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Abstract

The utilization of diagnostic imaging in the United States and worldwide is steadily
growing. Due to a shortage of trained staff, the result is an increased and unsustainable
workload for radiologists. Consequently, there is a high clinical need for the automation
of cognitively challenging tasks, such as analyzing and interpreting medical images,
to lighten the burden on radiologists and avoid a further increase in healthcare
expenditure. Machine learning (ML), including deep learning (DL) offer a potential
solution as these algorithms can learn to automatically recognize subtle patterns from
large amounts of data and augment clinical decision-making.

Despite the high enthusiasm for ML algorithms, concerns regarding their readiness
for clinical deployment are impeding their clinical translation. In this thesis, we
address three fundamental challenges to the translation of ML algorithms into clinical
care settings.

First, algorithms must perform robustly in routine clinical care settings. We
demonstrate how appropriate image preprocessing improves the stability of hand-
crafted radiomic features extracted from brain MRIs. Second, the selected network
design must be appropriate for a specific task. Here, we illustrate the advantages
of shifting from a strictly discrete (ordinal) model of disease severity distribution to
a continuously valued one. We introduce a generalized framework that can recover
information lost by discretizing continuous variables into discrete training labels.
Furthermore, disagreements in the labels generated by different annotators can be
caused by individually varying decision thresholds. Therefore, we present the first
design and demonstration of two methods that enable the joint learning of annotators’
ordinal classification and their individual biases for a latent, continuously valued target
variable like disease severity. Lastly, the performance of ML algorithms needs to be
evaluated in a clinically meaningful manner. We address the disconnect between the
subjective quality perception of clinical experts and the metrics that are typically
used to evaluate performance. Furthermore, we identify criteria that experts use
to evaluate the quality of automatically generated segmentations and describe their
thought processes as they correct them.
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Based on the learnings from our work, we conclude with concrete recommendations
for developing robust and trustworthy ML tools for medical imaging.

Thesis Supervisor: Jayashree Kalpathy-Cramer, PhD
Title: Professor of Ophthalmology, Chief of Division of Artificial Medical Intelligence

in Ophthalmology, University of Colorado School of Medicine
Visiting Professor in Radiology, Harvard Medical School
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Chapter 1

Introduction

1.1 Artificial intelligence – the industrial revolution

4.0

Artificial intelligence (AI) will tremendously impact our everyday life [2], and it has

already done so in ways that we may not be fully aware of. It allows us to unlock

our phones using face ID, curates news and social media feeds and secures our bank

accounts by automatically detecting and blocking fraudulent transactions. AI is

expected to transform most, if not all, industrial sectors, and its introduction has been

likened to the invention of electricity [3]. The power of modern AI is its ability to

create value from data. By this analogy, according to an Economist article published

in 2017 [4], in the AI age, data is the new oil, and the few internet companies that are

in control of most of the world’s data flow wield tremendous power.

Artificial intelligence is “the ability of a digital computer or computer-controlled

robot to perform tasks commonly associated with intelligent beings,” as the Encyclopedia

Britannica defines it [5]. Since its inception as the research field of “thinking machines”

at a conference at Dartmouth College in 1956, AI has come a long way.

Artificial Intelligence, Machine Learning, and Deep Learning Nowadays, the

terms artificial intelligence, machine learning (ML), and deep learning (DL) are often
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used interchangeably. However, ML is a branch of AI, and DL is a subfield of ML.

ML algorithms make predictions about an input by learning from large amounts of

data. The algorithms uncover connections within the available data that often remain

hidden from experts and can improve their performance with access to even more

data. While in classical ML, the features an algorithms uses to make its predictions

are defined by the human user, in DL, it can identify the features within the data

without human support using neural networks with hidden layers. As a result, deep

learning algorithms depend less on human expertise but are usually more data-hungry

than classical ML algorithms.

1.2 Machine learning in medicine

Healthcare systems worldwide are increasingly digitized through the introduction of

electronic health records (EHR) and the picture archiving and communication system

(PACS) for digital imaging data. The digitalization of healthcare data has created the

prerequisite for developing and deploying powerful and data-hungry ML algorithms

for the healthcare sector. While critical voices say that medicine has been slow to

embrace the potential of ML, the question is not if but how ML will shape the future

of healthcare [6]. Indeed, healthcare systems worldwide are in dire need of algorithmic

support. In the US and other developed countries, healthcare professionals face a

steadily growing amount of data that requires analysis and integration into a final

diagnosis and treatment plan [7, 8]. However, the current shortage of physicians

is expected to increase in the upcoming decades as the demand grows faster than

the supply [9]. In addition, provider burnout and decreased professional satisfaction,

intensified by the COVID-19 pandemic, plague the existing workforce [10]. Therefore,

the introduction of ML to healthcare comes at a critical time as there is a high desire

to automate routine jobs [11] and cut healthcare expenditure [12, 13]. In middle to low-

resource countries, AI algorithms can, given the proper computational infrastructure,

be used to import medical expertise from abroad to support the limited staff on the

ground [14, 15]. However, the World Health Organization projects that healthcare
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Figure 1-1: Number of AI algorithms cleared by the FDA. Sum of AI algorithms
that have achieved clearance by the Food and Drug Administration each year starting
from 2008. This figure has been adapted from the American College of Radiology
(ACR) AI Central. *: as of November 15, 2022 [1]

systems will only benefit from the introduction of ML algorithms if ethics and human

rights are core values during the development, deployment, and continued use [16].

Promising applications of ML exist in almost every medical discipline, such as the

automatic detection of arrhythmia in cardiology [17], the discovery of signs of depression

in psychiatry [18], and the identification of Parkinson’s disease from breathing patterns

in neurology [19]. Medical imaging, a key diagnostic tool in medicine, is particularly

amenable to applying ML methods. Radiology was a trendsetter within medicine,

transitioning from analog image acquisition on film to digital in the early 1990s

[20]. Nowadays, the PACS system to manage image distribution and diagnostic

interpretation is ubiquitous [21]. In addition, radiologists already have decades

of experience in working with algorithmic assistance; the first computer-assisted

algorithms for the early detection of breast cancer were introduced in the late 1990s

[22]. Not surprisingly, radiology has been one of the early adopters of AI in medicine

and has seen a steep increase in AI applications that achieved FDA clearance (see

Figure 1-1 [23, 1].

Within the medical imaging workflow, as depicted in Figure 1-2, ML algorithms can

support the radiology workforce at almost every step. ML algorithms ensure optimal

utilization of existing resources [24], design optimized image acquisition protocols
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Figure 1-2: Typical radiology workflow. Illustration of the steps within a typical
workflow in diagnostic radiology at which machine learning algorithms can support
the clinical staff.

[25], improve image reconstruction [26], and automatically generate radiology reports

[27]. We will focus on using ML for image analysis and interpretation in the following.

AI-powered algorithms are already widely deployed, e.g., in recommendation systems,

but the clinical deployment of ML image analysis algorithms can still be considered

to be in its infancy. While the enthusiasm for the potential of ML for image analysis

is unwavering, research has highlighted concerns regarding the readiness for clinical

deployment [28, 29]. ML’s safety is a significant concern in clinical settings, as even

minor errors can seriously harm patients.

The data in medicine is generated in a non-stationary environment, characterized

by changing practices, e.g., what is considered normal versus abnormal, and shifts

in the patient populations [30]. Therefore, algorithms deployed in the clinic must be

robust to these changes over time. However, ML algorithms are sensitive to shifts in

the data distribution. As a consequence, their performance decreases under shifting

dataset conditions [31] and can fail to provide accurate predictions without prior

notice. Furthermore, current ML models are far from providing generalizability across

clinical populations [32]. Additionally, they suffer from low test-retest repeatability

(as described in Section 3.7.2) and are oftentimes poorly calibrated [33]. Lastly, the

metrics that research articles use to report the performance of their newly developed

ML do not necessarily represent what matters most to clinicians and their patients -

their clinical efficacy [34]. This term has also been coined the “AI chasm” [35].
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1.3 Thesis approach

This thesis will address three selected fundamental challenges to the translation of

ML algorithms into clinical care settings.

Robustness of ML in routine clinical settings To earn physicians’ trust and

prove its reliability in clinical settings, it is of utmost importance that the predictions

of an ML algorithm are robust. Model performance should not be affected by small

imperceptible changes unrelated to the underlying disease. One way to measure this

is through test-retest repeatability [36]. While human performance decreases due

to physiological factors like hunger, exhaustion, and distraction [37], algorithms are

often perceived as stable and objective. However, even supposedly objective machine

learning algorithms can be confused, albeit by other factors than humans, and classical

ML and DL models face issues with their test-retest repeatability [38, 39, 40]. Minor

changes in the images imperceptible to the human eye likely cause these problems.

A lack of repeatability hints towards unstable model performance and can lead to

substantial clinical errors. Therefore, it is of high importance to limit test-retest

variability. We hypothesize that the repeatability of hand-crafted features used for

classical ML approaches can be improved by using appropriate image preprocessing

steps.

Selecting appropriate network designs While disease severity is a continuous

spectrum [41], discrete disease severity classes simplify diagnostics and treatment

decisions in clinical practice. However, in addition to the severity class, the position

of a case on the continuous spectrum contains valuable clinical information that is

not captured by discrete ordinal classification. Following a trend well known in the

statistics community and aptly coined “dichotomania” [42], researchers mostly use

neural network architectures that are designed to classify nominal categories ignoring

the inherent ordinal relationship between the ground truth classes and underlying

continuously valued variable [43, 44, 45]. Choosing an inappropriate network design

leads to a loss of information and inconsistent behavior for boundary cases [46].
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Furthermore, the development of reliable classification models is complicated by

noise in the ordinal labels which arises from loosely defined class boundaries and

the inability to measure the variable of interest directly. For continuously valued

variables, experts tend to disagree mostly about cases close to a decision boundary

[47]. Some experts consistently over-call, meaning they have a lower threshold of what

can be considered “disease,” while others tend to under-call. We hypothesize that

the predictive performance can be further improved for continuously valued variables

by choosing network designs that respect the underlying distribution and systematic

noise in the training labels.

Clinically meaningful evaluation of model performance The performance

of segmentation models is routinely assessed through quantitative metrics. The

most common metrics are the Dice score or Hausdorff distance between automatic

segmentations and their manual ground truth. However, there is a mismatch between

human perception of the quality of a segmentation and how popular metrics quantify

it [48, 49, 50].

For tumor segmentations on medical imaging, clinical experts may perceive a slight

but clinically meaningful aberration as a graver error than an error consisting of a

larger volume that would not have any clinical consequences. However, a deeper

understanding of the reasons for this mismatch is required for developing segmentation

quality evaluation processes that reflect the clinical usefulness of a segmentation. We

hypothesize that human experts’ perception of brain tumor segmentation quality is

context-dependent and aim to identify factors that influence experts’ segmentation

quality perception.

1.4 Thesis organization

This thesis is structured as follows:

Chapter 2 introduces the background and prior works that are essential to

understanding the work presented in this thesis. We provide an overview of two
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main methods for supervised machine learning in medical image analysis: radiomics

and deep learning using convolutional neural networks. We also review the data

annotation process, image preprocessing, and the metrics used to evaluate segmentation

algorithms.

In Chapter 3, we demonstrate how appropriate image preprocessing can improve

the test-retest repeatability of hand-crafted, so-called radiomic features, extracted

from brain MRIs of patients newly diagnosed with glioblastoma. Utilizing a unique

test-retest dataset of multimodal brain MRI, we assess the repeatability of radiomic

features extracted using a popular open-source software package. We assess the

influence of common preprocessing strategies on the stability of the features under

test-retest conditions and infer guidelines to increase the repeatability of said features.

In Chapter 4, we illustrate the advantages of shifting from a strictly discrete

(ordinal) view of disease severity to a continuously valued one.

Section 4.4 introduces a generalized framework to predict continuously valued

variables using only discrete ordinal labels for model development. We train deep

learning models utilizing widely available discrete ordinal labels and convert the models’

outputs to continuous scores. The quality of the continuously valued predictions is

evaluated using labels on a finer scale than the training ground truth. We demonstrate

that it is possible to develop models that can recover the information lost by discretizing

the continuous target variable on three datasets: disease severity prediction for

retinopathy of prematurity and knee osteoarthritis and breast density estimation from

mammograms.

In Section 4.5, we show the first conception and demonstration of methods that

enable the joint learning of annotators’ ordinal classification and their individual

biases for a latent, continuously valued target variable. These methods use individual

annotators’ ordinal labels for training and learn the individual biases with as little as

one label per training sample. We demonstrate that the classification performance of

ordinal classes can be improved by learning the individual biases of each annotator.

In Chapter 5, we address the “chasm” between the evaluation metrics and clinical

utility for the segmentation of postoperative brain tumors.
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Section 5.3 presents a study of the expert-centered evaluation of deep learning

algorithms for brain tumor segmentation. We surveyed the current literature on brain

tumor segmentation algorithms for the reported quality evaluation. In addition, we

asked expert readers to rate the quality of postoperative brain tumor segmentations

subjectively and show that the quality perception of experts does not correlate well

with the popular segmentation quality metrics from the literature. Furthermore, the

agreement between the quality ratings of individual experts is low.

In Section 5.4, we showcase a multiple-method study exploring how clinical

experts perceive the quality of postoperative brain tumors. We performed a study

consisting of a questionnaire and interview on the perception of the segmentation

quality of postoperative brain tumors with ten experts from neuro-oncology and

neuroradiology. In the absence of a clear tumor boundary, we illustrate how the

clinical context influences experts’ quality perception of brain tumor segmentation.
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Chapter 2

Background

The last decade has seen an unprecedented improvement in the capabilities of automatic

image analysis algorithms. Figure 2-1 shows the impressive increase in the number

of publications using a combination of “artificial intelligence”, “deep learning”, or

“radiomics” with “medical imaging” over the last ten years. Around 2016, the number

of AI and DL publications started to grow almost exponentially. This trend is largely

driven by the use of Graphics Processing Units (GPU) [51] instead of central processing

units (CPU) to speed up the computational processes required for deep learning and

concurrent advances in GPU computing power. Compared to CPUs, GPUs are more

optimal at performing parallel computations and have a large memory bandwidth

which suits the requirements for deep learning.

In this chapter, we review the foundational background information for the re-

maining chapters of this thesis. We provide an overview of two main methods for

supervised machine learning in medical image analysis: radiomics and deep learning

using convolutional neural networks. We also review the data annotation process,

image preprocessing, and the metrics used to evaluate segmentation algorithms. These

concepts will be leveraged throughout this thesis to provide inspiration and solutions

for the three fundamental challenges to the translation of ML algorithms into clinical

care settings: the robustness of ML in clinical settings (Chapter 3), selecting appropri-

ate network designs (Chapter 4), and the meaningful evaluation of model performance

(Chapter 5).
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Figure 2-1: Number of artificial intelligence, deep learning, and radiomics
papers published and indexed on PubMed. Publication trends on PubMed – We
searched for publications containing the keywords “artificial intelligence” (blue), “deep
learning” (orange), or “radiomics” (green) in combination with the keyword “medical
imaging” from January 2012 through October 2022.

2.1 Workflow in a machine learning project

In this section, we outline the typical workflow of a machine learning project for a

medical imaging application. The workflow is illustrated in Figure 2-2. It typically

starts with a clinical or technical challenge that leads to formulating the research

question. Ideally, clinical experts and data scientists or machine learning engineers

work together in this step to ensure that the questions asked are clinically valid and

technically solvable. Once the research question has been determined, an appropriate

dataset needs to be identified. Researchers can choose from publicly available datasets

[52, 53, 54] or curate their own datasets from clinical data. Multi-institutional datasets

are preferred because algorithms developed using data from a single institution often

fail to generalize to cohorts from other institutions [55]. Public datasets have the

advantage of allowing performance benchmarking of new methods. They often provide

high-quality labels, which significantly reduces the amount of work required for dataset

curation. Clinical datasets, on the other hand, often require annotation from scratch

as well as careful curation. We outline some challenges and approaches for data

annotation in Section 2.4.

The appropriate network design is then chosen based on the research question and

the amount and quality of the available data. In Sections 2.2 and 2.3, we outline the
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Figure 2-2: Simplified workflow of a machine learning image analysis project.
First, a research question is established in an interdisciplinary collaboration between
machine learning engineers and clinicians. Subsequently, an adequate dataset is
identified and annotated if needed. This step is followed by the definition of a network
architecture, which is then trained on the data. Lastly, the performance is evaluated
and the algorithm can be proposed for clinical deployment if that is the intended end
point for the project.

main characteristics of two popular methods for analyzing medical images: radiomics

and deep learning using convolutional neural networks. In Chapter 4, we highlight the

importance of respecting the statistical distribution of the target variable in selecting

the right network design.

After the model development phase, the trained algorithm is evaluated using the

appropriate data. The evaluation step ensures that the machine learning model makes

accurate predictions on unseen data and is safe to be deployed. In Section 5.3, we

analyze how brain tumor segmentation algorithms are evaluated in the literature

and illustrate the relevance of incorporating clinical experts in the process because

standard quantitative metrics (see Section 2.6) do not capture the clinical usefulness of

segmentations. Furthermore, in Section 5.4, we explore what clinical experts value as

they evaluate the quality of brain tumor segmentation. Lastly, if that is the intended

goal for a project, the algorithm will be deployed and continuously evaluated in the

clinic.
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Figure 2-3: Typical radiomics image analysis workflow. For the development
of a radiomics image analysis pipeline, first, a region of interest (ROI) is outlined on
an image. Subsequently, pre-defined radiomic like morphology, intensity, and texture
features are computed based on the shape of the ROI and the voxel intensities within
the ROI. The most promising features are then selected and used as input for a
machine learning algorithm.

2.2 Radiomics

Radiomics is a quantitative medical imaging analysis method that utilizes hand-crafted

features extracted from a region of interest and connects them to a patient’s disease

status [56]. The predictions based on radiomic features are intended to represent an

objective, quantitative, and reproducible decision support for physicians [57]. While

some have extended the term radiomics to include the use of deep learning for medical

image analysis [58], here, we explicitly refer to the extraction of predefined, hand-

crafted features. These features are subsequently used to predict a variable of interest,

e.g., tumor phenotype [59], response to a treatment [60], or survival [61].

2.2.1 Radiomics workflow

A typical radiomics analysis pipeline, as outlined in Figure 2-3, consists of 4 steps.

The imaging modalities most commonly analyzed using radiomics pipelines are CT,

MRI, and PET. The first step in the pipeline is the segmentation of the region of
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interest (ROI). This step can be performed either manually or (semi-)automatically

[62], followed by impage preprocessing. Next, a radiomics software is used to extract

multiple predefined features. Different groups of features as defined by the Image

Biomarker Standardization Initiative are [63]:

• Morphology: These are features like the volume and diameter of the ROI or

its volume-to-surface ratio. Morphology features characterize the size and shape

of the ROI and are independent of the underlying image.

• Intensity statistics: Intensity features describe the characteristics of the

intensity all voxels within the ROI, e.g., the mean intensity, kurtosis, or entropy.

• Intensity-histogram: These features are computed based on the discretized

intensity-histogram of the ROI and includes texture features that characterize

the heterogeneity of the voxel intensities. Texture features are derived from

matrices that capture the variability and spatial relationship of the intensity

values. One such matrix is the gray-level-co-occurrence matrix (GLCM) which

summarizes the intensity differences between neighboring voxels. Examples of

GLCM features are the correlation or inverse difference moment.

More features can be obtained by first filtering the image using, e.g., Wavelet filters

[64] and then extracting features.

The number of features extracted from one image often exceeds 100. Therefore,

to avoid overfitting [65], the original number of features is then reduced to limit the

number of features that are highly correlated and select the most promising ones for

the desired prediction task [66, 67]. Lastly, the selected features are used as input

to train a classical machine learning model such as a random forest [68] or support

vector machine to predict the desired outcome [69].

2.2.2 Hope and reality

Since its introduction in 2012, radiomics has gained increasing traction in medical

image analysis. While it was initially designed for the use in oncology [70], radiomics
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image analysis has been applied to various tasks, e.g., the detection of infection with

the human papilloma virus [71], cardiac inflammation [72], and the identificiation of

the etiology of liver cirrhosis [73]. Although radiomic features were originally intended

to capture radiologists’ qualitative impressions of images, most common radiomics

approaches, albeit quantitatively interpretable, have been criticized for bearing no

biological meaning [74].

The hope that radiomics would revolutionize image analysis in clinical practice has

been disappointed. Over the years, a growing number of publications have highlighted

problems with the reproducibility and generalizability of radiomics image analysis

pipelines [38, 75, 76]. Choices at every step of a radiomics analysis pipeline can

influence its robustness:

Image acquisition. The scanner type, software, and image preprocessing used to

acquire, reconstruct, and prepare an image for analysis have a significant influence on

the numerical values of the radiomic features – and therefore on the robustness of a

radiomic model [77, 78]. The use of standardized image acquisition, reconstruction,

and preprocessing protocols improves the reproducibility of radiomic models [79].

ROI segmentation. Small differences in the definition of an ROI can lead to

the extraction of vastly different radomic features [80]. To alleviate this source of

variability, researchers recommend using automatically generated segmentations, e.g.,

outputs of deep learning segmentation algorithms [81]. Alternatively, the features can

be extracted from only a core region of the ROI, which limits the influence of small

variations in the definition of the segmentation [82].

Feature extraction. Although each radiomic feature is mathematically defined,

different software packages may implement the computation differently, resulting in

different values for the same features between packages [83].

Feature reduction. By incorrectly performing the feature reduction step using

the full dataset, including the validation and test data splits, information from the

test data can influence the model development and lead to false-high performance

estimates and poor generalization [84].

In summary, numerous factors, including design choices, like the software package
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used for feature extraction, and clinical infrastructure, like the available scanner types,

influence the robustness of radiomic image analysis models, rendering them difficult

to reproduce. The search for solutions to make radiomics algorithms a reliable tool

in the clinic is an ongoing research question. In this thesis, we will focus on the

role of image preprocessing, particularly normalization and brain extraction, for the

test-retest robustness of radiomic features.

2.3 Medical image analysis with deep learning

While in applications of classical machine learning, e.g., radiomics as described in

Section 2.2, features are pre-defined, deep learning algorithms learn to identify the

features themselves. In an end-to-end fashion, purely based on the training data

and without human input, those features are subsequently used, e.g., to classify an

image. Several studies have found that DL algorithms outperform radiomics models

[85, 86, 87].

2.3.1 Deep Learning image analysis workflow

The method of choice for analyzing images using deep learning are convolutional neural

networks (CNN) [88, 89]. These networks learn the weights of kernels to identify

patterns that are related to the desired learning task at different resolutions going from

high to successively lower resolutions. In the process, CNNs use pooling operations to

compress the dimensions of the feature map. Through their ability to identify complex

patterns in images, CNNs can be trained to fulfill tasks that previously had to be

performed by a small pool of highly specialized experts. If trained appropriately, these

algorithms can perform as well as specialists.

DL models based on CNNs have achieved and, in some cases, even exceeded human

performance in disease detection and automatic severity classification for numerous

diseases such as diabetic retinopathy [90, 91], retinopathy of prematurity (ROP) [45],

osteoarthritis [92, 93], and lung diseases [94]. Convolutional neural networks can be

used for the classification [90], regression [95], detection [96], segmentation [97], and
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registration [98] of medical images. For classification and regression tasks, the features

extracted at the lowest resolution are fed into fully connected layer(s) to produce the

final prediction as illustrated in Figure 2-4A. To generate a segmentation, so-called

encoder-decoder architectures [99] with a downsampling (encoding) and successive

up-sampling (decoding) arm are the most commonly used architectures. Particularly

the introduction of the U-Net [100] (see Figure 2-4B) and its variations have led to

significant improvements in automatic segmentation performance.

Several design choices need to be made development process of a deep learning

algorithm. In the following, we describe the most important design choices:

Data preprocessing. Due to a high heterogeneity in image acquisition parameters,

data preprocessing is a crucial element of every deep learning pipeline. Preprocessing

improves the consistency within a dataset and allows researchers to enhance image

features that are considered critical for the subsequent image analysis task. We

highlight some essential preprocessing techniques in Section 2.5.

Data augmentation. The size of most medical imaging datasets ranges between

around one hundred and a few thousand images and can be considered too small for

the requirements of DL. For comparison, the most famous natural image classification

datasets ImageNet [101] and CIFAR-100 [102] consist of 14,197,122 images across

20,000 classes and 60,000 images across 100 categories, respectively. Therefore, the

risk of overfitting on the training dataset is substantial for the small medical imaging

datasets [103].

Data augmentation is used to expand the training dataset’s size and quality, reducing

the risk of overfitting and improving test performance [104, 105]. Data transformations

like vertical and horizontal flips, rotations, and the applications of filters augment the

dataset during algorithm development. To lower the memory requirements during

training, large 3D volumes, such as MRIs or CT scans, can be broken up into

smaller patches, allowing oversampling from specific regions to decrease the class

imbalance between fore- and background for segmentation tasks [106]. While more

data augmentation can generally result in better performance, the techniques should

be chosen to reflect the distribution of the target dataset.
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Figure 2-4: Convolutional neural networks for classification and segmentation.
A: Classification networks consist of several layers with convolutional (green arrows)
followed by pooling (downsampling; red arrows) operations. After the final convolution,
the features are flattened into a vector (gray arrow) which is fed into one or more fully
connected layers to produce the final prediction. B: U-Net-architecture consisting
of an encoding and decoding arm with skip connections between both arms. The
encoding arm resembles a classification network. In the decoding arm, convolutional
operations are preceded by bilinear upsampling (orange arrows) and concatenation
with the output of the corresponding level form the the encoding arm.
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Network architecture. The neural network architecture that is the most appropriate

for a given project depends primarily on the task a deep learning model is expected

to solve, i.e., classification versus segmentation. However, other factors like the size of

the training dataset and the computational resources available for development and

deployment should also be considered [107]. We highlight the importance of respecting

the underlying distribution of the target variable when choosing a certain network

design in Chapter 4.

Loss function. The loss function measures how well algorithm’s predictions and the

associated ground truth agree and guides the network to its optimal solution during

training. Like the model architecture, the loss function must be chosen to fit the task

at hand. Besides choosing the proper loss function for classification or segmentation,

some loss functions have been developed for specific training needs, e.g., noisy training

labels [108] or a high class imbalance [109].

Evaluation metrics and model selection. Evaluation metrics monitor the model

performance on unseen data that is not used for model optimization. They are used

to decide when the training process needs to be stopped to avoid overfitting, which

is usually when the performance on the validation data starts to plateau while the

loss on the training data is still decreasing. The evaluation metric can be the same

as the loss metric and should be chosen to reflect the neural network’s intended use

case, i.e., an algorithm for disease screening should be evaluated primarily based on

its sensitivity and only secondarily on its specificity.

Model evaluation on test data. Lastly, the model needs to be evaluated on the

test data that reflects the distribution of the target population and has not been

used to either train or select the model (validation). This step is required to get an

impression of the real-world performance that an algorithm can be expected to show.

In Chapter 5, we address the “chasm” between commonly used evaluation metrics and

clinical utility for the segmentation of post-operative brain tumors.

While some of the stability problems that radiomics is confronted by do not apply

to deep learning, the field has been grappling with its own set of challenges. DL models

have been critized for their “black box” nature, using features that lack any inherent
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interpretability [110]. Additionally, they are sensitive to shifts in the distribution of

the data they are applied to [31]. Lastly, even though algorithms are expected to be

objective, they have been shown to reflect and even enhance existing biases in our

society and medical system [111]

2.4 Data annotation

To develop machine learning algorithms that meet or exceed human-level performance,

large amounts of data are essential; this includes high-quality annotations that function

as ground truth. The ground truth annotations, which represent the optimal prediction

performance, are used to optimize the neural network during training and later evaluate

its performance. The annotation process requires expert annotators with domain

expertise. In this section, we outline the challenges of annotating medical images and

annotation strategies that are commonly deployed. We focus on the generation of

labels for classification on an image level and segmentation on a voxel level. Since

segmentation can be seen as a voxelwise classification problem, there are considerable

parallels between the two annotation processes.

2.4.1 Challenges in label annotation

Data annotation is a known bottleneck in developing supervised ML algorithms for

medical image analysis. Medical datasets are very costly to annotate, as significant

expertise is required to interpret and label training data accurately. The annotation

process requires a lot of time, particularly for segmentations.

Besides the high cost of acquiring annotations, substantial inter- and even intra-

annotator variability make it challenging to establish low noise ground truth standards

[112]. Even experts can come to different conclusions when presented with the same

clinical information [113], as the interpretation of medical imaging is often inherently

ambiguous, and experts interpret the available information differently. For manual

segmentations, low-intensity gradients between the target and the surrounding tissue

make it challenging to tell different structures apart and cause high variability between
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manual outlines. Small-sized lesions, imaging artifacts, and comorbidities complicate

the labeling process further [114].

2.4.2 Data annotation strategies

The easiest way to establish a ground truth for a medical imaging dataset is using

single reads of each image [115, 116]. These labels can be the clinical diagnoses, parsed

from radiology reports either manually or by using natural language processing [117].

However, given the considerable frequency of diagnostic errors [118, 119], using single

reads can lead to low-quality labels [120]. Therefore, integrating the impressions from

multiple annotators into one label is preferable [121, 122].

Several approaches have been established to combine labels for the same sample

that are provided by several annotators. Segmentation labels can be easily aggregated

by taking the union, the intersection, or the majority vote of all available labels. By

modeling the reliability of single annotators, the Simultaneous Truth and Performance

Level Estimation (STAPLE) algorithm generates fused ground truth segmentations

that are superior to the simple aggregation approaches listed above [123]. STAPLE

has established itself as the standard for generating ground truth annotations for

public datasets [124, 125].

Single image-level classification labels are frequently combined using majority vote

[126]. However, critical findings are oftentimes easily overlooked and may be recognized

by only a minority of annotators. These findings can be under-reported if labels are

aggregated using majority vote [127]. A solution to this problem is implementing a

label adjudication process in which disagreements between individual annotators are

resolved, e.g., through case discussions [117, 128]. Lastly, incorporating additional

clinical information further enhances the label quality. Examples are the use of the

discharge diagnosis, results from histologic assessments, or additional imaging studies

in the process of annotation or adjudication.

Numerous tools have been developed to streamline the collection of annotations.

An excellent overview and evaluation of these tools are provided by Aljabari et al.

[129]. Furthermore, commercial options to outsource the annotation process are also
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available. Other approaches are the use of generative networks to generate realistic

medical images and ground truth [130]; weakly supervised training, using image-level

labels to obtain voxel-level predictions [131, 132]; or self-supervision [133].

2.5 Preprocessing of MRI brain imaging

This section discusses the steps typically performed during the preprocessing of

medical images for ML analysis pipelines. We emphasize the methods used in the

preprocessing of brain MRIs as it applies to the research presented in Chapters 3 and

5. The goals of image preprocessing are manifold: it harmonizes the images or full

datasets, removes artifacts, results in a simplification of the learning process, and

increases the performance of the resulting algorithms. A typical set of preprocessing

steps for brain MRI data includes bias field correction, brain extraction, normalization,

and image registration. We use the term voxel instead of pixel, as we focus on 3D

volumes, but all methods can also be performed on a 2D pixel level.

2.5.1 Bias field correction

The voxel intensities within a tissue can vary across an MRI volume due to corruption

by a low-frequency bias field signal caused by inhomogeneities in the magnetic field

[134, 135]. While human perception is usually not affected by this distortion, many

image analysis algorithms, e.g., for image registration and segmentation, explicitly rely

on voxel intensities. Therefore, their performance can be impaired by the presence of

the bias field distortions [106].

Over the years, numerous methods have been proposed to remove this undesired

signal content. These methods can be broadly categorized as segmentation-based using

expectation-maximization [136, 137], filtering [138], and intensity distribution-based

methods. Out of the latter, the N4 bias correction is the most notable [139], as it has

evolved to become the de-facto standard for bias correction. It is available in several

open-source software packages; here, we use the implementation distributed through

the Nipype (Neuroimaging in Python: Pipelines and Interfaces) Python package [140].
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2.5.2 Brain extraction

Brain extraction, often also referred to as skull stripping, is an image-processing step

in which the brain is separated from non-brain tissue, like the scalp, skull, and dura

mater. The goal is to eliminate parts of the image that are not required and can cause

unwanted variability in the analysis process. An additional benefit of brain extraction

is the de-identification of brain scans, as patients can be identified based on renderings

of the facial characteristics present in 3D CT and MRI brain images [141, 142]. This

step is crucial if a dataset is shared across hospitals or made publicly available.

Researchers can choose from numerous conventional and deep learning methods

for brain extraction. Among the conventional methods are methods based on region

growing [143], deformable models that are fit to the brain surface [144], or hybrid

generative-discriminative models [145]. However, these methods are sensitive to

artifacts, anatomical variability, and pathologies, such as brain tumors [146]. More

recently, deep learning-based methods have been proposed as a potentially more

robust alternative to the conventional models [147, 148, 149]. However, these methods

require access to GPU computing. More details on conventional and DL-based brain

extraction methods are provided in a review by Rehman et al. [150].

In Chapter 3, we demonstrate how erroneous brain extraction influences a down-

stream radiomics analysis of brain MRI scans.

2.5.3 Intensity normalization and standardization

Intensity normalization is a routine preprocessing step for ML image analysis pipelines,

not just in medical imaging. It facilitates the harmonization of the imaging data by

transforming all features onto a similar scale. Normalizing the input data for an ML

algorithm can considerably improve its performance, particularly for DL algorithms.

Intensity normalization can be performed on a dataset, patient, image, or slice level.

The two image normalization methods we deploy in this work are zero-mean

unit-variance or z-score normalization, one of the, if not the most commonly deployed

image normalization method, and histogram matching. For z-score normalization, the
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following operation is performed on every voxel within an image:

𝑧 =
𝑥− 𝜇

𝜎
.

Here, researchers can either use the mean 𝜇 and standard deviation 𝜎 over all voxels

in the full dataset or the voxels of the present image volume. If dataset statistics are

used, they must be computed only based on the training dataset to avoid information

leaking from the test data into the development of a model.

During histogram matching, the intensity histogram of an image is modified

to match the intensity histogram of a designated target image. By matching the

histograms of all images within a dataset to the same target image, harmonization of

the intensity distributions of all images within a dataset is achieved. In Chapter 3, we

use the histogram-matching method proposed by Nyú and Udupa [151].

2.5.4 Image registration

Image registration is the process of aligning a target image with the coordinate system

of a source image. In medicine, image registration is often performed to either allow

direct comparisons between patients (inter-individual) or align images of the same

patient (intra-individual) either between different imaging modalities acquired at the

same time-point (inter-modal) or at different time points. The registration of images

to a shared space simplifies the manual analysis of images, e.g., to collect information

about the localization of lesions, and improves the training of DL models [152]. Within

the work considered in this thesis, we perform intra-individual registration of multi-

modal MRI scans either taken at the same time or at different time points. Like the

other pre-processing methods outlined in this section, conventional [153] and deep

learning-based methods [98] have been devised to perform the registration of medical

images efficiently. We use the BRAINSfit module implemented in the 3D Slicer image

analysis platform [154, 155].
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Figure 2-5: Overlap and distance-based segmentation metrics. Illustration
of the principles behind overlap (left) and distance-based metrics (right) for the
quantitative evaluation of segmentation quality. The prediction (A) is shown in blue,
the ground truth (B) in red, and the overlap between the prediction and ground truth
is in purple.

2.6 Segmentation quality metrics

Choosing the right metrics to assess the performance of a segmentation model is of

utmost importance for the success of an ML project [156]. Here, we introduce popular

metrics typically used to evaluate the quality of segmentations quantitatively. While

this thesis also contains work on classification in Chapter 4, the metrics used in this

chapter are standard, and providing details on these metrics is beyond the scope of this

section. Reinke et al. offer an excellent and comprehensive overview and discussion of

the characteristics and pitfalls of metrics [157].

We organize the metrics into the following four groups: overlap-based metrics,

like the Dice score; distance-based metrics, like the Hausdorff distance; volume-based

metrics, like the relative volume error; and voxel-level confusion matrix-based metrics,

like the sensitivity.
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2.6.1 Overlap-based metrics

The most crucial overlap-based and generally most widely used segmentation quality

metric is the Dice-Sorensen coefficient or Dice score [158, 159]. As illustrated in

Figure 2-5, it is computed using the following equation:

𝐷𝑠𝑐𝑜𝑟𝑒 =
2 * |𝐴 ∩𝐵|
|𝐴|+ |𝐵|

=
2 * 𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The Dice score is equivalent to the F1-score or F-measure and closely related to

the Jaccard index or Intersection over Union (IoU). In fact, the Dice score can be

interpreted as an approximation of the IoU and vice versa [160]. Furthermore, it can

be interpreted as a special case of the kappa index, a chance-corrected measurement

of agreement [161]. We will only discuss the Dice score here, but all observations and

comments in the following paragraphs also apply to the IoU.

Advantages of the Dice score The Dice score is an excellent metric for seg-

mentation quality as it provides an intuitive measure of the agreement between the

ground truth and a prediction in their size and location. Furthermore, a differentiable

version of the Dice score, the so-called soft Dice [162], is among the most popular loss

functions in medical imaging for the training deep learning segmentation algorithms.

Both the Dice score and the soft Dice are stable towards class imbalances, which is

a considerable advantage during training and for the evaluation of segmentations,

particularly for small targets against large background volumes, as is often the case in

medical image segmentation.

Issues with the Dice score However, the value of the Dice score is known to be

influenced by the size of the segmentation target. For large segmentation volumes, a

few false positive or false negative voxels do not substantially influence the value of

the Dice score. On the other hand, the Dice score is quite sensitive to a few missed

pixels for small segmentation volumes. It can also be said that the Dice score is overly

confident for larger segmentation volumes. As for numerous medical segmentation
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targets, methods to determine the exact outlines on macroscopic imaging have yet

to be discovered; an ideal segmentation quality metric should be insensitive to minor

differences, for large and small segmentation targets alike. Another consequence is the

unequal treatment of over and under-segmentation, particularly for smaller segmen-

tation targets. A single-voxel thick rim of false positives pixels (over-segmentation)

results in a higher Dice score than a layer of missed pixels (under-segmentation) of the

same thickness. Even though it could be argued that the error is the same [163, 164].

Lastly, the Dice score has been criticized for not accurately reflecting the clinical

utility of a segmentation [165], mainly due to its inability to differentiate between

systematic and random errors [166].

2.6.2 Distance-based metrics

Distance-based metrics focus on the distance between the outlines of a prediction and

the ground truth. The most common distance-based metric is the Hausdorff distance

[167] (see Figure 2-5B). It represents the maximum of all the shortest distances between

two outlines and is computed based on the following equation:

𝐻(𝐴,𝐵) = inf (𝑑𝐻(𝐴,𝐵), 𝑑𝐻(𝐵,𝐴)) ,

where

𝑑𝐻(𝐴,𝐵) = sup
𝑎∈𝐴

(︂
inf
𝑏∈𝐵

(‖𝑎− 𝑏‖)
)︂
.

The Hausdorff distance is highly sensitive to small outliers, which deep learning

segmentation models are prone to produce. Therefore, the 95th percentile of the

Hausdorff distance is often used as a more robust metric unaffected by small outliers.

Another popular distance-based metric is the Average Symmetric Surface Distance

(ASSD) [168], representing the average of all minimum pointwise distances between

two surfaces.

The so-called surface Dice [169] is an outline-focused alternative to the conventional

Dice score. It also quantifies an overlap, not of the total segmentation volume but only
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of the surfaces of the ground truth and prediction. However, the user needs to choose

the value of a tolerance term, which defines the acceptable deviation between the

predicted and ground truth boundary. Since it is unclear which values are clinically

acceptable for this deviation term, the results can be challenging to interpret.

Because of the importance of correctly identifying the border between tumorous and

healthy tissue in radiation therapy planning, these metrics are particularly suited to

evaluate the quality of segmentations for applications in radiation oncology. Distance-

based metrics are also insensitive to holes within a predicted segmentation (false

negative areas surrounded by true positive voxels) [163]. As overlap and distance

metrics are often not highly correlated, metrics from both groups can, if chosen wisely,

be complementary in evaluating segmentation performance [170].

2.6.3 Voxel-level confusion matrix-based metrics

Voxel-level confusion matrix-based metrics are primarily used for the evaluation of

classification performance but are also popular for segmentation, as it can be interpreted

as a voxel-level classification. Accuracy is among this group’s most commonly reported

metrics, primarily due to its simplicity in the interpretation. However, accuracy

is sensitive to class imbalances; therefore, its value does not accurately reflect the

segmentation performance for segmentation problems with a high-class imbalance

between fore- and background [171]. Along similar lines, the specificity for segmentation

models with small foreground-to-background ratios will always be relatively high and

can be misleading if not complemented by other metrics. Lastly, depending on the

application, missing parts of the segmentation target may represent a graver error

than over-segmentation. Therefore, more than one segmentation metric is needed to

capture the importance of different mistakes accurately. Furthermore, an estimate

of the class imbalance should be reported to allow readers to interpret the presented

results accurately [172].
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2.6.4 Volume-based metrics

Metrics in this group measure the similarity between the target volume and the

predicted volume. This group’s most used metrics are the relative and absolute volume

error and volume similarity. While for several applications, e.g., treatment response

monitoring, only the accuracy of the segmented volume matters, these metrics do not

consider the agreement in the location between the ground truth and the prediction.

A segmentation approximately the same size as the target but in the wrong place

would be considered a high-quality segmentation based on volume-based metrics.

However, this segmentation would perform poorly when assessed by other metrics,

such as overlap-based ones, illustrating the importance of utlizing several metrics from

different metric groups.
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Chapter 3

Pitfalls in the repeatability of

radiomics

One essential requirement for the successful deployment of ML algorithms in the clinic

is that they are stable in their predictions, meaning given the same patient at the

same time point, they will produce the same prediction. In this chapter, we assess the

influence of preprocessing on the repeatability and redundancy of radiomics features

extracted using a popular open-source radiomics software package in a scan-rescan

glioblastoma MRI study. We found that shape features, which are independent of

voxel intensities, show higher repeatability than voxel intensity dependent features, like

intensity or texture features. Furthermore, the repeatability of radomics features could

be increased through the careful selection of preprocessing steps, such as intensity

normal normalization and feature extraction settings, like intensity quantization.

This chapter has been adapted from the following manuscript: Katharina Hoebel, Jay

Patel, Andrew Beers, Ken Chang, Praveer Singh, James Brown, Marco Pinho, Tracy T

Batchelor, Elizabeth Gerstner, Bruce Rosen, Jayashree Kalpathy-Cramer. “Radiomics

repeatability pitfalls in a scan-rescan MRI study of glioblastoma.” Radiology: Artificial

Intelligence 3, no. 1 (2020): e190199.

with additional excepts from the following two works:

• Mishka Gidwani, Ken Chang, Jay Biren Patel, Katharina Hoebel, Syed Rakin

63



Ahmed, Praveer Singh, Clifton David Fuller, Jayashree Kalpathy-Cramer. “In-

consistent Partitioning and Unproductive Feature Associations Yield Idealized

Radiomic Models”, Radiology (2022): 220715.

• Andréanne Lemay, Katharina Hoebel, Christopher Bridge, Brian Befano, Silvia

De Sanjosé, Didem Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter

Campbell, and Jayashree Kalpathy-Cramer. “Improving the repeatability of

deep learning models with Monte Carlo dropout.” npj Digital Medicine 5, no. 1

(2022): 1-11.

• Katharina Hoebel, Christopher Bridge, Andréanne Lemay, Ken Chang, Jay Patel,

Bruce Rosen, and Jayashree Kalpathy-Cramer. “Do I know this? segmentation

uncertainty under domain shift.” In Medical Imaging 2022: Image Processing,

vol. 12032, pp. 261-276. SPIE, 2022.

• Katharina Hoebel, Vincent Andrearczyk, Andrew Beers, Jay Patel, Ken Chang,

Adrien Depeursinge, Henning Müller, and Jayashree Kalpathy-Cramer. “An

exploration of uncertainty information for segmentation quality assessment.” In

Medical Imaging 2020: Image Processing, vol. 11313, pp. 381-390. SPIE, 2020.

3.1 Introduction

In recent years, radiology has experienced a shift toward more quantitative analysis

of imaging to aid medical decision-making. Among the most prominent techniques

leading this shift is radiomics, which is defined by the extraction of quantitative

features from a region of interest (ROI) on medical images [56]. As described in

Section 2.2, these quantitative descriptors can then be used to build predictive models

for clinical variables, such as molecular markers, treatment response, and prognosis

[173]. This approach has the advantage that, in comparison to biopsies, features

can reflect the full diversity of the ROI and factors such as tumor heterogeneity can

be captured more easily and in a noninvasive manner [174, 175]. However, if these

models are used for patient stratification with potential treatment decisions based on
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their predicted outcomes, the features used must fulfill two criteria: repeatability and

reproducibility.

Repeatability refers to the “variability of the quantitative image biomarker when

repeated measurements are acquired on the same experimental unit under identical or

nearly identical conditions” to determine the measurement error [36]. Reproducibility

refers to “variability in the quantitative image biomarker measurements associated

with using the imaging instrument in real-world clinical settings,” such as different

settings of a software package attempting to identify and separate measurement errors

from the reproducibility conditions [36]. Both repeatability and reproducibility of

radiomic features have been described to be sensitive to various factors, such as image

acquisition, resolution, reconstruction, preprocessing, and the software package used

to extract them [176].

Most published studies have described repeatability on CT [173, 176, 177, 178]. In

contrast to CT, absolute voxel intensities on MRI do not have tissue-specific values,

and changing signal intensities can leave tissue contrast unaltered [179]. Therefore,

intensity normalization might be needed to correct for these changes in intensity to

make features comparable between and within patients, especially when scanned under

slightly different conditions [180].

Relatively few studies have examined the repeatability and reproducibility of

radiomic features extracted from contrast-enhanced MRI [181, 182, 183]. One potential

reason is the challenge with test-retest studies that require the use of contrast agents.

Of the few studies that have examined this topic, very little has been reported on

the underlying causes for the lack of robustness of features. In a recent study on the

repeatability of radiomic features for small prostate tumors, Schwier et al. showed

that different features extracted with different MRI sequences might require different

settings to increase their repeatability [181]. However, this study only evaluated the

effect of preprocessing and feature extraction configurations on the intraclass correlation

coefficient (ICC) for features extracted from a small ROI and for a relatively small

dataset of 15 patients.

In this chapter, we examine the repeatability and feature redundancy of radiomic
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features in a unique scan-rescan dataset of patients with newly diagnosed glioblastoma,

to understand some of the reasons for the observed lack of repeatability.

3.2 Methods

3.2.1 Study population

We present a secondary analysis of prospectively collected data from two clinical trials

(ClinicalTrials.gov ID NCT00662506 and NCT00756106) at Massachusetts General

Hospital and Dana-Farber Cancer Institute [184]. All patients underwent the same

imaging protocol, and both studies were approved by the institutional review board.

The full dataset (scan, re-scan, and all follow-up visits) contained a total of 713

post-operative MRI visits. A total of 54 adult patients (mean age, 57 years [age

range, 22–77 years]; 33 men, 21 women) were included in the initial evaluation. All

patients had undergone tumor biopsy or partial tumor resection with a remaining

contrast-enhancing tumor of at least 1 cm in diameter at the time of enrollment.

Patients received either chemoradiation with cediranib (NCT00662506) or standard

chemoradiation (NCT00756106).

Patients underwent two pretreatment scans 2–6 days apart (mean, 3.7 days apart).

Figure 3-1 illustrates the imaging timeline with respect to the start of treatment.

Patients for whom one or both of the baseline scans were unavailable were excluded

from this study, resulting in a cohort size of 48 (mean age, 56 years [age range,

22–77 years]; 27 men, 21 women). The patients received no treatment between scan

and rescan. None of the tumors had clinically significant changes between scans,

as measured by the change in contrast-enhancing tumor volume or fluid-attenuated

inversion recovery (FLAIR) hyperintensity.

3.2.2 MRI acquisition

All MRI images from both clinical studies were acquired at the same research institution,

using an identical imaging protocol, and were obtained with the same model of 3.0-T
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Figure 3-1: Clinical study imaging protocol. The study protocol included two
baseline scans 2-6 days apart before the start of treatment and repeated follow-up
imaging at defined intervals until the patients left the study cohort.

MRI system (TimTrio; Siemens Medical Solutions, Malvern, Pa) and 32-channel head

coils. A total of 40 of 48 patients underwent both scan and rescan using identical MRI

scanners. To improve scan-to-scan reproducibility, AutoAlign (Siemens) was used to

ensure automatic alignment of the slice positions in a standard reproducible way for

each scan.

Axial T2-weighted FLAIR images were acquired with a repetition time of 10 000

msec, an echo time of 70 msec; T1-weighted images were acquired with a repetition

time of 600 msec, an echo time of 12 msec before and after the injection of a bolus of 0.1

mmol per kilogram of body weight of Magnevist (Bayer Healthcare, Warrendale, Pa).

All imaging volumes have 5-mm slice thickness, 1-mm intersection gap, 23 sections,

0.43-mm in-plane resolution, matrix size of 256 x 216, and a field of view of 185mm x

220mm. The pre-treatment scans used for this analysis are publicly available from the

TCIA [185].

3.2.3 Segmentation, annotation, and preprocessing

Manual segmentation Segmentations of enhancing lesions based on T1-weighted

pre- and postcontrast sequences and areas of T2 abnormality on T2-weighted FLAIR

sequences were performed by an expert neuro-oncologist with 12 years of experience

and a neuroradiologist with 11 years of experience, respectively. The segmentations for

each patient were performed by a single expert. The annotators were blinded to patient

identity, order of scans, and patient treatment status. To exclude postoperative blood

products that appear hyperintense on T2-weighted FLAIR, the experts additionally

evaluated the imaging presentation on T1-weighted pre- and post-contrast MRIs. All
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manual segmentations were performed using the 3D Slicer software [155].

Image preprocessing After segmentation, each patient’s T1-weighted postcontrast

sequences were registered to corresponding T2-weighted FLAIR sequences using the

BRAINSfit module in 3D Slicer [154, 155]. The N4 bias-correction algorithm was

applied to all images using the Python package Nipype [140]. Whole-brain extraction

was performed on T1-weighted postcontrast images using the ROBEX (RObust Brain

EXtraction) algorithm [145], and the resulting brain mask was applied to T2-weighted

FLAIR images.

Normalization of input images was performed as part of the feature extraction

(built-in z-score normalization) or by using a histogram-matching technique as a

separate step before feature extraction. The built-in normalization normalizes each

input volume such that the mean of the voxel intensity distribution is centered at zero

with unit variance (z-score normalization). Histogram matching of the non-ROI region

is a common normalization technique in radiomics [186]. In our study, we implemented

histogram matching using the method described by Nyúl and Udupa [151], in which a

piecewise linear transformation is applied such that the histogram of a source image is

matched to that of a chosen reference image. A randomly chosen patient was used as

a reference to which the histograms of all other patients were matched. More detailed

information on the performed preprocessing steps can be found in Section 2.5.

In addition to the aforementioned manual masks, we derived union masks of

both visits by registering the rescan to the scan and taking the union of both masks

separately for the enhancing tumor ROI on T1-weighted postcontrast images and total

tumor ROI on T2-weighted FLAIR images. These masks were then registered back to

the nonregistered images for feature extraction.

3.2.4 Radiomics software

Radiomics features were extracted using the open-source Python package PyRadiomics

[177]. Features for the scan and rescan were extracted separately from both T1-

weighted postcontrast and T2-weighted FLAIR images. Whenever indicated, the
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package default image normalization was applied to brain-extracted images as part of

the feature extraction process (z-score normalization). All features defined as default

by PyRadiomics were extracted from three-dimensional tumor volumes.

We limited our analysis of texture features to features derived from gray-level

co-occurrence matrices (GLCMs) and excluded the following features from further

analysis: compactness1, compactness2, and spherical disproportion are perfectly

correlated with sphericity; and homogeneity1 and homogeneity2 are directly correlated

with inverse difference moment. For each experimental setting and sequence (T1-

weighted postcontrast and T2-weighted FLAIR) we extracted 13 shape, 17 intensity,

and 23 texture features.

3.2.5 Statistical analysis

For each feature extracted from both T1-weighted postcontrast and T2-weighted

FLAIR sequences, we calculated the intra-class correlation coefficient (ICC) [187]

between the feature value extracted from the scan and rescan over the sample of 48

patients. We used a two-way model of the ICC (unit, single; type, consistency; 95%

CI) as implemented in the R statistical software (version 3.5.2) “IRR” package (version

0.84). Features were then grouped into shape (or morphology describing size and

shape), intensity, and texture features, as proposed by Kalpathy-Cramer et al. [83]

and following the image biomarker standardization initiative classes for feature groups

for further analysis [188].

To determine the association between features, we calculated the pairwise Spearman

correlation coefficient between features for all patients (one scan) and took the absolute

value to reflect the strength of the correlation. For comparison of the ROI intensity

distributions between scan and rescan, we chose the maximum range of voxel values

of both images and divided it into 100 bins. These bins were then used to derive

the intensity histograms for both visits. We used these histograms to calculate the

Jensen-Shannon divergence (JSD) between visits. On the basis of the Kullback-Leibler

divergence, the JSD has the advantage of being both symmetric and an unbiased

measure of the similarity between two probability distributions [189].
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Statistical significance between feature groups was assessed using a Kruskal-Wallis

test followed by post hoc pairwise Dunn multiple-comparisons tests with Bonferroni

correction to determine the relationship between the individual means [190, 191].

Analysis of statistical differences between normalization approaches was performed

with the paired Wilcoxon test with respect to the chosen baseline (no normalization)

and Bonferroni correction for multiple comparisons. The significance threshold for

adjusted p-values was 0.05. Statistical analysis was performed using R statistical

software (version 3.5.2).

3.3 Results

3.3.1 Repeatability of feature extraction from unnormalized

MRI

First, we examined the repeatability of shape, intensity, and texture features using the

PyRadiomics default settings (no normalization, intensity quantization with constant

bin width set to 10). Figure 3-2 shows the distribution of the ICC scores for each

feature group for both sequences. The ICC is computed based on the full study

population. For both sequences, purely segmentation-dependent features in the shape

group are highly repeatable between the scan and rescan, with a median ICC of 0.98

(range, 0.88–0.99) for T2-weighted FLAIR images and 0.96 (range, 0.78–0.98) for

T1-weighted postcontrast images. Features in the intensity and texture feature groups,

which depend on voxel intensity values, show low ICCs and high variability in the

ICCs within the groups for both sequences, with median ICC values for T2-weighted

FLAIR and T1-weighted postcontrast images of 0.60 (range, 0.38–0.84) and 0.71

(range, 0.36–0.83), respectively, for intensity, and 0.68 (range, 0.10–0.94) and 0.78

(range, 0.48–0.86), respectively, for texture features.

We observed differences in the ICC distribution for T2-weighted FLAIR and T1-

weighted postcontrast images, respectively, between shape and intensity (p-values

< 0.001 and < 0.001, adjusted for three comparisons) and shape and texture features
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Figure 3-2: Distribution of intraclass correlation coefficient (ICC) values
per feature group under default feature extraction settings. Each boxplot
represents the distribution of one radiomics feature group (shape, intensity, texture)
between scan and rescan for the cohort of 48 patients. A: T2-weighted fluid-attenuated
inversion recovery (T2W-FLAIR); B: T1-weighted (T1W) postcontrast. Features were
extracted from non-normalized images using the PyRadiomics default settings (no
normalization, constant bin width for intensity quantization)

(p-values < 0.001 and < 0.001, adjusted for three comparisons) on the pairwise Dunn

test. Accordingly, we assessed how the repeatability of features in the intensity and

texture groups that are calculated based on voxel intensities can be improved.

3.3.2 Effect of normalization on the intensity distribution and

intensity quantization on within-scan feature correlation

Influence of normalization on the ROI intensity distribution Intensity fea-

tures describe the distribution of voxel intensity values in the segmented region. GLCM

features are computed based on the GLCM, which represents the relationships of the

voxel intensities of neighboring voxels in the ROI. Before we studied the repeatability of

intensity and GLCM features, we first assessed the effect of normalization on the ROI

intensity histogram of both the scan and the rescan and voxel intensity quantization

on the correlation between GLCM features.

The voxel values for MRI are not normalized, and there are no tissue-specific

intensity ranges, so features based on voxel intensities showed great variability in ICC
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between scan and rescan. Therefore, we first studied the effect of normalization on

the intensity distribution of the segmented tumor region (ROI intensity histogram) by

comparing the voxel intensity histograms between scan and rescan before turning to

the repeatability of intensity features. We used (a) the built-in normalization (z-score

normalization over all voxels in the input volume) and (b) histogram matching to a

reference case. The overlap between histograms was measured by the JSD between

the ROI intensity histogram of the scan and rescan and the effect of normalization as

change in JSD before and after normalization for all 48 patients.

For our study population, both normalization techniques (z-score and histogram

normalization of brain-extracted images) significantly improved the similarity between

the histograms, as measured by JSD on T2-weighted FLAIR and T1-weighted post-

contrast images (paired Wilcoxon test against the not-normalized baseline without

comparisons between the normalized groups, adjusted p-values for two comparisons,

z-score and histogram matching, respectively, of < 0.001 and < 0.001 on T2-weighted

FLAIR images and 0.002 and 0.03 on T1-weighted postcontrast images). Panels

A and C in Figure 3-3 show the ROI intensity histograms for both scans before

normalization (column 1) and the change in the overlap between the histograms owing

to normalization (columns 2 and 3). Figure 3-3A illustrates the effect of normalization

techniques for a representative case.

In some cases, normalization caused an increase in JSD between scan and rescan

instead of the expected decrease. Failure cases were defined as cases for which

normalization resulted in an increase in JSD for both T1-weighted postcontrast and

T2- weighted FLAIR sequences (this analysis was constrained to z-score normalization).

Six of 48 patients’ scans were identified as failure cases. Visual assessment of these

cases revealed that for all of them, the brain extraction step was not performed

properly. We identified two patterns: (a) either too aggressive or (b) total or partial

failed brain extraction (leaving either the full skull or parts of the skull behind). The

latter mode of failure is illustrated in Figure 3-3C, with representative axial slices

of T2-weighted FLAIR and T1-weighted postcontrast scan and rescan in panel D,

illustrating the corresponding brain extraction failure pattern.
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Figure 3-3: Effect of normalization on the region of interest (ROI) intensity
histograms. A, C: Intensity histograms of the ROI segmentations from the scan
(blue) and rescan (orange) of representative cases on both T2-weighted fluid-attenuated
inversion recovery (T2W-FLAIR) and T1-weighted (T1W) postcontrast sequences of
a representative case (A) and a failure case (C). The first column shows ROI intensity
histograms without preprocessing; the second column, after brain extraction and
normalization via histogram matching; and the third column, after brain extraction
and z-score normalization. The overlap between the histograms is quantified by
the Jensen-Shannon divergence (JSD). B, D: Axial sections from the T2-weighted
FLAIR and T1-weighted postcontrast scan and rescan after brain extraction of the
corresponding cases, A, C, respectively.
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Figure 3-4: Jensen-Shannon divergence (JSD) distributions with and without
brain extraction. Distribution of the JSD between the region of interest intensity his-
tograms of the scan and rescan for the entire cohort using T2-weighted fluid-attenuated
inversion recovery (T2W-FLAIR) (left) and T1- weighted (T1W) postcontrast (right)
for not-normalized, z-score normalized, and histogram-matched images, each with
(blue) and without (orange) brain extraction performed before normalization. For each
normalization approach (no normalization, z-score normalization, histogram-matched),
the absence of brain extraction before normalization did not have a significant effect
on the JSD.

We therefore additionally examined the JSD distributions of images that were

normalized without previous brain extraction. As shown in Figure 3-4, the JSD values

of the scan and rescan ROI intensity histograms of images normalized without previous

brain extraction were not significantly different from brainextracted and normalized

images.

Influence of voxel intensity quantization on feature correlation In a manner

similar to how intensity features describe the distribution of intensity values in the

ROI, GLCM features describe the GLCM. For the computation of the GLCM, intensity

values first need to be quantized into discrete intensity ranges. This quantization

step can be performed using either a defined bin width (absolute binning) or a preset

number of bins (relative binning) adapted to the range of intensity values in the ROI.

Assuming the user has normalized the intensities, using the default intensity

quantization settings as implemented in PyRadiomics (constant bin width set to
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Figure 3-5: Distribution of intraclass correlation coefficient (ICC) values
for GLCM texture features. Each boxplot represents the distribution of GLCM
features repeatability between scan and rescan for the cohort of 48 patients using a
different with 5 (blue), 64 (orange), and 254 (green) bins for intensity quantization.
Features were extracted from T1-weighted postcontrast images.

10) results in nonsensical binning for the computation of the GLCM (i.e., all voxel

intensities are placed into only two bins, as this choice of bin width is too coarse for

the existing range of voxel values following normalization). Texture features calculated

based on this GLCM do not capture the true variability in image intensity that is

present within the images. This setting results in extremely high correlations between

texture features (mean Spearman correlation coefficient for all features, 0.95) on T1-

weighted postcontrast images.

By explicitly specifying the number of bins (relative binning) rather than a fixed

bin width, the aforementioned effect can be avoided. With increasing numbers of

bins and quantization levels, the overall correlation between texture features decreases

(mean Spearman correlation coefficient for all GLCM features, 0.52 [five bins], 0.47 [64

bins], and 0.43 [256 bins]; T1-weighted postcontrast imaging), without an adverse effect

on the repeatability of these features (Figure 3-5). The same effect can be observed

on T2-weighted FLAIR images. On the basis of these results, for data reported in the

following sections, we did not use the constant bin width setting; rather, we explicitly

set the number of intensity value bins for intensity quantization to 256.
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3.3.3 Influence of normalization on the repeatability of inten-

sity and texture features

As described previously, the application of z-score normalization and histogram match-

ing improved the overlap between the ROI intensity histograms of the scan and rescan.

Furthermore, the previous results highlight the importance of an appropriate binning

strategy. Building on these results, we examined the influence of the normalization

on the repeatability of intensity and texture features between scan and rescan, using

relative binning with 256 bins for intensity quantization, for features extracted from

not normalized, z-score normalized, and histogram-matched scans. For comparison, we

also included the ICC data computed on features extracted using z-score normalization

in combination with the default absolute intensity quantization setting (constant bin

width, 10).

The effect of the choice of the normalization technique on the ICC between both

scans for intensity and texture features is presented in Figure 3-6(top row, intensity;

bottom row, texture features). The ICCs of single features are shown in Figure 3-7 for

intensity and Figure 3-8 for texture features, illustrating the variability in the effect of

normalization on the repeatability of single features.

Intensity features While both normalization techniques lead to an improved

overlap between the ROI intensity histograms of scan and rescan for both T2-weighted

FLAIR and T1-weighted postcontrast sequences, the effect of normalization on the

repeatability of intensity features varies between the sequences (Figure 3-6A, B). On

T2-weighted FLAIR images (Figure 3-6A), both z-score normalization and histogram

matching improved the repeatability of intensity features with respect to the not-

normalized baseline (relative binning with 256 bins; paired Wilcoxon test against

the not-normalized baseline without comparisons between the normalized groups;

adjusted p-values for three comparisons, 0.003 [z-score normalization] and 0.002

[histogram matching]). On T1-weighted postcontrast images, however, neither z-score

normalization nor histogram matching resulted in a significant effect on the ICC of

intensity features between scan and rescan (Figure 3-6B).
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Figure 3-6: Distribution of intensity and texture intraclass correlation co-
efficient (ICC) values under different conditions. ICC for intensity (A, B)
and texture features (C, D) extracted from T2-weighted fluid-attenuated inversion
recovery (T2W FLAIR) (left) and T1-weighted (T1W) postcontrast (right) using
either z-score normalization (z-score) or histogram matching (hist-m.) compared with
features extracted from not-normalized (no norm) images. Significant differences in
the feature group mean ICC between feature extraction strategies (paired Wilcoxon
test) are indicated with brackets.
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Figure 3-7: Intensity feature stability for different normalization strategies.
ICC of single intensity features (rows) extracted under different normalization condi-
tions using relative intensity quantization with 256 quantization levels (columns) from
T2W-FLAIR (left) and T1W post-contrast (right). Particularly for features extracted
from T2W-FLAIR normalization improved the ICC.

Texture features As in the case of intensity features, normalization techniques

have a different effect on both sequences. For T2-weighted FLAIR images, z-score

normalization did not change the ICC distribution of texture features compared with no

normalization (relative intensity quantization, 256 bins), whereas histogram matching

improved the repeatability (paired Wilcoxon test against the not-normalized baseline

without comparisons between the normalized groups; adjusted p-value = 0.003 for

three comparisons) (Figure 3-6C). For T1-weighted postcontrast images, neither of the

normalization techniques improved the repeatability of GLCM features (Figure 3-6D).

The ICC distribution of texture features extracted from z-score normalized scans

using the default bin width setting is presented in the fourth column in Figure 3-6C

and D. The coarse intensity quantization, effectively reducing the total number of

bins to two for the majority of images, decreases the repeatability of GLCM features

significantly on both sequences (paired Wilcoxon test, adjusted p-value = 0.001 for

both T2-weighted FLAIR and T1-weighted postcontrast).
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Figure 3-8: Texture feature stability for different normalization strategies.
ICC of single intensity features (rows) extracted under different normalization condi-
tions using relative intensity quantization with 256 quantization levels (columns) from
T2W-FLAIR (left) and T1W post-contrast (right). Using relative intensity quantiza-
tion, z-score normalization does not have an effect on the ICC of texture features as
the constant offset and scaling does not affect the relative intensity difference between
neighboring voxels.

3.3.4 Independence of feature extraction repeatability of the

ROI

To exclude all segmentation-dependent factors that might influence the repeatability

of radiomics intensity and texture features, we extracted features using the union of

the ROI of both scan and rescan. However, this approach did not produce higher

ICC values for intensity and texture features (both from T2-weighted FLAIR and

T1-weighted postcontrast images) than using manual masks separately defined for

scan and rescan (one-sided analysis of variance). The ICC distributions are illustrated

in Figure 3-9. This finding suggests that the low repeatability of intensity and texture

features in our study is driven by differences in voxel intensities within the ROI

between scan and rescan as opposed to intrarater variability in segmentations.
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Figure 3-9: Distribution of intensity and texture intraclass correlation coef-
ficient (ICC) values depending on the region of interest (ROI) definition.
ICC for intensity and texture features extracted from, A, T2-weighted fluid-attenuated
inversion recovery (T2W FLAIR) and, B, T1-weighted (T1W) postcontrast using
manual ROI masks separately outlined for scan and rescan (blue) or the union of
both masks to extract features from the scan as well as rescan (orange). There is
no statistically significant difference (paired Wilcoxon test) in the ICC distributions
between the ROI definitions.

3.4 Discussion

In this study, we analyzed the influence of normalization (including voxel intensity

quantization) on the repeatability of radiomic feature extraction from brain MRI

(T2-weighted FLAIR and T1-weighted postcontrast sequences) using the open-source

software package PyRadiomics for feature extraction. The high repeatability of shape

features, which are computed exclusively based on the provided manual segmentations

(Figure 3-2) indicates that the segmentations are very consistent between scan and

rescan. While it has been reported that features are susceptible to variations in manual

segmentations [192], we excluded this as a major driver for the low repeatability of

intensity and texture features in this study based on the high consistency of the

segmentations. Furthermore, using the same mask to extract radiomic features from

the scan and rescan to eliminate segmentation effects did not result in an improvement

in the ICC between visits. This serves as additional support to the idea that image

acquisition and patient-related factors have a greater influence on the lack of radiomic

feature repeatability than intra-rater variability in segmentation between scan and
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rescan. As such, we investigated whether the repeatability of intensity and texture

features can be improved by the application of the appropriate normalization technique

in combination with an adaptation of the intensity quantization strategy.

The intensity values’ dependency on MRI on scanner properties, image acquisition,

and image processing requires standardization of the image intensity to enable a

comparison of features across patients [180]. Accordingly, there are many approaches

to normalize medical imaging, particularly for the normalization of brain MRI [193].

We chose two of the most widely used normalization techniques in radiomics pipelines:

z-score normalization (built into PyRadiomics) and histogram matching to a reference

case [194]. The optimal intensity normalization technique is expected to result in a good

overlap between the intensity histograms of the scan and rescan. Both normalization

techniques significantly improved the overlap between the ROI intensity histograms

of scan and rescan. However, we could identify cases in which, because of either too

aggressive or insufficient brain extraction, normalization efforts had an adverse effect

(Figure 3-3C and D). This is consistent with a previous study, which showed that the

most commonly used brain extraction algorithms can fail in the presence of disease

[195], thereby introducing another factor that can harm standardization and intensity

normalization efforts.

For cohort-level analysis, we recommend manual auditing of the results of automatic

brain extraction to ensure that brain extraction did not fail. Manual correction of

sporadic failures might not be needed for cohort-level analyses. However, analyzing

individual scans (e.g., for treatment stratification) might require manual checks of

every scan to ensure appropriate brain extraction. If necessary, manual correction of

the automatic brain extraction must be performed to ensure that the analysis is not

impaired by flawed brain extraction and its downstream effects. We could not detect a

significant difference in the JSD of normalized cases with and without brain extraction

(Figure 3-4), but we did not examine downstream effects on feature repeatability.

Both normalization techniques show better repeatability for T2-weighted FLAIR

images than for T1-weighted postcontrast images. One reason for this is that the

repeatability of T1-weighted postcontrast scans can be complicated by variations in
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contrast application and the timing of image acquisition after injection, notwithstand-

ing the controlled research conditions under which the scans used in this study were

acquired. The normalization approaches used in our study do not account for these

differences, as they are based on the intensity distribution of the full input volume,

including the contrast-enhancing region. These findings are consistent with those in

He et al., which showed that variability introduced by contrast enhancement could

negatively affect the diagnostic performance of radiomics models on CT [196].

Additionally, the parameters for feature extraction, especially the choice of voxel

intensity quantization, can have marked effects not just on the repeatability of radiomic

feature extraction but also on the correlation between features [182, 183]. Features

that are calculated based on binned or quantized values (e.g., GLCM features) are

sensitive to the choice of this setting. This is reflected in the poor ICC for texture

features using a bin width of 10 on z-score normalized images (Figure 3-6C and D).

Given the lack of standardized intensity ranges in MRI, relative binning is a more

reasonable choice, as it results in improved repeatability.

Importantly, the effects of intensity quantization require additional examination

of the correlation between features. Increasing the number of histogram bins after

brain extraction and normalization results in a decrease of the correlation between

GLCM features within one scan while having no adverse effect on feature repeatability.

Highly redundant features may harm downstream predictive pipelines.

3.5 Limitations

There were some limitations to our study. First, we limited the examination of texture

features to GLCM features because of the popularity of these descriptors with respect

to other texture features. Future studies will need to thoroughly examine other

classes of texture features (e.g., Laws energy, Gabor) [197, 198]. Second, features were

extracted from two-dimensional axial sequences, and differences in slice placement

can have an additional influence on the repeatability of radiomic feature extraction.

Moreover, most researchers use radiomics features for some task (e.g., survival analysis,
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disease diagnosis) to be solved via some machine learning model (e.g., random forest,

support vector machine classifier). In this study, we only tested for the repeatability of

features. We did not test whether trained machine learning models using these radiomic

descriptors are repeatable. Last, our findings and, therefore, our recommendations,

may only be valid for radiomic features extracted from newly diagnosed and untreated

glioblastoma, as this was the use case in our study.

3.6 Conclusions

In summary, our findings that the optimal setting for feature extraction may vary

from feature group to group (and maybe even within the separate groups) are consis-

tent with results presented by Schwier et al. on the repeatability of radiomic feature

extraction from MRI on a dataset of small prostate tumors [181]. The extraction of

repeatable intensity and GLCM radiomic features from MRI requires robust stan-

dardized preprocessing and careful selection of feature extraction settings. Based on

our results, we recommend using a normalization strategy (especially for unenhanced

sequences) and using relative binning strategies to account for varying intensity ranges

within images. Furthermore, we recommend checking the within-scan correlations

between features during feature selection and using a higher number of bins to avoid

feature redundancy.

3.7 Perspectives on the stability and robustness of

machine learning models

In this chapter, we presented a study of the repeatability of radiomics features

extracted from brain MRI and demonstrated that appropriate preprocessing could

improve feature repeatability. During my PhD research, I led and contributed to

additional projects on the stability and trustworthiness of machine learning algorithms

for medical image analysis. These projects point towards common problems that ML

models encounter on their way to clinical deployment: artificial performance inflation
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through data leaks and lacking stability in predictions.

3.7.1 Flawed practices lead to performance inflation of ra-

diomics models

While many radiomics studies report impressive performance, radiomics has lately

come under scrutiny. As we have outlined in Section 2.2, besides the feature extraction,

other steps in a radiomics pipeline are also prone to introducing errors. For an in-

depth analysis of the quality of radiomics models published in the literature, we

performed a selective review of 50 publications reporting on the development of

radiomics models. The analysis of the methodology focused on model development

following feature extraction. We identified a median of six flaws in the methodology

of each article. These flaws could be attributed to information leaks and unproductive

feature associations.

Information leaks To allow objective evaluation of the performance of a radiomics

algorithm, test data must be kept strictly separated from the development dataset

during normalization, feature selection, model training, and hyperparameter tuning

[199, 200]. If that is not the case, we show that the performance can be artificially

inflated by utilizing information from the test dataset during model development.

Unproductive feature associations Radiomics features are high-dimensional.

The number of features extracted from a single case is oftentimes higher than the

number of patients in the entire dataset. This can lead to an overestimation of

causal relationships between radiomics features and other variables due to spurious

correlations.

We identified multiple serious methodological flaws in a selected subset of the

radiomics literature. Furthermore, we experimentally demonstrated how information

leaks due to inconsistent data partitioning and the reliance on unproductive feature

associations lead to an over-optimistic estimation of a model’s performance. The
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methodological mistakes outlined above were found in research articles that had

all undergone peer review. Peer review is known to be a flawed process as it is

characterized by a high level of randomness [201], often fails to detect substantial

errors [202], and its effectiveness in improving the quality of publications is questionable

[203]. Therefore, research articles on radiomics models should be read with care. Lastly,

neither information leaks due to inconsistent partitioning nor spurious correlations

[204, 205] are problems exclusive to radiomics – deep learning suffers from them as

well.

3.7.2 Improving the repeatability of deep learning classification

predictions

Low repeatability affects not just radiomics features but also the predictions of DL

classification models. During model development and evaluation, much attention is

paid to the classification performance of models. However, their repeatability, a crucial

indicator of a model’s robustness and requirement to win the trust of healthcare

professionals and patients alike, is rarely assessed. The lack of attention to model

robustness leads to the development of models with low test-retest repeatability

[39], which are unsafe for clinical deployment. Given the importance of developing

reliable deep-learning algorithms for medicine, we developed strategies to improve

their repeatability.

We studied the test-retest repeatability of binary, multi-class, and ordinal classi-

fication and regression with and without Monte Carlo (MC) dropout. Monte Carlo

dropout is a straightforward approach to prevent models from making over-confident

predictions [206]. We will introduce MC dropout in more detail in Section 4.2.3. For

this study, we utilized four medical image ordinal classification tasks from public

and private datasets: knee osteoarthritis, cervical cancer screening, breast density

estimation, and retinopathy of prematurity (see Section 4.2.1 for more details on the

datasets).

Through extensive experimental validation, we showed that different modeling
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approaches led to drastically different test-retest repeatability. Because the classi-

fication labels for all problems we assessed were ordinal, most variability occurred

for cases close to the decision boundary between two classes. We found that using

regression led to the highest repeatability for models trained without MC dropout,

followed by ordinal classification. Conventional nominal classification models showed

the lowest repeatability performance. Additionally, using Monte Carlo dropout led to

significantly higher repeatability without decreasing and, in some cases, even improving

classification performance.

In summary, we demonstrated how the test-retest repeatability of DL algorithms

could be improved using Monte Carlo dropout. This represents an easy-to-implement

method to develop robust models that deserve the trust of healthcare professionals

and patients.

3.7.3 Automatic quality assessments using predictive uncer-

tainty

Segmentation uncertainty allows the detection of suboptimal segmentations

The performance of DL algorithms is usually evaluated on a full dataset consisting

of many cases. However, in clinical practice, the validity of every single prediction

is essential. While DL algorithms have been touted as high-performing automatic

diagnostic tools that are more cost-efficient and faster than humans, they can silently

fail for various and oftentimes unknown reasons such as inconsistencies in the data

format, noise, and domain shift [207]. In short, DL algorithms cannot be trusted

blindly [208]; the quality of every single prediction, classification and segmentation

alike must be checked by human experts. Consequently, obtaining an automatic

assessment of a prediction’s reliability would be highly desirable.

While a classification prediction is either right or wrong, the quality of a segmen-

tation can be assessed on a continuous quality spectrum depending on the agreement

between a ground truth label and the algorithm’s output, e.g., through the Dice score.

Recently, Bayesian approximation methods, like deep ensembles and Monte Carlo
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dropout, have been proposed as tools to measure a model’s uncertainty associated

with a prediction. However, the influence of design choices, like the cost function

used for model development, on the quality of these uncertainty metrics is unknown.

Therefore, we examined the potential of three different methodological approaches

[209, 210, 211, 212] that are trained using different cost functions. We obtain measures

of segmentation uncertainty for the 3D segmentation of lung nodules on low-dose CT

scans [213].

We found that areas of high uncertainty were localized at the margins of segmenta-

tions. We visualized the spatial distribution of segmentation uncertainty by assigning

an uncertainty value to each voxel in a CT volume based on the algorithm’s predictive

uncertainty. Upon visual assessment of these spatial uncertainty distributions, areas of

high uncertainty were localized in the periphery of the predicted segmentation. They

agreed with false-labeled voxels, i.e., areas of false positives and false negatives were

visually aligned with areas of high uncertainty.

Furthermore, uncertainty metrics associated with the predictions of all three

methods showed high correlations with the Dice score of a segmentation. The strong

relationship between ground truth-independent uncertainty metrics and segmentation

performance indicates that predictive uncertainty metrics may have the potential to

be used as an indicator of a segmentation’s quality.

Lastly, we found that uncertainty metrics can be used to provide a reliable estimate

of a segmentation’s quality. These quality estimates can potentially be used to flag

low-quality predictions and speed up the evaluation of large study cohorts by flagging

only cases of expected low quality for human review. They could furthermore assist

in the generation of smart worklists [214] for clinicians checking and correcting the

output of automatic segmentation pipelines, by prioritizing challenging samples (with

an expected low quality) early during a shift when the raters can focus better [215].

Monitoring segmentation uncertainty under domain-shift While uncertainty

metrics have substantial potential to increase trust in “black box” neural networks

by allowing them to detect low-quality output automatically, these estimates should
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remain stable under naturally occurring domain shifts. In an additional study, we

evaluated the relationship between epistemic uncertainty and segmentation quality

under domain shift within two clinical contexts: optic disc segmentation in retinal

photographs and brain tumor segmentation from multi-modal brain MRI. Specifically,

we assessed the behavior of uncertainty metrics derived from the same three methods

described in the previous section: conventional neural networks, deep ensembles,

and Monte Carlo dropout algorithms trained using either soft Dice or weighted

categorical cross-entropy. We introduced domain shifts by excluding a group with a

known characteristic (glaucoma for optic disc segmentation and low-grade glioma for

brain tumor segmentation) from model development and using the excluded data as

additional, domain-shifted test data.

As expected, the performance of all models dropped slightly on the domain-shifted

test data compared to the in-domain test set. While there was no change in the Pearson

correlation coefficients, we did observe a change in the slope of the linear relationship

between the uncertainty metrics and the Dice scores of the segmentations. To describe

and quantify the observed changes under domain shift, we introduced a new metric,

the empirical strength distribution. We found that shifts in the empirical strength

distributions between training, in-domain, and domain-shifted test datasets caused a

decrease in the performance of uncertainty-based automatic estimation of segmentation

quality. Therefore, quality assessment tools based on the strong relationship between

epistemic uncertainty and segmentation quality can be stable under small domain shifts

if the empirical strength distribution is not affected. Developers should thoroughly

evaluate the strength relationships for all available data and, if possible, under domain

shift to ensure the validity of these uncertainty estimates on unseen data.

3.7.4 Recommendations for the development of robust ML

algorithms

Despite the tremendous optimism that ML will change medicine, surprisingly, few

models are used in clinical decision support. In a review of ML models proposed for

88



the diagnosis or prognosis of COVID-19 from chest X-ray or CT images, Roberts et al.

report that out of 62 studies, none of the models are of potential clinical use [216].

The reasons ranged from missing robustness or sensitivity analysis of the models to

insufficient reporting on limitations, potential biases, or generalizability issues. The

successful translation will require authors and reviewers alike to adhere to rigorous

standards and best practices, like the ones outlined in the CLAIM checklist [217].

AI research – with medical AI being no exception – is sometimes described as a

race to develop new methodologies that outperform the previous state-of-the-art based

on specific metrics. However, optimizing metrics has become a central aspect of AI

research, leading to manipulation or gaming of results, sometimes even inadvertently,

e.g., by not adhering to best practices and a disproportionate focus on short-term goals

[218]. As noted by Charles Goodhart and what is today known as Goodhart’s law:

“When a measure becomes a target, it ceases to be a good measure” [219]. Thomas and

Uminsky proposed a framework promoting the balanced use of metrics for evaluating

AI algorithms [218]. Their recommendations include using multiple metrics, including

qualitative accounts, to get a more detailed picture of model performance and the

involvement of stakeholders in the evaluation process. As we outline in Chapter 5, this

potentially requires the development of new metrics that allow rigorous and truthful

performance evaluation.
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Chapter 4

Network designs for latent,

continuously valued variables

Many variables of interest in clinical medicine, like disease severity, are recorded

using discrete ordinal categories such as normal/mild/moderate/severe. These labels

are used to train and evaluate disease severity prediction models. However, ordinal

categories represent a simplification of an underlying continuous severity spectrum.

Using continuous scores instead of ordinal categories is more sensitive to detecting

small changes in disease severity over time. Additionally, for these continuously valued

variables that are measured through ordinal labels, characteristic noise patterns around

the boundaries between classes have been described. Some experts tend to consistently

over-call, meaning that they have a lower threshold of what they consider to be

“abnormal.” In contrast, others tend to under-call, causing a pattern of inter-annotator

variability.

In this chapter, we present two applications based on the concept of a latent,

continuously valued variable of interest. We first present a generalized framework

that accurately predicts continuously valued variables using only discrete ordinal

labels during model development. Our novel framework was validated on three clinical

prediction tasks and bridged the gap between discrete ordinal labels and the underlying

continuously valued variables. Second, we show that previously described approaches

for identifying differences between annotators’ labeling behavior are inappropriate for
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a latent continuously valued variable. Additionally, we present two new techniques

to jointly learn classification and the individual annotators’ bias in the binarization

threshold.

The work presented in this chapter was performed in collaboration with Andréanne

Lemay, John Peter Campbell, Susan Ostmo, Michael Chiang, Christopher Bridge,

Matthew Li, Praveer Singh, Aaron Coyner, and Jayashree Kalpathy-Cramer. A

manuscript is currently in preparation.

4.1 Introduction

4.1.1 Role of continuously valued variables in medical image

analysis

Many clinical variables, like disease severity, are communicated and recorded as discrete

ordinal classes. However, in reality, they are distributed on a continuous spectrum

[41]. The discretization of continuously valued variables facilitates documentation and

communication and standardizes treatment decisions at the cost of losing information.

As illustrated in Figure 4-1, two patients that fall into the same severity category will

receive the same label. Consequently, if their data is used to develop a prediction

model, it will be treated exactly the same during training, regardless of their exact

position along the continuous spectrum.

Most of the tremendous successes of deep learning based algorithms for disease

severity prediction, have been built on the simplifying assumption that disease severity

prediction can be formulated as a simple classification task. Researchers mostly use

DL architectures that are intended for the classification of nominal categories and

ignore the inherent ordinal nature of the available training labels [43, 44]. More so,

disease severity prediction tasks are often simplified even more by treating them as

binary problems, e.g., disease detection [90], the identification of severe disease [220],

or cases for referral [221, 222].
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Figure 4-1: Relationship between the underlying continuous variable of
interest and the training and evaluation labels. The conversion of a latent
continuously distributed variable into discrete ordinal variables for model development
represents a loss of information. The purple and magenta arrows represent temporal
changes in disease severity. The available annotation types for the evaluation of the
continuous predictions are presented in the green box: Rankings, ordinal ratings on a
more detailed scale than the training labels, and continuously valued measurements.

Advantages of continuous scores In addition to the class, the position of a case

on the continuous spectrum contains valuable clinical information that is not captured

by current approaches [223]. Therefore, the use of continuous scores to describe clinical

variables that are distributed on a continuous spectrum provides several advantages

over discrete ordinal variables. First, continuous metrics allow for the detection and

quantification of changes within a class, i.e., an increase in disease severity that does

not constitute a transition between class 𝑛 and 𝑛 + 1 [224, 225]. In Figure 4-1 the

purple and magenta arrows represent similar large increases in disease severity. While

the magenta transition would get detected by the traditional classification approach,

the purple transition would not. The only difference between the two transitions is

that the magenta one crosses the class boundary from moderate to severe, while the

purple arrow represents a within class change. The detection of within-class changes

allows to detect disease deterioration earlier and act upon it if required.

Second, the higher degree of information presented in continuous versus ordinal
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scores can be useful for efficient patient stratification, particularly the identification

of cases close to a decision boundary. Third, expert perception of class boundaries

can be subject to changes over time [226]. Therefore, models ignoring the continuous

nature of disease severity could become less valuable over time as, e.g., the perception

of what constitutes mild versus moderate disease severity shifts. Lastly, an algorithm

that predicts a continuous score is more likely to fulfill notions of individual fairness as

similar individuals that are close to the label decision boundaries will be more likely

to receive similar scores compared to using a simple classification algorithm [227].

4.1.2 Predicting granular disease severity information

Previous attempts to predict continuous disease severity scores have made use of

either nominal classification networks or Siamese networks. Redd et al. proposed to

aggregate the softmax outputs from a nominal 3-class convolutional network into one

continuously valued vascular severity score for disease severity classification in ROP

[228]. This score strongly correlates with experts’ ranking of overall disease severity

and groups with different disease severity show significantly different severity score

distributions [228, 229]. Furthermore, changes in this score over time accurately reflect

disease progression [225]. However, the training objective of multi-class classification

models is to separate the latent space representation of classes as much as possible.

This could therefore lead to unstable predictions and confusion at the class boundaries.

Using Siamese networks, Li et al. showed that the continuously valued difference

relative to a reference pool of images correlates with expert’s rankings of disease

severity and reflects temporal changes in severity in knee osteoarthritis and ROP

[224]. Similarly, in a study on an x-ray based severity score for COVID-19, a score

generated by a Siamese network highly correlated with radiologist-determined severity

scores [230]. However, the performance of Siamese networks for the predictions of

continuous scores has not been compared to other methods and their calibration

has not been studied yet. The limited availability of datasets and labels with more

granular information than the ordinal labels typically used in clinical practice hampers

efforts to develop and validate DL models that predict continuous instead of discrete
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values.

4.1.3 Noisy ordinal annotations

The ground truth of many medical imaging datasets can be considered noisy, as

described in Section 2.4. Due to a high ambiguity in numerous clinical image clas-

sification tasks, experts often do not agree with each other, causing inter-annotator

variability and inconsistencies in the ground truth of datasets. Given deep learning

algorithms’ tendency to memorize noisy training data, many methods have been

developed to limit the influence of label noise on the training process and prevent

the neural network to overfit the noise in the training data. Approaches include the

development of loss functions that are robust to noise [108, 231], reducing the influence

of noisy data points on the training process [232], or correcting potentially wrong

labels [233]. However, these methods rely on the assumption that the noise is random,

independent of the person who generated a label, and impeding the training process.

Annotator-specific noise patterns In some situations, label noise can contain

informative patterns that reveal information about the data or the people who labeled

it. In crowdsourcing data annotations, for example, some workers are more reliable

than others [234]. And in nominal classification tasks, some classes tend to be more

similar than others and are therefore more frequently confused by annotators [235].

For continuously valued variables, experts tend to disagree mostly about cases

close to a decision boundary [47]. A case that can be considered normal but already

shows some of the characteristics of the disease may be classified as normal by one

expert. Still, another expert may call it moderate disease severity. Interestingly,

this noise component is not independent of the annotators. Some experts tend to

consistently over-call, meaning that they have a lower threshold of what they consider

to represent “abnormal,” while others tend to under-call. One such scenario for a

binary classification problem with two annotators who have different binarization

thresholds is illustrated in Figure 4-2A. In our model, the reader-dependent noise can

therefore be characterized by their individual decision thresholds.
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Figure 4-2: Continuously valued variables and annotator bias. A: Binary
labels for a continuously valued variable generated by two annotators with different
binarization thresholds. The difference between the individual binarization thresholds
causes disagreements between the labels from both annotators. B: Model for label
generation. White nodes represent variables that are not directly measurable. The
latent continuously valued variable of interest 𝑠 is represented in an image 𝑥. A binary
label 𝑦𝑖 is then provided by annotator 𝑖. This label, in turn, is influenced by the
annotator’s individual bias 𝑏𝑖.

4.1.4 Approaches to learning annotator-specific characteristics

Learning annotators’ individual characteristics, like their reliability or decision thresh-

olds, not only reveals important information about every annotator but also enables

mitigation of the noise in the training data. In medicine, acquiring such a gold stan-

dard is almost impossible for most variables. One example of an approach based on

expectation-maximization is the STAPLE algorithm, a popular method to generate a

ground truth segmentation from noisy segmentations provided by different annotators

[123]. The STAPLE algorithm learns each annotator’s sensitivity and specificity and

uses this information to generate a joint segmentation that can be considered the

ground truth given the noisy input. One substantial downside of such expectation

maximization approaches is that they require several labels for each sample. However,

obtaining annotations for medical imaging is highly time and cost-intensive; therefore,

acquiring multiple labels for one case is not feasible in most cases.

Traditionally, reader characteristics have been learned using multiple annotations

per sample, e.g, using expectation-maximization techniques [236] or comparing them
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to a gold standard ground truth. In medicine, acquiring such a gold standard is almost

impossible for most variables. One example of an approach based on expectation-

maximization is the STAPLE algorithm, a popular method to generate a ground truth

segmentation from noisy segmentations provided by different annotators [123]. The

STAPLE algorithm learns each annotator’s sensitivity and specificity and uses this

information to generate a joint segmentation that can be considered the ground truth

given the noisy input. One substantial downside of such expectation maximization

approaches is that they require several labels for each sample. However, obtaining

annotations for medical imaging is highly time and cost-intensive; therefore, acquiring

multiple labels for one case is not feasible in most cases.

Only a few articles in the literature address the problem of reader-dependent

noise distributions in deep learning. In their work presenting the DoctorNet, Guan

al. assume that the annotations provided by some physicians are more reliable than

others [237]. The model learns to predict how each member of a group of experts

would annotate an image. Subsequently, DoctorNet learns an individual weighing

factor for each expert, reflecting their reliability. The final prediction is a weighted

average of the model’s prediction for each expert in the training group. Following

this training procedure, DoctorNet outperformed a conventional deep learning model

trained on adjudicated ground truth labels.

If we had access to annotators’ patterns of confusion between nominal label classes,

label probabilities could be corrected for the training of a deep learning model. Khetan

et al. propose Model Bootstrapped Expectation Maximization (MBEM), an extension

of expectation-maximization approaches that works with only a few annotations per

sample [238]. The authors propose to train a deep learning model on aggregated noisy

labels and use the predictions from this model to estimate confusion matrices for each

annotator. In an iterative process, the confusion matrices are then used to correct the

labels and retrain the prediction model using the corrected labels.

An all-in-one solution for the joint learning of classification and reader confusion

matrices has been proposed by Tanno et al. [239]. The solution consists of a convolu-

tional neural network extended by learnable confusion matrices. The joint learning
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of the prediction model and the confusion matrices improved the model’s robustness

to label noise. However, the currently available methods are developed for nominal

classification, assuming no ordinal relationship between the classes. In particular, they

are unable to capture a continuous distribution underlying the ordinal labels.

4.1.5 Chapter outline

In this chapter, we describe how the shift from a purely discrete ordinal view of

medical variables to a detailed one of a continuous spectrum can be achieved through

careful network design.

A generalized framework to predict continuous scores from discrete ordinal

labels First, we aim to identify model development strategies that lead to the

prediction of accurate continuous scores. Most importantly, while we utilize widely

available discrete ordinal labels for training, the models’ performance to predict

accurate continuous scores is evaluated using labels on a finer scale than the training

ground truth (illustrated in the green box in Figure 4-1) on three datasets: disease

severity prediction for ROP and knee osteoarthritis and breast density estimation from

mammograms. Following this process, we demonstrate that it is possible to develop

models that are capable of recovering the information lost through the discretization

of the continuous target variable.

Learning the bias of individual annotators from single ordinal labels In the

second study presented in this chapter, we assume that a substantial amount of inter-

annotator disagreement that can be observed for ordinal annotation problems is caused

by annotator-specific biases in their inter-class thresholds. We illustrate how these

individual biases that affect the generation of reliable ordinal labels for continuous

variables can be characterized with the help of deep learning approaches. To this

end, we introduce MBEM𝑐𝑡𝑠, an extension of MBEM to continuously valued variables,

and BiasNet, to learn a robust classification and biased binarization thresholds of

individual annotators from “noisy” single labels.
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4.2 Methods to learn continuously valued variables

from ordinal labels

4.2.1 Datasets

All images were de-identified prior to data access. The dataset of knee x-rays is publicly

available and our institution’s Institutional Review Board waived the requirement to

obtain informed consent for the breast density and ROP datasets. Dataset splits were

performed on a patient level. The size of all dasets is listed in Table 4.1 and class

distributions for each dataset are listed in Appendix A.1.

Retinopathy of prematurity ROP is an eye disorder mainly developed by prema-

turely born babies and is one of the leading causes of preventable childhood blindness

[240]. It is characterized by a continuous spectrum of abnormal growth of retinal

blood vessels which is typically categorized into three discrete severity classes: normal,

pre-plus, or plus [41, 241]. We used the same dataset, labels, and preprocessing as de-

scribed by Brown et al. [45]. In addition to the standard diagnostic labels, the test set

was labeled by five raters on a scale from 1 to 9 and five experts ranked an additional

100 ROP photographs based on severity [45, 229]. To verify the out-of-distribution

performance, 7893 retinal images acquired in Nepal (7565 normal, 217 pre-plus, 111

plus) were classified into the same 1 to 9 scale as the in-distribution test set by a

single expert rater.

Knee osteoarthritis The global prevalence of knee osteoarthritis is 22.9% for

individuals over 40, causing chronic pain and functional disability [242]. Knee os-

teoarthritis can be diagnosed with radiographic images and disease severity is typically

evaluated using the Kellgren-Lawrence (KL) scale consisting of the following severity

categories: none, doubtful, mild, moderate, and severe [243]. We used the Multicenter

Osteoarthritis Study (MOST) dataset. 100 images from the test were ranked by their

severity by three experts [224]. All images were center cropped to 224x224 pixels and

intensity scaled between 0 and 1 as preprocessing.
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Breast density Female breast cancer is estimated to be the most commonly di-

agnosed cancer worldwide and is the leading cause of cancer death in women [244].

Breast density is typically categorized as fatty, scattered, heterogeneous, or dense,

depending on the amount of fibroglandular tissue present [245]. Women with high

breast density are at a higher risk of developing breast cancer and require additional

MRI screening [246, 247]. We used a subset of the Digital Mammographic Imaging

Screening Trial (DMIST) dataset [248]. Furthermore, for 1892 mammographs from the

test dataset, an automatic assessment of the volumetric breast density was obtained

using the commercially available Volpara Density software which has demonstrated a

good agreement with expert ratings of breast density (see Figure 4-10A) [249, 250].

Preprocessed mammograms were of size 224x224 pixels.

Table 4.1: Summary of dataset size and training/validation/test splits of the three
datasets used for this study: disease severity prediction in retinopathy of prematurity
(ROP) and knee osteoarthritis (OA) and breast density prediction

Dataset Size Training Validation Test

ROP 5611 4322 722 467 (9-point scale)
100 (ranked)

Knee OA 14273 12268 1905 100 (ranked)

Breast Density 83034 70293 10849 1892 (Volpara Density)

4.2.2 Network designs

We developed algorithms using four different network designs: nominal multi-class and

ordinal classification, regression, and Siamese. The model output was converted to a

continuous score value for each model to represent the underlying severity spectrum

of the medical task.

Nominal classification All classification models for this study were trained with

categorical cross-entropy loss. The continuous severity score was computed as the

sum of the softmax outputs weighted by their class (Equation 4.1) [228], leading to

scores from 0 to k-1.
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𝐶𝑙𝑠𝑐𝑜𝑟𝑒 =
𝑘∑︁

𝑖=1

𝑝𝑖 × 𝑖− 1 (4.1)

with 𝑘 being the number of classes and 𝑝𝑖 the softmax probability of class 𝑖.

Ordinal classification In ordinal classification, the multi-class classification task is

broken up into 𝑘 − 1 binary classification tasks, leading to one output unit less than

the number of classes [251]. During training, the ordinal loss function penalizes larger

misclassification errors more than smaller errors (e.g., predicting class 2 when the

ground truth label is 0 is penalized more than if the model predicts class 1). We used

the CORAL loss as described by Cao et al. for model optimization [252].

A continuous score was generated by summing over the output probabilities

(Equation 4.2), resulting in values ranging from 0 to k-1.

𝑂𝑠𝑐𝑜𝑟𝑒 =
𝑘∑︁

𝑖=1

𝑝𝑖 (4.2)

Regression Similar to ordinal models, regression models require the ordinality of

the target variable. However, unlike ordinal models, the output of regression models

is a continuous value rather than a discrete class. The regression models were trained

using the mean squared error loss function with the class number as the target value.

The raw model output yielded a continuous value; hence, no conversion was required

to receive a continuous score.

Siamese Siamese models compare pairs of images to evaluate their similarity and

were shown to be effective in generating continuously valued predictions [253, 224].

They are composed of two branches of identical sub-networks with shared weights

where each of the two images is processed in one of the branches. The lower the

Euclidean distance between the outputs of each branch, the higher the similarity

between the inputs. During training, the model is encouraged to yield small Euclidean

distances for images of the same class and large distances for images from different

classes using a contrastive loss [254] paired with a cross-entropy loss. Following a

101



procedure described by Li et al., at test time, the target images were compared to

ten anchor images associated with class 0 [224]. Here, the continuous score was the

median of the Euclidean distances between the target and the ten anchor images.

4.2.3 Monte Carlo dropout

Dropping out single neurons in fully connected layers or full activation maps in

convolutional layers during the training of a neural network mitigates overfitting and

helps to regularize the learning process [255, 256]. Utilizing dropout not just during

training but also at test time, yields 𝑁 slightly different Monte Carlo (MC) predictions

[206]. The MC predictions can subsequently be averaged, to obtain the final output

prediction. All models referred to as MC models were trained with spatial dropout

after each residual block of the ResNet models, and 𝑁 = 50 MC iterations at test

time. The dropout rates are 0.2, 0.2, and 0.1 for ROP, knee osteoarthritis, and breast

density, respectively, and were selected empirically and based on current literature.

4.2.4 Model training

Model parameters were selected based on initial data exploration and empirical results.

A detailed description of the training parameters can be found below.

ROP ROP models had a ResNet18 architecture and were trained with a batch size

of 24, a learning rate of 1.0 × 10−4 for 25 epochs, and the best model was selected

using the highest accuracy on the validation set. Balanced class sampling mitigated

the class imbalance during training. Data augmentation consisted of random rotations

of up to ± 15 degrees with a probability of 0.5, random flips with a probability of 0.5,

and random zooms of 0.9 to 1.1 with a probability of 0.5.

Knee osteoarthritis A ResNet50 architecture was selected for the knee osteoarthri-

tis model and was trained with a batch size of 16 and an initial learning rate of

5.0× 10−6 for 75 epochs. The final model was chosen based on the best loss value on

the validation set. The data sampler used balanced weights during training to help
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with data imbalance. Images were randomly rotated of ± 15 degrees with a probability

of 0.5 and randomly flipped with a probability of 0.5 as data augmentation.

Breast density Breast density models were trained with a ResNet50 architecture

for 75 epochs using batches of 8 images with a learning rate of 5.0× 10−5. The best

model was selected using the best loss score on the validation set. The same data

augmentation as the knee osteoarthritis model was applied for breast density.

4.2.5 Evaluation

Metrics

Ranked datasets The model performance was evaluated based on the ranked test

data using the following three metrics. First, we computed Spearman’s rank coefficient

between the rank and the predicted score. A monotonic increase between both metrics

was expected; hence, a Spearman coefficient of 1 corresponds to a perfect correlation.

Second, we computed the agreement between the ground truth rank and the rank based

on the continuous score using mean squared error (MSE) to quantify the correspondence

between the predictions and ground truth. Here, the ranks were normalized to the

maximum rank. Finally, the classification performance was assessed using the area

under the receiver-operator-curve for clinically relevant binary classification. We

defined the clinically relevant classification and normal/pre-plus versus plus for ROP,

none/doubtful versus mild/moderate/severe for knee osteoarthritis, and fatty/scattered

versus heterogeneous/dense for breast density.

ROP A subset of the ROP test set had expert ratings from 1 to 9 based on the

quantitative scale previously published by Taylor et al. [229]. The correspondence

between the expert rating and the predicted continuous scores was measured using

the MSE.
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Statistical analysis

Metrics were bootstrapped (500 iterations) and 95% confidence intervals were evaluated

for statistical analysis. Bootstrapped metrics yielding two-sided 𝑡-test with a p-

value ≤ 0.05 were considered statistically different.

4.3 Methods to learn the bias of individual annota-

tors

Our methods to learn the characteristics of individual annotators are based on the

assumption illustrated in Figure 4-2A: the only difference between the annotators

is a bias term. We also assume that the annotators are reliable and consistently

biased. We present two methods to learn individual readers’ biases. The first method

is an extension to the MBEM method introduced by Khetan et al. for continuous

values, which we refer to as MBEM𝑐𝑡𝑠. Second, we present the BiasNet, in which the

conventional logistic sigmoid operator after the last layer is extended by a learnable

individual bias parameter for every annotator who labeled samples in the dataset.

4.3.1 Assumptions and Notation

For simplicity, we are describing and testing our methods using binary labels. Both

the MBEM𝑐𝑡𝑠 and the BiasNet can easily be extended to ordinal multi-class settings.

We assume that the underlying ground truth is a continuously valued variable 𝑠, for

example, disease severity. Furthermore, 𝑠 is considered a latent variable that cannot

be used for training. It is measured through the binary label (or discrete ordinal

label in a multi-class setting) 𝑦, based on its appearance on an image 𝑥. However,

the binarization threshold 𝑏𝑖 is annotator-dependent; therefore, the binarized label 𝑦𝑖

is corrupted and characterized by the annotator. A graphical representation of this

model is presented in Figure 4-2B.

For simplicity, we will refer to the annotator-dependent label noise as “bias,” while

we use the term “noise” for random noise that is independent of the annotator. As
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depicted in Figure 4-2A, we use the term threshold for the individual binarization

thresholds. In contrast, the term “bias” denotes the difference between the average

threshold of all annotators and an individual threshold.

In a conventional deep learning setting, the prediction of a model is described as

𝑓(𝑥|𝜃) = 𝑓𝑠𝑖𝑔(𝑠) = 𝑦.

Here, 𝜃 denotes the learned model weights and 𝑓𝑠𝑖𝑔 the logistic sigmoid function. With

the addition of the annotator-dependent bias, we obtain

𝑓(𝑥|𝜃, 𝑟𝑖) = 𝑓𝑠𝑖𝑔(𝑠+ �̂�𝑖) = 𝑦𝑖,

where 𝑟𝑖 denotes annotator 𝑖.

4.3.2 MBEM𝑐𝑡𝑠: Model bootstrapped expectation maximiza-

tion for continuous variables

Following the process outlined by Khetan et al. and illustrated in Figure 4-3A, we

trained a deep learning algorithm using the majority vote of the available labels

for each sample as the ground truth. Therefore, the training process is agnostic to

the annotators’ identities. After training the initial model, we used it to obtain the

continuously valued predictions 𝑠 for the training samples. These predictions were

then used to identify an optimal decision threshold for the labels provided by each

annotator. We define the empirical optimal decision threshold 𝑡𝑖 for annotator 𝑖, as the

binarization threshold that results in an equal sensitivity and specificity based on the

labels provided by annotator 𝑖. The training labels were then updated based on the

continuously valued predictions and the annotator-dependent binarization thresholds.

In an iterative process, the majority vote of the updated training labels was used to

re-train the deep learning model and re-update the labels. This process was repeated

until the number of updated training labels was lower than a pre-specified threshold.
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Figure 4-3: Training schematic of MBEM𝑐𝑙𝑎𝑠𝑠, MBEM𝑐𝑡𝑠, and BiasNet. A:
MBEM𝑐𝑙𝑎𝑠𝑠 and MBEM𝑐𝑡𝑠: A neural network is trained on a set of training images 𝑋
and the associated anonymous labels 𝑌 . To generate the annotator-specific confusion
matrices, the binarized predictions 𝑌 are compared to 𝑌𝑖, the training labels provided
by annotator 𝑖. The annotator-specific binarization thresholds are identified by
determining the optimal binarization threshold based on the continuously valued,
pre-sigmoid predictions 𝑆 and 𝑌𝑖. B: A BiasNet model consists of a neural network
with a specialized sigmoid layer with a trainable bias parameter for each annotator.
During training, a separate loss is computed for the labels from each annotator and
then used to update the neural network and annotator-specific bias parameter.

4.3.3 BiasNet - Biased sigmoid layer

To convert any neural classification network into a BiasNet, the biased sigmoid layer

can be used instead of the unbiased logistic sigmoid function. The logistic sigmoid
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Figure 4-4: Influence of bias and width parameters on the logistic sigmoid
function A: Different values of the bias parameter 𝑏 influence the position of the logistic
sigmoid function along the x-axis. The dotted black line indicates the conventional
binarization threshold. B: Different values of the width parameter, 𝑘, influence the
slope or width of the logistic sigmoid function.

function is defined as

𝑓𝑠𝑖𝑔 (𝑠) =
1

1 + 𝑒−𝑘(𝑠+𝑏)
,

where 𝑏 denotes the bias term and 𝑘 is a scaling factor determining the sigmoid’s

width. To receive a conventional logistic sigmoid shape, one chooses 𝑘 = 1 and 𝑏 = 0.

Figure 4-4 illustrates how different values of 𝑏 (plot A) and 𝑘 (plot B) influence the

position and shape of the logistic sigmoid function.

As depicted in Figure 4-3B, the model was trained using all available labels for

each sample. No label aggregation would be needed if several labels were available for

each sample. During training, a separate loss term is computed based on the labels

for each annotator. Therefore, we obtained an annotator-dependent loss 𝐿𝑖 to update

the model’s weights and the bias parameter for annotator 𝑖. The model was trained

until both the model itself and the trainable bias parameters converge.

4.3.4 Two component noise model

For our experiments, we used a two-component noise model for human annotators: The

first component was random noise. We generated random Gaussian noise by sampling

107



Figure 4-5: Rounded squares dataset. The synthetic dataset consisted of squares
with rounded corners. The roundness of the corners was used as continuously valued
ground truth which ranged from 0 (perfect square) to 0.5 (perfect circle).

from a Gaussian distribution with mean 0 and standard deviation 𝜎𝑛. The noise was

then added to the continuously valued ground truth to obtain a noisy version of the

ground truth. We then generated the second, annotator-specific noise component by

binarizing the noisy continuous ground truth using annotator-dependent binarization

thresholds. To model the biased decision thresholds of individual annotators, we

sampled the thresholds from a Gaussian distribution with a mean of 0.25 and standard

deviation 𝜎𝑟 = 0.05. We assumed that the random noise is the same for every reader.

4.3.5 Generation of the synthetic dataset

To validate our method, we required a dataset with access to the underlying continuous

ground truth without any noise. Therefore, we generated a synthetic dataset of squares

with rounded corners. The geometric forms ranged from a perfect square to a circle.

We defined the continuously valued ground truth as the ratio between the rounded

corner’s radius and the square’s side length. The ground truth ranged from 0 to

0.5. We randomly sampled the side length of the square, its rotation angle, and the

fore- and background colors (three channels) from uniform distributions. A detailed

description of the variables used to generate the dataset can be found in Appendix B.1.

The dataset consisted of 10000 images. 9500 were used for training and 500 for

validation. Some examples are depicted in Figure 4-5. No further image augmentation

was performed for training.
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4.3.6 Regularization terms

The values of the learned bias terms depend on the range of the pre-sigmoid continuous

score 𝑠. Since the range of 𝑠 is unbounded, learning annotators’ biases is an ill-defined

problem. As the optimization process during the training of a deep learning model

incentivizes the model to separate the positive from the negative class as much as

possible, the range of 𝑠 may not converge during training. Thus, we added the following

two regularization terms to the loss to limit the range of 𝑠:

𝐿𝑟𝑎𝑛𝑔𝑒 =
1

𝑁

𝑁∑︁
𝑖=1

⎧⎪⎨⎪⎩(|𝑠| −𝑚)2, |𝑠| > 𝑚

0, otherwise
.

Here, 𝑚 ≥ 0 denotes the limit term. As a result, all values of 𝑠 that are larger than 𝑚

were penalized. We achieved an additional speedup of the bias learning process by

varying the width of the logistic sigmoid via the scaling factor 𝑘. The combination of

𝑘 = 5 and 𝑚 = 1 was chosen empirically.

Additionally, we experimentally found that a small direct regularization of the bias

parameters sped up the convergence of the bias parameters:

𝐿𝑏𝑖𝑎𝑠 =
1

𝑅

𝑅∑︁
𝑖=1

�̂�2𝑖 ,

where 𝑅 denotes the number of annotators. By constraining the range for the

continuous score 𝑠, the values of 𝑏𝑖 were lower, and the model converged faster.

Lastly, we added a regularization term to minimize the sum of the bias parameters

𝐿𝑠𝑢𝑚 =
1

𝑅

𝑅∑︁
𝑖=1

�̂�𝑖.

Ideally, the sum of the bias parameters is very close to zero, meaning that the unbiased

model predictions are centered around the average of all annotators’ thresholds.

We used binary cross entropy as loss function. With the penalty terms, the loss
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therefore became:

𝐿 = 𝐿𝐵𝐶𝐶 + 𝜆𝑟𝑎𝑛𝑔𝑒𝐿𝑟𝑎𝑛𝑔𝑒 + 𝜆𝑏𝑖𝑎𝑠𝐿𝑏𝑖𝑎𝑠 + 𝜆𝑠𝑢𝑚𝐿𝑠𝑢𝑚

4.3.7 Training process

We used a ResNet18 [257] as the classification model backbone for all three methods.

The individual thresholds for all annotators were randomly initialized as described in

Section 4.3.4. We generated labels for each annotator using different levels of random

noise 𝜎𝑛. The standard deviation of the random noise 𝜎𝑛 ranged from 0.025 to 0.1 in

steps of 0.005. In the following, we specify the strength of the random noise by the

ratio between 𝜎𝑛 and 𝜎𝑟, where the latter is the standard deviation used to generate

the biased binarization thresholds. For our experiments, we assumed that only one

biased label is available for each sample during model development, However, we

generated labels for each annotator for the validation data to be used during the

evaluation phase.

The first step in the training of the two MBEM models was the same as the labels

are not yet modified. The models were trained on the only available label for each

sample. No label aggregation was required. The BiasNet with three output neurons,

one for each annotator, was trained following the procedure outlined in Section 4.3.3.

The hyperparameters for the regularization terms described in Section 4.3.6 are listed

in Table 4.2.

Table 4.2: Hyperparameters for the regularization terms.
model 𝜆𝑟𝑎𝑛𝑔𝑒 𝜆𝑏𝑖𝑎𝑠 𝜆𝑠𝑢𝑚 𝑘 𝑚
MBEM 0.1 0 0 5 1
Bias Layer 0.1 0.05 0.1 5 1

To ensure that the parameters in the ResNet18 and the bias parameters of the

BiasNet converged around the same epoch, we chose different learning rates for the

main network (𝑙𝑟𝑛𝑒𝑡 = 1.0× 10−6) and the bias parameters (𝑙𝑟𝑏𝑖𝑎𝑠 = 1.0× 10−4). Each

model was trained for 400 epochs, with 2000 samples per epoch. We used the Adam

optimizer [258] with a weight decay parameter of 0.01. No further data augmentation
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was performed.

4.4 A generalized framework to predict continuous

scores from discrete ordinal labels

4.4.1 Results

Predicted scores compared with severity rankings

Agreement between predicted score and severity rankings We first assessed

how well the predicted continuous scores reflected a ranking of the images in each

dataset. Retinal photographs and knee radiographs were ranked by domain experts

with increasing disease severity. The mammograms were ranked with increasing density

based on the quantitative continuously valued Volpara breast density score.

The relationship between the ground truth rankings and the predicted continuous

scores are presented in Figure 4-6. For all datasets, the multi-class models without

MC dropout displayed horizontal plateaus around the class boundaries where the

predicted score was more or less constant with increasing rank. Similar patterns could

be observed for the Siamese and MC Siamese models, especially for normal ROP and

knee osteoarthritis cases.

Agreement between predicted and ground truth rankings A linear correlation

between the predicted continuous score and the consensus rank cannot be assumed as

the predicted score will increment variably depending on the severity increase from a

patient of rank 𝑛 and 𝑛+ 1. Therefore, we used the Spearman correlation coefficient

and MSE to quantify the agreement between the ground truth ranking and the ranking

based on the predictions (see Table 4.3 and Appendix A.2).

All MC dropout models were associated with a statistically significant higher Spear-

man correlation coefficient and lower MSE compared to their non-MC counterparts

(p-value < 2.2× 10−4, see Appendix A.3 for pair-wise statistical comparisons between

the models). The higher Spearman correlation coefficients and lower MSE indicate
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Table 4.3: Model performance overview (mean ± 95% CI). Bold values indicate a
statistical difference (p-value < 0.05) was observed. Spearman’s rank correlation coefficient
and the AUC are measured on the predicted continuous score while the MSE is measured
between the normalized ground truth rank and the predicted rank generated from continuous
scores. AUC was measured between normal and pre-plus vs. plus for ROP, none and doubtful
vs. mild, moderate, severe for knee osteoarthritis, and fatty and scattered vs. heterogeneous
and dense for breast density.

Model MSE ↓ Spearman ↑ clinically relevant AUC ↑

ROP

Multi-class 0.027± 0.009 0.84± 0.07 0.98± 0.02
MC multi-class 0.010± 0.003 0.94± 0.02 0.99± 0.01
Ordinal 0.015± 0.005 0.91± 0.04 0.99± 0.01
MC ordinal 0.009± 0.003 0.94± 0.02 0.99± 0.02
Regression 0.026± 0.010 0.85± 0.07 0.98± 0.03
MC regression 0.017± 0.005 0.89± 0.05 0.98± 0.02
Siamese 0.020± 0.007 0.88± 0.05 0.99± 0.01
MC Siamese 0.013± 0.004 0.92± 0.03 0.98± 0.02

Knee osteoarthritis

Multi-class 0.023± 0.008 0.86± 0.06 0.97± 0.02
MC multi-class 0.019± 0.006 0.89± 0.05 0.99± 0.01
Ordinal 0.024± 0.007 0.85± 0.07 0.98± 0.02
MC ordinal 0.022± 0.007 0.86± 0.06 0.99± 0.02
Regression 0.023± 0.009 0.86± 0.06 0.99± 0.01
MC regression 0.019± 0.006 0.88± 0.05 0.98± 0.02
Siamese 0.022± 0.007 0.87± 0.05 0.97± 0.03
MC Siamese 0.020± 0.005 0.88± 0.04 0.97± 0.03

Breast density

Multi-class 0.018± 0.001 0.89± 0.01 0.93± 0.01
MC multi-class 0.016± 0.001 0.90± 0.01 0.94± 0.01
Ordinal 0.016± 0.001 0.90± 0.01 0.93± 0.01
MC ordinal 0.015± 0.001 0.91± 0.01 0.94± 0.01
Regression 0.015± 0.001 0.91± 0.01 0.94± 0.01
MC regression 0.011± 0.001 0.93± 0.01 0.94± 0.01
Siamese 0.013± 0.001 0.92± 0.01 0.91± 0.01
MC Siamese 0.012± 0.001 0.93± 0.01 0.92± 0.01
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Figure 4-6: Correspondence between predicted scores and severity ranking.
A: Retinopathy of prematurity; B: Knee osteoarthritis; C: Breast density. For each
model, the Spearman correlation coefficient (𝜌) is displayed in the upper left corner.
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that the addition of MC dropout during training and inference improves the ability of

DL models to correctly rank the images based on the continuous predictions. The

models with the best correspondence between actual and predicted rank were MC

multi-class and MC ordinal models for ROP, MC multi-class and MC regression for

knee osteoarthritis, and MC regression and MC Siamese networks for breast density.

Figure 4-7: Correspondence between predicted and consensus ROP severity
on an in-distribution test set. The consensus ROP score was obtained by calcu-
lating the median of five ratings from different experts. The predicted scores from
multi-class, ordinal, and regression models that were trained to predict values from 0
to 2 were scaled and shifted to match the 1 to 9 range (score𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = score𝑚𝑜𝑑𝑒𝑙×2+1).
Siamese networks predict values from 0 to infinity and are not fully bounded. The
Siamese scores were hence only shifted by 1 (score𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = score𝑆𝑖𝑎𝑚𝑒𝑠𝑒 + 1). In
accordance with the severity scale used, Siamese rescaled scores were also clipped to
values between 1 and 9. All MSE measurements reported in this figure are statistically
different (p-value = 1.2× 10−41).

Classification performance All MC dropout models showed a slightly higher or

comparable classification performance, as assessed by AUC, to their non-MC equivalent

(see Table 4.3). The only exceptions were the Siamese models for ROP and knee

osteoarthritis and the regression knee osteoarthritis model. In these three cases, though

statistically significant, the AUC of the MC models was only 0.01 (or less) lower the

one of their non-MC equivalents. The model associated with the best classification

did not necessarily correspond to the best continuous severity scores.
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The following models have the overall best performance for each dataset: MC

multi-class (knee osteoarthritis), MC ordinal (ROP), and MC regression (breast

density).

Comparison of predicted ROP scores with disease severity ratings

Next, we evaluated the correspondence between the predicted scores and more detailed

severity ratings generated by domain experts. An subset of the test dataset was rated

by five experts on a scale from 1 to 9 instead of the standard scale from 1 to 3 [229].

This dataset allowed us to evaluate the quality of the continuous model outputs on

a more granular scale than the 3-class labels the models were trained on. Perfect

continuous predictions would result in increasing disease severity scores with increasing

ground severity ratings.

All MC models showed a higher correspondence between the true severity ratings

and predicted scores, as reflected by a lower MSE in comparison with their conventional

counterparts (see Figure 4-7). The models predicting the experts’ ratings the most

accurately are the MC multi-class and MC ordinal models. While Siamese networks

showed decent correspondence between the predicted score and the ranked severity, a

direct comparison with the severity ratings reveals that the predictions from these

models are not well calibrated.

The multi-class model without MC showed the second worst performance in this

analysis. Images rated from 1 to 3 by experts mainly obtained scores near 0, which

does not highlight the severity differences as perceived by human experts. Furthermore,

for retinal photographs associated with a score of 4, the model predicted values on

the entire spectrum, i.e., from 1 to 9, which is undesirable.

Detection of temporal changes in disease severity Another important char-

acteristic of a reliable severity score is its ability to reflect slight changes in disease

severity over time. The disease evolution was quantified as the difference in the ground

truth severity ratings or predicted severity scores between photographs of the same

patient taken at different time points. We then compared the difference in experts’
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Figure 4-8: Correspondence between the perceived rater score difference on
longitudinal images from the same ROP patient and the predicted score
difference. The red dashed line is the identity line and indicates the expected region
were the data points should fall. All MSE measurements reported in this figure are
statistically different(p-value = 4.3× 10−28).

ratings to the difference in the predicted scores using MSE (see Figure 4-8). Ideally,

the difference in the expert’s scores should be equal to the difference in the models’

predictions. MC dropout improved the correspondence between the disease evolution

as perceived by experts and predicted by the DL models for multi-class, ordinal, and

Siamese models. Prediction differences from MC multi-class and MC ordinal models

matched the severity shifts in the experts’ ratings most closely. The conventional

multi-class model showed multiple outliers and was associated with the highest MSE.

Continuous scores on an out-of-distribution dataset The ROP models were

further tested on a dataset from a different population and acquired at different

centers from the training dataset. Figure 4-9 illustrates the correspondence between

the predicted and rater scores for this out-of-distribution dataset. Similar to the in-

distribution test set (see Figure 4-7), all the MC models had a better MSE compared

with the non-MC corresponding models and MC multi-class and MC ordinal were
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the best performing models. The multi-class and regression models for most severity

scores predicted a wide range of values, often from 1 to 9 which could lead to medical

errors. The miscalibration of Siamese models is especially noticeable in Figure 4-

9 as visually, the predicted and rater score do not match for high severity values.

This out-of-distribution dataset contained only a few plus and pre-plus images, i.e.,

only 328 plus and pre-plus cases compared to 7565 normal cases. Driven by a large

number of outliers, particularly within images with the lower disease severity ratings

(normal cases), the MSE was particularly high for the conventional multi-class, ordinal

classification, and regression models. The low number of images with higher disease

severity scores also explains why the MSE is not extremely high for the Siamese

networks, even though they are visually miscalibrated.

Figure 4-9: Correspondence between predicted and consensus ROP severity
on an out-of-distribution test set. The rater score is obtained from a single
rater. The predicted scores from multi-class, ordinal, and regression models that were
trained to predict values from 0 to 2 were scaled and shifted to match the 1 to 9
range (score𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = score𝑚𝑜𝑑𝑒𝑙 × 2 + 1). Siamese networks predict values from 0 to
infinity and is not fully bounded. The Siamese scores were hence only shifted by 1
(score𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = score𝑆𝑖𝑎𝑚𝑒𝑠𝑒 + 1). All MSE measurements reported in this figure are
statistically different (p-values < 0.05).
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Comparing predicted breast density scores with continuously valued ground

truth breast density measurements

Lastly, we evaluated the ability of the breast density prediction models trained to

accurately reflect the continuously valued Volpara Density measurements. The subset

of mammograms with the Volpara Density measurements provided us with the unique

opportunity to evaluate algorithms trained using ordinal labels on a continuously

valued ground truth. Therefore, unlike with the ranked score analysis presented

in Section 4.4.1, here we directly compared the Volpara Density scores with the

continuously valued model predictions. Ideal continuously valued predictions would

correlate linearly with the Volpara Density measurements. We first assessed the

relationship between the Volpara Density scores and the discrete ground truth labels

generated by domain experts used for training. As illustrated in the boxplot in

Figure 4-10A, and by the Spearman correlation coefficient of 0.73, there was a high

agreement between the ground truth labels and the Volpara Density scores. The MC

multiclass model’s predictions, both class and continuous score, were a close proxy

to the volumetric breast density measurements, as seen in Figure 4-10B and C with

a Spearman correlation coefficient of 0.803 (classification) and Pearson correlation

coefficient of 0.91 (continuous scores). The high correlation between the continuous

breast density predictions and Volpara Density measurements indicates that our model

can generate an accurate continuous prediction while being trained on only a finite

number of classes.

4.4.2 Discussion

The underlying continuous nature of many prediction targets for DL image analysis

tasks, such as breast density and disease severity, has to be taken into account in the

process of model design. Here, we studied the capability of DL models to intrinsically

learn a continuous score while being trained using discrete ordinal labels. Our results

show that training a conventional multi-class classification model without MC dropout

did not lead to predictions that reflect the underlying continuous nature of the target
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Figure 4-10: Correspondence between volumetric breast density measurement
and predicted or true breast density. The predicted values are from the breast
density MC multi-class model. A: The relationship between the expert ratings and the
quantitative Volpara measurement; B: Correspondence between the predicted labels
obtained by taking the class with the highest softmax score and volumetric breast
density; C: Relationship between the continuous predicted score and the volumetric
breast density. 𝜌 is the Spearman correlation coefficient for each metric pair.

variable. Approaches that model the relationship between the ordinal labels, such as

ordinal classification, regression, and Siamese networks, provide continuous predictions

that closely capture the continuity of the target variable even without the use of MC

dropout. Finally, using MC dropout during training and inference increased the ability

of the DL models to predict meaningful continuous scores. MC dropout multi-class

classification ranked among the best performing models in this study.

Multi-class classification models Ignoring the ordinal relationship between the

training label classes caused conventional multi-class prediction models to return

predictions that are clustered around the values of the training labels. This behavior

is reflected in the plateaus visible in Figure 4-6, and the medians in Figures 4-7, and

4-9, a lower Spearman correlation coefficient and higher MSE.

Due to the definition of the training objective, multi-class classification models

are optimized to precisely predict a specific class and discouraged from predicting

scores at the class boundaries. This behavior is desirable for nominal classification,

where the classes should be separated as clearly as possible with minimal overlap in

the feature latent space to avoid ambiguous predictions. However, the approach is
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not appropriate for problems with a target variable with an underlying continuous

nature and explains the limited performance of the multi-class classification models to

predict meaningful continuous scores.

Siamese networks Siamese networks showed decent correspondence between the

ranked severity and the predicted score (Figure 4-6). However, a direct comparison

between the predicted score and the severity determined by domain experts (Figure 4-

7), revealed that the predictions were not well calibrated. The predictions did not

accurately reflect disease severity on a more granular scale than the labels used for

model training. Siamese networks are not trained to predict a specific value, unlike

the other models, but rather to detect whether two images stem from the same or

different classes [259]. Therefore, they can pick up subtle differences in disease severity

[224]. Here, we obtained predictions comparing the input image of interest to a pool

of anchor images that are typical representations of the class corresponding to the

lowest label score. While the predicted difference between the anchor images and the

target images resulted in accurate ordinal predictions (Figure 4-6), it was not well

calibrated to the underlying continuous variable, particularly at the extremes.

MC dropout improves prediction of continuous variables Through the use

of MC dropout, all four model types evaluated showed an improvement in the quality

of the continuous scores as reflected in significantly higher Spearman correlation

coefficients and lower MSE (see Table 4.3). MC multi-class classification networks

were consistently among the highest performing models for all tasks and datasets

evaluated, making them the top-performing models in our study.

MC dropout presents a simple way to obtain meaningful continuous predictions

from models trained using ordinal labels. In our experiments, we did not have to

sacrifice classification performance for improved quality of the continuous predictions

and in some cases, even significantly improved predictive performance (see Table 4.3).

However, MC dropout comes at a higher computational cost as inference requires

multiple passes of the same input image to obtain the final prediction. If the additional
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computational burden is a concern, ordinal classification or regression are alternatives

to conventional multi-class classification models that are easy to train and provide

decent continuous predictions without the use of MC dropout.

4.4.3 Limitations

There are some limitations to this study. First, due to the latent nature of the

variable of interest, for most of our analysis, we had to rely on proxy variables such

as rankings and more granular expert disease severity ratings. Second, MC dropout

predictions were based on 50 samples, an empirically chosen value based on common

practices and our own experience. Lastly, we treated the available ordinal labels

as ground truth. For all three image analysis tasks analyzed here, high inter-rater

variability, particularly around the decision boundaries between severity classes, have

been reported [41, 47, 260, 261]. In Section 4.5, we explore the influence of noisy and

biased ordinal ratings for the task of learning and predicting a continuous variable and

how annotator-specific biases can be learned with only one label per sample available.

4.4.4 Conclusions

In this section, we presented a generalizable framework to predict meaningful con-

tinuous scores while only using discrete ordinal labels for model development. Our

findings are particularly relevant for disease severity prediction tasks as the available

labels are usually coarse and ordinal, but continuous disease severity predictions could

provide crucial information that allows for earlier detection of deterioration and more

personalized treatment planning.

Code and data availability

The code used to train the models can be found at https://github.com/andreanne-lemay/

gray_zone_assessment. Access to the MOST dataset for knee osteoarthritis can be re-

quested through the NIA Aging Research Biobank https://agingresearchbiobank.

nia.nih.gov/. The breast density, and ROP datasets are not publicly accessible due
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to patient privacy restrictions.

4.5 Learning the bias of individual annotators from

single ordinal labels

4.5.1 Results

We compared three methods: conventional MBEM (MBEM𝑐𝑙𝑎𝑠𝑠) as described by

Khetan et al., our proposed extension to MBEM for continuously valued latent

variables MBEM𝑐𝑡𝑠 and a BiasNet model with our proposed trainable biased sigmoid

layer.

We randomly initialized biased thresholds for experimental validation by sampling

from a Gaussian distribution with a mean of 0.25 and a standard deviation 𝜎𝑟 of 0.05.

The thresholds and biases (difference between the individual and average threshold)

for three annotators were set to the following values:

• Annotator 0: 0.281 (threshold) and 0.058 (bias)

• Annotator 1: 0.211 (threshold) and -0.012 (bias)

• Annotator 2: 0.177 (threshold) and -0.046 (bias)

Based on the annotator thresholds, the average threshold representing the optimal

binarization threshold for a model is 0.223.

To obtain the initial training labels for MBEM, we used one label for each sample

without any further label aggregation. We varied the standard deviation of the random

noise component 𝜎𝑛 between 0.5 * 𝜎𝑟 and 2 * 𝜎𝑟. The relationship between the random

additive noise, the bias levels of the simulated annotators, and the resulting frequency

of misclassifications by binarizing the noisy ground truth are shown in Figure 4-11.

At each noise level, we trained five models using different random seeds. We

evaluated and compared the three methods according to the following four evaluation

categories:
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Figure 4-11: Influence of random noise on label error rate. A: Distribution of the
random noise component added to the continuous ground truth before binarization. To
illustrate the relationship between the distribution of the random noise and annotators’
biases, the biases are indicated by dashed lines. B: Effect of increasing random noise
on the labels after binarization, depending on the uncorrupted ground truth value.
With increasing noise, samples with a continuous ground truth value further away
from the binarization threshold (here: 0.25) are affected by errors in the binary labels.

1. The label quality improvement through the label update step for the MBEM

methods

2. The improvement in the classification performance that can be achieved by

taking the annotator-dependent characteristics into account

3. The quality of the inferred individual thresholds of all annotators

4. The quality of the continuously valued model predictions
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MBEM – Label quality improvement

To achieve higher performance, the MBEM framework contains a label update step

that explicitly uses the inferred annotator characteristics. During this step, the

training labels are corrected based on the learned annotator characteristics—confusion

matrices in the case of MBEM𝑐𝑙𝑎𝑠𝑠 and individual thresholds in the case of MBEM𝑐𝑡𝑠.

Subsequently, the updated labels are used to train a new model and the annotator

characteristics are re-calculated. The process can be repeated until the difference

between the updated labels and the training labels from the previous round is below

a pre-specified threshold or no performance improvement can be obtained by training

a model with the most recent updated labels. Since we have access to the non-noisy

ground truth in our experimental setting, we can compute the quality improvement of

the label update step.

Following the process of MBEM𝑐𝑙𝑎𝑠𝑠, no label was updated based on the learned

confusion matrices in this scenario. To result in a label update in a binary classification

setting, one of the diagonal entries in the annotator’s confusion matrices must be

lower than 0.5. Even though the bias of annotator 0 can be considered substantial,

the overall error rate was low. In annotator 0’s confusion matrix, the diagonal entries

were larger than the off-diagonal entries. Because no training labels were updated,

the MBEM𝑐𝑙𝑎𝑠𝑠 process was considered complete after the first round.

MBEM𝑐𝑡𝑠, our proposed extension of MBEM for continuously valued variables,

results in a small improvement of label quality after the first round of training as

depicted in Figure 4-12. We measure the quality of the labels by computing Cohen’s

kappa between the noise-corrupted training labels and the uncorrupted ground truth.

To obtain a sense of the improvement obtained by the label update step, we compare

the label quality of the initial training labels with the quality of the training labels

after the label update step. We found a small improvement in label quality. This effect

shrinks with increasing noise. However, using the updated training labels for training

did not improve the models’ classification performance. Therefore, the process was

aborted after the first round for both MBEM𝑐𝑙𝑎𝑠𝑠 and MBEM𝑐𝑡𝑠
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Figure 4-12: Quality improvement through MBEM𝑐𝑡𝑠 label update. Difference
in Cohen’s kappa of the training labels before and after the label update step for varying
levels of random label noise. Cohen’s kappa is computed based on the uncorrupted
ground truth. The solid line indicates the mean change, and the error bars indicate
the highest and lowest values of five independently trained models.

4.5.2 Classification performance

Next, we tested whether the agreement between the model predictions and each

annotator’s labels could be improved by using the information that each model learns

about the individual annotators. Classification performance is measured using Cohen’s

kappa between the predictions and the binarized uncorrupted ground truth labels.

We compare the kappa scores of the unbiased and biased predictions to quantify the

performance improvement that can be achieved by using individual characteristics.

We expect that the classification predictions generated using individual binarization

thresholds have a higher agreement with each annotator’s biased labels. This step is

performed separately for the labels from each annotator to capture differences between

the annotators.

MBEM𝑐𝑙𝑎𝑠𝑠 Due to the limited information that can be inferred about each annotator

from MBEM𝑐𝑙𝑎𝑠𝑠, we were not able to use biased thresholds to generate individual

predictions. Therefore, we used the annotator confusion matrices to correct predictions,

following the inverse procedure used to correct training labels. However, this step did

not result in any updates in the predictions, for the same reason the MBEM𝑐𝑙𝑎𝑠𝑠 label

update step led to no changes in the training labels (see Section 4.5.1).
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Figure 4-13: Classification improvement and learned biases for MBEM𝑐𝑙𝑎𝑠𝑠

and BiasNet. A: Change in Cohen’s kappa by using individual binarization thresholds
for each annotator instead of a generic one; B: Learned individual binarization threshold
for each annotator. The solid lines indicate the average performance, and the error
bars are the maximum and minimum values from five independent experiments at
each noise level. Results from the BiasNet experiments are presented in blue, and
results for the MBEM𝑐𝑡𝑠 are presented in orange. The ground truth of each annotator’s
binarization threshold is depicted in black.
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MBEM𝑐𝑡𝑠 and BiasNet As shown in Figure 4-13, the classification performance

could be improved for the MBEM𝑐𝑡𝑠 and BiasNet. Due to the different sizes of the

biases, the improvement is different for each annotator. The largest improvement

in classification performance could be achieved for the annotator with the largest

bias (annotator 0) and the smallest, if any, for the annotator with the smallest bias

(annotator 1).

Learning of the annotator-specific characteristics

MBEM𝑐𝑙𝑎𝑠𝑠 While both MBEM𝑐𝑡𝑠 and the BiasNet allowed learning each annotator’s

individual bias or binarization threshold, we were unable to infer these parameters from

the confusion matrices generated by MBEM𝑐𝑙𝑎𝑠𝑠. Therefore, we used each annotator’s

estimated sensitivity and specificity as proxies for their bias. Based on the sensitivity

and specificity, we can determine whether an annotator is an over- or under-caller

and order the annotators according to their binarization thresholds. We describe our

approach to obtain the order of annotator thresholds in Algorithm 1.

Algorithm 1: Determine order of annotator bias from confusion matrices
Data: Annotator confusion matrices
Result: Annotators sorted from lowest to highest biases
for annotator r = 0 to R do

compute annotator sensitivity and specificity based on their estimated
confusion matrix;

if sensitivity > specificity then
label annotator r as over-caller;

else if sensitivity < specificity then
label annotator r as under-caller;

else
label annotator r as average caller;

Sort over-caller from lowest to highest specificity (highest to lowest negative
bias);

Sort under-caller from highest to lowest sensitivity (lowest to highest positive
bias);

The order of all annotators is then given by: sorted over-callers, average-caller,
sorted under-callers

Each annotator was first categorized as an over- or under-caller, or an average caller.
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An over-caller is an annotator with a sensitivity higher than their specificity. Their

bias would be negatively valued since their binarization threshold is lower than the

average threshold. Every annotator with a specificity higher than their sensitivity was

categorized as an under-caller. Their bias is positively valued, and their binarization

threshold is higher than the average threshold. If an annotator had the same sensitivity

as specificity (symmetric error), they were categorized as an average caller.

Even after just one round of MBEM𝑐𝑙𝑎𝑠𝑠, we could classify each of the modeled

annotators as over- or under-caller with 100% accuracy (five models per noise setting)

and the rankings of the individual thresholds reflected the ground truth ranking

perfectly with a Spearman correlation coefficient of 1.0 for all noise settings.

MBEM𝑐𝑡𝑠 and BiasNet To measure how well a method can learn the annotators’

individual biases, we converted the learned bias (BiasNet) or threshold (MBEM𝑐𝑡𝑠)

into the same space as the ground truth threshold. The learned thresholds for both

methods are illustrated in the plots in the bottom row of Figure 4-13. Both the

MBEM and the BiasNet learned the biases of the modeled annotators’ as expected.

Surprisingly, the ability of the methods to learn each annotator’s threshold was not

affected by the amount of random noise that corrupted the training labels. Only the

estimation for the threshold of annotator 2 showed an increasing error with more

extensive noise corruption.

Continuously valued predictions

The primary underlying assumption for this work was that the variable of interest is

continuously distributed. Therefore, we evaluated how well the unbiased pre-sigmoid

output 𝑠 of the different methods reflect the continuous value of the target variable 𝑠.

As we were using synthetically generated data, we had access to 𝑠, which is rarely the

case for natural data measured using discrete ordinal labels.

The agreement between 𝑠 and the uncorrupted ground truth was measured using

the mean squared error (MSE) and Pearson correlation coefficient. A higher agreement

between the estimated and the ground truth continuous variable would result in a
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Figure 4-14: Agreement between continuously valued predictions and ground
truths. A: Mean squared error (MSE) and Pearson correlation coefficient between
the pre-sigmoid predictions 𝑠 and uncorrupted ground truth 𝑠. The solid lines indicate
the average performance, and the error bars are the maximum and minimum values
from five independent experiments at each noise level. Results from the BiasNet
experiments are presented in blue, and results for the MBEM𝑐𝑙𝑎𝑠𝑠/𝑐𝑡𝑠 are shown in
orange. B: Relationship between 𝑠 and 𝑠 for selected MBEM𝑐𝑙𝑎𝑠𝑠/𝑐𝑡𝑠 models at the
minimum and maximum noise level.

lower MSE and higher Pearson correlation coefficient. Since 𝑠 and 𝑠 have different

ranges, we re-scaled 𝑠 to the range of the ground truth [0, 0.5]. Furthermore, as we

only performed one round of training for MBEM𝑐𝑡𝑠 and MBEM𝑐𝑙𝑎𝑠𝑠, the classification

models were equivalent. At this stage, the only difference between MBEM𝑐𝑡𝑠 and

MBEM𝑐𝑙𝑎𝑠𝑠 was the generation of “biased” predictions.

The MSE and Pearson correlation coefficients for both the BiasNet and MBEM𝑐𝑙𝑎𝑠𝑠/

MBEM𝑐𝑡𝑠 are illustrated in Figure 4-14A. At low noise settings, the continuous, pre-
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sigmoid outputs from the BiasNet appeared to model 𝑠 better than the MBEM𝑐𝑡𝑠

and MBEM𝑐𝑙𝑎𝑠𝑠, which was reflected in a low MSE and high Pearson correlation

coefficient. However, while the MSE for the BiasNet models remained stable for

higher levels of random noise in the binary training labels, the Pearson correlation

coefficient increased, indicating a lower linear correlation between 𝑠 and the continuous

ground truth. At the same time, the MSE and Pearson correlation coefficient from

the MBEM𝑐𝑡𝑠 and MBEM𝑐𝑙𝑎𝑠𝑠 models were improving with increasing label noise. The

plots in Figure 4-14B depict the relationship between 𝑠 and the continuous ground

truth 𝑠 for representative models at the minimum and maximum noise levels. From

these plots, it can be appreciated that with increasing noise, the s-shaped agreement

between 𝑠 and 𝑠 is turning into a more linear one.

4.5.3 Discussion

In this section, we described how sub-class level differences between annotators could

be detected and quantified. Additionally, the learned information about individual

annotators could be used to improve the classification performance of DL prediction

models. Our work applies to all ordinal classification settings in which the underlying

variable of interest, albeit not directly measurable, is continuous. In these cases, the

training labels can be affected by individually varying binarization thresholds.

We presented the first description of two methods to infer individual differences

between annotators for ordinal variables that work with as little as one label per

sample. Similarly to the framework outlined in Section 4.4, these methods only require

access to discrete ordinal labels but enable researchers to accurately infer features on

a more granular scale.

MBEM𝑐𝑙𝑎𝑠𝑠 is not appropriate for continuously valued variables

While we could learn the order of the annotators’ binarization thresholds and accurately

classify them as over- or under-callers using MBEM𝑐𝑙𝑎𝑠𝑠, our experiments clearly showed

the limitations of the method. MBEM𝑐𝑙𝑎𝑠𝑠 was developed for nominal classification.
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Therefore, it does not support the assumption of an ordinal relationship between the

labels. Our experimental results, using a synthetic dataset with a latent continuous

variable and ordinal labels, highlighted the importance of identifying samples close

to the decision boundary. These findings illustrates that the assumptions of nominal

classifications are insufficient for the present problem.

Furthermore, MBEM𝑐𝑙𝑎𝑠𝑠 was developed using a hammer-spammer model to de-

scribe the quality of each annotator’s labels. In this model, each annotator is either a

hammer or a spammer. A hammer generates almost perfect labels with a very low

random error rate. A spammer, on the other hand, is an unreliable annotator who

randomly assigns labels to each sample. While it has been shown that MBEM𝑐𝑙𝑎𝑠𝑠

can learn systematic errors beyond simply categorizing each annotator as a hammer

or spammer, i.e., cases in which an annotator systematically confuses two specific

classes, and correct them [239], our results indicate that the assumption of nominal

classification is not appropriate for ordinal classification with systematic errors that

occur at the class boundaries.

To infer more detailed information about the annotator’s binarization thresholds

using MBEM𝑐𝑙𝑎𝑠𝑠, additional assumptions about the distribution of the underlying

continuous variable would need to be made, e.g., assume it is uniformly distributed.

However, since this information is not routinely available for ordinal data, we decided

against this step. Therefore, the originally proposed MBEM algorithm is inappropriate

for settings with an underlying continuous variable that is measured in ordered (binary)

categories. Consequently, we developed an extension of MBEM𝑐𝑙𝑎𝑠𝑠 for continuously

valued variables, MBEM𝑐𝑡𝑠.

New methods are required to learn annotator’s binarization thresholds

MBEM𝑐𝑡𝑠 Our proposed extension of MBEM for continuously valued variables,

MBEM𝑐𝑡𝑠, utilizes the continuously valued, pre-sigmoid output 𝑠 of a binary classifica-

tion model. In our experiments, this output had a strong linear relationship with the

continuously valued ground truth, which is reflected in Pearson correlation coefficients

above 0.9. Ignoring this strong relationship and using the binarized model predictions
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lead to a loss of information in MBEM𝑐𝑙𝑎𝑠𝑠. In MBEM𝑐𝑡𝑠, however, the strong linear

relationship is utilized to identify accurate individual binarization thresholds for each

annotator. While the agreement between 𝑠 and the continuous ground truth improved

with increasing random noise in the training data (see Figure 4-14), the quality of the

learned thresholds and, therefore, the improvement that can be achieved by using these

thresholds did not (see Figure 4-13). As shown in Figure 4-14B, the improvement for

high noise-settings, is mostly due to an improvement in the linearity of the relationship

between 𝑠 and 𝑠 at the extremes of the prediction range. Since we did not observe

changes around the value range of the binarization thresholds, the quality of the

learned thresholds was unaffected.

The improvement in the relationship could be a consequence of two effects: First,

we limited the range of the outputs by penalizing outputs with a high value, using

the regularization term introduced in Section 4.3.6. Second, with increasing random

noise, the range of values of the continuous variable affected by noise in the binarized

labels was increasing, as illustrated in Figure 4-11. The increasing noise in the binary

training labels may have served as an additional regularization of the model training

that prevented the model from becoming over-confident in its predictions, particularly

at the extremes.

BiasNet Both the MBEM extension for continuously valued variables and the

BiasNet worked well for learning the individual thresholds. The BiasNet picked up

the relationship between the unbiased continuous predictions 𝑠 and the continuously

valued ground truth at lower noise levels. For the present application, only one round

of training was required for MBEM𝑐𝑡𝑠 to accurately learn the individual binarization

thresholds. However, variables that are more challenging to learn and affected by more

complicated noise patterns than those presented here may require several training

rounds, rendering the MBEM methods unwieldy in practice. The BiasNet training

process, however, consists of one, not several iterative training steps. Additionally, as

the BiasNet does not explicitly rely on the prediction performance on the training

dataset, it may be less sensitive to overfitting on the training data. However, it requires
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optimization of the regularization weights for the bias parameters.

Applications and future directions

Viewing differences between the annotators as meaningful information that can be

exploited during model development and deployment has several promising applications,

particularly in disease severity prediction. As described in Section 2.4, the labels

for most medical imaging datasets are frequently generated by collecting several

annotations for each sample. These labels are subsequently aggregated using either an

algorithmic tool [262] or following a label adjudication process, potentially involving

several data sources [128]. Since the cost of obtaining annotations from highly

specialized annotators is high, this elaborate process can be prohibitive to assembling

a dataset with high-quality annotations. Furthermore, label aggregation processes have

been shown to introduce representational biases [263]. Consequently, modeling single

readers by learning their labeling characteristics is an exciting avenue for training

deep learning models on single labeled “noisy” data. In this section, we demonstrated

that individual annotators’ biased binarization thresholds can be learned based on

only one label per sample without requiring repeated annotations. Indeed, a costly

adjudication process may not be necessary for generating discrete ordinal labels in

this scenario, and the noise in the data can be exploited during training.

Human annotators are often not aware of their own biases in generating discrete

ordinal labels. Therefore, providing physicians feedback on their labeling practices

may be beneficial for their training and the deployment of algorithms in decision

support. For example, a case slightly below the decision boundary between normal

and abnormal may be labeled as abnormal by a reader considered an over-caller. An

automatic classification system providing a second read, in addition to a classification

label of normal, could offer individualized feedback to the reader. It could inform

them that based on their personal history, they would likely call this case abnormal.

This would allow the reader to rethink their decision and lead to informed, harmonized

decisions.

Notably, both the MBEM𝑐𝑡𝑠 and BiasNet methods can be fine-tuned to learn the
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individual thresholds of new readers that are not represented in the training data,

given enough annotated data, particularly around the decision boundary.

For this work, we used a simplified model in which the underlying continuous

ground truth depends on only one variable (the roundness of the square). Still, most

medical variables, like disease severity, are influenced by multiple pathophysiologi-

cal factors. Different physicians may weigh single factors differently and therefore

come to different conclusions in interpreting disease severity from imaging. Medical

professionals who create annotations for datasets resemble black boxes as they are

rarely asked to justify their labeling decisions. Incorporating explainability methods

for disease severity prediction [264] may be an exciting avenue to explore in future

research. Furthermore, our methods may have implications for federated learning

due to variability in annotation practices at different institutions. Consequently, the

influence of different data and class distributions for each annotator should also be

investigated.

4.5.4 Limitations

There were some limitations to this work. First, the dataset noise was modeled as a

simple two-component model consisting of a random noise component identical for

all annotators and the annotator-specific biased binarization threshold. However, in

practice, some annotators may be more reliable than others, resulting in an annotator-

dependent random noise component. Additionally, the random noise component was

entirely independent of the underlying data. In the clinical setting, low-quality images

suffering from artifacts or the presence of co-morbidities can lead to diagnostic and

labeling errors [114], adding a source of heteroscedastic, input-dependent label noise.

Consequently, it would be desirable for future work to explore more complex noise

models. Lastly, we worked with a binary classification problem for simplicity, but

all three methods can be extended to (ordinal) multi-class settings with multiple

thresholds between the classes.
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4.5.5 Conclusions

In this section, we showed that using deep learning, sub-class level differences between

annotators can be detected and quantified. This work is the first conception and

demonstration of methods that enable the joint learning of annotators’ ordinal classifi-

cation and their individual biases for a latent, continuously valued target variable. The

methods use individual annotators’ ordinal labels for training and learn the individual

biases with as little as one label per training sample. We also demonstrate that the

classification performance of ordinal classes can be improved by learning the individual

biases of each annotator.

4.6 Perspectives on working with continuously valued

variables

In this chapter, we highlighted the advantages of shifting from a purely discrete ordinal

picture of disease severity to a continuous one. In Section 4.4, we demonstrated that

the gap between continuously distributed variables and their discrete ordinal labels

can be closed using appropriate modeling strategies. Models like ordinal classification

and regression generated continuously valued predictions that truthfully reflect the

continuous ground truth. A similar effect could be achieved by calibrating nominal

classification models using MC dropout. Our results illustrate that information lost

through discretizing a continuous variable can be recovered utilizing appropriate

models.

Based on the concept of a latent continuous variable, we also introduced two new

methodologies to learn sub-class level biases that are manifest as inter-individual differ-

ences in binarization thresholds. We hypothesize that biases of individual annotators

represent a substantial component of inter-annotator differences in generating labels

for continuously distributed variables. Lastly, the repeatability of disease severity

predictions can be improved by using models that respect the ordinal distribution and

MC-based models (see Section 3.7.2). This effect is particularly strong for cases at
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the boundaries between two classes.

While ordinal classification is a common task in medical image analysis, particularly

given the importance of disease severity prediction, its importance is limited outside

medicine. Consequently, datasets and methods for ordinal classification are limited, in

particular well-curated datasets that offer detailed information beyond the severity

class labels, e.g., annotator agreement or long-term outcomes. In order to validate

the methods introduced in Section 4.5, access to the single labels that were used to

generate adjudicated training labels would be of great importance.

Future directions To study the advantages of using continuous over discrete ordinal

predictions, it would be desirable to investigate their usefulness for risk modeling

and their robustness towards temporal changes in diagnostic categorization trends.

Furthermore, we envision that the methods for the joint learning of disease severity

prediction and individual annotator’s biases will support efforts to develop a general

noise model for the annotation process of ordinal variables. Lastly, disease severity

is usually not determined by a single but by many factors. It would be valuable to

investigate if disease severity can be decomposed into these factors and how they

contribute to the final prediction.
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Chapter 5

Clinically meaningful evaluation of

brain tumor segmentations

Brain tumor segmentations are an integral part of the clinical management of patients

with glioblastoma, the deadliest primary brain tumor in adults. The manual delineation

of tumors is time-consuming and highly provider dependent. These two problems are

expected to be addressed by introducing automated, deep-learning-based segmentation

tools. In developing deep learning segmentation algorithms, performance is optimized

and evaluated based on various quantitative metrics. However, the quality perception

of expert raters shows a low concordance with known and widely-used metrics. And

these quantitative metrics do not correlate with the clinical quality of a segmentation.

A detailed understanding of experts’ assessment of segmentation quality is required

to enable a successful collaboration between physicians and segmentation algorithms.

This chapter presents two studies contributing to a clinically meaningful evaluation of

brain tumor segmentation. We first investigate the relationship between the commonly-

used quantitative metrics and experts’ ratings of segmentation quality. Additionally,

we report findings from a study on the role of contextual information in the perception

of the quality of brain tumor segmentation

The work presented in this chapter is adapted from:

• Katharina Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola,
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Caroline Chung, Raymond Huang, Jason Johnson, Albert Kim, K Ina Ly, Ken

Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce Rosen, Elizabeth

Gerstner, Jayashree Kalpathy-Cramer. “Expert-centered evaluation of deep

learning algorithms for brain tumor segmentation” (under review)

• Katharina Hoebel, Christopher P Bridge, Albert Kim, Elizabeth Gerstner, K

Ina Ly, Francis Deng, Matthew DeSalvo, Jorg Diettrich, Raymond Huang, Susie

Y Huang, Stuart Pomerantz, Saivenkat Vaglvala, Bruce Rosen, and Jayashree

Kalpathy-Cramer. “Not without context - A multiple methods study on evalu-

ation and correction of automated brain tumor segmentations by experts” (in

preparation)

Parts are published in the conference proceedings of Society of Photo-Optical Instru-

mentation Engineers (SPIE) - Medical Imaging 2022:

Katharina Hoebel, Christopher P. Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline

Chung, Raymond Huang, Jason Johnson et al. “Is this good enough? On expert

perception of brain tumor segmentation quality.” In Medical Imaging 2022: Image Per-

ception, Observer Performance, and Technology Assessment, vol. 12035, pp. 165-175.

SPIE, 2022.

5.1 Introduction

5.1.1 Brain tumor segmentation

Glioblastomas (GBM) are the most common and aggressive primary brain tumor

in adults [265]. Their aggressive growth patterns lead to an unclear appearance of

the tumor boundaries on imaging, caused by the infiltration of tumor cells into the

surrounding healthy tissue. Additionally, the tumor boundaries can be quite irregular,

and tumors can be multi-focal or multi-centric [266]. Therefore, manual segmentation

– creating an accurate outline of the tumor – is a challenging task for physicians.

However, accurate tumor segmentations are an important aspect of the state-of-the-art

multi-modal treatment approach for GBM. Volumetric segmentations are required for
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radiation treatment planning and are expected to play a growing role in treatment

monitoring and surgical planning, particularly the visualization of the resection area

and the surrounding anatomy [267, 268].

Manual segmentations of GBMs are considered the gold standard for clinical

applications. However, the quality of manual tumor contours, not just for brain

tumors, is impaired by a high inter and intra-observer variability [269, 270, 271] and

several factors have been identified that influence the variability in brain tumor outlines

[272]. Due to the poorly defined boundaries, there are multiple potential solutions to

the task of segmenting a given brain tumor, and it can therefore be seen as ill-defined

[273]. Inconsistent protocols for the interpretation of the available imaging data

between institutions, differences in patient anatomy, and varying tumor topography

are the main drivers in the inter-observer variability of brain tumor segmentation

[274, 275].

Additionally, differences in tumor outlines can be caused by differences in the

conceptual understanding of patterns of tumor spread [276]. Apart from the variability

in brain tumor segmentation, the manual segmentation of GBM is a time-consuming

task. Even experienced physicians can spend up to one hour per patient, depending

on the complexity of the case [277, 278].

5.1.2 Deep learning segmentation of brain tumors

Over the last five years, deep learning-based automated segmentation algorithms for

brain tumors have substantially improved and can nowadays achieve a performance

comparable to human experts [97]. These algorithms have the potential to speed

up the laborious process of obtaining accurate volumetric GBM segmentations and

limit the variability introduced by individual observers, resulting in more reliable

and standardized treatment response assessment and radiation treatment planning

[170, 195, 279, 280].

Nonetheless, even high-performing deep learning algorithms can fail on individual

cases for various reasons and suffer from performance degradation over time due to shifts

in characteristics of the input data [207, 281]. The potentially unreliable performance
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limits physicians’ trust in the capabilities of DL algorithms [282]. Therefore, the

first generations of clinical deep learning-based segmentation tools are generally

designed as support tools and will assist clinicians in making decisions of clinical

importance. Instead of spending long hours segmenting highly challenging target

structures, clinicians would be tasked to determine whether an initial segmentation

provided by an algorithm requires manual correction or is already of sufficient quality

to be used, e.g., for treatment planning. If corrections are needed, these would then

be performed by domain experts and could be used in an active learning framework

to improve the model performance continuously [283].

5.1.3 Perception of segmentation quality

Recent research has shown that human experts have a more contextual response to

segmentation quality. The metrics that are conventionally used to optimize, evaluate,

and report the performance of brain tumor segmentation models are only lowly to

moderately correlated with human perception of the segmentation quality [49, 50].

Additionally, similarly to the substantial inter-rater variability in manual tumor

delineations, the perception of what constitutes a good segmentation differs among

human experts, which is reflected in high disagreements in peer-review for radiation

therapy planning [284]. Therefore, the currently available quantitative metrics may

not be sufficient proxies to evaluate the clinical acceptability of segmentations [285].

Consequently, using DL algorithms as an effective support system for the generation

of brain tumor delineations will require a detailed understanding of the perception of

brain tumor segmentation quality by domain experts.

5.1.4 Chapter outline

In this chapter, we describe how we studied experts’ perceptions of the quality of

brain tumor segmentations using quantitative and qualitative research approaches.
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Expert-centered evaluation of brain tumor segmentation Inspired by recent

findings on the disconnect between experts’ quality perception and commonly used

quantitative metrics, we describe a study on expert-centered evaluation of DL brain

tumor segmentation models. We first studied how DL segmentation models are

currently being evaluated. To this end, we reviewed studies on DL segmentation

models of brain tumors and assessed what quantitative metrics are used and whether

clinical experts were involved in assessing the models. Second, we performed an

experimental study to assess a) the inter-rater variability in segmentation quality

perception and b) the variability in the agreement between quantitative metrics and

experts’ quality perception for segmentations of post-operative glioblastomas.

We found that the most commonly used quantitative metrics for the evaluation of

segmentation performance showed a low agreement with the quality of the segmenta-

tions of post-operative brain tumors as perceived by domain experts. Additionally,

similar to the low inter-observer agreement in manual tumor segmentations, human

experts had high inter-observer variability in their assessments of segmentation quality.

We conclude that the quality perception of experts is likely more contextual than

popular quantitative metrics. While it is evident that humans do not evaluate seg-

mentations in the same way as quantitative metrics, like the Dice score or Hausdorff

distance do, no study has identified the aspects that influence their quality perception.

These findings are described and discussed in Section 5.3.

The role of context in experts’ perception of brain tumor segmentation

quality Consequently, we performed a multiple-methods study focusing on qual-

itative methods to gain deeper insights into experts’ perceptions of the quality of

brain tumor segmentations. The goal of this study, as outlined in Figure 5-2, is

two-fold: First, we aimed to identify factors influencing experts’ quality perception

of post-operative brain tumor segmentation through a questionnaire. Second, we

performed semi-structured interviews to identify the thought processes of experts

while they were correcting imperfect segmentations generated by a DL algorithm.

Through this study, we identified five quality criteria that participants used to judge
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the quality of segmentations. These criteria were partially aligned with commonly used

quantitative metrics. But in contrast to conventional metrics, the identified criteria are

largely conditioned on the context of a segmentation error. Furthermore, contextual

information was heavily used to limit uncertainties in correcting imperfect brain tumor

segmentations. Finally, experts’ decisions were influenced by their personal beliefs

about whether ambiguous areas should be included in a segmentation and individual

biases toward the performance of segmentation algorithms. Results from this study

are described and discussed in Section 5.4.

5.2 Methods

5.2.1 Literature review

We searched PubMed for English-language original research articles published between

08/2017 and 09/2022 reporting on DL segmentation models for macroscopic brain

tumors. Only articles that described a segmentation algorithm for human brain tumors

on macroscopic imaging and contained a performance evaluation of the segmentations

were included in the analysis. We recorded the metrics used in the performance

evaluation of the segmentation models. We also categorized the quantitative metrics

into six groups: overlap-based metrics, such as Dice score, volume-based metrics

such as relative volume error, voxel-level confusion matrix-derived metrics such as

sensitivity, distance-based metrics such as Hausdorff distance, threshold-metrics such

as area under the receiver-operator-curve, and information-based metrics such as

variation of information. We provide a overview over the main characteristics of most

metric groups in Section 2.6.

List of all metrics in each metric group Here, we list all evaluation metrics that

appeared in more than one article. Synonymous terms and standard abbreviations

are listed in parentheses.

• Overlap-based metrics: Dice score (F1-score), Jaccard index (intersection-over-

union), weighted F-measure
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• Confusion matrix-based metrics: sensitivity (true positive rate, recall), specificity

(true negative rate), precision (positive predictive value), accuracy, Matthew’s

correlation coefficient, Cohen’s kappa, false positive rate, false negative rate

• Distance-based metrics: Hausdorff distance, average symmetric surface distance,

boundary F1-score

• Volume-based metrics: volume, volume similarity, absolute volume difference,

relative volume difference

• Threshold-based metrics: area under the receiver-operator curve (AUROC), area

under the precision-recall curve (AUPRC)

• Information-based metrics: variation of information, normalized mutual infor-

mation

5.2.2 Post-operative brain tumor segmentation model

Dataset The study population, image acquisition, and generation of the manual

ground truth segmentation for the dataset used in this study are described in Sec-

tions 3.2.1, 3.2.2, and 3.2.3.

Data preprocessing Since the dataset originated from longitudinal clinical studies,

it contained imaging from multiple study visits of each patient. We split the dataset

into training/validation/test subsets on the patient level, such that all available images

of a respective patient were part of only one subset. The training/validation/test

datasets consisted of the imaging of 34 (464)/ 9 (128) / 11 (119) patients (study visits).

We used T1-weighted pre-and post-contrast and T2-weighted FLAIR sequences as

the three input channels for model development. All images were registered to the

T2-weighted FLAIR image of the respective study visit. Preprocessing consisted of

brain extraction with manual correction if needed, N4 bias correction, and z-score

normalization of the brain region of each scan as described in Section 2.5.

143



Segmentation model Monte Carlo (MC)-dropout networks approximate Bayesian

neural networks by dropping out full activation maps after each convolutional layer

at training and inference time [212] (see Section 4.2.3). At inference time, slightly

varying segmentations can be sampled from an approximate posterior distribution

and used to quantify model uncertainty.

We trained an MC-dropout 3D U-Net (see Section 2.3), on patches of size 64x64x16

to segment areas of T2-weighted FLAIR abnormality using weighted cross-entropy loss.

The U-Net segmentation model consisted of four layers with 32/64/128/256 channels

per layer and spatial dropout, dropping out full activation maps, with a dropout rate

of 0.2 after each activation layer. The model weights were randomly initialized. To

augment the training data, we used horizontal flips and patch augmentation with

over-sampling from tumor regions, such that 70% of the patches contained tumor

regions and 30% did not contain any tumorous areas. We used a weighted categorical

cross-entropy loss with weights of 3 on the positive class (brain tumor) and 0.1 on

the negative class (healthy brain tissue/background). The model was trained for

300 epochs using the Adam optimization algorithm and an initial learning rate of

1.0 × 10−4 [258]. The model with the highest average Dice score on the validation

dataset was chosen for evaluation and further experiments.

The STAPLE algorithm created the final segmentation from 𝑁 = 10 MC-dropout

samples [123]. The segmentation model was implemented in DeepNeuro [286]. Quan-

titative segmentation quality metrics were computed using the python package Pymia

[287].

Model uncertainty An uncertainty map 𝑈𝑀𝐶 (𝑥) was obtained by averaging over

the voxelwise entropy of all 𝑁 = 10 segmentation samples:

𝑈𝑀𝐶 (𝑥) = − 1

𝑁

𝑁∑︁
𝑖=1

𝑝𝑖 (𝑥) log (𝑝𝑖 (𝑥)),

where 𝑝𝑖(𝑥) denotes the model’s sigmoid output for each pixel 𝑥 for sample 𝑖. To de-

scribe image-level model segmentation uncertainty, we computed the mean uncertainty
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of the segmented region:

𝑈𝑚𝑒𝑎𝑛 =
1∑︀

𝑥 𝑏
(︀
𝑝STAPLE(𝑥)

)︀ ∑︁
𝑝STAPLE(𝑥)≥0.5

𝑈𝑀𝐶 (𝑥),

where 𝑏(𝑥) is the binarization function [288].

5.2.3 Expert ratings of segmentation quality

Experts We recruited eight experts (fellows and attendings from the neuro-oncology,

neuroradiology, and radiation oncology departments at three academic centers in the

United States) to provide quality ratings for automatically generated brain tumor

segmentations. The eight experts were split into two groups stratified by specialty and

experience. The first group (experts 1, 2, 6, and 8) consisted of two neuro-oncologists,

one with more than five and now with more than ten years of experience, and two

neuro-radiologists, one with more than five and one with more than ten years of

experience. The second group of experts (experts 3, 4, 5, and 7) consisted of two

neuro-oncologists with more than five years of experience, a radiation oncologist

specializing in the treatment of neurological cancers with more than ten years of

experience, and a neuro-radiologist with more than five years of experience.

Ratings of segmentation quality We split 60 randomly selected cases from the

test set into two datasets with 30 cases each and assigned one group of experts to each

set. Due to the slice thickness of 5 mm of the available imaging, the experts reviewed

the MRIs as a stack of 2D axial slices. The segmentations were represented by red

outlines overlayed on the T2-weighted FLAIR images. The experts were provided

with two different modes of reviewing the segmentations: either as a mosaic consisting

of all axial slices of the T2-weighted FLAIR volume (see Figure 5-1 for an example)

or as a stack of the axial slices that they could scroll through. The quality of each

segmentation was graded with a score between 1 and 4. The rating categories were as

follows:

• 1: not acceptable
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• 2: acceptable with moderate changes

• 3: acceptable with minor changes

• 4: acceptable without changes

The ratings were recorded via a dropdown menu on a centrally hosted spreadsheet.

Each expert was provided the same 15 cases to practice, and six experts rated

four cases twice during different sessions to assess intra-rater variability. All experts

were blinded toward patient identity and treatment status and viewed the cases in a

randomized order.

Figure 5-1: Sample case with segmentation. Mosaic of 2D axial slices of T2-
weighted FLAIR overlayed with the outline of the automatically generated segmenta-
tion in red.

5.2.4 Qualitative study design

We conducted a two-part qualitative study with neuroradiologists and neuro-oncologists

experienced in working with brain tumor imaging. One part consisted of participants

completing an online questionnaire. We identified factors that influenced their per-

ception of segmentation quality based on the responses. Additionally, we performed

semi-structured interviews in which participants were also asked to correct imperfect

brain tumor segmentations. Figure 5-2 provides an overview over the study process.
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Figure 5-2: Study overview. We recruited participants from two major academic
teaching hospitals (blue box). Participants first completed an online questionnaire
comparing imperfect brain tumor segmentations and provided free text justifications
(red box). Subsequently, they participated in a virtual semi-structured interview
and corrected proposed segmentations of post-operative glioblastomas (green box).
Lastly, we performed a thematic analysis of the questionnaire responses and interview
transcripts (yellow box)

The study was approved by the institutional review board (IRB) of Mass General

Brigham.

Participants We recruited participants using a convenience sample from the two

main sites of our hospital system (Massachusetts General Hospital and Brigham

and Women’s Hospital, Boston, MA, USA). Volunteers were contacted via email by

members of the research team. To be eligible to participate in the study, volunteers

were required to be residents, fellows, or attendings in neuro-oncology or neuroradology.

Additionally, they were required to have at least one year of experience working with

brain tumor imaging at the time of their participation in the study. Written and oral

consent was given for the questionnaire and interview parts of the study.
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5.2.5 Collection of qualitative data

Questionnaire

To identify factors influencing physicians’ assessment of brain tumor segmentation

quality, we showed each participant 13 comparisons between imperfect segmentations.

We guided participants’ attention to specific differences between the depicted segmen-

tations by providing comparisons. Each comparison focused on one specific aspect

we identified as a potential source of disagreement in quality perception through the

quantitative study on expert-centered segmentation quality perception described in

Section 5.3.1.

Comparison categories in the questionnaire The comparisons in the question-

naire were categorized into four groups:

1. Over versus under-segmentation: Importance of over-segmenting (captur-

ing non-tumorous areas around the tumor margins) in comparison to under-

segmenting (missing tumorous areas at the tumor margins)

2. Holes: Importance of missed areas (holes) within a segmentation

3. Distance: Importance of the distance between a false positive area and the

primary tumor

4. False negatives versus false positives: Importance of missed areas (false

negatives) in comparison to false positive areas.

The categories are illustrated in Figure 5-10. The difference between the imperfect

segmentations was also quantified using the Dice score and the 95th percentile Hausdorff

distance.

We used illustrations of an axial cross-section of a brain with a tumor. Sample

illustrations are depicted in Figure 5-3, A1-3. Each illustration showed one tumor

lesion. Using illustrations instead of real MRI images, participants focused on the

segmentations themselves without any ambiguities caused by blurry tumor margins,
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Figure 5-3: Brain tumor segmentation illustrations for the questionnaire. A1:
Ground truth with tumor in turquoise and non-tumorous brain in gray tones; A2: The
segmentation is indicated by a black striped pattern; A3: True positive areas appear as
turquoise areas with black stripes, false negative areas are turquoise (without stripes),
false positive areas (no tumor present but selected as part of the segmentation) are
highlighted in orange (with black stripes). B: Example comparison of two brain tumor
illustrations: both segmentations are imperfect with a false positive area. On the
left, the false positive area is separated from the primary lesion; on the right, it is
connected to the primary lesion.

additional non-tumor abnormalities, and imaging artifacts. Furthermore, this way we

were able to control the sources of variability.

For each of the 13 comparisons, we asked participants to indicate whether they

preferred one of the two imperfect segmentations or considered them to be of equal

quality (tie) as shown in Figure 5-3B. They also had the opportunity to provide a

free text answer to justify their decisions. Illustrations were prepared using Adobe

Illustrator and segmentation quality metrics were computed using the Python package

pymia [287]. We collected and managed the responses to the questionnaire using
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REDCap (Research Electronic Data Capture) in compliance with our institution’s

IRB requirements [289, 290].

Interview

The semi-structured interview aimed to identify experts’ thought processes while

correcting brain tumor segmentations. Therefore, we asked participants to correct four

selected segmentations of post-operative high-grade gliomas. We generated the brain

tumor segmentations using the deep learning algorithm described in Section 5.2.2.

Each case contained a different characteristic that made the segmentation challenging,

e.g., particularly blurry boundaries or a specific error in the automatic segmentation.

The interviews were performed virtually. Participants shared their screens so

the interviewer could observe the segmentation correction process. The goal of

the segmentation process was to capture areas of T2-weighted FLAIR abnormality

corresponding to the total tumor burden. We used the 3D Slicer software to display

and edit the automatically generated segmentations [155]. Participants were not

expected to have experience working with 3D Slicer. Therefore, the interviewer walked

them through the required steps during the interview. To perform the corrections,

the participating experts had access to the following MRI sequences: T1W-weighted

pre-contrast, T1-weighted post-contrast, T2-weighted, and T2-weighted FLAIR.

The interview guide was developed to follow the process of correcting the four auto-

matically generated segmentations and was informed by our findings from Section 5.3.

It focused on the overall perception of the quality of the provided segmentation and

contained questions specific to the characteristics of each case, and the participant’s

approach to correcting an imperfect segmentation of post-operative brain tumors.

Additionally, we encouraged participants to think out loud during the correction

process. Interviews were scheduled to last less than 90 minutes. We used Microsoft

Teams as the platform for virtual meetings in accordance with guidelines specified

by the IRB. Meetings were recorded and automatically transcribed by Teams. The

interview transcripts were assessed for their accuracy and corrected if needed.
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We continued to collect responses to the questionnaire and to perform interviews

until we achieved thematic saturation, defined as no additional themes could be

identified from the questionnaires and the interviews.

5.2.6 Qualitative data analysis

We performed a thematic analysis of the free-text responses to the questionnaire and

interview transcripts using RQDA, an R package for qualitative data analysis [291].

We used a combined deductive and inductive coding approach. The initial set of codes

for the questionnaire was based on findings reported in Section 5.3.1. The initial set

of codes for the interview was based on preliminary results from the questionnaire. A

research team member (KVH) then reviewed the first four complete sets of replies to

the questionnaire and interview transcripts and developed two separate codebooks

for the questionnaire and the interview. The same researcher coded all questionnaire

responses and interview transcripts and the codebook was updated as needed. The

final codebook for the questionnaire contained 11 codes related to the role of tumor

biology, clinical applications, false-positive areas, and false-negative areas in evaluating

segmentation quality. The final codebook for the interview part of the study contained

26 codes related to the brain tumor, the patient, clinical aspects, and the expert

performing the edits. All transcripts were reviewed a second time using the final lists

of codes. Themes were identified using thematic analysis. Lastly, we performed a

respondent validation of the identified themes with three expert participants.

5.2.7 Statistical analysis

Agreement between segmentation quality ratings was assessed using Krippendorff’s

alpha (type ordinal) [292] for more than two ratings per case and Gwet’s AC2 [293]

with linear weights for pairwise expert comparisons. We chose Gwet’s AC2 instead of

Cohen’s kappa for pairwise comparisons and the assessment of intra-rater reliability

because Gwet’s AC is not affected by the frequency distribution of the ratings [294].

Comparison between the distributions of continuously valued features was determined
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using the Kruskal-Wallis test [190]. Agreement between participants’ preference for

segmentations and their quantitative superiority on the questionnaire was determined

using a Binomial test. Statistical significance was defined as a p-value ≤ 0.05. Data

analysis was performed in python 3.6 and R 4.0.2.

5.3 Expert-centered evaluation of brain tumor seg-

mentation

5.3.1 Results

Literature review

We searched PubMed for full-text articles that covered deep learning segmentation

algorithms of brain tumors. The initial search identified 248 articles. We excluded 53

papers after screening titles and abstracts and 15 more after a review of the full-text

articles. As a result of this process, we included 180 studies in the final analysis.

Figure 5-4 illustrates the literature selection process.

Quantitative evaluation of segmentation model performance Among the

180 articles we reviewed, the three most popular strategies to evaluate segmentation

quality were the Dice score as the only evaluation metric (42 articles, 23.3%), a

combination of Dice score, Hausdorff distance, sensitivity, and specificity (26 articles,

14.4%), or a combination of Dice score and Hausdorff distance (21 articles, 11.7%).

Overall, the Dice score was used in 170 of the 180 articles (94.4%) either exclusively

or in combination with other metrics. Sensitivity and Hausdorff distance were used in

combination with other metrics in 86 (47.8%) and 69 (38.3%) articles, respectively

(Figure 5-5A). We grouped each metric with other metrics that are used to evaluate

similar concepts, i.e., both the Dice score and Jaccard index are computed based

on the overlap between the ground truth and the predicted segmentation and are

therefore categorized as overlap-based metrics. The most widely used metric groups

were overlap-, confusion matrix- and distance-based metrics (Figure 5-5B). 28.3% of
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Figure 5-4: Consort diagram of the literature review process. The process to
identify suitable articles for review consisted of an initial screening of PubMed (blue),
a first screening of the titles (red), a second screening of the abstracts (green), and
final screening of the full texts (yellow).

articles used metrics from only one, 38.3% from two, and 31.1% from three metric

groups (Figure 5-5C). 179 of the 180 studies included at least one metric from the
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overlap-, confusion matrix-, or distance-based groups in their analysis. We found

that overlap-based metrics are most frequently combined with confusion matrix-based

metrics. Distance-based metrics are always associated with overlap-based metrics, as

illustrated in Figure 5-5D. 42 studies (23.3%) combined metrics from all three of the

most common metric groups.

Segmentation model performance evaluation by clinical experts In addition

to the purely quantitative evaluation of segmentation performance described above, five

of the 180 studies (2.8%) included an assessment by clinical experts. Table 5.1 contains

a list of these studies. The diverse evaluation approaches involved measuring the time

it took clinical experts to manually correct an automatically generated segmentation,

assessing the consensus between automatic segmentations edited by experts, and

rating the quality of the segmentations. The number of clinical experts involved

in the evaluation ranged from 2 to 20. The most common clinical specialties were

neuroradiology, radiation oncology, and neurosurgery. None of the studies compared

the assessment of their clinical experts with quantitative segmentation quality metrics.

User-study on segmentation quality perception of clinical experts

Our literature review on DL segmentation model evaluation showed that most pub-

lications rely on a purely quantitative assessment of model performance. While a

few articles included qualitative evaluation performed by clinical experts, none linked

quantitative and qualitative segmentation quality measurements. A systematic de-

termination of such measurements could inform future algorithm development and

clinical validation of such algorithms. Therefore, we conducted a user study on the

quality perception of postoperative brain tumor segmentation. The study’s goal was

to determine the inter-rater variability in segmentation quality perception and its

relationship with quantitative measurements.

Our brain tumor segmentation model achieved a mean Dice score of 0.72 on the

held-out test dataset. The previously reported Dice score for this dataset, using the

same dataset splits, was 0.70 [195], and the average Dice score for the inter-reader
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Figure 5-5: Use of quantitative segmentation quality metrics in the reviewed
literature. A: Count of how often the ten most popular segmentation quality metrics
were used to evaluate the performance of the segmentation models; B: Count of
how often metrics belonging to one of the seven defined metric groups were used
to evaluate the performance of the segmentation models; C: percentage of studies
that used metrics from one/two/three/four or more metric groups; D: Venn diagram
illustrating the frequency of metric group combinations for segmentation model
evaluation between the three most popular groups of segmentation quality metrics.
Sens: sensitivity; HD: Hausdorff distance; spec: specificity, prec: precision, acc:
accuracy; Jacc: Jaccard index; vol: volume; ASSD: average symmetric surface distance;
overl: overlap-based metrics; CM: voxel-level confusion matrix-based metrics; dist:
distance-based metrics; vol: volume-based metrics; thres: threshold-based metrics; inf:
information-based metrics; bound: boundary-based metrics. We provide an overview
over the characteristics of most of the metric groups in Section 2.6.
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Figure 5-6: Segmentation model performance compared to inter-rater vari-
ability. Dice score distribution between the predicted segmentation and the manually
defined ground truth (gt) segmentations on the held-out test dataset (blue) and
between two independent manual segmentations on a subset of the full dataset (red).

agreement was 0.64. The distribution of the Dice score for the model predictions

and inter-reader agreement are illustrated in Figure 5-6. The sensitivity, relative

volume error and 95th percentile Hausdorff distance were 0.77, 0.33, and 6.5 [voxel],

respectively. We obtained 264 segmentation quality ratings, including 24 double reads

to determine intra-rater variability from six of the eight participating domain experts,

for the 60 cases.

Differences among experts The intra-rater agreement based on double-reads

ranged from 0.24 to 1 with a median of 0.88 (Gwet’s AC2). The inter-rater agreement

among all quality ratings was low, with a Krippendorff’s alpha value of 0.34. On

pairwise comparison, we found that the agreement between the ratings of individual

experts showed a wide variability and ranged between 0.37 and 0.79 (median: 0.59,

Gwet’s AC2).

Panels A1 and A2 of Figure 5-7 illustrate the pairwise agreement between experts.

The low agreement between raters is possibly caused by different internal quality

class thresholds. The different cutoffs between rating categories become visible after

sorting the cases in each subset according to their mean rating. Panels A1 and A2

of Figure 5-8 illustrate the varying thresholds between the rating categories. The

threshold between what constitutes an acceptable segmentation and one that requires
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Figure 5-7: Pairwise agreement and correlation between experts. Pairwise
agreement and correlation were computed between all pairs of experts on the two sets
of cases. Each panel (A1/A2 and B1/B2) represents one set of 30 cases that were
rated by the same group of experts without overlap between the sets. A1/A2: pairwise
agreement between experts’ ratings using Gwet’s AC2; B1/B2: pairwise correlation
between experts’ ratings using Kendall’s 𝜏 .
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minor changes varies between the experts.

However, as indicated by the variability in the pairwise correlations between experts’

ratings, depicted in panels B1 and B2 of Figure 5-7, these individual thresholds do

not account for the total variability we observed in the quality ratings. Therefore,

we assessed whether there were additional factors that influenced these differences.

For this analysis, we separated all cases into two groups according to the difference

between their lowest and highest rating: a high agreement group (rating difference ≤ 1)

consisting of 40 cases and a low agreement group (rating difference ≥ 1) consisting of

20 cases.

The following factors showed statistically significant associations with a lower

agreement between experts: higher segmentation volume of the automatic segmentation

(p-value = 0.04), lower Dice score (p-value < 0.001), higher 95th percentile Hausdorff

distance (p-value = 0.046) between the automatic and the manual ground truth

segmentation, and a higher segmentation uncertainty of the segmentation model

(p-value < 0.001). The different distributions of these metrics in the low and high

agreement groups are illustrated in Figure 5-8B. We found no differences between

the low and high agreement groups’ surface area (p-value = 0.12), sphericity (p-value

= 0.62), and volume similarity (p-value = 0.51).

Differences between commonly used metrics and expert quality perception

Lastly, we compared the correlation between the ratings of each expert and the most

used quantitative segmentation quality metrics. The Kendall’s 𝜏 correlation coefficients

between seven selected quantitative metrics and the ratings of all eight raters are

presented in Figure 5-9. Overall, we observed a high variability between the different

metrics (rows) and among the experts (columns). These findings indicate that some

metrics agree better with expert quality perception and that there are differences in

the agreement between experts.

The highest correlations and lowest variability among raters were found with the

95th percentile Hausdorff distance, followed by sensitivity and surface Dice. Overlap

and volume-based metrics, like the Dice score, volume similarity, and relative volume
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Figure 5-8: Factors influencing disagreement between experts. A: Agreement
between raters for single cases. Each column represents the ratings for one case and
each row one expert. The cases within both of subsets of data were ranked based on
their average rating. Experts were ordered based on the average rating assigned to
all cases from lowest (top) to highest (bottom) average rating. Each panel (A1/A2)
represents one set of 30 cases that were rated by the same group of experts without
overlap. B: Distributions of rater independent characteristics of cases for the group
with low (blue) and high agreement between experts (red). Statistically significant
differences between the distributions are indicated by brackets above the box plots.
*: p-value ≤ 0.05; **: p-value≤ 0.01; ***: p-value ≤ 0.001; HD95: 95th percentile
Hausdorff distance.

160



Figure 5-9: Correlation between segmentation metrics and ratings. Kendall’s 𝜏
correlation coefficient between the ratings provided by each expert and selected
segmentation quality metrics: 95th percentile Hausdorff distance (HD95th), surface
Dice score (sDice), Dice score, relative volume error (vol error), volume similarity (vol
sim), sensitivity (sens), and specificity (spec).

error, showed lower correlations than distance metrics.

5.3.2 Discussion

In this section, we presented results from a study on expert-centered segmentation

quality evaluation. First, we identified how articles reporting on deep learning brain

tumor segmentation evaluate those models. Second, we performed an experimental

study on clinical experts’ perception of brain tumor segmentation and showed how

current evaluation practices identified in the literature review relate to the experts’

segmentation quality assessment.

Evaluation of segmentation quality primarily relies on the same quantitative

metrics. The Dice score was the most popular metric and 23.3% of the analyzed

articles relied on the Dice score as the only metric for segmentation performance

evaluation. However, overlap metrics have low correlations with the human quality

perception [50]. Our experimental data on the quality perception of post-operative

brain tumor segmentation confirms this finding. Correlations between the most

frequently used metric, the Dice score, and experts’ quality perception were low, as
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shown in Figure 5-9. Additionally, we observed high variability in the correlations

between individual experts. Distance-based metrics that showed the highest agreement

and lowest variability among experts were never used as the primary performance

metric for segmentation quality (Figure 5-5). Unlike overlap- and confusion-matrix-

based metrics, most distance metrics, like the Hausdorff distance, are not bounded

between 0 and 1. Therefore, they are harder to interpret and compare between studies

using different datasets. Our findings suggest that the surface Dice score can be a

promising alternative, as it had a higher agreement with experts’ ratings than the

Dice score and is constrained to values between 0 and 1.

Expert-centered evaluation suffers from high subjectivity in segmentation

quality perception Even though DL-assisted segmentation algorithms can increase

inter-rater agreement of segmentations [279], the inter-rater reliability in segmentation

quality perception has not been studied to date. Given the known low inter-rater

agreement in the manual segmentations for challenging targets such as tumors [269, 271,

270], we expected variability in the segmentation quality perception of the participating

experts. The intra-rater reliability in our experiments was high, with a median of 0.88

(Gwet’s AC2) for the six experts. This finding contrasts the low inter-rater agreement

between all raters (Krippendorff’s alpha: 0.39). In part, individually varying thresholds

between adjacent segmentation quality grades can account for the observed variability

(Figure 5-8, A1 and A2). Similar variability in individual thresholds between ordinal

rating categories has been observed in disease severity classification [41, 300]. In

contrast, experts are more consistent in their assessment of disease severity when

they are comparing images rather than assigning absolute ratings [47]. Therefore,

alternative evaluation techniques based on comparisons between segmentations and a

defined segmentation quality standard may warrant higher agreement between raters.

Furthermore, we identified several factors significantly associated with a lower

agreement between raters (Figure5-8B). Among these factors were smaller volumes of

the automated segmentation, indicating that the experts saw aberrations in these cases

as of different importance. Additionally, cases with a high disagreement in the ratings
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were associated with higher model uncertainty. Epistemic uncertainty is expected

to be higher for cases dissimilar to those seen during model training [301]. Model

uncertainty, which can be computed independent of any manual ground truth, is highly

correlated with the segmentation Dice score [302, 303]. As a result of our finding that

epistemic uncertainty is higher for samples with a lower agreement between raters,

cases with a high uncertainty could be automatically routed for review by multiple

experts, e.g., during a peer review session.

Low consensus in the performance of expert-centered evaluation of segmen-

tation models In the surveyed articles, expert-centered evaluation, if performed,

played a supplementary role to a primarily quantitative assessment of the test data

using established quantitative metrics. Among the five studies that involved clinical

experts in the performance evaluation, we observed high variability in the applied

process (see Table 5.1). This variability may reflect the diversity of use cases for

segmentation, e.g., treatment monitoring or planning. Solely relying on quantita-

tive evaluation is insufficient to assess the readiness of DL segmentation models for

downstream clinical tasks [165]. As a solution, Jha et al. advocated that artificial

intelligence algorithms should be evaluated with the involvement of clinical experts

and their clinical context in mind [304].

5.3.3 Limitations

There were some limitations to this study. The assessment of T2-weighted FLAIR

abnormality segmentations was based only on T2-weighted FLAIR images and no

additional sequences. In clinical settings, radiologists and neuro-oncologists may use

other sequences such as T2-weighted and T1-weighted with and without contrast for

additional information. Therefore, the simplified study setup did not fully mimic

segmentation quality assessment as it would be performed in a clinical workflow.

Furthermore, the experiments were limited to the segmentation quality perception

of postoperative brain tumors on T2-weighted FLAIR, a highly complex and am-

biguous segmentation target. Our findings may not generalize to other segmentation
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targets. Future studies should evaluate whether the observed disagreement between

segmentation quality metrics and the quality perception of experts can be observed

for other segmentation targets as well. Based on our findings, we suggest that the

performance of segmentation models should include a use-case-focused assessment

performed by clinical experts. If this is not feasible, a purely quantitative analysis

should utilize selected segmentation quality metrics that correlate with their usefulness

for the desired clinical application.

5.3.4 Conclusions

In summary, in this section we presented a literature review and experimental study

on the performance evaluation of deep learning brain tumor segmentation models. We

found that most published studies relied on very similar sets of quantitative evaluation

metrics. Only a few studies involved clinical experts in the evaluation of the segmen-

tation models. However, our experimental results elucidated the disconnect between

quantitative quality metrics and the qualitative perception of segmentation quality

by domain experts. Consequently, next we aim to develop a better understanding

of the quality perception of clinical experts to catalyze the development of tailored

quantitative metrics to develop clinically helpful segmentation models.

5.4 Role of context in experts’ perception of brain

tumor segmentation quality

5.4.1 Results

Study participants

We recruited ten clinical experts experienced in working with the imaging of brain

tumors. Four participants were neuro-oncologists (one with more than three, one with

more than six, and two with more than eight years of experience). The remaining six

participants were neuroradiologists (two with more than three, one with more than
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six, and three with more than eight years of experience).

Segmentation quality criteria

We collected responses to 130 questionnaires (13 comparisons from each of the ten

participants). We received a total of 122 justifications describing why experts favored

one segmentation over the other or considered them equal quality.

Participants were equivalent to random chance in selecting the segmentation

quantitatively identified as better, either by Dice score or 95th percentile Hausdorff

distance (Binomial test, Null hypothesis: p>1/2). We aggregated the responses of

all participants through a majority vote. It is important to keep in mind that these

evaluations were performed based on illustrations of segmentations that provided only

minimal context.

Based on the justifications the participants gave for why they favored one imper-

fect segmentation over another or considered them equal quality, we identified five

segmentation quality criteria. Since most justifications listed one quality criterion

as the reason for their decision, we first identified co-occurrences of codes used to

justify the same decision. Themes were determined based on co-occurring codes in

combination with the context of each comparison, i.e., the difference between the two

depicted segmentations as illustrated in Figure 5-10.

Over-segmentation is better than under-segmentation Experts generally

preferred over- to under-segmentation. Generous segmentations that may include

potentially healthy tissue surrounding the tumor are preferred over conservative

segmentations that may miss tumorous areas at the tumor margins. Figure 5-10A

presents an example for over (left) and under-segmentation (right). This quality

criterion is mainly based on knowledge about the growth behavior of highly invasive

high-grade gliomas. As one participant explained: “it’s [an] infiltrative tumor, so there

probably is tumor beyond that margin [. . . ].”
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Figure 5-10: Categories of questionnaire comparisons. Each of the comparisons
participants had to make in the questionnaire could be categorized as one of four
categories. A: Over-segmentation (left) vs under-segmentation (right); B: Position of
false negatives (holes) within the segmentation; C: Distance between a false positive
and the primary tumor; D: Segmentation containing false a negative area (left) vs one
containing a false positive area (right).
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Capturing the tumor margins The second quality criterion is the extent to

which the segmentation captures the margins of the tumor, as the margins were

generally perceived as more important than the central areas. Holes in the middle of

a segmentation, as depicted on the left in Figure 5-10B, were perceived as acceptable

errors, particularly if the segmentations were intended for use in surgery or radiation

treatment planning: “The extent of tumor is known and if resected, the central part

[that the segmentation missed] will be taken out as well.” However, if parts of the

tumor margins were not included in the segmentation and therefore not treated, this

would likely lead to tumor recurrence.

Distance between false positive areas and the primary lesion If a segmenta-

tion wrongly includes tissue considered healthy (false positive), the distance between

this false positive area and the primary lesion is an important quality criterion. Based

on the respondent’s knowledge of tumor behavior and experience, high-grade gliomas

are more likely to spread locally than in more distant regions. One expert explained:

“[the segmentation] captures an area that is close to the original tumor ROI [region of

interest], so it might be real.” An extreme example is a false positive area contralat-

eral from the primary lesion as “[A] false positive [in the] contralateral [hemisphere]

suggests even wider spread of tumor.” The diagnostic error based on this erroneous

segmentation would have severe consequences for the patient, leading to the wrong

assumption that the patient has bilateral disease.

Indication of the right number of lesions While evaluating the quality of a

segmentation, participants considered clinical errors that could be made based on an

erroneous segmentation. If a segmentation contained a separate false positive area, it

would wrongly indicate that the patient has two tumorous lesions instead of one. This

error has important clinical implications for the patient’s therapeutic opportunities.

Effort it takes to correct a lesion Participants showed a preference for lesions

they perceived as easier to correct. The perception of correction effort was influenced

by the software that participants had previous experience with, e.g., software that
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would require them to paint over the whole tumor volume versus outlining the tumor.

In accordance with the importance of capturing the tumor margins, we observed a

higher emphasis on the tumor margins compared to the full tumor volume.

Experts’ personal preferences for segmentation quality criteria We found

that some experts repeatedly used the same reason to justify their decisions. Some

reasons were overwhelmingly brought up by only one or two experts while other

justifications were used more broadly. The importance that a segmentation captures

the tumor margins is mentioned disproportionately often by two experts. They used

this justification for five and nine of their decisions. The effort to correct a segmentation

was only brought up by two experts. However, one of them used this criterion as

a justification in seven out of the 13 cases. Lastly, the preference for over- versus

under-segmentation was a widely used quality criterion, and was brought up by seven

of the ten experts.

Agreement with quantitative segmentation quality metrics Some criteria

we identified agreed with quantitative metrics that are commonly used to evaluate

segmentation quality: We found that justifications that emphasized the importance

of the margins and the distance between a false positive area and the primary lesion

often agreed with the 95th percentile Hausdorff distance. When participants expressed

their preference for over-segmentation, these decisions mostly disagreed with both the

Hausdorff distance and the Dice score. The most crucial concept that did not agree

with any quantitative metric was the preference for a segmentation because it was

seen as biologically more plausible.

Experts’ thought process while correcting segmentations

For the second part of our study, we asked each expert to manually correct four

imperfect segmentations of post-operative brain glioblastomas during an interactive

session with a semi-structured interview. The segmentations were generated using

a deep learning algorithm. The quality of the proposed segmentations based on the
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Table 5.2: Segmentation model performance based on the manual ground truth for
the four cases study participants corrected during the interview

Case number Dice score HD95 [voxel]
1 0.81 4.57
2 0.68 66.24
3 0.73 7.00
4 0.85 6.00

available manual ground truth is listed in Table 5.2.

The thematic analysis of the interview transcripts was performed to identify the

thought process during the correction process. A total of ten interviews were performed

between September 30th and December 10th, 2021, resulting in 12.4 hours of recordings

and 39 manually corrected segmentations. Additionally, we performed a quantitative

analysis of the final corrected segmentations to determine the extent of the performed

changes and the agreement between the experts’ corrected segmentations.

We identified the following five themes with respect to correcting segmentations of

post-operative brain tumors:

Postoperative brain tumors are highly ambiguous segmentation targets

Given their biological background as a heavily infiltrative disease, the boundaries of

GBMs are often unclear. All experts expressed uncertainty about where to draw the

line between normal and abnormal intensity. One expert described it as follows: “[. . . ]

GBM is a heavily infiltrative disease. So, the [. . . ] imaging segmentation is a little bit

of an . . . I don’t want to say artifact, but it’s not exact. Yeah, it is a line in the sand

that people draw.” Experts often referred to a “gray area” around the expected tumor

margin.

Contextual information helps experts interpret the ambiguous presentation

of the tumors on imaging Experts rely heavily on context to limit the ambiguity

of the tumor margins described above. Contextual information is used to distinguish

between abnormal findings on imaging that could be attributed to the brain tumor or

other causes, e.g., white matter changes that could also be caused by hypertension or
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radiation treatment. We identified three categories of context relevant to brain tumor

segmentations: patient-related, application-related, and general context.

Patient-related context includes, for example, the patient’s age, information about

comorbidities, and treatment status. Additionally, access to a baseline image before

the tumor diagnosis or before the start of treatment is thought to offer valuable

information about the general brain health of a patient. Information about the clinical

application a segmentation will be used for will influence certain corrections. For

example, while correcting a segmentation intended for radiation treatment planning,

experts would choose to be more conservative in an area close to radiation-sensitive

structure. Other helpful contextual information participants identified are the patient’s

anatomy, knowledge about imaging artifacts, and the integration of information from

different MRI sequences.

The final segmentation is shaped by personal beliefs and preferences How-

ever, not all ambiguities can be resolved through contextual information. Therefore,

some subjective decisions must be made to finalize the segmentation. We found that

each expert had their own philosophy influencing whether they tended to be more

inclusive or exclusive in their segmentation corrections. We considered an expert who

included voxels that are possibly but not certainly tumorous in the segmentation

to display an inclusive philosophy. Experts who only selected voxels that they were

certain to be tumorous were considered to be more exclusive in their segmentation

approach. Participants also acknowledged that starting from a proposed segmentation

possibly biased their decisions and the final corrected segmentation.

Due to the absence of objective quality criteria, consistency, within a case and

between repeated imaging of the same patient, was often referred to as a proxy for

segmentation quality. For longitudinal monitoring, ensuring that the segmentation is

consistent between time points, is crucial for accurate treatment monitoring. Lastly,

the amount of time and effort a physician invests into editing a segmentation will

influence the outcome. One expert said that “[. . . ] you could drive yourself crazy,

kind of fine-tuning these [segmentations]. And so, [. . . ] picking and choosing your
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battles is the bottom line.”

Role of deep learning algorithms in brain tumor segmentation Participants

saw two potential advantages of the clinical deployment of deep learning algorithms:

First, they expected segmentations generated by deep learning algorithms to be more

consistent, as algorithms are not influenced by the time of the day, are not affected by

time constraints, and cannot get distracted easily. Second, even if only a small routine

step within a complicated task can get automated, this would free up healthcare

workers to spend their energy on more challenging problems. However, our interview

partners agreed that the technology is not yet fully ready to be clinically implemented.

Particularly limitations in the ability to adapt to new and unseen scenarios and fringe

cases are seen as a hurdle. In the near future, deep learning algorithms are seen as

useful for narrowly defined tasks. “I think that they’re probably 80% there. [. . . ] there

still is work that needs to be done. But [. . . ] getting that last 20% is gonna be really

hard.”

Working with the output of deep learning algorithms during the interview, experts

were highly aware of their potential bias toward the model’s performance. One expert

indicates that they are more cautious since, in their personal experience, deep learning

algorithms for brain tumor segmentation are not very reliable: “I know that the model

output is not the greatest. [. . . ]. It makes me rely more on myself than on the model”

However, others, given the highly ambiguous decisions they are facing, rely on the

model’s decisions when insecure about a particular area: “I don’t think, I would have

chosen that, but I don’t feel strongly enough against it to undo it considering that there

maybe there was something in the algorithm making it choose that. This also happens

with over-reading fellows or residents.”

Analysis of the corrected segmentations The quantitative analysis of the

segmentations, corrected by the participants, showed large variability in the volume

of changes each participant performed. Figure 5-11A illustrates the total changes that

each participant performed during the interview. We also found that the agreement
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Figure 5-11: Quantitative analysis of corrected segmentations. A: Changes
each expert performed during the interview: total volume of changes for all four cases
(added to and erased from the proposed segmentation) (blue), added volume (green),
and erased volume (red); B: Comparison of the agreement between all corrected
segmentations and agreement between independently drawn manual segmentations on
the same dataset. Blue: Pairwise Dice scores between the corrected segmentations
(for each of the four cases); red: agreement between two independently drawn manual
segmentations for a subset of the same post-operative brain tumor dataset; C: Com-
parison between the agreement of the corrected segmentations (aggregated using the
STAPLE algorithm) with the automatic segmentation (blue) and the manual ground
truth (red).

between the corrected segmentations of the participants was significantly higher

than the inter-reader agreement previously identified for this dataset (Figure 5-11B,

p-value < 0.001, Kruskal-Wallis test). Furthermore, the agreement between the

corrected segmentations and the initial segmentation is significantly higher than

between the corrected segmentations and the independently generated manual ground

truth (Figure 5-11C, p-value = 0.02, Kruskall-Wallis test).

5.4.2 Discussion

In this section, we investigated how clinical experts perceive the quality of brain tumor

segmentations from two angles: by identifying criteria that experts apply to evaluate

segmentation quality and by elucidating experts’ thought processes while correcting

segmentations generated by a deep learning algorithm.
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Criteria used to evaluate brain tumor segmentation quality Previous research

has shown that the segmentation quality perception of experts does not agree with

currently used quantitative metrics, like the Dice score and Hausdorff distance [50]

(see Section 5.3). Through thematic analysis of the responses to the questionnaire, we

have identified five quality criteria that influence how experts perceive the quality of

brain tumor segmentation. While some quality criteria partially agree with the Dice

score and Hausdorff distance, they depend more on the context of the segmentation

error. For example, false positive errors should be treated differently to false negative

ones.

Quality criteria can be contradictory Some of the criteria we identified here can

be conflicting in certain cases. As depicted in Figure 5-3B, for example, a false positive

connected to the primary lesion was perceived as more challenging to correct than a

false positive of the same size in the contralateral hemisphere (correction effort) by

some participants. At the same time, other participants considered the false positive

area in the contralateral hemisphere a more consequential clinical segmentation error

(distance). In these cases, individual preferences and application-specific criteria may

come into play. This may also explain differences between the quality ratings of

experts reported in Section 5.3.1.

Experts’ thought processes while editing a segmentation Through an in-

terview in which we tasked experts to correct segmentations generated by a deep

learning algorithm, we identified four themes that describe essential characteristics of

the correction process. Due to the ambiguous appearance of the tumor margins and

the limited amount of information that can be derived from macroscopic imaging, the

task of outlining brain tumors from MRI has several potentially acceptable solutions.

The participating physicians extensively used context and their knowledge about

tumor growth behavior, information that is not present in the imaging itself, to make

decisions in uncertain situations. They also showed a high awareness of the ambiguity

of the task and, therefore, would accept a reasonable segmentation even if they would
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outline the tumor differently.

Influence of the proposed segmentation Furthermore, we found that due to

the high ambiguity of the tumor margins, the proposed segmentation influences the

outcome of the correction process. Our data indicates that in the absence of clear

boundaries and indicators whether an area is part of the tumor or healthy tissue,

experts tend to accept the proposed segmentation if it appeared reasonable to them.

This finding explains the increased agreement between observers when they correct a

proposed segmentation instead of perform a segmentation de novo. Due to the absence

of an objective ground truth, it remains to be seen whether the improved agreement

between experts will translate into improved clinical outcomes. The volume of changes

that participants performed were additionally influenced by their perception of the

capabilities of deep learning models. More research is needed to develop a detailed

understanding of how editing decisions are influenced by a proposed segmentation and

providers’ inherent biases regarding a segmentation model’s performance.

Importance of the clinical application Both parts of the present study reflected

the importance of the downstream application for which a brain tumor segmentation

is intended, as quality criteria highly dependent on it. However, this dependency is

not reflected in current practices of segmentation quality evaluation. Participants in

our study considered the clinical consequences of potential segmentation errors as

they evaluated the quality of a segmentation, and these consequences differ between

clinical applications [276, 305].

Additionally, there was consensus among our interview participants that artificial

intelligence segmentation tools should be developed for narrowly-defined application

areas, e.g., exclusively for use in radiation treatment planning. Based on our findings,

we also recommend developing and clinically validating application-specific quantitative

metrics. Those metrics should reflect the importance of the clinical consequences

of specific errors. Furthermore, domain experts’ evaluation of segmentation quality

should be standardized through guidelines.
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Generalizability Our study was focused explicitly on segmentations of glioblas-

tomas, tumors known to be particularly challenging to manually segment on MRI

due to their invasive growth behavior. Our findings may not generalize to other, less

ambiguous segmentation structures. For cardiac segmentation, for example, it has

been shown that experts’ quality perception correlates well with conventional segmen-

tation quality metrics, like the Dice score, Hausdorff distance, and sensitivity [306].

Therefore, there is no need for more contextual quality criteria for these segmentation

tasks. However, we expect that the quality criteria and the thought processes we have

identified here will partially generalize to other similarly challenging segmentation

tasks, particularly other tumors.

Based on our findings presented in this section and Section 5.3, we conclude that

the successful clinical deployment of deep learning-based brain tumors segmentation

algorithm will require the following: To ensure that segmentation models’ performance

reflects clinical utility, improved quantitative metrics need to be developed. These

metrics should reflect the context-dependent segmentation quality perception of experts.

Second, the definition of a specific use case for each deep learning algorithm will limit

the amount of ambiguity that physicians are facing while evaluating and correcting

segmentations. Lastly, a more detailed understanding of why and how much physicians

rely on the provided segmentation that they are tasked to correct will be needed.

5.4.3 Limitations

There are some limitations to this study. First, all participants who volunteered for

the study were from one hospital system, and some were trainees of other participants.

Experts from other institutions may value other segmentation quality criteria or show

an approach to correcting segmentations that is not reflected in our findings. Further-

more, in clinical settings, tumor segmentation is a collaborative process. Physicians

can ask their colleagues for advice if uncertain about specific aspects of a case [307].

We did not mimic this process in our interview study and did not provide patient- and

treatment-related information about the cases. Therefore, participants faced more

uncertainty, potentially forcing them to make unusual decisions.
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5.4.4 Conclusions

Outlining high-grade brain tumors is highly challenging even for experts due to

ambiguities in the tumor margins. Experts heavily rely on contextual information

to limit uncertainties in segmenting brain tumors. Sources of contextual information

can be information about the patient, e.g., their age, anatomical structures, or

the application a segmentation is intended for. Furthermore, experts’ decisions are

influenced by their personal beliefs about whether ambiguous areas should be included

or excluded from a segmentation and individual biases toward the performance of

segmentation algorithms. This work highlights the need for specifying the application

area for automatic segmentation algorithms during development and particularly

during the evaluation of its performance. Lastly, new application-specific segmentation

quality metrics that reflect clinical usefulness are needed.

5.5 Perspective on the evaluation of DL models for

brain tumor segmentation

5.5.1 Efficient evaluation frameworks for segmentation models

We find a disconnect between the published research and clinical needs based on our

extensive review of the literature on deep learning brain tumor segmentation and the

quantitative and qualitative findings from our studies on postoperative brain tumor

segmentation. Involving stakeholders in the evaluation and augmenting quantitative

evaluation through qualitative accounts is expected to lead to the development of AI

systems that fulfill their goal beyond meeting one target metric [218]. An evaluation

process that involves multiple perspectives will help to align the optimization goals

with the clinical needs. However, this process will require systematic support from

scientific journals and regulatory bodies like the FDA.

Reporting checklists are an efficient tool to improve the completeness of scientific

reports [308, 309]. While the CLAIM checklist asks for a failure case analysis, it

does not require the use of multiple and complementary evaluation metrics and the
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involvement of clinicians in the evaluation process [217] and should therefore be

extended. Additionally, guidelines and checklists should be used early in the planning

and execution of a study, not just in the final writing process [310]. Furthermore,

we would welcome the FDA requiring the use of comprehensive metrics and the

involvement of stakeholders in the evaluation process. For example, the first deep

learning segmentation tool for high-grade glioma recently received FDA pre-market

approval based on a performance analysis using the Dice score and volume as the only

quality metrics [311].

5.5.2 Future directions

We envision two different lines of research resulting from our work on segmentation

quality perception.

DL model development The first area concerns the development of improved deep-

learning models for brain tumor segmentation. Based on our findings, we expect that

the use of anatomical priors will improve the performance of brain tumor segmentation

models. Due to GPU memory limitations, most 3D segmentation models are trained

on small patches of the entire input image, leading to a loss of anatomical context from

the models. The explicit use of anatomical context has improved segmentation for

classical ML [312] and DL segmentation [313]. It remains to be seen if incorporating

anatomical context can alleviate some error patterns our study participants have

identified.

Furthermore, we anticipate an improved longitudinal segmentation consistency

from the incorporation of inter-visit dependencies in the segmentation pipeline. We

found that consistency between visits was highly valued for longitudinal follow-up,

even beyond personal perceptions of how the “right” outline should look in highly

ambiguous areas. Lastly, until new metrics have been developed and validated, a

simple yet efficient strategy could be the combination of several quality metrics with

different weights. For example, omissions at the margins should be weighted higher

than in the middle of a segmentation.
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Expert- and application-centered segmentation quality metrics In addition

to the approaches that concern model development, we propose further research into

segmentation quality metrics. These metrics should be centered around the needs of

experts and focused on specific applications rather than represent general all-purpose

metrics. Large-scale quantitative surveys can provide insight into the importance of the

segmentation quality criteria identified in Section 5.4.1. Mainly, these metrics should

be evaluated in the context of their application and using authentic images instead

of illustrations to investigate their generalizability. Furthermore, we recommend

extending the research approaches outlined in this thesis to other similarly ambiguous

segmentation targets to identify synergies.

In conclusion, in this chapter we have presented how experts’ qualitative segmenta-

tion quality perception differs from currently available segmentation quality metrics.

We envision that our findings and the described research approaches will lead to

efficient evaluation protocols for brain tumor segmentation models. These metrics will

benefit the clinical translation of DL brain tumor segmentation models by supporting

the development of segmentation models that generate predictions that satisfy the

expectations of expert users.
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Chapter 6

Conclusions

The research in this thesis is centered around three fundamental challenges to trans-

lating ML algorithms into clinical care settings: Robustness of ML in routine clinical

settings, choosing appropriate modeling approaches, and clinically meaningful evalua-

tion of model performance.

In Chapter 3, we presented how small decisions within a radiomics pipeline affect the

test-retest repeatability of radiomics features. Furthermore, we highlighted research

on methodological errors in the radiomics literature that inflate model performance,

improving the repeatability of deep learning algorithms, and automatic estimation of

segmentation quality. Algorithms and features alike are susceptible to design choices

made in the process of an ML project. Our research on the stability of ML algorithms

serves as a guide to best practices in the development of a clinically deployable

algorithms. The development of stable algorithms will be essential in gaining the

trust of physicians and patients for the clinical deployment of ML algorithms. Our

research was retrospective and in silico; future research should focus on evaluating

and, if required, improving the stability of ML algorithms prospectively and under

real-world clinical conditions.

In Chapter 4, we demonstrated that the predictions of a deep learning algorithm

reflect the actual distribution of the variable of interest only if the selected network
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design is appropriate for the given task. In Section 4.4, we introduced a generalizable

framework that can recover information lost by discretizing continuous variables. Our

framework is closing the gap between the ordinal labels and the underlying continuous

variable. This framework could support efforts to automatically identify patients at

risk of deterioration by providing granular information about the dynamic of a disease.

Based on the concept of a latent continuous distribution that underlies discrete

ordinal labels, Section 4.5 presented the first two methods for joint learning of ordinal

classification and annotators’ individual biases. Previously described approaches

proved not appropriate for identifying differences between annotators’ labeling behavior

for a latent continuous variable. In the future, these methodologies can support the

development of a complete model that characterizes the noise patterns observed in

discrete ordinal labels.

In Chapter 5, we illustrated how performance evaluation of brain tumor segmentation

models can be designed to reflect clincal usefulness.

In Section 5.3, we described the discrepancies between the subjective quality

perception of clinical experts and the metrics typically used to evaluate performance.

We found only a low to moderate agreement between the quantitative metrics and

experts’ ratings of segmentation quality. Furthermore, we demonstrated a high inter-

rater variability in the perception of quality perception between experts, similar to

the variability observed in manual segmentations. Various factors, such as the size of

the segmentation target, influence these differences.

Through a multiple-method study focusing on qualitative accounts of experts’

perception of segmentation quality, we identified criteria that experts use to evaluate

the quality of automatically generated segmentations and describe their thought

processes as they correct them. These findings are presented in Section 5.4. Experts

assess the quality of brain tumor segmentation given the medical context. In particular,

knowledge about the invasive growth behavior of high-grade brain tumors and the

intended clinical use of the segmentation influence the quality assessment. Due to the

high ambiguity of brain tumor outlines, experts extensively use contextual information
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to decrease the amount of ambiguity. Personal preferences and the perception of

the performance level of deep learning segmentation algorithms further influence

decisions. As deep learning algorithms will be considered for clinical translation, new

segmentation quality metrics targeting specific clinical needs will be needed.

Recommendations for medical ML practitioners

Despite the impressive number of publications on ML image analysis algorithms, it

has yet to be shown that these algorithms can improve clinical practice. Based on the

work described in this thesis on three fundamental challenges for the translation of

ML algorithms into clinical care, we deduce the following recommendations for ML

practitioners:

1. Developing practical ML tools for image analysis requires a detailed understand-

ing of the clinical need. This understanding will inform the choice of the right

ML approach, image preprocessing, annotation, and algorithm evaluation.

2. Best practices and guidelines should be used throughout a project. Research

is rarely a linear process, and while going back and forth between different

approaches, researchers should remind themselves to adhere to a fixed set of

best practices.

3. Before embarking on the model development process, it is advisable to consider

whether simply reproducing a task as humans perform it is the right approach.

There may be other ways to solve the problem at hand in a way humans

would not be able to. For example, as described in Sections 3.7.2 and 4.4,

nominal classification approaches can be successfully used to predict discrete

ordinal labels. However, they are characterized by low repeatability and do not

accurately reflect the underlying continuous distribution of the target variable.

4. A good understanding and evaluation of the noise patterns in the data will help

in the training and evaluation process. As we have demonstrated in Section 4.5,
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noise patterns can be learned and reveal critical information about the annotators

who generated the training labels.

5. The influence of every design choice on model stability should be tested. Even if

an algorithm achieves good classification performance, this does not necessarily

correspond to robustness towards small perturbations in the data. In the absence

of test-retest data, data augmentation, e.g., horizontal flips or small rotations,

can serve as an instrument to test the repeatability of an algorithm’s predictions.

6. Clinical experts should be involved in the evaluation. As described in Section 5.4,

qualitative accounts can provide valuable information for further evaluation of

algorithms. Algorithms should be evaluated with a focus on the intended clinical

application and, even if retrospectively, under conditions as close to a realistic

clinical setting as possible.

I want to close with the words of one of the participants in the interview study on

the quality perception of brain tumor segmentations: “I think that [AI algorithms are]

probably 80% there. [. . . ] there still is work that needs to be done. But [. . . ] getting

that last 20% is gonna be really hard.”
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Appendix A

Continuous scores - Appendix

A.1 Dataset label distributions

List of label distributions for each dataset.

Retinopathy of prematurity Dataset size: 5511 images

• Normal: 4535 images (82·3%)

• Pre-plus disease: 804 images (14·6%)

• Plus disease: 172 images (3·1%)

Knee osteoarthritis (OA) Dataset size: 14173 images

• No OA (KL 0): 5793 images (40.9·%)

• Doubtful OA (KL 1): 2156 images (15·2%)

• Mild OA (KL 2): 2355 images (16·6%)

• Moderate OA (KL 3): 2604 images (18·4%)

• Severe OA (KL 4): 1265 images (8·9%)
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Breast density Dataset size: 108230 images

• Fatty: 12428 images (11·5%)

• Scattered: 47909 images (44·2%)

• Heterogeneously dense: 41325 images (38·2%)

• Dense: 6568 images (6·1%)

A.2 Predicted rank vs. ground truth rank

Figure A-1 contains the same data from Figure 4-6 presented in Section 4.4.1. The

predicted scores were ordered to determine a rank and were plotted against the expert’s

ranks. The MSE displayed in Table 4.3 was computed on these two variables. Since a

linear correlation is expected on the rank-to-rank analysis, the Pearson coefficient was

used.

A.3 Pair-wise statistical comparisons

Only the metrics showing no statistical differences between two metrics were included

(only some metrics from Table 4.3). If no figure for a specific metric and dataset is

present, it means all the pair-wise comparisons showed a statistical difference. All

metrics presented in Table 4.3, Figure 4-7, Figure 4-8, and Figure 4-9 were analysed.
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Figure A-1: Correspondence between model predicted rank and true severity
rank. A: Retinopathy of prematurity; B: Knee osteoarthritis; C: Breast density.
For each model the Pearson correlation coefficient (𝑟) is displayed and indicate the
strength of the linear correlation where 1 is a perfectly positive linear correlation and
-1 a perfectly negative linear correlation.
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Figure A-2: Pair-wise statistical comparisons for MSE, Spearman, and AUC
metrics (metric - dataset). A/C: Knee osteoarthritis (A: MSE, C: Spearman
correlation coefficinet); B: Breast density. For each metric on a given test set, each
pairs of models (MC and non-MC multi-class, ordinal, regression, Siamese) was
compared. The box plots on the left side displays the value range of the MSE and
Spearman correlation coefficient, respectively, obtained through 500 bootstraps. The
grid on the right side includes the 28 pair-wise comparisons. * means that a statistical
difference (𝑝− 𝑣𝑎𝑙𝑢𝑒 < 0.05 on a two-sided t-test) was reached while a black square
indicates no statistical differences. Only metrics where at least one pair had no
statistical difference was presented.
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Figure A-3: Pair-wise statistical comparisons for MSE, Spearman, and AUC
metrics (metric - dataset). A: Retinopathy of prematurity; B: Knee osteoarthritis
; C: Breast density. For each metric on a given test set, each pairs of models (MC and
non-MC multi-class, ordinal, regression, Siamese) was compared. The box plots on the
left side displays the value range of the AUROC, respectively, obtained through 500
bootstraps. The grid on the right side includes the 28 pair-wise comparisons. * means
that a statistical difference (𝑝− 𝑣𝑎𝑙𝑢𝑒 < 0.05 on a two-sided t-test) was reached while
a black square indicates no statistical differences. Only metrics where at least one
pair had no statistical difference was presented.
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Appendix B

Learning the bias of individual

annotators from single ordinal labels -

Appendix

B.1 Generation of the synthetic dataset

Each image was 400 x 400 pixels in size. The background and foreground colors were

independently sampled as RGB tuples from a uniform distribution ranging from 0 to

255. We defined the length of each square, the radius of its corners, and its rotation

by sampling from uniform distributions with the following ranges:

• length: [10, 380] (pixels)

• radius: [0.001, length
2

] (pixels)

• rotation: [0, 89] (degrees)

Furthermore, the squares were placed within the image such that the full square fit

and no parts were cut off. We generated 10000 images with rounded rectangles. The

distribution of the continuously valued ground truth, the roundness of the squares, is

depicted in Figure
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Figure B-1: Distribution of the synthetic dataset. Histogram of the continuously
valued ground truth, the roundness of the squares, in the synthetic dataset.
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