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Abstract

Astrodynamics is abundant with nonlinear dynamical systems, such as satellites oper-
ating within Earth’s gravitational field. With the increase in the number of satellite
constellations, making accurate predictions of the motion of satellites throughout
space is becoming more relevant than ever. Influences from gravitational forces, at-
mospheric drag, and solar radiation pressure introduce highly nonlinear terms in the
equations that model these dynamical systems. The predictions of these effects are
essential for planning future space missions. Intrinsically tied to this is Lambert’s
problem, which concerns finding an optimal transfer orbit that connects two position
vectors within a specified time of flight. Furthermore, solving Lambert’s problem in
the context of these nonlinear dynamical systems is crucial for identifying optimal or-
bit trajectories of spacecraft in Earth orbit and beyond. Traditional Lambert solvers
often involve iterative methods that are computationally intensive, which may not
be able to capture the nonlinearities of the dynamical systems accurately, and might
have constraints in their applications. Using operator theory to simplify a system’s
nonlinear dynamics presents a promising avenue for research.

This Thesis bridges the gap in implementing operator theory to effectively solve
Lambert’s problem. The Koopman Operator is used to embed the nonlinear dynamics
involved in Lambert’s problem into a global linear representation, enabling the study
of the nonlinear dynamical systems from a global perspective for future state pre-
diction away from fixed points. The Koopman Operator is applied to solve variants
of Lambert’s problem including solving for the minimum energy and minimum Δv
solutions, the single and multi-revolutions solutions, and the multi-impulse solution.
Furthermore, the Koopman Operator enables the computation of these solutions with
low computational complexity. A variety of initial conditions are considered, proving
the range of applicability of the Koopman Operator to Lambert’s problem. Com-
parisons made with numerical methods and another Lambert solver demonstrate the
robustness and accuracy of the Koopman Operator solutions. Finally, an analysis of
the spectral behaviors of the dynamics considered is provided, with insights into the
stability of the dynamical systems and accuracy of the solutions found.
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Chapter 1

Introduction

1.1 Motivation

The prediction of nonlinear dynamical systems in astrodynamics is an essential area

of research as many problems in astrodynamics are inherently nonlinear in nature.

Real-world systems often contain uncertainty in the equations of motion that describe

them and in the specification of their parameters. Future state predictions are of in-

terest to researchers who must predict the locations and velocities of celestial objects

and spacecraft with high accuracy. These celestial objects and spacecraft often exist

in highly nonlinear dynamical environments with influences from gravitational forces,

atmospheric drag, solar radiation pressure, and electromagnetic interactions. Nonlin-

ear dynamical systems with such influences are at the core of many astrodynamics

problems including the three-body problem, the zonal harmonics problem, the predic-

tion of the effects of nonlinear drag on satellites, and the prediction of the nonlinear

effects of solar radiation pressure on spacecraft. Predicting the future states of ce-

lestial objects and spacecraft is essential for planning missions to other planets and

asteroids, for tracking objects that are potential threats to Earth, and for tracking

space debris in order to minimize the risk of collisions. The analysis of nonlinear

dynamical systems in astrodynamics allows for improved design and optimization of

space missions. Through the analysis of a nonlinear dynamical system, a researcher is

better able to tune the parameters of their model for improved predictive performance
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or to identify stable and unstable points. Furthermore, studying nonlinear systems

in astrodynamics can help improve estimation and control of the spacecraft. This

is especially important for designing low-thrust trajectories, where nonlinear optimal

control plays an essential role. Moreover, analyzing nonlinear systems in astrody-

namics can lead to better physical insight. Understanding the nonlinear system’s

governing equations of motion and stability can lead to better interpretability of the

system’s behavior. At the same time, it is of interest to obtain solutions to such

systems quickly and reliably in many applications.

Important focus areas for future astrodynamics research have been identified to in-

clude multiple-encounter tour design, low energy trajectory design and optimization,

and multiple-spacecraft trajectory optimization, among others [52]. These occur in

highly nonlinear dynamical systems concerning multiple bodies and nonlinear pertur-

bations. Furthermore, the scientific community is interested in solving trajectories to

multiple small bodies such as comets or asteroids and satellite tours at outer planets

[52]. These problems involve solving variants of Lambert’s problem which concerns

finding optimal orbit trajectories between two points in space.

A major challenge in analyzing dynamical systems in astrodynamics and solving

problems such as Lambert’s problem is understanding and characterizing the non-

linearities in these systems [39]. Linear systems can be easily characterized by their

eigenvalues and eigenvectors and a plethora of general procedures exist for the pre-

diction, estimation, and control of such systems. The leading perspective on studying

nonlinear dynamical systems concerns the geometry of subspaces that contain lo-

cal linearizations and general attractors [32]. These local linearizations are typically

made around fixed points of the nonlinear dynamical system or around periodic or-

bits. Furthermore, global heteroclinic and homoclinic orbits connecting fixed points,

periodic orbits, and different types of attractors are typically considered [60]. These

linearizations allow for numerous linear analysis techniques to be applied to the study

of nonlinear systems. However, the global analysis of nonlinear dynamical systems in

astrodynamics has mostly been limited to numerical methods or using models that

make physical approximations. Models that make physics approximations can reduce
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complexity, however, they can introduce prediction error and uncertainty. Numer-

ical solutions can also be prone to errors, be computationally expensive and time-

consuming to compute. It is of interest to study these nonlinear dynamical systems

from a global perspective for future state prediction, control and estimation away

from fixed points and periodic orbits.

Operator theory, in particular the Koopman Operator, is a mathematical tool that

can be used to project a complex dynamical system into a higher-dimensional space

where the system’s dynamics are simplified without making any physical approxima-

tions. Overcoming the challenges involved in solving problems in nonlinear dynamics

using operator theory can transform our understanding of these complex systems and

provide information on the system’s behavior. The Koopman Operator is an infi-

nite dimensional linear operator that embeds nonlinear dynamics into a global linear

representation. It can be used to provide a global perspective to analyze complex dy-

namics efficiently and solve nonlinear problems away from fixed points. The spectral

decomposition of the Koopman Operator also characterizes the nonlinear system’s

behavior, hence providing further insight into the stability of the nonlinear system.

1.2 General Objectives

The main objective of this Thesis is to offer insight into how operator theory, specifi-

cally Koopman Operator theory, can be applied to solve nonlinear problems in astro-

dynamics with a focus on solving variants of Lambert’s problem. This work aims to

provide a comprehensive explanation of the advantages of using operator theory to

solve nonlinear problems in astrodynamics such that the key conclusions and methods

can be extrapolated to other nonlinear problems in astrodynamics and beyond.

Another objective of this Thesis is to show the robustness and range of applica-

bility of the Koopman Operator to Lambert’s problem. Hence, variants of Lambert’s

problem are introduced and solved. In order to present the benefits of using operator

theory for these types of problems, this Thesis presents a comparison to numerical

integration techniques and another Lambert solver.
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Finally, an objective of this Thesis is to provide a deeper understanding of the

nonlinear dynamical systems in astrodynamics that are presented. Hence, a spectral

behavior analysis is provided and differences between various dynamical systems are

highlighted.

1.3 Literature Review

1.3.1 Koopman Operator Theory

With the development of quantum mechanics in the 1900’s there came an interest

in formulating classical mechanics from an operator theoretic approach. In 1931,

Koopman developed the idea to use linear operators to study complex dynamical

systems which became known as Koopman Operator (KO) Theory [40]. In 1932, von

Neumann helped develop KO theory with his discovery of self-adjoint operators and

applications of KO theory [65]. Since its invention, KO theory has been successfully

applied to many nonlinear dynamics problems in astrodynamics [44], fluid dynamics

[48], control theory [50], robotics [20], and machine learning among others [46]. More

specifically in astrodynamics the KO has been successfully applied to solving nonlinear

problems including for its use as an altitude control method [21], for describing the

motion of a satellite near the 𝐿1 and 𝐿2 Lagrange points [44], and for the dynamics

near libration points in the circular restricted three-body problem (CR3BP) [58].

In this last case, KO has shown to provide extremely accurate approximations for

the solutions for small Lyapunov orbits and halo orbits. Furthermore, the KO has

been successfully applied to the low-thrust trajectory optimization problem and has

effectively been used to compute planar interplanetary transfers [35]. KO has also

been applied to the zonal harmonics problem where errors in the position of the

satellite were calculated to be in the order of magnitude of meters when compared

to numerical integration of the system’s equations for propagation of 360 degrees of

a sun-synchronous orbit with order 7 in the KO basis functions. With an increase

to order 11 in the KO basis functions this error dropped to 0.32 meters. Arnas and
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Linares also showed that for long propagation times, such as 100 orbital periods, the

error can increase up to the order of magnitude of kilometers [4].

Another area of research with the KO has been from a data-driven perspective.

This approach uses dynamic mode decomposition (DMD) to approximate the KO with

a best-fit linear model [18]. It uses data rather than prior knowledge of the dynamical

system’s governing equations to construct the KO and use it for an analysis of the

system [62].

1.3.2 Lambert’s Problem and Its Solvers

Lambert’s problem concerns finding an optimal transfer orbit of an object in a gravi-

tational inverse-square central force field given an initial and final position vector and

a time of flight [12]. It is an orbital boundary value problem that has been studied

by mathematicians for years and is at the core of many problems in astrodynamics.

In fact, more than 60 authors have constructed various formulations and solutions to

Lambert’s problem to date [25]. Finding solutions to Lambert’s problem is key to

modern spacecraft operations such as for orbit determination, multi-planet trajecto-

ries, targeting and rendezvous. The fundamental work and formulations of Lambert’s

problem were developed by Euler, Lambert, Lagrange, and Gauss [16]. The problem

was first researched by Euler in the mid-18th century but his developments focused

on circular orbits. A general solution that accounted for elliptical orbits was then

solved for by Lambert which became known as Lambert’s theorem [16]. The work by

Euler and Lambert was extended by Lagrange to account for hyperbolic and parabolic

orbits [42]. In the early 19th century, Gauss significantly contributed to the develop-

ment of Lambert’s problem by advancing a numerical method that used a series of

conic sections to approximate the solution [17]. Lancaster and Blanchard expanded

on this work and advanced a universal form of Lambert’s theorem that made use of a

normalized time-of-flight equation and was valid for elliptic, hyperbolic, and parabolic

orbits [12]. Gooding built upon Lancaster and Blanchard’s method and developed an

algorithm that solved Lambert’s problem using Halley’s cubic iteration method [30].

Izzo also built upon Lancaster and Blanchard’s method and developed a solver with
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a reduction in overall complexity [36]. Izzo’s Householder algorithm has been found

to have the best ratio between speed, robustness and accuracy [25]. The solutions by

Lancaster and Blanchard, Gooding, and Izzo use the method of universal variables in

their formulations. Other authors that have used this method in deriving their solu-

tions to Lambert’s problem include Bate, Mueller and White [8] who used the Gauss

𝑓 and 𝑔 functions and used Stumpff functions to express the transfer time in the

form of a universal variable. Luo, Meng and Han proposed a solution algorithm that

used Bate’s universal variable to find Kepler orbits with a fixed flight-direction angle

constraint [47]. An enhanced Lambert targeting method that uses the hodograph

to calculate the velocity of the transfer for any transfer angle, including 180-degree

orbital transfers, was introduced by Thompson [63]. Battin and Vaughan formulated

an algorithm that was devoid of the two major flaws of Gauss’ method which were

that the method was singular for a transfer angle of 180 degrees and the method had

a slow convergence rate for angles that were not very small [9].

Solutions to Lambert’s problem that use the semi-major axis of the transfer as

the free parameter include that of Thorne’s solution who computed a series rever-

sion/inversion of the time function [64]. Furthermore, Chen, Kampen and Chu used

interval analysis to solve the time-open constrained Lambert problem that has the

semi-major axis as the free parameter [22], while Wailliez used a simple semi-analytic

inversion method [66]. Other solutions to Lambert’s problem consider the semi-latus

rectum of the transfer as the free parameter such as the solution proposed by Boltz

that uses p-iteration [13]. Another method used to solve Lambert’s problem is to

use the eccentricity vector as the free parameter. Avanzini used this method to de-

rive an algorithm that is less demanding from a mathematical standpoint and more

physically intuitive than Battin’s approach, although it does not provide computa-

tional advantages [6]. The analytical derivative of the transverse-eccentricity-based

Lambert problem was derived by Wen, Zhao and Shi who used it to improve the

algorithm introduced by Avanzini [67]. Finally, solutions to Lambert’s problem us-

ing Kustaanheimo-Stiefel (K-S) regularized coordinates have also been studied by

Jezewski [37] and by Kriz [41]. The use of these coordinates simplifies the problem
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greatly as it involves the solution of only one nonlinear, well-behaved equation with

one unknown variable. For a complete overview of approaches that have been de-

signed to solve Lambert’s problem, the reader is referred to the review by de la Torre

Sangrà and Fantino [25].

An alternative to solving Lambert’s problem in a chosen time interval is finding

the orbit transfer that minimizes fuel consumption, also known as the minimum Δv

Lambert’s problem [11]. Techniques proposed to solve this problem include iterative

techniques and using equations that require numerical techniques to solve [61] [55]. A

closed-form solution has been found to the related minimum Δv2
𝑡𝑜𝑡 Lambert’s problem

by Avendaño and Mortari [7]. The energy-optimal solution to Lambert’s problem,

which helps determine the most efficient path for a spacecraft, has also been explored

by Leeghim and Jaroux, among others [43].

Solutions that involve multiple revolutions have been proposed using direct geom-

etry or universal variables [5] [45] and considering various constraints [70]. A solution

using the flight-path angle as the independent parameter and a novel algorithm was

found by Arlulkar and Naik [1]. Shen and Tsiotras used Battin’s method to obtain

solutions to the multiple revolution Lambert’s problem [59]. He, Li and Han built

on the solution proposed by Avanzini and used the eccentricity vector of the trans-

fer orbit to find multiple-revolution solutions [34]. Furthermore, Lambert’s problem

solved with multiple impulses between the initial and final orbits has been proposed

by Gobetz and Doll [26], as well as by Prussing who found the minimum-fuel solution

optimality of the two-impulse trajectory using primer vector theory [51].

The gravity-perturbed Lambert’s problem considers the effects of zonal harmonics

of the Earth in its formulation. Canonical solutions to this problem were developed

by Scheifele and Graf using Delaunay similar elements that produced good numerical

results [54] and by Bond who used singularity-free Pioncaré’s similar elements [14].

A solution to the gravity-perturbed Lambert problem using the K-S coordinates has

been proposed by Engels and Junkins [27]. Furthermore, a noncanonical analytic

solution in terms of the independent variable, the true anomaly, was proposed by

Jezewski [38]. Recent research developments of the 𝐽2-perturbed Lambert’s problem
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have included a fast solver using a deep neural network developed by Yang, Li, Feng

and Vasile [69].

1.4 Specific Objectives

As seen in the previous section, solving Lambert’s problem is of interest to researchers

due to its applicability to multiple space missions. However, some solvers to Lambert’s

problem do not take into account 𝐽2 perturbations, do not provide analytic solutions

to Lambert’s problem, or are computationally expensive to employ. Designing an

analytic solver that takes into account perturbations and is computationally inex-

pensive is a continuous research goal in the astrodynamics community. Furthermore,

the results obtained so far with Koopman Operator theory applied to solving prob-

lems in astrodynamics show promise for applicability to solving Lambert’s problem.

However, no such application of the Koopman Operator has been made.

This Thesis focuses on the application of analytical Koopman Operator theory in

order to gain approximate-analytical solutions to Lambert’s problem in astrodynamics

and a better understanding of the equations underlying their dynamics. Regarding

this problem, the main specific objectives of this Thesis include:

1. To provide a formulation of the Koopman Operator Theory for Lambert’s Prob-

lem

2. To show the wide applicability of the Koopman Operator solution by considering

variants to Lambert’s problem and different initial conditions

3. To compare and contrast the performance of the Koopman Operator solution

to another Lambert solver and numerical integration techniques

4. To provide a deeper understanding of the nonlinear system’s dynamics through

a spectral behavior analysis of the Koopman Operator

The variants to Lambert’s problem that are solved in this Thesis include the single

revolution Lambert’s problem with a minimum energy cost function, the single revo-

lution Lambert’s problem with a minimum Δv cost function, a global minimum Δv
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solution given two generic orbits, the multiple revolutions Lambert’s problem, and the

multi-impulse solution to Lambert’s problem. Furthermore, two dynamical systems

are considered: that of the unperturbed dynamical system known as the two-body

problem, and that of the perturbed dynamical system that takes into account 𝐽2 ef-

fects. Throughout the Thesis comparisons between the two dynamical systems and

solutions of Lambert’s problem in each are made, concluding with a spectral behavior

analysis of them.

1.5 Thesis Overview

This Thesis is structured as follows: Chapter 2 introduces Koopman Operator theory

and provides an explanation of the computation of the Koopman eigenfunctions and

evolution of the basis functions and observables of the system; Chapter 3 introduces

Lambert’s problem and its variants including the multiple revolution Lambert’s prob-

lem, the minimum energy Lambert’s problem, the minimum Δv Lambert’s problem,

and the multi-impulse Lambert’s problem; Chapter 4 presents the results of applying

the Koopman Operator to solving Lambert’s problem and its variants, and discusses

its performance by comparing these results to another Lambert solver and a numeri-

cal integration of the system, as well as, presents a use case for space debris; Chapter

5 provides an analysis of the spectral behavior of the solutions; finally, Chapter 6

presents a summary of the contributions and future research directions.

23



24



Chapter 2

Koopman Operator Theory

2.1 Introduction

This chapter introduces the theory behind the Koopman Operator and the mathe-

matical methods required to apply it to nonlinear problems. Specifically, it outlines

how the highly dimensional linear approximation of the nonlinear dynamical system

can be achieved using the Koopman Operator.

Section 2.2 introduces the Koopman Operator and its eigenfunctions. Then Sec-

tion 2.3 introduces the Galerkin method used to compute the Koopman eigenfunctions

and the Koopman matrix for a given dynamical system. Finally, Section 2.4 provides

the evolution of the basis functions and of the observables of the system.

2.2 Koopman Operator Formulation

The KO provides the analysis of a nonlinear system by transforming the dynamics

into a global linear representation. It redefines problems in classical mechanics in

operator form [4]. The KO theory introduced in this section follows the work by

Servadio, Arnas and Linares [57].

Consider a classical nonlinear dynamical system represented by a coupled set of
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ordinary differential equations (ODE),⎧⎨⎩ 𝑑
𝑑𝑡
x(𝑡) = f(x)

x (𝑡0) = x0

(2.1)

where x ∈ R𝑑 represents the state of the system and 𝑑 is the dimension of the system.

The state has a time dependence that expresses the evolution of the dynamical system.

The nonlinear dynamics are represented by f(x) which propagates the state from the

𝑑-dimensional Euclidean space R𝑑 to R𝑑. The state x0 is the initial condition of the

system at the initial time 𝑡0. Solving for a solution of this set of ODEs is also known

as an initial value problem.

The KO can be used to describe the evolution of an observable of the dynamical

system over time. Conceptually, KO applies the chain rule to the observable. Let 𝒦

denote the KO. Its application is defined as

𝒦(·) = (∇x·) f(x). (2.2)

The relation can be made more explicit by considering an observable function of

the dynamical system in Equation 2.1 denoted by 𝑔(x). The evolution of such an

observable is given by

𝒦(𝑔(x)) =
𝑑

𝑑𝑡
𝑔(x)

= (∇x𝑔(x))
𝑑

𝑑𝑡
x(𝑡)

= (∇x𝑔(x)) f(x)

(2.3)

where ∇x𝑔(x) = [𝜕𝑔(x)/𝜕𝑥1, 𝜕𝑔(x)/𝜕𝑥2, . . . , 𝜕𝑔(x)/𝜕𝑥𝑑]. Let 𝒢(x) denote the set

of observables where 𝑔(x) ⊆ 𝒢(x). The vector space of all observable functions,

denoted by ℱ , where 𝒢(x) ∈ ℱ , is infinite dimensional as a consequence of the

KO being an infinite dimensional linear operator [4]. The use of an infinite Hilbert

space is impractical, hence the number of dimensions is truncated and the evolution

of the dynamical system is captured in a finite-dimensional subspace. This finite

subspace, ℱ𝐷 ∈ ℱ , of dimension 𝑚, is spanned by a finite set of basis functions. This
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subspace is still able to capture the non-linearities of the original system however

as an approximation. Hence, the KO provides an approximate linear description

of nonlinear dynamical systems, allowing for efficient computation of solutions to

problems in nonlinear astrodynamical systems.

Furthermore, any set of eigenfunctions of the KO provides a Koopman invariant

finite subspace ℱ𝐷. From operator theory, an eigenfunction of an operator is a func-

tion that when acted upon by the operator is simply scaled by a scalar value known

as an eigenvalue [31]. Hence, eigenfunctions of the KO are defined as,

𝒦 (𝜑𝑖(x)) = 𝜆𝑖𝜑𝑖(x) (2.4)

where 𝜑𝑖(x) denotes an eigenfunction and 𝜆𝑖 denotes the corresponding eigenvalue.

Let Φ(x) be the set of all eigenfunctions such that Φ(x) = (𝜑1(x), . . . , 𝜑𝑚(x))
𝑇 ∈ ℱ𝐷.

The generalization to all eigenfunctions of Equation 2.4 is given by

𝒦(Φ(x)) =
d

d𝑡
Φ(x) = ΛΦ(x) (2.5)

where Λ is a diagonal matrix containing the KO eigenvalues, Λ = diag ([𝜆1, . . . , 𝜆𝑚]).

Thus, using the KO eigenfunctions and Equation 2.5, a variable transformation,

known as the Koopman Canonical Transform can be constructed to linearize the

system [57]. The evolution of the eigenfunctions in time is given by the solution to

equation (2.5),

Φ(x (𝑡)) = exp(Λ𝑡)Φ(x (𝑡0)). (2.6)

Once the eigenfunctions of the system are found, equation (2.6) can be used to solve

the complete system. This approximate linear description provided by the KO en-

ables the utilization of many mathematical tools provided by linear algebra, such as

computing the state transition matrices. However, before computing the full solution

by making use of such tools, the representation of the set of eigenfunctions of the KO

and the required linearization is computed using the Galerkin method.
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2.3 Computation of the Koopman Eigenfunctions

The Galerkin method provides the approximated linearized system of equations needed

to apply the KO theory. It projects the system onto a set of orthogonal functions that

span a finite subspace of the KO theory. The method has been previously introduced

by Arnas and Linares in the zonal formulation [4] . An overview of key parts of the

formulation is shown here for its application to problems in nonlinear astrodynamics.

The Galerkin method converts a problem involving a continuous operator, such as

the one shown in Equation 2.4, into the form of a linear combination of elements and

provides a method to find its solution [28] [19]. It is a tool for finding approximate

solutions to problems that involve partial differential equations. Basis functions are a

set of functions that are linearly independent and can be combined to represent any

function in a given functional space. Therefore, any function can be represented as

a linear combination of basis functions. Orthogonal basis functions are basis func-

tions that are orthogonal to each other. The use of orthogonal basis functions greatly

simplifies computations because the coefficients of the linear combination can be com-

puted independently. The orthogonal basis functions chosen for the proposed work

are the Legendre polynomials due to their advantages in simplifying the computation

of the Galerkin projections. Legendre polynomials are orthogonal polynomials that

provide a complete basis. Let ℒ(x) denote the set of all basis functions. Written in

vector form, the set is given by ℒ(x) = [ℒ1(x), . . . ,ℒ𝑚(x)]
𝑇 where ℒ𝑖(x) is a multi-

dimensional basis function of the set. The orthonormal basis functions are defined

using the Legendre polynomials by expressing 𝐿𝑖(x) as,

ℒ𝑖(x) =
𝑑∏︁

𝑗=1

𝑃𝑛𝑗
(x𝑗) (2.7)

where 𝑃𝑛𝑗
(x𝑗) denotes the monovariable Legendre polynomial of order 𝑛𝑗 acting on

variable x𝑗 [4]. The advantages of using Legendre polynomials over other possibilities,

such as Hermite or Laguerre polynomials, include that they are defined in a bounded

domain ([−1, 1]) and the weighting function associated with the Legendre polynomials
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is a constant, 𝑤(𝑥) = 1 [53].

The aim is to represent any function of the dynamical system and KO eigenfunc-

tion in terms of this set of basis functions given by the Legendre polynomials. This

is done by projecting the functions onto the basis functions using the inner product,

⟨ℎ(x),ℒ(x)⟩ =
∫︁
Ω

ℎ(x)ℒ(x)𝑤(x)𝑑x (2.8)

where ℎ(x) is a function of the system and Ω is the domain in which the basis functions

are defined in.

The KO eigenfunctions are expressed as [57],

𝜑𝑖(x, 𝑡) =
∞∑︁
𝑗=1

𝑝𝑖𝑗(𝑡)ℒ𝑗(x) (2.9)

where 𝑝𝑖𝑗(𝑡) are the coefficients of the eigenfunction 𝜑𝑖(x, 𝑡) in the basis ℒ𝑗. This

infinite series is truncated in order to have a limited set of eigenfunctions of the

system,

𝜑𝑖(x, 𝑡) ≈
𝑚∑︁
𝑗=1

𝑝𝑖𝑗ℒℓ(x) = p𝑖
𝑇 (𝑡)ℒ(x) = ℒ𝑇 (x)p𝑖(𝑡). (2.10)

ℒ is a column vector made up of the entire set of basis functions.

The Galerkin Method is used to compute the time derivatives of the eigenfunc-

tions. The KO is projected into the subspace ℱ𝐷 with the residual of Equation 2.5

being orthogonal to the span of ℱ𝐷. The time evolution of a scalar function, 𝑢(x, 𝑡),

is defined as a first-order partial differential equation (PDE) using the KO as

𝑑𝑢(x, 𝑡)

𝑑𝑡
= 𝑓1(x)

𝜕

𝜕𝑥1

𝑢(x, 𝑡) + · · ·+ 𝑓𝑚(x)
𝜕

𝜕𝑥𝑚

𝑢(x, 𝑡). (2.11)

The residual error of this PDE is given by,

𝑒(x, 𝑡) =
𝑑𝑢(x, 𝑡)

𝑑𝑡
−𝒦(𝑢(x, 𝑡)) (2.12)

However, similar to Equation 2.9, the scalar function can be written in terms of an
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infinite series expansion of the set of basis functions [57],

𝑢(x, 𝑡) =
∞∑︁
𝑗=1

𝑐𝑗(𝑡)ℒ𝑗(x) (2.13)

where the coefficients 𝑐𝑗(𝑡) provide the time evolution of 𝑢(x, 𝑡). This infinite series

is also truncated in order,

𝑢(x, 𝑡) ≈
𝑚∑︁
𝑗=1

𝑐𝑗ℒ𝑗(x) = c𝑇 (𝑡)ℒ(x) = ℒ𝑇 (x)c(𝑡) (2.14)

Hence, the derivative of 𝑢(x, 𝑡) in the residual in Equation 2.12 can be approximated

as, 𝑢̇(x, 𝑡) ≈ ċ𝑇 (𝑡)ℒ. The KO applied to the scalar function is given by,

𝒦(𝑢(x, 𝑡)) =
𝑑

𝑑𝑡
𝑢(x, 𝑡)

=
𝑑

𝑑𝑡
(ℒ𝑇 (x)c(𝑡))

= (∇x(ℒ𝑇 (x)c(𝑡)))𝑇
𝑑

𝑑𝑡
x(𝑡)

= (∇xℒ𝑇 (x)c(𝑡))𝑇 f(x)

= f𝑇 (x)∇xℒ𝑇 (x)c(𝑡)

(2.15)

Since ℒ𝑗(x) is defined in ℱ𝐷, for the residual to be defined in a space orthogonal to

ℱ𝐷, the following relation must hold,

⟨ℒ𝑗(x), 𝑒(x, 𝑡)⟩ = 0, ∀𝑗 ∈ {1, 2, . . . ,𝑚}. (2.16)

Substituting Equation 2.15 and Equation 2.14 into Equation 2.16 for each basis func-

tion, the matrix representation of the KO over the basis functions is derived [57],

K𝑖𝑗 =
⟨︀
ℒ𝑖(x), f

𝑇∇xℒ𝑗(x)
⟩︀

(2.17)

where the orthogonality of the basis functions was used to simplify the equations.

These are the components of the Koopman matrix.
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2.4 Evolution of Basis Functions

To use the Koopman approach and the fact that the orthogonal basis functions are

selected to be defined in terms of the Legendre polynomials, it is of interest to express

their change over time in terms of themselves,

𝑑ℒ
𝑑𝑡

= K̃ℒ (2.18)

where K̃ is the transpose of the Koopman matrix from Equation 2.17. This formula-

tion describes how the system evolves over time [57]. The rate of change in Equation

2.18 is defined in terms of a linear combination of the Legendre polynomials with

an exact solution attainable in an infinite dimensional Hilbert space. When truncat-

ing this solution to a finite dimensional space, the higher the order of the KO used,

the more eigenfunctions are used. The greater the number of eigenfunctions used,

the better the nonlinearities of the system are captured and hence a more accurate

solution is found. This increase in the number of eigenfunctions used comes at a

cost of increasing the size of the KO matrix. However, the KO matrix only needs to

be calculated once for the dynamical system and can then be applied to any initial

conditions.

The observables must now be represented as a linear combination of the system’s

basis functions. To achieve this, the projection of the observables onto the basis

functions is calculated using the inner product. Using the 𝑗th basis function, the

projection is calculated as [57],

𝑔 =
𝑚∑︁
𝑗=0

⟨𝑔,ℒ𝑗⟩ ℒ𝑗. (2.19)

In matrix form, the set of coefficients that expresses the projection of the 𝑖th observ-

able onto the 𝑗th basis function is given as,

ℋ𝑖𝑗 = ⟨𝑔𝑖,ℒ𝑗⟩ (2.20)
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Furthermore, finding the eigendecomposition of the system is of interest in order to

eventually calculate the time evolution of the observables. Let 𝑉 represent the matrix

of eigenvectors and Λ represent the diagonal matrix of the eigenvalues. Assuming the

Koopman matrix is diagonalizable, the eigendecomposition of the system is given by,

𝑉K = Λ𝑉. (2.21)

If the Koopman matrix is not diagonalizable then further steps must be taken using

the Schur decomposition as described by Arnas in [2]. Using the eigendecomposi-

tion, the eigenfunctions can be written in terms of the eigenvectors and Legendre

polynomials as,

𝜑(x(𝑡)) = 𝑉 ℒ(x(𝑡)) (2.22)

with the rate of change of the eigenfunctions given by,

𝑑

𝑑𝑡
𝜑(x(𝑡)) =

𝑑

𝑑𝑡
(𝑉 ℒ(x(𝑡)))

= 𝑉Kℒ(x(𝑡))

= Λ𝑉 ℒ(x(𝑡))

= Λ𝜑(x(𝑡))

(2.23)

where the fact that 𝑉 is constant was used to take it out of the derivative and

substitutions using Equations 2.18, 2.21, and 2.22 were made. The solution to this

diagonal system of ODEs is,

𝜑(x(𝑡)) = exp(Λ𝑡)𝜑 (x (𝑡0)) (2.24)

where 𝜑 (x (𝑡0)) represents the initial value of the eigenfunctions at the initial time 𝑡0.

Using the matrix ℋ from Equation 2.20 and the representation of the eigenfunctions
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in Equation 2.22, the evolution of the observables in time is given by [57],

𝑔(x(𝑡)) = ℋℒ(x(𝑡))

= ℋ𝑉 −1𝜑(x(𝑡))

= ℋ𝑉 −1 exp(Λ𝑡)𝜑 (x (𝑡0))

= ℋ𝑉 −1 exp(Λ𝑡)𝑉 ℒ (x (𝑡0)) .

(2.25)

where a substitution using Equation 2.24 was made at the third step and a substitu-

tion using Equation 2.22 was made at the last step. Hence, through the evolution of

the observables, the evolution of the state of the system can be calculated in terms

of the evolution of the eigenfunctions by selecting the identity observable. For any

time, 𝑡, the value of an observable can now be calculated. Furthermore, the matrix

ℋ is the only term that is dependent upon the selection of the observable. Hence,

once the Koopman matrix K is calculated, the time evolutions of new observables of

the system are evaluated by recalculating ℋ. Since, the ability to understand and

predict the behavior of a system comes from its observables, their time evolution are

of primary interest to compute. In conclusion, the computation of the time evolution

of observables using the Koopman matrix and ℋ allows for the propagation of the

state of the system.
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Chapter 3

Lambert’s Problem and Algorithm

Implementations

3.1 Introduction

The formulation of Lambert’s problem is presented in this Chapter, as well as variants

of it that will be solved in the remaining Chapters of the Thesis. Furthermore, key

algorithms that will be used either for comparison or within the KO Lambert solver

are introduced.

To that end, Section 3.2 sets up the details of Lambert’s problem. Then, Section

3.3 introduces the Lambert solver that uses Lagrange coefficients and will be used

to compare against the solutions found using the Koopman Operator. Section 3.4

introduces the algorithm used as part of the Koopman Operator solution to Lambert’s

problem. Finally, Section 3.5 introduces the elements used in the Koopman Operator

formulation of Lambert’s problem.

3.2 Overview of Lambert’s Problem

Lambert’s problem concerns the determination of an optimal transfer orbit between

a specified initial and final position vector and a time of flight. A depiction of the

problem is shown in Figure 3-1, where r0 is the initial position vector, r𝑓 is the final
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Figure 3-1: Geometry of Lambert’s problem

position vector and a transfer orbit connects the two. Δ𝜃 is the change in true anomaly

between the two vectors. The geometric approach to solving Lambert’s problem

involves determining the semimajor axis of the transfer orbit using the chord length,

or the shortest distance between two position vectors. Two possible transfers exist, one

called the “short way” which follows the solid line in Figure 3-1 and one called the “long

way” which follows the dashed line. When considering the problem in the context

of transfers around the Earth or another spinning body, the two possible transfers

are more generally defined as “prograde” which involves the spacecraft moving in the

same direction as the planet’s rotation and "retrograde" which involves the spacecraft

moving in the opposite direction to the planet’s rotation. Prograde solutions are

typically preferred for missions such as geostationary orbit insertion as they require

less Δv. However, retrograde solutions may be used for missions involving Sun-

synchronous or polar orbits.

In this Thesis, Lambert’s problem is solved using a geometric approach using the

KO theory. Solutions are presented to Lambert’s problem within two systems, one

that does not take into account the oblateness of the Earth and one that takes into
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account the oblateness. In the first case, the dynamics assume a spherical central

body around which a satellite travels. In the second case, the dynamics take into

account 𝐽2 effects and hence reduce inaccuracies in the trajectory of a spacecraft in

Earth’s gravitational field.

A variant of Lambert’s problem is the multiple-revolutions Lambert’s problem

which concerns finding transfer orbits that complete a number of revolutions between

the initial and final position vector. Solving the multiple-revolutions Lambert’s prob-

lem allows for more complex orbital maneuvers of spacecraft to be executed including

transfer trajectories between planets and for finding transfers that require less Δv

than a single revolution transfer. Multiple revolution solutions add flexibility to space

missions. They can provide more efficient transfers when compared to direct transfers

by taking advantage of the gravitational fields of celestial bodies. The solutions can

involve a series of "swing-bys" to achieve a desired trajectory using less propellant

than a direct transfer would. Such multiple revolution solutions are typically desirable

for long-range space missions such as for the European Space Agency’s BepiColombo

mission to Mercury which performed a gravity assist with Earth in April 2020 and will

perform several more with Venus and Mercury during the mission [10]. An example

of a multi-revolution solution with only one revolution is traversing the solid black

line from r0 to r𝑓 in Figure 3-1, followed by the dashed line and finally once more

traversing the solid line before reaching r𝑓 .

The multi-impulse solution to Lambert’s problem involves a series of small burns

at specific points in the orbit transfer rather than a single large burn corresponding

to one impulse. An example of a multi-impulse trajectory with 𝑛 impulses is shown

in Figure 3-2. An impulse is carried out at each r𝑖 for 𝑖 = 0, . . . , 𝑛 − 1 connecting

r0 to r𝑓 . These multiple impulses allow for more precise control over the spacecraft’s

trajectory. Furthermore, they can help minimize the fuel requirements which can be

essential for designing efficient and effective space missions.

Variants of Lambert’s problem concern minimizing different cost functions for the

transfer orbit rather than fixing a time of flight. These cost functions include specific

energy, Δv, and time. The minimum energy Lambert’s problem concerns finding the
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Figure 3-2: Geometry of the Multi-Impulse Solution to Lambert’s Problem

transfer orbit with the minimum specific energy. It is of interest to space missions

such as long-duration missions and interplanetary travel missions to find such transfer

orbits as these missions require energy conservation. The minimum Δv Lambert’s

problem concerns finding the orbit transfer that minimizes the total change in velocity

from the initial orbit to the transfer orbit and from the transfer orbit to the final orbit.

Solving the minimum Δv solution is important for spacecraft operations as it reduces

the total fuel consumption and cost of the mission. Finally, solving the minimum time

Lambert’s problem is of use for time-critical missions including satellite launches and

manned missions where short orbit transfers are desirable.

3.3 Algorithm to Solve Lambert’s Problem using La-

grange Coefficients

The algorithm used to compare against the solutions found by applying the KO to

solving Lambert’s problem is presented in this section. This algorithm makes use

of Lagrange coefficients and follows the procedure presented by Bate, Mueller and

White [8] and Bond and Allman [15].
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A general outline of the algorithm, as described in Chapter 5.3 of the Orbital

Mechanics for Engineering Students textbook by H. Curtis [24], is provided in this

section. The initial position vector of a desired transfer is denoted as r0, and the final

position vector as r𝑓 with a time of flight denoted by Δt. The trajectory connecting

r0 to r𝑓 can be either a prograde or retrograde trajectory. The change in true anomaly

in either case is calculated using:

For a prograde trajectory:

Δ𝜃 =

⎧⎪⎪⎨⎪⎪⎩
cos−1

(︂
r0 · r𝑓
𝑟0𝑟𝑓

)︂
if (r0 × r𝑓 )𝑍 ≥ 0

360∘ − cos−1

(︂
r0 · r𝑓
𝑟0𝑟𝑓

)︂
if (r0 × r𝑓 )𝑍 < 0

(3.1)

For a retrograde trajectory:

Δ𝜃 =

⎧⎪⎪⎨⎪⎪⎩
cos−1

(︂
r0 · r𝑓
𝑟0𝑟𝑓

)︂
if (r0 × r𝑓 )𝑍 < 0

360∘ − cos−1

(︂
r0 · r𝑓
𝑟0𝑟𝑓

)︂
if (r0 × r𝑓 )𝑍 ≥ 0

(3.2)

The Lagrange coefficients, 𝑓, 𝑔, 𝑓 , 𝑔̇, that relate the initial position and velocity vectors

to the final position and velocity vectors,

r𝑓 = 𝑓r0 + 𝑔v0

v𝑓 = 𝑓r0 + 𝑔̇v0

(3.3)

are given by,
𝑓 = 1− 𝜇𝑟2

ℎ2
(1− cosΔ𝜃)

𝑔 =
𝑟1𝑟2
ℎ

sinΔ𝜃

𝑓 =
𝜇

ℎ

1− cosΔ𝜃

sinΔ𝜃

[︂
𝜇

ℎ2
(1− cosΔ𝜃)− 1

𝑟1
− 1

𝑟2

]︂
𝑔̇ = 1− 𝜇𝑟1

ℎ2
(1− cosΔ𝜃)

(3.4)

where ℎ is the unknown angular momentum. Some details in the last step are omitted

for brevity. These include the use of an iterative Newton solver and Stumpff functions
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to solve for analytic expressions for 𝑓, 𝑔, 𝑓 , and 𝑔̇. Once these expressions are found, v0

can be solved for using Equation 3.3 and hence the optimal orbit trajectory connecting

r0 and r𝑓 is found. It is important to note that this algorithm does not consider the

effects of zonal perturbations due to Earth’s oblateness in its solution to Lambert’s

problem.

3.4 Levenberg-Marquadt Algorithm

The Levenberg-Marquadt algorithm will be used to solve for the initial velocity of the

optimal orbit trajectory in the KO solution to Lambert’s problem. The Levenberg-

Marquadt algorithm is a numerical optimization method used to solve non-linear least

squares problems. It is used to find the minimum of a function, 𝐹 (𝑥), that is a sum

of squares of nonlinear functions, 𝑓𝑖(𝑥),

𝐹 (𝑥) =
1

2

𝑚∑︁
𝑖=1

𝑓𝑖(𝑥)
2. (3.5)

It searches in the direction given by the solution to the equations,

(︀
𝐽𝑇
𝑘 𝐽𝑘 + 𝜆𝑘𝐼

)︀
𝑝𝑘 = −𝐽𝑇

𝑘 𝑓𝑘 (3.6)

where 𝐽𝑖(𝑥) denotes the Jacobian of the 𝑖th function, 𝑓𝑖(𝑥), 𝐼 is the identity matrix,

𝜆𝑘 are nonnegative scalars, and a unit step is taken along 𝑝𝑘. The vector 𝑝𝑘 is the

solution of the constrained problem,

minimize
𝑝∈R𝑛

1
2
‖𝐽𝑘𝑝+ 𝑓𝑘‖22

subject to ‖𝑝‖2 ≤ Δ
(3.7)
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where Δ represents a scalar, the value of which is associated with the value of 𝜆 [29].

3.5 Orbital Elements for Koopman Operator Approach

For an efficient application of the KO to a nonlinear system, such as in Lambert’s

problem, the system must exhibit linear-like behavior with minor perturbations. Such

a system enables the limited number of basis functions to capture the non-linearities

of the system, as well as, for the KO theory to efficiently find the solution to the

nonlinear astrodynamical problem. This section presents the orbital elements used

to represent both the unperturbed and perturbed dynamical systems so that KO can

be applied to solve Lambert’s problem.

Let 𝑟 represent the radial distance between the orbiting satellite and the center

of the Earth, 𝜙 represent the latitude of the satellite, and 𝜆 represent the longitude

of the satellite. The conjugate momenta of the system are given by

𝑝𝑟 = 𝑟̇

𝑝𝜙 = 𝑟2𝜙̇

𝑝𝜆 = 𝑟2 cos2(𝜙)𝜆̇

(3.8)

where 𝑥̇ is the derivative of the variable 𝑥 with respect to time. The Hamiltonian of

such a system in spherical coordinates is,

ℋ =
1

2

(︂
𝑝2𝑟 +

𝑝2𝜙
𝑟2

+
𝑝2𝜆

𝑟2 cos2(𝜙)

)︂
− 𝜇

𝑟
+

1

2
𝜇𝑅2

⊕𝐽2
1

𝑟3
(︀
3 sin2(𝜙)− 1

)︀
(3.9)

where 𝜇 represents the gravitational constant of the Earth, 𝑅⊕ represents the Earth’s

equatorial radius, and 𝐽2 is the zonal term of the Earth’s gravitational potential. The
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associated equations of motion in Cartesian coordinates are,

𝑑𝑥

𝑑𝑡
= 𝑥̇

𝑑𝑦

𝑑𝑡
= 𝑦̇

𝑑𝑧

𝑑𝑡
= 𝑧̇

𝑑𝑥̇

𝑑𝑡
=

3𝐽2𝑅
2
𝑒𝜇𝑥𝑧

2

(𝑥2 + 𝑦2 + 𝑧2)7/2
− 𝜇𝑥

(𝑥2 + 𝑦2 + 𝑧2)3/2

+
9𝐽2𝑅

2
𝑒𝜇𝑥

2(𝑥2 + 𝑦2 + 𝑧2)5/2

(︂
𝑧2

𝑥2 + 𝑦2 + 𝑧2
− 1

3

)︂
𝑑𝑦̇

𝑑𝑡
=

3𝐽2𝑅
2
𝑒𝜇𝑦𝑧

2

(𝑥2 + 𝑦2 + 𝑧2)7/2
− 𝜇𝑦

(𝑥2 + 𝑦2 + 𝑧2)3/2

+
9𝐽2𝑅

2
𝑒𝜇𝑦

2(𝑥2 + 𝑦2 + 𝑧2)5/2

(︂
𝑧2

𝑥2 + 𝑦2 + 𝑧2
− 1

3

)︂
𝑑𝑧̇

𝑑𝑡
= − 3𝐽2𝑅

2
𝑒𝜇𝑧

2(𝑥2 + 𝑦2 + 𝑧2)3/2

(︂
2

(𝑥2 + 𝑦2 + 𝑧2)
− 2𝑧2

(𝑥2 + 𝑦2 + 𝑧2)2

)︂
− 𝜇𝑧

(𝑥2 + 𝑦2 + 𝑧2)3/2
+

9𝐽2𝑅
2
𝑒𝜇𝑧

2(𝑥2 + 𝑦2 + 𝑧2)5/2

(︂
𝑧2

𝑥2 + 𝑦2 + 𝑧2
− 1

3

)︂

(3.10)

These equations are highly non-linear and hence a transformation of variables is

required in order to apply the KO. Such a transformation has been defined by Arnas

and Linares [4], and the new set of orbital elements describing the nonlinear system
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in terms of 𝑟, 𝜙, 𝜆, and the conjugate momenta are,

Λ =

√︃
𝑅⊕

𝜇

(︂
𝑝𝜃
𝑟
− 𝜇

𝑝𝜃

)︂

𝜂 = 𝑝𝑟

√︃
𝑅⊕

𝜇

𝑠 = sin(𝜙)

𝛾 =
𝑝𝜙
𝑝𝜃

cos(𝜙)

𝜅 =

⎯⎸⎸⎷ 𝜇𝑅⊕

𝑝2𝜙 +
𝑝2𝜆

cos2(𝜙)

𝛽 = 𝜆− arcsin

(︃
tan(𝜙)

√︃
𝑝2𝜆

𝑝2𝜃 − 𝑝2𝜆

)︃

𝜒 =
𝑝𝜆
𝑝4𝜃

(𝜇𝑅⊕)
3/2

sin2(𝜙) +
𝑝2𝜙
𝑝2𝜃

cos2(𝜙)

𝜌 =
𝑝𝜆
𝑝𝜃

(3.11)

where

𝑝𝜃 =

√︃
𝑝2𝜙 +

𝑝2𝜆
cos2(𝜙)

(3.12)

is the angular momentum of the orbit. This set of orbital elements are normalized.
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The corresponding Hamilton equations given in the set of new orbital elements

are
𝑑Λ

𝑑𝜃
= −𝜂 − 3𝐽2𝑠𝛾𝜅

3(Λ + 𝜅)(Λ + 2𝜅)

𝑑𝜂

𝑑𝜃
= Λ+

3

2
𝐽2𝜅

3(Λ + 𝜅)2
(︀
3𝑠2 − 1

)︀
𝑑𝑠

𝑑𝜃
= 𝛾

𝑑𝛾

𝑑𝜃
= −𝑠− 3𝐽2𝑠𝜌

2𝜅3(Λ + 𝜅)

𝑑𝜅

𝑑𝜃
= 3𝐽2𝑠𝛾𝜅

4(Λ + 𝜅)

𝑑𝛽

𝑑𝜃
= −3𝐽2𝑠

2𝜒(Λ + 𝜅)

𝑑𝜒

𝑑𝜃
= 12𝐽2𝑠𝛾𝜒𝜅

3(Λ + 𝜅) + 6𝐽2𝑠𝜌𝜒
2(Λ + 𝜅)

𝑑𝜌

𝑑𝜃
= 3𝐽2𝑠𝛾𝜌𝜅

3(Λ + 𝜅)

(3.13)

This set of equations is polynomial and close to linear with nonlinear perturbations

due to zonal effects. They have been defined in terms of a time regularization proposed

by Arnas and Linares [3],
𝑑𝜃

𝑑𝑡
=

𝑝𝜃
𝑟2
. (3.14)

For a detailed derivation of these orbital elements, the reader is referred to the zonal

formulation made by Arnas and Linares in [4].
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The linear system defined by the linear contributions to the elements in Equation

3.13 that do not have any terms proportional to 𝐽2 give the system of Hamilton

equations for the classical two body problem without 𝐽2 effects,

𝑑Λ

𝑑𝜃
= −𝜂

𝑑𝜂

𝑑𝜃
= Λ

𝑑𝑠

𝑑𝜃
= 𝛾

𝑑𝛾

𝑑𝜃
= −𝑠

𝑑𝜅

𝑑𝜃
= 0

𝑑𝛽

𝑑𝜃
= 0

𝑑𝜒

𝑑𝜃
= 0

𝑑𝜌

𝑑𝜃
= 0

(3.15)

The Hamilton equations in Equation 3.15 and Equation 3.13 are the observables

𝑔(x) from Section 2.2 of the nonlinear system whose evolution is given by applying

the KO.

The formulation of Lambert’s problem considered in this Thesis is mostly posed in

terms of having time as a constraint rather than 𝜃. Hence, the integration of Equation

3.14 is used to convert from time to 𝜃. This conversion allows for the use of Equation

3.13 and Equation 3.15, which are defined in terms of 𝜃, to represent the respective

dynamical system while solving a time-constrained nonlinear problem. An example

comparing the propagation of time and that of the time regularization derived from

Equation 3.14 with respect to 𝜃, for one revolution of a random orbit, is shown in

Figure A-1 in Appendix A. The figure shows how the regularized time is not linear

in 𝜃 by demonstrating how the spacecraft slows down and accelerates depending on

its location. Finally, most problems in astrodynamics are formulated in Cartesian,

Spherical or Keplerian coordinates. Hence, to make use of the orbital elements in

Equation 3.11, a transformation of variables is made. Once the solution is found
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using the KO in terms of these new orbital elements, the inverse transformations are

used to transform back to familiar coordinates.
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Chapter 4

Koopman Operator Theory Applied

to Solving Lambert’s Problem

4.1 Introduction

This chapter applies the theory from Chapter 2 to solving Lambert’s problem as

formulated in Chapter 3. Various initial conditions are considered and solutions to

variants of Lambert’s problem are presented.

First, Section 4.2 introduces the single revolution solution to Lambert’s problem

solved using the Koopman Operator for both the unperturbed and perturbed dy-

namical systems. In Section 4.3 the solutions obtained using the Koopman Operator

are compared with those found using the solver based on Lagrange coefficients, as

introduced in Chapter 3. Next, the range of applicability of the Koopman Opera-

tor solution is displayed through it applications to a variety of initial conditions in

Section 4.4. Section 4.5 presents the minimum energy and minimum Δv solutions

to Lambert’s problem using the Koopman Operator. Section 4.6 presents the Koop-

man Operator multiple revolutions solution to Lambert’s problem. In Section 4.7, a

method is presented for error-correcting the Koopman Operator transfer orbit solu-

tion. Section 4.8 presents a multi-impulse solution to Lambert’s problem. Finally,

Section 4.9 shows a use case of the Koopman Operator solution to Lambert’s problem

applied to an explosion of space debris.
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4.2 Lambert’s Problem Single Revolution

The solution to the single-revolution Lambert’s problem concerns finding an optimal

transfer orbit from an initial position vector to a final position vector within a specified

time of flight. First, the solutions for the dynamics of the unperturbed system that

does not take into account 𝐽2 effects are presented, followed by the solutions for the

perturbed system.

Many different initial and final conditions are considered in this chapter in Carte-

sian, Spherical, and Keplerian coordinates. The solutions to Lambert’s problem for

these various conditions do not require a recalculation of the KO matrix. Hence, the

process of finding the solution is broken down into these steps,

1. Calculate the KO matrix for the dynamics of the system in consideration and

for the chosen order of the basis functions

2. Pass in the set of initial conditions to the polynomial map created by the KO

that directly connects the initial state to the final state

3. Use the Levenberg-Marquadt algorithm to pass in different time constraints and

find the corresponding optimal orbital trajectories

4. If making use of a cost function, calculate the corresponding quantity for each

of the optimal orbital trajectories and identify the trajectory which minimizes

the cost function

Apply the cost function to each potential optimal orbital trajectory, calculate their

corresponding values, and identify the trajectory with the minimum cost as the most

efficient path.

In this Thesis, the first step is completed once for the dynamics of the unperturbed

system and once for the dynamics of the perturbed system for each chosen order of

the basis functions. In general, the KO matrix needs to be recalculated only when

the dynamics of the system in consideration is altered such as in the case of including

𝐽2 perturbations or other perturbations that are not considered in this Thesis such

as atmospheric drag.
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4.2.1 Unperturbed System

The unperturbed system dynamics are modeled using the Hamilton equations in

Equation 3.15. The initial conditions from Example 5.2 of the Orbital Mechanics for

Engineering Students textbook by H. Curtis are considered [24]. The initial and final

position vectors are,
r0 = [5000, 10, 000, 2100] km

r𝑓 = [−14, 600, 2500, 7000] km
(4.1)

The time of flight is 3600 seconds. The central angle between the initial and final

position vectors, Δ𝜃, is given by:

Δ𝜃 = arccos
r0 · r𝑓
|r0||r𝑓 |

, (4.2)

Δ𝜃 is also known as the true anomaly deviation. The required initial velocity for such

a transfer orbit is solved using the Levenberg-Marquardt algorithm (LM) described

in Section 3.4. An initial circular velocity guess is passed into the LM algorithm.

The initial velocity guess is then passed through the KO solution in Equation 2.25

and the final position and time are found for such initial conditions. The order of

the basis functions of the KO is chosen as 3 since the system is simple with no more

than 2 variables in each equation and no powers greater than 1. The LM algorithm

changes the initial velocity guess with each iteration through the KO matrix with the

objective of minimizing the difference,

Δ = [𝑟𝑓𝑥 , 𝑟𝑓𝑦 , 𝑟𝑓𝑧 , 𝑡𝑓 ]− [𝑟𝑎𝑥 , 𝑟𝑎𝑦 , 𝑟𝑎𝑧 , 𝑡𝑎] (4.3)

where [r𝑓 , 𝑡𝑓 ] represents the desired final position and specified time of flight and

[r𝑎, 𝑡𝑎] represents the attained final position and time of flight. The attained time of

flight is calculated using Equation 3.14. The resulting orbital trajectory is plotted in

Figure 4-1. Passing in different initial conditions does not require recalculating the

KO matrix as the KO matrix is calculated only once by projecting the dynamics of the

system onto the basis functions. Hence, the orbital trajectories for different times can
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Figure 4-1: Single Revolution Optimal Trajectories without 𝐽2 Effects

easily be calculated. The resulting trajectories for seven different times equally spaced

between 1200s and 8200s are shown in Figure 4-1. The two body problem solved using

the algorithm by Bate, Mueller and White and Bond and Allman (labeled as BMW

in the Figures), as introduced in Section 3.3, is plotted for comparison. The two types

of solutions closely overlap.

4.2.2 Perturbed System

Perturbations due to the oblateness of the Earth are taken into account by including

the 𝐽2 terms in the Hamilton equations (3.13). In order to calculate the optimal

trajectories, the order of the basis functions of the KO is increased up to order

7. The maximum order of the monomials in the perturbed dynamical system is 7,

hence having order 7 of the Legendre polynomials guarantees to cover any nonlinear

contributions. Increasing the order improves the accuracy of the solution by being
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Figure 4-2: Single Revolution Optimal Trajectories with 𝐽2 Effects

able to better take into account the non-linearities of the system. The resulting

orbital trajectories found for the same seven different times as in the unperturbed

case, between 1200s and 8200s, are plotted in Figure 4-2.

4.3 Error Performance

The accuracy of the solutions found using the KO Lambert solver is demonstrated by

two comparisons. The first comparison is to the solutions found using the Lambert

solver algorithm by Bate, Mueller and White, and Bond and Allman. The second

comparison is the propagation of the solution using the KO to the propagation of the

solution using a Runge-Kutta scheme of order 4-5.

The initial conditions from Section 4.2.1 are considered. The solutions found for

the unperturbed system in Section 4.2.1 and for the perturbed system in Section 4.2.2

using KO are compared to the solutions found using the BMW algorithm. First, the
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initial velocities found using both BMW, BMWv, and KO, KOvnoJ, that give the

transfer orbits for the single revolution case without taking into account 𝐽2 effects

for the time constraint of 𝑡 = 3600s are propagated. Then the initial velocity found

using KO taking into account 𝐽2 effects, KOvJ, is propagated. These velocities and

the norm of their difference is,

KOvnoJ = [−5.99249617, 1.92536583, 3.24563815] km/s

KOvJ = [−5.99201592, 1.92541067, 3.24800712] km/s

BMWv = [−5.99249502, 1.92536671, 3.24563805] km/s

|KOvnoJ −BMWv| = 1.458 x 10−6 km/s

|KOvJ −BMWv| = 0.002417 km/s

(4.4)

The propagator takes the initial state of the system and propagates it for the time

of flight to find the final state in order to validate results. The propagation is first

done in a two-body system without 𝐽2 effects using a Runge-Kutta scheme of order

4-5. The norm of the difference between the final position that the satellite reaches

and the desired final position, r𝑓 , is 2.543 × 10−10 km for the velocity found using

the Lambert solver by BMW, BMWv, and 0.00421 km for the velocity found using

the KO Lambert solver, KOvnoJ. Subsequently, the initial velocity found using the

BMW Lambert solver for the single revolution case, BMWv, is propagated using the

numerical propagator in a two-body system with 𝐽2 effects. The norm of the differ-

ence between the final position that the satellite reaches and the desired final position

is 7.81 km. Finally, the initial velocity found using the KO for the single revolution

case where 𝐽2 effects have been considered is propagated using the numerical propa-

gator in a two-body system with 𝐽2 effects. The norm of the difference between the

final position that the satellite reaches and the desired final position is 0.00401 km.

Therefore, when considering the unperturbed system for the single-revolution case,

the BMW algorithm has increased accuracy compared to KO for finding the initial

velocity that the satellite needs in order to attain the desired final position. However,

the second velocity found using the KO, KOvJ, gets the satellite closer to the desired
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Table 4.1: Difference Between Attained Final Position and Desired Final Position of
Transfer

BMW KO

System w/o 𝐽2 2.543 x10−11 km 0.00421 km
System w/ 𝐽2 7.81 km 0.00401 km

final position when propagated in a two-body system with 𝐽2 effects compared to

using the velocity found using the BMW algorithm which does not take into account

𝐽2 effects. These results are summarized in Table 4.1.

The second measure of accuracy of the solutions found using KO is demonstrated

by a comparison with a numerical integration of the 𝐽2 dynamical system using a

Runge-Kutta scheme of order 4-5. This builds on the previous measure of accuracy

by exploring the effects of changing the order of the basis functions used in the KO

solution. Using the initial conditions from Section 4.2.1, the KO solutions for order

3 in the basis functions are compared to a numerical integration of the equations in

Figure 4-3 for a time of flight of 3600 s. The error of the transfer orbit solution is in

the order of magnitude of kilometers. The order of the KO basis functions is increased

to order 7. This increase allows for the non-linearities of the 𝐽2 dynamical system to

be better captured in the solution. Figure 4-4 compares the solution found using the

KO with the numerical integration for order 7 in the basis functions. The error in the

solution has decreased to a maximum of about 70 cm, smaller than the error of the

order 3 results by 4 orders of magnitude. Hence, increasing the order of the KO basis

functions, decreases the error with respect to a numerical integration of the solution,

demonstrating how an increase in the order leads to the solution approaching the real

evolution of the system.

4.4 Various Initial Conditions

Optimal transfer orbits for various different initial and final position vectors and times

of flight can be solved using the same procedure as described in Sections 4.2.1 and

4.2.2 as shown in Figure 4-5. These solutions are found using state transition matrices
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Figure 4-3: Performance Error of 3rd Order KO Solution
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Figure 4-4: Performance Error of 7th Order KO Solution
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Figure 4-5: Single Revolution Optimal Trajectories with 𝐽2 Effects for Different Initial
Conditions

and without recalculating the KO matrix. This section demonstrates the versatility

of using the KO to solve Lambert’s problem by presenting solutions for transfer orbits

to a highly eccentric orbit, to an orbit at the critical inclination, and to a circular

geostationary orbit.

4.4.1 Transfer to a Highly Eccentric Orbit

Transfer orbits to highly eccentric orbits such as the Molniya orbit are desired for

some communication satellites. Such orbits allow satellite operators to effectively

view far northern latitudes that other orbits including geostationary equatorial orbits

could not effectively allow for. An example of a Molniya orbit that a satellite could
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Figure 4-6: KO and BMW Transfer Orbits to a Highly Eccentric Orbit

transfer to, in familiar Keplerian coordinates, is:

𝑎𝑓 = 26, 600 km, 𝑒𝑓 = 0.74, 𝑖𝑓 = 80 deg,

𝜔𝑓 = 270.0 deg, Ω𝑓 = 0.0 deg, 𝜈𝑓 = 0.0 deg
(4.5)

Coordinate transformations from Keplerian to Cartesian, then from Cartesian to the

orbital elements in Section 3.5 are performed to solve for the optimal transfer orbits.

An optimal transfer orbit from the same initial vector as in Section 4.2.1 and a time

of flight of 5,000 seconds is solved using the KO method with order 7 basis functions.

The transfer orbit is shown in Figure 4-6 solved by using the KO theory as well

as solved by using the algorithm by Bate, Mueller, and White. The error between

the KO solution propagated over time and that of the solution propagated using a

numerical integration method is plotted in Figure 4-7. The error in 𝑟 is on the order

of 10−1km but is decreasing as Δ𝜃 increases.
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Figure 4-7: Error of KO Transfer Orbit to a Highly Eccentric Orbit
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4.4.2 Transfer to an Orbit at the Critical Inclination

Specific Lambert solvers, as documented in existing literature, might encounter func-

tionality issues in proximity to the critical inclination, potentially resulting in the

derivation of imaginary solutions. These imaginary solutions stem from the fact that

Lambert’s problem is not well-posed for some configurations such as solving for opti-

mal transfer orbits near the critical inclination. One such solver is the Gauss-Legendre

algorithm that has difficulties solving for optimal transfer orbits near the critical in-

clination. Hence, it is of interest to show that solutions to Lambert’s problem for

transfer orbits near the critical inclination can be solved using the KO method. Let

the final orbit be located at the critical inclination:

𝑎𝑓 = 15, 029 km, 𝑒𝑓 = 0.433, 𝑖𝑓 = 63.4 deg,

𝜔𝑓 = 30.19 deg, Ω𝑓 = 30.21 deg, 𝜈𝑓 = 0 deg
(4.6)

Using order 7 basis functions in the KO method, the transfer computed for a time

of flight of 7000 s is shown in Figure 4-8 along with the transfer computed using the

BMW algorithm. The error between the KO transfer to the critical inclination and

the numerical propagation of the solution is shown in Figure 4-9. The error in r is on

the order of a couple of meters.

4.4.3 Transfer to a Geostationary Equatorial Orbit

A circular geostationary equatorial orbit (GEO) is an orbit where a satellite always

remains above the same point on the Earth’s equator. The angular velocity of the

radial connecting the satellite and Earth’s center must match the angular velocity

of the Earth itself, being 2𝜋 radians per sidereal day. Global weather satellites and

communications satellites are placed in GEO orbits due to the large portion of the

Earth’s surface visible from the high altitude. Furthermore, satellites in GEO appear

motionless in the sky which reduce the need for tracking them using ground stations

[24]. Furthermore, most rockets launch satellites to LEO, after which these satellites

must complete transfers in order to reach GEO. Hence, solving Lambert’s problem
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Figure 4-8: KO and BMW Transfer Orbits to the Critical Inclination
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Figure 4-9: Error of KO Transfer Orbit to the Critical Inclination
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Figure 4-10: KO and BMW Transfer Orbits to GEO

for these transfer orbits presents an interesting use case. The initial conditions of a

transfer to a GEO orbit are,

r0 = [5000, 10, 000, 2100] km

r𝑓 = [0, 42, 164, 0] km
(4.7)

with a time of flight selected as 10,000 s. The transfer orbit computed using the KO

method with order 7 basis functions is shown in Figure 4-10. The initial circular

orbit and the GEO final orbit are plotted as well. The error between the KO transfer

to GEO and the numerical propagation of the solution is plotted in Figure 4-11.

The error can be seen to be on the order of a couple of km at the beginning of the

propagation but quickly increases to order 101 km and approaches 102 km near the

end of the propagation.

The smallest error between KO and the numerical propagation of the solution
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Figure 4-11: Error of KO Transfer Orbit to GEO
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occurs in the case of the transfer to an orbit at the critical inclination where the

error in r is on the order of a couple of meters. The largest error between KO and

the numerical propagation of the solution occurs in the case of the transfer to GEO

where the error is on the order of 101 km.

4.5 Minimum Energy and Minimum ΔV Solutions

Solving specific cases of Lambert’s problem concerns the use of a cost function to

find an optimal orbit trajectory. In this section, cost functions corresponding to the

minimum energy transfer orbit and the minimum Δv transfer orbit are explored.

The minimum energy and minimum Δv solutions to Lambert’s problem are crucial

to modern space missions that have various fuel and time constraints. Both the

minimum energy and minimum Δv solutions are found in this section using the KO

while taking into account 𝐽2 effects.

4.5.1 Minimum Energy Solution

First, the specific energy is selected as the cost function to solve Lambert’s problem.

The specific energy, E, is given by

𝐸 = − 𝜇

2𝑎
(4.8)

where 𝑎 is the semi-major axis and is calculated for each transfer orbit from the initial

Cartesian coordinates using

𝑎 =
1

2
|r0| −

|v0|2
𝜇

. (4.9)

Negative specific energy solutions indicate elliptical transfer orbits, while positive

specific energy solutions indicate hyperbolic transfer orbits. Specific energy of 0

kJ/kg corresponds to a parabolic transfer orbit. This Thesis concerns solutions that

transfer satellites from one point to another and hence focuses on only elliptical

transfer orbits. The minimal specific energy transfer orbit is found by calculating
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Figure 4-12: Specific Energy of Each Transfer Orbit

the specific energy of each possible transfer orbit for different times of flight. For the

initial conditions considered in Section 4.2.1, in Equation 4.1, the minimum specific

energy transfer orbit is found to have a time of flight of 6630 s which corresponds

to a semi-major axis of 12, 328 km and a minimum specific energy of −16.2 kJ/kg.

The specific energies for transfer times near the time corresponding to the minimum

specific energy solution are plotted in Figure 4-12. The minimum specific energy

transfer orbit is plotted in Figure 4-13.

4.5.2 Minimum ΔV Solution

The Δv is selected as another cost function to solve Lambert’s problem. The minimum

Δv Lambert’s problem concerns finding the optimal transfer orbit between an initial

position vector on an orbit and a final position vector on another orbit that minimizes

the change in velocity required for the transfer [11]. The total Δv of the transfer orbit
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Figure 4-13: Minimum Energy Single Revolution Solution with 𝐽2 Effects
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is given by,

Δ𝑣total = Δ𝑣1 +Δ𝑣2 (4.10)

where Δ𝑣1 is the change in the velocity from the initial orbit to the transfer orbit and

Δ𝑣2 is the change in the velocity from the transfer orbit to the final orbit,

Δ𝑣1 =
√︁

(𝑣𝑥2 − 𝑣𝑥1)
2 + (𝑣𝑦2 − 𝑣𝑦1)

2 + (𝑣𝑧2 − 𝑣𝑧1)
2

Δ𝑣2 =
√︁

(𝑣𝑥3 − 𝑣𝑥2)
2 + (𝑣𝑦3 − 𝑣𝑦2)

2 + (𝑣𝑧3 − 𝑣𝑧2)
2.

Uniform circular motion orbits are assumed for the initial orbit the satellite is trans-

ferring from and for the final orbit the satellite is transferring to. The Δv of each

possible transfer orbit for different times of flight are found and then the minimum is

taken. For the initial conditions considered in Equation 4.1, the minimum Δv trans-

fer orbit is found to correspond to a time of flight of 4598 s with a Δv of 1.90 km/s.

The Δv’s for transfer times near the time corresponding to the minimum Δv solution

are plotted in Figure 4-14. The minimum Δv transfer orbit is plotted in Figure 4-15

along with the initial and final circular orbits and the minimum energy transfer orbit

for reference.

4.5.3 Pork-Chop Plots and ΔV: Mapping Efficient Trajecto-

ries

Using the method described in Section 4.5.2, it is possible to calculate the minimum

Δv trajectory given any initial and final position vectors on two generic elliptic orbits.

Hence, it is possible to produce “pork-chop” plots that identify the best departure and

arrival orbital positions on these orbits [7] [56]. Two generic elliptic orbits are chosen

and the true anomaly of each is divided into increments of 20∘. The minimum Δv

direct transfer orbit connecting each possible initial true anomaly and each possible

final true anomaly along the elliptic orbits is calculated. Values are interpolated so

that the minimum Δv is calculated every 1∘ in true anomaly. The resulting matrix is

displayed as a contour map in Figure 4-16. A generic pattern can be seen in Figure 4-
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Figure 4-14: Minimum ΔV of Each Transfer Orbit
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Figure 4-15: Minimum Energy and Minimum ΔV Single Revolution Solution with 𝐽2
Effects
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Figure 4-16: Contour Map of the Minimum ΔV Direct Transfer Between Two Generic
Elliptical Orbits
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Figure 4-17: Sample of Minimum ΔV Direct Transfer Orbits Between Two Generic
Elliptical Orbits

16 where diagonals across the matrix have similar Δv values. The difference between

the true anomaly at arrival and the true anomaly at departure is constant along

these lines. The Δv required to transfer between these true anomalies is a significant

factor in determining the overall Δv requirements for the trajectory. The constant

true anomaly difference along each diagonal results in similar minimum Δv values for

each trajectory on that diagonal.

A sample of 10 of the minimum Δv transfer orbits from Figure 4-16 are displayed

in Figure 4-17 along with the chosen initial and final generic elliptical orbits. It

is important to note that the initial and final generic elliptical orbits, as well as,

the transfer orbits are all chosen to be prograde. Given that the initial and final

generic elliptical orbits are chosen to be prograde, prograde transfers are generally

more efficient than retrograde transfers between these chosen orbits.

A 3-D “pork-chop” plot of the matrix plot from Figure 4-16 is shown in Figure
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Figure 4-18: “Pork-Chop” of the Minimum ΔV Direct Transfer Orbits Between Two
Generic Elliptical Orbits

4-18. The 3-D pork-chop plot and the contour plot can be used to identify the best

departure and arrival orbital positions that correspond to the overall minimum Δv

transfer. This overall minimum occurs at a value of 140 ∘ in true anomaly at departure

and 340 ∘ in true anomaly at arrival with a minimum Δv of 3.46 km/s. Finally, Figure

4-19 shows the three-dimensional geometry of the optimal orbit transfer trajectory

along with the initial and final orbits.

As a comparison, a Runge-Kutta scheme of order 4-5 is used to solve for the

velocities of each orbit transfer in the perturbed system for each possible time of flight

using the BMW algorithm as the initial guess. This method completes a numerical

integration of Equation 3.10 in Cartesian coordinates when solving for the velocities

using the Levenberg-Marquadt algorithm. The orbit transfer with the minimum Δv

is calculated for each combination of increments in true anomaly on the two generic
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Figure 4-19: Optimal Transfer Orbit for the Pork-Chop Minimum ΔV
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Figure 4-20: Relative Error of the Minimum ΔV Solutions

elliptical orbits. A similar contour map to the one in Figure 4-16 is created using

this numerical integration method. The relative error between the KO minimum

Δv matrix, MKO, and the numerical integration minimum Δv matrix, Mnumerical is

computed using,

Error =
|Mnumerical − MKO|

Mnumerical
(4.11)

The relative error is displayed in Figure 4-20 as a contour map where the color bar

depicts the relative error as a percent. The mean relative error is 0.339% with the

minimum value being 6.21 * 10−6 % and the maximum value being 8.91%. Hence, on

average solving the Minimum Δv Lambert’s problem using the KO leads to accurate

solutions that are within 0.339% of a numerical method’s solutions.
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4.6 Lambert’s Problem Multiple Revolutions

The solution to the multiple revolution Lambert’s problem is now presented. These

solutions involve finding optimal transfer orbits that complete one, or more, revolu-

tions around the gravitational body between the initial and final position vectors.

4.6.1 Unperturbed System

The multiple revolution solution is first solved in the unperturbed dynamical system.

The initial and final position vectors from Section 4.2.1 are taken as the initial condi-

tions. The period of a full orbit for the trajectory found in Section 4.2.1 is calculated

to be 𝑇 = 28, 175 s. A large transfer time corresponding to three orbital periods of

84, 463 s is chosen in order to solve for multiple revolutions. These multiple revolu-

tions solutions are found by adding 2𝜋𝑁 to Δ𝜃 in Equation 4.2, where 𝑁 represents

the number of revolutions. The new value for Δ𝜃 is directly incorporated into the

KO solution, resulting in a new polynomial map. This polynomial map connects the

initial state to the final state taking into account the specified number of revolutions.

Hence, a KO polynomial map is created for each number of revolutions without the

need to recalculate the KO matrix, a benefit from using the KO theory. This entails

benefits because the zonal representation uses true anomaly as its independent vari-

able. The 0, 1, 2, and 3 complete revolution solutions to Lambert’s problem with a

time constraint of 84, 463 s are plotted in Figure 4-21.

4.6.2 Perturbed System

The perturbed dynamical system is considered and the optimal trajectories to the

multiple revolutions Lambert’s problem are solved for. The position vectors from

Equation 4.1 are considered. The possible solutions to the multiple revolutions Lam-

bert’s problem are shown in Figure 4-22 for a variety of transfer times and semi-major

axes. This figure presents the comprehensive solution space, encapsulating both di-

rect transfer orbits and transfer orbits that complete multiple revolutions. It offers

an entire view of the potential transfers a satellite can take between the specified po-
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Figure 4-21: Multiple Revolutions Orbit Trajectories without 𝐽2 Effects
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Figure 4-22: Semi-Major Axes and Potential Timeframes for Multiple Revolution
Solutions to Lambert’s Problem

sition vectors. There are seven possible orbital trajectories for transfer times greater

than about 4800 s: two possible multiple revolutions transfer orbits for 𝑁 = 1, 2 and

3 and one possible solution for a single revolution orbit transfer. Such times are too

long for another single revolution orbit transfer solution as this other possible solu-

tion approaches the time corresponding to a parabolic transfer orbit for increasing

semi-major axis.

The 0, 1, 2, and 3 revolutions solutions transfer orbits are plotted in Figure 4-23.

These correspond in color to the multiple revolutions solutions plotted in Figure 4-

22. Some of these multiple revolution solutions are not feasible due to having small

semi-major axes that cause their orbital trajectories to pass through the Earth for

the time constraint considered.

The specific energies, Δv, and semi-major axes for the 0, 1, 2, and 3 complete

revolution orbit transfers are shown in Table 4.2 The specific energy decreases as
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Figure 4-23: Multiple Revolutions Orbit Trajectories with 𝐽2 Effects

Table 4.2: Specific Energies, ΔV, and Semi-Major Axes for Multi-Revolution Transfer
Orbits

Number of Revolutions Semi-Major Axis Specific Energy ΔV

Initial orbit 11,376 km
Final orbit 16,383 km
0 42,740 km -4.66 kJ/kg 12.85 km/s
1 40,634 km -4.90 kJ/kg 5.45 km/s
1 26,969 km -7.39 kJ/kg 11.62 km/s
2 25,532 km -7.81 kJ/kg 4.30 km/s
2 20,622 km -9.66 kJ/kg 10.47 km/s
3 19,433 km -10.26 kJ/kg 3.24 km/s
3 17,064 km -11.68 kJ/kg 9.30 km/s
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the number of revolutions of the transfer orbit increase for the specified transfer time.

Furthermore, as the number of revolutions of the orbit transfer increases, the required

Δv decreases. The biggest difference in Δv is between the direct transfer orbit and

that of a transfer orbit that takes 3 revolutions.

4.7 Error Correction

Considering the initial conditions and problem formulation in Section 4.2, this sec-

tion explores an error correction method that can be used to decrease the difference

between the final position targeted at and the final position attained. The velocity

needed to reach the final position is recalculated during the transfer, hence increasing

the accuracy of the transfer. The corresponding required Δv is also found. As an

example, the velocity is recalculated twice during the transfer in Figure 4-24: once

at 1/3 of the transfer and a second time at 2/3 of the transfer. The norm of the

difference between the final position that the satellite reaches and the desired final

position is calculated at the end of each of these 2 parts of the transfer. The norm

decreases from 7.56 km to 2.80 km and finally to 0.88 km at the final calculation of the

velocity. Hence, showing how a decrease in error can be attained by recalculating the

solution during the transfer. The Δv at these two steps required for such a decrease

in error are 0.0015 km/s and 0.0046 km/s respectively.

4.8 Multi-Impulse Lambert Solution

The multi-impulse solution to Lambert’s problem is now presented. Once again, the

initial and final position vectors from Equation 4.1 in Section 4.2.1 are taken as the

initial conditions. A circular prograde initial orbit for the spacecraft is assumed with

velocity,

v0 = [−5.203, 2.7419, −0.6673] km/s (4.12)

A two-impulse solution is considered. An intermediary position, r𝑖𝑚𝑝 is sought for

where a second impulse would take place. Hence, one impulse would occur at r0
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Figure 4-24: Error Correction Using Three Transfers
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for the change in velocity from the initial circular orbit, v0, to the velocity required

for the optimal first transfer orbit to r𝑖𝑚𝑝, denoted by v1. Then a second impulse

would occur at r𝑖𝑚𝑝 for the change in velocity from the velocity at the end of the first

transfer orbit, denoted by v2, to the velocity required for the optimal second transfer

orbit to r𝑓 , denoted by v3. Hence, the objective is to minimize the total Δv of the

multi-impulse transfer given by,

Δ𝑣total = Δ𝑣1 +Δ𝑣2 (4.13)

where

Δ𝑣1 =
√︁

(𝑣𝑥1 − 𝑣𝑥0)
2 + (𝑣𝑦1 − 𝑣𝑦0)

2 + (𝑣𝑧1 − 𝑣𝑧0)
2

Δ𝑣2 =
√︁

(𝑣𝑥3 − 𝑣𝑥2)
2 + (𝑣𝑦3 − 𝑣𝑦2)

2 + (𝑣𝑧3 − 𝑣𝑧2)
2.

The position of r𝑖𝑚𝑝 in 3-D space is the point at which a second impulse maneu-

ver would occur with the goal of minimizing the overall fuel consumption from the

two impulses while connecting the initial and final position vectors. The transfers

are constrained to be prograde. While considering retrograde orbit transfers would

increase the solution space, the overall fuel consumption would likely be greater than

using prograde transfer orbits since the initial orbit is prograde. Furthermore, if an

assumption is made that the final orbit is prograde without adding a velocity con-

straint at r𝑓 , then the fuel consumption would be even more likely to be greater if one

or both of the transfers were retrograde. A time-constrained solution and a time-open

solution are presented.

4.8.1 Time-Constrained Solution

A time constrained solution is derived using two determined time durations. The first

time duration is defined as the time a transfer to the position of the impulse would

take assuming the initial circular velocity in Equation 4.12 was used. The second time

duration is defined as the time a transfer to r𝑓 would take assuming the velocity of the
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first transfer was used. These time durations establish reasonable time constraints,

enabling the derivation of a classical Lambert solution. A Genetic Algorithm is used

to find the optimal position of r𝑖𝑚𝑝. It is a method inspired by the process of natural

selection used to solve constrained and unconstrained optimization problems. The

Genetic Algorithm generates a population of points at each iteration of searching for

the optimal solution. On each iteration the best point in the population is selected

as the one that has approached the most optimal solution. The next population

for the next iteration is selected by computation using random number generators.

Using such an algorithm allows for the space of possible solutions to be searched for

efficiently. The algorithm avoids searching only one area of the search space and

keeps exploring other areas that potentially contain better solutions. A population

size of 10 was selected with 10 generations. The algorithm was run 10 times and the

most optimal solution out of the ten runs was chosen. These parameters increase the

likelihood of finding a globally optimal solution, as they mitigate the risk of settling

on a sub-optimal solution due to the stochastic nature of the algorithm. The optimal

position and resulting transfers are shown in Figure 4-25. The total Δv of this transfer

is 4.4051 km/s. The time constraint for the first transfer was found to be 7,118 s and

for the second transfer the time constraint was 10,198 s.

4.8.2 Time-Open Solution

Since the KO solution to Lambert’s problem uses true anomaly as its independent

variable, as evidenced in Equation 3.13, transfer orbits using true anomaly rather

than time as the constraint can be found. Once the optimal position of the impulse is

found, Equation 3.14 can be used to find the corresponding times of flight. Using the

same parameters for the Genetic Algorithm as in Section 4.8.1, the optimal position

and resulting transfers for the time-open solution are shown in Figure 4-26. The

total Δv of this transfer is 3.5827 km/s. The corresponding time of flight for the

first transfer is 14,541 s and for the second transfer the time of flight is 12,396 s.

Furthermore, a direct transfer between the same initial and final position vectors

with no time constraint results in a greater Δv of 3.8422 km/s. Such a transfer would
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Figure 4-25: Time-Constrained Multi-Impulse Lambert Solution
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Figure 4-26: Time-Open Multi-Impulse Lambert Solution

take 4,612 s. Hence, the multi-impulse solution provides a more fuel efficient transfer

than the single-impulse maneuver. All in all, the time-open solution uses less total

Δv, and hence is more fuel optimal, than the time-constrained solution. However,

the time-constrained solution is faster and hence more time optimal.

4.9 Use Case: Space Debris Explosion

Space debris is a growing problem for space operations and active debris removal is

an active area of research [68]. Explosions of satellites can lead to collisions between

space debris fragments and active satellites [33]. Hence, it is of interest to use the

KO solution to Lambert’s problem to study the potential trajectories of an explosion

event that may cause debris to intersect with a satellite’s orbit.

An initial circular orbit is assumed for the active satellite. The explosion of another
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satellite on a different circular orbit occurs at,

r𝑒𝑥 = [7000, 12, 000, 5000] km

v𝑒𝑥 = [−4.30, 1.46, 2.52] km/s
(4.14)

where v𝑒𝑥 is the velocity of the satellite that explodes at r𝑒𝑥. The KO solution to

Lambert’s problem is used to calculated what Δv must the explosion impart onto its

fragments in order to cause a collision with the active satellite in orbit. The period

of the active satellite is used as the time constraint. The orbit of the active satellite

is discretized by true anomaly into 1 degree segments and the required Δv of the

explosion to reach each segment in the corresponding time constraint is calculated.

Debris pieces that would crash into the Earth before reaching the orbit of the active

satellite are not considered. Furthermore, all trajectories of the debris fragments are

prograde. While this assumption constrains the potential number of collisions, it is

justified given the initial prograde trajectory of the exploding satellite. Any debris

fragment aiming to shift into a retrograde trajectory would have to counterbalance

this initial velocity, making it a less likely occurrence. The minimum Δv required to

cause a collision is found to be 2.497 km/s and the maximum is 8.894 km/s. The

trajectories of the debris that would cause a collision with the active satellite are

shown in Figure 4-27. In conclusion, the KO solution to Lambert’s problem may be

used to help identify possible collisions with space debris and hence aid in collision

avoidance maneuver planning.
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Figure 4-27: Space Debris Explosion
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Chapter 5

Spectral Behavior

5.1 Introduction

This chapter studies the spectral behavior of the dynamical systems in which Lam-

bert’s problem was solved in previous parts of this Thesis. The Spectral behavior of a

dynamical system can provide insights into the stability of the system as well as into

its long-term behavior. Studying the spectral behavior can identify natural frequen-

cies and resonances of the system. Furthermore, studying the spectral behavior of

both the unperturbed and perturbed dynamical systems of Earth’s gravitational field

can help in understanding the effects of considering 𝐽2 perturbations on the stability

of the solutions.

First, Section 5.2 studies the distribution of the eigenvalues of the Koopman Op-

erator for both the perturbed and unperturbed systems for different orders in the

Koopman basis functions. Then, Section 5.3 studies the magnitudes of the Koopman

modes for different orders in the basis functions and explains their relation to the

accuracy of the solutions presented.

5.2 Koopman Operator Eigenvalues

Studying the spectral behavior of the transfer orbits solved for in Chapter 4 is bene-

ficial as it provides a deeper understanding of the dynamical systems’ behaviors [49]
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[23]. The eigenvalues of the dynamical system are independent of the initial conditions

of the problem since the Koopman matrix is independent of these.

The distribution of eigenvalues of the unperturbed system is shown in Figure 5-1

a) using a set of basis functions of order 3. The real part of these eigenvalues is

negligible as it is 𝑂(10−15). Hence, these eigenvalues are located on the imaginary

axis, indicating the dynamical system has oscillatory behavior. The distribution

of eigenvalues of the perturbed system is shown in Figure 5-1 b) using the same

order for the set of basis functions. The real part of the eigenvalues is no longer

negligible, 𝑂(10−3). This change in behavior of the eigenvalues indicates that the

zonal perturbations are affecting the stability and long-term behavior of the system.

Generally, these effects render the system more unstable.

The maximum frequency of the eigenvalues increases with an increase in the order

of the basis functions used. This increase in maximum frequency comes as a result

of the basis functions being computed as a combination of the initial set of variables.

Furthermore, the maximum frequency matches the order of the basis functions used.

To see this, let 𝜑1 and 𝜑2 be two eigenfunctions of the KO matrix with eigenvalues

𝜆1 and 𝜆2,
𝑑𝜑1

𝑑𝑡
= 𝜆1𝜑1

𝑑𝜑2

𝑑𝑡
= 𝜆2𝜑2

(5.1)

Multiplying these two eigenfunctions leads to a third eigenfunction of the system,

𝑔 = 𝜑1𝜑2 with eigenvalue 𝜆1 + 𝜆2 [4],

𝑑𝑔

𝑑𝑡
=

𝑑𝜑1

𝑑𝑡
𝜑2 + 𝜑1

𝑑𝜑2

𝑑𝑡
= 𝜆1𝜑1𝜑2 + 𝜆2𝜑1𝜑2 = (𝜆1 + 𝜆2) 𝑔 (5.2)

An increase in the number of basis functions used corresponds to an increase in the

number of eigenfunctions which leads to an increase in the maximum frequency.

The distribution of eigenvalues of the perturbed system with order 7 in the basis

functions is shown in Figure 5-2. The maximum value of the imaginary part of the KO

eigenvalues is 7. The distribution of eigenvalues of the system for the solution that

uses order 9 in the basis functions is shown in Figure 5-3. In this figure, the maximum
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(a) Unperturbed System

(b) Perturbed System

Figure 5-1: Distribution of Eigenvalues for 3rd Order in Basis Functions
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Figure 5-2: Distribution of Eigenvalues for 7th Order in Basis Functions for the
Perturbed Dynamical System
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Figure 5-3: Distribution of Eigenvalues for 9th Order in Basis Functions for the
Perturbed Dynamical System
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value of the imaginary part of the KO eigenvalues is 9. Hence, the eigenvalues in

Figure 5-3 do not exactly match up with those of Figure 5-2 because of the increase in

the basis functions used which increases the total number of eigenvalues. Furthermore,

the position of the repeated eigenvalues between the two Figures varies slightly due

to the fact that increasing the order of the basis functions increases the accuracy of

the solution by increasing the accuracy of the eigenvalues. However, the overall shape

and location of the eigenvalues is kept in both Figures. Hence, the overall spectral

decomposition of the dynamics remains, however, it becomes more accurate as the

order is increased which increases the number of eigenvalues that are farther from

the origin. This eigenvalue distribution is representative of the whole 𝐽2 dynamical

system for any initial conditions that are considered for solving Lambert’s problem

since the Koopman Matrix is independent of these conditions.

5.3 Koopman Mode Magnitudes

To better understand how the solution to Lambert’s problem in the perturbed system

depends on each Koopman mode, the Koopman mode magnitudes are plotted against

the absolute values of the Koopman eigenvalues. The magnitudes are plotted for

orders 7, 8, and 9 in the KO basis functions in Figure 5-4. The number of modes

increases with an increase in order, however the magnitudes of these modes decrease in

value. Hence, increasing the order of the KO basis functions still leads to an increase

in the accuracy of the solution since influential modes are being added. However, as

the order is increased, the benefits to improving the accuracy of the solution decreases.

When using higher-order basis functions, there exists a trade-off between the increase

in computational complexity and the improvement in the accuracy of the solution.

As explained in Section 4.2.2, when solving for the solutions to Lambert’s problem

in the perturbed system, order 7 in the basis functions is used as this order is able

to capture the non-linearities of the system. As can be seen from Figure 5-4, higher

orders than 7 have diminishing returns on improving the accuracy of the solutions.
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Figure 5-4: Koopman Mode Magnitudes
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Chapter 6

Conclusion

6.1 Thesis Summary

This Thesis addresses the study of applying an operator theoretic approach to solving

nonlinear problems in astrodynamics by applying the Koopman Operator to solving

Lambert’s problem. The first chapter introduces a general motivation for studying

nonlinear problems in astrodynamics using an operator theoretic approach. In par-

ticular, a motivation to study Lambert’s problem using the Koopman Operator is

given. A summary of the relevant literature is introduced on both the Koopman Op-

erator and Lambert’s problem. The main contributions of these related studies are

discussed. Then, the specific objectives of the Thesis are identified including a mo-

tivation to study the spectral behaviors of the dynamical systems via the Koopman

Operator.

Chapter 2 gives the essential theoretical background of the Koopman Operator

and associated mathematical methods. It starts by introducing the Koopman Op-

erator formulation, outlining the major benefits attainable through its application

to nonlinear systems. Then the chapter overviews the computation of the Koopman

eigenfunctions with an introduction to the Galerkin method. After introducing the

calculation of the Koopman matrix, the evolution of the basis functions is described.

As part of the final section, the evolution of the observables is provided which is used

throughout the rest of the Thesis.
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The third chapter defines Lambert’s problem and introduces key algorithms needed

in its solution. After giving an overview of the standard formulation of Lambert’s

problem with a time constraint, the chapter overviews variants of Lambert’s problem

including the multiple revolutions solution, the minimum energy solution, the mini-

mum Δv solution, and the multi-impulse solution. An algorithm to solve Lambert’s

problem using Lagrange coefficients is introduced. This algorithm is used throughout

the rest of the Thesis to compare against the Koopman Operator solutions. Further-

more, the Levenberg-Marquadt algorithm used in the Koopman Operator solution is

outlined. The final section of the chapter presents the orbital elements that gives the

linearization needed for the Koopman Operator approach.

Next, Chapter 4 presents the results of applying the Koopman Operator to solve

Lambert’s problem in both the unperturbed system and perturbed system. Single-

revolution solutions are presented and compared against another Lambert solver.

Then a variety of different initial conditions are considered including transfers to a

highly eccentric orbit, to an orbit at the critical inclination and to a geostationary

orbit. The errors of each solution are also presented. The minimum energy and min-

imum Δv solutions are solved using the Koopman Operator approach. Furthermore,

efficient trajectories are mapped using pork-chop plots. Comparisons with numerical

methods are made. Then, multiple revolution solutions to Lambert’s problem solved

using the Koopman Operator approach are presented, followed by an error-correcting

method and the multi-impulse solution. Finally, the last section applies the Koopman

Operator solution to the use case of mapping space debris collisions from an explosion.

The chapter highlights the applicability of the Koopman Operator method.

Lastly, Chapter 5 presents a spectral behavior analysis of the dynamical sys-

tems studied in this Thesis, particularly the unperturbed and perturbed dynamical

systems. The Koopman Operator eigenvalue distributions are presented for various

orders of the Koopman basis functions. The second section focuses on the influence on

accuracy that the magnitudes of the Koopman modes have for various orders in the

basis functions. A more profound insight into the spectral behavior of the dynamical

systems is offered.
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6.2 Main Findings

The main objective of this Thesis has been to present the benefits of using an operator

theoretic approach to solving nonlinear problems in astrodynamics by introducing

a solution to Lambert’s problem using the Koopman Operator. Many variations of

Lambert’s problem were solved, showing the wide range of applicability of the method.

Furthermore, comparisons with numerical methods and other solvers throughout the

Thesis have shown the robustness and accuracy of the Koopman Operator approach.

First, the Koopman Operator solution presents advantages in terms of computa-

tional efficiency. The Koopman Operator matrix needs only to be calculated once

for any dynamical system. Hence, in this Thesis the Koopman Operator matrix was

calculated once for the unperturbed dynamical system and once for the perturbed

dynamical system for each specified order of the basis functions. The appropriate

Koopman Operator matrix was used to solve variations of Lambert’s problem for a

variety of initial conditions. In the single revolution solution, the solutions found

using the Koopman Operator outperformed those found using the algorithm by Bate,

Muller and White, and Bond and Allman by bringing the satellite closer to its de-

sired position in the perturbed dynamical system. However, the BMW algorithm

outperformed the Koopman Operator method when solving Lambert’s problem in

the unperturbed case. The Koopman Operator solution was also compared to nu-

merical integration of the 𝐽2 dynamical system. A decrease in the error of the solution

was attained with an increase in the order of the Koopman basis functions. An error

of about 70 cm was attained for order 7 in the basis functions, 4 orders of magnitude

smaller than the error attained for order 3 in the basis functions.

Next, a variety of initial conditions were considered and transfer orbits were found.

These included transfers to a highly eccentric orbit, to an orbit at the critical inclina-

tion, and to a geostationary equatorial orbit. The transfer to the critical inclination

had the smallest error between the Koopman Operator solution and that of the nu-

merical propagation while the transfer to GEO had the largest error. The minimum

energy and minimum Δv transfers were solved for. These solutions are important for
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efficient resource use and fuel consumption, a critical aspect in mission planning and

success. Furthermore, efficient trajectories were found using pork-chop plots and the

departure and arrival orbital positions that correspond to the global minimum Δv

were identified. Any reduction in the required Δv from using such transfers directly

translates to cost savings, longer mission durations, and expanded mission capabili-

ties. A comparison with a numerical method showed the mean relative error of the

Koopman Operator solution to be 0.339%.

A multitude of multiple revolutions solutions were solved for, giving possible so-

lutions for a variety of time constraints corresponding to different semi-major axes.

The specific energy and total Δv’s of these solutions decreased as the number of

revolutions increased. An error-correcting method was introduced that recalculated

the optimal transfer orbit during the transfer and reduced the difference between the

desired final position and the attained final position by an order in magnitude from

7.56 km to 0.88km. Furthermore, the optimal position for a multi-impulse solution

was found for a satellite on a transfer orbit in the perturbed dynamical system with

two impulse maneuvers. A use case regarding the application of the Koopman Op-

erator to tracking collisions from a space debris explosion highlighted the range of

applicability of the method.

The spectral behaviors of the unperturbed and perturbed dynamical systems were

provided, giving a deeper understanding of these systems’ dynamics. The stability

of the systems were discussed. The maximum frequency of the eigenvalues of the

Koopman Operator were shown to increase with the order of the basis functions

used. This increase corresponds to an increase in accuracy of the solutions as could

be seen in Chapter 4. By plotting the Koopman modes as a function of the absolute

value of the eigenvalue frequencies, the diminishing returns on improving the accuracy

of the solutions by increasing the order of the basis functions were demonstrated.

Overall, the Koopman Operator presents a unique advantage in the calculation

of solutions to Lambert’s problem as it provides a method to linearize the high-

dimensional nonlinear dynamical systems this problem is defined in. This lineariza-

tion makes the computations more tractable and efficient. Moreover, the Koopman
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Operator’s ability to handle complex, multi-variable systems such as the 𝐽2 perturbed

system, makes it an excellent tool to solve nonlinear problems in astrodynamics.

6.3 Future Work

Based on the results of applying the Koopman Operator to solving Lambert’s problem

in this Thesis, various directions of future research paths are identified:

• Consider more applications of operator theory to solving nonlinear problems in

astrodynamics. In particular, applying the Koopman Operator to linearize cis-

lunar dynamics, using the Koopman Operator to solve the low-thrust trajectory

optimization problem while taking into account 𝐽2 perturbations, and using the

Koopman Operator to solve for optimal orbit trajectories while taking into

account perturbations other than 𝐽2 perturbations such as the effects of solar

radiation pressure and atmospheric drag.

• Explore ways to decrease the computational complexity involved in using very

high orders of basis functions of the Koopman Operator. Orders upwards of 30

could significantly decrease the errors involved in using the Koopman Operator,

however, such orders beyond 11 involve a large matrix calculation that becomes

computationally infeasible. The implementation of order 7 of the basis functions

in this Thesis resulted in decreasing the error of the solutions by 4 orders of

magnitude compared to an implementation of order 3 of the basis functions.

Further increasing the order would inevitably decrease the error significantly.

Furthermore, solving nonlinear problems in more complex systems would benefit

from having higher orders calculated with less complexity as their nonlinearities

would be captured better using such higher orders. This research direction could

also help improve the accuracy of the Koopman Operator solution for long time

constraints.

• Consider using a data-driven approach that uses dynamic mode decomposition

to approximate the Koopman Operator with a best-fit linear model. This type
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of approach would allow for a verification of the geometric approach employed

in this Thesis. It would also allow for a verification of the accuracy of the

equations used in this Thesis to represent the orbital elements of the dynamical

systems. Furthermore, employing a data-driven approach would increase the

range of applicability of the Koopman Operator to other nonlinear problems

since a polynomial representation of the system under study can be difficult to

find.
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Appendix A

Additional Figures

A.1 Time-𝜃 Conversion

The propagation of time and that of the time regularization derived from Equation

3.14 with respect to 𝜃 for one revolution of a random orbit.
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Figure A-1: Time-𝜃 Conversion
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