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ABSTRACT
Traditional two-point in-situ calibration systems for microwave radiometers use

large, on-board hot targets [12]. Small satellites such as CubeSats, however, are
unable to house these hot targets due to SWaP constraints. Instead, CubeSat ra-
diometers such as the TROPICS Pathfinder use noise diodes as smaller alternative
hot calibration targets [18]. Noise diodes can experience calibration drifts that must
be characterized and accounted for to maintain the reliability of radiance measure-
ments. Given the stability of lunar radiative transfer models in microwave frequencies,
lunar vicarious calibration may be a feasible method to detect calibration drifts.

In this thesis, we evaluate the use of TROPICS Pathfinder observations for lunar
calibration. We develop a lunar calibration approach that takes TROPICS obser-
vations as input, processes TROPICS data for lunar observations, estimates lunar
intrusion temperature and scan geometry, and accounts for pointing error. We com-
pare the lunar brightness temperature estimates and measured antenna temperatures
to the lunar radiative transfer model developed by Yang and Burgdorf [21].

We test our lunar calibration model on TROPICS Pathfinder lunar observations
from November and December 2021. Pathfinder’s antenna temperatures are within
1 K and 2 K of the simulated antenna temperatures for the W/F and G bands,
respectively. We find that even though the simulated antenna temperatures generally
agree, work remains to improve agreement between measured and modeled lunar
brightness temperatures. The antenna temperature differences can fluctuate by ±2K,
±4K, and ±5K for the W, F, and G bands, respectively, so the reliability of this
methods needs to be improved further before operational use for calibration. Possible
ways to improve lunar calibration results include tuning Yang and Burgdorf’s lunar
model, additional pointing error analyses, and lunar calibration model adjustments.

Thesis Supervisor: Kerri Cahoy
Title: Professor and Bisplinghoff Faculty Fellow
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Chapter 1

Introduction

1.1 TROPICS Mission Science Goals

The Time Resolved Observations of Precipitation structure and storm Intensity with

a Constellation of Smallsats (TROPICS) is an upcoming mission that was originally

planned as a constellation of six, 3-U CubeSat microwave radiometers (MWRs). Due

to a launch failure in 2022, it is now planned to consist of four, 3-U CubeSats instead.

The reduced scale has now launched 2 of the 4 CubeSats in May 2023 and will provide

3-dimensional temperatures of tropical cyclones (TCs) with high spatial resolution

and revisit times of at most 60 minutes [4].

As outlined in [4], the TROPICS mission’s main science goals are to:

1. Determine the relationship between upper-level warm-core evolution, precipita-

tion structure, and storm intensity changes,

2. Determine the relationship between environmental humidity fields and TC pre-

cipitation structure, and

3. Investigate how the more frequent microwave observations from TROPICS im-

pact numerical and statistical intensity forecasts of TCs.

To fulfill these science goals, each TROPICS CubeSat will house a passive MWR

that is able to measure 12 radio frequency channels spanning the W, F, and G bands.
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Table 1.1 describes all TROPICS channels as well as their use.

Table 1.1: TROPICS Frequencies [4, 5]

Band Channel Frequency (GHz) Purpose
W 1 91.65 +/- 1.4 Precipitation Measurement

F

2 114.5

Temperature Profile near
Oxygen Absorption Line

3 115.95
4 116.65
5 117.25
6 117.80
7 118.24
8 118.58

G

9 184.41 Temperature Profile near Water
Vapor Absorption Line10 186.51

11 190.31
12 204.80 Cloud Ice Measurements

To test the MWR instrument as well as the calibration and validation algo-

rithms, the TROPICS engineering model CubeSat (called TROPICS Pathfinder) was

launched in June 2021 as a precursor to the mission [18]. In this thesis, we evaluate

Pathfinder observations for lunar calibration.

1.2 Microwave Radiometer Measurement Geometry

The TROPICS Pathfinder CubeSat is in a sun-synchronous Low Earth Orbit (LEO)

with a period of approximately 97 minutes [19]. Table 1.2 displays Pathfinder’s orbital

parameters.

Table 1.2: Orbital Parameters of the TROPICS Pathfinder CubeSat [19]

Orbit Parameter Value
Altitude (km) 528.8 - 544.2

Inclination (deg) 97.51
Longitude of the Ascending Node (deg) 330.29

Period (min) 97
NORAD ID 48901
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The onboard microwave radiometer instrument scans at 30 RPM in the cross track

(CT) direction. There are three main sampling sectors around the 360∘ rotation, as

shown in Figure 1-1: the Earth Sector consisting of 81 samples, the Noise Diode

Sector, and the Deep Space Sector. The latter two are the calibration sectors, each

of which consist of 10 samples. Each sample represents approximately 1.5∘ of the

revolution.

Figure 1-1: The TROPICS scan pattern. Each spot represents approximately 1.5∘ of
each revolution [18].

1.3 Microwave Radiometer Calibration

MWRs typically use a 2-point calibration scheme when retrieving the radiance cor-

responding to a given digital count. These two points span the dynamic temperature

range, with one “cold” and one “hot” point. A visualization of the 2-point calibra-

tion scheme is shown in Figure 1-2. For reliable measurements, TROPICS requires a

calibration precision of at most 1 K or better [18].

To obtain measurements for the cold and hot calibration points, MWRs use a

combination of onboard and vicarious targets. The selection of calibration targets is

often based on physical constraints and the reliability of the models that estimate the

targets’ temperatures. Sections 1.3.1 and 1.3.2 describe popular calibration targets.
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Figure 1-2: An example of the 2-point calibration scheme used for TROPICS. 𝑇𝑐𝑜𝑠𝑚𝑖𝑐

is the deep space temperature (or “cold” point), while 𝑇𝑁𝐷 + 𝑇𝑐𝑜𝑠𝑚𝑖𝑐 refers to the
combined noise diode and deep space measurement (the “hot” point). The “baseline”
refers to the digital number (DN) corresponding to the “cold” point. The gain is
the slope between these two calibration points, and the blue line accounts for the
nonlinear term in the calibration algorithm. This nonlinear term is calculated using
prelaunch calibration testing [18].

1.3.1 Onboard Calibration

Traditionally, onboard microwave calibration targets consist of bulky, conventional

hot loads that act as RF blackbodies. Satellites such as the Global Precipitation

Measurement (GPM) Microwave Imager (GMI) and the Meteorological Operational

Satellite - Second Generation (MetOp-SG) use metal pyramids that are coated with

RF-absorbing material as their hot loads [12, 20].

Recently, however, smaller calibration sources such as weakly coupled noise diodes

have been on the rise because miniaturized satellites such as CubeSats are unable to

house the legacy targets due to size, weight, and power (SWaP) constraints. The

Jason Microwave Radiometer (JMR) launched in 2001 was the first mission to use

noise diode calibration, and GMI uses a dual calibration system consisting of both

traditional onboard hot loads and noise diodes [6, 11]. The TROPICS CubeSats,

including Pathfinder, also use noise diodes for calibration [18].

Although better suited for miniaturized satellites, noise diodes require additional
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testing and monitoring due to their unstable power output [18]. Brown et al. found

that noise diode behavior is not only unpredictable but also unique to each individual

component [7]. While some noise diodes aboard the JMR were stable over the first

4 years of operation, others’ effective temperatures drifted between 0.2% and 3% [6].

Similarly, most noise diodes aboard the GMI stabilized within 4 years, but the 10 GHz

noise diode continued to fluctuate in temperature [10]. Given that the effective noise

diode temperature (denoted as 𝑇𝑁𝐷 in Figure 1-2) plays a key role in calibration, these

drifts can affect the calculated antenna temperatures and later radiances. Brown et

al. demonstrated that continuous calibration drift monitoring and recalibration can

correct these effects and improve instrument accuracy and reliability [7].

1.3.2 Vicarious Calibration

Vicarious calibration refers to the use of external resources such as Earth’s surface,

deep space, and the Moon for calibration. In this section, we outline how each resource

is used.

The Earth’s surface is often used to calibrate both cold and warm scenes. Calm

ocean measurements are used for cold scene calibration, with drier atmospheres be-

ing preferred to reduce frequency-dependent atmospheric interference [6, 23]. In ad-

dition, forests are used for vicarious warm scene calibration. Dense forest canopies

(particularly that of the Amazon forest) can be approximated as a blackbody due to

their depolarizing effects and their emissivity’s predictable dependence with frequency

[7, 23]. Radiative transfer models that simulate forest brightness temperatures have

been developed by Brown and Ruf as well as Yang et al., with the former focusing

on the Amazon forest and the latter extending the approach to boreal and temperate

forests [23]. Yang et al. was able to detect 0.1 K calibration anomalies in the GMI

using their radiative transfer model [23].

Deep space is typically used as the cold point in calibration because its brightness

temperature is stable and unique for microwave frequencies. Microwave sounders such

as TROPICS Pathfinder model the deep space temperature using the Rayleigh-Jeans

approximation (or some variant), so the temperatures are thus considered known
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quantities [18]. The deep space temperatures used in TROPICS Pathfinder’s calibra-

tion are shown in Table 1.3.

Table 1.3: Deep Space Temperatures for the TROPICS Pathfinder Frequency Chan-
nels

Channel Deep Space Temperature (K)
1 6.4819
2 4.5461
3 4.5614
4 4.5689
5 4.5753
6 4.5812
7 4.5860
8 4.5897
9 5.4622
10 5.4948
11 5.5544
12 5.7894

During these deep space scans, however, the Moon can pass into the antenna field

of view (FOV) in an event called a lunar intrusion. If left unchecked, the Moon’s

higher brightness temperature can “contaminate” deep space readings and thus affect

the two-point calibration scheme.

To account for these lunar intrusions, these “contaminated” deep space measure-

ments are detected and often either corrected for or excluded from calibration. For

instance, Yang and Weng detect lunar intrusions by thresholding the electronic bore-

sight based on beamwidth [22]. They then correct these samples by comparing the

contaminated sample measurements to clean deep-space views and modeling the in-

crease in temperature due to the intrusion as function of antenna gain, lunar solid

angle, and estimated lunar brightness temperature [22].

Rather than excluding or correcting for these “contaminated” samples, more recent

efforts have focused on using lunar intrusions for vicarious calibration. Two main
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avenues of research originate from this goal: (1), developing reliable lunar temperature

models, and (2), formulating methods to compare lunar observations to said models.

Yang and Burgdorf validated a Lunar Microwave Radiative Transfer Model (RTM)

previously developed by Keihm [16, 21]. Given the observational frequency and lu-

nar phase as input, the RTM models the lunar temperature in a latitude-longitude

grid formation on the Moon and then calculates the disk-averaged lunar brightness

temperatures. The model accounts for the variation of lunar thermal properties given

frequency and local time [21].

Figure 1-3: An example visualization of the RTM’s lunar temperature grid for New
Moon and Full Moon at 23.8 GHz and 167 GHz [21]. Here, 0∘ phase angle is Full
Moon, and ±180∘ corresponds to New Moon.

To calibrate MWRs using Keihm’s model, Yang and Burgdorf estimate the black-

body temperature of the Moon and then calculate the frequency-dependent lunar

emissivities using lunar observations from the Advanced Technology Microwave Sounder

(ATMS) [21]. They validate the calibrated model on lunar observations provided by

Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder

(MHS) onboard NOAA-16, 17, 18, 19, and Metop-A,B,C satellites for frequencies

between 22 and 190 GHz. These lunar observations had the Moon pass through the
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center of the antenna’s FOV. As shown in Table 1.4, TROPICS has close frequency

channel matchups to frequencies used in Tiger and Burgdorf’s validation for channels

1 (91.65 GHz ± 1.4 GHz), 9 (183 GHz), and 11 (190.31 GHz).

Table 1.4: Approximate Matchups of TROPICS Pathfinder Frequency Channels and
AMSU Frequency Channels used in Yang and Burgdorf’s Validation [22]. For addi-
tional comparison, we include the bandwidths of the TROPICS Pathfinder and AMSU
frequency channels from [1], [2], and [19] in the same order in which the instruments
are listed.

TROPICS Matchup from [22]
Channel Frequency

(GHz)
Bandwidth

(MHz)
Frequency

(GHz)
Bandwidth

(MHz)
Instrument

1 91.65 ±
1.4

1000 89 <6000,
1000, 2800

AMSU-A,
AMSU-B,

MHS
2 114.50 1000

None None None

3 115.95 800
4 116.65 600
5 117.25 600
6 117.80 500
7 118.24 380
8 118.58 300
9 184.41 2000 183 1000, 1000 AMSU-B,

MHS
10 186.51 2000 None None None
11 190.31 2000 190 2200 MHS
12 204.80 2000 None None None

Yang and Burgdorf’s validation demonstrates a mean error of less than 10 K in

lunar brightness temperature [21]. They performed a sensitivity analysis to deter-

mine how errors in simulated lunar brightness temperature affect calculated antenna

temperature accuracy when compared to MHS and AMSU measurements. Assuming

accurate scan geometry and antenna beam characteristics, this lunar brightness tem-

perature error corresponds to an antenna temperature error of 0.4 K in the W band

for 2.2∘ beamwidth and 1 K in the G band for 1.1∘ beamwidth as shown in Figure

1-4 [21].
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Figure 1-4: The relationship between the projected error in the disk-averaged lu-
nar brightness temperature 𝑇𝐷𝑖𝑠𝑘

𝐵 and the corresponding antenna temperature 𝑇𝑎
for the K, V/W, and G bands from Yang and Burgdorf’s sensitivity analysis. The
beamwidths are assumed to be 5.2∘, 2.2∘, and 1.1∘ for the K, V/W, and G bands,
respectively. This error analysis demonstrates that the G band is more sensitive to
errors in 𝑇𝐷𝑖𝑠𝑘

𝐵 [21].

Crews developed a lunar calibration algorithm based on sun-tracking ground ra-

diometry methods [9]. This algorithm models measured antenna temperature as a

function of the antenna scan geometry and the relative position and size of the Moon

with respect to the antenna FOV center, where the FOV is the area spanning the an-

tenna beamwidth. This algorithm was validated against ATMS lunar intrusion data,

and the average residual was within the ATMS error budget of 0.6 K - 3.9 K [9].

In addition to developing a lunar calibration algorithm, Crews investigated the

feasibility of lunar calibration for the TROPICS constellation. Their MATLAB sim-

ulations estimated that there are approximately 23, 19, and 11 lunar intrusions per

one 96-minute TROPICS CubeSat orbit in the W, F, and G bands, respectively [9].

The frequency of lunar intrusions suggests that the Moon can potentially be used to

track calibration drift over time.
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1.4 Thesis Contributions

In this thesis, we develop a method for estimating lunar intrusion temperatures and

electronic boresight angle measurements using TROPICS Pathfinder data. We also

assess antenna pointing error using lunar intrusions and evaluate the feasibility of

using TROPICS Pathfinder data for lunar calibration by comparing TROPICS lunar

observations to Yang and Burgdorf’s lunar simulation. We also assess the current

lunar calibration model error and the feasibility of using TROPICS Pathfinder ob-

servations for lunar calibration. With this work, we create an initial framework for

TROPICS lunar calibration that can be extended for future TROPICS CubeSats.

1.5 Thesis Organization

In Chapter 2, we outline the overall approach as well as the tools used for lunar

calibration. From there, Chapter 3 details the data quality considerations and data

preparation strategy for TROPICS lunar observations. In Chapter 4, we compare

TROPICS observations to Yang and Burgdorf’s RTM, characterize calibration error,

and also analyze this method’s sources of error. We then outline our conclusions and

future work in Chapter 5, particularly possible extensions and improvements to the

calibration method.
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Chapter 2

Approach

Lunar calibration requires two sets of data: (1) on-orbit lunar observations made

by the TROPICS radiometer, and (2) a lunar model; in this work, we use Yang

and Burgdorf’s modeled lunar data for comparison. In order to have a baseline for

comparison in lunar calibration, we use simulated lunar data and treat it as truth as

described in Section 2.1.

Before comparing the TROPICS Pathfinder measurements to Yang and Burgdorf’s

lunar model, we preprocess, align, and analyze the TROPICS on-orbit lunar obser-

vations. This chapter describes the datasets used in lunar calibration as well as the

metrics used to assess the reliability and accuracy of the TROPICS Pathfinder lunar

observations.

2.1 Lunar Model

We use Yang and Burgdorf’s Lunar Radiative Transfer Model (RTM) for the simu-

lation. This model is a Python tool that takes frequency and lunar phase as input

and calculates the lunar temperature for lunar latitudes and longitudes [21]. From

there, the model produces a look-up table of simulated disk-averaged lunar brightness

temperatures.

Figure 2-1 displays the simulated disk-averaged lunar brightness temperatures as

a function of lunar phase angle. Lunar phase angle is defined such that 0∘ is Full
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Figure 2-1: Disk-averaged lunar brightness temperatures outputted from Yang and
Burgdorf’s lunar RTM for selected TROPICS frequencies. From left to right in the
legend, these frequencies correspond to Channel 1 (91.65 GHz), 2 (114.5 GHz), 9
(184.41 GHz), and 12 (204.8 GHz).

Moon and ±180∘ is New Moon. As expected, lunar temperatures are at their lowest

near New Moon and peak towards Full Moon. As a note, there is a phase offset

between the simulated lunar brightness temperature and the lunar phase angle, so

the simulated lunar brightness temperatures do not directly correspond to the lunar

surface temperatures [21]. This behavior is expected because microwave frequencies

penetrate the lunar surface at varying depths and due to parameters such as heat

capacity, microwave absorption, and solar flux that depend on frequency, depth, and

time [14]. We also expect to see the same behavior in Pathfinder’s lunar observations.

In order to use Yang and Burgdorf’s simulation for lunar calibration, we retrieve

the time of the lunar intrusion as measured by TROPICS Pathfinder and find the

corresponding lunar phase using ephemeris information provided by the Jet Propul-

sion Laboratory Horizons System [17]. From there, we use the lunar phase angle to

look up the corresponding lunar temperature in Yang and Burgdorf’s RTM.

In theory, lunar calibration should use the lunar phase angle as observed by TROP-

ICS Pathfinder. However, we approximate this value by using the the lunar phase

angle with respect to an Earth observer. TROPICS Pathfinder (and the future TROP-

ICS CubeSats) are in LEO orbit, so this approximation will change the lunar phase
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by at most 0.1∘. Given that Yang and Burgdorf’s RTM has a lunar phase resolution

of 1∘, this approximation has a negligible effect on lunar calibration.

2.2 TROPICS Data

We use the Level 1 data from the the TROPICS Data Processing Center (DPC),

which contains the antenna temperature, calibration flags, and derived brightness

temperatures. This dataset includes observations from October 2021 through January

2023.

The data fields are largely based on four main parameters representing the number

of scans n_scans, the number of spots within the scan n_spots, the 12 channels,

and the 10 cold calibration spots per scan. As each sample represents 1.5∘ of the

scan, TROPICS can theoretically have 240 samples per scan. However, only areas

designated to the calibration and Earth sectors are kept for analysis.

Table 2.1 displays the data fields, meanings, and dimensions for the data values

used. Data fields related to pointing, particularly encoderAngle_deg, moon_theta_F,

and moon_theta_G, are further described in Section 2.3.2.

Table 2.1: TROPICS Pathfinder Level 1 Data Fields Used in this Work

Field Name Meaning Dimension Units
cC Cold Calibration Digital Counts 10 x n_scans x 12 unitless

cC_CalFlag Cold Calibration Outlier Flag 10 x n_scans x 12 unitless
intruLunarFlag Binary Lunar Intrusion Flag 240 x n_scans x 12 unitless
intruSolarFlag Binary Solar Intrusion Flag 240 x n_scans x 12 unitless

timeC Time of Cold Calibration Scan n_scans x 1 seconds
Gain_KpDN Gain n_scans x 12 K/DN

TC Deep Space Temperature n_scans x 12 K
encoderAngle_deg Encoder Angle 10 x n_scans x 12 deg

indC Cold Calibration Spot Indices 10 x 1 unitless
moon_theta_F W and F band Electronic

Boresight
240 x n_scans deg

moon_theta_G G band Electronic Boresight 240 x n_scans deg
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2.3 Assessment of TROPICS Lunar Intrusion Mea-

surements

The lunar calibration performance heavily relies on the quality and reliability of the

TROPICS lunar observations. Before using said observations, we focus on two factors

to assess data quality: antenna beamwidth and pointing.

2.3.1 Beamwidth

TROPICS Pathfinder defines the antenna beamwidth as the Full Width Half Max

(FWHM) beamwidth. Each band is defined with cross track (CT) and along track

(AT) beamwidths, and the antenna FOV is the ellipse spanning the down and cross

track beamwidths. In this work, we refer to antenna beamwidth and FOV in the

same manner.

For lunar calibration, we approximate the antenna main beam pattern as a cir-

cularly symmetric Gaussian distribution, where the maximum antenna response lies

in the center of the antenna beam. Antenna beamwidth affects the antenna response

to the Moon and will separately impact the measured and simulated lunar intrusion

temperatures.

In addition, Pathfinder’s scans cause beamwidth smearing in the CT direction as

shown in Figure 2-2. Although there are estimates for smeared beamwidths, there

are currently no on-orbit characterizations. Table 2.2 shows the expected antenna

beamwidths for all bands.

Table 2.2: Pathfinder Channel Expected FWHM Beamwidths [18]

Band Channel Smeared CT (deg) AT (deg)
W 1 2.9871 2.7456
F 2 - 8 2.4683 2.3177

G
9 - 11 1.8469 1.5083

12 1.8066 1.4188

If the actual beamwidth is different from the simulated values, then the lunar
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Figure 2-2: An example of an unsmeared and smeared sampling antenna FOV due
to Pathfinder’s scan pattern, where the center of the FOV is denoted with “X”. This
smearing increases the effective CT beamwidth. Although there is minor smearing
in the along track direction, it is considered negligible compared to the cross track’s
smearing [19].

calibration results are likely to be affected. If we model the main beam as a cir-

cularly symmetric Gaussian distribution, then the estimated lunar temperature will

be inflated if the actual beamwidth is larger (with otherwise identical scan geome-

try). On the other hand, a smaller-than-estimated beamwidth will yield lower lunar

temperature estimates.

2.3.2 Pointing

The electronic boresight values in the data fields moon_theta_F and moon_theta_G

are defined as the 1-dimensional, unsigned separation angle between the center of the

Moon and the center of the antenna beam (as shown in Figure 2-3). The antenna

beam’s center relies on spacecraft pointing, so pointing is crucial for lunar calibration.

The Moon subtends approximately 0.5∘ in Pathfinder’s FOV, so the measured lunar

temperature is sensitive to small pointing fluctuations. Depending on the pointing

fluctuations, the Moon can be unexpectedly in or out of the antenna’s beamwidth. In

either case, the antenna response to the Moon (and therefore Pathfinder’s measured

antenna temperature) can be affected. In this work, we consider pointing to be

affected by three main factors: (1) encoder angle, (2) spacecraft attitude, and (3)

antenna beamwidth alignment.

Encoder Angle The encoder angle physically relates to the satellite scan angle.

This field is used in coordinate system transformations to calculate the antenna line
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Figure 2-3: A 2-dimensional visualization of the electronic boresight definition. The
triangle represents the antenna beam. The black dotted line is the center of the
antenna beam (which is also the line of sight), while the blue dotted line connects
the antenna to the center of the Moon. The electronic boresight (red) represents the
angle between the Moon and the line of sight.

of sight for both the W/F and G bands as described in Appendix B. These line of

sight vectors are different for the W/F and G bands due to the differing antenna and

receiver chains as shown in Figure 2-4.

Figure 2-4: A simplified block diagram of the TROPICS payload [18]. The W/F and
G bands use different receiver chains and antennas.

The encoder angle is measured using a rotating encoder wheel. For one entire

scan, the encoder wheel makes one revolution. While the wheel rotates, the spacecraft

measures the encoder angle using the wheel’s markings at 15 equally spaced sample

encoder angle landmarks. All other encoder angle values and sample times are spline

interpolated using these landmarks [18]. Ideally, the encoder angle should smoothly

change as the wheel rotates. However, this angle can jitter if the wheel’s controller
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oscillates at the desired encoder angle. As shown in Figure 2-5, these oscillations

can affect the antenna FOV, moving the Moon into and out of the antenna beam

and creating fluctuations in measured antenna temperature during lunar intrusions.

Section 3.4.1 further describes how encoder angle jitter can affect the data preparation

for Pathfinder’s lunar observations.

Figure 2-5: An example of encoder angle error and its effects on lunar observations.
On the left image, the triangles represent the antenna beam with a lagging encoder
(red), an ahead encoder (blue) and a perfect encoder (black). The right plot is a
visualization of the encoder measurement variation on the encoder wheel, where the
desired encoder angle is the black arrow, and encoder angle jitter is represented by
the blue and red arrows. The scan direction indicates the rotational direction of the
encoder wheel and spacecraft pointing.

Spacecraft Attitude Spacecraft attitude is defined in terms of roll, pitch, and

yaw. As shown in Figure 2-6, deviations in any of these values will induce an offset

in antenna FOV orientation and affect the measurement, so the measured antenna

temperature during a lunar intrusion with attitude jitter will be different from mea-

surements with perfect attitude because of the different spacecraft orientation.

Antenna Beam Alignment Antenna beam misalignment can be caused by in-

strument mounting error [18]. Although prelaunch mechanical testing was performed

on TROPICS Pathfinder to calculate antenna beam offsets, thermal changes during

and after launch can contribute to additional alignment offsets.

As shown in Figure 2-7, antenna beam misalignment changes the location of the

antenna field of view with respect to the spacecraft body frame. This misalignment

can induce a time offset between when the spacecraft expects there to be a lunar
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intrusion and when it actually measures the lunar intrusion. In addition, the antenna

response will also be shifted in time.

Figure 2-6: An example of spacecraft attitude error and its effects on lunar observa-
tions. The triangles represent the antenna beam with attitude error (red) and without
pointing error (black).

Figure 2-7: A visualization of antenna beamwidth alignment, where the triangles
represent the antenna beam when perfectly aligned (black) and off-center (red).

2.4 Summary

To consider lunar calibration, we compare TROPICS Pathfinder lunar observations to

Yang and Burgdorf’s RTM. In doing so, we assess TROPICS data, focusing on how

pointing and beamwidth can affect calibration results. Before comparing TROP-

ICS Pathfinder measured brightness temperature to Yang and Burgdorf’s simulated

brightness temperatures, we need to preprocess the TROPICS data to estimate mea-

sured lunar brightness temperature. Chapter 3 describes our TROPICS data prepa-

ration strategy.
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Chapter 3

TROPICS Pathfinder Data

Preparation

TROPICS lunar intrusion observations must be preprocessed before they can be used

for calibration. This chapter covers this preparation workflow, starting from the

TROPICS Level 1 data in Section 2.2.

3.1 Calculating Antenna Temperature from Digital

Counts

To calculate the antenna temperature corresponding to given digital counts in scan

𝑖, we perform the conversion

𝑇𝐴 = 𝑇𝑑𝑠 +𝐺𝑖 * (𝐷𝑁 −𝐷𝑁𝑖) (3.1)

where 𝑇𝑑𝑠 is the known deep space temperature as specified in Table 1.3, and 𝐺 is

the gain value for scan 𝑖 in Kelvin / DN. The input digital counts are 𝐷𝑁 , and 𝐷𝑁𝑖

is the median of the 10 cold calibration digital counts for scan 𝑖, excluding samples

flagged as being a solar intrusion by intruSolarFlag or other outlier by cC_CalFlag

from Table 2.1.

In Figure 3-1, we use Equation 3.1 to calculate the digital counts and equivalent
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antenna temperature for data from Orbit 1410, Channel 12. Both the digital counts

and equivalent antenna temperatures are displayed as 2-dimensional images.

Figure 3-1: The cold calibration digital counts and antenna temperatures for Orbit
1410’s channel 12 lunar intrusion observation. This measurement was taken on Oc-
tober 2nd, 2021 when the Moon was a waning crescent with 22% illumination and a
phase angle of 117.28∘ [3, 17].

3.1.1 Channel Variability

Antenna temperatures calculated from Equation 3.1 are channel-specific. This be-

havior is due to the band-wise and channel-wise variation in inputs such as the deep

space temperature, gain, digital counts, and lunar intrusion flags.

The deep space temperature is unique and stable for microwave frequencies, with

values calculated using a modified Planck correction and a modified Rayleigh-Jeans

approximation [18]. Table 1.3 displays these channel-specific temperatures.

The gain 𝐺 is calculated as the slope between the deep space and noise diode

calibration points for each scan as shown in Figure 1-2. Given that each frequency

has a unique deep space temperature, the gain will also vary by channel and will

affect the derived antenna temperatures.
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3.2 Detecting Lunar Intrusions

The lunar intrusion flags provided in the TROPICS Pathfinder observations (intruLunarFlag

in Table 2.1) determine if the Moon is in the antenna FOV solely by using spacecraft

ephemeris and antenna pointing data, determining if the condition

𝛽 < 𝐵𝑊 + 𝜑𝑀/2 (3.2)

is true. In Equation 3.2, 𝐵𝑊 is the mean antenna beamwidth between the AT and

smeared CT beamwidths given in Table 2.2, 𝛽 is the electronic boresight, and 𝜑𝑀 is

the angle subtended by the Moon with respect to TROPICS Pathfinder.

Assuming TROPICS Pathfinder pointing data are accurate, Equation 3.2 would

be a reliable (albeit conservative) way to detect lunar intrusions. As 𝐵𝑊 is FWHM,

Equation 3.2 requires that the center of the Moon is at least (𝐵𝑊 )∘ away from the an-

tenna FOV rather than (𝐵𝑊/2)∘. However, as mentioned in Section 3.4, Pathfinder’s

pointing dataset has offsets and therefore needs to be adjusted. The provided lunar

intrusion flags, in turn, also experience this offset and may not accurately capture the

lunar intrusion signal.

For instance, take the example in Figure 3-2, which displays the flagged temper-

ature measurements in Channel 12 of Orbit 1410. Given that the Moon’s temper-

ature is 2 magnitudes greater than the deep space temperatures in Table 1.3, we

expect more photons and a higher measured antenna temperature when the Moon

is in the antenna FOV. Although intruLunarFlag does flag most of the signal as

an intrusion, there appears to be a time offset between the lunar intrusion time pe-

riod and the time period labeled by intruLunarFlag. Specifically, the latter half

of the lunar intrusion temperature signal is not flagged, while samples before the

temperature are. In addition, low temperature measurements near the frequency-

dependent deep space temperature are still flagged as having the Moon in the FOV,

even though temperature measurement suggests otherwise. Channel 12, having the

smallest antenna beamwidth of all TROPICS channels, is most affected by the off-

set in intruLunarFlag because the lunar intrusion signal (as determined by antenna
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temperature measurements) will have the shortest duration.

Figure 3-2: The measured antenna temperatures for Channel 12 of Orbit 1410 during
a lunar intrusion. The orange points are those flagged by the original TROPICS
Pathfinder lunar intrusion flags (intruLunarFlag in Table 2.1).

The performance of the Markov Chain Monte Carlo (MCMC) fitting in Section

3.6 depends on how much of the lunar intrusion signal is captured. Therefore, we

detect lunar intrusions by analyzing Pathfinder’s measured temperatures in addition

to considering pointing data.

In order to use a measurements for lunar calibration, we require that:

1. The measurement is not a solar intrusion as flagged by the field intruSolarFlag

from Table 2.1. Solar intrusions will have high antenna temperatures that may

not be physically possible in a lunar intrusion.

2. In addition, after considering (1), the measured antenna temperature must be

substantially higher than “uncontaminated” deep space measurements. We thus

assume that if the Sun is not in the antenna FOV, then the Moon must be

the cause of such an increase in measured antenna temperature in the cold

calibration sector.

To meet (1), we exclude all temperatures that are flagged by intruSolarFlag. We

then satisfy (2) by determining if there remains a high antenna temperature signal.

Our method is outlined in Section 3.2.1.
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3.2.1 Detecting the Lunar Intrusion Signal

After we exclude all solar intrusion measurements, we assume that any remaining

high antenna temperature signals are due to lunar intrusions. We also assume “un-

contaminated” deep space temperature measurements are normally distributed and

centered on the deep space temperature in Table 1.3.

To detect a lunar intrusion peak, we first characterize the noise 𝜎𝑑𝑠 in the Pathfinder

cold calibration temperature measurements. By doing so, we can determine what is

considered a high temperature measurement. To find 𝜎𝑑𝑠, we create a sliding win-

dow over all measured antenna temperatures in a given orbit and then calculate the

standard deviation in temperature for each window, which we define as

𝜎𝑑𝑠,𝑗 =

√︃∑︀
(𝑇𝐴,𝑖 − 𝜇𝑗)2

𝑁𝑗

(3.3)

such that, for a given window 𝑗, 𝜎𝑑𝑠,𝑗 is the standard deviation in measured antenna

temperature, 𝑁𝑗 is the number of samples, 𝑇𝐴,𝑖 is the 𝑖𝑡ℎ antenna temperature, and

𝜇𝑗 is the mean antenna temperature. This sliding window is 20 scans wide, which

equates to 𝑁𝑗 = 200 measurements per window.

Figure 3-3: A comparison of Orbit 1410 Channel 12 antenna temperatures (left) and
corresponding sliding window temperature standard deviations (right). The spike in
temperature near 12:00 is the lunar intrusion shown in Figure 3-2. The standard
deviation is approximately 0.3582 K for “uncontaminated” measurements.
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As shown in Figure 3-3, the window standard deviation increases sharply in the

same time period as the lunar intrusion. Besides this time period, the antenna tem-

perature and its standard deviation stay approximately constant. We find 𝜎𝑑𝑠 by cal-

culating the median of all window standard deviations in each TROPICS Pathfinder

orbit.

In addition to calculating 𝜎𝑑𝑠, we use the sliding window’s standard deviation as

indicators of a lunar intrusion signal. This indicator is useful in reducing false positives

when assigning lunar intrusion flags in Section 3.2.2, particularly in especially noisy

temperature measurements. As noted in Figure 3-3, the window standard deviation

increases sharply with a lunar intrusion signal. Therefore, we conclude that there is

a lunar intrusion signal if the maximum window standard deviation 𝜎𝑑𝑠,𝑚𝑎𝑥 satisfies

the condition

𝜎𝑑𝑠,𝑚𝑎𝑥 > 1 K (3.4)

The threshold of 1 K is determined empirically. Higher 𝜎𝑑𝑠,𝑚𝑎𝑥 indicates some

sample window included high measured lunar intrusion temperatures. For lunar cal-

ibration, we prefer higher lunar intrusion temperatures because they typically cor-

respond to a more noticeable lunar intrusion signal compared to “uncontaminated”

measurements and background noise. These larger signals are easier for MCMC to

fit to for lunar calibration in Sections 3.7 and 3.8. Therefore, we prefer using lu-

nar intrusions that have high 𝜎𝑑𝑠,𝑚𝑎𝑥 for lunar calibration. Of course, too high of a

threshold will exclude too many measurements, reducing the number of points for

lunar calibration. We therefore set the threshold to 1 K to balance between these

effects.
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3.2.2 Assigning Lunar Intrusion Flags

If there is a lunar intrusion signal as indicated by Section 3.2.1, we can then assign

lunar intrusion flags based on measured antenna temperature. We set a minimum

temperature threshold of

𝑇𝐴 > 𝑇𝑑𝑠 + 4𝜎𝑑𝑠, (3.5)

where 𝑇𝐴 is the measured antenna temperature, 𝑇𝑑𝑠 is the deep space temperature

from Table 1.3, and 𝜎𝑑𝑠 is the noise of the “uncontaminated” deep space temperature

measurements. Any measurements that satisfy Equation 3.5 are flagged as lunar

intrusions.

Using Equation 3.5, we find the peak of the lunar intrusion signal. Figure 3-4

continues with the Orbit 1410 Channel 12 example from Figure 3-3.

Figure 3-4: The flagged measured antenna temperatures for Orbit 1410 Channel
12 using Equation 3.5 before excluding time outliers (left) and after excluding time
outliers (right).

As shown in the left plot in Figure 3-4, the threshold from Equation 3.5 captures

most of the lunar intrusion signal but also includes some high, “uncontaminated”

measured antenna temperatures. We therefore exclude outlier samples if their sample

times are not within the range

𝑡± 3𝜎𝑡 (3.6)

to produce the right plot in Figure 3-4. In Equation 3.6, 𝑡 is the mean sample time of

all flagged temperature measurements from the left plot in Figure 3-4. Also, 𝜎𝑡 is the
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standard deviation of the flagged sample times. The remaining time period covering

these flagged sample times can be considered the lunar intrusion time period.

As a note, we use 4𝜎𝑑𝑠 in Equation 3.5 to reduce the amount of high, “uncontam-

inated” measured antenna temperatures that are initially flagged. In this way, the

time period where the intrusion occurs is more clear, and we can more easily isolate

the lunar intrusion signal.

Upon focusing on the lunar intrusion time period, however, we find that the flags

in the right plot in Figure 3-4 do not capture the leading or trailing ends of the lunar

intrusion signal. This behavior is likely because the Moon is just entering or exiting

the antenna FOV, so it thus does not increase the measured temperature enough to

satisfy Equation 3.5.

To incorporate the leading and trailing ends, we then expand the lunar intrusion

time period by a buffer of 1 minute (or 30 scans) on both ends of the time period.

We relax our minimum temperature requirement to be

𝑇𝐴 > 𝑇𝑑𝑠 + 3𝜎𝑑𝑠, (3.7)

where 𝑇𝐴, 𝑇𝑑𝑠, and 𝜎𝑑𝑠 are defined identically to those in Equation 3.5.

Figure 3-5: The flagged measured antenna temperatures for Orbit 1410 Channel 12
before (left) and after (right) including the 30 scan buffer and relaxed the temperature
threshold using Equation 3.7.

As shown in Figure 3-5, using Equation 3.7 allows us to capture more high temper-

ature measurements where the Moon begins to enter the antenna FOV. After relaxing
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our threshold, we are able to flag more of the lunar intrusion signal. We refer to the

resulting flags as the “custom lunar intrusion flags” in Figure 3-6.

Figure 3-6: A comparison between the original lunar intrusion flag (left) and custom
lunar intrusion flag (right) for Orbit 1410 Channel 12 antenna temperatures.

Figure 3-6 demonstrates that the custom lunar intrusion flags better capture the

lunar intrusion signal and exclude low temperature measurements from the lunar

intrusion. For this thesis, we use the custom lunar intrusion flags as calculated in this

section.

3.3 Antenna-Related Equations

Once we detect and flag lunar intrusions in Section 3.2, we then account for pointing

error in the TROPICS Pathfinder observations in Section 3.4 and calculate Pathfinder’s

lunar temperature estimate in Sections 3.6 through 3.8.

In particular, Sections 3.4 and 3.8 rely on antenna-related equations. We outline

these equations in this section. These equations are based on the calibration algorithm

developed by Crews [9].

The measured antenna temperature during a lunar intrusion can be modeled as

𝑇𝐴 = 𝑇𝑑𝑠 +𝑅 · 𝑓 · 𝑇𝑚𝑜𝑜𝑛 (3.8)

where 𝑇𝑑𝑠 is the known deep space temperature, a frequency-dependent value. Table

1.3 displays these known values. 𝑅 is the normalized antenna response that accounts
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for the Moon’s position relative to the antenna line of sight. This value is defined in

[9] and is

𝑅 = 𝑒−𝛽2/(2𝜎2) (3.9)

such that 𝛽 is the electronic boresight, and

𝜎 =
0.5𝐵𝑊√
2 ln 2

(3.10)

Figure 3-7 displays the relationship between 𝛽 and 𝑅. As 𝛽 increases, the antenna

response 𝑅 decreases as the Moon is further from the center of the antenna FOV.

Figure 3-7: An example 2D Gaussian modeling of an antenna main lobe with an
antenna beamwidth of 1∘. The normalized antenna response 𝑅 is at its maximum at
the center of the antenna FOV.

As an aside, we set the antenna beamwidth BW to be the average of the cross track

and along track beamwidths from Table 2.2. These average antenna beamwidths are

displayed in Table 3.1.

Table 3.1: The average of the TROPICS Pathfinder Smeared CT and AT antenna
beamwidths

Channel Smeared CT (deg) AT (deg) Average Beamwidth (deg)
1 2.9871 2.7456 2.8663

2-8 2.4683 2.3177 2.3930
9-11 1.8469 1.5083 1.6776
12 1.8066 1.4188 1.6127
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The value 𝑓 represents the fill factor, which accounts for the relative size of the

Moon with respect to the antenna’s field of view. This value is defined as

𝑓 =
Ω𝑀

Ω𝐴

(3.11)

such that Ω𝑀 , the solid angle of the Moon, is

Ω𝑀 =

∫︁ 2𝜋

0

∫︁ 𝜑𝑀/2

0

𝐹𝑛𝑀𝐿(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 (3.12)

and Ω𝐴, the solid angle of the antenna, is

Ω𝐴 =
1

𝜂𝑀𝐿

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝐹𝑛𝑀𝐿(𝜃, 𝜑)𝑑Ω (3.13)

In Equations 3.12 and 3.13, 𝜑𝑀 refers to the angle subtended by the Moon, and 𝜂𝑀𝐿

is the antenna main beam efficiency. The expected main beam efficiencies that are

also used in this algorithm are listed in Table 3.2.

Table 3.2: The Expected Main Beam Efficiencies for TROPICS Pathfinder [18]

Channel Beam Efficiency (%)

1 81.15

2 91.70

3 93.80

4 94.10

5 94.30

6 94.60

7 95.60

8 95.40

9 89.10

10 88.50

11 89.70

12 91.90
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In addition, 𝐹𝑛𝑀𝐿 is the antenna main beam function given a zenith angle 𝜃, az-

imuth 𝜑, and antenna beamwidth 𝐵𝑊 from Table 3.1. This function is approximated

as a Gaussian of the form

𝐹𝑛𝑀𝐿(𝜃, 𝜑) = 𝑒− ln(2)(2𝜃/𝐵𝑊 )2 (3.14)

3.4 Accounting for Pointing Error in TROPICS Pathfinder

Observations

As mentioned in Section 2.3.2, pointing error in TROPICS Pathfinder can heavily

impact the measured antenna temperature during a lunar intrusion and therefore

lunar calibration overall. As shown in Figure 3-8, there is some pointing error in

TROPICS Pathfinder measurements. For a lunar intrusion, we expect to measure

a higher temperature when the Moon is closer to the center of the antenna FOV.

This event coincides with an electronic boresight 𝛽 that is near 0∘. As the Moon

moves further away from the antenna FOV center, the measured temperature should

decrease and approach the frequency-dependent deep space temperature in Table 1.3.

In fact, once 𝛽 > 𝐵𝑊/2, the antenna temperature should be approximately that of

deep space as the Moon exits the antenna FOV.

Figure 3-8: The relationship between the measured antenna temperature and the
electronic boresight as measured by Pathfinder for Channel 2 (left) and Channel 12
(right).
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As mentioned in Section 2.3.2, the W/F bands (Channels 1-8) use a different

antenna than the G band (Channels 9-12). Therefore, the G band has a different

antenna line of sight (and electronic boresight) from the W/F bands. Even so, Figure

3-8 indicates that there is an angle offset for both bands. Although the antenna tem-

perature approaches the deep space temperature for large 𝛽 values, the relationship

between temperature and electronic boresight is unclear in both plots for smaller 𝛽

values. In fact, Channel 12’s relationship is particularly vague. With a cross-track

antenna beamwidth of 1.8066∘ (as mentioned in Table 2.2), the Channel 12 antenna

temperatures should be approximately that of deep space when 𝛽 > 0.9033∘. How-

ever, we see temperatures as high as 10 K for 𝛽 > 2∘.

As outlined in Section 2.3.2, antenna beamwidth misalignment, spacecraft attitude

error, and encoder angle deviations can all cause this behavior. Section 3.4.1 outlines

the encoder angle jitter, and Section 3.4.2 details how we calculate the angle offset

to account for TROPICS Pathfinder’s pointing error.

3.4.1 Encoder Angle Measurements

As described in Section 2.3.2, encoder angle jitter (if present) can contribute to TROP-

ICS Pathfinder’s pointing error, later affecting the reliability of lunar calibration. We

analyze an example of Pathfinder’s encoder fluctuations in Figure 3-9, which occurred

on October 30th, 2021 for Spot 1 of the cold calibration sector.

Ideally, the encoder angle should smoothly change as the payload rotates for Sun

tracking; however, the encoder angle fluctuates with an amplitude of approximately

1∘. In addition to the encoder jitter effects outlined in Section 2.3.2, the 1∘ jitter

appears to also affect our upcoming MCMC fitting for electronic boresight as outlined

in Section 3.7. The MCMC fit results rely on how the electronic boresight evolves over

time, so any fluctuations in electronic boresight can affect the fit. For instance, higher

than expected electronic boresights are particularly influential near the fit’s minimum

point and often lead to inflated estimates of the minimum electronic boresight. This

higher electronic boresight will thus lead to higher lunar temperature estimates.
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Figure 3-9: The encoder angle values for Spot 1 of the cold calibration sector on
October 30th, 2021. The left image displays these values over a single orbit, with the
red box surrounding the area that is focused on in the right plot. The gradual change
in encoder angle is due to the standard movement of the payload scanner compared
to the payload rotation so that the solar array tracks the Sun. The sudden spikes in
the left plot are likely due to active spacecraft maneuvers and are not analyzed in
this work.

3.4.2 Calculating Angle Offsets

To account for Pathfinder’s pointing error, we calculate an angle offset ∆𝛽 such that

∆𝛽 = 𝛽 − 𝛽𝑡𝑟𝑢𝑡ℎ, (3.15)

where 𝛽 is the Pathfinder electronic boresight provided in the fields moon_theta_F

and moon_theta_G in Table 2.1 and 𝛽𝑡𝑟𝑢𝑡ℎ is the correct electronic boresight. By

calculating ∆𝛽, we can correct our electronic boresight to be

𝛽* = 𝛽 −∆𝛽, (3.16)

where 𝛽* is referred to as the adjusted electronic boresight.

To find ∆𝛽 in Equation 3.15, we need to know 𝛽𝑡𝑟𝑢𝑡ℎ. However, we do not know

this value. We instead turn to Yang and Burgdorf’s lunar simulation to calculate

𝛽𝑠𝑖𝑚 (the simulated electronic boresight) and approximate 𝛽𝑠𝑖𝑚 ≈ 𝛽𝑡𝑟𝑢𝑡ℎ. We outline

this approach in Section 3.4.3.
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3.4.3 Calculating the Simulated Electronic Boresight 𝛽𝑠𝑖𝑚

To calculate the simulated electronic boresight 𝛽𝑠𝑖𝑚, we assume TROPICS Pathfinder’s

temperature measurement is correct and that the Moon’s brightness temperature is

equal to Yang and Burgdorf’s simulated temperature. We then find the corresponding

electronic boresight 𝛽𝑠𝑖𝑚 for these temperatures.

For reference, we restate Equation 3.8 as

𝑇𝐴 = 𝑇𝑑𝑠 +𝑅 * 𝑓 * 𝑇𝑚𝑜𝑜𝑛

and reformulate Equation 3.9 as

𝑅 = 𝑒−𝛽2
𝑠𝑖𝑚/(2𝜎2).

To find 𝛽𝑠𝑖𝑚, we therefore set 𝑇𝑚𝑜𝑜𝑛 to the lunar brightness temperature from

Yang and Burgdorf’s RTM and 𝑇𝐴 to the measured Pathfinder antenna temperature.

𝑇𝑑𝑠 is taken from Table 1.3.

In doing so, we invert Equation 3.8 to solve for 𝛽𝑠𝑖𝑚:

𝛽𝑠𝑖𝑚 =

√︃
−2𝜎2 ln (

𝑇𝐴 − 𝑇𝑑𝑠

𝑓𝑇𝑚𝑜𝑜𝑛

) (3.17)

As 𝛽𝑠𝑖𝑚 must be real, we only calculate a sample’s 𝛽𝑠𝑖𝑚 if:

1. 𝑇𝐴 > 𝑇𝑑𝑠, and

2. 𝑓𝑇𝑚𝑜𝑜𝑛 > 𝑇𝐴 − 𝑇𝑑𝑠.

As mentioned in Section 3.4, we consider 𝛽𝑠𝑖𝑚 = 𝛽𝑡𝑟𝑢𝑡ℎ, adjusting Pathfinder’s 𝛽 using

the angle offset in Equation 3.16. Section 3.4.4 outlines how we adjust Pathfinder’s

𝛽 and apply the adjusted values to lunar calibration.
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3.4.4 Workflow for Adjusting Electronic Boresight

After calculating 𝛽𝑠𝑖𝑚 in Section 3.4.3, we calculate the angle offset using Equation

3.15 and determine how it relates with Pathfinder’s measured antenna temperature

𝑇𝐴, Pathfinder’s electronic boresight 𝛽, and the lunar phase 𝜃𝑀 .

To do so, we fit a channel-dependent multivariable polynomial to Pathfinder’s

samples that takes 𝑇𝐴, 𝛽, and 𝜃𝑀 as input when calculating the angle offset ∆𝛽. We

use the MATLAB function MultiPolyRegress to find this multivariable polynomial

[8].

Using Pathfinder measurements for lunar calibration that were also used to cal-

culate ∆𝛽 would be circular. If we were to apply ∆𝛽 to these measurements, then

Pathfinder’s measurements would appear to closely match Yang and Burgdorf’s sim-

ulation. We therefore split the Pathfinder dataset into two sections: (1) Training and

(2) Test.

For the Training dataset, we use Pathfinder measurements from October 2021 to

calculate ∆𝛽 as a function of 𝑇𝐴, 𝛽, and 𝜃𝑀 . By using an entire month for training,

we cover the entire range of the lunar cycle in our calculations.

Our Test dataset consists of all Pathfinder measurements that do not lie in the

Training dataset time period. Here, we test the ∆𝛽 calculations during training,

evaluate performance, and compare Pathfinder’s lunar temperature estimates to Yang

and Burgdorf’s simulation.

Figure 3-10 displays the performance of the multivariable polynomial for the Oc-

tober 2021 dataset. This month’s lunar intrusions cover nearly all lunar phases, with

gaps only near Full Moon (0∘) due to data availability. The model also has a low

mean residual value on the order of (10−14)∘ as shown in the second column, with at

most 0.1∘ and 0.2∘ residual for Channels 2 and 12, respectively. As shown in the right

column, the residuals vary depending on the lunar phase. The model’s residuals tend

to have a larger range near New Moon (±180∘), while having a smaller range near Full

Moon (0∘). This variation may be due to two factors: (1) lunar phase distribution

in lunar intrusions, and (2) the higher SNR at Full Moon. With more intrusion sam-
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Figure 3-10: The multivariable polynomial fit performance when calculating the angle
offset ∆𝛽 for Channels 2 (top) and 12 (bottom) in October 2021. The left column
shows the distribution of lunar phase angles for the lunar intrusions, while the mid-
dle column shows the distribution of ∆𝛽 residuals. The right column displays the
relationship between the lunar phase and ∆𝛽 residuals. ∆𝛽 is calculated as “Angle
Offset - Predicted Angle Offset,” where “Angle Offset” is the angle offset as calculated
in the Training dataset, and “Predicted Angle Offset” is the angle offset predicted by
the model for the test dataset.

ples at 100∘ lunar phase angle, for instance, we may get more variation in angle offset

residuals. When the Moon is at 0∘, we expect a higher intrusion temperature reading,

which increases SNR and may help the model’s performance. Overall, Figure 3-10

displays current ∆𝛽 results. From here onwards, we use the channel-specific models

to adjust Pathfinder’s electronic boresight, feeding the adjusted electronic boresight

into our lunar calibration algorithm starting in Section 3.5.

3.5 Resampling and Smoothing Data

We resample and smooth the data in order to translate the 2-dimensional lunar image

(with dimensions 10 x n_scans) to a 1-dimensional vector (of length 10 x n_scans)

and to reduce the noise and fluctuations in the on-orbit measurements. This way, we

can perform MCMC fitting as discussed in Section 3.6.

We resample the lunar measurements by using only the maximum lunar intrusion

53



temperature (and its corresponding electronic boresight) per scan. We resample in

this manner because the electronic boresights and measured lunar intrusion temper-

atures are sensitive to noise and small offsets. To smooth the data, we calculate a

moving windowed average lasting 6 seconds, which, in practice, translates to a window

of 3 samples wide.

Figure 3-11 displays the resulting values after resampling and smoothing of the

intrusion temperatures in Figure 3-1.

Figure 3-11: The Channel 12 antenna temperature for Orbit 1410 after smoothing
and resampling as outlined in Section 3.5.

3.6 Markov Chain Monte Carlo Fitting

Once the data is resampled and smoothed, we perform the Markov Chain Monte Carlo

(MCMC) algorithm for data fitting. MCMC is a stochastic algorithm that estimates

unknown variables by sampling from their unknown posterior distributions. Instead of

independently sampling from these distributions, MCMC creates a Markov chain such

that the previous sample’s value affects the following one [13]. In doing so, MCMC

can converge to multiple variables’ final estimates even in large, high-dimensional

sample spaces while quantifying uncertainty. MCMC is a valuable strategy given

that we are estimating multiple parameters.

The MCMC algorithm has multiple sampling variants. One popular option is the
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Metropolis Hastings sampler (MHS), which creates proposed values for variables and

determines whether these values are more likely than the current ones.

These proposals 𝑌𝑖 are generated by sampling from:

𝒩 (𝑋𝑖, 𝜎
2
𝑖 ) (3.18)

where 𝑋𝑖 is the 𝑖𝑡ℎ variable and 𝜎𝑖 is considered the “step size” of variable 𝑖. One

proposed value is generated per variable in each iteration, and together, all proposed

values in an iteration are considered a proposed set.

The proposed set 𝑌 is accepted with probability

𝑚𝑖𝑛(1,
𝜋(𝑌 )𝑃 (𝑌 )

𝜋(𝑋)𝑃 (𝑋)
) (3.19)

such that 𝑋 is the current variable set. The function 𝜋(𝑋) calculates the probability

of measuring the actual values given the variable set 𝑋, and 𝑃 (𝑋) is the probability

of the set 𝑋 given a prior [13]. Priors are situation-specific and will be covered in

Sections 3.7 and 3.8.

In the event of an acceptance, the next iteration’s variable set is assigned to 𝑌 .

Else, the variable values are kept the same.

Over many iterations, this MCMC algorithm will converge and oscillate around

each variable’s final estimates. Because the initial guess for each variable can be far

from their respective final estimate, we disregard or “burn-in” the first 20% of samples

to minimize erroneous shifts in variable estimates.

3.6.1 Tuning Parameters

Although powerful, MCMC’s performance can change dramatically with parameter

tuning. The main tunable parameters we focus on are the sample step size 𝜎𝑖 and

the total number of iterations.

Ideally, the MCMC algorithm should quickly converge towards its final estimate

for each variable while also efficiently exploring the sample space. This balance implies
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that the sample step size must be large enough to explore other values, but not too

large to greatly delay convergence.

Likewise, we need enough iterations to allow for such sample space exploration and

to reliably estimate variables. Not running MCMC long enough means we likely will

not have enough information to reconstruct the posterior distribution, while running

too long leads to an enlarged run time.

3.6.2 Fit Metrics

To evaluate the performance of the MCMC method, we use three fit metrics: the

sample value history, posterior distribution, and marginal distribution. These metrics

were also used when tuning the model to increase performance.

Sample Value History

Plotting the sampling history of the MCMC method allows us to evaluate the step size

and fit performance. When the algorithm performs well, the sampling history should

quickly oscillate around the final variable estimate with roughly constant variance.

Having too large of a step size would create abrupt jumps in sample history, whereas

too small of a step size would prevent us from aptly exploring the sample space.

Posterior Distribution

When estimating multiple variables, displaying the posterior distribution between two

variables is helpful in visualizing fit performance. Ideally, we expect a well-defined 2-

dimensional normal distribution such that its peak corresponds to a higher likelihood.

Marginal Distribution

Plotting each variable’s marginal distribution allows us to evaluate fit for all vari-

ables individually. For good performance, we expect the marginal distribution to be

approximately Gaussian; having gaps in the distribution or a non-Gaussian shape is

typically indicative of an incorrect step size or not enough iterations.
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Apart from evaluating fit, we can extract the final estimate and uncertainty for

each variable from the marginal distribution. The final estimate is the mean of the

marginal distribution, while the uncertainty is the standard deviation. With these

calculations in mind, we prefer a marginal distribution with as low of a standard

deviation as possible.

3.7 Estimating Electronic Boresight Angle

To estimate electronic boresight angle as a function of time, we use the MCMC

algorithm to fit to

𝛽(𝑡) = 𝐴 · exp[(𝐵 − 𝑡)2

𝐶2
] +𝐷 (3.20)

where 𝑡 is time.

Our unknown variables are 𝐴 (the amplitude), 𝐵 (the center), and 𝐶 (the spread);

𝐷 is the maximum angle measurement found in the preprocessed intrusion scans and

is thus known.

We formulate our initial guess such that 𝐴 = 𝜃𝑚𝑖𝑛−𝐷, where 𝜃𝑚𝑖𝑛 is the minimum

electronic boresight angle after the preprocessing in Section 3.5.

For given 𝐴 and 𝐶 values during MCMC fitting, our prior will be

𝑛𝑒|𝐴·𝐶|/475 (3.21)

where 𝑛 is the number of preprocessed measurements. This way, we incentivize the

algorithm to use as small of 𝐴 and 𝐶 values as possible to closely fit the data.

We run the MCMC algorithm for 50,000 iterations, using the step sizes for 𝐴, 𝐵,

and 𝐶 as displayed in Table 3.3. We chose these step sizes based on fit performance,

particularly the metrics outlined in Section 3.6.2.

Table 3.3: MCMC Electronic Boresight Fit Step Size

Channel A B C
1 0.1 1 1

2 - 12 0.1 1 0.9
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After performing MCMC fitting, we estimate the minimum lunar intrusion elec-

tronic boresight angle as 𝐴 + 𝐷. Figures 3-12 - 3-14 display example results and

diagnostics corresponding to inputs from Figure 3-1.

Figure 3-12: The MCMC fit (red) for the Channel 12 electronic boresight in Orbit
1410. The electronic boresight angles (blue) are preprocessed as outlined in Section
3.5, and the minimum electronic boresight from the MCMC fit is 0.28∘.

From Figure 3-12, we see that the MCMC model fits the resampled and smoothed

electronic boresight angles well, with a root mean squared error (RMSE) of 0.04∘.

Figure 3-13 demonstrates that the MCMC model is quickly able to converge to this

well-fitting model. The marginal distributions for 𝐴, 𝐵, and 𝐶 match a Gaussian

distribution, and the sample history for each variable quickly oscillate around the

mean variable value. This behavior indicates that the step size for each variable is

appropriate. We use the mean and standard deviation of each marginal distribution

as the variable’s final estimate and uncertainty values.

Figure 3-14 further supports the high MCMC fit performance for electronic bore-

sight. The posterior between 𝐴 and 𝐶 form a well-defined 2-dimensional histogram

with a distinct peak area. In this high-likelihood area, 𝐴 ranges from −1.26∘ to

−1.24∘, and 𝐶 is between 46.7 s and 48 s. These final estimates from Figure 3-13

match these value ranges.
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Figure 3-13: The Orbit 1410 Channel 12 MCMC electronic boresight fitting diagnostic
plots for amplitude 𝐴 (left), center 𝐵 (middle), and spread 𝐶 (right). The top row
shows the marginal distribution for each variable after the burn-in period, and the
bottom row displays the corresponding sample history such that the blue area is the
burn-in period. The samples in the burn-in period are not used for estimation. The
final estimate and uncertainty for 𝐴, 𝐵, and 𝐶 are −1.242∘ ± 0.02269∘, 110.3145 s±
0.6851 s, and 47.1422 s ± 1.0021 s, respectively.

Figure 3-14: The posterior distribution between 𝐴 (the amplitude) and 𝐶 (the spread)
for Orbit 1410 Channel 12 MCMC electronic boresight fitting. The samples displayed
are not part of the burn-in period.
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3.8 Estimating Measured Lunar Intrusion Tempera-

ture

To estimate the measured lunar intrusion temperature, we use the MCMC algorithm

to fit to Equation 3.20. The unknown variables 𝐵 and 𝐶 are defined identically to

those in Section 3.7. 𝐴 is in Kelvin, and 𝐷 is the known channel-specific deep space

temperature. Also, our prior is formulated identically to Equation 3.21.

By fitting our measurements to Equation 3.20, we estimate the peak measured

lunar intrusion temperature as 𝐴 + 𝐷. We run the MCMC algorithm for 50,000

iterations and band-specific step sizes for each unknown variable. These step sizes

are listed in Table 3.4.

Table 3.4: MCMC Intrusion Temperature Fit Step Size

Channel A B C
1 0.2 2.5 2.3

2 - 8 0.1 0.9 1.3
9 - 11 0.1 0.5 1

12 0.1 0.5 1

Figures 3-15 through 3-17 display example results and metrics from the fit proce-

dure. Figure 3-15 shows that the resulting MCMC model closely fits the smoothed

and resampled measured antenna temperatures with a RMSE of 0.32 K. Indeed, Fig-

ure 3-16 also indicates that the MCMC algorithm converges quickly to its final solu-

tion. The sampling histories demonstrate that the MCMC sampler quickly oscillates

around a single value for each variable. These values and the oscillation amplitude

correspond to the mean and standard deviations in marginal distributions in the top

row, respectively. The marginal distributions themselves are approximately Gaussian

with few sample gaps, indicating the variables’ step sizes were appropriate. We use

the mean and standard deviation of each marginal distribution as the final estimate

and uncertainty for each variable, respectively.

We plot the posterior distribution of 𝐴 (the signal amplitude) and 𝐶 (the signal
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spread) in Figure 3-17 to assess fit performance. Based on Section 3.6.2, we expect

a 2-dimensional histogram with a well-defined “high-sample” region which represents

the area of more likely variable values. Figure 3-17 meets our expectation. Generally,

𝐴 values ranging from 9 K - 9.2 K and 𝐶 values ranging from 43.5 s - 44.5 s yield

better fitting models. These ranges match the 𝐴 and 𝐶 estimates in Figure 3-16.

Figure 3-15: The MCMC Gaussian fit (red) for Channel 12 of Orbit 1410. The peak
temperature from the MCMC fit is 15.50 K. The preprocessed temperatures in blue
are the same as those in Figure 3-11.

Figure 3-17: The posterior distribution between 𝐴 (the amplitude) and 𝐶 (the spread)
for Orbit 1410 Channel 12 MCMC temperature fitting. The samples displayed are
not part of the burn-in period.

61



Figure 3-16: The Orbit 1410 Channel 12 MCMC temperature fitting diagnostic plots
for amplitude 𝐴 (left), center 𝐵 (middle), and spread 𝐶 (right). The top row shows
the marginal distribution for each variable after the burn-in period, and the bottom
row displays the corresponding sample history such that the blue area is the burn-in
period. The samples in the burn-in period are not used for estimation. The final
estimate and uncertainty for 𝐴, 𝐵, and 𝐶 are 9.0737 K ± 0.082666 K, 110.626 s ±
0.33926 s, and 43.6082 s ± 0.45174 s, respectively.

3.9 Estimating Measured Lunar Temperature

After estimating the minimum electronic boresight and maximum antenna tempera-

ture during a lunar intrusion, we estimate Pathfinder’s lunar temperature measure-

ment. To estimate Pathfinder’s lunar temperature measurement, we use equations

outlined in Section 3.3. We restate Equations 3.8 and 3.9 for reference.

In Equation 3.8, we model the measured antenna temperature as

𝑇𝐴 = 𝑇𝑑𝑠 +𝑅 · 𝑓 · 𝑇𝑚𝑜𝑜𝑛,

where Equation 3.9 defines 𝑅 as

𝑅 = 𝑒−𝛽2/(2𝜎2).

To solve for Pathfinder’s lunar temperature measurement 𝑇𝑚𝑜𝑜𝑛, we invert Equa-
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tion 3.8 to

𝑇𝑚𝑜𝑜𝑛 =
𝑇𝐴 − 𝑇𝑑𝑠

𝑅 · 𝑓
, (3.22)

setting 𝑇𝐴 to the maximum MCMC antenna temperature. We calculate 𝑅 by setting

𝛽 to the minimum electronic boresight found from the MCMC fitting algorithm. All

other inputs are defined identically to those in Section 3.3.

Using Equation 3.22, we calculate Pathfinder’s lunar temperature estimates and

uncertainties for all of Orbit 1410’s channels in Table 3.5 as an example. Our uncer-

tainty calculations are detailed in Section 3.11. We compare the lunar temperature

estimates to the simulated lunar temperatures from Yang and Burgdorf’s RTM in

Chapter 4.

Table 3.5: The lunar temperature estimates for Orbit 1410 compared to the simulated
lunar temperature from Yang and Burgdorf’s RTM

Channel Lunar Temperature
Estimate (K)

Simulated Lunar
Temperature (K)

1 192.59 ± 12.33 204.58
2 198.26 ± 6.02 198.57
3 192.37 ± 5.93 198.22
4 191.90 ± 6.71 198.06
5 198.46 ± 5.76 197.92
6 202.94 ± 5.45 197.79
7 194.37 ± 7.25 197.69
8 193.54 ± 7.49 197.61
9 190.71 ± 4.64 185.52
10 190.56 ± 4.73 185.22
11 187.55 ± 4.29 184.69
12 178.11 ± 3.96 182.76

As shown in Table 3.5, Pathfinder’s lunar temperature estimate is within 10 K

of the simulated lunar temperature for all channels except for Channel 1. These

differences include all possible causes of model error that are discussed in Section

4.3 and Future Work (Section 5.1. This behavior is likely because Channel 1 has

the largest antenna beamwidth and the lowest SNR. Due to the higher noise and

the fact that the Moon occupies a lower proportion of the antenna FOV, Channel

1 will typically deviate more from the simulated lunar temperatures. We also see
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this pattern in the lunar temperature uncertainties, as Channel 1’s uncertainty is

approximately 12.33 K, while Channels 9-12 (which are the G band) have uncertainties

less than 5 K.

3.10 Calculating Simulated Antenna Temperature

In addition to estimating Pathfinder’s lunar temperature measurement, we also calcu-

late the simulated antenna temperature 𝑇𝐴,𝑠𝑖𝑚. This simulated antenna temperature

assumes that the disk-averaged lunar brightness temperature is the output of Yang

and Burgdorf’s RTM. Here, we define this value as 𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚.

To calculate 𝑇𝐴,𝑠𝑖𝑚, we adapt Equation 3.8 to

𝑇𝐴,𝑠𝑖𝑚 = 𝑇𝑑𝑠 +𝑅 · 𝑓 · 𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚, (3.23)

where 𝑇𝑑𝑠, 𝑅, and 𝑓 are defined in Equation 3.8. For 𝑇𝐴,𝑠𝑖𝑚, we assume the scan

geometry is identical to Pathfinder’s, so we use the same electronic boresight estimate

from Section 3.7, solid angle ratio 𝑓 , and beamwidths as in Section 3.9.

Table 3.6 displays the simulated antenna temperatures as well as their uncertain-

ties for all channels in Orbit 1410. The uncertainties for simulated antenna temper-

ature are calculated using Section 3.11, while the uncertainties for the Pathfinder

antenna temperatures are taken from the MCMC uncertainties in Section 3.8. With

these calculations, we can then compare Pathfinder’s measured antenna temperature

to the simulated antenna temperature during lunar intrusions.

As shown in Table 3.6, the Pathfinder antenna temperature is quite close to the

simulated antenna temperature, with all channels within 0.6 K of the simulated values.

The G band (Channels 9-12) has lower uncertainties for Pathfinder antenna temper-

ature than the W/F band (Channels 1-8) likely due to its comparatively higher SNR.

However, due to its smaller antenna beamwidths, the G band has larger simulated

antenna temperature uncertainty because of its higher sensitivity to small electronic

boresight deviations.
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Table 3.6: A comparison between the Orbit 1410 Pathfinder peak antenna temper-
ature from MCMC fitting in Section 3.8 and the corresponding simulated antenna
temperature

Channel Pathfinder Antenna
Temperature (K)

Simulated Antenna
Temperature (K)

1 9.13± 0.15 9.35± 0.03

2 9.03± 0.09 9.23± 0.05

3 8.93± 0.09 9.17± 0.05

4 8.97± 0.11 9.18± 0.05

5 9.26± 0.10 9.49± 0.05

6 9.84± 0.11 9.97± 0.05

7 8.94± 0.12 9.17± 0.04

8 9.18± 0.14 9.48± 0.05

9 13.68± 0.08 14.27± 0.14

10 13.73± 0.09 14.26± 0.14

11 14.13± 0.08 14.70± 0.13

12 15.50± 0.08 16.08± 0.14

3.11 Quantifying Uncertainty

In addition to calculating Pathfinder’s lunar temperature estimate, we calculate the

corresponding uncertainty by propagating the MCMC uncertainty through the al-

gorithm in Section 3.9. As we use the MCMC algorithm for both the Pathfinder

measurement antenna temperature and the electronic boresight, we have two sets of

uncertainty values to propagate. The MCMC electronic boresight uncertainty affects

both the Pathfinder lunar temperature estimate and the simulated antenna tempera-

ture, while the MCMC antenna temperature uncertainty only affects the Pathfinder

lunar temperature estimate. In the following sections, we outline our approach to

calculating both sets of uncertainty values.

3.11.1 Uncertainty from the Measured Antenna Temperature

From the MCMC fitting algorithm in Section 3.8, we extract the maximum antenna

temperature along with its uncertainty. We define this antenna temperature uncer-
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tainty as 𝜖𝐴.

To calculate the contribution of 𝜖𝐴 on Pathfinder’s lunar temperature estimate

(which we denote as 𝜖𝐴,𝐿𝑢𝑛𝑎𝑟), we use the antenna equations from Section 3.3 such

that

𝜖𝐴,𝐿𝑢𝑛𝑎𝑟 =
𝜖𝐴

𝑅 · 𝑓
, (3.24)

where 𝑅 and 𝑓 are defined identically to those in Section 3.3. Figure 3-18 displays

the uncertainty 𝜖𝐴,𝐿𝑢𝑛𝑎𝑟 for October 2021.

Figure 3-18: The distribution of measured antenna temperature uncertainty from
MCMC fitting (left) and the distribution of these uncertainties propagated to lunar
temperature uncertainty (right). All values are for all channels in October 2021 lunar
intrusions.

Figure 3-18 shows that the measured antenna temperature uncertainty 𝜖𝐴 is at

most 0.35 K for all lunar intrusions in October 2021, with the majority of uncer-

tainties being less than 0.2 K. When propagated to the TROPICS Pathfinder lunar

temperature estimate, these uncertainties reach a maximum of 25 K. This increase

in temperature uncertainty is because we divide by the antenna response 𝑅 and solid

angle ratio 𝑓 , making the lunar temperature uncertainty sensitive to the electronic

boresight estimates.

3.11.2 Uncertainty from the Electronic Boresight

Unlike in Section 3.11.1, we cannot use Equation 3.24 to calculate the contributions

of the MCMC electronic boresight uncertainty to simulated antenna temperature and
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to the Pathfinder lunar temperature estimates. As shown in Figure 3-7, the antenna

response 𝑅 is nonlinear with respect to electronic boresight. Therefore, we character-

ize how changes in the electronic boresight affect the simulated antenna temperature

and the Pathfinder lunar temperature estimate by calculating the derivatives of each

with respect to electronic boresight.

In essence, we find the derivative

d𝑋

d𝛽
= 𝐹 (𝛽) (3.25)

where 𝑋 is the value we are estimating (either the Pathfinder lunar temperature

measurement or the simulated antenna temperature), and 𝐹 (𝛽) is a function de-

pendent on 𝛽. Technically, 𝐹 (𝛽) also depends on the channel (using values such

as antenna beamwidth and frequency-dependent simulated lunar brightness temper-

atures). However, the channel-dependent values do not depend on 𝛽 and are thus

considered constants.

Figure 3-19: The MCMC electronic boresight uncertainty for lunar intrusions in
October 2021. All channels’ uncertainties are displayed.

As shown in Figure 3-19, the MCMC electronic boresight uncertainties are small,

with all values under 0.06∘ and most approximately 0.02∘. Given how small the elec-

tronic boresight uncertainty is, we can linearly approximate the slope of the Pathfinder

lunar temperature and simulated antenna temperature around the electronic boresight
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estimate.

Using this linear approximation, we define the propagated uncertainty as

d𝑋 = 𝐹 (𝛽)d𝛽 (3.26)

This approximation does assume that regardless of how the electronic boresight

changes within its uncertainty bounds, the entire Moon remains in the antenna field

of view. We therefore filter for lunar intrusions whose MCMC minimum electronic

boresight satisfies

𝛽 <
1

2
(𝐵𝑊 − 𝜑𝑀)− d𝛽 (3.27)

where 𝛽 is the electronic boresight, 𝐵𝑊 is the antenna beamwidth, 𝜑𝑀 is the angle

subtended by the Moon, and d𝛽 is the MCMC electronic boresight uncertainty.

In the following sections, we define the function 𝐹 (𝛽) formally and outline how

we propagate electronic boresight uncertainty to simulated antenna temperature and

Pathfinder lunar temperature.

Uncertainty in Simulated Antenna Temperature As the simulated antenna

temperature defined in Equation 3.23 depends on the Pathfinder electronic boresight,

we analyze how the MCMC electronic boresight uncertainty d𝛽 affects the simulated

antenna temperature estimates. We restate our equation for simulated antenna tem-

perature from Section 3.10, substituting 𝑅 for its definition in Section 3.3. Given our

Pathfinder electronic boresight 𝛽, we define

𝑇𝐴,𝑠𝑖𝑚 = 𝑇𝑑𝑠 + exp(
−𝛽2

2𝜎2
) · 𝑓 · 𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚 (3.28)

where 𝜎 and 𝑓 are defined in Section 3.3. We can then calculate
d𝑇𝐴,𝑠𝑖𝑚

d𝛽
as

d𝑇𝐴,𝑠𝑖𝑚

d𝛽
=

−2

𝜎2
· 𝑓 · 𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚 · 𝛽 · exp(−𝛽2

2𝜎2
) (3.29)

By multiplying Equation 3.29 by d𝛽, we approximate the uncertainty in simulated
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temperature 𝜖𝛽,𝐴𝑛𝑡𝑒𝑛𝑛𝑎 as

𝜖𝛽,𝐴𝑛𝑡𝑒𝑛𝑛𝑎 = |d𝑇𝐴,𝑠𝑖𝑚| =
2

𝜎2
· 𝑓 · 𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚 · 𝛽 · exp(−𝛽2

2𝜎2
) · d𝛽 (3.30)

As a note, we take the absolute value of d𝑇𝐴,𝑠𝑖𝑚 because uncertainty is unsigned.

All other factors in Equation 3.30 are positive by definition. Using Equation 3.30, we

calculate the uncertainty in simulated antenna temperature for October 2021 lunar

intrusions and display its distribution in Figure 3-20.

Figure 3-20: The uncertainty in simulated antenna temperature for all channels in
October 2021 lunar intrusions as calculated from Equation 3.30.

As shown in Figure 3-20, the simulated antenna temperature uncertainties in

October 2021 are at most 0.4 K, with most uncertainties under 0.15 K. Given that

we use the MCMC electronic boresight algorithm when testing our lunar calibration

method, we expect the simulated antenna temperature uncertainties in other months

to have a similar simulated antenna temperature uncertainty distribution.

Uncertainty in Pathfinder Lunar Temperature Estimate Similar to the pre-

vious section, we propagate d𝛽 to find its contribution to Pathfinder’s lunar temper-

ature uncertainty. To do so, we first restate Equation 3.22 and replace 𝑅 with its

definition in Section 3.3. Therefore, Pathfinder’s lunar temperature is defined as
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𝑇𝑚𝑜𝑜𝑛 =
𝑇𝐴 − 𝑇𝑑𝑠

exp[−𝛽2/(2𝜎2)] · 𝑓
(3.31)

where 𝑇𝐴 is the peak Pathfinder measured antenna temperature from MCMC fitting,

and 𝛽 is the minimum Pathfinder electronic boresight from MCMC fitting. We can

then define d𝑇𝑚𝑜𝑜𝑛

d𝛽 as

d𝑇𝑚𝑜𝑜𝑛

d𝛽
=

𝑇𝐴 − 𝑇𝑑𝑠

𝑓
· exp( 𝛽

2

2𝜎2
) (3.32)

Given that we are calculating uncertainty during lunar intrusions, we expect 𝑇𝐴 >

𝑇𝑑𝑠 as the Moon will be in the antenna FOV. Therefore, d𝑇𝑚𝑜𝑜𝑛

d𝛽 is unsigned. We can

set the electronic boresight contribution to the lunar temperature uncertainty (which

we denote as 𝜖𝛽,𝑀𝑜𝑜𝑛) as

𝜖𝛽,𝑀𝑜𝑜𝑛 = |d𝑇𝑚𝑜𝑜𝑛| =
𝑇𝐴 − 𝑇𝑑𝑠

𝑓
· exp( 𝛽

2

2𝜎2
) · d𝛽 (3.33)

Using Equation 3.33, we propagate the MCMC electronic boresight uncertainty

for lunar intrusions in October 2021. The distribution of these uncertainties are

displayed in Figure 3-21.

Figure 3-21: The contribution of MCMC electronic boresight uncertainty to the Oc-
tober 2021 Pathfinder lunar temperature uncertainties as calculated using Equation
3.33. All channels’ results are displayed in this histogram.
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Figure 3-21 shows that the electronic boresight estimate may contribute up to 7 K

of uncertainty to the Pathfinder lunar temperature estimate, with most uncertainties

being less than 3 K. The uncertainties here are larger than those in Figure 3-20

because we divide by both the antenna response 𝑅 and the solid angle ratio 𝑓 in

Equation 3.33. When performing our lunar calibration method on other months, we

expect the electronic boresight’s contribution to lunar temperature uncertainty to

have a similar distribution.

3.12 Summary

In Chapter 3, we outline the data preparation strategy to use TROPICS lunar ob-

servations for lunar calibration. We continue the data quality analysis presented in

Chapter 2, giving particular focus in how Pathfinder’s pointing errors can be ac-

counted for. After data preparation, we continue to the lunar calibration procedure

and compare the prepared TROPICS observations to simulation in Chapter 4.
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Chapter 4

Lunar Intrusion Calibration Analysis

After preparing the Pathfinder lunar observation data, we compare the estimated

lunar temperatures to the simulated ones from Yang and Burgdorf’s lunar model.

This chapter outlines the filtering procedure for lunar intrusions as well as the lunar

calibration results.

4.1 Filtering Procedure

Due to data availability, we use Pathfinder’s lunar observations from October 2021

to December 2021. Data from October 2021, as mentioned in Section 3.4, is used to

calculate angle offsets to try to determine Pathfinder’s pointing error. We evaluate

the performance of the lunar calibration using lunar intrusions in November and

December 2021.

Not all lunar intrusions are usable for calibration, though. Sometimes, the Moon

barely appears in the antenna FOV, leading to low lunar intrusion temperatures that

are hard separate from the deep space measurements. In addition, lunar intrusions

with very few Pathfinder measurements are difficult to fit because the MCMC algo-

rithm performs better with more points. We filter for lunar intrusions that (1) have

large, discernible temperature signals, (2) have close MCMC fits for both measured

antenna temperature and electronic boresight, and (3) have the Moon sufficiently in

the antenna FOV. To satisfy these requirements, we outline the filtering requirements

73



that all lunar intrusions must satisfy in order to be used in lunar calibration. These

requirements are listed in Table 4.1.

Table 4.1: The data filtering conditions that all lunar intrusions must pass to be used
for lunar intrusion calibration

Filter Reasoning Reference
Section

𝜎𝑑𝑠,𝑚𝑎𝑥 > 1 K

The standard deviation in
measured antenna

temperature must spike to at
least 1 K. This condition is
used to detect if there is a

usable lunar intrusion signal.

3.2.1

MCMC Electronic Boresight
RMSE < 0.2∘

The MCMC electronic
boresight fitting must match
the resampled and smoothed
input boresight values closely

3.7, 3.8

MCMC Antenna Temperature
RMSE < 1 K

The MCMC antenna
temperature fitting must

closely match the resampled
and smoothed input
temperature values

3.7, 3.8

All MCMC B must lie within
the lunar intrusion time

period

The peak measured antenna
temperature and minimum 𝛽

must occur within the
detected lunar intrusion time

bounds

3.7, 3.8

𝛽𝑚𝑖𝑛,𝑀𝐶𝑀𝐶 < 𝐵𝑊−𝜑𝑀

2
− d𝛽

The entire lunar disk must be
in the antenna FOV for all 𝛽

ranges within ±d𝛽 of the
minimum MCMC estimate

𝛽𝑚𝑖𝑛,𝑀𝐶𝑀𝐶

3.11

Number of resampled and
smoothed points used in

MCMC > 50

Empirical threshold to ensure
that the MCMC algorithm

has enough samples for
reliable fitting

3.7, 3.8
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4.2 Results

Using the data filtering from Section 4.1, we run the lunar calibration method on

November and December 2021. Figures 4-1 through 4-4 display Channel 1 and Chan-

nel 10 results when comparing both lunar temperature and antenna temperature to

simulated values for both months. We display Channel 1 and 10’s results as they are

representative of all channels’ performance.

As shown in Figures 4-1 through 4-4, the antenna temperature differences are

within 1 K for Channel 1 and 2 K for Channel 10. The equivalent lunar temperature

differences, however, are large. The larger differences are likely because we divide by

the antenna response 𝑅 and solid angle ratio 𝑓 , both of which are at most 1. Other

contributors to these differences include our approximation of a circularly symmetric

antenna beam pattern instead of accounting for antenna asymmetry and antenna

sidelobe sensitivities. In addition, we consider 3 additional sources of error that may

contribute to the large lunar temperature differences. We outline how these sources

of error can affect our lunar calibration results in Section 4.3.
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Figure 4-1: The lunar calibration results for Channel 1 lunar intrusions in November
2021. The left column displays the comparison between the Pathfinder temperatures
and the simulated values as calculated in Sections 3.8 - 3.10. These simulated values
use Yang and Burgdorf’s RTM that is tuned to tuned to ATMS observations. The
right column displays the difference (Pathfinder - simulated) of the central estimates.
Error bars use the uncertainty values calculated in Section 3.11.
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Figure 4-2: The lunar calibration results for Channel 10 lunar intrusions in November
2021. The left column displays the temperature comparison between Pathfinder and
simulated temperatures as calculated in Sections 3.8 - 3.10, wher ethe simulated
temperatures are calculated using the ATMS-tuned RTM developed by Yang and
Burgdorf. Uncertainty values are calculated using Section 3.11. The right column
displays the differences (Pathfinder - simulated) of the central estimates.
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Figure 4-3: Lunar calibration results for Channel 1 lunar intrusions in December 2021.
The left column compares Pathfinder’s lunar temperature estimates and measured
antenna temperatures to those from simulation using Sections 3.8 and 3.10. The
simulated temperatures use the ATMS-tuned RTM developed by Yang and Burgdorf.
The error bars use the uncertainties calculated from Section 3.11. The right column
displays the difference in these temperatures (Pathfinder - simulated).
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Figure 4-4: Lunar calibration results for Channel 10 lunar intrusions in December
2021. The left column compares Pathfinder’s lunar temperature estimate and mea-
sured antenna temperature to their simulated counterparts as calculated in Sections
3.8 and 3.10. The simulated values use the ATMS-tuned RTM developed by Yang and
Burgdorf. The error bars display the uncertainties calculated in Section 3.11. The
right column displays the difference (Pathfinder - simulated) in the central estimates
from the right column.
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4.2.1 Data Availability Tradeoffs

Another noticeable feature in Figures 4-1 through 4-4 is that the lunar calibration

results are only shown for a small portion of each month. For instance, Figure 4-1

only displays dates between November 28th through the 30th, and Figure 4-2 only

has usable lunar intrusions in November 1st and the end of November. Likewise,

the December lunar calibration results are only valid for the very beginning and end

of the month. This gap in lunar calibration is due to two factors: (1) the orbital

geometry and (2) the data filtering process outlined in Section 4.1.

Although we cannot control when the Moon falls into the antenna FOV, we can

control our data filtering requirements. Our data filtering requirements gauge the

performance of the MCMC fitting and the strength of the lunar intrusion signal.

Relaxing our filtering requirements in Table 4.1 would yield more lunar intrusions

for calibration, but would result in more noisy (and larger) lunar and antenna tem-

perature differences that would later make calibration drift detection more difficult.

However, too strict of data filtering requirements will filter out more (if not all) lunar

intrusions. As an example, our data filtering for Figure 4-4 only kept four Channel

10 lunar intrusions for December 2021. This phenomenon also extends to the rest

of the G-band (Channels 9-12). While the G band may yield fewer lunar intrusions

that satisfy the data filtering requirements, the results that do pass may be more

reliable than the W/F band’s results. This trend occurs because the G band has a

higher SNR and typically has more pronounced lunar intrusion signals due to the

smaller beamwidths. A study could be done as future work to further investigate the

tradeoffs between the data filtering and lunar calibration results to refine the data

filtering requirements.
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4.2.2 Lunar Calibration Error Bounds

In addition to analyzing lunar calibration results, we also characterize the lunar cali-

bration error by comparing the results to two alternative situations:

1. The Moon lies in the center of the antenna FOV, so 𝛽 = 0∘ and 𝑅 = 0, or

2. The Moon lies on the edge of the antenna FOV, so 𝛽 = (𝐵𝑊/2)∘ and 𝑅 = 0.5,

where 𝐵𝑊 is the mean antenna beamwidth as stated in Table 3.1.

For notation purposes, we name (1) to be the Center situation and (2) to be the Edge

situation. Figure 3-18 shows how these cases compare to the MCMC estimated 𝛽.

Besides the changes in 𝛽, we assume all other factors such as the antenna beam

pattern and the solid angle ratio 𝑓 remain the same. By comparing our lunar cali-

bration results to these situations, we attempt to bound the lunar calibration error

(assuming no model issues) and characterize lunar calibration performance. Figure

4-6 displays the bounds for the lunar calibration error when comparing lunar tem-

perature estimates and antenna temperatures.

81



Figure 4-5: A visualization of how the Center and Edge cases compare to the MCMC
estimate. The antenna FOV is defined by the mean FWHM beamwidth 𝐵𝑊 such that
the antenna response 𝑅 is a highest at its center (effectively, we assume a circularly
symmetric antenna beam). The “X” symbols indicate the center of the Moon for
each given estimate, and the smaller circle of the same color is the corresponding
location of the lunar disk. The Center case’s “X” lies in the center of the antenna
FOV because 𝛽 = 0∘, and the Edge case’s “X” lies at the edge of the antenna FOV as
𝛽 = (𝐵𝑊/2)∘. The MCMC estimate’s electronic boresight is 𝛽 ∈ [0, 𝐵𝑊/2]∘, so its
estimate for lunar position lies between those of the Center and Edge estimates. As
a note, all 𝛽 are unsigned, so this visualization is rotationally symmetric.
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Figure 4-6: The overall error bounds for lunar calibration when comparing lunar tem-
perature estimates (left column) and antenna temperature estimates (right column)
for lunar intrusions in November and December 2021 for the W/F band (Channels
1-8, in the top row) and the G band (Channels 9-12, in the bottom row). The error
bounds are the maximum magnitude of change in lunar calibration error between the
assumptions 𝛽 = 0∘ and 𝛽 = (𝐵𝑊/2)∘.

83



Figure 4-7: The relationship between the absolute change in lunar calibration error
(or absolute error difference) for antenna temperature (left) and lunar temperature
(right) for the W band (Channel 1), the F band (Channels 2-8), and the G band
(Channels 9-12) for 𝛽 = 0∘ (Center) and 𝛽 = 𝐵𝑊/2∘ (Edge). We separate the W
and F bands to more easily display the relationship’s behavior over varying 𝛽.
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Figure 4-6 shows that the W/F band’s lunar calibration error may vary up to 4 K

and 250 K when comparing antenna and lunar temperatures, respectively. Similarly,

the G band’s lunar calibration error may vary up to 5.5 K and 150 K for antenna

and lunar temperatures, respectively. The large error bounds in lunar temperature

calibration error for all bands further demonstrate that using antenna temperatures

is more feasible for lunar calibration. The large lunar temperature differences are

likely due to the same sensitivities as described in Section 4.2.

In addition to displaying the histogram of error bounds in Figure 4-6, we analyze

the relationship between the error bounds and the minimum electronic boresight

estimated by MCMC fitting.

Figure 4-7 shows that the absolute calibration error varies with our estimated

electronic boresight, with smaller 𝛽 having larger error bounds. For small 𝛽, the W

band’s (Channel 1) calibration error for antenna temperature can vary by as much as

2 K, while for the G band, the antenna temperature calibration error may vary by 5

K. The variation in absolute error difference is due to antenna beamwidth. As the G

band has the smallest antenna beamwidths, the Moon occupies more of the antenna

FOV than when in the W/F band antenna’s FOV. The position of the Moon in the

antenna FOV has a larger influence on simulated temperature and lunar temperature

estimates.

In addition, Figure 4-7 shows that the difference in calibration error when as-

suming 𝛽 = 0∘ and 𝛽 = 𝐵𝑊/2∘ are mirrored. If our estimated 𝛽 is small, then

the TROPICS Pathfinder measured temperature is high as the Moon is close to the

center of the antenna beam. Therefore, if we assume 𝛽 = 0∘, then the Pathfinder

lunar temperature estimate and the corresponding simulate antenna temperature will

change very little. This behavior can be seen in Figure 4-7; as 𝛽 decreases, the ab-

solute calibration error difference for the Center situation approaches 0 K. On the

other hand, the absolute calibration error for the Edge situation is much higher when

𝛽 → 0∘. As we assume 𝛽 = 𝐵𝑊/2∘ in the Edge situation, the large change in 𝛽 leads

us to overestimate Pathfinder’s lunar temperature and underestimate the correspond-

ing simulated lunar temperature. Therefore, as 𝛽 → 0∘, the absolute error difference
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from the Edge situation increases.

From Figures 4-6 and 4-7, we find that the error bounds are highest when our

MCMC estimated 𝛽 is low and lowest at high MCMC estimated 𝛽. However, the

error bounds for all bands are quite high. The maximum antenna temperature error

bounds are approximately 2 K, 4 K, and 5 K for the W, F, and G bands, respectively.

The antenna temperature error bounds increase as the antenna beamwith decreases

because small fluctuations in 𝛽 will yield a larger change in antenna response. Given

that the antenna temperature differences displayed in Figures 4-1 through 4-4 range

from ±2 K, the lunar calibration results can vary. Although Figures 4-1 through

4-4 show low antenna temperature differences, this variation may make it difficult

to detect calibration drift using TROPICS antenna temperatures. Without consis-

tent antenna temperature differences and low error bounds, it is difficult to pinpoint

whether changes in antenna temperature difference are due to calibration drift, the

three sources of error as outlined in Section 4.3, or other sources. Addressing these

sources of error can potentially decrease the error bounds and also the antenna tem-

perature differences to make TROPICS more usable for lunar calibration.

4.3 Sources of Error

In order to perform accurate and reliable lunar calibration, we expect that the an-

tenna temperature and lunar temperature differences are consistent over time so that

small changes in these temperature differences can be attributed to calibration drift.

However, as mentioned in Section 4.2, both the antenna and lunar temperature dif-

ferences fluctuate. We consider 3 possible sources of error in this section and in

Future Work (Section 5.1) that can contribute to the fluctuations in antenna and

lunar temperature differences as well as the error bounds:

1. TROPICS data,

2. Yang and Burgdorf’s lunar RTM from [21], and

3. Lunar calibration model method.
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In this section, we outline how each source of error can affect lunar calibration results

and add other comments in Future Work (Section 5.1).

4.3.1 TROPICS Data

One source of error in the lunar calibration model is the TROPICS dataset, primarily

two aspects: (1) Calibration, and (2) Pointing. For (1), the calibration of TROPICS

data is still in progress. There can possibly be other calibration errors besides cali-

bration drift that can affect the antenna and lunar temperature differences and error

bounds in Figure 4-1 through 4-7. We expect that the main calibration procedure

will be adjusted and finalized with more data and TROPICS satellites in the future.

Future work can rerun this lunar calibration procedure with newer versions of the

TROPICS dataset to reassess performance.

Regarding (2), the TROPICS Pathfinder dataset provides unsigned values for the

electronic boresight 𝛽. We therefore do not have directional information about 𝛽,

so we do not know where the Moon is located in the antenna FOV. To account

for this fact, we approximate the antenna beamwidth as the mean of the CT and

AT beamwidths as stated in Section 3.3, effectively approximating the antenna FOV

footprint as a circle rather than an ellipse. Our values for 𝑅, then, will be different

than what the antenna response would be without this approximation. Given that

the lunar temperature differences involve a division by 𝑅, small changes in 𝑅 can

affect Pathfinder’s lunar temperature estimate. Although the antenna temperature

comparison also involves 𝑅, the results are less sensitive to 𝑅 because we calculate

antenna temperature by multiplying by 𝑅 rather than dividing. To further analyze

this source of error, we explore how changes in 𝛽 (and therefore 𝑅) can affect the

lunar calibration error in Section 4.2.2. Although 𝛽 remains unsigned, bounding the

lunar calibration error will help us characterize the performance of this calibration

method.
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4.3.2 Lunar RTM

Yang and Burgdorf’s RTM can also be a potential source of error in this lunar cali-

bration because the model is tuned to ATMS observations [21]. They calculate the

effective lunar emissivities for ATMS channels and fit an exponential function to

calculate the effective lunar emissivities for any other frequency [21].

In this work, we assume that this exponential function holds true for TROP-

ICS frequencies, despite, as noted in Table 1.4, the frequency matchups between the

TROPICS channels and those used by Yang and Burgdorf for either RTM calibration

or validation. If the effective lunar emissivity for the TROPICS frequencies are differ-

ent than predicted from this exponential curve, then the simulated lunar brightness

temperature outputted from Yang and Burgdorf’s RTM will also change and therefore

affect the lunar calibration results.

In addition, the frequency matchups between TROPICS Pathfinder and Yang

and Burgdorf’s RTM are also subject to variation due to each channel frequency’s

bandwidth as noted in Table 1.4. In this work, we assume each channel frequency

stays at the constant central frequency value. Future work can further investigate the

effect of the bandwidth on lunar calibration results.

4.3.3 Lunar Calibration Methodology

The overall lunar calibration methodology outlined in this thesis may need to be ad-

justed as well. In order to investigate whether adjustments are necessary, future work

can perform the lunar calibration procedure but replace the TROPICS dataset with

ATMS observations. By performing this replacement, we eliminate the 2 previous

sources of error described in Sections 4.3.1 and 4.3.2 because Yang and Burgdorf’s

RTM is tuned to ATMS data, and the ATMS dataset is much larger than the TROP-

ICS dataset with a documented calibration procedure.

Ideally, we thus expect the ATMS lunar calibration results using this lunar cali-

bration framework to be more precise than when using the TROPICS dataset. Higher

precision would translate to more consistent antenna and lunar temperature differ-
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ences as well as lower error bounds as calculated in Section 3.4. If this behavior does

not occur, then the lunar calibration methodology may need to be adjusted.

4.4 Summary

In this chapter, we outline our data filtering criteria and also compare the Pathfinder

lunar temperature estimate and measured antenna temperatures to Yang and Burgdorf’s

simulation as calculated in Chapter 3. From our November and December 2021 re-

sults, we find that comparing antenna temperatures is more feasible for calibration

drift detection than lunar temperatures because the antenna temperature differences

are smaller than the lunar temperature differences and are also less sensitive to point-

ing error. However, our results demonstrate that the lunar calibration error for an-

tenna temperature may vary up to 4 K for the W/F bands and 5.5 K for the G band.

These error bounds indicate that the reliability of said lunar calibration results need

more refinement. We outline three possible sources of error and how they can affect

the results. In Chapter 5, we outline avenues of future work that can potentially

improve the lunar calibration results and reliability.

89



This page is intentionally left blank.

90



Chapter 5

Conclusion

In this thesis, we evaluate the use of TROPICS Pathfinder lunar observations for

lunar calibration. To do so, we create a framework for lunar calibration that includes

detecting lunar intrusions by analyzing Pathfinder’s measured antenna temperatures,

evaluating Pathfinder data quality, accounting for pointing error, and estimating the

lunar temperature estimate using MCMC. After preparing the TROPICS Pathfinder

lunar observations, we compare the measurements in November and December 2021

to Yang and Burgdorf’s lunar RTM using two avenues: lunar brightness temperature

comparison and antenna temperature comparison. Overall, the prepared TROPICS

Pathfinder lunar observations differed from the RTM with a mean of 25.94 K for

lunar brightness temperature and 0.68 K for antenna temperature. We show that it

is more feasible to use TROPICS Pathfinder lunar observations for lunar calibration

when comparing antenna temperatures rather than lunar temperatures. However, the

antenna temperature differences may fluctuate as much as ±2K, ±4K, and ±5K for

the W, F, and G bands, respectively. Although the antenna temperature differences

are low, the current error bounds needs more lunar model offset work. We outline

possible sources of error and recommend that future work investigate and address

each source to improve lunar calibration results and reliability. Overall, we show that

the lunar temperature model needs more work to match the TROPICS data. There

are offsets between the TROPICS Pathfinder observations and Yang and Burgdorf’s

simulation, but the common trends appear promising.
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5.1 Future Work

The work in this thesis can be extended to improve the reliability of the lunar cali-

bration. In this section, we outline multiple avenues of future work.

5.1.1 Encoder Angle Error Characterization

In Section 3.4.1, we discuss the potential effects that the encoder angle jitter can

have on pointing and lunar intrusion. In particular, Figure 3-9 demonstrates that

the encoder angle has a beating pattern similar to an undersampled sinusoid. This

behavior is likely due to the fact that the encoder wheel controller is oscillating around

the desired encoder angle value. Characterizing this beating pattern would be useful

in estimating and potentially correcting for the encoder angle jitter. In addition, new

software for the encoder wheel controller can also lessen the jitter.

5.1.2 Incorporating Direction into Lunar Calibration

As mentioned in Section 4.2, having information of where the Moon is in the antenna

FOV rather than the unsigned electronic boresight would be helpful for the lunar

calibration results. Provided that this information is available, we would no longer

need to approximate the antenna FOV footprint as a circle and can instead use both

the CT and AT antenna beamwidths in our calculations. In particular, we can calcu-

late 𝑅 as a function of 3-dimensional Gaussian function rather than a 2-dimensional

one as detailed in Equation 3.9. Using the updated antenna response values may

improve lunar calibration results, particularly when calculating Pathfinder’s lunar

temperature estimate and the simulated antenna temperature.

5.1.3 Antenna Pattern and Sidelobe Sensitivity Analysis

As mentioned in Section 3.4, the relationship between the electronic boresight 𝛽 and

the measured antenna temperature is vague for low 𝛽, which is when the satellite

expects the Moon to be in the antenna FOV. As 𝛽 decreases, we expect the measured
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antenna temperature to increase. However, the TROPICS Pathfinder measurements

do not consistently follow this behavior. In this thesis, we assume that this vague

relationship is due to angle offsets in 𝛽. There can be additional causes such as

antenna pattern and sidelobe sensitivities. Future work can analyze these sensitivies

and their potential effect on lunar calibration.

5.1.4 Adjustments to Yang and Burgdorf’s RTM

We can make adjustments to Yang and Burgdorf’s RTM that can potentially decrease

the lunar temperature and antenna temperature offsets that are shown in Figures

4-1 through 4-4, respectively. Having lower differences between Pathfinder’s lunar

observations and this RTM would make long term calibration drift detection easier.

One such adjustment is to tune Yang and Burgdorf’s RTM to TROPICS observa-

tions. As mentioned in Chapter 1.3.2, Yang and Burgdorf’s RTM first calculate the

lunar blackbody emissions given lunar phase and frequency [21]. They then calibrate

this model by comparing these blackbody emissions to ATMS Full Moon observations

and estimating the lunar emissions. A possible extension is to perform a similar RTM

tuning using TROPICS lunar observations for all TROPICS frequencies so that all

TROPICS Pathfinder channels have frequency and beamwidth matches in the RTM.

In this thesis, we assumed that the RTM calibrated on ATMS observations would be

close enough for TROPICS Pathfinder lunar calibrations.

Another adjustment would be to filter Pathfinder’s lunar observations based on

the Moon’s path in the antenna FOV. In Section 1.3.2, we also mention that Yang

and Burgdorf validate their RTM by comparing the modeled lunar brightness temper-

atures to lunar observations from multiple NOAA spacecraft. All lunar observations

used in this validation had the Moon pass through the center of the antenna FOV

[21]. Because the electronic boresight angles provided in the TROPICS Pathfinder

dataset (as mentioned in Section 2.2) are unsigned, we do not have the directional

information needed to filter for lunar observations that are in the center of the an-

tenna FOV. If this information is provided in the future, we can filter TROPICS lunar

observations and rerun lunar calibration.
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5.1.5 Adjusting the Lunar Calibration Model

As outlined in Section 4.3, one source of error is the lunar calibration methodology

outlined in this work. In order to determine whether adjustments need to be made

in this work, future work can run the lunar calibration method using ATMS lunar

observations rather than TROPICS Pathfinder observations. Given that Yang and

Burgdorf’s RTM is tuned to ATMS observations and that ATMS has more finalized

calibration, we expect the lunar calibration results to be more precise and reliable

than when using the TROPICS dataset. If this behavior does not occur, then the

lunar calibration model likely needs adjustments.

5.1.6 Detecting Calibration Drift

After comparing TROPICS lunar observations to simulation, the next step is to de-

tect and correct for calibration drifts. As Figures 4-1 through 4-4 display, there are

often “clumps” of lunar calibration results that cluster around similar error values.

There are two main contributions to said errors: (1) the error from the lunar calibra-

tion model outlined in this work, and (2) Pathfinder’s calibration drift. One way to

estimate calibration drift would be to find the mean of each of the lunar calibration

“clumps” and assume that the “noise” in the clumps are attributed to (1). By doing

so, though, a time window needs to be defined to define the boundaries of these error

clumps if multiple are close together temporally. Future work can perform statisti-

cal analysis to differentiate between errors from (1) and (2), and also estimate the

calibration drift over time.

5.1.7 Performing Lunar Calibration for a Longer Time Frame

In this thesis, we calculate our angle offsets using October 2021 TROPICS Pathfinder

lunar observations in Section 3.4 and then test our lunar calibration method on

Pathfinder data in November and December 2021. Ideally, lunar calibration should

be performed over more months (or, perhaps, years) to detect long-term calibration

drifts. Therefore, future work will include running this lunar calibration scheme over
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a longer time frame and determining how well the angle offsets (that use October

2021 observations) perform for later datasets. In this way, we can also determine how

often angle offset recalculation as done in Section 3.4 needs to be performed (if any).

5.1.8 Incorporating Solar Intrusions

In this thesis, we focus solely on lunar intrusions. However, another possible vicarious

calibration source is the Sun. The Sun has a higher temperature than the Moon, so

solar intrusions would not only be easier to detect but would also have lower SNR.

Currently, though, there are no radiative transfer models for the Sun in microwave

frequencies. In addition, the Sun is highly seasonal; solar temperatures can vary

widely because of factors such as sun spots and long-term solar cycles [15]. If this

behavior can be accurately and reliably modeled, we can use both lunar and so-

lar intrusions in calibration. With more vicarious calibration targets, we can more

frequently monitor Pathfinder’s calibration performance.

5.1.9 Performing Lunar Calibration on the TROPICS Con-

stellation

As the TROPICS constellation has yet to be launched successfully, we use Pathfinder

data for lunar calibration. Once the constellation is in operation, we can perform an

identical lunar calibration procedure for each satellite. This procedure would include

spacecraft-specific characterizations related to pointing.
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Appendix A

Main Notation and Equations for

Lunar Calibration

Table A.1: Main Mathematical Symbols in Lunar Calibration

Symbol Meaning Units
𝛽 Electronic Boresight deg

𝛽𝑠𝑖𝑚 Simulated Electronic Boresight deg
G Gain K / DN

DN Digital Count unitless
𝑇𝐴 Antenna Temperature K
𝑇𝑑𝑠 Deep Space Temperature K

𝑇𝑚𝑜𝑜𝑛 Lunar Brightness Temperature K
𝑇𝑚𝑜𝑜𝑛,𝑠𝑖𝑚 Simulated Lunar Brightness Temperature

from [21]
K

𝜑𝑀 Angle Subtended by Moon deg
Ω𝐴 Antenna Solid Angle sr
Ω𝑀 Lunar Solid Angle sr
𝜂𝑀𝐿 Antenna Main Beam Efficiency %
𝑓 Solid Angle Ratio unitless
R Normalized Antenna Response unitless
𝜃𝑀 Lunar Phase Angle deg
BW Mean Full-Width Half Max Antenna

Beamwidth
deg
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Table A.2: Main Equations used in Lunar Calibration

Equation Description

𝑇𝐴 = 𝑇𝑑𝑠 +𝑅 * 𝑓 * 𝑇𝑚𝑜𝑜𝑛 General Antenna
Temperature Model

𝜎 = 0.5𝐵𝑊√
2 ln 2

Standard Deviation of
Antenna Response Model

𝑅 = exp(− 𝛽2

2𝜎2 ) Antenna Response Formula

𝐹𝑛𝑀𝐿(𝜃, 𝜑) = 𝑒− ln(2)(2𝜃/𝐵𝑊 )2 Gaussian Model of
Antenna Main Beam

Ω𝑀 =
∫︀ 2𝜋

0

∫︀ 𝜑𝑀/2

0
𝐹𝑛𝑀𝐿(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 Lunar Solid Angle

Equation

Ω𝐴 = 1
𝜂𝑀𝐿

∫︀ 2𝜋

0

∫︀ 2𝜋

0
𝐹𝑛𝑀𝐿(𝜃, 𝜑)𝑑Ω Antenna Solid Angle

Equation

𝑓 = Ω𝑀

Ω𝐴
Solid Angle Ratio
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Appendix B

Pathfinder Antenna Line of Sight

Calculations

This section describes the Pathfinder antenna line of sight (LoS) calculations, partic-

ularly the role of the encoder angle. Before calculating the line of sight vectors, we

define four coordinate systems from [18]:

• The Payload Coordinate System (PCS),

• The Payload Alignment Coordinate System (PACS),

• The Attitude Determination and Control System (ADCS) Body Coordinate

System (BCS), and

• The Earth-Centered, Earth-Fixed Frame (ECEF).

The LoS are initially defined in PCS, but must be converted to ECEF in order to

calculate the electronic boresight. To do this procedure, TROPICS preprocessing in

[18] performs the following conversions:

𝑃𝐶𝑆 → 𝑃𝐴𝐶𝑆 → 𝐵𝐶𝑆 → 𝐸𝐶𝐸𝐹 (B.1)

A visualization of said coordinate system conversions and the coordinate systems

themselves are shown in Figure B-1. We first define the nominal boresight unit vector
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Figure B-1: The coordinate systems defined in [18] along with the transformations
from PCS to BCS (left to right). DOF stands for direction of flight. The yellow
arrows describe the transformations required to convert to the coordinate system to
the right of the one they are displayed in. For BCS, the yellow arrows display the
conversion to ECEF.

(also known as the LoS) in PCS as

[︁
0 −1 0

]︁𝑇
(B.2)

We can therefore perform the first conversion from PCS to PACS by rotating the LoS

by the encoder angle 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 using the quaternion

𝑞1 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞𝑠

𝑞𝑥

𝑞𝑦

𝑞𝑧

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣ cos −𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟

2⃦⃦⃦−−−−→
𝑍𝑃𝐴𝐶𝑆

⃦⃦⃦
sin −𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟

2

⎤⎦ (B.3)

where
−−−−→
𝑍𝑃𝐴𝐶𝑆 accounts scan axis misalignment and is determined by payload mechan-

ical inspections [18]. In Equation B.3,
⃦⃦⃦−−−−→
𝑍𝑃𝐴𝐶𝑆

⃦⃦⃦
is the element-wise absolute value of

−−−−→
𝑍𝑃𝐴𝐶𝑆. Thus, 𝑞1 accounts for scan axis alignment as well as the encoder angle.

After converting the LoS from PCS to PACS, we convert to BCS by rotating the

vector by the spacecraft-specific direction cosine matrices (DCM) that are determined

by opto-mechanical alignment data. We refer to this DCM as 𝒜𝑃𝐴𝐶𝑆2𝐵𝐶𝑆. After

this conversion, we rotate from BCS to ECEF using a quaternion that incorporates
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satellite attitude data. We refer to this quaternion as 𝑞3.

From these quaternions and 𝒜𝑃𝐴𝐶𝑆2𝐵𝐶𝑆, we consolidate the coordinate conversion

to

𝑞2 = dcm2quat(𝒜𝑃𝐴𝐶𝑆2𝐵𝐶𝑆) (B.4)

𝑞𝐴𝑙𝑙 = (𝑞1 * 𝑞2) * 𝑞3 (B.5)

ℬ𝑃𝐶𝑆2𝐸𝐶𝐸𝐹 = quat2dcm(𝑞𝐴𝑙𝑙) (B.6)

where dcm2quat refers to the conversion from a DCM to a quaternion, and quat2dcm

refers to the opposite conversion. Given the LoS in PCS (denoted as 𝐿𝑜𝑆𝑃𝐶𝑆), we

can find 𝐿𝑜𝑆𝐸𝐶𝐸𝐹 by calculating

𝐿𝑜𝑆𝐸𝐶𝐸𝐹 = ℬ𝑃𝐶𝑆2𝐸𝐶𝐸𝐹 * 𝐿𝑜𝑆𝑃𝐶𝑆 (B.7)

where 𝐿𝑜𝑆𝐸𝐶𝐸𝐹 is the LoS in ECEF. This derived value is used when calculating

electronic boresight.
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