed
sparse tensor. In Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms (IA3), pages 1–7, 2015.

[90] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-
wise product. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 766–780, 2020.

[91] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal. Dissecting
tensor cores via microbenchmarks: Latency, throughput and numerical behav-
iors. arXiv: 12206.02874, 2022.

[92] Arne Symons, Linyan Mei, Steven Colleman, Pouya Houshmand, Sebastian
Karl, and Marian Verhelst. Towards heterogeneous multi-core accelerators ex-
ploiting fine-grained scheduling of layer-fused deep neural networks, 2022.

[93] Vivienne Sze and Anantha P. Chandrakasan. A highly parallel and scalable
cabac decoder for next generation video coding. IEEE Journal of Solid-State
Circuits, 47(1):8–22, 2012.

[94] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient pro-
cessing of deep neural networks. Synthesis Lectures on Computer Architecture,
15(2):1–341, 2020.

[95] Emil Talpes, Douglas Williams, and Debjit Das Sarma. Dojo: The microarchi-
tecture of tesla’s exa-scale computer. In IEEE Hot Chips 34 Symposium (HCS),
pages 1–28, 2022.

136

[96] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks, 2020.

[97] Yijun Tan, Kai Han, Kang Zhao, Xianzhi Yu, Zidong Du, Yunji Chen, Yunhe
Wang, and Jun Yao. Accelerating sparse convolution with column vector-wise
sparsity. In Advances in Neural Information Processing Systems (NeurIPS).

[98] The SciPy community. Scipy documentation.

[99] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Herve Jegou. Training data-efficient image transformers &
distillation through attention. In International Conference on Machine Learn-
ing, volume 139, pages 10347–10357, July 2021.

[100] Fengbin Tu, Yiqi Wang, Ling Liang, Yufei Ding, Leibo Liu, Shaojun Wei, Shouyi
Yin, and Yuan Xie. Sdp: Co-designing algorithm, dataflow, and architecture for
in-sram sparse nn acceleration. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pages 1–1, 2022.

[101] Fengbin Tu, Yiqi Wang, Ling Liang, Yufei Ding, Leibo Liu, Shaojun Wei, Shouyi
Yin, and Yuan Xie. Sdp: Co-designing algorithm, dataflow, and architecture for
in-sram sparse nn acceleration. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pages 1–1, 2022.

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[103] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang, B. Zimmer, W. J. Dally,
J. Emer, S. W. Keckler, and B. Khailany. Magnet: A modular accelerator
generator for neural networks. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8, 2019.

[104] Richard W Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector multiplication
by exploiting variable block structure. In High Performance Computing and
Communications: First International Conference, HPCC 2005, Sorrento, Italy,
September 21-23, 2005. Proceedings 1, pages 807–816. Springer, 2005.

[105] Luc Waeijen, Savvas Sioutas, Maurice Peemen, Menno Lindwer, and Henk Cor-
poraal. Convfusion: A model for layer fusion in convolutional neural networks.
IEEE Access, 9:168245–168267, 2021.

[106] Francis Wang, Yannan Nellie Wu, Matthew Woicik, Joel S. Emer, and Vivienne
Sze. Architecture-level energy estimation for heterogeneous computing systems.
In 2021 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 229–231, 2021.

137

[107] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen
Leng. Dual-side sparse tensor core. In Proceedings of the 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 1083–1095, 2021.

[108] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An architecture-
level energy estimation methodology for accelerator designs. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pages 1–8, 2019.

[109] Yannan Nellie Wu, Vivienne Sze, and Joel S. Emer. An architecture-level energy
and area estimator for processing-in-memory accelerator designs. In Proceedings
of the IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 116–118, 2020.

[110] Yannan Nellie Wu, Po-An Tsai, Saurav Muralidharan, Angshuman Parashar,
Vivienne Sze, and Joel Emer. Highlight: Efficient and flexible dnn acceleration
with hierarchical structured sparsity, 2023.

[111] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. Timeloop code base.

[112] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. Sparseloop: An Analytical, Energy-Focused Design Space Exploration
Methodology for Sparse Tensor Accelerators. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages
232–234, March 2021.

[113] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. Sparseloop: An analytical approach to sparse tensor accelerator model-
ing. In ACM/IEEE International Symposium on Microarchitecture (MICRO),
2022.

[114] Zi Yu Xue, Yannan Nellie Wu, Joel Emer, and Vivienne Sze. Accelerating sparse
tensor algebra by overbooking buffer capacity, 2023.

[115] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy
Lemieux, and Mieszko Lis. Procrustes: a dataflow and accelerator for sparse
deep neural network training. In Proceedings of the 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 711–724, 2020.

[116] Qing Yang, Jiachen Mao, Zuoguan Wang, and Hai Li. Dasnet: Dynamic activa-
tion sparsity for neural network efficiency improvement. CoRR, abs/1909.06964,
2019.

[117] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to
estimate the energy consumption of deep neural networks. In Proceedings of
the 51st Asilomar Conference on Signals, Systems, and Computers (Asilomar),
pages 1916–1920, 2017.

138

[118] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. Sparse reram engine: Joint ex-
ploration of activation and weight sparsity in compressed neural networks. In
Proceedings of the 46th International Symposium on Computer Architecture,
ISCA ’19, page 236–249, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[119] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. Gamma:
Leveraging gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), page 687–701,
2021.

[120] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neu-
ral networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, 2016.

[121] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. Hwu, and D. Chen.
Dnnbuilder: an automated tool for building high-performance dnn hardware
accelerators for fpgas. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8, 2018.

[122] Z. Zhang, H. Wang, S. Han, and W. J. Dally. Sparch: Efficient architecture for
sparse matrix multiplication. In Proceedings of the IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 261–274,
2020.

[123] M. Zhao, R.V. Panda, S.S. Sapatnekar, and D. Blaauw. Hierarchical analysis
of power distribution networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 21(2):159–168, 2002.

[124] Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and Yingyan
Lin. Dnn-chip predictor: An analytical performance predictor for dnn accelera-
tors with various dataflows and hardware architectures. In Proceedings of the In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 1593–1597, 2020.

[125] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan,
Wenxiu Sun, and Hongsheng Li. Learning n: M fine-grained structured sparse
neural networks from scratch. arXiv preprint arXiv:2102.04010, 2021.

[126] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. Sparse tensor core: Algo-
rithm and hardware co-design for vector-wise sparse neural networks on modern
gpus. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 359–371, 2019.

139

	Introduction
	Challenges and Limitations
	The Need for A Well-Organized Design Space
	The Need for Early-Design-Stage Modeling Tool
	The Need for Efficient and Flexible Designs

	Thesis Contributions
	Systematic Description of Sparse DNN accelerators
	Sparseloop Modeling Tool
	Hierarchical Structured Sparsity for DNN Workloads
	Efficient and Flexible DNN Acceleration with HSS

	Related Publications

	Background
	Overview of Tensor Algebra in DNNs
	The Basics
	Sparsity Patterns

	Overview of DNN Accelerators
	Overview of DNN Accelerator Modeling
	Analytical Modeling Basics
	Timeloop-Accelergy Modeling Framework
	Limitations of Existing Analytical Modeling Approaches

	Design Space Classification
	Motivation
	Large and Unstructured Design Space
	Sparsity Impacts Design Behavior

	High-Level Sparse Acceleration Features
	Representation Format
	Gating
	Skipping

	Dataflow Choice is Orthogonal to Sparsity-Aware Acceleration
	Describing Sparse DNN accelerators
	Conclusions

	Sparseloop
	Modeling Challenges
	Sparseloop Solutions to the Challenges
	Sparseloop Framework
	Inputs
	Step One: Dataflow Modeling
	Step Two: Sparse Modeling
	Format-Agnostic Tensor Description
	Statistical Density Models
	Format Analyzer
	Gating/Skipping Analyzer
	Traffic Post-processing

	Step Three: Micro-architectural Modeling
	Evaluations
	Methodology
	Modeling Speed
	Validation

	Case Studies
	Investigating Next Generation Sparse Tensor Core
	Co-design of Dataflow, SAFs and Sparsity

	Related Work
	Cycle-level models
	Analytical models

	Conclusions

	Hierarchical Structured Sparsity
	Precise Sparsity Specification
	Fibertree Abstraction
	Fibertree-based Sparsity Specification

	Hierarchical Structured Sparsity
	General Concept
	DNN Sparsification with HSS

	Conclusions

	HighLight Accelerator
	Motivation
	Opportunities and Challenges
	Limitations of Existing Accelerators
	Need for a Flexible and Efficient Design

	HighLight Overview
	Impact of Supported SAF at Each Rank
	Impact of Per-rank Supported Patterns
	Impact of Supported Number of Ranks
	High Level Architecture

	A Deeper Dive Into HighLight
	DNNs Processed as Matrix Multiplication
	Compression Format
	Hierarchical Skipping
	Exploiting Operand B Sparsity

	Experimental Results
	Methodology
	HighLight Outperforms Prior Work
	HighLight Provide Good Accuracy-Efficiency Trade-offs
	Sparsity Tax Evaluation
	Case Study: Dual-Side Speedup

	Related Work
	Conclusions

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Sparseloop Artifact
	Artifact check-list (meta-information)
	Description
	How to access

	Installation
	Evaluation and expected results
	Experiment customization
	Methodology

