
A Measurement Tool for Videoconferencing User
Experience

by

Caroline Jin
B.S., Computer Science and Engineering, Massachusetts Institute of

Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Caroline Jin. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Caroline Jin
Department of Electrical Engineering and Computer
Science
May 12, 2023

Certified by: Mohammad Alizadeh
Associate Professor of Electrical Engineering and
Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

A Measurement Tool for Videoconferencing User Experience

by

Caroline Jin

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The COVID-19 pandemic forced people to work remotely and use videoconferencing
software like Zoom in their daily lives. While people are returning to their pre-
pandemic lifestyle, many still depend on videoconferencing software. As a result,
application developers need to regularly monitor user experience in terms of video
quality, stalls, and network conditions, and identify areas of potential improvement.
Companies and academic researchers focus user experience analysis on dual-endpoint,
controlled conditions that do not reflect everyday user calls. Gathering data on a large
scale without knowing the network structure and getting permission for traffic analysis
takes time and effort. Such large-scale experiments often use lengthy procedures to
obtain the right permissions and deploy monitoring infrastructure in the middle of
the campus network.

In contrast to existing approaches, an ideal measurement application would merely
run on users’ devices without cooperation from the other endpoint that they’re con-
versing with. Such an application enables researchers to collect network statistics
across a wide range of Internet conditions at a fine-grained level without significant
overheads. This thesis proposes the Single Endpoint Zoom Measurement Application
(SEZMA) that computes and logs network and video metrics when a user is on a
Zoom call and sends metric logs to a centralized server. In addition to providing
insights for users and researchers, the application aims to be explanatory, usable,
lightweight, and privacy-preserving.

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor

2

Acknowledgments

I would have been unable to complete my thesis work without the help of the follow-

ing people. Thank you to my advisor Professor Mohammad Alizadeh for providing

guidance through this whole process and steering me toward my project goals. Thank

you to PhD student Vibhaalakshmi (Vibhaa) Sivaraman for meeting with me every

week to lend mentoring support and to help me overcome the challenges I faced dur-

ing this project and thesis process. I am tremendously grateful for their passion and

time for my thesis work.

Finally, I would like to thank my family and friends for helping me test my mea-

surement application. Their support throughout this process has been invaluable.

3

Contents

1 Introduction 8

2 Relevant Work 11

3 Single Endpoint Zoom Measurement Application (SEZMA) 14

3.1 SEZMA System Architecture . 15

3.2 Network Analysis Module . 18

3.3 Video Analysis Module . 23

3.4 Centralized Server . 28

3.5 Application Installation and Set Up 30

4 Results 32

4.1 Real Network Conditions . 32

4.2 Simulated Network Conditions . 37

4.3 SEZMA CPU and Memory Performance 42

5 Limitations and Future Work 49

6 Conclusion 52

4

List of Figures

3-1 SEZMA System Architecture. 15

3-2 Network and Video Modules Workflow. 17

3-3 Network Module System Diagram. 18

3-4 Video Module System Architecture. 23

3-5 The video frame scores where PIQE is incorrect. The left image is

an image of good perceived quality, and the right is an image of poor

perceived quality. 26

3-6 The video frame scores where NIQE is incorrect. The left image is an

image of good perceived quality, and the right image is an image of

poor perceived quality. 27

3-7 Centralized Server System Diagram. 29

4-1 A timeline of video frame quality between the good and bad Zoom call. 33

4-2 A timeline of short time-scale metrics during the good Zoom call. . . 34

4-3 A histogram comparing the proportion of frames for a given frame or

packet metric between a good and Zoom bad call. 35

4-4 A timeline of all packets received by SEZMA during the bad Zoom

call. Each dot represents a received packet. 35

4-5 A snippet of the timeline of packets received by SEZMA and occur-

rences of frozen frames during a bad Zoom call. The frozen frames

occur within the gaps without received packets. 36

4-6 A timeline of the number of frames per second over time vs. NIQE

score during the bad Zoom call. 36

5

4-7 A timeline of the amount of network data, the number of frames per

second, and NIQE score during a Zoom call where the Network Link

Conditioner decreases bandwidth over time. 37

4-8 The top-left graph shows the average duration between packets at time

periods corresponding to the times in the remaining graphs. The top-

right graph shows NIQE scores, the bottom-left graph shows the num-

ber of frames per second, and the bottom-right graph shows the num-

ber of packets per second during a Zoom call where the Network Link

Conditioner increases the out delay. 39

4-9 The graph shows the amount of network data and the PIQE score of

a Zoom call where the Network Link Conditioner increases out packet

loss. 40

4-10 The graph shows a snippet of the Zoom call where the Network Link

Conditioner increases. 41

4-11 The average CPU and memory usage comparison between Zoom and

SEZMA for a Zoom call. 42

4-12 A timeline of SEZMA’s CPU usage and the amount of network data

collected over a Zoom call. 43

4-13 The average CPU and memory usage comparison between Zoom, SEZMA,

and Google Chrome with YouTube running for a sample Zoom call. . 44

4-14 A timeline of SEZMA’s CPU and the amount of Zoom network data

and YouTube network data collected over a Zoom call. 45

4-15 The percent CPU core usage of the Network module and the amount

of network data captured per Zoom call. 45

4-16 The relationship between frame rate and metric application setting on

the Video module’s CPU usage. 46

4-17 The fastest frame capture rate the Video module can support for each

video metric, and the percentage of CPU core usage by the Video

module to capture video frame metrics at its fastest frame rate. . . . 47

4-18 The memory usage for Video module per video frame metric. 47

6

List of Tables

3.1 Packet information used to filter out relevant packets. The top row of

the table corresponds to the outermost layer of the packet, and each

row below corresponds to the next layer in the packet. 20

3.2 Useful packet information for the Metric Computation submodule of

the Network module. 21

3.3 Network Metrics Computed. 24

3.4 Video frame metric scores for good and poor images in Fig. 3-5. . . . 27

3.5 Video frame scores for good and poor images in Fig. 3-6. 27

3.6 Video Metrics Computed. 28

3.7 HTTP requests sent to the centralized server. 30

7

Chapter 1

Introduction

The COVID-19 pandemic changed people’s everyday lives, forcing people to rely on

videoconferencing software like Zoom, FaceTime, Facebook Messenger, and Google

Meet to communicate with colleagues, peers, and relatives. From December 2019 to

May 2020, the number of Zoom daily meeting participants grew at a rate of 1900% [7].

As of 2022, there are 300 million Zoom participants every day [7]. Even though compa-

nies are transitioning towards more in-person meetings in the last year, industries like

marketing & advertising, travel, and technology still have a higher number of meet-

ings per person in the post-outbreak world compared to pre-pandemic [11]. Video

calls for personal use have also grown. As of March 2020, 47.6% of US adults use

FaceTime to talk to family and friends, followed by 44.1% for Facebook Messenger

and 31.5% for Zoom [5]. Videoconferencing software may not replace all forms of

in-person communication, but it is still an important tool for users.

As video calls have become more widely integrated into firms and people’s personal

lives, users want these calls to have nearly the same quality as in-person interactions.

Video calls fall short of the user’s expectations. One reason for this is that video-

conferencing software oftentimes have bad video quality. In a survey of 1,755 users

conducted by Dialpad, the top issue is poor audio quality. When users encounter

audio issues like choppiness, they turn off the video, which solves these audio issues.

This shows that audio problems may be caused by video problems. The survey also

shows that video degradation is one of the top three issues causing videoconferenc-

8

ing fatigue [11]. Video degradation refers to blurry or blocky video frames, frozen

screens, and choppy video (i.e., movements in video are irregular). When such sit-

uations occur, it is hard to diagnose the root cause or even capture the frequency

of these situations. For example, Zoom provides a support page to diagnose video

degradation, but it does not pinpoint specific network problems [6]. Resolving issues

with poor video quality is challenging due to the lack of data on real-time network

events that cause quality degradation. However, if there is a way to identify these

events in the real world with large-scale experiments on videoconferencing software

like Zoom, it would help improve such software and make the network infrastructure

that supports video calling more robust.

Large-scale measurements on videoconferencing software would provide insight

into network events that cause stalls and poor video quality. Current studies focus on

comparing the performance, such as video quality, between different videoconferencing

software like Zoom and Google Meet. However, these studies use dual-endpoint video

calls where both endpoints are users who must cooperate with each other to allow for

performance measurements of different videoconferencing software. Dual-endpoint

cooperation includes forcing the sender and receiver of the calls to send to each other

packets from the same video [10] or actively extracting packets on both ends in test

Zoom calls [19]. Other methods have attempted to observe all endpoints in a call

using an edge router where all traffic passes through [12, 19]. These methods operate

well on a small scope, where researchers can work with a few videoconferencing clients

or have access to a critical device in the computer network. However, scaling these

approaches incurs significant overheads to gather data from all endpoints in a call or

deploy in-network measurement devices and obtain permissions for access to sensitive

traffic data. An ideal measurement application would collect and evaluate data on

only one endpoint, using the storage and computing resources at that endpoint, and

only require the permissions of a single user.

In this thesis, we design a measurement application focused on Zoom with the

following design goals: explanatory, usable, lightweight, and privacy-preserving. The

application should be explanatory: it should inform users of what network events

9

caused bad video quality during a Zoom call. The application aims to be usable:

it must be easy to install and set up, and require only one endpoint to run in a

Zoom call. The application should be lightweight: it should minimize storage and

computing resources. The application should respect user’s privacy: no identifying

user information in the data is left from the user’s device.

With these design goals, we develop the Single Endpoint Zoom Measurement

Application (SEZMA), an application to run streamlined processes that computes

metrics as data is collected and send metrics to a centralized server where researchers

can analyze these metrics. SEZMA has one process for analyzing network data col-

lected from the Zoom call and another process for analyzing video data. The network

data is the packet data sent between users of the Zoom call. The video data is the

video shown on the display screen of the user’s device. As the data is collected, both

the network and video processes compute and record metrics, such as the size of the

packet for the network data and the video frame quality for the video data, into met-

ric logs. Once the Zoom call ends, both processes stop running and the metric logs

are sent to the centralized server for determining network events that impact video

quality.

For our initial iteration, SEZMA runs as a command-line application on Mac-

Books. We evaluate whether SEZMA achieves the design goals by running it with

Zoom calls and measuring CPU and memory usage. We observe that SEZMA can

distinguish between Zoom calls with good and bad perceived video quality using

video frame quality metrics like Laplacian and identifying video issues like stalling

using frozen frame metric. In simulated network conditions, SEZMA is able to re-

flect patterns induced by the network (e.g., a decrease in bandwidth correlates with

a decrease in the values of network metrics like the amount of network data re-

ceived per second). SEZMA also incurs only reasonable overheads when running on

a user’s device: it’s CPU Core usage is similar to that of Zoom, and its memory

consumption is within a factor of 2–3 of Zoom. SEZMA has been open-sourced at

https://github.com/cjin2019/SEZMA.

10

https://github.com/cjin2019/SEZMA

Chapter 2

Relevant Work

Although researchers have studied video quality [13, 15] and videoconferencing soft-

ware [10, 18, 12, 19], no previous work has developed a single-endpoint application

that allows users to identify network conditions affecting their everyday video call

quality. Video quality research focuses on the user’s video experience and examines

to what extent poor video quality decreases user engagement [13, 15]. Studies on

videoconferencing software primarily use dual endpoints to benchmark network per-

formance measurements like latency [10, 18, 12] or monitor network vantage points

that all traffic passes through to reveal traffic patterns on campus [12, 19]. This

work provides a single endpoint measurement application that analyzes network ef-

fects on video quality in conferencing settings, extending the existing measurement

methodologies like Michel et al. [19] to compute metrics for network and video quality.

Video Quality and User Engagement. Previous research on video quality shows

that video degradation can negatively impact user engagement when watching a video.

Dobrien et al. [13] quantify quality metrics such as buffer ratio, the fraction of the

total video length spent in buffering, and user engagement measurements like play-

time, the duration of viewing one video. They find that a 1% increase in buffering

ratio can reduce user engagement by more than 3 minutes in a 90-minute live video.

Karthikeyan et al. [15] extend this research by investigating the effects of video qual-

ity on user engagement across different streaming TV apps and other TV-related

platforms. Their results show that an increasing number of buffering interruptions

11

causes viewers to watch fewer TV programs over time rather than stopping immedi-

ately. While this research focuses on TV, their results reveal the importance of good

video quality for user experience in a wider range of video applications, including

videoconferencing software and the need to pinpoint problems in degradation.

Simulated Video Call Experiments. When analyzing videoconferencing soft-

ware, a common approach for evaluating performance uses a measurement testbed

with an emulated network environment. Such approaches enable a high degree of

reproducibility. For instance, Chang et al. [10] use virtual video conferencing clients

where the meeting host sends a video with a blank screen that flashes an image every

two seconds to the recipient. They compute latency by observing when the host sends

the first big packets corresponding to the first burst and when the recipient receives

those packets. Chang et al. [10] also analyze the video quality of each videoconferenc-

ing software, comparing the video output on the call with the original reference video.

Once all frames are processed, they measure the video call quality difference with the

original video using metrics like peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM). MacMillan et al. [18] set their testbed using a pre-defined network

environment setup and having one participant send pre-recorded talking-head video

to the other. They study the effects of constraining network parameters, like down-

link capacity, on video metrics, like video resolution, by measuring the video width

in pixels on the receiver side.

However, a common downside of such controlled approaches is that coordinated

clients run under simulated network conditions where there is low variance in packet

loss and latency. Specifically, the above approaches only include test calls where the

host sends a one-way pre-recorded video with known patterns like periodic flashes [10]

under network environments with controlled and consistent packet loss and latency [18].

Furthermore, these methodologies involve recording the entire video, storing it, and

then processing the video to compute video quality metrics for analysis. This is im-

practical for everyday video calls due to the huge storage needed on the user’s devices

and the privacy concerns of storing the video. Hence, an ideal measurement appli-

cation should not require coordination among participants, must run in any network

12

environment, and computes video quality metrics immediately after some video data

is collected.

Zoom Analysis. Few video conferencing studies focus on analyzing Zoom to under-

stand how it handles traffic and system and its underlying design. Choi et al. [12]

investigate their college campus’s traffic data to glean information on network paths

and traffic patterns. Using campus logs from an edge router, they discover that the

Zoom infrastructure switches between server mode (all clients retrieve data from a

centralized server) and peer-to-peer (P2P), and that Zoom uses separate channels

for audio, video, and screen sharing. Michel et al. [19] provide further analysis and

extract Zoom packet headers, such as media type and video frame. In SEZMA, we

leverage their parsing semantics to implement the application to infer network events

that cause poor video quality. The drawback of both works is that they actively

monitor packets from the sender and the receiver, and observe all traffic passing

through a border router. Such an approach necessitates identifying edge routers and

configuring them to capture packet information. Specifically, this approach requires

deploying a router, which is feasible on a large campus or corporate network that is

over-provisioned and can handle high volumes of network data. Poor network condi-

tions like high fluctuations in bandwidth and large packet loss do not occur frequently

on such large campus networks. Running measurements on these networks does not

provide insights into understanding video call quality for all types of networks. This

approach also constrains analysis to video calls where one participant is using the

campus network. In contrast, SEZMA relies on only one endpoint and does not re-

quire in-network support for analysis, providing more flexibility to the user and the

application developer.

13

Chapter 3

Single Endpoint Zoom Measurement

Application (SEZMA)

For this thesis, we designed and developed SEZMA that provides a timeline of network

events explaining the user’s Zoom quality during each video call that the user makes.

The goals are for the application to be:

1. Explanatory: The richness of data captured should enable meaningful inter-

pretation of it for the user to identify network events causing poor Zoom call

quality.

2. Usable: Users should be able to install and run SEZMA with minimal overheads

and interventions on their end. SEZMA should only use one endpoint and not

need coordination from the other(s).

3. Lightweight: SEZMA should not consume too much storage, CPU, or memory

on the user’s device.

4. Privacy-preserving: Identifiable user data should not be sent off from the user’s

device.

To achieve these goals, SEZMA runs on the user’s device, conducting analysis in

real-time as the network and video data are received during a Zoom call. SEZMA

14

runs the collection and computation of network and video data in separate processes,

maximizing the amount of data that can be captured and analyzed. Once the Zoom

call ends, computation results from the network and video data are sent to a cen-

tralized server, where they are then independently post-processed to glean insights.

With this design, SEZMA will enable researchers, engineers, and users to study daily

Zoom calls easily since participants can run the SEZMA during their Zoom calls, and

researchers can retrieve and analyze the metric logs from the centralized server.

We describe the application design choices and implementation by outlining the

application architecture (§3.1). From there, we will dive deeper into the main com-

ponents of SEZMA: the Network Analysis Module (§3.2), the Video Analysis Module

(§3.3), and the centralized server (§3.4). We also describe how users can install and

set up SEZMA on their device in (§3.5). Additionally, we evaluate the design goals of

SEZMA by running it with Zoom calls and conducting microbenchmark results (§4).

3.1 SEZMA System Architecture

Centralized
Server

User Device

SEZMA

Zoom-
Active

Network

Zoom-On
Event

Video

Sender

Active
Windows

Network
Metric Log

Video Metric
Log

Metric
Logs

Figure 3-1: SEZMA System Architecture.

We created SEZMA to run end-to-end as shown in Fig. 3-1. The user opens and

starts SEZMA on their device. SEZMA starts with three modules: Zoom-Active,

15

Network, and Video. These three modules share an event called Zoom-On, which

captures whether a Zoom call is running. The Network and Video modules wait

on the Zoom-On event, while the Zoom-Active module checks for the presence of

a Zoom Meeting window. If a Zoom Meeting window exists, it turns the Zoom-On

event from off to on, which initiates the Network and Video modules to start collecting

data, analyzing, and recording metrics to metric logs. When the Zoom call ends, the

Zoom-Active module turns the Zoom-On event off. Once this event is turned off, the

Zoom-Active module finishes running, and the Network and Video modules complete

their work and stop. SEZMA then initiates the Sender module to send the metric

logs to the centralized server. After the metric logs are sent, SEZMA stops.

Zoom-Active Module. The first module that SEZMA runs is the Zoom-Active

module, which verifies if a Zoom Meeting window exists. This module lists all available

active windows on the user’s device and checks whether the Zoom Meeting window is

inside this list. If the Zoom call has not started, the Zoom-Active module repeatedly

checks every 3 seconds. Once the call has begun, the Zoom-Active module sets the

Zoom-On event from off to on. During the call, the Zoom-Active process continues

to check every 3 seconds to determine whether the call ended. When it does not see

the Zoom Meeting window in the list, it waits 10 seconds to check again. If there is

still no window found, the Zoom-Active module sets the Zoom-On event to off. This

module enables the user to start SEZMA whenever they want without needing to

begin a call.

The Zoom-Active module uses Python’s Quartz package to get the list of active

windows. The Python Quartz package is a wrapper around Quartz-related frame-

works on macOS, such as Core Graphics. We use Quartz’s version of a Core Graphics

function called CGWindowListCopyWindowInfo that enables us to get a list of active

windows containing fields with information, such as the window ID and the window

dimensions. For each active window in the list, we check whether the field “Window-

Name” is “Zoom Meeting”. If a window has this, the Zoom Meeting window exists.

Otherwise, it does not.

Analysis Modules. The Network (§3.2) and Video (§3.3) modules in SEZMA run in

16

Start

Zoom-On
Event

Data Collection

Metric
Computation

Logging

Zoom-On
Event

Finish

Wait 3
seconds

on

on

off

off

Figure 3-2: Network and Video Modules Workflow.

parallel. The Network module processes one packet at a time, while the Video module

processes one frame at a time. Specifically, each received packet or frame undergoes

the submodules of Data Collection, Metric Computation, and Logging before the

next received packet or frame goes through the same submodules. For example, in

the Video module, the Data Collection submodule gets the video frame and sends it to

the Metric Computation submodule. The Metric Computation submodule computes

video metrics and sends the metrics to the Logging submodule, which records these

metrics into a log. The purpose of processing the information streams and logs in

real-time and online is to keep the data only in memory and reduce the storage of

the user’s device to just metric logs. This also is better for privacy since there are no

recorded files that need to later be protected from malicious actors. Both the video

and network modules have a Logging submodule to write these metric logs, which are

17

CSV files saved on the user’s device (until the call is done).

Aggregating Metrics. After the Network and Video modules finish running, SEZMA

starts the Sender module (Fig. 3-1), which uploads the metric logs to the centralized

server. The metric logs do not contain any identifiable information, but just a call

ID to distinguish between calls and location information (IP address) that can be

used for correlations later. The Sender module takes the metric logs and sends them

through an HTTP POST request. In some cases, the metric logs may take more than

1 MB, which may cause sending the request to take a few seconds. To ensure that

they do not take up too much space on the user’s device, the Sender module deletes

the metric logs after they are sent to the server. The centralized server aggregates all

metric logs from the user so that researchers with access to the server can conduct

an analysis of network events impacting Zoom video quality.

3.2 Network Analysis Module

Network

Data Collection

Metric Computation

Network Metric
Entry

LoggingZoom-On
Event

Network
Packets

Network
Metric Logs

Figure 3-3: Network Module System Diagram.

The Network module captures and analyzes Zoom packets received by the user’s

device. Each packet goes through the submodules in Fig. 3-3, during which the

packets are collected, and the network metrics are computed and logged. The Data

Collection submodule extracts only the video packets that correspond to the Zoom

call and gathers packet information useful for calculating network metrics. Once

all necessary packet fields are parsed, the Metric Computation submodule takes the

18

packet information and calculates metrics related to network events, such as packet

loss. Finally, the Logging submodule (§3.1) records these network metrics into a CSV

file that’s later sent to the centralized server. This section will focus on only the Data

Collection and Metric Computation submodules.

Data Collection. Obtaining network packets involves a filtering process where we

use packet headers to ensure that we are retrieving relevant packets sent by other

participants in the Zoom call. The filtering process uses two filters. Using one filter

is not enough since filters, like Berkley Packet Filters (BPF), only remove packets

based on layers defined in the Internet Protocol, like Transmission Control Protocol

(TCP), and are not fine-grained enough to detect only Zoom video packets.

The first filter restricts the collected packets to only User Datagram Protocol

(UDP) data packets with a destination corresponding to the user’s device. Video-

conferencing software like Zoom uses UDP as the standard protocol for video traffic,

where fast transmission is prioritized over reliable transmission. The first filter imple-

mentation uses a Python package Scapy [3] to get the UDP packets that have a des-

tination IP address of the user’s device, which is obtained using Scapy’s conf.iface.

While there are many available tools such as tcpdump and Wireshark [4], those tools

require running a separate process in SEZMA, which may incur additional overheads.

We pick Scapy since it enables easy packet parsing layer-by-layer and integrates the

Data Collection submodule easily with the rest of SEZMA.

All UDP packets passing through the first filter are parsed in a second filter to de-

termine whether they are Zoom video packets. The second filter also simultaneously

records some parsed data for later network metric computations. Michel et al. [19]

reveal that Zoom sends its video data in a specific packet structure. Through sys-

tematic controlled experiments, they discover that Zoom fragments its video frames

over several packets and adds unencrypted headers to each packet in addition to the

headers specified in Request For Comment (RFC) specifications 3550 [21]. We use

their schema to parse the payload of the packets received from the first filter.

In the parsing procedure, we parse the header from the outermost to the innermost

layer following the Zoom header schema, as shown in Tab. 3.1. If we cannot fully

19

Layer Name Features

UDP Header

• Time of Packet Received

• Packet Source IP Address

• Packet Destination IP Address

• Packet Source Port Number

Zoom Media Header

• Frame Sequence Number

• Number of Packets Per Frame

• Media Type: RTP Video, RTP Audio, RTP
Screen Share, RTCP Sender Report, Keep Alive

RTP Header

• Payload Type: Video, FEC

Table 3.1: Packet information used to filter out relevant packets. The top row of the
table corresponds to the outermost layer of the packet, and each row below corre-
sponds to the next layer in the packet.

parse each layer, we assume that the packet is not a Zoom video packet and continue

to process the next packet that enters the Data Collection submodule. The parsing

procedure begins with the UDP header, which contains the time of the packet received,

the source IP address, and the source port number. The source IP address and source

port number determine how to parse the subsequent layers. Zoom structures its inner

layers differently based on how data is sent among participants. Specifically, Zoom

sends traffic among participants in a call either via an external Zoom server (server

mode) or using Peer-to-Peer (P2P) transmissions [12, 19]. When it uses the server

mode, it adds a special header [19]. We identify the mode based on the source

port in the UDP header. If the source port is 8801, Zoom is operating in server

mode. Otherwise, the two Zoom clients send UDP packets directly to each other.

20

For server mode, we disregard the special header and continue to parse the packet’s

Zoom Media header. In P2P mode, the only additional header the packet contains is

the Zoom Media header. This header contains the media type, which differentiates

video packets from other media sources that Zoom outputs such as audio, as well as

other information like the frame sequence number and the number of packets sent

of that frame. The next parsed layer is the RTP header, which contains a payload

type to determine if the packet received is the original Zoom packet or a Forward

Error Correction (FEC) packet [21]. Zoom has a patent for its FEC procedure and

notes that FEC packets are redundant packets to deal with lost video frame packets.

As higher packet loss is identified, an increasing number of FEC packets are sent

to the receiver of the call [16]. The next layers are the Network Abstraction Layer

(NAL) [14] and Fragment Unit A (FU-A) [22]. Neither layer provide new information,

so we ignore those headers and stop the parsing process.

Throughout the parsing process, SEZMA stores in memory the relevant packet

information in a Packet Info Entry, as described in Tab. 3.2. The Packet Info Entry

is passed directly to the Metric Computation submodule. We find that the entries in

Tab 3.2 are useful because they enable the Metric Computation submodule to group

packets based on frames using “Frame sequence number” and time using “Time the

packet is received.” They also provide insights into network events. For instance, the

difference between the “Expected number of packets received” and the actual packets

received and “Is an FEC” may help reveal packet loss.

Packet Info Entry
Frame sequence number

Time the packet is received
Packet size (bytes)

Expected number of packets received
Is an FEC type (boolean)

Table 3.2: Useful packet information for the Metric Computation submodule of the
Network module.

Metric Computation. The Metric Computation submodule computes each network

metric using the packet info entries retrieved from the Data Collection submodule.

21

The network metrics are aggregated under three categories (Tab. 3.3): packet (e.g.,

packet size), frame (e.g., the number of FEC packets), and short time-scale (e.g., the

amount of network data captured per second). Considering these different categories

makes it easier to correlate the network metrics with the video metrics (§3.3) during

the graphical analysis. The following paragraphs describe the metrics we decide to

compute.

We use packet metrics to identify network events like packet loss or reduced band-

width during the call. The metrics we consider are the packet time (i.e., the time the

packet is received by the user’s device) and the duration between packets (i.e., the

difference between packet times). In good network conditions with minimal packet

loss and delays, we observe that the duration between packets on average is 0.01 sec-

onds. A duration between packets greater than 0.01 seconds reveals potential packet

loss or delay in the network. We also compute the packet size or the total number

of bytes of the Zoom video packet received. The packet size may vary based on the

network condition. For instance, decreasing packet size over time may reveal when

the network bandwidth is constrained.

We use frame metrics to get a summary of the network environment. We group

packets by frames using frame sequence numbers to compute the frame-level metrics:

the fraction of packets missing and the number of FEC packets. The fraction of

packets missing is the ratio of the number of packets missing over the expected number

of packets. The expected number of packets is retrieved from Packet Info Entry

(Tab. 3.2). We get the number of packets missing by computing the difference between

the expected number of packets of a frame and the actual number of packets received

for that frame (as measured during the call) that are not FEC packets. The fraction

of packets missing shows whether packet loss occurred. A fraction of 0 corresponds

to all packets received for a video frame, and a non-zero value indicates that some

frame packets have been lost. As the fraction of packets missing increases, the metric

shows that the network is experiencing packet loss. Another metric is the number of

FEC packets. We count the number of packets where the “Is an FEC type” value is

true for a given frame (Tab. 3.2). An increase in the number of FEC packets over

22

time also indicates an increase in packet loss levels. Some of these loss events can be

recovered from if the FEC packets are received, while some might create an extended

glitch or frozen video experience.

We also want to consider overall network trends in a Zoom call by computing

short time-scale metrics over a one-second period. These metrics are the amount of

network data (Kbps), the number of packets per second, the number of frames per

second, and the amount of FEC data (Kbps) averaged over a time interval. Changes

in these measurements may capture trends like a decrease in network bandwidth and

an increase in packet loss over the duration of the Zoom call, but show them over

longer time scales than individual packets or frames. For example, a decrease in

the amount of network data and an increase in the amount of FEC data over many

seconds may indicate that there is a prolonged increase in packet loss.

3.3 Video Analysis Module

Video

Data Collection

Metric Computation

Video Metric
Entry

LoggingZoom-On
Event

Video
Metric Logs

Zoom Meeting
Window

Figure 3-4: Video Module System Architecture.

The Video module captures and analyzes the video of the Zoom call. Every

image of the Zoom call is immediately analyzed to record video metrics into a metric

log (Fig. 3-4). The Data Collection submodule takes an image of the Zoom call at a

constant rate and sends the image to the Metric Computation submodule. The Metric

Computation submodule preprocesses the image and calculates metrics that show the

quality of the image (i.e., blockiness and blurriness) and video (i.e., stalling). The

23

Network Metric Type Metrics

Packet

• Packet Time

• Duration Between Packets (s)

• Packet Size (B)

Frame

• Fraction of Packets Missing

• Number of FEC Packets

Short Time-Scale

• Amount of Network Data (Kbps)

• Number of Packets Per Second

• Number of Frames Per Second

• Amount of FEC Data (Kbps)

• Fraction of Packets Missing Per Second

Table 3.3: Network Metrics Computed.

Logging submodule records these metrics. This section describes in detail the Data

Collection and Metric Computation submodules.

Data Collection. The Data Collection submodule takes images of the Zoom call by

capturing screenshots of the Zoom Meeting window. This submodule uses Python’s

Quartz package to select the Zoom Meeting window. With this package, the Data

Collection submodule can get the image of the Zoom Meeting window without having

it be full-screen and in front. The screenshot image is then converted into a 2D

array that can be processed by the Metric Computation submodule. Since the entire

Zoom Meeting window is captured, the Data Collection submodule is suited to collect

frames for only two-party calls. We discuss this limitation and potential workarounds

for multi-party calls in §5.

24

The Data Collection submodule must capture screenshots of the Zoom Meeting

window at high enough constant frames per second (fps) to get enough data show-

ing video degradation occurrences detectable by the eye. The frame capture rate

of each window can be set by updating SEZMA’s configuration file (§3.5) but is

upper-bounded by how long the metric computation takes. The metrics with more

computations, like those based on a trained model, involve a slower capture rate.

Section §4.3 reveals the fastest fps per different metrics and their corresponding CPU

usage. We observe that we can capture up to 30 fps on MacBook M1 and up to 5 fps

on older MacBooks like MacBook Pro 2019.

Metric Computation. As the Data Collection submodule for video data sends each

frame captured, the Metric Computation submodule computes metrics (Tab. 3.6) re-

lating to the video frame (e.g., blurriness of the video frame) or the overall video

(e.g., stalling). The following discusses the metrics SEZMA computes.

To measure video frame quality, we compute video frame metrics by applying no-

reference image quality metrics to each video frame that seek to capture how natural

each received frame is to the human eye. We experiment with Natural Image Qual-

ity Evaluator (NIQE) [20], Perception-based Image Quality Evaluator (PIQE) [9],

and Laplacian. We chose these metrics instead of standard distance-based visual

metrics such as peak signal-to-noise ratio (PSNR), structural similarity index mea-

sure (SSIM), and learned perceptual image patch similarity (LPIPS) because we run

measurements using a single endpoint (the receiver) and do not have access to ground-

truth images from the sender to compare each received video frame with.

Each metric we use differs in how “natural” is defined and the setup it requires.

Laplacian computes over the entire image to determine how blurry an image is. A

low Laplacian score indicates blurrier pictures. The PIQE algorithm divides the

images into 16-by-16-sized blocks and computes a distortion score to measure how

much distortion (i.e., specks of pixels and blockiness) is in each block. The PIQE

algorithm uses a threshold to classify which blocks should be considered distorted

and computes the mean of the distortion score over all the distorted blocks to get

25

the PIQE score. Higher PIQE scores correspond to images of poorer quality [9].

NIQE uses trained models that capture the naturalness of a scene [20]. High scores

correspond to lower-quality images, and quality is learned based on the dataset it is

trained on.

Our preliminary analysis suggests that the video frame metrics do not always

reflect image quality. For instance, Fig. 3-5 compares a video frame of perceived good

quality with a frame of perceived poor quality and Tab. 3.4 lists the exact scores for

each image and each metric. As expected, the poor perceived image scores higher than

the good quality image for NIQE and lower for Laplacian. However, the poor image

had a lower PIQE score than the better image. This may be because PIQE scores

only account for blockiness and noise, not blur. Thus, PIQE is unable to capture the

quality of images that have a constant blur. NIQE also sometimes produces very low

scores for images of poor quality, as shown in Fig. 3-6 and Tab. 3.5. The Laplacian

score for the bad image is only slightly lower compared to that of the good image,

and the PIQE score follows as expected. The bad image contains blockiness, which

NIQE and Laplacian scores may not quantify as well as PIQE.

Figure 3-5: The video frame scores where PIQE is incorrect. The left image is an
image of good perceived quality, and the right is an image of poor perceived quality.

Since each metric captures different features of a video frame, we decide to have

SEZMA configurable so that the user can decide which set of video frame metrics they

want to use and which video frame quality they want to detect (§3.5). NIQE, which is

a model-based metric, may take longer computing time compared to Laplacian, which

26

Metric Type Score for Good Image Score for Poor Image
NIQE 11.32 13.10
PIQE 44.15 39.78

Laplacian 158.88 157.55

Table 3.4: Video frame metric scores for good and poor images in Fig. 3-5.

is a non-model-based metric. This longer computation time causes frame capture to

be lower when using NIQE than when using Laplacian (§4.3).

Figure 3-6: The video frame scores where NIQE is incorrect. The left image is an
image of good perceived quality, and the right image is an image of poor perceived
quality.

Metric Type Score for Good Image Score for Poor Image
NIQE 10.75 11.34
PIQE 47.83 44.36

Laplacian 159.99 159.88

Table 3.5: Video frame scores for good and poor images in Fig. 3-6.

We also want to compute a metric that considers the video as a whole. Specifically,

we focus on analyzing video stalling using the frozen frame metric. To determine

whether stalling occurs, SEZMA keeps track of the previous and current frames and

compares pixel-by-pixel whether the two are the same. If the two frames are the

same, stalling occurred and the frozen frame metric is 1. Otherwise, the value is 0.

We face issues where the Zoom Meeting window contains a small view of the user’s

self, causing a pixel-by-pixel comparison to fail even if stalling occurs. To solve this

issue, SEZMA is restricted currently to only two Zoom participants and requires users

27

to toggle their view modes on Zoom to “Speaker” and “Hide Self View” during a Zoom

call. In the future, SEZMA could crop the speaker video screen of the window (§5).

Video Metric Type Metrics

Per-Frame Non-Model-Based

• Laplacian

• PIQE

Per-Frame Model-Based

• NIQE

Overall Video

• Frozen Frame

Table 3.6: Video Metrics Computed.

3.4 Centralized Server

We maintain a centralized server that hosts different versions of SEZMA to enable

efficient distribution of SEZMA among users. Users download SEZMA via a web-

page. The webpage sends an HTTP GET request specifying the application filename

containing the version they desire. The HTTP server process takes the GET request,

retrieves the corresponding file from the SEZMA file repository, and sends the SEZMA

file to the user. Currently, we have SEZMA available for Mac with Arm and Intel.

We scope it to be a command-line tool on MacBook that users can run on Terminal.

We develop SEZMA in Python due to the availability of data processing and metric

evaluation libraries for SEZMA’s Network and Video modules. Since SEZMA is built

using Python, we use Python’s Nuitka library [1] to convert the Python codebase

into a macOS application. The Nuitka library compiles Python codebase to C source

code and applies optimizations in compile time that enables SEZMA to run faster

than running it through Python.

28

Centralized Server

Graphs

SEZMA Files

Upload
log files

Data Files

HTTP Server Process

Data Receiver

Graph Generator

Download
App

User’s
Device

Figure 3-7: Centralized Server System Diagram.

The centralized server also stores all metrics received from users. It runs an HTTP

server process that allows users to send POST requests to upload the network and

video metric logs (Fig. 3-7). The HTTP server process takes the metric logs and

sends them to the data receiver, which stores them into a data files repository. The

data files repository accumulates all metric logs that researchers can later access to

conduct analysis.

Periodically, the centralized server runs a graph generator on the received metric

logs to create graphs of these metrics and stores these graphs in the graph repository.

These graphs identify specific network events and trends that may impact the video

quality of a call. We decide to put the graph generator on the server to enable

researchers to customize how they want to analyze the metric logs. Further, this

avoids the memory and computation overhead of creating the graphs on SEZMA

running on the users’ devices.

29

Command Request Type Request Fields Response
/upload POST Metric Logs

/download GET Application Filename SEZMA and Config Files

Table 3.7: HTTP requests sent to the centralized server.

3.5 Application Installation and Set Up

The users visit the centralized server on http://sezma.csail.mit.edu/ where we

list links of the zip files that the user can download. The zip file contains SEZMA

and an application configuration file, config.json. Each zip file name corresponds

to the SEZMA version available, where each filename specifies the macOS version

and the processor architecture (i.e., Arm or Intel). After the users download the zip

file, they must update the configuration file given in config.json where they can

set the parameters of how SEZMA will run on their device. The following shows the

parameters that users can configure:

1 {

2 ‘OutputDirectory ’: ‘/full/path/to/output/directory ’,

3 ‘FrameRate ’: 5,

4 ‘VideoFrameMetricsUsed ’: [‘LAPLACIAN ’, ‘NIQE ’, ‘PIQE ’],

5 }

1. OutputDirectory: This parameter specifies the file path of the directory to store

the metric logs outputted from the Network and Video modules. These metric

logs are stored temporarily in the directory specified by OutputDirectory and

immediately deleted once sent to the centralized server.

2. FrameRate: This value specifies the frame capture rate for the Video module.

The default rate may be too high, since the rate is set to be the fastest possible

capture rate for the given video frame metrics, specified in VideoFrameMetric-

sUsed.

3. VideoFrameMetricsUsed: This setting has users supply video frame metrics

30

they want to use as a list. The default config.json file uses all metrics that

SEZMA can compute.

Once the users have updated the configuration file, they can start SEZMA on the

Terminal of their devices.

31

Chapter 4

Results

We evaluate SEZMA by running test Zoom calls showing particular network events

that may cause video degradation. In addition, we also run several Zoom calls to

measure the memory and CPU impact of this application. We run SEZMA on a

2022 MacBook with an M1 processing chip in two-person Zoom calls that last 4–8

minutes for all experiments. Sections §4.1 and §4.2 show that SEZMA is explanatory

in real network conditions and simulated conditions respectively, and Section §4.3

shows SEZMA is lightweight.

4.1 Real Network Conditions

This section compares a good Zoom call with a bad Zoom call when run in the

wild without any control over the network bandwidth or loss pattern, and illustrates

that SEZMA is able to distinguish between the two. We define a bad Zoom call as

having many occurrences of video degradation, like frames that are frozen and have

blockiness or blur. A good Zoom call will consist of a few of the aforementioned video

degradation. When doing our initial analysis, we focus on the network metrics (i.e.,

packet metrics like the packet time, frame metrics like the fraction of packets missing

and the number of FEC packets, short time-scale metrics like the number of frames

per second, the amount of network data (Kbps), the amount of FEC data (Kbps),

and the number of packets per second), following the video quality trends. For video

32

quality, we focus on the frozen frame metric and video frame metrics like Laplacian

and NIQE because they provide useful insights for our analysis. A good video frame

quality has a high Laplacian score and a low NIQE score, and a bad video frame

quality has a low Laplacian and a high NIQE score.

Good Zoom Call. We expect a good Zoom call to have overall higher frame quality

during the call, compared to a bad Zoom call where video degradation occurred.

Fig. 4-1 shows higher Laplacian scores and lower NIQE scores on average for a good

Zoom call compared to a bad call.

0 25 50 75 100 125 150 175

70

80

90

100

LA
PL

A
C

IA
N

0 25 50 75 100 125 150 175
Time (s)

13

14

15

N
IQ

E

Bad Call
Good Call

Figure 4-1: A timeline of video frame quality between the good and bad Zoom call.

Under stable network conditions with high bandwidth and minimal packet loss, we

expect the Zoom call to be good. The short time-scale metrics should stay relatively

horizontal over time. Fig. 4-2 shows that the number of frames per second varies

between 23 and 31, the amount of network data varies between 1337 Kbps to 1778

Kbps, the amount of FEC data stays at 0 throughout the call, and the number of

packets per second varies between 144 and 188. The amount of network data sent

is relatively constant at an average value of 1605 Kbps. To understand packet loss

characteristics, we consider frame metrics like the fraction of packets missing and the

33

0 50 100 150 200 250 300 3500

23

31

N
um

be
r o

f F
ra

m
es

Pe
r S

ec
on

d

0 50 100 150 200 250 300 3500

1337
1605
1778

N
et

w
or

k
D

at
a

(K
bp

s)

0 50 100 150 200 250 300 350

000

FE
C

 D
at

a
(K

bp
s)

0 50 100 150 200 250 300 350
Time (s)

0

144

188

N
um

be
r o

f P
ac

ke
ts

Pe
r S

ec
on

d

Figure 4-2: A timeline of short time-scale metrics during the good Zoom call.

number of FEC packets. In Fig. 4-3(1), the good call has only 2% of frames that have

any packets missing, and all other frames are completely received. Fig. 4-3(3) shows

that no FEC packets are received. These metrics indicate that there is low packet

loss

Bad Zoom Call. The network metrics of the bad Zoom call show particularly high

packet loss. Fig. 4-3(2) shows that 19% of frames are partially or completely lost

during the call, and Fig. 4-3(4) shows that 40% of the frames received have one or

more FEC packets. The gaps between packet time received during the call identify

34

0.0 0.5 1.0
(1) Fraction of Packets Missing

Per Frame

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

Fr
am

es

Good Call

0.0 0.5 1.0
(2) Fraction of Packets Missing

Per Frame

0.00

0.25

0.50

0.75

1.00
Bad Call

0
(3) Number of FEC Packets

Per Frame

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

Pa
ck

et
s

Good Call

0 1 2 3 4 5
(4) Number of FEC Packets

Per Frame

0.00

0.25

0.50

0.75

1.00
Bad Call

Figure 4-3: A histogram comparing the proportion of frames for a given frame or
packet metric between a good and Zoom bad call.

when packet loss occurs in Fig. 4-4. Gaps start from 𝑡 = 25s to 𝑡 = 200s.

0 25 50 75 100 125 150 175 200 225 250 275
Packet Time (s)

Figure 4-4: A timeline of all packets received by SEZMA during the bad Zoom call.
Each dot represents a received packet.

During this call, we observe many periods of stalling (i.e., frame freezing) and

the quality of the video frame diminished. Fig. 4-5 shows snippet of time wherein

the blue dots represent received packets (as inferred by the Network module), while

35

the orange dots represent frozen frames (as inferred from the Video module). We

observe that the frame freeze occurs within the gaps where no Zoom packets are

received, indicating that packet drop affects (and causes) stalling in this call. No

frame freezing occurs when many packets are received, as shown after 𝑡 = 200s.

160 170 180 190 200
Time (s)

Frozen Frame
Packet Received

Figure 4-5: A snippet of the timeline of packets received by SEZMA and occurrences
of frozen frames during a bad Zoom call. The frozen frames occur within the gaps
without received packets.

0 25 50 75 100 125 150 175 200 225 250 2750

10

20

30

N
um

be
r o

f F
ra

m
es

 P
er

 S
ec

on
d

0 25 50 75 100 125 150 175 200 225 250 275
Time (s)

13

14

15

N
IQ

E

Figure 4-6: A timeline of the number of frames per second over time vs. NIQE score
during the bad Zoom call.

Fig. 4-6 shows a timeline of the number of frames per second and NIQE during

this bad Zoom call. As expected, whenever the number of frames per second is high

and the frames are updated very quickly to reflect any small changes in frame content,

the NIQE score is low, meaning the quality of the video frame is good. Conversely,

for the low number of frames per second, the NIQE score is high, meaning the quality

36

of the video frame is degraded. The decrease in the number of frames per second

corresponds to high packet loss from 𝑡 = 25s to 𝑡 = 200s.

4.2 Simulated Network Conditions

To explore other network conditions, we use the Network Link Conditioner provided

by Apple’s Xcode tools to create specific network conditions to test SEZMA’s func-

tionality. SEZMA runs on one endpoint, and the Network Link Conditioner runs

on the other endpoint of the Zoom call. The Network Link Conditioner enables us

to define a profile that sets network conditions, such as the bandwidth, the delay

through the network when sending packets (“out delay”), and the packet loss (“out

packet loss”).

0 50 100 150 2000

2000

N
et

w
or

k
D

at
a

(K
bp

s)

0 50 100 150 200

20

40

N
um

be
r o

f F
ra

m
es

Pe
r S

ec
on

d

0 50 100 150 200
Time (s)

10

15

N
IQ

E

Figure 4-7: A timeline of the amount of network data, the number of frames per
second, and NIQE score during a Zoom call where the Network Link Conditioner
decreases bandwidth over time.

Decrease in Bandwidth. We use the Network Link Conditioner to constrain the

bandwidth of the network and analyze the bandwidth impact on the video quality.

The Network Link Conditioner is initially supplied with a high bandwidth around 40

37

Mbps (0-50s), and then the supplied bandwidth is reduced to 5 Mbps (50-75s), and

finally reduced further to 2.5 Mbps (105-160s), during the Zoom call. The top two

graphs in Fig. 4-7 show the amount of network data in Kilobits-per-second of Zoom

video traffic actually received and the number of frames received per second. The

bottom graph is the NIQE metric over time.

The green box indicates when the bandwidth has dropped. For instance, the

receiver starts out receiving 1800 Kbps of data, which first drops to 480 Kbps, and

then drops again to 230 Kbps. During each bandwidth drop period, the amount

of network data and the number of frames per second also decreases. At the same

time, the NIQE score increases, indicating that the quality of video frames worsens.

There is a slight delay in the Zoom application between when packets are received

and when the corresponding decoded video frame is shown on the Zoom screen. Once

the bandwidth change settles, the number of frames per second increases after each

green box. This increase corresponds to a decrease in the NIQE score, pointing to

an increase in video frame quality. The increased number of frames per second may

show that Zoom is figuring out how many frames it should send to the receiver while

maintaining good video frame quality.

Increase in Delay. We also experiment with increasing the “out delay” field in the

Network Link Conditioner that controls the delay through the network for packets

sent. The Network Link Conditioner begins with the “out delay” or propagation delay

at approximately 0 seconds and then increases to 3 seconds. The top-left graph of

Fig. 4-8 shows the average duration between packets during three-time periods of

the Zoom call: (0-10s) the propagation delay is approximately 0 seconds, (10-15s)

the propagation delay increases to 3 seconds, and (15-40s) the propagation delay is 3

seconds. Since the bandwidth is not changed during the Zoom call (40 Mbps), multiple

packets can be sent per second, so the duration between packets is much lower than 3

seconds. This only affects the end-to-end latency of frames and increases the latency

to 3 seconds. The bottom-left and bottom-right graphs show the number of frames

per second and the number of packets per second decreases as the propagation delay

increases.

38

0-10s 10-15s 15-40s
Time Period

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Av

er
ag

e
D

ur
at

io
n

B
et

w
ee

n
Pa

ck
et

s (
s)

0.01

0.03

0.13

0 5 10 15 20 25 30 35
Time (s)

11

12

13

14

15

16

N
IQ

E

0 5 10 15 20 25 30 35
Time (s)

5

10

15

20

N
um

be
r o

f F
ra

m
es

0 5 10 15 20 25 30 35
Time (s)

0

20

40

60

80

100

N
um

be
r o

f P
ac

ke
ts

Figure 4-8: The top-left graph shows the average duration between packets at time
periods corresponding to the times in the remaining graphs. The top-right graph
shows NIQE scores, the bottom-left graph shows the number of frames per second,
and the bottom-right graph shows the number of packets per second during a Zoom
call where the Network Link Conditioner increases the out delay.

The top-right graph of Fig. 4-8 shows the NIQE scores during the Zoom call. The

increase in the average duration between packets, the decrease in the number of frames

per second, and the decrease in the number of packets per second correlate with the

increase in NIQE scores per time period. We find that the fraction of packets missing

per frame is 0 throughout, so packet loss does not explain the decrease in frame quality.

Instead, Zoom may discover that frames take longer to arrive when it monitors end-

to-end delay. It assumes queue buildup or congestion in the network, and reduces

39

its bitrate in response. This is common in many congestion control algorithms for

video applications, including Google Congestion Control [8] that operates within the

WebRTC framework (that Zoom is built on top of). This decrease in bitrate manifests

as a decrease in the number of frames per second and the number of packets per

second, as well as reduced visual quality. As a result, these frames appear to be

blurry or blocky.

0 5 10 15 20 25 30

500

1000

1500

N
et

w
or

k
D

at
a

(K
bp

s)

0 5 10 15 20 25 30
Time (s)

52.5

55.0

57.5

60.0

62.5

PI
Q

E

Figure 4-9: The graph shows the amount of network data and the PIQE score of a
Zoom call where the Network Link Conditioner increases out packet loss.

Lossy Conditions. We test SEZMA with an increased “out packet loss” field in the

Network Link Conditioner that controls the percent of packets that are lost. The

Network Link Conditioner begins with an “out packet loss” of 0 and then increased to

40

an “out packet loss” of 30%. Fig. 4-9 shows that the amount of network data decrease

around 𝑡 = 15s, indicating that the packet loss has increased to 30%. The PIQE scores

increase at 𝑡 = 17s, showing that the packet loss subsequently causes a decrease in

the video frame quality. Like Fig. 4-7, there is a slight delay in the Zoom application

between when packets are received and when the corresponding decoded video frame

is shown on the Zoom screen. The PIQE score increase, therefore, corresponds with

the decrease in the amount of network data. Like the delay scenario above, Zoom

may discover the packet loss and reduces its bitrate in response (potentially to allow

for more FEC packets instead), which leads to lower video quality. Some frames may

also be decoded incorrectly or partially leading to stalls due to corrupt decoder state.

For instance, Fig. 4-10 shows a snippet of the occurrence of frozen frames and packets

received during the transition between 𝑡 = 15s to 𝑡 = 17s where packet loss occurred.

Gaps between packets received map the occurrence of frozen frames, indicating the

packet loss may cause video to freeze.

15 16 17 18
Time (s)

Frozen Frame
Packet Received

Figure 4-10: The graph shows a snippet of the Zoom call where the Network Link
Conditioner increases.

41

4.3 SEZMA CPU and Memory Performance

We investigate the CPU and memory performance of SEZMA on a 2022 MacBook

with an M1 processing chip. We compare SEZMA with Zoom to check whether the

memory and CPU usage of SEZMA is within a reasonable range. We also evaluate

SEZMA’s CPU and memory usage under different Zoom call settings (e.g., whether

the microphone is on) and different application settings (e.g., what video frame quality

metrics are collected).

We use the command-line tool, top, to sample the CPU and memory usage of

Zoom and all sub-processes of SEZMA, including the main application process, the

Network process, the Video process, and the Zoom-Active process (which periodically

checks for an active Zoom window), every second during a Zoom call. We aggregate

the CPU and memory usage of all processes of SEZMA, and also calculate the average

CPU and memory usage of each process over the entire Zoom call.

Zoom vs. SEZMA. Using the above data collection method, we ran one Zoom call

to compare the average CPU and memory usage of SEZMA to Zoom. During this

call, SEZMA is configured to run only one video frame metric, Laplacian, at a frame

rate of 10 fps.

Zoom SEZMA
Application

0

2

4

6

8

10

Pe
rc

en
t C

PU
 C

or
e

U
sa

ge

Zoom SEZMA
Application

0

100

200

300

400

500

600

M
em

or
y

U
sa

ge
 (M

B
)

Figure 4-11: The average CPU and memory usage comparison between Zoom and
SEZMA for a Zoom call.

Fig. 4-11 shows average values of CPU Core and Memory Usage for both Zoom

and SEZMA. During the Zoom call, SEZMA uses an average of 4.74% CPU core

42

compared to Zoom’s 9.19% while SEZMA uses an average memory usage of 603 MB

compared to Zoom’s 231 MB. SEZMA’s increased memory usage comes from holding

video frames and captured packets in memory before processing metrics for them.

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

1000

1200

N
et

w
or

k
D

at
a

C
ap

tu
re

d
(K

bp
s)

Network Data CPU

4

5

6

7

8

Pe
rc

en
t S

EZ
M

A
C

PU
 C

or
e

U
sa

ge

Figure 4-12: A timeline of SEZMA’s CPU usage and the amount of network data
collected over a Zoom call.

Fig. 4-12 shows that the CPU usage of SEZMA is correlated with the network data

that is captured by SEZMA over time. When collecting the network data, we run

the tcpdump command with the same network data filter as the Network module of

SEZMA to get a rough estimate of how much data is being captured by SEZMA. The

filtered network data is mostly Zoom and no more than 0.6 Kbps are from background

processes running on the MacBook. When there is a change in the other participant’s

Zoom settings (i.e., microphone is on, a person leaves or enters the camera view of

the Zoom call), these changes correspond to a spike in the amount of network data

received and the CPU usage of SEZMA. This correlation suggests that SEZMA’s

CPU core usage depends on the amount of network data that needs to be processed.

Zoom vs. SEZMA vs. YouTube. We also run an experiment with a Zoom call

running with a Google Chrome window containing a YouTube video stream with an

application configuration of computing only Laplacian at 10 fps. The purpose of this

43

Zoom SEZMA Google Chrome
with YouTube

Application

0

2

4

6

8
Pe

rc
en

t C
PU

 C
or

e
U

sa
ge

Zoom SEZMA Google Chrome
with YouTube

Application

0

250

500

750

1000

1250

1500

M
em

or
y

U
sa

ge
 (M

B
)

Figure 4-13: The average CPU and memory usage comparison between Zoom,
SEZMA, and Google Chrome with YouTube running for a sample Zoom call.

analysis is to determine the impact of other processes with high CPU or memory

usage, particularly video streaming services, on this application. Fig. 4-13 shows that

Google Chrome running YouTube took the highest memory usage, using on average

1472 MB during the call whereas Zoom uses 248 MB and SEZMA uses 605 MB. The

CPU usage of Google Chrome with YouTube is the lowest, using on average 3.13% of

the CPU core. SEZMA uses 7.68% of CPU core on average, and Zoom uses 7.75%.

Fig. 4-14 shows that the CPU usage of SEZMA is correlated with the amount of

network data captured, including the network data from YouTube video stream and

Zoom. Large gaps in the amount of network data captured from both YouTube and

Zoom correspond to drops in the CPU core usage of SEZMA. At 𝑡 = 79s, the CPU

Core usage dropped from 7.26% to 5.31%. This drop corresponds to no YouTube data

captured and Zoom data being captured at a maximum rate of 800 Kbps between

𝑡 = 68s and 𝑡 = 78s. At 𝑡 = 236s, the CPU Core usage dropped from 7.72% to 6.68%.

This drop corresponds to no YouTube data captured and Zoom data being captured

at a maximum rate of 500 Kbps This shows that SEZMA’s CPU core usage may be

dependent on how much video-related network data, not just Zoom data, is received.

Microbenchmarks. We run larger experiments to observe how our Network and

Video modules’ CPU and memory usage varies under different Zoom call scenarios

and application configuration settings. All calls are 4–5 minutes long and between

two people. For each call, we compute the averages of the CPU Core Usage, memory

44

0 50 100 150 200 250
Time (s)

0

5

10

15

20

25

30

35

40
N

et
w

or
k

D
at

a
C

ap
tu

re
d

(M
bp

s)

Zoom Data YouTube Data CPU

0

1

2

3

4

5

6

7

8

Pe
rc

en
t S

EZ
M

A
C

PU
 C

or
e

U
sa

ge

Figure 4-14: A timeline of SEZMA’s CPU and the amount of Zoom network data
and YouTube network data collected over a Zoom call.

and network data, as well as the Video module’s frame capture rate collected over

the entire call.

0 200 400 600 800 1000 1200
Network Data Captured (Kbps)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pe
rc

en
t N

et
w

or
k

M
od

ul
e

C
PU

 C
or

e
U

sa
ge

Figure 4-15: The percent CPU core usage of the Network module and the amount of
network data captured per Zoom call.

We run SEZMA on many Zoom calls to determine whether there is a correlation

between the amount of network data captured and the CPU Core usage of the Network

module. Zoom calls may vary in the amount of network data depending on the device

45

the other participant is using (i.e., laptop, phone), whether the other participant is

mute or not, or whether the other participant has high movement in their video.

Regardless of these different Zoom call scenarios, Fig. 4-15 shows how a Zoom call

with more network data captured per second correlates to the increase in the Network

module’s CPU core usage.

0 5 10 15 20 25 30
Frame Capture Rate (fps)

0

2

4

6

8

10

Pe
rc

en
t C

PU
 C

or
e

U
sa

ge
of

 V
id

eo
 M

od
ul

e

PIQE LAPLACIAN NIQE

Figure 4-16: The relationship between frame rate and metric application setting on
the Video module’s CPU usage.

The Video module’s CPU usage is dependent on what video frame metrics and

frame capture rate we configure in the application configuration (§3.5). For this

analysis, the Video module uses one video frame metric per call from the non-model-

based metrics, Laplacian and PIQE, and the model-based metric, NIQE. Fig. 4-16

shows the CPU core usage of the Video module versus the frame capture rate for

different video frame metrics. For all video frame metrics, the CPU core usage of the

Video module increases as the frame rate at which frames are captured increases. The

Video module running the Laplacian metric can have a higher frame capture rate than

the Video module running either PIQE or NIQE at the same CPU core usage. This

is unsurprising: running a neural network for the model-based metric NIQE is more

computationally expensive than capturing non-model-based metrics. Fig. 4-17 shows

the same information in a different format by computing the fastest frame capture

rate supported by the Video module running each video frame metric. We find that

the Laplacian supports the highest frame capture rate of 30 fps. Further, we find that

the Video module computing Laplacian at its highest possible frame capture rate of

46

30 fps has a CPU core usage lower than using NIQE at its highest possible frame

capture rate of 2 fps. PIQE falls in between these two, with a somewhat high CPU

usage and low fastest frame capture rate. PIQE is more computationally expensive

than Laplacian due to the need to divide and classify 16-by-16-sized blocks in an

image as distorted or not (§3.3).

NIQE PIQE LAPLACIAN
Video Frame Metric

0

5

10

15

20

25

30

Fa
st

es
t F

ra
m

e
C

ap
tu

re
 R

at
e

(f
ps

)

NIQE PIQE LAPLACIAN
Video Frame Metric

0

2

4

6

8

10

Pe
rc

en
t V

id
eo

 M
od

ul
e

C
PU

 C
or

e
U

sa
ge

Figure 4-17: The fastest frame capture rate the Video module can support for each
video metric, and the percentage of CPU core usage by the Video module to capture
video frame metrics at its fastest frame rate.

PIQE NIQE LAPLACIAN
Video Frame Metric

0

20

40

60

80

100

120

140

Av
er

ag
e

V
id

eo
 M

od
ul

e
M

em
or

y
U

sa
ge

 (M
B

)

Figure 4-18: The memory usage for Video module per video frame metric.

We find that the Network and Video modules do not exhibit significant variance

in memory usage when changing different parameters like the amount of network data

captured per second or frame capture rate. The only exception is the average memory

usage of the Video module, which varies across different video frame metrics, as shown

47

in Fig. 4-18. The Laplacian has the highest memory usage of approximately 141 MB,

PIQE with 130 MB, and NIQE with 118 MB at each of their highest supported frame

rate. Since the memory usage of NIQE is not that high, this suggests that if we can

change the Video module to batch and run NIQE with multiple frames at a time,

SEZMA with NIQE can support a higher frame rate. We leave this to future work.

48

Chapter 5

Limitations and Future Work

SEZMA has three main limitations in its current implementation for MacOS Zoom

Users. Firstly, aligning the packets for a given frame from the Network module with

the video frame recorded from the Video module is challenging. There is a lag between

when the frame is received from the network and when the frame is displayed on Zoom.

As a result, SEZMA cannot use the same timestamp to map each video frame with

each packet corresponding to a frame. Secondly, automating the correct video frame

metrics to quantify video frame quality is hard since each video frame metric focuses

on a specific feature of an image, such as blurriness (§3.3). Thirdly, scaling SEZMA to

run on Zoom calls with more than two people requires a more careful design. In a call

with more than two participants, capturing screenshots per participant video screen

is challenging because Zoom provides multiple view mode options (e.g., “Gallery” and

“Speaker”). In “Gallery” mode, cropping each participant’s video screen in a Zoom

Meeting window requires getting the boundaries of each video screen. Selecting these

boundaries in real-time during a Zoom call is difficult without knowing the video

screen positions. In “Speaker” mode, the Zoom Meeting window only shows the

camera of the participant speaking and not all participants.

We leave a deeper investigation of these three limitations to future work and

provide high-level descriptions of potential solutions to explore. Correlating packets

per frame and the frame between the Network and Video modules can be solved

by profiling and computing the duration it takes Zoom to process packets received

49

for a video frame and to display it on screen. The timestamps of the video frame

can be shifted by the duration to get the timestamps of the packets per frame. The

automation of the correct video frame metrics can be fixed by using a combined metric

for Laplacian, NIQE, and PIQE. This combined metric can quantify each video frame

based on all the quality features that all the video frame metrics compute. Scaling

SEZMA to run on Zoom call with more than two people involves considering whether

the view mode is “Gallery” or “Speaker”. For ‘Gallery”, the Video module’s Data

Collection submodule can be improved to select video screens within the Zoom call

using edge detection methods, such as EdgeFlow [17]. These edge detection methods

may allow the application to run on Zoom calls with more than two participants. For

“Speaker”, the Video module’s Data Collection submodule needs to identify each frame

to a particular user. Solutions for these limitations help SEZMA become deployable

in all types of Zoom calls and improve its explanatory power.

In addition to the above limitations, SEZMA needs to be distributed more widely

and deployed in different network settings. For this thesis, the outputs of this appli-

cation are on a small set of Zoom calls constrained under good network conditions

(e.g., connected to a network with high bandwidth), which only scratches the surface

of different types of observable network events. Conducting larger-scale user tests

may reveal this application’s true explanatory power.

SEZMA also only supports MacOS users right now. However, the application

uses a modular design that provides a framework to add new features or extend

existing ones on the application. Because of this, SEZMA can also be extended to

run on other operating systems like Linux or Windows. Each module is not tied

to the implementation and libraries that are only available for Mac. For instance,

the Video module’s Data Collection submodule can be configured to capture Zoom

Meeting windows using libraries, such as PyGetWindow [2] for Windows. New metrics

can be added to the Metric Computation submodules for the Network and Video

modules to improve the application’s explanatory power. For example, the Network

module’s Metric Computation submodule can include a metric that shows packet

retransmission. The overall CPU Core usage of SEZMA can be reduced by improving

50

the CPU Core usage of each individual module. For instance, we can reduce the

CPU Core usage of the Network module by improving the data collection to sample

one packet every five packets received, rather than capturing all the packets. With

these additions, this application could provide a more thorough analysis of network

conditions impacting Zoom video quality.

51

Chapter 6

Conclusion

This thesis provides an application, SEZMA, that runs on a user’s device to analyze

their Zoom call. SEZMA achieves the following design goals:

1. Explanatory: The results show that SEZMA can pinpoint network events (e.g.,

packet loss and bandwidth constraints) that may cause video degradation (e.g.,

blurry or frozen video frames).

2. Usable: SEZMA requires only a single endpoint to collect and analyze the Zoom

call. A webpage makes it easy for users to download SEZMA. Users can install

and run SEZMA with minimal effort.

3. Lightweight: SEZMA conducts metric analysis as the Zoom call is ongoing

rather than after the call, reducing the storage of the user’s device to store the

metric logs. Benchmark comparisons with Zoom show that SEZMA does not

place a high CPU and memory burden on the user’s device.

4. Privacy-preserving: SEZMA only sends metric logs to the centralized server.

These metric logs do not contain any identifying user information.

In future work, we aim to improve SEZMA’s explanatory ability and scalability.

SEZMA’s explanatory ability can be improved by mapping each video frame from the

Video module to the packets for a frame from the Network module, a combined video

52

frame metric, and a network metric measuring retransmissions of packets. These

additions can allow more thorough explanations of what network events cause bad

video quality. SEZMA can be more scalable by running it with Zoom calls with

more than two people, using techniques like edge detection methods to obtain a video

screen per participant in the call. In addition, SEZMA can also be deployed on other

operating systems by changing the implementation to consider these systems.

53

Bibliography

[1] Nuitka. https://nuitka.net.

[2] Pygetwindow. https://github.com/asweigart/pygetwindow.

[3] Scapy. https://scapy.net.

[4] Wireshark. https://www.wireshark.org.

[5] Most popular videoconferencing services used by adults in the united states
to chat with family and friends during the coronavirus pandemic as of march
2020. https://www.statista.com/statistics/1119981/videoconferencing-services-
us-coronavirus-pandemic, May 2020.

[6] Zoom support:wireless (wifi) connection issues. https://support.zoom.us/hc/en-
us/articles/201362463-Wireless-WiFi-connection-issues, Jun 2022.

[7] Sky Ariella. 31 trending zoom meeting statistics [2023]: How many people use
zoom? https://www.zippia.com/advice/zoom-meeting-statistics, Jan 2023.

[8] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis
and design of the google congestion control for web real-time communication (we-
brtc). In Proceedings of the 7th International Conference on Multimedia Systems,
pages 1–12, 2016.

[9] R.W. Chan and P.B. Goldsmith. A psychovisually-based image quality evaluator
for jpeg images. In Smc 2000 conference proceedings. 2000 ieee international
conference on systems, man and cybernetics. ’cybernetics evolving to systems,
humans, organizations, and their complex interactions’ (cat. no.0, volume 2,
pages 1541–1546 vol.2, 2000.

[10] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. Can you
see me now? a measurement study of zoom, webex, and meet. In Proceedings of
the 21st ACM Internet Measurement Conference, IMC ’21, page 216–228, New
York, NY, USA, 2021. Association for Computing Machinery.

[11] Debbie Chew and Mahsa Azizi. The state of video conferencing 2022.
https://www.dialpad.com/blog/video-conferencing-report.

54

[12] Albert Choi, Mehdi Karamollahi, Carey Williamson, and Martin Arlitt. Zoom
session quality: A network-level view. In Passive and Active Measurement: 23rd
International Conference, PAM 2022, Virtual Event, March 28–30, 2022, Pro-
ceedings, page 555–572, Berlin, Heidelberg, 2022. Springer-Verlag.

[13] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Gan-
jam, Jibin Zhan, and Hui Zhang. Understanding the impact of video quality
on user engagement. In Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, page 362–373, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[14] Randell Jesup, Tom Kristensen, Yekui Wang, and Roni Even. RTP Payload
Format for H.264 Video. RFC 6184, May 2011.

[15] Vidhyalakshmi Karthikeyan, Brahim Allan, Detlef D. Nauck, and Miguel Rio.
Benchmarking video service quality: Quantifying the viewer impact of loss-
related impairments. IEEE Transactions on Network and Service Management,
17(3):1640–1652, 2020.

[16] Qiyong Liu, Zhaofeng Jia, Kai Jin, Jing Wu, and Huipin Zhang. Error resilience
for interactive real-time multimedia application, Feb 2018.

[17] Wei-Ying Ma and Bangalore S Manjunath. Edgeflow: a technique for bound-
ary detection and image segmentation. IEEE transactions on image processing,
9(8):1375–1388, 2000.

[18] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. Measuring the
performance and network utilization of popular video conferencing applications.
In Proceedings of the 21st ACM Internet Measurement Conference, IMC ’21, page
229–244, New York, NY, USA, 2021. Association for Computing Machinery.

[19] Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer
Rexford. Enabling passive measurement of zoom performance in production
networks. In Proceedings of the 22nd ACM Internet Measurement Conference,
IMC ’22, page 244–260, New York, NY, USA, 2022. Association for Computing
Machinery.

[20] Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Making a “completely
blind” image quality analyzer. IEEE Signal Processing Letters, 20(3):209–212,
2013.

[21] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC 3550, July 2003.

[22] Thomas Stockhammer, Magnus Westerlund, Miska M. Hannuksela, David
Singer, and Stephan Wenger. RTP Payload Format for H.264 Video. RFC
3984, February 2005.

55

	Introduction
	Relevant Work
	Single Endpoint Zoom Measurement Application (SEZMA)
	SEZMA System Architecture
	Network Analysis Module
	Video Analysis Module
	Centralized Server
	Application Installation and Set Up

	Results
	Real Network Conditions
	Simulated Network Conditions
	SEZMA CPU and Memory Performance

	Limitations and Future Work
	Conclusion

