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Abstract

Pretrained language models (LMs) have demonstrated a remarkable ability to emit
linguistic and factual knowledge in certain fields. Additionally, they seem to encode
relational information about different concepts in a knowledge base. However, since
they are trained solely on textual corpora, it is unclear whether these models im-
plicitly understand anything grounded about the real world. This work investigates
the extent to which LMs learn the structure of the physical world. By probing the
contextualized embeddings of sentences, we examine how well LMs predict the sizes
of real-world objects. We further explore the effect of adjectival modifiers on object
embeddings. We show that while larger models more accurately convey scalar infor-
mation through their embeddings, they perform on par with smaller models in the
task of contextual prediction. Fortunately, the models are capable of identifying a
difference in scale when an adjectival modifier is introduced, implying that the rel-
evant context is successfully incorporated into the object’s embedding through the
LM’s attention mechanism.

Thesis Supervisor: Yoon Kim
Title: Assistant Professor
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Chapter 1

Introduction

Neural language models have come a long way since their inception in the early 2000s.

They transitioned from using simple word features to train a feed-forward network to

learning pretrained word embeddings that are almost universal. The introduction of

large language models (LLMs), such as GPT-4, has revolutionized the field of natural

language processing (NLP) and artificial intelligence (AI) as a whole. As LLMs are

only a few years old, their potential applications are still limitless, and there is much

to be explored regarding their capabilities and limitations.

One common limitation expressed in literature is the ungrounded training of

LLMs. It’s true that LLMs are incredibly powerful, but without relevant experi-

ence in the real world, it’s unclear how much an agent can actually understand about

language [3]. If we want intelligent agents to be able to communicate with us, we

need them to understand the physical and social context of language before gener-

ating it. Thus, it makes sense to determine the extent of the knowledge contained

within LLMs.

This has led to a class of LLM training tasks called probing tasks. Probes are

simple supervised models trained to predict a property of language from a linguistic

representation. The idea is that if a word representation contains information about

some linguistic property, then it shouldn’t require much additional processing and

data to predict that property. Probes have achieved success in tasks identifying mor-

phology and part-of-speech [2], syntactic and semantic information [15], and various

13



tasks ranging from superficial phenomena to subtle meaning [7].

In this work, we will focus on using LMs to predict scalar attributes. [27] calls

this task scalar probing. We will extend this to contextualized scalar probing. This

will assess the LM’s ability to predict scalar quantities based not only on concepts

(nouns), but also on potential adjectival modifiers. In the next few sections, we will

provide a concise summary of fundamental concepts related to this study and end

with a formal exposition of the problem that we intend to address.

1.1 Large Language Models

LLMs are advanced neural networks that are trained on massive amounts of text

data using unsupervised learning techniques. The training process involves feeding

the model a large corpus of text, such as books, articles, and web pages, and optimiz-

ing its parameters to predict the likelihood of observing a given sequence of words.

The primary architecture used for LLMs is the Transformer model [26], whose main

building block is the self-attention layer. The attention mechanism successfully allows

the model to learn useful contextual representations of text that capture long-term

dependencies and result in greatly improved performance of various NLP benchmarks.

There’s evidence that the various attention heads learn different syntactic and seman-

tic connections between words [6].

LLMs have achieved remarkable results on many NLP tasks, demonstrating the

potential for these models to be used in various applications. However, the compu-

tational cost of training and deploying LLMs is still a major challenge, and there

are ethical considerations surrounding the use of these models, including bias and

fairness issues, that need to be carefully addressed. In this paper, we will focus on

the capabilities of LLMs, specifically in the scope of perceptual understanding.

1.1.1 Text-Only Training

Many of the most successful LLMs have been trained purely on textual data. As

shown in Figure 1-1a, these models employ a masked language modeling objective.

14



(a) Text-only masked language modeling. (b) Image-aware contrastive pre-training.

Figure 1-1: Approaches to learning contextual text representations.

Here, part of the input is hidden, and the model must learn the next word or sentence

from the context its given. Through this procedure, the model learns rich representa-

tions of the words, informed by the context surrounding them. This text-only nature

of LLM training has both advantages and limitations.

One advantage of text-only training is that it allows the models to learn from

vast amounts of diverse and unstructured data. This enables the models to learn the

complexity of natural language. Furthermore, the models can be easily adapted to

new languages and domains by simply adding more data to the training corpus.

However, they may not be able to capture some aspects of human knowledge and

experience that are no present in the text itself. This can lead to biases and limitations

in the models’ understanding of the world, as they may lack certain cultural or social

context that is crucial for understanding human language. Additionally, the models

may struggle with tasks that require more than just text understanding, such as image

or video captioning, where visual cues and context play an important role.

So far, for such a simple training objective, LLMs have proven to be capable of

several unexpected tasks. These include code generation and documentation [5], few-

shot planning [22], and long-form conversation (ChatGPT). We ask if this can be

extended beyond textual tasks to the grounded world, without introducing specific

real-world data. If so, this would provide yet another insight into the importance of

language as a tool for communication.

15



Figure 1-2: An example of probing for POS tagging. The word embedding is extracted
and run through a classifier to solve some downstream task.

1.1.2 Image-Aware Training

One way to ground language models is to introduce images into the training pro-

cedure, thereby learning multimodal representations. These vision-language pre-

training (VLP) methods have achieved success in such tasks as image captioning,

visual question-answering, and image-text retrieval [11]. Two such cutting-edge mod-

els are CLIP [16] and GPT-4 [13]. Both models jointly learn aligned representations

of images and text (Figure 1-1b). It’s possible that because of this, the models are

better at perceptual understanding tasks than the text-only models. We will explore

this later on.

1.2 Probing

Probing is a technique used to understand the internal workings of language models.

It involves training a simple linear classifier on top of the hidden representations of

a language model, with the goal of predicting a linguistic property or feature of the

input text (Figure 1-2). By probing the hidden representations in this way, we can

gain insights into what aspects of language the model is capable of capturing, and

how it processes and represents linguistic information. Probing has been used to
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investigate a wide range of linguistic phenomena, including syntax, semantics, and

pragmatics. For example, probes have been used to study whether language models

can understand identify temporal properties of expressions [24].

One advantage of probing is that it allows us to gain insights into the strengths

and weaknesses of language models without requiring large amounts of annotated

data or complex task-specific architectures. Probing can be applied to any pre-trained

language model, regardless of its architecture or objective, and can be used to compare

different models or configurations in a systematic and controlled way. In a way, the

output of probes can be used to interpret the black-box structure of these deep models.

However, we also have to be wary of the limitations of probing. For example, the

linear classifiers used in probing may not capture the full complexity of the linguistic

properties being studied, and may be prone to overfitting. If the probe is too complex,

then it might be able to learn the relation regardless of the input embedding, and the

result will not tell us anything useful about the underlying language model. Still, it’s

a valuable technique for investigating the abilities of LLMs, and we will employ them

in our scalar prediction task.

1.3 Thesis Outline

In chapter 2, we will continue discussing works that are relevant to this research

problem. Chapter 3 describes the problem statement in more detail, as well as the

methods and models that will be used to explore it. Chapter 4 talks about the training

and evaluation dataset used in our studies. Chapter 5 goes into the experiments

conducted, metrics collects, and results. Chapter 6 includes an analysis of these

results. Finally, chapter 7 concludes with the broader implications of this work.

17



18



Chapter 2

Related Work

2.1 Transformers

The Transformer is a type of neural network architecture that has revolutionized

NLP in recent years. It has become a dominant paradigm in language understanding,

outperforming previous state-of-the-art models on a wide range of tasks [26].

At a high level, transformers consist of an encoder and a decoder, each of which is

composed of multiple layers of self-attention and feedforward neural networks. Self-

attention allows the model to selectively focus on different parts of the input sequence,

while the feedforward networks provide non-linear transformations of the input. The

main draw of this approach is that the attention layers help develop contextualized

representations for each word in a phrase, and everything is parallelizable, unlike

previous iterations of RNNs.

Some popular Transformer-based models include BERT [8], the GPT series [17],

and the T5 model [19]. These are all examples of pre-trained models, where the actual

training occurs in a self-supervised fashion. By pre-training on a data-rich environ-

ment, the goal is to learn general-purpose knowledge that can then be transferred

to downstream tasks. One important, and rather surprising, insight was that LLMs

trained on Transformers didn’t need to be finetuned on large amounts of task-specific

data in order to complete a task. Instead, if they were big enough, they could learn

through few-shot prompting [4]. This opened up the possibilities for exploring the
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scope of LLMs beyond linguistic tasks, to more general intelligence. Here, we explore

the role of language in communicating perceptual features.

2.2 Scalar Probing

Previous works have studied mappings from LMs to sizes, colors, and physical di-

rections. Through these studies, there seems to be evidence that text-only models

encode interesting relational information about the concepts they model.

[27] introduces scalar probing as a prerequisite task for common sense reasoning.

Scalar probing involves predicting some numeric attribute of an object, such as its

mass or length. A probe is a very simple model, for example a linear regression model,

that maps an LM representation to the scalar target value. This turns the supervised

task of predicting the probed value into a technique for interpreting the richness of

the underlying embedding. According to [12], linear probes achieve a high selectivity

compared to non-linear ones, making them a better choice for our experiments. [27]

found success in probing their model for such scalar information.

Additionally, this paper designed NumBERT, a model which processes numbers

in scientific notation. This improved how the model processed magnitudes, which

turned out to be important in the scalar probing task.

2.3 Perceptual Alignment

A closely related problem is that of aligning text-only representations with their

grounded counterparts. [1] found a correspondence between the BERT embeddings

of color terms and CIELAB, a color space where distance relates to color similarity.

Further, [14] showed that when prompted with certain perceptual information (e.g.

northeast and its direction on a compass), GPT-3 could predict the corresponding

perceptual property of a related word.

These experiments provide evidence that LMs represent relations between textual

concepts in a structure similar to what a grounded model learns.
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Chapter 3

Methodology

At a high level, this project will consist of two steps: training a probe model and

evaluating it. We will use a LM to generate representations of common nouns and

train a probe to predict some physical attribute of the noun, such as the mass. We

can validate these probes to see how well their scale attribute prediction actually

generalizes. This will include data collection and preprocessing, model generation

and training, and evaluation on handcrafted tasks.

Extending previous works that probed nouns for their attributes [27], we explore

how adjectival modifier embeddings affect these predicted quantities. For example,

we test if a language model understands that ‘small cat’ or ‘baby cat’ will have a

smaller mass than ‘cat’. These adjectives serve as contextual modifiers that we as

humans understand as adjustments to our prior of the object’s features, but it would

be very interesting to see how the language model treats them.

3.1 Language Models

The first step involves training a probe model on top of language model representa-

tions. We test different language models to assess how their size and training task

affects the representations learned. The overall collection of language models and

their properties are listed in Table 3.1.
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Model Transformer Arch. Training # Params
BERT-Base Encoder Text 110M
BERT-Large Encoder Text 340M

CLIP Encoder Text and Images 63M
GPT-2 Medium Decoder Text 345M
GPT-2 Large Decoder Test 774M

Table 3.1: Language models used to generate representations.

3.1.1 BERT

The BERT (Bidirectional Encoder Representations from Transformers) model [8] is

a state-of-the-art language model. The model is trained using a masked language

modeling approach, whereby the model is presented with a sequence of words or

sentences with some of the words randomly masked out, and it is required to predict

the masked words based on the surrounding context. The model is also trained using a

next sentence prediction task, whereby the model is presented with pairs of sentences

and it is required to predict whether the second sentence follows logically from the

first. For the first task, the input needs context from before and after the masked

word, hence the bidirectional nature of BERT. Because this is a simple classification

task, BERT only uses a Transformer encoder. For the second task, an additional

[CLS] token is inserted at the front of a sentence as an attempt to represent the

sentence embedding. This token is often used for other downstream tasks involving

sentence classification. However, recent works have indicated that different word-level

concatenations do a better job of document classification [23].

BERT comes in various sizes, with the number of parameters ranging from 110

million to over 340 million. The smaller models are faster and more efficient but may

not perform as well as the larger models on complex NLP tasks. The largest model,

known as BERT Large, has 345 million parameters and requires a significant amount

of computational resources and memory to train and use. However, it has achieved

state-of-the-art performance on many NLP benchmarks.

We will use the uncased BERT implementations, meaning they are trained on

lower-case English text. The two main models are bert-base and bert-large.
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bert-base has a hidden size of 768, 12 attention heads, and 12 layers. bert-large

has a hidden size of 1024, 16 attention heads, and 24 layers. Because everything

about these models, except their size, is the same, we expect bert-large to perform

better because its representations are more expressive.

3.1.2 CLIP

The CLIP (Contrastive Language-Image Pre-Training) model [16] is a state-of-the-

art AI model developed by OpenAI. It is a zero-shot model that can efficiently learn

visual concepts from natural language supervision. The model is trained on a massive

dataset of 400 million pairs of images and text.

CLIP has two sub-models, called encoders, including a text encoder and an image

encoder. The text encoder is responsible for embedding text into a high-dimensional

vector space, while the image encoder is responsible for converting an image into a

latent vector representation.

One of the key strengths of CLIP comes from its use of a contrastive objective

function, which enables it to learn representations that are highly discriminative.

This objective function requires that the model learns to distinguish between pairs of

(image, text) samples that are related versus those that are unrelated. It does this

by aligning the embeddings of text that is a caption of an image and decreasing the

cosine similarity between those that aren’t matched.

CLIP’s ability to connect text and images allows it to perform a wide range of

tasks, including image classification, semantic segmentation, and object detection.

Unlike other image classification models that are trained solely on images, CLIP is

trained on both images and text, making it highly versatile and capable of under-

standing the context and relationships between different objects in an image.

We only use the text encoder of CLIP. This has a hidden size of 512, 8 attention

heads, and 12 layers.
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3.1.3 GPT-2

GPT-2 [18] is yet another pre-trained language model, but it is different from BERT

in several key ways, including architecture, training methods, and intended use cases.

GPT-2 is based on a Transformer decoder architecture, instead of BERT’s encoder

base. For this reason, its attention is only unidirectional. GPT-2 is also trained only

using the next-word prediction task. The difference means that GPT-2 is specifically

suited for generating text, while BERT is more suited for understanding text.

One of the key strengths of GPT-2 is its ability to generate highly coherent and

human-like text, based on the context and prompt provided. The model is trained

to predict the most likely next word in a given context, but it can also generate

entire paragraphs of text based on a starting prompt or topic. However, this might

also mean that it is less suited for probing tasks, because it only learns to generate

fluent language, not necessarily understand it. GPT-2 is less domain-specific than

BERT, meaning that BERT is more suited for tasks like sentiment analysis and text

classification.

GPT-2 comes in various sizes, ranging from 124 million to over 1.5 billion param-

eters, with larger models having greater capacity and better performance on complex

NLP tasks. The largest model, known as GPT-2 XL, has 1.5 billion parameters and

can generate highly coherent and human-like text that is difficult to distinguish from

text written by humans. Therefore, the GPT-2 model sizes are quite a bit larger than

those of the BERT models.

We will use gpt2-medium and gpt2-large. gpt2-medium has a hidden size of

1024, 16 attention heads, and 24 layers. gpt2-large has a hidden size of 1280, 20

attention heads, and 36 layers. The medium model has roughly the same architecture

size as bert-large, so it would be interesting to see how the encoder and decoder

compare against each other for the task of scalar probing.
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Figure 3-1: [27, Figure 1]: The probing architecture. The weights for the pre-
trained language model are frozen and used to generate word embeddings. This
passes through the probe and generates an output distribution.

3.2 Probe Model

With the embeddings from the LMs above, we then train a linear probe model. The

representations are given by the first embedding layer in the Transformer.

3.2.1 Tasks

The target is a distribution over the size of an object. To this end, we specify two

tasks: multi-class classification (mcc) and linear regression (rgr). These are taken

from [27].

mcc splits the output distribution into 111 logarithmically-spaced buckets, from

10−2 to 109. [25] shows that a similar approach works well for modeling image pixel

values. Because the different buckets are treated as separate classes, the relation-

ship between adjacent buckets is ignored, but it allows us to label the full empirical

distribution in a non-parametric manner.

rgr is trained to predict the log of the median value of the distribution. This
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point estimate might be easier to compute, but it might not be enough to understand

the full scale properties of an object.

3.2.2 Training

We use the training procedure from [27]. Specifically, for mcc, we use a linear classifier

with a softmax activation function and regularization strength of 0.01. For rgr, we use

ridge regression with a regularization strength of 1. The evaluation will be described

in chapter 5.

3.3 Adding Context

Once the probe model is trained and evaluated, we will apply it to the novel task of

contextual scalar probing. In this task, the object will be modified by some scalar ad-

jective, like ‘short’ or ‘large’. We then run the object’s embedding through the probe

(in evaluation mode) to get the predicted scalar attribute. This will be compared

against the base size predicted by the probe. If the attention mechanism is success-

fully able to incorporate information from the modifier into the object’s contextual

embedding, then we would expect to see a change in the right direction.
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Chapter 4

Datasets

4.1 Distributions over Quantities

To obtain our ground truth information, we will use the Distributions over Quantities

(DoQ) dataset [9]. DoQ provides the empirical data on several scalar attributes of

objects. It contains data on over 300K nouns across 10 scalar attributes, including

mass, speed, length, and price. Since the true size of an object is inherently uncertain,

DoQ offers a distribution over the quantity for each noun. This is represented by a

set of counts, which can then be bucketed into a histogram or modeled as some

distribution. Figure 4-1 shows some examples of generated mass distributions.

In this work, we will primarily look at the mass and length attributes of objects.

Size is a salient perceptual feature of any object that isn’t accounted for in text-only

models, so it would be interesting if LMs could infer the size simply based on their

understanding of linguistic structures. As a disclaimer, DoQ is scraped from web

data and itself is noisy. However, it is a very large resource, containing over 100

million nouns, and it is a good starting point for collecting information on absolute

quantities.
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(a) Example mass distributions. (b) Example length distributions.

Figure 4-1: Some objects and their corresponding scalar attribute distributions ac-
cording to DoQ. Note that in (b), words can have multiple senses according to context
and this is accounted for by having different values.

4.2 Train Dataset

The training step occurs when we want to build the probe model off the LM repre-

sentations.

4.2.1 Preprocessing

The raw DoQ dataset is very large, containing almost 7GB of data. We first filter by

the relevant dimensions to get a dataset of mass and length. As mentioned above,

these data points are noisy estimated collected heuristically from an unsupervised

scraping scheme. To reduce variance, we only use objects with more than 100 values

collected. To create the distributions, we first take the log10 of all values in the

dataset.

For mcc, we model the distribution as a categorical distribution over 111 values,

ranging from −2 to 9. We chose this range because it captures the scale of every

object in the dataset. We chose 111 because there are 12 integer buckets in this range.

Empirically, 12 buckets might be too coarse, as one bucket would represent an entire

order of magnitude (e.g. 100-1000 kg). Therefore, many objects’ distributions would

end up looking very spiky. Splitting this 10 times, from −2.0 to 9.0 in 0.1 increments,

helps mitigate that effect by distribution the object’s scalar attributes more finely.
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We then take the normalized counts in each bucket as the true distribution for the

scalar value of that object.

For rgr, we calculate the median of the empirical log-values. We choose the

median because it’s a more robust measure of the center of the distribution than the

mean. Additionally, some distributions are multimodal, due to word sense ambiguity.

We do not explore the effect of different modalities in this work, but using the median

helps pick a value that is more represented in the data.

After preprocessing, the mass subset contains 74,102 objects and the length

subset contains 240,068 objects. During training, we employ 10-fold cross validation

and average the results. We then evaluate on our novel task of contextual scale

prediction, using the full dataset.
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Chapter 5

Experiments

5.1 Probe Training

In this section, we detail the experiments done to train the probe model. This includes

how we determined the inputs, outputs, and evaluation metrics.

5.1.1 Input Representations

As our transformer LMs are contextual text encoders operating on full sentences, we

generate artificial sentences with the following templates. Here, X is a stand-in for

some noun.

• mass: How heavy is the X?

• length: How big is the X?

Other works have used the [CLS] token embedding for BERT or the final to-

ken/[EOS] embedding for GPT-2. However, we want to examine the contextual

capabilities of the Transformer’s attention mechanism, so we average the embeddings

of each token in the object’s name. As mentioned in [27], length measurements in

DoQ can refer to length, width, or height, so we use the all-encompassing adjective

‘big’ here for our representation template. We could’ve also gone more literal; e.g.

“What is the mass of X?" or “What is the length of X?". These variations don’t seem
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to affect the performance of the probe, so we focus on the templates listed above.

Additionally, we experimented with the more neutral prompt “This is the X." Again,

the results were somewhat similar to those of our original prompts.

5.1.2 Evaluation Metrics

As mentioned in section 3.2, we have two training tasks: mcc and rgr. We calcu-

late three performance metrics depending on which probe we trained. For mcc, we

calculate accuracy and EMD. For rgr, we calculate MSE.

Accuracy This measures the similarity of the predicted values to the ground-truth

mode. For mcc, this means calculating the highest scoring class from the predicted

distribution and comparing it to the highest scoring class from the empirical dis-

tribution. We choose the mode instead of the median because many distributions

predicted by the probe model have a spike. In the ground truth distributions, the

median and mode are often in the same, or very close, buckets, because most objects

have somewhat symmetric scalar distributions and are unimodal.

As mentioned before, the buckets are quite fine-grained, so exactly matching to

a bucket would yield a very low accuracy. Instead of matching to the exact ground

truth bucket defined above, we match to any of the 5 nearest buckets (2 to the right

and 2 to the left).

Mean Squared Error (MSE) Let 𝑝 and 𝑝 be the ground truth and predicted

scalar values, respectively. Then the squared error here is (𝑝 − 𝑝)2, and the MSE

across the validation dataset is the average of these errors across all objects. To get

the ground truth estimate, we use the median of the distribution.

Earth Mover’s Distance (EMD) This is also known as the Wasserstein distance

[21]. Let 𝑝 and 𝑝 be the ground truth and predicted distributions, respectively. Then

the EMD is defined as

𝐷(𝑝, 𝑝) = inf
𝜋
E(𝑥,𝑦)∼𝜋[𝑑(𝑥, 𝑦)],

where 𝜋 is any joint distribution whose marginals are 𝑝 and 𝑝 and 𝑑 is a distance

metric over the probability space. For example, since we’re working with positive real

32



numbers as the scalar magnitudes, we can use absolute difference: 𝑑(𝑥, 𝑦) = |𝑥− 𝑦|.

For this special case of distance function, the EMD is also equal to

𝐷(𝑝, 𝑝) =

∫︁ ∞

−∞
|𝑃 (𝑥)− 𝑃 (𝑥)| d𝑥,

where 𝑃 and 𝑃 are the cumulative density functions of 𝑝 and 𝑝, respectively [20].

EMD is a special case of optimal transport. Intuitively, it accounts for how far

density would need to move from one distribution to the other to equalize the dis-

tributions. For example, two distributions with far apart modes would have a larger

EMD than two with modes next to each other. This is potentially useful to calculate

the error in the mcc probes, since we want to penalize wildly incorrect predictions

more than small shifts.

5.1.3 Baseline

For this problem, we do not have a previous baseline to compare to. Therefore, we

construct a version of the majority baseline, or ZeroR, used in classification tasks.

We aggregate the buckets of every object in our dataset, and return the empirical

distribution over the dataset. This aggregate baseline is evaluated for every object

in the dataset and the metrics are calculated. We then compare our fully trained

models to this baseline to get a sense of how much better than average they are.

5.1.4 Results

The results for the scalar probe training experiments are shown in Table 5.1.

5.2 Contextual Evaluation

In this section, we detail the experiments conducted to evaluate the contextual prob-

ing abilities of our models.
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Accuracy MSE EMD
(mcc) (rgr) (mcc)

L
en

gt
h
s

Aggregate 0.25 0.070 0.079
CLIP 0.35 0.091 0.050

BERT-Base 0.34 0.101 0.053
BERT-L 0.38 0.086 0.052
GPT2-M 0.36 0.090 0.056
GPT2-L 0.41 0.083 0.046

M
as

se
s

Aggregate 0.12 0.075 0.090
CLIP 0.32 0.085 0.061

BERT-Base 0.28 0.087 0.071
BERT-L 0.34 0.085 0.057
GPT2-M 0.31 0.086 0.057
GPT2-L 0.38 0.084 0.052

Table 5.1: Results for the scalar probe experiments. The largest model consistently
outperforms the others.

5.2.1 Input Representations

To evaluate our probes, we again need to generate input representations. The inputs

to our language models are artificial sentences according to the following templates:

• mass: How heavy is the large/small X?

• length: How big is the long/short X?

We do not change the overall structure of the sentence, so as to minimize con-

founding. However, we do add a relevant adjective in front of the noun X. Again, we

only pass the average embedding of the tokens X as the input to the language model.

The goal is to test if the information from the adjectives gets transferred to the noun

through the LMs’ attention mechanism.

5.2.2 Evaluation Metrics

In all of our evaluations, we compare the output given by [adj] X with that of

X. Therefore, we’re only comparing the model’s predictions, not the ground truth

distribution.
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% change To evaluate the effect of our adjectival modifiers, we calculate the per-

centage change in the predicted sizes. If we let 𝑥* be the modified prediction and 𝑥

be the original prediction, the formula is given as follows:

∆(𝑥*, 𝑥) = 100 · 𝑥
* − 𝑥

𝑥
≈ 100(ln𝑥* − ln𝑥) = 100 ln 10 · (log10 𝑥* − log10 𝑥),

where we use the approximation because we predicted log scale in our probes. For

rgr, we compare the predicted values. For mcc, we compare the medians of the

predicted distributions. The median is calculated by finding the median bucket and

interpolating to estimate the 50th percentile.

One-Way EMD Similar to our evaluation of the probe model, we use EMD to

compare the original distribution to the modified distribution. This is only for the

mcc probe. Since we want to measure the direction of change as well as the magnitude

of change, we slightly modify the metric:

𝐷(𝑝*, 𝑝) =

∫︁ ∞

−∞
𝑃 (𝑥)− 𝑃 *(𝑥) d𝑥,

where 𝑝*, 𝑝 are the modified and original distributions, respectively, and 𝑃 *, 𝑃 are

their respective cumulative distributions. By removing the absolute value, we measure

the extent to which 𝑝* is to the right of 𝑝.

5.2.3 Results

The percent change results are shown in Table 5.2. As we do not have a baseline for

this task, we report standard errors for all the tasks to show a significant deviation

from 0. These are calculated by aggregating the percent change results across all

objects in the dataset.

The results using the EMD metric are shown in Table A.1.
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% change
large small long short

m
cc

CLIP +52.4± 12.7 −23.5± 5.9 +57.4± 13.1 −25.8± 7.6
BERT-Base +51.4± 10.8 −22.0± 6.3 +56.4± 10.1 −24.4± 6.9

BERT-L +53.2± 9.6 −25.8± 6.8 +55.8± 10.8 −24.6± 7.0
GPT2-M +50.6± 11.4 −23.7± 5.8 +56.0± 11.3 −23.7± 6.5
GPT2-L +54.8± 10.9 −24.6± 6.6 +57.0± 12.1 −23.8± 7.4

rg
r

CLIP +30.6± 8.3 −19.7± 5.4 +40.0± 11.6 −17.3± 4.9
BERT-Base +26.2± 9.2 −13.0± 5.5 +36.8± 10.3 −14.4± 4.6

BERT-L +25.8± 8.7 −13.5± 4.8 +37.2± 9.9 −14.3± 5.0
GPT2-M +25.4± 9.3 −13.4± 6.2 +37.2± 12.2 −13.9± 5.9
GPT2-L +26.8± 8.9 −13.8± 6.0 +37.9± 11.1 −14.5± 5.4

Table 5.2: Metrics for the contextual probing experiments. Results are averaged over
all objects in the dataset.
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Chapter 6

Discussion

In this section, we analyze the results of the experiments in chapter 5.

6.1 Probe Models

First, we offer an interpretation of the values in Table 5.1. Better results are indicated

by smaller MSE and EMD, with the minimum at 0. MSE is upper bounded by 1, while

EMD could theoretically go as high as the range of the scalar attribute. Accuracy is

better at higher values, and could theoretically go up to 1.

The data show an interesting relationship between the size of the models, their

training details, and their performance. Within the BERT and GPT-2 subclasses,

the larger model consistently outperforms the smaller one. This implies that model

expressivity is important in generating representations that can be used for scale

understanding. One interesting observation is that GPT2-M performs slightly worse

that BERT-L. The difference is small, meaning it could be due to noise. However, it

is consistent across evaluation metrics. Since these models have the same number of

parameters, this could imply that the training style of GPT-2 makes it less suitable

for scale understanding tasks than BERT. One reason for this could be that BERT

is trained for many linguistic understanding and inference tasks, while GPT-2 is

primarily a text generation model. Nevertheless, GPT2-L outperforms all, indicating

that model size is still the biggest gauge for representation richness.
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When put into context with its size, CLIP’s performace is surprising. It is the

smallest text encoder model represented, but it performs on par with GPT2-M, and

in between BERT-Base and BERT-L. This indicates that its image aware training

has introduced some scale understanding into its text embeddings, without needing

the raw expressive power of the more state-of-the-art models.

Finally, we see that probes trained on the mcc objective consistently outperform

probes trained on the rgr objective. In fact, the rgr probes do not always seem able

to beat our aggregate baseline. This may mean that having information about the

full distribution is more useful than solely regressing to the median. Even with these

less promising results, we still evaluate the rgr probes on our contextual task.

6.2 Contextual Results

Table 5.2 displays various notable results. In general, the probes are able to produce

significant differences for scalar attributes in the right direction. large and long

percent increases, and small and short show percent decreases. The magnitude of

the decrease for the diminutive adjectives is smaller than the magnitude of increase

for the augmentative adjectives. One possible reason for this is that the decrease is

bounded by 100%, and often much smaller due to the minimum size of objects. On

the other hand, large objects don’t usually have a tight upper bound on their size.

Rather, they can be made larger until their existence becomes infeasible. The results

for mass adjectives are similar to those of length adjectives, implying that either

the underlying models do not grasp the difference between dimensions or they are

similar enough scalar attributes that their descriptors are also similar.

For the mcc probe, the results for the augmentative adjectives lie around the 50-

57% mark and the results for the diminutive adjectives lie around the 22-26% mark.

This occurs for all language models, and it doesn’t seem like there’s any special choice

of LM that consistently works better here. One reason for this might be due to our

choice of buckets. Our logarithmic scale, which is 1012 wide, is split into 120 buckets,

meaning each bucket is a factor of 100.1 ≈ 1.259 apart. Similarly, a distance of two
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buckets corresponds to a factor of 100.2 ≈ 1.585. Since we take the median bucket

and interpolate for mcc, a large part of the difference is given by the difference in

buckets. Therefore, it might be the case that large and long shift the distribution

on average by 2 buckets, while small and short only shift it by 1. For the diminutive

case, we also check that 10−0.1 ≈ 0.794, which corresponds to a 20.6% decrease.

For the rgr probe, the results are much different. The magnitude of change is

smaller than that of the mcc probe, but the relative change between the adjectives is

around the same. Additionally, we see a clear winner in our choice of LM. Although

the standard errors are high, CLIP on average outperforms the other models for

all adjective tasks. This provides evidence that its image aware training lends it a

significant advantage when comparing relative sizes. One could hypothesize that this

occurs because the images trained alongside large X show bigger objects than the

ones for X, and CLIP can capture that insight. As for the rest of the LMs, it doesn’t

look like model capacity influences their performance in the contextual scalar probing

task. All four text-only models perform on par with each other, implying that their

relative scale understanding is unaffected by their size.

Still, it’s very impressive that they can transfer the signals in the adjectives to

the object embeddings in a meaningful way. One reason for this might be that they

were trained on text data with numerical information about the size of objects, with

and without extra context. Since there’s evidence that language models can infer

relative physical knowledge about objects [10], it makes sense that they can leverage

this alongside grounded absolute knowledge to generalize to new descriptions.

As an example, Figure 6-1 shows the distinction when “large dog" is fed in vs. just

“dog". It’s quite hard to see in the image, but the median line is actually two buckets

to the right in the large case. This reflects a roughly 100.2 − 1 ≈ 58% increase in

predicted mass. With median interpolation, the actual percent increase is around

48%. However, this is still significantly greater than 0, showing that some scalar

signal is being passed from the adjective to the noun.
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Figure 6-1: An example of the mcc mass probe being run on the word ‘dog’, with
and without the context large. The orange line represents the median bucket.
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Chapter 7

Conclusion

We have extended upon the work of [27] to examine the perceptual understanding

capabilities of LLMs given contextualized sentences. We trained scalar probe models

to predict objects’ masses and lengths from their symbolic representations in language

models. These probe results show some scalar understanding, with larger, more ex-

pressive, models better able to capture perceptual signals. Once we’ve aligned the

LM embeddings using a linear model, we saw whether adding a relevant adjectival

modifier significantly changes the embedding in the right direction. These novel con-

textual experiments showed that while LMs can transfer relative scalar information,

our current process of adding model complexity doesn’t improve it any further.

As language models gain the ability to generate fluent text, respond to questions

with relevant answers, and learn patterns through few-shot learning, we continue

to search for more indicators of artificial general intelligence. One example of the

is commonsense reasoning (CSR). CSR is the ability of a machine or an agent to

understand and reason about everyday situations that are commonly understood by

humans but are not explicitly stated in text or speech. CSR involves understanding

concepts, relationships, and expectations that are shared among humans and are often

not explicitly mentioned in language.

CSR is important because language is inherently ambiguous and context depen-

dent. Humans rely heavily on their commonsense knowledge to understand the in-

tended meaning of a sentence, even when it is not explicitly stated. However, ma-
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chines lack this kind of knowledge, and therefore, they often struggle to comprehend

the meaning of text and to generate relevant text that’s not exactly related to its

input.

In this work, we focused on a subtask in CSR, namely numerical reasoning. In

an agent is to be deployed in the real world, it not only needs to understand relative

scale information, such as "The lion is bigger than the house cat" or "The car is faster

than the bicycle," but also absolute information about these measures. Nowadays,

LLMs are being connected to the Internet and continually updated with the latest in-

formation, so they can retrieve absolute sizes. However, they still need the underlying

common sense to be able to process the numerical data and apply it in context.

7.1 Future Work

Our work is limited in the scope of perceptual measures we use and the extent we test

them. We only look at masses and lengths, while there are other perceptual features,

like color, which could be interesting to examine. Future work could train more

probe models, or define a generalizable probe model that also takes in the dimension

of interest as input.

Additionally, we only use two simple adjectives in our experiments. This provides

a proof of concept for how linguistic embeddings are affected. However, we could

also vary the strength of these adjectives, for example by adding "humongous" or

"tiny". There are also a lot more subtle adjectives that could be used to change our

understanding of an object’s size. For example, for an animal, we know "baby X"

is much smaller than "X". Objects can be described in different classes, such as dog

breeds. "German shepherd" is larger than "chihuahua". Future works could more

broadly study the effect of different classes.
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Appendix A

Tables

One-way EMD
large small long short

CLIP +.19± .06 −.12± .05 +.23± .08 −.09± .04
BERT-Base +.21± .05 −.10± .04 +.22± .07 −.10± .05

BERT-L +.19± .07 −.11± .05 +.22± .06 −.11± .05
GPT2-M +.18± .06 −.11± .04 +.19± .06 −.10± .04
GPT2-L +.20± .06 −.12± .03 +.21± .07 −.12± .04

Table A.1: Average EMD for the mcc probe across all objects in the dataset.
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