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Abstract 

Designing novel transition metal complexes (TMCs) holds immense potential for 
advancing sustainability and chemical synthesis. While high-throughput virtual 
screening (HTVS) workflows and density functional theory (DFT) have emerged as 
powerful tools for discovering new TMCs, exhaustive design space exploration remains a 
formidable challenge due to the combinatorial growth of possible complexes with respect 
to ligands, metals, oxidation states, and ligand field symmetries. Machine learning 
models trained on databases of TMC structures and their computationally derived 
properties offer a promising avenue for rapidly and accurately evaluating the molecular 
properties of novel TMCs. However, the extrapolation error of these models in new 
regions of chemical space depends on the chemical space spanned by training data, 
making it crucial to carefully design training data to optimize the performance of HTVS 
workflows. 

This thesis presents a comprehensive exploration of transition metal complex 
design, encompassing fundamental chemical insights and HTVS improvements derived 
from the systematic enhancement of database coverage, such as expanded coverage of 
ligand field symmetries, metal identities, and similarity to experimentally synthesized 
complexes. In addition, this work introduces interactive web-based tools for the design 
of TMCs and metal-organic frameworks, allowing users to explore and provide feedback 
on machine learning models. These tools facilitate collaboration between researchers and 
promote the iterative improvement of models by incorporating user feedback, leading to 
more effective and efficient exploration of the vast chemical space of TMCs.  
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1 Introduction 

Inorganic materials are integral to many sectors of the modern economy due to 
their industrial, pharmaceutical, and chemical applications. Part of the reason for their 
usefulness is their tunability, as their properties can be manipulated by delicate tuning 
of the ligand field. As the demand for inorganic materials grows, there will be rising 
demand for “designer” materials with targeted properties. In order to meet this demand 
at scale, it is important to have a systematic approach for discovering new materials. 

Inorganic discovery is currently a field ripe for inquiry. The question of how to 
discover new complexes with targeted properties is one that brings together theoretical 
understanding, creativity, and the ability to make predictions about a wide range of 
materials. The main difficulty with inorganic discovery is combinatorial intractability: 
due to a multitude of possible choices of ligands, a wider range of materials is possible 
compared to organic chemistry. Additionally, testing new inorganic materials in the lab 
is lengthy and expensive, and the combinatorial explosion in the number of possible 
complexes makes experimental approaches almost futile for scanning large regions of 
chemical space. 

Therefore, in order to tackle the question of inorganic discovery, we should 
attempt to improve tractability by limiting the scope of research and turning to 
alternative research paradigms. Because there are so many possible geometries with 
wildly different behavior, it could be useful to limit the scope of geometries we look at. 
Thus, we focus in one region of design space: octahedral inorganic complexes, which 
consist of a metal center and (usually organic) ligands, with 6 total metal-atom 
connections arranged octahedrally. However, even within this class of compounds, there 
is a huge number of possible complexes. To improve tractability over experimental 
approaches, we adopt a computational approach using first-principles methods such as 
DFT and data-based methods such as machine learning to accelerate discovery time. 
Some advantages and disadvantages are summarized in Table 1-1. The relationship 
between the two approaches (i.e. that computation is fast and possibly inaccurate vs. 
experiments, which are slower and correspond better to real-world conditions) suggests 
that we focus on discovering leads computationally, then feed those leads to 
experimental groups to test.  
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Table 1-1. Advantages and Disadvantages of Computational vs. Experimental 
Approaches to Inorganic Discovery 

 Experiment Computation 
Advantages • Results can be more 

readily ported to 
industrial and real-world 
applications 

• Results are more reliable 
re. expected behavior 
during process scale-up 

• Fast – no need for synthesis 
• Accurate (in a sense) – No 

noise from experimental 
conditions 

• Cheap – lots of data can be 
generated in an automated 
fashion at relatively low cost 
(e.g. on a GPU workstation) 

• Can investigate many 
different properties at once 
(e.g. SSE, redox, etc.) based 
on electronic structure 

Disadvantages • Expensive, time-
consuming 

• “Experimental noise” can 
confound results 

• Limited characterization 
techniques  

• Inherent errors that don’t 
show up in experiment (e.g. 
due to limited basis set size, 
numerical error)1 

• Can do “experiments” on 
molecules that aren’t even 
synthetically accessible 

 

1.1 Problem areas  

The question of how to discover new materials in such a vast design space is 
naturally ill-defined due to the abundance of factors that affect their properties. To lend 
more structure to the question, we use a systematic view to highlight areas where 
intervention can lead to improved quality and quantity of discovery. A system 
breakdown is shown in Figure 1-1; by developing better control or understanding of 
what happens in the boxes or arrows, we can better approach discovery. 
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Figure 1-1. Breakdown of factors affecting transition metal complex properties. 

The inputs to the model in Figure 1-1 are ligands, ligand symmetry, and metal 
properties. Possible variables for the “ligand” input are the identities of the ligands (i.e. 
the topology, denticity, charge distribution, and atoms of the ligands); changing these 
leads to changes in various aspects of electronic structure, such as spin localization on 
the metal and spin-splitting energy. The next input is ligand symmetry, which can 
occasionally be a significant factor affecting the properties of materials2; a summary of 
high-symmetry compounds is provided in Figure 1-2. The third input is the metal 
center, whose identity, oxidation state, and spin state can be varied. Although the 
design space of metals is much smaller than that of the ligands and their symmetry, it is 
important to note that some choices, such as the choice of 1st row metals versus 2nd row 
metals, can significantly change the type of insight gained from manipulating other 
variables. The central box, the property-determining function, represents nature; to 
better understand or predict its behavior, we can perform electronic structure 
calculations, develop theoretical understanding, or use methods such as machine 
learning to get “faster-than-fast” predictions at the cost of accuracy.  
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Figure 1-2. Examples of high-symmetry classes using nomenclature from 2019 

 
Prior to Spring 2019, our group has engaged in efforts across all areas of Figure 

1-1. With respect to the choice of ligands, we have used genetic algorithms3 and direct 
enumeration4 to generate candidates for study. Regarding ligand symmetry, our studies 
at the time had looked mostly at compounds with full symmetry (A6) and high 
symmetry (A5B1, A4B2-trans). For the choice of metal, our group had typically looked 
at the first-row (3d) elements Cr, Mn, Fe, and Co. To accelerate predictions for and 
understand the property-determining function, we had developed tools such as mAD to 
run DFT calculations on GPUs using MolSimplify, used RACs with KRR or neural 
networks to predict properties such as redox potential and spin-splitting energy,5 made 
efforts to quantify uncertainty with machine learning methods, and developed various 
theoretical insights and design principles.6 Additionally, for the arrow flowing out of the 
property-determining function, we had developed static and dynamic classifiers to 
truncate DFT jobs that are not likely to converge7. 

Although our efforts provided great coverage of factors that contribute to faster 
and broader discovery, more still had to be done in order to make property predicions in 
new regions of chemical space. Thus, in this thesis, I have focused on expanding 
database coverage by studying 4d metals, new symmetry classes, and chemically-
synthesizable compounds.  Additionally, after gaining insights from this data and 
developing machine learning models in these new chemical spaces, I was interested in 
translating these models into a form usable by experts, leading to the web tools 
molSimplify, MOFSimpify, and Ligandify. In the following sections, I provide a 
motivation and broad overview of the three main aims of my thesis. 

1.2 Database population: symmetry classes and isovalents 

Symmetry classes and isovalents are of interest because they can improve 
tunability of the ligand field as well as provide access to interesting and new chemistries. 
Previously, our group only looked at a limited set of 3d complexes with high-symmetry 
classes such as A6, A5B1, and A4B2-trans, which are shown in Figure 1-2.  

Symmetry classes are hard to study experimentally because of synthetic 
restrictions (i.e. some arrangements of ligands are difficult to create in the lab). They 
are also hard to study computationally because of combinatorial explosion; according to 
Polya’s Enumeration theorem, a total of 29,260 complexes can be made from a pool of 
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10 ligands.4 When the effect of the metal center (i.e., 3d vs. 4d) or ligand connecting 
atom (i.e., 2p vs. 3p) is taken into account, this number increases drastically. By 
populating a database containing diverse TMCs spanning metal identities and ligand 
field symmetries, we can improve the robustness of our machine learning models in 
broader areas of chemical space. 

1.3 Machine learning for property prediction 

Machine learning for property prediction has emerged as a promising way to 
accelerate inorganic chemical design, particularly in the context of transition metal 
complexes (TMCs) and metal-organic frameworks (MOFs). Traditional computational 
approaches, such as density functional theory, can be resource-intensive and time-
consuming, making it infeasible to explore this immense chemical space exhaustively. 
Machine learning models offer a powerful and efficient alternative, enabling rapid and 
accurate property prediction based on the patterns and relationships present in the 
training data. By employing machine learning techniques, we can effectively navigate 
the expansive inorganic chemical design space, accelerate the discovery of promising 
TMCs and MOFs, and ultimately contribute to advancements in sustainability and 
chemical synthesis. In this work, the data generated for isovalents and structures 
derived from the Cambridge Structural Database (CSD) was used to create machine 
learning models to predict 4d TMC properties and classify the synthesizability of novel 
complexes. 

1.4 User interaction with machine learning models 

As the methods for inorganic chemical design advance, the development of 
effective and user-friendly tools becomes increasingly essential for researchers to 
efficiently explore the vast chemical space of transition metal complexes (TMCs) and 
metal-organic frameworks (MOFs). User interactions with these models can be recorded 
to determine areas of current interest to practitioners, and the feedback from these 
interactions can be incorporated into machine learning models so that they can adapt 
and improve based on user feedback, ensuring that they remain relevant and accurate in 
an ever-evolving research landscape. In this work, MOFSimplify, molSimplify Lite, and 
Ligandify were developed to help bridge the gap between machine learning models and 
end users. 
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1.5 Thesis overview 

My thesis has made several contributions towards a comprehensive exploration of 
inorganic chemical design space, leveraging computational chemistry, machine learning, 
and web-based tools to address the challenges associated with high-throughput virtual 
screening workflows. This thesis is organized into seven chapters, each addressing a 
specific aspect of inorganic chemical discovery. 

The first three chapters set the foundation for the thesis by delving into the 
fundamental aspects of TMCs and their design. Chapter 1 introduces the problem areas 
associated with TMC design. Chapters 2 and 3 focus on the exploration of transition 
metal chemical space, with an emphasis on ligand additivity relationships and isovalent 
transition metal complex structures. These chapters provide a basis for understanding 
under-explored regions of TMC design space and illustrate ways in which chemical space 
exploration can be accelerated. 

Chapters 4 through 6 build upon the foundational knowledge by focusing on tools 
that directly enhance the HTVS process from both a computational and user-based 
perceptive. Chapter 4 discusses how parallel computing accelerates training data 
curation, which can improve the efficiency of computational approaches. Chapter 5 
introduces interactive design tools for TMCs and metal-organic frameworks 
(molSimplify Lite and MOFSimplify, respectively), allowing users to explore and provide 
feedback on machine learning models. Chapter 6 presents a novel approach to ligand 
compatibility classification using stochastic negative addition, enabling interactive 
investigation of new chemical structures, and enhancing the ability to explore new TMC 
designs. 

Finally, Chapter 7 offers recommendations for future work in the field, with a 
focus on fully autonomous workflows and the incorporation of web-based feedback into 
machine learning models. This chapter outlines the potential directions for advancing 
the state of the art in TMC design and further improving the efficiency and effectiveness 
of HTVS workflows. 
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2 Ligand additivity relationships enable 
efficient exploration of transition metal 
chemical space 

This work has previously appeared as N. Arunachalam, S. Gugler, M.G. Taylor, 
C. Duan, A. Nandy, J.P. Janet, R. Meyer, J. Oldenstaedt, D.B. Chu, and H.J. Kulik, 
Ligand additivity relationships enable efficient exploration of transition metal chemical 
space, The Journal of Chemical Physics 157, 184112 (2022). 

2.1 Introduction 

In recent years, virtual high-throughput screening (VHTS)1,2,3,4,5,6,7,8 with first-
principles density functional theory (DFT) and machine learning (ML) 
models9,10,11 ,1213,14,15 ,16,17 has greatly accelerated the discovery of new molecules and 
materials.18,19,20,21,22,23 Nevertheless, the theoretical space of all possible compounds or 
materials is so large as to challenge even the most accelerated methods, with 1030–1060 

theoretical drug-like molecules being enumerated24 ,25 ,26 ,27 ,28 ,29  from a relatively small 
number of elements and atoms.30 , 31  Within the space of theoretical transition metal 
complexes, additional variables emerge, such as the metal identity, spin, and oxidation 
state, as well as denticity of the ligands.4,9 Indeed, significant analysis has been carried 
out by Fey and co-workers in understanding the role of privileged (e.g., phosphine) 
ligands in determining transition metal complex properties.32,33,34 Jensen and co-workers 
devised elegant strategies to explore the space of favored complexes, e.g., by adjusting 
the denticity during complex optimization carried out with efficient semi-empirical- or 
force-field-based scoring.35,36,37,38 One key challenge for high-throughput screening with 
DFT of transition metal complex space is that the smallest non-trivial mononuclear 
octahedral complex consists of at least seven heavy atoms and nearly 100 electrons, also 
challenging the speed of conventional simulation techniques in comparison to readily 
computed datasets of closed-shell transition metal39 and organic molecules.40,41 Further 
compounding the challenges of exploring transition metal chemical space are potential 
issues with convergence success or the presence of multireference character.42,43,44 Thus, 
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it is attractive to identify the minimal set of explicit first-principles calculations that can 
be used to build a model of the properties of the full dataset.45,46,47 

Recently, toward the goal of exploring a more diverse transition metal chemical 
space in comparison to complexes comprising of frequently studied ligands, we devised a 
strategy for enumerating hypothetical, small (i.e., 1–2 heavy atoms per coordination 
site) ligands for mononuclear octahedral transition metal complexes. 48  These ligands 
sampled a diverse combination of coordinating atoms and their bonding environments,48 

and only a small fraction were represented in prior databases of organic molecules.25,49,50 

We showed how incorporating these molecules could improve the fidelity of artificial 
neural network (ANN) models48,51 when applied to larger, realistic complexes present in 
the Cambridge Structural Database (CSD).52 That study was limited to the properties 
of homoleptic combinations of those ligands (i.e., all ligands are the same) and therefore 
did not capture effects of mixing ligands that give rise to the compelling properties of 
many heteroleptic complexes and catalysts. Enumerating combinations of these ligands, 
however, would give rise to a combinatorial explosion, motivating strategies to 
understand which combinations are likely to be valuable or informative for a specific 
application. 

Despite the challenge of combinatorial explosion, there are some established 
precedents of ligand additivity 53  that suggest that the properties of heteroleptic 
complexes can be inferred from combinations of homoleptic complexes.54 For example, 
ligand additivity has been demonstrated in force field and DFT energetics54 and DFT 
errors. 55  It has also been used in correction schemes, such as the DBLOC 
method. 56 , 57 , 58 , 59  We also recently exploited additivity to learn the degree of 
multireference character in a complex from the multireference character in its 
constituent ligands.60 Additivity is also exploited heavily in fragmentation methods61,62 

and locally correlated methods.63,64 In the present work, we carry out a survey of the 
symmetry classes and ligand diversity present in the CSD to confirm that the theoretical 
chemical space is orders of magnitude larger than the number that have been 
characterized. Motivated by the need to devise efficient but accurate methods for the 
exploration of chemical space, we introduce improved interpolation schemes for 
heteroleptic compounds to incorporate cis and trans effects. Finally, we demonstrate 
how these approaches can be used for efficient but accurate discovery of transition metal 
complexes with targeted properties. 
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2.2 Methods 

2.2.1 Curation from the Cambridge Structural Database 

A set of 85 575 mononuclear octahedral transition metal complexes were curated 
from the Cambridge Structural Database52 (CSD) version 5.41 (November 2019). This 
procedure employed both the Conquest graphical interface to the CSD and the Python 
application programming interface, in all cases applied to the v5.41 dataset with 
complexes from the November 2019 dataset with both the March 2020 and May 2020 
data updates (Appendix A, Text A-1). For the complexes identified as octahedral, 
equatorial planes and axial positions were assigned based on prior reported rules.65 To 
identify the symmetry of the ligands, unique ligands were identified by removing the 
metal atom to create independent molecular graphs for each ligand. Each ligand was 
identified as chemically unique within a given octahedral complex if it differed from all 
other ligands in the complex by (1) heavy atom chemical symbols, (2) metal-connecting-
atom element, or (3) more than three hydrogens (Appendix A, Text A-2). The 
symmetry of the complex was identified by distinguishing ligand denticity overall and in 
the equatorial plane along with the total number of unique ligands and whether ligands 
that were trans to each other were identical (Appendix A, Text A-2). This led to a 
nomenclature for 66 ligand symmetry classes (Appendix A, Text A-2). 

To identify the set of unique ligands in each complex, a dummy atom with 
identical connectivity to the metal with an atomic number of 0 was introduced to 
preserve the connectivity of the ligands to the metal without preserving the metal 
identity. For this ligand and dummy atom combination, the atomic-number and bond-
order weighted connectivity matrix determinant was calculated as described in Ref. 65. 
We also computed the determinant of the atomic-number and bond-order weighted 
connectivity matrix where the off-diagonal elements, ZiZj (i ≠ j), were set to the CSD-
assigned bond order for each ligand. Ligands with both distinct atomic-number-weighted 
connectivity matrix determinants and bond-order-weighted connectivity matrix 
determinants were identified as distinct ligands across monometallic transition metal 
complexes in the CSD. A second search was carried out by requiring that oxidation 
states and charges be assigned by the uploader along with no disorder (i.e., as judged by 
the CSD flags) or missing hydrogen atoms in the structure (i.e., none were added by the 
CSD algorithm), leading to 17 085 unique “computation-ready” complexes. Finally, we 
curated a subset of 1202 Fe(II)-containing “computation-ready” complexes based on the 
oxidation state reported by the uploader. From the ligands identified in this Fe(II) 
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complex set, heteroleptic calculations from CSD ligands were carried out using a 
previously developed procedure60 that enabled the assignment of the per-ligand charge. 
The goal of this curation is for subsequent analysis outlined in Sec. 3. We note that 
complementary datasets have been developed, including the tmQM dataset of 86k 
closed-shell transition metal complexes, 66  the cell2mol set of 31k inferred transition 
metal complex charges from the crystal unit cell along with 13k ligand charges,66 and 
our set of over 5k transition metal complex ligands with confident charge assignment.60 

Our rationale for curating another set of CSD transition metal complexes is threefold: 
(i) to focus on open-shell transition metal chemistry absent from some of the 
aforementioned sets, (ii) to leverage our recently developed ligand-derived charge 
scheme,60 and (iii) to primarily analyze the theoretical vs observed propensities of ligand 
types, denticities, and complex symmetries in the CSD. 

 

2.2.2 Electronic structure calculations 

DFT geometry optimizations were performed using a development version of 
TeraChem v1.9.67,68 The B3LYP697071 global hybrid functional was employed with the 
LANL2DZ72 effective core potential for transition metals and the 6-31G∗ basis73 for all 
other atoms. All transition metal complexes were studied with Fe(II) centers in low-spin 
singlet and high-spin quintet multiplicities. Singlet calculations were carried out in a 
spin-restricted formalism, while quintet calculations were unrestricted. Level shifting74 

was employed to aid self-consistent field convergence with the majority-spin and 
minority-spin virtual orbitals each shifted by 0.25 Ha. Geometry optimizations were 
carried out in the gas phase in translation rotation internal coordinates 75  using the 
BFGS algorithm. Default tolerances of 4.5 × 10−4 hartree/bohr and 10−6 hartree were 
applied in the convergence criteria for the maximum gradient and energy difference 
between steps, respectively. 

For the representative model complexes of CH3CN, H2O, CO, and NH3, initial 
structures were generated with molSimplify,51, 76 , 77  which uses OpenBabel 78 , 79  as a 
backend. The same protocol was applied to generate homoleptic complexes of the 20 
neutral ligands derived from monodentate-only, non-homoleptic Fe(II) complexes 
obtained from the CSD52 after discarding one bulky ligand, OP(Ph)3, that could not 
form a stable homoleptic structure for steric reasons. For the 36 homoleptic Fe(II) 
complexes in the CSD, the structures were directly extracted for subsequent geometry 
optimization. Heteroleptic complexes of the 12 representative ligands were also 
generated with molSimplify and optimized following the same procedure. The curated 
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CSD database and structures, as well as the scripts to generate these databases and 
structures, along with the properties of all transition metal complexes studied with DFT 
are provided on Zenodo with DOI 10.5281/zenodo.7224793.80 

2.3 Results and discussion 

2.3.1 Symmetry classes and theoretical complex space 

The diversity present in the chemical space of transition metal complexes is 
derived from the variability in the metal, its oxidation and spin state, and the chemistry 
of the coordinating ligands. Our experimental knowledge of this chemical space is 
unevenly distributed. We thus first examined the structures deposited in the CSD to 
uncover trends in the arrangement of ligands in previously characterized complexes (see 
Sec. 2). From 85 575 mononuclear octahedral transition metal complexes of which 17 
085 are identified as unique and computation-ready (e.g., have user-defined charges), the 
vast majority (95%–98%) contain no more than three unique ligands (Figure 2-1 and 
Appendix A, Table A-1). In fact, 28% of all unique computation-ready complexes are 
homoleptic, and a majority (76%) contain no more than two ligand types (Figure 2-1  
and Appendix A, Table A-1). Because the metal identity and ligand diversity are 
expected to be coupled, we also evaluated statistics on a subset of 1202 unique Fe(II) 
complexes and confirm that the preference for complexes with no more than two ligands 
is preserved and even strengthened (Figure 2-1 and Appendix A, Table A-1). We, 
nevertheless, further distinguish the denticity of these ligand types because monodentate 
ligands are theoretically compatible with a wider range of symmetries than higher 
denticity ligands (Figure 2-1). In subsequent analysis in this paper, we will only focus on 
monodentate ligands for this reason and note, therefore, that while two is the most 
common number of unique ligands, many of those ligands are bidentate and their study 
is motivated in the future. 
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Figure 2-1. Stacked, unnormalized histogram of the number of complexes in the CSD 
grouped by the number of unique ligand types and by the highest denticity of ligands in 
the complex (monodentate in brown, bidentate in gray, tridentate in orange, 
tetradentate in blue, pentadentate in green, and hexadentate in red, as indicated in the 
inset). These counts are shown for all complexes (top), unique and computation-ready 
complexes (middle), and the Fe(II) unique, computation-ready subset (bottom). 

To identify how the structures sampled in the CSD compare to the theoretical 
space of all hypothetical complexes, we enumerate the overall pool of theoretical 
complexes and the number in each symmetry class to compare to the most frequently 
characterized symmetry classes in the CSD. We applied Pólya’s enumeration theorem to 
octahedral coordination geometries to obtain all possible symmetry classes from the 
cycle index (i.e., theoretical sum) of a symmetry group (Appendix A, Text A-3).81,82,83 

The total number of complexes depends on both the number of ways the same 
stoichiometry can be arranged and the number of ways the ligands can be combined 
(Appendix A, Text A-3). For example, in (L1)4(L2)2, there is one occurrence of a four-
substitution site and one occurrence of a two-substitution site, whereas in 
(L1)2(L2)2(L3)2, there are three occurrences of a two-substitution site. In total, the 
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theoretical number of ways distinct ligands can be enumerated together leads to a large 
number of hypothetical complexes even for a small pool of ligands (Table I). 

For the trivial case of homoleptic (HO) complexes, N ligands produce N 
complexes (i.e., 12 for N = 12, Table 2-1). For up to two unique ligand types, the five 
unique symmetry classes consist of monoheteroleptic (5+1) M(L1)5(L2)1 complexes, trans 
symmetric (TS) or cis symmetric (CS) M(L1)4(L2)2 complexes, and fac symmetric (FS) 
or mer symmetric (MS) M(L1)3(L2)3 complexes (Figure 1-1 and Table 2-1). Both 5+1 
and CS/TS complexes each form N(N-1) complexes for N ligands (i.e., 132 each for N = 
12, Table 2-1). The degeneracy of the stoichiometry in FS and MS complexes gives rise 
to N(N-1)/2! complexes (i.e., 66 each for N = 12, Table I). Thus, from N = 12 ligands, a 
total of 540 complexes may be formed with up to two unique ligand types. 

 
Table 2-1 The number of theoretical complexes for each octahedral symmetry class 
considered in this work and the full octahedral space for an example single 
metal/oxidation/spin state (m= 1) with an N= 12 ligand pool. The configurations and 
isomers indicate the number of ways unique ligands can be arranged, and the cardinality 
indicates how many theoretical complexes can be enumerated. 

Name Configuration Isomers Cardinality Complexes 

HO x6 1 N 12 

5+1 x1x5 1 N(N-1) 132 

TS/CS x4x2 2 N(N-1) 264 

FS/MS x3x3 2 N(N-1)/2! 132 
CA/TA x4x4x1 2 N(N-1)(N-2)/2! 1 320 

FA/MAC/MAT x3x2x1 6 N(N-1)(N-2)/2! 3 960 

EA/DCS/DTS x2x2x2 5 N(N-1)(N-2)/3! 1 100 

Up to two ligands    540 

Up to three ligands    6 920 

Full 
  1/48 (N6 + 3N5 + 9N4 

+ 13N3 + 14N2 + 8N) 
82 160 

 
Expanding to up to three unique ligand types introduces eight additional 

symmetry classes (Figure 2-3). These include M(L1)4L2L3 cis asymmetric (CA) and trans 
asymmetric (TA) complexes; the three types of M(L1)2(L2)2(L3)2 configurations in 
equatorial asymmetric (EA), double cis symmetric (DCS), or double trans symmetric 
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(DTS) symmetries; and three M(L1)2(L2)3L3 in fac asymmetric (FA), mer asymmetric 
trans (MAT), or mer asymmetric cis (MAC) symmetries (Fig. 3). For the EA 
complexes, there are three occurrences of a two-substitution site that fulfill the EA 
definition. This combines with the DCS and DTS isomers to form a total of five isomers 
with N(N-1)(N-2)/3! possible combinations of ligands (i.e., 1100 for N = 12, Table 2-1). 
The less degenerate CA/TA complexes form a total of N(N-1)(N-2)/2! complexes for 
each of the two isomers (i.e., 1320 for N = 12, Table 2-1). Similarly, FA/MAC/MAT 
complexes can each form N(N-1)(N-2)/2! complexes in two isomers each (i.e., 3960 for N 
= 12, Table 2-1). 

In total, 6920 complexes can be formed from N = 12 ligands for the three 
symmetry classes considered here. For the same ligand pool, there is a much larger set 
of 82 160 theoretical complexes that could be created from a greater number of unique 
ligands. This analysis does not consider cases where the ligand chemistry prevents the 
formation of a complex, e.g., only monodentate and pentadentate ligands are likely to 
form the 5+1 symmetry class, whereas only monodentate, bidentate, tridentate, or 
hexadentate ligands can form HO complexes. 

 
Figure 2-2. Symmetry classes for transition metal complexes with up to two unique 
ligands, L1 and L2, from left to right and top to bottom: homoleptic (HO) M(L1)6, 
monoheteroleptic (5+1) M(L1)5L2, trans symmetric (TS) M(L1)4(L2)2, cis symmetric 
(CS) M(L1)4(L2)2, fac symmetric (FS) M(L1)3(L2)3, and mer symmetric (MS) 
M(L1)3(L2)3. For each pair of ligands, a total of two homoleptic and eight two-ligand 
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isomers can be obtained because the 5+1, trans symmetric, and cis symmetric 
complexes are unique if the stoichiometry of L1 and L2 are swapped. 

Returning to the diversity observed in complexes deposited in the CSD, we 
qualitatively observe that relatively little of the theoretical space has been sampled. As 
we have shown for a representative example, for any set of unique ligands, a much 
larger theoretical number of binary and ternary complexes can be formed in comparison 
to homoleptic complexes. Nevertheless, there are far fewer binary and especially ternary 
complexes in the CSD (Appendix A, Table A-1). Within the binary complexes, 5+1 and 
TS complexes are overrepresented in comparison to those for FS, MS, or CS based on 
our theoretical enumeration (Figure 2-4 and Appendix A, Table A-2). All ternary 
complexes are underrepresented, but those with equal stoichiometry (i.e., EA, DCS, or 
DTS) have very few examples in the CSD (Table 2-1 and Appendix A, Table A-2). If 
we simplify our analysis by focusing only on Fe(II) complexes, the same trends hold 
although Fe(II) complexes have an even greater relative number of 5+1 and TS 
complexes and a lower number of CS complexes (Figure 2-4 and Appendix A, Table 
A-2). 

 

 
Figure 2-3. Symmetry classes for transition metal complexes with three unique ligands, 
L1,L2, and L3, from left to right and top to bottom: cis asymmetric (CA) M(L1)4L2L3, 
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double cis symmetric (DCS) M(L1)2(L2)2(L3)2, trans asymmetric (TA) M(L1)4L2L3, 
double trans symmetric (DTS) M(L1)2(L2)2(L3)2, equatorial asymmetric (EA) 
M(L1)2(L2)2(L3)2, fac asymmetric (FA) M(L1)2(L2)3L3, trans mer asymmetric (MAT) 
M(L1)2(L2)3L3, and cis mer asymmetric (MAC) M(L1)2(L2)3L3. A total of 29 complexes 
can be obtained for any combination of three ligands due to additional isomers of the 
equatorial asymmetric type and those for which the stoichiometry of each ligand type is 
not equal. 
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Figure 2-4. Percent of all unique mononuclear octahedral transition metal complexes in 
the CSD with user-defined charges (top, computation-ready) and the Fe(II) subset 
[middle, Fe(II)], grouped by a symmetry class for cases with two unique ligands (left: 
5+1, cis symmetric, CS, trans symmetric, TS, fac, or mer) or three unique ligands 
(right: cis asymmetric, CA, double cis symmetric, DCS, trans asymmetric, TA, double 
trans symmetric, DTS, equatorial asymmetric, EA, fac asymmetric, FA, cis mer 
asymmetric, MAC, or trans mer asymmetric, MAT). The ratio of symmetry classes for 
the theoretical complexes from enumeration is shown at the bottom for comparison. 

An additional factor in analysis of symmetry classes is the extent to which ligand 
denticity plays a role. While enumeration is straightforward for monodentate ligands, 
higher-denticity ligands (e.g., pentadentates) may only be compatible with some of the 
symmetry classes. Indeed, over both the computation-ready CSD set and the Fe(II) 
subset, a significant number of complexes consist of higher-denticity ligands that would 
be incompatible with full enumeration (Figure 2-1 and Appendix A, Table A-3 and 
Table A-4). Some multidentate ligands are also restricted in which symmetry classes 
they can form due to rigidity, while other more flexible ligands are less restricted. 
Nevertheless, we can still conclude that there is vastly higher sampling of homoleptic 
structures. For example, tridentate ligands can be present in a homoleptic complex and 
any binary FS/MS or ternary TA/FA/MAC/MAT complex. Nearly an order-of-
magnitude more unique tridentate ligands have been characterized in homoleptic Fe(II) 
complexes in comparison to either the binary or ternary cases (Appendix A, Table A-4). 
Similar trends hold for all unique computation-ready complexes (Appendix A, Table 
A-3). Overall, the number of unique ligands for binary or ternary complexes is still lower 
than the number of unique complexes, but the gap is smaller than could be expected 
from enumeration alone (Appendix A, Table A-3 and Table A-4). 

To simplify a quantitative comparison between the theoretical space and the 
enumerated space, we focus on Fe(II) complexes with only monodentate ligands in any 
of the 14 symmetry classes considered. For this set, we identify 40 unique monodentate 
ligands present in 40 HO complexes (Appendix A, Table A-5). There are additional 48 
ligands present in binary or ternary complexes not observed in homoleptics for which we 
can confidently assign a charge to the ligand (Appendix A, Table A-5). While the 
majority of HO complex monodentate ligands were neutral, over half of the additional 
binary or ternary ligands have a non-zero charge (Appendix A, Table A-6). Thus, 
although we identify 88 unique monodentate ligands in previously synthesized Fe(II) 
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complexes, ligands not sampled in HO complexes may be incompatible with the HO 
symmetry class if they give rise to high overall complex charges. 

Taking the set of 88 ligands from any HO, binary, or ternary Fe(II) complex as 
the theoretical space for which compatibility across symmetry classes should be 
maximal, we then quantified the theoretical vs actual coverage of Fe(II) complex 
chemical space. A significant number (39%) of all HO complexes have been 
characterized. In comparison, the binary symmetry classes have been much less well 
explored, with TS complexes being the highest at 0.3% (i.e., 26 of 7656 theoretical 
complexes and Appendix A, Table A-6). The number of theoretical ternary complexes 
grows rapidly with this ligand pool, ranging from 109 736 theoretical DTS/DCS 
complexes to 329 208 FA/MAC/MAT/CA/TA complexes (Appendix A, Table A-6). In 
total, the 1202 Fe(II) complexes represent a tiny fraction of the theoretical 3 213 056 
homoleptic, binary, or ternary complexes that could form from 88 experimentally 
synthesized ligands. Of the 88 ligands, we exclude one [i.e., OP(Ph)3] from further 
analysis due to its large bulk that prevents building a homoleptic complex that remains 
intact after geometry optimization. Even if we restrict ourselves to the 56 ligands that 
are neutral, closed-shell singlets, and amenable to homoleptic complex construction, the 
theoretical space of homoleptic, binary, or ternary complexes is still large (i.e., 816 256 
complexes). Thus, we conclude that efficient strategies to infer heteroleptic properties 
from homoleptic properties are necessary to “fill in” the remainder of this unexplored 
space. 

 

2.3.2 Ligand additivity for interpolating properties of transition metal 
complexes 

We next aimed at determining the extent to which the properties of lower-
symmetry heteroleptic transition metal complexes could be inferred from those of 
higher-symmetry complexes. We constructed complexes with two to three unique ligand 
types from small sets of ligands that spanned a large range of ligand field strengths: 
weak-field water, strong-field carbonyl, and either strongfield methyl isocyanide or weak-
field ammonia. For the calculation of the adiabatic high-spin [e.g., quintet Fe(II)] to 
low-spin [e.g., singlet Fe(II)] splitting, ΔEH-L, it can be expected that the weakfield 
ligands will lead to homoleptic complexes that favor high-spin states, whereas strong-
field ligands will make homoleptic complexes that favor low-spin states. Thus, 
heteroleptic combinations of these ligands are expected to reside between the two limits. 
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One simple way to obtain estimates of the spin splitting of the heteroleptic complexes 
(e.g., with up to three unique ligand types) is to take a weighted average of the spin 
splitting of the parent homoleptic complexes, 
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(Equation 2-1) 

Indeed, we observe that heteroleptics reside between the homoleptic limits for 
spin splitting, and the linear averaging roughly holds for complexes with methyl 
isocyanide (CH3CN), H2O, and CO ligands (Figure 2-5 and Appendix A, Table A-7). 
Similar observations can be made on combinations with H2O, CO, and NH3 (Appendix 
A, Figure A-1). Nevertheless, there are significant outliers in the interpolated vs actual 
ΔEH-L, which are particularly evident when comparing heteroleptic complexes with the 
same stoichiometry and, therefore, the same prediction from a simple linear model, but 
distinct ligand symmetry (Figure 2-5). For example, the CS complex Fe(II)(H2O)4(CO)2 

ΔEH-L is predicted accurately (predicted: −7.9 kcal/mol vs calculated: −9.9 kcal/mol) 
from homoleptic interpolation (Figure 2-5 and Appendix A, Table A-8). The same 
prediction significantly overestimates the TS complex with the same stoichiometry 
(predicted: −7.9 kcal/mol vs calculated: −19.3 kcal/mol), which instead behaves much 
more similarly to the 5+1 complex, as observed in prior work84 (Figure 2-5). Overall, for 
this combination of ligands, CS or FS complexes that have one minority ligand in the 
axial position and another in the equatorial plane are much better predicted than the 
equivalent MS or TS complexes (Figure 2-5). For the case of CO, H2O, and NH3, mixing 
between weak-field NH3 and H2O is relatively accurately predicted from homoleptic 
averaging, whereas for NH3 and CO, it is the MS and TS complexes that are more 
accurately predicted than the FS or CS counterparts (Appendix A, Figure A-2, Table 
A-8, and Table A-9). 
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Figure 2-5. Calculated vs linearly interpolated ΔEH-L (kcal/mol) for Fe(II) complexes 
with pairs of any of the three ligands: CH3CN, H2O, and CO. From left to right: 
interpolation between homoleptic complexes (HO only), interpolation using homoleptic 
complexes and CS and TS complex energies (CS+TS), or interpolation using homoleptic 
complexes and FS and MS complex energies (FS+MS). Points are colored according to 
the pair of ligands they correspond to: CH3CN–H2O (green circles), CH3CN–CO (red 
squares), and CO–H2O (blue triangles), as indicated in the inset. Key isomers are 
annotated. Points provided for the fit are translucent, whereas the remaining points are 
opaque. In all panels, a black dotted parity line is shown. 

 
Figure 2-6. Calculated vs linearly interpolated HOMO level (eV) for singlet Fe(II) 
complexes with pairs of any of the three ligands: CH3CN, H2O, and CO. From left to 
right: interpolation between homoleptic complexes (HO only), interpolation using 
homoleptic complexes and CS and TS complex energies (CS+TS), or interpolation using 
homoleptic complexes and FS and MS complex energies (FS+MS). Points are colored 
according to the pair of ligands they correspond to: CH3CN–H2O (green circles), 
CH3CN–CO (red squares), and CO–H2O (blue triangles), as indicated in the inset. Key 
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isomers are annotated. Points provided for the fit are translucent, whereas the 
remaining points are opaque. In all panels, a black dotted parity line is shown. 

Because adiabatic spin splitting involves geometry optimizations in two distinct 
spin states, we also evaluated HOMO levels of each singlet complex as a property that 
only depends on a single geometry. Overall, interpolation of HOMO energies of 
heteroleptic complexes of CH3CN, CO, and H2O from homoleptic complexes reproduces 
trends between the homoleptic limits (Figure 2-6 and Appendix A, Table A-7, Table 
A-10, and Table A-11). As with spin more varied results for the HOMO level, with some 
cases occurring where the TS and FS complexes are less accurately predicted (Figure 2-6 
and Appendix A, Table A-10). Nevertheless, over the full splitting, there are key 
differences for complexes with identical stoichiometry that cannot be captured by 
interpolation from homoleptic complexes alone (Fig. 6). Interestingly, for the same 
complexes for which the CS complex had a higher (i.e., more off-parity) ΔEH-L and the 
TS complex was more like the equivalent 5+1 complex, we find range of data, the 
outliers in the HOMO level prediction are more modest than what was observed for 
ΔEH-L. These trends also hold for the complexes with NH3, H2O, and CO (Appendix A, 
Figure A-2, Table A-10, and Table A-11). 

Given the differences between CS and TS complexes despite having identical 
stoichiometry, we next identified strategies for improving the interpolation. First, we 
employed CS and TS complexes along with homoleptic complexes to predict the spin-
splitting energetics of the other binary heteroleptic complexes as follows: 

 

"(5 + 1) =
1
2
("(12) + "(34)) 

(Equation 2-2) 

where E(5+1) is the interpolated energy of the M(L1)5L2 complex from the 
M(L1)6 HO energy and the M(L1)4(L2)2 TS energy, and we select the weights of the 
averaging here and throughout to reflect the stoichiometry of the final complex (i.e., 
here, one L2 ligand and five L1 ligands). 

Similarly, we estimate the FS and MS energies as 
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(Equation 2-3) 

"($4) =
1
2
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(Equation 2-4) 

where the weights are again chosen stoichiometrically, but we assume that fac 
complexes, which contain more cis interactions than mer complexes, are a better 
predictor of cis symmetric interactions and vice versa for the trans case. In practice, this 
corresponds to computing six energies and interpolating four remaining energies for each 
pair of ligands for a computational saving of 40%. Indeed, we observe reduced mean 
absolute error (MAE) over the remaining points that are interpolated (2.4 kcal/mol vs 
5.1 kcal/mol) in comparison to the HO-only interpolation (Figure 2-5 and Appendix A, 
Table A-8 and Table A-9). In particular, FS complexes of CO and H2O are now 
correctly predicted to be much more low-spin-directing than the MS complex of the 
same stoichiometry (Figure 2-5). The HOMO levels for these and other complexes are 
also improved (Appendix A, Table A-10 and Table A-11). For example, the modified 
interpolation is able to capture the fact that MS Fe(II)(CO)4(H2O)2 has a shallower 
HOMO level than its FS counterpart (Figure 2-6). Nevertheless, not all points are 
uniformly improved by this interpolation. For the case of NH3, CO, and H2O where the 
interpolation already performed well, some points such as ΔEH-L for 5+1 
Fe(II)(CO)5(NH3) are slightly worsened in the modified interpolation (Appendix A, 
Figure A-1). For the same complex, the HOMO level is equivalently predicted by both 
interpolation schemes, and most HOMO level estimates are improved (Appendix A, 
Figure A-2). Overall, errors are on average significantly lower for all properties and sets 
of ligands considered when the modified interpolation expressions are employed. 

Although the CS/TS-derived interpolation schemes greatly reduce errors in 
estimating the energetics of heteroleptic complexes, they still require significant 
computational overhead. Thus, we next aimed at identifying if FS and MS complexes, 
which contain three ligands cis to each other or two ligands cis and two sets of ligands 
trans, respectively, could be used instead in the interpolation (see Figure 2-2). If the FS 
and MS complexes impart sufficient information, using them in an interpolation scheme 
along with homoleptic complex properties corresponds to evaluating four properties 
(e.g., energies) to predict six properties for a computational savings of 60%. In this 
interpolation scheme, we estimated the complex properties from FS and MS complexes 
as follows: 
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(Equation 2-5) 

where E(5+1) is the interpolated energy of the M(L1)5L1 complex from the 
M(L1)6 HO energy and the M(L1)3(L2)3 FS energy, and the weights are selected based on 
stoichiometry. Similarly, we obtain expressions for the CS and TS complexes as 
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(Equation 2-6) 
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(Equation 2-7) 

where the weights are chosen to match the stoichiometry of the final complexes 
and the fac complex is again chosen to better mimic the cis complex. Indeed, using this 
approach, we achieve errors only slightly larger than that for the CS/TS averaging 
scheme, with the added benefit of requiring fewer energies to obtain the same fidelity of 
the interpolation (Figure 2-5). For example, the higher spinsplitting energy of CS 
complexes relative to TS complexes is captured here because it can be directly derived 
from the strength of the high-spin directing character of the FS complex relative to that 
of the MS complex (Figure 2-5). Mixing of the weak-field NH3 and H2O ligands, which 
had slightly worsened with CS/TS interpolation, is also significantly improved in this 
scheme, and the other sets of complexes are of comparable accuracy (Appendix A,  
Figure A-1, Table A-8, and Table A-9). While, CS/TS interpolation tended to 
underestimate the HOMO level, FS/MS interpolation slightly overestimates HOMO 
levels, but errors are much smaller than for the HO-only interpolation (Figure 2-6 and 
Appendix A, Table A-10 Table A-11). For the set of ligands including ammonia, almost 
all points are predicted to comparable or slightly improved values (Appendix A, Figure 
A-2). Thus, HO-only interpolation provides a highly efficient scheme for predicting 
heteroleptic transition metal complexes, but the best trade-off in accuracy and 
computational cost for interpolation is likely achieved through estimating properties 
using information from FS and MS complexes. 

We next investigated whether we could generalize our observations to 
heteroleptics with three unique ligand types (Figure 2-3). This extension is motivated by 
the fact that 96% of all mononuclear transition metal complexes in the CSD contain no 
more than three ligand types, and over 99% of Fe(II) complexes contain three or fewer 
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ligand types (Figure 2-1 and Appendix A, Table A-1). Expansion to three ligand types 
introduces 29 complex energies that need computation for any set of three ligands. HO-
only averaging performs poorly here for complexes that are mixtures of CH3CN, CO, 
and H2O, with a large difference between CA and TA complexes of H2O and CO being 
treated completely equivalently in this scheme (Figure 2-7). Similar differences in TA 
and CA HOMO levels are also missed in this averaging scheme (Figure 2-8). Generally, 
the CA complex spin-splitting energies are better predicted by the homoleptic averaging 
than the TA are for both ternary complexes with CH3CN and with NH3 (Figure 2-7 and 
Appendix A, Figure A-3, Table A-12, and Table A-13). For the HOMO level, results are 
more varied, with the HOMO energies of the CH3CN ternary complexes being 
underestimated, while those of NH3 ternary complexes are overestimated (Figure 2-8 and 
Appendix A, Figure A-4, Table A-14, and Table A-15). 
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Figure 2-7. Calculated vs linearly interpolated ΔEH-L (kcal/mol) for Fe(II) complexes 
with at least one each of three ligands: CH3CN, H2O, and CO. From left to right: 
interpolation from homoleptic complexes (HO only), interpolation using homoleptic 
complexes and CS and TS complex energies derived from pairs of ligands (CS+TS), or 
interpolation using homoleptic complexes and FS and MS complex energies derived from 
pairs of ligands (FS+MS). Points are colored according to the ligand with the highest 
stoichiometric coefficient: H2O (red circles), CO (gray squares), and CH3CN (blue 
diamonds), or equal weight of all ligands (green triangles), as indicated in the inset. Key 
isomers are annotated. In all panels, a black dotted parity line is shown. 

 
Figure 2-8. Calculated vs linearly interpolated HOMO level (eV) for singlet Fe(II) 
complexes with at least one each of three ligands: CH3CN, H2O, and CO. From left to 
right: interpolation from homoleptic complexes (HO only), interpolation using 
homoleptic complexes and CS and TS complex energies derived from pairs of ligands 
(CS+TS), or interpolation using homoleptic complexes and FS and MS complex energies 
derived from pairs of ligands (FS+MS). Points are colored according to the ligand with 
the highest stoichiometric coefficient: H2O (red circles), CO (gray squares), and CH3CN 
(blue diamonds), or equal weight of all ligands (green triangles), as indicated in the 
inset. Key isomers are annotated. In all panels, a black dotted parity line is shown.  

Thus, we next investigated interpolation schemes that reincorporated CS/TS or 
FS/MS complex energies of the binary heteroleptics. Interpolation of these 29 energies 
from 12 CS/TS and 3 HO energies or 6 FS/MS and 3 HO energies would still represent 
significant computational savings. The binary complex energies can also be reused for 
ternary complexes that share a pair of ligand types, as is the case in the two worked 
examples presented here. Next, we obtained expressions for all eight symmetry classes of 
heteroleptics with three ligand types from energies derived from only either FS/MS or 
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CS/TS complexes. Specifically, the FS/MS-interpolated expressions for these 
heteroleptics are as follows: 
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(Equation 2-13) 
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where the third ligand in the EA complex is the one that is trans to itself, so 
energies involving that ligand are derived from the binary MS complexes, whereas the 
remaining components are derived from FS complexes. Analogous expressions were also 
obtained for the CS/TS energetics (Appendix A, Text A-3). We again obtained these 
expressions by identifying the most representative interactions (i.e., cis or trans and fac 
or mer) in the final ternary complex and matching the stoichiometry of the resulting 
complex. Overall, both interpolation schemes significantly improve the estimation of 
both spin splitting and HOMO level energies for both sets of ternary complexes in 
comparison to HO-only interpolation (Figure 2-5, Figure 2-6 and Appendix A, Figures 
A-3 to A-4 and Tables A-14 to A-16). Differences in CA and TA complex properties are 
much better predicted by both interpolation schemes, with the CS/TS scheme 
performing best for the combination that includes CH3CN (Figure 2-5 and Figure 2-6). 
While this may be expected as a generalization of observations on the binary 
heteroleptics, it is noteworthy that trends in the fully equivalent stoichiometries (i.e., all 
three EA isomers, DCS, or DTS complexes) are reasonably well predicted by the 
improved schemes, whereas they were indistinguishable with simple linear interpolation 
because they differ solely by cis vs trans positioning effects (Figure 2-5 and Figure 2-6). 
Overall, errors for the interpolation scheme using FS/MS ligands are sufficiently low to 
warrant its use in chemical space exploration (Appendix A, Table A-16). We have thus 
demonstrated how over a set of three ligands, nine explicit calculations can be used to 
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interpolate the properties of 18 binary and 29 ternary complexes to around 2 kcal/mol 
accuracy in spin-splitting energies or 0.1–0.2 eV accuracy in orbital energy levels. 

 

2.3.3 Interpolation of chemical space from experimentally characterized 
complexes 

Given the strength of the interpolative trends we observed, we chose Fe(II) 
complexes from the CSD to explore the potential of interpolation from previously 
synthesized complexes. For these 1202 complexes, the majority (661) are homoleptics, 
followed closely by binary complexes (407) and ternary complexes (129), with only six 
having more ligand types (Figure 2-4 and Appendix A, Table A-4). We restrict our 
analysis of chemical space interpolation to monodentate ligands from complexes of each 
symmetry type that only contain monodentate ligands to simplify the interpolation 
process because higher-denticity ligands impose geometric constraints that make them 
incompatible with certain symmetry types. Nevertheless, we note that there are a 
significant number of monodentate ligands that only appear in combination with 
higherdenticity ligands (Appendix A, Table A-4 and Table A-5). From the set of 
monodentate-only complexes, we identified 40 unique ligands already present in 
homoleptic complexes along with 48 additional unique ligands present in monodentate-
only binary and ternary complexes for which we could assign a charge following the 
scheme introduced in Ref. 60. While the procedure is outlined in detail in Ref. 60, we 
reiterate that the procedure only assigns ligand charges if there are sufficient copies of 
that ligand in multiple complexes from which a consistent, single charge can be 
obtained. In practice, this leads to consistency with the octet rule as well.60 Of the set of 
88 ligands, only 56 are assigned a neutral charge and closed-shell electronic structure 
and deemed sterically feasible for homoleptic calculations [i.e., excluding only the 
neutral OP(Ph)3 ligand]. 

We then computed the adiabatic spin-splitting energies and singlet HOMO levels 
of all 56 homoleptic Fe(II) complexes (see Sec. II). This set is strongly biased toward 
high-spin structures, with only a few ligands giving rise to low-spin ground states 
(Figure 2-9 and Appendix A, Figure A-5 and Table A-17). The majority of spin-splitting 
energies are in the range of −30 to 0 kcal/mol, whereas a minority of complexes are low-
spin (Figure 2-9). Only one complex, Fe(II)(CO)6, which was present in our study in 
Sec. III B, has a HOMO level deeper than −16 eV, and no complexes have intermediate 
HOMO levels (ca.−14 eV) while also sampling neardegenerate spin states (Figure 2-9). 
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While the preference for high spin could be attributed to the strong sensitivity of ΔEH-L 

to the choice of the functional,85,86,87,88,89,90,91,92,93,94 reducing the amount of Hartree–
Fock exchange (here, to 10% to exaggerate the effect in comparison to 15% 
recommended in Ref. 88) will not significantly alter the observation that there are 
regions of the HOMO level and ΔEH-L values that homoleptic complexes rarely sample 
(Appendix A, Figure A-6). 

 

 
Figure 2-9. The ΔEH-L (in kcal/mol) vs singlet HOMO level (in eV) for 56 homoleptic 
complexes (orange circles) and HO-only interpolation of all possible binary and ternary 
complexes colored by frequency from purple (low) to yellow (high). 1D histograms of 
each property are shown at top and right with bin widths of 2 kcal/mol and 0.25 eV, 
respectively, along with a kernel density estimate of the interpolated space shown as a 
dark blue line. A targeted zone of −4 to 4 kcal/mol for ΔEH-L and −14.0 to −13.0 eV for 
the HOMO is annotated as a light blue square. 

We next interpolated estimates for the 816 200 binary and ternary complexes 
from the 56 homoleptic complexes using the HO-only averaging scheme (Figure 2-9). By 
definition, this interpolation scheme provides rough estimates of which ligand 
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combinations will enrich ΔEH-L/HOMO energetic pairings not observed in the 
homoleptic set (Figure 2-9). Nevertheless, this approach provides only a coarse estimate 
of the energetics in comparison to interpolation schemes that use knowledge of binary 
complex energetics. However, even for the most data-efficient approach of FS/MS-
derived interpolation, a pool of 56 ligands would require 3080 explicit FS/MS 
calculations to achieve high-fidelity predictions for 816 200 complexes (see Table 2-1). 
Thus, we identified a way to use the HO-only interpolation to reduce the number of 
unique complexes required to achieve high fidelity within a target region. 

First, we select a targeted region of ΔEH-L values in the range of −4.0 to 4.0 
kcal/mol and HOMO levels in the range of −14 to −13 eV. This region was selected 
because no homoleptic complexes were present in this range, but interpolation of the 
space predicted that heteroleptic complexes would be found there. These complexes 
could be of interest in chemical discovery applications that target spin-crossover (SCO) 
candidates (i.e., with near-degenerate spin states) with good oxidative stability (i.e., 
deep HOMO levels). We primarily select these two metrics as an illustrative example for 
simultaneous screening because few SCOs have deep HOMO levels. Next, we identify 12 
common ligands from the parent homoleptic complexes that are predicted to give rise 
most frequently to binary and ternary complexes in the targeted zone on the basis of the 
simple HO-only model (Figure 2-10 and Appendix A, Table A-18 and Figure A-7). 
These ligands consist of common ligands from our original set (i.e., CO, H2O, CH3CN, 
and NH3) but also introduce new chemistry (e.g., S-coordinating 
dimethylthioformamide, DMTF, and 2-chloropyrazine, ClPyz, Appendix A, Table A-18). 
From this set, only 132 additional FS/MS complexes need to be studied beyond the 12 
homoleptic complexes we already computed to infer the 6776 additional HOMO level or 
ΔEH-L properties at higher fidelity than HO-only averaging (see Table 2-1). We carried 
out geometry optimizations of these 132 complexes and used their properties to evaluate 
the revised interpolated HOMO level and ΔEH-L values over this subset. Evaluating this 
subset also provides a validation of the accuracy of the homoleptic averaging over a 
larger set of ligands. Over this set, we observe that errors are comparable to the earlier 
tests (i.e., MAE of 4 kcal/mol), and homoleptic averaging is generally a good predictor 
of ΔEH-L (Appendix A, Table A-19 and Figure A-8). For HOMO level predictions, there 
are more points that differ from the interpolated values, leading to higher MAEs (0.8 
eV) than observed over our representative test ligands (Appendix A, Figure A-8 and 
Table A-19). 

Nevertheless, the calculations on FS and MS complexes also highlight the limits 
of homoleptic averaging for seeking targeted properties. Of the 132 FS or MS 
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calculations carried out, three are found to be in our targeted zone, MS Fe(II) 
(MeCN)3(NH3)3 and both FS and MS Fe(II)(CH3CN)3(MeOH)3 (Appendix A, Table 
A-20). None of these three complexes were predicted to be in the zone from homoleptic 
averaging alone, with the MS Fe(II)(MeCN)3(NH3)3 ΔEH-L underestimated (predicted: 
−7.3 kcal/mol vs actual −3.6 kcal/mol), while FS/MS Fe(II)(CH3CN)3(MeOH)3 ΔEH-L 

was overestimated (predicted: 9.0 kcal/mol vs 2.9 and −0.8 kcal/mol, respectively, 
(Appendix A, Table A-20). For these same complexes, the homoleptic averaging 
predicted HOMO levels very well, within around 0.1 eV (i.e., lower error than for ΔEH-

L, (Appendix A, Table A-20). 
Returning to the properties predicted from FS/MS-interpolation, we identified a 

total of three additional binary complexes predicted to be in the targeted zone from 
FS/MS-interpolation but not in the targeted zone according to HO-only interpolation 
and we computed their properties (Fig. 10). These complexes are 5+1 
Fe(II)(MeCN)5(CO) and CS/TS Fe(II) (ClPyz)4(CO)2 (Figure 2-11 and Appendix A, 
Table A-20). Indeed, all three of these complexes have HOMO levels in the targeted 
zone, while the ΔEH-L values are close to [4.9–5.7 kcal/mol for CS/TS 
Fe(II)(ClPyz)4(CO)2] or in the targeted zone [1.5 kcal/mol for 5+1 Fe(II)(MeCN)5(CO), 
Appendix A, Table A-20]. For CS/TS Fe(II)(ClPyz)4(CO)2, homoleptic averaging had 
underestimated both the ΔEH-L and HOMO level (i.e., out of the zone at −15.32 eV) 
and could not distinguish between CS and TS isomers (Appendix A, Table A-20). 
Although FS/MS interpolation slightly underestimated the ΔEH-L values for CS/TS 
Fe(II)(ClPyz)4(CO)2, the errors are within what we had observed over other sets. In 
addition to shifting which compounds are predicted to fall within the target zone, the 
difference between the HO-only to FS/MS interpolation schemes causes some regions of 
property space to be predicted to be enriched, while others are predicted to be depleted 
(Figure 2-10). 
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Figure 2-10. Left and middle: The ΔEH-L (in kcal/mol) vs singlet HOMO level (in eV) 
for 12 homoleptic complexes (orange circles) and HO-only (left) or FS/MS-based 
(middle) interpolation of all possible binary and ternary complexes colored by frequency 
from purple (low) to yellow (high). The FS/MS complex energies are shown as pink 
circles. Right: The difference (i.e., HO-only minus FS/MS-based interpolation) of the 
two 2D histograms plotted from negative (blue, −81) to positive (red, 81). A targeted 
zone of −4 to 4 kcal/mol for ΔEH-L and −14.0 to −13.0 eV for the HOMO is annotated 
as a light blue square. 

 
Figure 2-11. Properties of eight binary (red or green) and six ternary (orange or blue) 
complexes in the validation set for HO-interpolation (circles) and FS/MS-augmented 
interpolation (squares) for ΔEH-L (in kcal/mol, left) and the HOMO level (in eV, right). 
The targeted zone for each quantity is shown as a turquoise square, and three 
representative complexes are shown in the inset with their symmetry class, and the 
associated points are indicated with gray arrows. Structures are colored as follows: 
brown for Fe, gray for C, blue for N, white for H, green for Cl, red for O, and yellow for 
S. A dotted parity line is also shown. 

As a control, we also identified two complexes predicted to be in the zone by the 
HO-only interpolation but out of zone by FS/MS-interpolation, CS/TS 
Fe(II)(MeOH)4(CH3CN)2 (Appendix A, Table A-20). The homoleptic averaging predicts 
the ΔEH-L value for both complexes to be −2.6 kcal/mol, while the calculated ΔEH-L 

values are significantly lower (−9.1 and −13.9 kcal/mol). The FS/MS interpolation 
captures well the relative CS/TS energetics in both this case and the in-zone example 



57 
 

and only slightly overestimates the ΔEH-L value (Appendix A, Table A-20). Overall, 
FS/MS-interpolation MAEs for these binary complexes are low (2.5 kcal/mol for ΔEH-L 

and 0.1 eV for HOMO levels) and less than half that observed from HO-only averaging 
(Appendix A, Table A-20). 

As a more stringent test of our FS/MS interpolation scheme, we also selected six 
representative ternary complexes predicted to be in the targeted zone from FS/MS 
interpolation but out of the targeted zone when estimated with homoleptic interpolation 
(Figure 2-11 and Appendix A, Table A-21). All complexes were generally predicted to 
be more high-spin favoring by homoleptic averaging than predicted from FS/MS 
interpolation, and several were also predicted to have deeper HOMO levels than the 
targeted region (Appendix A, Table A-21). Over this set, explicit DFT calculations show 
that five of the complexes have ΔEH-L values in the targeted zone and four have HOMO 
levels in the targeted zone (Appendix A, Table A-21). These include FA 
Fe(II)(ClPyz)3(CO)2(DMTF), which was predicted to be strongly HS by homoleptic 
averaging (ΔEH-L = −9.0 kcal/mol) but was much closer to the FS/MS-interpolated 
value (calculated ΔEH-L = −2.2 kcal/mol vs FS/MS ΔEH-L = −0.1 kcal/mol, Appendix 
A, Table A-21). For the worst-performing example, FA Fe(II)(DMTF)3(CO)2(H2O), 
FS/MS interpolation overestimates ΔEH-L by 5 kcal/mol (−3.0 kcal/mol vs −8.2 
kcal/mol) and predicts a deeper HOMO level (−13.20 eV vs −12.55 eV, Appendix A, 
Table A-21). This could be due to the weak coordination of the metal by water, which 
leads to a more stabilized high-spin state. Performance of FS/MS interpolation on the 
remaining CA and TA complexes ranges from good (∼2–3 kcal/mol errors) to 
exceptional in the case of CA Fe(II)(ClPyz)4(CNH)(NH3) where errors on ΔEH-L are 
below 0.1 kcal/mol and the HOMO level are around 0.05 eV (Appendix A, Table A-21). 
Overall errors are low from FS/MS interpolation at around 2.5 kcal/mol for ΔEH-L and 
0.4 eV for the HOMO level, roughly half their values from homoleptic averaging. These 
results demonstrate that coarse interpolation of large spaces with homoleptic complexes 
can be followed up by improved interpolation using selected FS/MS compounds to 
identify the most promising binary or ternary complexes for explicit calculation. Overall, 
the demonstrated approach represents a data-efficient strategy to infer properties across 
large compound spaces with systematically improvable fidelity. 

2.4 Conclusions 

A large-scale analysis of the mononuclear octahedral complexes deposited in the 
CSD revealed a propensity toward specific, higher symmetry classes. In addition, few 
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complexes contained more than three unique ligand types. To assess the relative 
diversity of these complexes compared to the enumerated chemical space, we obtained 
expressions for the theoretical number of complexes of the five binary and eight ternary 
symmetry classes for octahedral complexes. We showed that even for a relatively small 
number of neutral, monodentate ligands present in Fe(II) complexes, the total 
theoretical space of 816 200 binary and ternary complexes far exceeded those that had 
been characterized in the CSD. 

An aim of identifying which uncharacterized compounds are most likely to be 
valuable or informative motivated our evaluation of interpolative schemes to determine 
the extent to which heteroleptic complex properties could be inferred from parent 
homoleptic complexes. Over representative test cases, we observed that a linear 
weighted averaging of homoleptic properties could reasonably (to ∼4 kcal/mol for ΔEH-L 

and 0.24 eV for the HOMO level) predict properties of binary and ternary heteroleptic 
complexes. We demonstrated a refinement of the approach to be able to distinguish 
isomers (e.g., CS vs TS or CA vs TA) by using expressions that also incorporated either 
CS/TS or FS/MS binary complexes at a slightly higher computational cost but with 
errors that were half as large (∼2 kcal/mol for ΔEH-L and 0.15 eV for the HOMO level). 
The most data-efficient approach required four FS/MS and three homoleptic energies 
(i.e., 7 total) to infer 18 binary and 29 ternary complex properties. 

Finally, we demonstrated a two-stage discovery approach to leverage and validate 
our interpolative schemes. We first used 56 homoleptic Fe(II) complexes composed of 
neutral, closed-shell monodentate ligands to infer the properties of 816 200 binary or 
ternary complexes of these ligands using HO-only averaging. We then defined a targeted 
zone of the HOMO level and ΔEH-L that contained none of the homoleptic complexes. 
To avoid explicit calculations for all (∼3000) FS/MS complexes needed to achieve high 
fidelity over the full range of ligands, we then refined our analysis to the top 12 most 
frequently occurring ligands predicted to be in the targeted zone. From this set, we 
studied 66 each of FS and MS complexes to refine our interpolation of 6776 complexes. 
This approach helped us to identify 3 FS/MS complexes in the targeted zone that had 
not been predicted by homoleptic averaging alone. It also had a higher validation rate 
for binary and ternary complexes than homoleptic averaging, with all FS/MS-
interpolation predicted complexes residing in the targeted zone or just outside it. 
Overall, errors for ΔEH-L of around 5 kcal/mol with homoleptic averaging and 2 
kcal/mol with FS/MS-interpolation are also comparable to prior machine learning (i.e., 
artificial neural network) model predictions on similar datasets.51 Thus, this approach 
represents a promising multi-stage strategy for efficient chemical space exploration at 
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low cost: an initial coarse interpolation from homoleptic complexes can be systematically 
refined by incorporating cis and trans isomer effects over a smaller subspace of ligands. 
While demonstrated here for magnetic and orbital energy properties, this approach is 
expected to have similar applicability in predicting other properties where ligands can be 
expected to behave in an approximately additive manner, such as in redox potentials or 
catalysis. This observed additivity could also be integrated into machine learning model 
property predictions or used synergistically to augment datasets for machine learning. 
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3 Isovalent transition metal complex 
structures demonstrate additional 
trends in chemical space 

Aspects of this work related to 3d/4d transition metal complexes have previously 
appeared in D.R. Harper, A. Nandy, N. Arunachalam, C. Duan, J.P. Janet, and H.J. 
Kulik, Representations and strategies for transferable machine learning improve model 
performance in chemical discovery, The Journal of Chemical Physics 156, 074101 (2022) 
and A. Nandy, D.B. Chu, D.R. Harper, C. Duan, N. Arunachalam, Y. Cytter, and H.J. 
Kulik, Large-scale comparison of 3d and 4d transition metal complexes illuminates the 
reduced effect of exchange on second-row spin-state energetics, Physical Chemistry 
Chemical Physics 22, 19326 (2020), and are cited accordingly. 

3.1 Introduction 

In 2019, our group was interested in exploring second row transition metals 
because their database coverage was sparse compared to 1st row transition metals. A 
systematic exploration of complexes containing 2nd row metals could be interesting 
because it can highlight new ways to think about molecular representations (e.g. for 
machine learning), and bring new types of chemistry into light.  

As a first step towards studying 2nd row transition metal complexes, we looked at 
low, intermediate, and high-spin states for Mo, Tc, Ru, and Rh centers with oxidation 
states II and III. We chose these because they were one period below the existing metals 
that mAD previously had full support for, i.e. Cr, Mn, Fe, and Co. Analogously, we 
were interested in the effect of 2p vs 3p ligands, and performed an analysis of property 
changes between complexes with 3d or 4d metals combined with 2p or 3p ligands. 
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3.2 Methods 

3.2.1 Data set construction – 3d/4d 

We studied the effect of HF exchange on the spin-state ordering of octahedral 
TMCs with a single mid-row transition-metal center. We compared properties of TMCs 
comprised of first-row (i.e., 3d valence) Cr, Mn, Fe, and Co to second-row (i.e., 4d 
valence) Mo, Tc, Ru, and Rh (Figure 3-1). In all cases, we calculated properties of metal 
centers in formal M(II) or M(III) oxidation states to ensure differences in spin state 
correspond to differences in d orbital occupations (Figure 3-1). The TMCs were 
evaluated in up to three spin states: low-spin (LS), intermediate-spin (IS), and high-spin 
(HS), where we defined the IS and HS states as those that differ from the LS state (i.e., 
with ls unpaired electrons) by two more (i.e., ls+2) or four more (i.e., ls+4) unpaired 
electrons, respectively. We then computed the gas phase, adiabatic spin-splitting energy: 
between the LS and HS states, ΔEH-L, as well as between the IS state and either the LS 
or the HS state (i.e., ΔEH-I and ΔEI-L). The nominally d3 Cr(III)/Mo(III) and d7 
Co(II)/Rh(II) were evaluated only in LS doublet and IS quartet spin multiplicities (i.e., 
also the highest accessible spin state), and only ΔEI-L was computed (Figure 3-1). The d5 
metals (i.e., Mn(II)/Tc(II) or Fe(III)/Ru(III)) were studied in LS doublet, IS quartet, 
and HS sextet states (Figure 1). Analogously, d4 (i.e., Mn(III)/Tc(III) or Cr(II)/Mo(II)) 
and d6 (i.e., Fe(II)/Ru(II) or Co(III)/Rh(III)) metals were calculated in LS singlet, IS 
triplet, and HS quintet states (Figure 3-1). 

 

 
Figure 3-1. (top) Qualitative diagrams of electron configurations in low-spin (LS), 
intermediate-spin (IS), and high-spin (HS) states for the mononuclear octahedral 
transition-metal complexes studied in this work (schematically shown at left). For both 
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d3/d7 and d4/d6 M(II) or M(III) complexes, the additional electrons for the later 
transition metal are shown in red, and the electrons that apply to both states are shown 
in blue. The d3 or d7 complexes do not have a defined HS state. (bottom) The ten main 
monodentate ligands studied in this work ordered by their increasing ligand field 
strength, which tunes the octahedral field splitting (schematically shown at left). Atoms 
in the ball-and-stick representation are colored as follows: H in white, C in gray, N in 
blue, O in red, F in light blue, P in orange, S in yellow, and Cl in green. 

We calculated properties of complexes formed from combinations of ten small, 
monodentate ligands that spanned ligand field strengths and coordinating element 
identities. Negatively charged halides (Cl- and F-) ions are known1 to have among the 
weakest field strength, while several others (i.e., phosphine, carbonyl, and cyanide) have 
among the highest field strengths (Figure 3-1). Intermediate behavior is expected of the 
remaining (i.e., water, ammonia, hydrogen sulfide, acetonitrile, and methyl isocyanide) 
ligands (Figure 3-1). In addition to homoleptic complexes, heteroleptic complexes were 
formed from up to two ligands (i.e., L1 and L2). Both M(L1)4(L2)2 TMCs with the two 
minority L2 ligands either trans (i.e., aligned 180° in the TMC) or cis (i.e., 90° in the 
TMC) were studied along with M(L1)5(L2) TMCs.  

 

3.2.2 Electronic structure calculations – 3d/4d 

Calculations on mononuclear, octahedral TMCs studied in this work followed an 
established protocol.2,3 All initial structures were generated using molSimplify4,5,6, which 
employs OpenBabel7,8 as a backend for ligand structure generation. These calculations 
were automated and checked for fidelity with molSimplify automatic design (mAD)2,9. 
All TMCs were geometry optimized with DFT using a development version of 
TeraChem. 10 , 11  For the geometry optimizations, the standard B3LYP 12 , 13 , 14  global 
hybrid functional was employed along with modified forms in which the Hartree–Fock 
exchange fraction (aHF) was varied from its default value of 0.20 to as low as aHF = 0.00 
(i.e., a pure BLYP GGA) or as high as aHF = 0.30 in increments of 0.05 while holding 
the LDA/GGA exchange ratio fixed15,16. As in 3d TMCs15,17,18, sensitivities from aHF 
variations using PBE as the GGA xc are comparable on a representative 4d TMC 
(Appendix B, Table B-1). All calculations employed the LANL2DZ 19  effective core 
potential for transition metals and the 6-31G* basis for all other atoms. Only singlet 
calculations were carried out in a spin-restricted formalism, with all other spin 
multiplicities carried out unrestricted. Level shifting 20  was employed to aid self-
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consistent field (SCF) convergence with the majority spin and minority spin virtual 
orbitals each shifted by 0.25 Ha. The default SCF convergence threshold of 3x10-5 for 
the largest component of the DIIS vector was employed. Geometry optimizations were 
carried out in translation rotation internal coordinates21 using the L-BFGS algorithm to 
default tolerances for the gradient of 4.5x10-4 hartree/bohr and energy difference 
between steps of 10-6 hartree. Geometric properties from a representative case optimized 
with a larger triple-? basis set and the resulting exchange sensitivities preserves trends 
Appendix B, Table B-1). 

For the mAD calculation workflow, calculations were run for 24-hour increments 
and resubmitted for up to five additional runs. At each resubmission, mAD applies loose 
geometric criteria2 and abandons any calculations that fail these checks (Appendix B, 
Table B-2). In this workflow, the B3LYP (aHF = 0.20) geometry optimization was 
carried out first. If the B3LYP geometry optimization converged, we used the converged 
structure and wavefunction to initialize geometry at the adjacent increased (i.e., 0.25) or 
decreased (i.e., 0.15) aHF values, as in prior work22. If these calculations converged, their 
structures and wavefunctions were then used for the next adjacent (e.g., increased to 
0.30 or decreased to 0.10) aHF value geometry optimizations. However, if an 
optimization failed to converge, the next aHF value was not attempted.  

For all converged calculations, automated data fidelity checks were employed 
based on refinements of prior geometric2 and electronic structure criteria141-142, 155 
(Appendix B, Table B-2). Specifically, complexes were retained if their structure was 
deemed to be intact based on tighter geometric criteria than were employed during the 
optimization (Appendix B, Table B-3). The electronic structure criteria required that 
the deviation of the Ŝ2 expectation value from its anticipated value (i.e., S(S+1)) was 
below 1 and the Mulliken metal atomic spin density was within 1 @B of the total spin of 
the molecule (Appendix B, Table B-3).  

Linearized exchange sensitivities, S, were obtained from linear fits of the 
dependence of the relevant property (e.g., ΔEH-L) on aHF. The resulting sensitivity (e.g., 
S(ΔEH-L)) is reported as the change in property over the range from aHF = 0.0 to 1.0, 
which we refer to as HFX as in prior work15,22,23 . As long as a single, qualitatively 
consistent electronic state has been converged over all points, this linear approximation 
is known to be good for a range of properties, both energetic (e.g., spin 
splitting15,22,23,24,25,26 and reaction energies15,27) and electronic28,29,30 in nature. To ensure 
that linearized exchange sensitivities could be quantitatively obtained from collected 
data points, we applied a series of constraints and filtering steps; this procedure and its 
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results are detailed in Appendix B, Table B-4. R2 values, computed sensitivities, and 
reasons for eliminating points or sensitivities are provided in Appendix B. 

Potential energy curves (PECs) of 3d Fe(II) and 4d Ru(II) in LS singlet and HS 
quintet states were obtained for homoleptic complexes of He atom and CO ligands also 
using TeraChem and B3LYP/LACVP* with modified aHF values. These PECs were 
obtained by rigidly shifting all six He atom (CO) ligands from distances as short as 1.70 
Å (1.80 Å) to as long as 2.90 Å (2.80 Å) in 0.01 Å (0.02 Å) increments, with 
calculations at longer bond lengths starting from the converged wavefunction at the 
shorter bond lengths. The He atom was selected following recent work31 that showed it 
is a representative weak field ligand, and a single He atom is simpler to translate during 
PEC evaluation than a typical non-linear weak-field ligand (i.e., H2O or NH3). The CO 
bond length was fixed to 1.125 Å, its value in relaxed TMCs. These calculations were 
repeated for aHF fractions increasing from 0.0 to 0.45 in increments of 0.05, with 
wavefunctions always initializing from shorter bond lengths and lower aHF values.  

 

3.2.3 Data set construction and electronic structure calculations – 2p/3p 

    
Figure 3-2. Isovalent mutation example and isovalent counterparts 

After the data in section 3.2.1 was generated, all attempted mononuclear 
octahedral homoleptic DFT-optimized complexes (where aHF = 0.2) in our previously 
reported database of TMCs were selected, resulting in 2,337 complexes. Each of these 
complexes was modified to produce three derivative complexes by perturbing the metal 
identity and connecting atom identities; for example, a 2p ligand connecting atom would 
be converted to a 3p atom and vice versa, and a 3d transition metal would be converted 
to a 4d transition metal and vice versa – this resulted in 9,348 complexes. Then, to 
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identify complexes with usable initial structures, only those with a parent complex 
passing previously reported geometry and structure criteria were retained, leading to 
7,944 complexes. Then, complexes in this subset with duplicate identities (defined as 
identical RACs, spin states, and oxidation states) were removed, resulting in 4,602 
complexes. Finally, TMCs whose parent complex belongs to the previously reported 
MD2 subset were retained, resulting in 1,301 complexes. The result of this filtering is 
shown in Figure 3-3. 

 

 
Figure 3-3. Construction of dataset for isovalent mutations 

DFT calculations were then performed on this MD2 subset at aHF = 0.2 using the 
same procedure outlined section 3.2.2, resulting in values for properties such as ΔEH-L, 
HOMO levels, and normalized bond lengths for each complex. 

3.3 Results and discussion 

3.3.1 3d vs. 4d transition metal complexes 

Previous work by the Kulik group using the 3d/4d data described above has been 
used to demonstrate several trends relevant to exploration of 4d TMC chemical space. 
For example, as shown in Figure 3-4 (reproduced from the previous work), 4d TMCs 
tend to be more LS-shifted than 3d TMCs and have lower exchange sensitivity as well. 
Other observations made include that (a) strong-field ligands obey additivity rules for 
both ΔEH-L and S(ΔEH-L), (b) 4d TMC energetics can deviate by up to 10 kcal/mol per 
10% change in Hartree-Fock exchange, and (c) 4d TMCs are less likely than 3d TMCs 
to have a change in spin state ordering over the range of Hartree-Fock exchange 
fractions studied. 
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The results of this study indicate that, due to LS-shifting and reduced exchange 
sensitivity, 4d TMCs are less likely to be considered spin-crossover complexes than 3d 
TMCs using conventional DFT tuning approaches. However, if we do wish to explore 
the space of 4d TMCs anyway, we can use ligand additivity to efficiently explore 4d 
TMCs space by only studying homoleptic complexes, as suggested by previous work on 
ligand field asymmetry outlined in Chapter 2. 

Other work by the Kulik group using 3d/4d data described above as part of a 
larger data set has shown how representation vectors can be modified to improve 
transfer learning across rows of the periodic table. In Figure 3-5 (reproduced from the 
previous work), the 3d/4d data was used to train machine learning models to 
extrapolate 4d TMC electronic properties from 3d data using a very small amount of 4d 
data (i.e., 20 data points). This work demonstrated that a tailored representation 
(eRAC-185) incorporating a heuristic group number property to the RAC vector can 
improve model performance. Combined with the inclusion of a small amount of 4d data, 
extrapolation performance improved significantly. 

 

 
Figure 3-4. Comparisons of adiabatic spin splitting (ΔE, in kcal/mol) for HS-LS (green 
lines and shading), HS-IS (blue lines and shading) and IS-LS (red lines and shading) for 
pairs of homoleptic TMCs grouped first by the isovalent 3d and 4d metals (i.e., 
Fe(II)/Ru(II) vs Mn(III)/Tc(III)) and then by ligand (i.e., CO vs H2O), as indicated on 
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the x-axis. The solid lines correspond to values at aHF = 0.2, the inner translucent 
shaded regions correspond to the aHF = 0.1–0.3 range, and the outer translucent shaded 
regions correspond to aHF = 0.0–0.4. A zero axis is shown to indicate where ordering 
changes for any pair of states. The Ru(II)(H2O)6 IS state was eliminated during filtering 
steps, and so its HS-IS or IS-LS data is unavailable. 

 
Figure 3-5. Mean unsigned error (MUE, in kcal/mol) for the prediction of 4d TMC 
properties with only 20 4d data points with eRAC-185 (red) or by including 3d data 
with 20 4d data points and using either the RAC-155 (green) or eRAC-185 (blue) on the 
isovalent metal pairing data set. The colored bars represent the average from an 
ensemble of 25 feature-selected KRR models, and the error bars are the standard 
deviation of the ensemble. 

3.3.2 Incorporating the effect of 2p vs. 3p ligands 

Comparison of ΔEH-L, HOMO levels, and normalized bond lengths across metal 
and ligand connecting atoms revealed that the effects of individual atom perturbations 
are uncorrelated but act additively for these properties. To clarify what this means, we 
define a property P to represent a quantity such as ΔEH-L, HOMO level, or normalized 
bond lengths, and define five types of perturbations as follows, where the subscript 
“ligand” indicates a change in ligand connecting atom identity from 2p to 3p and the 
subscript “metal” indicates a change in metal identity from 3d to 4d: 

 
ΔA)*+,-.,%. = A%0,%. − 	A#0,%. 
ΔA)*+,-.,(. = A%0,(. − 	A#0,(. 
ΔA#0,123,) = A#0,(. − 	A#0,%. 
ΔA%0,123,) = A%0,(. − 	A%0,%. 
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ΔA)*+,-.,123,) = A%0,(. − 	A#0,%. 
 
We find that, although individual perturbations are not correlated (e.g., there is 

no correlation between ΔA)*+,-.,%.  and  ΔA)*+,-.,(. ), combined perturbations act 
additively (i.e., ΔA)*+,-.,123,) ∝ (ΔA)*+,-.,%. + 	ΔA#0,123,))), as shown in Figure 3-6. There 
exist several examples that lie well off the correlation trend; these examples may be of 
interest for further investigation. 

 

 
Figure 3-6. Effect of simultaneous metal-ligand perturbation vs. sum of independent 
perturbations on normalized bond length. The illustrated TMCs contain 3d metals and 
2p ligands. 

3.4 Conclusion 

This investigation of isovalent transition metal complex structures incorporating 
2p and 3p ligands, as well as 3d and 4d metals, has provided insights into underlying 
chemical trends in TMC design across rows of the periodic table. By expanding our 
scope to include new elements, we have uncovered additional structure-property 
relationships and chemical behaviors that describe the behavior of TMCs involving 
components beyond a limited range of ligands and metals. These findings not only 
enhance our understanding of the complex interplay between ligands, metals, and their 
resulting properties but also offer a more comprehensive perspective on the chemical 
space of transition metal complexes. 
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The results from this work can be (and have been) utilized to inform and improve 
machine learning models for property prediction in transition metal complexes. By 
incorporating the trends and relationships identified through the examination of 
isovalent structures, we can refine the predictive capabilities of these models, ultimately 
enabling more accurate and efficient exploration of inorganic chemical space. This, in 
turn, can accelerate the discovery of novel transition metal complexes with desirable 
properties. 
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4 Accelerating training data curation for 
autonomous workflows through parallel 
computing 

This work has previously appeared in the documentation for the UFF.jl package, 
which can be accessed at https://github.com/naveenarun/UFF.jl. 

4.1 Introduction 

Research and development in chemistry can often be expensive or hazardous due 
to labor costs, chemical hazards, and conditions such as high pressures and 
temperatures. In the past, chemists have turned to chemists have turned to physical 
simulation of matter at the atomic scale as an alternative to performing experiments in 
a laboratory setting. The adoption of so-called in silico techniques has led to the 
development high throughput virtual screening (HTVS), which allows the chemist to 
filter a large library of molecules for promising leads by performing separate in silico 
chemical experiments or characterizations for each molecule in the library. As suggested 
by Figure 1, these techniques have led to the discovery of new therapeutics 1  and 
materials 2 , and will result in faster generation of novel matter in the future as 
computational tools and modeling techniques continue to improve over time. 

In practice, physical simulations of matter suffer from a tradeoff between time 
efficiency, accuracy, and system size given a fixed set of computational resources. To 
resolve this issue, a hierarchy of methods have been developed for systems of different 
scales. For example, single atoms and small molecules can be simulated to a high degree 
of chemical accuracy using quantum mechanical methods such as density functional 
theory (DFT) and coupled cluster (CC) theory; these methods are numerically expensive 
as they attempt to directly solve the Schrödinger equation for multiple bodies. On the 
other hand, the largest length and time scales can be simulated using classical 
mechanics; for example, a rocket’s orbit in space can be simulated accurately using 
classical laws of motion. However, at intermediate length and time scales (nanometers to 
micrometers; picoseconds to milliseconds), the ideal choice between quantum mechanical 
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and classical simulation becomes unclear. Ideally, we would like to perform physical 
simulations taking advantage of both, while taking maximum advantage of the 
computing resources available. To do this, we turn to molecular mechanics (MM) 
methods implemented in a parallel computing environment. 

Molecular mechanics (MM) methods are a class of simulation methods that model 
molecules as classical systems; for example, one possible MM approach for simulating 
1000 water molecules for 1 ns might involve setting up 1000 ball-and-spring structures 
with a specified spring constant for the O-H bond and another specified spring constant 
for the O-H-O angle, and then allowing the structures to interact with each other at a 
distance by representing long-range interaction energies with the Lennard-Jones 
potential (which tends to accurately describe the behavior of noble gases). Because all 
the forces in the system are specified by the imposed potential energy functions, the 
positions of the atoms in the system can then be integrated over time, e.g. for 1000 
timesteps of 1 ps each. Because these tasks (setting up long-distance potentials, 
imposing bond-bond and angle potentials, integrating positions over time) are so 
common in molecular mechanics simulations, there exist dozens of software suites that 
efficiently perform these tasks (e.g. LAMMPS3 and NAMD4), each of which are tailored 
to different application domains (e.g. inorganic vs organic, small-molecule vs. large-
molecule) and architectures (e.g. GPU vs non-GPU). 

 

 
Figure 4-1. Relationship between computation and experiment  

Although many molecular mechanics software suites provide a wide range of 
powerful tools, many could benefit from being scriptable, opensource, and taking fuller 
advantage of CPU and/or GPU parallelism. The CESMIX software suite5, combined 
with JuliaMolSim6, attempt to address this need by providing molecular simulation tools 
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that can be directly set up and called within Julia in a parallel environment. Currently, 
the two codebases provide tools for both quantum mechanical and classical simulations 
of atoms and molecules. For MM simulations, Molly.jl can be used to load in OpenMM 
force field files 7  (e.g. for CHARMM, AMBER) or GROMACS force field files (e.g. 
OPLS 8 ) to specify various intra- and intermolecular potential energy functions. 
However, it is currently unclear how one should introduce a non-OpenMM force field (or 
a learned force field) into either suite; on the one hand, the CESMIX suite tends to be 
specialized in atomistic simulations, while on the other hand, JuliaMolSim provides rigid 
tooling for reading in force field parameters. Thus, the focus of this project is to 
introduce a standalone tool called UFF.jl to interface with both suites to represent and 
load force field parameters into MM simulations. 

The need for such a class becomes apparent when working with the universal 
force field (UFF)9, which is not associated with an OpenMM or GROMACS force field 
file. UFF is an empirical potential that provides parameters for bond strengths, long-
distance interactions, angle forces, torsional barriers, and more across the entire periodic 
table. Because it provides parameters across the entire periodic table, it is useful for the 
simulation of metal-containing molecules such as coordination complexes (like the one 
shown in Figure 2, which consist of transition metals surrounded by organic ligands. In 
HTVS environments, the force field can be used to generate a guess of a molecule’s 3D 
structure before a higher level of theory such as DFT is used to refine the 3D structure. 
Because UFF is useful on a practical level for many simulation tasks, implementations 
can be found in a wide range of existing software packages such as LAMMPS and 
NAMD, but as of March 2022 the only UFF implementation in the Julia ecosystem is in 
PorousMaterials.jl10, with support limited to long-range atomic interactions. The lack of 
molecular implementations of UFF is likely due to the absence of tooling for integrating 
custom force field parameters into Julia’s MM ecosystem. This project aims to address 
this issue by providing an implementation of UFF that can be directly loaded into a 
parent molecular mechanics framework, and allowing users to perform UFF and custom 
force field simulations in a way that takes advantage of the straightforward 
differentiability and parallelism provided by the Julia environment. 

4.2 Methods 

Within UFF, the potential energy of a molecule is represented as a sum of two-
body, three-body, and four-body interactions, some of which are bonded interactions and 
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some of which are nonbonded. The potential energy can be summarized by the following 
formula: 

 
" = "4 + "5 + "6 + "7 + "8.9 + "2) 

(Equation 4-1) 

 
ER represents the bond-stretching interaction; "5 , "6 , and "7  represent angle 

bending, dihedral angle torsion, and inversion respectively. Two nonbonded interactions, 
Evdw and Eel, are also included, and they represent the van der Waals inter action and 
electrostatic interactions respectively. All terms in this expression can be derived from a 
set of 9 parameters per atom, summarized in the table above. In this work, we 
implement the two-, three-, and four-body bonded terms ER, "5, and "6, as well as the 
two-body nonbonded terms Evdw and Eel. 

 

 
Figure 4-2. Example of a transition metal complex, which contains a central transition 
metal surrounded by organic ligands. 

Table 4-1. Atomic parameters provided by UFF. 

Symbol Description Units 

rI UFF atomic radius Angstroms 
 

C0 equilibrium bond angle associated with 
atom 

degrees 

XI atomic van der Waals radius Angstroms 
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DI atomic van der Waals energy kcal/mol 
ζ van der Waals shape term used to derive 

xI and DI 
unitless 

ZI effective atomic charge charge 
VI sp3 torsional barrier coefficient kcal/mol 
UI sp2 torsional barrier coefficient kcal/mol 
χ GMP11 electronegativity correction 

parameter 
unitless 

 

4.2.1 Bond-Stretching 

The potential function for the bond-stretching interaction between atoms I and J 
is expressed as a harmonic oscillator by the formula 

 

"4 =
1
2
D:;#E − E:;(

#
 

(Equation 4-2) 

Where 
E:; = E: + E; + E<= + E>? 

(Equation 4-3) 

for which the bond order correction (rBO) is 
 

E<= = −F#E: + E;(ln	(I) 
(Equation 4-4) 

and the electronegativity correction (rEN) is 
 

E>? =
E:E;#√K: −LK;(

#

K:E: + K;E;
 

(Equation 4-5) 

In the above expressions, λ is a constant, λ = 0.1332 (empirically determined 
from propane/propene/propyne) and n is a bond order. 

The force constant kIJ can be evaluated using the empirical expression 
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D:; = 664.12
O:O;
E:;
%  

(Equation 4-6) 

 

4.2.2 Angular bending 

Next, the angular bending term for atoms I, J, and K, where J is the central 
atom, can be calculated as 

 
"5 = P:;@(6= + 6!QRSC + 6# cos 2C) 

(Equation 4-7) 

where 
6# = 1/(4 sin# C)	 
6! = −46#QRSCA 

6A = 6#(2 cos# CA + 1) 
 

for general nonlinear bonds. However, for linear, trigonal-planar, square-planar, 
and octahedral geometries, n = 1,2,3,4 should be used respectively in the following 
formula instead: 

 

"5 =
P:;@
I#

(1 − cos IC) 

(Equation 4-8) 

In both expressions, KIJK is defined as 
 

P:;@ = Y
O:O@
E:@
B E:;E;@#3E:;E;@(1 − cos# CA) − E:@

# cos CA( 

(Equation 4-9) 

where 
E:@
# = E:;

# + E;@
# − 2E:;E;@ cos C 

(Equation 4-10) 

and 
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Y =
664.12
E:;E;@

 

(Equation 4-11) 

 

4.2.3 Dihedral torsion 

The torsional term "6 is calculated as 
 

"6 =
1
2
Z6(1 − cos I[A cos I[) 

(Equation 4-12) 

where n and [A vary based on the nature of the central two atoms (for example, 
for an sp3 −sp3 bond, n = 3 and [A= 180◦. For two sp3 centers, the torsional barrier Vϕ 

is 

ZC0! = LZ;Z@ 
(Equation 4-13) 

whereas the barrier for a bond involving an sp2 center is 
 

ZC0" = 5L\;\@(1 + 4.18 ln^2;@) 
Equation 4-14 

where BOJK is the bond order between atoms J and K. 
 

4.2.4 Inversion 

To calculate the inversion term for atom I bonded to atoms J, K, and L, the 
following formula can be used: 

 
"7 = P:;@D(6A + 6! cos_:;@D + 6# cos 2_:;@D) 

(Equation 4-15) 

where ωIJKL is the angle between IL and the IJK plane. 
The original UFF paper does not provide much guidance on how to derive KIJKL, 

and specifies that for atom types other than C, N, O, P, As, Sb, and Bi, the inversion 
term is 0. Thus, we omit the inversion term for the time being. 
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4.2.5 van der Waals interaction 

The form of Evdw is the Lennard-Jones 12-6 potential, 
 

"8.9 = <:;(−2	 `
*:;
*
a
&
+ `

*:;
*
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(Equation 4-16) 

where x is the distance between two atoms. In this formula, xIJ and DIJ are 
calculated as the geometric means of their atomic counterparts, i.e. 
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(Equation 4-17) 
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(Equation 4-18) 

In the UFF formulation, the terms in the 12-6 potential are derived by matching 
ζ terms in the expression 

"8.9 = b<:; b
6

? − 6
c dEc d

'EF ""#$G −
`<:; `

6
? − 6a *:;

& a

*&
 

(Equation 4-19) 

to the form of the 12-6 potential. 
 

4.2.6 Electrostatic Interactions.  

The electrostatic contribution to the energy is expressed as 
 

"2) = 332.0637
g:g;
hi:;

 

(Equation 4-20) 

where ϵ is 1 and RIJ is the distance between atoms I and J. 
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Note that in UFF, both types of nonbonded interactions (van der Waals and 
electrostatic) are excluded for atoms that are up to 2 bonds away from each other. The 
functional forms of the bonded potentials are shown in Figure 3. 

4.3 Results and discussion 

A thorough performance analysis of the code was performed to determine the 
efficiency and scaling behavior of parameter generation. Two types of scaling were 
studied: system size, i.e. the number of unique atom types and degree of parallelization. 
Additionally, the speed of empirical simulation was tested relative to degree of 
parallelization. 

Several UFF potentials were plotted to ensure that results were chemically 
reasonable. The results are shown below. 

 

 
Figure 4-3. Calculated forms of the various potentials provided by UFF. 

As expected, the optimal C-C bond distance is approximately 1.5 Angstroms, the 
optimal C-C-C angle is about 109.5 degrees, and the optimal dihedral angles for a C-C-
C-C chain are either 60 degrees or 180 degrees. Additionally, the van der Waals 
potential energy surface for Ne atoms has the expected functional form. These results 
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are chemically reasonable, and demonstrate that the implementation can be 
meaningfully used for optimizing chemical structures. 

 

4.3.1 Performance analysis of parameter generation time vs. system size 

For a system containing N atoms, there are N(N + 1) bond-stretching 

parameters to generate (#?H#'!# ( unique pairs, each of which requires 2 parameters: a 
force constant and an equilibrium bond distance), 2N(N2 − N + 2) angular bending 

parameters (3#?%( + 2#
?
#( + j ways to create a unique chain of 3 atoms, and for each 

unique 3-atom bond there are three Fourier coefficients and one force constant), and 
?(?H!)

#  dihedral torsion parameters (one barrier coefficient per central pair of atoms). 

Using similar reasoning, we find that there are N(N + 1) van der Waals parameters to 

generate and ?(?H!)#  electrostatic parameters to generate. 

Thus, the total number of fixed parameters to generate is: 

 
Figure 4 illustrates the effect of system size (i.e. number of unique atom types) on 

performance. 
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Figure 4-4. Plot illustrating how the time needed to generate a full set of parameters for 
N unique atom types scales with N. 

The time needed to generate all parameters for N unique atom types scales 
approximately as N3. Parameter generation does not exceed 1 second for system sizes 
under about 90. The usefulness of Julia’s performance is illustrated here by the fact that 
about 2 million parameters were generated in about 1.8 seconds for the system size of 
100 - especially considering the many floating point operations involved in the 
calculation of each parameter and the fact that the code ran on a single thread on a 
Macbook. In order to explore how far the code’s performance can be enhanced, a study 
of performance under multithreading was performed as well, as described in the next 
section. 

 

4.3.2 Performance analysis of parameter generation time vs. degree of 
parallelization 

All parameters were generated for system sizes ranging from 5 to 128 using both 
a threaded and nonthreaded implementation. The results are shown in Figure 5. 

From these results, it is clear that for small system sizes, the overhead of creating 
threads and allocating tasks exceeds to time needed to actually calculate all parameters, 
meaning that for systems with up to about 25 unique atom types, it is preferable to 
generate parameters in a single thread. However, for larger system sizes, there are 
significant benefits to parallelism: for a system with 128 unique atom types, performing 
tasks on 4 threads results in a 2.6 times speedup, indicating that the time to calculate 
parameters far exceeds the time needed to create and manage threads. 

Thus, for large system sizes, it is useful to parallelize parameter generation; 
however for small system sizes, implementing parallelization is not as important and can 
even be detrimental to performance. System sizes of about 25 unique atoms perform 
equally well under threaded and non-threaded implementations. 

 

4.3.3 Local optimization of butane using forward-mode automatic 
differentiation 

Forward-mode automatic differentiation (AD) was employed to generate a local 
minimum structure for butane. The optimized structure from Avogadro was used as an 
initial structure, and Julia’s ForwardDiff package was used to generate gradients for the 
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length-12 coordinate vector (4 atoms with 3 coordinates per atom). The result was 
optimization to a structure with an energy of 1.01 kcal/mol, which is lower than the 
original energy of 1.52 kcal/mol. The results of the optimization trajectory are shown in 
Figure 6. 

 
Figure 4-5. Performance of UFF.jl for generating full parameter sets in parallel and non-
parallel environments. 

 



89 
 

Figure 4-6. Optimization trajectory for butane using forward-mode automatic 
differentiation to obtain gradients. 

 

4.3.4 Global optimization of butane using Optim.jl 

In order to test the implementation of UFF in Julia, a test case was performed 
where butane was optimized against its UFF energy. A planar input structure was 
drawn in Avogadro and optimized within the program; both structures can be seen in 
Figure 7. The structure optimized by Avogadro settled to a local minimum with a 
dihedral angle of 60 degrees; however, a global minimum of 180 degrees exists because 
the van der Waals interaction causes a repulsive force between the first and fourth 
carbon. Optim.jl was used to generate a globally optimal structure based on the 
coordinates of the four carbons, resulting in a planar molecule with a dihedral angle of 
180 degress. Thus, the Julia implementation was able to successfully find an optimal 
structure for butane. Within a structured molecular mechanics framework, therefore, the 
implementation can be employed for large-scale simulations with many more atoms and 
atom types. 
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Figure 4-7. Structures of butane before and after optimization. 

 

 
Figure 4-8. Example of a larger-scale simulation involving a protein in H2O solvent. 

4.4 Conclusion 

The Universal Force Field (UFF) was implemented in Julia and tested on a range 
of sample systems. Performance analysis showed that the time needed to generate a 
parameter set for N unique atom types scales as N3, and that a multithreaded approach 
to parameter generation works best for larger N. For smaller N, a single-threaded 
approach is much faster due to the lack of overhead for thread setup and management; 
however, the time savings are significant for larger N. Quite notably, without the use of 
explicit force calculations or a parent molecular mechanics framework, it was possible to 
optimize the structure of butane via global optimization and via local gradient-based 
optimization, the latter of which was performed via forward-mode automatic 
differentiation. These feats were made relatively straightforward due to features unique 
to Julia, including the macro system which allows for straightforward multithreading 
and automatic differentiation. Future work will focus on integrating the UFF code into 
molecular mechanics codes, such as those in the CESMIX suite. 
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4.4.1 Future work 

The next step for this implementation is to integrate it into the CESMIX suite 
(or any other molecular simulation package for Julia) so that the UFF parameters can 
be used in large-scale simulations. For example, in larger systems, such as the solvated 
protein shown in Figure 8, UFF parameters can be calculated for all chains of atoms 
present, and a simulation package can decide which sets of atoms should be included in 
energy calculations. 

Additionally, it would be of interest to employ UFF parameters in a distributed 
computing environment, for example by dividing the energy calculation tasks for various 
sets of atoms among different nodes in a computer cluster. These are tasks that a 
wrapper package should handle, agnostic of the underlying force field. 

The UFF force field comes with many exceptions and edge cases, which need to 
be implemented meticulously. The implementation used in this work ignores many edge 
cases and uses the most general formulations available; thus for future work it is 
important to include exceptions and edge cases in the code. Additionally, many 
modifications to UFF exist, and it would be of interest to provide flags so that users can 
select which variant(s) they would like to use. 
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5 Design tools for transition metal 
complexes and metal organic 
frameworks allow users to explore and 
provide feedback on machine learning 
models 

Aspects of this work related to the molSimplify Lite and MOFSimplify web tools 
have previously appeared in C. Duan, A. Nandy, R. Meyer, N. Arunachalam, and H.J. 
Kulik, A transferable recommender approach for selecting the best density functional 
approximations in chemical discovery, Nature Computational Science 3, 38 (2022) and 
A. Nandy, G. Terrones, N. Arunachalam, C. Duan, D.W. Kastner, and H.J. Kulik, 
MOFSimplify, machine learning models with extracted stability data of three thousand 
metal–organic frameworks, Scientific Data 9, (2022) respectively. Text from the 
Scientific Data paper is included in the methods section of this chapter, and is cited 
accordingly. 

5.1 Introduction 

As the field of inorganic chemical design advances, the development of effective 
and user-friendly tools becomes increasingly essential for researchers to efficiently 
explore the vast chemical space of transition metal complexes (TMCs) and metal-
organic frameworks (MOFs). Machine learning models have emerged as powerful tools 
to predict the properties and behavior of these compounds, assisting in the identification 
of promising candidates for various applications. However, the success of these models 
depends on their ability to adapt and improve based on user feedback, ensuring that 
they remain relevant and accurate in an ever-evolving research landscape. 

In this chapter, we present the development of two interactive design tools, 
molSimplify Lite and MOFSimplify, which have been designed to facilitate the 
exploration of TMC and MOF chemical space while allowing users to provide feedback 
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on machine learning models. These web-based platforms enable researchers to design, 
visualize, and assess the properties of TMCs and MOFs in a user-friendly environment, 
allowing computational and experimental researchers to access machine learning models 
more easily. By collecting user feedback for use in the development and refinement of 
these machine learning models, these tools contribute to the iterative improvement of 
predictive capabilities, ensuring that the models remain useful and effective for future 
research endeavors.  

5.2 Methods 

5.2.1 Frontend and backend components for molSimplify Lite 

Bootstrap with jQuery was chosen as a frontend framework due to ease of 
prototyping and development. An off-the-shelf, adaptive, open-source theme1 was used 
to create the homepage, as shown in Figure 5-1. 
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Figure 5-1. Current frontend of molSimplify Lite 

To create the interactive 3D model, 3Dmol2 was used (this is the same viewer we 
typically use in Jupyter notebooks). The xyz file is loaded into a 3Dmol class object and 
is then rendered in the browser automatically. 

The backend of molSimplify Lite is contained in app.py in 
https://github.com/hjkgrp/molSimplifyLite. Requests involving calls to Python code 
(e.g. using molSimplify) are performed using Flask; for example, the backend performs 
homoleptic structure generation when a POST request containing molSimplify options is 
passed to molsimplify.mit.edu/generate. At molsimplify.mit.edu/index, the homepage is 
served, as detailed in the usage notes in the next section. 

 

 
Figure 5-2. Hosting Structure of molSimplify Lite 

5.2.2 Form and database components for MOFSimplify 

The frontend and backend components of MOFSimplify were inherited from 
molSimplify Lite. In order to receive user feedback, we developed five separate feedback 
forms placed throughout the site. To record feedback, the forms on the MOFSimplify 
website were connected to a MongoDB instance hosted on the same server on the 
backend, which can be accessed by MOFSimplify Lite via the internet. For files 
uploaded via the forms, a maximum limit of 2 MB was implemented.  

When a user presses submit, a packet of data containing various form fields is 
submitted to the MongoDB instance on the host machine. The form fields are explicitly 
named 'feedback_form_name', 'rating', 'email', 'reason', 'comments', 'cif_file_name', 
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and 'structure’. These fieldnames correspond to fields available in the online feedback 
form as shown below. The ‘feedback_form_name’ field indicates which of the five 
feedback forms the entry corresponds to, which allows us to use similar backend code for 
all five frontend forms to send requests to the MongoDB server. 

 
Figure 5-3. Example feedback forms on MOFSimplify website. 

 

 
Figure 5-4. Data upload form on MOFSimplify website. 

An overall schematic of the database backup system is shown below. 
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Figure 5-5. Database system diagram. iRun and Gibraltar refer to servers owned by the 
Kulik group. The mofsimplify VM is hosted on the iRun server. 

In order to improve the usability of the website, we performed testing via 
recorded sessions where we asked group members to perform specified tasks. During we 
identified that a major roadblock for uploading data was that users had to resubmit all 
form data in order to give feedback on multiple predictions (e.g., thermal stability and 
solvent removal stability). To address this issue, we modified the JavaScript code that is 
run after the form is submitted so that previously submitted data is retained and the 
page does not refresh; this made it significantly easier for users to upload feedback on 
multiple predictions. 

5.3 Results and discussion 

5.3.1 Usage notes: molSimplify Lite 

As shown in Figure 5-1, the interface for molSimplify Lite provides text fields for 
specifying the metal, axial ligands (either from a drop-down selection or by entering 
SMILES strings), equatorial ligand, and oxidation state of a TMC, allowing for a wide 
range of customizable complex configurations. 

For users seeking finer control over the generated structures, the “show/hide 
advanced parameters” button reveals additional options such as the Hartree-Fock 
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exchange fraction, which influences the predicted spin-splitting energy ΔEH-L and spin 
multiplicity, which determines whether a low-spin or high-spin structure is generated. 
Once the desired parameters are entered, users can click "Generate!" to create the 
specified complex. 

Upon generation, several new options become available to users, including the 
ability to download an .xyz file of the generated molecule, predict the ΔEH-L value using 
molSimplify, and receive a recommendation for an appropriate density functional 
approximation. Furthermore, users can interactively explore their generated complex in 
the context of the training data by clicking “Plot ΔEH-L” to visualize the spin-splitting 
energy comparison or “PCA ΔEH-L” to access an interactive PCA plot of the RAC 
vector representation. These features allow users to gain a deeper understanding of their 
designed complexes and how they relate to other structures within TMC design space. 

(a)  

(b)  
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Figure 5-6. a) A plot of the predicted ΔEH-L for Fe(NH3)(H2O)6 with oxidation state 2 
compared to other complexes in molSimplify’s training data. b) PCA showing the same 
complex in green among the training data in molSimplify in RAC space. 

 

 
Figure 5-7. Example DFA recommendation for ΔEH-L for Fe(NH3)(H2O)6. The website 
ranks DFAs by predicted error relative to DLPNO-CCSD(T). 

5.3.2 Usage notes: MOFSimplify3 

The MOFSimplify interface encourages community engagement by enabling the 
user to add new MOF data to our database by uploading MOF CIF files and TGA 
traces in the Data Upload tab. MOFSimplify also lets the user indicate whether they 
agree with an ANN prediction or curated experimental data and support their position 
by uploading a TGA trace (Figure 5-8). These TGA traces will be digitized by us to 
extract Td data in a manner consistent with our previous thermal stability data. User 
input will be used to improve our ANN models through community-based active 
learning. Users can opt out of uploading data or providing feedback. If users wish to 
remove data after the fact, an email form is provided for removal requests. 

 
 



100 
 

 
Figure 5-8. Sections of the MOFSimplify web interface. a) Interface for selecting a MOF 
for analysis and predicting properties of the selected MOF using ANNs trained on 
experimental data mined from the literature. The default MOF loaded upon selecting 
“Example MOF” is HKUST-1, a well-studied MOF.85 b) The feedback interface for 
evaluating model predictions. c) The interface listing similar (i.e., LSNN) MOFs to the 
selected MOF as determined by the ANNs. d) Visualization of the selected MOF’s 
components. e) Visualization of the selected MOF’s unit cell. 

5.3.3 Impact 

The molSimplify Lite website was piloted on April 17, 2020 and monitored for 1 
month (i.e., until May 14, 2020). Over that period, there were 290 unique visitors, 47 
neural network predictions, and 730 total requests (Figure 5-9). 
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Figure 5-9. Locations of site accesses during first month of molSimplify Lite launch. Map 
was made with an online IP resolver4 and ArcGis. 

Since then until March 2023, molSimplify Lite has received thousands of requests 
per month, amounting to approximately (for example, during the two weeks of March 3, 
2023 to March 17, 2023, molSimplify Lite received on average 20-30 unique visitors per 
day, with about 100-150 total requests per day). Assuming an average of 50 requests per 
day and 20 unique visitors per day over a span of 3 years, the site has served 
approximately 22,000 visitors and 55,000 requests so far. 

The MOFSimplify website was opened for public access upon publication on 
March 11, 2022. A year later, during the two weeks of March 3, 2023 to March 17, 2023, 
the website received 3,313 requests; assuming an average of 3,000 requests per month 
since launch, this amounts to about 36,000 requests so far. In addition, as of March 17, 
2023, the website has received 18 feedback entries, indicating that users interacting with 
the site are able to provide valuable feedback on machine learning model predictions. 

5.4 Conclusion 

The development and implementation of design tools for transition metal 
complexes and metal-organic frameworks have significantly enhanced the ability of users 
to explore and provide feedback on machine learning models for property prediction. By 
offering an interactive platform for generating, analyzing, and comparing new structures, 
these tools bridge the gap between computational chemistry, machine learning, and 
experimental design, fostering a more collaborative and informed approach to transition 
metal complex and metal-organic framework discovery. 

The molSimplify Lite and MOFSimplify web tools empower users to tailor TMC 
and MOF configurations and parameters, visualize their relationships with existing data, 
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and obtain valuable insights into their properties. Furthermore, the feedback component 
of MOFSimplify enables users to contribute valuable feedback, which can be used to 
refine and improve the underlying machine learning models in the future, leading to 
more accurate predictions and more efficient exploration of MOF design space. 

Both tools have reached a high level of impact, serving hundreds of thousands of 
requests across the world. In the future, integration of these design tools into an 
autonomous high-throughput virtual screening workflow would not only facilitate the 
discovery of novel materials but also promotes a more comprehensive understanding of 
the landscape of transition metal complexes and metal-organic frameworks. 
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6 Ligand compatibility classification using 
stochastic negative addition: towards 
interactive investigation of new 
chemical structures 

6.1 Introduction 

Database availability for transition metal complexes has been growing rapidly; in 
2019, the OHLDB (Octahedral Homoleptic Ligand Database) contained 1,250 structures 
and their properties. The next year, in 2020, the tmQM dataset contained 86,000 
structures derived from the Cambridge Structural Database (CSD), with DFT-derived 
properties. As of 2021, our group initiated a database of >150,000 structures with DFT-
derived properties. These efforts have enabled the development of machine learning 
models that can be used to design new chemicals; however, these models can be opaque 
to the synthetic chemist. Thus, a highly relevant question is how we can let experts 
interact with these models to perform inverse design.  

The figure below demonstrates two paradigms for the use of machine learning 
models for chemical design. The top flow chart shows the workflow in which machine 
learning is used to perform 100% of the design tasks. The bottom flow chart shows a 
workflow in which user interaction and feedback can be incorporated into the black box 
ML model in order to increase transparency and integrate expert feedback. The goal of 
Ligandify is to introduce aspects of the latter paradigm in order to allow experts to 
participate in inverse design. 

 

 
 

Black Box ML 
model

Request for molecule with 
characteristics X, Y, Z Molecule

Opaque process

Might not be synthesizable
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Figure 6-1. Paradigms for user interaction with machine learning models. 

 
In Chapter 5, we developed web interfaces aligned with the latter paradigm, and 

in this chapter, we continue these efforts within the space of tetrahedral TMC catalysts. 
 

6.1.1 Choice of design space 

In previous work related to asymmetry, we found that the study of certain ligand 
combinations can be accelerated by forming homoleptic complexes out of them and 
deriving heteroleptic properties from homoleptic properties. However, there are some 
ligands that cannot be turned into homoleptic complexes, yet are relevant in real-world 
applications such as catalysis, as evidenced by their presence in the CSD. In the figure 
below, the pie chart on the left shows that approximately 13% of ligands found in 
octahedral complexes cannot form a homoleptic complex and need to be studied with 
coligands. The pie chart on the right shows that this figure is 10% for tetrahedral 
complexes. 
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Figure 6-2. Distribution of ligand denticities found in the Cambridge Structural 
Database. The ligands considered are unique ligands found across all octahedral TMCs 
(left) and tehrahedral TMCs (right). The orange regions represent the body of ligands 
that require a co-ligand to be studied, but cannot be studied as part of a homoleptic 
complex. 

In order for such ligands to be studied experimentally, one must be able to assess 
which co-ligands can be used to form a synthesizable complex. For this work, we chose 
to study a design space of transition metal catalysts from the Cambridge Structural 
Database (CSD).  

As a first step towards identifying transition metal complexes that are likely to 
be catalysts, we did a preliminary study of which denticity combinations are likely to 
lead to catalytic behavior. In previous work, mononuclear complexes were extracted 
from the CSD. These complexes were counted, then recounted once filtered for the tag 
“catalysis” via the CrossRef API based on their DOIs. The table below shows how the 
distribution of ligand denticities changes when considering complexes with “catalysis” 
keywords. 

 
Table 6-1. Percent changes in representation of octahedral complexes upon filtering for 
“catalysis” tag from CrossRef API 

Complex Type (by 
number of unique ligands 

of a given type) 

Percent 
change in 

representation 
2+2+1+1 -38.3% 

3+3 -22.7% 
2+2+2 -17.2% 

1+1+1+1+1+1 -8.9% 
2+1+1+1+1 -8.9% 

6 +16.7% 
3+2+1 +33.4% 

3+1+1+1 +35.4% 
4+1+1 +40.0% 
5+1 +57.2% 
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As seen in Table 6-1, 5+1 complexes increase in representation the most; this is 
likely because the monodentate ligand in a 5+1 complex can detach to form an active 
site. A similar analysis was carried out for tetrahedral complexes (Table 6-2); the results 
illustrate that 3+1 complexes experience some of the highest change in representation. 

 
Table 6-2. Percent changes in representation of tetrahedral complexes upon filtering for 
“catalysis” tag from CrossRef API 

Complex Type (by 
number of unique ligands 

of a given type) 

Percent 
change in 

representation 
2+2 -17.8% 

1+1+1+1 -16.7% 
2+1+1 +5.9% 
3+1 +20.5% 
4 +48.5% 

 
The enrichment of 5+1 and 3+1 complexes is likely related to the concept of 

monodentate ligand dissociation; thus, (N-1)+1 complexes appear to be a good target 
for studying catalytic behavior. For this work, we chose to specifically focus on 3+1 
complexes, although the methods used generalize to 5+1 complexes as well. 

 

6.1.2 Classification via stochastic negative addition 

For this work, we would like to provide a ligand to a recommendation engine and 
query what other ligands can be used to construct a complete, synthetically accessible 
complex. 

In order to tackle the question of recommendation, it is important to actually 
define ligand co-occurrence, and to determine whether it is learnable. One main 
challenge faced in defining ligand co-occurrence is counting, since different complexes 
have different numbers of ligands. For the purpose of this work, co-occurrence was be 
quantified as p(ligand y is in TMC | ligand x is in TMC), counted across all TMCs. 
However, it is important to note that the ideal distribution to learn is p(ligand y can be 
added to vacancy in TMC | TMC with vacancy). The difference between the former and 
latter distributions is that the former overcounts TMCs with at least two ligand types, 
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one of which appears more than once. However, for TMCs containing only two distinct 
ligands, the distributions are identical. 

Any machine learning model intending to learn these distributions for TMCs 
should work in a chemical fingerprint space (e.g. RAC-space), so that ligands outside 
the training set (i.e. ligands not found in the CSD) can be used as inputs to the model.  

Since the CSD only contains positive examples of synthesizable TMCs, we can 
use stochastic negative addition to generate negative examples. To do this, we look at 
unique TMCs containing two distinct ligand types (e.g. a tridentate ligand and a 
monodentate ligand), and separate the ligand types into individual pools. Then, ligands 
from each pool are randomly paired with each other, and if the resulting complex is not 
found in the CSD, the example is marked as a negative. The number of possible 
combinations is vast compared to the number of complexes present in the CSD, and it is 
assumed that the majority of these combinations will not lead to a synthesizable 
complex. The quality of this assumption dictates the degree to which synthesizability is 
learnable; if the assumption does not hold, then there will be no learnable difference 
between the negative and positive examples. 

In order to determine whether co-occurrence in the CSD is learnable based on 
RACs, one can use a ROC-AUC score for a simple classifier for whether a co-occurrence 
exists in the CSD based on RAC vectors; getting one >0.6 suggests that co-occurrence is 
a learnable quantity and that the assumptions of stochastic negative addition hold. A 
lower AUC score would suggest that the data is not sufficiently structured to yield 
learning. 

6.2 Methods 

6.2.1 Cambridge Structural Database search 

We curated a set of mononuclear octahedral transition metal complexes (TMCs) 
from the Cambridge Structural Database 1  (CSD) to gain statistics on ligand 
conformations and symmetries observed in experimentally characterized complexes. We 
performed an initial search using the Conquest graphical interface to the CSD and 
Python application programming interface (API), applied to the November 2019 v5.41 
data set with March 2020, May 2020, and September 2020 updates. We used the 
Conquest interface to query for X-ray crystallographic structures containing a transition 
metal atom from groups 3-12 and periods 4-6, excluding lanthanides. We used the data 
from an initial query required that the metal forms at least four bonds with either p-
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block (i.e., the first five rows of groups 13 − 17), noble gas, or group 1 or 2 elements. 
This initial query produced 462,012 refcodes for unique structures. In a later step, we 
then selected the subset that contain only four bonds between the metal and 
surrounding ligands. The CSD Python API was then used to iterate through every 
component molecule in each X-ray crystallographic structure to identify all non-
polymeric molecules with distinct molecular weight (i.e., within the same crystal cell) 
and only one transition metal. For each of the resulting 240,117 mononuclear TMCs, the 
CSD mol2 files were saved for after adding any missing hydrogen atoms, preserving both 
the connectivity and bond orders present in the CSD. From this set, 75,383 four-
coordinate metal complexes were evaluated for deviation of the angles 2 between the 
metal-connecting atoms from the valence shell electron pair repulsion (VSEPR) ideal 
angles for tetrahedral structures to eliminate structures that were square planar. 
Structures with lower angular deviation from the ideal tetrahedral molecular structure 
as compared to other ideal geometries were identified as tetrahedral, resulting in 21,881 
tetrahedral complexes.  

Across the set of CSD-mined tetrahedral complexes, ligands from each structure 
were isolated by removing the metal and identifying the ligands as disconnected sub-
connectivity graphs. For each ligand, a dummy metal atom with identical connectivity 
to the removed metal with an atomic number of 0 was introduced to preserve the 
connectivity of the ligands to the metal without preserving metal identity. For each 
ligand with an added dummy atom, the previously reported atomic-number weighted 
connectivity matrix determinant was calculated.3 Additionally, the determinant of the 
atomic-number weighted bond-order weighted connectivity matrix was calculated for 
each ligand, where off-diagonal elements such as ZiZj  (i ≠j) were set to the bond order 
reported in the CSD. Any ligand with a unique atomic-number weighted connectivity 
matrix determinant and bond-order weighted connectivity matrix determinant was 
tabulated as a distinct ligand in the set of all ligands across monometallic TMCs in the 
CSD. Using this procedure, 4,301 unique tridentate ligands and 1,046 unique 
monodentate ligands were identified. Additionally, for each distinct ligand, the list of 
CSD refcodes for TMCs containing the ligand was tabulated.  

 

6.2.2 Descriptors 

For each ligand, we employed Moreau-Broto autocorrelations (ACs) 4  after 
replacing the dummy metal atom with an Fe atom. Moreau-Broto ACs are 
representations formed by discrete operations on the heuristic properties of atoms in the 
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molecular graph in analogy to continuous ACs. An AC is evaluated over all the atoms 
in a molecule that are d bonds apart, 

 

A. =llA*AKm(n*K , n)
K*

 

 
where P is the chosen property, and Pi and Pj are the specific values of the ith 

and jth atoms, respectively, that are dij bonds apart. The heuristic properties used were 
Pauling electronegativity, nuclear charge, identity (i.e., 1), topology, and size, which 
produced a 5d+5 dimensional vector. For each ligand, a cutoff of d=4 and full scope 
(i.e., all atoms are used as starting atoms) were used to produce a length-25 feature 
vector. 

 

6.2.3 Machine learning 

To generate training data for a synthetic accessibility classifier, we utilized 
complexes sampled from the CSD as positive examples of synthetically accessible 
complexes and used stochastic negative addition 5  to generate negative examples. 
Stochastic negative addition refers to the generation of false examples to aid in 
balancing the classes in the classification task. Positive examples were labeled as 1 and 
negative examples were labeled as 0. To choose complexes found in the CSD, a 
tridentate a tridentate ligand along with a compatible monodentate co-ligand 
corresponding that tridentate ligand were drawn at random. To generate negative 
examples, a tridentate ligand and a monodentate ligand were drawn at random, and if 
they were found to be paired together in the CSD, the pairing was rejected and the 
monodentate ligand was replaced with a randomly drawn monodentate ligand until the 
pairing could not be found in the CSD. Using this procedure, 5,000 positive and 5,000 
negative examples were generated. For model training, we employed an 80-20 train-test 
split. For each example true or false ligand pair, the length-25 AC vectors of the 
tridentate and monodentate ligands were concatenated. This data was then z-score 
normalized and used as input to a fully-connected artificial neural network (ANN) with 
two hidden layers of 100 nodes each with rectified linear unit (ReLU) activation and an 
output layer of one node with sigmoid activation. The Adam optimizer6 with binary 
cross entropy loss was used to train the classifier for two epochs, resulting in a classifier 
that outputs a value between 0 and 1, signifying the similarity of a ligand pair to 
tetrahedral pairs found in the CSD. 
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6.3 Results and discussion 

6.3.1 Indicators of ligand compatibility 

To illustrate how steric properties differ between true and false pairs of ligands, 
the molecular weight distribution within 3+1 tetrahedral (non-square planar) complexes 
is shown below. 

 

 
Figure 6-3. Molecular weight of true and false pairs of monodenate and tridentate 
ligands. 

The figure above indicates that true pairs have smaller monodentate ligands than 
false pairs. Additionally, it indicates that true pairs contain a narrower range of 
tridentate and monodentate ligands. The conclusion that can be drawn from this figure 
is that ligand compatibility can be reliably correlated to molecular weight. 

Below, more property correlations are illustrated for 3+1 tetrahedral complexes: 
 

Molecular weight of monodentate vs 
tridentate ligand
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Figure 6-4. Comparison of property distributions (top left, number of atoms; top right, 
percent buried volume; bottom, ligand charge) for monodentate and tridentate ligands 
in true and false pairs.  

These figures illustrate that the number of atoms and percent buried volume 
provide some information about ligand compatibility. However, it appears that chemical 
charge is not as informative of a factor for ligand compatibility as steric properties. (The 
false dataset had more (0,+1) charge pairs than the true dataset, but other than that, 
the distributions look similar.) 

To test whether stochastic negative addition results in chemically distinguishable 
complexes, a subset of 50 true and 50 false pairs was taken from the training data set 
and assembled into tetrahedral complexes using molSimplify. Using previously reported 
methods, a spin-splitting energy was calculated using a metal center of Fe(II) for each 
pair. The results are shown in Figure 6-5. 

The broader range of spin-splitting energies for false pairs indicates that false 
pairs are more likely to face convergence issues and/or have differing electronic 
properties from true pairs. This result demonstrates that true pairs have more tightly 
clustered electronic properties than false pairs, indicating that stochastic negative 

Number of atoms Percent buried volume
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addition can indeed result in negative training data with distinct chemical properties 
from positive training data.  

 

 
Figure 6-5. Spin splitting energy of true and fictional pairs of ligands 

6.3.2 Model evaluation 

We started from a set of 5,000 positive and negative examples of monodentate-
tridentate ligand pairings that form known tetrahedral structures regardless of metal 
center. We evaluated the performance of the trained synthetic accessibility ANN 
classifier on the set-aside test data containing 1,000 positive and 1,000 negative 
examples, resulting in an area under the curve of the receiver operating characteristic 
(i.e., ROC-AUC score) of 0.87 and an overall accuracy of 78% at a classifier threshold of 
0.5 (Figure 1). Adjusting the threshold to YY to avoid false positives would achieve an 
accuracy of XX. The high ROC-AUC score can be explained by strong distinguishability 
between positive and negative examples in feature space (Figure 6-6). An unsupervised 
Uniform Manifold Approximation and Projection (UMAP) of the 10,000 generated 
examples demonstrates that positive examples and negative examples tend to lie in 
distinct regions of feature space, leading to a clear decision boundary that can be 
learned by the ANN. 
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Figure 6-6. ROC curve for the trained ANN classifier (left) and the unsupervised UMAP 
representation of positive examples and negative examples in red and blue, respectively 
(right). The UMAP indicates a clear separation between the two groups, illustrating 
that stochastic negative addition creates negative examples that are distinguishable from 
positive examples in feature space. The high ROC-AUC of 0.87 illustrates that the ANN 
can learn the decision boundary between the positive and negative examples robustly 
and with high accuracy. 

 
Based on Figure 6-6, it is clear that some “true” and “fictional” pairs are very 

obviously separable, while some are not. Based on the stochastic negative addition 
protocol used, the obviously separable regions indicate that many “fictional” pairs are 
obviously incompatible, leading them to be placed very far away in RAC space 
compared to true pairs. However, the regions that are not obviously separable indicate 
that some “fictional” pairs may indeed be valid pairs of ligands that would form a 
synthetically accessible complex, but the pair has not yet been reported in the CSD. 

 

6.3.3 Usage notes 

We introduce the Ligandify website, a tool for identifying ligands that are likely 
to form a synthetically accessible tetrahedral transition metal complex with a user-
provided ligand. Ligandify requires that the user specify a monodentate ligand as a 
SMILES string that contains a placeholder metal atom representing the transition metal 
complex center and where it is connected to the ligand. Ligandify then provides a 3D 
visualization of the provided ligand. When the user requests Ligandify find candidate co-
ligands, the 25-length AC feature vectors are generated for the provided ligand and 
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appended to each tridentate ligand AC feature vector, for all 4,301 tridentate ligands in 
the tetrahedral complex data set. The combined ACs are then normalized using the 
same scaling parameters used to z-score normalize the training data for the synthetic 
accessibility ANN. Ligandify then inputs the combined ACs to the synthetic 
accessibility ANN, which outputs a number between 0 and 1 for each tridentate ligand 
that indicates how similar a tetrahedral complex containing both the tridentate ligand 
and the provided monodentate ligand would be to complexes found in the CSD. 

Once probabilities are generated for every tridentate ligand, the top five 
tridentate candidates for the provided monodentate ligand are selected and visualized on 
the website in 3D, enabling the user to compare the different options and select the 
most suitable candidate for their specific application. Metadata for each ligand, 
including connecting atom identities, a mol2 file, metal centers associated with the 
ligand, CSD reference codes containing the ligand, RACs, canonical SMILES string, 
Crippen LogP, and percent buried volume, is also generated and is downloadable in 
JSON format. 

As an alternative to using the Ligandify web interface, users may also download 
the trained synthetic accessibility ANN model, ligand data, and Python backend code 
from the Ligandify GitHub repository. Our ANN model is provided in Pickle archive 
format and can be loaded directly by using scikit-learn version 0.23.2 and keras7 version 
2.4.3 with a tensorflow8 backend in Python version 3.7.9. In addition to the ANN pickle, 
the repository contains a pickle archive of a Pandas dataframe containing the metadata 
for the monodentate and tridentate ligands found in the CSD. Users may also download 
the open-source Python code used by Ligandify for generating predictions with our 
model. 
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Figure 6-7. The Ligandify web interface. The user provides a SMILES string of a 
monodentate ligand including a placeholder metal atom, and Ligandify generates a 3D 
structure of the specified ligand. The “Find Candidates” button is used to find the top 5 
tridentate co-ligand candidates for forming a tetrahedral complex with the provided 
monodentate ligand. 

6.4 Conclusion 

When distinguishing compatible ligands from incompatible ligands using 
individual physical and chemical properties rather than an ML classifier, physical 
properties such as ligand size and percent buried volume are key indicators of ligand 
compatibility. However, chemical properties such as charge appear to be similar between 
true and false pairs. 

In this work, we demonstrate the use of an ML classifier to convert the physical 
properties of a molecule, as represented by a graph autocorrelation vector, into a 
prediction for likelihood of synthesizability. 

One limitation of the above approach is that certain types of ligands are 
overrepresented. For example, functionalized porphyrins can be very similar in chemical 
space, yet be counted as distinct ligands. Hypothetically, a classifier model trained on a 
database containing a small number of unique ligands in a large number of 
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functionalized porphyrins would be excellent at determining compatibility among 
porphyrins but would exhibit poor performance when it comes to other types of ligands. 

To allow users to interact with the ML classifier, we present a web interface 
where users can upload a ligand of interest and retrieve a recommendation of the top 5 
co-ligand candidates for that ligand. This interface allows users to explore the output of 
the classifier as a starting point for investigating the proeprties of new complexes and 
ligands.  
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7 Recommendations for future work 

Overall, this work can be extended in three main directions: (1) developing a fully 
autonomous workflow to make efficient use of computational resources, (2) incorporating 
feedback from web tools into machine learning models, and (3) developing expert-guided 
exploration of new chemical spaces. These recommendations point towards a vision of an 
autonomous high-throughput virtual screening workflow that can be steered by experts 
and practitioners to fruitfully explore chemical space.  

7.1 Development and maintenance of fully autonomous 
workflows 

One key limitation to machine learning models is the availability of high-quality 
training data. In this work, we have addressed this issue by relying on high-throughput 
DFT calculations to generate initial training data. Despite this approach's effectiveness, 
the high computational cost of DFT calculations places fundamental limits on the size of 
the training dataset and the regions of chemical space that can be explored. 

To overcome these limitations, it is essential to develop fully autonomous 
workflows that enable the identification of high-uncertainty regions in chemical space 
and generate additional training data in those regions. One approach to identifying high-
uncertainty regions is uncertainty quantification (UQ), which involves quantifying the 
uncertainty in the ML model's predictions. By leveraging UQ methods, it is possible to 
identify regions of chemical space where the model's predictions are least confident, 
indicating a lack of training data in those regions. 

Once high-uncertainty regions are identified, a fully-autonomous workflow can use 
active learning strategies to generate new training data, which can then be used to 
retrain the ML model. These active learning strategies should select new data points that 
are most informative for reducing the model's uncertainty in high-uncertainty regions. 
Through this iterative process, the ML model can gradually reduce uncertainty in 
previously neglected regions of chemical space. 
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7.2 Incorporation of web-based feedback into machine 
learning models 

In this work, we have developed web-based tools that have democratized access to 
our machine learning models for predicting the properties of transition metal complexes 
and MOFs. These tools allow users to interact with ML models and – in the case of 
MOFs, provide feedback on model predictions. Ideally, this feedback can then be used to 
improve our models’ accuracy and reliability. 

One promising approach to leveraging web-based feedback is to incorporate it 
directly into the ML model's training process. Specifically, user feedback can be used to 
augment the training dataset with additional examples of challenging cases, thereby 
improving the model's ability to generalize to new data. For example, in the context of 
predicting the solvent-removal and thermal stability of MOFs, user feedback could be 
used to identify MOFs for which the model's predictions are particularly inaccurate, and 
additional data points could be generated for those MOFs to improve the model's 
accuracy in those regions of the chemical space. 

Another approach to leveraging web-based feedback is to use it to refine the 
model's predictions directly and present tailored results to users. For example, in the 
context of predicting the density functional approximation for a given molecule, users 
could be prompted to provide feedback on the predicted functional's accuracy, and this 
feedback could be used to re-weight the predictions from different density functionals 
based on their relative performance for similar molecules. 

7.3 Expert-informed chemical space exploration 

Machine learning models such as the ones mentioned in this work can benefit 
from expert feedback. By leveraging the insights and knowledge of experts in the field, it 
is possible to guide the exploration of chemical space and focus on regions that are most 
relevant to specific applications. 

One way to incorporate expert knowledge into ML models is through active 
learning. Specifically, experts can provide feedback on the model's predictions for specific 
molecules or applications, and this feedback can be used to guide the selection of new 
training data points. If this active learning workflow is implemented in a fully-
autonomous way, experts can help steer the overall direction of DFT data generation by 
identifying regions of chemical space where the machine learning models are inaccurate 
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or unreliable. This way, an autonomous workflow can be biased to prioritize accuracy in 
areas of interest to experts, while also exploring under-explored regions of chemical 
space.
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A. Appendix: Ligand Additivity 

Text A-1. Description of mononuclear complex curation.  
The Conquest interface was used to query for structures containing a transition 

metal atom (here, groups 3–12, periods 4–6, excluding La) that forms at least 4 bonds 
with either p-block (here, the first five rows of groups 13−17), noble gas, or group 1 or 2 
elements. The only constraint imposed on the search was that 3D coordinates were 
determined. This initial query produced 462,012 Refcodes for unique structures. The 
CSD Python API was then used to iterate through every “component” molecule in each 
x-ray crystallographic structure to identify all non-polymeric molecules with distinct 
molecular weight (within the same crystal structure) and only one transition metal 
atom. For each of the resulting 240,117 mononuclear transition metal complexes the 
CSD mol2 files were saved after adding any missing hydrogen atoms, preserving both 
the connectivity and bond orders present in the CSD. From this diverse set, 6-
coordinate metal centers without edge-bound or sandwich-type ligands were evaluated 
for deviation of the angles (as defined in Ref. 1) between the metal-connecting atoms 
from the VSEPR ideal angles for octahedral, pentagonal pyramidal, or trigonal 
prismatic structures. Structures with lowest angular deviation from ideal octahedral 
molecular structure over other geometries were identified as octahedral.   
  
Text A-2. Description of complex symmetry identification.   

 Within each complex, a 3-hydrogen difference criterion was introduced to 
heuristically capture ligands that only differed in protonation state. If none of the 
equivalence conditions were met the ligands were identified as chemically identical. 
Ligand symmetry was identified by binning the octahedral structures by: (1) Ligand 
denticities (e.g., 5-denticity + 1-denticity) (2) maximum number of connecting atoms 
from a single ligand in the equatorial plane (e.g., 3denticity + 3-denticity has at most 2 
connecting atoms from the same ligand in the equatorial plane -> fac binding) (3) total 
number of unique ligands (e.g., for a monodentate-only complex with 5 unique ligands, 
two must be duplicates) and (4) for lower denticities, counts of pairs of trans ligands 
that are identical (e.g., for a monodentate-only complex with 3 pairs of identical ligands, 
if only 1 pair of trans ligands are identical -> other unique pairs must be cis). A 
nomenclature for ligand symmetry was created to describe the observed symmetries 
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following these rules (1) Denticities are denoted by numbers as the base of the ligand 
symmetry representation with higher denticities listed first. (2) If ligands are identical 
they are surrounded by "||" markers, with ligands with the highest number of identical 
copies of the same denticity listed first.  (3) Tridentate ligands are identified as either 
fac- or mer- by f/m labels, and corresponding sets of three identical monodentate ligands 
are given equivalent f/m labels. (4) Pairs of identical monodentate ligands are identified 
as either cis- or trans- with c/t labels, pairs of non-identical monodentate ligands are 
given c/t labels only when there is one pair of non-identical monodentate ligands, and 
the ligand symmetry of identical pairs is ambiguous. Examples of ligand symmetry using 
this nomenclature are “|111111|” for a homoleptic monodentate-only complex, “4|11|t” for 
an equatorial tetradentate with trans identical monodentate ligands, and “2|11|c11” for a 
complex with a bidentate and 2 identical monodentate ligands in the equatorial plane 
with 2 chemically-distinct monodentate ligands in the axial positions.  
 
Table A-1. Number of complexes grouped by number of unique ligands for all (all) 
mononuclear octahedral transition metal complexes, all unique complexes with user-
defined charges and nondisordered structures ("computation-ready"), and the subset of 
unique complexes with Fe(II) centers (Fe(II)). The percent of each category is also 
shown.  

# ligands  all  
 

percent  
computationready  

percent  Fe(II)  
 

percent  

1  
 

19324  22.6%  
4830  28.3%   

661  55.0%  

2  
 

38780  45.3%  
8191  47.9%   

407  33.8%  

3  
 

22655  26.5%  
3701  21.7%   

129  10.7%  

4  
 

4530  5.3%  
350  2.1%   

5  0.4%  

5  
 

283  0.3%  
13  0.1%   

0  0.0%  

6  
 

3  0.0%  
0  0.0%   

0  0.0%  

total  
 

85575  
 17085  	    

1202  
 

 

Text A-3. Polya enumeration discussion.  

The cycle index for all possible octahedral complexes is  
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where the subscript, j, on f indicates the number of unique sites (e.g., 2 for M(L1)5(L2)1) 

up to a theoretical maximum of 6. Each individual term in the cycle index is computed 

as:  

pK = *!
K +⋯+ *?

K  

where N is the total number of unique ligands that can occupy the sites, and each xi 

corresponds to one unique ligand set choice. 

For a worked example of N = 12 unique ligands, we determine the theoretical number of 

complexes, the cardinality, as 

j!

(j −$)ΠLM!
& `ΣKM!

N uOD%OMLa !
	

where its respective symmetry class C = {L1, …, LM} is built from M distinguishable 

sites, j, and N are the ligand index and number of ligands as before. The indicator 

function, uOD%OML, where e.g., |L1| would be 6 for (L1)6, counts how many occurrences of 

each substituent combination exist.   

 

Table A-2. Number of complexes grouped by symmetry class for all mononuclear 
octahedral transition metal complexes, all complexes with user-defined charges and non-
disordered structures ("computation-ready"), and the subset of complexes with Fe(II) 
centers. The percent of each category is also shown.  

Symmetry class  All  percent  computation- 
ready  

 percent  Fe(II)  percent  

HO  19324  24%   4830  29%  661  55%  

5+1  4881  6%   1216  7%  128  11%  

CS  15138  19%   2447  15%  74  6%  
TS  14861  18%   3745  22%  151  13%  

FS  2184  3%   426  3%  36  3%  

MS  1716  2%   357  2%  18  2%  

CA  2571  3%   793  5%  26  2%  
TA  3691  5%   760  5%  41  3%  

FA  5828  7%   772  5%  21  2%  
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MAC  4706  6%   826  5%  17  1%  

MAT  1821  2%   205  1%  14  1%  
DCS  802  1%   113  1%  2  0%  

DTS  1011  1%   96  1%  4  0%  

EA  2225  3%   136  1%  4  0%  

Total  80759    16722  	   1197   
  
Table A-3. Number of unique ligands of each denticity grouped by symmetry class for all 
complexes with user-defined charges and non-disordered structures.  

    # unique ligands by denticity 
  # complexes  1  2  3  4  5  6  total  

HO  4830  150  528  1719  0  0  813  3210  

5+1  1216  242  0  0  0  507  0  749  

TS  3745  677  786  0  700  0  0  2163  

CS  2447  109  1342  0  295  0  0  1746  

FS  426  48  0  275  0  0  0  323  

MS  357  35  0  318  0  0  0  353  

CA  793  302  119  0  206  0  0  627  

DCS  113  27  105  0  0  0  0  132  

TA  760  321  66  165  0  0  0  552  

DTS  96  111  0  0  0  0  0  111  

EA  136  66  118  0  0  0  0  184  

FA  772  225  226  168  0  0  0  619  

MAC  826  195  266  252  0  0  0  713  

MAT  205  98  1  121  0  0  0  220  
  
Table A-4. Number of unique ligands of each denticity grouped by symmetry class for all 
complexes with user-defined Fe(II) centers. 

    # unique ligands by denticity  
  # complexes  1  2  3  4  5  6  total  
HO  661  40  142  355  0  0  124  661  
5+1  128  29  0  0  0  81  0  110  
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TS  151  53  71  0  49  0  0  173  
CS  74  18  27  0  44  0  0  89  
FS  36  11  0  24  0  0  0  35  
MS  18  6  0  22  0  0  0  28  
CA  26  18  6  0  17  0  0  41  
DCS  2  3  3  0  0  0  0  6  
TA  41  34  7  0  10  0  0  51  
DTS  4  8  0  0  0  0  0  8  
EA  4  5  3  0  0  0  0  8  
FA  21  16  9  14  0  0  0  39  
MAC  17  14  6  9  0  0  0  29  
MAT  14  13  0  11  0  0  0  24  
 
Table A-5. Number of monodentate ligands of each category from Fe(II) monodentate-
only structures for the case where user defined charges and trustworthy structures were 
obtained ("All computation-ready") as well as the more stringent test where ligand 
charges were assigned as neutral. The bolded categories correspond to those used to 
study HO Fe(II) complexes as described in the main text. 

Category  

All  
computationready  

neutral 
ligand 
charge  

HO  40  36  

2, or 3 type but not HO  48  21  

Total 1, 2, or 3 types  88  57  

only in 4-5-6-types  3  1  
  
Table A-6. Number of complexes from monodentate-only configurations for each 
symmetry from the total user defined charges and trustworthy structures ("computation-
ready") or for Fe(II) only. For Fe(II) complexes, theoretical spaces of N = 56 and N = 88 
ligands are compared for each symmetry class along with the % of that space present in 
the CSD. The relevant symmetry class and notation is also provided. 

          N = 88   N = 56      

  Computation- 
ready  Percent  Fe(II)  Percent  #  %   #  %   Symmetry class  

HO  150  7%  40  39%  88  45.45%  56  71.43%  |111111|  
5+1  330  16%  9  9%  7656  0.12%  3080  0.29%  |11111|1  
TS  944  46%  26  25%  7656  0.34%  3080  0.84%  |1111||11|t  
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CS  92  5%  5  5%  7656  0.07%  3080  0.16%  |1111||11|c  
FS  48  2%  5  5%  3828  0.13%  1540  0.32%  |111|f|111|  
MS  23  1%  0  0%  3828  0.00%  1540  0.00%  |111|m|111|  
CA  46  2%  0  0%  329208  0.00%  83160  0.00%  |1111|11c  
DCS  0  0%  0  0%  109736  0.00%  27720  0.00%  |11|c|11|c|11|c  
TA  183  9%  3  3%  329208  0.00%  83160  0.00%  |1111|11t  
DTS  96  5%  4  4%  109736  0.00%  27720  0.01%  |11|t|11|t|11|t  
EA  17  1%  1  1%  329208  0.00%  83160  0.00%  |11|c|11|c|11|t  
FA  36  2%  4  4%  658416  0.00%  166,320  0.00%  |111|f|11|1  
MAC  35  2%  3  3%  658416  0.00%  166,320  0.00%  |111|m|11|c1  
MAT  39  2%  2  2%  658416  0.00%  166,320  0.00%  |111|m|11|t1  
Total  2039     102     3213056  0.00%  816,256  0.02%     
  
Table A-7. Homoleptic Fe(II) transition metal complex properties, DEH-L (in kcal/mol) 
and singlet HOMO level (in eV) for the ligands NH3, CH3CN, CO, and H2O obtained 
with B3LYP/LACVP* calculations.   

Ligand  DEH-L (kcal/mol)  HOMO level (eV)  
CH3CN  43.67  -13.35  
CO  30.34  -19.46  
H2O  -27.04  -15.16  
NH3  -9.64  -13.58  
  
  

  

 
Figure A-1. Calculated vs. linearly interpolated ∆EH-L (kcal/mol) for Fe(II) complexes 
with pairs of any of the three ligands: NH3, H2O, and CO. From left to right: 
interpolation between homoleptic complexes (HO only), interpolation using homoleptic 
complexes as well as cis symmetric and trans symmetric complex energies (CS+TS), or 
interpolation using homoleptic complexes as well as fac and mer symmetric complex 
energies (FS+MS). Points are colored according to the pair of ligands they correspond 
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to: NH3-H2O (green squares), NH3-CO (gray circles), and CO-H2O (blue triangles), as 
indicated in inset legend. Key isomers are annotated. Points provided for the fit are 
translucent, whereas the remaining points are opaque. In all panes, a black dotted parity 
line is shown.     
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Table A-8. ∆EH-L values for pairs of two ligand types in Fe(II) complexes (in kcal/mol) 
along with interpolated values using only HO complexes, HO+CS/TS complexes, or 
HO+FS/MS complexes. 

      Number of ligands    interpolated  

L1  L2  Symmetry  CO  H2O  CH3CN  NH3  splitting  HO  CS/TS  FS/MS  
H2O  CH3CN  5+1  0  5  1  0  -18.4  -15.3  -19.9  -16.2  
H2O  CH3CN  CS  0  4  2  0  -7.8  -3.5  -7.8  -5.4  
H2O  CH3CN  TS  0  4  2  0  -12.8  -3.5  -12.8  -9.6  
H2O  CH3CN  FS  0  3  3  0  5.4  8.3  2.8  5.4  
H2O  CH3CN  MS  0  3  3  0  -0.9  8.3  -1.2  -0.9  
CH3CN  H2O  CS  0  2  4  0  13.4  20.1  13.4  18.2  
CH3CN  H2O  TS  0  2  4  0  10.5  20.1  10.5  14.0  
CH  3CN  H 2O  5+1      0    1    5    0    26.3    31.9   27.1   30.9  
CH3CN  CO  5+1  1  0  5  0  42.6  41.4  42.5  41.9  
CH3CN  CO  CS  2  0  4  0  39.2  39.2  39.2  40.1  
CH3CN  CO  TS  2  0  4  0  41.2  39.2  41.2  40.0  
CO  CH3CN  FS  3  0  3  0  38.4  37.0  39.0  38.4  
CO  CH3CN  MS  3  0  3  0  38.2  37.0  40.2  38.2  
CO  CH3CN  CS  4  0  2  0  38.8  34.8  38.8  35.7  
CO  CH3CN  TS  4  0  2  0  39.1  34.8  39.1  35.6  
CO 
   

CH  3CN  5+1      5    0    1    0    35.0    32.6   34.7   33.0  

H2O  CO  5+1  1  5  0  0  -19.2  -17.5  -23.2  -17.9  
H2O  CO  CS  2  4  0  0  -9.9  -7.9  -9.9  -8.7  
H2O  CO  TS  2  4  0  0  -19.3  -7.9  -19.3  -13.3  
H2O  CO  FS  3  3  0  0  0.5  1.6  -2.6  0.5  
H2O  CO  MS  3  3  0  0  -6.4  1.6  -7.8  -6.4  
CO  H2O  CS  4  2  0  0  4.6  11.2  4.6  10.4  
CO  H2O  TS  4  2  0  0  3.6  11.2  3.6  5.8  
CO 
   

H 2O  5+1      5    1    0    0    18.4    20.8   17.0   20.4  

NH3  H2O  5+1  0 1  0  5  -13.3  -12.5  -13.3  -12.4  
NH3  H2O  CS  0 2  0  4  -17.1  -15.4  -17.1  -15.2  
NH3  H2O  TS  0 2  0  4  -16.9  -15.4  -16.9  -16.6  
H2O  NH3  FS  0  3  0  3  -18.0  -18.3  -19.3  -18.0  
H2O  NH3  MS  0  3  0  3  -20.1  -18.3  -18.4  -20.1  
H2O  NH3  CS  0  4  0  2  -21.5  -21.2  -21.5  -22.4  
H2O  NH3  TS  0  4  0  2  -20.0  -21.2  -20.0  -21.0  
H2O  NH3  5+1      0    5    0    1    -25.1    -24.1   -23.5   -24.0  
NH3  CO  5+1  1  0  0  5  -0.6  -3.0  -2.5  -2.0  
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NH3  CO  CS  2  0  0  4  5.7  3.7  5.7  5.6  
NH3  CO  TS  2  0  0  4  4.7  3.7  4.7  3.7  
CO  NH3  FS  3  0  0  3  13.3  10.4  14.1  13.3  
CO  NH3  MS  3  0  0  3  10.3  10.4  9.7  10.3  
CO  NH3  CS  4  0  0  2  22.4  17.0  22.4  19.0  
CO  NH3  TS  4  0  0  2  14.6  17.0  14.6  17.0  
CO  NH3  5+1  5  0  0  1  26.4  23.7  22.5  24.6  
    

 
Figure A-2. Calculated vs. linearly interpolated HOMO level (eV) for singlet Fe(II) 
complexes with pairs of any of the three ligands: NH3, H2O, and CO. From left to right: 
interpolation between homoleptic complexes (HO only), interpolation using homoleptic 
complexes as well as cis symmetric and trans symmetric complex energies (CS+TS), or 
interpolation using homoleptic complexes as well as fac and mer symmetric complex 
energies (FS+MS). Points are colored according to the pair of ligands they correspond 
to: NH3-H2O (green squares), NH3-CO (gray circles), and CO-H2O (blue triangles), as 
indicated in inset legend. Key isomers are annotated. Points provided for the fit are 
translucent, whereas the remaining points are opaque. In all panes, a black dotted parity 
line is shown.    

Table A-9. Mean absolute errors (MAE) in kcal/mol for Fe(II) complex ∆EH-L estimates 
from HO-only averaging, including CS/TS in the averaging, and including FS/MS 
averaging for pairs of ligands, L1 and L2. The CS/TS and FS/MS errors are both 
averaged over only the points for which exact energies were not provided (interp.) as 
well as over all (all) points. 

     ∆EH-L MAE  (kcal/mol)   

L1  L2  HO  CS+TS all  CS+TS 
interp.  

FS+MS  
all  

FS+MS 
interp.  
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H2O  CH3CN  6.3  0.7  1.4  2.6  3.5  
CH3CN  CO  2.1  0.4  0.8  1.4  1.9  
H2O  CO  5.1  1.2  2.4  2.3  3.1  
NH3  H2O  1.0  0.6  1.2  0.8  1.1  
NH3  CO  2.5  1.1  2.2  1.3  1.7  
Overall   3.4  0.8  1.6  1.7  2.3  

  
    
Table A-10. Singlet HOMO level values for pairs of two ligand types in Fe(II) complexes 
(in eV) along with interpolated values using only HO complexes, HO+CS/TS complexes, 
or HO+FS/MS complexes.  

      Number of ligands    Interpolated  
L1  L2  Symmetry  CO  H2O  CH3CN  NH3  HOMO  HO  CS/TS  FS/MS  
CH3CN  H2O  5+1  0  1  5  0  -13.56  -13.65  -13.57  -13.63  
CH3CN  H2O  CS  0  2  4  0  -13.82  -13.95  -13.82  -13.88  
CH3CN  H2O  TS  0  2  4  0  -13.80  -13.95  -13.80  -13.85  
H2O  CH3CN  FS  0  3  3  0  -14.19  -14.25  -14.15  -14.19  
H2O  CH3CN  MS  0  3  3  0  -14.08  -14.25  -14.11  -14.08  
H2O  CH3CN  CS  0  4  2  0  -14.48  -14.56  -14.48  -14.49  
H2O  CH3CN  TS  0  4  2  0  -14.41  -14.56  -14.41  -14.46  
H2O  CH3CN  5+1  0  5  1  0  -14.82  -14.86  -14.79  -14.84  
                      
CO  CH3CN  5+1  5  0  1  0  -17.80  -18.44  -18.10  -18.32  
CO  CH3CN  CS  4  0  2  0  -16.82  -17.42  -16.82  -17.10  
CO  CH3CN  TS  4  0  2  0  -16.75  -17.42  -16.75  -17.02  
CO  CH3CN  FS  3  0  3  0  -16.02  -16.40  -15.92  -16.02  
CO  CH3CN  MS  3  0  3  0  -15.82  -16.40  -15.80  -15.82  
CH3CN  CO  CS  2  0  4  0  -15.02  -15.38  -15.02  -15.06  
CH3CN  CO  TS  2  0  4  0  -14.86  -15.38  -14.86  -14.98  
CH3CN  CO  5+1  1  0  5  0  -14.11  -14.37  -14.10  -14.24  
                      
CO  H2O  5+1  5  1  0  0  -18.54  -18.75  -18.63  -18.89  
CO  H2O  CS  4  2  0  0  -18.10  -18.03  -18.10  -18.15  
CO  H2O  TS  4  2  0  0  -17.81  -18.03  -17.81  -17.94  
H2O  CO  FS  3  3  0  0  -17.75  -17.31  -17.50  -17.75  
H2O  CO  MS  3  3  0  0  -17.39  -17.31  -17.18  -17.39  
H2O  CO  CS  2  4  0  0  -16.90  -16.60  -16.90  -16.72  
H2O  CO  TS  2  4  0  0  -16.56  -16.60  -16.56  -16.51  
H2O  CO  5+1  1  5  0  0  -16.16  -15.88  -15.86  -16.03  
                      
H2O  NH3  5+1  0  5  0  1  -14.74  -14.90  -14.90  -14.86  
H2O  NH3  CS  0  4  0  2  -14.59  -14.64  -14.59  -14.58  
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H2O  NH3  TS  0  4  0  2  -14.64  -14.64  -14.64  -14.62  
H2O  NH3  FS  0  3  0  3  -14.24  -14.37  -14.29  -14.24  
H2O  NH3  MS  0  3  0  3  -14.28  -14.37  -14.35  -14.28  
NH3  H2O  CS  0  2  0  4  -13.99  -14.11  -13.99  -14.05  
NH3  H2O  TS  0  2  0  4  -14.05  -14.11  -14.05  -14.09  
NH3  H2O  5+1  0  1  0  5  -13.79  -13.85  -13.82  -13.80  

                      
CO  NH3  5+1  5  0  0  1  -18.62  -18.48  -18.58  -18.66  
CO  NH3  CS  4  0  0  2  -17.77  -17.50  -17.77  -17.75  
CO  NH3  TS  4  0  0  2  -17.69  -17.50  -17.69  -17.63  
CO  NH3  FS  3  0  0  3  -17.04  -16.52  -16.90  -17.04  
CO  NH3  MS  3  0  0  3  -16.80  -16.52  -16.71  -16.80  
NH3  CO  CS  2  0  0  4  -16.03  -15.54  -16.03  -15.79  
NH3  CO  TS  2  0  0  4  -15.73  -15.54  -15.73  -15.67  
NH3  CO  5+1  1  0  0  5  -14.90  -14.56  -14.65  -14.74  
  
  
Table A-11. Mean absolute errors (MAE) in eV for singlet complex HOMO levels from 
HO-only averaging, including CS/TS in the averaging, and including FS/MS averaging 
for pairs of ligands, L1 and L2. The CS/TS and FS/MS errors are both averaged over 
only the points for which exact energies were not provided (interp.) as well as over all 
(all) points.  

 

     HOMO MAE  (eV)   

L1  L2  HO  CS+TS all  CS+TS 
interp.  

FS+MS  
all  

FS+MS 
interp.  

H2O  CH3CN  0.11  0.01  0.02  0.03  0.04  
CH3CN  CO  0.51  0.05  0.10  0.17  0.23  
H2O  CO  0.20  0.11  0.22  0.11  0.15  
NH3  H2O  0.09  0.04  0.08  0.03  0.04  
NH3  CO  0.30  0.25  0.50  0.07  0.09  
Overall   0.24  0.09  0.18  0.08  0.11  
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Figure A-3. Calculated vs. linearly interpolated ∆EH-L (kcal/mol) for Fe(II) complexes 
with at least one each of three ligands: NH3, H2O, and CO. From left to right: 
interpolation from homoleptic complexes (HO only), interpolation using homoleptic 
complexes as well as cis symmetric and trans symmetric complex energies derived from 
pairs of ligands (CS+TS), or interpolation using homoleptic complexes as well as fac and 
mer symmetric complex energies derived from pairs of ligands (FS+MS). Points are 
colored according to the ligand with the highest stoichiometric coefficient: H2O (red 
circles), CO (gray squares), and NH3 (blue down triangles), or equal weight of all ligands 
(green up triangles), as indicated in inset legend. Key isomers are annotated. In all 
panes, a black dotted parity line is shown.   

 

Table A-12. ∆EH-L values for Fe(II) complexes (in kcal/mol) with a combination of three 
ligand types, H2O, CO, and CH3CN, in Fe(II) complexes along with interpolated values 
using only HO complexes, HO+CS/TS complexes, or HO+FS/MS complexes. For the 
three EA isomers, L3 is the ligand in the trans position as indicated in the main text.  

        
Number of ligands  

  
Interpolated   

L1  L2  L3  Symmetry  CH3CN  CO  H2O  splitting  HO  CS/TS  FS/MS  
H2O  CO  CH3CN  TA  1  1  4  -15.7  -5.7  -16.1  -11.5  
H2O  CO  CH3CN  CA  1  1  4  -7.7  -5.7  -8.8  -7.0  
CO  H2O  CH3CN  FA  1  2  3  3.2  3.9  -1.6  2.5  
CO  H2O  CH3CN  MAC  1  2  3  -4.6  3.9  -4.1  0.4  
CO  H2O  CH3CN  MAT  1  2  3  -5.5  3.9  -4.6  -1.9  
CH3CN  H2O  CO  FA  2  1  3  5.2  6.1  1.8  4.7  
CH3CN  H2O  CO  MAC  2  1  3  -2.3  6.1  -2.9  2.4  
CH3CN  H2O  CO  MAT  2  1  3  -1.7  6.1  -4.4  0.3  

                      
CO  CH3CN  H2O  EA  2  2  2  6.1  15.7  10.0  12.1  
H2O  CO  CH3CN  DTS  2  2  2  6.2  15.7  10.4  12.1  
H2O  CO  CH3CN  DCS  2  2  2  10.9  15.7  13.1  15.1  



 

132  

H2O  CH3CN  CO  EA  2  2  2  12.0  15.7  11.7  13.5  
CO  H2O  CH3CN  EA  2  2  2  12.9  15.7  12.1  13.6  

                      
H2O  CO  CH3CN  FA  1  3  2  9.0  13.4  14.5  13.5  
H2O  CO  CH3CN  MAC  1  3  2  8.4  13.4  14.6  13.4  
H2O  CO  CH3CN  MAT  1  3  2  3.5  13.4  9.9  11.1  
CH3CN  CO  H2O  FA  2  3  1  22.9  25.2  21.9  25.3  
CH3CN  CO  H2O  MAC  2  3  1  21.0  25.2  21.4  23.0  
CH3CN  CO  H2O  MAT  2  3  1  23.1  25.2  22.4  22.9  
CO  H2O  CH3CN  TA  1  4  1  15.7  23.0  21.4  20.7  
CO  H2O  CH3CN  CA  1  4  1  19.4  23.0  21.7  23.1  

                      
H2O  CH3CN  CO  FA  3  1  2  12.1  17.9  15.7  17.4  
H2O  CH3CN  CO  MAC  3  1  2  13.8  17.9  16.7  17.3  
H2O  CH3CN  CO  MAT  3  1  2  9.7  17.9  14.2  15.2  
CO  CH3CN  H2O  FA  3  2  1  23.6  27.4  26.1  26.9  
CO  CH3CN  H2O  MAC  3  2  1  25.2  27.4  24.7  24.8  
CO  CH3CN  H2O  MAT  3  2  1  23.8  27.4  24.8  24.8  
CH3CN  H2O  CO  CA  4  1  1  25.2  29.7  26.3  29.2  
CH3CN  CO  H2O  TA  4  1  1  26.9  29.7  25.9  27.0  
  
    
Table A-13. ∆EH-L values for Fe(II) complexes (in kcal/mol) with a combination of three 
ligand types, H2O, CO, and NH3, in Fe(II) complexes along with interpolated values 
using only HO complexes, HO+CS/TS complexes, or HO+FS/MS complexes. For the 
three EA isomers, L3 is the ligand in the trans position as indicated in the main text. 

        
Number of ligands  

  
Interpolated   

L1  L2  L3  symmetry  NH3  CO  H2O  splitting  HO  CS/TS  FS/MS  
H2O  CO  NH3  CA  1  1  4  -15.0  -14.6  -15.7  -15.5  
H2O  CO  NH3  TA  1  1  4  -17.5  -14.6  -19.6  -17.2  
CO  H2O  NH3  FA  1  2  3  -5.7  -5.0  -8.4  -6.0  
CO  H2O  NH3  MAC  1  2  3  -7.2  -5.0  -7.7  -5.3  
CO  H2O  NH3  MAT  1  2  3  -11.5  -5.0  -8.2  -7.6  
NH3  H2O  CO  FA  2  1  3  -9.3  -11.7  -13.5  -12.0  
NH3  H2O  CO  MAC  2  1  3  -12.8  -11.7  -18.2  -14.3  
NH3  H2O  CO  MAT  2  1  3  -12.0  -11.7  -19.3  -14.9  

                      
H2O  CO  NH3  DCS  2  2  2  1.3  -2.1  -2.6  -1.9  
H2O  CO  NH3  DTS  2  2  2  -4.7  -2.1  -5.9  -4.1  
CO  NH3  H2O  EA  2  2  2  -1.4  -2.1  -4.5  -3.4  
H2O  NH3  CO  EA  2  2  2  -6.2  -2.1  -5.8  -4.1  
CO  H2O  NH3  EA  2  2  2  -1.9  -2.1  -4.2  -2.5  

                      
H2O  CO  NH3  FA  1  3  2  3.5  4.5  6.3  5.1  
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H2O  CO  NH3  MAC  1  3  2  -1.8  4.5  2.4  4.1  
H2O  CO  NH3  MAT  1  3  2  -1.0  4.5  -2.3  1.8  
NH3  CO  H2O  FA  2  3  1  8.7  7.4  5.2  8.0  
NH3  CO  H2O  MAC  2  3  1  5.9  7.4  4.7  5.7  
NH3  CO  H2O  MAT  2  3  1  4.2  7.4  4.2  4.7  
CO  H2O  NH3  CA  1  4  1  11.8  14.1  13.5  14.7  
CO  H2O  NH3  TA  1  4  1  7.1  14.1  9.1  11.4  

                      
H2O  NH3  CO  FA  3  1  2  -7.8  -8.8  -7.9  -8.4  
H2O  NH3  CO  MAC  3  1  2  -7.4  -8.8  -8.4  -9.4  
H2O  NH3  CO  MAT  3  1  2  -9.5  -8.8  -7.6  -8.7  
CO  NH3  H2O  FA  3  2  1  3.6  0.8  2.7  1.9  
CO  NH3  H2O  MAC  3  2  1  1.2  0.8  1.6  1.2  
CO  NH3  H2O  MAT  3  2  1  0.9  0.8  -2.3  0.2  
NH3  H2O  CO  CA  4  1  1  -3.1  -5.9  -5.7  -4.8  
NH3  CO  H2O  TA  4  1  1  -3.8  -5.9  -7.3  -6.5  
  
 

 
Figure A-4. Calculated vs. linearly interpolated HOMO level (eV) for singlet Fe(II) 
complexes with at least one each of three ligands: NH3, H2O, and CO. From left to right: 
interpolation from homoleptic complexes (HO only), interpolation using homoleptic 
complexes as well as cis symmetric and trans symmetric complex energies derived from 
pairs of ligands (CS+TS), or interpolation using homoleptic complexes as well as fac and 
mer symmetric complex energies derived from pairs of ligands (FS+MS). Points are 
colored according to the ligand with the highest stoichiometric coefficient: H2O (red 
circles), CO (gray squares), and NH3 (blue down triangles), or equal weight of all ligands 
(green up triangles), as indicated in inset legend. Key isomers are annotated. In all 
panes, a black dotted parity line is shown.    
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Table A-14. Singlet HOMO level values with a combination of three ligand types, H2O, 
CO, and CH3CN, in Fe(II) complexes (in eV) along with interpolated values using only 
HO complexes, HO+CS/TS complexes, or HO+FS/MS complexes. For the three EA 
isomers, L3 is the ligand in the trans position as indicated in the main text. 

        Number of ligands    Interpolated  
L1  L2  L3  symmetry  CH3CN  CO  H2O  HOMO  HO  CS/TS  FS/MS  

H2O  CO  CH3CN  CA  1  1  4  -15.71  -15.58  -15.54  -15.60  
H2O  CO  CH3CN  TA  1  1  4  -15.50  -15.58  -15.69  -15.48  
CO  H2O  CH3CN  FA  1  2  3  -16.40  -16.29  -16.14  -16.32  
CO  H2O  CH3CN  MAC  1  2  3  -16.34  -16.29  -16.46  -16.31  
CO  H2O  CH3CN  MAT  1  2  3  -16.13  -16.29  -16.31  -16.20  
CH3CN  H2O  CO  FA  2  1  3  -15.23  -15.27  -15.23  -15.30  
CH3CN  H2O  CO  MAC  2  1  3  -15.13  -15.27  -15.06  -15.20  
CH3CN  H2O  CO  MAT  2  1  3  -15.30  -15.27  -15.18  -15.18  

                      
H2O  CO  CH3CN  DCS  2  2  2  -15.89  -15.99  -15.76  -15.90  
H2O  CO  CH3CN  DTS  2  2  2  -15.75  -15.99  -15.77  -15.80  
CO  CH3CN  H2O  EA  2  2  2  -15.76  -15.99  -15.80  -15.82  
H2O  CH3CN  CO  EA  2  2  2  -15.65  -15.99  -15.62  -15.81  
CO  H2O  CH3CN  EA  2  2  2  -15.87  -15.99  -15.87  -15.87  

                      
H2O  CO  CH3CN  FA  1  3  2  -16.96  -17.01  -16.86  -16.91  
H2O  CO  CH3CN  MAC  1  3  2  -16.77  -17.01  -16.82  -16.87  
H2O  CO  CH3CN  MAT  1  3  2  -16.76  -17.01  -16.65  -16.77  
CH3CN  CO  H2O  FA  2  3  1  -16.43  -16.71  -16.56  -16.61  
CH3CN  CO  H2O  MAC  2  3  1  -16.29  -16.71  -16.41  -16.50  
CH3CN  CO  H2O  MAT  2  3  1  -16.35  -16.71  -16.33  -16.46  
CO  H2O  CH3CN  CA  1  4  1  -17.46  -17.73  -17.46  -17.63  
CO  H2O  CH3CN  TA  1  4  1  -17.14  -17.73  -17.28  -17.48  

                      
H2O  CH3CN  CO  FA  3  1  2  -14.77  -14.97  -14.60  -14.77  
H2O  CH3CN  CO  MAC  3  1  2  -14.85  -14.97  -14.92  -14.76  
H2O  CH3CN  CO  MAT  3  1  2  -14.80  -14.97  -14.84  -14.72  
CO  CH3CN  H2O  FA  3  2  1  -15.38  -15.69  -15.19  -15.49  
CO  CH3CN  H2O  MAC  3  2  1  -15.38  -15.69  -15.15  -15.45  
CO  CH3CN  H2O  MAT  3  2  1  -15.27  -15.69  -15.28  -15.44  
CH3CN  H2O  CO  CA  4  1  1  -14.45  -14.67  -14.29  -14.47  
CH3CN  CO  H2O  TA  4  1  1  -14.42  -14.67  -14.33  -14.42  
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Table A-15. Singlet HOMO level values with a combination of three ligand types, H2O, 
CO, and NH3, in Fe(II) complexes (in eV) along with interpolated values using only HO 
complexes, HO+CS/TS complexes, or HO+FS/MS complexes. For the three EA isomers, 
L3 is the ligand in the trans position as indicated in the main text. 

        
Number of ligands  

  
Interpolated   

L1  L2  L3  Symmetry  NH3  CO  H2O  HOMO  HO  CS/TS  FS/MS  
H2O  CO  NH3  CA  1  1  4  -15.87  -15.62  -15.74  -15.65  
H2O  CO  NH3  TA  1  1  4  -15.92  -15.62  -15.60  -15.56  
NH3  H2O  CO  FA  2  1  3  -15.64  -15.35  -15.44  -15.39  
NH3  H2O  CO  MAC  2  1  3  -15.65  -15.35  -15.27  -15.28  
NH3  H2O  CO  MAT  2  1  3  -15.67  -15.35  -15.31  -15.30  
CO  H2O  NH3  FA  1  2  3  -16.73  -16.33  -16.34  -16.37  
CO  H2O  NH3  MAC  1  2  3  -16.77  -16.33  -16.20  -16.26  
CO  H2O  NH3  MAT  1  2  3  -16.33  -16.33  -16.22  -16.28  

                      
H2O  CO  NH3  DCS  2  2  2  -16.47  -16.07  -16.23  -16.17  
H2O  CO  NH3  DTS  2  2  2  -16.10  -16.07  -16.08  -16.08  
CO  NH3  H2O  EA  2  2  2  -16.44  -16.07  -16.14  -16.12  
H2O  NH3  CO  EA  2  2  2  -16.10  -16.07  -16.06  -16.06  
CO  H2O  NH3  EA  2  2  2  -16.50  -16.07  -16.18  -16.15  

                      
H2O  CO  NH3  FA  1  3  2  -17.42  -17.05  -17.33  -17.24  
H2O  CO  NH3  MAC  1  3  2  -17.16  -17.05  -17.29  -17.17  
H2O  CO  NH3  MAT  1  3  2  -17.10  -17.05  -17.12  -17.07  
NH3  CO  H2O  FA  2  3  1  -17.24  -16.79  -17.06  -16.97  
NH3  CO  H2O  MAC  2  3  1  -16.93  -16.79  -16.92  -16.87  
NH3  CO  H2O  MAT  2  3  1  -16.98  -16.79  -16.77  -16.80  
CO  H2O  NH3  CA  1  4  1  -17.90  -17.77  -17.93  -17.95  
CO  H2O  NH3  TA  1  4  1  -17.70  -17.77  -17.75  -17.78  

                      
H2O  NH3  CO  FA  3  1  2  -15.36  -15.09  -15.31  -15.19  
H2O  NH3  CO  MAC  3  1  2  -15.39  -15.09  -15.33  -15.21  
H2O  NH3  CO  MAT  3  1  2  -15.41  -15.09  -15.18  -15.14  
CO  NH3  H2O  FA  3  2  1  -16.23  -15.81  -15.88  -15.90  
CO  NH3  H2O  MAC  3  2  1  -16.27  -15.81  -15.84  -15.84  
CO  NH3  H2O  MAT  3  2  1  -15.90  -15.81  -15.87  -15.86  
NH3  H2O  CO  CA  4  1  1  -15.12  -14.83  -15.01  -14.92  
NH3  CO  H2O  TA  4  1  1  -15.13  -14.83  -14.89  -14.88  
   
Text A-3. Expressions for interpolating ternary complex energies from CS/TS binary 
complexes.  

We indicate the stoichiometry in the complex to distinguish where the energies 
are derived from:  
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E(CA-(L1)4(L2)1(L3)1) = ½(E(CS (L1)4(L2)2)+E(CS (L1)4(L3)2))  
E(TA-(L1)4(L2)1(L3)1) = ½(E(TS (L1)4(L2)2)+E(TS (L1)4(L3)2))  
E(FA-(L1)3(L2)2(L3)1) = ½(E(CS (L1)4(L3)2)+E(CS (L2)4(L1)2))  

E(MAC-(L1)3(L2)2(L3)1) = ½(E(TS (L1)4(L3)2)+E(CS (L2)4(L1)2))  
E(MAT-(L1)3(L2)2(L3)1) = ½(E(TS (L1)4(L3)2)+E(TS (L2)4(L1)2))  

E(DCS-(L1)2(L2)2(L3)2) = 1/6(E(CS (L1)4(L2)2+ E(CS (L2)4(L1)2+ E(CS (L1)4(L3)2 
+  E(CS (L3)4(L1)2 + E(CS (L2)4(L3)2 + E(CS (L3)4(L2)2)  

E(DCS-(L1)2(L2)2(L3)2) = 1/6(E(TS (L1)4(L2)2+ E(TS (L2)4(L1)2+ E(TS 
(L1)4(L3)2+  E(TS (L3)4(L1)2 + E(TS (L2)4(L3)2 + E(TS (L3)4(L2)2)  

E(EA-(L1)2(L2)2(L3)2) = 1/6(E(CS (L1)4(L2)2+ E(CS (L2)4(L1)2+ E(TS (L1)4(L3)2+  
 E(TS (L3)4(L1)2 + E(TS (L2)4(L3)2 + E(TS (L3)4(L2)2)  

 
where the third ligand in the EA complex is the one that is trans to itself so 

energies involving that ligand are derived from the binary TS complexes, whereas the 
remainder are derived from CS complexes.   
  
Table A-16. Mean absolute error (MAE) for singlet complex HOMO levels (in eV) and 

Fe(II) complex ∆EH-L (in kcal/mol) for combinations of ligands, L1, L2, and L3 evaluated 
with three averaging schemes: HO-only, CS/TS-derived averaging, and FS/MS-derived 
averaging.   

      HO MO MAE  (eV)  ∆EH-L MAE  (kcal/mol)  
L1  L2  L3  HO  CS+TS  FS+MS  HO  CS+TS  FS+MS  
H2O  CO  NH3  0.26  0.19  0.22  2.31  2.30  1.78  
H2O  CO  CH3CN  0.21  0.10  0.09  5.23  2.45  3.22  
Overall    0.24  0.15  0.16  3.77  2.38  2.50  

  
    
Table A-17. Properties of 56 homoleptic Fe(II) complexes derived from either homoleptic 
examples in the CSD (36 "HO") with neutral ligands or from neutral ligands only 

present in binary and ternary Fe(II) complexes (20 "B or T") from DFT. Both the ∆EH-L 
(in kcal/mol) and the HOMO level of the singlet complex (in eV) are shown. Complexes 
are distinguished by stoichiometry. 

# atoms   
Stoichiometry  Source  refcode  

DEH-L  
(kcal/mol)  

HOMO level 
(eV)  

 37  Fe1C12N6H18  HO  ACEYOW01  -4.98  -12.97  

 19  Fe1O6H12  HO  AMAVOB  -26.78  -15.11  
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 55  Fe1C18N12H24  HO  AXAKIT01  -9.06  -10.90  

 97  Fe1C30N6O6H54  HO  BIRSAZ  -30.77  -10.48  

 67  Fe1C30N6H30  HO  BUSVAO  -16.02  -11.82  

 79  Fe1C24O6H48  HO  BUSVES  -33.88  -12.51  

 25  Fe1N6H18  HO  CACDIW  -9.64  -13.58  

 73  Fe1C18N6O6H42  HO  CALMOS01  -21.32  -10.50  

 13  Fe1C6O6  HO  CEHHON  30.03  -19.46  

 61  Fe1C18N6O6H30  HO  CEMGUX  -23.44  -11.38  

 121  Fe1C42N6O6H66  HO  DECRAE  45.81  -10.93  

 67  Fe1C18N18H30  HO  DEDLAB  -8.03  -11.66  

 73  Fe1C18N6S6H42  HO  FAVDOV  -17.25  -10.27  

 85  Fe1C18N12S6H48  HO  FEGGAZ  -24.89  -10.13  

 73  Fe1C30N6O6H30  HO  FEHPYO  -26.10  -9.91  

 49  Fe1C18N6O6H18  HO  FEISXC01  -5.02  -12.21  

 73  Fe1C24N12H36  HO  FIWQUY  -8.06  -10.44  

 169  Fe1C84N24O12H48  HO  GOGSAZ01  -0.40  -9.19  

 61  Fe1C12N24H24  HO  HIPXOW  -5.43  -11.37  

 127  Fe1C36N6O6H78  HO  HUGVIQ  -30.16  -10.36  

 97  Fe1C24N24H48  HO  JANSAS01  -1.77  -11.43  

 61  Fe1C12O6S6H36  HO  JOHCOZ  -30.25  -10.56  

 61  Fe1C12N24H24  HO  JUVHEN  -1.95  -11.81  

 37  Fe1C12N6H18  HO  MICYFE10  43.67  -13.35  

 115  Fe1C30N24H60  HO  NIGXUY01  -1.83  -11.32  

 79  Fe1C18N24Cl6H30  HO  PEJQIF01  -1.93  -11.57  

 55  Fe1C6N30H18  HO  SIDMAW  -2.30  -12.01  

 55  Fe1C6N30H18  HO  SIDMEA  -7.85  -12.17  

 79  Fe1C18N24H36  HO  TUNBIN  -1.14  -11.55  

 37  Fe1C6O6H24  HO  USIMOA  -25.75  -13.70  

 97  Fe1C24N24Cl6H42  HO  VIFNAC01  -2.71  -11.82  

 115  Fe1C30N24H60  HO  VOJPAM  -1.60  -11.35  

 91  Fe1C18N42H30  HO  XOJCIL  -1.79  -11.14  

 79  Fe1C18N24Br6H30  HO  YAGYIP01  -1.49  -11.69  

 79  Fe1C18N24I6H30  HO  YAGYUB01  -1.66  -11.28  

 97  Fe1C24N24H48  HO  YEQKIR  -1.43  -11.32  

 97  Fe1C18O18P6H54  B or T  --  6.37  -12.08  
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 115  Fe1C42N24H48  B or T  --  -19.67  -10.27  

 79  Fe1C18P6H54  B or T  --  -16.94  -12.36  

 61  Fe1C12N6O12H30  B or T  --  -38.56  -10.26  

 121  Fe1C60N12H48  B or T  --  -17.54  -10.69  

 145  Fe1C72N12H60  B or T  --  -16.08  -10.04  

 91  Fe1C36N12O6H36  B or T  --  -17.00  -11.21  

 151  Fe1C36O18P6H90  B or T  --  9.61  -11.51  

 169  Fe1C60O12P6H90  B or T  --  -10.82  -10.68  

 151  Fe1C72N24O6H48  B or T  --  -16.64  -10.11  

 61  Fe1C24N12Cl6H18  B or T  --  -16.56  -13.24  

 73  Fe1C24N18H30  B or T  --  -15.67  -11.23  

 97  Fe1C48N6H42  B or T  --  43.43  -10.79  

 139  Fe1C54N42H42  B or T  --  -4.66  -10.19  

 133  Fe1C60N12O12H48  B or T  --  -22.25  -9.33  

 73  Fe1C12N12H48  B or T  --  -9.36  -11.36  

 103  Fe1C42N24H36  B or T  --  -5.43  -10.10  

 19  Fe1C6N6H6  B or T  --  43.66  -15.08  

 127  Fe1C60N12O6H48  B or T  --  -25.06  -9.85  

 97  Fe1C24N24H48  B or T  --  -1.13  -11.32  
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Figure A-5. The ∆EH-L (in kcal/mol) vs. singlet HOMO level (in eV) for 56 homoleptic 
Fe(II) complexes shown as a scatter plot (middle) with normalized marginal 1D 
histograms at top and right, respectively computed with B3LYP.  

  

 
Figure A-6. The ∆EH-L (in kcal/mol) vs. singlet HOMO level (in eV) for 56 homoleptic 
Fe(II) complexes shown as a scatter plot (middle) with normalized marginal 1D 
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histograms at top and right, respectively, computed with modified B3LYP with 10% HF 
exchange.  

  
Table A-18. Twelve most common ligands in target zone (i.e., ∆EH-L from -4 to +4 
kcal/mol and singlet HOMO level from -14.0 to -13.0 eV) for Fe(II) complexes and the 
number of times the homoleptic-only averaging predicts that a complex in the zone will 
have that ligand in a binary complex or both binary and ternary complexes. Refcodes in 
italics refer to any complex that contains that ligand, whereas the remainder are the 
precise homoleptic Fe(II) complexes. The top 10 most frequent ligands were selected 
along with two high-frequency ligands (MeCN and ClPyz) for added diversity.   

Refcode  Description  Short 
name  

# 
binary  

# binary 
or 

ternary  
DEH-L 

(kcal/mol)  
HOMO  

(eV)  

CEHHON  CO  CO  23  5071  30.0  -19.46  
AMAVOB  H2O  H2O  4  671  -26.8  -15.11  
RIFLEY  hydrogen isocyanide  CNH  6  1016  43.7  -15.08  

GOVKEK_comp_ 
0  4,4'-bipyridine  bpy20  2  364  -17.5  -10.69  

USIMOA  methanol  MeOH  2  484  -25.7  -13.70  
FAVDOV  dimethylthioformamide  DMTF  2  374  -17.3  -10.27  
CACDIW  ammonia  NH3  4  532  -9.6  -13.58  

BOYWEU_comp_ 
0  dimethyltriazolopyrimidine  DMTP  2  348  -19.7  -10.27  

ARENUG_comp_ 
0  2-chloropyrazine  ClPyz  4  377  -16.6  -13.24  

MICYFE_10  methyl isocyanide  CH3CN  
(misc)  6  536  43.7  -13.35  

ACEYOW01  NCCH3 (acetonitrile)  MeCN  2  439  -5.0  -12.97  
AMUZEP_comp_ 

0  
4-(5-(pyridine-4-yl)-1,3,4-oxadiazol-2-yl 

pyridine  bpy25  2  369  -16.6  -10.11  
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Figure A-7. Homoleptic-only interpolation for Fe(II) complexes: the ∆EH-L (in kcal/mol) 
vs. singlet HOMO level (in eV) for 12 homoleptic Fe(II) complexes shown as both a 
scatter plot (middle, orange) and with normalized marginal 1D histograms at top and 
right (orange bars), respectively. The interpolated values are shown as a 2D histogram 
colored from low (purple) to high (yellow) density, and the same data is shown as a 
kernel density estimate on the histogram panes.  
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Figure A-8. Parity plot of calculated vs. HO-only interpolated DEH-L (in kcal/mol, left) 
and HOMO level (in eV, right) for 66 fac (blue circles) and mer (red circles) derived 
from 12 homoleptic Fe(II) complexes. A black solid parity line is also shown.  

 
Table A-19. MAEs of homoleptic-only interpolation over the FS/MS 132 complex subset 
with respect to calculated values. 

  
spin 
(kcal/mol)  HOMO (eV)  

MS  3.88  0.78  
FS  4.02  0.77  
  
Table A-20. Binary complexes with their chemical formula and symmetry along with 
∆EH-L (in kcal/mol) and HOMO level (in eV) obtained through three approaches: 
homoleptic-only interpolation, FS/MS-augmented interpolation, and explicit calculation. 
For the cases that are FS or MS complexes, FS/MS-augmented interpolation refers to 
the explicitly calculated property. As a result, the reported MAEs are obtained over 5 
complexes for FS/MS-interpolation but 8 complexes for HO-interpolation. The resulting 
calculated properties that are in the targeted zone are shown in bold. 

Complex  Sym.  HO-interpolation  FS/MS-interpolation  Calculation  

    
spin 
(kcal/mol) 

 HOMO 
(eV) 

 spin 
(kcal/mol) 

 HOMO 
(eV) 

 spin 
(kcal/mol) 

 HOMO 
(eV) 

Fe(II)(MeCN)5(CO)  5+1  0.9   -14.05   1.6   -13.95   1.5   -13.84 
Fe(II)(MeCN)3(NH3)3  MS  -7.3   -13.28   -3.6   -13.17   -3.6   -13.17 
Fe(II)(CH3CN)3(MeOH)3  FS  9.0   -13.52   2.9   -13.67   2.9   -13.67 
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Fe(II)(CH3CN)3(MeOH)3  MS  9.0   -13.52   -0.8   -13.65   -0.8   -13.65 
Fe(II)(ClPyz)4(CO)2  CS  -1.0   -15.32   2.7   -13.73   4.9   -13.63 
Fe(II)(ClPyz)4(CO)2  TS  -1.0   -15.32   3.1   -13.70   5.7   -13.62 
Fe(II)(MeOH)4(CH3CN)2   CS  -2.6   -13.58   -6.6   -13.56   -9.1   -13.80 
Fe(II)(MeOH)4(CH3CN)2   TS  -2.6   -13.58   -9.1   -13.66   -13.9   -13.67 

MAE  
 

6.3   0.54   2.5   0.11   
 

  
Table A-21. Ternary complexes with their chemical formula and symmetry along with 
∆EH-L (in kcal/mol) and HOMO level (in eV) obtained through three approaches: 
homoleptic-only interpolation, FS/MS-augmented interpolation, and explicit calculation. 
The resulting calculated properties that are in the targeted zone are shown in bold. 

Complex  
  

Sym  
  

HO-interpolation  FS/MS-interpolation  Calculation  

  spin 
(kcal/mol)  

HOMO  
(eV)  

spin 
(kcal/mol)  HOMO (eV)  spin (kcal/mol)  HOMO (eV)  

Fe(II)(ClPyz)4(CNH)1(NH3)1  CA  -5.4  -13.60   -3.8   -13.32   -3.8   -13.37 
Fe(II)(DMTF)3(CO)2(H2O)1  FA  -3.1  -14.14   -3.0   -13.20   -8.2   -12.55 
Fe(II)(NH3)4(DMTF)1(CO)1  TA  -4.3  -14.01   -3.2   -13.94   -0.2   -13.40 
Fe(II)(ClPyz)4(MeCN)1(CO)1  CA  -6.9  -14.23   -3.8   -13.38   -0.5   -13.33 
Fe(II)(MeCN)4(ClPyz)1(NH3)1  TA  -7.7  -13.12   -3.6   -13.03   -2.7   -12.83 
Fe(II)(ClPyz)3(CO)2(DMTF)1  FA  

  
-9.0  -13.29   -0.1   -13.96   -2.2   -13.20 

  
MAE   4.8   0.62   2.5   0.37    
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B. Appendix: Isovalent TMCs 

Table B-1. Comparison of effects of equilibrium bond length differences from larger basis 
sets for B3LYP/LACVP* and B3LYP/def2-ZORA-TZVP (i.e., aHF = 0.2) structures of 
Fe(II) or Ru(II)(CO)6 in HS quintet and LS states. 

The ratio of the resulting S(∆EH-L) between the two basis sets evaluated with that basis 
set are shown as well along with their individual sensitivities in kcal/mol.HFX. The 
change in basis set for energetic evaluation is more significant than the change in 
structure (which is ca. 0.01-0.02 Å). The effect of exchange correlation functional choice 
(i.e., PBE vs. B3LYP) used in tuning with the LACVP* basis set is also compared on 
Fe(II)(CO)6 and Ru(II)(CO)6 HS and LS states. Average (avg) metal-ligand bond 
lengths (M-L dist.) are shown in Å along with the min-max range over all six individual 
bond lengths unless all bonds are the same in which case the range is indicated as ‘--'. 

Geometric effects 
 B3LYP/LACVP*  

M-L dist. (Å) 
B3LYP/ZORA-def2-TZVP 

M-L dist. (Å) 
TMC avg range avg range 

LS Ru(II)(CO)6 2.057 -- 2.052 -- 
HS Ru(II)(CO)6 2.479 2.429-2.505 2.457 2.409-2.540 
LS Fe(II)(CO)6 1.942 -- 1.937 -- 
HS Fe(II)(CO)6 2.330 2.314-2.361 2.311 2.289-2.322 

3d:4d S(DEH-L) ratio  
(S in kcal/mol.HFX) 

1.8 (-170 / -95) 1.6 (-244 / -156) 

GGA xc effects 
TMC B3LYP/LACVP* PBE/LACVP* 

Ru(II)(CO)6 S(DEH-L) 
kcal/mol.HFX 

-95 -81 

Fe(II)(CO)6 S(DEH-L) 
kcal/mol.HFX 

-170 -183 

 
Table B-2. Geometric and electronic criteria adapted from prior work1 for excluding 
TMCs from data set with loose geometric cutoffs applied during resubmission indicated 
in parentheses. 

The coordination number must be preserved as 6 for all mononuclear octahedral 
transition metal complexes (i.e., as judged through interatomic distances being within 
1.37x the sum of the respective elements’ covalent radii). First coordination shell metrics 
include the mean and maximum (max.) deviation in the angle (∆θ(Ci-M-Cj) )	 with 
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coordinating atoms (Ci or Cj) and the metal from the expected values of 90° or 180° as 
well as the maximum overall difference between metal-coordinating atom bond lengths 
over all ligands and specifically in the equatorial (eq.) plane. Ligand distortion metrics 
include the maximum root mean square deviation (RMSD) of any atom from the 
starting structure. For ligands that are expected to be linear, additional checks are 
applied on the deviation of the angle formed by the metal and the first two atoms of the 
ligand (A, B) from 180°. Tightened checks for homoleptic TMCs are indicated for 
max(∆d) with a special threshold for singlet states due to our expectation of higher 
symmetry for these structures.  

Geometric criteria 
Coordination number 

6 (6) 
First coordination shell 

mean(Dq (Ci-M-Cj)) 
12° (16°) 

max(Dq(Ci-M-Cj)) 
22.5° (27.0°) 

max(Dd) 
1.00 Å (1.25 Å) 
homoleptic: 

0.4 Å (0.2 Å for singlets) 

max(Ddeq) 
0.35 Å (0.45 Å) 

Ligand distortion metrics 
max(RMSD) 

0.30 Å (0.40 Å) 
mean(Dq(M-A-B)) 

20° (30°) 
max(Dq (M-A-B)) 

28° (40°) 
Electronic criteria 

Metal spin 1.0 µB 

Deviation of <S2> 1.0 µB 
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Table B-3. Number of 3d or 4d TMCs eliminated at each sequential filtering step along 
with how many are retained, and the cumulative total is listed as overall. The filtering 
steps were: i) convergence (completion, passing loose thresholds upon 5 24 hour job 
resubmissions), ii) geometry metrics, iii) deviations of <S2> from the expected value by 
more than 1µB, and iv) deviations of metal spin of more than 1µB. 

All calculations were started from converged aHF = 0.20 (i.e., B3LYP results), and then 
subsequent calculations were attempted at up to a total of six either sequentially 
increasing (i.e., aHF = 0.25 and 0.30) or decreasing (i.e., aHF = 0.15, 0.10, 0.05, and 0.00) 
exchange fractions. If the initial B3LYP result did not converge, none of the subsequent 
calculations were attempted. If one of the subsequent calculations was attempted but 
failed in either direction, it was also abandoned. This procedure refers only to 
convergence failures of the geometry optimization or failing loose geometry checks during 
resubmissions (i.e., step i). All points were checked for steps ii-iv at the end, and failure 
of one data point to pass the criteria in ii, iii, or iv does not mean that other HF 
exchange fractions would necessarily be affected. 

 3d TMCs 4d TMCs 
Check Performed Retained Eliminated at step Retained Eliminated at step 
Start 26,877 -- 19,100 -- 
Converged 26,326 531 18,743 357 
Geometry 23,813 2,513 16,516 2,227 
<S2> 22,881 932 16,196 320 
Metal spin 21,699 1,182 15,330 866 
Overall 21,699 5,178 15,330 3,770 

 
Table B-4. Summary of computed sensitivities: all S(3d) or S(4d) results that were 
obtained (“results”) along with those that were eliminated for having fewer than 4 points 
or due to the inability to eliminate slope changes between two points. All lines were 
retained regardless of R2 values, but any points where LOOCV errors for a point were 5 
kcal/mol or higher were eliminated. 

The cases for which R2 was below 0.99 are indicated in the R2 < 0.99 subset. The 
retained results after these filtering steps for both 3d and 4d TMCs are shown along with 
the number of matched-ligand pairs that can be generated by identifying metals in the 
same oxidation/spin states but different principal quantum numbers. These numbers are 
generally limited by the smaller size of the 4d TMC set. Specifics of the filtering 
procedure: we required that at least four of seven points converged and passed data 
fidelity checks. We then carried out leave one out cross validation (LOOCV) of the 
linear fit relationship of aHF with the relevant property (e.g., ∆EH-L). Individual points 
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with LOOCV errors greater than 5 kcal/mol were removed along with any points that, 
upon removal, would increase the R2 value of the remaining points to above 0.99. If at 
least four points remained after this first step, the slope was evaluated between each 
adjacent pair of points, and these slopes were compared for changes in sign as an 
indication of discontinuous points that had passed the LOOCV check. If the pair of 
points that changed the sign of the slope included one on the two extrema (i.e., lowest 
aHF or highest aHF value), they were removed. For any cases that had at least four points 
after these two filtering steps, a best-fit line and R2 value was computed on the 
remaining points. The majority (> 90%) of points after these steps had R2 values of 0.99 
or higher. To ensure fair comparison of properties of 3d and 4d TMCs, sets formed from 
matching pairs of ligand fields, oxidation states, and electron configurations across 3d 
and 4d metals were obtained. The size of this final data set was primarily limited by the 
smaller size of the valid 4d TMC dataset. 

 3d TMCs 4d TMCs # 3d-4d 
pairs Property results < 4 

pts. 
slope 
sign 

retain R2 < 
0.99 
subset 

results < 4 
pts. 

slope 
sign 

retain R2 < 
0.99 
subset 

DEH-L 703 101 2 600 15 399 113 2 284 10 239 
DEI-L 1,072 80 35 957 152 850 180 25 645 91 488 
DEH-I 676 98 4 574 37 361 101 5 255 10 209 

 
Table B-5. The ratio of S for ∆EI-L to ∆EH-L or ∆EH-I to ∆EH-L for 3d and 4d TMCs for 
all 154 TMCs for which all 3 quantities are available, and all sensitivities are negative. 
The average, standard deviation, minimum, maximum, and range for each ratio is 
reported. 

  3d IS-LS/HS-LS 4d IS-LS/HS-LS 
 Pairs avg. std. min. max. range avg. std. min. max. range 
Cr(II) 11 0.24 0.03 0.20 0.33 0.13 0.36 0.06 0.29 0.48 0.19 
Fe(II) 35 0.38 0.07 0.21 0.50 0.29 0.33 0.09 0.12 0.48 0.36 
Fe(III) 30 0.42 0.06 0.27 0.51 0.24 0.31 0.11 0.10 0.56 0.47 
Mn(II) 36 0.41 0.06 0.28 0.52 0.24 0.38 0.08 0.21 0.72 0.51 
Mn(III) 42 0.37 0.05 0.25 0.58 0.33 0.48 0.09 0.31 0.69 0.38 
Overall 154 0.38 0.07 0.20 0.58 0.39 0.38 0.11 0.10 0.72 0.62 
  3d HS-IS/HS-LS 4d HS-IS/HS-LS 
  avg. std. min. max. range avg. std. min. max. range 
Cr(II) 11 0.76 0.04 0.67 0.83 0.17 0.65 0.07 0.52 0.76 0.23 
Fe(II) 35 0.64 0.07 0.52 0.79 0.27 0.67 0.09 0.52 0.86 0.34 
Fe(III) 30 0.59 0.07 0.50 0.82 0.32 0.69 0.09 0.53 0.90 0.38 
Mn(II) 36 0.59 0.10 0.47 1.09 0.62 0.63 0.08 0.46 0.87 0.42 
Mn(III) 42 0.63 0.05 0.45 0.74 0.29 0.53 0.10 0.35 0.81 0.45 
Overall 154 0.62 0.09 0.45 1.09 0.63 0.62 0.11 0.35 0.90 0.55 
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Table B-6. Summary of sensitivities (in kcal/mol.HFX) for pairs of 3d and 4d TMCs 
grouped by metal and oxidation state. The total number of 3d/4d pairs is indicated 
along with the average, standard deviation, minimum, maximum, and range for the 3d or 
4d TMC subsets. A best-fit line for the relationship between the sensitivities and the 
associated R2 value are also shown.   

S(DEH-L)   
3d 4d S(4d) = mS(3d) + C  

Pairs avg. std. min. max. range avg. std. min. max. range m C R2 
Cr(II) 16 -72.2 22.4 -120.1 -33.4 86.7 -45.2 21.9 -74.6 23.2 97.8 0.55 -5.11 0.32 
Mn(III) 51 -73.1 18.1 -134.6 -37.2 97.4 -48.5 13.3 -89.3 -27.5 61.9 0.55 -8.24 0.56 
Mn(II) 72 -118.9 31.3 -187.1 -62.2 124.8 -76.6 20.9 -137.9 -40.1 97.8 0.53 -13.96 0.63 
Fe(III) 36 -80.6 17.0 -120.5 -53.7 66.9 -42.2 19.5 -75.2 45.3 120.5 0.88 28.67 0.59 
Fe(II) 64 -110.4 31.6 -175.2 -37.4 137.7 -62.8 16.2 -95.6 -33.5 62.0 0.41 -17.17 0.65 
Overall 239 -97.9 33.2 -187.1 -33.4 153.7 -59.6 22.5 -137.9 45.3 183.2 0.55 -5.63 0.67 

S(DEH-I) 
  3d 4d S(4d) = mS(3d) + C 
 Pairs avg. std. min. max. range avg. std. min. max. range m C R2 

Cr(II) 12 -55.9 13.7 -77.0 -21.5 55.5 -26.7 18.8 -41.4 32.6 74.0 1.13 36.71 0.68 
Mn(III) 84 -52.4 15.8 -99.4 -24.2 75.2 -28.7 12.5 -71.1 -12.3 58.8 0.59 2.16 0.55 
Mn(II) 38 -68.1 15.1 -110.1 -41.6 68.5 -51.5 15.7 -97.1 -27.6 69.5 0.55 -14.37 0.27 
Fe(III) 31 -46.1 7.6 -64.2 -34.4 29.8 -29.4 8.3 -50.0 -15.5 34.5 0.78 6.28 0.50 
Fe(II) 44 -73.6 23.1 -157.6 -39.7 117.9 -44.1 15.2 -97.5 -24.6 72.9 0.54 -4.48 0.67 
Overall 209 -59.0 19.4 -157.6 -21.5 136.1 -36.1 16.6 -97.5 32.6 130.1 0.65 2.36 0.58 

S(DEI-L) 
  3d 4d S(4d) = mS(3d) + C 
 Pairs avg. std. min. max. range avg. std. min. max. range m C R2 
Cr(III) 46 -25.2 11.9 -59.8 -6.7 53.1 -20.8 7.4 -41.5 -9.1 32.4 0.42 -10.14 0.46 
Cr(II) 88 -18.9 11.8 -63.7 13.7 77.4 -15.5 10.1 -38.7 17.3 56.0 0.16 -12.46 0.04 
Mn(III) 77 -31.1 13.3 -81.8 -14.7 67.2 -26.1 17.0 -142.9 -13.6 129.3 0.21 -19.56 0.03 
Mn(II) 43 -47.7 20.4 -88.0 -18.2 69.8 -25.5 17.0 -85.1 -3.8 81.3 0.53 -0.14 0.40 
Fe(III) 80 -43.5 19.8 -140.7 -18.6 122.1 -15.2 12.6 -73.3 49.7 123.0 0.27 -3.24 0.18 
Fe(II) 52 -39.7 23.0 -98.4 17.3 115.6 -18.4 13.3 -42.6 29.5 72.1 0.18 -11.21 0.10 
Co(III) 55 -29.5 16.4 -115.5 -4.5 111.0 7.1 8.8 -16.8 36.8 53.6 0.06 8.86 0.01 
Co(II) 47 -63.3 24.8 -100.0 -13.2 86.7 -25.1 20.9 -51.4 46.4 97.8 0.64 15.13 0.57 
Overall 488 -36.3 22.0 -140.7 17.3 158.0 -18.6 16.3 -142.9 49.7 192.6 0.28 -8.46 0.14 
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Table B-7. Outliers where the S(4d) value exceeds the S(3d) value, both shown in 
kcal/mol.HFX. The R2 value for each sensitivity determination and the difference 
between the first-row and second-row sensitivity are shown grouped by the type of spin 
splitting. 

4e HS-LS 
3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Fe(II) Ru(II) NH3 H2O trans -37.4 1.00 -38.0 1.00 0.6 
Mn(II) Tc(II) NCCH3 CO 5+1 -136.7 1.00 -137.9 0.99 1.2 
Mn(II) Tc(II) NCCH3 CNCH3 trans -114.5 0.99 -118.4 0.97 4.0 
Mn(III) Tc(III) F- -- homoleptic -37.2 1.00 -50.6 0.99 13.5 
Cr(II) Mo(II) F- -- homoleptic -33.4 0.91 -68.6 0.97 35.3 

2e HS-IS 
3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Mn(II) Tc(II) CO H2O trans -57.2 0.97 -76.2 0.99 19.0 
Mn(II) Tc(II) NCCH3 H2O trans -51.7 1.00 -97.1 0.96 45.5 

2e IS-LS 
3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Mn(III) Tc(III) H2S F- 5+1 -20.2 1.00 -35.7 0.98 15.5 
Fe(II) Ru(II) NH3 CN- trans 3.9 0.98 -13.0 1.00 16.9 
Cr(II) Mo(II) NH3 H2S cis -2.8 1.00 -20.3 1.00 17.5 
Cr(II) Mo(II) NH3 CNCH3 cis -12.7 0.98 -32.9 0.90 20.2 
Cr(II) Mo(II) NH3 CO trans 13.7 1.00 -13.8 1.00 27.5 
Cr(II) Mo(II) NH3 -- homoleptic -6.4 1.00 -34.1 0.83 27.6 
Mn(II) Tc(II) NCCH3 CNCH3 trans -49.3 0.97 -85.1 0.93 35.8 
Mn(III) Tc(III) Cl- NCCH3 5+1 -24.7 0.99 -63.3 0.93 38.6 
Mn(III) Tc(III) Cl- PH3 5+1 -24.4 1.00 -67.3 0.92 42.9 
Mn(III) Tc(III) Cl- CNCH3 5+1 -31.3 0.99 -77.5 0.95 46.2 
Fe(II) Ru(II) F- CN- trans 17.3 0.96 -37.6 1.00 54.9 
Mn(III) Tc(III) Cl- NCCH3 trans -34.6 0.99 -142.9 0.82 108.3 

 
Table B-8. Outliers where the S(4d) or S(3d) value is positive (both shown in 
kcal/mol.HFX) for 4-electron ∆EH-L and 2-electron ∆EH-I. The R2 value for each 
sensitivity determination and the difference between the first-row and second-row 
exchange sensitivity are shown grouped by the type of spin splitting. 

4e HS-LS 
3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Cr(II) Mo(II) NH3 Cl- cis -34.0 1.00 23.2 1.00 -57.2 
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Fe(III) Ru(III) F- -- homoleptic -56.9 1.00 45.3 1.00 -102.2 
2e HS-IS 

3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Cr(II) Mo(II) NH3 Cl- cis -21.5 1.00 32.6 1.00 -54.1 

 
Table B-9. Outliers where the S(4d) or S(3d) value is positive (both shown in 
kcal/mol.HFX) for 2-electron ∆EI-L. The R2 value for each sensitivity determination and 
the sensitivity difference are shown. Only the bottom three cases are S(3d) > 0, the rest 
are S(4d) >0. 

3d 4d L1 L2 symmetry S(3d) R2 S(4d) R2 S(3d)-S(4d) 
Co(III) Rh(III) NCCH3 NH3 5+1 -21.1 1.00 19.2 0.84 -40.3 
Co(III) Rh(III) NCCH3 CO 5+1 -37.9 0.93 14.0 0.95 -51.9 
Co(III) Rh(III) NCCH3 CN- 5+1 -35.1 1.00 3.1 0.97 -38.2 
Co(III) Rh(III) NCCH3 H2O 5+1 -18.3 0.99 7.7 0.91 -26.1 
Co(III) Rh(III) NH3 F- 5+1 -18.1 1.00 3.3 0.97 -21.4 
Co(III) Rh(III) CNCH3 CN- 5+1 -36.7 1.00 4.6 0.87 -41.3 
Co(III) Rh(III) CNCH3 F- 5+1 -32.4 1.00 5.3 0.99 -37.7 
Co(III) Rh(III) H2O NCCH3 5+1 -13.8 0.99 6.4 0.97 -20.1 
Co(III) Rh(III) H2O NH3 5+1 -20.1 0.99 8.9 0.96 -28.9 
Co(III) Rh(III) H2O CO 5+1 -7.9 0.97 11.7 0.98 -19.6 
Co(III) Rh(III) H2O CN- 5+1 -34.1 1.00 6.7 0.99 -40.8 
Co(III) Rh(III) H2O F- 5+1 -12.2 0.99 6.2 1.00 -18.5 
Co(III) Rh(III) NH3 NCCH3 cis -24.2 1.00 6.6 0.99 -30.8 
Co(III) Rh(III) CNCH3 NCCH3 cis -36.5 1.00 11.8 0.96 -48.3 
Co(III) Rh(III) H2O NCCH3 cis -14.5 0.99 7.5 0.94 -21.9 
Co(III) Rh(III) H2O NH3 cis -23.6 1.00 7.4 0.93 -31.0 
Co(III) Rh(III) H2S Cl- cis -115.5 1.00 6.2 1.00 -121.7 
Co(III) Rh(III) NH3 CN- cis -33.2 1.00 7.7 0.91 -40.9 
Co(III) Rh(III) NH3 F- cis -19.1 0.99 6.1 0.98 -25.2 
Co(III) Rh(III) H2O F- cis -20.5 1.00 4.9 0.99 -25.4 
Co(III) Rh(III) NCCH3 CNCH3 cis -27.4 0.99 12.5 0.96 -39.9 
Co(III) Rh(III) H2O CNCH3 cis -26.2 1.00 8.2 0.90 -34.4 
Co(II) Rh(II) F- -- homoleptic -59.0 1.00 46.4 1.00 -105.4 
Co(III) Rh(III) H2O -- homoleptic -4.5 0.92 5.9 0.89 -10.3 
Fe(II) Ru(II) CN- -- homoleptic 13.5 0.91 17.3 1.00 -3.8 
Co(III) Rh(III) NCCH3 Cl- trans -19.1 0.89 5.8 1.00 -24.9 
Co(III) Rh(III) NCCH3 CN- trans -28.2 0.96 9.8 1.00 -38.1 
Co(III) Rh(III) NCCH3 CNCH3 trans -26.9 1.00 36.8 0.80 -63.7 
Co(III) Rh(III) NH3 Cl- trans -13.1 0.97 9.3 1.00 -22.4 
Co(III) Rh(III) NH3 CN- trans -27.0 1.00 15.1 0.99 -42.1 
Co(III) Rh(III) NH3 F- trans -9.3 0.99 3.7 0.99 -13.0 
Co(III) Rh(III) NH3 H2O trans -26.8 1.00 6.4 0.96 -33.2 
Co(III) Rh(III) CO CN- trans -31.9 1.00 5.5 1.00 -37.4 
Co(III) Rh(III) CO CNCH3 trans -22.6 0.93 22.5 0.99 -45.1 
Co(III) Rh(III) Cl- CNCH3 trans -41.9 0.94 16.2 0.98 -58.1 
Co(III) Rh(III) Cl- PH3 trans -38.8 0.98 12.1 0.98 -50.9 
Co(III) Rh(III) CN- NH3 trans -37.9 0.96 9.5 0.94 -47.4 
Co(III) Rh(III) CN- F- trans -28.9 0.87 13.4 0.97 -42.3 
Co(III) Rh(III) CN- PH3 trans -44.2 1.00 19.5 0.98 -63.6 
Co(III) Rh(III) H2S Cl- trans -25.4 0.96 10.5 1.00 -35.9 
Co(III) Rh(III) H2S CN- trans -32.2 0.99 12.1 1.00 -44.3 
Co(III) Rh(III) CNCH3 CO trans -54.2 1.00 14.4 0.98 -68.7 
Co(III) Rh(III) CNCH3 CN- trans -37.8 0.99 8.1 0.98 -45.9 
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Co(III) Rh(III) CNCH3 H2O trans -52.9 0.91 9.8 0.90 -62.7 
Co(III) Rh(III) PH3 Cl- trans -25.0 0.98 15.9 0.99 -40.9 
Co(III) Rh(III) H2O CO trans -9.3 0.96 17.3 0.99 -26.6 
Co(III) Rh(III) H2O CNCH3 trans -21.4 1.00 3.9 0.89 -25.3 
Fe(II) Ru(II) CN- NH3 trans -44.4 0.96 29.5 1.00 -74.0 
Fe(II) Ru(II) F- CO trans -15.6 1.00 9.5 1.00 -25.1 
Fe(II) Ru(II) CNCH3 Cl- trans -44.3 1.00 10.9 0.98 -55.1 
Fe(III) Ru(III) Cl- CN- trans -28.6 1.00 49.7 1.00 -78.3 
Fe(II) Ru(II) NH3 CN- trans 3.9 0.98 -13.0 1.00 16.9 
Cr(II) Mo(II) NH3 CO trans 13.7 1.00 -13.8 1.00 27.5 
Fe(II) Ru(II) F- CN- trans 17.3 0.96 -37.6 1.00 54.9 

 
Table B-10. Adiabatic spin-splitting energies, ∆EH-L, for the 4-electron difference HS-to-
LS energies in kcal/mol for 3d TMCs containing CO and H2O ligands with varied aHF 
values as indicated in the table alongside the computed sensitivity and the R2 value from 
a linear fit. Values in italics have been averaged between neighboring points or 
extrapolated using the linear fit if not between neighboring points. The symmetry and 
composition of the complex is indicated in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Cr(II) 6 0 homoleptic 2.0 -5.5 -11.7 -19.9 -28.2 -36.4 -41.2 1.00 -148.7 
Cr(II) 5 1 5+1 -0.8 -7.4 -13.6 -19.4 -24.7 -29.6 -34.0 1.00 -110.5 
Cr(II) 4 2 trans -1.2 -7.8 -14.0 -18.1 -23.4 -28.2 -34.0 1.00 -106.0 
Cr(II) 2 4 cis -14.0 -19.9 -25.4 -30.5 -35.1 -39.2 -42.9 0.99 -96.3 
Cr(II) 2 4 trans -12.0 -18.8 -25.1 -31.0 -36.2 -40.8 -44.7 0.99 -109.5 
Cr(II) 1 5 5+1 -22.9 -28.5 -33.6 -38.2 -42.2 -45.8 -48.9 0.99 -86.4 
Cr(II) 0 6 homoleptic -43.7 -45.6 -47.4 -49.1 -50.8 -52.5 -54.1 1.00 -34.4 
Mn(III) 6 0 homoleptic -16.1 -19.9 -24.4 -28.5 -32.3 -35.8 -39.1 1.00 -76.6 
Mn(III) 5 1 5+1 -9.2 -13.5 -18.5 -23.1 -27.4 -31.3 -35.0 1.00 -86.1 
Mn(III) 4 2 trans -6.6 -11.6 -16.3 -20.8 -24.9 -28.8 -32.5 1.00 -86.1 
Mn(III) 2 4 cis -19.8 -24.6 -28.9 -32.9 -36.6 -40.0 -43.2 0.99 -77.7 
Mn(III) 2 4 trans -18.0 -23.1 -27.6 -31.7 -35.5 -39.0 -42.3 0.99 -80.3 
Mn(III) 1 5 5+1 -26.2 -30.3 -34.0 -37.4 -40.7 -43.7 -46.6 1.00 -67.6 
Mn(III) 0 6 homoleptic -32.9 -35.3 -38.0 -40.7 -43.3 -45.8 -48.2 1.00 -51.5 
Mn(II) 6 0 homoleptic 29.5 19.7 10.5 1.7 -6.6 -14.3 -21.4 1.00 -169.9 
Mn(II) 5 1 5+1 20.7 11.1 2.0 -6.5 -14.3 -21.5 -28.1 1.00 -163.0 
Mn(II) 4 2 trans 10.8 2.2 -5.9 -13.4 -20.9 -27.5 -34.6 1.00 -150.3 
Mn(II) 2 4 cis -4.0 -12.2 -19.7 -26.7 -33.0 -38.7 -43.7 0.99 -132.4 
Mn(II) 2 4 trans -7.5 -15.3 -22.6 -29.3 -35.4 -40.6 -45.3 0.99 -126.3 
Mn(II) 1 5 5+1 -16.1 -23.1 -29.5 -35.4 -40.7 -45.4 -49.5 0.99 -111.4 
Mn(II) 0 6 homoleptic -36.1 -39.7 -43.0 -46.3 -49.1 -51.8 -54.9 1.00 -62.7 
Fe(III) 6 0 homoleptic 43.4 37.2 29.5 23.7 18.1 12.6 7.3 1.00 -120.5 
Fe(III) 5 1 5+1 33.8 28.5 22.8 17.4 12.2 7.1 2.0 1.00 -105.7 
Fe(III) 4 2 trans 24.0 19.5 14.7 10.1 5.6 1.2 -3.2 1.00 -90.5 
Fe(III) 2 4 cis 3.0 -0.8 -4.9 -8.8 -12.6 -16.4 -20.2 1.00 -77.1 
Fe(III) 2 4 trans 1.0 -3.0 -6.8 -10.3 -13.9 -17.4 -20.9 1.00 -72.3 
Fe(III) 1 5 5+1 -6.9 -10.4 -13.8 -17.0 -20.3 -23.5 -26.8 1.00 -66.1 
Fe(III) 0 6 homoleptic -15.5 -18.0 -20.6 -23.2 -25.9 -28.7 -31.6 1.00 -53.7 
Fe(II) 6 0 homoleptic 64.8 57.1 47.9 38.9 30.3 22.2 14.6 1.00 -170.0 
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Fe(II) 5 1 5+1 49.2 39.8 31.0 22.6 14.7 7.3 0.5 1.00 -162.5 
Fe(II) 4 2 trans 30.1 26.4 18.5 12.8 2.7 -3.3 -8.0 0.99 -135.2 
Fe(II) 2 4 cis 17.2 9.5 2.4 -4.3 -10.4 -15.8 -20.7 0.99 -126.5 
Fe(II) 2 4 trans 2.9 -3.3 -9.0 -14.3 -19.1 -23.5 -27.4 0.99 -101.3 
Fe(II) 1 5 5+1 2.3 -3.7 -9.4 -14.6 -19.4 -23.7 -27.6 0.99 -99.5 
Fe(II) 0 6 homoleptic -15.1 -18.1 -21.1 -23.9 -26.6 -28.6 -31.1 1.00 -53.4 
Co(III) 0 6 homoleptic 5.2 4.3 3.3 2.3 1.1 0.9 -0.9 0.92 -19.6 

 
Table B-11. Adiabatic spin-splitting energies, ∆EH-L, for the 4-electron difference HS-to-
LS energies in kcal/mol for 4d TMCs containing CO and H2O ligands with varied aHF 
values as indicated in the table alongside the computed sensitivity and the R2 value from 
a linear fit. Values in italics have been averaged between neighboring points or 
extrapolated using the linear fit if not between neighboring points. The symmetry and 
composition of the complex is indicated in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Mo(II) 4 2 trans 50.0 47.6 44.8 42.0 39.2 36.5 33.8 1.00 -54.5 
Tc(III) 4 2 trans 44.1 40.7 37.3 34.0 30.9 27.8 24.9 1.00 -64.0 
Tc(III) 2 4 cis 34.7 31.3 28.1 24.9 19.4 16.4 12.7 0.99 -74.5 
Tc(III) 2 4 trans 41.3 37.5 33.8 30.2 26.8 23.6 20.4 1.00 -69.6 
Tc(III) 1 5 5+1 29.3 26.5 23.7 20.9 18.1 15.4 12.7 1.00 -55.4 
Tc(III) 0 6 homoleptic 4.4 2.7 1.0 -0.7 -2.5 -4.2 -5.1 1.00 -32.8 
Tc(II) 6 0 homoleptic 106.6 100.8 95.1 88.4 83.1 78.0 73.0 1.00 -113.3 
Tc(II) 4 2 trans 88.1 82.7 77.4 72.3 68.5 62.6 58.0 1.00 -99.7 
Tc(II) 2 4 cis 70.4 65.3 60.2 55.2 50.5 45.8 41.4 1.00 -97.0 
Tc(II) 2 4 trans 67.3 62.4 57.7 53.1 48.7 44.5 40.4 1.00 -89.6 
Tc(II) 1 5 5+1 52.9 48.5 44.2 40.0 36.0 32.0 28.5 1.00 -81.7 
Tc(II) 0 6 homoleptic 11.9 9.7 7.5 5.3 3.2 1.2 -0.8 1.00 -42.4 
Ru(III) 6 0 homoleptic 108.2 104.4 100.7 96.2 91.8 90.1 86.7 0.99 -72.7 
Ru(III) 4 2 trans 88.2 85.5 82.7 79.9 77.1 74.4 71.6 1.00 -55.3 
Ru(III) 2 4 cis 64.5 62.1 59.6 57.2 54.7 52.3 49.8 1.00 -48.8 
Ru(III) 2 4 trans 66.0 63.7 61.5 59.2 57.0 54.7 52.4 1.00 -45.5 
Ru(III) 1 5 5+1 52.3 50.3 48.3 46.4 44.4 42.3 40.2 1.00 -40.3 
Ru(III) 0 6 homoleptic 32.6 31.5 30.5 29.6 28.7 27.5 26.3 0.99 -21.2 
Ru(II) 6 0 homoleptic 135.3 130.5 125.7 120.9 116.2 111.6 107.0 1.00 -94.5 
Ru(II) 4 2 trans 94.1 90.1 86.3 82.3 78.2 74.2 70.4 1.00 -79.5 
Ru(II) 2 4 cis 81.7 77.8 73.6 69.3 65.1 60.9 56.8 1.00 -83.7 
Ru(II) 2 4 trans 61.2 58.0 54.8 51.4 48.0 44.7 41.5 1.00 -65.9 
Ru(II) 1 5 5+1 59.2 56.1 52.8 49.4 46.0 42.6 39.3 1.00 -67.0 
Ru(II) 0 6 homoleptic 30.0 28.2 26.2 24.3 22.4 20.4 18.5 1.00 -38.4 
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Table B-12. Sensitivities, S, in kcal/mol.HFX, for ∆EH-L 4-electron difference adiabatic 
spin-splitting energies computed among pairs of 3d and 4d TMCs containing CO and 
H2O ligands. The symmetry and composition of the complex is indicated in the table. 

M(3d)/M(4d) n CO 6-n H2O sym. S(3d) S(4d) 
Cr(II)/Mo(II) 4 2 trans -106.0 -54.5 
Mn(III)/Tc(III) 4 2 trans -86.1 -64.0 
Mn(III)/Tc(III) 2 4 cis -77.7 -74.5 
Mn(III)/Tc(III) 2 4 trans -80.3 -69.6 
Mn(III)/Tc(III) 1 5 5+1 -67.6 -55.4 
Mn(III)/Tc(III) 0 6 homoleptic -51.5 -32.8 
Mn(II)/Tc(II) 6 0 homoleptic -169.9 -113.3 
Mn(II)/Tc(II) 4 2 trans -150.3 -99.7 
Mn(II)/Tc(II) 2 4 cis -132.4 -97.0 
Mn(II)/Tc(II) 2 4 trans -126.3 -89.6 
Mn(II)/Tc(II) 1 5 5+1 -111.4 -81.7 
Mn(II)/Tc(II) 0 6 homoleptic -62.7 -42.4 
Fe(III)/Ru(III) 6 0 homoleptic -120.5 -72.7 
Fe(III)/Ru(III) 4 2 trans -90.5 -55.3 
Fe(III)/Ru(III) 2 4 cis -77.1 -48.8 
Fe(III)/Ru(III) 2 4 trans -72.3 -45.5 
Fe(III)/Ru(III) 1 5 5+1 -66.1 -40.3 
Fe(III)/Ru(III) 0 6 homoleptic -53.7 -21.2 
Fe(II)/Ru(II) 6 0 homoleptic -170.0 -94.5 
Fe(II)/Ru(II) 4 2 trans -135.2 -79.5 
Fe(II)/Ru(II) 2 4 cis -126.5 -83.7 
Fe(II)/Ru(II) 2 4 trans -101.3 -65.9 
Fe(II)/Ru(II) 1 5 5+1 -99.5 -67.0 
Fe(II)/Ru(II) 0 6 homoleptic -53.4 -38.4 

 
Table B-13. Adiabatic spin-splitting energies, ∆EH-I, for the 2-electron difference HS-to-
IS energies in kcal/mol for 3d TMCs containing CO and H2O ligands with varied aHF 
values as indicated in the table alongside the computed sensitivity and the R2 value from 
a linear fit. Values in italics have been averaged between neighboring points or 
extrapolated using the linear fit if not between neighboring points. The symmetry and 
composition of the complex is indicated in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Cr(II) 6 0 homoleptic 21.8 17.8 13.1 8.8 4.7 0.9 -2.7 1.00 -81.7 
Cr(II) 5 1 5+1 18.3 13.7 9.2 5.1 1.1 -2.5 -5.9 1.00 -80.9 
Cr(II) 4 2 trans 17.2 12.5 8.1 5.5 1.6 -2.1 -6.8 1.00 -77.0 
Cr(II) 2 4 cis 7.5 3.2 -0.8 -4.5 -8.0 -11.1 -14.0 1.00 -71.8 
Cr(II) 2 4 trans 3.1 -1.0 -4.7 -8.1 -11.2 -14.0 -16.5 0.99 -65.1 
Cr(II) 1 5 5+1 -0.9 -4.6 -8.0 -11.2 -14.1 -16.7 -19.1 0.99 -60.8 
Cr(II) 0 6 homoleptic -15.1 -16.5 -17.8 -19.1 -20.4 -21.7 -22.9 1.00 -26.1 
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Mn(III) 6 0 homoleptic 17.0 13.5 10.1 7.0 4.1 1.4 -1.2 1.00 -60.6 
Mn(III) 5 1 5+1 13.1 9.7 6.6 3.7 0.9 -1.7 -4.2 1.00 -57.5 
Mn(III) 4 2 trans 11.5 8.4 5.4 2.6 0.0 -2.6 -4.9 1.00 -54.8 
Mn(III) 2 4 cis 0.8 -1.9 -4.4 -6.7 -8.8 -10.8 -12.7 1.00 -44.6 
Mn(III) 2 4 trans 3.6 1.1 -1.3 -3.5 -5.7 -7.8 -9.8 1.00 -44.7 
Mn(III) 1 5 5+1 -1.3 -3.6 -5.8 -7.8 -9.7 -11.5 -13.3 1.00 -39.7 
Mn(III) 0 6 homoleptic -7.6 -9.1 -10.9 -12.7 -14.5 -16.3 -18.0 1.00 -35.1 
Mn(II) 5 1 5+1 -2.0 -7.6 -12.8 -17.6 -22.0 -26.1 -29.8 1.00 -92.6 
Mn(II) 4 2 trans -16.6 -20.8 -24.6 -28.1 -28.3 -31.3 -35.1 0.97 -57.2 
Mn(II) 2 4 cis -20.1 -24.2 -27.8 -31.1 -34.1 -36.8 -39.3 0.99 -63.5 
Mn(II) 2 4 trans -17.1 -21.6 -25.7 -29.4 -32.7 -35.7 -38.4 0.99 -70.7 
Mn(II) 1 5 5+1 -21.0 -25.2 -28.9 -32.3 -35.3 -38.0 -40.5 0.99 -64.6 
Mn(II) 0 6 homoleptic -31.4 -33.8 -36.1 -38.3 -40.4 -42.4 -44.3 1.00 -42.9 
Fe(III) 6 0 homoleptic 13.3 10.1 7.0 4.0 1.1 -1.7 -4.5 1.00 -59.0 
Fe(III) 5 1 5+1 5.1 2.4 -0.3 -3.0 -5.6 -8.2 -11.0 1.00 -53.3 
Fe(III) 4 2 trans -1.8 -4.3 -6.8 -9.1 -13.6 -15.8 -16.0 0.92 -50.1 
Fe(III) 2 4 cis -6.8 -9.2 -11.7 -14.0 -16.4 -18.7 -21.1 1.00 -47.4 
Fe(III) 2 4 trans -3.3 -6.2 -8.9 -11.6 -14.1 -16.7 -19.2 1.00 -52.7 
Fe(III) 1 5 5+1 -11.1 -13.5 -15.8 -18.0 -20.1 -22.3 -24.5 1.00 -44.4 
Fe(III) 0 6 homoleptic -19.4 -21.1 -22.8 -24.6 -26.3 -28.2 -30.0 1.00 -35.3 
Fe(II) 6 0 homoleptic 15.0 11.5 6.6 1.8 -2.7 -6.9 -10.7 1.00 -87.9 
Fe(II) 5 1 5+1 13.9 8.2 2.9 -2.1 -6.7 -10.9 -14.7 1.00 -95.4 
Fe(II) 4 2 trans 15.2 10.4 4.7 1.2 -3.6 -8.1 -14.1 1.00 -94.9 
Fe(II) 2 4 cis -3.4 -7.1 -11.8 -16.0 -19.6 -22.8 -25.6 0.99 -73.7 
Fe(II) 2 4 trans -0.9 -5.6 -10.1 -14.3 -18.1 -21.6 -24.7 0.99 -79.6 
Fe(II) 1 5 5+1 -3.3 -7.8 -12.1 -15.9 -19.5 -22.6 -25.5 0.99 -73.9 
Fe(II) 0 6 homoleptic -17.8 -19.7 -21.5 -23.1 -24.6 -26.0 -27.2 0.99 -31.3 
Co(III) 0 6 homoleptic -7.4 -8.3 -9.1 -10.0 -10.8 -11.7 -12.5 1.00 -16.8 

 
Table B-14. Adiabatic spin-splitting energies, ∆EH-I, for the 2-electron difference HS-to-
IS energies in kcal/mol for 4d TMCs containing CO and H2O ligands with varied aHF 
values as indicated in the table alongside the computed sensitivity and the R2 value from 
a linear fit. Values in italics have been averaged between neighboring points or 
extrapolated using the linear fit if not between neighboring points. The symmetry and 
composition of the complex is indicated in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Mo(II) 4 2 trans 53.9 52.8 51.1 49.4 47.8 46.1 44.5 1.00 -32.1 
Tc(III) 6 0 homoleptic 49.8 48.1 46.4 44.5 42.8 41.1 39.4 1.00 -34.7 
Tc(III) 4 2 trans 48.6 46.4 44.3 42.3 40.4 38.5 36.8 1.00 -39.4 
Tc(III) 2 4 cis 35.1 33.1 31.2 29.4 27.6 26.0 24.4 1.00 -35.5 
Tc(III) 1 5 5+1 30.2 29.0 27.8 26.6 25.4 24.2 23.0 1.00 -24.0 
Tc(III) 0 6 homoleptic 19.1 18.6 18.0 17.4 16.8 16.1 15.4 1.00 -12.3 
Tc(II) 4 2 trans 43.2 38.9 34.9 31.1 27.2 22.7 20.9 0.99 -76.2 
Tc(II) 2 4 trans 25.7 22.2 18.9 15.8 12.8 10.1 7.5 1.00 -60.8 
Ru(III) 4 2 trans 43.8 41.3 38.8 36.3 33.7 31.2 28.8 1.00 -50.0 
Ru(III) 2 4 cis 22.1 20.6 19.2 17.7 16.2 14.7 13.3 1.00 -29.3 
Ru(III) 2 4 trans 30.7 28.6 26.6 24.4 22.3 20.3 18.3 1.00 -41.2 
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Ru(III) 1 5 5+1 20.4 18.8 17.3 15.6 14.0 12.4 10.9 1.00 -31.6 
Ru(III) 0 6 homoleptic 8.8 8.0 7.4 6.7 6.0 5.1 4.2 0.99 -15.5 
Ru(II) 6 0 homoleptic 51.5 48.7 46.0 43.2 40.3 37.5 34.8 1.00 -55.6 
Ru(II) 4 2 trans 52.2 48.8 45.3 41.7 38.2 34.9 31.7 1.00 -68.4 
Ru(II) 2 4 trans 37.9 35.3 32.5 29.7 26.9 24.2 21.5 1.00 -55.0 

 

 
Figure B-1. S(3d) vs S(4d) for �EH-I (in kcal/mol.HFX) of all TMCs with CO or H2O 
ligands in both oxidation states, colored by element (Cr/Mo in gray, Mn/Tc in orange, 
or Fe/Ru in red) and with symbols corresponding to formal electron configuration (d4 in 
triangles, d5 in circles, and d6 in squares). All hexa-aqua complexes are outlined in green, 
all hexa-carbonyl complexes are outlined in black, and the remaining symbols are 
outlined in dark gray. A dotted parity line is shown for reference. 

Table B-15. Sensitivities, S, in kcal/mol.HFX for ∆EI-L and ∆EH-I 2-electron difference 
adiabatic spin-splitting energies computed among pairs of 3d and 4d TMCs containing 
CO and H2O ligands. The symmetry and composition of the complex is indicated in the 
table. 

S(DEI-L) 
M(3d)/M(4d) n CO 6-n H2O sym. S(3d) S(4d) 
Cr(III)/Mo(III) 4 2 trans -24.7 -24.7 
Cr(III)/Mo(III) 2 4 trans -22.1 -33.9 
Cr(II)/Mo(II) 6 0 homoleptic -63.7 -12.0 
Cr(II)/Mo(II) 4 2 trans -29.0 -22.4 
Cr(II)/Mo(II) 2 4 cis -26.2 -19.6 
Cr(II)/Mo(II) 2 4 trans -44.6 -29.1 
Cr(II)/Mo(II) 1 5 5+1 -25.6 -22.4 
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Cr(II)/Mo(II) 0 6 homoleptic -8.3 -9.1 
Mn(III)/Tc(III) 4 2 trans -31.3 -24.7 
Mn(III)/Tc(III) 2 4 cis -33.1 -27.0 
Mn(III)/Tc(III) 1 5 5+1 -27.9 -31.3 
Mn(III)/Tc(III) 0 6 homoleptic -16.5 -22.5 
Mn(II)/Tc(II) 2 4 trans -55.6 -28.8 
Fe(III)/Ru(III) 2 4 cis -30.1 -18.5 
Fe(III)/Ru(III) 4 2 trans -19.6 -4.3 
Fe(III)/Ru(III) 1 5 5+1 -21.6 -6.5 
Fe(III)/Ru(III) 0 6 homoleptic -18.4 -4.2 
Fe(II)/Ru(II) 6 0 homoleptic -82.1 -37.2 
Fe(II)/Ru(II) 4 2 trans -43.6 -9.7 
Fe(II)/Ru(II) 2 4 trans -21.7 -10.9 
Co(III)/Rh(III) 6 0 homoleptic -48.6 -16.8 
Co(III)/Rh(III) 2 4 trans -9.3 17.3 
Co(III)/Rh(III) 1 5 5+1 -7.9 11.7 
Co(III)/Rh(III) 0 6 homoleptic -4.5 5.9 
Co(II)/Rh(II) 4 2 trans -95.4 -50.6 
Co(II)/Rh(II) 2 4 trans -69.9 -36.6 

S(DEH-I) 
Cr(II)/Mo(II) 4 2 trans -77.0 -32.1 
Mn(III)/Tc(III) 6 0 homoleptic -60.6 -34.7 
Mn(III)/Tc(III) 4 2 trans -54.8 -39.4 
Mn(III)/Tc(III) 2 4 cis -44.6 -35.5 
Mn(III)/Tc(III) 1 5 5+1 -39.7 -24.0 
Mn(III)/Tc(III) 0 6 homoleptic -35.1 -12.3 
Mn(II)/Tc(II) 4 2 trans -57.2 -76.2 
Mn(II)/Tc(II) 2 4 trans -70.7 -60.8 
Fe(III)/Ru(III) 4 2 trans -50.1 -50.0 
Fe(III)/Ru(III) 2 4 cis -47.4 -29.3 
Fe(III)/Ru(III) 2 4 trans -52.7 -41.2 
Fe(III)/Ru(III) 1 5 5+1 -44.4 -31.6 
Fe(III)/Ru(III) 0 6 homoleptic -35.3 -15.5 
Fe(II)/Ru(II) 6 0 homoleptic -87.9 -55.6 
Fe(II)/Ru(II) 4 2 trans -94.9 -68.4 
Fe(II)/Ru(II) 2 4 trans -79.6 -55.0 

 
Table B-16. Adiabatic spin-splitting energies, ∆EI-L, for the 2-electron difference IS-to-LS 
energies in kcal/mol for 3d TMCs containing CO and H2O ligands with varied aHF values 
as indicated in the table alongside the computed sensitivity, S, and the R2 value from a 
linear fit. Values in italics have been averaged or extrapolated using the linear fit if not 
between neighboring points. The symmetry and composition of the complex is indicated 
in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Cr(III) 2 4 trans -19.5 -20.9 -22.2 -23.3 -24.3 -25.3 -26.2 0.99 -22.1 
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Cr(III) 4 2 trans -18.1 -19.7 -21.1 -22.4 -23.5 -24.6 -25.5 0.99 -24.7 
Cr(III) 5 1 5+1 -19.4 -20.8 -22.0 -23.1 -24.2 -25.2 -26.1 0.99 -22.2 
Cr(II) 0 6 homoleptic -28.7 -29.1 -29.5 -30.0 -30.4 -30.8 -31.2 1.00 -8.3 
Cr(II) 1 5 5+1 -22.1 -23.9 -25.5 -26.9 -28.1 -29.0 -29.8 0.98 -25.6 
Cr(II) 2 4 cis -21.5 -23.2 -24.6 -26.0 -27.1 -28.1 -29.4 0.99 -26.2 
Cr(II) 2 4 trans -15.1 -17.8 -20.3 -22.8 -25.0 -26.8 -28.2 0.99 -44.6 
Cr(II) 4 2 trans -18.4 -20.3 -22.1 -23.5 -25.0 -26.1 -27.1 0.99 -29.0 
Cr(II) 5 1 5+1 -19.7 -21.1 -22.9 -24.5 -25.8 -27.0 -28.1 0.99 -27.8 
Cr(II) 6 0 homoleptic -21.9 -23.2 -24.8 -34.6 -36.0 -37.3 -38.5 0.90 -63.7 
Mn(III) 0 6 homoleptic -25.3 -26.2 -27.1 -28.0 -28.8 -29.5 -30.2 1.00 -16.5 
Mn(III) 1 5 5+1 -24.9 -26.7 -28.3 -29.7 -31.0 -32.2 -33.3 0.99 -27.9 
Mn(III) 2 4 cis -20.6 -22.7 -24.5 -26.2 -27.8 -29.2 -30.5 0.99 -33.1 
Mn(III) 2 4 trans -22.6 -24.2 -26.4 -28.2 -29.8 -31.2 -32.5 0.99 -32.7 
Mn(III) 4 2 trans -18.1 -20.0 -21.8 -23.4 -24.9 -26.3 -27.5 1.00 -31.3 
Mn(III) 5 1 5+1 -21.7 -23.2 -25.1 -26.7 -28.2 -29.6 -30.8 0.99 -30.4 
Mn(III) 6 0 homoleptic -32.5 -33.4 -34.5 -35.6 -36.4 -37.2 -37.9 0.99 -17.8 
Mn(II) 0 6 homoleptic -4.7 -5.9 -6.9 -7.8 -8.7 -9.4 -10.3 0.99 -18.6 
Mn(II) 1 5 5+1 4.9 2.1 -0.6 -3.1 -5.4 -7.4 -9.0 0.99 -46.8 
Mn(II) 2 4 cis 16.1 12.0 8.1 4.4 1.1 -1.9 -4.5 0.99 -68.9 
Mn(II) 2 4 trans 9.6 6.3 3.1 0.1 -2.7 -4.9 -6.9 0.99 -55.6 
Mn(II) 4 2 trans 27.5 23.0 18.7 14.6 7.5 3.9 0.5 0.99 -93.1 
Mn(II) 5 1 5+1 22.8 18.7 14.8 11.1 7.7 4.6 1.7 1.00 -70.4 
Fe(III) 0 6 homoleptic 4.0 3.1 2.3 1.4 0.4 -0.6 -1.6 1.00 -18.4 
Fe(III) 1 5 5+1 4.3 3.1 2.0 1.0 -0.1 -1.2 -2.3 1.00 -21.6 
Fe(III) 2 4 cis 10.0 8.3 6.8 5.2 3.7 2.3 0.9 1.00 -30.1 
Fe(III) 2 4 trans 4.3 3.2 2.2 1.2 0.3 -0.7 -1.7 1.00 -19.6 
Fe(III) 5 1 5+1 29.3 26.1 23.1 20.4 17.8 15.3 13.0 1.00 -54.1 
Fe(III) 6 0 homoleptic 30.1 27.1 22.5 19.7 16.9 14.3 11.8 0.99 -61.5 
Fe(II) 0 6 homoleptic 2.8 1.6 0.4 -0.8 -2.0 -2.7 -3.9 1.00 -22.2 
Fe(II) 1 5 5+1 5.6 4.1 2.7 1.3 0.1 -1.1 -2.1 1.00 -25.7 
Fe(II) 2 4 cis 19.1 16.6 14.2 11.7 9.3 7.0 4.9 1.00 -47.8 
Fe(II) 2 4 trans 3.8 2.4 1.1 0.0 -1.0 -1.9 -2.7 0.99 -21.7 
Fe(II) 4 2 trans 18.1 15.9 13.7 11.6 9.4 7.2 5.0 1.00 -43.6 
Fe(II) 5 1 5+1 35.3 31.6 28.1 24.7 21.3 18.2 15.1 1.00 -67.1 
Fe(II) 6 0 homoleptic 49.9 45.6 41.3 37.1 33.0 29.1 25.3 1.00 -82.1 
Co(III) 0 6 homoleptic 12.8 12.7 12.5 12.3 11.9 11.7 11.4 0.92 -4.5 
Co(III) 1 5 5+1 12.0 11.8 11.5 11.2 10.7 10.2 9.7 0.97 -7.9 
Co(III) 2 4 trans 11.8 11.6 11.4 10.9 10.4 9.8 9.1 0.96 -9.3 
Co(III) 5 1 5+1 39.6 37.5 35.3 33.1 30.9 28.8 26.7 1.00 -43.1 
Co(III) 6 0 homoleptic 47.8 45.1 42.6 40.1 37.7 35.4 33.2 1.00 -48.6 
Co(II) 0 6 homoleptic -13.2 -15.0 -17.0 -18.5 -19.8 -20.7 -21.9 0.98 -28.8 
Co(II) 1 5 5+1 -0.7 -5.2 -9.4 -13.5 -16.5 -18.9 -20.8 0.98 -67.8 
Co(II) 2 4 trans 1.0 -3.3 -7.4 -11.0 -14.6 -17.4 -19.8 0.99 -69.9 
Co(II) 4 2 trans 14.9 9.8 4.8 -0.2 -4.9 -9.4 -13.5 1.00 -95.4 
Co(II) 5 1 5+1 22.2 16.5 11.0 5.8 0.8 -3.8 -8.2 1.00 -101.5 
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Table B-17. Adiabatic spin-splitting energies, ∆EI-L, for the 2-electron difference IS-to-LS 
energies in kcal/mol for 4d TMCs containing CO and H2O ligands with varied aHF values 
as indicated in the table alongside the computed sensitivity and the R2 value from a 
linear fit. Values in italics have been averaged between neighboring points or 
extrapolated using the linear fit if not between neighboring points. The symmetry and 
composition of the complex is indicated in the table. 

    aHF   
M CO H2O sym. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 R2 S 

Mo(III) 4 2 trans -3.2 -4.6 -6.0 -7.2 -8.4 -9.6 -10.6 1.00 -24.7 
Mo(III) 2 4 trans -1.9 -4.0 -5.9 -7.8 -9.4 -10.8 -12.0 0.99 -33.9 
Mo(III) 1 5 5+1 -7.2 -9.3 -11.2 -12.8 -14.3 -15.7 -16.9 0.99 -32.0 
Mo(III) 0 6 homoleptic -18.8 -19.4 -20.1 -20.7 -21.3 -21.9 -22.6 1.00 -12.6 
Mo(II) 6 0 homoleptic -15.4 -16.1 -16.7 -17.3 -17.9 -18.5 -19.0 1.00 -12.0 
Mo(II) 4 2 trans -3.9 -5.1 -6.3 -7.5 -8.6 -9.6 -10.6 1.00 -22.4 
Mo(II) 2 4 cis -6.8 -7.9 -8.9 -9.9 -10.8 -11.8 -12.7 1.00 -19.6 
Mo(II) 2 4 trans 11.8 10.3 8.8 7.3 5.9 4.5 3.1 1.00 -29.1 
Mo(II) 1 5 5+1 1.8 0.6 -0.5 -1.6 -2.7 -3.8 -4.9 1.00 -22.4 
Mo(II) 0 6 homoleptic -17.6 -18.2 -18.7 -19.1 -19.6 -20.0 -20.3 0.99 -9.1 
Tc(III) 4 2 trans -4.5 -5.8 -7.0 -8.3 -9.5 -10.7 -11.9 1.00 -24.7 
Tc(III) 2 4 cis -0.4 -1.8 -3.1 -4.5 -5.8 -7.2 -8.5 1.00 -27.0 
Tc(III) 1 5 5+1 -0.9 -2.5 -4.1 -5.7 -7.3 -8.8 -10.3 1.00 -31.3 
Tc(III) 0 6 homoleptic -14.7 -15.9 -17.0 -18.2 -19.2 -20.3 -21.4 1.00 -22.5 
Tc(II) 2 4 trans 41.6 40.2 38.8 37.4 35.9 34.4 33.0 1.00 -28.8 
Ru(III) 2 4 cis 42.1 41.2 40.4 39.5 38.5 37.5 36.5 1.00 -18.5 
Ru(III) 2 4 trans 35.5 35.3 35.1 34.9 34.7 34.4 34.1 0.90 -4.3 
Ru(III) 1 5 5+1 31.2 31.2 31.0 30.8 30.4 29.9 29.3 0.91 -6.5 
Ru(III) 0 6 homoleptic 23.3 23.1 23.1 22.9 22.7 22.4 22.1 0.96 -4.2 
Ru(II) 6 0 homoleptic 83.4 81.5 79.6 77.8 75.9 74.1 72.2 1.00 -37.2 
Ru(II) 4 2 trans 41.4 41.3 41.0 40.6 40.0 39.3 38.6 0.96 -9.7 
Ru(II) 2 4 trans 23.3 22.8 22.2 21.7 21.1 20.6 20.0 1.00 -10.9 
Rh(III) 6 0 homoleptic 79.6 78.8 78.0 77.2 76.3 75.5 74.6 1.00 -16.8 
Rh(III) 2 4 cis 34.4 35.8 37.0 38.1 39.1 39.8 40.9 0.99 21.8 
Rh(III) 2 4 trans 25.7 26.8 27.8 28.7 29.5 30.3 30.9 0.99 17.3 
Rh(III) 1 5 5+1 29.5 30.4 31.1 31.7 32.2 32.7 33.0 0.98 11.7 
Rh(III) 0 6 homoleptic 29.3 29.9 30.3 30.7 30.9 31.0 31.0 0.89 5.9 
Rh(II) 4 2 trans 55.0 52.4 49.9 47.4 44.8 42.3 39.8 1.00 -50.6 
Rh(II) 2 4 trans 32.3 30.9 29.1 27.3 25.4 23.4 21.5 1.00 -36.6 
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Figure B-2. S(3d) vs S(4d) for ∆EI-L (in kcal/mol.HFX) of all TMCs with CO or H2O 
ligands in both oxidation states, colored by element (Cr/Mo in gray, Mn/Tc in orange, 
Fe/Ru in red, and Co/Rh in blue) and with symbols corresponding to formal electron 
configuration (d3 in right-pointing triangles, d4 in up-pointing triangles, d5 in circles, d6 
in squares, and d7 in diamonds). All hexa-aqua complexes are outlined in green, all hexa-
carbonyl complexes are outlined in black, and the remaining symbols are outlined in 
dark gray. A dotted parity line is shown for reference. 

Table B-18. Dependence of HS/LS preference based on sign of ∆EH-L for all 239 pairs of 
3d and 4d complexes for which ∆EH-L was evaluated. This analysis is completed for 
different aHF fractions labeled at the top of the table. The aHF = 0.4 value is 
extrapolated from the sensitivity. Each preference is grouped by metal and oxidation 
state and then summarized at the bottom as overall.    

 aHF value  aHF value 
3d 0.0 0.1 0.2 0.3 0.4 4d 0.0 0.1 0.2 0.3 0.4 
Cr(II) LS 0 0 0 0 0 Mo(II) LS 13 13 13 11 10 
Cr(II) HS 16 16 16 16 16 Mo(II) HS 3 3 3 5 6 
Mn(III) LS 2 0 0 0 0 Tc(III) LS 44 40 34 29 18 
Mn(III) HS 49 51 51 51 51 Tc(III) HS 7 11 17 22 33 
Mn(II) LS 29 17 4 0 0 Tc(II) LS 72 72 72 71 70 
Mn(II) HS 43 55 68 72 72 Tc(II) HS 0 0 0 1 2 
Fe(III) LS 28 22 16 10 6 Ru(III) LS 36 36 36 36 36 
Fe(III) HS 8 14 20 26 30 Ru(III) HS 0 0 0 0 0 
Fe(II) LS 52 39 27 15 5 Ru(II) LS 64 64 64 64 64 
Fe(II) HS 12 25 37 49 59 Ru(II) HS 0 0 0 0 0 
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Overall LS 111 78 47 25 11 Overall LS 229 225 219 211 198 
Overall HS 128 161 192 214 228 Overall HS 10 14 20 28 41 

 
Table B-19. Dependence of GS preference (HS, LS, or IS) for the 247 pairs for which all 
compatible spin states have been converged. This corresponds to the 155 pairs of 3d and 
4d complexes for which HS/IS/LS states are all converged in addition to the 92 cases of 
d3 Cr(III)/Mo(III) or d7 Co(II)/Rh(II) pairs for which IS/LS states were converged. The 
variation is shown with aHF fractions, as labeled at the top of the table. The aHF = 0.4 
value is extrapolated from the sensitivity. The overall LS/IS/HS count is shown at the 
bottom of the table along with the LS/IS count for the d3/d7 cases. 

 aHF value  aHF value 
3d 0.0 0.1 0.2 0.3 0.4 4d 0.0 0.1 0.2 0.3 0.4 
Cr(III) LS 2 1 0 0 0 Mo(III) LS 11 10 9 6 5 
Cr(III) IS 43 44 45 45 45 Mo(III) IS 34 35 36 39 40 
Cr(II) LS 0 0 0 0 0 Mo(II) LS 0 0 0 0 0 
Cr(II) IS 9 8 3 1 0 Mo(II) IS 12 12 12 12 12 
Cr(II) HS 3 4 9 11 12 Mo(II) HS 0 0 0 0 0 
Mn(III) LS 0 0 0 0 0 Tc(III) LS 0 0 0 0 0 
Mn(III) IS 22 10 2 2 1 Tc(III) IS 42 42 42 42 42 
Mn(III) HS 20 32 40 40 41 Tc(III) HS 0 0 0 0 0 
Mn(II) LS 18 12 2 0 0 Tc(II) LS 36 36 36 36 36 
Mn(II) IS 0 0 0 0 0 Tc(II) IS 0 0 0 0 0 
Mn(II) HS 18 24 34 36 36 Tc(II) HS 0 0 0 0 0 
Fe(III) LS 23 18 12 7 5 Ru(III) LS 30 30 30 30 30 
Fe(III) IS 0 0 0 0 0 Ru(III) IS 0 0 0 0 0 
Fe(III) HS 7 12 18 23 25 Ru(III) HS 0 0 0 0 0 
Fe(II) LS 30 21 16 8 3 Ru(II) LS 35 35 35 35 35 
Fe(II) IS 1 0 0 0 0 Ru(II) IS 0 0 0 0 0 
Fe(II) HS 4 14 19 27 32 Ru(II) HS 0 0 0 0 0 
Co(II) LS 38 27 14 10 1 Rh(II) LS 47 47 47 47 47 
Co(II) IS 9 20 33 37 46 Rh(II) IS 0 0 0 0 0 
d3/d7 LS 11 21 33 37 46 d3/d7 LS 11 10 9 6 5 
d3/d7 IS 54 65 78 82 91 d3/d7 IS 45 45 45 45 45 
Overall LS 111 79 44 25 9 Overall LS 159 158 157 154 153 
Overall IS 84 82 83 85 92 Overall IS 88 89 90 93 94 
Overall HS 52 86 120 137 146 Overall HS 0 0 0 0 0 

 
  



 

161  

Table B-20. Dependence of HS/LS preference based on sign of ∆EH-L for the 155 pairs of 
3d and 4d complexes for which HS/IS/LS states are all converged with aHF fractions 
labeled at the top of the table. The aHF = 0.4 value is extrapolated from the sensitivity. 
This analysis excludes the existence of the IS state and only compares the HS and LS 
energies. Each preference is grouped by metal and oxidation state and then summarized 
at the bottom as overall.    

 aHF value  aHF value 
3d 0.0 0.1 0.2 0.3 0.4 4d 0.0 0.1 0.2 0.3 0.4 
Cr(II) LS 0 0 0 0 0 Mo(II) LS 11 11 11 10 9 
Cr(II) HS 12 12 12 12 12 Mo(II) HS 1 1 1 2 3 
Mn(III) LS 2 0 0 0 0 Tc(III) LS 37 34 29 24 15 
Mn(III) HS 40 42 42 42 42 Tc(III) HS 5 8 13 18 27 
Mn(II) LS 18 12 2 0 0 Tc(II) LS 36 36 36 36 36 
Mn(II) HS 18 24 34 36 36 Tc(II) HS 0 0 0 0 0 
Fe(III) LS 23 18 12 7 5 Ru(III) LS 30 30 30 30 30 
Fe(III) HS 7 12 18 23 25 Ru(III) HS 0 0 0 0 0 
Fe(II) LS 31 21 16 8 3 Ru(II) LS 35 35 35 35 35 
Fe(II) HS 4 14 19 27 32 Ru(II) HS 0 0 0 0 0 
Overall LS 74 51 30 15 8 Overall LS 149 146 141 135 125 
Overall HS 81 104 125 140 147 Overall HS 6 9 14 20 30 

 
 

 
Figure B-3. Absolute LS M–L averaged distance (in Å) vs HS M–L averaged distance (in 
Å) for 155 pairs of equilibrium structures at aHF = 0.2 in the 4-electron LS-to-HS spin 
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state comparison for 3d (translucent green circles) and 4d (translucent blue squares) 
TMCs. A black dotted parity line is also shown. All 4d TMCs generally have longer 
bond lengths than 3d TMCs due to the larger metal covalent radius. 

Table B-21. Covalent radii used for 3d and 4d metals (left) and ligand coordinating 
elements (right) to obtain relative distances in this work. Recommended covalent radii 
were obtained from Ref. 2. Where LS and HS covalent radii were provided (e.g., Fe), 
they were averaged, and where multiple radii based on hybridization (i.e., C) were 
provided, they were also averaged.  

M rcov (Å) M rcov (Å) L rcov (Å) L rcov (Å) 
Cr 1.39 Mo 1.54 C 0.73 He 0.28 
Mn 1.50 Tc 1.47 N 0.71 P 1.07 
Fe 1.42 Ru 1.46 O 0.66 S 1.05 
Co 1.38 Rh 1.42 F 0.57 Cl 1.02 
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Figure B-4. Normalized histograms for 3d TMCs (top) and 4d TMCs (bottom) with the 
same x-axis ranges and values for the drel (left) and difference in drel (right) plots. The 
left plots show the averaged (over all 6 metal–ligand bonds) drel values grouped in 
translucent histograms by LS (red), IS (gray), and HS (blue) states for 155 (or 247) pairs 
for which HS, IS, and LS states are all converged (247 is for IS-LS). The right plots show 
the difference in average drel values by state of the complexes in translucent normalized 
histograms: 2-electron IS-LS in magenta, 4-electron HS-LS in purple, and 2-electron HS-
IS in cyan. 

Table B-22. Average, minimum, maximum, and standard deviation (std.) of relative 
distances for all HS, IS, and LS states as well as the statistics for the HS-LS, IS-LS, and 
HS-IS differences compared for 155 pairs of 3d and 4d TMCs for which the LS, IS, and 
HS states are both defined and successfully converged. The relative distances were 
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computed with respect to the covalent radii of the metal and coordinating atoms and 
they were then averaged over all equatorial and axial bond lengths. 

3d TMCs 
 LS HS HS-LS IS IS-LS HS-IS 
avg 0.93 1.02 0.09 0.97 0.04 0.05 
min 0.89 0.93 0.03 0.89 -0.02 0.02 
max 1.04 1.15 0.20 1.04 0.11 0.22 
std. 0.03 0.05 0.04 0.04 0.03 0.02 

4d TMCs 
 LS HS HS-LS IS IS-LS HS-IS 
avg 0.97 1.09 0.12 1.02 0.05 0.06 
min 0.94 0.99 -0.03 0.83 -0.14 -0.14 
max 1.03 1.20 0.22 1.27 0.29 0.27 
std. 0.02 0.04 0.04 0.08 0.08 0.08 

 
Table B-23. Average, minimum, maximum, and standard deviation (std.) of relative 
distances for IS and LS states as well as the statistics for the IS-LS differences compared 
for 92 pairs of 3d and 4d TMCs that have d3 and d7 electron configurations and therefore 
only LS and IS states are defined. The relative distances were computed with respect to 
the covalent radii of the metal and coordinating atoms and they were then averaged over 
all equatorial and axial bond lengths. The trends in the averages of these LS and IS sets 
are roughly comparable to those obtained for LS or IS states in the cases where HS 
states were also valid.  

3d TMCs 
 LS IS IS-LS 
avg 0.99 1.03 0.04 
min 0.94 0.96 0.00 
max 1.06 1.14 0.18 
std. 0.02 0.04 0.03 

4d TMCs 
 LS IS IS-LS 
avg 1.00 1.04 0.04 
min 0.93 0.94 -0.05 
max 1.10 1.13 0.08 
std. 0.04 0.06 0.03 
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Figure B-5. Relative distance averaged over two axial metal–ligand bonds vs. over four 
equatorial metal–ligand bonds for 3d TMCs: 155 pairs of LS (red translucent circles) or 
HS (blue translucent circles) as well as 247 pairs of IS (gray translucent circles). A parity 
line is shown in dotted black, and the plot area is square.   

 
 

 
Figure B-6. Relative distance averaged over two axial metal–ligand bonds vs. over four 
equatorial metal–ligand bonds for 4d TMCs: 155 pairs of LS (red translucent squares) or 
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HS (blue translucent squares) as well as 247 pairs of IS (gray translucent squares). A 
parity line is shown in dotted black, and the plot area is square.   

 
Table B-24. Best-fit lines (y = mx + b) of the difference in spin state relative bond 
lengths, ∆drel, vs. sensitivity, S(∆E) (in kcal/mol.HFX), for 3d TMCs and 4d TMCs 
grouped by relative spin states: 155 cases of 4-electron H-L, 155 cases of 2-electron H-I, 
and 247 cases of 2-electron I-L. The best-fit line for the overall 3d or 4d TMC set 
containing 557 points is also shown. The correlation (R2) for each line is reported. We 
also report at the bottom of the table the trendlines obtained for the 3d or 4d S(∆EH-L) 
vs. the LS drel as well as the line obtained by correlating both data sets together. 

 m b R2 
3d H-L -766.22 -25.518 0.86 
3d H-I -657.19 -23.219 0.61 
3d I-L -575.25 -21.925 0.55 
3d overall -772.62 -18.455 0.81 
4d H-L -444.54 -5.305 0.71 
4d H-I 10.55 -36.818 0.00 
4d I-L -13.48 -23.038 0.01 
4d overall -126.92 -27.557 0.18 
3d H-L vs. LS drel 276.07 -351.44 0.08 
4d H-L vs. LS drel 422.87 -468.37 0.16 
All H-L vs. LS drel 532.2 -582.6 0.29 

 
 

 
Figure B-7. The difference in average relative metal–ligand distance, ∆drel, for the 4-
electron HS-LS state comparison vs. ∆EH-L (in kcal/mol) for 155 pairs of HS and LS 
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states at aHF = 0.2 for 3d (translucent green circles) and 4d (translucent blue squares) 
TMCs. A zero axis shows when spin state ordering changes or the sign of the relative 
metal–ligand bond length difference changes.  

 
Figure B-8. Difference for 3d TMCs in average relative distance between relevant spin 
states, ∆drel, vs the sensitivity of spin state splitting, S(∆E), for the same spin states in 
kcal/mol.HFX grouped by 155 pairs of 4-electron HS-LS (H-L, purple translucent 
circles), 247 pairs of 2-electron IS-LS (I-L, magenta translucent circles), and 155 pairs of 
2-electron HS-IS (H-I, cyan translucent circles). Best-fit lines have been obtained 
through each spin state definition and shown as dotted solid lines in the same colors. A 
gray dotted line has been fit through all data.  
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Figure B-9. Difference for 4d TMCs in average relative distance between relevant spin 
states, ∆drel, vs the sensitivity of spin state splitting, S(∆E), for the same spin states in 
kcal/mol.HFX grouped by 155 pairs of 4-electron HS-LS (H-L, purple translucent 
squares), 247 pairs of 2-electron IS-LS (I-L, magenta translucent squares), and 155 pairs 
of 2-electron HS-IS (H-I, cyan translucent squares). Best-fit lines have been obtained 
through each spin state definition and shown as dotted solid lines in the same colors. A 
gray dotted line has been fit through all data. 

 
Table B-25. Properties of Fe(II)(He)6 and Ru(II)(He)6 LS and HS complexes: the M–He 
bond length (in Å) for the LS singlet and HS quintet states, and the relative bond 
lengths with respect to covalent radii. 

The sensitivities of the total energies S(ELS) or S(EHS) of the LS and HS states, 
respectively, are also shown in units of kcal/mol.HFX for both the energies and spin 
splitting evaluated at the LS geometry (LS vertical) and HS geometry (HS vertical). The 
adiabatic S(∆EH-L) is also shown evaluated from the equilibrium geometry of both spin 
states. The ∆EH-L for B3LYP (20% exchange) is shown as well in kcal/mol for each of 
the three geometries. 

  Fe(II)(He)6 
Property M-He (Å) drel S(ELS) S(EHS) DEH-L S(DEH-L) 
LS vertical 1.84 1.08 25.64 -21.47 -48.3 -47.12 
HS vertical 2.11 1.24 16.30 -21.59 -72.8 -37.89 
Adiabatic -- -- 25.64 -21.59 -63.8 -47.25 
  Ru(II)(He)6 
Property M-He (Å) drel S(ELS) S(EHS) DEH-L S(DEH-L) 
LS vertical 1.93 1.11 -23.12 -63.00 3.4 -39.88 
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HS vertical 2.35 1.35 -37.96 -66.24 -50.7 -28.28 
Adiabatic -- -- -23.12 -66.24 -31.2 -43.28 

 
 
Table B-26. Properties of Fe(II)(CO)6 and Ru(II)(CO)6 LS and HS complexes: the M–He 
bond length (in Å) for the LS singlet and HS quintet states, and the relative bond 
lengths with respect to covalent radii. 

The sensitivities of the total energies S(ELS) or S(EHS) of the LS and HS states, 
respectively, are also shown in units of kcal/mol.HFX for both the energies and spin 
splitting evaluated at the LS geometry (LS vertical) and HS geometry (HS vertical). The 
adiabatic S(∆EH-L) is also shown evaluated from the equilibrium geometry of both spin 
states. The ∆EH-L for B3LYP (20% exchange) is shown as well in kcal/mol for each of 
the three geometries. 

  Fe(II)(CO)6 
Property M-He (Å) drel S(ELS) S(EHS) DEH-L S(DEH-L) 
LS vertical 1.94 0.90 82.1 -31.9 106.6 -114.1 
HS vertical 2.34 1.09 -5.6 -91.6 -19.7 -86.0 
Adiabatic -- -- 86.2 -83.8 30.3 -170.0 
  Ru(II)(CO)6 
Property M-He (Å) drel S(ELS) S(EHS) DEH-L S(DEH-L) 
LS vertical 2.06 0.94 -34.0 -84.9 213.3 -50.9 
HS vertical 2.48 1.13 -64.1 -129.1 37.5 -64.9 
Adiabatic -- -- -29.8 -124.3 116.2 -94.5 

 
Table B-27. Characteristics of total energy sensitivities for the HS and LS states, S(EHS) 
and S(ELS) in kcal/mol.HFX of 3d and 4d TMCs: minimum, maximum, average, and the 
number that are positive. 

Property 3d TMC S(ELS) 3d TMC S(EHS) 4d TMC S(ELS) 4d TMC S(EHS) 
minimum -684.3 -776.4 -764.8 -809.4 
maximum 148.8 38.5 44.6 -24.0 
average -222.4 -323.1 -290.9 -354.6 
# > 0 26 1 2 0 
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