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Abstract

Initially driven by channel coding, information theory has developed a large collection
of tools for measuring and comparing effectiveness of information channels. These
tools have found applications in various fields such as statistics, probability, and
theoretical computer science. This thesis explores several applications of these tools
to statistical problems related to graphs.

Part I focuses on information channels and channel comparison methods, including
𝑓 -divergences, strong data processing inequalities, and preorders between channels.
While these theories have been well-established for binary memoryless symmetric
(BMS) channels, there remains much to discover for channels with larger input al-
phabets. We develop a theory of 𝑞-ary input-symmetric (FMS) channels, generalizing
the theory of BMS channels. We demonstrate that while FMS channels exhibit more
complex behavior than BMS channels, some properties of BMS channels can be ex-
tended to FMS channels. Furthermore, we perform tight analysis on contraction
properties of the Potts channels, the simplest examples of FMS channels.

In Part II, we apply the information theoretical methods established in Part I
to solve problems related to random graph models with community structures. The
random graph models include the stochastic block model (SBM) and its variants,
which hold significance in statistics, machine learning, and network science. Central
problems for these models ask about the feasibility and quality of recovering hidden
community structures from unlabeled graphs. By utilizing the relationship between
random graphs and random Galton-Watson trees, we demonstrate that many impor-
tant problems on these graphical models can be reduced to problems on trees. We
apply various channel comparison methods to solve these tree problems, demonstrat-
ing that different methods are effective for different problems and that selecting the
correct tool for a problem is crucial. Problems we study include (for SBMs) weak re-
covery, optimal recovery algorithms, mutual information formula, and (for broadcast-
ing on trees) reconstruction, robust reconstruction, uniqueness of belief propagation
fixed points, boundary irrelevance, computation of limit information, and so on.

Thesis Supervisor: Yury Polyanskiy
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Channel comparison methods

The data processing inequality (DPI) is arguably the most fundamental inequality in
information theory. Intuitively, it says that processing a signal can never increase the
amount of information that was originally contained in the signal. The DPI appears
ubiquitously in information theory and its significance can be compared with that of
the second law of thermodynamics in statistical physics.

In its most common form, the DPI states that for any Markov chain 𝑈 → 𝑋 → 𝑌 ,
we have

𝐼(𝑈 ;𝑌 ) ≤ 𝐼(𝑈 ;𝑋), (1.1)

where 𝐼 denotes mutual information. This tells us the channel 𝑃𝑌 |𝑋 contracts infor-
mation. Hence, contraction is a fundamental ability of information channels.

Despite its endless applications, the DPI is a qualitative rather than a quantitative
result. In many scenarios, it is not enough to know that information contracts; we
also need to know the amount by which it contracts. The strong data processing
inequalities (SDPIs) are introduced in order to address this issue.

Consider the same Markov chain 𝑈 → 𝑋 → 𝑌 . One form of the SDPI states that

𝐼(𝑈 ;𝑌 ) ≤ 𝜂𝐼(𝑈 ;𝑋), (1.2)

where 𝜂 = 𝜂(𝑃𝑌 |𝑋) is a constant that depends on the channel 𝑃𝑌 |𝑋 and is commonly
called the contraction coefficient of 𝑃𝑌 |𝑋 . The constant 𝜂 is always at most one by
DPI, and in many cases, it is strictly smaller than one. The value of 𝜂 represents the
ability of a channel to contract mutual information.

The mutual information is not the only quantity that satisfies DPI. There are
many other information-like quantities, called 𝑓 -information, that behave similarly,
yet differently in subtle ways. For any 𝑓 -information, there is a version of SDPI and
a corresponding contraction coefficient that captures different aspects of contraction
abilities of information channels.

Contraction coefficients are one set of tool for comparing channels. It is also possi-
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ble to compare channels more directly by using several preorders defined on the space
of information channels. One example is the degradation preorder, which captures
the simulation relationship between channels. If a channel 𝑃 is more degraded than
another channel 𝑄, it is possible to simulate 𝑃 by using 𝑄 as a blackbox and then
processing its output. It is intuitive that more degraded channels have stronger con-
traction abilities. There are other important preorders, such as the less-noisy preorder
and the more-capable preorder.

1.2 Statistical problems on graphs
Channel comparison methods have found numerous applications, not only in infor-
mation theory, but also in statistics, probability, and theoretical computer science.
In this context, we focus on their applications in statistical problems on graphs.

Specifically, we study problems on the stochastic block model (SBM) and its
variants. The SBM is a random graph model with hidden community structure and
has significant applications in statistics, machine learning, and network science. In
its simplest version, the SBM is defined as follows: there are 𝑛 vertices, divided
into several communities; for every pair of vertices, there is an edge between them
with a certain probability that depends on whether the two vertices are in the same
community or not. The central problem in the study of SBMs is to determine, given
the graph without community information, whether and how much we can recover
about the community structure.

It turns out that problems on SBMs can be reduced to problems on trees, which
are often easier to solve. Problems on trees essentially involve analyzing certain belief
propagation (BP) operators on the space of information channels. For example, the
weak recovery problem on SBMs can be reduced to the reconstruction problem on
trees, which is equivalent to asking whether the BP operator has a non-trivial fixed
point.

Analyzing BP operators is a challenging task. They are defined on an infinite-
dimensional space and are non-linear operators with complicated expressions. Never-
theless, from an information-theoretical perspective, BP operators can often be more
concisely described using composition and ⋆-convolution of information channels.

Using this observation, channel comparison methods can be used to tackle prob-
lems about BP operators. For example, if a certain 𝑓 -information behaves nicely
under composition and ⋆-convolution, it may be possible to analyze the evolution of
this 𝑓 -information under the BP operator and deduce properties of the operator. This
reduces the study of an infinite-dimensional dynamical system to a one-dimensional
one. Although the details may vary in actual problems, this description captures the
big picture.

1.3 Organization of the thesis
We have introduced the main theme of this thesis, and now we will provide a brief
overview of the contents of the different chapters in this thesis.

14



The thesis is divided into two parts. In Part I, we investigate methods for com-
paring contraction properties of information channels. In Part II, we study statistical
problems on graphs by reducing them to problems on trees, and then solving them
by applying information-theoretical methods.

In most of our results, we develop new methods for channel comparison and apply
them to graph problems. We include the channel comparison results in Part I when
they are of independent interest, even without the context of graphical problems.
We put them in Part II, along with the corresponding graph result, when it is more
relevant to do so.

Part I consists of Chapter 2, 3, 4.
In Chapter 2, we review the general theory of channel comparison methods. We

study 𝑓 -divergences, the most important ones being Kullback-Leibler (KL) diver-
gence, 𝜒2-divergence, symmetric KL (SKL) divergence, and Hellinger distance. We
also study preorders between two channels, including degradation preorder, less-noisy
preorder, and more-capable preorder. We examine the general behavior of these chan-
nel comparison methods under channel transformations, including composition and
⋆-convolution. We also analyze the behavior of these methods on binary memory-
less symmetric (BMS) channels. Most results in this chapter are standard and have
appeared in previous works.

In Chapter 3, we generalize the theory of BMS channels to symmetric channels
with larger input alphabet, called 𝑞-ary fully memoryless symmetric (𝑞-FMS) chan-
nels. We demonstrate that FMS channels can be decomposed into a mixture of simple
channels, which enables us to view FMS channels as distributions on the probability
simplex. Using this interpretation, we establish several results on the degradation
of FMS channels. We also prove that although 𝜒2-information is generally not sub-
additive, it satisfies a form of local subadditivity for FMS channels. Results in this
chapter are based on [73] and unpublished notes.

In Chapter 4, we zoom in further and examine the contraction behavior of Potts
channels, which are the simplest examples of FMS channels. We establish non-linear
𝑝-log-Sobolev inequalities for the semigroup of Potts channels and compute KL con-
traction coefficients of the Potts channels. Results in this chapter are based on [72].

Part II consists of Chapter 5, 6, 7, 8, 9, 10, 11.
In Chapter 5, we examine a general hypergraph stochastic model (HSBM), which

includes the stochastic block model and its variants that we study in this thesis
as special cases. We investigate three problems on the general HSBM. The first
problem is weak recovery, which asks whether it is possible to reconstruct a non-trivial
fraction of the community structure given the unlabeled hypergraph. The second
problem is optimal recovery, which asks what is the maximum fraction of community
structure that can be recovered given the unlabeled hypergraph and possibly some
noisy observations of the correct labels. The third problem is to compute the mutual
information between the labels and the hypergraph, a fundamental property of the
model. We demonstrate that all three problems can be reduced to problems on the
broadcasting on hypertrees (BOHT) model. Specifically, non-reconstruction for the
BOHT model implies the impossibility of weak recovery for the HSBM, uniqueness
of BP fixed point for the BOHT model implies optimal recovery algorithms for the
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HSBM, and the boundary irrelevance (BI) property for the BOHT model implies
a mutual information formula for the HSBM. The reduction for weak recovery is
folklore, and the reductions for optimal recovery algorithms and mutual information
formula are based on generalizations of [4, 73].

In Chapter 6, we use contraction of KL divergence to prove simple yet effective
non-reconstruction results for broadcasting on trees (BOT). This yields the current
best results for the Potts model at small degrees and can recover the reconstruc-
tion threshold of the coloring model to the first order, which was previously proved
using more complicated methods. In the assortative case, these results imply the cur-
rent best results on the impossibility of weak recovery for the corresponding SBMs.
Furthermore, we apply this method to a BOT model whose alphabet is continuous,
establishing the exact value of the reconstruction threshold. Results in this chapter
are based on [72].

In Chapter 7, we use contraction of SKL divergence and 𝜒2-divergence to establish
results on binary simple BOHT models. We prove that when the hyperedge size 𝑟 is at
most four, the reconstruction threshold is at the so-called Kesten-Stigum threshold.
(Note that the case 𝑟 = 4 relies on a numerically-verified inequality.) This determines
the exact value of the weak recovery threshold for the corresponding HSBMs, which
has been an open question for a decade. Moreover, we demonstrate that when 𝑟 is
at least seven, the reconstruction threshold and the Kesten-Stigum threshold do not
match, suggesting that there is an information-computation gap for the corresponding
HSBMs. Results in this chapter are based on [74].

In Chapter 8, we generalize the local subadditivity result in Chapter 3 to general
channels, and using this result to establish the robust reconstruction threshold for
reversible BOT models. While previous work [82] has already determined the robust
reconstruction threshold for general BOT models, there are certain edges cases it
cannot handle, particularly including the coloring model. In addition, we prove that
BI does not hold for reversible BOT models between the reconstruction threshold
and the Kesten-Stigum threshold. Results in this chapter are based on [73] and
unpublished notes.

In Chapter 9, we use channel preorders to provide a method to compute limit
mutual information and limit probability of error in the Ising model on a tree. Our
method gives rigorous bounds as opposed to conventional methods like population
dynamics. By utilizing our method and analyzing experimental results, we were able
to make conjectures on the limit information of the Ising model near criticality, which
were later confirmed by [136]. Results in this chapter are based on [75].

In Chapter 10, we use the degradation preorder and Hellinger distance to prove
uniqueness of BP fixed point and the BI property for the Ising model on a tree.
These results were proven for signal-to-noise ratio (SNR) outside a small interval
(1, 3.513). As a consequence, we establish an optimal recovery algorithm and a mutual
information formula for the corresponding SBMs, which were the best at the time.
Results in this chapter are based on [4].

In Chapter 11, we generalize the method developed in the previous chapter to
prove uniqueness of BP fixed point and the BI property for the Potts model. These
results were shown to asymptotically approach the Kesten-Stigum threshold when
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the number of communities 𝑞 goes to ∞ and a parameter 𝜆 is 𝑜(1/ log 𝑞). These
results imply an optimal recovery algorithm and a mutual information formula for
the corresponding SBMs, which are the current best results. Results in this chapter
are based on [74].

To end this introduction, we present Table 1.1, which summarizes the channel
comparison tools used in this thesis and their applications to statistical problems on
trees. We also include a few previous results using these methods to give the reader
more context. While the table is not intended to be an exhaustive list of previous
works on tree problems, we believe it includes the most relevant ones.

Tool Application Reference
KL divergence Reconstruction, any BOT model [72], Ch. 6

𝜒2-divergence

Reconstruction, Potts model [126, 109]
Reconstruction, coloring model [125]
Reconstruction, binary asymmetric BOT [27, 91]
Reconstruction, hardcore model [19]
Reconstruction, BOHT model [74], Ch. 7
Robust reconstruction, any BOT model [82]
Robust reconstruction, any BOT model Ch. 8

SKL divergence Reconstruction, any BOT model [87, 66]
Reconstruction, BOHT model [74], Ch. 7

Less-noisy
preorder

Reconstruction, certain tree models [116]
Compuation of BOT limit, Ising model [75], Ch. 9

Degradation
preorder

Uniqueness of BP fixed point, Ising model [4, 137], Ch. 10
Uniqueness of BP fixed point, Potts model [73], Ch. 11

Table 1.1: Summary of channel comparison tools and applications to statistical prob-
lems on trees. When multiple tools are used in a result, we choose the one that is
considered to be the most important.
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Chapter 2

Channel comparison methods

We review the general theory of information channels and comparison methods, which
have been studied extensively in literature under various contexts. The methods
include 𝑓 -divergences and preorders between channels. We apply these theories to
binary memoryless symmetric channels which are the main examples in the chapter.
We focus on the behavior of these methods under channel transformations, including
composition, tensor product, and ⋆-convolution. Overall, this chapter serves as a
foundation for the subsequent chapters in this thesis. The general theory is developed
in more depth for special classes of information channels in Chapter 3 and 4, and are
eventually applied to statistical problems on graphs.

Chapter outline In Section 2.1, we introduce several basic notions and definitions
on information channels that will be used throughout the thesis. In Section 2.2, we
introduce binary memoryless symmetric (BMS) channels. We explain the equiva-
lence between BMS channels and distributions on the interval [0, 1

2
], which provides

a useful conceptual simplification. In Section 2.3, we introduce 𝑓 -divergences and
𝑓 -informations, and study the behavior of these quantities under ⋆-convolution. We
focus on the Kullback-Leibler (KL) divergence, 𝜒2-divergence, symmetric KL (SKL)
divergence, and Hellinger distance. In Section 2.4, we examine strong data process-
ing inequalities (SDPIs) for 𝑓 -divergences, which represent contraction abilities of
information channels under different 𝑓 -divergences. In Section 2.5, we study several
preorders between two channels, including the degradation preorder, the less-noisy
preorder, and the more-capable preorder. We explore their behavior under channel
transformations.

2.1 Basic notations

In this section we recall some basic notations and definitions used throughout the
thesis. We refer the reader to [117] for an introduction to information theory.

For 𝑛 ∈ Z≥0, we use [𝑛] to denote the set {1, . . . , 𝑛}.
Let 𝒳 , 𝒴 be measurable spaces. We use 𝑃 : 𝒳 → 𝒴 to denote an information

channel (also known as channel, Markov kernel, probability kernel) 𝑃 from 𝒳 to
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𝒴 . Here 𝒳 is called the input alphabet (or the input space) and 𝒴 is called the
output alphabet (or the output space). On input 𝑥 ∈ 𝒳 , we use 𝑃 (·|𝑥) to denote the
distribution of the output. For discrete 𝒴 , we denote the transition probability from
𝑥 ∈ 𝒳 to 𝑦 ∈ 𝒴 by 𝑃 (𝑦|𝑥), 𝑃 (𝑥, 𝑦), or 𝑃𝑥,𝑦.

For a measurable space 𝒳 , we use 𝒫(𝒳 ) to denote the space of probability distri-
butions on 𝒳 . For a distribution 𝜇 ∈ 𝒫(𝒳 ) and a channel 𝑃 : 𝒳 → 𝒴 , we use 𝜇𝑃 and
𝑃 ∘ 𝜇 to denote the distribution of the output variable, when the input distribution
is 𝜇.

For a random variable 𝑋 ∈ 𝒳 , we use 𝑃𝑋 ∈ 𝒫(𝒳 ) to denote the distribution of
𝑋.

We use Id to denote the identity channel 𝒳 → 𝒳 . We use 0 to denote the trivial
channel when this does not cause confusion. For 𝜖 ∈ [0, 1], we use EC𝜖 to denote
the erasure channel 𝒳 → 𝒳 ⊔ {*} with erasure probability 𝜖. Clearly EC1 = 0 and
EC0 = Id.

Let 𝑃 : 𝒳 → 𝒴 be a channel and 𝜇 ∈ 𝒫(𝒳 ). If the support of 𝜇𝑃 is equal to 𝒴 ,
then we define the reverse channel 𝑃 *

𝜇 (or 𝑃 * when 𝜇 is clear from context) by

𝜇(𝑥)𝑃 (𝑥, 𝑦) = (𝜇𝑃 )(𝑦)𝑃 *
𝜇(𝑦, 𝑥). (2.1)

If 𝒳 = 𝒴 , 𝜇𝑃 = 𝜇, and 𝑃 = 𝑃 *
𝜇 , we say (𝜋, 𝑃 ) is reversible (or 𝑃 is reversible when

𝜇 is clear from context).
Let 𝑋 be a discrete random variable. We use 𝐻(𝑋) to denote the entropy of 𝑋.

In this thesis, we do not discuss differential entropy of continuous random variables.
Let 𝑋 and 𝑌 be two possibly dependent random variables. We use 𝐼(𝑋;𝑌 ) to

denote the (Shannon) mutual information between 𝑋 and 𝑌 . Furthermore, for a
distrbution 𝜇 ∈ 𝒫(𝒳 ) and a channel 𝑃 : 𝒳 → 𝒴 , we define 𝐼(𝜇, 𝑃 ) as the mutual
information 𝐼(𝑋;𝑌 ) where 𝑋 is a random variable with distribution 𝜇 and 𝑌 is the
output of 𝑃 when given input 𝑋. When 𝑋 is discrete, we have 𝐼(𝑋;𝑋) = 𝐼(𝑃𝑋 , Id) =
𝐻(𝑋).

Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒴 → 𝒵 be two channels where the output alphabet of 𝑃
is the input alphabet of 𝑄. We use 𝑃𝑄 and 𝑄 ∘𝑃 to denote the composition channel
𝒳 → 𝒵.

Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒳 → 𝒵 be two channels with the same input alphabet.
We say 𝑃 and 𝑄 are equivalent if there exists 𝑅 : 𝒴 → 𝒵 and 𝑅′ : 𝒵 → 𝒴 such that
𝑄 = 𝑅 ∘ 𝑃 and 𝑃 = 𝑅′ ∘ 𝑄. Equivalent channels behave similarly in many aspects,
in particular, 𝐼(𝜇, 𝑃 ) = 𝐼(𝜇,𝑄) for any distribution 𝜇 ∈ 𝒫(𝒳 ).

Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒳 ′ → 𝒴 ′ be two channels. We define the tensor product
channel 𝑃 × 𝑄 : 𝒳 × 𝒳 ′ → 𝒴 × 𝒴 ′ by letting 𝑃 and 𝑄 acting on the two inputs
independently. For 𝑛 ∈ Z≥1, we use 𝑃×𝑛 : 𝒳 𝑛 → 𝒴𝑛 to denote the 𝑛-th tensor power
of 𝑃 .

Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒳 → 𝒵 be two channels with the same input alphabet.
We define the ⋆-product (also called ⋆-convolution) 𝑃 ⋆ 𝑄 : 𝒳 → 𝒴 ×𝒵 by letting 𝑃
and 𝑄 acting on the same input independently. For 𝑛 ∈ Z≥0, we use 𝑃 ⋆𝑛 : 𝒳 → 𝒴𝑛
to denote the 𝑛-th ⋆-power of 𝑃 .

Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒳 → 𝒵 be two channels with the same input alphabet.
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A mixture of 𝑃 and 𝑄 is an channel 𝑅 from 𝒳 to 𝒴 ⊔ 𝒵 such that 𝑅(𝐸|𝑥) =
(1− 𝑝)𝑃 (𝐸 ∩𝒴|𝑥)+ 𝑝𝑄(𝐸 ∩𝒵|𝑥) for any measurable 𝐸 ∈ 𝒴 ⊔𝒵, for some parameter
𝑝 ∈ [0, 1]. We denote this as 𝑅 = (1 − 𝑝)𝑃 + 𝑝𝑄. Similarly, if 𝒜 is a collection of
information channels with the same input alphabet, and 𝜇 is a distribution on 𝒜,
we write E𝑃∼𝜇𝑃 for the channel which maps input 𝑥 to (𝑃, 𝑌 ), where 𝑃 ∼ 𝜇 and
𝑌 ∼ 𝑃 (·|𝑥). This channel is called a mixture of 𝒜.

2.2 Binary memoryless symmetric channels

In this section we review the theory of BMS channels, arguably the most extensively
studied class of channels. We refer the reader to [120, Chapter 4] for a more complete
introduction to BMS channels.

Definition 2.1 (Binary memoryless symmetric (BMS) channels). A channel 𝑃 :
{±1} → 𝒴 is called a binary memoryless symmetric channel if there exists a measur-
able involution 𝜎 : 𝒴 → 𝒴 such that 𝑃 (𝜎−1(𝐸)|+) = 𝑃 (𝐸|−) for all measurable sets
𝐸 ⊆ 𝒴 .

Two most common examples of the BMS channels are the binary erasure channels
(BECs) and binary symmetric channels (BSCs). For 𝜖 ∈ [0, 1], BEC𝜖 : {±} → {±, *}
denotes the channel with transition probabilities

BEC𝜖(𝑦|𝑥) =

⎧⎨⎩
1− 𝜖, if 𝑦 = 𝑥,
0, if 𝑦 = −𝑥,
𝜖, if 𝑦 = *.

(2.2)

For 𝛿 ∈ [0, 1], BSC𝛿 : {±} → {±} denotes the channel with transition probabilities

BSC𝛿(𝑦|𝑥) =
{︂

1− 𝛿, if 𝑦 = 𝑥,
𝛿, if 𝑦 = −𝑥. (2.3)

One can easily verify that BSC𝛿 and BSC1−𝛿 are equivalent for any 𝛿 ∈ [0, 1], and
that BSC0 = Id. One may also observe that BEC𝜖 is equivalent to a mixture of BSC0

and BSC 1
2
. This is no coincidence and hints the following general structural result

on BMS channels: every BMS channel is equivalent to a mixture of BSCs.

Lemma 2.2 (Structure of BMS channels). Every BMS channel 𝑃 is equivalent to
a BMS channel 𝑋 → (Δ, 𝑍), where on input 𝑋 ∈ {±} it outputs (Δ, 𝑍) ∈ [0, 1

2
] ×

{±} such that Δ is independent of 𝑋 and 𝑃𝑍|Δ,𝑋 = BSCΔ(·|𝑋). Furthermore, the
distribution of Δ is uniquely deteremined by 𝑃 .

In the setting of the above lemma, we call Δ the Δ-component of 𝑃 , and 𝑃Δ the Δ-
distribution of 𝑃 . Lemma 2.2 establishes an equivalence between a BMS channel and
a probability distribution on [0, 1

2
], which maps a BMS channel to its Δ-distribution.

In particular, the Δ-distribution is an invariant property of a BMS channel under
equivalence.
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In many cases, working with 𝜃 = 1− 2Δ is more convenient than working with Δ
itself. We call 𝜃 the 𝜃-component of 𝑃 .

Using the mixture representation of BMS channels, when dealing with BMS chan-
nels, we can often reduce to the case of BSCs.

For a BMS channel 𝑃 , the composition 𝑃 ∘BSC𝛿 for 𝛿 ∈ [0, 1] has Δ-distribution
𝑓*(𝑃Δ), where 𝑃Δ is the Δ-distrbution of 𝑃 , 𝑓(𝑥) = |1− 2𝛿|𝑥+min{𝛿, 1− 𝛿}, and 𝑓*
is the induced pushforward map.

For two BMS channels 𝑃 and 𝑄, their ⋆-convolution 𝑃 ⋆ 𝑄 has Δ-distribution

EΔ∼𝑃Δ
Δ′∼𝑄Δ

[︂
(Δ ⋆ (1−Δ′))1 ΔΔ′

Δ⋆(1−Δ′)
+ (Δ ⋆Δ′)1Δ(1−Δ′)

Δ⋆Δ′

]︂
, (2.4)

where 𝑃Δ (resp. 𝑄Δ) is the Δ-distribution of 𝑃 (resp. 𝑄), 𝑥 ⋆ 𝑦 = 𝑥(1− 𝑦)+ 𝑦(1−𝑥),
and 1𝑥 denotes the point distribution on at 𝑥.

One may observe an issue in the above expression: 𝑥 = Δ(1−Δ′)
Δ⋆Δ′ may take value

in the whole interval [0, 1], while the Δ-distribution lives on the interval [0, 1
2
]. In

fact, the interval [0, 1
2
] can be viewed as the space [0, 1]/𝐶2, where 𝐶2 is the group

of two elements, acting on [0, 1] by mapping 𝑥 to 1 − 𝑥. Therefore in (2.4) we have
omitted the step of taking the projection of 𝑥 ∈ [0, 1] onto [0, 1]/𝐶2. Because BSC𝛿 is
equivalent to BSC1−𝛿, in the view of equivalence, we usually do not need to distinguish
a point distribution at 𝑥 and a point distrbution at 1− 𝑥.

2.3 𝑓-divergences
The Kullback-Leibler (KL) divergence and mutual information are the most impor-
tant quantities in information theory, and in some sense the most natural information
measures. However, in many scenarios, it is necessary to consider other types of infor-
mation measures that satisfy properties not shared by the KL divergence. A powerful
class of non-KL information measures is the 𝑓 -divergences.

Definition 2.3 (𝑓 -divergence and 𝑓 -information). Let 𝑓 : (0,∞) → R be a convex
function with 𝑓(1) = 0. For two distributions 𝜇 and 𝜈 on the same space, if 𝜇 ≪ 𝜈
(i.e., 𝜇 is absolutely continuous with respect to 𝜈), we define the 𝑓 -divergence as

𝐷𝑓 (𝜇‖𝜈) := E𝜈
[︂
𝑓

(︂
𝑑𝜇

𝑑𝜈

)︂]︂
, (2.5)

where 𝑓(0) := 𝑓(0+) (which is possibly ∞). This definition is extended to 𝜇 ̸≪ 𝜈 by
continuity (see [117, Definition 7.1] for more details).

For two possibly dependent random variables𝑋 and 𝑌 , we define the 𝑓 -information
as

𝐼𝑓 (𝑋;𝑌 ) := 𝐷𝑓 (𝑃𝑋𝑌 ‖𝑃𝑋𝑃𝑌 ). (2.6)

Similar to the mutual information case, for a distrbution 𝜇 ∈ 𝒫(𝒳 ) and a channel
𝑃 : 𝒳 → 𝒴 , we define 𝐼𝑓 (𝜇, 𝑃 ) := 𝐼𝑓 (𝑋;𝑌 ) where 𝑋 is a random variable with
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distribution 𝜇 and 𝑌 is the output of 𝑃 when given input 𝑋.

The following 𝑓 -divergences are the most important ones in this thesis.

• Total variation (TV) distance: 𝑓(𝑥) = 1
2
|𝑥− 1|.

TV(𝜇, 𝜈) =
1

2
E𝜈
⃒⃒⃒⃒
𝑑𝜇

𝑑𝜈
− 1

⃒⃒⃒⃒
=

1

2

ˆ
|𝑑𝜇− 𝑑𝜈| . (2.7)

• Kullback-Leibler (KL) divergence: 𝑓(𝑥) = 𝑥 log 𝑥.

𝐷(𝜇‖𝜈) = E𝜈
[︂
𝑑𝜇

𝑑𝜈
log

𝑑𝜇

𝑑𝜈

]︂
= E𝜇

[︂
log

𝑑𝜇

𝑑𝜈

]︂
=

ˆ
𝑑𝜇 log

𝑑𝜇

𝑑𝜈
. (2.8)

• 𝜒2-divergence: 𝑓(𝑥) = (𝑥− 1)2,

𝜒2(𝜇‖𝜈) = E𝜈

[︃(︂
𝑑𝜇

𝑑𝜈
− 1

)︂2
]︃
= E𝜇

[︂
𝑑𝜇

𝑑𝜈

]︂
− 1 =

ˆ
𝑑𝜇2

𝑑𝜈
− 1. (2.9)

• Symmetric KL (SKL) divergence: 𝑓(𝑥) = (𝑥− 1) log 𝑥,

𝐷SKL(𝜇, 𝜈) = 𝐷(𝜇‖𝜈) +𝐷(𝜈‖𝜇) =
ˆ
(𝑑𝜇− 𝑑𝜈) log 𝑑𝜇

𝑑𝜈
. (2.10)

• Squared Hellinger distance: 𝑓(𝑥) = (1−
√
𝑥)2.

𝐻2(𝜇, 𝜈) = E𝜈

⎡⎣(︃1−√︂𝑑𝜇

𝑑𝜈

)︃2
⎤⎦ =

ˆ (︁√︀
𝑑𝜇−

√
𝑑𝜈
)︁2
. (2.11)

We list here a few nice properties of 𝑓 -divergences and 𝑓 -information under ten-
sorization and ⋆-convolution. All of these results can be found in e.g., [117].

• KL divergence is additive under tensorization:

𝐷

⎛⎝∏︁
𝑗∈[𝑛]

𝑃𝑋𝑗
‖
∏︁
𝑗∈[𝑛]

𝑄𝑋𝑗

⎞⎠ =
∑︁
𝑗∈[𝑛]

𝐷(𝑃𝑋𝑗
‖𝑄𝑋𝑗

). (2.12)

• 𝜒2-divergence is multiplicative under tensorization:

1 + 𝜒2

⎛⎝∏︁
𝑗∈[𝑛]

𝑃𝑋𝑗
‖
∏︁
𝑗∈[𝑛]

𝑄𝑋𝑗

⎞⎠ =
∏︁
𝑗∈[𝑛]

(︀
1 + 𝜒2(𝑃𝑋𝑗

‖𝑄𝑋𝑗
)
)︀
. (2.13)
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• Hellinger distance is multiplicative under tensorization:

1− 1

2
𝐻2

⎛⎝∏︁
𝑗∈[𝑛]

𝑃𝑋𝑗
‖
∏︁
𝑗∈[𝑛]

𝑄𝑋𝑗

⎞⎠ =
∏︁
𝑗∈[𝑛]

(︂
1− 1

2
𝐻2(𝑃𝑋𝑗

‖𝑄𝑋𝑗
)

)︂
. (2.14)

• Mutual information is subadditive under tensorization: if 𝑃𝑌 𝑛|𝑋𝑛 =
∏︀

𝑗∈[𝑛] 𝑃𝑌𝑗 |𝑋𝑗
,

then

𝐼(𝑋𝑛;𝑌 𝑛) ≤
∑︁
𝑖∈[𝑛]

𝐼(𝑋𝑖;𝑌𝑖). (2.15)

• Mutual information is subadditive under ⋆-convolution:

𝐼(𝑋;𝑌 𝑛) ≤
∑︁
𝑗∈[𝑛]

𝐼(𝑋;𝑌𝑗). (2.16)

• SKL information is additive under ⋆-convolution ([87]):

𝐼SKL(𝑋;𝑌 𝑛) =
∑︁
𝑗∈[𝑛]

𝐼SKL(𝑋;𝑌𝑗). (2.17)

For the rest of this section, we apply these 𝑓 -informations to BMS channels. In the
following, let 𝜇 be the uniform distribution on {±}, 𝑃 be a BMS channel, Δ be the
Δ-component of 𝑃 , and 𝜃 = 1− 2Δ be the 𝜃-component of 𝑃 . For an 𝑓 -divergence,
we define 𝐶𝑓 (𝑃 ) := 𝐼𝑓 (𝜇, 𝑃 ) and call it the 𝑓 -capacity of 𝑃 . In particular, we make
use of the following information measures.

Definition 2.4.

𝑃𝑒(𝑃 ) = EΔ, (probability of error)
𝐶(𝑃 ) = E [log 2− ℎ(Δ)] , (capacity)

where ℎ(𝑥) = −𝑥 log 𝑥− (1− 𝑥) log(1− 𝑥),
𝐶𝜒2(𝑃 ) = E

[︀
(1− 2Δ)2

]︀
= E𝜃2, (𝜒2-capacity)

𝐶SKL(𝑃 ) = E
[︂(︂

1

2
−Δ

)︂
log

1−Δ

Δ

]︂
= E [𝜃 arctanh 𝜃] , (SKL capacity)

𝑍(𝑃 ) = 1− 1

2
𝐻2(𝑃 (·|+), 𝑃 (·|−)) (Bhattacharyya coefficient)

= E
[︁
2
√︀
Δ(1−Δ)

]︁
= E
√
1− 𝜃2.

From general properties of 𝑓 -information discussed above, for BMS channels 𝑃
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and 𝑄, we have

𝐶(𝑃 ⋆ 𝑄) ≤ 𝐶(𝑃 ) + 𝐶(𝑄), (2.18)
𝐶SKL(𝑃 ⋆ 𝑄) = 𝐶SKL(𝑃 ) + 𝐶SKL(𝑄), (2.19)

𝑍(𝑃 ⋆ 𝑄) = 𝑍(𝑃 )𝑍(𝑄). (2.20)

Furthermore, 𝜒2-capacity is subadditive under ⋆-convolution for BMS channels, a
property not true for general channels.

Lemma 2.5 (Subadditivity of 𝜒2-capacity for BMS channels). For BMS channels 𝑃
and 𝑄, we have

𝐶𝜒2(𝑃 ⋆ 𝑄) ≤ 𝐶𝜒2(𝑃 ) + 𝐶𝜒2(𝑄). (2.21)

Proof. This is essentially proved in e.g., [3]. Here we give a direct proof. By BSC
mixture representation of BMS channels, it suffices to prove the case when 𝑃 and 𝑄
are both BSCs. Let 𝑃 = BSC𝑥, 𝑄 = BSC𝑦. Then

𝐶𝜒2(BSC𝑥 ⋆BSC𝑦) =
(𝑥(1− 𝑦)− 𝑦(1− 𝑥))2

𝑥(1− 𝑦) + 𝑦(1− 𝑥)
+

(𝑥𝑦 − (1− 𝑥)(1− 𝑦))2

𝑥𝑦 + (1− 𝑥)(1− 𝑦)
, (2.22)

𝐶𝜒2(BSC𝑥) = (1− 2𝑥)2, 𝐶𝜒2(BSC𝑦) = (1− 2𝑦)2. (2.23)

Therefore

𝐶𝜒2(BSC𝑥) + 𝐶𝜒2(BSC𝑦)− 𝐶𝜒2(BSC𝑥 ⋆BSC𝑦) (2.24)

=
(1− 2𝑥)2(1− 2𝑦)2(𝑥(1− 𝑥) + 𝑦(1− 𝑦))

(𝑥(1− 𝑦) + 𝑦(1− 𝑥)) (𝑥𝑦 + (1− 𝑥)(1− 𝑦))
≥ 0.

This finishes the proof.

2.4 Strong data processing inequalities
The strong data processing inequalities (SDPIs) are quantitative versions of the data
processing inequality (DPI). They state that a fixed channel contracts information
by a multiplicative factor, which is usually less than one. There are two versions of
the SDPIs, depending on whether we fix the input distrbution. We first introduce
the divergence form of the SDPIs.

Definition 2.6 (Strong data processing inequalities, divergence form). Fix an 𝑓 -
divergence and a channel 𝑃 : 𝒳 → 𝒴 . The input-unrestricted strong data processing
inequality states that

𝐷𝑓 (𝜇𝑃‖𝜈𝑃 ) ≤ 𝜂𝑓 (𝑃 )𝐷𝑓 (𝜇‖𝜈) ∀𝜇, 𝜈 ∈ 𝒫(𝒳 ), (2.25)

where 𝜂𝑓 (𝑃 ) is the smallest constant making the inequality true.
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In addition to the above setting, let 𝜈 be a distribution on 𝒳 . The input-restricted
strong data processing inequality states that

𝐷𝑓 (𝜇𝑃‖𝜈𝑃 ) ≤ 𝜂𝑓 (𝜈, 𝑃 )𝐷𝑓 (𝜇‖𝜈) ∀𝜇 ∈ 𝒫(𝒳 ), (2.26)

where 𝜂𝑓 (𝜈, 𝑃 ) is the smallest constant making the inequality true.

In other words,

𝜂𝑓 (𝑃 ) := sup
𝜇,𝜈∈𝒫(𝒳 )

0<𝐷𝑓 (𝜇‖𝜈)<∞

𝐷𝑓 (𝜇𝑃‖𝜈𝑃 )
𝐷𝑓 (𝜇‖𝜈)

, (2.27)

𝜂𝑓 (𝜈, 𝑃 ) := sup
𝜇∈𝒫(𝒳 )

0<𝐷𝑓 (𝜇‖𝜈)<∞

𝐷𝑓 (𝜇𝑃‖𝜈𝑃 )
𝐷𝑓 (𝜇‖𝜈)

. (2.28)

The SDPIs also have an information form, which states that

• (input-unrestricted version) for any Markov chain 𝑈 −𝑋 − 𝑌 , we have

𝐼𝑓 (𝑈 ;𝑌 ) ≤ 𝜂𝑓 (𝑃 )𝐼𝑓 (𝑈 ;𝑋), (2.29)

• (input-restricted version) for any Markov chain 𝑈 −𝑋 − 𝑌 such that 𝑃𝑋 = 𝜈,
we have

𝐼𝑓 (𝑈 ;𝑌 ) ≤ 𝜂𝑓 (𝜈, 𝑃 )𝐼𝑓 (𝑈 ;𝑋). (2.30)

It is proved in e.g., [117, Chapter 33] that the divergence form and the information
form of SDPIs are equivalent. Usually the divergence form is easier for computation
of the contraction coefficients, and the information form is easier for applications.

As an example, for BSCs, we have ([11])

𝜂KL(Unif({±}),BSC𝛿) = 𝜂𝜒2(Unif({±}),BSC𝛿)

= 𝜂KL(BSC𝛿) = 𝜂𝜒2(BSC𝛿) = (1− 2𝛿)2, (2.31)
𝜂TV(Unif({±}),BSC𝛿) = 𝜂TV(BSC𝛿) = |1− 2𝛿|. (2.32)

This can be generalized to BMS channels. Let 𝑃 be a BMS channel, Δ be its Δ-
component. Then

𝜂KL(Unif({±}), 𝑃 ) = 𝜂𝜒2(Unif({±}), 𝑃 ) = 𝜂KL(𝑃 ) = 𝜂𝜒2(𝑃 ) = E(1− 2Δ)2, (2.33)
𝜂TV(Unif({±}), 𝑃 ) = 𝜂TV(𝑃 ) = E|1− 2Δ|. (2.34)

In the following, we briefly review previous works on SDPIs and contraction coef-
ficients. We refer the reader to [118, 115, 93] for more discussions.

General properties of contraction coefficients Let us start with a few general
properties of contraction coefficients.
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• For any 𝜈 and 𝑃 , we have

0 ≤ 𝜂𝑓 (𝜈, 𝑃 ) ≤ 𝜂𝑓 (𝑃 ) ≤ 1. (2.35)

• Both 𝜂𝑓 (𝑃 ) and 𝜂𝑓 (𝜈, 𝑃 ) (for any 𝜈) are convex in the transition matrix 𝑃
[41, 118].

• Input-restricted contraction coefficients behave nicely under tensorization. [118,
Theorem III.9] states that when 𝑓 induces a subadditive and homogeneous 𝑓 -
entropy,1

𝜂𝑓

⎛⎝∏︁
𝑗∈[𝑛]

𝜈𝑗,
∏︁
𝑗∈[𝑛]

𝑃𝑗

⎞⎠ = max
𝑗∈[𝑛]

𝜂𝑓 (𝜈𝑗, 𝑃𝑗). (2.36)

• Contraction coefficients are submultiplicative under composition. For a distri-
bution 𝜈 ∈ 𝒫(𝒳 ) and channels 𝑃 : 𝒳 → 𝒴 , 𝑄 : 𝒴 → 𝒵, we have

𝜂𝑓 (𝜈,𝑄 ∘ 𝑃 ) ≤ 𝜂𝑓 (𝜈, 𝑃 )𝜂𝑓 (𝜈𝑃,𝑄), (2.37)
𝜂𝑓 (𝑄 ∘ 𝑃 ) ≤ 𝜂𝑓 (𝑃 )𝜂𝑓 (𝑄). (2.38)

Computation of input-unrestricted contraction coefficients Let us discuss
computation of input-unrestricted contraction coefficients. The TV contraction coef-
ficient 𝜂TV(𝑃 ) is called the Dobrushin’s coefficient and [52] showed that

𝜂TV(𝑃 ) = sup
𝑥,𝑥′

TV(𝑃 (·|𝑥), 𝑃 (·|𝑥′)). (2.39)

It is known (e.g., [40, 118, 115]) that 𝜂𝜒2(𝑃 ) and 𝜂TV(𝑃 ) are the extremal input-
unrestricted contraction coefficients. Specifically, for any 𝑓 -divergence we have

𝜂𝑓 (𝑃 ) ≤ 𝜂TV(𝑃 ), (2.40)

and for any 𝑓 -divergence where 𝑓 is twice differentiable on (0,∞) and 𝑓 ′′(1) > 0, we
have

𝜂𝜒2(𝑃 ) ≤ 𝜂𝑓 (𝑃 ). (2.41)

[39] showed that for operator convex 𝑓 , we have

𝜂𝜒2(𝑃 ) = 𝜂𝑓 (𝑃 ). (2.42)

Examples of operator convex divergences include the KL divergence and the squared
Hellinger distance.

1𝑓 -entropy of a real-value random variable 𝑈 with finite E[𝑓(𝑈)] is defined as Ent𝑓 [𝑈 ] :=
E[𝑓(𝑈)]− 𝑓(E𝑈).
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[111] proved that to compute 𝜂𝑓 (𝑃 ), it suffices to consider input distributions
with support size at most two. This essentially closes the problem of computation of
input-unrestricted contraction coefficients.

Computation of input-restricted contraction coefficients Now let us move
to the input-restricted contraction coefficients. It is known (e.g., [122, 118]) that
𝜂𝜒2(𝜈, 𝑃 ) is the square of the maximal correlation coefficient 𝑆(𝜈, 𝑃 ), where

𝑆(𝜈, 𝑃 ) := sup
𝑓,𝑔

E(𝑋,𝑌 )∼𝜈⊗𝑃 [𝑓(𝑋)𝑔(𝑌 )], (2.43)

where the supremum is over all 𝑓 : 𝒳 → R, 𝑔 : 𝒴 → R such that E𝜈 [𝑓 ] = 0,
E𝜈 [𝑓 2] = 1, E𝜈𝑃 [𝑔] = 0, E𝜈𝑃 [𝑔2] = 1. Alternatively, 𝜂𝜒2(𝜈, 𝑃 ) can be described as the
largest eigenvalue of 𝑃𝑃 *

𝜈 viewed as a linear operator fromℋ0(𝒳 , 𝜈), the space of zero-
mean functions (under 𝜈) on 𝒳 , to itself, or the square of the largest singular value
of 𝑃 *

𝜈 viewed as a linear operator fomr ℋ0(𝒳 , 𝜈) to ℋ0(𝒴 , 𝜈𝑃 ) [118]. Furthermore,
[118] observed that 1 −

√︀
𝜂𝜒2(𝜈, 𝑃 ) is equal to the spectral gap of (𝜈, 𝑃 ), a quantity

with crucial importance in the study Markov chain mixing.

Eq. (2.41) can be strengthened (see e.g., [40, 118, 115]) to

𝜂𝜒2(𝜈, 𝑃 ) ≤ 𝜂𝑓 (𝜈, 𝑃 ) (2.44)

for any 𝑓 -divergence where 𝑓 is twice differentiable on (0,∞) and 𝑓 ′′(1) > 0.

We remark that [11] systematically studied 𝜂KL, and proved Eq. (2.42), (2.44) for
the KL contraction coefficient.

[118, Theorem III.6] proved upper bounds on 𝜂𝑓 (𝜇, 𝑃 ) for operator convex 𝑓 ,
stating that

𝜂𝑓 (𝜇, 𝑃 ) ≤ max

{︂
𝜂𝜒2(𝜇, 𝑃 ), sup

0<𝛽<1
𝜂LC𝛽

(𝜇, 𝑃 )

}︂
(2.45)

where LC𝛽 is the Le-Cam divergence (see e.g., [132]), which is the 𝑓 -divergence with
𝑓(𝑥) = 𝛽(1− 𝛽) (1−𝑥)2

(1−𝛽)𝑥+𝛽 .

[94, Theorem 2.2] gave an upper bound on 𝜂𝑓 (𝜇, 𝑃 ) of

𝜂𝑓 (𝜈, 𝑃 ) ≤
𝑓 ′(1) + 𝑓(0)

𝑓 ′′(1)min𝑥∈𝒳 𝜈(𝑥)
𝜂𝜒2(𝜈, 𝑃 ) (2.46)

for 𝑓 satisfying a series of technical conditions. These conditions are satisfied for the
KL divergence, and then Eq. (2.46) gives [94, Corollary 2.1]

𝜂KL(𝜈, 𝑃 ) ≤
𝜂𝜒2(𝜈, 𝑃 )

min𝑥∈𝒳 𝜈(𝑥)
. (2.47)

28



Eq. (2.47) is further refined in [94, Theorem 2.3], which states that

𝜂KL(𝜈, 𝑃 ) ≤
2𝜂𝜒2(𝜈, 𝑃 )

𝜑 (max𝐴⊆𝒳 min{𝜈(𝐴), 1− 𝜈(𝐴)})min𝑥∈𝒳 𝜈(𝑥)
, (2.48)

𝜑(𝑝) =

{︂
1

1−2𝑝
log 1−𝑝

𝑝
, 0 ≤ 𝑝 < 1

2
,

2, 𝑝 = 1
2
.

We have discussed a few general bounds on input-restricted contraction coeffi-
cients. In general, given an input-channel pair (𝜈, 𝑃 ), computing an upper bound
on the KL contraction coefficient 𝜂KL(𝜈, 𝑃 ) is a daunting task. (Computing a lower
bound is considerably easier: it suffices to choose one input distribution 𝜇 and com-
pute 𝐷(𝜇𝑃‖𝜈𝑃 )

𝐷(𝜇‖𝜈) .) We list a few methods that can be used to compute upper bounds
on 𝜂KL(𝜈, 𝑃 ).

• Compute from definition. This works for channels with very simple structures.
For example, contraction coefficients of BSCs can be computed in this way.
In Chapter 4, we will compute contraction coefficients of the Potts channels
directly from definition.

• Compare with other contraction coefficients. The 𝜒2-contraction coefficient
𝜂𝜒2(𝜈, 𝑃 ) is almost always easier to compute, and can be used to produce upper
bounds. This works when 𝜂𝜒2(𝜈, 𝑃 ) is close to 𝜂KL(𝜈, 𝑃 ), or when a very good
bound is not needed.

• Use general properties such as tensorization or composition. This works when
the input-channel pair has nice structures.

• Compare with log-Sobolev inequalities. [100, 118] proved that 𝜂KL(𝜈, 𝑃 ) ≤
1 − 𝜌(𝑃𝑃 *), where 𝜌(𝑃𝑃 *) denotes the log-Sobolev constant of 𝑃𝑃 *, where
𝑃 * is the reverse channel. The log-Sobolev constants are sometimes easier to
compute.

• Use an inductive structure of (𝜇, 𝑃 ). [29] computed the KL contraction coeffi-
cients of several Markov kernels related to the random walks on graphs with nice
structures. This method, when it applies, gives better results than comparing
with log-Sobolev constants.

• Use spectral independence and related conditions. Spectral independence is a
condition introduced in [14] in order to study mixing time of Glauber dynamics.
It has since then been successfully applied to various models, e.g., [33, 65, 32].
[34, 22] showed that spectral independence plus several technical conditions
imply bounds on the KL contraction coefficient of the Glauber dynamics.

SDPIs and contraction coefficients have found numerous applications, including
noisy computation [64, 115], distributed data-compression [46], statistical physics [53],
portfolio theory [62], differential privacy [55], and so on. Furthermore, contraction
properties of Markov kernels are also the central subject of study in Markov chain
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mixing. The importance of spectral gap (which is equivalent to the input-restricted
𝜒2-contraction coefficient) is needless to say [88]. We mention that a lot of important
results are established using contraction of KL divergence [34, 22, 13]. In this thesis,
we focus on applications of SDPIs to statistical problems on graphs.

2.5 Preorders between two channels
In the previous section we discussed comparison of channels using contraction coeffi-
cients. It is also possible to compare channels directly, an idea dating back to [124].
Various preorders between channels have been studied, including channel inclusion
[124], input-output degradation [40], degradation [17, 47], the less-noisy preorder [86],
and the more-capable preorder [86]. In this section, we examine the properties of the
last three preorders, which are the most useful ones for our purpose.

Definition 2.7. Let 𝑃 : 𝒳 → 𝒴 and 𝑄 : 𝒳 → 𝒵 be two channels with the same
input alphabet. We say

• 𝑃 is a degradation of 𝑄, denoted 𝑃 ≤deg 𝑄, if there exists channel 𝑅 : 𝒵 → 𝒴
such that 𝑃 = 𝑅 ∘𝑄;

• 𝑃 is less noisy than 𝑄, denoted 𝑃 ≥ln 𝑄, if for every measurable space 𝒲 ,
distribution 𝜇 ∈ 𝒫(𝒲), and channel 𝑅 : 𝒲 → 𝒳 , we have 𝐼(𝜇, 𝑃 ∘ 𝑅) ≥
𝐼(𝜇,𝑄 ∘𝑅);

• 𝑃 is more capable than 𝑄, denoted 𝑃 ≥mc 𝑄, if for every 𝜇 ∈ 𝒫(𝒳 ) we have
𝐼(𝜇, 𝑃 ) ≥ 𝐼(𝜇,𝑄).

It is clear from the definition that

𝑃 ≤deg 𝑄⇒ 𝑃 ≤ln 𝑄⇒ 𝑃 ≤mc 𝑄. (2.49)

Let 𝑃,𝑄 be two channels with the same input alphabet 𝒳 . If 𝑃 ≤deg 𝑄, then for
any 𝜇 ∈ 𝒫(𝒳 ),

𝐼𝑓 (𝜇, 𝑃 ) ≤ 𝐼𝑓 (𝜇,𝑄). (2.50)

In particular, if 𝑃 and 𝑄 are BMS channels with 𝑃 ≤deg 𝑄, then we have

𝑃𝑒(𝑃 ) ≥ 𝑃𝑒(𝑄), 𝐶(𝑃 ) ≤ 𝐶(𝑄), 𝐶𝜒2(𝑃 ) ≤ 𝐶𝜒2(𝑄),

𝐶SKL(𝑃 ) ≤ 𝐶SKL(𝑄), 𝑍(𝑃 ) ≥ 𝑍(𝑄). (2.51)

These preorders behave nicely under channel transformations. We summarize
these properties as follows.

Lemma 2.8. The following holds.

• (Composition) Let 𝑃,𝑄 be two channels with the same input alphabet 𝒳 . Let
𝑅 :𝒲 → 𝒳 be a channel.
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– If 𝑃 ≤deg 𝑄, then 𝑃 ∘𝑅 ≤deg 𝑄 ∘𝑅.
– If 𝑃 ≤ln 𝑄, then 𝑃 ∘𝑅 ≤ln 𝑄 ∘𝑅.

• (Tensorization) Let 𝑃1 and 𝑄1 be two channels with the same input alphabet 𝒳 ,
and 𝑃2 and 𝑄2 be two channels with the same input alphabet 𝒴.

– If 𝑃1 ≤deg 𝑄1 and 𝑃2 ≤deg 𝑄2, then 𝑃1 ×𝑄1 ≤deg 𝑃2 ×𝑄2.
– ([131, 115]) If 𝑃1 ≤ln 𝑄1 and 𝑃2 ≤ln 𝑄2, then 𝑃1 ×𝑄1 ≤ln 𝑃2 ×𝑄2.
– ([48]) If 𝑃1 ≤mc 𝑄1 and 𝑃2 ≤mc 𝑄2, then 𝑃1 ×𝑄1 ≤mc 𝑃2 ×𝑄2.

• (⋆-convolution) Let 𝑃1, 𝑃2, 𝑄1, 𝑄2 be four channels with the same input alphabet.

– If 𝑃1 ≤deg 𝑄1 and 𝑃2 ≤deg 𝑄2, then 𝑃1 ⋆ 𝑄1 ≤deg 𝑃2 ⋆ 𝑄2.
– If 𝑃1 ≤ln 𝑄1 and 𝑃2 ≤ln 𝑄2, then 𝑃1 ⋆ 𝑄1 ≤ln 𝑃2 ⋆ 𝑄2.

Note that the results on ⋆-convolution can be proved by combining the result on
composition and tensorization: 𝑃 ⋆ 𝑄 is the same channel as (𝑃 × 𝑄) ∘ 𝑇 , where
𝑇 : 𝒳 → 𝒳 ×𝒳 is the channel mapping 𝑋 to (𝑋,𝑋).

[115] showed that for an arbitrary channel 𝑃 , 𝜂KL(𝑃 ) ≤ 𝜂 if and only if 𝑃 ≤ln

EC1−𝜂. This relates the less-noisy preorder and KL contraction coefficients.
Degradation beween BMS channels can be characterized in terms of the Δ-component.

The following result is well-known and can be achieved by combining [120, Theorem
4.74] with the coupling characterization of second-order stochastic dominance.

Lemma 2.9 ([120]). Let 𝑃 and 𝑄 be two BMS channels. Let Δ𝑃 (resp. Δ𝑄) be the
Δ-component of 𝑃 (resp. 𝑄). Then 𝑃 ≥deg 𝑄 if and only if there exists a coupling
between Δ𝑃 and Δ𝑄 so that

E[Δ𝑃 |Δ𝑄] ≤ Δ𝑄 (2.52)

almost surely.

The following result determines the extremal BMS channels under different con-
straints.

Lemma 2.10 ([121, Lemma 2]). The following holds.

1. ([120]) Among all BMS channels with the same probability of error 𝑃𝑒(𝑊 ) = 𝛿
the least degraded one is BEC and the most degraded one is BSC, i.e.

BSC𝛿 ≤deg 𝑊 ≤deg BEC2𝛿 . (2.53)

2. ([123] for the BSC part) Among all BMS with the same capacity 𝐶 the most
capable one is BEC and the least capable one is BSC, i.e.:

BSC1−ℎ−1(𝐶) ≤mc 𝑊 ≤mc BEC1−𝐶 , (2.54)

where ℎ−1 : [0, log 2] → [0, 1/2] is the inverse of the binary entropy function
ℎ : [0, 1/2]→ [0, log 2].
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3. Among all BMS channels with the same 𝜒2-capacity 𝐶𝜒2(𝑊 ) = 𝜂 the least noisy
one is BEC and the most noisy one is BSC, i.e.

BSC1/2−√
𝜂/2 ≤ln 𝑊 ≤ln BEC1−𝜂 . (2.55)
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Chapter 3

Non-binary input symmetric channels

We study the class of 𝑞-ary fully memoryless symmetric (𝑞-FMS) channels,1 a gener-
alization of binary memoryless symmetric (BMS) channels to 𝑞-ary input alphabets.
As BMS channels are the “right” class of channels to work with when studying Ising
models, FMS channels are the “right” class for Potts models. We first establish the
structure of FMS channels as mixtures of simpler channels, generalizing the corre-
sponding well-known result for BMS channels, which greatly simplifies the study
of these channels. We study the relationship between FMS channels and degrada-
tion preorder and show that some but not all properties of BMS channels can be
generalized to FMS channels. Furthermore, we prove a local subadditivity result for
𝜒2-capacity of FMS channels under ⋆-convolution, generalizing the corresponding sub-
additivity result for BMS channels (Lemma 2.5). Results developed in this chapter
are used in Chapter 11 to study problems regarding the Potts model. This chapter
is based on [73] and unpublished notes.

We remark that the local subadditivity result is further extended in Chapter 8 to
general channels with slightly worse parameters.

Definition 3.1 (Fully memoryless symmetric (FMS) channels). A 𝑞-ary fully mem-
oryless symmetric (𝑞-FMS) channel (or an FMS channel when 𝑞 is obvious from
context) is a channel 𝑃 : 𝒳 → 𝒴 with input alphabet 𝒳 = [𝑞] such that there exists
a group homomorphism 𝜄 : Aut(𝒳 )→ Aut(𝒴) such that for any measurable 𝐸 ⊆ 𝒴 ,
we have

𝑃 (𝐸|𝑥) = 𝑃 (𝜄(𝜏)𝐸|𝜏(𝑥)) (3.1)

for all 𝑥 ∈ 𝒳 , 𝜏 ∈ Aut(𝒳 ). Here Aut(𝒳 ) denotes the symmetry group (also known
as the automorphism group) of 𝒳 .

By definition, 2-FMS channels are exactly BMS channels.
We remark that 𝑞-FMS channels are a special case of input-symmetric channels

(see e.g., [117, Chapter 19]) whose group of symmetries is the whole Aut(𝒳 ).

1Here “fully” modifies “symmetric”, and indicates that the symmetry group of the channel is the
full symmetric group Aut(𝒳 ) as opposed to a subgroup.
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Chapter outline In Section 3.1, we prove a structural result of FMS channels
(Prop. 3.3), which generalizes the BSC mixture representation of BMS channels. We
use this result to derive several helpful formulas for transformations of FMS channels.
In Section 3.2, we prove several properties of FMS channels related to the degradation
preorder, including an equivalence condition of degradation in terms of coupling of
the corresponding 𝜋-distributions, and extremal FMS channels under probability of
error constraints. In Section 3.3, we prove that 𝜒2-capacity of FMS channels is almost
subadditive when one of the channels is close to trivial.

3.1 Structure of FMS channels

The BSC mixture representation of BMS channels (Lemma 2.2) has been useful in
proving results about BMS channels. Therefore it is desirable to generalize this theory
to FMS channels. We define fully symmetric channels (FSCs), which generalize BSCs,
and will serve as basic building blocks for FMS channels.

Definition 3.2. Let 𝒳 = [𝑞], 𝒴 = Aut(𝒳 ). For 𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 ), define channel
FSC𝜋 : 𝒳 → 𝒴 as

FSC𝜋(𝜏 |𝑖) =
1

(𝑞 − 1)!
𝜋𝜏−1(𝑖) ∀𝑖 ∈ 𝒳 , 𝜏 ∈ Aut(𝒳 ), (3.2)

where Aut(𝒳 ) acts on 𝒴 by left multiplication.

We can verify that

FSC𝜋(𝜂𝜏 |𝜂(𝑖)) =
1

(𝑞 − 1)!
𝜋(𝜂𝜏)−1(𝜂(𝑖)) =

1

(𝑞 − 1)!
𝜋𝜏−1(𝑖) = FSC𝜋(𝜏 |𝑖) (3.3)

for 𝑖 ∈ 𝒳 , 𝜂, 𝜏 ∈ Aut(𝒳 ). So FSCs are examples of FMS channels.
While the class of BSCs is a single-parameter family, the class of FSCs have 𝑞− 1

parameters. Furthermore, the output alphabet of 𝑞-FSCs for 𝑞 ≥ 3 is no longer the
same as the input alphabet.

The following result generalizes Lemma 2.2 to FMS channels.

Proposition 3.3 (Structure of FMS channels). Every FMS channel is equivalent to a
mixture of FSCs, i.e., every FMS channel 𝑃 : 𝒳 → 𝒴 is equivalent to a channel 𝑋 →
(𝜋, 𝑍) where 𝜋 ∼ 𝑃𝜋 ∈ 𝒫(𝒫(𝒳 )/Aut(𝒳 )) is independent of 𝑋, and 𝑍 ∼ FSC𝜋(·|𝑋)
conditioned on 𝜋 and 𝑋. Furthermore, 𝑃𝜋 is uniquely deteremined by 𝑃 .

Proof. Existence: The proof strategy is to partition 𝒴 into Aut(𝒳 )-orbits and show
that the channel 𝑃 restricted to each orbit is equivalent to an FSC.

Step 1. We first prove that we can replace 𝑃 with an equivalent FMS channel
whose Aut(𝒳 ) action is free, so that in later steps each orbit is easier to handle. Define
channel ̃︀𝑃 : 𝒳 → 𝒴 × ̃︀𝒴 , where ̃︀𝒴 = Aut(𝒳 ), sending 𝑋 to (𝑌, ̃︀𝑌 ) where 𝑌 ∼ 𝑃 (·|𝑋)

and ̃︀𝑌 ∼ Unif(Aut(𝒳 )) is independent of 𝑋. We give ̃︀𝑃 an FMS structure where
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Aut(𝒳 ) acts on ̃︀𝒴 by left multiplication. It is easy to see that 𝑃 is equivalent to ̃︀𝑃 .
Therefore we can replace 𝑃 with ̃︀𝑃 and wlog assume that Aut(𝒳 ) action is free.

Step 2. Let 𝒪 = 𝒴/Aut(𝒳 ) be the space of orbits of the Aut(𝒳 ) action on
𝒴 . For an orbit 𝑜 ∈ 𝒪, for any two elements 𝑦1, 𝑦2 ∈ 𝑜, the posterior distributions
𝜋1 = 𝑃𝑋|𝑌=𝑦1 and 𝜋2 = 𝑃𝑋|𝑌=𝑦2 (with uniform priors) differ by a permutation, by
the assumption that 𝑃 is FMS. In particular, 𝜋1 and 𝜋2 map to the same element in
𝒫(𝒳 )/Aut(𝒳 ). Therefore we can uniquely assign an element 𝜋𝑜 ∈ 𝒫(𝒳 )/Aut(𝒳 ) for
any 𝑜 ∈ 𝒪.

Note that by symmetry, the distribution of 𝑜 does not depend on the input dis-
tribution. Let 𝑃𝑜 ∈ 𝒫(𝒪) be this distribution. Then 𝑃 is equivalent to the channel
𝑋 → (𝑜, 𝑍) where 𝑜 ∼ 𝑃𝑜 is independent of 𝑋, and 𝑍 ∼ FSC𝜋𝑜(·|𝑋). (Because
Aut(𝒳 ) action on 𝒴 is free, this equivalence is in fact just renaming the output
space.)

Step 3. Finally we prove that the FMS channel 𝑋 → (𝑜, 𝑍) is equivalent to
𝑋 → (𝜋𝑜, 𝑍). One side is easy: given (𝑜, 𝑍), we can generate (𝜋𝑜, 𝑍). For the other
side, given (𝜋, 𝑍), we can generate 𝑜′ ∼ 𝑃𝑜|𝜋𝑜=𝜋. Then (𝑜′, 𝑍) has the same distribution
as (𝑜, 𝑍), conditioned on any input distribution. This finishes the existence proof.

Uniqueness: For any FMS channel 𝑋 𝑄−→ 𝑌 , we can associate it with a distribu-
tion 𝑄𝜋 on 𝒫(𝒳 )/Aut(𝒳 ), defined as the distribution of the posterior distribution
𝑄𝑋|𝑌 , where 𝑌 ∼ 𝑄𝑌 |𝑋 ∘ Unif(𝒳 ) is generated with uniform prior distribution. (By
definition 𝑄𝜋 is a distribution on 𝒫(𝒳 ). However, by symmetry property of FMS, 𝑄𝜋

is invariant under Aut(𝒳 ) action.) It is easy to see that 𝑄𝜋 distribution is preserved
under equivalence between FMS channels. Furthermore, for an FMS channel of form
𝑋 → (𝜋, 𝑍) as described in the proposition statement, this distribution of posterior
distribution is equal to 𝑃𝜋. Therefore 𝑃𝜋 is uniquely deteremined by 𝑃 .

In the setting of the above proposition, we call 𝜋 the 𝜋-component of 𝑃 , and 𝑃𝜋 the
𝜋-distribution of 𝑃 . We often use the convention that elements 𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 )
satisfy 𝜋1 ≥ · · · ≥ 𝜋𝑞. Prop. 3.3 establishes an equivalence between an FMS channel
and a probability distribution on 𝒫(𝒳 )/Aut(𝒳 ), which maps an FMS channel to its
𝜋-distribution. In particular, the 𝜋-distribution is an invariant property of an FMS
channel under equivalence.

There are different ways to construct new FMS channels from given FMS channels.
Here we present formulas for composition with Potts channels and ⋆-convolution.

Fix 𝑞 ≥ 2. For 𝜆 ∈ [− 1
𝑞−1

, 1], define Potts channel 𝑃𝜆 : [𝑞]→ [𝑞] as

𝑃𝜆(𝑦|𝑥) = 𝜆1{𝑥 = 𝑦}+ 1− 𝜆
𝑞

(3.4)

for 𝑥, 𝑦 ∈ [𝑞]. Then given any 𝑞-FMS channel 𝑃 , 𝑃 ∘ 𝑃𝜆 is also a 𝑞-FMS channel.
Furthermore, the 𝜋-distribution 𝑃 ∘𝑃𝜆 is 𝑓*(𝑃𝜋), where 𝑃𝜋 is the 𝜋-distrbution of 𝑃 ,
𝑓(𝜋) = 𝜆𝜋 + 1−𝜆

𝑞
, and 𝑓* is the induced pushforward map.

For two 𝑞-FMS channels 𝑃 and 𝑄, their ⋆-convolution 𝑃 ⋆ 𝑄 has a natural 𝑞-
FMS structure. Let 𝑃𝜋 (resp. 𝑄𝜋) be the 𝜋-distrbution of 𝑃 (resp. 𝑄). Then the

35



𝜋-distrbution of 𝑃 ⋆ 𝑄 is

E 𝜋∼𝑃𝜋
𝜋′∼𝑄𝜋

⎡⎣ ∑︁
𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠1𝜋⋆𝜏𝜋′

⎤⎦ (3.5)

where 𝜋 ⋆𝜏 𝜋
′ :=

(︃
𝜋𝑖𝜋

′
𝜏(𝑖)∑︀

𝑗∈[𝑞] 𝜋𝑗𝜋
′
𝜏(𝑗)

)︃
𝑖∈[𝑞]

∈ 𝒫([𝑞])/Aut([𝑞]) (3.6)

and 1𝜃 ∈ 𝒫(𝒫([𝑞])/Aut([𝑞])) denotes the point distribution at 𝜃 ∈ 𝒫([𝑞])/Aut([𝑞]).
Given any 𝑞-FMS channel 𝑃 , we can restrict the input alphabet to get a 𝑞′-FMS

for 𝑞′ ≤ 𝑞. (Because of symmetry, the restricted channel is unique up to channel
equivalence no matter what size-𝑞′ subset we choose.) In this thesis we only use the
case 𝑞′ = 2, i.e., restrict to a BMS channel. We use 𝑃𝑅 to denote the restricted BMS
channel.2

Let 𝜇 be the uniform distrbution on [𝑞], 𝑃 be a 𝑞-FMS channel, 𝜋 be its 𝜋-
component. For an 𝑓 -divergence, we define 𝐶𝑓 (𝑃 ) := 𝐼𝑓 (𝜇, 𝑃 ) and call it the 𝑓 -
capacity of 𝑃 . In particular, we make use of the following information measures.

Definition 3.4.

𝑃𝑒(𝑃 ) = Emin{1− 𝜋𝑖 : 𝑖 ∈ [𝑞]}, (probability of error)

𝐶(𝑃 ) = log 𝑞 − E
∑︁
𝑖∈[𝑞]

𝜋𝑖 log
1

𝜋𝑖
, (capacity)

𝐶𝜒2(𝑃 ) = E

⎡⎣𝑞∑︁
𝑖∈[𝑞]

𝜋2
𝑖 − 1

⎤⎦ , (𝜒2-capacity)

𝐶SKL(𝑃 ) = E

⎡⎣∑︁
𝑖∈[𝑞]

(︂
𝜋𝑖 −

1

𝑞

)︂
log(𝜋𝑖)

⎤⎦ . (SKL capacity)

For two 𝑞-FMS channels 𝑃 and 𝑄, if 𝑃 ≤deg 𝑄, then for any 𝜇 ∈ 𝒫(𝒳 ),

𝐼𝑓 (𝜇, 𝑃 ) ≤ 𝐼𝑓 (𝜇,𝑄). (3.7)

In particular, if 𝑃 and 𝑄 are 𝑞-FMS channels with 𝑃 ≤deg 𝑄, then we have

𝑃𝑒(𝑃 ) ≥ 𝑃𝑒(𝑄), 𝐶(𝑃 ) ≤ 𝐶(𝑄), 𝐶𝜒2(𝑃 ) ≤ 𝐶𝜒2(𝑄), 𝐶SKL(𝑃 ) ≤ 𝐶SKL(𝑄). (3.8)

From general properties of 𝑓 -information discussed in Chapter 2, for 𝑞-FMS channels
𝑃 and 𝑄, we have

𝐶(𝑃 ⋆ 𝑄) ≤ 𝐶(𝑃 ) + 𝐶(𝑄), (3.9)
𝐶SKL(𝑃 ⋆ 𝑄) = 𝐶SKL(𝑃 ) + 𝐶SKL(𝑄), . (3.10)

2Here “𝑅” stands for “restriction”.
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3.2 FMS channels and degradation
As shown in Lemma 2.9 and 2.10, BMS channels behave nicely with the degradation
preorder (Definition 2.7). In this section, we generalize these results to FMS channels.

The following result is an equivalent condition of degradation in terms of 𝜋-
components.

Proposition 3.5. Let 𝑃,𝑄 be two FMS channels, and 𝜋𝑃 and 𝜋𝑄 be their 𝜋-components.
Then 𝑃 ≤deg 𝑄 if and only if there exists a coupling between 𝜋𝑃 and 𝜋𝑄 such that

𝜋 ≤𝑚 E[𝜋𝑄|𝜋𝑃 = 𝜋] ∀𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 ), (3.11)

where ≤𝑚 denotes majorization (see e.g., [77, 2.18]). We use the convention that
elements 𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 ) are non-increasing so that the expectation is well-defined.

Proof. Degradation ⇒ Coupling: Say 𝑃 maps 𝑋 to 𝑌 , and 𝑄 maps 𝑋 to 𝑍.
Let 𝜋′

𝑃 ∈ 𝒫(𝒳 ) be the posterior distribution of input 𝑋 given output 𝑌 , where
𝑌 ∼ 𝑃𝑌 |𝑋 ∘ Unif(𝒳 ) is generated with uniform prior distribution. Similarly define
𝜋′
𝑄. Then 𝜋𝑃 (resp. 𝜋𝑄) is the orbit of 𝜋′

𝑃 (resp. 𝜋′
𝑄) under permutation.

Degradation relationship 𝑃 = 𝑅 ∘𝑄 induces a coupling on the posterior distribu-
tions 𝜋′

𝑃 and 𝜋′
𝑄. One can check that this coupling is invariant under Aut(𝒳 ) action

and satisfies

𝜋′ = E[𝜋′
𝑄|𝜋′

𝑃 = 𝜋′] ∀𝜋′ ∈ 𝒫(𝒳 ). (3.12)

For any 𝜋′ ∈ 𝒫(𝒳 ), let 𝑝(𝜋′) ∈ 𝒫(𝒳 )/Aut(𝒳 ) denotes its projection. Then we have

𝑝(𝜋′) ≤𝑚 E[𝑝(𝜋′
𝑄)|𝜋′

𝑃 = 𝜋′]. (3.13)

Taking expectation over the orbit, we get

𝜋 ≤𝑚 E[𝜋𝑄|𝜋𝑃 = 𝜋] ∀𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 ). (3.14)

Coupling ⇒ Degradation: Step 1. We prove that for 𝜋, 𝜋′ ∈ 𝒫(𝒳 )/Aut(𝒳 ),
if 𝜋 ≤𝑚 𝜋′, then FSC𝜋 ≤deg FSC𝜋′ . Because 𝜋 ≤𝑚 𝜋′, there exists 𝑎 ∈ 𝒫(Aut(𝒳 ))
such that (see e.g., [77, 2.20])

𝜋𝑖 =
∑︁

𝜎∈Aut(𝒳 )

𝑎𝜎𝜋
′
𝜎−1(𝑖) ∀𝑖 ∈ 𝒳 . (3.15)

For 𝜌 ∈ Aut(𝒳 ), we have

FSC𝜋(𝜌|𝑖) =
1

(𝑞 − 1)!
𝜋𝜌−1(𝑖) =

∑︁
𝜎∈Aut(𝒳 )

𝑎𝜎
1

(𝑞 − 1)!
𝜋′
𝜎−1𝜌−1(𝑖) =

∑︁
𝜎∈Aut(𝒳 )

𝑎𝜎 FSC𝜋′(𝜌𝜎|𝑖).

(3.16)

Therefore we can let 𝑅 map 𝜌𝜎 to 𝜌 with probability 𝑎𝜎, for all 𝜎 ∈ Aut(𝒳 ). This
gives the desired degradation map 𝑅.
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Step 2. We use the FSC mixture representation (Prop. 3.3). Suppose 𝑃 maps 𝑋
to (𝜋𝑃 , 𝑍𝑃 ), and 𝑄 maps 𝑋 to (𝜋𝑄, 𝑍𝑄). If

𝜋 = E[𝜋𝑄|𝜋𝑃 = 𝜋] ∀𝜋 ∈ 𝒫(𝒳 )/Aut(𝒳 ), (3.17)

then we can construct 𝑅 by mapping 𝜋𝑄 to coupled 𝜋𝑃 (randomly), and keeping the
𝑍 component.

Now define an FMS channel ̃︀𝑃 whose 𝜋-component is 𝑓(𝜋𝑃 ), where

𝑓(𝜋) := E[𝜋𝑄|𝜋𝑃 = 𝜋]. (3.18)

Then by Step 1, 𝑃 ≤deg
̃︀𝑃 . By Step 2, ̃︀𝑃 ≤deg 𝑄. Therefore 𝑃 ≤deg 𝑄.

To state a generalization of Lemma 2.10, we need to make a few definitions.

Definition 3.6 (Error characteristics sequence). Let 𝑃 be a 𝑞-FMS channel 𝑋 → 𝑌 .
Its error characteristics sequence 𝜒(𝑃 ) is a sequence (𝑝0, . . . , 𝑝𝑞), where 𝑝𝑖 is defined
by

𝑝𝑖 = min
𝑋p :𝒴→(𝒳𝑖 )

P[𝑋 ̸∈ 𝑋p (𝑌 )], (3.19)

where the P is over 𝑋 ∼ Unif([𝑞]), 𝑌 ∼ 𝑃 (·|𝑋). In other words, 𝑝𝑖 is the minimum
probability of error over all estimators which output a subset of 𝒳 of size 𝑖, where an
estimator succeeds if and only if the input element is contained in the output set.

Clearly, 𝑝0 = 1, 𝑝𝑞 = 0, and 𝑝 is a non-increasing sequence. Also, for any 𝑞-FMS
channel 𝑃 , we have 𝜒(𝑃 )1 = 𝑃𝑒(𝑃 ). In fact, the error characteristics sequence of
a 𝑞-FMS channel can be computed explicitly using the FSC mixture representation
(Prop. 3.3). For FSC𝜋 with non-increasing sequence 𝜋, we have

𝜒(FSC𝜋)𝑖 = 1−
∑︁
𝑗∈[𝑖]

𝜋𝑗. (3.20)

Therefore for an FMS channel 𝑃 with 𝜋-component 𝜋, we have

𝜒(𝑃 )𝑖 = E𝜋

⎡⎣1−∑︁
𝑗∈[𝑖]

𝜋𝑗

⎤⎦ . (3.21)

From Eq. (3.21), we see that the difference sequence (𝜒(𝑃 )𝑖−1 − 𝜒(𝑃 )𝑖)𝑖∈[𝑞] is always
non-increasing.

In this section only, we say a sequence (𝑝0, . . . , 𝑝𝑞) is a valid sequence if 𝑝0 =
1, 𝑝𝑞 = 0, 𝑝 is non-increasing, and the difference sequence (𝑝𝑖−1 − 𝑝𝑖)𝑖∈[𝑞] is non-
increasing. We have shown that error characteristics sequences of FMS channels are
valid sequences. The converse is also true. For any valid sequence 𝑝, we have

𝜒(FSC(𝑝𝑖−1−𝑝𝑖)𝑖∈[𝑞]
) = 𝑝. (3.22)
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So the set of error characteristics sequences of FMS channels is exactly the set of valid
sequences.

We define the following generalization of BECs.

Definition 3.7 (Generalized erasure channels). Fix 𝑞 ∈ Z≥2 and an element 𝑏 ∈
𝒫([𝑞]). We define the 𝑞-ary generalized erasure channel FEC𝑏 as

FEC𝑏 =
∑︁
𝑖∈[𝑞]

𝑏𝑖 FSC( 1
𝑖
,..., 1

𝑖
,0,...,0), (3.23)

where the summation notation denotes mixture of channels (i.e, the output alphabets
of different FSCs in the summation are disjoint).

One can compute that

𝜒(FEC𝑏)𝑖 =
∑︁
𝑖<𝑗≤𝑞

𝑏𝑗

(︂
1− 𝑖

𝑗

)︂
. (3.24)

Lemma 3.8. Fix 𝑞 ∈ Z≥2. For any valid sequence 𝑝 = (𝑝0, . . . , 𝑝𝑞), there exists a
unique 𝜋 ∈ 𝒫([𝑞])/Aut([𝑞]) and 𝑏 ∈ 𝒫([𝑞]) such that

𝜒(FSC𝜋) = 𝑝, 𝜒(FEC𝑏) = 𝑝. (3.25)

Proof. FSC part. By Eq. (3.20), the unique 𝜋 ∈ 𝒫([𝑞])/Aut([𝑞]) satisfying 𝜒(FSC𝜋) =
𝑝 is defined by 𝜋𝑖 = 𝑝𝑖−1 − 𝑝𝑖 for 𝑖 ∈ [𝑞].

FEC part. By Eq. (3.24), any 𝑏 satisfying 𝜒(FEC𝑏) = 𝑝 must satisfy

𝑝𝑖 =
∑︁
𝑖<𝑗≤𝑞

𝑏𝑗

(︂
1− 𝑖

𝑗

)︂
∀𝑖 ∈ [𝑞]. (3.26)

Taking differences we get

𝑝𝑖−1 − 𝑝𝑖 =
∑︁
𝑖≤𝑗≤𝑞

𝑏𝑗
𝑗
∀𝑖 ∈ [𝑞]. (3.27)

Taking differences again, we get

𝑏𝑖 = 𝑖(𝑝𝑖−1 − 2𝑝𝑖 + 𝑝𝑖+1) ∀𝑖 ∈ [𝑞], (3.28)

where we assume 𝑝𝑞+1 = 0. This proves uniqueness. For existence, we need to prove
that 𝑏 defined via Eq. (3.28) satisfies 𝑏 ∈ 𝒫([𝑞]). Because 𝑝 is a valid sequence, we
have 𝑏𝑖 ≥ 0 for all 𝑖 ∈ [𝑞]. Furthermore,∑︁

𝑖∈[𝑞]

𝑏𝑖 =
∑︁
𝑖∈[𝑞]

(𝑖(𝑝𝑖−1 − 𝑝𝑖)− 𝑖(𝑝𝑖 − 𝑝𝑖+1)) =
∑︁
𝑖∈[𝑞]

(𝑝𝑖−1 − 𝑝𝑖) = 𝑝0 = 1. (3.29)

Therefore 𝑏 ∈ 𝒫([𝑞]) and we finish the proof.
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Finally we can state the following generalization of Lemma 2.10.

Proposition 3.9. Fix 𝑞 ∈ Z≥2. For any 𝑞-FMS channel 𝑃 , we have

FSC𝜋 ≤deg 𝑃 ≤deg FEC𝑏, (3.30)

where FSC𝜋 is the unique FSC with 𝜒(FSC𝜋) = 𝜒(𝑃 ), FEC𝑏 is the unique FEC with
𝜒(FEC𝑏) = 𝜒(𝑃 ).

Proof. FSC part. Let 𝑃 be a 𝑞-FMS channel and 𝜋𝑃 be its 𝜋-component. Define

𝜋 := E𝜋𝑃 . (3.31)

Then FSC𝜋 ≤deg 𝑃 by Prop. 3.5 and 𝜒(FSC𝜋) = 𝜒(𝑃 ) by Eq. (3.20), Eq. (3.21).
FEC part. Let 𝑃 be a 𝑞-FMS channel and 𝜋𝑃 be its 𝜋-component. The class

of FECs is the class of mixtures of FSC( 1
𝑖
,..., 1

𝑖
,0,...,0) for 𝑖 ∈ [𝑞]. So the class of FECs

is closed (up to channel equivalence) under taking mixtures. If we have proved the
result for all FSCs, then by taking the mixture 𝑃 = EFSC𝜋𝑃 , we also prove the result
for 𝑃 . Therefore it suffices to prove the case 𝑃 = FSC𝜋, where 𝜋 ∈ 𝒫([𝑞])/Aut([𝑞])
is non-increasing.

We define a sequence 𝑏 as

𝑏𝑖 := 𝑖(𝜋𝑖 − 𝜋𝑖+1) ∀𝑖 ∈ [𝑞], (3.32)

where we assume 𝜋𝑞+1 = 0.
We prove that 𝑏 ∈ 𝒫([𝑞]). Because 𝜋 is non-increasing, 𝑏𝑖 ≥ 0 for all 𝑖 ∈ [𝑞].

Furthermore, ∑︁
𝑖∈[𝑞]

𝑏𝑖 =
∑︁
𝑖∈[𝑞]

𝑖(𝜋𝑖 − 𝜋𝑖+1) =
∑︁
𝑗∈[𝑞]

𝜋𝑗 = 1. (3.33)

Therefore 𝑏 ∈ 𝒫([𝑞]), and FEC𝑏 is well-defined.
We have

𝜋 =
∑︁
𝑖∈[𝑞]

𝑏𝑖 ·
(︂
1

𝑖
, . . . ,

1

𝑖
, 0, . . . , 0

)︂
. (3.34)

By Prop. 3.5, this implies that FSC𝜋 ≤deg FEC𝑏.
Finally, 𝜒(FSC𝜋) = 𝜒(FEC𝑏) by Eq. (3.20), Eq. (3.24).

Corollary 3.10. Fix 𝑞 ∈ Z≥2. For any 𝑐 ∈ [0, 1− 1
𝑞
], for any 𝑞-FMS channel 𝑃 with

𝑃𝑒(𝑃 ) = 𝑐, we have

FSC𝜋 ≤deg 𝑃, (3.35)
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where

𝜋 =

(︂
1− 𝑐, 𝑐

𝑞 − 1
, . . . ,

𝑐

𝑞 − 1

)︂
. (3.36)

Proof. By Prop. 3.9 and Eq. (3.20), it suffices to prove that for all 𝜋′ ∈ 𝒫([𝑞])/Aut([𝑞])
with 𝑃𝑒(FSC𝜋′) = 𝑐, we have FSC𝜋 ≤deg FSC𝜋′ , where 𝜋 is as defined in Eq. (3.36).
The result then follows from Prop. 3.5, and the fact that 𝜋 ≤𝑚 𝜋′ for all 𝜋′ ∈
𝒫([𝑞])/Aut([𝑞]) satisfying 𝜋′

1 = 1− 𝑐.

The following example shows that among FMS channels of the same probability
of error, there does not necessary exist a least degraded one.

Example 3.11. Take 𝑞 = 3 and 𝑐 = 1
4
. We show that there does not exist a least

degraded FMS channel among all FMS channels of probability of error 𝑐. Assume for
the sake of contradiction that such a channel exists. By Prop. 3.9, such an channel
must be of form FEC𝑏 for some 𝑏 ∈ 𝒫([𝑞]).

Let 𝑏′ =
(︀
1
2
, 1
2
, 0
)︀

and 𝑏′′ =
(︀
5
8
, 0, 3

8

)︀
. Then we have 𝜒(FEC𝑏′) =

(︀
1, 1

4
, 0, 0

)︀
and 𝜒(FEC𝑏′′) =

(︀
1, 1

4
, 1
8
, 0
)︀
. Because FEC𝑏′ ≤deg FEC𝑏, we have 𝜒(FEC𝑏)2 ≤

𝜒(FEC𝑏′)2 = 0, thus 𝑏3 = 0. Because FEC𝑏′′ ≤deg FEC𝑏, we have 𝑏1 ≥ 𝑏′′1 = 5
8
.

Therefore 𝑏2 = 𝑏1 ≤ 3
8
. However, this means that 𝑃𝑒(FEC𝑏) =

1
2
𝑏2 +

2
3
𝑏3 ≤ 3

16
< 1

4
.

This leads to contraction.

3.3 Local subadditivity of 𝜒2-capacity

As shown in Lemma 2.5, 𝜒2-capacity of BMS channels is subadditive under ⋆-convolution.
This property is no longer true for channels with larger input alphabets. Nevertheless,
we show that 𝜒2-capacity of FMS channels satisfies a local version of subadditivity.
This result is further extended in Theorem 8.6 to general channels. The proof pre-
sented here is based on [73] and uses the FSC mixture representation of FMS channels.

Theorem 3.12 (Local subadditivity of 𝜒2-capacity for FMS channels). Fix 𝑞 ∈ Z≥2.
For any 𝜖 > 0 and 𝑞-FMS channels 𝑃 , 𝑄 with 𝐶𝜒2(𝑃 ) ≤ 𝜖, we have

𝐶𝜒2(𝑃 ⋆ 𝑄) ≤ (1 +𝑂𝑞(𝜖
1/5))(𝐶𝜒2(𝑃 ) + 𝐶𝜒2(𝑄)), (3.37)

where 𝑂𝑞 hides a constant depending on 𝑞.

The remaining of this section is devoted to the proof of Theorem 3.12. We first
prove the special case of FSCs.

Lemma 3.13. Fix 𝑞 ∈ Z≥2. For any 𝜖 > 0 and 𝜋, 𝜋′ ∈ 𝒫([𝑞])/Aut([𝑞]) with
𝐶𝜒2(FSC𝜋′) ≤ 𝜖, we have

𝐶𝜒2(FSC𝜋 ⋆FSC𝜋′) ≤ (1 +𝑂𝑞(𝜖
1/2))(𝐶𝜒2(FSC𝜋) + 𝐶𝜒2(FSC𝜋′)). (3.38)
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Proof of Theorem 3.12 given Lemma 3.13. Let 𝜋𝑃 (resp. 𝜋𝑄) be the 𝜋-component of
𝑃 (resp. 𝑄).

Because the constant does not depend on 𝑄, it suffices to prove the case where 𝑄
is an FSC, i.e., 𝜋𝑄 is fixed.

If 𝐶𝜒2(𝑄) ≤ 𝜖2/5, then by Lemma 3.13, we have

𝐶𝜒2(𝑃 ⋆ 𝑄) = E𝜋𝑃𝐶𝜒2(FSC𝜋𝑃 ⋆FSC𝜋𝑄)

≤ E𝜋𝑃
[︀
(1 +𝑂𝑞(𝜖

1/5))(𝐶𝜒2(FSC𝜋𝑃 ) + 𝐶𝜒2(FSC𝜋𝑄))
]︀

= (1 +𝑂𝑞(𝜖
1/5))(𝐶𝜒2(𝑃 ) + 𝐶𝜒2(𝑄)). (3.39)

In the following we assume that 𝐶𝜒2(𝑄) > 𝜖2/5. By Markov’s inequality, we have

P
[︀
𝐶𝜒2(FSC𝜋𝑃 ) ≥ 𝜖2/5

]︀
≤ 𝜖3/5. (3.40)

Write

𝐶𝜒2(𝑃 ⋆ 𝑄) = E𝜋𝑃
[︀
𝐶𝜒2(FSC𝜋𝑃 ⋆FSC𝜋𝑄)1{𝐶𝜒2(FSC𝜋𝑃 ) ≤ 𝜖2/5}

]︀
+ E𝜋𝑃

[︀
𝐶𝜒2(FSC𝜋𝑃 ⋆FSC𝜋𝑄)1{𝐶𝜒2(FSC𝜋𝑃 ) > 𝜖2/5}

]︀
=: 𝐿+𝑅. (3.41)

For 𝐿, by Lemma 3.13, we have

𝐿 ≤ (1 +𝑂𝑞(𝜖
1/5))E𝜋𝑃

[︀
(𝐶𝜒2(FSC𝜋𝑃 ) + 𝐶𝜒2(FSC𝜋𝑄))1{𝐶𝜒2(FSC𝜋𝑃 ) ≤ 𝜖2/5}

]︀
≤ (1 +𝑂𝑞(𝜖

1/5))(𝐶𝜒2(𝑃 ) + 𝐶𝜒2(𝑄)). (3.42)

For 𝑅, by Eq. (3.40) and the assumption that 𝐶𝜒2(𝑄) > 𝜖2/5, we have

E𝜋𝑃
[︀
𝐶𝜒2(FSC𝜋𝑃 ⋆FSC𝜋𝑄)1{𝐶𝜒2(FSC𝜋𝑃 ) > 𝜖2/5}

]︀
≤ 𝑂𝑞(𝜖

3/5) ≤ 𝑂𝑞(𝜖
1/5)𝐶𝜒2(𝑄).

(3.43)

Combining Eq. (3.42) and Eq. (3.43) we finish the proof.

Proof of Lemma 3.13. Because the statement is monotone in 𝜖, we can wlog assume
that 𝐶𝜒2(FSC𝜋′) = 𝜖.

Let 𝜋′
𝑖 =

1+𝜖𝑖
𝑞

. Then

∑︁
𝑖

𝜖𝑖 = 0, 𝐶𝜒2(FSC𝜋′) =
1

𝑞

∑︁
𝑖

𝜖2𝑖 = 𝜖. (3.44)
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By Eq. (3.5),

𝐶𝜒2(FSC𝜋 ⋆FSC𝜋′) = 𝑞
∑︁
𝜏∈𝑆𝑞

1

(𝑞 − 1)!
·
∑︀

𝑖 𝜋
2
𝑖 𝜋

′2
𝜏(𝑖)∑︀

𝑖 𝜋𝑖𝜋
′
𝜏(𝑖)

− 1

= 𝑞
∑︁
𝜏∈𝑆𝑞

1

𝑞!
·
∑︀

𝑖 𝜋
2
𝑖 (1 + 𝜖𝜏(𝑖))

2

1 +
∑︀

𝑖 𝜋𝑖𝜖𝜏(𝑖)
− 1. (3.45)

Recall the following basic equality.

1

1 + 𝑥
= 1− 𝑥+ 𝑥2 − 𝑥3

1 + 𝑥
. (3.46)

We apply (3.46) with 𝑥 =
∑︀

𝑖 𝜋𝑖𝜖𝜏(𝑖). Because |𝑥| = 𝑂𝑞(𝜖
1/2), we have⃒⃒⃒⃒

𝑥3

1 + 𝑥

⃒⃒⃒⃒
= 𝑂𝑞(𝜖

3/2). (3.47)

So∑︀
𝑖 𝜋

2
𝑖 (1 + 𝜖𝜏(𝑖))

2

1 +
∑︀

𝑖 𝜋𝑖𝜖𝜏(𝑖)

=

(︃∑︁
𝑖

𝜋2
𝑖 (1 + 𝜖𝜏(𝑖))

2

)︃(︂
1− 𝑥+ 𝑥2 − 𝑥3

1 + 𝑥

)︂

≤

(︃∑︁
𝑖

𝜋2
𝑖 (1 + 𝜖𝜏(𝑖))

2

)︃⎛⎝1−
∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖) +

(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃2

+𝑂𝑞(𝜖
3/2)

⎞⎠
≤

(︃∑︁
𝑖

𝜋2
𝑖 (1 + 𝜖𝜏(𝑖))

2

)︃⎛⎝1−
∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖) +

(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃2
⎞⎠+𝑂𝑞(𝜖

3/2), (3.48)

where the last step is by ∑︁
𝑖

𝜋2
𝑖 (1 + 𝜖𝜏(𝑖))

2 = 𝑂(1). (3.49)

43



Let us expand the first summand in (3.48).(︃∑︁
𝑖

𝜋2
𝑖 (1 + 𝜖𝜏(𝑖))

2

)︃⎛⎝1−
∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖) +

(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃2
⎞⎠

=

(︃∑︁
𝑖

𝜋2
𝑖 + 2

∑︁
𝑖

𝜋2
𝑖 𝜖𝜏(𝑖) +

∑︁
𝑖

𝜋2
𝑖 𝜖

2
𝜏(𝑖)

)︃⎛⎝1−
∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖) +

(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃2
⎞⎠

=: (➀ + ➁ + ➂)(1−➃ + ➄)

= ➀−➀➃ + ➀➄ + ➁−➁➃ + ➁➄ + ➂−➂➃ + ➂➄. (3.50)

Note that we have the following loose bounds:

➀ = 𝑂𝑞(1), |➁| = 𝑂𝑞(𝜖
1/2), ➂ ≤ 𝑂𝑞(𝜖), |➃| ≤ 𝑂𝑞(𝜖

1/2), ➄ ≤ 𝑂𝑞(𝜖). (3.51)

Let us study every term under
∑︀

𝜏∈𝑆𝑞

1
𝑞!
. For simplicity, write

𝐴 =
∑︁
𝑖

𝜋2
𝑖 =

1

𝑞
(1 + 𝐶𝜒2(FSC𝜋)) . (3.52)

➀: ∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➀ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!

∑︁
𝑖

𝜋2
𝑖 = 𝐴. (3.53)

➀➃:

∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➀➃ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!

(︃∑︁
𝑖

𝜋2
𝑖

)︃(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃
= 0. (3.54)
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➀➄:

∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➀➄ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!

(︃∑︁
𝑖

𝜋2
𝑖

)︃(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃2

= 𝐴
∑︁
𝑖,𝑗

∑︁
𝜏∈𝑆𝑞

1

𝑞!
· 𝜋𝑖𝜋𝑗𝜖𝜏(𝑖)𝜖𝜏(𝑗)

= 𝐴
∑︁
𝑖,𝑗

𝜖𝑖𝜖𝑗
∑︁
𝜏∈𝑆𝑞

1

𝑞!
· 𝜋𝜏(𝑖)𝜋𝜏(𝑗)

= 𝐴
∑︁
𝑖,𝑗

𝜖𝑖𝜖𝑗

{︃
1
𝑞

∑︀
𝑘 𝜋

2
𝑘 𝑖 = 𝑗,

1
𝑞(𝑞−1)

(1−
∑︀

𝑘 𝜋
2
𝑘) 𝑖 ̸= 𝑗,

= 𝐴

(︃∑︁
𝑖

𝜖2𝑖 ·
1

𝑞

∑︁
𝑘

𝜋2
𝑘 +

∑︁
𝑖

𝜖𝑖(−𝜖𝑖) ·
1

𝑞(𝑞 − 1)

(︃
1−

∑︁
𝑘

𝜋2
𝑘

)︃)︃

= 𝐴 · 1
𝑞

∑︁
𝑖

𝜖2𝑖

(︃∑︁
𝑘

𝜋2
𝑘 −

1

𝑞 − 1

(︃
1−

∑︁
𝑘

𝜋2
𝑘

)︃)︃

= 𝜖𝐴 · 𝑞𝐴− 1

𝑞 − 1
. (3.55)

➁: ∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➁ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!
· 2
∑︁
𝑖

𝜋2
𝑖 𝜖𝜏(𝑖) = 0. (3.56)
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➁➃:

∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➁➃ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!

(︃
2
∑︁
𝑖

𝜋2
𝑖 𝜖𝜏(𝑖)

)︃(︃∑︁
𝑖

𝜋𝑖𝜖𝜏(𝑖)

)︃

=
∑︁
𝑖,𝑗

∑︁
𝜏∈𝑆𝑞

1

𝑞!
· 2𝜋2

𝑖 𝜋𝑗𝜖𝜏(𝑖)𝜖𝜏(𝑗)

=
∑︁
𝑖,𝑗

2𝜖𝑖𝜖𝑗
∑︁
𝜏∈𝑆𝑞

1

𝑞!
· 𝜋2

𝜏(𝑖)𝜋𝜏(𝑗)

=
∑︁
𝑖,𝑗

2𝜖𝑖𝜖𝑗

{︃
1
𝑞

∑︀
𝑘 𝜋

3
𝑘 𝑖 = 𝑗,

1
𝑞(𝑞−1)

∑︀
𝑘 𝜋

2
𝑘(1− 𝜋𝑘) 𝑖 ̸= 𝑗,

= 2
∑︁
𝑖

𝜖2𝑖 ·
1

𝑞

∑︁
𝑘

𝜋3
𝑘 + 2

∑︁
𝑖

𝜖𝑖(−𝜖𝑖) ·
1

𝑞(𝑞 − 1)

∑︁
𝑘

𝜋2
𝑘(1− 𝜋𝑘)

= 2 · 1
𝑞

∑︁
𝑖

𝜖2𝑖

(︃∑︁
𝑘

𝜋3
𝑘 −

1

𝑞 − 1

∑︁
𝑘

𝜋2
𝑘(1− 𝜋𝑘)

)︃

= 2𝜖 · 1

𝑞 − 1

(︃
𝑞
∑︁
𝑘

𝜋3
𝑘 −

∑︁
𝑘

𝜋2
𝑘

)︃
≥ 0, (3.57)

where the last step is by

∑︁
𝑘

𝜋3
𝑘 =

(︃∑︁
𝑘

𝜋3
𝑘

)︃(︃∑︁
𝑘

𝜋𝑘

)︃
≥

(︃∑︁
𝑘

𝜋2
𝑘

)︃2

≥ 1

𝑞

(︃∑︁
𝑘

𝜋2
𝑘

)︃
. (3.58)

➁➄: By (3.51), ⃒⃒⃒⃒
⃒⃒∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➁➄

⃒⃒⃒⃒
⃒⃒ = 𝑂𝑞(𝜖

3/2). (3.59)

➂:

∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➂ =

∑︁
𝜏∈𝑆𝑞

1

𝑞!

(︃∑︁
𝑖

𝜋2
𝑖 𝜖

2
𝜏(𝑖)

)︃
=
∑︁
𝑖

𝜋2
𝑖 ·

1

𝑞

∑︁
𝑗

𝜖2𝑗 = 𝜖𝐴. (3.60)

➂➃: By (3.51), ⃒⃒⃒⃒
⃒⃒∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➂➃

⃒⃒⃒⃒
⃒⃒ = 𝑂𝑞(𝜖

3/2). (3.61)
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➂➄: By (3.51), ⃒⃒⃒⃒
⃒⃒∑︁
𝜏∈𝑆𝑞

1

𝑞!
·➂➄

⃒⃒⃒⃒
⃒⃒ = 𝑂𝑞(𝜖

2). (3.62)

Plugging (3.53) - (3.62) into (3.50)(3.48)(3.45), we get

𝐶𝜒2(FSC𝜋 ⋆FSC𝜋′) ≤ 𝑞

(︂
𝐴+ 𝜖𝐴 · 𝑞𝐴− 1

𝑞 − 1
+ 𝜖𝐴+𝑂𝑞(𝜖

3/2)

)︂
− 1

= (𝑞𝐴− 1)

(︂
1 +

𝑞𝜖𝐴

𝑞 − 1
+ 𝜖

)︂
+ 𝜖+𝑂𝑞(𝜖

3/2)

=

(︂
1 +

𝑞𝜖𝐴

𝑞 − 1
+ 𝜖

)︂
𝐶𝜒2(FSC𝜋) + (1 +𝑂𝑞(𝜖

1/2))𝐶𝜒2(FSC𝜋′)

= (1 +𝑂𝑞(𝜖
1/2))(𝐶𝜒2(FSC𝜋) + 𝐶𝜒2(FSC𝜋′)), (3.63)

where the last step is by 𝐴 ≤ 1.
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Chapter 4

Contraction properties of the Potts
semigroup

We perform a detailed analysis of contraction properties of the Potts channels, which
are the simplest examples of FMS channels (Definition 3.1). The ferromagnetic Potts
channels form the semigroup of random walk on a complete graph, which we call the
Potts semigroup. [51] computed the maximum ratio between relative entropy and the
Dirichlet form, obtaining the log-Sobolev constant 𝛼2 in the log-Sobolev inequality
(LSI, or 2-LSI) for the semigroup. We obtain the best possible non-linear inequali-
ties, 𝑝-non-linear log-Sobolev inequalities (𝑝-NLSIs, 𝑝 ≥ 1), relating entropy and the
Dirichlet form. As an example, we show that the 1-log-Sobolev constant (also known
as the modified log-Sobolev constant) satisfies 𝛼1 = 1 + 1±𝑜(1)

log 𝑞
. By integrating the

1-NLSIs we obtain the tight non-linear strong data processing inequalities (SDPIs)
for the Potts channels, and derive formulas and bounds on the KL contraction coef-
ficients. These results are used in Chapter 6 to derive non-reconstruction results for
the Potts model on a tree and impossibility of weak recovery for the stochastic block
model with 𝑞 communities. This chapter is based on [72].

Chapter outline In Section 4.1 we introduce the problem and our main results.
In Section 4.2 we prove the sharpest 𝑝-NLSIs for the Potts semigroup (Theorem
4.1), and compute the input-restricted KL divergence contraction coefficients of all
Potts channels (Theorem 4.3). In Section 4.3 we discuss tensorization of 𝑝-NLSIs
for the Potts semigroup, and non-linear SDPI for Potts channels. In Section 4.4 we
compute the input-restricted KL contraction coefficient for the coloring channel, a
special case of the Potts channels. In Section 4.5 we compute the input-unrestricted
KL contraction coefficient for the Potts channels. In Section 4.6 we prove upper
bounds on the input-restricted KL contraction coefficient for the Potts channels. In
Section 4.7 we show that the Mrs. Gerber’s Lemma, a very useful result for BSCs, is
not true for non-binary Potts channels. In Section 4.8 we prove a concavity property
of the log-Sobolev coefficients.
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4.1 Introduction
Log-Sobolev inequalities Log-Sobolev inequalities (LSIs) are a class of inequali-
ties bounding the rate of convergence of a Markov semigroup to its stationary distri-
bution. They upper bound certain relative entropy (KL divergence) functions via a
multiple of the Dirichlet form.

Let 𝒳 be a finite alphabet and𝐾 : 𝒳 → 𝒳 be a Markov kernel. Let 𝐿 = 𝐾−𝐼. We
consider the semigroup (𝑇𝑡)𝑡≥0, where 𝑇𝑡 = exp(𝑡𝐿). Let 𝜋 be a stationary measure
for the semigroup. For 𝑓, 𝑔 : 𝒳 → R, the Dirichlet form is defined by

ℰ(𝑓, 𝑔) := −E𝜋[(𝐿𝑓)𝑔] = −
∑︁
𝑥,𝑦∈𝒳

𝐿(𝑥, 𝑦)𝑓(𝑦)𝑔(𝑥)𝜋(𝑥). (4.1)

For non-zero 𝑓 : 𝒳 → R≥0, the relative entropy is defined by

Ent𝜋(𝑓) := E𝜋
[︂
𝑓 log

𝑓

E𝜋[𝑓 ]

]︂
= E𝜋[𝑓 ]𝐷(𝜋(𝑓)||𝜋) (4.2)

where 𝜋(𝑓) is a distribution defined as 𝜋(𝑓)(𝑥) = 𝑓(𝑥)𝜋(𝑥)
E𝜋 [𝑓 ]

.
For 𝑝 > 1, we say the semigroup (𝑇𝑡)𝑡≥0 admits 𝑝-log-Sobolev inequality (𝑝-LSI),

if for some constant 𝛼𝑝, for all non-zero non-negative real functions 𝑓 on 𝒳 , we have

Ent𝜋(𝑓) ≤
1

𝛼𝑝
ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
. (4.3)

For 𝑝 = 1, we define 1-LSI as

Ent𝜋(𝑓) ≤
1

𝛼1

ℰ(𝑓, log 𝑓). (4.4)

The case 𝑝 = 2 is the standard log-Sobolev inequality, originally studied in [71].
The case 𝑝 = 1 is studied also under the name “modified log-Sobolev inequality”
(e.g. [70, 24]).

The relationship between 1-LSI and semigroup convergence can be seen from the
following identity

𝑑

𝑑𝑡
|𝑡=0 Ent𝜋(𝑇𝑡𝑓) = −ℰ(𝑓, log 𝑓). (4.5)

Therefore
Ent𝜋(𝑇𝑡𝑓) ≤ exp(−𝛼1𝑡) Ent𝜋(𝑓) (4.6)

which corresponds to a property of 𝑇𝑡 to exponentially fast relax to equillibrium (in
the sense of relative entropy).

[114] introduced non-linear 𝑝-log-Sobolev inequalities (𝑝-NLSI), a finer description
of the relationship between relative entropy and Dirichlet forms. For 𝑝 ≥ 1, we say
the semigroup satisfies 𝑝-LSI if for some non-negative function1 Φ𝑝 : R≥0 → R≥0, for

1[114] requires the function Φ𝑝 to be concave. We do not make this assumption initially, how-
ever to extend these inequalities to product semigroups the concavification will be necessary – see
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all non-zero 𝑓 : 𝒳 → R≥0, we have

Ent𝜋(𝑓)

E𝜋[𝑓 ]
≤ Φ𝑝

⎛⎝ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
E𝜋[𝑓 ]

⎞⎠ , (4.7)

where for 𝑝 = 1, ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
should be replaced with ℰ(𝑓, log 𝑓).

Non-linear 𝑝-log-Sobolev inequalities imply the ordinary 𝑝-log-Sobolev inequalities
for

𝛼𝑝 = inf
𝑥>0

𝑥

Φ𝑝(𝑥)
. (4.8)

When Φ𝑝 is concave, this can be further simplified to 𝛼𝑝 = (Φ′
𝑝(0))

−1.
[106] proved that for reversible (𝜋,𝐾),

𝑝2(𝑝′ − 1)

(𝑝′)2(𝑝− 1)
𝛼𝑝 ≤ 𝛼𝑝′ ≤ 𝛼𝑝 (4.9)

for 1 < 𝑝′ ≤ 𝑝 ≤ 2. We discuss some general facts about dependence of 𝛼𝑝 and Φ𝑝 on
𝑝 in Section 4.8.

Potts semigroup We focus on the simplest Markov semigroup, corresponding to
the random walk on a complete graph. The Markov kernel is 𝐾(𝑥, 𝑦) = 1

𝑞−1
1{𝑥 ̸=

𝑦}, where 𝑞 = |𝒳 |. In the following, we always assume 𝒳 = [𝑞]. We call it the
Potts semigroup, because every operator 𝑇𝑡 in the semigroup is a ferromagnetic Potts
channel. Its stationary distribution 𝜋 is uniform on 𝒳 and its Dirichlet form is rescaled
covariance:

ℰ(𝑓, 𝑔) = 𝑞

𝑞 − 1
Cov𝜋(𝑓, 𝑔). (4.10)

The Potts channel 𝑃𝜆 : [𝑞]→ [𝑞] for 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁

is defined by

𝑃𝜆(𝑥, 𝑦) =

{︂
𝜆+ 1−𝜆

𝑞
, if 𝑥 = 𝑦,

1−𝜆
𝑞
, if 𝑥 ̸= 𝑦.

(4.11)

We parametrize them by 𝜆, the second largest eigenvalue of 𝑃𝜆. We say the channel
is ferromagnetic if 𝜆 > 0; antiferromagnetic if 𝜆 < 0. One can see that 𝑇𝑡 in the Potts
semigroup is exactly 𝑃exp(− 𝑞

𝑞−1
𝑡).

[51] computed the 2-log-Sobolev constant

𝛼2 =
𝑞 − 2

(𝑞 − 1) log(𝑞 − 1)
. (4.12)

Section 4.3.
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They observed that the infimum of the ratio ℰ(𝑓,𝑓)
Ent𝜋 [𝑓2]

is achieved at a two-valued
function 𝑓 , i.e., 𝑓 takes exactly two values. In fact, the infimum is achieved at a
function 𝑓 where 𝑓(1) = 𝑞 − 1 and 𝑓(𝑖) = 1 for 𝑖 ̸= 1. For 𝑝 ̸= 2, it seems hard to
give a closed-form expression for 𝛼𝑝. [70] proved that

𝑞

𝑞 − 1
≤ 𝛼1 ≤

(︂
1 +

4

log(𝑞 − 1)

)︂
𝑞

𝑞 − 1
, (4.13)

where the upper bound is by using a two-valued function 𝑓 , where 𝑓(1) = 𝑞 + 1 and
𝑓(𝑖) = 1 for 𝑖 ̸= 1. [24] also discussed bounds on 𝛼1 and 𝛼2, proving that

𝛼1 ≥
𝑞

𝑞 − 1
+

2√
𝑞 − 1

. (4.14)

These computations lead to the guess that for all 𝑝, the best possible 𝑝-LSI constant 𝛼𝑝
for the Potts semigroup is achieved at a two-valued function. In Section 4.2, we prove
that this is true, and in fact true for 𝑝-NLSIs for the Potts semigroup: For fixed Ent𝜋(𝑓)

E𝜋 [𝑓 ]
,

the unique function (up to scalar multiplication) of the form 𝑓(1) ≥ 𝑓(2) = · · · = 𝑓(𝑞)

minimizes
ℰ
(︂
𝑓

1
𝑝 ,𝑓

1− 1
𝑝

)︂
E𝜋 [𝑓 ]

. As a result we get the sharpest 𝑝-NLSIs for the Potts semigroup
for all 𝑝 ≥ 1.

We define a useful function 𝜓 : [0, 1]→ R as follows.

𝜓(𝑥) := log 𝑞 + 𝑥 log 𝑥+ (1− 𝑥) log 1− 𝑥
𝑞 − 1

. (4.15)

Note that 𝜓(𝑥) is the KL divergence between
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
and Unif([𝑞]). Simple

computation shows that 𝜓 is non-negative, convex, 𝜓
(︁

1
𝑞

)︁
= 0, strictly decreasing on

[0, 1
𝑞
], strictly increasing on

[︁
1
𝑞
, 1
]︁
, and takes value in [0, log 𝑞].

We define the following useful functions. For 𝑝 > 1, define 𝜉𝑝 : [0, 1]→ R as

𝜉𝑝(𝑥) =
𝑞

𝑞 − 1

(︃
1− 1

𝑞

(︃
𝑥

1
𝑝 + (𝑞 − 1)

(︂
1− 𝑥
𝑞 − 1

)︂ 1
𝑝

)︃(︃
𝑥1−

1
𝑝 + (𝑞 − 1)

(︂
1− 𝑥
𝑞 − 1

)︂1− 1
𝑝

)︃)︃
.

(4.16)

Define 𝜉1 : [0, 1]→ R as

𝜉1(𝑥) =
1

𝑞 − 1

(︂
− log 𝑥− (𝑞 − 1) log

1− 𝑥
𝑞 − 1

+ 𝑞

(︂
𝑥 log 𝑥+ (1− 𝑥) log 1− 𝑥

𝑞 − 1

)︂)︂
.

(4.17)

52



For 𝑝 ≥ 1, define 𝑏𝑝 : [0, log 𝑞]→ R as2

𝑏𝑝(𝜓(𝑥)) = 𝜉𝑝(𝑥) (4.18)

for 𝑥 ∈
[︁
1
𝑞
, 1
]︁
, where 𝜓 is defined in (4.15).

Theorem 4.1 (𝑝-NLSI for Potts semigroup). Fix 𝑝 ≥ 1. The Potts semigroup sat-
isfies 𝑝-NLSI with Φ𝑝 = 𝑏−1

𝑝 , where 𝑏𝑝 is defined in (4.18). Furthermore, this is the
best possible 𝑝-NLSI.

In other words, for any 𝑐 ∈ [0, log 𝑞], among all functions 𝑓 : [𝑞] → R≥0 with
E𝜋𝑓 = 1, Ent(𝑓) = 𝑐, there is a unique (up to permuting the alphabet) minimizer
of ℰ

(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
(ℰ(𝑓, log 𝑓) for 𝑝 = 1), and it is of form

(︁
𝑥, 𝑞−𝑥

𝑞−1
, · · · , 𝑞−𝑥

𝑞−1

)︁
with

𝑥 ∈ [1, 𝑞].
In particular, we have

𝛼𝑝 = inf
𝑥∈( 1

𝑞
,1]

𝜉𝑝(𝑥)

𝜓(𝑥)
. (4.19)

As a corollary of our 1-NLSI, we derive the second order behavior of 𝛼1 as 𝑞 goes
to ∞.

Proposition 4.2. For 𝑞 ≥ 3, we have

𝑞

𝑞 − 1

(︂
1 +

1

log 𝑞

)︂
≤ 𝛼1 ≤

𝑞

𝑞 − 1

(︂
1 +

1 + 𝑜(1)

log 𝑞

)︂
. (4.20)

Strong data processing inequalities For a review of the strong data processing
inequalities (SDPIs), see Section 2.4. Here we introduce a non-linear version of SDPI.
That is, for all Markov chains 𝑈 → 𝑋 → 𝑌 with fixed channel 𝑃𝑌 |𝑋 , arbitrary 𝑈 ,
and fixed or arbitrary 𝑃𝑋 , we have

𝐼(𝑈 ;𝑌 ) ≤ 𝑠(𝐼(𝑈 ;𝑋)), (4.21)

for some non-linear function 𝑠 depending on 𝑃𝑌 |𝑋 and potentially 𝑃𝑋 . See [118] for
more background on SDPIs and their relationship with LSIs.

From (4.6) and Prop. 4.2 we obtain

𝜂KL(𝜋, 𝑃𝜆) ≤ 𝜆
𝑞−1
𝑞
𝛼1 = 𝜆1+

1+𝑜(1)
log 𝑞 (4.22)

for 𝜆 ∈ [0, 1] and 𝑜(1) → 0 as 𝑞 → ∞. It turns out that 1-NLSI can be seen as an
infinitesimal version of the non-linear SDPIs (see [114, Theorem 2]). Thus, we can
prove the best possible non-linear SDPI for the Potts channels.

2In the case 𝑞 = 2, 𝑏𝑝 differs from [114] by a constant factor due to a different parametrization
of the semigroup.
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Theorem 4.3 (Non-linear SDPI for Potts channel). Fix 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
. Define

𝑠𝜆 : [0, log 𝑞]→ R as

𝑠𝜆(𝜓(𝑥)) = 𝜓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
, (4.23)

for 𝑥 ∈
[︁
1
𝑞
, 1
]︁
, where 𝜓 is defined in (4.15). Let 𝑠p𝜆 be the concave envelope of 𝑠𝜆. For

any Markov chain 𝑈 → 𝑋 → 𝑌 where 𝑋 has uniform distribution and 𝑋 → 𝑌 is the
Potts channel 𝑃𝜆, we have

𝐼(𝑈 ;𝑌 ) ≤ 𝑠p𝜆(𝐼(𝑈 ;𝑋)). (4.24)

In particular, we have

𝜂KL(𝜋, 𝑃𝜆) = sup
𝑥∈( 1

𝑞
,1]

𝜓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
𝜓(𝑥)

. (4.25)

Furthermore, this is the best possible non-linear SDPI for Potts channels, in the
sense that for any 𝑐 ∈ [0, log 𝑞], there exists a Markov chain 𝑈 → 𝑋 → 𝑌 where 𝑋
has uniform distribution, 𝑋 → 𝑌 is the Potts channel 𝑃𝜆, and 𝐼(𝑈 ;𝑋) = 𝑐, such
that 𝐼(𝑈 ;𝑌 ) = 𝑠p𝜆(𝑐).

To compare the input-restricted 𝜂KL with input-unrestricted one, in Section 4.5
we compute the exact value of 𝜂KL(𝑃𝜆), and in Section 4.6 we prove that

𝜂KL(𝜋, 𝑃𝜆) < 𝜂KL(𝑃𝜆) (4.26)

for 𝑞 ≥ 3 and 𝜆 ∈
[︁
− 1
𝑞−1

, 0
)︁
∪ (0, 1). See Section 4.2.4 for discussion on the tightness

of the bound (4.22).
Let us briefly remark on the tensorization properties of the 𝑝-NLSIs and SDPIs.

In Section 4.3 we extend 𝑝-NLSI and SDPIs to product spaces/channels. In these
results, the functions 𝑏q𝑝 (convexification of 𝑏𝑝) and 𝑠p𝜆 (concavification of 𝑠𝜆) appear
naturally. When 𝑞 = 2, 𝑏𝑝 is already convex, and 𝑠𝜆 is concave, leading to many good
properties for the hypercube and for binary symmetric channels (e.g. Mrs. Gerber’s
Lemma [134]). However, as shown in Prop. 4.20, these properties do not hold anymore
for 𝑞 ≥ 3, implying a different structure of extremal distributions that are the slowest
to relax to equillibrium as 𝑡→∞ in 𝑇×𝑛

𝑡 , see Section 4.3.2.

Applications One of the implications of NLSIs are improved hypercontractivity
inequalities for functions in [𝑞]𝑛 supported on subsets of cardinality 𝑞(1−𝜖)𝑛 – this was
established generally (for any semigroup) in [114]. Here, we show how NLSIs can be
used to close the gap (between functional-analytic proofs and explicit combinatorics
of [90]) in the edge-isoperimetric inequality for the [𝑞]𝑛 – see Section 4.3.3.

Similarly, SDPIs have numerous applications. Originally introduced to study cer-
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tain multi-user data-compression questions in information theory, they have been
since adopted in many different scenarios. For example, [64] used SDPIs to investi-
gate fundamental limits of fault tolerant computing. [115, 115] further developed the
idea and related the amount of information transmitted in a directed or undirected
graphical model in terms of the percolation probability (existence of an open path) on
the same network. Other notable applications include distributed estimation [135, 28]
and communication complexity [76].

In Chapter 6, we will apply SDPI and bounds on the input-restricted KL contrac-
tion coefficient to broadcasting on trees and stochastic block models.

4.2 Non-linear 𝑝-log-Sobolev inequalities for the Potts
semigroup

In this section, we prove 𝑝-NLSIs for the Potts semigroup for 𝑝 ≥ 1. Because the form
of the 𝑝-LSIs are slightly different for 𝑝 ̸= 1 and 𝑝 = 1, we prove them separately.

Recall our setting. The alphabet is 𝒳 = [𝑞] for some positive integer 𝑞 ≥ 2. The
Potts semigroup 𝑇𝑡 = exp(𝐿𝑡) for generator

𝐿(𝑥, 𝑦) =

{︂
−1 if 𝑥 = 𝑦,
1
𝑞−1

, if 𝑥 ̸= 𝑦.
(4.27)

The stationary distribution is 𝜋 = Unif([𝑞]). The Dirichlet form is

ℰ(𝑓, 𝑔) = −E𝜋[(𝐿𝑓)𝑔] = −
1

𝑞(𝑞 − 1)

(︃∑︁
𝑥

𝑓(𝑥)

)︃(︃∑︁
𝑦

𝑔(𝑦)

)︃
+

1

𝑞 − 1

∑︁
𝑥

𝑓(𝑥)𝑔(𝑥).

(4.28)

Relative entropy is

Ent𝜋(𝑓) = E𝜋
[︂
𝑓 log

𝑓

E𝜋[𝑓 ]

]︂
. (4.29)

The non-linear 𝑝-log-Sobolev inequality says

Ent𝜋(𝑓)

E𝜋[𝑓 ]
≤ Φ𝑝

⎛⎝ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
E𝜋[𝑓 ]

⎞⎠ (4.30)

for some concave Φ𝑝, where for 𝑝 = 1, RHS is replaced with Φ𝑝

(︁
ℰ(𝑓,log 𝑓)
E𝜋 [𝑓 ]

)︁
. Because

both sides of the inequality are fixed under scalar multiplication, we can wlog restrict
𝑓 to be a distribution 𝜇. Then the relative entropy is

Ent𝜋(𝜇) =
1

𝑞
𝐷(𝜇||𝜋) = 1

𝑞
(log 𝑞 −𝐻(𝜇)). (4.31)
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4.2.1 Non-linear 𝑝-log-Sobolev inequality for 𝑝 > 1

We prove Theorem 4.1 for 𝑝 > 1. Before proving the theorem we show the following.

Proposition 4.4. Fix 𝑟 ∈ (0, 1) and 𝑐 ∈ [0, log 𝑞]. Among all distributions 𝜇 =

(𝑝1, . . . , 𝑝𝑞) with 𝐻(𝜇) = 𝑐, the distribution of form 𝜇 =
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈[︁

1
𝑞
, 1
]︁

achieves maximum
∑︀

𝑖 𝑝
𝑟
𝑖 . Furthermore, up to permutation of the alphabet this

is the unique maximum-achieving distribution.

Proof. The result for 𝑐 ∈ {0, log 𝑞} is obvious. In the following, assume that 𝑐 ∈
(0, log 𝑞). Write 𝐹 (𝜇) :=

∑︀
𝑖 𝑝

𝑟
𝑖 . The set {𝜇 : 𝐻(𝜇) = 𝑐} is compact, so the maximum

value of 𝐹 (𝜇) is achieved at some point 𝜇 = (𝑝1, . . . , 𝑝𝑞).
We prove in several steps. In Step 0, we prove that if 𝑝𝑖 = 0 for some 𝑖, then there

can be at most two different values of 𝑝𝑖’s. In Step 1, we prove that if 𝑝𝑖 > 0 for all
𝑖, then there can be at most two different values of 𝑝𝑖’s. In Step 2, we prove that one
of the two different values must have multiplicity one, thus finishing the proof of the
proposition.

Step 0.

Claim 4.5. Fix 𝑎, 𝑏 > 0 and 𝑟 ∈ (0, 1). Among all solutions 𝑢, 𝑣, 𝑤 ∈ [0, 1] with
𝑢+ 𝑣 + 𝑤 = 𝑎 and −𝑢 log 𝑢− 𝑣 log 𝑣 − 𝑤 log𝑤 = 𝑏, the maximum of 𝑢𝑟 + 𝑣𝑟 + 𝑤𝑟 is
not achieved at a point where 0 = 𝑢 < 𝑣 < 𝑤.

Proof. Suppose the maximum is achieved at such a point (𝑢0, 𝑣0, 𝑤0) where 0 = 𝑢0 <
𝑣0 < 𝑤0. Extend it to a curve (𝑢, 𝑣 = 𝑣(𝑢), 𝑤 = 𝑤(𝑢)) on 𝑢 ∈ [0, 𝜖) for some 𝜖 > 0,
such that 𝑢 < 𝑣 < 𝑤 for all 𝑢, satisfying

𝑢+ 𝑣 + 𝑤 = 𝑎, (4.32)
−𝑢 log 𝑢− 𝑣 log 𝑣 − 𝑤 log𝑤 = 𝑏, (4.33)

and

𝑣(0) = 𝑣0, 𝑤(0) = 𝑤0. (4.34)

We prove that

𝑓(𝑢) := 𝑢𝑟 + 𝑣𝑟 + 𝑤𝑟 (4.35)

decreases as 𝑢 approaches 0+, for small enough 𝑢.
By taking derivative of (4.32) and (4.33), one can compute that

𝑣′(𝑢) =
log𝑤 − log 𝑢

log 𝑣 − log𝑤
, 𝑤′(𝑢) =

log 𝑢− log 𝑣

log 𝑣 − log𝑤
. (4.36)
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Therefore

𝑓 ′(𝑢) = 𝑟
(︀
𝑢𝑟−1 + 𝑣𝑟−1𝑣′(𝑢) + 𝑤𝑟−1𝑤′(𝑢)

)︀
= 𝑟

(︂
𝑢𝑟−1 + 𝑣𝑟−1 log𝑤 − log 𝑢

log 𝑣 − log𝑤
+ 𝑤𝑟−1 log 𝑢− log 𝑣

log 𝑣 − log𝑤

)︂
. (4.37)

Because 0 < 𝑣0 < 𝑤0, the term 𝑢𝑟−1 dominates the sum, and 𝑓 ′(𝑢) > 0 for small
enough 𝑢 > 0. Therefore the maximum of 𝑓 is not achieved at 𝑢 = 0.

By Claim 4.5, if 𝑝𝑖 = 0 for some 𝑖, then there can be at most two different values
of 𝑝𝑖’s.

Step 1.

Claim 4.6. If 𝑢, 𝑣, 𝑤 ∈ (0, 1) are all different, then

det

⎛⎝1 log 𝑢 𝑢𝑟−1

1 log 𝑣 𝑣𝑟−1

1 log𝑤 𝑤𝑟−1

⎞⎠ ̸= 0. (4.38)

Proof of Claim. Suppose det = 0. Then for some 𝑎, 𝑏 ∈ R, the equation 𝑥𝑟−1 +
𝑎 log 𝑥 = 𝑏 has at least three distinct solutions 𝑥 ∈ (0, 1). However

𝜕

𝜕𝑥

(︀
𝑥𝑟−1 + 𝑎 log 𝑥

)︀
= (𝑟 − 1)𝑥𝑟−2 +

𝑎

𝑥
(4.39)

is smooth on (0, 1), and takes zero at most once. So 𝑥𝑟−1 + 𝑎 log 𝑥 takes each value
at most once on (0, 1). Contradiction.

By Lagrange multipliers, the three vectors

∇𝐹 (𝜇) =
(︀
𝑟𝑝𝑟−1

𝑖

)︀
𝑖∈[𝑞] , (4.40)

∇𝐻(𝜇) = (−1− log 𝑝𝑖)𝑖∈[𝑞], (4.41)

∇
∑︁
𝑖∈[𝑞]

𝑝𝑖 = 1 (4.42)

should be linear dependent. By Step 0 and Claim 4.6, there can be at most two
different values of 𝑝𝑖’s.

So we can assume that 𝑝1 = · · · = 𝑝𝑚 = 𝑥, 𝑝𝑚+1 = · · · = 𝑝𝑞 = 1−𝑚𝑥
𝑞−𝑚 for some

𝑚 ∈ [𝑞 − 1], 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

]︁
.

Step 2. For 𝜇 of the above form, we have

−𝐻(𝜇) = 𝑚𝑥 log 𝑥+ (1−𝑚𝑥) log 1−𝑚𝑥
𝑞 −𝑚

, (4.43)

𝐹 (𝜇) = 𝑚𝑥𝑟 + (𝑞 −𝑚)

(︂
1−𝑚𝑥
𝑞 −𝑚

)︂𝑟
. (4.44)
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We smoothly continue both functions so that 𝑚 can take any real value in [1, 𝑞 − 1].

Claim 4.7. For 𝑚 ∈ (1, 𝑞 − 1] and 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

)︁
, we have

− 𝜕

𝜕𝑥
𝐻(𝜇) > 0 (4.45)

and

𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐹 (𝜇)− 𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐹 (𝜇) > 0. (4.46)

Proof. We have

− 𝜕

𝜕𝑥
𝐻(𝜇) = 𝑚

(︂
log 𝑥− log

1−𝑚𝑥
𝑞 −𝑚

)︂
> 0, (4.47)

− 𝜕

𝜕𝑚
𝐻(𝜇) =

1− 𝑞𝑥
𝑞 −𝑚

+ 𝑥

(︂
log 𝑥− log

1−𝑚𝑥
𝑞 −𝑚

)︂
, (4.48)

𝜕

𝜕𝑥
𝐹 (𝜇) = 𝑟𝑚

(︃
𝑥𝑟−1 −

(︂
1−𝑚𝑥
𝑞 −𝑚

)︂𝑟−1
)︃
, (4.49)

𝜕

𝜕𝑚
𝐹 (𝜇) = 𝑥𝑟 +

(︂
𝑟
1− 𝑞𝑥
1−𝑚𝑥

− 1

)︂(︂
1−𝑚𝑥
𝑞 −𝑚

)︂𝑟
. (4.50)

Let 𝑎 = 𝑞𝑥−1
1−𝑚𝑥 . Then

𝐺(𝜇) :=
𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐹 (𝜇)− 𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐹 (𝜇)

= (𝑟 − 1)𝑚

(︂
𝑥𝑟 −

(︂
1−𝑚𝑥
𝑞 −𝑚

)︂𝑟)︂(︂
log 𝑥− log

1−𝑚𝑥
𝑞 −𝑚

)︂
− 𝑟𝑚1− 𝑞𝑥

𝑞 −𝑚

(︃
𝑥𝑟−1 −

(︂
1−𝑚𝑥
𝑞 −𝑚

)︂𝑟−1
)︃

= 𝑥−𝑟𝑚

(︂
(𝑟 − 1)

(︀
1− (𝑎+ 1)−𝑟

)︀
log(𝑎+ 1)− 𝑟 𝑎

𝑎+ 1

(︀
1− (𝑎+ 1)1−𝑟

)︀)︂
.

(4.51)

The result then follows from Claim 4.8.

Claim 4.8. For all 𝑟 ∈ (0, 1) and 𝑎 > 0 we have

(𝑟 − 1)
(︀
1− (𝑎+ 1)−𝑟

)︀
log(𝑎+ 1)− 𝑟 𝑎

𝑎+ 1

(︀
1− (𝑎+ 1)1−𝑟

)︀
> 0. (4.52)

Proof. Let

𝑓(𝑎) := (𝑟 − 1)
(︀
1− (𝑎+ 1)−𝑟

)︀
log(𝑎+ 1)− 𝑟 𝑎

𝑎+ 1

(︀
1− (𝑎+ 1)1−𝑟

)︀
. (4.53)
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Because lim𝑎→0+ 𝑓(𝑎) = 0, it suffices to prove that 𝑓 ′(𝑎) > 0.

𝑓 ′(𝑎) = (𝑎+ 1)−𝑟−1(1− 𝑟 − (𝑎(1− 𝑟) + 1)
(︀
(𝑎+ 1)𝑟−1 − 𝑟

)︀
− (1− 𝑟)𝑟 log(𝑎+ 1))

=: (𝑎+ 1)−𝑟−1𝑔(𝑎). (4.54)

Because lim𝑎→0+ 𝑔(𝑎) = 0, it suffices to prove that 𝑔′(𝑎) > 0.

𝑔′(𝑎) =
𝑎𝑟(1− 𝑟) (1− (𝑎+ 1)𝑟−1)

𝑎+ 1
> 0. (4.55)

Now let us return to the proof of Prop. 4.4. The set of (𝑚,𝑥) where 𝑚 ∈ [1, 𝑞−1],
𝑥 ∈

(︁
1
𝑞
, 1
𝑚

]︁
, and 𝐻(𝜇) = 𝑐 can be parametrized as a curve (𝑚,𝑥 = 𝑥(𝑚)) for 𝑚 ∈

[1,𝑚𝑐] for some constant 𝑚𝑐. Along the curve, 𝐹 (𝜇) is continuous, and by Claim
4.7, is decreasing in 𝑚. Therefore 𝐹 (𝜇) is maximized at 𝑚 = 1. This finishes the
proof.

Proof of Theorem 4.1 for 𝑝 > 1. For a distribution 𝜇 = (𝑝1, . . . , 𝑝𝑞), we have

ℰ
(︁
𝜇

1
𝑝 , 𝜇1− 1

𝑝

)︁
=

1

𝑞 − 1

(︃
1− 1

𝑞

(︃∑︁
𝑖

𝑝
1
𝑝

𝑖

)︃(︃∑︁
𝑖

𝑝
1− 1

𝑝

𝑖

)︃)︃
. (4.56)

By Prop. 4.4, for fixed value of Ent𝜋(𝜇), the unique distribution of the form
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈

[︁
1
𝑞
, 1
]︁

minimizes ℰ
(︁
𝜇

1
𝑝 , 𝜇1− 1

𝑝

)︁
. Therefore for any non-zero non-negative 𝑓 ,

we have

𝑏𝑝

(︂
Ent𝜋(𝑓)

E𝜋[𝑓 ]

)︂
≤
ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
E𝜋[𝑓 ]

. (4.57)

So 𝑝-NLSI holds with Φ𝑝 = 𝑏−1
𝑝 . The statement about optimality is immediate from

the above discussions.

4.2.2 Non-linear 1-log-Sobolev inequality

We prove Theorem 4.1 for 𝑝 = 1. Before proving the theorem we show the following.

Proposition 4.9. Fix 0 ≤ 𝑐 ≤ log 𝑞. Among all distributions 𝜇 with 𝐻(𝜇) = 𝑐,
the distribution of form 𝜇 =

(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈

[︁
1
𝑞
, 1
]︁

achieves maximum∑︀
𝑖 log 𝑝𝑖. Furthermore, up to permutation of the alphabet this is the unique minimum-

achieving distribution.

Proof. The result for 𝑐 ∈ {0, log 𝑞} is obvious. In the following, assume that 0 < 𝑐 <
log 𝑞. Write 𝐹 (𝜇) :=

∑︀
𝑖 log 𝑝𝑖. The set {𝜇 : 𝐻(𝜇) = 𝑐} is compact, so the maximum

value of 𝐹 (𝜇) is achieved at some point 𝜇 = (𝑝1, . . . , 𝑝𝑞).
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We prove in several steps. In Step 0, we prove that 𝑝𝑖 > 0 for all 𝑖. In Step 1, we
prove that there can be at most two different values of 𝑝𝑖’s. In Step 2, we prove that
one of the two different values must have multiplicity one, thus finishing the proof of
the proposition.

Step 0. If 𝑝𝑖 = 0 for some 𝑖, then 𝐹 (𝜇) = −∞. So min𝑖∈[𝑞] 𝑝𝑖 > 0.
Step 1.

Claim 4.10. If 𝑢, 𝑣, 𝑤 ∈ (0, 1) are all different, then

det

⎛⎝1 log 𝑢 1
𝑢

1 log 𝑣 1
𝑣

1 log𝑤 1
𝑤

⎞⎠ ̸= 0. (4.58)

Proof of Claim. Suppose det = 0. Then for some 𝑎, 𝑏 ∈ R, the equation 1
𝑥
+𝑎 log 𝑥 = 𝑏

has at least three distinct solutions 𝑥 ∈ (0, 1). However, 𝜕
𝜕𝑥

(︀
1
𝑥
+ 𝑎 log 𝑥

)︀
= − 1

𝑥2
+ 𝑎

𝑥

is smooth on (0, 1), and takes zero at most once. So 1
𝑥
+ 𝑎 log 𝑥 takes each value at

most once on (0, 1). Contradiction.

By Lagrange multipliers, the three vectors

∇𝐹 (𝜇) =
(︂
1

𝑝𝑖

)︂
𝑖∈[𝑞]

, (4.59)

∇𝐻(𝜇) = (−1− log 𝑝𝑖)𝑖∈[𝑞], (4.60)

∇
∑︁
𝑖∈[𝑞]

𝑝𝑖 = 1 (4.61)

should be linear dependent. By Claim 4.10, there can be at most two different values
of 𝑝𝑖’s.

So we can assume that 𝑝1 = · · · = 𝑝𝑚 = 𝑥, 𝑝𝑚+1 = · · · = 𝑝𝑞 = 1−𝑚𝑥
𝑞−𝑚 for some

𝑚 ∈ [𝑞 − 1], 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

)︁
.

Step 2. For 𝜇 of the above form, we have

−𝐻(𝜇) = 𝑚𝑥 log 𝑥+ (1−𝑚𝑥) log 1−𝑚𝑥
𝑞 −𝑚

, (4.62)

𝐹 (𝜇) = 𝑚 log 𝑥+ (𝑞 −𝑚) log
1−𝑚𝑥
𝑞 −𝑚

. (4.63)

We smoothly continue both functions so that 𝑚 can take any real value in [1, 𝑞 − 1].

Claim 4.11. For 𝑚 ∈ (1, 𝑞 − 1] and 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

)︁
, we have

− 𝜕

𝜕𝑥
𝐻(𝜇) > 0 (4.64)
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and

𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐹 (𝜇)− 𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐹 (𝜇) > 0. (4.65)

Proof of Claim. Let 𝑓(𝑥) = log 𝑥− log 1−𝑚𝑥
𝑞−𝑚 . Then we have

− 𝜕

𝜕𝑥
𝐻(𝜇) = 𝑚𝑓(𝑥) > 0, (4.66)

− 𝜕

𝜕𝑚
𝐻(𝜇) =

1− 𝑞𝑥
𝑞 −𝑚

+ 𝑥𝑓(𝑥), (4.67)

𝜕

𝜕𝑥
𝐹 (𝜇) =

𝑚(1− 𝑞𝑥)
𝑥(1−𝑚𝑥)

(4.68)

𝜕

𝜕𝑚
𝐹 (𝜇) =

1− 𝑞𝑥
1−𝑚𝑥

+ 𝑓(𝑥). (4.69)

So

𝐺(𝜇) :=
𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐹 (𝜇)− 𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐹 (𝜇)

= 𝑚

(︂
(1− 𝑞𝑥)2

𝑥(𝑞 −𝑚)(1−𝑚𝑥)
− 𝑓(𝑥)2

)︂
. (4.70)

Let 𝑎 = 𝑞𝑥−1
1−𝑚𝑥 . Then 𝐺(𝜇) = 𝑚

(︁
𝑎2

1+𝑎
− log2(𝑎+ 1)

)︁
. Because 𝑎 > 0, we have

𝐺(𝜇) > 0 by Lemma 4.12.

The set of (𝑚,𝑥) where 𝑚 ∈ [1, 𝑞 − 1], 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

]︁
, and 𝐻(𝜇) = 𝑐 can be

parametrized as a curve (𝑚,𝑥 = 𝑥(𝑚)) for 𝑚 ∈ [1,𝑚𝑐] for some constant 𝑚𝑐. Along
the curve, 𝐹 (𝜇) is continuous, and by Claim 4.11, is decreasing in 𝑚. Therefore 𝐹 (𝜇)
is maximized at 𝑚 = 1. This finishes the proof.

Lemma 4.12. For 𝑎 ∈ R>−1, we have 𝑎2

1+𝑎
≥ log2(𝑎 + 1). Equality holds only when

𝑎 = 0.

Proof. We start from the well-known fact that 𝑎 ≥ log(𝑎 + 1) for 𝑎 ∈ R>−1 (and
equality holds only when 𝑎 = 0). Let 𝑓(𝑎) = 𝑎(𝑎+ 2)− (2𝑎+ 2) log(𝑎+ 1). We have
𝑓(0) = 0 and 𝑓 ′(𝑎) = 2(𝑎 − log(𝑎 + 1)) ≥ 0 for 𝑎 ∈ R>−1 (and equality holds only
when 𝑎 = 0). So 𝑓 is negative on (−1, 1) and positive on (1,∞).

Let 𝑔(𝑎) = 𝑎2

1+𝑎
− log2(𝑎 + 1). Clearly 𝑔(0) = 0. Because 𝑔′(𝑎) = 𝑓(𝑎)

(𝑎+1)2
, 𝑔 is

decreasing on (−1, 1] and increasing on [1,∞). So 𝑔(𝑎) ≥ 0 for all 𝑎 ∈ R>−1, and
equality holds only when 𝑎 = 0.

Proof of Theorem 4.1 for 𝑝 = 1. For a distribution 𝜇 = (𝑝1, . . . , 𝑝𝑞), we have

ℰ(𝜇, log 𝜇) = 1

𝑞 − 1

∑︁
𝑖∈[𝑞]

𝑝𝑖 log 𝑝𝑖 −
1

𝑞(𝑞 − 1)

∑︁
𝑖∈[𝑞]

log 𝑝𝑖. (4.71)
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By Prop. 4.9, for fixed value of Ent𝜋(𝜇), the unique distribution of the form
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈

[︁
1
𝑞
, 1
]︁

minimizes ℰ(𝜇, log 𝜇). Therefore for any non-zero non-negative 𝑓 , we
have

𝑏1

(︂
Ent𝜋(𝑓)

E𝜋[𝑓 ]

)︂
≤ ℰ(𝑓, log 𝑓)

E𝜋[𝑓 ]
. (4.72)

So 1-NLSI holds for Φ1 = 𝑏−1
1 . The statement about optimality is immediate from

the above discussions.

4.2.3 Input-restricted non-linear SDPI for Potts channels

In this section, we prove Theorem 4.3.
The subset of Potts channels corresponding to 𝜆 ≥ 0 (i.e. ferromagnetic Potts

channels) form a semigroup. For the semigroups, the optimal 1-NLSI is an “infinites-
imal version” of the input-restricted non-linear SDPI. Consequently, by integrating
the former we can get the latter (this is formalized in the first part of the proof be-
low). Surprisingly, the result also extends beyond the semigroup to all of the Potts
channels, namely we have the following.

Proposition 4.13. Let 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
. Fix 0 ≤ 𝑐 ≤ log 𝑞. Among all distributions

𝜇 with 𝐻(𝜇) = 𝑐, the distribution of form 𝜇 =
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈

[︁
1
𝑞
, 1
]︁

achieves minimum 𝐻(𝜇𝑃𝜆). Furthermore, when 𝜆 ̸∈ {0, 1}, up to permutation of the
alphabet this is the unique minimum-achieving distribution.

Proof. The result for 𝜆 ∈ {0, 1} is obvious. In the following assume that 𝜆 ̸∈ {0, 1}.
The result for 𝑐 ∈ {0, log 𝑞} is obvious. In the following assume that 𝑐 ̸∈ {0, log 𝑞}.
The set {𝜇 : 𝐻(𝜇) = 𝑐} is compact, so the minimum value of 𝐻(𝜇𝑃𝜆) is achieved at
some point 𝜇 = (𝑝1, . . . , 𝑝𝑞).

We prove in several steps. In Step 0, we prove that if 𝑝𝑖 = 0 for some 𝑖, then there
can be at most two different values of 𝑝𝑖’s. In Step 1, we prove that if 𝑝𝑖 > 0 for all
𝑖, then there can be at most two different values of 𝑝𝑖’s. In Step 2, we prove that one
of the two different values must have multiplicity one, thus finishing the proof of the
proposition.

Step 0.

Claim 4.14. Fix 𝑎, 𝑏, 𝑑 > 0 and 𝑐 ∈ R>−𝑑∖{0}. Among all solutions 𝑢, 𝑣, 𝑤 ∈ [0, 1]
with 𝑢+ 𝑣 + 𝑤 = 𝑎 and −𝑢 log 𝑢− 𝑣 log 𝑣 − 𝑤 log𝑤 = 𝑏, the maximum of

(𝑐𝑢+ 𝑑) log(𝑐𝑢+ 𝑑) + (𝑐𝑣 + 𝑑) log(𝑐𝑣 + 𝑑) + (𝑐𝑤 + 𝑑) log(𝑐𝑤 + 𝑑) (4.73)

is not achieved at a point where 0 = 𝑢 < 𝑣 < 𝑤.

Proof. Suppose the maximum is achieved at such a point (𝑢0, 𝑣0, 𝑤0) where 0 = 𝑢0 <
𝑣0 < 𝑤0. Extend it to a curve (𝑢, 𝑣 = 𝑣(𝑢), 𝑤 = 𝑤(𝑢)) on 𝑢 ∈ [0, 𝜖) for some 𝜖 > 0,
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such that 𝑢 < 𝑣 < 𝑤 for all 𝑢, satisfying

𝑢+ 𝑣 + 𝑤 = 𝑎, (4.74)
−𝑢 log 𝑢− 𝑣 log 𝑣 − 𝑤 log𝑤 = 𝑏, (4.75)

and 𝑣(0) = 𝑣0, 𝑤(0) = 𝑤0.
We prove that

𝑓(𝑢) := (𝑐𝑢+ 𝑑) log(𝑐𝑢+ 𝑑) + (𝑐𝑣 + 𝑑) log(𝑐𝑣 + 𝑑) + (𝑐𝑤 + 𝑑) log(𝑐𝑤 + 𝑑) (4.76)

decreases as 𝑢 approaches 0+ for small enough 𝑢.
By taking derivative of (4.74) and (4.75), one can compute that

𝑣′(𝑢) =
log𝑤 − log 𝑢

log 𝑣 − log𝑤
, 𝑤′(𝑢) =

log 𝑢− log 𝑣

log 𝑣 − log𝑤
. (4.77)

Therefore

𝑓 ′(𝑢) = 𝑐 (log(𝑐𝑢+ 𝑑) + log(𝑐𝑣 + 𝑑)𝑣′(𝑢) + log(𝑐𝑤 + 𝑑)𝑤′(𝑢))

= 𝑐

(︂
log(𝑐𝑢+ 𝑑) + log(𝑐𝑣 + 𝑑)

log𝑤 − log 𝑢

log 𝑣 − log𝑤
+ log(𝑐𝑤 + 𝑑)

log 𝑢− log 𝑣

log 𝑣 − log𝑤

)︂
.

(4.78)

Because 0 < 𝑣0 < 𝑤0, terms involving log 𝑢 dominates the sum. The dominating term
is

−𝑐 log 𝑢 log(𝑐𝑣 + 𝑑)− log(𝑐𝑤 + 𝑑)

log 𝑣 − log𝑤
> 0. (4.79)

Therefore the maximum of 𝑓 is not achieved at 𝑢 = 0.

By Claim 4.14, if 𝑝𝑖 = 0 for some 𝑖, then there can be at most two different values
of 𝑝𝑖’s.

Step 1.

Claim 4.15. If 𝑢, 𝑣, 𝑤 ∈ (0, 1) are all different, then

det

⎛⎝1 log 𝑢 log(𝜆𝑢+ 1−𝜆
𝑞
)

1 log 𝑣 log(𝜆𝑣 + 1−𝜆
𝑞
)

1 log𝑤 log(𝜆𝑤 + 1−𝜆
𝑞
)

⎞⎠ ̸= 0. (4.80)

Proof of Claim. Suppose det = 0. Then for some 𝑎, 𝑏 ∈ R, the equation

log

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
+ 𝑎 log 𝑥 = 𝑏 (4.81)
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has at least three distinct solutions 𝑥 ∈ (0, 1). However,

𝜕

𝜕𝑥

(︂
log

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
+ 𝑎 log 𝑥

)︂
=

𝜆

𝜆𝑥+ 1−𝜆
𝑞

+
𝑎

𝑥
(4.82)

is smooth on (0, 1), and takes zero at most once. So

log

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
+ 𝑎 log 𝑥 (4.83)

takes each value at most twice on (0, 1). Contradiction.

By Lagrange multipliers, the three vectors

∇𝐻(𝜇𝑃𝜆) =

(︂
−𝜆 log

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
− 𝜆
)︂
𝑖∈[𝑞]

, (4.84)

∇𝐻(𝜇) = (−1− log 𝑝𝑖)𝑖∈[𝑞], (4.85)

∇
∑︁
𝑖∈[𝑞]

𝑝𝑖 = 1 (4.86)

should be linear dependent. By Claim 4.15, there can be at most two different values
of 𝑝𝑖’s.

So we can assume that 𝑝1 = · · · = 𝑝𝑚 = 𝑥, 𝑝𝑚+1 = · · · = 𝑝𝑞 = 1−𝑚𝑥
𝑞−𝑚 for some

𝑚 ∈ [𝑞 − 1], 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

]︁
.

Step 2. For 𝜇 of the above form, we have

−𝐻(𝜇) = 𝑚𝑥 log 𝑥+ (1−𝑚𝑥) log 1−𝑚𝑥
𝑞 −𝑚

, (4.87)

−𝐻(𝜇𝑃𝜆) = 𝑚

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
log

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
+ (𝑞 −𝑚)

(︂
𝜆
1−𝑚𝑥
𝑞 −𝑚

+
1− 𝜆
𝑞

)︂
log

(︂
𝜆
1−𝑚𝑥
𝑞 −𝑚

+
1− 𝜆
𝑞

)︂
. (4.88)

We smoothly continue both functions so that 𝑚 can take any real value in [1, 𝑞 − 1].

Claim 4.16. For 𝑚 ∈ (1, 𝑞 − 1] and 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

)︁
, we have

− 𝜕

𝜕𝑥
𝐻(𝜇) > 0 (4.89)

and

𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐻(𝜇𝑃𝜆)−

𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐻(𝜇𝑃𝜆) > 0. (4.90)
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Proof of Claim. Let

𝑓(𝑥) = log 𝑥− log
1−𝑚𝑥
𝑞 −𝑚

. (4.91)

Then

− 𝜕

𝜕𝑥
𝐻(𝜇) = 𝑚𝑓(𝑥) > 0, (4.92)

− 𝜕

𝜕𝑚
𝐻(𝜇) =

1− 𝑞𝑥
𝑞 −𝑚

+ 𝑥𝑓(𝑥), (4.93)

− 𝜕

𝜕𝑥
𝐻(𝜇𝑃𝜆) = 𝜆𝑚𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
, (4.94)

− 𝜕

𝜕𝑚
𝐻(𝜇𝑃𝜆) = 𝜆

1− 𝑞𝑥
𝑞 −𝑚

+

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
, (4.95)

and

𝐺(𝜇) :=
𝜕

𝜕𝑚
𝐻(𝜇)

𝜕

𝜕𝑥
𝐻(𝜇𝑃𝜆)−

𝜕

𝜕𝑥
𝐻(𝜇)

𝜕

𝜕𝑚
𝐻(𝜇𝑃𝜆)

= 𝜆𝑚
1− 𝑞𝑥
𝑞 −𝑚

(︂
𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
− 𝑓(𝑥)

)︂
−𝑚𝑓(𝑥)𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
1− 𝜆
𝑞

.

(4.96)

𝜕

𝜕𝜆

𝐺(𝜇)

𝑚𝜆𝑓(𝑥)𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁ =
1

𝑞𝜆2
+

1− 𝑞𝑥
𝑞 −𝑚

𝜕
𝜕𝜆
𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁2 . (4.97)

Note that

1.

𝐺(𝜇)

𝑚𝜆𝑓(𝑥)𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁ (4.98)

is continuous for 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
, and takes value 0 at 𝜆 = 1;

2. 𝑚𝜆𝑓(𝑥)𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
≥ 0 for 𝜆 ∈

[︁
− 1
𝑞−1

, 1
]︁
.

So we only need to prove that

𝜕

𝜕𝜆

𝐺(𝜇)

𝑚𝜆𝑓(𝑥)𝑓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁ ≤ 0, (4.99)
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i.e.,

𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂2

≤ 𝑞𝜆2(𝑞𝑥− 1)

𝑞 −𝑚
𝜕

𝜕𝜆
𝑓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
. (4.100)

Let 𝑦 = 𝜆𝑥+ 1−𝜆
𝑞

. Then the above inequality can be rewritten as

𝑓(𝑦)2 ≤ 𝑞𝜆2(𝑞𝑥− 1)

𝑞 −𝑚
𝜕𝑦

𝜕𝜆

𝜕𝑓(𝑦)

𝜕𝑦
=

(𝑞𝑦 − 1)2

(𝑞 −𝑚)𝑦(1−𝑚𝑦)
. (4.101)

This is true by Lemma 4.12, applied to 𝑎 = 𝑞𝑦−1
1−𝑚𝑦 . Equality holds only when 𝑦 = 1

𝑞
,

which cannot happen for 𝜆 ̸= 0.

The set of (𝑚,𝑥) where 𝑚 ∈ [1, 𝑞 − 1], 𝑥 ∈
(︁

1
𝑞
, 1
𝑚

]︁
, and 𝐻(𝜇) = 𝑐 can be

parametrized as a curve (𝑚,𝑥 = 𝑥(𝑚)) for 𝑚 ∈ [1,𝑚𝑐] for some constant 𝑚𝑐. Along
the curve, 𝐻(𝜇𝑃𝜆) is continuous, and by Claim 4.16, is increasing in 𝑚. Therefore
𝐻(𝜇𝑃𝜆) is minimized at 𝑚 = 1. This finishes the proof.

Proof of Theorem 4.3. Consider a Markov chain 𝑈 → 𝑋 → 𝑌 where 𝑋 has uniform
distribution, and the channel 𝑋 → 𝑌 is 𝑃𝜆. Because 𝑃𝑋 and 𝑃𝑌 are both uniform,
for any 𝑢, we have

𝐷(𝑃𝑋|𝑈=𝑢||𝑃𝑋) = log 𝑞 −𝐻(𝑃𝑋|𝑈=𝑢), (4.102)
𝐷(𝑃𝑌 |𝑈=𝑢||𝑃𝑌 ) = log 𝑞 −𝐻(𝑃𝑌 |𝑈=𝑢). (4.103)

So by Prop. 4.13 we get

𝐷(𝑃𝑌 |𝑈=𝑢||𝑃𝑌 ) ≤ 𝑠𝜆(𝐷(𝑃𝑋|𝑈=𝑢||𝑃𝑋)). (4.104)

Therefore

𝐼(𝑈 ;𝑌 ) = 𝐷(𝑃𝑌 |𝑈 ||𝑃𝑌 |𝑃𝑈) ≤ 𝑠p𝜆(𝐷(𝑃𝑋|𝑈 ||𝑃𝑋 |𝑃𝑈)) = 𝑠p𝜆(𝐼(𝑈 ;𝑋)). (4.105)

Now we prove optimality. Let 𝑐 ∈ [0, log 𝑞]. Choose 𝑎, 𝑏 ∈ [0, log 𝑞] and 𝑢 ∈ [0, 1]
such that 𝑐 = (1 − 𝑢)𝑎 + 𝑢𝑏 and 𝑠p𝜆(𝑐) = (1 − 𝑢)𝑠𝜆(𝑎) + 𝑢𝑠𝜆(𝑏). Choose 𝜌, 𝜏 ∈ [0, 1]
such that 𝐶(𝑃𝜌) = 𝑎 and 𝐶(𝑃𝜏 ) = 𝑏. Define random variable 𝑈 = (𝑉, 𝑍) such that
𝑍 ∼ Ber(𝑢), and conditioned on 𝑍 = 0, 𝑉 ∼ 𝑃𝜌(𝑋), and conditioned on 𝑍 = 1,
𝑉 ∼ 𝑃𝜏 (𝑋). One can check that

𝐼(𝑈 ;𝑋) = (1− 𝑢)𝑎+ 𝑢𝑏 = 𝑐, (4.106)
𝐼(𝑈 ;𝑌 ) = (1− 𝑢)𝑠𝜆(𝑎) + 𝑢𝑠𝜆(𝑏) = 𝑠p𝜆(𝑐). (4.107)

Let us discuss the relationship between Potts semigroup and ferromagnetic Potts
channels. As discussed in the Introduction, ferromagnetic Potts channels are exactly
the operators in the Potts semigroup, with 𝑇𝑡 = 𝑃exp(− 𝑞

𝑞−1
𝑡). Therefore 1-LSI for the
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Potts semigroup can be seen as infinitesimal SDPI for ferromagnetic Potts channels,
and many results for the former can directly transfer to results for the latter.

We use Prop. 4.9 to give an alternative proof for Prop. 4.13 for ferromagnetic
Potts channels.

Alternative proof of Prop. 4.13 for ferromagnetic Potts channels. Let 𝜇 and 𝜈 be two
distributions with 𝐻(𝜇) = 𝐻(𝜈) = 𝑐, where 𝜇 is of form

(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
for some

𝑥 ∈
[︁
1
𝑞
, 1
]︁
, and 𝜈 is not of this form (up to permuting the alphabet). Define 𝜇𝑡 = 𝜇𝑇𝑡

and 𝜈𝑡 = 𝜈𝑇𝑡, where (𝑇𝑡)𝑡≥0 is the Potts semigroup.
We prove that 𝐻(𝜇𝑡) < 𝐻(𝜈𝑡) for 𝑡 ∈ (0,∞). Suppose this does not hold. Let

𝑢 = inf{𝑡 > 0 : 𝐻(𝜇𝑡) ≥ 𝐻(𝜈𝑡)}. Then we have 𝐻(𝜈𝑢) = 𝐻(𝜇𝑢) by continuity of
semigroup. By Prop. 4.9, we have

𝜕

𝜕𝑡
|𝑡=𝑢𝐻(𝜈𝑡) = ℰ(𝜈𝑢, log 𝜈𝑢) > ℰ(𝜇𝑢, log 𝜇𝑢) =

𝜕

𝜕𝑡
|𝑡=𝑢𝐻(𝜇𝑡). (4.108)

If 𝑢 = 0, then for some 𝜖 > 0, 𝐻(𝜈𝑡) > 𝐻(𝜇𝑡) for 𝑡 ∈ (0, 𝜖). If 𝑢 > 0, then for
some 𝜖 > 0, 𝐻(𝜈𝑡) < 𝐻(𝜇𝑡) for 𝑡 ∈ (𝑢 − 𝜖, 𝑢). Both cases lead to contradiction with
definition of 𝑢. So 𝐻(𝜇𝑡) < 𝐻(𝜈𝑡) for 𝑡 ∈ (0,∞). This completes the proof of the
result for 𝜆 > 0.

4.2.4 Behavior for 𝑞 →∞
When should one use 𝑝-NLSI instead of 𝑝-LSI? To get some insights, we consider the
case of 𝑞 →∞. First, we prove Prop. 4.2 that 𝛼1 = 1 + 1+𝑜(1)

log 𝑞
.

Proof of Prop. 4.2. Lower bound. By Theorem 4.1, we need to show that for all
𝑥 ∈

(︁
1
𝑞
, 1
]︁
, we have

𝑞

𝑞 − 1

(︂
1 +

1

log 𝑞

)︂
≤ 𝜉1(𝑥)

𝜓(𝑥)
. (4.109)

Noting that

𝜉1(𝑥) =
𝑞

𝑞 − 1

(︂
1

𝑞

(︂
− log 𝑥− (𝑞 − 1) log

1− 𝑥
𝑞 − 1

)︂
− log 𝑞 + 𝜓(𝑥)

)︂
, (4.110)

it suffices to prove that

𝑓(𝑥) :=
log 𝑞

𝑞

(︂
− log 𝑥− (𝑞 − 1) log

1− 𝑥
𝑞 − 1

)︂
− log2 𝑞 − 𝜓(𝑥) ≥ 0. (4.111)

We have 𝑓
(︁

1
𝑞

)︁
= 0. So it suffices to prove that 𝑓 ′(𝑥) ≥ 0 for 𝑥 ∈

[︁
1
𝑞
, 1
]︁
.

𝑓 ′(𝑥) =
log 𝑞

𝑞

(︂
−1

𝑥
+
𝑞 − 1

1− 𝑥

)︂
−
(︂
log 𝑥− log

1− 𝑥
𝑞 − 1

)︂
. (4.112)
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We smoothly continue this function to
{︁
(𝑞, 𝑥) ∈ R2 : 𝑞 ≥ 3, 𝑥 ∈

[︁
1
𝑞
, 1
]︁}︁

and prove
that it is non-negative in this region.

𝜕

𝜕𝑞
𝑓 ′(𝑥) =

1− log 𝑞

𝑞2

(︂
−1

𝑥
+
𝑞 − 1

1− 𝑥

)︂
+

log 𝑞

𝑞

1

1− 𝑥
− 1

𝑞 − 1

=
(𝑞 − 1) log 𝑞 + 𝑞(𝑞𝑥2 − 𝑥− 1) + 1

𝑞2(𝑞 − 1)𝑥(1− 𝑥)
. (4.113)

The numerator is a quadratic function in 𝑥, and for fixed 𝑞, it is minimized at 𝑥 = 1
𝑞
,

leading to

𝜕

𝜕𝑞
𝑓 ′(𝑥) ≥ (𝑞 − 1) log 𝑞 − 𝑞 + 1

𝑞2(𝑞 − 1)𝑥(1− 𝑥)
=

log 𝑞 − 1

𝑞2𝑥(1− 𝑥)
≥ 0. (4.114)

So we only need to prove 𝑓 ′(𝑥) ≥ 0 for minimum 𝑞, i.e., 𝑞 = max{3, 1
𝑥
}. When 𝑞 = 1

𝑥
,

on can verify that 𝑓 ′(𝑥) = 0. So the only remaining case is 𝑞 = 3. For 𝑞 = 3, we
prove that 𝑓 is convex in 𝑥, i.e., 𝑓 ′′(𝑥) ≥ 0 for 𝑥 ∈ [0, 1].

𝑓 ′′(𝑥) =
log 𝑞

𝑞

(︂
1

𝑥2
+

𝑞 − 1

(1− 𝑥)2

)︂
−
(︂
1

𝑥
+

1

1− 𝑥

)︂
=

log 𝑞((1− 𝑥)2 + (𝑞 − 1)𝑥2)− 𝑞𝑥(1− 𝑥)
𝑞𝑥2(1− 𝑥)2

=
(𝑞 log 𝑞 + 𝑞)𝑥2 − (𝑞 + 2 log 𝑞)𝑥+ log 𝑞

𝑞𝑥2(1− 𝑥)2
. (4.115)

The numerator is a quadratic function in 𝑥, and its discriminant is

(𝑞 + 2 log 𝑞)2 − 4(𝑞 log 𝑞 + 𝑞) log 𝑞 = 𝑞2 − 4(𝑞 − 1) log2 𝑞. (4.116)

When 𝑞 = 3, the above value is < 0. So 𝑓 ′′(𝑥) ≥ 0 for 𝑞 = 3 and 𝑥 ∈ [0, 1]. This
finishes the proof of the lower bound.

Upper bound. For the upper bound, we need find 𝑥 ∈
(︁

1
𝑞
, 1
]︁

such that 𝑓(𝑥)
𝜓(𝑥)

=

𝑜(1). Because the upper bound to prove is asymptotic, we assume that 𝑞 is large
enough. Take 𝑥 = 2

log 𝑞
. Then we have

𝜓(𝑥) = log 𝑞 +
2

log 𝑞
log

2

log 𝑞
+

(︂
1− 2

log 𝑞

)︂
log

1− 2
log 𝑞

𝑞 − 1

= log 𝑞 −
(︂
1− 2

log 𝑞

)︂
log(𝑞 − 1) + 𝑜(1)

= 2 + 𝑜(1) (4.117)
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and

𝑓(𝑥) =
log 𝑞

𝑞

(︃
− log

2

log 𝑞
− (𝑞 − 1) log

1− 2
log 𝑞

𝑞 − 1

)︃
− log2 𝑞 − 𝜓(𝑥)

=
log 𝑞

𝑞
(𝑞 − 1)

(︂
log(𝑞 − 1)− log

(︂
1− 2

log 𝑞

)︂)︂
− log2 𝑞 − 2 + 𝑜(1)

= log 𝑞 ·
(︂
1 +𝑂

(︂
1

𝑞

)︂)︂
·
(︂
log 𝑞 +𝑂

(︂
1

𝑞

)︂
+

2

log 𝑞
+𝑂

(︂
1

log2 𝑞

)︂)︂
− log2 𝑞 − 2 + 𝑜(1)

= 𝑜(1).

So 𝑓(𝑥)
𝜓(𝑥)

= 𝑜(1).

Numerical computation suggests 𝑓(𝑥)
𝜓(𝑥)

is minimized at a point 𝑥 = 2+𝑜(1)
log 𝑞

. This
guides our proof of the upper bound in Prop. 4.2, but we have not attempted to
prove this fact.

To understand the case 𝑝 > 1, let us denote convexification of 𝑏𝑝 as 𝑏q𝑝. Then NLSI
lower bound, assuming E[𝑓 ] = 1, gives

ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
≥ 𝑏q𝑝(Ent(𝑓)). (4.118)

We see that this improves upon 𝛼𝑝 · Ent(𝑓) the more the larger the entropy. In
particular, the maximum improvement happens when Ent(𝑓) = log 𝑞. That is we
have for 𝑝 > 1

𝛼𝑝 ≤
𝑏q𝑝(𝑥)

𝑥
≤ 1

log 𝑞
. (4.119)

Together with (4.9) and (4.12), we get 𝛼𝑝 = Θ
(︁

1
log 𝑞

)︁
as 𝑞 →∞. Numerical compu-

tation suggests that 𝛼𝑝 = 1+𝑜(1)
log 𝑞

.

At the same time, the improvement given by the 1-NLSI (over 1-LSI) is much
stronger, since 𝑏1(log 𝑞) = ∞. To summarize, the 𝑝-NLSI should be preferred for
𝑝 = 1 or for cases where 𝑞 is small and entropy is large (i.e. functions are highly
spiky).

Next, we consider SDPIs and 𝜂KL. First, we show that for a fixed 𝜆 ≥ 0 we have

𝜂KL(𝜋, 𝑃𝜆) = 𝜆−Θ

(︂
1

log 𝑞

)︂
. (4.120)
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Indeed, the upper bound is given by (4.22). For the lower bound we have

𝜂KL(𝜋, 𝑃𝜆) ≥ 𝜂min :=
𝜓
(︁
𝜆+ 1−𝜆

𝑞

)︁
𝜓(1)

=
log 𝑞 +

(︁
𝜆+ 1−𝜆

𝑞

)︁
log
(︁
𝜆+ 1−𝜆

𝑞

)︁
+
(︁
1−

(︁
𝜆+ 1−𝜆

𝑞

)︁)︁
log

1−(𝜆+ 1−𝜆
𝑞 )

𝑞−1

log 𝑞

= 𝜆+
𝜆 log 𝜆+ (1− 𝜆) log(1− 𝜆) + 𝑜(1)

log 𝑞
. (4.121)

On the other hand,

𝜂KL(𝜋, 𝑃𝜆) ≤ 𝜂KL(𝑃𝜆) ≤ 𝜂TV(𝑃𝜆) = 𝜆, (4.122)

where 𝜂TV is the contraction coefficient for the total variation distance.
Notice also that for 𝑠p𝜆 we have generally 𝜂min ≤ 𝑠p𝜆(𝑥)

𝑥
≤ 𝜂KL(𝑃𝜆, 𝜋). Therefore we

have shown that

lim
𝑞→∞

𝑠p𝜆(𝑥)

𝑥
= lim

𝑞→∞
𝜂KL(𝑃𝜆, 𝜋) = lim

𝑞→∞
𝜂KL(𝑃𝜆) = 𝜂TV(𝑃𝜆) = 𝜆. (4.123)

The estimates of information quantities using the more sophisticated tools get im-
provement over simplistic coupling of at most multiplicative order

(︁
1 + Θ

(︁
1

log 𝑞

)︁)︁
.

Note, however, if 𝜆 changes with 𝑞 (e.g. 𝜆 = − 1
𝑞−1

), then the improvement over
𝜂TV can be as large as a multiplicative factor of (1+𝑜(1)) log 𝑞, as shown in Prop. 4.23.

4.3 Product spaces

In this section we study extensions of 𝑝-NLSIs and SDPIs to the product semigroup
(𝑇×𝑛

𝑡 )𝑡≥0 on the product space [𝑞]𝑛 (and product channels 𝑃×𝑛
𝜆 ). The general property

of tensorization of 𝑝-NLSI was established in [114, Theorem 1], and thus we only need
to concavify functions Φ𝑝 in (4.7). Similarly, we can show that (non-linear) strong
data processing inequalities tensorize if one concavifies function 𝑠(·) in (4.21).

After showing these extensions to product spaces, we proceed to discussing impli-
cations of 𝑝-NLSI on speed of convergence to equillibrium in terms of Ent(𝜈𝑇×𝑛

𝑡 ) and
on edge-isoperimetric inequalities.

4.3.1 Tensorization

Proposition 4.17. Fix 𝑝 ≥ 1. Recall 𝑏𝑝 defined in (4.18). Let 𝑏q𝑝 be the convex
envelope of 𝑏𝑝. Then 𝑝-LSI holds for the product semigroup (𝑇×𝑛

𝑡 )𝑡≥0 with

Φ𝑛,𝑝(𝑥) = 𝑛𝑏q
−1

𝑝

(︁𝑥
𝑛

)︁
. (4.124)
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Proof. By Theorem 4.1 and [114, Theorem 1].

As we show below 𝑏q𝑝 ̸= 𝑏𝑝 (Prop. 4.20).
For non-linear SDPI, we first prove a general tensorization result.

Proposition 4.18. Fix a probability kernel 𝑃𝑌 |𝑋 : 𝒳 → 𝒴 and a distribution 𝑃𝑋 on
𝒳 .

1. Suppose for some non-decreasing function 𝑠 : R≥0 → R≥0 we have

𝐷(𝑄𝑌 ||𝑃𝑌 ) ≤ 𝑠(𝐷(𝑄𝑋 ||𝑃𝑋)) (4.125)

for all distribution 𝑄𝑋 on 𝒳 with 0 < 𝐷(𝑄𝑋 ||𝑃𝑋) <∞. Then for all distribu-
tion 𝑄𝑋𝑛 on 𝒳 𝑛 with 0 < 𝐷(𝑄𝑋𝑛||𝑃×𝑛

𝑋 ) <∞, we have

𝐷(𝑄𝑌 𝑛||𝑃×𝑛
𝑌 ) ≤ 𝑛𝑠p

(︂
1

𝑛
𝐷(𝑄𝑋𝑛||𝑃×𝑛

𝑋 )

)︂
, (4.126)

where 𝑠p is the concave envelope of 𝑠, and 𝑄𝑌 𝑛 = 𝑃×𝑛
𝑌 |𝑋 ∘𝑄𝑋𝑛.

2. Suppose for some non-decreasing concave function 𝑠p : [0, log |𝒳 |] → R≥0 we
have

𝐼(𝑈 ;𝑌 ) ≤ 𝑠p(𝐼(𝑈 ;𝑋)) (4.127)

for all Markov chains 𝑈 → 𝑋 → 𝑌 where the distribution of 𝑋 is 𝑃𝑋 . Then
for all Markov chains 𝑈 → 𝑋𝑛 → 𝑌 𝑛 where the distribution of 𝑋 is 𝑃×𝑛

𝑋 , we
have

𝐼(𝑈 ;𝑌 𝑛) ≤ 𝑛𝑠p

(︂
1

𝑛
𝐼(𝑈 ;𝑋𝑛)

)︂
. (4.128)

We have separate statements for non-linear SDPI defined via KL divergence and
via mutual information, because they are not equivalent in general. It is not hard to
show that if KL divergence type non-linear SDPI (Inequality (4.125)) holds for some
function 𝑠, then mutual information type non-linear SDPI (Inequality (4.127)) holds
for 𝑠p. However, it is not clear what is the best possible KL divergence type non-linear
SDPI one can get starting from mutual information type non-linear SDPI. (Note the
domain of function 𝑠 would become larger during the translation.)

Proof of Prop. 4.18. Proof of 1. Perform induction on 𝑛. The base case 𝑛 = 1 is
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trivial. Now consider 𝑛 ≥ 2. We have

𝐷(𝑄𝑌 𝑛||𝑃×𝑛
𝑌 )

= 𝐷
(︁
𝑄𝑌 𝑛−1||𝑃×(𝑛−1)

𝑌

)︁
+𝐷(𝑄𝑌𝑛|𝑌 𝑛−1||𝑃𝑌 |𝑄𝑌 𝑛−1)

≤ 𝐷
(︁
𝑄𝑌 𝑛−1||𝑃×(𝑛−1)

𝑌

)︁
+𝐷(𝑄𝑌𝑛|𝑋𝑛−1||𝑃𝑌 |𝑄𝑋𝑛−1)

≤ (𝑛− 1)𝑠p

(︂
1

𝑛− 1
𝐷(𝑄𝑋𝑛−1||𝑃×(𝑛−1)

𝑋 )

)︂
+ 𝑠

(︀
𝐷(𝑄𝑋𝑛|𝑋𝑛−1||𝑃𝑋 |𝑄𝑋𝑛−1)

)︀
≤ 𝑛𝑠p

(︂
1

𝑛
𝐷(𝑄𝑋𝑛−1||𝑃×(𝑛−1)

𝑋 ) +
1

𝑛
𝐷(𝑄𝑋𝑛|𝑋𝑛−1||𝑃𝑋 |𝑄𝑋𝑛−1)

)︂
= 𝑛𝑠p

(︂
1

𝑛
𝐷(𝑄𝑋𝑛||𝑃×𝑛

𝑋 )

)︂
.

First step is by chain rule. Second step is because we have a Markov chain 𝑌 𝑛−1 −
𝑋𝑛−1 − 𝑌𝑛, and conditioning on more information does not decrease conditioned
divergence. Third step is by induction hypothesis. Fourth step is by concavity. Fifth
step is by chain rule.

Proof of 2. Perform induction on 𝑛. The base case 𝑛 = 1 is trivial. Now consider
𝑛 ≥ 2. We have

𝐼(𝑈 ;𝑌 𝑛) = 𝐼(𝑈 ;𝑌 𝑛−1) + 𝐼(𝑈 ;𝑌𝑛|𝑌 𝑛−1)

= 𝐼(𝑈 ;𝑌 𝑛−1) + 𝐼(𝑈, 𝑌 𝑛−1;𝑌𝑛)

≤ 𝐼(𝑈 ;𝑌 𝑛−1) + 𝐼(𝑈,𝑋𝑛−1;𝑌𝑛)

= 𝐼(𝑈 ;𝑌 𝑛−1) + 𝐼(𝑈 ;𝑌𝑛|𝑋𝑛−1)

≤ (𝑛− 1)𝑠p

(︂
1

𝑛− 1
𝐼(𝑈 ;𝑋𝑛−1)

)︂
+ 𝑠p

(︀
𝐼(𝑈 ;𝑋𝑛|𝑋𝑛−1)

)︀
≤ 𝑛𝑠p

(︂
1

𝑛
𝐼(𝑈 ;𝑋𝑛−1) +

1

𝑛
𝐼(𝑈 ;𝑋𝑛|𝑋𝑛−1)

)︂
= 𝑛𝑠p

(︂
1

𝑛
𝐼(𝑈 ;𝑋𝑛)

)︂
.

First step is by chain rule. Second step is by chain rule, and that 𝑌𝑛 is independent
with 𝑌 𝑛−1. Third step is by data processing inequality. Fourth step is by chain rule,
and that 𝑌𝑛 is independent with 𝑋𝑛−1. Fifth step is by induction hypothesis. Sixth
step is by concavity. Seventh step is by chain rule.

Corollary 4.19. Recall function 𝑠𝜆 defined in Theorem 4.3. Let 𝑄𝑋𝑛 be a distribution
on [𝑞]𝑛 and 𝑄𝑌 𝑛 = 𝑃×𝑛

𝜆 ∘𝑄𝑋𝑛. Then we have

1

𝑛
𝐻(𝑌 𝑛) ≥ log 𝑞 − 𝑠p𝜆

(︂
log 𝑞 − 1

𝑛
𝐻(𝑋𝑛)

)︂
. (4.129)

Furthermore, for every 𝑐 ∈ [0, log 𝑞], there exist distributions 𝑋𝑛 with 𝐻(𝑋𝑛) =
(𝑐+ 𝑜(1))𝑛 such that 1

𝑛
𝐻(𝑌 𝑛) = log 𝑞 − 𝑠p𝜆(log 𝑞 − 𝑐) + 𝑜(1).
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Proof. Inequality (4.129) follows from Prop. 4.18 and that

𝐷(𝑄𝑋𝑛||𝜋×𝑛) = 𝑛 log 𝑞 −𝐻(𝑄𝑋𝑛). (4.130)

For the second part, choose 𝑎, 𝑏 ∈ [0, log 𝑞] and 𝑢 ∈ [0, 1] such that 𝑐 = (1−𝑢)𝑎+𝑢𝑏
and 𝑠p𝜆(log 𝑞 − 𝑐) = (1− 𝑢)𝑠𝜆(log 𝑞 − 𝑎) + 𝑢𝑠𝜆(log 𝑞 − 𝑏). Such 𝑎, 𝑏, 𝑢 exist because 𝑠p𝜆
is the concave envelope of 𝑠𝜆.

Let 𝑄𝐴 (resp. 𝑄𝐵) be the unique distribution on [𝑞] of form
(︁
𝑥, 1−𝑥

𝑞−1
, . . . , 1−𝑥

𝑞−1

)︁
with 𝑥 ∈

[︁
1
𝑞
, 1
]︁

and entropy 𝑎 (resp. entropy 𝑏). Now let 𝑄𝑋𝑛 be the distribution
𝑄𝐴× · · · ×𝑄𝐴×𝑄𝐵 × · · · ×𝑄𝐵, where 𝑄𝐴 appears ⌊(1− 𝑢)𝑛⌋ times and 𝑄𝐵 appears
⌈𝑢𝑛⌉ times. It is easy to see that this distribution satisfies the required properties.

4.3.2 Linear piece

In Prop. 4.17 and Theorem 4.3, we make use of convexification of 𝑏𝑝 and concavifi-
cation of 𝑠𝜆. When 𝑞 = 2, we have 𝑏q𝑝 = 𝑏𝑝 and 𝑠p𝜆 = 𝑠𝜆 (the latter fact is known as
Mrs. Gerber’s Lemma [134]). However, for 𝑞 ≥ 3, the situation is vastly different.

Proposition 4.20. Recall function 𝑏𝑝 : [0, log 𝑞] → R defined in Theorem 4.1 and
𝑠𝜆 : [0, log 𝑞]→ R defined in Theorem 4.3.

1. For all 𝑞 ≥ 3 and 𝑝 ≥ 1, 𝑏𝑝 is not convex near 0.

2. For all 𝑞 ≥ 3, 𝜆 ∈
[︁
− 1
𝑞−1

, 0
)︁
∪ (0, 1), 𝑠𝜆 not concave near 0.

The proof is deferred to Section 4.7. Prop. 4.20 implies that there is a linear piece
near origin in the graph of 𝑏q𝑝, Φp𝑝 and 𝑠p𝜆.

This implies a curious new property distinguishing Potts semigroup with 𝑞 ≥ 3
from its binary cousin and from the Ornstein-Uhlenbeck semigroup. Both of the latter
have their 𝑝-NLSI and SDPI strictly non-linear, which translates into the following
fact: among all initial densities 𝜈0 with a given entropy Ent(𝜈0) a simple product
distributions simultaneously maximizes Ent(𝜈0𝑇

×𝑛
𝑡 ) for all 𝑡. Stated differently we

have (this is known as Mrs. Gerber’s Lemma) when 𝑞 = 2:

𝐷(𝑃𝜆 ∘ 𝑃𝑋𝑛||𝜋×𝑛) ≤ 𝐷(𝑃𝜆 ∘ Ber(𝑝)×𝑛||𝜋×𝑛), (4.131)

where 𝜋 is the uniform distribution on [𝑞]𝑛, and Ber(𝑝)×𝑛 is an i.i.d. distribution on
[𝑞]𝑛 with 𝑝 ∈ [0, 1/2] solving 𝐷(Ber(𝑝)‖𝜋) = 1

𝑛
𝐷(𝑃𝜆 ∘𝑃𝑋𝑛||𝜋×𝑛). That is, the slowest

to relax to equillibrium is the product distribution. For the Ornstein-Uhlenbeck a
similar statement holds with Ber(𝑝) replaced by the 𝒩 (0, 𝜎2𝐼𝑛).

This nice extremal property of product distributions is no longer true for 𝑞 ≥ 3
Potts semigroups, because 𝑠𝜆 is not concave, and the value of 𝑠p𝜆 at a point may be
a mixture of two values of 𝑠𝜆. More precisely, instead of (4.131), we have for every
𝜆 ∈

[︁
− 1
𝑞−1

, 1
]︁

and every 𝑐 ∈ R≥0, there exist two i.i.d distributions 𝜇, 𝜈 on [𝑞]𝑛 and
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𝑡 ∈ [0, 1] satisfying

(1− 𝑡)𝐷(𝜇||𝜋×𝑛) + 𝑡𝐷(𝜈||𝜋×𝑛) = 𝑐, (4.132)

such that for every distribution 𝑃𝑋𝑛 on [𝑞]𝑛 with 𝐷(𝑃𝑋𝑛||𝜋×𝑛) = 𝑐, we have

𝐷(𝑃𝜆 ∘ 𝑃𝑋𝑛 ||𝜋×𝑛) ≤ (1− 𝑡)𝐷(𝜇𝑃𝜆||𝜋×𝑛) + 𝑡𝐷(𝜈𝑃𝜆||𝜋×𝑛). (4.133)

Note here 𝜇, 𝜈 and 𝑡 all depend on 𝑐 and 𝜆, and thus there is no universal distribution
that is the slowest to converge to equillibrium.

Let us discuss some general implications of non-convexity of 𝑏𝑝 and non-concavity
of 𝑠𝜆 near 0.

Let 𝐾 be a Markov kernel with stationary distribution 𝜋. Consider the tightest
possible 𝑝-NLSI given by

𝑏𝑝(𝑥) := inf
𝑓 :𝒳→R≥0,

E𝜋𝑓=1,Ent𝜋(𝑓)=𝑥

ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
. (4.134)

The 𝑝-log-Sobolev constant is

𝛼𝑝 := inf
𝑥>0

𝑏𝑝(𝑥)

𝑥
= inf

𝑓 :𝒳→R≥0,Ent𝜋(𝑓)>0

ℰ
(︁
𝑓

1
𝑝 , 𝑓 1− 1

𝑝

)︁
Ent𝜋(𝑓)

. (4.135)

We also define the spectral gap

𝜆 := inf
𝑓 :𝒳→R≥0,Var(𝑓)>0

ℰ(𝑓, 𝑓)
Var(𝑓)

, (4.136)

where Var(𝑓) = E𝜋(𝑓 − E𝜋𝑓)2. For any 𝑝 > 1, we have

𝑝2

2(𝑝− 1)
𝛼𝑝 ≤ 𝜆. (4.137)

The case 𝑝 = 2 is proved in [51], and the general case is proved in [106]. Their proof
in fact implies a stronger inequality.

Lemma 4.21.

lim sup
𝑥→0+

𝑏𝑝(𝑥)

𝑥
≤ 2(𝑝− 1)

𝑝2
𝜆. (4.138)

In particular, when 𝑏𝑝 is strictly concave near 0, we have

𝛼𝑝 < lim sup
𝑥→0+

𝑏𝑝(𝑥)

𝑥
≤ 2(𝑝− 1)

𝑝2
𝜆, (4.139)

and (4.137) is strict.
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Proof. Take any 𝑔 : 𝒳 → R≥0 with Var(𝑔) > 0. Define 𝑓𝜖 = 1 + 𝜖𝑔. As 𝜖 → 0, we
have

ℰ
(︂
𝑓

1
𝑝
𝜖 , 𝑓

1− 1
𝑝

𝜖

)︂
= 𝜖2

1

𝑝

(︂
1− 1

𝑝

)︂
ℰ(𝑔, 𝑔) + 𝑜(𝜖2), (4.140)

Ent𝜋(𝑓𝜖) =
1

2
𝜖2Var(𝑔) + 𝑜(𝜖2). (4.141)

Because Ent𝜋(𝑓𝜖)→ 0 continuously as 𝜖→ 0, we have

lim sup
𝑥→0+

𝑏𝑝(𝑥)

𝑥
≤ lim

𝜖→0

ℰ
(︂
𝑓

1
𝑝
𝜖 , 𝑓

1− 1
𝑝

𝜖

)︂
Ent𝜋(𝑓𝜖)

=
2(𝑝− 1)

𝑝2
ℰ(𝑔, 𝑔)
Var(𝑔)

. (4.142)

Lemma then follows because 𝑔 is arbitrary.

Roughly speaking, existence of a “linear piece” near 0 in 𝑏q𝑝 implies that (4.137) is
strict. For the Potts semigroup with 𝑞 ≥ 3, 𝑏𝑝 is strictly concave near 0 by proof of
Prop. 4.20. So (4.137) is strict for the Potts semigroup.

The story for non-linear SDPI is very similar. Let 𝑊 be a channel and 𝜈 be an
input distribution. Consider the tightest possible non-linear SDPI given by

𝑠(𝑥) := sup
𝜇:𝐷(𝜇||𝜈)=𝑥

𝐷(𝜇𝑊 ||𝜈𝑊 ). (4.143)

The input-restricted KL divergence contraction coefficient is

𝜂KL(𝜈,𝑊 ) := sup
𝑥>0

𝑠(𝑥)

𝑥
= sup

𝜇:0<𝐷(𝜇||𝜈)<∞

𝐷(𝜇𝑊 ||𝜈𝑊 )

𝐷(𝜇||𝜈)
. (4.144)

We also consider the input-restricted 𝜒2-divergence contraction coefficient

𝜂𝜒2(𝜈,𝑊 ) := sup
𝜇:0<𝜒2(𝜇||𝜈)<∞

𝜒2(𝜇𝑊 ||𝜈𝑊 )

𝜒2(𝜇||𝜈)
. (4.145)

It is known ([11]) that

𝜂KL(𝜈,𝑊 ) ≥ 𝜂𝜒2(𝜈,𝑊 ). (4.146)

Similarly to the 𝑝-NLSI case, the proof of (4.146) implies a stronger inequality.

Lemma 4.22.

lim inf
𝑥→0+

𝑠(𝑥)

𝑥
≥ 𝜂𝜒2(𝜈,𝑊 ). (4.147)
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In particular, when 𝑠 is strictly convex near 0, we have

𝜂KL(𝜈,𝑊 ) > lim inf
𝑥→0+

𝑠(𝑥)

𝑥
≥ 𝜂𝜒2(𝜈,𝑊 ). (4.148)

and (4.146) is strict.

Proof. Fix any distribution 𝜇 with 0 < 𝜒2(𝜇||𝜈) < ∞. Proof of [115, Theorem 2]
constructs a sequence of distributions 𝜇𝜖 satisfying

𝐷(𝜇𝜖||𝜈) = 𝜖2𝜒2(𝜇||𝜈) + 𝑜(𝜖2), (4.149)
𝐷(𝜇𝜖𝑊 ||𝜈𝑊 ) = 𝜖2𝜒2(𝜇𝑊 ||𝜈𝑊 ) + 𝑜(𝜖2), (4.150)

and 𝐷(𝜇𝜖||𝜈)→ 0 continuously as 𝜖→ 0. Therefore

lim inf
𝑥→0+

𝑠(𝑥)

𝑥
≥ lim

𝜖→0

𝐷(𝜇𝜖𝑊 ||𝜈𝑊 )

𝐷(𝜇𝜖||𝜈)
=
𝜒2(𝜇𝑊 ||𝜈𝑊 )

𝜒2(𝜇||𝜈)
. (4.151)

Lemma follows because 𝜇 is arbitrary.

Roughly speaking, existence of a “linear piece” near 0 in 𝑠p implies that (4.146) is
strict. For Potts channels 𝑃𝜆 with 𝜆 ∈

[︁
− 1
𝑞−1

, 0
)︁
∪ (0, 1) and 𝑞 ≥ 3, 𝑠𝜆 is strictly

convex near 0 by proof of Prop. 4.20. So (4.146) is strict for Potts channels.

4.3.3 Edge isoperimetric inequalities

As a toy application of the NLSIs for the product spaces, we derive an edge isoperi-
metric inequality for 𝐾𝑛

𝑞 , the graph whose vertex set is [𝑞]𝑛, and edges connect vertex
pairs with Hamming distance one. Given a graph 𝐺 = (𝑉,𝐸), edge isoperimetric
inequalities solve the following combinatorial optimization problem:

Ψ𝐺(𝑁) = min{|𝐸(𝑆, 𝑆𝑐)| : |𝑆| = 𝑁}, (4.152)

where |𝐸(𝑆, 𝑆𝑐)| = #{𝑒 ∈ 𝐸 : |𝑒 ∩ 𝑆| = 1}. For 𝐾𝑛
𝑞 , the edge isoperimetric problem

has been completely solved [78, 90, 18, 79]. Specifically, [90] showed that the optimal
𝑆 minimizing |𝐸(𝑆, 𝑆𝑐)| for a fixed |𝑆| consists of largest elements in [𝑞]𝑛 under a
lexicographical order. In particular, we have

Ψ𝐾𝑛
𝑞
(𝑞𝑚) = (𝑛−𝑚)(𝑞 − 1)𝑞𝑚. (4.153)

This was obtained by an explicit combinatorial argument (via a form of shifting/com-
pression). What estimates can be obtained via LSIs and NLSIs?

Let 𝑓 = 1𝑆 be the indicator function of a set 𝑆. Then for any 𝑝 > 1 we have

ℰ(𝑓𝑝, 𝑓 1−𝑝)

E𝜋[𝑓 ]
=

1

𝑞 − 1

|𝐸(𝑆, 𝑆𝑐)|
|𝑆|

and
Ent(𝑓)

E𝜋[𝑓 ]
= log

𝑞𝑛

|𝑆|
. (4.154)
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If we relate these two ratios via the 2-LSI (note that from (4.9), of all 𝑝 > 1 the
𝑝 = 2 gives the best result here) and by using the known value of 𝛼2 from (4.12) we
get

Ψ𝐾𝑛
𝑞
(𝑞𝑚) ≥ 𝑞𝑚(𝑛−𝑚)(𝑞 − 2)

log 𝑞

log(𝑞 − 1)
. (4.155)

Clearly the coefficient in front of (𝑛−𝑚)𝑞𝑚 here is not tight.
The 𝑝-NLSI allows us to perform a better comparison. First, again via (4.9) we

get the best inequality for 𝑝 = 2, which results in

Ψ𝐾𝑛
𝑞
(𝑞𝑚) ≥ (𝑞 − 1)𝑞𝑚𝑛𝑏q2

(︂
𝑛−𝑚
𝑛

log 𝑞

)︂
. (4.156)

We know that the function 𝑏q2 is continuous with 𝑏q2(log 𝑞) = 𝑏2(log 𝑞) = 1 (from (4.18)).
Thus, for any 𝑚 = 𝑜(𝑛) and 𝑛→∞ we get that (4.156) implies

Ψ𝐾𝑛
𝑞
(𝑞𝑚) ≥ (𝑞 − 1)𝑞𝑚(𝑛−𝑚)(1 + 𝑜(1)), (4.157)

which is tight in this regime. (However, from (4.18) we can also find that 𝑏q
′
2(1) =

∞ and thus, even when 𝑚 = 𝑜(𝑛) the right-hand side of the above inequality is
(𝑞 − 1)𝑞𝑚(𝑛− 𝜔(𝑚)), implying the behavior in terms of 𝑚 is not optimal.)

4.4 Input-restricted contraction coefficient of the col-
oring channel

In this section we compute the exact input-restrict KL contraction coefficient of the
coloring channel Col𝑞 := 𝑃− 1

𝑞−1
.

Proposition 4.23.

𝜂KL(𝜋,Col𝑞) =
log 𝑞 − log(𝑞 − 1)

log 𝑞
. (4.158)

Proof. By (4.25) we have

𝜂KL(𝜋,Col𝑞) = sup
𝑥∈( 1

𝑞
,1]

log 𝑞 + 1−𝑥
𝑞−1

log 1−𝑥
𝑞−1

+ 𝑞+𝑥−2
𝑞−1

log 𝑞+𝑥−2
(𝑞−1)2

log 𝑞 + 𝑥 log 𝑥+ (1− 𝑥) log 1−𝑥
𝑞−1

= sup
𝑥∈( 1

𝑞
,1]

log 𝑞 − log(𝑞 − 1) + 1−𝑥
𝑞−1

log(1− 𝑥) + 𝑞+𝑥−2
𝑞−1

log 𝑞+𝑥−2
𝑞−1

log 𝑞 + 𝑥 log 𝑥+ (1− 𝑥) log 1−𝑥
𝑞−1

. (4.159)

Taking 𝑥 = 1, we get

𝜂KL(𝜋,Col𝑞) ≥
log 𝑞 − log(𝑞 − 1)

log 𝑞
. (4.160)
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To prove the proposition, we only need to prove that for 𝑥 ∈
(︁

1
𝑞
, 1
]︁
,

1−𝑥
𝑞−1

log(1− 𝑥) + 𝑞+𝑥−2
𝑞−1

log 𝑞+𝑥−2
𝑞−1

𝑥 log 𝑥+ (1− 𝑥) log 1−𝑥
𝑞−1

≥ log 𝑞 − log(𝑞 − 1)

log 𝑞
. (4.161)

(Note that both numerator and denominator in LHS are non-positive.) Define

𝑔(𝑥) = (log 𝑞 − log(𝑞 − 1))𝑥 log 𝑥− log 𝑞

𝑞 − 1
(1− 𝑥) log(1− 𝑥), (4.162)

ℎ(𝑥) = 𝑔(𝑥) + (𝑞 − 1)𝑔

(︂
1− 𝑥
𝑞 − 1

)︂
. (4.163)

Rearranging (4.161), we only need to prove that ℎ(𝑥) ≥ 0 for 𝑥 ∈
(︁

1
𝑞
, 1
]︁
.

We compute that

𝑔′(𝑥) = (log 𝑞 − log(𝑞 − 1))(1 + log 𝑥) +
log 𝑞

𝑞 − 1
(1 + log(1− 𝑥)), (4.164)

𝑔′′(𝑥) = (log 𝑞 − log(𝑞 − 1))
1

𝑥
− log 𝑞

𝑞 − 1

1

1− 𝑥
, (4.165)

𝑔′′′(𝑥) = −(log 𝑞 − log(𝑞 − 1))
1

𝑥2
− log 𝑞

𝑞 − 1

1

(1− 𝑥)2
< 0. (4.166)

Claim 4.24. ℎ′′′(𝑥) < 0 on (0, 1).

Proof.

ℎ′′′(𝑥) = 𝑔′′′(𝑥)− 1

(𝑞 − 1)2
𝑔′′′
(︂
1− 𝑥
𝑞 − 1

)︂
= −(log 𝑞 − log(𝑞 − 1))

1

𝑥2
− log 𝑞

𝑞 − 1

1

(1− 𝑥)2

+
1

(𝑞 − 1)2

⎛⎜⎝(log 𝑞 − log(𝑞 − 1))
1(︁

1−𝑥
𝑞−1

)︁2 +
log 𝑞

𝑞 − 1

1

(1− 1−𝑥
𝑞−1

)2

⎞⎟⎠
= (log

𝑞

𝑞 − 1
)

(︂
1

(1− 𝑥)2
− 1

𝑥2

)︂
+

log 𝑞

𝑞 − 1

(︂
1

(𝑞 − 2 + 𝑥)2
− 1

(1− 𝑥)2

)︂
=

1

(1− 𝑥)2

(︂(︂
log

𝑞

𝑞 − 1

)︂(︂
1− (1− 𝑥)2

𝑥2

)︂
+

log 𝑞

𝑞 − 1

(︂
(1− 𝑥)2

(𝑞 − 2 + 𝑥)2
− 1

)︂)︂
=:

1

(1− 𝑥)2
(𝑠(𝑥) + 𝑡(𝑥)).

We have

1. 𝑠(𝑥) < 0 for 𝑥 < 1
2
, 𝑠(𝑥) > 0 for 𝑥 > 1

2
;

2. 𝑡(𝑥) < 0 for 𝑥 ∈ (0, 1);
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3. 𝑠(𝑥) is increasing for 𝑥 ∈ (0, 1);

4. 𝑡(𝑥) is decreasing for 𝑥 ∈ (0, 1).

So ℎ′′′(𝑥) < 0 for 𝑥 ≤ 1
2
. For 𝑥 ≥ 1

2
, we have

𝑠(𝑥) + 𝑡(𝑥) < 𝑠(1) + 𝑡

(︂
1

2

)︂
= log

𝑞

𝑞 − 1
+

log 𝑞

𝑞 − 1

(︂
1

(2𝑞 − 3)2
− 1

)︂
. (4.167)

It is not hard to verify that the last term is < 0 for 𝑞 ≥ 3.

By Claim 4.24, ℎ′(𝑥) is strictly concave. Because ℎ′
(︁

1
𝑞

)︁
= 0, ℎ

(︁
1
𝑞

)︁
= ℎ(1) = 0,

we get that ℎ(𝑥) > 0 for 𝑥 ∈ (1/𝑞, 1). This finishes the proof.

4.5 Input-unrestricted contraction coefficient of Potts
channels

Computation of (input-restricted or input-unrestricted) contraction coefficients is of-
ten a daunting task. Previously, [94] obtained lower and upper bounds of input-
unrestricted KL divergence contraction coefficients for Potts channels. In this section
we compute the exact value of these contraction coefficients.

We remark that after our work, [111] proved that the input-unrestricted contrac-
tion coefficients are achieved by input distributions of support size at most two, giving
an alternative (and simpler) proof for Prop. 4.25. We include our original proof here
for completeness.

Proposition 4.25.

𝜂KL(𝑃𝜆) =
𝑞𝜆2

(𝑞 − 2)𝜆+ 2
. (4.168)

Proof. The result is obvious for 𝜆 ∈ {0, 1}. In the following, assume that 𝜆 ̸∈ {0, 1}.
We use the following characterization of contraction coefficient using Rényi max-

imal correlation [119] (see e.g. [122]). For any channel 𝑀 , we have

𝜂KL(𝑀) =

(︂
sup
𝜇

sup
𝑓,𝑔

E[𝑓(𝑋)𝑔(𝑌 )]

)︂2

(4.169)

where 𝜇 is a distribution on [𝑞], 𝑋 ∼ 𝜇, 𝑌 ∼ 𝜇𝑀 , 𝑓 : 𝒳 → R satisfies E𝑋 [𝑓 ] = 0 and
E𝑋 [𝑓 2] = 1, and 𝑔 : 𝒴 → R satisfies E𝑌 [𝑔] = 0 and E𝑌 [𝑔2] = 1.

Specialize to𝑀 = 𝑃𝜆. Write 𝜇 = (𝑝1, . . . , 𝑝𝑞), 𝑓 = (𝑓1, . . . , 𝑓𝑞) and 𝑔 = (𝑔1, . . . , 𝑔𝑞).
Then

E[𝑓(𝑋)𝑔(𝑌 )] =
∑︁
𝑖,𝑗

𝑓𝑖𝑝𝑖𝑔𝑗P[𝑌 = 𝑗|𝑋 = 𝑖] = 𝜆
∑︁

𝑓𝑖𝑝𝑖𝑔𝑖. (4.170)
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When 𝜆 > 0, we need to maximize
∑︀
𝑓𝑖𝑔𝑖𝑝𝑖. When 𝜆 < 0, we make the transform

𝑓𝑖 ← −𝑓𝑖, and still maximize
∑︀
𝑓𝑖𝑔𝑖𝑝𝑖. So we get the following optimization problem.

max
∑︁

𝑓𝑖𝑔𝑖𝑝𝑖

s.t.
∑︁

𝑓𝑖𝑝𝑖 = 0, (4.171)∑︁
𝑓 2
𝑖 𝑝𝑖 = 1, (4.172)∑︁
𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
= 0, (4.173)∑︁

𝑔2𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
= 1, (4.174)

𝑝𝑖 ≥ 0,
∑︁

𝑝𝑖 = 1. (4.175)

Lower bound. Take

𝜇 =

(︂
1

2
,
1

2
, 0, . . . , 0

)︂
, 𝑓 = (1,−1, 0, . . . , 0), 𝑔 = (𝑢,−𝑢, 0, . . . , 0) (4.176)

where

𝑢 =

√︂
𝑞

(𝑞 − 2)𝜆+ 2
. (4.177)

Then ∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 = 𝑢. (4.178)

So

𝜂KL(𝑃𝜆) ≥ (𝜆𝑢)2 =
𝑞𝜆2

(𝑞 − 2)𝜆+ 2
. (4.179)

Upper bound. Let us fix 𝜇 and maximize over 𝑓 and 𝑔. Assume for the sake
of contrary that

∑︀
𝑓𝑖𝑔𝑖𝑝𝑖 > 𝑢. The set of possible 𝑔 is bounded; some coordinates of

𝑓 may be unbounded, but their values do not affect the objective function. So the
maximum value of

∑︀
𝑓𝑖𝑔𝑖𝑝𝑖 is achieved at some point 𝑓 and 𝑔. Let us compute the
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derivatives.

∇𝑓

∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 = (𝑔𝑖𝑝𝑖)𝑖∈[𝑞], (4.180)

∇𝑓

∑︁
𝑓𝑖𝑝𝑖 = (𝑝𝑖)𝑖∈[𝑞], (4.181)

∇𝑓

∑︁
𝑓 2
𝑖 𝑝𝑖 = (2𝑓𝑖𝑝𝑖)𝑖∈[𝑞], (4.182)

∇𝑔

∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 = (𝑓𝑖𝑝𝑖)𝑖∈[𝑞], (4.183)

∇𝑔

∑︁
𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
=

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
𝑖∈[𝑞]

, (4.184)

∇𝑔

∑︁
𝑔2𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
=

(︂
2𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂)︂
𝑖∈[𝑞]

. (4.185)

By maximality in 𝑓 , there exists some constants 𝐴 and 𝐵 such that

𝑔𝑖𝑝𝑖 = 𝐴𝑝𝑖 +𝐵𝑓𝑖𝑝𝑖 (4.186)

for all 𝑖. By maximality in 𝑔, there exists some constants 𝐶 and 𝐷 such that

𝑓𝑖𝑝𝑖 = 𝐶

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
+𝐷𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
(4.187)

for all 𝑖.

By (4.186), ∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 =

∑︁
𝑓𝑖(𝐴𝑝𝑖 +𝐵𝑓𝑖𝑝𝑖) = 𝐵. (4.188)

By (4.187),∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 =

∑︁
𝑔𝑖

(︂
𝐶

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
+𝐷𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂)︂
= 𝐷. (4.189)

So 𝐵 = 𝐷 > 𝑢 > 0.

For 𝑝𝑖 ̸= 0, we have 𝑔𝑖 = 𝐴+𝐵𝑓𝑖 by (4.186).

If for some 𝑖, 𝑝𝑖 = 0, then

1− 𝜆
𝑞

(𝐶 +𝐷𝑔𝑖) = 0. (4.190)

This means #{𝑔𝑖 : 𝑝𝑖 = 0} = 1. So we can choose 𝑓𝑖 for such 𝑖 such that

𝑔𝑖 = 𝐴+𝐵𝑓𝑖 (4.191)

for all 𝑖.
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From (4.173), we get

0 =
∑︁

𝑔𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
=
∑︁

(𝐴+𝐵𝑓𝑖)

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
= 𝐴+𝐵

1− 𝜆
𝑞

∑︁
𝑓𝑖. (4.192)

From (4.174), we get

1 =
∑︁

𝑔2𝑖

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
=
∑︁

(𝐴2 + 2𝐴𝐵𝑓𝑖 +𝐵2𝑓 2
𝑖 )

(︂
𝜆𝑝𝑖 +

1− 𝜆
𝑞

)︂
= 𝐴2 + 2𝐴𝐵

1− 𝜆
𝑞

∑︁
𝑓𝑖 +𝐵2𝜆+𝐵21− 𝜆

𝑞

∑︁
𝑓 2
𝑖

= 𝐵2

(︃
𝜆+

1− 𝜆
𝑞

∑︁
𝑓 2
𝑖 −

(︂
1− 𝜆
𝑞

∑︁
𝑓𝑖

)︂2
)︃
. (4.193)

The result then follows from Claim 4.26 because we have

𝐵 =
1√︂

𝜆+ 1−𝜆
𝑞

(︁∑︀
𝑓 2
𝑖 − 1−𝜆

𝑞
(
∑︀
𝑓𝑖)

2
)︁

≤ 1√︂
𝜆+ 1−𝜆

𝑞

(︁∑︀
𝑓 2
𝑖 − 1

𝑞−1
(
∑︀
𝑓𝑖)

2
)︁

≤ 1√︁
𝜆+ 1−𝜆

𝑞
· 2

= 𝑢. (4.194)

Claim 4.26. For any distribution 𝜇 and any 𝑓 satisfying (4.171) and (4.172), we
have ∑︁

𝑓 2
𝑖 −

1

𝑞 − 1

(︁∑︁
𝑓𝑖

)︁2
≥ 2. (4.195)

Proof. Let us first prove the result for 𝑓 with support size two. WLOG assume that
𝑓1 > 0, 𝑓2 < 0, 𝑓3 = · · · = 𝑓𝑞 = 0. One can compute that

𝑓1 =

√︂
𝑝2

𝑝1(𝑝1 + 𝑝2)
, 𝑓2 = −

√︂
𝑝1

𝑝1(𝑝1 + 𝑝2)
. (4.196)
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Then

𝑓 2
1 + 𝑓 2

2 −
1

𝑞 − 1
(𝑓1 + 𝑓2)

2

≥ 𝑓 2
1 + 𝑓 2

2 − (𝑓1 + 𝑓2)
2

=
1

𝑝1 + 𝑝2

(︃
𝑝2
𝑝1

+
𝑝1
𝑝2
−
(︂√︂

𝑝2
𝑝1
−
√︂
𝑝1
𝑝2

)︂2
)︃

=
2

𝑝1 + 𝑝2
≥ 2. (4.197)

Let us define

𝑆(𝜇) :=
{︁
𝑓 :
∑︁

𝑓𝑖𝑝𝑖 = 0,
∑︁

𝑓 2
𝑖 𝑝𝑖 = 1

}︁
(4.198)

𝑈(𝑓) :=
∑︁

𝑓 2
𝑖 −

1

𝑞 − 1

(︁∑︁
𝑓𝑖

)︁2
. (4.199)

Now suppose that for some 𝜇 and 𝑓 ∈ 𝑆(𝜇) we have 𝑈(𝑓) < 2. The set 𝑆(𝜇)/{±}
is continuous, and there exists 𝑓 ∈ 𝑆(𝜇) with 𝑈(𝑓) ≥ 2 (e.g., 𝑓 with support size
two), so for sufficiently small 𝜖 > 0 there exists 𝑓 ∈ 𝑆(𝜇) such that 𝑈(𝑓) ∈ (2− 𝜖, 2).

Let 𝜆 = − 1
𝑞−1

. Take 𝜖 small enough so that 𝜆+ 1−𝜆
𝑞
(2−𝜖) > 0 and choose 𝑓 ∈ 𝑆(𝜇)

with 𝑈(𝑓) ∈ (2− 𝜖, 2). Define

𝐵 =
1√︁

𝜆+ 1−𝜆
𝑞
𝑈(𝑓)

> 𝑢, (4.200)

𝐴 = −𝐵 1− 𝜆
𝑞

∑︁
𝑓𝑖, (4.201)

𝑔𝑖 = 𝐴+𝐵𝑓𝑖∀𝑖. (4.202)

One can check that 𝑔 satisfies (4.173) and (4.174), and∑︁
𝑓𝑖𝑔𝑖𝑝𝑖 = 𝐵 > 𝑢. (4.203)

By (4.169) and (4.170), this implies

𝜂KL

(︁
𝑃− 1

𝑞−1

)︁
>

1

𝑞 − 1
. (4.204)

However, we have

𝜂KL

(︁
𝑃− 1

𝑞−1

)︁
≤ 𝜂TV

(︁
𝑃− 1

𝑞−1

)︁
=

1

𝑞 − 1
. (4.205)

Contradiction.
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4.6 An upper bound for input-restricted contraction
coefficient for Potts channels

In this section we prove an upper bound for the input-restricted KL divergence con-
traction coefficient for ferromagnetic Potts channels.

Proposition 4.27. Fix 𝑞 ≥ 3. For all 𝜆 ∈ [0, 1], we have

𝜂KL(𝜋, 𝑃𝜆) ≤
𝜆2

(1− 𝜆)2(𝑞−1) log(𝑞−1)
𝑞(𝑞−2)

+ 𝜆
. (4.206)

For all 𝜆 ∈ [− 1
𝑞−1

, 0], we have

𝜂KL(𝜋, 𝑃𝜆) ≤
𝜆2

(1 + (𝑞 − 1)𝜆)2(𝑞−1) log(𝑞−1)
𝑞(𝑞−2)

− 𝜆 log 𝑞
(𝑞−1)(log 𝑞−log(𝑞−1))

. (4.207)

We first prove a lemma.

Lemma 4.28. (𝑞𝑥−1)2

𝜓(𝑥)
is concave in 𝑥 ∈ [0, 1].

Proof. Let 𝑓(𝑥) = (𝑞𝑥−1)2

𝜓(𝑥)
.

𝑓 ′(𝑥) =
2𝑞(𝑞𝑥− 1)

𝜓(𝑥)
− (𝑞𝑥− 1)2𝜓′(𝑥)

𝜓2(𝑥)
. (4.208)

𝑓 ′′(𝑥) =
2𝑞2

𝜓(𝑥)
− 4𝑞(𝑞𝑥− 1)𝜓′(𝑥)

𝜓2(𝑥)
− (𝑞𝑥− 1)2𝜓′′(𝑥)

𝜓2(𝑥)
+

2(𝑞𝑥− 1)2(𝜓′)2(𝑥)

𝜓3(𝑥)

=
2

𝜓3(𝑥)
(𝑞𝜓(𝑥)− (𝑞𝑥− 1)𝜓′(𝑥))2 − (𝑞𝑥− 1)2𝜓′′(𝑥)

𝜓2(𝑥)
. (4.209)

Therefore it suffices to prove that

𝑔(𝑥) := 𝜓3(𝑥)𝑓 ′′(𝑥) = 2(𝑞𝜓(𝑥)− (𝑞𝑥− 1)𝜓′(𝑥))2 − (𝑞𝑥− 1)2𝜓(𝑥)𝜓′′(𝑥) (4.210)

is non-positive for 𝑥 ∈ [0, 1]. Note that 𝑔
(︁

1
𝑞

)︁
= 0. So we only need to prove that

𝑔′(𝑥) ≥ 0 for 𝑥 ∈ [0, 1
𝑞
] and 𝑔′(𝑥) ≤ 0 for 𝑥 ∈

[︁
1
𝑞
, 1
]︁
.

𝑔′(𝑥) = −4(𝑞𝑥− 1)𝜓′′(𝑥)(𝑞𝜓(𝑥)− (𝑞𝑥− 1)𝜓′(𝑥))− 2𝑞(𝑞𝑥− 1)𝜓(𝑥)𝜓′′(𝑥)

− (𝑞𝑥− 1)2𝜓′(𝑥)𝜓′′(𝑥)− (𝑞𝑥− 1)2𝜓(𝑥)𝜓′′′(𝑥)

= (𝑞𝑥− 1)(−6𝑞𝜓(𝑥)𝜓′′(𝑥) + (𝑞𝑥− 1)(3𝜓′(𝑥)𝜓′′(𝑥)− 𝜓(𝑥)𝜓′′′(𝑥))). (4.211)

Therefore we would like to prove that

𝑢(𝑞, 𝑥) := −6𝑞𝜓(𝑥)𝜓′′(𝑥) + (𝑞𝑥− 1)(3𝜓′(𝑥)𝜓′′(𝑥)− 𝜓(𝑥)𝜓′′′(𝑥)) (4.212)
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is non-positive. We enlarge the domain of 𝑢 and prove that 𝑢(𝑞, 𝑥) ≤ 0 for real 𝑞 > 1
and 𝑥 ∈ (0, 1).

We fix 𝑥 ∈ (0, 1) and consider 𝑢𝑥(𝑞) := 𝑢(𝑞, 𝑥). We have 𝑢𝑥
(︀
1
𝑥

)︀
= 0. So it suffices

to prove that 𝑢𝑥 is concave in 𝑞. We have

𝜓′(𝑥) = log 𝑥− log
1− 𝑥
𝑞 − 1

, (4.213)

𝜓′′(𝑥) =
1

𝑥
+

1

1− 𝑥
, (4.214)

𝜓′′′(𝑥) =
1

(1− 𝑥)2
− 1

𝑥2
, (4.215)

𝜕

𝜕𝑞
𝜓(𝑥) =

1

𝑞
− 1− 𝑥
𝑞 − 1

, (4.216)

𝜕

𝜕𝑞
𝜓′(𝑥) =

1

𝑞 − 1
, (4.217)

𝜕

𝜕𝑞
𝜓′′(𝑥) =

𝜕

𝜕𝑞
𝜓′′′(𝑥) = 0. (4.218)

So

𝑢′𝑥(𝑞) = − 6𝜓(𝑥)𝜓′′(𝑥)− 6𝑞

(︂
1

𝑞
− 1− 𝑥
𝑞 − 1

)︂
𝜓′′(𝑥) + 𝑥(3𝜓′(𝑥)𝜓′′(𝑥)− 𝜓(𝑥)𝜓′′′(𝑥))

+ (𝑞𝑥− 1)

(︂
3

1

𝑞 − 1
𝜓′′(𝑥)−

(︂
1

𝑞
− 1− 𝑥
𝑞 − 1

)︂
𝜓′′′(𝑥)

)︂
. (4.219)

𝑢′′𝑥(𝑞) = − 12

(︂
1

𝑞
− 1− 𝑥
𝑞 − 1

)︂
𝜓′′(𝑥)− 6𝑞

(︂
− 1

𝑞2
+

1− 𝑥
(𝑞 − 1)2

)︂
𝜓′′(𝑥)

+ 6𝑥
1

𝑞 − 1
𝜓′′(𝑥)− 2𝑥

(︂
1

𝑞
− 1− 𝑥
𝑞 − 1

)︂
𝜓′′′(𝑥)

+ (𝑞𝑥− 1)

(︂
−3 1

(𝑞 − 1)2
𝜓′′(𝑥)−

(︂
− 1

𝑞2
+

1− 𝑥
(𝑞 − 1)2

)︂
𝜓′′′(𝑥)

)︂
=

(𝑞𝑥− 1)2(1− 2𝑞 + (𝑞 − 2)𝑥)

𝑞2(𝑞 − 1)2𝑥2(1− 𝑥)2
≤ 0. (4.220)

We are done.

Proof of Prop. 4.27. For fixed 𝑥, we would like to lower bound

𝑓𝑥(𝜆) :=
𝜆2𝜓(𝑥)

𝜓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁ . (4.221)
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(Value of 𝑓𝑥(0) is defined by continuity.) Because

𝑓𝑥(𝜆) =
𝜓(𝑥)

(𝑞𝑥− 1)2
·
(𝑞
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
− 1)2

𝜓
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁ , (4.222)

by Lemma 4.28, 𝑓𝑥(𝜆) is concave for 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
.

Let us compute lower bounds of 𝑓𝑥(𝜆) for 𝜆 = − 1
𝑞−1

, 0, 1.

By Prop. 4.23, we have

𝑓𝑥

(︂
− 1

𝑞 − 1

)︂
≥ log 𝑞

(𝑞 − 1)2(log 𝑞 − log(𝑞 − 1))
. (4.223)

By L’Hôpital’s rule,

𝑓𝑥(0) = 𝜓(𝑥) lim
𝜆→0

2𝜆(︁
𝑥− 1

𝑞

)︁
𝜓′
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
= 𝜓(𝑥) lim

𝜆→0

2(︁
𝑥− 1

𝑞

)︁2
𝜓′′
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁
=

2(𝑞 − 1)𝜓(𝑥)

(𝑞𝑥− 1)2
. (4.224)

By Lemma 4.28, 𝑔(𝑥) := (𝑞𝑥−1)2

𝜓(𝑥)
is concave in 𝑥. Also

𝑔′
(︂
1− 1

𝑞

)︂
=

2𝑞(𝑞 − 2)
1
𝑞
(𝑞 − 2) log(𝑞 − 1)

− (𝑞 − 2)2 · 2 log(𝑞 − 1)(︁
1
𝑞
(𝑞 − 2) log(𝑞 − 1)

)︁2 = 0. (4.225)

So

𝑔(𝑥) ≤ 𝑔

(︂
1− 1

𝑞

)︂
=

𝑞(𝑞 − 2)

log(𝑞 − 1)
(4.226)

and
𝑓𝑥(0) ≥

2(𝑞 − 1) log(𝑞 − 1)

𝑞(𝑞 − 2)
. (4.227)

It is easy to see that
𝑓𝑥(1) ≥ 1. (4.228)

Because 𝑓𝑥(𝜆) is concave in 𝜆, Inequality (4.206) follows from (4.227) and (4.228),
and Inequality (4.207) follows from (4.223) and (4.227).
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Proof of Prop. 4.27 implies the first order limit behavior of 𝜂KL(𝜋, 𝑃𝜆) as 𝜆→ 0.

lim
𝜆→0

𝜂KL(𝜋, 𝑃𝜆)

𝜆2
=

𝑞(𝑞 − 2)

2(𝑞 − 1) log(𝑞 − 1)
. (4.229)

For all 𝑞 ≥ 3 and 𝜆 ∈ (0, 1], we have

𝜂KL(𝜋, 𝑃𝜆) ≤
𝜆2

(1− 𝜆)2(𝑞−1) log(𝑞−1)
𝑞(𝑞−2)

+ 𝜆

≤ 𝜆2(1− 𝜆) 𝑞(𝑞 − 2)

2(𝑞 − 1) log(𝑞 − 1)
+ 𝜆3

< 𝜆2
𝑞(𝑞 − 2)

2(𝑞 − 1) log(𝑞 − 1)

< 𝜆2
𝑞 − 1

2 log(𝑞 − 1)
, (4.230)

where the second step is by Cauchy inequality.

For comparison with input-unrestricted contraction coefficient

𝜂KL(𝑃𝜆) =
𝑞𝜆2

(𝑞 − 2)𝜆+ 2
, (4.231)

we note that 𝜆2

𝜂KL(𝑃𝜆)
is linear in 𝜆, and

1

𝑞 − 1
<

log 𝑞

(𝑞 − 1)2(log 𝑞 − log(𝑞 − 1))
, (4.232)

2

𝑞
<

2(𝑞 − 1) log(𝑞 − 1)

𝑞(𝑞 − 2)
. (4.233)

So Prop. 4.27 implies (4.26).

4.7 Non-convexity of certain functions

In this section we prove Prop. 4.20. Let us first prove a lemma.

Lemma 4.29. Let 𝑔 be a strictly increasing smooth function from [𝑥0, 𝑥1] to [𝑦0, 𝑦1],
and 𝑓 be a smooth function from [𝑥0, 𝑥1] to R. Assume that 𝑔′(𝑥0) = 𝑓 ′(𝑥0) = 0 and
(𝑔′′𝑓 ′′′ − 𝑓 ′′𝑔′′′)(𝑥0) > 0. Then the function ℎ = 𝑓 ∘ 𝑔−1 : [𝑦0, 𝑦1] → R is not concave
near 𝑦0.
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Proof. Directives of ℎ are

ℎ′(𝑥) =
𝑓 ′(𝑔−1(𝑥))

𝑔′(𝑔−1(𝑥))
, (4.234)

ℎ′′(𝑥) =

(︂
𝑓 ′′

𝑔′
− 𝑓 ′𝑔′′

(𝑔′)2

)︂(︀
𝑔−1(𝑥)

)︀ 1

𝑔′ (𝑔−1(𝑥))

=

(︂
𝑓 ′′

(𝑔′)2
− 𝑓 ′𝑔′′

(𝑔′)3

)︂(︀
𝑔−1(𝑥)

)︀
. (4.235)

So it suffices to study the sign of 𝑔′𝑓 ′′ − 𝑓 ′𝑔′′ for 𝑥 near 𝑥0. Let 𝑢 = 𝑔′𝑓 ′′ − 𝑓 ′𝑔′′. We
have 𝑢(𝑥0) = 0. Let us compute the derivatives.

𝑢′ = 𝑔′𝑓 ′′′ − 𝑓 ′𝑔′′′, (4.236)

𝑢′′ = 𝑔′𝑓 (4) + 𝑔′′𝑓 ′′′ − 𝑓 ′′𝑔′′′ − 𝑔′𝑔(4). (4.237)

So 𝑢′(𝑥0) = 0 and 𝑢′′(𝑥0) = (𝑔′′𝑓 ′′′ − 𝑓 ′′𝑔′′′)(𝑥0) > 0. So 𝑢 is positive near 𝑥0.

Proof of Prop. 4.20. We apply Lemma 4.29 to 𝑔 = 𝜓, 𝑥0 = 1
𝑞
, 𝑥1 = 1, 𝑦0 = 0,

𝑦1 = log 𝑞, and various 𝑓 . We have

𝜓′
(︂
1

𝑞

)︂
= 0, (4.238)

𝜓′′
(︂
1

𝑞

)︂
=

𝑞2

𝑞 − 1
, (4.239)

𝜓′′′
(︂
1

𝑞

)︂
= −𝑞

3(𝑞 − 2)

(𝑞 − 1)2
. (4.240)

Part 1. For 𝑏1, take

𝑓(𝑥) = −(𝑞 − 1)𝜉1(𝑥) = log 𝑥+ (𝑞 − 1) log
1− 𝑥
𝑞 − 1

+ 𝑞(𝜓(𝑥)− log 𝑞). (4.241)

Then

𝑓 ′(𝑥) =
1

𝑥
− 𝑞 − 1

1− 𝑥
+ 𝑞𝜓′(𝑥), (4.242)

𝑓 ′′(𝑥) = − 1

𝑥2
− 𝑞 − 1

(1− 𝑥)2
+ 𝑞𝜓′′(𝑥), (4.243)

𝑓 ′′′(𝑥) =
2

𝑥3
− 2(𝑞 − 1)

(1− 𝑥)3
+ 𝑞𝜓′′′(𝑥). (4.244)
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So

𝑓 ′
(︂
1

𝑞

)︂
= 0, (4.245)

𝑓 ′′
(︂
1

𝑞

)︂
= − 2𝑞3

𝑞 − 1
, (4.246)

𝑓 ′′′
(︂
1

𝑞

)︂
=

3(𝑞 − 2)𝑞4

(𝑞 − 1)2
. (4.247)

We have

(𝜓′′𝑓 ′′′ − 𝑓 ′′𝜓′′′)

(︂
1

𝑞

)︂
=

𝑞2

𝑞 − 1
· 3(𝑞 − 2)𝑞4

(𝑞 − 1)2
−
(︂
− 2𝑞3

𝑞 − 1

)︂(︂
−𝑞

3(𝑞 − 2)

(𝑞 − 1)2

)︂
=
𝑞6(𝑞 − 2)

(𝑞 − 1)3
> 0. (4.248)

So Lemma 4.29 applies.

Part 2. For 𝑏𝑝, 𝑝 > 1, take

𝑓(𝑥) = 𝑞 − (𝑞 − 1)𝜉𝑝(𝑥)

=

(︃
𝑥

1
𝑝 + (𝑞 − 1)

(︂
1− 𝑥
𝑞 − 1

)︂ 1
𝑝

)︃(︃
𝑥1−

1
𝑝 + (𝑞 − 1)

(︂
1− 𝑥
𝑞 − 1

)︂1− 1
𝑝

)︃
. (4.249)

For simplicity, write 𝑟 = 1
𝑝

and let 𝑢𝑟(𝑥) = 𝑥𝑟 + (𝑞 − 1)
(︁

1−𝑥
𝑞−1

)︁𝑟
. Then 𝑓(𝑥) =

𝑢𝑟(𝑥)𝑢1−𝑟(𝑥). Let us compute derivatives of 𝑢𝑟.

𝑢′𝑟(𝑥) = 𝑟

(︃
𝑥𝑟−1 −

(︂
1− 𝑥
𝑞 − 1

)︂𝑟−1
)︃
, (4.250)

𝑢′′𝑟(𝑥) = 𝑟(𝑟 − 1)

(︃
𝑥𝑟−2 +

1

𝑞 − 1

(︂
1− 𝑥
𝑞 − 1

)︂𝑟−2
)︃
, (4.251)

𝑢′′′𝑟 (𝑥) = 𝑟(𝑟 − 1)(𝑟 − 2)

(︃
𝑥𝑟−3 − 1

(𝑞 − 1)2

(︂
1− 𝑥
𝑞 − 1

)︂𝑟−3
)︃
. (4.252)
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So

𝑢𝑟

(︂
1

𝑞

)︂
= 𝑞1−𝑟, (4.253)

𝑢′𝑟

(︂
1

𝑞

)︂
= 0, (4.254)

𝑢′′𝑟

(︂
1

𝑞

)︂
= 𝑟(𝑟 − 1)

𝑞

𝑞 − 1

(︂
1

𝑞

)︂𝑟−2

, (4.255)

𝑢′′′𝑟

(︂
1

𝑞

)︂
= 𝑟(𝑟 − 1)(𝑟 − 2)

𝑞(𝑞 − 2)

(𝑞 − 1)2

(︂
1

𝑞

)︂𝑟−3

. (4.256)

Now we compute derivatives of 𝑓 .

𝑓 ′(𝑥) = 𝑢′𝑟(𝑥)𝑢1−𝑟(𝑥) + 𝑢𝑟(𝑥)𝑢
′
1−𝑟(𝑥), (4.257)

𝑓 ′′(𝑥) = 𝑢′′𝑟(𝑥)𝑢1−𝑟(𝑥) + 2𝑢′𝑟(𝑥)𝑢
′
1−𝑟(𝑥) + 𝑢𝑟(𝑥)𝑢

′′
1−𝑟(𝑥), (4.258)

𝑓 ′′′(𝑥) = 𝑢′′′𝑟 (𝑥)𝑢1−𝑟(𝑥) + 3𝑢′′𝑟(𝑥)𝑢
′
1−𝑟(𝑥) + 3𝑢′𝑟(𝑥)𝑢

′′
1−𝑟(𝑥) + 𝑢𝑟(𝑥)𝑢

′′′
1−𝑟(𝑥). (4.259)

So

𝑓 ′
(︂
1

𝑞

)︂
= 0, (4.260)

𝑓 ′′
(︂
1

𝑞

)︂
= 𝑟(𝑟 − 1)

𝑞

𝑞 − 1

(︂
1

𝑞

)︂𝑟−2

· 𝑞𝑟 + (1− 𝑟)(−𝑟) 𝑞

𝑞 − 1

(︂
1

𝑞

)︂−𝑟−1

· 𝑞1−𝑟

= 2𝑟(𝑟 − 1)
𝑞3

(𝑞 − 1)
, (4.261)

𝑓 ′′′
(︂
1

𝑞

)︂
= 𝑟(𝑟 − 1)(𝑟 − 2)

𝑞(𝑞 − 2)

(𝑞 − 1)2

(︂
1

𝑞

)︂𝑟−3

· 𝑞𝑟

+ (1− 𝑟)(−𝑟)(−𝑟 − 1)
𝑞(𝑞 − 2)

(𝑞 − 1)2

(︂
1

𝑞

)︂−𝑟−2

· 𝑞1−𝑟,

= −3𝑟(𝑟 − 1)
𝑞4(𝑞 − 2)

(𝑞 − 1)2
. (4.262)

So

(𝜓′′𝑓 ′′′ − 𝑓 ′′𝜓′′′)

(︂
1

𝑞

)︂
=

𝑞2

𝑞 − 1

(︂
−3𝑟(𝑟 − 1)

𝑞4(𝑞 − 2)

(𝑞 − 1)2

)︂
− 2𝑟(𝑟 − 1)

𝑞3

(𝑞 − 1)

(︂
−𝑞

3(𝑞 − 2)

(𝑞 − 1)2

)︂
= 𝑟(1− 𝑟)𝑞

6(𝑞 − 2)

(𝑞 − 1)3
> 0. (4.263)

So Lemma 4.29 applies.

90



Part 3. For 𝑠𝜆, take

𝑓(𝑥) = 𝜓

(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
. (4.264)

Then

𝑓 ′(𝑥) = 𝜆𝜓′
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
, (4.265)

𝑓 ′′(𝑥) = 𝜆2𝜓′′
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
, (4.266)

𝑓 ′′′(𝑥) = 𝜆3𝜓′′′
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂
. (4.267)

So

𝑓 ′
(︂
1

𝑞

)︂
= 0, (4.268)

𝑓 ′′
(︂
1

𝑞

)︂
= 𝜆2𝜓′′

(︂
1

𝑞

)︂
= 𝜆2

𝑞2

𝑞 − 1
, (4.269)

𝑓 ′′′
(︂
1

𝑞

)︂
= 𝜆3𝜓′′′

(︂
1

𝑞

)︂
= −𝜆3 𝑞

3(𝑞 − 2)

(𝑞 − 1)2
. (4.270)

We have

(𝜓′′𝑓 ′′′ − 𝑓 ′′𝜓′′′)

(︂
1

𝑞

)︂
=

𝑞2

𝑞 − 1

(︂
−𝜆3 𝑞

3(𝑞 − 2)

(𝑞 − 1)2

)︂
− 𝜆2 𝑞2

𝑞 − 1

(︂
−𝑞

3(𝑞 − 2)

(𝑞 − 1)2

)︂
=
𝑞5(𝑞 − 2)

(𝑞 − 1)3
(𝜆2 − 𝜆3) > 0. (4.271)

So Lemma 4.29 applies.

4.8 Concavity of log-Sobolev coefficients

Let 𝐾 be a Markov kernel with stationary distribution 𝜋. Define Dirichlet form ℰ(·, ·)
and entropy form Ent(·) as in Section 4.1.

For 𝑟 ∈ R, we consider the tightest 1
𝑟
-log-Sobolev inequality, corresponding to

𝑏 1
𝑟
(𝑥) : = inf

𝑓 :𝒳→R≥0,
E𝜋𝑓=1,Ent𝜋(𝑓)=𝑥

ℰ(𝑓 𝑟, 𝑓 1−𝑟), (4.272)

Φ 1
𝑟
(𝑦) := inf

𝑓 :𝒳→R≥0,

E𝜋𝑓=1,ℰ(𝑓𝑟,𝑓1−𝑟)=𝑦

Ent𝜋(𝑓). (4.273)
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The 1
𝑟
-log-Sobolev constant is

𝛼′
1
𝑟
:= inf

𝑥>0

𝑏 1
𝑟
(𝑥)

𝑥
= inf

𝑦>0

𝑦

Φ 1
𝑟
(𝑦)

. (4.274)

When 𝑟 = 0, the fraction 1
𝑟

should be understood as a formal symbol. For 𝑟 ∈ (0, 1),
𝛼′

1
𝑟

is the same as 𝛼 1
𝑟

defined in the Introduction. However, in general 𝛼′
1 is not equal

to 𝛼1. We use the superscript ′ to emphasize the difference.

Proposition 4.30. We have

1. For fixed 𝑥, 𝑏 1
𝑟
(𝑥) is concave in 𝑟.

2. For fixed 𝑦, Φ 1
𝑟
(𝑦) is convex in 𝑟.

3. 𝛼′
1
𝑟

is concave in 𝑟.

Furthermore, if (𝜋,𝐾) is reversible, then

1. For fixed 𝑥, 𝑏 1
𝑟
(𝑥) is maximized at 𝑟 = 1

2
.

2. For fixed 𝑦, Φ 1
𝑟
(𝑦) is minimized at 𝑟 = 1

2
.

3. 𝛼′
1
𝑟

is maximized at 𝑟 = 1
2
.

Proof. Because Φ 1
𝑟

is the inverse function of 𝑏 1
𝑟
, it suffices to prove statements about

𝑏 1
𝑟
. Because inf of concave functions is still concave, it suffices to prove that for any

𝑓 : 𝒳 → R≥0, E𝜋𝑓 = 1, ℰ(𝑓 𝑟, 𝑓 1−𝑟) is concave in 𝑟.

𝑑

𝑑𝑟2
ℰ(𝑓 𝑟, 𝑓 1−𝑟) =

𝑑

𝑑𝑟2

∑︁
𝑥,𝑦∈𝒳

(𝐼 −𝐾)(𝑥, 𝑦)𝑓(𝑦)𝑟𝑓(𝑥)1−𝑟𝜋(𝑥)

=
∑︁
𝑥,𝑦∈𝒳

(𝐼 −𝐾)(𝑥, 𝑦)𝑓(𝑦)𝑟𝑓(𝑥)1−𝑟𝜋(𝑥)(log 𝑓(𝑦)− log 𝑓(𝑥))2

=
∑︁

𝑥 ̸=𝑦∈𝒳

−𝐾(𝑥, 𝑦)𝑓(𝑦)𝑟𝑓(𝑥)1−𝑟𝜋(𝑥)(log 𝑓(𝑦)− log 𝑓(𝑥))2

≤ 0.

When the Markov chain is reversible, we have ℰ(𝑓, 𝑔) = ℰ(𝑔, 𝑓). So 𝑏 1
𝑟
(𝑥) =

𝑏 1
1−𝑟

(𝑥) and by concavity, 𝑏 1
𝑟
(𝑥) is maximized at 𝑟 = 1

2
.
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Part II

Statistical Problems on Graphs
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Chapter 5

Graph problems and reduction to
trees

Starting from this chapter, we shift our focus to statistical problems on graphs. We
study a class of sparse random graphical models with hidden community structures,
known as the hypergraph stochastic block model (HSBM). The stochastic block model
(SBM) is the special case of the HSBM when hyperedges are of size two. Questions
concerning this model revolve around recovering community structures from the un-
labeled (hyper)graph. Physicists made predictions about these models using the
non-rigorous cavity method [49, 15], but the program of rigorously establishing these
predictions remains far from complete.

The local structure of these graphical models is closely related to a broadcast-
ing model on Galton-Watson random (hyper)trees, a phenomenon initially proved
in [103] for the two-community symmetric SBM. We refer to this tree-like model as
broadcasting on hypertrees (BOHT) or, when hyperedges have size two, as broad-
casting on trees (BOT). Since then, it has been discovered that many problems on
the HSBM can be reduced to problems on the corresponding BOHT model. These
include weak recovery [103, 109, 74], optimal recovery algorithm [104, 73], and mutual
information formula [4, 73]. In this chapter we introduce the HSBM and establish
these connections.

This chapter serves as a bridge between problems on graphs and problems on trees,
which are tackled in later chapters using channel comparison methods established in
Part I.

Chapter outline In Section 5.1, we introduce the hypergraph stochastic block
model (HSBM) and problems studied on these models. In Section 5.2, we define
the corresponding broadcasting on hypertrees (BOHT) model, and discuss a cou-
pling between the HSBM and the BOHT model. In Section 5.3, we show that non-
reconstruction on the BOHT model implies impossibility of weak recovery in the
corresponding HSBM. In Section 5.4, we prove the boundary irrelevance (BI) prop-
erty of the BOHT model implies a mutual information formula for the corresponding
HSBM. In Section 5.5, we demonstrate that a property of the BOHT model, unique-
ness of belief propagation (BP) fixed point, implies optimal recovery algorithms for
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the corresponding HSBM.

5.1 Hypergraph stochastic block models
We start by defining the hypergraph stochastic block model.

Definition 5.1 (Hypergraph stochastic block model [15, 130]). Let 𝑛 ≥ 1 (number
of vertices), 𝑞 ≥ 2 (number of communities), 𝑟 ≥ 2 (hyperedge size) be integers. Let
𝜋 ∈ 𝒫([𝑞]) be a distribution with full support. Let A ∈

(︀
R𝑞

≥0

)︀⊗𝑟 be a tensor satisfying

𝑎𝑖1,...,𝑖𝑟 = 𝑎𝑖𝜎(1),...,𝑖𝜎(𝑟)
(5.1)

for any 𝑖1, . . . , 𝑖𝑟 ∈ [𝑞], 𝜎 ∈ Aut([𝑟]). The hypergraph stochastic block model
HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) is defined as follows: Let 𝑉 = [𝑛] be the set of vertices. Generate
a random label 𝑋𝑢 for all vertices 𝑢 ∈ 𝑉 i.i.d. ∼ 𝜋. Then for every 𝑆 = {𝑢1, . . . , 𝑢𝑟} ∈(︀
𝑉
𝑟

)︀
, add hyperedge 𝑆 to the hypergraph with probability

𝑎𝑋𝑢1 ,...,𝑋𝑢𝑟

( 𝑛
𝑟−1)

. The resulting

pair (𝑋,𝐺 = (𝑉,𝐸)) is the output of the model.

In the definition, the scaling 1

( 𝑛
𝑟−1)

keeps the average degree constant with high

probability as 𝑛 → ∞. This is called the constant degree regime. While there have
been many works on SBMs and HSBMs with growing average degree (e.g., [30, 58,
25, 127, 45, 97, 21, 133, 2, 102, 6] for SBM; [67, 68, 69, 35, 36, 89, 12, 85, 44, 139] for
HSBM), in this thesis, we focus on the constant degree regime.

In the HSBM, the expected degree (number of hyperedges containing a vertex) of
a vertex with label 𝑖 ∈ [𝑞] is 𝑑𝑖 ± 𝑜(1), where

𝑑𝑖 =
∑︁

𝑖1,...,𝑖𝑟−1∈[𝑞]

𝑎𝑖,𝑖1,...,𝑖𝑟−1

∏︁
𝑗∈[𝑟−1]

𝜋𝑖𝑗 . (5.2)

If 𝑑𝑖 ̸= 𝑑𝑗 for some 𝑖, 𝑗 ∈ [𝑞], we can distinguish community 𝑖 and 𝑗 using a classifier
based on degree, which trivially solves the weak recovery problem (Definition 5.5).
Therefore, we make the following standard assumption in literature.

Condition 5.2. We say the model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) is degree indistinguishable if
𝑑𝑖 = 𝑑𝑗 for all 𝑖, 𝑗 ∈ [𝑞], where 𝑑𝑖 is defined in Eq. (5.2).

Under this assumption, We define a few useful derived parameters of the HSBM.

Definition 5.3 (Derived parameters for HSBM [130]). Consider a model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A)
satisfying Condition 5.2.

We define the degree 𝑑 as

𝑑 :=
∑︁

𝑖1,...,𝑖𝑟−1∈[𝑞]

𝑎𝑖,𝑖1,...,𝑖𝑟−1

∏︁
𝑗∈[𝑟−1]

𝜋𝑖𝑗 (5.3)

for any 𝑖 ∈ [𝑞].
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We define the signal matrix 𝑄 ∈ R𝑞×𝑞 as

𝑄𝑖,𝑗 := 𝜋𝑗
∑︁

𝑖1,...,𝑖𝑟−2∈[𝑞]

𝑎𝑖,𝑗,𝑖1,...,𝑖𝑟−2

∏︁
𝑘∈[𝑟−2]

𝜋𝑖𝑘 . (5.4)

Because 𝑄 is self-adjoint, its eigenvalues are all real. The largest eigenvalue of 𝑄 is 𝑑.
We define signal strength 𝜆 := 𝜆2(𝑄)/𝑑, where 𝜆2(𝑄) be the second-largest eigenvalue
(in absolute value) of 𝑄. We define the signal-to-noise ratio (SNR) as

SNR := (𝑟 − 1)𝑑𝜆2. (5.5)

The Kesten-Stigum (KS) threshold is at SNR = 1.

We define the following subclasses of HSBM.

Definition 5.4 (Special cases of HSBM). Consider a model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A).

• (Stochastic block model) If 𝑟 = 2, then we say the model is a stochastic block
model (SBM), denoted as SBM(𝑛, 𝑞, 𝜋,A). In this case, the tensor A is a
symmetric matrix.

• (Symmetric HSBM) We say the model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) is symmetric, if 𝜋 =
Unif([𝑞]) and tensor A satisfies

𝑎𝑖1,...,𝑖𝑟 = 𝑎𝜏(𝑖1),...,𝜏(𝑖𝑟) (5.6)

for any 𝑖1, . . . , 𝑖𝑟 ∈ [𝑞], 𝜏 ∈ Aut([𝑞]).

• (Simple HSBM) If 𝜋 = Unif([𝑞]) and for some 𝑎, 𝑏 ∈ R≥0, we have

𝑎𝑖1,...,𝑖𝑟 =

{︂
𝑎, if 𝑖1 = · · · = 𝑖𝑟,
𝑏, otherwise, (5.7)

then we say the model is a simple HSBM, denoted as HSBM(𝑛, 𝑞, 𝑟, 𝑎, 𝑏).

• We denote a model HSBM(𝑛, 𝑞, 𝑟, 𝑎, 𝑏) with 𝑟 = 2 as SBM(𝑛, 𝑞, 𝑎, 𝑏).

• We denote a model HSBM(𝑛, 𝑞, 𝑟, 𝑎, 𝑏) with 𝑞 = 2 as HSBM(𝑛, 𝑟, 𝑎, 𝑏).

For HSBM(𝑛, 𝑞, 𝑟, 𝑎, 𝑏) and its subclasses, we say the model is assortative if 𝑎 > 𝑏,
and is disassortative if 𝑎 < 𝑏.

For the SBM and the HSBM, the central question is to recover community struc-
ture given the unlabeled hypergraph. For (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A), we would
like an estimator 𝑋p = 𝑋p (𝐺) such that the distance between 𝑋 and 𝑋p is small. In
the symmetric case, it is impossible to distinguish permutations of the community
labels. Therefore, the distance between the truth and the estimation is defined as

𝑑𝐻(𝑋, 𝑌 ) := min
𝜏∈Aut([𝑞])

∑︁
𝑢∈𝑉

1{𝑋𝑖 ̸= 𝜎(𝑌𝑖)}. (5.8)
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There are several different versions of the question of recovery.

Definition 5.5 (Recovery problems for HSBM). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A).
We say the model admits

• exact recovery (strong consistency), if it is possible to recover the labels exactly,
i.e., there exists an estimator 𝑋p = 𝑋p (𝐺) such that

lim
𝑛→∞

P[𝑑𝐻(𝑋p , 𝑋) = 0] = 1, (5.9)

• almost exact recovery (weak consistency), if it is possible to recover almost all
labels, i.e., there exists an estimator 𝑋p = 𝑋p (𝐺) such that

lim
𝑛→∞

P[𝑑𝐻(𝑋p , 𝑋) = 𝑜(𝑛)] = 1, (5.10)

• partial recovery (max-detection), if it is possible to recover a non-trivial fraction
of the labels, i.e., there exists an estimator 𝑋p = 𝑋p (𝐺) and some 𝜖 > 0 such
that

lim
𝑛→∞

P[𝑑𝐻(𝑋p , 𝑋) < 1−max
𝑖
𝜋𝑖 − 𝜖+ 𝑜(1)] = 1, (5.11)

• weak recovery (detection), if there exists an estimator outputting a subset 𝑆 ⊆
𝑉 such that for some 𝜖 > 0, with probability 1−𝑜(1), there exists 𝑖, 𝑗 ∈ [𝑞] such
that

#{𝑣 ∈ 𝑆 : 𝑋𝑣 = 𝑖}
#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑖}

− #{𝑣 ∈ 𝑆 : 𝑋𝑣 = 𝑗}
#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑗}

≥ 𝜖. (5.12)

Different recovery questions are interesting in different regimes. For the constant
degree regime, the partial recovery and weak recovery problems are more relevant.

The definition of partial recovery and weak recovery are equivalent when 𝜋 is
uniform, but have subtle differences when 𝜋 is non-uniform, as shown in [9]. For
SBMs, [49] conjectured that partial recovery is always possible above the Kesten-
Stigum (KS) threshold (Definition. 5.3). [9] gave a counterexample to the conjecture,
and proved that the conjecture is true with partial recovery replaced by weak recovery.
Therefore, weak recovery captures the KS threshold better than partial recovery.

We refer the reader to [1] for a survey of results on the SBM (including all four
kinds of recovery problems in Definition 5.5). Here we briefly summarize works on
the weak recovery problem for the SBM and the HSBM.

Works on weak recovery for SBM. [42] gave a non-trivial algorithm for the
weak recovery problem. Based on the non-rigorous cavity method, [49] conjectured
that for SBM(𝑛, 𝑞, 𝜋,A), the algorithmic partial recovery threshold (see our previ-
ous discussion on the relationship between partial recovery and weak recovery) is
at the Kesten-Stigum threshold (Definition 5.3), and for SBM(𝑛, 𝑞, 𝑎, 𝑏) there is an
information-computation gap for 𝑞 ≥ 4. For SBM(𝑛, 2, 𝑎, 𝑏), the positive part of the
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conjecture was proved in [96, 105] and the negative part was proved in [103, 105]. For
SBM(𝑛, 𝑞,Unif([𝑞]),A), [26] gave weak recovery algorithms above the KS threshold
for a general of A, but their method does not work for the SBM(𝑛, 𝑞, 𝑎, 𝑏) model due
to technical reasons. This technicality was overcome in [128], giving weak recovery
algorithms for any SBM(𝑛, 𝑞,Unif([𝑞]),A) model above the KS threshold. For general
SBM(𝑛, 𝑞, 𝜋,A), [8, 7, 9] gave algorithms for weak recovery above the KS threshold,
establishing the positive part of the conjecture in full generality. For SBM(𝑛, 𝑞, 𝑎, 𝑏)
with 𝑞 = 3, 4 and 𝑑 large enough (Definition 5.3), [109] established the negative part
of the conjecture, proving that weak recovery is impossible below the KS threshold.

Let us move to the information theoretical side. [7, 9] showed that for 𝑞 ≥ 4, there
exist parameters 𝑎, 𝑏 such that SBM(𝑛, 𝑞, 𝑎, 𝑏) is below the KS threshold, but weak
recovery is information theoretically possible. This gives evidence for the existence
of an information-computation gap. [16] also crossed the KS threshold information
theoretically, for SBM(𝑛, 𝑞, 𝑎, 𝑏) with 𝑞 ≥ 5. For SBM(𝑛, 𝑞, 𝑎, 𝑏) with 𝑎 < 𝑏, the infor-
mation theoretical weak recovery threshold has been deteremined by [43]. However
their formula for the threshold is difficult to compute. In particular, it is not known
whether for 𝑞 = 3, the weak recovery threshold coincides with the KS threshold.
Our work [72] (Chapter 4, 6) gave improved impossibility of weak recovery results for
SBM(𝑛, 𝑞, 𝑎, 𝑏).

Works on weak recovery for HSBM. For the HSBM(𝑛, 𝑟, 𝑎, 𝑏), [15] conjec-
tured that a phase transition occurs at the Kesten-Stigum threshold. [12, 56] gave
non-trivial weak recovery algorithms, but the KS threshold could not be achieved
using their method. We note that [56] allowed a non-uniform version of HSBM. For
HSBM(𝑛, 2, 𝑎, 𝑏), [112] proved the positive part of the conjecture, giving weak re-
covery algorithms above the KS threshold. For general HSBM(𝑛, 𝑞, 𝑟,Unif([𝑞]),A)
[130] established the positive part of the conjecture. The only result (except for the
graph case) on the impossibility part is our work [74] (Chapter 7), which proved that
weak recovery is impossible below the KS threshold for HSBM(𝑛, 𝑟, 𝑎, 𝑏) with 𝑟 = 3, 4
(where the 𝑟 = 4 case depends on a numerically verified inequality).

A very useful property of HSBMs is the vanishing of long range correlations. This
was first proved in [103, Lemma 4.7] for the simple binary SBM. Here we present a
version for general HSBMs. In the following, we use a.a.s. (asymptotically almost
surely) to denote that a event happens with probability 1− 𝑜(1).

Proposition 5.6 (No long range correlations). Let (𝑋,𝐺 = (𝑉,𝐸)) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A).
Let 𝐴 = 𝐴(𝐺), 𝐵 = 𝐵(𝐺), 𝐶 = 𝐶(𝐺) ⊆ 𝑉 be a (random) partition of 𝑉 such that 𝐵
separates 𝐴 and 𝐶 in 𝐺 (i.e., there exists no hyperedges 𝑆 ∈ 𝐸 intersecting both 𝐴
and 𝐶). If |𝐴 ∪𝐵| = 𝑜(

√
𝑛) a.a.s., then

P(𝑋𝐴|𝑋𝐵∪𝐶 , 𝐺) = (1± 𝑜(1))P(𝑋𝐴|𝑋𝐵, 𝐺) a.a.s. (5.13)

Proof. Our proof is a generalization of [103, Lemma 4.7]. For 𝑆 = {𝑢1, . . . , 𝑢𝑟} ∈
(︀
𝑉
𝑟

)︀
,
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define

𝜓𝑆(𝐺,𝑋) :=

⎧⎨⎩
𝑎𝑋𝑢1 ,...,𝑋𝑢𝑟

( 𝑛
𝑟−1)

, if 𝑆 ∈ 𝐸,

1− 𝑎𝑋𝑢1 ,...,𝑋𝑢𝑟

( 𝑛
𝑟−1)

, if 𝑆 ̸∈ 𝐸.
(5.14)

Then

P(𝐺,𝑋) := P(𝑋)P(𝐺|𝑋) = P(𝑋)
∏︁
𝑆∈(𝑉𝑟)

𝜓𝑆(𝐺,𝑋). (5.15)

We partition
(︀
𝑉
𝑟

)︀
into four parts. Define

𝐸1 :=

{︂
𝑆 ∈

(︂
𝑉

𝑟

)︂
: |𝑆 ∩ 𝐴| ≥ 1, |𝑆 ∩ 𝐶| ≥ 1, |𝑆 ∩ (𝐴 ∪𝐵)| ≥ 2

}︂
, (5.16)

𝐸2 :=

{︂
𝑆 ∈

(︂
𝑉

𝑟

)︂
: |𝑆 ∩ 𝐴| = 1, |𝑆 ∩ 𝐶| ≥ 1, |𝑆 ∩𝐵| = 0

}︂
, (5.17)

𝐸3 :=

{︂
𝑆 ∈

(︂
𝑉

𝑟

)︂
: |𝑆 ∩ 𝐶| = 0

}︂
, (5.18)

𝐸4 :=

{︂
𝑆 ∈

(︂
𝑉

𝑟

)︂
: |𝑆 ∩ 𝐴| = 0, |𝑆 ∩ 𝐶| ≥ 1

}︂
. (5.19)

Then 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 =
(︀
𝑉
𝑟

)︀
is a partition of

(︀
𝑉
𝑟

)︀
. Define

𝑄𝑖 := 𝑄𝑖(𝐺,𝑋) :=
∏︁
𝑆∈𝐸𝑖

𝜓𝑆(𝐺,𝑋) ∀𝑖 ∈ [4]. (5.20)

Then

P(𝐺,𝑋) = P(𝑋)𝑄1𝑄2𝑄3𝑄4. (5.21)

We prove that 𝑄1 and 𝑄2 are approximately independent of 𝑋𝐵∪𝐶 a.a.s. Let
(𝛼𝑛)𝑛≥0 be a deterministic sequence with 𝛼𝑛 = 𝜔(

√
𝑛) and 𝛼𝑛|𝐴| = 𝑜(𝑛) a.a.s. Define

Ω := {𝑌 ∈ [𝑞]𝑉 : |𝑁𝑖(𝑌 )− 𝜋𝑖𝑛| ≤ 𝛼𝑛∀𝑖 ∈ [𝑞]}, (5.22)
Ω𝑈 := {𝑌 ∈ Ω : 𝑌𝑈 = 𝑋𝑈}, (5.23)

where 𝑁𝑖(𝑌 ) := #{𝑣 ∈ 𝑉 : 𝑌𝑣 = 𝑖}. (5.24)

By concentration of 𝑁𝑖(𝑋), we have 𝑋 ∈ Ω a.a.s.

Note that 𝐸1 ∩ 𝐸 = 𝐸2 ∩ 𝐸 = ∅. Also,

|𝐸1| = 𝑂(|𝐴 ∪𝐵|2𝑛𝑟−2) = 𝑜(𝑛𝑟−1) a.a.s. (5.25)
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So

𝑄1 =

(︃
1− 𝑂(1)(︀

𝑛
𝑟−1

)︀)︃𝑜(𝑛𝑟−1)

= 1− 𝑜(1) a.a.s. (5.26)

For 𝑄2, we have

𝑄2 =
∏︁
𝑢∈𝐴

𝑇∈( 𝐶
𝑟−1)

𝜓𝑇∪{𝑢}(𝐺,𝑋)

=
∏︁
𝑢∈𝐴

𝑇={𝑣1,...,𝑣𝑟−1}∈( 𝐶
𝑟−1)

(︃
1−

𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀
𝑛
𝑟−1

)︀ )︃

= (1 + 𝑜(1))
∏︁
𝑢∈𝐴

𝑇={𝑣1,...,𝑣𝑟−1}∈( 𝐶
𝑟−1)

exp

(︃
−
𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀

𝑛
𝑟−1

)︀ )︃
a.a.s. (5.27)

where the third step is because |𝐴| = 𝑜(
√
𝑛) a.a.s. and

exp

(︃
−
𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀

𝑛
𝑟−1

)︀ )︃
=
(︀
1 +𝑂

(︀
𝑛2(1−𝑟))︀)︀(︃1− 𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀

𝑛
𝑟−1

)︀ )︃
. (5.28)

For every 𝑢 ∈ 𝐴 and 𝑋 ∈ Ω, we have

∏︁
{𝑣1,...,𝑣𝑟−1}∈( 𝐶

𝑟−1)

exp

(︃
−
𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀

𝑛
𝑟−1

)︀ )︃

= exp

⎛⎜⎝− ∑︁
{𝑣1,...,𝑣𝑟−1}∈( 𝐶

𝑟−1)

𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀
𝑛
𝑟−1

)︀
⎞⎟⎠

= exp

⎛⎝− 1

(𝑟 − 1)!

∑︁
𝑣1,...,𝑣𝑟−1∈𝐶

𝑎𝑋𝑢,𝑋𝑣1 ,...,𝑋𝑣𝑟−1(︀
𝑛
𝑟−1

)︀ ±𝑂(𝑛−1)

⎞⎠
= exp

⎛⎝− 1

(𝑟 − 1)!

∑︁
𝑖1,...,𝑖𝑟−1∈[𝑞]

𝑎𝑋𝑢,𝑖1,...,𝑖𝑟−1(︀
𝑛
𝑟−1

)︀ ·
∏︁

𝑗∈[𝑟−1]

(︀
𝜋𝑖𝑗𝑛±𝑂(𝛼𝑛)

)︀
±𝑂(𝑛−1)

⎞⎠
= exp

⎛⎝− ∑︁
𝑖1,...,𝑖𝑟−1∈[𝑞]

𝑎𝑋𝑢,𝑖1,...,𝑖𝑟−1

∏︁
𝑗∈[𝑟−1]

𝜋𝑖𝑗 ±𝑂(𝛼𝑛𝑛−1)

⎞⎠
= exp

(︀
−𝑑𝑋𝑢 ±𝑂(𝛼𝑛𝑛−1)

)︀
a.a.s. (5.29)
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Combining Eq. (5.27) and Eq. (5.29) we get

𝑄2 = (1 + 𝑜(1)) exp

(︃
−
∑︁
𝑢∈𝐴

𝑑𝑋𝑢 ±𝑂(𝛼𝑛|𝐴|𝑛−1)

)︃

= (1± 𝑜(1)) exp

(︃
−
∑︁
𝑢∈𝐴

𝑑𝑋𝑢

)︃
=: (1± 𝑜(1))𝐾(𝐺,𝑋𝐴) a.a.s. (5.30)

By Eq. (5.26) and Eq. (5.30), we have

P(𝐺,𝑋) = (1± 𝑜(1))P(𝑋)𝐾(𝐺,𝑋𝐴)𝑄3𝑄4 a.a.s. (5.31)

Furthermore, for any 𝑈 = 𝑈(𝐺) ⊆ 𝑉 we have

P(𝐺,𝑋𝑈) = (1± 𝑜(1))P(𝐺,𝑋𝑈 , 𝑋 ∈ Ω)

= (1± 𝑜(1))
∑︁
𝑌 ∈Ω𝑈

P(𝑌 )𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )𝑄4(𝐺, 𝑌 ) a.a.s. (5.32)

Therefore

P(𝑋𝐴|𝑋𝐵, 𝐺) =
P(𝑋𝐴∪𝐵, 𝐺)

P(𝑋𝐵, 𝐺)

= (1± 𝑜(1))
∑︀

𝑌 ∈Ω𝐴∪𝐵
P(𝑌 )𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )𝑄4(𝐺, 𝑌 )∑︀

𝑌 ∈Ω𝐵
P(𝑌 )𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )𝑄4(𝐺, 𝑌 )

a.a.s. (5.33)

Note that 𝑄3(𝐺, 𝑌 ) is a function of (𝐺, 𝑌𝐴∪𝐵) and 𝑄4(𝐺, 𝑌 ) is a function of (𝐺, 𝑌𝐵∪𝐶).
So the numerator of Eq. (5.33) is a.a.s. equal to

P(𝑋𝐴)P(𝑋𝐵)𝐾(𝐺,𝑋𝐴)𝑄3(𝐺,𝑋)
∑︁

𝑌 ∈Ω𝐴∪𝐵

P(𝑌𝐶)𝑄4(𝐺, 𝑌 ) (5.34)

and the denominator of Eq. (5.33) is a.a.s. equal to

P(𝑋𝐵)

(︃ ∑︁
𝑌 ∈Ω𝐵∪𝐶

P(𝑌𝐴)𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )

)︃(︃ ∑︁
𝑌 ∈Ω𝐴∪𝐵

P(𝑌𝐶)𝑄4(𝐺, 𝑌 )

)︃
. (5.35)

Combining Eq. (5.33), Eq. (5.34), Eq. (5.35), we get

P(𝑋𝐴|𝑋𝐵, 𝐺) = (1± 𝑜(1)) P(𝑋𝐴)𝐾(𝐺,𝑋𝐴)𝑄3(𝐺,𝑋)∑︀
𝑌 ∈Ω𝐵∪𝐶

P(𝑌𝐴)𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )
a.a.s. (5.36)
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Similarly, we have

P(𝑋𝐴|𝑋𝐵∪𝐶 , 𝐺) =
P(𝑋,𝐺)

P(𝑋𝐵∪𝐶 , 𝐺)

= (1± 𝑜(1)) P(𝑋)𝐾(𝐺,𝑋𝐴)𝑄3(𝐺,𝑋)𝑄4(𝐺,𝑋)∑︀
𝑌 ∈Ω𝐵∪𝐶

P(𝑌 )𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )𝑄4(𝐺, 𝑌 )

= (1± 𝑜(1)) P(𝑋𝐴)𝐾(𝐺,𝑋𝐴)𝑄3(𝐺,𝑋)∑︀
𝑌 ∈Ω𝐵∪𝐶

P(𝑌𝐴)𝐾(𝐺, 𝑌𝐴)𝑄3(𝐺, 𝑌 )
a.a.s. (5.37)

Comparing Eq. (5.36) and Eq. (5.37) we finish the proof.

5.2 Broadcasting on hypertrees

For the model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A), we define a hypertree model which captures the
local structure of the HSBM.

Definition 5.7 (Broadcasting on hypertrees). Let 𝑞 ≥ 2 (number of communities),
𝑟 ≥ 2 (hyperedge size) be integers. Let 𝜋 ∈ 𝒫([𝑞]) be a distribution with full support.
Let 𝑀 : [𝑞]→ [𝑞]𝑟−1 be a probability kernel, satisfying

𝑀𝑖,(𝑖1,...,𝑖𝑟−1) =𝑀𝑖,(𝑖𝜎(1),...,𝑖𝜎(𝑟−1)) (5.38)

for all 𝑖, 𝑖1, . . . , 𝑖𝑟−1 ∈ [𝑞], 𝜎 ∈ Aut([𝑟 − 1]), and∑︁
𝑘∈[𝑞]

𝜋𝑘
∑︁

𝑥∈[𝑞]𝑟−1

𝑥𝑖=𝑗

𝑀𝑘,(𝑥1,...,𝑥𝑟−1) = 𝜋𝑗 ∀𝑖 ∈ [𝑟 − 1], 𝑗 ∈ [𝑞]. (5.39)

Let 𝑇 be a 𝑟-uniform linear1 hypertree rooted at 𝜌. We define the broadcasting on
hypertrees (BOHT) model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀) as follows.

1. Generate 𝜎𝜌 ∼ 𝜋.

2. Suppose we have generated label 𝜎𝑢 for a vertex 𝑢. For each downward hyper-
edge {𝑢, 𝑣1, . . . , 𝑣𝑟−1}, we generate 𝜎𝑣1 , . . . , 𝜎𝑣𝑟−1 according to 𝑀(·|𝜎𝑢), i.e., for
𝑖1, . . . , 𝑖𝑟−1 ∈ [𝑞], we have

P[𝜎𝑣1 = 𝑖1, . . . , 𝜎𝑣𝑟−1 = 𝑖𝑟−1|𝜎𝑢 = 𝑖] =𝑀𝑖,(𝑖1,...,𝑖𝑟−1). (5.40)

The output of the BOHT model is (𝑇, 𝜎).
Let 𝐷 be a distribution on non-negative integers. If 𝑇 is a random 𝑟-uniform linear

hypertree, where every vertex independently have 𝑏 ∼ 𝐷 downward edges, then we
denote the resulting model as BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷). If 𝐷 is a point distribution at
𝑏 ∈ Z≥0, we say 𝑇 is a 𝑏-regular 𝑟-uniform linear hypertree, and denote the resulting

1Linear means that the intersection of two distinct hyperedges has size at most one.
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model as BOHT(𝑞, 𝑟, 𝜋,𝑀, 𝑏). If 𝐷 = Pois(𝑑) for some 𝑑 ∈ R≥0, we say 𝑇 is a
Galton-Watson 𝑟-uniform linear hypertree with expected offspring 𝑑, and denote the
resulting model as BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑)).

We define a few useful derived parameters for the BOHT model.

Definition 5.8 (Derived parameters for BOHT). For BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷), we define
the expected offspring as

𝑑 = E𝑏∼𝐷𝑏. (5.41)

For BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀), the corresponding parameter should be

𝑑 = br(𝑇 ), (5.42)

where br denotes the branching number [92].
We define the signal matrix ̃︀𝑄 ∈ R𝑞×𝑞 as

̃︀𝑄𝑖,𝑗 =
∑︁

𝑖1,...,𝑖𝑟−2∈[𝑞]

𝑀𝑖,(𝑗,𝑖1,...,𝑖𝑟−2) (5.43)

and define the signal strength 𝜆 as the second-largest eigenvalue (in absolute value)
of matrix ̃︀𝑄. We define the signal-to-noise ratio (SNR) as

SNR := (𝑟 − 1)𝑑𝜆2. (5.44)

The Kesten-Stigum (KS) threshold is at SNR = 1.

We define the following subclasses of BOHT.

Definition 5.9 (Special cases of BOHT). Consider a model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀) or
BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷).

• (Broadcasting on trees) If 𝑟 = 2, then we call the model broadcasting on trees
(BOT), denoted as BOT(𝑇, 𝑞, 𝜋,𝑀) or BOT(𝑞, 𝜋,𝑀,𝐷).

• (Symmetric BOHT) We say the BOHT model is symmetric if 𝜋 = Unif([𝑞]) and
the kernel 𝑀 satisfies

𝑀𝑖,(𝑖1,...,𝑖𝑟−1) =𝑀𝜏(𝑖),(𝜏(𝑖1),...,𝜏(𝑖𝑟−1)) (5.45)

for all 𝑖1, . . . , 𝑖𝑟 ∈ [𝑞], 𝜏 ∈ Aut([𝑞]).

• (Simple BOHT) If 𝜋 = Unif([𝑞]) and for some 𝜆 ∈
[︁
− 1
𝑞𝑟−1−1

, 1
]︁
, we have

𝑀𝑖,(𝑖1,...,𝑖𝑟−1) =

{︂
𝜆+ 𝑞1−𝑟(1− 𝜆), if 𝑖 = 𝑖1 = · · · = 𝑖𝑟−1,
𝑞1−𝑟(1− 𝜆), otherwise, (5.46)

then we say the model is a simple BOHT model, denoted as BOHT(𝑇, 𝑞, 𝑟, 𝜆)
or BOHT(𝑞, 𝑟, 𝜆,𝐷).
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• (Ising, Potts, random coloring) Consider a model BOHT(𝑇, 𝑞, 𝑟, 𝜆) or BOHT(𝑞, 𝑟, 𝜆,𝐷).
If 𝑟 = 2, then we call the model the Potts model (when 𝑞 ≥ 3) or the Ising
model (when 𝑞 = 2), and denote the model as BOT(𝑇, 𝑞, 𝜆) or BOT(𝑞, 𝜆,𝐷).
The case 𝜆 = − 1

𝑞−1
is called the random coloring model.

• We denote a model BOHT(𝑇, 𝑞, 𝑟, 𝜆) (resp. BOHT(𝑞, 𝑟, 𝜆,𝐷)) with 𝑞 = 2 as
BOHT(𝑇, 𝑟, 𝜆) (resp. BOHT(𝑟, 𝜆,𝐷)).

For BOHT(𝑇, 𝑞, 𝑟, 𝜆), BOHT(𝑞, 𝑟, 𝜆,𝐷), and their subclasses, we say the model is
ferromagnetic if 𝜆 > 0, and is antiferromagnetic if 𝜆 < 0.

The following result establishes a relationship between HSBMs and BOHT models.
This relationship was first shown in [96, 103] in the case of two-community symmetric
SBMs, and later generalized to various settings [26, 31, 128, 129, 72, 37, 38, 109, 112,
130].

Theorem 5.10 (HSBM-BOHT coupling [130, Prop. 3]). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A)
be a model satisfying Condition 5.2. Let 𝑣 ∈ 𝑉 and 𝑘 = 𝑐 log 𝑛 for some small enough
constant 𝑐 > 0 not depending on 𝑛. Let 𝐵(𝑣, 𝑘) be the set of vertices with distance
≤ 𝑘 to 𝑣.

Let (𝑇, 𝜎) ∼ BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑)) where 𝑑 is defined in Definition 5.3, and

𝑀𝑖,(𝑖1,...,𝑖𝑟−1) =
1

𝑑
𝑎𝑖,𝑖1,...,𝑖𝑟−1

∏︁
𝑗∈[𝑟−1]

𝜋𝑗. (5.47)

Let 𝜌 be the root of 𝑇 , and 𝑇𝑘 be the set of vertices at distance ≤ 𝑘 to 𝜌.
Then (𝐺|𝐵(𝑣,𝑘), 𝑋𝐵(𝑣,𝑘)) can be coupled to (𝑇𝑘, 𝜎𝑇𝑘) with 𝑜(1) TV distance.

In the setting of Theorem 5.10, we say the model BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑)) is the
BOHT model corresponding to HSBM(𝑛, 𝑞, 𝑟, 𝜋,A). In the view of Theorem 5.10, we
define the following natural condition on BOHT.

Condition 5.11. Consider the model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀) or BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷).
We say the model is reversible if

𝜋𝑖𝑀𝑖,(𝑗,𝑖1,...,𝑖𝑟−2) = 𝜋𝑗𝑀𝑗,(𝑖,𝑖1,...,𝑖𝑟−2) (5.48)

for all 𝑖, 𝑗, 𝑖1, . . . , 𝑖𝑟−2 ∈ [𝑞].

One can easily verify that the BOHT model corresponding to an HSBM is always
reversible.

For the BOHT model corresponding to an HSBM, parameters 𝑑, 𝜆, SNR (Defini-
tion 5.3, 5.8) all agree for both models. Degree 𝑑 agree because

E𝑏∼Pois(𝑑)𝑏 = 𝑑. (5.49)
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Signal strength 𝜆 agrees because

̃︀𝑄𝑖,𝑗 =
∑︁

𝑖1,...,𝑖𝑟−2∈[𝑞]

𝑀𝑖,(𝑗,𝑖1,...,𝑖𝑟−2)

=
∑︁

𝑖1,...,𝑖𝑟−2∈[𝑞]

1

𝑑
𝑎𝑖,𝑗,𝑖1,...,𝑖𝑟−2𝜋𝑗

∏︁
𝑘∈[𝑟−2]

𝜋𝑘

=
1

𝑑
𝑄𝑖,𝑗. (5.50)

SNR agrees because 𝑟, 𝑑, 𝜆 all agree.
We use the following notations for BOHT models.

Definition 5.12 (Notations for BOHT models). Fix a BOHT model. Let 𝑇𝑘 be the
set of vertices at distance ≤ 𝑘 to 𝜌, and 𝐿𝑘 be the set of vertices at distance 𝑘 to 𝜌.
Let 𝑀𝑘 denote the channel 𝜎𝜌 → (𝑇𝑘, 𝜎𝐿𝑘

).

We define the following belief propagation (BP) operator, which is very useful in
the study of the BOHT models.

Definition 5.13 (Belief propagation operator). Consider the model BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷).
Let 𝐵 denote the channel from 𝜎𝑢 to 𝜎𝑣1 , . . . , 𝜎𝑣𝑟−1 in Definition 5.1. The belief propa-
gation (BP) operator of the BOHT model is an operator from the space of information
channels to itself, defined as

BP(𝑃 ) := E𝑏∼𝐷
(︀
𝑃×(𝑟−1) ∘𝐵

)︀⋆𝑏
. (5.51)

Note that the sequence (𝑀𝑘)𝑘≥0 (Definition 5.12) satisfies

BP(𝑀𝑘) =𝑀𝑘+1. (5.52)

For a symmetric BOHT model, the BP operator sends the space of 𝑞-FMS channels
to itself.

5.3 Weak recovery and reconstruction
In this section we show that for an HSBM, if the corresponding BOHT model admits
non-reconstruction, then weak recovery for the HSBM is impossible.

Definition 5.14 (Reconstruction for BOHT model). We say the model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀)
or the model BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷) admits reconstruction if

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) > 0. (5.53)

We say the model admits non-reconstruction if the limit is zero.

The reconstruction problem for the BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷) model can be interpreted
using the BP operator: the model admits reconstruction if and only if the limit channel
BP∞(Id) := lim𝑘→∞ BP𝑘(Id) is not the trivial channel.
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Let us briefly discuss previous results on reconstruction for BOT and BOHT.
[84] showed that for BOT(𝑞, 𝜋,𝑀,𝐷), reconstruction is possible above the Kesten-
Stigum threshold. [23] proved that for the Ising model BOT(2, 𝜆, 𝑑) the reconstruction
threshold coincides with the KS threshold (see also [81] for an alternative proof).
[80, 63] proved the same result for general trees BOT(𝑇, 2, 𝜆) and BOT(2, 𝜆,𝐷), and
[113] refined these results to criticality.

[101] proved that the reconstruction threshold does not match the KS threshold,
for certain asymmetric Ising model BOT(2, 𝜋,𝑀, 𝑑) and Potts model BOT(𝑞, 𝜆, 𝑑).
[107] proved non-reconstruction results for the Potts model BOT(𝑞, 𝜆, 𝑑). [98] studied
the reconstruction problem from a statistical physics point of view, and conjectured
that for the Potts model BOT(𝑞, 𝜆, 𝑑), the KS threshold is tight when 𝑑 is not too
large, 𝑞 ≤ 4 (in the ferromagnetic regime 𝜆 > 0) or 𝑞 ≤ 3 (in the antiferromagnetic
regime 𝜆 < 0). [126] proved that the KS threshold is tight for BOT(3, 𝜆, 𝑑) with
𝑑 large enough, and is not tight for BOT(𝑞, 𝜆, 𝑑) with 𝑞 ≥ 5, partially proving the
conjectures of [98]. [109] proved that the KS threshold is tight for BOT(𝑞, 𝜆,𝐷) for
𝑞 ≤ 4 and 𝐷 satisfying mild assumptions (which allows both the regular case and the
Poisson case).

[27] showed that the KS threshold is tight for BOT(2, 𝜋,𝑀, 𝑑) when 𝑀 is close
enough to a binary symmetric channel. [91] determined the exact set (up to uncer-
tainties on the boundary) of 𝜋 for which the KS threshold is tight when degree 𝑑 is
large enough. [19] determined the reconstruction threshold for the hardcore model
to the first order. [20] determined the reconstruction threshold for the random color-
ing model BOT(𝑞,− 1

𝑞−1
, 𝑑) to the first order, and [125] determined the threshold for

BOT(𝑞,− 1
𝑞−1

, 𝑑) and BOT(𝑞,− 1
𝑞−1

,Pois(𝑑)) to the third order. [59] determined the
threshold for BOT(𝑞,− 1

𝑞−1
, 𝐷) for 𝐷 satisfying mild conditions to the first order.

[87] gave non-reconstruction results for general BOT(𝑞, 𝜋,𝑀,𝐷) via contraction
of SKL information. Our work [72] (Chapter 6) gave non-reconstruction results for
BOT(𝑇, 𝑞, 𝜋,𝑀) and BOT(𝑞, 𝜋,𝑀,𝐷) via contraction of mutual information.

There are relatively fewer works on the reconstruction problems for BOHT. [112]
showed that BOHT(𝑟, 𝜆,Pois(𝑑)) admits reconstruction above the KS threshold. [130]
showed that reversible BOHT(𝑞, 𝑟,𝑀,Pois(𝑑)) admits reconstruction above the KS
threshold. Both results are derived via relationship between weak recovery for HSBM
and reconstruction for BOHT (Theorem 5.15). Our work [74] (Chapter 7) proved that
the KS threshold is tight for BOHT(𝑟, 𝜆,𝐷) for 𝑟 ≤ 4 (the case 𝑟 = 4 depends on a
numerically verified conjecture), and the KS threshold is not tight for BOHT(𝑟, 𝜆, 𝑑)
and BOHT(𝑟, 𝜆,Pois(𝑑)) for 𝑟 ≥ 7 and 𝑑 large enough.

The following result was first established by [103] in the case of two-community
symmetric SBMs, and later generalized to various settings [72, 109, 74]. Here we prove
a general version which works for any HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) satisfying Condition 5.2.

Theorem 5.15 (Weak recovery for HSBM). Let HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) be a model sat-
isfying Condition 5.2. Let BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑)) be the corresponding BOHT
model. If the BOHT model admits non-reconstruction, then weak recovery for the
HSBM is impossible.
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Proof. For constant 𝑘 ∈ Z≥0, by Theorem 5.10, for any fixed vertices 𝑢 ̸= 𝑣 ∈ 𝑉 ,
P[𝑢 ∈ 𝐵(𝑣, 𝑘)] = 𝑜(1). Therefore

𝐼(𝑋𝑣;𝐺,𝑋𝑢) ≤ 𝐼(𝑋𝑣;𝐺,𝑋𝜕𝐵(𝑣,𝑘), 𝑋𝑢)

= 𝐼(𝑋𝑣;𝐺,𝑋𝜕𝐵(𝑣,𝑘)) + 𝑜(1)

= 𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) + 𝑜(1), (5.54)

where the first step is by data processing inequality, the second step is by Prop. 5.6,
and the third step is by Theorem 5.10. Taking limit 𝑛 → ∞, then taking limit
𝑘 →∞, we get

lim
𝑛→∞

𝐼(𝑋𝑣;𝐺,𝑋𝑢) ≤ lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
). (5.55)

RHS is zero by the assumption that the BOHT model admits non-reconstruction. By
Pinsker’s inequality, we have

𝐼TV(𝑋𝑣;𝐺,𝑋𝑢) ≤
√︂

1

2 log 𝑒
𝐼(𝑋𝑣;𝐺,𝑋𝑢) = 𝑜(1). (5.56)

In other words, for every 𝑖, 𝑗 ∈ [𝑞], we have

P(𝑋𝑣 = 𝑗|𝐺,𝑋𝑢 = 𝑖) = 𝜋𝑗 ± 𝑜(1). (5.57)

From this point we borrow an argument from [109]. Assume for the sake of
contradiction that weak recovery is possible, i.e., there exists 𝑆 = 𝑆(𝐺) ⊆ 𝑉 such
that for some 𝜖 > 0, with probability 1−𝑜(1), there exists 𝑖, 𝑗 ∈ [𝑞] such that Eq. (5.12)
holds. For simplicity of notation, we define Ω𝑖 := {𝑢 ∈ 𝑉 : 𝑋𝑢 = 𝑖}. Then we can
write Eq. (5.12) as

|𝑆 ∩ Ω𝑖|
|Ω𝑖|

− |𝑆 ∩ Ω𝑗|
|Ω𝑗|

> 𝜖. (5.58)

By concentration inequalities, we have

P
[︂⃒⃒⃒⃒
|Ω𝑖|
|𝑉 |
− 𝜋𝑖

⃒⃒⃒⃒
< |𝑉 |−0.4∀𝑖 ∈ [𝑞]

]︂
= 1− 𝑜(1). (5.59)

By Eq. (5.59) and Eq. (5.58), we have

P [|𝑆| ≥ 𝜖1|𝑉 |] = 1− 𝑜(1) (5.60)

for some consant 𝜖1 > 0. By Eq. (5.58), Eq. (5.60) and∑︁
𝑖∈[𝑞]

|𝑆 ∩ Ω𝑖|
|Ω𝑖|

· |Ω𝑖|
|𝑉 |

=
|𝑆|
|𝑉 |

, (5.61)
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we see that for some 𝜖2 > 0, with probability 1− 𝑜(1), there exists 𝑖 ∈ [𝑞] such that

|𝑆 ∩ Ω𝑖|
|𝑆|

− 𝜋𝑖 > 𝜖2. (5.62)

Then

E

⎡⎣∑︁
𝑖∈[𝑞]

𝜋−1
𝑖 |𝑆 ∩ Ω𝑖|2 − |𝑆|2

⎤⎦
= E

⎡⎣∑︁
𝑖∈[𝑞]

𝜋−1
𝑖 (|𝑆 ∩ Ω𝑖| − 𝜋𝑖|𝑆|)2

⎤⎦
≥ (𝜖22 − 𝑜(1))|𝑉 |2. (5.63)

Therefore

𝜖22 − 𝑜(1) ≤
1

|𝑉 |2
E

⎡⎣∑︁
𝑖∈[𝑞]

𝜋−1
𝑖 |𝑆 ∩ Ω𝑖|2 − |𝑆|2

⎤⎦
=

1

|𝑉 |2
∑︁
𝑢,𝑣∈𝑉

E

⎡⎣1{𝑢, 𝑣 ∈ 𝑆} ·
⎛⎝∑︁
𝑖∈[𝑞]

𝜋−1
𝑖 1{𝑋𝑢 = 𝑋𝑣 = 𝑖} − 1

⎞⎠⎤⎦
=

1

|𝑉 |2
∑︁
𝑢,𝑣∈𝑉

E

⎡⎣1{𝑢, 𝑣 ∈ 𝑆}∑︁
𝑖∈[𝑞]

𝜋−1
𝑖 E

[︀
1{𝑋𝑢 = 𝑋𝑣 = 𝑖} − 𝜋2

𝑖 |𝐺
]︀⎤⎦

= 𝑜(1),

which is contradiction. This finishes the proof.

5.4 Mutual information and boundary irrelevance
In this section we show that for an HSBM, if the corresponding BOHT model admits
a property called boundary irrelevance, then there is a formula for HSBM mutual
information in terms of tree recursions.

The HSBM mutual information is a very natural quantity showing the amount of
information about the community structure contained in the unlabeled hypergraph.

Definition 5.16 (HSBM mutual information). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A).
We define the HSBM mutual information as

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺). (5.64)

The HSBM mutual information problem is closely related to the boundary irrele-
vance property for BOHT.
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Definition 5.17 (Boundary irrelevance for BOHT). Consider the model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀)
or the model BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷). Let 𝑊 be a channel with input alphabet [𝑞] (called
the survey channel). Let 𝜔𝑢 ∼ 𝑊 (·|𝜎𝑢) independently for all vertices 𝑢 ∈ 𝑉 (𝑇 ). We
say the BOHT model admits boundary irrelevance (BI) with respect to 𝑊 if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) > 0. (5.65)

We say the BOHT model admits boundary irrelevance (BI) if it admits BI with respect
to all erasure channels EC𝜖 with 𝜖 < 1, where 𝜖 denotes erasure probability.

For the model BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷), boundary irrelevance can be interpreted using
the BP operator. For a fixed survey channel 𝑊 , we define the BP𝑊 operator as

BP𝑊 (𝑃 ) = BP(𝑃 ) ⋆ 𝑊. (5.66)

Then the model admits BI with respect to 𝑊 if and only if the BP𝑊 operator has a
unique fixed point.

The SBM mutual information problem has been studied by several works. [43] gave
a mutual information formula for the disassortative simple SBM (SBM(𝑛, 𝑞, 𝑎, 𝑏) with
𝑎 < 𝑏). [54] conjectured a formula for two-community symmetric SBM SBM(𝑛, 2, 𝑎, 𝑏),
and proved that their formula matches the one of [43] when 𝑎 < 𝑏, and is an
lower bound of the mutual information when 𝑎 > 𝑏. Our work [4] (Chapter 10)
gave a mutual information formula for SBM(𝑛, 2, 𝑎, 𝑏) when SNR is outside a finite
interval [1, 3.513]. [137] improved the result and gave a mutual information for-
mula for any SBM(𝑛, 2, 𝑎, 𝑏). It is open whether the formula conjectured in [54] is
equivalent to the one proved in [4, 137]. Our work [73] (Chapter 11) generalized
the previous work and gave a mutual information formula for SBM(𝑛, 𝑞, 𝑎, 𝑏) when
SNR > 1 + 𝐶max{𝜆, 𝑞−1} log 𝑞 or SNR < 𝑞−2. To our knowledge, there has been
no work studying the mutual information problem for models other than the simple
SBM (Definition 5.4).

Results of [4, 137, 73] are based on boundary irrelevance. Surprisingly, our work
[73] (Chapter 8) showed that boundary irrelevance for BOT(𝑞, 𝜆, 𝑑) and BOT(𝑞, 𝜆,Pois(𝑑))
does not hold between the reconstruction threshold and the Kesten-Stigum threshold,
which is known to exist when 𝑞 ≥ 4.

The following result was first established in our work [4] in the case of two-
community symmetric SBMs, and generalized in our work [73] to 𝑞-community sym-
metric SBMs. Here we prove a general version which works for any HSBM(𝑛, 𝑞, 𝑟, 𝜋,A)
satisfying Condition 5.2.

Theorem 5.18 (HSBM mutual information). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) be
a model satisfying Condition 5.2. Let BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑)) be the corresponding
BOHT model. If the BOHT model admits boundary irrelevance, then

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖, (5.67)

where 𝜔𝜖 denotes observation through survey channel EC𝜖.
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Proof. Let 𝑌 𝜖
𝑣 ∼ EC𝜖(·|𝑋𝑣) for 𝑣 ∈ 𝑉 and 𝜖 ∈ [0, 1]. Let 𝑢 ∈ 𝑉 be a fixed vertex. De-

fine 𝑓(𝜖) := 1
𝑛
𝐼(𝑋;𝐺, 𝑌 𝜖). Then 𝑓(0) = 𝐻(𝑋𝑢) and 𝑓(1) = 1

𝑛
𝐼(𝑋;𝐺). Furthermore,

calculation shows that

𝑓 ′(𝜖) = −𝐻(𝑋𝑢|𝐺, 𝑌 𝜖
𝑉 ∖𝑢). (5.68)

Let 𝑘 ∈ Z≥1 be a constant, 𝐵(𝑢, 𝑘) be the set of vertices with distance ≤ 𝑘 to 𝑢, and
𝜕𝐵(𝑢, 𝑘) be the set of vertices at distance 𝑘 to 𝑢. By the data processing inequality
and Prop. 5.6, we have

𝐼(𝑋𝑢;𝐺, 𝑌
𝜖
𝐵(𝑢,𝑘)∖𝑢) ≤ 𝐼(𝑋𝑢;𝐺, 𝑌

𝜖
𝑉 ∖𝑢) ≤ 𝐼(𝑋𝑢;𝐺, 𝑌

𝜖
𝐵(𝑢,𝑘)∖𝑢, 𝑋𝜕𝐵(𝑢,𝑘)) + 𝑜(1). (5.69)

By Theorem 5.10, we have

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)− 𝑜(1) ≤ 𝐼(𝑋𝑢;𝐺, 𝑌

𝜖
𝑉 ∖𝑢) ≤ 𝐼(𝜎𝜌;𝜔

𝜖
𝑇𝑘∖𝜌, 𝜎𝐿𝑘

|𝑇𝑘) + 𝑜(1). (5.70)

Taking limit 𝑛→∞, then taking limit 𝑘 →∞, we get

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘) ≤ lim

𝑛→∞
𝐼(𝑋𝑢;𝐺, 𝑌

𝜖
𝑉 ∖𝑢) ≤ lim

𝑘→∞
𝐼(𝜎𝜌;𝜔

𝜖
𝑇𝑘∖𝜌, 𝜎𝐿𝑘

|𝑇𝑘). (5.71)

The first and third terms are equal by the boundary irrelevance assumption. Therefore

lim
𝑛→∞

𝐼(𝑋𝑢;𝐺, 𝑌
𝜖
𝑉 ∖𝑢) = lim

𝑘→∞
𝐼(𝜎𝜌;𝜔

𝜖
𝑇𝑘∖𝜌|𝑇𝑘) (5.72)

So

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) = 𝐻(𝑋𝑢)−

ˆ 1

0

lim
𝑛→∞

𝐻(𝑋𝑢|𝐺, 𝑌 𝜖
𝑉 ∖𝑢)𝑑𝜖 (5.73)

=

ˆ 1

0

lim
𝑛→∞

𝐼(𝑋𝑢;𝐺, 𝑌
𝜖
𝑉 ∖𝑢)𝑑𝜖

=

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖.

5.5 Optimal recovery and uniqueness of BP fixed
point

In this section we consider the optimal recovery for HSBM, potentially with survey
observations. We show that properties of the corresponding BOHT models can lead
to optimal recovery algorithms for the HSBM.

Definition 5.19 (Optimal recovery for HSBM). Consider the model HSBM(𝑛, 𝑞, 𝑟, 𝜋,A).
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The optimal recovery problem asks to determine the optimal recovery accuracy

sup
𝑋p =𝑋p (𝐺)

lim
𝑛→∞

E
[︂
1− 1

𝑛
𝑑𝐻(𝑋p , 𝑋)

]︂
, (5.74)

where 𝑋p = 𝑋p (𝐺) goes over estimators with input 𝐺.
Let 𝑊 be a channel with input alphabet [𝑞] (called the survey channel). Let

𝑌𝑢 ∼ 𝑊 (·|𝑋𝑢) independently for all vertices 𝑢 ∈ 𝑉 (𝐺). The optimal recovery with
survey problem asks to determine the optimal recovery accuracy

sup
𝑋p =𝑋p (𝐺,𝑌 )

lim
𝑛→∞

E
[︂
1− 1

𝑛
𝑑(𝑋p , 𝑋)

]︂
, (5.75)

where 𝑑(𝑋, 𝑌 ) :=
∑︀

𝑢∈𝑉 1{𝑋𝑖 ̸= 𝑌𝑖} and 𝑋p = 𝑋p (𝐺) goes over estimators with input
𝐺 and 𝑌 .

In the optimal recovery with survey problem, we do not need to use 𝑑𝐻 distance
because the surveys break the symmetry between communities.

[49] conjectured that belief propagation (BP) with random initialization is op-
timal for any SBM(𝑛, 𝑞, 𝜋,A). This conjecture is still open, even in the case of
SBM(𝑛, 2, 𝑎, 𝑏). Nevertheless, some progress has been made. [104] gave an algorithm
for SBM(𝑛, 2, 𝑎, 𝑏) and proved its optimality when SNR is larger than a constant ([4]
estimated the constant to be at least 75). [4] proved that [104]’s algorithm is optimal
when SNR is larger than 3.513. [137] proved that [104]’s algorithm is optimal for any
SBM(𝑛, 2, 𝑎, 𝑏). All these proofs are based on the uniqueness of BP fixed point.

For the 𝑞-community simple SBM (SBM(𝑛, 𝑞, 𝑎, 𝑏)), [37] proved optimal recovery
algorithms when SNR > 𝐶𝑞 for some constant 𝐶𝑞 depending only on 𝑞. They did
not give an estimate for 𝐶𝑞 but from the proof, it is at least polynomial in 𝑞. They
used a local version of uniqueness of BP fixed point, stating that the BP recursion
converges to the same fixed point as long as the initial channel is close enough to
the Id channel. Our work [73] proved optimal recovery algorithms when SNR >
1 + 𝐶max{𝜆, 𝑞−1} log 𝑞 for some absolute constant 𝐶.

[38] generalized [37] and proved optimal recovery algorithms for certain SBM(𝑛, 𝑞, 𝜋,A)
with SNR large enough. This is the only work on optimal recovery for non-symmetric
SBM. To our knowledge, there has been no work studying the optimal recovery prob-
lem for HSBM with 𝑟 ≥ 3.

[83] studied the weak recovery problem for SBM(𝑛, 𝑞, 𝑎, 𝑏) with EC𝜖 survey. [110]
proved that the local belief propagation algorithm is optimal for SBM(𝑛, 2, 𝑎, 𝑏) with
BEC or BSC survey, in the same parameter ranges as [104]. [4] and [137] proved
optimality of the local BP algorithm for SBM(𝑛, 2, 𝑎, 𝑏) with survey in the same
parameter range as the results for SBM without survey.

We first prove the reduction for optimal recovery with survey. The reduction was
first established in [110] in the case of two-community symmetric SBMs with BSC
or BEC survey, and generalized in our work [73] to 𝑞-community symmetric SBMs.
Here we prove a general version which works for any HSBM(𝑛, 𝑞, 𝑟, 𝜋,A) satisfying
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Condition 5.2.

Theorem 5.20 (Optimal recovery for HSBM with survey). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋,A)
be a model satisfying Condition 5.2. Let 𝑊 be a survey channel. Let BOHT(𝑞, 𝑟, 𝜋,𝑀,Pois(𝑑))
be the corresponding BOHT model. If the BOHT model admits boundary irrelevance
with respect to 𝑊 , then for the HSBM with survey, the belief propagation (Algo-
rithm 1) achieves optimal recovery accuracy of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘), (5.76)

where 𝜔 denotes observation through survey channel.

Algorithm 1 Belief propagation algorithm for HSBM with survey
1: Input: HSBM hypergraph 𝐺 = (𝑉,𝐸), survey 𝑌 ∈ 𝒴𝑉
2: Output: 𝑋p ∈ [𝑞]𝑉

3: (𝑉, ̃︀𝐸) ← underlying graph of 𝐺, i.e., (𝑢, 𝑣) ∈ ̃︀𝐸 if and only if 𝑢 ̸= 𝑣 and there
exists a hyperedge 𝑒 ∈ 𝐸 containing both 𝑢 and 𝑣

4: 𝑚(0)
𝑢→𝑣 ← posterior distribution of 𝑋𝑢 conditioned on 𝑌𝑢 ∀(𝑢, 𝑣) ∈ ̃︀𝐸

5: 𝑟 ← ⌊log0.9 𝑛⌋
6: for 𝑡 = 0→ 𝑟 − 1 do
7: for (𝑢, 𝑣) ∈ ̃︀𝐸 do
8: 𝑚

(𝑡+1)
𝑢→𝑣 ← posterior distribution of 𝑋𝑢 conditioned on 𝑌𝑢 and 𝑚(𝑡)

𝑤→𝑢 for all
(𝑤, 𝑢) ∈ ̃︀𝐸, 𝑤 ̸= 𝑣 ◁ Computation of the posterior distribution uses the
hypergraph structure

9: end for
10: end for
11: for 𝑢 ∈ 𝑉 do
12: 𝑚𝑢 ← posterior distribution of𝑋𝑢 conditioned on 𝑌𝑢 and𝑚𝑤→𝑢 for (𝑤, 𝑢) ∈ ̃︀𝐸.
13: 𝑋p 𝑢 ← argmax𝑖∈[𝑞]𝑚𝑢(𝑖)
14: end for
15: return 𝑋p

Proof. We run Algorithm 1. Let 𝜌 ∈ 𝑉 be a fixed vertex. For 𝑘 ∈ Z≥1, define 𝐵(𝜌, 𝑘),
𝜕𝐵(𝜌, 𝑘) as in Theorem 5.10. By Theorem 5.10 and induction on 𝑡, we see that 𝑚(𝑡)

𝑢→𝑣

has the same distribution (up to 𝑜(1) TV distance) as the posterior distribution of 𝜎𝜌
conditioned 𝜔𝑇𝑡 . Therefore 𝑚(𝑟)

𝑢→𝑣 has the same distribution (up to 𝑜(1) TV distance)
as the posterior distribution of 𝜎𝜌 conditioned 𝜔𝑇𝑟 . So as 𝑛 → ∞, Algorithm 1
achieves accuracy

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘). (5.77)
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On the other hand, we have

𝑃𝑒(𝑋𝜌|𝐺, 𝑌 ) ≥ 𝑃𝑒(𝑋𝜌|𝐺, 𝑌,𝑋𝜕𝐵(𝜌,𝑘))

= 𝑃𝑒(𝑋𝜌|𝐺, 𝑌𝐵(𝜌,𝑘), 𝑋𝜕𝐵(𝜌,𝑘))± 𝑜(1)
≥ 𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘 , 𝜎𝐿𝑘

)− 𝑜(1).
= 𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘)− 𝑜(1). (5.78)

where the first step is by data processing inequality, the second step is by Prop. 5.6,
the third step is by Theorem 5.10, the fourth step is by boundary irrelevance with
respect to 𝑊 . Taking limit 𝑛→∞, then 𝑘 →∞, we see that

𝑃𝑒(𝑋𝜌|𝐺, 𝑌 ) ≥ lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘). (5.79)

This shows that Algorithm 1 is optimal.

Definition 5.21 (Uniqueness of BP fixed point for BOHT). Consider a symmetric
BOHT model BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷). We say the model admits uniqueness of BP fixed
point if the corresponding BP operator (Definition 5.13) has only one non-trivial fixed
point in the space of 𝑞-FMS channels.

We say the model admits (global) stability of BP fixed point if it admits unique-
ness of BP fixed point, and starting from any non-trivial 𝑞-FMS channel 𝑃 , the BP
recursion converges to the unique non-trivial fixed point.

For HSBM without survey, optimal recovery is more difficult. The reason is that
one needs a sufficiently good initial estimator to start the belief propagation. In
particular, an estimator as in the definition of weak recovery (Definition 5.5) seems
insufficient for the purpose of optimal recovery.

The reduction was first established in [104] in the case of two-community sym-
metric SBMs. [37] proved a version for 𝑞-community symmetric SBMs with strong
assumptions on the initial algorithm. Our work [73] proved the case of 𝑞-community
symmetric SBMs which strictly generalizes the one in [104]. Here we prove a general
version which works for symmetric HSBMs.

Theorem 5.22 (Optimal recovery for symmetric HSBM). Let (𝑋,𝐺) ∼ HSBM(𝑛, 𝑞, 𝑟, 𝜋 =
Unif([𝑞]),A) be a symmetric HSBM with non-zero signal strength (Definition 5.3).
Let BOHT(𝑞, 𝑟, 𝜋 = Unif([𝑞]),𝑀,Pois(𝑑)) be the corresponding BOHT model.

Suppose there is an algorithm 𝒜 and a constant 𝜖 > 0 (not depending on 𝑛) such
that with probability 1− 𝑜(1), the empirical transition matrix 𝐹 ∈ R𝑞×𝑞 defined as

𝐹𝑖,𝑗 :=
#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑖,𝑋p 𝑣 = 𝑗}

#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑖}
, 𝑋p := 𝒜(𝐺) (5.80)

satisfies

(1) ‖𝐹⊤
1− 1‖∞ = 𝑜(1);

(2) 𝜎min(𝐹 ) > 𝜖, where 𝜎min is the smallest singular value;
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(3) there exists a permutation 𝜏 ∈ Aut([𝑞]) such that 𝐹𝜏(𝑖),𝑖 > 𝐹𝜏(𝑖),𝑗 + 𝜖 for all
𝑖 ̸= 𝑗 ∈ [𝑞].

(Note that we do not assume 𝐹 stays the same for different calls to 𝒜.)
If the BOHT model admits stability of BP fixed point, then there is an algorithm

(Algorithm 2) achieving the optimal recovery accuracy of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜎𝐿𝑘
). (5.81)

The theoretical guarantees of the initial recovery algorithm provided by previous
works (that achieve the KS threshold) [9, 128] do not seem to be enough for our
purpose. There are several different ways to formulate the initial point requirement.
The one we state here is weaker than [37] (which required the initial point to be
close enough to Id, which seems unlikely to hold near the KS threshold), and a
generalization of the requirement in the 𝑞 = 2 case used by [104]. Our initial point
requirement seems more likely to hold near the KS threshold. For example, it is
plausible that a balanced algorithm would achieve the empirical transition matrix 𝐹
to be close to 𝑃𝜆 for some |𝜆| = Ω(1).

We remark that for the case 𝑞 = 2, any algorithm that works for weak recovery
can be made into an algorithm that satisfies the conditions in Theorem 5.22. Recall
an algorithm for weak recovery outputs a subset 𝑆 satisfying Eq. (5.12). Then for
some 𝜖′ > 0 not depending on 𝑛, with high probability we have 𝜖′𝑛 < |𝑆| < (1− 𝜖′)𝑛.
If we randomly insert (if |𝑆| < 𝑛/2) or delete (if |𝑆| > 𝑛/2) elements of 𝑆, then in the
end we can get a set of size 𝑛/2. This gives an estimator which always outputs a set
𝑆 of size 𝑛/2, and satisfies Eq. (5.12) with a possibility smaller, but still constant 𝜖.
Then the empirical transition matrix 𝐹 defined in Eq. (5.80) is within 𝑜(1) distance
to a non-trivial BSC channel, thus satisfies all three conditions in Theorem 5.22.

Proof of Theorem 5.22. We run Algorithm 2. The proof is a variation of the proof in
[104].

We first note that because our HSBM is symmetric, the signal matrix 𝑄 is a
multiple of a Potts matrix 𝑃𝜆. Therefore the signal matrix ̃︀𝑄 of the BOHT model is
a Potts channel. Note that 𝑄𝑖,𝑗 denotes the expected number of neighbors with label
𝑗 for a vertex with label 𝑖.

Choice of 𝑢𝑖. For every 𝑖 ∈ [𝑞], the set {𝑢 ∈ 𝑈 : 𝑋𝑢 = 𝑖} has size 𝑛
𝑞
± 𝑜(𝑛).

Therefore with high probability, there exists 𝑢 ∈ 𝑈 with 𝑋𝑢 = 𝑖 that satisfies (a).
Furthermore, because 𝑌 is independent of 𝑈 , we can equivalently first generate the
hypergraph 𝐺∖𝑈 , then compute 𝑌 , then generate the edges adjacent to 𝑈 . In this
way, we see that with high probability, for all 𝑢 ∈ 𝑈 satisfying (a), the empirical
distribution of {𝑌𝑣 : 𝑣 ∈ 𝑉, (𝑢, 𝑣) ∈ ̃︀𝐸} has 𝑜(1) total variation distance to 𝑃𝜆𝐹 .
By assumption (1)(3) in Theorem 5.22, we have 𝑠(𝑃𝜆𝐹 )𝑖,𝜏(𝑖) > 𝑠(𝑃𝜆𝐹 )𝑖,𝜏(𝑗) + |𝜆|𝜖 for
𝑖 ∈ [𝑞], 𝑗 ∈ [𝑞]∖𝑖. Therefore with high probability, for all 𝑢 ∈ 𝑈 satisfying (a), we can
identify 𝑋𝑢 up to a permutation 𝜏 ∈ Aut([𝑞]) by computing argmax𝑗∈[𝑞] 𝑠𝑁𝑌 (𝑢, 𝑗).
Therefore with high probability we are able to choose the 𝑢𝑖s in Line 10.

Alignment of 𝑌 with 𝑌 𝑣. The above discussion still holds with 𝑌 replaced
by 𝑌 𝑣. One thing to note is that by Theorem 5.10, |𝐵(𝑣, 𝑟 − 1)| = 𝑛𝑜(1) with high
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Algorithm 2 Belief propagation algorithm for symmetric HSBM
1: Input: HSBM hypergraph 𝐺 = (𝑉,𝐸), initial recovery algorithm 𝒜
2: Output: 𝑋p ∈ [𝑞]𝑉

3: (𝑉, ̃︀𝐸) ← underlying graph of 𝐺, i.e., (𝑢, 𝑣) ∈ ̃︀𝐸 if and only if 𝑢 ̸= 𝑣 and there
exists a hyperedge 𝑒 ∈ 𝐸 containing both 𝑢 and 𝑣

4: 𝑄← signal matrix of the model (Definition 5.3)
5: 𝑠← 1 if 𝑄1,1 > 𝑄1,2; 𝑠← −1 if 𝑄1,1 < 𝑄1,2

6: 𝑟 ← ⌊log0.9 𝑛⌋
7: 𝑈 ← random subset of 𝑉 of size ⌊

√
𝑛⌋

8: 𝑌 ← 𝒜(𝐺∖𝑈)
9: For 𝑖 ∈ [𝑞], 𝑢 ∈ 𝑈 , compute ̃︀𝑁𝑌 (𝑢, 𝑖)← #{𝑌𝑣 = 𝑖 : 𝑣 ∈ 𝑉, (𝑢, 𝑣) ∈ ̃︀𝐸}

10: For 𝑖 ∈ [𝑞], choose 𝑢𝑖 ∈ 𝑈 such that

(a) 𝑢𝑖 has at least
√
log 𝑛 neighbors in 𝑉 ∖𝑈 , and

(b) 𝑠 ̃︀𝑁𝑌 (𝑢𝑖, 𝑖) > 𝑠 ̃︀𝑁𝑌 (𝑢𝑖, 𝑗) for 𝑗 ∈ [𝑞]∖𝑖.
11: for 𝑣 ∈ 𝑉 ∖𝑈 do
12: 𝑌 𝑣 ← 𝒜(𝐺∖𝐵(𝑣, 𝑟 − 1)∖𝑈)
13: Relabel 𝑌 𝑣 by performing a permutation 𝜏 ∈ Aut([𝑞]), so that 𝑠 ̃︀𝑁𝑌 𝑣(𝑢𝑖, 𝑖) >

𝑠 ̃︀𝑁𝑌 𝑣(𝑢𝑖, 𝑗) for 𝑖 ∈ [𝑞], 𝑗 ∈ [𝑞]∖𝑖. Permute randomly if this cannot be achieved.
14: Define empirical transition matrix 𝑀 𝑣 : [𝑞]→ [𝑞]𝑟−1 as

𝑀 𝑣
𝑖,(𝑖1,...,𝑖𝑟−1)

← 𝑁𝑌 𝑣(𝑢𝑖, (𝑖1, . . . , 𝑖𝑟−1))∑︀
𝑗1,...,𝑗𝑟−1∈[𝑞]𝑁𝑌 𝑣(𝑢𝑖, (𝑗1, . . . , 𝑗𝑟−1))

, (5.82)

where 𝑁𝑌 𝑣(𝑢, (𝑗1, . . . , 𝑗𝑟−1))←

∑︀
(𝑢,𝑤1,...,𝑤𝑟−1)∈𝐸
𝜎∈Aut([𝑟−1])

1{𝑌 𝑣
𝑤𝑘

= 𝑗𝜎(𝑘)∀𝑘 ∈ [𝑟 − 1]}

∑︀
𝜎∈Aut([𝑟−1])

1{𝑗𝑘 = 𝑗𝜎(𝑘)∀𝑘 ∈ [𝑟 − 1]}
(5.83)

15: Run belief propagation on 𝐵(𝑣, 𝑟 − 1) with boundary condition 𝑌 𝑣
𝜕𝐵(𝑣,𝑟), as-

suming the channel from 𝜕𝐵(𝑣, 𝑟 − 1) to 𝜕𝐵(𝑣, 𝑟) is 𝑀 𝑣

16: 𝑋p 𝑣 ← maximum likelihood label according to belief propagation
17: end for
18: 𝑋p 𝑣 ← 1 for all 𝑣 ∈ 𝑈
19: return 𝑋p

probability. So removing 𝐵(𝑣, 𝑟−1) from 𝐺 has negligible influence to the the empir-
ical distribution of labels of neighbors of 𝑢𝑖s. Therefore, with high probability, we are
able to permute the labels 𝑌 𝑣 so that the empirical distributions align with that of 𝑌 .
(Note that we do not assume the empirical distributions for 𝑌 and 𝑌 𝑣 are the same;
we only use that they both satisfy condition (3).) Furthermore, we can compute the
transition matrix

𝑀 𝑣 = (𝐹 𝑣)×(𝑟−1) ∘𝑀 ± 𝑜(1). (5.84)
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Boundary condition of BP. Because 𝑌 𝑣 is independent of edges between
𝜕𝐵(𝑣, 𝑟−1) and 𝜕𝐵(𝑣, 𝑟), we can equivalently first generate the hypergraph𝐺∖𝐵(𝑣, 𝑟−
1)∖𝑈 , then compute 𝑌 𝑣, then generate 𝐸(𝜕𝐵(𝑣, 𝑟 − 1), 𝜕𝐵(𝑣, 𝑟)). In this way, it is
clear that 𝑌 𝑣

𝑤1,...,𝑤𝑟−1
for one (𝑢,𝑤1, . . . , 𝑤𝑟−1) ∈ 𝐸(𝜕𝐵(𝑣, 𝑟−1), 𝜕𝐵(𝑣, 𝑟)) is equivalent

to one observation of 𝑋𝑢 through channel 𝑀 𝑣.
Property of 𝑀 𝑣. Note that 𝑀 𝑣 ≥deg 𝑃𝜆−𝑜(1)𝐹

𝑣 by splitting hyperedges into
individual edges. By Lemma 5.23 and condition (2), we have 𝐹𝑣 ≥deg 𝑃𝜆′ for some
constant 𝜆′ > 0 not depending on 𝑛. Therefore 𝑀 𝑣 ≥deg 𝑃𝜆′′ for some 𝜆′′ > 0 not
depending on 𝑛.

Convergence of BP recursion. Because 𝜆′′ > 0 is a constant, by the stability of
BP fixed point assumption, for any 𝜅 > 0, there exists some integer 𝑘0 not depending
on 𝑛 such that

𝑃𝑒(BP
𝑘0(𝑀 𝑣)) ≥ 𝑃𝑒(BP

𝑘0(𝑃𝜆′′)) > lim
𝑘→∞

𝑃𝑒(BP
𝑘(Id))− 𝜅. (5.85)

Because 𝑟 = 𝜔(1), belief propagation in Line 15 converges to 𝑜(1) in TV distance to
the fixed point. Therefore we achieve desired probability of error in Line 16.

Lemma 5.23. Fix 𝑞 ∈ Z≥2 and 𝜖 > 0. Then there exists 𝜆 > 0 such that for any
probability kernel 𝑈 : [𝑞]→ [𝑞] with 𝜎min(𝑈) > 𝜖, we have 𝑃𝜆 ≤deg 𝑈 .

Proof. Because 𝜎min(𝑈) > 𝜖, we have

max
𝑖,𝑗∈[𝑞]

|
(︀
𝑈−1

)︀
𝑖,𝑗
| ≤ ‖𝑈−1‖2 ≤

√
𝑞𝜖−1. (5.86)

Let 𝐽 ∈ R𝑞×𝑞 be the all ones matrix. Because 𝑈 is a stochastic matrix, we have
𝑈−1𝐽 = 𝐽 . Because the maximum (in absolute value) entry of 𝑈−1 is bounded by an
constant, for some constant 𝜆 > 0 the matrix 𝑈−1𝑃𝜆 has non-negative entries. Note
that 𝑈−1𝑃𝜆1 = 𝑈−1

1 = 1. So 𝑈−1𝑃𝜆 is a stochastic matrix. Let 𝑅 = 𝑈−1𝑃𝜆. Then
𝑅 ∘ 𝑈 = 𝑈𝑅 = 𝑃𝜆, thus 𝑃𝜆 ≤deg 𝑈 .
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Chapter 6

Reconstruction for broadcasting on
trees

We establish a simple method for proving non-reconstruction results for broadcast-
ing on trees (BOT). The method is via input-restricted KL contraction coefficients.
Combined with computations of input-restricted KL contraction coefficients for the
Potts channels (Chapter 4), this method gives very good non-reconstruction results in
the finite 𝑑 regime. A special case of the Potts model is the problem of reconstructing
color of the root of a 𝑞-colored tree given knowledge of colors of all the leaves. We
show that to have a non-trivial reconstruction probability the branching number of
the tree should be at least

log 𝑞

log 𝑞 − log(𝑞 − 1)
= (1− 𝑜(1))𝑞 log 𝑞. (6.1)

This recovers previous results of [125, 20] in (slightly) more generality, but more
importantly avoids the need for any coloring-specific arguments. Combined with
the reduction established in Chapter 5, we improve the state-of-the-art on the weak
recovery threshold for the 𝑞-community symmetric stochastic block model (𝑞-SBM),
for all 𝑞 ≥ 3. To further show the power of our method, we prove optimal non-
reconstruction results for a broadcasting on trees model with Gaussian kernels, closing
a gap left open by [60]. This chapter is based on [72].

Chapter outline In Section 6.1, we present our method for proving non-reconstruction
results for the BOT model. In Section 6.2, we apply our method to several examples
and compare with previous results. In Section 6.3, we derive impossibility of weak
recovery results for the 𝑞-SBM. In Section 6.4, we apply our method to a BOT model
with continuous alphabet previously studied by [60], and establish the reconstruction
threshold for this model.
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6.1 Non-reconstruction for broadcasting on trees

In this section we prove a non-reconstruction result for a general class of BOT models,
using input-restricted KL contraction coefficients. We recall the definition of the BOT
model (Definition 5.9).

Fix an integer 𝑞 ∈ Z≥2, a distribution 𝜋 ∈ 𝒫([𝑞]) with full support, and a channel
𝑀 : [𝑞]→ [𝑞] satisfying 𝜋𝑀 = 𝜋 (recall Eq. (5.39)). Let 𝑇 be a possibly infinite tree
with a marked root 𝜌. We generate a label 𝜎𝑣 ∈ [𝑞] for every vertex 𝑣 ∈ 𝑇 as follows.

1. Generate 𝜎𝜌 ∼ 𝜋.

2. Suppose we have generated a label for a vertex 𝑢. For every child 𝑣 of 𝑢, we
generate 𝜎𝑣 according to

P(𝜎𝑣 = 𝑗|𝜎𝑢 = 𝑖) =𝑀𝑖,𝑗. (6.2)

Let 𝐿𝑘 denote the set of vertices at distance 𝑘 to 𝜌. We say the model admits
reconstruction (Definition 5.14) if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
) > 0, (6.3)

and the model admits non-reconstructing if the limit is equal to zero. For any vertex
𝑢, let 𝑐(𝑢) denote the set of children of 𝑢.

We recall the definition of the branching number br(𝑇 ) of a tree 𝑇 .

Definition 6.1 (Branching number [92]). Let 𝑇 be a possibly infinite tree rooted at
𝜌. Define a flow to be a function 𝑓 : 𝑉 (𝑇 ) → R≥0 such that for every vertex 𝑢, we
have

𝑓𝑢 =
∑︁
𝑣∈𝑐(𝑢)

𝑓𝑣. (6.4)

Define br(𝑇 ) to be the sup of all numbers 𝜆 such that there exists a flow 𝑓 with
𝑓𝜌 > 0, and 𝑓𝑢 ≤ 𝜆−𝑑(𝑢,𝜌) for all vertices 𝑢, where 𝑑(𝑢, 𝜌) is the distance between 𝑢
and 𝜌.

We are now ready to state the main theorem of this chapter.

Theorem 6.2 (Non-reconstruction for BOT). The model BOT(𝑇, 𝑞, 𝜋,𝑀) (Defini-
tion 5.9) admits non-reconstruction if

𝜂KL(𝜋,𝑀
*) br(𝑇 ) < 1, (6.5)

where br(𝑇 ) is the branching number of 𝑇 (Definition 6.1), 𝑀* denotes the reverse
channel of 𝑀 with respect to 𝜋, and 𝜂KL denotes the KL contraction coefficient (Def-
inition 2.4).
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Proof. For any vertex 𝑢, let 𝐿𝑢,𝑘 denote the set of descendants of 𝑢 at distance 𝑘 to
𝜌. Define

𝑎𝑢 = 𝐻(𝜋)−1𝜂KL(𝜋,𝑀
*)𝑑(𝑢,𝜌) lim

𝑘→∞
𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘

). (6.6)

By DPI, 𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘
) is non-increasing for 𝑘 ≥ 𝑑(𝑢, 𝜌), so the limit exists.

For any 𝑣 ∈ 𝑐(𝑢), consider the Markov chain

𝜎𝐿𝑣,𝑘
→ 𝜎𝑣

𝑀*
−−→ 𝜎𝑢. (6.7)

Because 𝜋 is an invariant distribution, the distributions of 𝜎𝑣 and 𝜎𝑢 are both 𝜋. By
SDPI, we have

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
) ≤ 𝜂KL(𝜋,𝑀

*)𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘
). (6.8)

Because (𝜎𝐿𝑣,𝑘
)𝑣∈𝑐(𝑢) are independent conditioned on 𝜎𝑢, we have

𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘
) ≤

∑︁
𝑣∈𝑐(𝑢)

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
). (6.9)

Combine the two inequalities and let 𝑘 →∞. We get that

𝑎𝑢 ≤
∑︁
𝑣∈𝑐(𝑢)

𝑎𝑣. (6.10)

Clearly,

𝑎𝑢 ≤ 𝜂KL(𝜋,𝑀
*)𝑑(𝑢,𝜌) (6.11)

for all vertices 𝑢. However, 𝑎 is not quite a flow yet. We define a flow 𝑏 from 𝑎. For
a vertex 𝑢, let 𝑢0 = 𝜌, . . . , 𝑢ℓ = 𝑢 be the shortest path from 𝜌 to 𝑢. Define

𝑏𝑢 = 𝑎𝑢
∏︁

0≤𝑗≤ℓ−1

𝑎𝑢𝑗∑︀
𝑣∈𝑐(𝑢𝑗) 𝑎𝑣

. (6.12)

(If
∑︀

𝑣∈𝑐(𝑢𝑗) 𝑎𝑣 = 0 for some 𝑗, then let 𝑏𝑢 = 0.) It is not hard to check that

𝑏𝑢 =
∑︁
𝑣∈𝑐(𝑢)

𝑏𝑣, (6.13)

and that

𝑏𝑢 ≤ 𝑎𝑢 ≤ 𝜂KL(𝜋,𝑀
*)𝑑(𝑢,𝜌). (6.14)
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By definition of branching number, we must have 𝑏𝜌 = 0. This means

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
) = 0, (6.15)

and non-reconstruction holds.

In the definition of the weak recovery problem, it is not necessary to require 𝜎𝜌
to have distribution 𝜋. Let 𝜎𝑖𝐿𝑘

denote the leaf labels conditioned on 𝜎𝜌 = 𝑖. Then
Theorem 6.1 implies that when 𝜂KL(𝜋,𝑀

*) br(𝑇 ) < 1, we have

lim
𝑘→∞

TV(𝜎𝑖𝐿𝑘
, 𝜎𝑗𝐿𝑘

) = 0, (6.16)

for 𝑖 ̸= 𝑗 ∈ [𝑞].
Theorem 6.2 directly implies non-reconstruction results for Galton-Watson trees.

Corollary 6.3. Consider the model BOT(𝑞, 𝜆,𝐷) (Definition 5.9) with 𝑑 = E𝑏∼𝐷𝑏.
If

𝜂KL(𝜋,𝑀
*)𝑑 < 1, (6.17)

then the model admits non-reconstruction.

Proof. Let 𝑇 be a Galton-Watson tree with offspring distrbution 𝐷. If 𝑇 extincts,
then non-reconstruction obviously hold. Conditioned on non-extinction, we have
br(𝑇 ) = 𝑑 almost surely by [92], thus Theorem 6.2 applies.

[115] proved non-reconstruction results on arbitrary directed acyclic graphs (in
particular trees) by reducing to percolation problems on the same graph. In the case
of the BOT model, their result says that the model admits non-reconstruction if

𝜂KL(𝑀) br(𝑇 ) < 1. (6.18)

For any channel 𝑀 , we have

𝜂KL(𝜋,𝑀) ≤ 𝜂KL(𝑀), (6.19)

and the inequality is often strict. So for reversible channels (i.e., 𝑀 =𝑀*), Theorem
6.2 implies result (6.18). We do not know, however, how to extend Theorem 6.2 to
general DAGs using input-restricted contraction coefficients.

[87] proved a non-reconstruction result very similar to Theorem 6.2. They consid-
ered the symmetrized KL divergence

𝐷SKL(𝑃 ||𝑄) = 𝐷(𝑃 ||𝑄) +𝐷(𝑄||𝑃 ), (6.20)

which is 𝑓 -divergence with 𝑓(𝑥) = (𝑥−1) log 𝑥. They proved that non-reconstruction
holds for a Galton-Watson tree with expected offspring 𝑑 if

𝜂SKL(𝜋,𝑀
*)𝑑 < 1. (6.21)
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The key step is the proof is the additivity of SKL-information under ⋆-convolution
(Eq. (2.17)). By slightly modifying the proof of Theorem 6.2, their result can be
strengthened to that the model BOT(𝑇, 𝑞, 𝜋,𝑀) admits non-reconstruction if

𝜂SKL(𝜋,𝑀
*) br(𝑇 ) < 1. (6.22)

In Section 6.2 we make some comparisons with their results, showing that in the
cases we consider, the KL contraction method gives better results than the SKL
contraction method. We remark that the input-unrestricted KL and SKL contraction
coefficients agree by Eq. (2.42) and operator convexity of the relevant 𝑓 -divergences,
thus differences occur only for the input-restricted contraction coefficients.

In general, if some 𝑓 -information (Definition 2.3) is subadditive under ⋆-convolution
(e.g., Eq. (2.16), Eq. (2.17)), then non-reconstruction holds for any tree 𝑇 satisfying

𝜂𝑓 (𝜋,𝑀
*) br(𝑇 ) < 1, (6.23)

by modifying the proof of Theorem 6.2. An interesting question is, given a pair
(𝜋,𝑀), what is the smallest 𝜂𝑓 (𝜋,𝑀*) over all 𝑓 -information subadditive under ⋆-
convolution. Solving this question would give the best possible non-reconstruction
result that can be achieved by our method.

6.2 Examples

In this section we apply Theorem 6.2 to several examples and demonstrate the power
of our method.

6.2.1 Ising model

Recall the Ising model (Definition 5.9), where 𝜋 = Unif({±}) and 𝑀 = BSC𝛿. Be-
cause 𝑀 is reversible, Eq. (2.31) implies that

𝜂KL(𝜋,𝑀
*) = (1− 2𝛿)2. (6.24)

Therefore Theorem 6.2 implies non-reconstruction for (1− 2𝛿)2 br(𝑇 ) < 1, which was
shown in [23] (for regular trees) and [63] (for general trees). So for the Ising model
on trees our method can give the tight reconstruction threshold.

6.2.2 Potts model

Recall the Potts model (Definition 5.9), where 𝜋 = Unif([𝑞]) and𝑀 = 𝑃𝜆 (Eq. (4.11)).
Because the Potts channels are reversible, Theorem 6.2 implies non-reconstruction for

𝜂KL(𝜋, 𝑃𝜆) br(𝑇 ) < 1. (6.25)

Let us briefly discuss previous non-reconstruction results for the Potts channel.
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[107] proved non-reconstruction for

𝑞𝜆2

(𝑞 − 2)𝜆+ 2
br(𝑇 ) < 1. (6.26)

By Prop. 4.25 we see that Eq. (6.26) exactly corresponds to using the input-unrestricted
KL contraction coefficient 𝜂KL(𝑃𝜆). Therefore, Theorem 6.2 is strictly stronger than
[107]. [95] proved non-reconstruction for regular trees for

𝑑(1− 𝜖) 𝑞𝜆2

(𝑞 − 2)𝜆+ 2
< 1 (6.27)

for some 𝜖 = 𝜖(𝑞, 𝑑, 𝜆) > 0.
[126] obtained very sharp results for regular trees, including that Kesten-Stigum

(KS) threshold is tight for 𝑞 = 3 and large enough 𝑑, and an expression for the
reconstruction threshold for larger 𝑞 and 𝑑 → ∞. [109] improved [126] and proved
that the KS threshold is tight for 𝑞 = 3, 4 and large enough tree, for Galton-Watson
random trees with mild assumptions on the offspring distribution. It is unclear what
results can be achieved for small 𝑑 using their method. It seems that Theorem 6.2 is
not able to give tightness of the KS threshold in these cases.

[66] gave non-reconstruction results very similar to ours by using the input-restricted
SKL contraction coefficients. Numerical computation suggests that Theorem 6.2 gives
better results than theirs in the case of Potts models. In Figure 6-1, we compare the
input-restricted SKL and KL contraction coefficients for Potts channels 𝑃𝜆 for 𝑞 = 5

and 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
. Because a simplified expression for 𝜂SKL(𝜋, 𝑃𝜆) is not known,

we use a lower bound 𝜂SKL(𝜋, 𝑃𝜆), which is defined as the sup of 𝐷SKL(𝜈𝑃𝜆||𝜋)
𝐷SKL(𝜈||𝜋)

over
distributions 𝜈 ∈ 𝒫([𝑞]) with 𝜈(2) = · · · = 𝜈(𝑞). Clearly 𝜂SKL(𝜋, 𝑃𝜆) ≤ 𝜂SKL(𝜋, 𝑃𝜆).
[66] conjectured that 𝜂SKL(𝜋, 𝑃𝜆) = 𝜂SKL(𝜋, 𝑃𝜆) always holds.

Figure 6-1: Contraction coefficient comparison for Potts channel with 𝑞 = 5 and
varying 𝜆 ∈

[︁
− 1
𝑞−1

, 1
]︁
. The figure shows 𝜂SKL(𝜋, 𝑃𝜆)− 𝜂KL(𝜋, 𝑃𝜆) is non-negative.
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6.2.3 Random coloring model

The random coloring model is a special case of the Potts model where the contraction
coefficient 𝜂KL(𝜋, 𝑃𝜆) can be computed in closed form. It is the BOT model with
𝜋 = Unif([𝑞]) and broadcasting channel Col𝑞 := 𝑃− 1

𝑞−1
. This channel acts on input

𝑥 ∈ [𝑞] by outputting 𝑦 ̸= 𝑥 uniformly among all 𝑞 − 1 alternatives.
Theorem 6.2 and Prop. 4.23 together imply non-reconstruction for

br(𝑇 ) <
log 𝑞

log 𝑞 − log(𝑞 − 1)
= (1− 𝑜(1))𝑞 log 𝑞. (6.28)

This result was previously established by [125] (regular trees and Galton-Watson trees
with Poisson offspring distribution), [20] (regular trees), and [59] (Galton-Watson
trees with mild assumptions on the offspring distribution). Our result does not assume
any conditions on the offspring distribution other than the expected offspring, and in
fact works for arbitrary trees.

We remark that previous methods based on information contraction do not give
the threshold (1− 𝑜(1))𝑞 log 𝑞. The information-percolation method [64, 115] implies
non-reconstruction for

𝜂KL(Col𝑞) br(𝑇 ) < 1. (6.29)

By Prop. 4.25, this gives non-reconstruction for 𝑑 < 𝑞 − 1 which is far from tight.
The SKL information contraction method [66] gives non-reconstruction for

𝜂SKL(𝜋,Col𝑞) br(𝑇 ) < 1. (6.30)

If we let 𝜈𝜖 := (1− 𝜖, 𝜖
𝑞−1

, . . . , 𝜖
𝑞−1

), then

𝜂SKL(𝜋,Col𝑞) ≥ lim
𝜖→0

𝐷SKL(𝜈𝜖Col𝑞 ||𝜋)
𝐷SKL(𝜈𝜖||𝜋)

=
1

𝑞 − 1
. (6.31)

Therefore this method cannot give non-reconstruction results better than for 𝑑 < 𝑞−1.

6.2.4 Asymmetric Ising model

We consider an asymmetric version of the Ising model, which is the BOT model with

𝜋 =

(︂
𝑏

𝑎+ 𝑏
,

𝑎

𝑎+ 𝑏

)︂
, 𝑀 =

(︂
1− 𝑎 𝑎
𝑏 1− 𝑏

)︂
. (6.32)

Note that 𝑀 is reversible in this example.
[27] showed that the Kesten-Stigum threshold is tight when 𝑎, 𝑏 are close to 1

2
.

[91] determined the exact set (up to uncertainties on the boundary) of 𝜋 for which
the KS threshold is tight when degree 𝑑 is large enough. It seems that Theorem 6.2
is unable to give tightness of the KS threshold in these cases.

In Figure 6-2, we compare 𝜂SKL(𝜋,𝑀) and 𝜂KL(𝜋,𝑀) for 𝑎 = 0.3 and 𝑏 ∈ [0, 1].
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The plot shows that in these cases, the KL contraction method gives better results
than the SKL contraction method.

Figure 6-2: Contraction coefficient comparison for binary asymmetric channels with
𝑎 = 0.3 and varying 𝑏 ∈ [0, 1]. The figure shows 𝜂SKL(𝜋,𝑀) − 𝜂KL(𝜋,𝑀) is non-
negative.

6.3 Stochastic block model
In this section we study the weak recovery problem (Definition 5.5) for SBM(𝑛, 𝑞, 𝑎, 𝑏)
(Definition 5.4), the stochastic block model with 𝑞 symmetric communities. In this
model, there are 𝑛 vertices, each independently and uniformly randomly assigned one
of 𝑞 labels. For two vertices, there is an edge between them with probability 𝑎

𝑛
if they

have the same labels, and with probability 𝑏
𝑛

otherwise. The goal of weak recovery is
to recover a non-trivial fraction of the communities given the unlabeled graph.

We refer the reader to Chapter 5 for a review of previous works on the weak
recovery problem for SBM(𝑛, 𝑞, 𝑎, 𝑏). Here we only mention that in the assortative
regime (𝑎 > 𝑏), the previous best impossibility result for general 𝑞 is by [16], which
says weak recovery is impossible whenever

(𝑎− 𝑏)2

𝑎+ (𝑞 − 1)𝑏
<

2𝑞 log(𝑞 − 1)

𝑞 − 1
. (6.33)

In the following, we show that non-reconstruction results based on input-restricted
KL contraction coefficients lead to improved impossibility of weak recovery results for
the SBM.

6.3.1 Impossibility of weak recovery via information percola-
tion

We first give an impossibility result via an information percolation method of [115].

Proposition 6.4 ([115, Prop. 8]). Weak recovery for the model SBM(𝑛, 𝑞, 𝑎, 𝑏) is
impossible, if the following tree model has non-reconstruction:

Let 𝑑 = (
√
𝑎−
√
𝑏)2. Consider a Galton-Watson tree 𝑇 with offspring distribution

Pois(𝑑). For each vertex, we independently and uniformly randomly choose a label
∈ [𝑞]. Say vertex 𝑣 has spin 𝜎𝑣. We observe 𝜔𝑢,𝑣 = 1{𝜎𝑢 = 𝜎𝑣} for each edge (𝑢, 𝑣).
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Let 𝜌 denote the root of 𝑇 and 𝐿𝑘 denote the set of vertices at distance 𝑘 to 𝜌. Let
𝜔 denote the set of all observations. We say the model admits non-reconstruction if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇, 𝜔) = 0. (6.34)

[115] proved that the tree model has non-reconstruction when 𝑑 < 𝑞
2

using a
coupling argument. The following result makes an improvement.

Proposition 6.5. The tree model in Prop. 6.4 admits non-reconstruction when

𝑑 <

(︂
log 𝑞 − log(𝑞 − 1)

log 𝑞

𝑞 − 1

𝑞
+

1

𝑞

)︂−1

= 𝑞 − (1 + 𝑜(1))𝑞/ log 𝑞. (6.35)

Proof. The tree model is equivalent to the following top-down process:

1. Generate 𝜎𝜌 uniformly randomly over [𝑞].

2. Suppose we have generated a label for a vertex 𝑢. For every child 𝑣 of 𝑢, we
randomly choose the transition matrix 𝑀 , which is the identity channel Id with
probability 1

𝑞
, and Col𝑞 with probability 1 − 1

𝑞
. Then we generate 𝑣 according

to P(𝜎𝑣 = 𝑗|𝜎𝑢 = 𝑖) =𝑀𝑖,𝑗.

For any vertex 𝑢, let 𝐿𝑢,𝑘 denote the set of descendants of 𝑢 at distance 𝑘 to 𝜌. Let
𝑣 be a child of 𝑢.

Note that 𝜋 = Unif([𝑞]) is an invariant distribution for both Id and Col𝑞, and the
two channels are both reversible. We have

E
[︀
𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔)|𝜔𝑢,𝑣 = 1
]︀
≤ 𝜂KL(𝜋, Id)𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔) = 𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘
|𝑇, 𝜔) (6.36)

and, by Prop. 4.23,

E
[︀
𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔)|𝜔𝑢,𝑣 = 0
]︀
≤ 𝜂KL(𝜋,Col𝑞)𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔)

=
log 𝑞 − log(𝑞 − 1)

log 𝑞
𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔). (6.37)

Taking expectation, we get

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
|𝑇, 𝜔) ≤

(︂
log 𝑞 − log(𝑞 − 1)

log 𝑞

𝑞 − 1

𝑞
+

1

𝑞

)︂
𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘

|𝑇, 𝜔). (6.38)

Rest of the proof is the same as Theorem 6.2.

Prop. 6.4 and Prop. 6.5 together show that weak recovery is impossible for SBM(𝑛, 𝑞, 𝑎, 𝑏)
when (︁√

𝑎−
√
𝑏
)︁2
<

(︂
log 𝑞 − log(𝑞 − 1)

log 𝑞

𝑞 − 1

𝑞
+

1

𝑞

)︂−1

. (6.39)

As shown in Figure 6-3, for certain parameters, (6.39) leads to slight improvement
over [16].
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6.3.2 Impossibility of weak recovery via Potts model

We have shown that the information percolation method together with the input-
restricted KL contraction coefficients gives a simple yet strong impossibility result for
weak recovery of the stochastic block model. The information percolation method
can be understood as comparison with the erasure channel. However, the stochastic
block model is more closely related to the Potts channel. As shown in Prop. 5.15,
weak recovery for the model SBM(𝑛, 𝑞, 𝑎, 𝑏) is impossible if the corresponding BOT
model BOT(𝑞, 𝜆,Pois(𝑑)) admits non-reconstruction, where

𝑑 =
𝑎+ (𝑞 − 1)𝑏

𝑞
, 𝜆 =

𝑎− 𝑏
𝑎+ (𝑞 − 1)𝑏

. (6.40)

Therefore, Theorem 6.2 implies the following result.

Theorem 6.6 (Impossibility of weak recovery for SBM). Weak recovery for the model
SBM(𝑛, 𝑞, 𝑎, 𝑏) is impossible when

𝜂KL(𝜋, 𝑃𝜆)𝑑 < 1, (6.41)

where 𝑑 and 𝜆 are given in Eq. (6.40).

Figure 6-3 shows a comparison between the impossibility results for 𝑞 = 5.

Figure 6-3: Impossibility of weak recovery results for SBM for 𝑞 = 5. Horizontal axis
is 𝑎, and vertical axis is 𝑏. In the assortative regime, (6.39) gives better results than
[16] for certain parameters, and Theorem 6.6 gives the best results among the three.

Note that (6.33) is equivalent to

𝜆2(𝑞 − 1)

2 log(𝑞 − 1)
· 𝑑 < 1. (6.42)
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Comparing Theorem 6.6 and Eq. (6.42) using Eq. (4.230), we see that Theorem 6.6
strictly improves over (6.33) in the assortative regime.

6.4 Non-reconstruction for broadcasting with a Gaus-
sian kernel

In this section, we prove optimal non-reconstruction results for a BOT model with
continuous alphabet considered in [60], using our method developed in Section 6.1.

Definition 6.7 (Broadcasting on trees with a Gaussian kernel). In this model, we
are given a (possibly) infinite tree 𝑇 with a marked root 𝜌. The state space 𝒳 is the
unit circle 𝑆1 := R/2𝜋Z. Let 𝜋 = Unif(𝑆1) be the uniform distribution. Let 𝑡 > 0 be
a parameter. The transfer kernel is 𝑀𝑡, defined as 𝑌 = 𝑋 + 𝑍𝑡 where 𝑍𝑡 ∼ 𝒩 (0, 𝑡),
where 𝑋 is the input and 𝑌 is the output.

Now for each vertex 𝑣 ∈ 𝑇 , we generate a spin 𝜎𝑣 ∈ 𝒳 according to the following
process:

1. Generate 𝜎𝜌 ∼ 𝜋.

2. Suppose we have generated a label for vertex 𝑢. For every child 𝑣 of 𝑢, we
generate 𝑣 according to 𝜎𝑣 ∼𝑀𝑡(·|𝜎𝑢).

Let 𝐿𝑘 denote the set of vertices at distance 𝑘 to 𝜌. We say the model admits
non-reconstruction if and only if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
) = 0. (6.43)

Let 𝜆(𝑀𝑡) denote the second largest eigenvalue of 𝑀𝑡. [60] proved that for the
above BOT model on a regular tree with offspring 𝑑, reconstruction holds when
𝑑𝜆(𝑀𝑡)

2 > 1, and non-reconstruction holds for 𝑑𝜆(𝑀𝑡) < 1. Note that there is a 𝜆(𝑀𝑡)
factor gap between the reconstruction result and the non-reconstruction result. In
the following, we prove that non-reconstruction holds as long as 𝑑𝜆(𝑀𝑡)

2 < 1, closing
the gap.

We remark that [108] studied a different BOT model with Gaussian broadcast-
ing channels, and deteremined the reconstruction threshold for their model (which
happened to also coincide with the Kesten-Stigum threshold). While sharing some
similarities, their and our models do not seem to be directly comparable with each
other.

Theorem 6.8 (Non-reconstruction for Gaussian BOT model). Consider the BOT
model defined in Definition 6.7.

If 𝑇 is an infinite rooted tree with bounded maximum degree, then the BOT model
admits non-reconstruction when

br(𝑇 )𝜆(𝑀𝑡)
2 < 1. (6.44)
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If 𝑇 is a Galton-Watson tree with expected offspring 𝑑, then the BOT model admits
non-reconstruction when

𝑑𝜆(𝑀𝑡)
2 < 1. (6.45)

The proof idea is to upper bound the input-restricted KL contraction coefficient
by 𝜆(𝑀𝑡)

2, then use a tree recursion similar to that of Theorem 6.2. However, because
we are working in a continuous space, we must be careful about what we mean by
contraction coefficients.

We would like an inequality of form

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
) ≤ ̃︀𝜂KL(𝜋,𝑀𝑡)𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘

) (6.46)

where 𝑢 ∈ 𝑉 (𝑇 ), 𝑣 is child of 𝑢, 𝐿𝑣,𝑘 is the set of descendants of 𝑣 at distance 𝑘 to 𝜌,
and ̃︀𝜂KL(𝜋,𝑀𝑡) is a continuous version of contraction coefficient 𝜂KL(𝜋,𝑀𝑡).

We have

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
) = E𝜎𝐿𝑣,𝑘

𝐷(𝑃𝜎𝑢|𝜎𝐿𝑣,𝑘
‖𝑃𝜎𝑢) (6.47)

= E𝜎𝐿𝑣,𝑘
𝐷(𝑀𝑡 ∘ 𝑃𝜎𝑣 |𝜎𝐿𝑣,𝑘

‖𝜋). (6.48)

Let us consider the distribution 𝑃𝜎𝑢|𝜎𝐿𝑢,𝑘
. If 𝑘 = 𝑑(𝑣, 𝜌), then 𝑃𝜎𝑢|𝜎𝐿𝑢,𝑘

is a point mea-
sure. However, as long as 𝑘 > 𝑑(𝑢, 𝜌), pdf of 𝑃𝜎𝑢|𝜎𝐿𝑢,𝑘

is smooth on 𝒳 by an induction
using belief propagation equation. Therefore we make the following definition.

Definition 6.9 (Smooth contraction coefficient). We define

̃︀𝜂KL(𝜋,𝑀𝑡) := sup
𝑓∈𝒞

Ent𝜋(𝑀𝑡𝑓)

Ent𝜋(𝑓)
, (6.49)

𝒞 := {𝑓 : 𝒳 → R≥0|𝑓 smooth,E𝜋[𝑓 ] = 1}. (6.50)

where Ent𝜋(𝑓) is defined in Eq. (4.2).

Lemma 6.10.

̃︀𝜂KL(𝜋,𝑀𝑡) ≤ exp(−𝑡). (6.51)

Proof. Note that (𝑀𝑡)𝑡≥0 forms a semigroup. Therefore it suffices to prove that for
all 𝑓 ∈ 𝒞, we have

𝑑

𝑑𝑡
|𝑡=0 Ent(𝑓𝑡) ≤ −Ent(𝑓) (6.52)

where 𝑓𝑡 =𝑀𝑡𝑓 .
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We have

𝑑

𝑑𝑡
|𝑡=0 Ent(𝑓𝑡)

= E
[︂
𝑑

𝑑𝑡
|𝑡=0(𝑓𝑡 log 𝑓𝑡)

]︂
= E

[︂
(1 + log 𝑓)

𝑑

𝑑𝑡
|𝑡=0𝑓𝑡

]︂
= E

[︂
(log 𝑓)

𝑑

𝑑𝑡
|𝑡=0𝑓𝑡

]︂
=

1

2
E [𝑓 ′′ log 𝑓 ] (heat equation)

= − 1

2
E
[︂
(𝑓 ′)2

𝑓

]︂
(integration by parts)

≤ − Ent(𝑓). ([61])

This finishes the proof.

Now we are ready to prove Theorem 6.8.

Proof of Theorem 6.8. By Lemma 6.10, we have

̃︀𝜂KL(𝜋,𝑀𝑡) ≤ exp(−𝑡) = 𝜆(𝑀𝑡)
2, (6.53)

where the value of 𝜆(𝑀𝑡) is proved in e.g., [60]. Therefore we only need to prove
that br(𝑇 )̃︀𝜂KL(𝜋,𝑀𝑡) < 1 implies non-reconstruction. Note that the channel 𝑀𝑡 is
reversible.

Bounded degree case: For 𝑢 ∈ 𝑉 (𝑇 ), define

𝑟𝑢 := lim
𝑘→∞

𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘
). (6.54)

By data processing inequality, 𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘
) is non-increasing for 𝑘 ≥ 𝑑(𝑢, 𝜌), so the

limit always exists. Because 𝑇 has bounded maximum degree, we have

𝑟𝑢 ≤ 𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑑(𝑢,𝜌)+1
). (6.55)

So there exists a constant 𝐶 > 0 such that 𝑟𝑢 ≤ 𝐶 for all 𝑢 ∈ 𝑣(𝑇 ).
Now define

𝑎𝑢 = 𝑅−1̃︀𝜂KL(𝜋,𝑀𝑡)
𝑑(𝑢,𝜌)𝑟𝑢. (6.56)

Let 𝑐(𝑢) be the set of children of 𝑢. For any 𝑣 ∈ 𝑐(𝑢), by Markov chain

𝜎𝐿𝑣,𝑘
→ 𝜎𝑣 → 𝜎𝑢 (6.57)
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and discussion before Lemma 6.10, we have

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
) ≤ ̃︀𝜂KL(𝜋,𝑀𝑡)𝐼(𝜎𝑣, 𝜎𝐿𝑣,𝑘

). (6.58)

Because (𝜎𝐿𝑣,𝑘
)𝑣∈𝑐(𝑢) are independent conditioned on 𝜎𝑢, we have

𝐼(𝜎𝑢;𝜎𝐿𝑢,𝑘
) ≤

∑︁
𝑣∈𝑐(𝑢)

𝐼(𝜎𝑢;𝜎𝐿𝑣,𝑘
). (6.59)

Combining the two inequalities and let 𝑘 →∞, we get

𝑎𝑢 ≤
∑︁
𝑣∈𝑐(𝑢)

𝑎𝑣. (6.60)

Furthermore, we have 𝑎𝑢 ≤ ̃︀𝜂KL(𝜋,𝑀𝑡)
𝑑(𝑢,𝜌).

Now define a flow 𝑏 as follows. For any 𝑢 ∈ 𝑉 (𝑇 ), let 𝑢0 = 𝜌, . . . , 𝑢ℓ = 𝑢 be the
shortest path from 𝜌 to 𝑢. Define

𝑏𝑢 = 𝑎𝑢
∏︁

0≤𝑗≤ℓ−1

𝑎𝑢𝑗∑︀
𝑣∈𝑐(𝑢𝑗) 𝑎𝑣

. (6.61)

(If
∑︀

𝑣∈𝑐(𝑢𝑗) 𝑎𝑣 = 0 for some 𝑗, then let 𝑏𝑢 = 0.) Then we have

𝑏𝑢 =
∑︁
𝑣∈𝑐(𝑢)

𝑏𝑣, (6.62)

and that

𝑏𝑢 ≤ 𝑎𝑢 ≤ ̃︀𝜂KL(𝜋,𝑀𝑡)
𝑑(𝑢,𝜌). (6.63)

By definition of branching number, we must have 𝑏𝜌 = 0. Therefore 𝑟𝜌 = 0 and
non-reconstruction holds.

Galton-Watson tree case: Let 𝐷 be the offspring distribution. We have

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇 ) ≤ E𝑐(𝜌)

∑︁
𝑣∈𝑐(𝜌)

𝐼(𝜎𝜌;𝜎𝐿𝑣,𝑘
|𝑇 )

≤ E𝑐(𝜌)
∑︁
𝑣∈𝑐(𝜌)

̃︀𝜂KL(𝜋,𝑀𝑡)𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘
|𝑇𝑣)

= ̃︀𝜂KL(𝜋,𝑀𝑡)E𝑐(𝜌)
∑︁
𝑣∈𝑐(𝜌)

𝐼(𝜎𝑣;𝜎𝐿𝑣,𝑘
|𝑇𝑣)

= ̃︀𝜂KL(𝜋,𝑀𝑡)E𝑏∼𝐷
[︀
𝑏𝐼(𝜎𝜌;𝜎𝐿𝑘−1

|𝑇 )
]︀

= ̃︀𝜂KL(𝜋,𝑀𝑡)𝑑𝐼(𝜎𝜌;𝜎𝐿𝑘−1
|𝑇 ).

Here 𝑇𝑣 denotes the subtree rooted at 𝑣. Because 𝐼(𝜎𝜌;𝜎𝐿1|𝑇 ) <∞, when 𝑑̃︀𝜂KL(𝜋,𝑀𝑡) <
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1, we have

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇 ) = 0. (6.64)

This finishes the proof.
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Chapter 7

Reconstruction for broadcasting on
hypertrees

We study the problem of weak recovery for the two-community simple HSBM (Def-
inition 5.4). In this model, a random 𝑟-uniform hypergraph is generated by placing
hyperedges with higher density if all vertices of a hyperedge share the same binary
label. By analyzing contraction of symmetric KL information, we prove that for
𝑟 = 3, 4, weak recovery is impossible below the Kesten-Stigum threshold, where the
𝑟 = 4 case relies on a numerically verified inequality. Prior work [112] established
that weak recovery in HSBM is always possible above the Kesten-Stigum threshold.
Consequently, there is no information-computation gap for these 𝑟, which partially
resolves a conjecture of [15]. To our knowledge this is the first impossibility result for
HSBM weak recovery beyond celebrated results [96, 105] for the graph case.

As usual, we reduce the weak recovery problem for the HSBM to the study of
the corresponding broadcasting on hypertrees (BOHT) model. While we show that
BOHT’s reconstruction threshold coincides with Kesten-Stigum for 𝑟 = 3, 4, surpris-
ingly, we demonstrate that for 𝑟 ≥ 7 reconstruction is possible also below the Kesten-
Stigum. This shows an interesting phase transition in the parameter 𝑟, and suggests
that for 𝑟 ≥ 7, there might be an information-computation gap for the HSBM. For
𝑟 = 5, 6 and large degree we propose an approach for showing non-reconstruction
below Kesten-Stigum threshold, suggesting that 𝑟 = 7 is the correct threshold for
onset of the new phase.

This chapter is based on [74].

Chapter outline In Section 7.1, we give a brief introduction to the problem and
our results. In Section 7.2, we write down an explicit formula for the belief propa-
gation operator. In Section 7.3, we prove our results on BOHT with 𝑟 = 3, 4 (Theo-
rem 7.1(i)(ii)). In Section 7.4, we prove our results on BOHT with 𝑟 ≥ 7 and large
enough 𝑑 (Theorem 7.1(iv)). In Section 7.5, we prove impossibility of weak recovery
results for the HSBM (Theorem 7.2), and reconstruction for BOHT above the Kesten-
Stigum threshold (Theorem 7.1(iii)). In Section 7.6, we discuss a possible approach
to resolve the 𝑟 = 5, 6 case.
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7.1 Introduction

Hypergraph stochastic block model Consider the model HSBM(𝑛, 𝑟, 𝑎, 𝑏) de-
fined in Definition 5.4, where 𝑛 ∈ Z≥1 is the number of vertices, 𝑟 ∈ Z≥2 is the
hyperedge size, and 𝑎 > 𝑏 ∈ R≥0 are two parameters. The model generates a random
hypergraph as follows: Let the vertex set be 𝑉 = [𝑛]. Generate a random label 𝑋𝑢 for
all vertices 𝑢 ∈ 𝑉 i.i.d. ∼ Unif({±}). Then, for every 𝑆 ∈

(︀
𝑉
𝑟

)︀
, if all vertices in 𝑆 have

the same label, add hyperedge 𝑆 with probability 𝑎

( 𝑛
𝑟−1)

; otherwise add hyperedge 𝑆

with probability 𝑏

( 𝑛
𝑟−1)

.

For the weak recovery problem (Definition 5.5) for this model, [15] conjectured
that a phase transition occurs at the Kesten-Stigum threshold. The positive part
of their conjecture has been proved by [112, 130] for more general HSBMs, giving
an efficient weak recovery algorithm based on above the Kesten-Stigum threshold.
Despite the progress on the positive part, there has been no progress for the negative
part (impossibility of weak recovery) for 𝑟 ≥ 3.

For the 𝑟 = 2 case, the positive part was proved by [96, 105] and the negative
part was established by [103, 105] via a reduction to the broadcasting on trees (BOT)
model. Therefore a natural idea is to study the reconstruction problem for correspond-
ing broadcasting on hypertrees (BOHT) model via Theorem 5.15. [138] mentioned
that the difficulty in proving negative results lies in analyzing the broadcasting on hy-
pertrees (BOHT) model. We prove impossibility of weak recovery results by proving
non-reconstruction results for the BOHT model.

We define the following useful parameters. The values of 𝑑, 𝜆 and SNR agree with
those defined in Definition 5.3.

• For every vertex 𝑢, the expected number of hyperedges containing 𝑢 is 𝑑± 𝑜(1),
where

𝑑 =
(𝑎− 𝑏) + 2𝑟−1𝑏

2𝑟−1
. (7.1)

• Expected number of vertices adjacent to 𝑢 is 𝛼± 𝑜(1), where

𝛼 = (𝑟 − 1)𝑑 = (𝑟 − 1)
(𝑎− 𝑏) + 2𝑟−1𝑏

2𝑟−1
. (7.2)

• Expected number of neighbors in the same community minus the number of
neighbors in the other community is 𝛽 ± 𝑜(1) where

𝛽 = (𝑟 − 1)
𝑎− 𝑏
2𝑟−1

. (7.3)

• The strength of the broadcasting channel is characterized by 𝜆 ∈ [0, 1], defined
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as

𝜆 =
𝛽

𝛼
=

𝑎− 𝑏
𝑎− 𝑏+ 2𝑟−1𝑏

. (7.4)

• Signal-to-noise ratio

SNR := 𝛼𝜆2 =
(𝑟 − 1)(𝑎− 𝑏)2

2𝑟−1((𝑎− 𝑏) + 2𝑟−1𝑏)
. (7.5)

The Kesten-Stigum threshold for this model is at SNR = 1.

Broadcasting on hypertrees By Theorem 5.15, weak recovery for the HSBM can
be reduced to the study of the corresponding BOHT model. For HSBM(𝑛, 𝑟, 𝑎, 𝑏), the
corresponding model is BOHT(𝑟, 𝜆,Pois(𝑑)) (Definition 5.9). The model has three
parameters: 𝑟 ∈ Z≥2, hyperedge edge; 𝑑, expected offspring; 𝜆 ∈ [0, 1], broadcasting
channel strength. Let 𝑇 be a linear 𝑟-uniform hypertree where either (1) every ver-
tex has 𝑑 downward hyperedges (thus 𝑑(𝑟 − 1) children), or (2) every vertex has 𝑏
downward hyperedges (thus 𝑏(𝑟 − 1) children), where 𝑏 ∼ Pois(𝑑) is i.i.d. generated
from the Poisson distribution with expectation 𝑑. We call the first case the regular
hypertree, and the second case the Poisson hypertree. Given a hypertree 𝑇 with root
𝜌, we generate a label 𝜎𝑢 ∈ {±} for every vertex 𝑢 via a downward process: (1)
𝜎𝜌 ∼ Unif({±}) (2) given 𝜎𝑢, for every downward hyperedge 𝑆 = {𝑢, 𝑣1, . . . , 𝑣𝑟−1},
we generate 𝜎𝑣1 , . . . , 𝜎𝑣𝑟−1 such that for any 𝑥1, . . . , 𝑥𝑟−1 ∈ {±}𝑟−1,

P[𝜎𝑣1 = 𝑥1, . . . , 𝜎𝑣𝑟−1 = 𝑥𝑟−1|𝜎𝑢] =
{︂
𝜆+ 1

2𝑟−1 (1− 𝜆), if 𝑥1 = · · · = 𝑥𝑟−1 = 𝜎𝑢,
1

2𝑟−1 (1− 𝜆), otherwise.
(7.6)

We denote the channel 𝜎𝑢 → (𝜎𝑣1 , . . . , 𝜎𝑣𝑟−1) as 𝐵 = 𝐵𝑟−1 : {±} → {±}𝑟−1. This is a
binary memoryless symmetric (BMS) channel.

The reconstruction problem (Definition 5.14) asks whether we can gain any non-
trivial information about the root given observation of far away vertices. In other
words, whether the limit

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) (7.7)

is non-zero, where 𝐿𝑘 is the set of vertices at distance 𝑘 to the root 𝜌, and 𝑇𝑘
is the set of vertices at distance ≤ 𝑘 to 𝜌. When the limit is non-zero, we say
the BOHT model admits reconstruction; when the limit is zero, we say the model
admits non-reconstruction. Theorem 5.15 shows that non-reconstruction for the
BOHT(𝑟, 𝜆,Pois(𝑑)) model implies impossibility of weak recovery for the HSBM(𝑛, 𝑟, 𝑎, 𝑏)
model.

The reconstruction problem has been studied on various BOT models, e.g., [23,
63, 101, 107, 98, 27, 19, 125, 126, 87, 91, 72, 109]. See Chapter 6 for more discus-
sions. Nevertheless, to our knowledge, there has been no previous work studying the
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reconstruction problem for BOHT.

Our results Our results on the reconstruction problem for BOHT is summarized
as follows.

Theorem 7.1 (Reconstruction threshold for BOHT). Consider the BOHT(𝑟, 𝜆, 𝑑)
model or the BOHT(𝑟, 𝜆,Pois(𝑑)) model. We have the following non-reconstruction
results for the BOHT model.

(i) For 𝑟 = 3, the BOHT model admits non-reconstruction when (𝑟 − 1)𝑑𝜆2 < 1.

(ii) For 𝑟 = 4, if Conjecture 7.6 is true, then the BOHT model admits non-reconstruction
when (𝑟 − 1)𝑑𝜆2 < 1.

We have the following reconstruction results for the BOHT model.

(iii) For 𝑟 ≥ 2, the BOHT model admits reconstruction when (𝑟 − 1)𝑑𝜆2 > 1.

(iv) For 𝑟 ≥ 7, there exists a constant 𝑑0 = 𝑑0(𝑟) such that for all 𝑑 ≥ 𝑑0, there exists
𝜆 ∈ [0, 1] such that (𝑟− 1)𝑑𝜆2 < 1 and the BOHT model admits reconstruction.

We note that Conjecture 7.6 is numerically verified.
Theorem 7.1 implies the following impossibility of weak recovery results for HSBM.

Theorem 7.2 (Weak recovery threshold for HSBM). Consider the model HSBM(𝑛, 𝑟, 𝑎, 𝑏).
Recall 𝑑 and SNR defined in (7.1)(7.5).

(i) For 𝑟 = 3, weak recovery is impossible for the HSBM when SNR < 1.

(ii) For 𝑟 = 4, if Conjecture 7.6 is true, weak recovery is impossible for the HSBM
when SNR < 1.

Our technique We prove Theorem 7.1(i)(ii) by considering contraction of SKL
capacity under belief propagation recursion. It is known that SKL capacity can be
used to prove non-reconstruction results since at least [87]. Information-theoretically,
SKL information is special due to its additivity (as opposed to subadditivity) under
⋆-convolution.

Interestingly, before our work, to the best of our knowledge, non-reconstruction
results proved via SKL capacity could always be also shown via other information
measures (𝜒2-capacity [63], KL capacity [72], etc.). It appears, thus, that BOHT is
the first example where contraction via SKL capacity gives better results than other
information measures we have tried.

Theorem 7.1(iii) is an immediate consequence of the weak recovery results of [112].
Theorem 7.1(iv) is proved using contraction of 𝜒2-capacity and Gaussian approx-

imation, which has proved successful in many different settings [125, 126, 91, 109].
Theorem 7.2 is an immediate consequence of Theorem 7.1(i)(ii) via Theorem 5.15.
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7.2 Belief propagation recursion

In this section we give an explicit formula for the belief propagation (BP) operator
(Definition 5.13). We take an information channel point of view, which interprets the
BP recursion as an operator from the space of BMS channels (equivalently, the space
of distributions on [0, 1

2
], via Lemma 2.2) to itself.

Consider the model BOHT(𝑟, 𝜆,𝐷) (Definition 5.9), where 𝐷 is either the point
distribution at 𝑑 (regular hypertree case) or Pois(𝑑) (Poisson hypertree case). Then
the BP operator is defined as

BP(𝑃 ) := E𝑡∼𝐷(𝑃×(𝑟−1) ∘𝐵)⋆𝑡, (7.8)

where 𝐵 is the channel 𝜎𝑢 → (𝜎𝑣1 , . . . , 𝜎𝑣𝑟−1) for a single hyperedge, defined in (7.6).
The BP operator sends the space of BMS channels to itself. For the sequence (𝑀𝑘)𝑘≥0

(Definition 5.12), we have

𝑀𝑘+1 = BP(𝑀𝑘). (7.9)

Our goal in this section is to derive a formula for 𝑃×(𝑟−1) ∘ 𝐵 in terms of the
𝜃-component (recall that 𝜃 = 1− 2Δ where Δ is the Δ-component).

By Lemma 2.2, we only need to describe (BSCΔ1 × · · · × BSCΔ𝑟−1) ∘ 𝐵. Let
𝜃𝑖 := 1− 2Δ𝑖 for 𝑖 ∈ [𝑟 − 1]. For 𝑥 ∈ {±}𝑟−1, we have

((BSCΔ1 × · · · × BSCΔ𝑟−1) ∘𝐵)(𝑥1, . . . , 𝑥𝑟−1|+) (7.10)

=
∑︁

𝑦∈{±}𝑟−1

𝐵(𝑦1, . . . , 𝑦𝑟−1|+)
∏︁

𝑖∈[𝑟−1]

BSCΔ𝑖
(𝑥𝑖|𝑦𝑖)

= 𝜆
∏︁

𝑖∈[𝑟−1]

BSCΔ𝑖
(𝑥𝑖|+) +

1

2𝑟−1
(1− 𝜆)

∏︁
𝑖∈[𝑟−1]

∑︁
𝑦𝑖∈{±}

BSCΔ𝑖
(𝑥𝑖|𝑦𝑖)

= 𝜆
∏︁

𝑖∈[𝑟−1]

(︂
1

2
+

(︂
1

2
−Δ𝑖

)︂
𝑥𝑖

)︂
+

1

2𝑟−1
(1− 𝜆)

= 𝜆
∏︁

𝑖∈[𝑟−1]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂
+

1

2𝑟−1
(1− 𝜆).

So (BSCΔ1 × · · · × BSCΔ𝑟−1) ∘𝐵 is a mixture of 2𝑟−2 BSCs, indexed by the set{︀
𝑥 : 𝑥 ∈ {±}𝑟−1, 𝑥1 = +

}︀
, (7.11)
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where the BSC corresponding to 𝑥 has weight (probability)⎛⎝𝜆 ∏︁
𝑖∈[𝑟−1]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂
+

1

2𝑟−1
(1− 𝜆)

⎞⎠+

⎛⎝𝜆 ∏︁
𝑖∈[𝑟−1]

(︂
1

2
− 1

2
𝜃𝑖𝑥𝑖

)︂
+

1

2𝑟−1
(1− 𝜆)

⎞⎠
(7.12)

= 𝜆

⎛⎝ ∏︁
𝑖∈[𝑟−1]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂
+
∏︁

𝑖∈[𝑟−1]

(︂
1

2
− 1

2
𝜃𝑖𝑥𝑖

)︂⎞⎠+
1

2𝑟−2
(1− 𝜆)

and 𝜃 parameter equal to the absolute value of(︁
𝜆
∏︀

𝑖∈[𝑟−1]

(︀
1
2
+ 1

2
𝜃𝑖𝑥𝑖
)︀
+ 1

2𝑟−1 (1− 𝜆)
)︁
−
(︁
𝜆
∏︀

𝑖∈[𝑟−1]

(︀
1
2
− 1

2
𝜃𝑖𝑥𝑖
)︀
+ 1

2𝑟−1 (1− 𝜆)
)︁

(︁
𝜆
∏︀

𝑖∈[𝑟−1]

(︀
1
2
+ 1

2
𝜃𝑖𝑥𝑖
)︀
+ 1

2𝑟−1 (1− 𝜆)
)︁
+
(︁
𝜆
∏︀

𝑖∈[𝑟−1]

(︀
1
2
− 1

2
𝜃𝑖𝑥𝑖
)︀
+ 1

2𝑟−1 (1− 𝜆)
)︁

(7.13)

=
𝜆
(︁∏︀

𝑖∈[𝑟−1]

(︀
1
2
+ 1

2
𝜃𝑖𝑥𝑖
)︀
−
∏︀

𝑖∈[𝑟−1]

(︀
1
2
− 1

2
𝜃𝑖𝑥𝑖
)︀)︁

𝜆
(︁∏︀

𝑖∈[𝑟−1]

(︀
1
2
+ 1

2
𝜃𝑖𝑥𝑖
)︀
+
∏︀

𝑖∈[𝑟−1]

(︀
1
2
− 1

2
𝜃𝑖𝑥𝑖
)︀)︁

+ 1
2𝑟−2 (1− 𝜆)

=
𝜆
(︁∏︀

𝑖∈[𝑟−1] (1 + 𝜃𝑖𝑥𝑖)−
∏︀

𝑖∈[𝑟−1] (1− 𝜃𝑖𝑥𝑖)
)︁

𝜆
(︁∏︀

𝑖∈[𝑟−1] (1 + 𝜃𝑖𝑥𝑖) +
∏︀

𝑖∈[𝑟−1] (1− 𝜃𝑖𝑥𝑖)
)︁
+ 2(1− 𝜆)

.

Although we need to take absolute value, information measures (except for 𝑃𝑒) in
Definition 2.4 are all even functions in 𝜃. So we do not need to worry about the sign.

7.3 Reconstruction threshold for 𝑟 = 3, 4

In this section we prove Theorem 7.1(i)(ii). Our method is via contraction of SKL
capacity. That is, we prove that

𝐶SKL(BP(𝑃 )) ≤ (𝑟 − 1)𝑑𝜆2𝐶SKL(𝑃 ) (7.14)

for all BMS 𝑃 .
Applying additivity of SKL capacity under ⋆-convolution (Eq. (2.19)), we get

𝐶SKL(BP(𝑃 )) = E𝑡𝐶SKL((𝑃
×(𝑟−1) ∘𝐵)⋆𝑡) = 𝑑𝐶SKL(𝑃

×(𝑟−1) ∘𝐵) (7.15)

where 𝑡 is the offspring (𝑡 = 𝑑 for regular hypertrees, 𝑡 ∼ Pois(𝑑) for Poisson hyper-
trees). Therefore it suffices to prove

𝐶SKL(𝑃
×(𝑟−1) ∘𝐵) ≤ (𝑟 − 1)𝜆2𝐶SKL(𝑃 ) (7.16)
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By Lemma 2.2, we can reduce (7.16) to

𝐶SKL

(︀
(BSCΔ1 × · · · × BSCΔ𝑟−1) ∘𝐵

)︀
≤ 𝜆2

∑︁
𝑖∈[𝑟−1]

𝐶SKL(BSCΔ𝑖
) (7.17)

for all Δ1, . . . ,Δ𝑟−1 ∈ [0, 1
2
].

7.3.1 Case 𝑟 = 3

For 𝑟 = 3, (7.17) indeed holds.

Lemma 7.3. For any Δ1,Δ2 ∈ [0, 1
2
], we have

𝐶SKL((BSCΔ1 ×BSCΔ2) ∘𝐵) ≤ 𝜆2(𝐶SKL(BSCΔ1) + 𝐶SKL(BSCΔ2)). (7.18)

Proof. We expand LHS of (7.18) using the BP recursion formula established in Sec-
tion 7.2. Let 𝜃𝑖 = 1− 2Δ𝑖 for 𝑖 = 1, 2. Then

𝐶SKL((BSCΔ1 ×BSCΔ2) ∘𝐵) (7.19)

=
∑︁

𝑥1=+,𝑥2∈{±}

1

2
𝜆(𝜃1𝑥1 + 𝜃2𝑥2) arctanh

𝜆(𝜃1𝑥1 + 𝜃2𝑥2)

𝜆(1 + 𝜃1𝑥1𝜃2𝑥2) + (1− 𝜆)

= 𝜆

(︂
1

2
(𝜃1 + 𝜃2) arctanh

𝜆(𝜃1 + 𝜃2)

1 + 𝜆𝜃1𝜃2
+

1

2
(𝜃1 − 𝜃2) arctanh

𝜆(𝜃1 − 𝜃2)
1− 𝜆𝜃1𝜃2

)︂
= 𝜆

(︂
1

2
(𝜃1 + 𝜃2)𝐹𝜆(𝜃1, 𝜃2) +

1

2
(𝜃1 − 𝜃2)𝐹𝜆(𝜃1,−𝜃2)

)︂
where

𝐹𝜆(𝜃1, 𝜃2) := arctanh
𝜆(𝜃1 + 𝜃2)

1 + 𝜆𝜃1𝜃2
. (7.20)

Note that by definition, 𝐹𝜆(𝜃1, 𝜃2) = −𝐹𝜆(−𝜃1,−𝜃2) and 𝐹𝜆(𝜃1, 𝜃2) = 𝐹𝜆(𝜃2, 𝜃1).
We have

1

2
(𝜃1 + 𝜃2)𝐹𝜆(𝜃1, 𝜃2) +

1

2
(𝜃1 − 𝜃2)𝐹𝜆(𝜃1,−𝜃2) (7.21)

=
1

2
𝜃1(𝐹𝜆(𝜃1, 𝜃2) + 𝐹𝜆(𝜃1,−𝜃2)) +

1

2
𝜃2(𝐹𝜆(𝜃1, 𝜃2) + 𝐹𝜆(−𝜃1, 𝜃2))

≤ 𝜃1𝐹𝜆(𝜃1, 0) + 𝜃2𝐹𝜆(0, 𝜃2)

= 𝜃1 arctanh(𝜆𝜃1) + 𝜃2 arctanh(𝜆𝜃2)

≤ 𝜆(𝜃1 arctanh 𝜃1 + 𝜃2 arctanh 𝜃2)

= 𝜆(𝐶SKL(BSCΔ1) + 𝐶SKL(BSCΔ2)),

where the second step follows from Lemma 7.4, and the fourth step follows convexity
of arctanh in [0, 1]. Combining (7.19)(7.21) we finish the proof.
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Lemma 7.4. For 𝜆, 𝜃1, 𝜃2 ∈ [0, 1], we have

1

2
(𝐹𝜆(𝜃1, 𝜃2) + 𝐹𝜆(𝜃1,−𝜃2)) ≤ 𝐹𝜆(𝜃1, 0). (7.22)

Proof. We use the formula

arctanh𝑥+ arctanh 𝑦 = arctanh
𝑥+ 𝑦

1 + 𝑥𝑦
(7.23)

to expand both sides of (7.22). LHS is

𝐹𝜆(𝜃1, 𝜃2) + 𝐹𝜆(𝜃1,−𝜃2) (7.24)

= arctanh
𝜆(𝜃1 + 𝜃2)

1 + 𝜆𝜃1𝜃2
+ arctanh

𝜆(𝜃1 − 𝜃2)
1− 𝜆𝜃1𝜃2

= arctanh
2𝜆𝜃1(1− 𝜆𝜃22)

𝜆2(𝜃21 − 𝜃22) + 1− 𝜆2𝜃21𝜃22
.

RHS is

2𝐹𝜆(𝜃1, 0) = arctanh
2𝜆𝜃1

1 + 𝜆2𝜃21
. (7.25)

By comparing (7.24)(7.25) and using monotonicity of arctanh, it suffices to prove that

1− 𝜆𝜃22
𝜆2(𝜃21 − 𝜃22) + 1− 𝜆2𝜃21𝜃22

≤ 1

1 + 𝜆2𝜃21
. (7.26)

We have

(𝜆2(𝜃21 − 𝜃22) + 1− 𝜆2𝜃21𝜃22)− (1− 𝜆𝜃22)(1 + 𝜆2𝜃21) = 𝜆(1− 𝜆)(1− 𝜆𝜃21)𝜃22 ≥ 0. (7.27)

This finishes the proof.

7.3.2 Case 𝑟 = 4

For 𝑟 = 4, (7.17) holds conditioned on a numerically-verified conjecture.

Lemma 7.5. If Conjecture 7.6 is true, then for all Δ1,Δ2,Δ3 ∈ [0, 1
2
], we have

𝐶SKL((BSCΔ1 ×BSCΔ2 ×BSCΔ3) ∘𝐵) ≤ 𝜆2
∑︁
𝑖∈[3]

𝐶SKL(BSCΔ𝑖
). (7.28)
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Conjecture 7.6. For 𝜆, 𝜃1, 𝜃2, 𝜃3 ∈ [0, 1], the following inequality holds:

1

4
(𝐺𝜆(𝜃1, 𝜃2, 𝜃3) +𝐺𝜆(𝜃1,−𝜃2, 𝜃3) +𝐺𝜆(𝜃1, 𝜃2,−𝜃3) +𝐺𝜆(𝜃1,−𝜃2,−𝜃3)) (7.29)

≤ 𝜆
∑︁
𝑖∈[3]

𝜃𝑖 arctanh 𝜃𝑖,

where

𝐺𝜆(𝜃1, 𝜃2, 𝜃3) := (𝜃1 + 𝜃2 + 𝜃3 + 𝜃1𝜃2𝜃3)𝐹𝜆(𝜃1, 𝜃2, 𝜃3), (7.30)

𝐹𝜆(𝜃1, 𝜃2, 𝜃3) := arctanh
𝜆(𝜃1 + 𝜃2 + 𝜃3 + 𝜃1𝜃2𝜃3)

1 + 𝜆(𝜃1𝜃2 + 𝜃2𝜃3 + 𝜃3𝜃1)
. (7.31)

Proof of Lemma 7.5. We expand LHS of (7.28) using BP recursion formula estab-
lished in Section 7.2. Let 𝜃𝑖 = 1− 2Δ𝑖 for 𝑖 ∈ [3]. Then

𝐶SKL((BSCΔ1 ×BSCΔ2 ×BSCΔ3) ∘𝐵) (7.32)

=
∑︁

𝑥1=+,𝑥2,𝑥3∈{±}

1

4
𝜆(𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃1𝜃2𝜃3𝑥1𝑥2𝑥3)

· arctanh 𝜆(𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃1𝜃2𝜃3𝑥1𝑥2𝑥3)

1 + 𝜆(𝜃1𝑥1𝜃2𝑥2 + 𝜃2𝑥3𝜃3𝑥3 + 𝜃3𝑥3𝜃1𝑥1)

=
𝜆

4
(𝐺𝜆(𝜃1, 𝜃2, 𝜃3) +𝐺𝜆(𝜃1,−𝜃2, 𝜃3) +𝐺𝜆(𝜃1, 𝜃2,−𝜃3) +𝐺𝜆(𝜃1,−𝜃2,−𝜃3))

where

𝐺𝜆(𝜃1, 𝜃2, 𝜃3) := (𝜃1 + 𝜃2 + 𝜃3 + 𝜃1𝜃2𝜃3)𝐹𝜆(𝜃1, 𝜃2, 𝜃3), (7.33)

𝐹𝜆(𝜃1, 𝜃2, 𝜃3) := arctanh
𝜆(𝜃1 + 𝜃2 + 𝜃3 + 𝜃1𝜃2𝜃3)

1 + 𝜆(𝜃1𝜃2 + 𝜃2𝜃3 + 𝜃3𝜃1)
. (7.34)

If Conjecture 7.6 holds, then

1

4
(𝐺𝜆(𝜃1, 𝜃2, 𝜃3) +𝐺𝜆(𝜃1,−𝜃2, 𝜃3) +𝐺𝜆(𝜃1, 𝜃2,−𝜃3) +𝐺𝜆(𝜃1,−𝜃2,−𝜃3)) (7.35)

≤ 𝜆
∑︁
𝑖∈[3]

𝜃𝑖 arctanh 𝜃𝑖

= 𝜆
∑︁
𝑖∈[3]

𝐶SKL(BSCΔ𝑖
).

Combining (7.32)(7.35) we finish the proof.

We remark that for 𝑟 ≥ 5 we have found counterexamples to (7.16) and (7.17).
Therefore the SKL contraction method does not seem to be able to give tight recon-
struction thresholds for 𝑟 ≥ 5.
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7.3.3 Proof of Theorem 7.1(i)(ii)

With Lemma 7.3 and 7.5, we can prove Theorem 7.1(i)(ii).

Proof of Theorem 7.1(i)(ii). Under the conditions in Theorem 7.1(i)(ii), (7.17) holds
by Lemma 7.3 and 7.5. By the above discussion, (7.14) holds. We have 𝐶SKL(𝑀1) =
𝐶SKL(BP(Id)) <∞. By (7.14), we have

𝐶SKL(𝑀𝑘) = 𝐶SKL(BP
𝑘−1(𝑀1)) = ((𝑟 − 1)𝑑𝜆2)𝑘−1𝐶SKL(𝑀1). (7.36)

So

lim
𝑘→∞

𝐶SKL(𝑀𝑘) = 0. (7.37)

Finally,

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) = lim

𝑘→∞
𝐶(𝑀𝑘) ≤ lim

𝑘→∞
𝐶SKL(𝑀𝑘) = 0. (7.38)

So the BOHT model admits non-reconstruction.

7.4 Reconstruction threshold for large degree

In this section we prove Theorem 7.1(iv). Our proof is an analysis of evolution of
𝜒2-capacity (also called magnetization in literature) and Gaussian approximation for
large degree.

7.4.1 Behavior of 𝜒2-capacity

Proposition 7.7 (Large degree asymptotics). Fix 𝑟 ∈ Z≥2. For any 𝜖 > 0, there
exists 𝑑0 = 𝑑0(𝑟, 𝜖) > 0 such that for any 𝑑 ≥ 𝑑0 and 𝜆 ∈ [0, 1] with (𝑟 − 1)𝑑𝜆2 ≤ 1,
for any BMS channel 𝑃 we have

|𝐶𝜒2(BP(𝑃 ))− 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))| ≤ 𝜖, (7.39)

where

𝑔𝑟,𝑑,𝜆(𝑥) := E𝑍∼𝒩 (0,1) tanh

(︂
𝑠𝑟,𝑑,𝜆(𝑥) +

√︁
𝑠𝑟,𝑑,𝜆(𝑥)𝑍

)︂
, (7.40)

𝑠𝑟,𝑑,𝜆(𝑥) := 𝑑𝜆2 · 1
2

(︀
(1 + 𝑥)𝑟−1 − (1− 𝑥)𝑟−1

)︀
. (7.41)

The rest of this section is devoted to the proof of Prop. 7.7.
We first describe BP(𝑃 ) in terms of the 𝜃-component. Let 𝑃 be a BMS channel

and 𝑃𝜃 be the 𝜃-component of 𝑃 . Let 𝑡 be the offspring (𝑡 = 𝑑 for regular hypertrees,
𝑡 ∼ Pois(𝑑) for Poisson hypertrees). Let (𝜃𝑖𝑗)𝑖∈[𝑡],𝑗∈[𝑟−1] generated i.i.d.∼ 𝑃𝜃, where 𝜃𝑖𝑗
is the 𝜃-component of the 𝑗-th vertex in the 𝑖-th downward hyperedge. Let 𝜃𝑖 be
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the 𝜃-component of 𝑖-th hyperedge 𝑃×(𝑟−1) ∘ 𝐵. As discussed in Section 7.2, given
(𝜃𝑖𝑗)𝑗∈[𝑟−1], 𝜃𝑖 is equal to (the absolute value of)

𝜆
(︁∏︀

𝑗∈[𝑟−1] (1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︀

𝑗∈[𝑟−1] (1− 𝜃𝑖𝑗𝑥𝑖𝑗)
)︁

𝜆
(︁∏︀

𝑗∈[𝑟−1] (1 + 𝜃𝑖𝑗𝑥𝑖𝑗) +
∏︀

𝑗∈[𝑟−1] (1− 𝜃𝑖𝑗𝑥𝑖𝑗)
)︁
+ 2(1− 𝜆)

. (7.42)

with probability

𝜆

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(︂
1

2
+

1

2
𝜃𝑖𝑗𝑥𝑖𝑗

)︂
+
∏︁

𝑗∈[𝑟−1]

(︂
1

2
− 1

2
𝜃𝑖𝑗𝑥𝑖𝑗

)︂⎞⎠+ 22−𝑟(1− 𝜆) (7.43)

for (𝑥𝑖𝑗)𝑗∈[𝑟−1] ∈ {±}𝑟−1, 𝑥𝑖1 = +.
Let 𝜃 be the 𝜃-component of the full channel BP(𝑃 ). Let 𝑃𝜃 denote the distribution

of 𝜃. Then given (𝜃𝑖)𝑖∈[𝑡], 𝜃 is equal to (the absolute value of)∏︀
𝑖∈[𝑡](1 + 𝜃𝑖𝑥𝑖)−

∏︀
𝑖∈[𝑡](1− 𝜃𝑖𝑥𝑖)∏︀

𝑖∈[𝑡](1 + 𝜃𝑖𝑥𝑖) +
∏︀

𝑖∈[𝑡](1− 𝜃𝑖𝑥𝑖)
(7.44)

with probability ∏︁
𝑖∈[𝑡]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂
+
∏︁
𝑖∈[𝑡]

(︂
1

2
− 1

2
𝜃𝑖𝑥𝑖

)︂
(7.45)

for (𝑥1, . . . , 𝑥𝑡) ∈ {±}𝑡, 𝑥1 = +. In other words,

𝑃𝜃|𝜃1,...,𝜃𝑖 (7.46)

=
∑︁

(𝑥1,...,𝑥𝑡)∈{±}𝑡

⎛⎝∏︁
𝑖∈[𝑡]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂⎞⎠1

{︃⃒⃒⃒⃒
⃒
∏︀

𝑖∈[𝑡](1 + 𝜃𝑖𝑥𝑖)−
∏︀

𝑖∈[𝑡](1− 𝜃𝑖𝑥𝑖)∏︀
𝑖∈[𝑡](1 + 𝜃𝑖𝑥𝑖) +

∏︀
𝑖∈[𝑡](1− 𝜃𝑖𝑥𝑖)

⃒⃒⃒⃒
⃒
}︃

=
∑︁

(𝑥1,...,𝑥𝑡)∈{±}𝑡

⎛⎝∏︁
𝑖∈[𝑡]

(︂
1

2
+

1

2
𝜃𝑖𝑥𝑖

)︂⎞⎠1

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒tanh

⎛⎝∑︁
𝑖∈[𝑡]

arctanh(𝜃𝑖𝑥𝑖)

⎞⎠⃒⃒⃒⃒⃒⃒
⎫⎬⎭ .

Write ̃︀𝜃𝑖 = 𝜃𝑖𝑥𝑖. Then P[̃︀𝜃𝑖 = 𝑠𝜃𝑖|𝜃𝑖] = 1
2
+ 1

2
𝜃𝑖𝑠 for 𝑠 ∈ {±}. So ̃︀𝜃𝑖 for 𝑖 ∈ [𝑡] are iid

generated from the same distribution. Let us call this distribution 𝐷. Then

𝑃𝜃 = E𝑡Ẽ︀𝜃1,...,̃︀𝜃𝑡i.i.d.∼ 𝐷
1

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒tanh

⎛⎝∑︁
𝑖∈[𝑡]

arctanh ̃︀𝜃𝑖
⎞⎠⃒⃒⃒⃒⃒⃒
⎫⎬⎭ (7.47)

This allows us to use central limit theorems to control the behavior of
∑︀

𝑖∈[𝑡] arctanh
̃︀𝜃𝑖.

Lemma 7.8. There exists a constant 𝑑0 = 𝑑0(𝑟) > 0 such that for any 𝑑 > 𝑑0,
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𝜆 ∈ [0, 1] with (𝑟 − 1)𝑑𝜆2 ≤ 1, and any BMS channel 𝑃 , we have⃒⃒
𝐶𝜒2(𝑃×(𝑟−1) ∘𝐵)− 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 ))

⃒⃒
≤ 𝑂𝑟(𝜆

3), (7.48)

𝑠𝑟,𝜆(𝑥) := 𝜆2 · 1
2

(︀
(1 + 𝑥)𝑟−1 − (1− 𝑥)𝑟−1

)︀
. (7.49)

where 𝑂𝑟 hides a multiplicative factor depending only on 𝑟.

Proof. We have

𝐶𝜒2(𝑃×(𝑟−1) ∘𝐵)

= E𝜃2𝑖
= E

𝜃𝑖1,...,𝜃𝑖,𝑟−1
i.i.d.∼ 𝑃𝜃

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

𝑥𝑖1=+⎛⎜⎝21−𝑟 ·
𝜆2
(︁∏︀

𝑗∈[𝑟−1] (1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︀

𝑗∈[𝑟−1] (1− 𝜃𝑖𝑗𝑥𝑖𝑗)
)︁2

𝜆
(︁∏︀

𝑗∈[𝑟−1] (1 + 𝜃𝑖𝑗𝑥𝑖𝑗) +
∏︀

𝑗∈[𝑟−1] (1− 𝜃𝑖𝑗𝑥𝑖𝑗)
)︁
+ 2(1− 𝜆)

⎞⎟⎠
= E

𝜃𝑖1,...,𝜃𝑖,𝑟−1
i.i.d.∼ 𝑃𝜃

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

𝑥𝑖1=+⎛⎝2−𝑟𝜆2

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃𝑖𝑗𝑥𝑖𝑗)

⎞⎠2⎞⎠+𝑂𝑟(𝜆
3).

The inner summation satisfies

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

𝑥𝑖1=+

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃𝑖𝑗𝑥𝑖𝑗)

⎞⎠2

=
1

2

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃𝑖𝑗𝑥𝑖𝑗)

⎞⎠2

=
1

2

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(︀
1 + 2𝜃𝑖𝑗𝑥𝑖𝑗 + 𝜃2𝑖𝑗

)︀
− 2

∏︁
𝑗∈[𝑟−1]

(︀
1− 𝜃2𝑖𝑗

)︀

+
∏︁

𝑗∈[𝑟−1]

(︀
1− 2𝜃𝑖𝑗𝑥𝑖𝑗 + 𝜃2𝑖𝑗

)︀⎞⎠
= 2𝑟−1

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃2𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃2𝑖𝑗)

⎞⎠ .
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Therefore

E
𝜃𝑖1,...,𝜃𝑖,𝑟−1

i.i.d.∼ 𝑃𝜃

∑︁
(𝑥𝑖𝑗)𝑗∈[𝑟−1]∈{±}𝑟−1

𝑥𝑖1=+

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃𝑖𝑗𝑥𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃𝑖𝑗𝑥𝑖𝑗)

⎞⎠2

= 2𝑟−1 E
𝜃𝑖1,...,𝜃𝑖,𝑟−1

i.i.d.∼ 𝑃𝜃

⎛⎝ ∏︁
𝑗∈[𝑟−1]

(1 + 𝜃2𝑖𝑗)−
∏︁

𝑗∈[𝑟−1]

(1− 𝜃2𝑖𝑗)

⎞⎠
= 2𝑟−1

(︀
(1 + 𝐶𝜒2(𝑃 ))𝑟−1 − (1− 𝐶𝜒2(𝑃 ))𝑟−1)︀ .

Combining everything we finish the proof.

Lemma 7.9. There exists a constant 𝑑0 = 𝑑0(𝑟) > 0 such that for any 𝑑 > 𝑑0,
𝜆 ∈ [0, 1] with (𝑟 − 1)𝑑𝜆2 ≤ 1, and any BMS channel 𝑃 , we have⃒⃒⃒

E arctanh ̃︀𝜃𝑖 − 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 ))
⃒⃒⃒
= 𝑂𝑟(𝜆

3), (7.50)⃒⃒⃒
Var(arctanh ̃︀𝜃𝑖)− 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 ))

⃒⃒⃒
= 𝑂𝑟(𝜆

3). (7.51)

Proof. Note that 𝜃𝑖 = 𝑂𝑟(𝜆) almost surely. When 𝑑 is large enough, 𝜆 is small enough,
and arctanh 𝜃𝑖 = 𝜃𝑖 +𝑂𝑟(𝜆

3) almost surely by Taylor expansion. Then

E arctanh ̃︀𝜃𝑖 = E[𝜃𝑖 arctanh 𝜃𝑖] = E𝜃2𝑖 +𝑂𝑟(𝜆
4), (7.52)

E(arctanh ̃︀𝜃𝑖)2 = E(arctanh 𝜃𝑖)2 = E𝜃2𝑖 +𝑂𝑟(𝜆
4). (7.53)

By Lemma 7.8, we have

E𝜃2𝑖 = 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 )) +𝑂𝑟(𝜆
3). (7.54)

This already implies the statement on E arctanh ̃︀𝜃𝑖. For the statement on Var(arctanh ̃︀𝜃𝑖),
we note that

E arctanh ̃︀𝜃𝑖 = 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 )) +𝑂𝑟(𝜆
3) = 𝑂𝑟(𝜆

2). (7.55)

So

Var(arctanh ̃︀𝜃𝑖) = E(arctanh ̃︀𝜃𝑖)2 − (︁E arctanh ̃︀𝜃𝑖)︁2 (7.56)

= 𝑠𝑟,𝜆(𝐶𝜒2(𝑃 )) +𝑂𝑟(𝜆
3).

This finishes the proof.

Now we recall a normal approximation result from [109, Prop. 5.3]. We only need
the scalar version of it.

Lemma 7.10 ([109]). Let 𝜑 : R→ R be a thrice differentiable and bounded function
with bounded derivatives up to third order. Let 𝑉1, . . . , 𝑉𝑡 ∈ R be independent random
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real numbers. Suppose there exists deterministic numbers 𝜇, 𝜎 ∈ R such that the
following holds: for some constant 𝐶 > 0, almost surely

max

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒∑︁
𝑗∈[𝑡]

E𝑉𝑗 − 𝜇

⃒⃒⃒⃒
⃒⃒ ,
⃒⃒⃒⃒
⃒⃒∑︁
𝑗∈[𝑡]

Var(𝑉𝑗)− 𝜎2

⃒⃒⃒⃒
⃒⃒
⎫⎬⎭ ≤ 𝐶𝑡−1/2, (7.57)

max
{︀
|𝜇|, |𝜎2|

}︀
≤ 𝐶, max

𝑗∈[𝑡]
|𝑉𝑗| ≤ 𝐶𝑡−1/2. (7.58)

Then for any 𝜖 > 0, there exists 𝑡0 = 𝑡0(𝜖, 𝜑, 𝐶) such that if 𝑡 > 𝑡0, then⃒⃒⃒⃒
⃒⃒E𝜑

⎛⎝∑︁
𝑗∈[𝑡]

𝑉𝑗

⎞⎠− E𝑊∼𝒩 (𝜇,𝜎2)𝜑(𝑊 )

⃒⃒⃒⃒
⃒⃒ ≤ 𝜖. (7.59)

We now have everything we need for the proof of Prop. 7.7.

Proof of Prop. 7.7. Regular hypertree: Define ̃︀𝜃 as P[̃︀𝜃 = 𝑠𝜃|𝜃] = 1
2
+ 𝜃𝑠 for 𝑠 ∈

{±}. Then

𝐶𝜒2(BP(𝑃 )) = Ẽ︀𝜃 = Ẽ︀𝜃1,...,̃︀𝜃𝑡i.i.d.∼ 𝐷
tanh

⎛⎝∑︁
𝑖∈[𝑡]

arctanh ̃︀𝜃𝑖
⎞⎠ . (7.60)

In fact, the equality is true with tanh replaced by tanh2. We use the tanh form here
because it is slightly simpler.

Now we apply Lemma 7.10 with

𝜑(𝑥) = tanh 𝑥, 𝑉𝑖 = arctanh ̃︀𝜃𝑖, 𝜇 = 𝜎2 = 𝑑𝑠𝑟,𝜆(𝐶𝜒2(𝑃 )) = 𝑠𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 )). (7.61)

The conditions in Lemma 7.10 are satisfied by Lemma 7.9 and because 𝜆 = 𝑂(𝑑−1/2).
This finishes the proof.

Poisson hypertree: Fix 𝜖 > 0. Let 𝑡 ∼ Pois(𝑑). By Poisson tail bounds, we
have P[|𝑡 − 𝑑| > 𝑑0.6] < 𝜖/3 for large enough 𝑑 (depending only on 𝜖). We apply
Lemma 7.10 for every 𝑡 ∈ [𝑑 − 𝑑0.6, 𝑑 + 𝑑0.6], with 𝜇 = 𝜎2 = 𝑠𝑟,𝑡,𝜆(𝐶𝜒2(𝑃 )) and error
tolerance 𝜖/3. Note that

|𝑠𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))− 𝑠𝑟,𝑡,𝜆(𝐶𝜒2(𝑃 ))| = 𝑂𝑟(𝑑
−0.4). (7.62)

So for 𝑑 large enough (depending only on 𝜖, 𝑟), we have

|𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))− 𝑔𝑟,𝑡,𝜆(𝐶𝜒2(𝑃 ))| ≤ 𝜖/3 (7.63)

by continuity of 𝑔𝑟 (Lemma 7.11).
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Therefore we have

|𝐶𝜒2(BP(𝑃 ))− 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))|
=
⃒⃒
E𝑡∼Pois(𝑑)𝐶𝜒2((𝑃×(𝑟−1) ∘𝐵)⋆𝑡)− 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))

⃒⃒
≤ E𝑡∼Pois(𝑑)1{|𝑡− 𝑑| ≤ 𝑑0.6}

⃒⃒
𝐶𝜒2((𝑃×(𝑟−1) ∘𝐵)⋆𝑡)− 𝑔𝑟,𝑡,𝜆(𝐶𝜒2(𝑃 ))

⃒⃒
+ E𝑡∼Pois(𝑑)1{|𝑡− 𝑑| ≤ 𝑑0.6} |𝑔𝑟,𝑡,𝜆(𝐶𝜒2(𝑃 ))− 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))|
+ E𝑡∼Pois(𝑑)1{|𝑡− 𝑑| > 𝑑0.6}|𝐶𝜒2((𝑃×(𝑟−1) ∘𝐵)⋆𝑡)− 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))|

≤ 𝜖/3 + 𝜖/3 + 𝜖/3 = 𝜖.

Note that 𝐶𝜒2(𝑃 ) ∈ [0, 1] for any BMS channel 𝑃 , and 𝑔𝑟,𝑑,𝜆(𝑥) ∈ [0, 1] for all 𝑥 ∈
[0, 1].

7.4.2 Properties of functions

In this section we state some few properties of important functions. For 𝑟 ≥ 2, we
define

𝑔𝑟(𝑥) := E𝑍∼𝒩 (0,1) tanh
(︁
𝑠𝑟(𝑥) +

√︀
𝑠𝑟(𝑥)𝑍

)︁
, (7.64)

𝑠𝑟(𝑥) :=
1

2(𝑟 − 1)

(︀
(1 + 𝑥)𝑟−1 − (1− 𝑥)𝑟−1

)︀
. (7.65)

Lemma 7.11. For any 𝑟 ≥ 2, the function 𝑔𝑟 is strictly increasing and continuous
differentiable on [0, 1].

Proof. Note that 𝑠𝑟(𝑥) is continuous and increasing on [0, 1]. Therefore it suffices to
prove that

𝑔(𝑠) := E𝑍∼𝒩 (0,1) tanh
(︀
𝑠+
√
𝑠𝑍
)︀

(7.66)

is continuous and increasing on R≥0. This statement is in fact equivalent to the 𝑞 = 2
case in [126, Lemma 4.4], after a suitable change of variables.

Lemma 7.12. For 𝑟 ≥ 7, there exists 𝑥 ∈ [0, 1] such that 𝑔𝑟(𝑥) > 𝑥.

Proof. We can numerically verify that 𝑔7(0.8) > 0.8. Note that 𝑠𝑟(0.8) is increasing
for 𝑟 ≥ 7. Therefore for 𝑟 ≥ 7, we have 𝑔𝑟(0.8) ≥ 𝑔7(0.8) > 0.8.

7.4.3 Proof of Theorem 7.1(iv)

In this section we prove Theorem 7.1(iv).

Proof of Theorem 7.1(iv). Choose 𝑥 ∈ [0, 1] so that 𝑔𝑟(𝑥) > 𝑥 via Lemma 7.12. By
continuity of 𝑔𝑟 (Lemma 7.11), there exists 𝜖 > 0 such that 𝑔𝑟,𝑑,𝜆(𝑥) > 𝑥 + 𝜖 for
(𝑟 − 1)𝑑𝜆2 = 1− 𝜖. Note that 𝑔𝑟,𝑑,𝜆(𝑥)’s dependence on 𝑑 and 𝜆 is only through 𝑑𝜆2.
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Take 𝑑0 = 𝑑0(𝑟, 𝜖) in Prop. 7.7. For any 𝑑 > 𝑑0, choose 𝜆 ∈ [0, 1] such that
(𝑟 − 1)𝑑𝜆2 = 1 − 𝜖. By Prop. 7.7, choice of 𝜖, and Lemma 7.11, for all BMS 𝑃 with
𝐶𝜒2(𝑃 ) ≥ 𝑥 we have

𝐶𝜒2(BP(𝑃 )) ≥ 𝑔𝑟,𝑑,𝜆(𝐶𝜒2(𝑃 ))− 𝜖 ≥ 𝑥. (7.67)

Therefore

lim
𝑘→∞

𝐼𝜒2(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) = lim

𝑘→∞
𝐶𝜒2(𝑀𝑘) ≥ 𝑥. (7.68)

Finally

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
) ≥ lim

𝑘→∞

log 𝑒

2
𝐼𝜒2(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘

) ≥ 𝑥 log 𝑒

2
, (7.69)

where the first step is because 𝐶(𝑃 ) ≥ log 𝑒
2
𝐶𝜒2(𝑃 ) for any BMS 𝑃 .

7.5 Weak recovery threshold for HSBM
In this section we prove Theorem 7.2 and Theorem 7.1(iii).

Proof of Theorem 7.2. By combining Theorem 7.1(i)(ii) and Theorem 5.15.

Proof of Theorem 7.1(iii). By [112], there is an algorithm for weak recovery above
the Kesten-Stigum threshold. Therefore, by Theorem 5.15, the BOHT model must
admit reconstruction above the Kesten-Stigum threshold.

Theorem 7.1(iii) can also be proved directly via a majority decider. We omit the
details.

7.6 Discussions
We have left the 𝑟 = 5, 6 case open in Theorem 7.1. Our preliminary computations
suggest that for 𝑟 = 5, 6, there exists an absolute constant 𝑑0 ∈ R≥0 such that the
BOHT model has non-reconstruction when 𝑑 ≥ 𝑑0 and (𝑟 − 1)𝑑𝜆2 ≤ 1. We believe
that a generalization of Sly’s method [126, 109] can be used to prove this. In Sly’s
method, we compute the first few orders of the BP recursion formula. Combined with
Gaussian approximation this would imply contraction of 𝜒2-capacity. One technical
challenge is that in the BOHT case we need a two-step application of Sly’s method,
in contrast with previous works.
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Chapter 8

Robust reconstruction for
broadcasting on trees

We study the robust reconstruction problem on the broadcasting on trees (BOT)
model (Definition 5.9). Recall that the reconstruction problem (Definition 5.14) con-
cerns the possibility of reconstructing the root label 𝜎𝜌 from the leaf labels 𝜎𝐿𝑘

. The
robust reconstruction problem concerns the possibility of reconstructing the root la-
bel from noisy observations of the leaf labels. Seminal work [82] closed the problem
for almost all BOT models on bounded degree trees, but left open the case where the
broadcasting matrix 𝑀 contains zeros, and the survey channel is an erasure channel.
We present a method that resolves the problem for any reversible BOT model with
mild offspring distributions, which include regular trees and Poisson trees. Our proof
is based on local subadditivity of 𝜒2-information under ⋆-convolution (Theorem 8.6),
which generalizes our previous result for the FMS channel case (Theorem 3.12). Using
a similar method, we establish that boundary irrelevance (Definition 5.17) does not
hold between the reconstruction threshold and the Kesten-Stigum threshold. This
may be surprising because BI always holds for the Ising model (𝑞 = 2) by [137].

Chapter outline In Section 8.1, we introduce the problem and state our main
results on robust reconstruction and boundary irrelevance. In Section 8.2, we prove
local subadditivity of 𝜒2-informally for general channels. In Section 8.3, we prove our
main results.

8.1 Introduction

We start with the definition of robust reconstruction for general broadcasting on
hypertrees (BOHT) models.

Definition 8.1 (Robust reconstruction for BOHT model). Consider the BOHT
model BOHT(𝑇, 𝑞, 𝑟, 𝜋,𝑀) or BOHT(𝑞, 𝑟, 𝜋,𝑀,𝐷) (Definition 5.7). Let 𝑊 be a
channel with input alphabet [𝑞]. Let 𝜔𝑢 ∼ 𝑊 (·|𝜎𝑢) independently for all vertices
𝑢 ∈ 𝑉 (𝑇 ). We say the BOHT model admits robust reconstruction with respect to 𝑊
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if

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜔𝐿𝑘
) > 0. (8.1)

Let 𝒲 be a collection of channels with input alphabet [𝑞]. We say the BOHT model
admits robust reconstruction with respect to𝒲 if it admits robust reconstruction for
every non-trivial channel 𝑊 ∈ 𝒲 .

By definition, robust reconstruction with respect to the identity channel Id is
equivalent to reconstruction.

In general, robust reconstruction with respect to the collection of all weak enough
channels with input alphabet [𝑞] may have peculiarities. See the following example.

Example 8.2. We present a BOT model above the Kesten-Stigum threshold which
does not admit robust reconstruction with respect to some non-trivial survey channel.
Consider the model BOT(𝑞, 𝜋,𝑀, 𝑑) where 𝑞 = 4, 𝜋 = Unif([𝑞]), 𝑑 = 3, and

𝑀 =

⎡⎢⎢⎣
0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.1
0.1 0.1 0.4 0.4
0.1 0.1 0.4 0.4

⎤⎥⎥⎦ . (8.2)

Then 𝜆2(𝑀) = 0.6 and 𝑑𝜆2(𝑀)2 = 1.08 > 1. So we are above the Kesten-Stigum
threshold. Now consider the survey channel 𝑊 : [4] → [2] defined as 𝑊 (1|1) =
𝑊 (1|3) = 𝑊 (2|2) = 𝑊 (2|4) = 1, 𝑊 (2|1) = 𝑊 (2|3) = 𝑊 (1|2) = 𝑊 (1|4) = 0. The
BOT model does not admit robust reconstruction with respect to 𝑊 , because 𝑊 ∘𝑀
is equivalent to the trivial channel.

Seminal work [82] almost closed the robust reconstruction problem on BOT mod-
els. Consider the model BOT(𝑞, 𝜋,𝑀, 𝑑) (Definition 5.9), where 𝑞 ∈ Z≥2, 𝜋 ∈ 𝒫([𝑞])
has full support, 𝑀 : [𝑞] → [𝑞] satisfies 𝜋𝑀 = 𝜋, and 𝑑 ∈ Z≥0. [82] studied three
collections of channels: 𝒲1 := {𝑀𝑘 : 𝑘 ∈ Z≥0}, 𝒲2 := {𝑃𝜆 : 𝜆 ∈ (0, 1]}, and
𝒲3 := {EC𝜖 : 𝜖 ∈ [0, 1)}. Note that each of the three collections are naturally
ordered and contains arbitrarily weak channels. [82] showed that

• ([107]) above the Kesten-Stigum threshold (𝑑𝜆2 > 1), the BOT model admits
robust reconstruction with respect to each of the three collections;

• below the Kesten-Stigum threshold (𝑑𝜆2 < 1), the BOT model does not admit
robust reconstruction with respect to 𝒲1, 𝒲2;

• below the Kesten-Stigum threshold (𝑑𝜆2 < 1), the BOT model does not admit
robust reconstruction with respect to 𝒲3, if 𝑀(𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ [𝑞].

The zero-free condition in the last result is because their proof used contraction of
an information quantity which takes infinity value when the posterior distribution
given some observation is not of full support. This condition does not seem to be
easily removable by modifications of their method. This is a little bit annoying, as the
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random coloring model is an important BOT model [125, 20, 59, 75]. In addition, in
the view of the boundary irrelevance problem (Definition 5.17), erasure observation
is an important class of survey channels, with applications to the mutual information
formula (Theorem 5.18).

As discussed above, it is an interesting question to remove the zero-free condition
in the robust reconstruction results. Our first result shows that robust reconstruction
is impossible below the Kesten-Stigum threshold for reversible BOT models with mild
offspring distributions.

Condition 8.3. Let 𝐷 be a distribution supported on Z≥0. We say 𝐷 is mild if

lim
𝑡→∞

(︀
𝑡9P𝑏∼𝐷[𝑏 > 𝑡]

)︀
= 0. (8.3)

Theorem 8.4 (Impossibility of robust reconstruction for reversible BOT). Consider
the model BOT(𝑞, 𝜋,𝑀,𝐷) (Definition 5.9) where (𝜋,𝑀) is reversible and 𝐷 satisfies
Condition 8.3. If 𝑑𝜆2 < 1, then there exists 𝜖 > 0 such that for any channel 𝑊 with
input alphabet [𝑞] and 𝐼𝜒2(𝜋,𝑊 ) < 𝜖, we have

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜔𝐿𝑘
) = 0. (8.4)

Our second result is that boundary irrelevance does not hold between the recon-
struction threshold and the Kesten-Stigum threshold.

Theorem 8.5 (Failure of boundary irrelevance for reversible BOT). Consider the
model BOT(𝑞, 𝜋,𝑀,𝐷) (Definition 5.9) where (𝜋,𝑀) is reversible and 𝐷 satisfies
Condition 8.3. If 𝑑𝜆2 < 1 and reconstruction is possible, then BI does not hold for
weak enough survey channel. That is, there exists 𝜖 > 0 such that for any survey
channel 𝑊 with input alphabet [𝑞] and 𝐼𝜒2(𝜋,𝑊 ) ≤ 𝜖, we have

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) > 0. (8.5)

Combined with results on the reconstruction threshold of the Potts model [126,
109], Theorem 8.5 implies that for 𝑞 ≥ 4, there exists 𝜆, 𝑑 such that BI does not hold
for BOT(𝑞, 𝜆, 𝑑). This may be surprising, because [137] proved that BI always holds
for symmetric Ising models.

8.2 Local subadditivity of 𝜒2-information

The key ingredient in the proofs of Theorem 8.4 and Theorem 8.5 is a local subaddi-
tivity result for 𝜒2-information. We prove that 𝜒2-information is almost subadditive
when one of the channels is close to trivial. This generalizes our previous result
(Theorem 3.12) on FMS channels to general channels.

Theorem 8.6 (Local subadditivity of 𝜒2-information). Let 𝜋 be a fixed distribution
over a finite alphabet 𝒳 with full support. For any 𝜖 > 0, channel 𝑃 : 𝒳 → 𝒴,
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𝑄 : 𝒳 → 𝒵 with 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖 we have

𝐼𝜒2(𝜋, 𝑃 ⋆ 𝑄) ≤
(︀
1 +𝑂𝜋(𝜖

1/9)
)︀
(𝐼𝜒2(𝜋, 𝑃 ) + 𝐼𝜒2(𝜋,𝑄)), (8.6)

where 𝑂𝜋 hides a constant depending on 𝜋.

The rest of this section is devoted to the proof of Theorem 8.6.
We view a pair (𝜋, 𝑃 ) where 𝜋 ∈ 𝒫(𝒳 ), 𝑃 : 𝒳 → 𝒴 as a distribution of posterior

distributions (i.e., the distribution of 𝑃𝑋|𝑌=𝑦 where 𝑦 ∼ 𝑃𝑌 ). Let 𝜇 be the posterior
distribution variable of (𝜋, 𝑃 ) and 𝑃𝜇 be its distribution. Then we have

𝐼𝜒2(𝜋, 𝑃 ) = E𝜇∼𝑃𝜇𝜒
2(𝜇‖𝜋). (8.7)

For two distributions 𝜇, 𝜈 ∈ 𝒫(𝒳 ), we define 𝜇 ⋆𝜋 𝜈 as the distribution

𝜇 ⋆𝜋 𝜈 =

(︃
𝜇𝑖𝜈𝑖𝜋

−1
𝑖∑︀

𝑗∈𝒳 𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝑖∈𝒳

. (8.8)

Let 𝜇 be the posterior distribution variable of (𝜋, 𝑃 ) (with distribution 𝑃𝜇), and
𝜈 be the posterior distribution variable of (𝜋,𝑄) (with distribution 𝑄𝜈). Then the
posterior distribution variable 𝜉 of (𝜋, 𝑃 ⋆ 𝑄) satisfies

P(𝜉 ∈ ℰ) = E𝜇∼𝑃𝜇

𝜈∼𝑄𝜈

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
1 {𝜇 ⋆𝜋 𝜈 ∈ ℰ}

]︃
. (8.9)

for any measurable subset ℰ ⊆ 𝒫(𝒳 ). Therefore, we have

𝐼𝜒2(𝜋, 𝑃 ⋆ 𝑄) = E𝜇∼𝑃𝜇

𝜈∼𝑄𝜈

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)

]︃
. (8.10)

Lemma 8.7. Let 𝜋 be a fixed distribution over a finite alphabet 𝒳 with full support.
For any 𝜖 > 0, channel 𝑃 : 𝒳 → 𝒴 and distribution 𝜈 with 𝜒2(𝜈‖𝜋) ≤ 𝜖 we have

E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)

]︃
≤
(︀
1 +𝑂𝜋(𝜖

1/2)
)︀ (︀
𝐼𝜒2(𝜋, 𝑃 ) + 𝜒2(𝜈‖𝜋)

)︀
.

(8.11)

Proof. Write 𝜇 = 𝜋(1 + 𝛼), 𝜈 = 𝜋(1 + 𝛽), where 𝛼 ∈ R𝒳 is a random variable, and
𝛽 ∈ R𝒳 is fixed. We immediately have

𝜋[𝛼] = 0, 𝜒2(𝜇‖𝜋) = 𝜋[𝛼2], 𝜋[𝛽] = 0, 𝜒2(𝜈‖𝜋) = 𝜋[𝛽2], (8.12)

‖𝛼‖∞ = 𝑂𝜋(1), ‖𝛽‖∞ = 𝑂𝜋(𝜖
1/2). (8.13)
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Note that because E[𝜈] = 𝜋, we have

E[𝛼] = 0 ∈ R𝒳 . (8.14)

We have ∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗 = 1 + 𝜋[𝛼𝛽], (8.15)

𝜇 ⋆𝜋 𝜈 =

(︂
(1 + 𝛼𝑖)(1 + 𝛽𝑖)𝜋𝑖

1 + 𝜋[𝛼𝛽]

)︂
𝑖∈𝒳

, (8.16)

𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋) =
𝜋[(1 + 𝛼)2(1 + 𝛽)2]

(1 + 𝜋[𝛼𝛽])2
− 1. (8.17)

Therefore

E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)

]︃
= E

[︂
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

1 + 𝜋[𝛼𝛽]

]︂
.

(8.18)

Note that

𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2 = Var𝜋[(1 + 𝛼)(1 + 𝛽)] (8.19)

is non-negative. By Eq. (8.13), we have

|𝜋[𝛼𝛽]| = 𝑂𝜋(𝜖
1/2). (8.20)

So

E
[︂
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

1 + 𝜋[𝛼𝛽]

]︂
≤
(︀
1 +𝑂𝜋(𝜖

1/2)
)︀
E
[︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

]︀
, (8.21)

and to prove Eq. (8.11), it suffices to prove that

E
[︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

]︀
≤
(︀
1 +𝑂𝜋(𝜖

1/2)
)︀ (︀

E
[︀
𝜋[𝛼2]

]︀
+ 𝜋[𝛽2]

)︀
. (8.22)

We have

E
[︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

]︀
= E

[︀
𝜋[1 + 2𝛼 + 2𝛽 + 𝛼2 + 𝛽2 + 4𝛼𝛽 + 2𝛼2𝛽 + 2𝛼𝛽2 + 𝛼2𝛽2]− 1− 𝜋[2𝛼𝛽]− (𝜋[𝛼𝛽])2

]︀
= E

[︀
𝜋[𝛼2 + 𝛽2 + 2𝛼𝛽 + 2𝛼2𝛽 + 2𝛼𝛽2 + 𝛼2𝛽2]− (𝜋[𝛼𝛽])2

]︀
= E

[︀
𝜋[𝛼2 + 𝛽2 + 2𝛼2𝛽 + 𝛼2𝛽2]− (𝜋[𝛼𝛽])2

]︀
. (8.23)

where the second step is by 𝜋[𝛼] = 𝜋[𝛽] = 0, and the third step is by E[𝛼] = 0 ∈ R𝒳 .
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Furthermore,

E
[︀
𝜋[2𝛼2𝛽 + 𝛼2𝛽2]− (𝜋[𝛼𝛽])2

]︀
≤ E

[︀
𝜋[2𝛼2|𝛽|+ 𝛼2|𝛽|2]

]︀
≤ 𝑂𝜋(𝜖

1/2)E
[︀
𝜋[𝛼2]

]︀
. (8.24)

Combining Eq. (8.23) and Eq. (8.24) we finish the proof of Eq. (8.22).

Lemma 8.8. Let 𝜋 be a fixed distribution over a finite alphabet 𝒳 with full support.
For any 𝜖 > 0, channel 𝑃 : 𝒳 → 𝒴 and distribution 𝜈 with 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖 we have

E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)

]︃
≤
(︀
1 +𝑂𝜋(𝜖

1/9)
)︀ (︀
𝐼𝜒2(𝜋, 𝑃 ) + 𝜒2(𝜈‖𝜋)

)︀
.

(8.25)

Proof. Following notations in proof of Lemma 8.7, write 𝜇 = 𝜋(1 + 𝛼), 𝜈 = 𝜋(1 + 𝛽),
where 𝛼 ∈ R𝒳 is a random variable, and 𝛽 ∈ R𝒳 is fixed. Note that the bound on
‖𝛽‖∞ in Eq. (8.13) no longer holds.

If 𝜒2(𝜈‖𝜋) ≤ 𝜖2/9, then we can apply Lemma 8.7. In the following, assume that

𝜋[𝛽2] = 𝜒2(𝜈‖𝜋) ≥ 𝜖2/9. (8.26)

Because

E
[︀
𝜋[𝛼2]

]︀
= 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖, (8.27)

by Markov inequality, we have

P
[︀
𝜋[𝛼2] ≥ 𝜖2/3

]︀
≤ 𝜖1/3. (8.28)

So

E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)

]︃

= E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)1

{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︃

+ E𝜇∼𝑃𝜇

[︃(︃∑︁
𝑗∈𝒳

𝜇𝑗𝜈𝑗𝜋
−1
𝑗

)︃
𝜒2(𝜇 ⋆𝜋 𝜈‖𝜋)1

{︀
𝜋[𝛼2] > 𝜖2/3

}︀]︃
=: 𝐿+𝑅. (8.29)

For 𝑅, we have

𝑅 ≤ 𝜖1/3 sup
𝜇′,𝜈′∈𝒫(𝒳 )

(︃(︃∑︁
𝑗∈𝒳

𝜇′
𝑗𝜈

′
𝑗𝜋

−1
𝑗

)︃
𝜒2(𝜇′ ⋆𝜋 𝜈

′‖𝜋)

)︃
= 𝑂𝜋(𝜖

1/3) ≤ 𝑂𝜋(𝜖
1/9)𝜋[𝛽2],

(8.30)
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where the last step is by Eq. (8.26).
For 𝐿, by the same computation as in proof of Lemma 8.7, we have

𝐿 = E𝜇∼𝑃𝜇

[︂
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

1 + 𝜋[𝛼𝛽]
· 1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︂
≤
(︀
1 +𝑂𝜋(𝜖

1/3)
)︀
E𝜇∼𝑃𝜇

[︀(︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

)︀
1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︀
.

(8.31)

Note that 𝜋[𝛼2] ≤ 𝜖2/3 implies that ‖𝛼‖∞ = 𝑂𝜋(𝜖
1/3).

So it suffices to prove that

E𝜇∼𝑃𝜇

[︀(︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

)︀
1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︀
≤
(︀
1 +𝑂𝜋(𝜖

1/9)
)︀ (︀

E
[︀
𝜋[𝛼2]

]︀
+ 𝜋[𝛽2]

)︀
. (8.32)

We have

E𝜇∼𝑃𝜇

[︀(︀
𝜋[(1 + 𝛼)2(1 + 𝛽)2]− (1 + 𝜋[𝛼𝛽])2

)︀
1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︀
= E

[︀(︀
𝜋[𝛼2 + 𝛽2 + 2𝛼𝛽 + 2𝛼2𝛽 + 2𝛼𝛽2 + 𝛼2𝛽2]− (𝜋[𝛼𝛽])2

)︀
1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︀
≤ E

[︀
𝜋[𝛼2]

]︀
+ 𝜋[𝛽2] + E

[︀(︀
𝜋[2𝛼𝛽 + 2𝛼2𝛽 + 2𝛼𝛽2 + 𝛼2𝛽2]

)︀
1
{︀
𝜋[𝛼2] ≤ 𝜖2/3

}︀]︀
= E

[︀
𝜋[𝛼2]

]︀
+ 𝜋[𝛽2] +𝑂𝜋(𝜖

1/3)

= E
[︀
𝜋[𝛼2]

]︀
+
(︀
1 +𝑂𝜋(𝜖

1/9)
)︀
𝜋[𝛽2], (8.33)

where where the first step is because 𝜋[𝛼] = 𝜋[𝛽] = 0, the third step is because
‖𝛼‖∞ = 𝑂𝜋(𝜖

1/3), ‖𝛽‖∞ = 𝑂𝜋(1), and the fourth step is by Eq. (8.26).
By Eq. (8.31) and Eq. (8.33), we have

𝐿 ≤
(︀
1 +𝑂𝜋(𝜖

1/9)
)︀ (︀

E
[︀
𝜋[𝛼2]

]︀
+ 𝜋[𝛽2]

)︀
. (8.34)

Combining Eq. (8.34) and Eq. (8.30) we finish the proof.

Proof of Theorem 8.6. By Eq. (8.10) and Lemma 8.8.

8.3 Proofs of main results

In this section we prove Theorem 8.4 and Theorem 8.5. The proof uses contraction
and local subadditivity properties (Theorem 3.12) of 𝜒2-information.

Lemma 8.9 (Contraction). Let 𝜋 be a distribution on a finite alphabet 𝒳 and 𝑀 :
𝒳 → 𝒳 be a channel with invariant distribution 𝜋. If (𝜋,𝑀) is reversible, then

𝜂𝜒2(𝜋,𝑀) = 𝜆2, (8.35)

where 𝜆 is the second largest eigenvalue (in absolute value) of 𝑀 . In particular, for
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any channel 𝑃 with input alphabet 𝒳 , we have

𝐼𝜒2(𝜋, 𝑃 ∘𝑀) ≤ 𝜆2𝐼𝜒2(𝜋, 𝑃 ). (8.36)

Proof. It is known (e.g., [122, 118]) that 𝜂𝜒2(𝜋,𝑀) is equal to the second largest
eigenvalue of 𝑀𝑀*. Because 𝑀 is reversible, 𝑀𝑀* = 𝑀2 and its eigenvalues are
squares of eigenvalues of 𝑀 . This proves Eq. (8.35). Then Eq. (8.36) follows from
reversibility of 𝑀 and definition of contraction coefficient.

Proof of Theorem 8.4. Let 𝐶1 > 0 be the constant in Theorem 8.6, i.e., for all 𝜖 > 0,
channels 𝑃 : 𝒳 → 𝒴 , 𝑄 : 𝒳 → 𝒵 with 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖, we have

𝐼𝜒2(𝜋, 𝑃 ⋆ 𝑄) ≤
(︀
1 + 𝐶1𝜖

1/9
)︀
(𝐼𝜒2(𝜋, 𝑃 ) + 𝐼𝜒2(𝜋,𝑄)). (8.37)

Let 𝐶2 > 0 be such that 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝐶2 for all channels 𝑃 with input alphabet [𝑞].
Take 𝑐1, 𝑐2 > 0 such that

exp(𝑐1)𝑑𝜆
2 + 𝑐2 < 1. (8.38)

Take 𝑏0 (via Condition 8.3) such that for all 𝑡 ≥ 𝑏0, we have

𝑡9P𝑏∼𝐷[𝑏 > 𝑡] < 𝑐2𝐶
−1
2 (𝑐1𝐶

−1
1 )9. (8.39)

For 𝜖 > 0, define

𝑏(𝜖) := 𝑐1𝐶
−1
1 𝜖−1/9. (8.40)

Take 𝜖0 > 0 such that 𝑏(𝜖0) > 𝑏0.
We prove that for any channel 𝑃 with input alphabet [𝑞] and 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖0, we

have

𝐼𝜒2(𝜋,BP(𝑃 )) ≤
(︀
exp(𝑐1)𝑑𝜆

2 + 𝑐2
)︀
𝐼𝜒2(𝜋, 𝑃 ). (8.41)

Fix such a channel 𝑃 . Let 𝜖 := 𝐼𝜒2(𝜋, 𝑃 ). By Lemma 8.9, we have

𝐼𝜒2(𝜋, 𝑃 ∘𝑀) ≤ 𝜆2𝜖. (8.42)

We have

𝐼𝜒2(𝜋,BP(𝑃 )) = E𝑏∼𝐷𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏)

= E𝑏∼𝐷
[︀
𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏)1{𝑏 ≤ 𝑏(𝜖)}

]︀
+ E𝑏∼𝐷

[︀
𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏)1{𝑏 > 𝑏(𝜖)}

]︀
=: 𝐿+𝑅. (8.43)

For 𝐿, by induction on 𝑏 we have

𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏) ≤ (1 + 𝐶1𝜖
1/9)𝑏𝑏𝐼𝜒2(𝜋, 𝑃 ∘𝑀) ≤ exp(𝐶1𝜖

1/9𝑏)𝑏𝜆2𝜖. (8.44)
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Therefore

𝐿 ≤ E𝑏∼𝐷
[︀
exp(𝐶1𝜖

1/9𝑏)𝑏𝜆2𝜖1{𝑏 ≤ 𝑏(𝜖)}
]︀

≤ E𝑏∼𝐷
[︀
exp(𝐶1𝜖

1/9𝑏(𝜖))𝑏𝜆2𝜖
]︀

≤ exp(𝐶1𝜖
1/9𝑏(𝜖))𝑑𝜆2𝜖

≤ exp(𝑐1)𝑑𝜆
2𝜖. (8.45)

For 𝑅 we have

𝑅 ≤ E𝑏∼𝐷
[︁
𝐶2 · 𝑐2𝐶−1

2

(︀
𝑐1𝐶

−1
1

)︀9 · 𝑏(𝜖)−9
]︁
≤ 𝑐2𝜖. (8.46)

Eq. (8.43), Eq. (8.45) and Eq. (8.46) together imply Eq. (8.41).
Let 𝑀𝑘 be the channel 𝜎𝜌 ↦→ (𝑇𝑘, 𝜔𝐿𝑘

). Then we have 𝑀𝑘+1 = BP(𝑀𝑘). By
Eq. (8.41), Eq. (8.38) and the fact that 𝐼𝜒2(𝜋,𝑀0) < ∞, we finish the proof of the
theorem.

Proof of Theorem 8.5 is based on the following variant of Theorem 8.4.

Proposition 8.10. In the setting of Theorem 8.5, for all 𝛿 > 0, there exists 𝜖 > 0
such that for any channel 𝑊 with input alphabet [𝑞] and 𝐼𝜒2(𝜋,𝑊 ) ≤ 𝜖, we have

lim
𝑘→∞

𝐼𝜒2(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘) ≤ 𝛿. (8.47)

Proof of Theorem 8.5 given Prop. 8.10. In the reconstruction regime,

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
, 𝜔𝑇𝑘 |𝑇𝑘) ≥ lim

𝑘→∞
𝐼(𝜎𝜌;𝜎𝐿𝑘

|𝑇𝑘) > 0. (8.48)

Take 𝛿 > 0 such that 𝛿 log 2 < lim𝑘→∞ 𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘). Because 𝐼 ≤ 𝐼𝜒2 log 2, and

by Prop. 8.10, for weak enough survey channel 𝑊 we have

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘) ≤ lim
𝑘→∞

𝐼𝜒2(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘) log 2 ≤ 𝛿 log 2 < lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
, 𝜔𝑇𝑘 |𝑇𝑘).

(8.49)

Therefore

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) = lim

𝑘→∞
(𝐼(𝜎𝜌;𝜎𝐿𝑘

, 𝜔𝑇𝑘 |𝑇𝑘)− 𝐼(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘)) (8.50)

= lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
, 𝜔𝑇𝑘 |𝑇𝑘)− lim

𝑘→∞
𝐼(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘) > 0.

Proof of Prop. 8.10. Take 𝐶1, 𝐶2, 𝑐1, 𝑐2, 𝑏0, 𝑏(𝜖), 𝜖0 as in proof of Theorem 8.4. Take
𝜖1 > 0 such that 𝜖1 < min{𝜖0, 𝛿}. Take 𝜖 > 0 such that 𝜖 < 𝜖1 and

(exp(𝑐1)𝑑𝜆
2 + 𝑐2)𝜖1 + exp(𝑐1)𝜖 < 𝜖1. (8.51)
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Let𝑊 (resp. 𝑃 ) be an arbitrary channel with input alphabet [𝑞] satisfying 𝐼𝜒2(𝜋,𝑊 ) ≤
𝜖 (resp. 𝐼𝜒2(𝜋, 𝑃 ) ≤ 𝜖1). We have

𝐼𝜒2(𝜋,BP𝑊 (𝑃 )) = E𝑏∼𝐷𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏 ⋆ 𝑊 )

= E𝑏∼𝐷
[︀
𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏 ⋆ 𝑊 )1{𝑏 ≤ 𝑏(𝜖1)}

]︀
+ E𝑏∼𝐷

[︀
𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏 ⋆ 𝑊 )1{𝑏 > 𝑏(𝜖1)}

]︀
=: 𝐿+𝑅. (8.52)

For 𝐿, by induction on 𝑏 we have

𝐼𝜒2(𝜋, (𝑃 ∘𝑀)⋆𝑏 ⋆ 𝑊 ) ≤ (1 + 𝐶1𝜖1)
𝑏(𝑏𝐼𝜒2(𝜋, 𝑃 ∘𝑀) + 𝜖) ≤ (1 + 𝜖)𝑏(𝑏𝜆2𝜖1 + 𝜖).

(8.53)

Then with a computation similar to Eq. (8.45) we have

𝐿 ≤ exp(𝑐1)(𝑑𝜆
2𝜖1 + 𝜖). (8.54)

For 𝑅, with the same computation as Eq. (8.46)

𝑅 ≤ 𝑐2𝜖1. (8.55)

Combining Eq. (8.52), Eq. (8.54), Eq. (8.55) we get

𝐼𝜒2(𝜋,BP𝑊 (𝑃 )) ≤ (exp(𝑐1)𝑑𝜆
2 + 𝑐2)𝜖1 + exp(𝑐1)𝜖 < 𝜖1. (8.56)

Let 𝑀𝑘 be the channel 𝜎𝜌 ↦→ (𝑇𝑘, 𝜔𝑇𝑘). Then 𝑀𝑘+1 = BP𝑊 (𝑀𝑘). By Eq. (8.56)
and 𝜖 ≤ 𝜖1 we see that

𝐼𝜒2(𝜋,𝑀𝑘) ≤ 𝜖1 < 𝛿 (8.57)

for all 𝑘. This finishes the proof.
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Chapter 9

Computation of belief propagation
limit

We consider the problem of computing the limit information, and more generally, the
limit channel, in the symmetric Ising model. Computation of the belief propagation
limit in BOT models is a non-trivial task. Exact computation takes time doubly
exponential in depth, which is unacceptable in practice. The widely used population
dynamics, while running very fast (linear in sample size), does not have sufficient
correctness guarantees as depth goes large. We introduce a method for bounding the
limit information based on the less-noisy preorder, which, in its most basic form, is
able to recover the reconstruction threshold for the symmetric Ising model. We further
refine this method using local comparison of BMS channels via channel preorders,
which gives us rigorous and very good bounds on the limit information.

This chapter is based on [75].

Chapter outline In Section 9.1, we introduce the problem and our method based
on channel comparison. In Section 9.2, we derive the reconstruction threshold for the
symmetric Ising model using (global) less-noisy comparison. In Section 9.3, we derive
bounds on the limit mutual information using global comparison. In Section 9.4, we
introduce the local comparison method and present a few numerical results.

9.1 Introduction

9.1.1 Broadcasting on trees

We consider the symmetric Ising model on a regular tree with offspring 𝑑 ∈ Z≥0

(denoted BOT(2, 𝜆, 𝑑) as in Definition 5.9). In this model, a binary signal propagates
from the root 𝜌 downwards the tree through BSC𝛿 channels (where 𝜆 = 1− 2𝛿). Let
𝐿𝑘 be the set of nodes at distance 𝑘 to 𝜌 and 𝑀𝑘 be the channel 𝜎𝜌 ↦→ 𝜎𝐿𝑘

. We would
like to compute the limit mutual information

𝐼(𝛿) := lim
𝑘→∞

𝐶(𝑀𝑘) (9.1)
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and the limit probability of error

𝑃𝑒(𝛿) := lim
𝑘→∞

𝑃𝑒(𝑀𝑘), (9.2)

where 𝐶(·) and 𝑃𝑒(·) are defined in Definition 2.4. The model admits reconstruction if
and only if 𝐼(𝛿) > 0 (equivalently, 𝑃𝑒(𝛿) < 1

2
). Foundational work [23, 63] established

that reconstruction is possible if and only if

𝛿 < 𝛿𝑐 :=
1

2

(︀
1− 𝑑−1/2

)︀
. (9.3)

We note that the positive part (i.e., 𝑃𝑒 < 1
2

when 𝛿 < 𝛿𝑐) follows from the Kesten-
Stigum threshold [84], which says that reconstruction can be achieved using a subop-
timal estimator which outputs the majority of labels in 𝐿𝑘.

The computation of limit information and limit probability of error is a non-trivial
task. Computing these quantities exactly takes time doubly exponential in depth 𝑘,
which is totally unacceptable. A method commonly used in practice is the population
dynamics [10, 99, 98]. In this method, one maintains a collection of samples from the
distribution of belief propagation messages, and approximates the true BP message
distribution using these samples. When the sample size is 𝑀 , this method takes
𝑂(𝑘𝑀) time and 𝑂(𝑀) space to compute an approximation up to level 𝑘. While
the computation cost of the population dynamics is small (when the sample size is
not too large), theoretical guarantees of the approximation accuracy as 𝑘 → ∞ are
limited. In this section, we propose a method based on local comparison of BMS
channels, which gives rigorous and quite good bounds on the limit information and
limit probability of error.

To show the power of our method, we apply it to the Ising model near criticality.
Various theories (starting from Ginzburg-Landau) in statistical physics predict the
behavior of various quantities in he vicinity of the phase transition (called critical
exponents). However, before our work [75], behavior of 𝐼(𝛿) and 𝑃𝑒(𝛿) near the
critical point 𝛿 = 𝛿𝑐− 𝜏 with 𝜏 ≪ 1 was not understood: the only known results were

𝑐1𝜏 + 𝑜(𝜏) ≤ 𝐼(𝛿𝑐 − 𝜏) ≤ 𝑐2𝜏 + 𝑜(𝜏), (9.4)
1

2
− 𝑐3
√
𝜏 + 𝑜(

√
𝜏) ≤ 𝑃𝑒(𝛿𝑐 − 𝜏) ≤

1

2
− 𝑐4𝜏 + 𝑜(𝜏) . (9.5)

for some 0 < 𝑐1 < 𝑐2 and 𝑐3, 𝑐4 > 0. Using the local comparison method, we were
able to provide rigorous bounds on 𝐼 and 𝑃𝑒, which allowed us to conjecture that on
binary trees (i.e., 𝑑 = 2)

𝐼(𝛿𝑐 − 𝜏) = (4
√
2 + 𝑜(1))𝜏, 𝑃𝑒(𝛿𝑐 − 𝜏) =

1

2
−Θ(

√
𝜏). (9.6)

Our conjectures were later proved in [136].
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9.1.2 Channel comparison method

The key idea of our method is very simple. Recall that the channels (𝑀𝑘)𝑘≥0 satisfies
the belief propagation recursion

𝑀𝑘+1 = BP(𝑀𝑘), BP(𝑃 ) := (𝑃 ∘ BSC𝛿)
⋆𝑑. (9.7)

By Lemma 2.8, the BP operator preserves degradation preorder and less-noisy pre-
order. Therefore, if we have quantization operators 𝑄,𝑄 : {BMSs} → {BMSs}
satisfying

𝑄(𝑃 ) ≤deg 𝑃 ≤deg 𝑄(𝑃 ) (9.8)

for all BMS channels 𝑃 , then the quantized BP operators

BP := 𝑄 ∘ BP, BP := 𝑄 ∘ BP (9.9)

satisfy

BP(𝑃 ) ≤deg BP(𝑃 ) ≤deg BP(𝑃 ) (9.10)

for all BMS channels 𝑃 . By iterating, we have

BP𝑘(𝑃 ) ≤deg BP
𝑘(𝑃 ) ≤deg BP

𝑘
(𝑃 ) (9.11)

for all 𝑘 ≥ 0.
The above discussions still hold if we replace all ≤deg by ≤ln.
Recall Lemma 2.10, which states that

1. among all BMS channels with 𝜒2-capacity 𝑐, the least noisy one is BEC1−𝑐 and
the most noisy one is BSC1/2−

√
𝑐/2;

2. among all BMS channels with probability of error 𝑝, the least degraded one is
BEC2𝑝 and the most degraded one is BSC𝑝.

Therefore, one natural idea is to let 𝑄 output the unique BEC with the same prob-
ability of error (resp. 𝜒2-capacity), and let 𝑄 output the unique BSC with the same
probability of error (resp. 𝜒2-capacity). These choices lead to the following results.

Proposition 9.1. Let 𝑄deg (resp. 𝑄
deg

) be the operator which maps a BMS channel 𝑃
to BEC2𝑝 (resp. BSC𝑝), where 𝑝 = 𝑃𝑒(𝑃 ). Let BPdeg := 𝑄

deg
∘BP, BPdeg := 𝑄deg∘BP.

Then for any 𝑘 ≥ 0,

BP𝑘deg(Id) ≤deg BP
𝑘(Id) ≤deg BP

𝑘

deg(Id). (9.12)

Proposition 9.2. Let 𝑄ln (resp. 𝑄
ln
) be the operator which maps a BMS channel 𝑃

to BEC1−𝑐 (resp. BSC1/2−
√
𝑐/2), where 𝑐 = 𝐶𝜒2(𝑃 ). Let BPln := 𝑄

ln
∘ BP, BPln :=
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𝑄ln ∘ BP. Then for any 𝑘 ≥ 0,

BP𝑘ln(Id) ≤ln BP𝑘(Id) ≤ln BP
𝑘

ln(Id). (9.13)

Proofs of Prop. 9.1 and Prop. 9.2 are by combining Lemma 2.8 and Lemma 2.10.
We note that the BP operators in Prop. 9.1 and Prop. 9.2 output BSC channels,

and the BP operators output BEC channels. Therefore computations of BP𝑘(Id) and
BP

𝑘
(Id) can be considered as evolutions of a single real number. This allows us the

analyze the evolutions analytically.
We call the above method the global comparison method because probability mass

of the Δ-distribution (recall Lemma 2.2) is moved to a single point (BSCs) for the
lower bound, and moved to 0 and 1

2
(BECs) for the upper bound. In Section 9.4, we

will refine this method to the local comparison method, by replacing masses in small
subintervals of [0, 1

2
] separately. While the global comparison method is already powe-

ful and can recover the reconstruction threshold, we show that the local comparison
method can give almost tight bounds on the limit information and limit probability
of error.

9.2 The reconstruction threshold

In this section we prove the reconstruction threshold using the global less-noisy com-
parison method (Prop. 9.2).

Proposition 9.3. Consider the model BOT(2, 𝜆 = 1 − 2𝛿, 𝑑). If 𝑑𝜆2 > 1, then
reconstruction is possible.

Proof. By Prop. 9.2, it suffices to show that there exists 𝜖 > 0 such that

𝐶𝜒2(BP(BSC1/2−𝜖)) ≥ 𝐶𝜒2(BSC1/2−𝜖). (9.14)

In fact, suppose that Eq. (9.14) holds. Write BP𝑘ln(Id) = BSC1/2−𝜖𝑘 . By induction on
𝑘 we have 𝜖𝑘 ≥ 𝜖 for all 𝑘 > 0. Therefore

BP𝑘(Id) ≥ln BP𝑘ln(Id) ≥ln BSC1/2−𝜖𝑘 (9.15)

for all 𝑘 ≥ 0 and reconstruction holds.
In the following we prove Eq. (9.14). Note that BSC1/2−𝜖 ∘BSC𝛿 = BSC𝜅 where

𝜅 = 1
2
− (1− 2𝛿)𝜖. Then we have

𝐶𝜒2(BP(BSC1/2−𝜖)) = 𝐶𝜒2(BSC⋆𝑑
𝜅 )

= 2
∑︁
0≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂
· 𝜅2𝑖(1− 𝜅)2(𝑑−𝑖)

𝜅𝑖(1− 𝜅)𝑑−𝑖 + 𝜅𝑑−𝑖(1− 𝜅)𝑖
− 1. (9.16)
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Using

𝜅𝑎(1− 𝜅)𝑏 + 𝜅𝑏(1− 𝜅)𝑎 = 21−𝑎−𝑏
(︂
1 +

(︂(︂
𝑎

2

)︂
+

(︂
𝑏

2

)︂
− 𝑎𝑏

)︂
4(1− 2𝛿)2𝜖2 +𝑂(𝜖4)

)︂
,

(9.17)

we can expand Eq. (9.16) in terms of 𝜖 and get

𝐶𝜒2(BP(BSC1/2−𝜖)) =
∑︁
0≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂
2−𝑑

(︂
1 +

(︂(︂
2𝑖

2

)︂
+

(︂
2(𝑑− 𝑖)

2

)︂
− 4𝑖(𝑑− 𝑖)

−
(︂
𝑖

2

)︂
−
(︂
𝑑− 𝑖
2

)︂
+ 𝑖(𝑑− 𝑖)

)︂
4(1− 2𝛿)2𝜖2

)︂
+𝑂(𝜖4)− 1

= 4𝑑(1− 2𝛿)2𝜖2 +𝑂(𝜖4). (9.18)

Note that 𝐶𝜒2(BSC1/2−𝜖) = 4𝜖2. Therefore when 𝜖 > 0 is small enough, Eq. (9.14)
holds. This finishes the proof.

Likewise, comparison with BECs leads to tight non-reconstruction result.

Proposition 9.4. Consider the model BOT(2, 𝜆 = 1−2𝛿, 𝑑). If 𝑑𝜆2 ≤ 1 and (𝑑, 𝛿) ̸=
(1, 0), then reconstruction is impossible.

Proof. By Prop. 9.2, it suffices to show that for all 0 < 𝜖 ≤ 1, we have

𝐶𝜒2(BP(BEC1−𝜖)) < 𝐶𝜒2(BEC1−𝜖). (9.19)

In fact, suppose that Eq. (9.19) holds. Write BP𝑘ln(Id) = BEC1−𝜖𝑘 . Define function
𝑔 : [0, 1]→ [0, 1] as

𝑔(𝜖) := 𝐶𝜒2(BP(BEC1−𝜖)). (9.20)

Then 𝜖0 = 1, 𝜖𝑘+1 = 𝑔(𝜖𝑘) for all 𝑘 and Eq. (9.19) implies that

lim
𝑘→∞

𝜖𝑘 = 0, (9.21)

which is equivalent to non-reconstruction.
Because

𝐶𝜒2(BEC1−𝜖 ∘BSC𝛿) = (1− 2𝛿)2𝜖, (9.22)

we have

BEC1−𝜖 ∘BSC𝛿 ≤ln BEC1−(1−2𝛿)2𝜖 . (9.23)

Therefore

𝐶𝜒2(BP(BEC1−𝜖)) ≤ 𝐶𝜒2(BEC⋆𝑑
1−(1−2𝛿)2𝜖) = 1− (1− (1− 2𝛿)2𝜖)𝑑 =: 𝑓(𝜖). (9.24)
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Note that

𝑓(0) = 0, 𝑓 ′(𝜖) = 𝑑(1− 2𝛿)2(1− (1− 2𝛿)2𝜖)𝑑−1. (9.25)

So 𝑓 ′(𝜖) ≤ 1 for 𝜖 ∈ [0, 1], and equality is achieved only when 𝜖 = 0 and 𝑑(1−2𝛿)2 = 1.
Therefore 𝑓 has only one fixed point in [0, 1], which is 0. Because 𝑔(𝜖) ≤ 𝑓(𝜖) for all
𝜖 ∈ [0, 1], we have 𝑔(𝜖) < 𝜖 for all 0 < 𝜖 ≤ 1. This finishes the proof.

In the proof of Prop. 9.3, we showed that when the input information is close to 0,
in the limit the information would contract to a non-zero value. Therefore our proof
in fact shows that robust reconstruction (a stronger condition than reconstruction)
on such trees is possible. By [82], for broadcasting on trees, the robust reconstruc-
tion threshold coincides with the Kesten-Stigum threshold. It is shown in [125] that
when the alphabet size is at least five, the Kesten-Stigum threshold is never tight
for the (non-robust) reconstruction problem. So for large alphabet size, the global
comparison method does not yield the tight reconstruction threshold.

9.3 Bounds on mutual information

In this section we refine the computations in Section 9.2 and prove bounds on the
limit mutual information.

Proposition 9.5. Consider the model BOT(2, 𝜆 = 1 − 2𝛿, 𝑑), where 𝑑 ∈ Z≥2 and
𝛿 = 𝛿𝑐 − 𝜏 , where 𝛿𝑐 is defined in Eq. (9.3). Then

2𝑑
√
𝑑

𝑑− 1
· 𝜏 + 𝑜(𝜏) ≤ lim

𝑘→∞
𝐶(𝑀𝑘) ≤

4(𝑑+ 1)
√
𝑑 log 2

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.26)

Proof. The proof is by analyzing the recursions in the proof of Prop. 9.3 and Prop. 9.4
more carefully.

Lower bound. In the setting of proof of Prop. 9.3, expanding everything to the
order of 𝜖4 and computing a binomial sum, we get

𝐶𝜒2(BP(BSC1/2−𝜖)) = 4𝑑(1− 2𝛿)2𝜖2 − 16𝑑(𝑑− 1)(1− 2𝛿)4𝜖4 +𝑂(𝜖6)

= 4
(︁
1 + 4

√
𝑑𝜏 + 𝑜𝜏 (𝜏)

)︁
𝜖2 − 16

(︂
𝑑− 1

𝑑
+ 𝑜𝜏 (1)

)︂
𝜖4 +𝑂(𝜖6).

(9.27)

The input information is 4𝜖2. Solving the dynamics, we see that the largest fixed
point is at

𝜖* =

⎛⎝√︃ 𝑑
√
𝑑

𝑑− 1
+ 𝑜(1)

⎞⎠√𝜏 . (9.28)
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This gives

lim
𝑘→∞

𝐶(𝑀𝑘) ≥ lim
𝑘→∞

𝐶
(︀
BP𝑘ln(Id)

)︀
≥ log 2− ℎ

⎛⎝1

2
−

⎛⎝√︃ 𝑑
√
𝑑

𝑑− 1
+ 𝑜(1)

⎞⎠√𝜏
⎞⎠

=
2𝑑
√
𝑑

𝑑− 1
· 𝜏 + 𝑜(𝜏), (9.29)

where ℎ(𝑥) = −𝑥 log 𝑥− (1− 𝑥) log(1− 𝑥) is the binary entropy function.

Upper bound. Following the proof of Prop. 9.4, let us consider the function
𝑓(𝜖) = 1− (1− (1− 2𝛿)2𝜖)𝑑. Note that function 𝑓(𝜖) is concave on [0, 1], and there is
a unique fixed point in (0, 1). By expanding in terms of 𝜖, we have

𝑓(𝜖) = 𝑑(1− 2𝛿)2𝜖−
(︂
𝑑

2

)︂
(1− 2𝛿)4𝜖2 +𝑂(𝜖3)

=
(︁
1 + 4

√
𝑑𝜏 + 𝑜𝜏 (𝜏)

)︁
𝜖−

(︂
𝑑− 1

2𝑑
+ 𝑜𝜏 (1)

)︂
𝜖2 +𝑂(𝜖3). (9.30)

So the unique non-trivial fixed point of 𝑓 is at

𝜖* =
8𝑑
√
𝑑

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.31)

This gives

lim
𝑘→∞

𝐶(𝑀𝑘) ≤ lim
𝑘→∞

𝐶
(︁
BP

𝑘

ln(Id)
)︁
≤ 8𝑑

√
𝑑 log 2

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.32)

In fact, knowing that the limit is linear in 𝜏 , we can improve this upper bound.
Instead of bounding the function 𝑓 , let us bounding the function 𝑔 (Eq. (9.20))
directly. We have

𝑔(𝜖) := 𝐶𝜒2(BP(BEC1−𝜖))

= 2
∑︁

0≤𝑗≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂
𝜖𝑖(1− 𝜖)𝑑−𝑖

(︂
𝑖

𝑗

)︂
· (1− 𝛿)2𝑗𝛿2(𝑖−𝑗)

(1− 𝛿)𝑗𝛿𝑖−𝑗 + (1− 𝛿)𝑖−𝑗𝛿𝑗
− 1. (9.33)

Because 𝑔(𝜖) ≤ 𝑓(𝜖) on [0, 1], the largest fixed point of 𝑔 is upper bounded by the
unique non-trivial fixed point of 𝑓 , which is of order Θ(𝜏). This justifies performing
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series expansion in 𝜖.

𝑔(𝜖) = (1− 𝜖)𝑑 + 2𝑑
(︀
(1− 𝛿)2 + 𝛿2

)︀
𝜖(1− 𝜖)𝑑−1

+ 𝑑(𝑑− 1)

(︂
(1− 𝛿)4 + 𝛿4

(1− 𝛿)2 + 𝛿2
+ (1− 𝛿)𝛿

)︂
𝜖2(1− 𝜖)𝑑−2 +𝑂(𝜖3)− 1

= 𝑑(1− 2𝛿)2𝜖− 𝑑(𝑑− 1) · (1− 2𝛿)4

(1− 2𝛿)2 + 1
· 𝜖2 +𝑂(𝜖3)

=
(︁
1 + 4

√
𝑑𝜏 + 𝑜𝜏 (𝜏)

)︁
𝜖−

(︂
𝑑− 1

𝑑+ 1
+ 𝑜𝜏 (1)

)︂
𝜖2 +𝑂(𝜖3). (9.34)

We see that the largest fixed point of 𝑔 satisfies

𝜖* =
4(𝑑+ 1)

√
𝑑

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.35)

In this way we get

lim
𝑘→∞

𝐶(𝑀𝑘) ≤ lim
𝑘→∞

𝐶
(︁
BP

𝑘

ln(Id)
)︁
≤ 4(𝑑+ 1)

√
𝑑 log 2

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.36)

We compare the above lower bound with (7) in [63].1 We note that the lower
bound of [63] can in the limit be simplified into

lim
𝑘→∞

𝐶𝜒2(𝑀𝑘) ≥
1

1 + 1−(1−2𝛿)2

𝑑(1−2𝛿)2−1

. (9.37)

Near the critical threshold, RHS behaves as 4𝑑
√
𝑑

𝑑−1
· 𝜏 . So they obtained the the same

𝜒2-capacity capacity lower bound, thus the same mutual information lower bound, as
in Prop. 9.5.

[63] did not state explicitly an upper bound on mutual information. Nonetheless,
their upper bound is by comparison with percolation, and that leads to an upper
bound of

lim
𝑘→∞

𝐶(𝑀𝑘) ≤
8𝑑
√
𝑑 log 2

𝑑− 1
· 𝜏 + 𝑜(𝜏). (9.38)

In this case we see that channel comparison leads to a better upper bound.
In the case of binary trees, we perform a more refined analysis to improve the

upper bound.

Proposition 9.6. Consider the model BOT(2, 𝜆 = 1 − 2𝛿, 𝑑 = 2) where 𝛿 = 𝛿𝑐 − 𝜏

1[63] contains an error stating that 𝐶 ≥ 𝐶𝜒2 , which should be 𝐶 ≥ 1
2𝐶𝜒2 . This leads to lower

bounds on 𝐼 (e.g., (4)(28) in [63]) to be off by a factor of 2. (7) in [63] is correct as stated.
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and 𝛿𝑐 is defined in Eq. (9.3). Then

lim
𝑘→∞

𝐶(𝑀𝑘) ≤ 8(
√
2 + 1)

(︃
log 2− ℎ

(︃
1

2
−

√︃
1√
2
− 1

2

)︃)︃
𝜏 + 𝑜(𝜏). (9.39)

Proof. Suppose the input distribution is a mixture of BSCΔ for Δ supported at
{1/2 − 𝛼𝑡, 1/2}. We iterate the quantized belief propagation while finding the best
(w.r.t the less-noisy order) channel within this family. This family contains all BECs
(corresponding to 𝛼 = 1/2), so this approach may lead to a better bound. Define

�̄� := 1/2− 𝛼(1− 2𝛿). (9.40)

The output distribution has support
{︁

�̄�
2

�̄�
2
+(1−�̄�)2

, �̄�, 1/2
}︁

. Using Lemma 2.10, we re-
place BSC�̄� with a mixture of BSC1/2 and BSC �̄�2

�̄�2+(1−�̄�)2

, while preserving 𝜒2-capacity.

Therefore

1/2− 𝛼𝑡+1 =
�̄�
2

�̄�
2
+ (1− �̄�)2

. (9.41)

Solving this, we get that in the 𝑘 →∞ limit

𝛼* =

√
1− 4𝛿

2(1− 2𝛿)
. (9.42)

For 𝛼 = 𝛼*, we have

𝐶𝜒2(BSC�̄�) = (1− 2𝛿)2𝐶𝜒2(BSC �̄�2

�̄�2+(1−�̄�)2

). (9.43)

So when applying Lemma 2.10, every unit weight for the former becomes (1 − 2𝛿)2

weight for the latter.
Let 𝜖𝑡 be the weight of BSC1/2 in iteration 𝑡. Then in the 𝑘 → ∞ limit 𝜖 should

satisfy

1− 𝜖 = (1− 𝜖)2(�̄�2 + (1− �̄�)2) + 2𝜖(1− 𝜖)(1− 2𝛿)2. (9.44)

Solving this we get 𝜖* = 1− 8(
√
2 + 1)𝜏 + 𝑜(𝜏).

So an upper bound for mutual information is

(1− 𝜖*)(log 2− ℎ(1/2− 𝛼*))

= 8(
√
2 + 1)

(︃
log 2− ℎ

(︃
1

2
−

√︃
1√
2
− 1

2

)︃)︃
𝜏 + 𝑜(𝜏). (9.45)

The same method can be applied to the lower bound, leading to 𝛼* = (
√︀

3
√
2 +
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𝑜(1))
√
𝜏 and 𝜖* = 1

3
+ 𝑜(1), giving

lim
𝑘→∞

𝐶(𝑀𝑘) ≥ 4
√
2𝜏 + 𝑜(𝜏). (9.46)

Surprisingly, although we lower bound using a larger family, and the limiting distri-
bution is different, we get the same lower bound as Prop. 9.5.

We have shown that for the Ising model on a binary tree, 𝐼(𝛿𝑐 − 𝜏) = 𝑐𝜏 + 𝑜(𝜏)
for some 𝑐 ∈ [5.65, 9.85]. The improvement over Prop. 9.5 can be attributed to a
finer “quantization” since we try to work with less-noisy channels while staying closer
to the true output of BP. We shall explore this idea further in Section 9.4 and show
(numerically) that the correct slope is 𝑐 ≈ 5.65.

9.4 Improved bounds via local comparisons

One advantage of the comparison method is that it allows us to analyze BP, rather
than some suboptimal algorithm. On the other hand, we incur some loss in each step
of the analysis due to the crude approximations that are made to the input distribution
in order to simplify the analysis. In some cases these losses can be significant. For
instance, a naive application of the comparison method while matching probabilities
of error (i.e., using Prop. 9.1) does not even recover the right threshold. One way
to avoid this issue is to do local comparisons. We first define the local quantization
operators.

Definition 9.7 (Local quantization operators). Let 𝑃 be a BMS channel and 𝑃Δ

be its Δ-distrbution. Let [0, 1/2] =
⋃︀
𝑖∈ℐ 𝐼𝑖 be a partition of [0, 1/2] into a finite

disjoint union of subintervals. Define the local (lower) quantization operator 𝑄
deg,loc

by replacing the support of 𝑃Δ along each 𝐼𝑖 with a single point at Δ𝑖 :=

´
𝐼𝑖

Δ𝑑𝑃Δ´
𝐼𝑖
𝑑𝑃Δ

with

probability mass
´
𝐼𝑖
𝑑𝑃Δ (i.e., mapping 𝑃 to the BMS channel whose Δ-distrbution is

the modified distribution). Likewise, define the local (upper) quantization operator
𝑄deg,loc by replacing the support of 𝑃Δ along each 𝐼𝑖 with two quantization points
𝑎𝑖 := inf 𝐼𝑖, 𝑏𝑖 := sup 𝐼𝑖 with probabilities 𝑝𝑎𝑖 = 𝛼𝑖𝑝𝑖, 𝑝𝑏𝑖 = (1 − 𝛼𝑖)𝑝𝑖, where 𝑝𝑖 =´
𝐼𝑖
𝑑𝑃Δ and 𝛼𝑖 =

𝑏𝑖−
´
𝐼𝑖

Δ𝑃Δ/
´
𝐼𝑖
𝑑𝑃Δ

𝑏𝑖−𝑎𝑖 . Furthermore, define 𝑄
ln,loc

(resp. 𝑄ln,loc) similarly
by matching the 𝜒2-capacity along each interval while contracting (resp. spreading)
probability masses.

Using the local quantization operators we can improve Prop. 9.1 and Prop. 9.2 as
follows.

Proposition 9.8. Consider the model BOT(2, 𝜆 = 1 − 2𝛿, 𝑑) with 𝑑𝜆2 > 1. Choose
𝛿0 < 1/2 such that

𝛿0 > lim
𝑘→∞

𝑃𝑒(𝑀𝑘). (9.47)
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Define

BPdeg,loc := 𝑄
deg,loc

∘ BP, BPdeg,loc := 𝑄deg,loc ∘ BP, (9.48)

BPln,loc := 𝑄
ln,loc
∘ BP, BPln,loc := 𝑄ln,loc ∘ BP . (9.49)

Then for any 𝑘 ≥ 0 we have

𝑃𝑒
(︀
BP𝑘deg,loc(BSC𝛿0)

)︀
≥ 𝑃𝑒(𝛿) ≥ 𝑃𝑒

(︁
BP

𝑘

deg,loc(Id)
)︁
, (9.50)

𝐶
(︀
BP𝑘ln,loc(BSC𝛿0)

)︀
≤ 𝐼(𝛿) ≤ 𝐶

(︁
BP

𝑘

ln,loc(Id)
)︁
. (9.51)

To choose the initial 𝛿0 we may, for example, use a Kesten-Stigum upper bound
on 𝑃𝑒 (see e.g., [84] or Section 10.2.4).

Proof. From the construction we see that for every BMS channel 𝑃 ,

𝑄
deg,loc

(𝑃 ) ≤deg 𝑃 ≤deg 𝑄deg,loc(𝑃 ), (9.52)

𝑄
ln,loc

(𝑃 ) ≤ln 𝑃 ≤ln 𝑄ln,loc(𝑃 ). (9.53)

Therefore for all 𝑘 ≥ 0,

BP𝑘deg,loc(𝑃 ) ≤deg BP
𝑘(𝑃 ) ≤deg BP

𝑘

deg,loc(𝑃 ), (9.54)

BP𝑘ln,loc(𝑃 ) ≤ln BP𝑘(𝑃 ) ≤ln BP
𝑘

ln,loc(𝑃 ). (9.55)

For the upper bounds, we have

BP𝑘+𝑙(Id) ≤deg BP
𝑘(Id) ≤deg BP

𝑘

deg,loc(Id), (9.56)

BP𝑘+𝑙(Id) ≤ln BP𝑘(Id) ≤ln BP
𝑘

ln,loc(Id) (9.57)

for all 𝑘, 𝑙 ≥ 0. This proves the upper bounds in Eq. (9.50) and (9.51).
For the lower bounds, note that by Eq. (9.47), there exists 𝑙0 such that for all

𝑙 ≥ 𝑙0 we have

BSC𝛿0 ≤deg 𝑀𝑘 (9.58)

and therefore

BSC𝛿0 ≤ln 𝑀𝑘. (9.59)

So

BP𝑘+𝑙(Id) ≥deg BP
𝑘(BSC𝛿0) ≥deg BP

𝑘
deg,loc(BSC𝛿0), (9.60)

BP𝑘+𝑙(Id) ≥ln BP𝑘(BSC𝛿0) ≥ln BP𝑘ln,loc(BSC𝛿0) (9.61)

for all 𝑘 ≥ 0 and 𝑙 ≥ 𝑙0. This proves the lower bounds in Eq. (9.50) and (9.51).
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Figure 9-1: Bounds on probability of error using local comparisons for 𝛿 = 𝛿𝑐 − 𝜏 .
The linear approximation has a slope of 1/2.

Using uniform quantization in the [0, 1/2] interval with 1024 points, we were able
to show that

𝐼(𝛿𝑐 − 𝜏) = 𝑐𝜏 + 𝑜(𝜏) (9.62)

with 𝑐 ≈ 5.65. We thus conjectured that

𝐼(𝛿𝑐 − 𝜏) = (4
√
2 + 𝑜(1))𝜏. (9.63)

Using a degradation argument (or Fano’s inequality), one can also show

1/2− 𝑐′
√
𝜏 + 𝑜(

√
𝜏) ≤ 𝑃𝑒(𝛿𝑐 − 𝜏) ≤ 1/2− 𝑐𝜏 + 𝑜(𝜏). (9.64)

It is natural to ask what is the correct exponent for 𝑃𝑒. Using the same approach we
were able to show (see Fig. 9-1)

log(1− 2𝑃𝑒) ≥ 0.504 log 𝜏 + 𝑐. (9.65)

We thus conjectured that 1/2 is the correct exponent.
We remark that both our conjectures were later proved (and strengthened) in

[136].
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Chapter 10

Uniqueness of BP fixed point: Ising
model

We prove stability of belief propagation fixed points (Definition 5.21) and boundary
irrelevance (Definition 5.17) for the Ising model BOT(2, 𝜃, 𝑑) and BOT(2, 𝜃,Pois(𝑑)),
when signal-to-noise ratio (SNR, Definition 5.8) is outside a finite interval [1, 3.513].
Via reductions established in Chapter 5, we achieve a mutual information formula
and an optimal recovery algorithm for SBM(𝑛, 2, 𝑎, 𝑏). Before our work, a mutual
information formula was known for disassortative SBM(𝑛, 𝑞, 𝑎, 𝑏) [43] and for dense
binary symmetric stochastic block model [50], but open for the sparse and assortative
regime. For the proof, we introduce the degradation method, which reduces the
problem of boundary irrelevance to contraction of certain potential functions under
BP recursion. We choose the potential function to be the Bhattacharyya coefficient
(Hellinger distance) of a BMS channel, and use its contraction properties to finish the
proof. This chapter is based on [4].

We remark that subsequent work [137] established stability of BP fixed points and
boundary irrelevance for any BOT(𝑇, 2, 𝜃) and BOT(2, 𝜃,𝐷) model, thus giving a mu-
tual information formula and an optimal recovery algorithm for any SBM(𝑛, 2, 𝑎, 𝑏).
Nevertheless, we believe our method is still interesting, as it can be generalized to the
Potts model and SBM(𝑛, 𝑞, 𝑎, 𝑏) (Chapter 11). This chapter can be seen as a warmup
for Chapter 11.

Chapter outline In Section 10.1 we introduce our setting, and state our main re-
sults. In Section 10.2, we prove our main results, boundary irrelevance and uniqueness
of BP fixed points for SNR outside [1, 3.513]. In Section 10.3, we discuss applications
of uniqueness of BP fixed points and boundary irrelevance.

10.1 Introduction

Stochastic block model We consider the simplest stochastic block model, the two-
community symmetric SBM, denoted SBM(𝑛, 2, 𝑎, 𝑏) (Definition 5.4), where 𝑛 ∈ Z≥1,
𝑎, 𝑏 ∈ R≥0. The model is defined as follows. First we assign a random label 𝑋𝑢 ∼
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Unif({±}) i.i.d for 𝑢 ∈ 𝑉 = [𝑛]. Then a random graph 𝐺 = (𝑉,𝐸) is generated,
where (𝑢, 𝑣) ∈ 𝐸 with probability 𝑎

𝑛
if 𝑋𝑢 = 𝑋𝑣, and with probability 𝑏

𝑛
if 𝑋𝑢 ̸= 𝑋𝑣,

independently for all (𝑢, 𝑣) ∈
(︀
𝑉
2

)︀
.

The weak recovery problem (Definition 5.5) for SBM(𝑛, 2, 𝑎, 𝑏) was settled by [96,
103, 105], showing that weak recovery is possible above the Kesten-Stigum threshold
(SNR > 1), and impossible below the KS threshold. When weak recovery is possible,
the natural follow-up question is to determine the optimal recovery accuracy

sup
𝑋p =𝑋p (𝐺)

lim
𝑛→∞

E
[︂
1− 1

𝑛
𝑑𝐻(𝑋,𝑋p (𝐺))

]︂
, (10.1)

where 𝑑𝐻(𝑋, 𝑌 ) :=
∑︁
𝑠∈{±}

∑︁
𝑖∈[𝑛]

1{𝑋𝑖 ̸= 𝑠𝑌𝑖}. (10.2)

[104] studied the problem of optimal recovery and proposed an algorithm, which they
proved to be optimal when SNR is larger than a constant. They did not compute the
constant, but a crude estimation shows it is at least 75 [4]. Their algorithm is con-
jectured to hold all the way down to the KS threshold. [110] generalized the analysis
and proved the optimality of a local belief propagation algorithm for SBM(𝑛, 2, 𝑎, 𝑏)
with survey, in the same parameter regime as [104].

A fundamental quantity for the SBM is the limit mutual information

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺). (10.3)

Note that even the existence of the limit is non-trivial, and was proved in [5] for the
disassortative regime (𝑎 < 𝑏). Later, an expression for the disassortative case was
given by [43]. The problem of SBM mutual information for SBM(𝑛, 2, 𝑎, 𝑏) in the
assortative case remained open until our work [4] presented here.

We refer the reader to Chapter 5 for a review of previous results on weak recovery,
optimal recovery, and mutual information.

Broadcasting on trees In the SBM, the local neighborhood of a random vertex
converges to a Galton-Watson tree with Poisson offspring distribution. Furthermore,
the labels of the local neighborhood can be coupled with that of the tree model.
Therefore the SBM is closely related to the BOT model, a phenomenon initially proved
in [103] for SBM(𝑛, 2, 𝑎, 𝑏). In this case, the relevant BOT model is BOT(2, 𝜃,Pois(𝑑)),
defined as follows. Let 𝑇 be a Galton-Watson tree with Pois(𝑑) offspring distribution.
We assign to every vertex 𝑣 a label 𝜎𝑣 according to the following process.

1. Generate 𝜎𝜌 ∼ Unif({±1}).

2. Suppose we have generated a label for a vertex 𝑢. For every child 𝑣 of 𝑢, we
genreate 𝜎𝑣 according to BSC𝛿(·|𝜎𝑢), where 𝜃 = 1− 2𝛿.

We also consider the case where 𝑇 is a regular tree (every vertex has 𝑑 ∈ Z≥0 children),
denoted BOT(2, 𝜃, 𝑑).
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We refer the reader to Chapter 5 for a review of previous results on the BOT
model.

Boundary irrelevance Let us add side information (survey) to the BOT model.
Let 𝑊 be a fixed BMS channel, and for each node 𝑢 we observe 𝜔𝑢 ∼ 𝑊 (·|𝜎𝑢). We
call this model broadcasting on trees with survey (BOTS). We will also denote by Δ𝑊

the Δ-component of the BMS 𝑊 (see Chapter 2 for background on BMS channels).
This setting includes the one in [110], where 𝑊 = BSC𝛼, i.e., for each node 𝑢,
P[𝜔𝑢 = 𝜎𝑢] = 1−P[𝜔𝑢 = −𝜎𝑢] = 1−𝛼; and the one in [83], where 𝑊 = BEC𝜖, i.e., for
each node the survey reveals the correct label with probability 1 − 𝜖 and an erasure
symbol otherwise. The latter is of particular interest to us because of its application
to the computation of the SBM mutual information.

We say the model admits boundary irrelevance with repsect to 𝑊 if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) = 0, (10.4)

where 𝐿𝑘 denotes the set of vertices at distance 𝑘 to 𝜌, 𝑇𝑘 denotes the set of vertices
at distance ≤ 𝑘 to 𝜌. We say the model admits boundary irrelevance if it admits
boundary irrelevance with repsect to all erasure channels BEC𝜖 with 0 ≤ 𝜖 < 1.

Our work [4] proved that boundary irrelevance implies a formula for SBM mutual
information. This is further generalized in our work [73] and in Theorem 5.18. See
Chapter 5 for more discussions.

If the model admits boundary irrelevance, then we have

lim
𝜖→1−

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜔
𝜖
𝑇𝑘
) = lim

𝑘→∞
𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘

), (10.5)

where 𝜔𝜖 denotes survey observation with 𝑊 = BEC𝜖. Indeed, we have

lim
𝜖→1−

lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜔
𝜖
𝑇𝑘
) = lim

𝜖→1−
lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜔
𝜖
𝑇𝑘
, 𝜎𝐿𝑘

)

= inf
𝜖∈[0,1)
𝑘∈Z≥0

𝐼(𝜎𝜌;𝑇𝑘, 𝜔
𝜖
𝑇𝑘
, 𝜎𝐿𝑘

)

= lim
𝑘→∞

𝐼(𝜎𝜌;𝑇𝑘, 𝜎𝐿𝑘
), (10.6)

where the first step is by boundary irrelevance, the second step is by data processing
inequality, and the third step is by because for every 𝑘 ∈ Z≥0, the value 𝐼(𝜎𝜌;𝜔𝜖𝑇𝑘 , 𝜎𝐿𝑘

)
is continuous in 𝜖 ∈ [0, 1] including at the boundary. Property (10.5) is known as the
condition for optimality of local algorithms [83, 110].

Uniqueness of BP fixed point Boundary irrelevance with respect to a channel
𝑊 can be interpreted using the belief propagation operator (Definition 5.13). The
BP operator for our case is an operator from the space of BMS channels to itself,
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defined as

BP(𝑀) := E𝑏(𝑀 ∘ BSC𝛿)
⋆𝑏, (10.7)

where 𝑏 = 𝑑 for the regular tree case, and 𝑏 ∼ Pois(𝑑) for the Poisson tree case. The
BP operator is relevant because if we let 𝑀𝑘 to denote the channel 𝜎𝜌 ↦→ 𝜎𝐿𝑘

, then

𝑀𝑘+1 = BP(𝑀𝑘). (10.8)

Given a survey BMS channel 𝑊 , we consider the operator BP𝑊 , defined as

BP𝑊 (𝑀) :=
(︀
E𝑏(𝑀 ∘ BSC𝛿)

⋆𝑏
)︀
⋆ 𝑊. (10.9)

Then boundary irrelevance with repsect to 𝑊 is equivalent to that for any initial
channel𝑀 (possibly trivial), BP𝑘𝑊 (𝑀) and BP𝑘𝑊 (Id) goes to the same limit as 𝑘 →∞.
This can be understood as uniqueness of fixed point for the operator BP𝑊 .

We can also consider uniqueness of fixed point for operator BP. We say the BOT
model admits uniqueness of BP fixed point if the operator BP has only one non-trivial
BMS fixed point. We sometimes need to use the stronger notion of stability of BP
fixed point, which says that for any non-trivial initial BMS channel 𝑀 , BP𝑘𝑊 (𝑀)
and BP𝑘𝑊 (Id) goes to the same limit as 𝑘 → ∞. As shown by [104], stability of BP
fixed point implies an optimal recovery algorithm for SBM. See Chapter 5 for more
discussions.

Our results Our main result for this chapter is as follows.

Theorem 10.1. Consider the model BOT(2, 𝜃, 𝑑) or BOT(2, 𝜃,Pois(𝑑)). Let 𝑊 be a
non-trivial BMS channel. If

𝑑𝜃2 exp

(︂
−(𝑑𝜃2 − 1)+

2

)︂
𝑍(𝑊 ) < 1, (10.10)

where 𝑍(𝑊 ) is the Bhattacharyya coefficient (Definition 2.4), then the model admits
BI with respect to 𝑊 .

In particular, BI holds whenever 𝑑𝜃2 < 1 or 𝑑𝜃2 > 𝛼*, where 𝛼* ≈ 3.513 is the
unique solution in R>1 to the equation

exp

(︂
−𝛼− 1

2

)︂
𝛼 = 1. (10.11)

We remark that (10.10) is a relaxation of a sharper bound in Prop. 10.6 (e.g., for
BOT(2, 𝜃, 2), BI is proven for all cases except 𝑑𝜃2 ∈ (1, 1.62)). The following corollary
lists a few direct consequences of Theorem 10.1.

Corollary 10.2. In the setting of Theorem 10.1, if any of the following is true, then
the model admits BI with repsect to 𝑊 .

(i) 𝑍(𝑊 ) <
√
𝑒
2
≈ 0.824;
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(ii) 𝑃𝑒(𝑊 ) < 1
2
− 1

4

√
4− 𝑒 ≈ 0.217;

(iii) 𝑊 = BEC𝜖 and with 𝜖 <
√
𝑒
2
≈ 0.824.

Proof. For (i) we use

sup
𝛼≥0

(︂
𝛼 exp

(︂
−𝛼− 1

2

)︂)︂
=

2√
𝑒
. (10.12)

For (ii) we define 𝑝(Δ) = 2
√︀
Δ(1−Δ) and notice that

𝑍(𝑊 ) = E[𝑝(Δ𝑊 )] ≤ 𝑝(EΔ𝑊 ) = 𝑝(𝑃𝑒(𝑊 )) (10.13)

because the function 𝑝 is concave. So when 𝑃𝑒(𝑊 ) < 1
2
− 1

4

√
4− 𝑒, we have 𝑍(𝑊 ) <

√
𝑒
2

.
(iii) follows from (i).

We demonstrate the region of uniqueness of BP fixed point from Corollary 10.2
on Figure 10-1. We note that taking the limit 𝜖 → 1−, Theorem 10.1 implies that

Figure 10-1: Left: Region of BP uniqueness for BEC survey from Corollary 10.2(iii).
Right: Region of BP uniqueness for BMS survey from Corollary 10.2(ii).

revealing an (arbitrarily) small fraction of vertex labels gives the same information
about the root bit, as revealing the whole boundary labels at large distance, even in
the reconstruction regime, cf. (10.5).

Our method for proving boundary irrelevance also works for uniqueness of BP
fixed point.

Theorem 10.3. Consider the model BOT(2, 𝜃, 𝑑) or BOT(2, 𝜃,Pois(𝑑)). If

𝑑𝜃2 exp

(︂
−(𝑑𝜃2 − 1)+

2

)︂
< 1, , (10.14)
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then the model admits stability of BP fixed point.

Applications of Theorem 10.1 and Theorem 10.3 include a mutual information
formula and an optimal recovery algorithm. We discuss these applications in Sec-
tion 10.3.

Our method We believe that our proof technique offers the following improvements
compared to [104, 110]: (a) it is much shorter; (b) we do not need to consider large 𝜃,
small 𝑑 and small 𝑑 large 𝜃 cases separately; (c) it works simultaneously for 𝑑𝜃2 < 1
and 𝑑𝜃2 > 3.513; (d) it works simultaneously with and without side information, and
the side information can be any BMS, rather than specifically the BEC or BSC; (e)
it closes the entire low-SNR case 𝑑𝜃2 < 11.

Our main innovation is the information-theoretic point of view: we consider BOTS
with or without leaf observations as two binary input symmetric channels (BMSs)
which are related to each other by a property known as degradation. This implies
a certain inequality between the log-likelihood ratios (LLRs), cf. (10.24), which we
exploit in the application of the potential method. These key ideas are the content
of the Prop. 10.5. On the more technical side, another innovation is the choice of the
potential function as 𝜑(𝑟) = 𝑒−

1
2
𝑟.

10.2 Uniqueness of BP fixed point
In this section we prove our main results, Theorem 10.1 and Theorem 10.3.

Recall the BOTS model defined in Section 10.1. Let 𝑀𝑘 denote the BMS channel
𝜎𝜌 → (𝜔𝑇𝑘 , 𝜎𝐿𝑘

) and ̃︁𝑀𝑘 denote the BMS channel 𝜎𝜌 → 𝜔𝑇𝑘 . Let 𝑃Δ𝑘
(resp. 𝑃̃︀Δ𝑘

)
be distribution of Δ-component of BMS 𝑀𝑘 (resp. ̃︁𝑀𝑘). We prove the following
strengthening of Theorem 10.1.

Theorem 10.4. In the setting of Theorem 10.1, 𝑃Δ𝑘
and 𝑃̃︀Δ𝑘

converge weakly to the
same distribution as 𝑘 →∞. In particular,

lim
𝑘→∞

𝑃𝑒(𝑀𝑘) = lim
𝑘→∞

𝑃𝑒(̃︁𝑀𝑘), (10.15)

lim
𝑘→∞

𝐶(𝑀𝑘) = lim
𝑘→∞

𝐶(̃︁𝑀𝑘). (10.16)

Proof of Theorem 10.3 is deferred to Section 10.2.5.

10.2.1 Belief propagation recursion

The maximum a posteriori probability (MAP) decoder is the optimal decoder for
this reconstruction problem. It can be implemented using belief propagation (BP) as
follows.

1There are, however, two related low-SNR results. [110, Theorem 4.2] shows uniqueness of fixed
point for 𝑑𝜃 < 1 via a simple contractivity of 𝐹𝜃 function in the BP recursion (10.20).[83, Theorem
3] shows (10.5) for 𝑑𝜃2 < 1 as an application of information contraction from [63].
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For each node 𝑢, let 𝐿𝑘(𝑢) denote the set of nodes in subtree rooted at 𝑢 that are
at distance 𝑘 to 𝑢. Let 𝑇𝑘(𝑢) denote the set of nodes in subtree rooted at 𝑢 that are
at distance ≤ 𝑘 to 𝑢. Let 𝑅𝑢,𝑘 ∈ R ∪ {±∞} denote the posterior log likelihood ratio
given 𝜔𝑇𝑘(𝑢) ∪ 𝜎𝐿𝑘(𝑢):

𝑅𝑢,𝑘 = log
P[𝜎𝑢 = +|𝜔𝑇𝑘(𝑢) ∪ 𝜎𝐿𝑘(𝑢)]

P[𝜎𝑢 = −|𝜔𝑇𝑘(𝑢) ∪ 𝜎𝐿𝑘(𝑢)]
. (10.17)

The initial value is

𝑅𝑢,0 = 𝜎𝑢 · ∞. (10.18)

Define a function 𝐹𝜃 : R ∪ {±∞} → R as

𝐹𝜃(𝑟) = 2 arctanh

(︂
𝜃 tanh

(︂
1

2
𝑟

)︂)︂
. (10.19)

By definition of 𝑅𝑢,𝑘 and Bayes rule (see e.g. [110]), we have

𝑅𝑢,𝑘+1 =
∑︁

𝑣∈𝐿1(𝑢)

𝐹𝜃(𝑅𝑣,𝑘) +𝑊𝑢 (10.20)

where 𝑊𝑢 is the log likelihood ratio induced by observation, i.e.,

𝑊𝑢 = log
P[𝜎𝑢 = +|𝜔𝑢]
P[𝜎𝑢 = −|𝜔𝑢]

. (10.21)

Using (10.18)(10.20) we are able to compute 𝑅𝜌,𝑘 recursively.

For observation without leaves, let ̃︀𝑅𝑢,𝑘 denote the posterior log likelihood ratio
given 𝜔𝑇𝑘(𝑢). Then ̃︀𝑅𝑢,𝑘 satisfies the same recursion (10.20), but with a different initial
value

̃︀𝑅𝑢,0 = 0. (10.22)

Let 𝑀𝑘(𝑢) denote the BMS channel 𝜎𝑢 → (𝜔𝑇𝑘(𝑢), 𝜎𝐿𝑘(𝑢)). Let ̃︁𝑀𝑘(𝑢) denote the
BMS channel 𝜎𝑢 → 𝜔𝑇𝑘(𝑢). Let Δ𝑢,𝑘 and ̃︀Δ𝑢,𝑘 denote the corresponding Δ-components
(both are random variables supported on [0, 1

2
]). They relate to log likelihood ratio

via the following expression:

|𝑅𝑢,𝑘| = log
1−Δ𝑢,𝑘

Δ𝑢,𝑘

, | ̃︀𝑅𝑢,𝑘| = log
1− ̃︀Δ𝑢,𝑘̃︀Δ𝑢,𝑘

. (10.23)

There exists a canonical coupling between 𝑀𝑘(𝑢) and ̃︁𝑀𝑘(𝑢) via forgetting 𝜎𝐿𝑘(𝑢)

(i.e., the channel (𝜔𝑇𝑘(𝑢), 𝜎𝐿𝑘(𝑢)) ↦→ 𝜔𝑇𝑘(𝑢)). So 𝑀𝑘(𝑢) is less degraded than ̃︁𝑀𝑘(𝑢).
Furthermore, by data processing inequality for total variation, under the canonical
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coupling, we have

E[Δ𝑢,𝑘|̃︀Δ𝑢,𝑘] ≤ ̃︀Δ𝑢,𝑘. (10.24)

As we will see, the core of our proof is the use of this degradation relationship.
Let 𝜇+

𝑘 be the distribution of 𝑅𝑢,𝑘 conditioned on 𝜎𝑢 = + (and for Galton-Watson
trees, without revealing structure of the subtree rooted at 𝑢), and ̃︀𝜇+

𝑘 be the distri-
bution of ̃︀𝑅𝑢,𝑘 conditioned on 𝜎𝑢 = +. These definitions do not depend on the choice
of 𝑢. Then 𝜇+

0 is the point measure at +∞, ̃︀𝜇+
0 is the point measure at 0.

Both distributions satisfy the same recursion. Consider the equation

𝑅+
𝑢,𝑘+1 =

∑︁
𝑣∈𝐿1(𝑢)

𝑍𝑣𝐹𝜃(𝑅
+
𝑣,𝑘) +𝑊𝑢 (10.25)

where {𝑍𝑣, 𝑅+
𝑣,𝑘,𝑊𝑢 : 𝑣 ∈ 𝐿1(𝑢)} are independent, 𝑍𝑣 are i.i.d. Bernoulli with P[𝑍𝑣 =

+1] = 1− P[𝑍𝑣 = −1] = 1− 𝛿, 𝑅+
𝑣,𝑘 ∼ 𝜇+

𝑘 , and 𝑊𝑢 distributes as log likelihood ratio
corresponding to the survey BMS. Then 𝑅+

𝑢,𝑘+1 ∼ 𝜇+
𝑘+1. The same holds if we replace

𝑅+
𝑣,𝑘 ∼ 𝜇+

𝑘 with ̃︀𝑅+
𝑣,𝑘 ∼ ̃︀𝜇+

𝑘 and 𝑅+
𝑢,𝑘+1 ∼ 𝜇+

𝑘+1 with ̃︀𝑅+
𝑢,𝑘+1 ∼ ̃︀𝜇+

𝑘+1.

BP distributional fixed point A distribution 𝜇 on R∪{±∞} is called a BP fixed
point of the BOTS model (𝜃, 𝑑,𝑊 ) if taking 𝑅+

𝑖 i.i.d. ∼ 𝜇, 𝑖 ∈ [𝑑], 𝑍𝑖 and 𝑅𝑊 as
above results in

𝑅+ =
∑︁
1≤𝑖≤𝑑

𝑍𝑖𝐹𝜃(𝑅
+
𝑖 ) +𝑅𝑊 (10.26)

having the same distribution 𝜇. In this work we restrict our attention to symmetric
distributions, i.e., distributions associated with BMS channels. We talk below about
the fixed point distribution 𝑃Δ on [0, 1

2
] that is related to 𝜇 via transformation (10.23).

Namely, a distribution 𝑃Δ is a fixed point iff the law 𝜇 of random variable 𝑅+ is a
fixed point, where 𝑅+ is generated via sampling Δ ∼ 𝑃Δ and then setting

𝑅+ =

{︃
log 1−Δ

Δ
, w.p. 1−Δ,

− log 1−Δ
Δ
, w.p. Δ.

(10.27)

Similarly, we define the BP fixed point for the BOTS model (𝜃,Pois(𝑑),𝑊 ) where
in (10.26) 𝑑 is replaced with 𝑏 ∼ Pois(𝑑).

10.2.2 Contraction of potential function

The technical part of our proof is contraction of certain potential functions. The next
proposition shows the kind of contraction result we need.

Proposition 10.5. Let 𝜑 : R ∪ {±∞} → R ∪ {±∞} be a function such that the
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function 𝑔 : [0, 1
2
]→ R ∪ {±∞} defined as

𝑔(Δ) = (1−Δ)𝜑

(︂
log

1−Δ

Δ

)︂
+Δ𝜑

(︂
− log

1−Δ

Δ

)︂
(10.28)

is decreasing and 𝛼-strongly convex for some 𝛼 > 0. If

lim
𝑘→∞

E[𝜑(𝑅+
𝜌,𝑘)− 𝜑( ̃︀𝑅+

𝜌,𝑘)] = 0, (10.29)

then under the canonical coupling,

lim
𝑘→∞

E(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘)
2 = 0. (10.30)

Proof. Because 𝑔 is 𝛼-strongly convex, we have

𝑔(Δ𝜌,𝑘)− 𝑔(̃︀Δ𝜌,𝑘) ≥ 𝑔′(̃︀Δ𝜌,𝑘)(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘) +
𝛼

2
(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘)

2. (10.31)

Then

E[𝜑(𝑅+
𝜌,𝑘)− 𝜑( ̃︀𝑅+

𝜌,𝑘)] = Ẽ︀Δ𝜌,𝑘
E[𝜑(𝑅+

𝜌,𝑘)− 𝜑( ̃︀𝑅+
𝜌,𝑘)|̃︀Δ𝜌,𝑘]

= Ẽ︀Δ𝜌,𝑘
E[𝑔(Δ𝜌,𝑘)− 𝑔(̃︀Δ𝜌,𝑘)|̃︀Δ𝜌,𝑘]

≥ Ẽ︀Δ𝜌,𝑘
E[𝑔′(̃︀Δ𝜌,𝑘)(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘) +

𝛼

2
(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘)

2|̃︀Δ𝜌,𝑘]

= Ẽ︀Δ𝜌,𝑘
[𝑔′(̃︀Δ𝜌,𝑘)(E[Δ𝜌,𝑘|̃︀Δ𝜌,𝑘]− ̃︀Δ𝜌,𝑘)] +

𝛼

2
E(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘)

2

≥ 𝛼

2
E(Δ𝜌,𝑘 − ̃︀Δ𝜌,𝑘)

2. (10.32)

The second step is because 𝑅+
𝜌,𝑘 and Δ𝜌,𝑘 (also ̃︀𝑅+

𝜌,𝑘 and ̃︀Δ𝜌,𝑘) relate via (10.27). By
(10.32), we see that (10.29) implies (10.30).

Note that (10.32) also shows that E[𝜑(𝑅+
𝜌,𝑘)− 𝜑( ̃︀𝑅+

𝜌,𝑘)] is non-negative as long as
𝑔 is decreasing and convex.

We choose the potential function to be 𝜑(𝑟) = − exp
(︀
−1

2
𝑟
)︀
. This potential func-

tion is chosen so that the expectation of 𝜑(𝑅+
𝑢,𝑘+1) has a nice decomposition (10.41).

In fact E
[︀
exp

(︀
−1

2
𝑅+
)︀]︀

is equal to the Bhattacharyya coefficient of the BMS channel,
and (10.41) can be interpreted as multiplicativity of Bhattacharyya coefficients under
⋆-convolution.

The function 𝑔 is given by 𝑔(Δ) = −2
√︀

Δ(1−Δ). One can check that 𝑔 is de-
creasing and 4-strongly convex on [0, 1

2
].

Proposition 10.6. Assume that we have a non-trivial survey channel. Let

𝐶1 = 𝐶1(𝜃, 𝑑,𝑊 ) = 𝑑𝜃2
(︂
1− (𝑑𝜃2 − 1)+

𝑑− 1

)︂ 𝑑−1
2

𝑍(𝑊 ). (10.33)
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For regular trees, under the canonical coupling, for any 𝜖 > 0, there exists 𝑘* such
that for all 𝑘 ≥ 𝑘*,

E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝜌,𝑘+1

)︂
− exp

(︂
−1

2
𝑅+
𝜌,𝑘+1

)︂]︂
≤ (1 + 𝜖)𝐶1E

[︂
exp

(︂
−1

2
̃︀𝑅+
𝜌,𝑘

)︂
− exp

(︂
−1

2
𝑅+
𝜌,𝑘

)︂]︂
. (10.34)

In particular, if 𝐶1 < 1, then (10.29) holds.
For Galton-Watson trees with Poisson offspring distribution, the same holds with

𝐶1 replaced by

𝐶2 = 𝐶2(𝜃, 𝑑,𝑊 ) = 𝑑𝜃2 exp

(︃
−𝑑

(︃
1−

√︂
1− (𝑑𝜃2 − 1)+

𝑑

)︃)︃
𝑍(𝑊 ). (10.35)

Proof of Prop. 10.6 is deferred to Section 10.2.3.
Prop. 10.5 and 10.6 complete the proof of Theorem 10.4, because for 𝑖 = 1, 2, we

have

𝐶𝑖 ≤ 𝑑𝜃2 exp

(︂
−(𝑑𝜃2 − 1)+

2

)︂
𝑍(𝑊 ). (10.36)

10.2.3 Proof of Prop. 10.6

Let us first deal with the regular tree case. Let 𝑢 be a vertex and 𝑣1, . . . , 𝑣𝑑 be its
children. Let 𝑅+

𝑣1,𝑘
, . . . , 𝑅+

𝑣𝑑,𝑘
be i.i.d. ∼ 𝜇+

𝑘 , and ̃︀𝑅+
𝑣1,𝑘

, . . . , ̃︀𝑅+
𝑣𝑑,𝑘

be i.i.d. ∼ ̃︀𝜇+
𝑘 . Define

𝑅+
𝑢,𝑘+1 and ̃︀𝑅+

𝑢,𝑘+1 using (10.25). Furthermore, for 0 ≤ 𝑖 ≤ 𝑑, define 𝑅+
𝑢,𝑖,𝑘+1 as

𝑅+
𝑢,𝑖,𝑘+1 =

∑︁
1≤𝑗≤𝑖

𝑍𝑗𝐹𝜃( ̃︀𝑅+
𝑣𝑗 ,𝑘

) +
∑︁

𝑖+1≤𝑗≤𝑑

𝑍𝑗𝐹𝜃(𝑅
+
𝑣𝑗 ,𝑘

) +𝑊𝑢. (10.37)

That is, 𝑅+
𝑢,0,𝑘+1 = 𝑅+

𝑢,𝑘+1, and 𝑅+
𝑢,𝑑,𝑘+1 =

̃︀𝑅+
𝑢,𝑘+1.

For 1 ≤ 𝑖 ≤ 𝑑 and 𝑘 large enough, let us prove that

E
[︂
exp

(︂
−1

2
𝑅+
𝑢,𝑖,𝑘+1

)︂
− exp

(︂
−1

2
𝑅+
𝑢,𝑖−1,𝑘+1

)︂]︂
≤ (1 + 𝜖)

𝐶1

𝑑
E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝑣1,𝑘

)︂
− exp

(︂
−1

2
𝑅+
𝑣1,𝑘

)︂]︂
(10.38)

where 𝐶1 is defined in (10.33). We prove that (10.38) is true even if conditioned oñ︀Δ𝑣𝑖,𝑘. For Δ ∈ [0, 1
2
], define

𝐺(Δ) = E
[︂
exp

(︂
−1

2
𝑅+
𝑢,𝑖,𝑘+1

)︂
− (1 + 𝜖)

𝐶1

𝑑
exp

(︂
−1

2
̃︀𝑅+
𝑣𝑖,𝑘

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
. (10.39)
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Define 𝑝(Δ) = −𝑔(Δ) = 2
√︀
Δ(1−Δ) so that we work with non-negative numbers.

So

E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝑣𝑖,𝑘

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
= 𝑝(Δ). (10.40)

Then

E
[︂
exp

(︂
−1

2
𝑅+
𝑢,𝑖,𝑘+1

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
=

∏︁
1≤𝑗≤𝑖−1

E
[︂
exp

(︂
−1

2
𝑍𝑗𝐹𝜃( ̃︀𝑅+

𝑣𝑗 ,𝑘
)

)︂]︂
·
∏︁

𝑖+1≤𝑗≤𝑑

E
[︂
exp

(︂
−1

2
𝑍𝑗𝐹𝜃(𝑅

+
𝑣𝑗 ,𝑘

)

)︂]︂
· E
[︂
exp

(︂
−1

2
𝑍𝑖𝐹𝜃( ̃︀𝑅+

𝑣𝑖,𝑘
)

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
· E
[︂
exp

(︂
−1

2
𝑊𝑢

)︂]︂
. (10.41)

Let us examine E
[︁
exp

(︁
−1

2
𝑍𝑖𝐹𝜃( ̃︀𝑅+

𝑣𝑖,𝑘
)
)︁
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︁
. We can compute that

exp

(︂
−1

2
𝑍𝑖𝐹𝜃( ̃︀𝑅+

𝑣𝑖,𝑘
)

)︂
=

{︂
exp

(︀
−1

2
log 1−Δ⋆𝛿

Δ⋆𝛿

)︀
, w.p. 1−Δ ⋆ 𝛿,

exp
(︀
+1

2
log 1−Δ⋆𝛿

Δ⋆𝛿

)︀
, w.p. Δ ⋆ 𝛿,

(10.42)

where we use notation 𝛿1 ⋆ 𝛿2 = 𝛿1(1− 𝛿2) + 𝛿2(1− 𝛿1). So

E
[︂
exp

(︂
−1

2
𝑍𝑖𝐹𝜃( ̃︀𝑅+

𝑣𝑖,𝑘
)

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
= E[𝑝(Δ ⋆ 𝛿)]. (10.43)

Similarly,

E
[︂
exp

(︂
−1

2
𝑍𝑗𝐹𝜃( ̃︀𝑅+

𝑣𝑗 ,𝑘
)

)︂]︂
= E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)], (10.44)

E
[︂
exp

(︂
−1

2
𝑍𝑗𝐹𝜃(𝑅

+
𝑣𝑗 ,𝑘

)

)︂]︂
= E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]. (10.45)

Finally,

E
[︂
exp

(︂
−1

2
𝑊𝑢

)︂]︂
= E[𝑝(Δ𝑊 )] = 𝑍(𝑊 ). (10.46)

So from (10.41) we get

E
[︂
exp

(︂
−1

2
𝑅+
𝑢,𝑖,𝑘+1

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
= E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)]

𝑖−1E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]
𝑑−𝑖𝑝(Δ ⋆ 𝛿)𝑍(𝑊 ).

(10.47)
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So

𝐺′′(Δ) = E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)]
𝑖−1E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]

𝑑−𝑖𝑍(𝑊 )
𝑑2

𝑑Δ2
𝑝(Δ ⋆ 𝛿)

− (1 + 𝜖)
𝐶1

𝑑
𝑝′′(Δ). (10.48)

Let us bound each factor.

𝑝(Δ ⋆ 𝛿) = 2
√︀
(Δ ⋆ 𝛿)(1−Δ ⋆ 𝛿) =

√︀
1− 𝜃2(1− 2Δ)2. (10.49)

So

E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)] = E[
√︁

1− 𝜃2(1− 2̃︀Δ𝑣1,𝑘)
2] ≤

√︁
1− 𝜃2E(1− 2̃︀Δ𝑣1,𝑘)

2. (10.50)

By Prop. 10.7, for any 𝜖′ > 0, for 𝑘 large enough, we have

E[(1− 2̃︀Δ𝑣1,𝑘)
2] ≥

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

. (10.51)

So

E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)] ≤

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

. (10.52)

Similarly,

E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)] ≤

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

. (10.53)

Note that 𝑝 is strictly concave on [0, 1
2
], and 𝑝′

(︀
1
2

)︀
= 0. So

𝑑2

𝑑Δ2
𝑝(Δ ⋆ 𝛿) ≥ 𝜃2𝑝′′(Δ). (10.54)

So (10.48) gives

𝐺′′(Δ) ≥
(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

)︂ 𝑑−1
2

𝜃2𝑝′′(Δ)𝑍(𝑊 )− (1 + 𝜖)
𝐶1

𝑑
𝑝′′(Δ)

=

(︃(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

)︂ 𝑑−1
2

𝜃2𝑍(𝑊 )− (1 + 𝜖)
𝐶1

𝑑

)︃
𝑝′′(Δ). (10.55)

Note that

lim
𝜖′→0

(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

)︂ 𝑑−1
2

=

(︂
1− (𝑑𝜃2 − 1)+

𝑑− 1

)︂ 𝑑−1
2

. (10.56)
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So we can take 𝜖′ > 0 small enough so that(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

(𝑑− 1)𝜃2
− 𝜖′

)︂
+

)︂ 𝑑−1
2

< (1 + 𝜖)

(︂
1− (𝑑𝜃2 − 1)+

𝑑− 1

)︂ 𝑑−1
2

. (10.57)

So for 𝑘 large enough, 𝐺′′(Δ) ≤ 0 for all Δ ∈ [0, 1
2
] and 𝐺(Δ) is convex. Also,

𝐺′
(︂
1

2

)︂
= E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)]

𝑖−1E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]
𝑑−𝑖𝑍(𝑊 )

𝑑

𝑑Δ
|Δ= 1

2
𝑝(Δ ⋆ 𝛿)

− (1 + 𝜖)
𝐶1

𝑑
𝑝′
(︂
1

2

)︂
= 0. (10.58)

So 𝐺′ is non-positive, thus 𝐺 is decreasing on [0, 1
2
]. Because 𝑀𝑘(𝑣𝑖) (BMS corre-

sponding to 𝑅+
𝑣𝑖,𝑘

) is less degraded than ̃︁𝑀𝑘(𝑣𝑖) (BMS corresponding to ̃︀𝑅+
𝑣𝑖,𝑘

), we get
(10.38).

For Galton-Watson trees with Poisson offspring distribution, the proof is very
similar to, and slightly more involved than the regular case. Let 𝑢 be a vertex. Let
𝑅+
𝑣1,𝑘

, 𝑅+
𝑣2,𝑘

, . . . be i.i.d. ∼ 𝜇+
𝑘 , and ̃︀𝑅+

𝑣1,𝑘
, ̃︀𝑅+

𝑣2,𝑘
, . . . be i.i.d. ∼ ̃︀𝜇+

𝑘 . Let 𝑏 ∼ Pois(𝑑) and
𝑣1, . . . , 𝑣𝑏 be the children of 𝑢. For 𝑖 ≥ 0, define

𝑅+
𝑢,𝑖,𝑘+1 =

∑︁
1≤𝑗≤min{𝑖,𝑏}

𝑍𝑗𝐹𝜃( ̃︀𝑅+
𝑣𝑗 ,𝑘

) +
∑︁

𝑖+1≤𝑗≤𝑏

𝑍𝑗𝐹𝜃(𝑅
+
𝑣𝑗 ,𝑘

) +𝑊𝑢. (10.59)

For 𝑖 ≥ 1, let us prove that

E
[︂
exp

(︂
−1

2
𝑅+
𝑢,𝑖,𝑘+1

)︂
− exp

(︂
−1

2
𝑅+
𝑢,𝑖−1,𝑘+1

)︂]︂
≤ 𝑐𝑖E

[︂
exp

(︂
−1

2
̃︀𝑅+
𝑣1,𝑘

)︂
− exp

(︂
−1

2
𝑅+
𝑣1,𝑘

)︂]︂
. (10.60)

where 𝑐𝑖 are constants to be chosen later. Define

𝐺𝑖(Δ) = E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝑢,𝑖,𝑘+1

)︂
− 𝑐𝑖 exp

(︂
−1

2
̃︀𝑅+
𝑣𝑖,𝑘

)︂
|̃︀Δ𝑣𝑖,𝑘 = Δ

]︂
. (10.61)

Let us prove that 𝐺𝑖 is decreasing and convex on [0, 1
2
]. Similarly to (10.48), we have

𝐺′′
𝑖 (Δ) = E𝑏[1𝑏≥𝑖E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)]

𝑖−1E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]
𝑏−𝑖𝑍(𝑊 )

𝑑2

𝑑Δ2
𝑝(Δ ⋆ 𝛿)]− 𝑐𝑖𝑝′′(Δ).

(10.62)

Let us study each term in (10.62). By (10.49) and Prop. 10.7, for any 𝜖′ > 0, for 𝑘
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large enough, we have

E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)] ≤
√︁

1− 𝜃2E(1− 2̃︀Δ𝑣1,𝑘)
2 ≤

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

. (10.63)

Similarly,

E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)] ≤

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

. (10.64)

(10.54) still holds in the Poisson case. So (10.62) gives

𝐺′′
𝑖 (Δ) ≥

(︃
E𝑏

[︃
1𝑏≥𝑖

(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

)︂ 𝑏−1
2

]︃
𝜃2𝑍(𝑊 )− 𝑐𝑖

)︃
𝑝′′(Δ). (10.65)

We can take

𝑐𝑖 = E𝑏

[︃
1𝑏≥𝑖

(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

)︂ 𝑏−1
2

]︃
𝜃2𝑍(𝑊 ) (10.66)

so that 𝐺′′
𝑖 (Δ) ≥ 0 for all 𝑖 ≥ 1 and Δ ∈ [0, 1

2
]. Also,

𝐺′
𝑖

(︂
1

2

)︂
= E𝑏[1𝑏≥𝑖E[𝑝(̃︀Δ𝑣1,𝑘 ⋆ 𝛿)]

𝑖−1E[𝑝(Δ𝑣1,𝑘 ⋆ 𝛿)]
𝑏−𝑖𝑍(𝑊 )

𝑑

𝑑Δ
|Δ= 1

2
𝑝(Δ ⋆ 𝛿)]

− 𝑐𝑖𝑝′
(︂
1

2

)︂
= 0. (10.67)

So 𝐺𝑖 is decreasing.

By summing up (10.60) for 𝑖 ≥ 1, we get

E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝑢,𝑘+1

)︂
− exp

(︂
−1

2
𝑅+
𝑢,𝑘+1

)︂]︂
≤

(︃∑︁
𝑖≥1

𝑐𝑖

)︃
E
[︂
exp

(︂
−1

2
̃︀𝑅+
𝑣1,𝑘

)︂
− exp

(︂
−1

2
𝑅+
𝑣1,𝑘

)︂]︂
. (10.68)

By (10.66), we have

∑︁
𝑖≥1

𝑐𝑖 = 𝜃2E𝑏

[︃
1𝑏≥𝑖

(︂
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

)︂ 𝑏−1
2

]︃
𝑍(𝑊 ) (10.69)

≤ 𝑑𝜃2 exp

(︃
−𝑑

(︃
1−

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

)︃)︃
𝑍(𝑊 ). (10.70)
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We can take 𝜖′ > 0 small enough so that

exp

(︃
−𝑑

(︃
1−

√︃
1− 𝜃2

(︂
𝑑𝜃2 − 1

𝑑𝜃2
− 𝜖′

)︂
+

)︃)︃

< (1 + 𝜖) exp

(︃
−𝑑

(︃
1−

√︂
1− (𝑑𝜃2 − 1)+

𝑑

)︃)︃
. (10.71)

This finishes the proof for the Poisson tree case.

10.2.4 𝜒2-capacity of BOT channels

Proposition 10.7. Consider the model BOT(2, 𝜃, 𝑑) or BOT(2, 𝜃,Pois(𝑑)), with the
following observation models:

• 𝑀1
𝑘 : 𝜎𝜌 → 𝜈𝐿𝑘

, where 𝜈𝑣 ∼ BSC𝜂(·|𝜎𝑣);

• 𝑀2
𝑘 : 𝜎𝜌 → (𝜎𝐿𝑘

, 𝜔𝑇𝑘).

• 𝑀3
𝑘 : 𝜎𝜌 → 𝜎𝐿𝑘

;

• 𝑀4
𝑘 : 𝜎𝜌 → 𝜔𝑇𝑘 with non-trivial survey channel 𝑊 ;

• 𝑀5
𝑘 : 𝜎𝜌 → 𝜔𝐿𝑘

with non-trivial survey channel 𝑊 .

For each of the above channels, we have

• for BOT(2, 𝜃, 𝑑) (regular trees):

lim
𝑘→∞

𝐶𝜒2(𝑀𝑘) ≥
(𝑑𝜃2 − 1)+
𝜃2(𝑑− 1)

; (10.72)

• for BOT(2, 𝜃,Pois(𝑑)) (Poisson trees):

lim
𝑘→∞

𝐶𝜒2(𝑀𝑘) ≥
(𝑑𝜃2 − 1)+

𝑑𝜃2
. (10.73)

Proof. The 𝜒2-capacity is always non-negative, so the 𝑑𝜃2 ≤ 1 case is automatic. In
the following we assume 𝑑𝜃2 > 1.

First we observe that all 𝑀 𝑖
𝑘’s are less degraded than 𝑀1

𝑘 for some suitable choice
of 𝜂. This is obvious for 𝑖 = 2, 3. Clearly 𝑀4

𝑘 is less degraded than 𝑀5
𝑘 . That

𝑀5
𝑘 ≤deg 𝑀

1
𝑘 follows from [121, Lemma 2, 3], where we can take 𝜂 = 𝑃𝑒(𝑊 ). So by

Lemma 2.51, we only need to prove the result for 𝑀1
𝑘 .

We prove the result by applying Lemma 10.8. To do this, we need to find a BMS
channel more degraded than 𝑀1

𝑘 which takes value in R. One natrual choice is the
majority decoder. We define

𝑆𝑘 =
∑︁
𝑣∈𝐿𝑘

𝜈𝑣. (10.74)
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Then the channel 𝜎𝜌 → 𝑆𝑘 is clearly more degraded than 𝑀1
𝑘 . We apply Prop. 10.9

to conclude.

Lemma 10.8 (Restatement of [63, Lemma 4.2(iii)]). Let 𝑃 : 𝑋 → 𝑌 be a BMS
channel with 𝑌 a real variable, and with involution 𝑌 ↦→ −𝑌 . Then 𝐶𝜒2(𝑃 ) ≥ (E+𝑌 )2

Var(𝑌 )
.

Proof. Let 𝑋 → (Δ, 𝑍) be the equivalent standard form of 𝑃 . By Cauchy-Schwarz,
we have

E+[(1− 2Δ)2]E+[𝑌 2] ≥ (E+[(1− 2Δ)|𝑌 |])2 = (E+𝑌 )2. (10.75)

This is equivalent to the desired result.

Proposition 10.9. Assume 𝑑𝜃2 > 1. Consider the channel 𝜎𝜌 → 𝑆𝑘 defined in
(10.74).

For BOT(2, 𝜃, 𝑑) (regular trees),

lim
𝑘→∞

Var+ 𝑆𝑘
(E+𝑆𝑘)2

=
1− 𝜃2

𝑑𝜃2 − 1
. (10.76)

For BOT(2, 𝜃,Pois(𝑑)) (Poisson trees),

lim
𝑘→∞

Var+ 𝑆𝑘
(E+𝑆𝑘)2

=
1

𝑑𝜃2 − 1
. (10.77)

Proof. The regular tree case is proved in [104, Lemma 3.4, 3.5]. (Note that the
expression for lim𝑘→∞

Var+ 𝑆𝑘

(E+𝑆𝑘)2
on top of [104, pg. 2224] is incorrect.)

Let us focus on the Poisson tree case. It is easy to see that

E+𝑆𝑘 = (1− 2𝜂)(𝑑𝜃)𝑘. (10.78)

Let 𝜌 be the root, and 𝑣1, . . . , 𝑣𝑏 be its children. By variance decomposition, we have

Var+ 𝑆𝜌,𝑘+1 = Var+ E[𝑆𝜌,𝑘+1|𝑏] + E𝑏Var+(E[𝑆𝜌,𝑘+1|𝑏, 𝜎𝑣1 , . . . , 𝜎𝑣𝑏 ]|𝑏)
+ EVar+(𝑆𝜌,𝑘+1|𝑏, 𝜎𝑣1 , . . . , 𝜎𝑣𝑏). (10.79)

Let us compute each summand.

Var+ E[𝑆𝜌,𝑘+1|𝑏] = Var+(𝑏𝜃(1− 2𝜂)(𝑑𝜃)𝑘) = 𝑑𝜃2(1− 2𝜂)2(𝑑𝜃)2𝑘. (10.80)

E𝑏Var+(E[𝑆𝜌,𝑘+1|𝑏, 𝜎𝑣1 , . . . , 𝜎𝑣𝑏 ]|𝑏)

= E𝑏Var+
⎛⎝∑︁
𝑖∈[𝑏]

𝜎𝑣𝑖(1− 2𝜂)(𝑑𝜃)𝑘|𝑏

⎞⎠
= E𝑏[𝑏(1− 𝜃2)(1− 2𝜂)2(𝑑𝜃)2𝑘]

= 𝑑(1− 𝜃2)(1− 2𝜂)2(𝑑𝜃)2𝑘. (10.81)
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EVar+(𝑆𝜌,𝑘+1|𝑏, 𝜎𝑣1 , . . . , 𝜎𝑣𝑏) = E𝑏[𝑏
∑︁
𝑖∈[𝑏]

Var+ 𝑆𝑣𝑖,𝑘] = 𝑑Var+ 𝑆𝜌,𝑘. (10.82)

Plugging (10.80)(10.81)(10.82) into (10.79), we get

Var+ 𝑆𝜌,𝑘+1 = 𝑑(1− 2𝜂)2(𝑑𝜃)2𝑘 + 𝑑Var+ 𝑆𝜌,𝑘. (10.83)

Solving (10.83) with initial value 𝑆𝜌,0 = 4𝜂(1− 𝜂), we get

Var+ 𝑆𝜌,𝑘 = 4𝜂(1− 𝜂)𝑑𝑘 +
∑︁
𝑖∈[𝑘]

𝑑𝑘−𝑖𝑑(1− 2𝜂)2(𝑑𝜃)2𝑖−2

= 4𝜂(1− 𝜂)𝑑𝑘 + (1− 2𝜂)2𝑑𝑘
(𝑑𝜃2)𝑘 − 1

𝑑𝜃2 − 1
. (10.84)

Putting together (10.78)(10.84), we get the desired result.

10.2.5 Proof of Theorem 10.3

We prove the following strengthening of Theorem 10.3 (note that BP𝑊 = BP when
𝑊 is trivial).

Theorem 10.10. Consider the model BOT(2, 𝜃, 𝑑). Let 𝑊 be a (possibility trivial)
BMS channel. Then we have the following results on the fixed points of the operator
BP𝑊 .

(i) If 𝑊 is non-trivial and 𝐶1 < 1 (defined in Eq. (10.33)), there is exactly one BP
fixed point. Furthermore, starting from any initial BMS channel 𝑀 , BP𝑘(𝑀)
converges to the unique BP fixed point as 𝑘 →∞.

(ii) If 𝑊 is trivial and 𝑑𝜃2 ≤ 1, there is exactly one BP fixed point, which is trivial.
Furthermore, starting from any initial BMS channel, the BP recursion converges
to the unique BP fixed point.

(iii) If 𝑊 is trivial, 𝑑𝜃2 > 1, and 𝐶1 < 1, there are exactly two BP fixed points,
one is trivial and the other is non-trivial. Furthermore, starting from any non-
trivial (resp. trivial) BMS channel, the BP recursion converges to the non-trivial
(resp. trivial) fixed point.

The same results hold for BOT(2, 𝜃,Pois(𝑑)) with 𝐶1 replaced by 𝐶2 (defined in
Eq. (10.35)).

Proof. (i): For any channel 𝑀 we have 0 ≤deg 𝑀 ≤deg Id. Therefore

BP𝑘𝑊 (0) ≤deg BP
𝑘
𝑊 (𝑀) ≤deg BP

𝑘
𝑊 (Id) (10.85)

for all 𝑘 ≥ 0. By proof of Theorem 10.4, the first and the third term converge to the
same non-trivial fixed point as 𝑘 →∞. Therefore the middle term also converges to
that fixed point.
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If there is another fixed point 𝑃 , then taking initial channel to be 𝑃 , the BP
recursion would always stay at 𝑃 . This is impossible because the choice of 𝑀 in the
above discussion is arbitrary.

(ii): If 𝑊 is trivial and 𝑑𝜃2 ≤ 1, we are in the non-reconstruction regime and there
is a unique BP fixed point, which is trivial. Because BP𝑘(𝑀) ≤deg BP

𝑘(Id) for any 𝑘
and initial channel 𝑀 , BP recursion always converges to the trivial channel.

(iii): There is one trivial fixed point.
Let 𝑀 be a non-trivial BMS channel. Taking 𝑟 = 𝑃𝑒(𝑀) < 1

2
, then BSC𝑟 ≤deg 𝑀 .

Therefore

BP𝑘(BSC𝑟) ≤deg BP
𝑘(𝑀) ≤deg BP

𝑘(Id) (10.86)

for all 𝑘 ≥ 0. By proof of Theorem 10.4, the first and the third term converge to the
same non-trivial fixed point as 𝑘 →∞. Therefore the middle term also converges to
that fixed point.

If there is another non-trivial fixed point 𝑃 , then taking initial channel to be 𝑃 ,
the BP recursion would always stay at 𝑃 . This is impossible because the choice of
𝑀 in the above discussion is arbitrary.

10.3 Applications

Main applications of uniqueness of BP fixed point and boundary irrelevance include
a mutual information formula and an optimal recovery algorithm. In this section we
prove these results via reduction established in Chapter 5.

Theorem 10.11 (Mutual information formula). Let (𝑋,𝐺) ∼ SBM(𝑛, 2, 𝑎, 𝑏). Let
(𝜎, 𝑇 ) ∼ BOT(2, 𝜃,Pois(𝑑)) be the corresponding BOT model, where 𝜃 = 𝑎−𝑏

𝑎+𝑏
and

𝑑 = 𝑎+𝑏
2

. Let 𝜔𝜖 denote the observation of 𝜎 through BEC𝜖. Let 𝛼* ≈ 3.513 be the
unique solution in R>1 to the equation exp

(︀
−𝛼−1

2

)︀
𝛼 = 1. The following hold.

(i) For 𝑎, 𝑏 such that 𝑑𝜃2 ≤ 1 or 𝑑𝜃2 ≥ 𝛼* ≈ 3.513

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖. (10.87)

(ii) For any 𝑎, 𝑏 such that 𝑑𝜃2 ∈ (1, 𝛼*), i.e., inside the gap of (i),

lim inf
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖+ 𝜉inf log 2, (10.88)

lim sup
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖+ 𝜉sup log 2, (10.89)

where 0 ≤ 𝜉inf , 𝜉sup ≤ 1−
√
𝑒
2
≈ 0.178.

Proof. (i) hold directly by Theorem 10.1 and Theorem 5.15.
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For (ii), we look into the proof of Theorem 5.15. By Corollary 10.2(iii), BI holds
for all 𝜖 < 𝜖* =

√
𝑒
2

. Therefore

lim inf
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 𝜖*

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘) + 𝜉inf , (10.90)

where

𝜉inf =

ˆ 1

𝜖*
lim inf
𝑛→∞

𝐼(𝑋𝑢;𝐺, 𝑌
𝜖
𝑉 ∖𝑢) ≤ (1− 𝜖*)𝐻(𝑋𝑢). (10.91)

The proof for lim sup is similar.

Theorem 10.12 (Optimal recovery for SBM with survey). Work under the same
setting as Theorem 10.1. Suppose that in addition to 𝐺, we observe survey 𝑌𝑣 ∼
𝑊 (·|𝑋𝑣) for all 𝑣 ∈ 𝑉 , where 𝑊 is some non-trivial FMS channel. If 𝑑𝜃2 ≤ 1 or
𝑑𝜃2 ≥ 𝛼* ≈ 3.513, then belief propagation (Algorithm 1) achieves the optimal recovery
accuracy of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘). (10.92)

Proof. By Theorem 10.1 and Theorem 5.20.

Theorem 10.13 (Optimal recovery for SBM). Work under the same setting as The-
orem 10.1. If 𝑑𝜃2 ≥ 𝛼* ≈ 3.513, then there is an algorithm (Algorithm 2) achieving
the optimal recovery accuracy of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜎𝐿𝑘
). (10.93)

Proof. By Theorem 10.1 and Theorem 5.22, we only need an initial weak recovery
algorithm that satisfies the conditions in Theorem 5.22. By discussions before the
proof of Theorem 5.22, in the two-community symmetric case, any weak recovery
algorithm can be modified into one that satisfies the conditions. So we can use the
weak recovery algorithms in [96] or [103].
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Chapter 11

Uniqueness of BP fixed point: Potts
model

We generalize the degradation method introduced in Chapter 10 to Potts models
BOT(𝑞, 𝜆, 𝑑) and BOT(𝑞, 𝜆,Pois(𝑑)). We prove that stability of BP fixed points
(Definition 5.21) and boundary irrelevance (Definition 5.17) hold when 𝑑𝜆2 ≥ 1 +
𝐶max{𝜆, 𝑞−1} log 𝑞 for some absolute constant 𝐶 > 0 independent of 𝑞, 𝜆, 𝑑. For large
𝑞 and 𝜆 = 𝑜(1/ log 𝑞), this is asymptotically achieving the Kesten-Stigum threshold
𝑑𝜆2 = 1. These results imply mutual information formula and optimal recovery
algorithms for the 𝑞-community symmetric SBM in the corresponding ranges.

This chapter is based on [73].

Chapter outline In Section 11.1, we introduce the setting and main results in this
chapter. In Section 11.2, we give some preliminaries on limits of information channels.
In Section 11.3, we prove Theorem 11.1, boundary irrelevance and uniqueness of BP
fixed point for a wide range of parameters. In Section 11.4, we discuss applications of
uniqueness of BP fixed points and boundary irrelevance. In Section 11.5, we discuss
asymmetric fixed points of the BP operator.

11.1 Introduction

Stochastic block model We consider the model SBM(𝑛, 𝑞, 𝑎, 𝑏) (Definition 5.4),
defined as follows. The model has four parameters 𝑛 ∈ Z≥1, 𝑞 ∈ Z≥2, 𝑎, 𝑏 ∈ R≥0.
First, we assign a random label (community) 𝑋𝑖 ∼ Unif([𝑞]) i.i.d for 𝑖 ∈ 𝑉 = [𝑛].
Then a random graph 𝐺 = (𝑉,𝐸) is generated, where (𝑖, 𝑗) ∈ 𝐸 with probability 𝑎

𝑛

if 𝑋𝑖 = 𝑋𝑗, and with probability 𝑏
𝑛

if 𝑋𝑖 ̸= 𝑋𝑗, independently for all (𝑖, 𝑗) ∈
(︀
𝑉
2

)︀
.

When 𝑎 > 𝑏, we say the model is assortative. When 𝑎 < 𝑏, we say the model is
disassortative.

For the SBM, an important problem is weak recovery. We say the model admits
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weak recovery if there exists an estimator 𝑋p (𝐺) ∈ [𝑞]𝑉 such that

lim
𝑛→∞

1

𝑛
E𝑑𝐻(𝑋,𝑋p (𝐺)) < 1− 1

𝑞
, (11.1)

where 𝑑𝐻(𝑋, 𝑌 ) := min
𝜏∈Aut([𝑞])

∑︁
𝑖∈[𝑛]

1{𝑋𝑖 ̸= 𝜏(𝑌𝑖)}. (11.2)

When weak recovery is possible, the natural follow-up question is to determine
the optimal recovery accuracy

sup
𝑋p =𝑋p (𝐺)

lim
𝑛→∞

E
[︂
1− 1

𝑛
𝑑𝐻(𝑋,𝑋p (𝐺))

]︂
. (11.3)

A fundamental quantity of the stochastic block model is its (normalized) mutual
information

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺). (11.4)

We refer the reader to Chapter 5 for a review of previous results on weak recovery,
optimal recovery, and mutual information.

Broadcasting on trees The stochastic block model has a close relationship with
the broadcasting on trees (BOT) model. The reason is that in SBM, the local neigh-
borhood of a random vertex converges (in the sense of local weak convergence) to
a Galton-Watson tree with Poisson offspring distribution. Therefore, properties of
BOT can often imply corresponding results on SBM.

For the model SBM(𝑛, 𝑞, 𝑎, 𝑏) we consider, the corresponding model is the Potts
model BOT(𝑞, 𝜆,Pois(𝑑)), defined as follows. The model has three parameters 𝑞 ∈
Z≥2, 𝜆 ∈

[︁
− 1
𝑞−1

, 1
]︁
, 𝑑 ∈ R≥0. Let 𝑇 be a Galton-Watson tree with offspring distri-

bution Pois(𝑑), rooted at 𝜌. We assign to every vertex 𝑣 a label 𝜎𝑣 ∈ [𝑞] according to
the following process.

1. Generate 𝜎𝜌 ∼ Unif([𝑞]).

2. Suppose we have generated a label for a vertex 𝑢. For every child 𝑣 of 𝑢, we
generate 𝜎𝑣 according to 𝑃𝜆(·|𝜎𝜇), where 𝑃𝜆 is the Potts channel defined as

𝑃𝜆(𝑗|𝑖) = 𝜆1{𝑖 = 𝑗}+ 1− 𝜆
𝑞

. (11.5)

We also consider the case where 𝑇 is a regular tree (every vertex has 𝑑 ∈ Z≥0 children),
denoted as BOT(𝑞, 𝜆, 𝑑).

An important problem on BOT is the reconstruction problem, asking whether we
can gain any non-trivial information about the root given observation of far away
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vertices. We say the model admits reconstruction if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘) > 0, (11.6)

where 𝐿𝑘 stands for the set of vertices at distance 𝑘 to the root 𝜌. We say the model
admits non-reconstruction if the limit is zero. It is known that non-reconstruction
results for the Potts model imply impossibility of weak recovery for the corresponding
SBM (Theorem 5.15), although the other side does not hold: in the case 𝑎 = 0, there
is a gap of factor 2 (as 𝑞 → ∞) between the BOT reconstruction threshold and the
SBM weak recovery threshold.

We refer the reader to Chapter 5 for a review of previous results on reconstruction
on trees.

Belief propagation Belief propagation is a powerful tool for studying the BOT
model. It is usually described as an algorithm for computing posterior distribution of
vertex labels given observation. Here we take an information-theoretic point of view
and describe BP in terms of communication channels.

We view the BOT model as an information channel from the root label to the
observation. Let𝑀𝑘 denote the channel 𝜎𝜌 ↦→ 𝜎𝐿𝑘

.Then (𝑀𝑘)𝑘≥0 satisfies the following
recursion, which we call belief propagation recursion:

𝑀𝑘+1 = E𝑏(𝑀𝑘 ∘ 𝑃𝜆)⋆𝑏 (11.7)

where 𝑏 following the branching number distribution (constant in the regular tree
case, Pois(𝑑) in the Poisson tree case), and (·)⋆𝑏 denotes ⋆-convolution power. Let BP
be the operator

BP(𝑀) := E𝑏(𝑀 ∘ 𝑃𝜆)⋆𝑏 (11.8)

defined on the space of information channels with input alphabet [𝑞]. Due to symme-
try in labels, we can regard BP as an operator on the space of FMS channels (Chap-
ter 3). In terms of the BP operator, the reconstruction problem can be rephrased as
whether the limit channel BP∞(Id) := lim𝑘→∞ BP𝑘(Id) is trivial or not. The prob-
lem of optimal recovery for SBM can be reduced to the following problem on trees:
whether the limit

lim
𝑛→∞

𝐼(𝜎𝜌;𝜔𝐿𝑘
|𝑇𝑘) (11.9)

where 𝜔 is the observation of 𝜎 through a non-trivial channel 𝑊 , stays the same for
any non-trivial FMS 𝑊 . Therefore, it is important to study the non-trivial fixed
points of the BP operator (the trivial channel is always a fixed point).

[104] proved uniqueness of BP fixed point for 𝑞 = 2 and large enough SNR. [4]
improved to 𝑞 = 2 and SNR ̸∈ [1, 3.513]. [137] proved uniqueness of BP fixed point
for 𝑞 = 2 and any parameter 𝑑, 𝜆, closing the question for binary symmetric models.
For 𝑞 ≥ 3, [37] proved that when the initial channel 𝑈 is close enough to Id, and
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𝑑𝜆2 > 𝐶𝑞, where 𝐶𝑞 is a constant depending on 𝑞, then BP∞(𝑈) = BP∞(Id). They
did not give asymptotics for 𝐶𝑞, but it seems like it is at least polynomial in 𝑞. [38]
generalized [37] to asymmetric models.

Boundary irrelevance [4] reduced the SBM mutual information problem to the
boundary irrelevance problem, on a tree model called the broadcasting on trees with
survey (BOTS) model. In the BOTS model, we observe label of every vertex through
a noisy 𝑞-FMS channel 𝑊 (called the survey). We say the model admits boundary
irrelevance with respect to 𝑊 if

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) = 0, (11.10)

where 𝑇𝑘 is the set of all vertices within distance at most 𝑘 to the root, and 𝜔 is
the observation of 𝜎 through 𝑊 . We say the model admits boundary irrelevance if
the model admits boundary irrelevance with respect to all erasure channels EC𝜖 with
0 ≤ 𝜖 < 1. Boundary irrelevance is equivalent to the condition that the operator

BP𝑊 (𝑀) :=
(︀
E𝑏(𝑀 ∘ 𝑃𝜆)⋆𝑏

)︀
⋆ 𝑊 (11.11)

has a unique fixed point in the space of 𝑞-FMS channels. Because BP and BP𝑊 have
very similar forms, the boundary irrelevance problem has a close relationship with the
problem of uniqueness of BP fixed point. Indeed, these two problems can be solved
using the same method.

Our main result Our main result is stability of BP fixed point and boundary irrele-
vance for a wide range of parameters. For a more precise statement, see Theorem 11.5
and Theorem 11.6.

Theorem 11.1 (Uniqueness of BP fixed point and boundary irrelevance). There
exists an absolute constant 𝐶 > 0 such that the following statement holds. Consider
the model BOT(𝑞, 𝜆, 𝑑) or BOT(𝑞, 𝜆,Pois(𝑑)). If either 𝑑𝜆2 < 𝑞−2 or 𝑑𝜆2 > 1 +
𝐶max{𝜆, 𝑞−1} log 𝑞, then boundary irrelevance holds. That is, for any non-trivial
𝑞-FMS survey channel 𝑊 , we have

lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
|𝑇𝑘, 𝜔𝑇𝑘) = 0. (11.12)

Furthermore, under the same conditions, stability of BP fixed point holds, i.e., for
any non-trivial 𝑞-FMS channel 𝑃 , BP𝑘(𝑃 ) and BP𝑘(Id) converge weakly to the same
limit as 𝑘 →∞.

See Section 11.4 for applications to the 𝑞-community symmetric SBM.

Our technique We generalize the degradation method of [4] to 𝑞-ary symmetric
channels. In this method, we find suitable potential functions Φ on the space of FMS
channels, such that for two channels 𝑀,̃︁𝑀 are related by degradation (̃︁𝑀 ≤deg 𝑀),
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we have (1) Φ(𝑀)−Φ(̃︁𝑀) contracts to 0 under iterations of BP (2) if Φ(𝑀) = Φ(̃︁𝑀),
then 𝑀 = ̃︁𝑀 . This shows that the limit channels BP∞(𝑀) and BP∞(̃︁𝑀) are equal.
To carry out this method, we make use of the theory of FMS channels developed in
Chapter 3.

11.2 Limit of channels

In this section we build the foundation for discussing limits of information channels.
We view a channel 𝑃 : 𝒳 → 𝒴 as a distribution of posterior distributions under
uniform prior, i.e., the distribution of 𝑃𝑋|𝑌 where 𝑃𝑋 = Unif(𝒳 ), 𝑌 ∼ 𝑃 (·|𝑋). Let
𝜇 denote the posterior distribution variable and 𝑃𝜇 ∈ 𝒫(𝒫(𝒳 )) be its distribution
(called 𝑃 ’s posterior distribution’s distrbution). Note that 𝑃𝜇 is invariant under
channel equivalence.

We often work with sequences (𝑃𝑘)𝑘≥0 of channels with the same input alphabet 𝒳 .
Let 𝑃𝜋,𝑘 denote the distrbution of posterior distributions of 𝑃𝑘 under uniform prior.
Let 𝑃∞ be a channel with input alphabet 𝒳 and posterior distribution’s distrbution
𝑃𝜋,∞. We say (𝑃𝑘)𝑘≥0 converges weakly to 𝑃∞ if (𝑃𝜋,𝑘)𝑘≥0 converges weakly to 𝑃𝜋,∞
as distributions on 𝒫(𝒳 ).

In general, given such a sequence, a limit does not necessarily exist. Nevertheless,
when the channels are related to each other via degradation, a limit channel exists.

Lemma 11.2. Let (𝑃𝑘 : 𝒳 → 𝒴𝑘)𝑘≥0 be a sequence of channels with the same finite
input alphabet. If 𝑃𝑘 ≥deg 𝑃𝑘+1 for all 𝑘, then (𝑃𝑘)𝑘≥0 converges weakly to some
channel 𝑃∞.

Proof. By definition of degradation, there exists channel 𝑅𝑘 : 𝒴𝑘 → 𝒴𝑘+1 such that
𝑃𝑘+1 = 𝑅𝑘 ∘ 𝑃𝑘. This gives rise to an infinite Markov chain

𝑋 − 𝑌0 − 𝑌1 − 𝑌2 − · · · . (11.13)

Let 𝜇𝑘 denote the posterior distribution variable 𝑃𝑋|𝑌𝑘 . Then we have

E[𝜇𝑘−1|𝑌𝑘] = 𝜇𝑘. (11.14)

Let ℱ𝑘 denote the 𝜎-algebra generated by (𝑌𝑖)𝑖≥𝑘. Then (ℱ𝑘)𝑘≥0 is a reverse filtration
and (𝜇𝑘)𝑘≥0 is a reverse martingale with respect to (ℱ𝑘)𝑘≥0. By reverse martingale
convergence theorem (e.g., [57, Theorem 4.7.1]), lim𝑘→∞ 𝜇𝑘 converges almost surely.
Define 𝜇∞ := lim𝑘→∞ 𝜇𝑘. Let 𝑃∞ be a channel with input alphabet 𝒳 whose posterior
distribution’s distribution is 𝜇∞. Then (𝑃𝑘)𝑘≥0 converges weakly to 𝑃∞.

Lemma 11.3. Let (𝑃𝑘 : 𝒳 → 𝒴𝑘)𝑘≥0 be a sequence of channels with the same finite
input alphabet. If 𝑃𝑘 ≤deg 𝑃𝑘+1 for all 𝑘, then (𝑃𝑘)𝑘≥0 converges weakly to some
channel 𝑃∞.

Proof. By definition of degradation, there exists channel 𝑅𝑘 : 𝒴𝑘 → 𝒴𝑘−1 such that
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𝑃𝑘−1 = 𝑅𝑘 ∘ 𝑃𝑘. This gives rise to an infinite Markov chain

𝑋 − 𝑌0 − 𝑌1 − 𝑌2 − · · · . (11.15)

Let 𝜇𝑘 denote the posterior distribution variable 𝑃𝑋|𝑌𝑘 . Then we have

E[𝜇𝑘+1|𝑌𝑘] = 𝜇𝑘. (11.16)

Let ℱ𝑘 denote the 𝜎-algebra generated by (𝑌𝑖)𝑖≤𝑘. Then (ℱ𝑘)𝑘≥0 is a filtration and
(𝜇𝑘)𝑘≥0 is a martingale with respect to (ℱ𝑘)𝑘≥0. Note that the variables 𝜇𝑘 take values
in 𝒫(𝒳 ), so are uniformly bounded. By martingale convergence theorem (e.g., [57,
Theorem 4.2.11]), lim𝑘→∞ 𝜇𝑘 converges almost surely. Define 𝜇∞ := lim𝑘→∞ 𝜇𝑘. Let
𝑃∞ be a channel with input alphabet 𝒳 whose posterior distribution’s distribution is
𝜇∞. Then (𝑃𝑘)𝑘≥0 converges weakly to 𝑃∞.

By symmetry, in Lemma 11.2 and Lemma 11.3, if the sequence (𝑃𝑘)𝑘≥0 consists
of FMS channels, then the limit 𝑃∞ is an FMS channel.

11.3 Uniqueness and boundary irrelevance

In this section we prove uniqueness of BP fixed point and boundary irrelevance re-
sults for the Potts model for a wide range of parameters. We consider the model
BOT(𝑞, 𝜆, 𝑑) or BOT(𝑞, 𝜆,Pois(𝑑)) (Definition 5.9).

We state two results, one for the low SNR regime and one for the high SNR regime.
We define the following constants used in the results.

Definition 11.4. For 𝑞 ∈ Z≥2, 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
, 𝑑 ≥ 0, we define

𝐶𝐿(𝑞, 𝜆) := sup
𝜋∈𝒫([𝑞])

𝑣∈1⊥⊆R𝑞

𝑓𝐿
(︁
𝜆𝜋 + 1−𝜆

𝑞
, 𝑣
)︁

𝑓𝐿(𝜋, 𝑣)
, (11.17)

where 𝑓𝐿(𝜋, 𝑣) :=
⟨
𝜋−1 +

1

𝑞
𝜋−2, 𝑣2

⟩
, (11.18)

𝐶𝐻(𝑞, 𝜆) := sup
𝜋∈𝒫([𝑞])

𝑣∈1⊥⊆R𝑞

𝑓𝐻
(︁
𝜆𝜋 + 1−𝜆

𝑞
, 𝑣
)︁

𝑓𝐻(𝜋, 𝑣)
, (11.19)

where 𝑓𝐻(𝜋, 𝑣) := ‖𝜋1/4‖22‖𝜋−3/4𝑣‖22 −
⟨︀
𝜋1/4, 𝜋−3/4𝑣

⟩︀2
, (11.20)

𝑐𝐻(𝑞, 𝜆, 𝑑) :=

(︂
2

𝑞
+
𝑞 − 2

𝑞
· 𝑑𝜆

2 − 1

𝑑𝜆− 1

)︂−1

. (11.21)

We have the following bounds on these constants: 𝐶𝐿(𝑞, 𝜆) ≤ 𝑞2 (Prop. 11.17),
𝐶𝐻(𝑞, 𝜆) ≤ 𝑞5/2 (Prop. 11.18), 𝑐𝐻(𝑞, 𝜆, 𝑑) ≥ 1 (obvious).
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Theorem 11.5 (Low SNR). If

𝑑𝜆2𝐶𝐿(𝑞, 𝜆) < 1, (11.22)

where 𝐶𝐿 is defined in (11.17), then boundary irrelevance and stability of BP fixed
point hold.

Theorem 11.6 (High SNR). If 𝑑𝜆2 > 1 and

𝑑𝜆2 exp

(︂
−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

2

)︂
𝐶𝐻(𝑞, 𝜆) < 1, (11.23)

where 𝑐𝐻 is defined in (11.21), 𝐶𝐻 is defined in (11.19), then boundary irrelevance
and stability of BP fixed point hold.

Let 𝑊 be a 𝑞-FMS channel. If 𝑑𝜆2 > 1 and

𝑑𝜆2 exp

(︂
−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

2

)︂
𝐶𝐻(𝑞, 𝜆)𝑍(𝑊𝑅) < 1, (11.24)

where 𝑊𝑅 denotes the restriction of 𝑊 to a BMS channel (Chapter 3), and 𝑍 denotes
the Bhattacharyya coefficient (Definition 2.4). then boundary irrelevance holds with
repsect to 𝑊 .

Proof of Theorem 11.1 given Theorem 11.5 and 11.6. We prove the low SNR case and
the high SNR case separately.

Low SNR: By Prop. 11.17, 𝐶𝐿(𝑞, 𝜆) ≤ 𝑞2. If 𝑑𝜆2 < 𝑞−2, then (11.22) holds and
Theorem 11.5 applies.

High SNR: We prove that (11.23) holds whenever 𝑑𝜆2 > 1+56max{𝜆, 𝑞−1} log 𝑞.
By Prop. 11.18, 𝐶𝐻(𝑞, 𝜆) ≤ 𝑞5/2. For 𝑑𝜆2 > 1, we have

𝑐𝐻(𝑞, 𝜆, 𝑑) ≥
(︂
2

𝑞
+
𝑞 − 2

𝑞
·max{𝜆, 0}

)︂−1

≥
(︂
2

𝑞
+max{𝜆, 0}

)︂−1

≥ 1

4
max{𝜆, 𝑞−1}−1.

(11.25)

Therefore

𝑑𝜆2 exp(−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆
2 − 1

2
)𝐶𝐻(𝑞, 𝜆) ≤ 𝑑𝜆2 exp

(︂
− 𝑑𝜆2 − 1

8max{𝜆, 𝑞−1}

)︂
𝑞5/2 =: 𝑔𝑞,𝜆(𝑑).

(11.26)

Computing 𝑔′𝑞,𝜆(𝑑), we see that 𝑔𝑞,𝜆(𝑑) is monotone decreasing in 𝑑 when 𝑑𝜆2 >
8max{𝜆, 𝑞−1}. Therefore it suffices to prove 𝑔𝑞,𝜆(𝑑0) < 1 where 𝑑0𝜆2 = 1+56max{𝜆, 𝑞−1} log 𝑞.
We have

𝑔𝑞,𝜆(𝑑0) = (1 + 56max{𝜆, 𝑞−1} log 𝑞) exp(−7 log 𝑞)𝑞5/2 ≤ (1 + 56 log 𝑞)𝑞−9/2. (11.27)

The last expression is < 1 for all 𝑞 ≥ 3. This finishes the proof.
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11.3.1 The degradation method

Let (𝑀𝑘)𝑘≥0 and (̃︁𝑀𝑘)𝑘≥0 be two sequences of 𝑞-FMS channels satisfying the belief
propagation recursion, i.e.,

𝑀𝑘+1 = BP(𝑀𝑘), ̃︁𝑀𝑘+1 = BP(̃︁𝑀𝑘), (11.28)
BP(𝑀) := E𝑏[(𝑀𝑘 ∘ 𝑃𝜆)⋆𝑏 ⋆ 𝑊 ], (11.29)

where 𝑏 follows the branching number distribution (constant if working with regular
trees), and 𝑊 is the survey FMS channel (trivial if there is no survey).

For the boundary irrelevance problem, we take ̃︁𝑀0 = 0, 𝑀0 = Id. For stability of
BP fixed point, we take 𝑀0 = Id and ̃︁𝑀0 be a given non-trivial FMS channel. From
now on, we assume that 𝑀0 = Id, and either (1) 𝑊 is non-trivial and ̃︁𝑀0 = 0, or
(2) 𝑊 = 0 and ̃︁𝑀0 is non-trivial. Note that in both cases, the initial channels satisfỹ︁𝑀0 ≤deg 𝑀0. Therefore ̃︁𝑀𝑘 ≤deg 𝑀𝑘 for all 𝑘 ≥ 0 because the BP operator preserves
degradation preorder (Lemma 2.8). So the two channel sequences are naturally related
to each other by degradation.

Because 𝑀0 = Id, we have 𝑀𝑘 ≥deg 𝑀𝑘+1 for all 𝑘 ≥ 0. Therefore by Lemma 11.2,
𝑀∞ := lim𝑘→∞𝑀𝑘 exists. For the boundary irrelevance problem, we also have
𝑀𝑘 ≤deg 𝑀𝑘+1 for all 𝑘 ≥ 0, and by Lemma 11.3, ̃︁𝑀∞ := lim𝑘→∞ ̃︁𝑀𝑘 exists. However,
for the stability of BP fixed point problem, it is a priori unclear whether the limit
lim𝑘→∞ ̃︁𝑀𝑘 exists.

Let 𝜑 : 𝒫([𝑞])→ R be a strongly convex function invariant under Aut([𝑞]) action.
Extend it to a function Φ : {FMS channels} → R as Φ(𝑃 ) = E𝜑(𝜋𝑃 ). By degradation,
we have Φ(𝑀𝑘) ≥ Φ(̃︁𝑀𝑘) for all 𝑘 ≥ 0. The following proposition shows that it suffices
to prove contraction of potential function Φ.

Proposition 11.7. Assume that 𝜑 : 𝒫([𝑞])→ R is 𝛼-strongly convex for some 𝛼 > 0,
and that

lim
𝑘→∞

(Φ(𝑀𝑘)− Φ(̃︁𝑀𝑘)) = 0. (11.30)

Then under the canonical coupling, we have

lim
𝑘→∞

E‖𝜋𝑘 − ̃︀𝜋𝑘‖22 = 0, (11.31)

where 𝜋𝑘 (resp. ̃︀𝜋𝑘) is the 𝜋-component of 𝑀𝑘 (resp. ̃︁𝑀𝑘). In particular, if 𝑀0 = Id,
then both limits lim𝑘→∞𝑀𝑘 and lim𝑘→∞ ̃︁𝑀𝑘 exist in the sense of weak convergence,
and the two limits are equal.
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Proof.

Φ(𝑀𝑘)− Φ(̃︁𝑀𝑘) = Ẽ︀𝜋𝑘E[𝜑(𝜋𝑘)− 𝜑(̃︀𝜋𝑘)|̃︀𝜋𝑘] (11.32)

≥ Ẽ︀𝜋𝑘E[⟨∇𝜑(̃︀𝜋𝑘), 𝜋𝑘 − ̃︀𝜋𝑘⟩+ 𝛼

2
‖𝜋𝑘 − ̃︀𝜋𝑘‖22|̃︀𝜋𝑘]

≥ Ẽ︀𝜋𝑘⟨∇𝜑(̃︀𝜋𝑘),E[𝜋𝑘|̃︀𝜋𝑘]− ̃︀𝜋𝑘⟩+ 𝛼

2
E‖𝜋𝑘 − ̃︀𝜋𝑘‖22

≥ 𝛼

2
E‖𝜋𝑘 − ̃︀𝜋𝑘‖22,

where the second step is by 𝛼-strongly convexity, and the third step is because ̃︀𝜋𝑘 ≤𝑚
E[𝜋𝑘|̃︀𝜋𝑘] and 𝜑 is convex (thus Schur-convex). Taking the limit 𝑘 → ∞, we see that
the Wasserstein 𝑊2 distance between the 𝜋-distributions of 𝑀𝑘 and ̃︁𝑀𝑘 goes to 0.
Because lim𝑘→∞𝑀𝑘 converges weakly to a limit 𝑀∞, lim𝑘→∞ ̃︁𝑀𝑘 also converges to
the same limit.

Proposition 11.8. Assume that 𝜑 : 𝒫([𝑞])→ R is 𝛼-strongly convex for some 𝛼 > 0,
and that

lim
𝑘→∞

(Φ(𝑀𝑘)− Φ(̃︁𝑀𝑘)) = 0. (11.33)

whenever 𝑀0 = Id and (1) 𝑊 is non-trivial and ̃︁𝑀0 = 0, or (2) 𝑊 = 0 and ̃︁𝑀0 is
non-trivial. Then boundary irrelevance and stability of BP fixed point hold.

Proof. Boundary irrelevance: Let ̃︁𝑀0 = 0, 𝑀0 = Id. By Prop. 11.7, we have

lim
𝑘→∞

𝑀𝑘 = lim
𝑘→∞

̃︁𝑀𝑘. (11.34)

In particular,

lim
𝑘→∞

𝐶(𝑀𝑘) = lim
𝑘→∞

𝐶(̃︁𝑀𝑘) (11.35)

where 𝐶 denote capacity (Definition 3.4). Note that

lim
𝑘→∞

𝐶(𝑀𝑘) = lim
𝑘→∞

𝐼(𝜎𝜌;𝜎𝐿𝑘
, 𝜔𝑇𝑘 |𝑇𝑘), (11.36)

lim
𝑘→∞

𝐶(̃︁𝑀𝑘) = lim
𝑘→∞

𝐼(𝜎𝜌;𝜔𝑇𝑘 |𝑇𝑘). (11.37)

So this proves boundary irrelevance.
Stability of BP fixed point: Suppose there is a non-trivial fixed point FMS

channel 𝑈 . Let ̃︁𝑀0 = 𝑈 , 𝑀0 = Id. By Prop. 11.7, we have

lim
𝑘→∞

𝑀𝑘 = lim
𝑘→∞

̃︁𝑀𝑘. (11.38)

Because 𝑈 is a fixed point, LHS is equal to 𝑈 . On the other hand, RHS does not
depend on 𝑈 . Therefore there is a unique non-trivial FMS fixed point.
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11.3.2 Low SNR

For the low SNR case, we use SKL-capacity as the potential function. We define

𝜑𝐿(𝜋) = 𝐶SKL(FSC𝜋) =
∑︁
𝑖∈[𝑞]

(︂
𝜋𝑖 −

1

𝑞

)︂
log 𝜋𝑖. (11.39)

We state a few properties of the function 𝜑𝐿.

Proposition 11.9. 𝜑𝐿 is 1-strongly convex on 𝒫([𝑞]).

Proof.

∇2𝜑𝐿(𝜋) = diag

(︂
𝜋−1 +

1

𝑞
𝜋−2

)︂
⪰ 𝐼. (11.40)

Lemma 11.10. Φ𝐿(·) = 𝐶SKL(·) is additive under ⋆-convolution.

Proof. This is a restatement of Eq. (3.10). For completeness, we give a direct proof
using Eq. (3.5) here.

By FSC mixture decomposition (Prop. 3.3), it suffices to prove that

Φ𝐿(FSC𝜋 ⋆FSC𝜋′) = Φ𝐿(FSC𝜋) + Φ𝐿(FSC𝜋′). (11.41)
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We have

Φ𝐿(FSC𝜋 ⋆FSC𝜋′)

=
∑︁

𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠𝜑𝐿(𝜋 ⋆𝜏 𝜋
′)

=
∑︁

𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠∑︁
𝑗∈[𝑞]

(︂
(𝜋 ⋆𝜏 𝜋

′)𝑗 −
1

𝑞

)︂
log(𝜋 ⋆𝜏 𝜋

′)𝑗

=
∑︁

𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠∑︁
𝑗∈[𝑞]

(︃
𝜋𝑗𝜋

′
𝜏(𝑗)∑︀

𝑘∈[𝑞] 𝜋𝑘𝜋
′
𝜏(𝑘)

− 1

𝑞

)︃
log

𝜋𝑗𝜋
′
𝜏(𝑗)∑︀

𝑘∈[𝑞] 𝜋𝑘𝜋
′
𝜏(𝑘)

=
∑︁

𝜏∈Aut([𝑞])

1

(𝑞 − 1)!

∑︁
𝑗∈[𝑞]

⎛⎝𝜋𝑗𝜋′
𝜏(𝑗) −

1

𝑞

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠ log
𝜋𝑗𝜋

′
𝜏(𝑗)∑︀

𝑘∈[𝑞] 𝜋𝑘𝜋
′
𝜏(𝑘)

=
∑︁

𝜏∈Aut([𝑞])

1

(𝑞 − 1)!

∑︁
𝑗∈[𝑞]

⎛⎝𝜋𝑗𝜋′
𝜏(𝑗) −

1

𝑞

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠ log(𝜋𝑗𝜋
′
𝜏(𝑗))

=
∑︁
𝑗∈[𝑞]

(︂
𝜋𝑗 −

1

𝑞

)︂
log 𝜋𝑗 +

∑︁
𝑗∈[𝑞]

(︂
𝜋′
𝑗 −

1

𝑞

)︂
log 𝜋′

𝑗

= Φ𝐿(FSC𝜋) + Φ𝐿(FSC𝜋′).

Condition (11.22) implies the desired contraction.

Proposition 11.11. If (11.22) holds, then

lim
𝑘→∞

(︁
Φ𝐿(𝑀𝑘)− Φ𝐿(̃︁𝑀𝑘)

)︁
= 0. (11.42)

Proof. Using BP equation and Lemma 11.10, we get

Φ𝐿(𝑀𝑘+1) = E𝑏
[︀
𝑏Φ𝐿(𝑀𝑘 ∘ 𝑃𝜆) + Φ𝐿(𝑊 )

]︀
= 𝑑Φ𝐿(𝑀𝑘 ∘ 𝑃𝜆) + Φ𝐿(𝑊 ), (11.43)

and the same holds with 𝑀 replaced with ̃︁𝑀 .
To prove that

Φ𝐿(𝑀𝑘+1)− Φ𝐿(̃︁𝑀𝑘+1) ≤ 𝑐
(︁
Φ𝐿(𝑀𝑘)− Φ𝐿(̃︁𝑀𝑘)

)︁
, (11.44)

for some 𝑐 < 1, it suffices to prove that

𝑑Φ𝐿(FSC𝜋 ∘𝑃𝜆)− 𝑐Φ𝐿(FSC𝜋) = 𝑑𝜑𝐿
(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂
− 𝑐𝜑𝐿(𝜋) (11.45)
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is concave in 𝜋.
Let 𝑐 = 𝑑𝜆2𝐶𝐿(𝑞, 𝜆). Then for all 𝑣 ∈ 1⊥ ∈ R𝑞, we have

𝑣⊤∇2

(︂
𝑑𝜑𝐿

(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂
− 𝑐𝜑𝐿(𝜋)

)︂
𝑣 = 𝑑𝜆2𝑓𝐿

(︂
𝜆𝜋 +

1− 𝜆
𝑞

, 𝑣

)︂
− 𝑐𝑓𝐿(𝜋, 𝑣) ≤ 0

(11.46)

where the first step is because 𝑣⊤∇2𝜑𝐿(𝜋)𝑣 = 𝑓𝐿(𝜋, 𝑣) and the second step is by
definition of 𝐶𝐿. Therefore contraction holds.

Proof of Theorem 11.5. By combining Prop. 11.11, Prop. 11.9, and Prop. 11.8.

11.3.3 High SNR

For the high SNR case, we use Bhattacharyya coefficient as the potential function.
We define

𝜑𝐻(𝜋) = 𝑍(FSC𝑅
𝜋 ) =

1

𝑞 − 1

⎛⎝⎛⎝∑︁
𝑖∈[𝑞]

√
𝜋𝑖

⎞⎠2

− 1

⎞⎠ . (11.47)

We state a few properties of the function 𝜑𝐻 .

Proposition 11.12. 𝜑𝐻 is 𝛼-strongly concave on 𝒫([𝑞]) for some 𝛼 > 0.

Proof. For any 𝜋 ∈ 𝒫([𝑞]) we have

∇2𝜑𝐻(𝜋) =
1

𝑞 − 1

⎛⎝1

2

(︀
𝜋−1/2

)︀ (︀
𝜋−1/2

)︀⊤ − 1

2

⎛⎝∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖

⎞⎠ diag
(︀
𝜋−3/2

)︀⎞⎠ . (11.48)

So for any 𝑣 ∈ 1⊥ ⊆ R𝑞,

𝑣⊤∇2𝜑𝐻(𝜋)𝑣 =
1

2(𝑞 − 1)

⎛⎝⟨︀𝜋−1/2, 𝑣
⟩︀2 −

⎛⎝∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖

⎞⎠⟨︀𝜋−3/2, 𝑣2
⟩︀⎞⎠ . (11.49)

Let us prove that ⟨︀
𝜋−1/2, 𝑣

⟩︀2(︁∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖

)︁
⟨𝜋−3/2, 𝑣2⟩

≤ 1− 1
√
𝑞
. (11.50)

Performing change of variable 𝑢 = 𝜋−3/4𝑣, LHS of (11.50) becomes⟨︀
𝜋1/4, 𝑢

⟩︀2(︁∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖

)︁
‖𝑢‖22

. (11.51)
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We would like to maximize this expression over the hyperplane
⟨︀
𝜋3/4, 𝑢

⟩︀
= 0. By

geometric interpretation, maximum value is achieved at projection of 𝜋1/4 onto the
hyperplane, i.e.,

𝑢 = 𝜋1/4 −
⟨︀
𝜋1/4, 𝜋3/4

⟩︀
‖𝜋3/4‖22

𝜋3/4 = 𝜋1/4 − 𝜋3/4

‖𝜋3/4‖22
, (11.52)

at which (11.51) achieves value(︂∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖 − 1∑︀

𝑖∈[𝑞] 𝜋
3/2
𝑖

)︂2

(︁∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖

)︁(︂∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖 − 1∑︀

𝑖∈[𝑞] 𝜋
3/2
𝑖

)︂ (11.53)

=

∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖 − 1∑︀

𝑖∈[𝑞] 𝜋
3/2
𝑖∑︀

𝑖∈[𝑞] 𝜋
1/2
𝑖

= 1− 1(︁∑︀
𝑖∈[𝑞] 𝜋

1/2
𝑖

)︁(︁∑︀
𝑖∈[𝑞] 𝜋

3/2
𝑖

)︁
≤ 1− 1

√
𝑞

where the last step is because∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖 ≤ √𝑞,

∑︁
𝑖∈[𝑞]

𝜋
3/2
𝑖 ≤ 1. (11.54)

This finishes the proof of (11.50).
Therefore

𝑣⊤∇2𝜑𝐻(𝜋)𝑣 =
1

2(𝑞 − 1)

⎛⎝⟨︀𝜋−1/2, 𝑣
⟩︀2 −

⎛⎝∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖

⎞⎠⟨︀𝜋−3/2, 𝑣2
⟩︀⎞⎠ (11.55)

≤ − 1

2(𝑞 − 1)
√
𝑞

⎛⎝∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖

⎞⎠⟨︀𝜋−3/2, 𝑣2
⟩︀

≤ − 1

2(𝑞 − 1)
√
𝑞
‖𝑣‖22

where the second step is by (11.50), and the third step is because
∑︀

𝑖∈[𝑞] 𝜋
1/2
𝑖 ≥ 1 and

𝜋−3/2 ≥ 1.

Lemma 11.13. Φ𝐻(·) = 𝑍(·) is multiplicative under ⋆-convolution.

Proof. This is a restatement of Eq. (2.20). For completeness, we give a direct proof
using Eq. (3.5) here.
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By FSC mixture decomposition (Prop. 3.5), it suffices to prove that

Φ𝐻(FSC𝜋 ⋆FSC𝜋′) = Φ𝐻(FSC𝜋) + Φ𝐻(FSC𝜋′). (11.56)

We have

Φ𝐻(FSC𝜋 ⋆FSC𝜋′)

=
∑︁

𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠𝜑𝐻(𝜋 ⋆𝜏 𝜋
′)

=
∑︁

𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠ 1

𝑞 − 1

⎛⎝⎛⎝∑︁
𝑗∈[𝑞]

√︁
(𝜋 ⋆𝜏 𝜋′)𝑗

⎞⎠2

− 1

⎞⎠
=

∑︁
𝜏∈Aut([𝑞])

⎛⎝ 1

(𝑞 − 1)!

∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠ 1

𝑞 − 1

⎛⎝⎛⎝∑︁
𝑗∈[𝑞]

√︃
𝜋𝑗𝜋′

𝜏(𝑗)∑︀
𝑘∈[𝑞] 𝜋𝑘𝜋

′
𝜏(𝑘)

⎞⎠2

− 1

⎞⎠
=

∑︁
𝜏∈Aut([𝑞])

1

(𝑞 − 1)!
· 1

𝑞 − 1

⎛⎝⎛⎝∑︁
𝑗∈[𝑞]

√︁
𝜋𝑗𝜋′

𝜏(𝑗)

⎞⎠2

−
∑︁
𝑖∈[𝑞]

𝜋𝑖𝜋
′
𝜏(𝑖)

⎞⎠
=

∑︁
𝜏∈Aut([𝑞])

1

(𝑞 − 1)!
· 1

𝑞 − 1

∑︁
𝑗 ̸=𝑘∈[𝑞]

√︁
𝜋𝑗𝜋′

𝜏(𝑗)𝜋𝑘𝜋
′
𝜏(𝑘)

=
1

(𝑞 − 1)2

⎛⎝ ∑︁
𝑗 ̸=𝑘∈[𝑞]

√
𝜋𝑗𝜋𝑘

⎞⎠⎛⎝ ∑︁
𝑗′ ̸=𝑘′∈[𝑞]

√︁
𝜋′
𝜏(𝑗′)𝜋

′
𝜏(𝑘′)

⎞⎠
= Φ𝐻(FSC𝜋)Φ

𝐻(FSC𝜋′).

Condition (11.23) implies the desired contraction.

Proposition 11.14. If (11.23) or (11.24) holds, then

lim
𝑘→∞

(︁
Φ𝐻(𝑀𝑘)− Φ𝐻(̃︁𝑀𝑘)

)︁
= 0. (11.57)

Proof. We treat the regular tree case and the Poisson tree case (almost) uniformly.
For simplicity, in this proof, we use the following notation. Let 1𝑅 be 1 if we are
working with regular trees, and 0 otherwise. Let 1𝑃 be 1 if we are working with
Poisson trees, and 0 otherwise.

Using BP equation and Lemma 11.13, we have

Φ𝐻(𝑀𝑘+1) = E𝑏
[︁(︀
Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆)

)︀𝑏
Φ𝐻(𝑊 )

]︁
(11.58)

and the same holds with 𝑀 replaced with ̃︁𝑀 .
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For 𝑖 ≥ 0, define

Φ𝑖 = E𝑏

⎡⎣∏︁
𝑗∈[𝑏]

(︂(︁
Φ𝐻(̃︁𝑀𝑘 ∘ 𝑃𝜆)

)︁
1{𝑗≤𝑖} (︀

Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆)
)︀1{𝑗>𝑖})︂

Φ𝐻(𝑊 )

⎤⎦ . (11.59)

Fix 𝑖 ≥ 1. Let us prove that

Φ𝑖 − Φ𝑖−1 ≤ 𝑐𝑖

(︁
Φ(̃︁𝑀𝑘)− Φ(𝑀𝑘)

)︁
(11.60)

for some constant 𝑐𝑖 to be determined later.
Note that

Φ𝑖 − Φ𝑖−1 =
(︁
Φ𝐻(̃︁𝑀𝑘 ∘ 𝑃𝜆)− Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆)

)︁
(11.61)

· E𝑏
[︂
1{𝑏 ≥ 𝑖}

(︁
Φ𝐻(̃︁𝑀𝑘 ∘ 𝑃𝜆)

)︁𝑖−1 (︀
Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆)

)︀𝑏−𝑖]︂
Φ𝐻(𝑊 ).

Note that 𝑓𝐻(𝜋, 𝑣) = −2(𝑞− 1)𝑣⊤∇2𝜑𝐻(𝜋)𝑣. Therefore by definition of 𝐶𝐻(𝑞, 𝜆),
we have

∇2
(︀
Φ𝐻(FSC𝜋 ∘𝑃𝜆)− 𝜆2𝐶𝐻(𝑞, 𝜆)Φ𝐻(FSC𝜋)

)︀
⪰ 0. (11.62)

So by degradation,

Φ𝐻(̃︁𝑀𝑘 ∘ 𝑃𝜆)− Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆) ≤ 𝜆2𝐶𝐻(𝑞, 𝜆)
(︁
Φ𝐻(̃︁𝑀𝑘)− Φ𝐻(𝑀𝑘)

)︁
. (11.63)

By Prop. 11.16 and Lemma 11.15, for any 𝜖 > 0, for 𝑘 large enough, we have

Φ𝐻(𝑀𝑘 ∘ 𝑃𝜆) ≤
(︂
1− 𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

𝑑− 1𝑅

+ 𝜖

)︂1/2

+

. (11.64)

Let

𝑐𝑖 = 𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆)E𝑏

[︃
1{𝑏 ≥ 𝑖}

(︂
1− 𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

𝑑− 1𝑅

+ 𝜖

)︂ 𝑏−1
2

+

]︃
. (11.65)

Combining (11.61)(11.63)(11.64)(11.65), we get

Φ𝑖 − Φ𝑖−1 ≤ 𝑐𝑖

(︁
Φ𝐻(̃︁𝑀𝑘)− Φ𝐻(𝑀𝑘)

)︁
. (11.66)

Let us compute sum of 𝑐𝑖. In the regular tree case, we have

∑︁
𝑖≥1

𝑐𝑖 = 𝑑𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆)

(︂
1− 𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

𝑑− 1
+ 𝜖

)︂ 𝑑−1
2

+

. (11.67)
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For the Poisson tree case, we have

∑︁
𝑖≥1

𝑐𝑖 = 𝑑𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆) exp

(︃
−𝑑

(︃
1−

(︂
1− 𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

𝑑
+ 𝜖

)︂1/2

+

)︃)︃
.

(11.68)

Note that 𝜖 > 0 can be chosen to be arbitrarily small. Therefore in both cases, for
any 𝜖′ > 0, for 𝑘 large enough, we can choose 𝑐𝑖 such that (11.66) holds and∑︁

𝑖≥1

𝑐𝑖 ≤ 𝑑𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆) exp

(︂
−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

2
+ 𝜖′

)︂
. (11.69)

Then

Φ𝐻(̃︁𝑀𝑘+1)− Φ𝐻(𝑀𝑘+1) (11.70)

≤

(︃∑︁
𝑖≥1

𝑐𝑖

)︃(︁
Φ𝐻(̃︁𝑀𝑘)− Φ𝐻(𝑀𝑘)

)︁
≤ 𝑑𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆) exp

(︂
−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

2
+ 𝜖′

)︂(︁
Φ𝐻(̃︁𝑀𝑘)− Φ𝐻(𝑀𝑘)

)︁
.

Because (11.23) or (11.24) holds, we can choose 𝜖′ > 0 small enough so that

𝑑𝜆2Φ𝐻(𝑊 )𝐶𝐻(𝑞, 𝜆) exp

(︂
−𝑐𝐻(𝑞, 𝜆, 𝑑) · 𝑑𝜆

2 − 1

2
+ 𝜖′

)︂
< 1. (11.71)

This leads to the desired contraction.

Lemma 11.15. For any BMS channel 𝑃 , we have

𝑍(𝑃 ) ≤
√︁

1− 𝐶𝜒2(𝑃 ). (11.72)

Proof. Let Δ be the Δ-component of 𝑃 . Then

𝑍(𝑃 ) = E[2
√︀

Δ(1−Δ)] ≤
√︀

1− E[(1− 2Δ)2] =
√︁

1− 𝐶𝜒2(𝑃 ). (11.73)

The inequality step is by concavity of
√
·.

Proof of Theorem 11.6. Combine Prop. 11.14, 11.12, and 11.8.

11.3.4 Majority decider

Proposition 11.16. Consider the Potts model BOT(𝑞, 𝜆, 𝑑) or BOT(𝑞, 𝜆,Pois(𝑑))
with leaf observations through a non-trivial FMS channel 𝑈 . Let 𝑀𝑈

𝑘 denote the
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channel 𝜎𝜌 → 𝜈𝐿𝑘
where 𝜈𝑣 ∼ 𝑈(·|𝜎𝑣). Assume that 𝑑𝜆2 > 1. Then

lim
𝑘→∞

𝐶𝜒2

(︀
(𝑀𝑈

𝑘 ∘ 𝑃𝜆)𝑅
)︀
≥

{︃
𝑐(𝑞, 𝜆, 𝑑) · 𝑑𝜆2−1

𝑑−1
Regular tree case,

𝑐(𝑞, 𝜆, 𝑑) · 𝑑𝜆2−1
𝑑

Poisson tree case.
(11.74)

where

𝑐(𝑞, 𝜆, 𝑑) :=

(︂
2

𝑞
+
𝑞 − 2

𝑞
· 𝑑𝜆

2 − 1

𝑑𝜆− 1

)︂−1

. (11.75)

Furthermore, 𝑐(𝑞, 𝜆, 𝑑) ≥ 1 for all 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁

and 𝑑𝜆2 > 1.

Proof. Let 𝑈* be the reverse channel of 𝑈 . Then the composition 𝑈* ∘ 𝑈 is a non-
trivial ferromagnetic Potts channel. So there exists 𝜂 > 0 such that 𝑃𝜂 ≤deg 𝑈 . By
replacing 𝑈 with 𝑃𝜂 (and using Eq. (3.8)), we can wlog assume that 𝑈 = 𝑃𝜂 for some
𝜂 > 0.

Fix any embedding {±} ⊆ [𝑞]. Let 𝑒 ∈ R𝑞 denote the vector with 𝑒+ = 1, 𝑒− =
−1, 𝑒𝑖 = 0 for 𝑖 ̸∈ {±}. Let

𝑆𝑘 =
∑︁
𝑣∈𝐿𝑘

𝑒𝜈𝑣 . (11.76)

We view 𝑆𝑘 as a channel [𝑞] → Z. By variational characterization of 𝜒2-divergence,
we have

𝐶𝜒2((𝑀𝑈
𝑘 ∘ 𝑃𝜆)𝑅) ≥

(E+[𝑆𝑘 ∘ 𝑃𝜆])2

E+[𝑆2
𝑘 ∘ 𝑃𝜆]

(11.77)

where E+ denotes expectation conditioned on root label being +. Similarly, we use
E− to denote expectation conditioned on root label being −, and use E0 to denote
expectation conditioned on root label being any label not ±. Same for Var+, Var−,
Var0.

For simplicity, in this proof, we use the following notation. Let 1𝑅 be 1 if we
are working with regular trees, and 0 otherwise. Let 1𝑃 be 1 if we are working with
Poisson trees, and 0 otherwise. Clearly 1𝑃 + 1𝑅 = 1.

It is easy to see that

E𝑖𝑆𝑘 = 𝑒𝑖𝜂(𝑑𝜆)
𝑘. (11.78)

Using variance decomposition formula, we have

Var𝑖(𝑆𝑘+1) = Var𝑖(E[𝑆𝑘+1|𝑏]) + E𝑏Var𝑖(E[𝑆𝑘+1|𝑏, 𝜎1, . . . , 𝜎𝑏]) (11.79)
+ EVar𝑖(𝑆𝑘+1|𝑏, 𝜎1, . . . , 𝜎𝑏)

where 𝜎1, . . . , 𝜎𝑏 are labels of the children.
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Let us compute each summand.

Var𝑖(E[𝑆𝑘+1|𝑏]) = Var𝑖(𝑏𝜆𝑒𝑖𝜂(𝑑𝜆)
𝑘) = 𝑒2𝑖 𝑑𝜆

2𝜂2(𝑑𝜆)2𝑘1𝑃 , (11.80)
E𝑏Var𝑖(E[𝑆𝑘+1|𝑏, 𝜎1, . . . , 𝜎𝑏]) = 𝑑𝜂2(𝑑𝜆)2𝑘 Var𝑗∼𝑃𝜆(·|𝑖)(𝑒𝑗), (11.81)
EVar𝑖(𝑆𝑘+1|𝑏, 𝜎1, . . . , 𝜎𝑏) = 𝑑E𝑗∼𝑃𝜆(·|𝑖)[Var

𝑗(𝑆𝑘)]. (11.82)

We have Var−(𝑆𝑘) = Var+(𝑆𝑘) and

Var+(𝑆𝑘+1) = 𝑑𝜂2(𝑑𝜆)2𝑘
(︂(︂

𝜆+
1− 𝜆
𝑞
· 2
)︂
− 𝜆21𝑅

)︂
(11.83)

+ 𝑑

(︂(︂
𝜆+

1− 𝜆
𝑞
· 2
)︂
Var+(𝑆𝑘) +

1− 𝜆
𝑞
· (𝑞 − 2)Var0(𝑆𝑘)

)︂
,

Var0(𝑆𝑘+1) = 𝑑𝜂2(𝑑𝜆)2𝑘
(︂
1− 𝜆
𝑞
· 2
)︂

(11.84)

+ 𝑑

(︂
1− 𝜆
𝑞
· 2Var+(𝑆𝑘) +

(︂
𝜆+

1− 𝜆
𝑞
· (𝑞 − 2)

)︂
Var0(𝑆𝑘)

)︂
.

By computing linear combinations of (11.83)(11.84), we get

Var+(𝑆𝑘+1)− Var0(𝑆𝑘+1) = 𝑑𝜆
(︀
Var+(𝑆𝑘)− Var0(𝑆𝑘)

)︀
(11.85)

+ 𝑑𝜂2(𝑑𝜆)2𝑘(𝜆− 𝜆21𝑅).

Var+(𝑆𝑘+1) +
𝑞 − 2

2
Var0(𝑆𝑘+1) = 𝑑

(︂
Var+(𝑆𝑘) +

𝑞 − 2

2
Var0(𝑆𝑘+1)

)︂
(11.86)

+ 𝑑𝜂2(𝑑𝜆)2𝑘(1− 𝜆21𝑅).

Solving (11.85)(11.86) we get

Var+(𝑆𝑘)− Var0(𝑆𝑘) (11.87)

=
(︀
Var+(𝑆0)− Var0(𝑆0)

)︀
(𝑑𝜆)𝑘 +

∑︁
1≤𝑖≤𝑘

𝑑𝜂2(𝑑𝜆)2𝑖−2(𝑑𝜆)𝑘−𝑖(𝜆− 𝜆21𝑅)

= 𝑂
(︀
(𝑑𝜆)𝑘

)︀
+ 𝑑𝜂2(𝑑𝜆)𝑘−1 (𝑑𝜆)

𝑘 − 1

𝑑𝜆− 1
(𝜆− 𝜆21𝑅)

= (1 + 𝑜(1))
1− 𝜆1𝑅
𝑑𝜆− 1

𝜂2(𝑑𝜆)2𝑘
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and

Var+(𝑆𝑘) +
𝑞 − 2

2
Var0(𝑆𝑘) (11.88)

=

(︂
Var+(𝑆0) +

𝑞 − 2

2
Var0(𝑆0)

)︂
𝑑𝑘 +

∑︁
1≤𝑖≤𝑘

𝑑𝜂2(𝑑𝜆)2𝑖−2𝑑𝑘−𝑖(1− 𝜆21𝑅)

= 𝑂
(︀
𝑑𝑘
)︀
+ 𝜂2𝑑𝑘

(𝑑𝜆2)𝑘 − 1

𝑑𝜆2 − 1
(1− 𝜆21𝑅)

= (1 + 𝑜(1))
1− 𝜆21𝑅
𝑑𝜆2 − 1

𝜂2(𝑑𝜆)2𝑘.

Combining (11.87)(11.88) we have

Var+(𝑆𝑘) = (1 + 𝑜(1))
2

𝑞

(︂
1− 𝜆21𝑅
𝑑𝜆2 − 1

+
1− 𝜆1𝑅
𝑑𝜆− 1

· 𝑞 − 2

2

)︂
𝜂2(𝑑𝜆)2𝑘. (11.89)

Now we compute moments of 𝑆𝑘 ∘ 𝑃𝜆.

E+[𝑆𝑘 ∘ 𝑃𝜆] = 𝜆𝜂(𝑑𝜆)𝑘. (11.90)

E+[𝑆2
𝑘 ∘ 𝑃𝜆] =

(︂
𝜆+

1− 𝜆
𝑞
· 2
)︂
E+[𝑆2

𝑘 ] +
1− 𝜆
𝑞
· (𝑞 − 2)E0[𝑆2

𝑘 ] (11.91)

=

(︂
𝜆+

1− 𝜆
𝑞
· 2
)︂(︀

Var+(𝑆𝑘) + (E+𝑆𝑘)
2
)︀
+

1− 𝜆
𝑞
· (𝑞 − 2)Var0(𝑆𝑘)

= 𝜆(1 + 𝑜(1))
2

𝑞

(︂
1− 𝜆21𝑅
𝑑𝜆2 − 1

+
1− 𝜆1𝑅
𝑑𝜆− 1

· 𝑞 − 2

2

)︂
𝜂2(𝑑𝜆)2𝑘

+

(︂
𝜆+

1− 𝜆
𝑞
· 2
)︂
𝜂2(𝑑𝜆)2𝑘 +

1− 𝜆
𝑞
· 2 · (1 + 𝑜(1))

1− 𝜆21𝑅
𝑑𝜆2 − 1

𝜂2(𝑑𝜆)2𝑘

= (1 + 𝑜(1))

(︂
2

𝑞
· 𝑑𝜆

2 − 𝜆21𝑅
𝑑𝜆2 − 1

+ 𝜆 · 𝑞 − 2

𝑞
· 𝑑𝜆− 𝜆1𝑅
𝑑𝜆− 1

)︂
𝜂2(𝑑𝜆)2𝑘

= (1 + 𝑜(1))𝑐(𝑞, 𝜆, 𝑑)−1 𝑑− 1𝑅

𝑑𝜆2 − 1
𝜆2𝜂2(𝑑𝜆)2𝑘.

Finally,

𝐶𝜒2((𝑀𝑈
𝑘 ∘ 𝑃𝜆)𝑅) ≥

(E+[𝑆𝑘 ∘ 𝑃𝜆])2

E+[𝑆2
𝑘 ∘ 𝑃𝜆]

= (1 + 𝑜(1))𝑐(𝑞, 𝜆, 𝑑) · 𝑑𝜆
2 − 1

𝑑− 1𝑅

. (11.92)

11.3.5 Bounds on key constants

In this section we prove bounds on key constants used in Theorem 11.5 and 11.6.
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Proposition 11.17. For 𝑞 ∈ Z≥2, 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
, we have 𝐶𝐿(𝑞, 𝜆) ≤ 𝑞2, where

𝐶𝐿(𝑞, 𝜆) is defined in (11.17).

Proof. We have ⟨(︁
𝜆𝜋 + 1−𝜆

𝑞

)︁−1

+ 1
𝑞

(︁
𝜆𝜋 + 1−𝜆

𝑞

)︁−2

, 𝑣2
⟩

⟨
𝜋−1 + 1

𝑞
𝜋−2, 𝑣2

⟩ (11.93)

≤ max

⎧⎪⎪⎨⎪⎪⎩
⟨(︁

𝜆𝜋 + 1−𝜆
𝑞

)︁−1

, 𝑣2
⟩

⟨𝜋−1, 𝑣2⟩
,

⟨(︁
𝜆𝜋 + 1−𝜆

𝑞

)︁−2

, 𝑣2
⟩

⟨𝜋−2, 𝑣2⟩

⎫⎪⎪⎬⎪⎪⎭
≤ max{𝑞, 𝑞2} = 𝑞2.

where the second step is by Lemma 11.19.

Proposition 11.18. For 𝑞 ∈ Z≥2, 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
, we have 𝐶𝐻(𝑞, 𝜆) ≤ 𝑞5/2, where

𝐶𝐻(𝑞, 𝜆) is defined in (11.19).

Proof. By (11.50),

𝑓(𝜋, 𝑣) ≥ 1
√
𝑞

⎛⎝∑︁
𝑖∈[𝑞]

𝜋
1/2
𝑖

⎞⎠⟨︀𝜋−3/2, 𝑣2
⟩︀
≥ 1
√
𝑞

⟨︀
𝜋−3/2, 𝑣2

⟩︀
. (11.94)

On the other hand,

𝑓

(︂
𝜆𝜋 +

1− 𝜆
𝑞

, 𝑣

)︂
≤

⎛⎝∑︁
𝑖∈[𝑞]

(︂
𝜆𝜋𝑖 +

1− 𝜆
𝑞

)︂1/2
⎞⎠⟨(︂𝜆𝜋 +

1− 𝜆
𝑞

)︂−3/2

, 𝑣2

⟩
(11.95)

≤ √𝑞 ·

⟨(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂−3/2

, 𝑣2

⟩
.

Combining (11.94)(11.95) we get

𝑓
(︁
𝜆𝜋 + 1−𝜆

𝑞
, 𝑣
)︁

𝑓(𝜋, 𝑣)
≤ 𝑞 ·

⟨(︁
𝜆𝜋 + 1−𝜆

𝑞

)︁−3/2

, 𝑣2
⟩

⟨𝜋−3/2, 𝑣2⟩
≤ 𝑞5/2 (11.96)

where the last step is by Lemma 11.19.

The following lemma is the crucial step in the proof of Prop. 11.17 and 11.18.
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Lemma 11.19. For 𝑞 ∈ Z≥2, 𝛼 ∈ R≥1, 𝜆 ∈
[︁
− 1
𝑞−1

, 1
]︁
, we have

sup
𝜋∈𝒫([𝑞])

𝑣∈1⊥⊆R𝑞

⟨(︁
𝜆𝜋 + 1−𝜆

𝑞

)︁−𝛼
, 𝑣2
⟩

⟨𝜋−𝛼, 𝑣2⟩
≤ 𝑞𝛼. (11.97)

Proof. We prove the ferromagnetic case (𝜆 ∈ [0, 1]) and antiferromagnetic case (𝜆 ∈[︁
− 1
𝑞−1

, 0
]︁
) separately.

Ferromagnetic case (𝜆 ∈ [0, 1]). In this case, we have

𝜆𝑥+
1− 𝜆
𝑞
≥ 𝑥

𝑞
(11.98)

for all 𝑥 ∈ [0, 1]. Therefore⟨(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂−𝛼

, 𝑣2

⟩
≤

⟨(︂
𝜋

𝑞

)︂−𝛼

, 𝑣2

⟩
= 𝑞𝛼

⟨︀
𝜋−𝛼, 𝑣2

⟩︀
. (11.99)

Note that we did not use the assumption that 𝑣 ∈ 1⊥.

Antiferromagnetic case
(︁
𝜆 ∈

[︁
− 1
𝑞−1

, 0
]︁)︁

. We would like to prove that

𝑞𝛼
⟨︀
𝜋−𝛼, 𝑣2

⟩︀
−

⟨(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂−𝛼

, 𝑣2

⟩
=:
⟨︀
𝑏, 𝑣2

⟩︀
(11.100)

is non-negative for all 𝜋 ∈ 𝒫([𝑞]), 𝑣 ∈ 1⊥, where

𝑏 :=

(︂
𝜋

𝑞

)︂−𝛼

−
(︂
𝜆𝜋 +

1− 𝜆
𝑞

)︂−𝛼

. (11.101)

Step 1. We fix 𝜋 ∈ 𝒫([𝑞]) and determine the optimal 𝑣 ∈ 1⊥ to plug in (11.100),
reducing the statement to one involving 𝜋 only.

If 𝜆𝑥 + 1−𝜆
𝑞
≤ 𝑥

𝑞
for some 𝑥 ∈ [0, 1], then 𝑥 ≥ 1−𝜆

1−𝜆𝑞 ≥
𝑞

2𝑞−1
> 1

2
. So there exists

at most one 𝑖 such that 𝜆𝜋𝑖 + 1−𝜆
𝑞
≤ 𝜋𝑖

𝑞
(equivalently, 𝑏𝑖 ≤ 0). We can wlog assume

that 𝜋1 ≥ 𝜋2 ≥ · · · ≥ 𝜋𝑞. Then we know 𝜆𝜋𝑖 +
1−𝜆
𝑞
> 𝜋𝑖

𝑞
(equivalently, 𝑏𝑖 > 0) for all

2 ≤ 𝑖 ≤ 𝑞. If 𝑏1 ≥ 0, then ⟨𝑏, 𝑣2⟩ is non-negative for all 𝑣 and we are done. Therefore,
it remains to consider the case 𝑏1 < 0.

If 𝑣1 = 0, then ⟨𝑏, 𝑣2⟩ is non-negative. Therefore we can assume 𝑣1 ̸= 0. By
rescaling, we can assume that 𝑣1 = 1. So 𝑣2 + · · · + 𝑣𝑞 = −1. Because 𝑏2, . . . , 𝑏𝑞 are
all positive, to minimize

∑︀
2≤𝑖≤𝑞 𝑏𝑖𝑣

2
𝑖 under linear constraint 𝑣2 + · · · + 𝑣𝑞 = −1, the

optimal choice is 𝑣𝑖 = −𝑏−1
𝑖 𝑍−1 for 2 ≤ 𝑖 ≤ 𝑞 where 𝑍 :=

∑︀
2≤𝑖≤𝑞 𝑏

−1
𝑖 . For this choice
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of 𝑣, we have ⟨︀
𝑏, 𝑣2

⟩︀
= 𝑏1 +

∑︁
2≤𝑖≤𝑞

𝑏𝑖 · (−𝑏−1
𝑖 𝑍−1)2 = 𝑏1 + 𝑍−1. (11.102)

Therefore, it remains to prove

𝑍 ≤ (−𝑏1)−1 (11.103)

where 𝜋1 ≥ · · · ≥ 𝜋𝑞, 𝑏1 < 0, and 𝑏2, . . . , 𝑏𝑞 > 0.

Step 2. We reduce to the case where 𝜋3 = · · · = 𝜋𝑞 = 0. Note that

𝑍 =
∑︁
2≤𝑖≤𝑞

𝑏−1
𝑖 =

∑︁
2≤𝑖≤𝑞

(︃(︂
𝜋𝑖
𝑞

)︂−𝛼

−
(︂
𝜆𝜋𝑖 +

1− 𝜆
𝑞

)︂−𝛼
)︃−1

. (11.104)

By Lemma 11.20, for fixed 𝜋1, the optimal choice (for maximizing 𝑍) of 𝜋2, . . . , 𝜋𝑞 is
𝜋3 = · · · = 𝜋𝑞 = 0.

Write 𝜋1 = 1− 𝑥, 𝜋2 = 𝑥 where 𝑥 ∈
[︁
0, 𝜆−𝜆𝑞

1−𝜆𝑞

]︁
. Then

𝑏1 =

(︂
1− 𝑥
𝑞

)︂−𝛼

−
(︂
𝜆(1− 𝑥) + 1− 𝜆

𝑞

)︂−𝛼

, (11.105)

𝑍 =

(︃(︂
𝑥

𝑞

)︂−𝛼

−
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼
)︃−1

. (11.106)

By rearranging terms in (11.103), we reduce to proving(︂
𝑥

𝑞

)︂−𝛼

+

(︂
1− 𝑥
𝑞

)︂−𝛼

≥
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼

+

(︂
𝜆(1− 𝑥) + 1− 𝜆

𝑞

)︂−𝛼

(11.107)

for 𝑞 ∈ Z≥2, 𝛼 ∈ R≥1, 𝜆 ∈
[︁
− 1
𝑞−1

, 0
]︁
, 𝑥 ∈

[︁
0, 𝜆−𝜆𝑞

1−𝜆𝑞

]︁
.

Step 3. Let 𝑔𝑞,𝛼,𝑥(𝜆) :=
(︁
𝜆𝑥+ 1−𝜆

𝑞

)︁−𝛼
+
(︁
𝜆(1− 𝑥) + 1−𝜆

𝑞

)︁−𝛼
be the RHS of (11.107).

Then

𝑔′′𝑞,𝛼,𝑥(𝜆) = 𝛼(𝛼 + 1)

(︂
𝑥− 1

𝑞

)︂2(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼−2

+ 𝛼(𝛼 + 1)

(︂
1− 𝑥− 1

𝑞

)︂2(︂
𝜆(1− 𝑥) + 1− 𝜆

𝑞

)︂−𝛼−2

> 0.

So 𝑔𝑞,𝛼,𝑥 is convex in 𝜆. Therefore it suffices to verify (11.107) for 𝜆 = 0 and 𝜆 = − 1
𝑞−1

.
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When 𝜆 = 0, we have

𝑔𝑞,𝛼,𝑥(𝜆) =

(︂
1

𝑞

)︂−𝛼

+

(︂
1

𝑞

)︂−𝛼

≤
(︂
𝑥

𝑞

)︂−𝛼

+

(︂
1− 𝑥
𝑞

)︂−𝛼

. (11.108)

When 𝜆 = − 1
𝑞−1

, we have

𝑔𝑞,𝛼,𝑥(𝜆) =

(︂
1− 𝑥
𝑞 − 1

)︂−𝛼

+

(︂
𝑥

𝑞 − 1

)︂−𝛼

≤
(︂
𝑥

𝑞

)︂−𝛼

+

(︂
1− 𝑥
𝑞

)︂−𝛼

. (11.109)

This finishes the proof.

Lemma 11.20. For 𝑞 ∈ Z≥2, 𝛼 ∈ R≥1, 𝜆 ∈
[︁
− 1
𝑞−1

, 0
]︁
, the function

𝑓(𝑥) :=

(︃(︂
𝑥

𝑞

)︂−𝛼

−
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼
)︃−1

. (11.110)

is convex in 𝑥 ∈ [0, 1−𝜆
1−𝜆𝑞 ].

Proof. Let 𝑔(𝑥) = 1
𝑓(𝑥)

. Then

𝑓 ′′(𝑥) =
2𝑔′(𝑥)2 − 𝑔(𝑥)𝑔′′(𝑥)

𝑔(𝑥)3
. (11.111)

It suffices to prove that

2𝑔′(𝑥)2 − 𝑔(𝑥)𝑔′′(𝑥) ≥ 0. (11.112)

We have

2𝑔′(𝑥)2 − 𝑔(𝑥)𝑔′′(𝑥) = 2𝛼2

(︃
𝑞−1

(︂
𝑥

𝑞

)︂−𝛼−1

− 𝜆
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼−1
)︃2

(11.113)

−

(︃(︂
𝑥

𝑞

)︂−𝛼

−
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼
)︃

· 𝛼(𝛼 + 1)

(︃
𝑞−2

(︂
𝑥

𝑞

)︂−𝛼−2

− 𝜆2
(︂
𝜆𝑥+

1− 𝜆
𝑞

)︂−𝛼−2
)︃
.

Write 𝑢 = 𝑥
𝑞
, 𝑣 = 𝜆𝑥+ 1−𝜆

𝑞
, 𝑐 = 𝑞𝜆. Then we have 0 ≤ 𝑢 ≤ 𝑣 ≤ 1 and − 𝑞

𝑞−1
≤ 𝑐 ≤ 0.

It suffices to prove

2𝛼2(𝑢−𝛼−1 − 𝑐𝑣−𝛼−1)2 − 𝛼(𝛼 + 1)(𝑢−𝛼 − 𝑣−𝛼)(𝑢−𝛼−2 − 𝑐2𝑣−𝛼−2) ≥ 0. (11.114)
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We have

2𝛼2(𝑢−𝛼−1 − 𝑐𝑣−𝛼−1)2 − 𝛼(𝛼 + 1)(𝑢−𝛼 − 𝑣−𝛼)(𝑢−𝛼−2 − 𝑐2𝑣−𝛼−2) (11.115)
≥ 𝛼(𝛼 + 1)((𝑢−𝛼−1 − 𝑐𝑣−𝛼−1)2 − (𝑢−𝛼 − 𝑣−𝛼)(𝑢−𝛼−2 − 𝑐2𝑣−𝛼−2))

= 𝛼(𝛼 + 1)𝑢−𝛼𝑣−𝛼(𝑢−1 − 𝑐𝑣−1)2

≥ 0.

This finishes the proof.

11.4 Applications
Main applications of uniqueness of BP fixed point and boundary irrelevance include
a mutual information formula and an optimal recovery algorithm. In this section we
prove these results via reduction established in Chapter 5.

Theorem 11.21 (Mutual information formula). Let (𝑋,𝐺) ∼ SBM(𝑛, 𝑞, 𝑎, 𝑏). Let
(𝑇, 𝜎) ∼ BOT(𝑞, 𝜆,Pois(𝑑)) be the corresponding Potts model (Theorem 5.10), where
𝑑 = 𝑎+(𝑞−1)𝑏

𝑞
and 𝜆 = 𝑎−𝑏

𝑎+(𝑞−1)𝑏
. Let 𝜌 be the root of 𝑇 , 𝐿𝑘 be the set of vertices at

distance 𝑘 to 𝜌, 𝑇𝑘 be the set of vertices at distance ≤ 𝑘 to 𝜌. If (𝑞, 𝜆, 𝑑) satisfies
Eq. (11.22) or Eq. (11.23), then we have

lim
𝑛→∞

1

𝑛
𝐼(𝑋;𝐺) =

ˆ 1

0

lim
𝑘→∞

𝐼(𝜎𝜌;𝜔
𝜖
𝑇𝑘∖𝜌|𝑇𝑘)𝑑𝜖, (11.116)

where 𝜔𝜖 denotes observation through survey channel EC𝜖.

Proof. By Theorem 11.5, Theorem 11.6 and Theorem 5.18.

Theorem 11.22 (Optimal recovery for SBM with survey). Work under the same
setting as Theorem 11.21. Suppose that in addition to 𝐺, we observe survey 𝑌𝑣 ∼
𝑊 (·|𝑋𝑣) for all 𝑣 ∈ 𝑉 , where 𝑊 is some non-trivial FMS channel. If (𝑞, 𝜆, 𝑑,𝑊 )
satisfies Eq. (11.22) or Eq. (11.24), then belief propagation (Algorithm 1) achieves
the optimal recovery accuracy of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜔𝑇𝑘). (11.117)

Proof. By Theorem 11.5, Theorem 11.6 and Theorem 5.20.

Theorem 11.23 (Optimal recovery for SBM). Work under the same setting as The-
orem 11.21. Suppose 𝑑𝜆2 > 1 and (𝑞, 𝜆, 𝑑) satisfies Eq. (11.23). Suppose there is an
algorithm 𝒜 and a constant 𝜖 > 0 (not depending on 𝑛) such that with probability
1− 𝑜(1), the empirical transition matrix 𝐹 ∈ R𝑞×𝑞 defined as

𝐹𝑖,𝑗 :=
#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑖,𝑋p 𝑣 = 𝑗}

#{𝑣 ∈ 𝑉 : 𝑋𝑣 = 𝑖}
, 𝑋p := 𝒜(𝐺) (11.118)

satisfies
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(1) ‖𝐹⊤
1− 1‖∞ = 𝑜(1);

(2) 𝜎min(𝐹 ) > 𝜖, where 𝜎min is the smallest singular value;

(3) there exists a permutation 𝜏 ∈ Aut([𝑞]) such that 𝐹𝜏(𝑖),𝑖 > 𝐹𝜏(𝑖),𝑗 + 𝜖 for all
𝑖 ̸= 𝑗 ∈ [𝑞].

(Note that we do not asssume 𝐹 stays the same for different calls to 𝒜.)
Then there is an algorithm (Algorithm 2) achieving the optimal recovery accuracy

of

1− lim
𝑘→∞

𝑃𝑒(𝜎𝜌|𝑇𝑘, 𝜎𝐿𝑘
). (11.119)

Proof. By Theorem 11.6 and Theorem 5.22.

11.5 Asymmetric fixed points
Up to now we have focused on symmetric fixed points of the BP operator. If we view
the BP operator as an operator from the space of 𝑞-ary input (possibly asymmetric)
channels, then a natural question to determine the (possibly asymmetric) fixed points.
In the case 𝑞 = 2, [137] showed that there is only one non-trivial fixed point, and the
fixed point is symmetric. For 𝑞 ≥ 3, it is no longer the case.

Proposition 11.24. Work under the setting of Theorem 11.1. If 𝑞 ≥ 3 and 𝑑𝜆2 > 1,
then the BP operator (Eq. (11.8)) at least one non-trivial asymmetric fixed point.

Proof. Consider the channel 𝑈 : [𝑞] → {±}, which maps 1 to + and 2, . . . , 𝑞 to −.
Because BP(𝑈) ≤deg 𝑈 , the sequence (BP𝑘(𝑈))𝑘≥0 is non-increasing in degradation
preorder. Therefore a limit channel BP∞(𝑈) exists by Lemma 11.2.

We would like to show that BP∞(𝑈) is a non-FMS non-trivial fixed point. When
𝑑𝜆2 > 1, count-reconstruction is possible (see e.g. [101]). So it is possible to gain
non-trivial information about whether the input is 1 by counting the number of +.
So BP∞(𝑈) is non-trivial.

On the other hand, BP∞(𝑈)(·|𝑖) are the same for 𝑖 = 2, . . . , 𝑞. This cannot happen
for any non-trivial FMS channel. Therefore BP∞(𝑈) is not an FMS channel.

Nevertheless, when the condition in Theorem 11.1 holds, for an open set of initial
channels, it will converge to the unique FMS fixed point under BP iterations. We
make the following definition.

Definition 11.25. Let 𝑈 : 𝒳 → 𝒴 be a channel where 𝒳 = [𝑞]. We say 𝑈 has full
rank if there exists a partition of 𝒴 into 𝑞 measurable subsets 𝒴 = 𝐸1 ∪ · · · ∪𝐸𝑞 such
that the 𝑞 × 𝑞 matrix

(𝑈(𝐸𝑗|𝑖))𝑖∈[𝑞],𝑗∈[𝑞] (11.120)

is invertible.
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Proposition 11.26. Work under the setting of Theorem 11.1. If (𝑞, 𝜆, 𝑑) satisfies
Eq. (11.22) or Eq. (11.23), then for any 𝑞-ary input (possibly asymmetric) channel 𝑈
of full rank, we have

BP∞(𝑈) = BP∞(Id). (11.121)

Proof. We prove that under the condition that 𝑈 has full rank, there exists a channel
𝑅 such that 𝑅 ∘ 𝑈 is a non-trivial Potts channel.

Because 𝑈 has full rank, there exists a partition 𝒴 = 𝐸1 ∪ · · · ∪ 𝐸𝑞 such that

(𝑈(𝐸𝑗|𝑖))𝑖∈[𝑞],𝑗∈[𝑞] (11.122)

is invertible. Define 𝑄 : 𝒴 → [𝑞] by mapping 𝑦 ∈ 𝐸𝑖 to 𝑖 for all 𝑖 ∈ [𝑞]. Then we can
replace 𝑈 with 𝑄 ∘ 𝑈 and wlog assume that 𝒴 = [𝑞].

By Lemma 5.23, there exists 𝜆 > 0 such that 𝑃𝜆 ≤deg 𝑈 . Therefore 𝑃𝜆 ≤deg

𝑈 ≤deg Id. Degradation of 𝑞-ary input (possibly asymmetric) channels is preserved
under BP operator. So by iterating the BP operator, we get

BP∞(𝑃𝜆) ≤deg BP
∞(𝑈) ≤deg BP

∞(Id). (11.123)

The first and third channels are equal by Theorem 11.1. Therefore BP∞(𝑈) =
BP∞(Id).

For the boundary irrelevance operator BP𝑊 (Eq. (11.11)), the situation is simpler:
when the survey FMS channel 𝑊 is non-trivial, there is no asymmetric fixed point.

Proposition 11.27. Work under the setting of Theorem 11.1. If (𝑞, 𝜆, 𝑑,𝑊 ) satisfies
Eq. (11.22) or Eq. (11.24), then BP𝑊 has only one fixed point.

Proof. Suppose 𝑈 is a fixed point of BP𝑊 . We have

0 ≤deg 𝑈 ≤deg Id . (11.124)

Degradation for 𝑞-ary input (possibly asymmetric) channels is preserved under BP𝑊
operator. So by iterating the BP𝑊 operator, we get

BP∞
𝑊 (0) ≤deg BP

∞
𝑊 (𝑈) ≤deg BP

∞
𝑊 (Id). (11.125)

The first and third channels are equal by Theorem 11.1. Therefore 𝑈 = BP∞
𝑊 (𝑈) =

BP∞
𝑊 (Id) is equal to the unique FMS fixed point.
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