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Abstract 
 
Old ideas serve as critical inputs in the production of new ideas. In order to generate knowledge, 
innovators “stand on the shoulders of giants,” the great thinkers who came before, whose ideas 
serve as the foundation to build on. In this dissertation, I rely on rich empirical data in biomedical 
settings to identify factors that drive or hinder this cumulative process of knowledge production. 
The first essay focuses on how knowledge workers innovate in new domains without giants, where 
there are only few existing ideas to build on. Using the setting of structural biology, I explore how 
a new technological tool—the automation of analogical reasoning—allowed innovators to import 
knowledge from an adjacent domain, bypassing the need to build knowledge from the ground up. 
In the second essay, I turn to how institutions can shape innovative outcomes, particularly when 
the shoulders of giants rest on a weak foundation. I document that poor communication among 
different institutional parties of the patent system likely led to the prevalence of biomedical 
patents based on erroneous or fraudulent science, reducing incentives for innovation. Finally, in 
the third essay, I highlight the role of private sector polices—specifically, insurance design—in 
steering the direction of firms’ R&D efforts in drug development. 
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Chapter 1 
 

Introduction 

 
 

Old ideas serve as critical inputs in the production of new ideas (Romer 1990). In order to 

generate knowledge, innovators “stand on the shoulders of giants” (Newton 1675), the great 

thinkers of the past, whose ideas serve as the foundation to build on. 

However, climbing the shoulders of giants can be difficult. For instance, the creation of new 

ideas does not mean that downstream researchers can automatically build on them (Mokyr 2002). 

Innovators may be discouraged from producing follow-on research if reward systems only recognize 

the first discoverer (Scotchmer 1991). Some shoulders of giants may even turn out to be “shaky” 

and based on ideas that are later proven to be incorrect (Azoulay et al. 2015). Institutional 

processes therefore play important roles in incentivizing and disseminating knowledge (Furman 

and Stern 2011; Greenblatt 2021). Moreover, the growing stock of knowledge imposes an increasing 

educational burden on new generations of innovators, who must learn the prior knowledge before 

they can reach the frontier (Jones 2009). While new technological tools may mitigate such burden 

(Teodoridis 2018), studies point to increasing training length and specialization (Jones 2010; Blau 

and Weinberg 2017). 

This dissertation aims to shed light on how technologies, institutions, and policies can 

influence innovators’ capacity to rely on the giants that came before. Studying innovation 

processes, however, is empirically challenging. Novel ideas are difficult to define and measure. 

Above all, in order to assess whether an intervention impacted innovation, one must identify the 

counterfactual of alternative ideas that could have been pursued in the absence of the intervention. 

Through a collection of three essays, I overcome these empirical challenges by relying on rich data 
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in biomedical settings to measure and causally identify factors that drive or hinder the cumulative 

process of knowledge production. 

The first essay focuses on how knowledge workers innovate in new domains without giants, 

where there are only few existing ideas to build on. Using the setting of structural biology, I 

explore how a new technological tool—the automation of analogical reasoning—allowed innovators 

to import knowledge from an adjacent domain, bypassing the need to build knowledge from the 

ground up. In the second essay, I turn to how institutions can shape innovative outcomes, 

particularly when the shoulders of giants rest on a weak foundation. I document that poor 

communication among different institutional parties of the patent system likely led to the 

prevalence of biomedical patents based on erroneous or fraudulent science, reducing incentives for 

innovation. Finally, in the third essay, I highlight the role of private sector polices—specifically, 

insurance design—in steering the direction of firms’ R&D efforts in drug development. 

 

Shortcuts to Innovation: The Use of Analogies in Knowledge Production 

How do knowledge workers innovate when there are only few existing ideas to build on? In 

the first essay, I explore how analogical reasoning—and technologies that automate it—can serve 

as “shortcuts” that allow innovators to import knowledge from another domain, instead of building 

knowledge from scratch. 

Although often overlooked, analogical reasoning is ubiquitous in innovation and managerial 

practice. A wide range of scientific breakthroughs have been sparked by analogies, while managers 

and entrepreneurs frequently borrow insights from one industry to another. Importantly, by taking 

analogical reasoning out of an individual mind and outsourcing it to machines, some believe that 

analogical reasoning can be automated at scale (Kittur et al. 2019). Supervised machine learning, 

for instance, can be viewed as an analogy-based technology since it discovers patterns from known 

training templates and apply them in new areas, helping innovators make progress in uncharted 

terrains. 

Yet, one cost of analogies is that they require the availability of other domains as templates. 

For example, supervised machine learning cannot work without training data. Analogies may 

therefore restrict the direction of innovation towards areas with available templates, even if those 

areas are less fruitful. The goals of this essay are to (i) provide a framework of how analogies can 

serve as shortcuts in innovation and (ii) empirically examine the tradeoffs of relying on analogies. 

I leverage the setting of structural biology, a field that studies the 3D structure of proteins. 

As an important scientific field that has contributed to over a dozen Nobel prizes, structural 
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biology also has empirical features ideally suited for this paper. Using a difference-in-differences 

design, I examine the introduction of an analogy-based technology and document a tradeoff: while 

the technology increased the rate of innovation, it also led to workers herding around solving less 

impactful problems. 

 

Information Quality in the Patent System 

The second essay, co-authored with Janet Freilich, examines whether the patent system is 

sensitive to information quality. Although it is challenging to measure inaccurate information in 

patents, we develop a novel approach to identify patents with poor-quality information: patent-

paper pairs where the paper has been retracted and the corresponding patent—which we term an 

“unsupported” patent—contains the retracted material. 

We find that the participants in the patent system largely appear insensitive to information 

quality. Even after the material in the unsupported patents was retracted and publicly revealed 

to be incorrect, applicants invested resources into prosecuting and maintaining these unsupported 

patents, while examiners failed to reject them. Furthermore, the unsupported patents continued 

to be cited by downstream patents. Our results raise important concerns. Poor-quality information 

can damage the disclosure function of the patent system, disseminating incorrect information and 

potentially decreasing incentives for follow-on innovations. 

 
Private Sector Policies and Pharmaceutical R&D 

In the third essay, I explore how private sector policies can shape the R&D strategies of 

pharmaceutical firms. With co-authors Leila Agha and Danielle Li, I investigate the impact of a 

major change in insurance policy on upstream drug development. 

Private insurance plans traditionally offered coverage for most FDA-approved drugs, but 

starting in 2012, they began excluding coverage for many drugs, especially those in large disease 

areas with cheaper alternatives. This policy shifted the R&D incentives of pharmaceutical firms. 

Prior to the exclusion policy, pharmaceutical firms had strong incentives to develop incremental 

drugs in proven, historically profitable markets with high prescription volume and already existing 

therapies. But the new insurance policy excluded these very incremental drugs from coverage, 

suppressing demand and profitability. We show that pharmaceutical firms adjusted their R&D 

strategies in response: R&D investments declined in crowded drug classes that faced greater risks 

of exclusion, highlighting the role that private policies can have on upstream R&D activities. 
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Conclusion and Future Directions 

Taken together, these three essays explore how technologies, institutions, and policies 

facilitate or slow down the cumulative process of knowledge production. In particular, I hope that 

this dissertation serves as the prelude to a future research agenda that examines the different 

types of shortcuts innovators can take and their impact on innovation. 
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Chapter 2 
 

Shortcuts to Innovation: The Use of 
Analogies in Knowledge Production 
 

 
 
 
Abstract 
 
Old ideas serve as critical inputs into new ideas, but how do knowledge workers innovate when 

there are only few existing ideas to build on? In this paper, I explore how analogical reasoning—

and technologies that automate it—can serve as “shortcuts” that allow innovators to import 

knowledge from an adjacent domain, bypassing the need to build knowledge from the ground 

up. Yet, because analogies require the availability of other domains as templates, they may 

also constrain the direction of innovation towards areas with available templates. Using the 

setting of structural biology, I document a tradeoff: while the arrival of an analogy-based 

technology increased the rate of innovation, it led to workers herding around solving less 

impactful problems. 
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1.  Introduction 

Knowledge production is cumulative (Romer 1990; Scotchmer 1991). Innovators use existing 

ideas to produce new ideas—from mechanical engineers relying on the foundation of Newtonian 

physics to applied economists turning to canonical econometric models. But how do knowledge 

workers innovate in new domains where there are only few existing ideas to build on? 

In this paper, I explore how technologies can be used as “shortcuts” that speed up the process 

of acquiring foundational knowledge—and even circumvent it altogether. Much of the prior 

literature on research technologies has focused on vertical shortcuts, those that help innovators 

more quickly understand and apply existing knowledge to climb to the frontier. What is less 

obvious is how to innovate in domains where there is no foundation yet. I argue that horizontal 

shortcuts—specifically, analogies—allow innovators to import knowledge from another domain, 

bypassing the need to build knowledge from the ground up. 

 Consider the early history of aviation, when the physics of aerodynamics were not yet 

discovered. Rather than building up the foundation of aerodynamics, inventors looked to birds as 

analogies and designed devices that imitate the motion of flapping wings. But all of these attempts 

failed—until George Cayley, a 19th-centry British inventor, made a breakthrough. In place of 

flapping wings, Cayley envisioned the first prototype of modern-day airplanes that was later built 

by the Wright Brothers: a device with fixed wings, which glides to sustain lift. 

This history of aviation illustrates both the power and pitfalls of analogies. Not only do 

analogies identify unexpected connections across knowledge domains, they can also circumvent 

the need to build foundational knowledge by borrowing insights from another domain. Yet, 

because analogies require the availability of templates, they may narrow the line of inquiry. Birds 

provided guidance behind the mechanics of flight, but since they were the only known templates 

for flight (and the underlying physics were not yet known), early inventors focused on flapping 

wings and did not consider fixed-wing machines (Spenser 2008; Pollack 2014). 

Analogical reasoning is ubiquitous in both research and managerial practice. A wide range 

of scientific and engineering breakthroughs have been sparked by analogies (Gentner, Holyoak, 

and Kokinov 2001), from Velcros inspired by plant burrs to Ernest Rutherford’s model of the 

atom as a miniature solar system. In strategy, managers often face strategic problems that are 

well-suited for analogical reasoning (Gavetti, Levinthal, and Rivkin 2005; Bingham and Kahl 

2013). Entrepreneurs commonly conceive of new ventures by adopting insights from one industry 
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to another, such as the over hundred startups that claim to be the next “Uber for X” (Madrigal 

2019), from Instacart (Uber for grocery deliveries) to Wag (Uber for dog walkers). 

Although analogical reasoning has played a central role in innovation, automation has made 

it increasingly easier to deploy. In particular, algorithms based on supervised machine learning 

can be seen as the automation of analogical reasoning. Such algorithms mine patterns from known 

training templates and apply those patterns to new areas, mirroring human ability for finding 

patterns that explain the unfamiliar in terms of the familiar. For example, drugmakers refer to 

well-known compounds to identify promising candidates among unexplored compounds, while 

managers rely on their experiences with past employees to screen applicants—and drug discovery 

and hiring algorithms now routinely conduct these types of analogical reasoning on their behalf. 

By taking analogical reasoning out of an individual mind and outsourcing it to machines, some 

believe that analogies can be harnessed at scale with data-reliant technologies (Kittur et al. 2019). 

However, while analogies can help innovators make progress in uncharted terrains, their 

need for templates can also restrict the direction of innovative activities. The automation of 

analogical reasoning makes this tradeoff especially salient: analogy-based technologies like machine 

learning can only be employed in areas with training data. The availability and location of training 

data can thus shape the direction of innovation towards some areas, while neglecting others. 

In addition to providing a framework for how analogies can serve as shortcuts in innovation, 

the goal of this paper is to empirically study the tradeoff of relying on analogies. Although 

analogical reasoning has been a topic of great interest in cognitive psychology (Gentner, Holyoak, 

and Kokinov 2001; Hofstadter and Sander 2013), along with fewer but important studies by 

management scholars (e.g., Gavetti, Levinthal, and Rivkin 2005), much of the prior work on 

analogies has been based on laboratory experiments or case studies. 

The scarcity of empirical studies based on real-world, large-scale data is perhaps 

unsurprising. Analogical reasoning, while pervasive, is a mental shortcut that often goes unnoticed 

(Dunbar 1999). Above all, analogies—and analogy-based technologies—are challenging to study 

empirically. In order to investigate whether the use of an analogy-based technology shifts the 

direction of innovation, it is important to be able to observe what ideas could be pursued in the 

absence of the technology. Finding such a setting is difficult because the counterfactual of ideas 

that could have been pursued—but were not—is often unobservable. There also needs to be a 

credible way to measure distance between ideas, as analogies work by identifying similarities 

between disparate domains. Finally, the analogy-based technology must differentially treat only 
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some areas of the setting, such that outcomes in the areas where the technology was introduced 

can be compared to the areas without the technology. 

I focus on the setting of structural biology, a field with empirical features ideally suited for 

this paper. Structural biology studies the 3D structures of proteins and has contributed to more 

than a dozen Nobel prizes, as proteins play vital roles in virtually every biological process. 

Elucidating a protein structure at atomic resolution—or “solving” the structure—can reveal the 

protein’s function, which helps with applications such as designing vaccines that train human 

antibodies to recognize the spike proteins of SARS-CoV-2. Importantly, structural biology has 

several empirical features that allow me to identify how the introduction of an analogy-based 

technology may have shaped the subsequent rate and direction of innovation. 

First, unlike many settings where only realized ideas are observable, structural biology 

provides a window into the entire idea landscape. Using a database of all known proteins, I observe 

which proteins structural biologists explored versus could have explored but neglected. For 

instance, of the approximately 20,000 human proteins, just one-third of them have had their 

structures experimentally determined as of 2020. In addition, while most settings do not have an 

easy way to quantify the similarity between each potential idea, the distance between ideas can 

be measured in structural biology (Hill and Stein 2020; 2021): proteins are composed of sequence 

of amino acids, so they can be grouped based on their sequence similarity. In other words, it is 

possible to map out the idea landscape of all known proteins and see which areas of the landscape 

have been explored (which I term “bright” clusters of proteins) and which areas remain unexplored 

and thus do not have built-up knowledge (which I term “dark” clusters). 

Second, structural biology is a prime setting for studying analogy-based technologies. 

Solving a protein structure involves deep knowledge of biology, physics, and statistics, but many 

of the steps have now become automated. The specific technology I examine is the software 

program Phaser, released in 2003, which automates a method called molecular replacement (MR). 

Instead of solving a structure from scratch, MR borrows structure information from previously 

solved proteins that are similar to the unknown structure that the scientist is trying to elucidate. 

MR can therefore be viewed as an analogy-based technology since it helps knowledge workers 

make progress in areas of research without existing knowledge (i.e., proteins whose structures are 

unknown) by importing structure templates from neighboring proteins. 

Finally, this analogy-based technology differentially treated some parts of the idea landscape. 

Since MR needs data on previously solved structures, MR only works for bright clusters of proteins 

(i.e., clusters with previously solved structures), and does not work for dark clusters. This allows 
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me to employ a difference-in-differences design where bright and dark clusters serve as my 

treatment and control groups. By matching data from Swiss-Prot (a database of all known proteins) 

to the Protein Data Bank (a database of all protein structures), I examine the quantity and quality 

of structures solved in bright clusters after the arrival of MR, relative to dark clusters. 

My first set of results focuses on the rate of innovation. Since MR reduced the cost of solving 

unknown structures in bright clusters, one would expect more structures to be solved in those 

clusters. Indeed, I find that bright clusters experienced a relative increase in the total number of 

solved structures after MR was introduced. This effect was sustained throughout the entire sample 

period: bright clusters got brighter and brighter. 

I then turn to how MR impacted quality and distinguish between two dimensions of quality: 

execution and importance. In any type of innovative activity, the innovation should be well-

executed, but it should also solve an important problem. In the case of structural biology, 

execution refers to how meticulously a structure was solved (e.g., the resolution or the level of 

detail found in the structure), while importance refers to whether the structure led to a novel 

understanding of a biological process. The goal of structural biology is not to solve structures for 

the sake of solving them; the goal is to learn the functional roles the proteins might play by 

elucidating their structures. I find that while bright clusters received more well-executed structures, 

these structures were less scientifically important. They provided fewer functional annotations 

about the proteins and had lower publication and patent footprint. 

A potential identification concern is that bright clusters may have been evolving on different 

trends than dark clusters before the introduction of MR. I conduct several robustness analyses to 

address this concern. First, I show that there are no pre-trends in the corresponding event studies. 

Second, I control for predicted brightness; the idea is to compare clusters that share ex-ante similar 

traits, but some clusters just happened to be actually bright while other clusters happened to be 

dark. MR only works when the cluster is actually bright regardless of whether the cluster is 

predicted to be bright or dark, and I verify that only actual brightness matters when estimating 

the impact of MR. 

Taken together, my results suggest a tradeoff: while the arrival of MR increased the rate of 

innovation, it also led to knowledge workers solving less impactful problems. These results from 

structural biology illustrate an inherent limitation of analogies: analogies may serve as shortcuts 

for making progress in new domains (i.e., proteins whose structures are unknown), but they are 

also constrained by the need for templates and thus may be employed in domains with neighbors—



18 
 

that is, potentially crowded areas (i.e., bright, already well-explored clusters) that may not be the 

most impactful. 

This paper contributes to several literatures. I first build on a body of evidence that 

examines how technologies can both advance and constrain knowledge production. Much of this 

prior work studies technologies that can be classified as those that help innovators digest and 

apply existing knowledge (Teodoridis 2018; Furman and Teodoridis 2020; Anthony 2021; Miric, 

Ozalp, and Yilmaz 2021; Mannucci 2017). In contrast, by introducing the idea of analogies, this 

paper aims to shed light on technological shortcuts that help knowledge workers innovate in 

domains where little is known. In other words, I distinguish between technologies that reduce the 

“burden of knowledge” (Jones 2009)—the problem of innovators facing an increasing educational 

burden as knowledge accumulates—and technologies that alleviate a different problem of 

innovators lacking existing ideas that can serve as inputs in the production of new ideas. 

By focusing on analogy-based technologies, I also contribute to the emerging literature on 

AI and data-driven exploration. While the literature on AI has extensively documented how 

algorithmic bias can arise from poor-quality training data (Cowgill and Tucker 2020; Cowgill et 

al. 2020; Choudhury, Starr, and Agarwal 2020), this paper joins a smaller literature that focuses 

on how the very availability of training data can dictate where innovations take place (Cockburn, 

Henderson, and Stern 2018; Hoelzemann et al. 2022). 

Lastly, I leverage the setting of structural biology, which was first brought to the attention 

of social scientists by Hill and Stein (2020; 2021). The authors assess the costs of the priority 

reward system in science, which tends to only recognize the first discoverer.1 While I do not study 

priority races and instead examine the impact of an analogy-based technology by exploiting a 

novel identification strategy, I similarly highlight the strengths of the setting. As a field with both 

rich scientific achievements and empirical features, structural biology is an attractive setting for 

investigating broader questions of how to manage innovation. 

The rest of the paper proceeds as follows. Section 2 provides a taxonomy of shortcuts and 

an overview of the key features and tradeoffs of analogies. Section 3 introduces the institutional 

context and empirical features of structural biology. Section 4 lists the main data sources. Section 

5 describes the difference-and-differences design that underpins this study’s empirical strategy. 

                                                           
1 Specifically, Hill and Stein (2020; 2021) document the effects of being “scooped” on subsequent career 
outcomes, as well as how competition leads to rushing and lower-quality science. Additionally, a recent 
paper by Zhuo (2022) estimates a model of lab decision-making on resource allocation in structural biology. 
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Section 6 presents my main results, along with robustness analyses. Section 7 discusses the 

implications of my results and conclusions. 

 

2.  Shortcuts to Innovation 

The cumulative nature of knowledge production typically characterizes the innovation 

process as a sequence of old ideas generating new ideas (Romer 1990; Scotchmer 1991). This 

section discusses how there can be shortcuts (particularly shortcuts enabled by technologies) that 

can speed up—or even bypass—this sequence of knowledge accretion. 

2.1 Prior Literature on Research Technologies: Vertical Shortcuts 

As knowledge accumulates, every new generation of innovators faces a greater educational 

burden. This “burden of knowledge” has several implications, including increased training length 

and specialization as innovators struggle to learn the growing body of knowledge (Jones 2009). 

The prior literature on research technologies has primarily focused on technologies that I consider 

as “vertical” shortcuts, which mitigate this burden. These are technologies that allow innovators 

to more quickly acquire existing foundational knowledge, such that they can use the knowledge 

as stepping stones to climb to the frontier of knowledge and produce new ideas. 

As shown in Figure 1, vertical shortcuts can be thought of as aiding in either understanding 

or applying foundational knowledge. Summaries—from textbooks 2  to Wikipedia—help with 

understanding existing knowledge by providing a short synopsis of a given domain, saving 

knowledge workers from having to read every research article or replicate every experiment. 

Calculators help with applying foundational knowledge by executing a pre-programmed menu of 

instructions based on such knowledge. Consider programs like Stata, which is embedded with 

canonical econometric models. Stata allows even a college first-year with little training in 

econometrics to run regressions by simply entering “reg y x.” 

A large body of prior work on research technologies can be conceptualized as vertical 

shortcuts, particularly calculators of varying sophistication. Calculators are closely related to the 

idea of modularity, where “information hiding” (Parnas 1972) within modules glued together by 

standardized interfaces can facilitate a division of innovative labor (Baldwin and Clark 1997; 

Sanchez and Mahoney 1996; Simcoe 2015). Examples studied in prior work range from financial 

                                                           
2 A recent work by Greenblatt (2021) on medical guidelines illustrates how summaries can spur innovation.  
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spreadsheet technology (Anthony 2021) to animation toolkit (Mannucci 2017) to videogame 

“middleware” (Miric, Ozalp, and Yilmaz 2021). Although this prior literature does not, for the 

most part, explicitly discuss the burden of knowledge, notable exceptions are Teodoridis (2018), 

Furman and Teodoridis (2020), and Nagle and Teodoridis (2020). The authors examine the arrival 

of an automating motion-sensing technology and suggest the role technologies can have in reducing 

the burden of knowledge. 

2.2 Analogies: Horizontal Shortcuts 

While vertical shortcuts can assist knowledge workers in innovating in domains with deep 

foundation, what about in new domains without such foundation? This paper complements the 

burden of knowledge literature by focusing on a different problem: how to innovate when there 

are few existing ideas that can serve as inputs into new ideas. 

In new domains, knowledge workers face the challenge of having to build foundational 

knowledge from scratch—and analogical reasoning can be used to circumvent this challenge. In 

this section, I describe the key features and tradeoffs of analogies. 

2.2.1 Key Features of Analogies  

Analogical reasoning has been extensively studied by cognitive psychologists as a crucial 

component of human cognition. Analogy has been broadly described as “the ability to identify 

similarities in relations that hold within domains” (Gentner 1982; Gentner, Holyoak, and Kokinov 

2001; Holyoak and Thagard 1996), even if the individual objects are distinct (e.g., how sound 

propagates through the air is analogous to how water waves travel in a pond, even though sound 

and water are not alike). 

While the concept of analogy has been employed in diverse disciplines, ranging from 

linguistics to philosophy, I focus on a simple definition of analogy adapted from cognitive science: 

the importing of patterns from one knowledge domain to another. This definition leads to three 

key features of analogies, with respect to their role in knowledge production. 

(i) Analogies can serve as shortcuts. Analogical reasoning can be viewed as a shortcut 

because it can serve as an alternative to other ways in which innovators build knowledge in new 

domains, such as trial-and-error (Thomke 1998) or by generating a theory (Fleming and Sorenson 

2004). As an example, suppose a drugmaker is trying to create a drug for a new disease. One 

approach would be to screen through millions of compounds to detect pharmacological activity 

through trial-and-error. Another approach would be to start by building a theory of how the 
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disease operates at the molecular level and then design drugs that target the molecular action 

(Henderson 1994). However, trial-and-error can require extensive resources and does not guarantee 

a solution, while uncovering underlying causal principles is challenging and not always possible. 

Instead of building knowledge from the ground up through trial-and-error or theory 

development, I focus on how innovators can take a “horizontal” shortcut by importing intuition 

and insights from a neighboring field. With the case of drug development, in lieu of brute-force 

screening or rational drug design, drugmakers can rely on pattern recognition by identifying drug 

candidates for a new disease based on already approved drugs for similar diseases. 

This strength of analogical reasoning in helping innovators quickly make progress in new 

domains has been highlighted in prior work. Psychology studies have shown that scientists 

frequently substitute slow, iterative experimentation with analogical reasoning to speed up 

problem solving (Dunbar 2000). In the context of business strategy, using a simulation and a rich 

set of case studies, Gavetti, Levinthal, and Rivkin (2005) demonstrate that managers often face 

strategic problems that are best suited for analogical reasoning: problems that are neither too 

modular (where rational, deductive reasoning can instead be employed) nor too complex (where 

only trial-and-error can work).3 

(ii) Analogies are not simple recombinations. Analogical reasoning’s reliance on 

pattern recognition distinguishes analogies from the traditional concept of recombinant innovation 

(Schumpeter 1934; Weitzman 1998; Uzzi et al. 2013). The key insight in the recombinant literature 

is that new ideas can be generated from existing, well-understood ideas if they are combined in a 

novel way.4 In contrast, rather than mixing well-understood ideas, analogical reasoning involves 

the borrowing of less-understood patterns from another domain. In the bird-airplane analogy, for 

example, inventors of flight did not understand the physics of aerodynamics and therefore did not 

know exactly how birds can fly. But these early inventors speculated that the motion of wings is 

important and applied this pattern to human-powered flight. In other words, analogical reasoning 

is the importing of relational patterns—correlations—not causal logic. 

(iii) As shown in Figure 1, analogical reasoning has evolved from solely being 

conceptual in the mind of an individual to being automated and outsourced to 

                                                           
3 In economics, Gilboa, Samuelson, and Schmeidler (2015) develop a formal model of reasoning, in which 
economic agents use analogical reasoning when the underlying data generating process is unknown and use 
rule-based reasoning when the data structure is known. 
4  For instance, Brynjolfsson and McAfee (2014) cite Waze, the navigation app that uses real-time, 
crowdsourced traffic data, as a classic example of recombination. The individual components of Waze 
(location sensors, social networks, and smartphones) were all widely known and used, but no one had 
thought to combine them together to optimize driving routes before Waze. 
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machines. Conceptual analogies have been fundamental throughout the history of innovation by 

helping individuals understand a new domain through identifying patterns across domains.5 The 

modern field of biomimetics is a prime instance of conceptual analogies as shortcuts; engineers 

often take inspiration from properties found in the natural world and reverse-engineer them, 

instead of beginning with first principles or replicating the millennia of trial-and-error experiments 

that nature conducted through natural selection (Pollack 2014). In managerial practice, conceptual 

analogical reasoning has also served as critical, if underappreciated, sources of strategic visions 

and entrepreneurial ventures (Hill and Levenhagen 1995; Gavetti and Rivkin 2005; Gavetti, 

Levinthal, and Rivkin 2005; Kaplan and Orlikowski 2013; Martins, Rindova, and Greenbaum 2015; 

Glaser, Fiss, and Kennedy 2016).6 

With the rise of data-reliant, pattern-recognition algorithms, conceptual analogical 

reasoning has become increasingly automated. This has several consequences. First, this 

automation has allowed innovators to apply the borrowed patterns from another domain, without 

necessarily understanding them. For example, when relying on machine learning software libraries 

like TensorFlow, knowledge workers often do not know why the algorithm made the prediction it 

did. Despite not necessarily understanding the correlations that connect the training and test 

domains, knowledge workers can simply apply those patterns with TensorFlow. Second, unlike 

conceptual analogical reasoning which is unconstrained in the types of templates it requires, 

automated analogical reasoning needs specific templates: digitized training data. I discuss the 

implications below in Section 2.2.2. 

                                                           
5 Hesse (1966) and Holyoak and Thagard (1996) provide numerous examples. One of the first accounts of 
(conceptual) analogical reasoning was by the ancient Roman architect Vitruvius who proposed the wave-
sound model. Since then, analogies have served as the genesis behind many discoveries, from Charles Darwin 
whose theory of natural selection was based on an analogy to artificial selection by farm breeders to the 
Nobel laureate Salvador Luria’s analogy between slot machines and bacterial mutations. Analogies can even 
be found in mathematics, a field built on causal logic and thus may seem less amenable to analogical 
reasoning. In fact, many difficult problems in algebra have been solved by turning them into geometric 
problems—that is, by finding analogies between algebra and geometry (Hacking 2014). 
6 In addition to these studies on how analogical reasoning can serve as a source of innovation (i.e., create 
new strategies and ventures), another strand of management literature underscores a different aspect of 
analogies: a dissemination tool once an innovation has been produced. When introducing novel products or 
services, analogies can be used to increase legitimacy (Hargadon and Douglas 2001; Bingham and Kahl 2012; 
Etzion and Ferraro 2010; Cornelissen and Clarke 2010). Apple, for instance, popularized the term “desktop” 
when launching personal computers. By analogizing between the physical and the digital desks, Apple 
intuitively drew in customers who were not used to working in the virtual world (Bingham and Kahl 2012). 
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2.2.2 Tradeoffs in Relying on Analogies 

While analogies—and by extension, analogy-based technologies like machine learning—can 

help knowledge workers innovate in domains where there are no existing ideas yet to build on, 

analogies can also have several costs. First, because analogies require the availability of templates, 

they may constrain the direction of innovation towards areas of research with templates, even if 

those areas are less fruitful. Second, these templates may highlight just superficial similarities 

between the target and adjacent domains, leading to misleading conclusions (Gentner 1982). Third, 

because analogies do not build foundational knowledge from scratch, this leads to a weak 

foundation: knowledge workers may not fully understand the underlying mechanisms of how the 

target domain works; they can only translate the target in terms of the template.7 

This paper focuses on the first cost—that analogies may constrain innovation towards areas 

with templates. This cost of analogies demonstrate an inherent limitation of analogies in balancing 

exploration and exploitation when knowledge workers search through the idea landscape 

(Kauffman 1993; Levinthal 1997; Nelson and Winter 1982; Fleming and Sorenson 2004; Kaplan 

and Vakili 2015). For example, Kneeland, Schilling, and Aharonson (2020) propose that inventors 

often make “long jumps” across disparate domains to pioneer an uncharted domain; analogical 

reasoning can be one mechanism that inventors rely on to make such jumps. At the same time, 

however, its very need for templates from which to import patterns may result in anchoring that 

leads analogical reasoning astray and bound to local search (Holyoak and Thagard 1996; Gavetti 

and Rivkin 2005). 

The growing automation of analogical reasoning may exacerbate this fixation cost. Although 

hailed as a tool of exploration (Agrawal, Gans, and Goldfarb 2018; Agrawal, McHale, and Oettl 

2018), supervised machine learning has one critical weakness: it cannot work without digitized 

training data. While the prior literature on AI has focused on algorithmic bias that arises from 

poor-quality training data (Cowgill and Tucker 2020; Cowgill et al. 2020; Choudhury, Starr, and 

Agarwal 2020)—for example, how unrepresentative training data can lead to superficial analogies 

that identify misleading patterns—there has been less attention on how the very availability of 

training data can restrict the direction of innovation (Cockburn, Henderson, and Stern 2018; 

                                                           
7 The importing of correlations via analogies brings to the forefront an aspect of knowledge production that 
is sometimes overlooked: knowledge domains can vary in how “strong” or “shaky” their foundation can be. 
Prior studies have noted how retractions (Azoulay et al. 2015), institutions (Furman and Stern 2011), or 
certification (Greenblatt 2021) can impact the strength of foundational knowledge in a given domain. The 
use of analogical reasoning can be another reason that leads to a weaker foundation due to the accumulation 
of correlations (in lieu of causal theories). 
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Hoelzemann et al. 2022). Given the growing importance of analogy-based technologies, 

understanding this cost is important as the locus of digitized data can have long-term implications 

for what gets innovated. 

 

3.  Empirical Setting 

An ideal empirical setting needs three ingredients: (i) an observable idea landscape, where I 

can track which ideas get explored versus unexplored, as well as a measure of distance between 

ideas, (ii) the arrival of an analogy-based technology, and (iii) specifically, the differential arrival 

of the technology, such that it only arrives in some parts (treated) but not other parts of the 

setting (control). In this section, I first introduce the setting of structural biology and its scientific 

importance. I then describe the empirical features of structural biology that make it an ideal 

setting to study analogies. 

3.1  Structural Biology: The Study of Proteins 

Structural biology is a field that studies the 3D structures of proteins and aims to uncover 

the functional roles of proteins by elucidating their structures. As Francis Crick (who had 

discovered the helical structure of DNA) remarked, “If you want to understand function, study 

structure” (Crick 1990). Since proteins are responsible for carrying out most functions in cells, 

insights from structural biology has helped with a broad range of applications, from identifying 

targets for new drugs to understanding disease progression. As one evidence of its wide-reaching 

impact, structural biology has been recognized with more than a dozen Nobel prizes. 

Structural biology has also played an important role in the current fight against the 

coronavirus pandemic. As shown in Figure 2A, researchers solved the structure of the spike 

proteins that stud the surface of SARS-CoV-2—that is, determined the 3D coordinates of 

individual atoms in the protein. Through this direct visualization, researchers learned how these 

proteins latch onto receptors on human cells like “a key to a lock” (Patel, Lucet, and Roy 2020), 

enabling the development of vaccines that are designed to block these proteins. 
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3.2  Structural Biology as an Empirical Setting 

3.2.1 Observable Idea Landscape 

In order to investigate whether an analogy-based technology changes the direction of 

innovation, it is important to be able to observe the entire idea landscape. In most settings, 

however, researchers can only observe ideas that were realized, while alternative ideas that could 

have been pursued (but were not) remain invisible. For example, in scientific research, not all 

papers that can be written ultimately get written. Only papers that actually became published 

can be observed, while other papers that may have been in consideration (but were not written) 

cannot be observed. Structural biology, however, provides a unique window into the idea landscape. 

As I explain in Section 4, I leverage a database of all known proteins, and I can observe which 

proteins structural biologists chose to explore versus could have explored but neglected. 

Furthermore, in most settings, it is difficult to quantify the similarity between each potential 

idea. For instance, in the case of scientific publishing, measuring the distance between each paper 

is challenging; text similarity is often used, but this is an imperfect metric for measuring 

intellectual distance. In contrast, structural biology provides an objective measure: proteins are 

composed of sequences of amino acids—which are given by nature—and therefore they can be 

grouped based on their sequence similarity (Hill and Stein 2020; 2021).8 Since analogies work by 

identifying similarities, this measure of distance enables me to track the use of analogies. 

3.2.2. Arrival of an Analogy-Based Technology 

Since proteins are too small to be seen through an optical microscope, structural biologists 

had to develop various experimental techniques to reveal the atomic structure of proteins—or 

“solve” the structure. Solving a protein structure involves deep knowledge of biology, physics, and 

statistics, and this used to be—and remains—extremely challenging. A complex structure could 

take months, even years, to solve. For instance, determining the structure of the ribosome (a 

macromolecular machine responsible for translating DNA code to produce proteins) took over two 

decades, culminating in the 2009 Nobel Prize in Chemistry (Ramakrishnan 2018). 

                                                           
8 Hill and Stein (2020; 2021) study the effect of competition in structural biology and cluster structures 
based on their sequence similarity to identify scientists engaged in “priority races” (i.e., competing teams 
that worked on structures in the same cluster, unbeknownst to each other). In this paper, rather than 
focusing on just proteins whose structures have been characterized, I look at instead the entire universe of 
proteins—both structurally characterized and uncharacterized—and cluster this universe of proteins based 
on their sequence similarity. 
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The dominant method of solving a structure is called X-ray crystallography,9 which proceeds 

in three main steps (Figure 2B). First, the protein sample must be produced in a very specific 

way, which is to crystallize it—packing multiple copies of the protein in a well-ordered crystal 

lattice. Second, once the crystal is obtained, X-ray beams are shot at the crystal, which produces 

diffraction patterns, as electrons in the crystal diffract the X-ray. Third, using a combination of 

physical laws, statistics, and intuition, structural biologists construct a density map of electrons 

from the diffraction patterns and build up a 3D atomic model of the protein structure. This paper 

focuses on this third step of interpreting the diffraction data. Unlike the days of Max Perutz (co-

winner of the 1962 Nobel Prize in Chemistry) who solved the first protein structure (hemoglobin) 

through painstaking hand-calculations, many of the steps of interpreting the diffraction data have 

become automated. 

The specific technology I examine is a software program called Phaser. Phaser was released 

in September 2003, which automates a method called molecular replacement, or MR. Figure 3 

shows the rise in the number of structures solved by MR at the Protein Data Bank, a global 

repository of all solved structures.10 One of the biggest challenges in interpreting the diffraction 

data is called the “phase problem,” a problem difficult enough that one method to solve it resulted 

in a Nobel prize.11 Prior to MR, structural biologists had to resort to time-consuming experimental 

methods to solve the phase problem, but MR allowed structural biologists to bypass experimental 

phasing. Instead of solving the phase problem from scratch, MR uses other previously solved 

structures that share similar sequence similarity to the unknown structure and use them as 

templates to solve the phase problem of the unknown structure. One structural biologist I 

interviewed noted that MR could be up to 100 times faster than experimental phasing methods,12 

potentially saving a few years of work. 

                                                           
9 In addition to X-ray crystallography, two other methods can be used to solve a structure: nuclear magnetic 
resonance spectroscopy and cryo-EM. However, crystallography is by far the dominant method used, with 
over 95% of all protein structures solved using this method. 
10 The method of MR was first proposed in 1962, but MR was not put into wide practice until decades later 
due to lack of available structures, as well as lack of ready-made software programs (Doerr 2014). While 
Phaser was not the first software program to implement MR, it is the most user-friendly, automated, 
efficient, and widely-used program (Scapin 2013). 
11 X-ray reflections have both amplitudes and phases, but the phase cannot be measured from the diffraction 
patterns. Without knowing the phase, a model of the protein structure cannot be constructed. 
12 There are two experimental methods that solve the phase problem from scratch. The first method is 
called isomorphous replacement, which involves producing a “native” target crystal and a “derivative” crystal 
with a heavy metal ion introduced. By measuring the difference in diffraction patterns between the native 
and the derivative crystals, structural biologists can recover the phase. The second method is called 
anomalous dispersion, where structural biologists vary the X-ray wavelength to induce atoms of specific 
elements to produce anomalous scattering. By locating these anomalous scattering atoms, the missing phase 
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In other words, MR can be viewed as an analogy-based technology. The key insight behind 

MR is that sequence similarity has been observed to be highly correlated with structural similarity 

(although little is understood regarding the causal mechanism of why sequences of amino acids 

cause proteins to fold into their particular 3D shapes). By taking advantage of this pattern, 

structural biologists use MR to import phase information from neighboring proteins that share 

sequence similarity, rather than solving the phase problem de novo.13 

3.2.3 Differential Arrival of an Analogy-Based Technology 

Finally, this analogy-based technology of MR arrived in some parts of structural biology 

but not others. As mentioned earlier, I observe the entire map of known proteins and the distance 

between each protein in terms of their sequence similarity. While some clusters of proteins received 

attention from structural biologists before the arrival of MR (which I term “bright” clusters of 

proteins), other clusters of proteins did not get any attention (“dark” clusters). Since MR needs 

data on previously solved structures, MR can be applied in bright clusters but is not useful for 

dark clusters, so bright and dark clusters serve as my treatment and control groups, respectively. 

This paves the way for a difference-in-differences design, as described in Section 5. 

 

4.  Data 

In order to construct my map of proteins, I use two main datasets: UniProtKB/Swiss-Prot, 

a database of all known proteins, and the Protein Data Bank, a database of all protein structures. 

I then cluster proteins based on their sequence similarity to construct my final sample. 

4.1  UniProt Knowledgebase/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProtKB) is a comprehensive database 

of proteins. A protein is composed of sequence of organic compounds called amino acids. 

Information for making a protein is stored in a gene’s DNA, and by translating the DNA sequence 

                                                           
of the rest of the protein can be backed out. While isomorphous replacement and anomalous dispersion do 
not rely on the availability of prior solved structures, they can require arduous experimental efforts. 
13 In November 2020, a technology that supersedes MR was introduced: the AI program AlphaFold, created 
by Google’s DeepMind team. AlphaFold can predict the structure of a protein based on purely its sequence 
of amino acids. While MR helps with specifically the phase problem of experimental structure solving, 
AlphaFold bypasses the need to conduct experiments at all. While AlphaFold’s success falls outside of the 
time period studied in this paper, I discuss potential implications in Section 7. 
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of a gene, scientists can determine the protein’s existence and the sequence of amino acids that 

will appear in the protein. Protein sequences in UniProtKB are thus sourced by translating genes 

from major genome sequence databases. 

To define the complete set of proteins at risk of being structurally characterized, I focus on 

the Swiss-Prot section of UniProtKB.14 Created in 1986, the Swiss-Prot database is extensively 

reviewed, maintained, and annotated by experts based on experimental results and literature 

review. I also use data constructed by Perdigão et al. (2015), which provides additional 

characteristics on each protein in Swiss-Prot. As of October 2020, Swiss-Prot contains 563,552 

protein entries.  

4.2  Protein Data Bank 

Established in 1971, the Protein Data Bank (PDB) is a repository of protein structures and 

contains over 170,000 structures as of October 2020. Since 1989, most journals have required 

authors to deposit their structures at the PDB as a requirement for publication, and therefore the 

PDB contains the universe of all publicly available structures. The PDB provides detailed 

descriptions about each structure, as well as crosswalks to Swiss-Prot. 

4.3  Sample Construction: Clustering Proteins 

After identifying which proteins in Swiss-Prot were found to be structurally characterized in 

the PDB, the final step is to measure the distance between each protein and cluster proteins that 

share sequence similarity. 

I rely on MMseqs2,15 an algorithm used by both Swiss-Prot and the PDB to cluster similar 

proteins (Steinegger and Söding 2018; Hauser, Steinegger, and Söding 2016). Given that molecular 

replacement will likely be successful if the template and the target proteins share at least 30% 

sequence identity (Schmidberger et al. 2010; Phenix), I chose a threshold of 30% sequence identity 

to group all proteins in Swiss-Prot into mutually exclusive clusters. I then restricted the sample 

to clusters with at least one human protein and clusters that had at least one protein discovered 

                                                           
14 In addition to Swiss-Prot, UniProtKB has a database called TrEMBL, which is larger but contains 
computationally annotated proteins whose existence are largely not proven. More details are provided in 
the Data Appendix. 
15 MMseqs2 can be downloaded from https://github.com/soedinglab/MMseqs2. More details on MMseqs2 
are provided in the Data Appendix. 

https://github.com/soedinglab/MMseqs2
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by 1998, the year before my panel begins. More details on sample construction can be found in 

the Data Appendix. 

 

5.   Empirical Strategy 

5.1  Main Specification 

As described in Section 3.2, since MR relies on having similar, previously solved structures 

as templates, MR only works on clusters of proteins with previously solved structures (i.e., bright 

clusters) and does not work for clusters of proteins that have not yet been structurally 

characterized (i.e., dark clusters). 

This enables me to employ a difference-in-differences approach and estimate the following 

regression equation to examine the impact of MR: 

Yct = β0 + β1PostMRt ×Brightc+ δt + γc + εct          (1) 

 
Yct is the total number of structures that gets solved in cluster c in year t. PostMRt is an 

indicator variable that turns one after the arrival of MR in 2003, and Brightc is an indicator 

variable for bright clusters, defined as whether the cluster had at least one structure by 1998.16 δt 
are calendar-year fixed effects, and γc are cluster fixed effects. β1 is the coefficient of interest and 

can be interpreted as the impact of MR on the number of solved structures. Standard errors are 

clustered at the cluster level. 

In order for the coefficient β1 to capture the causal impact of MR, parallel trends assumption 

must hold: in the absence of MR, trends in outcomes between bright and dark clusters must have 

been the same, conditional on cluster fixed effects and year fixed effects (as well as time-varying 

controls that I use in some specifications). I discuss this concern in detail in Sections 6.1 and 6.4. 

                                                           
16 The treatment variable, Brightc, is defined as whether the cluster had a structure by 1998 (the year before 
my panel begins) instead of 2003 (when MR arrived). If Brightc is defined using the year 2003, then the 
treatment is mechanically correlated with the outcome variable (the number of structures being solved each 
year) in the pre-period from 1999 to 2003 since the treatment is a lagged outcome of the pre-period. The 
panel was chosen to begin in 1999 because this is (i) early enough to yield at least five years of pre-period 
before the introduction of MR, but (ii) late enough that there has been some accumulation of prior solved 
structures in the PDB (6% of structures that will eventually be deposited at the PDB by 2019 had 
accumulated by 1998). 
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5.2 Descriptive Statistics 

As shown in Table 1, my sample consists of 6,944 clusters, with 9% of the clusters classified 

as bright. Not surprisingly, in terms of levels, bright and dark clusters differ on several 

characteristics when MR arrived. First, bright clusters are on average older and bigger. Second, a 

higher share of the proteins in the bright clusters have characteristics that make them more 

amenable to crystallization (as discussed in Section 3.2, in order for a protein’s structure to be 

solved, the protein must be first crystallized). Bright clusters contain proteins that are less likely 

to be membrane, disordered, or have compositional bias.17 Proteins in the bright clusters are also 

on average shorter in sequence length. Third, while bright clusters had more publications and 

drugs related to their proteins, dark clusters are higher in one measure of biological significance: 

the share of human proteins in the cluster (human proteins are of high interest to drug developers). 

This reassuringly suggests that dark clusters are not devoid of biological importance.  

While these differences in levels do not threaten my difference-in-difference strategy (as long 

as there are no differences in trends in outcomes in the pre-period), in Section 6.4, I revisit these 

characteristics in a robustness analysis to develop a “predicted brightness” measure, where I control 

for pre-period traits related to crystallization feasibility and biological significance. 

 

6.  Main Results 

6.1  Impact of MR on the Number of Solved Structures  

I begin by examining how MR impacted the number of solved structures. As shown in Table 

2, bright clusters got brighter (i.e., received more structures) after MR, relative to dark clusters. 

The outcome is the total number of solved structures in a cluster each year. Columns 1-2 report 

the outcome after Log(+1) transformation,18 while Columns 3-4 report the results in levels (scaled 

                                                           
17 Membrane proteins are proteins that are found in (or interact with) cell membranes; these proteins tend 
to be flexible and partially hydrophobic, which make crystallization challenging. Proteins with intrinsically 
disordered regions (i.e., regions that do not adopt a well-defined structure) or extreme sequence length (very 
short or long) can also impede crystallization (Slabinski et al. 2007). Finally, compositional bias refers to 
whether the protein contains regions with overrepresented subsets of amino acids. Proteins are typically 
composed of twenty amino acids, but not all amino acids may show up equally. For example, 
QHQQQGQHHQHHHQQQQHH has a bias for the amino acids Q (glutamine) and H (histidine) (Harrison 
2017). Compositional bias is associated with decreased crystallization potential. 
18 In Appendix Table 1, I provide a robustness analysis using inverse hyperbolic sine transformation. Results 
remain similar. 
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by the standard deviation). As reported in Column 1, bright clusters experienced a 7% increase 

in the number of solved structures after the arrival of MR, relative to dark clusters. Results in 

levels also indicate that bright clusters got brighter. Bright clusters received an increase of 0.744 

annual number of structures after the arrival of MR, which translates to a 30.1% increase relative 

to the baseline standard deviation of 2.47. 

I conduct several analyses to ensure that these results are being driven by MR. First, one 

concern is that bright clusters may be getting more structures not necessarily due to MR but 

because it is also getting increasingly bigger (i.e., more protein sequences are being discovered) 

relative to dark clusters. In Columns 2 and 4, I additionally control for time-varying cluster size 

while estimating Equation 1; the magnitude of the impact of MR remains similar and significant. 

Second, the impact of MR should only show up in structures that were actually solved by 

MR. If I observe that bright clusters experienced an increase in both structures that were solved 

by MR and non-MR methods, this raises the concern that factors unrelated to MR may be causing 

bright clusters to get brighter. In Appendix Table 2, I confirm that MR only impacts structures 

that were solved by MR and does not impact structures that were not solved by MR. 

Third, since MR needs just one previously solved structure in order to work, the impact of 

MR should be stronger when comparing dark clusters versus bright clusters with a single 

previously solved structure, and weaker when comparing bright clusters with a single structure 

versus bright clusters with multiple structures. Appendix Table 3 shows this exact result. I split 

the bright clusters into whether they had just a single or multiple previously solved structures. I 

then compare the impact of MR, comparing dark versus bright clusters with just a single structure 

(Column 2) and comparing bright clusters with just a single structure versus multiple structures 

(Column 3). The impact of MR is stronger in Column 2 relative to Column 3. 

Fourth, and most importantly, to asses pre-period trends, I show an event studies version of 

Equation 1, replacing the single PostMRt indicator with indicators for every year before and after 

the introduction of MR. Figure 4 plots the dynamic effects of MR on the number of solved 

structures. Reassuringly, in both Panels A (Log(+1) transformation) and B (levels), there appears 

to be no difference in trends between bright and dark clusters in the number of solved structures 

before MR. Moreover, the impact of MR is sustained over the entire sample period: bright clusters 

got brighter and brighter. 
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6.2  Impact of MR on the Quality of Solved Structures 

MR deceased the cost of solving structures in well-explored, bright clusters, and, not 

surprisingly, increased the volume of structures in those areas. But what about quality? In the 

next set of results, I investigate how MR impacted the quality of solved structures. 

I distinguish between two dimensions of quality: execution (how meticulously a project was 

completed) versus importance (whether a project led to a novel insight). While I provide below 

measures of execution and importance in the specific setting of structural biology, these are general 

dimensions of quality that apply to any innovative activity: the innovation should be well-executed, 

but it should also solve an important problem. 

The impact of analogical reasoning on quality is not immediately obvious. On one hand, 

analogical reasoning has the power to make “long jumps” (Kauffman 1993; Kneeland, Schilling, 

and Aharonson 2020) to explore a novel domain and discover creative opportunities. But it may 

be more challenging to rigorously execute innovations stemming from analogies because analogies 

are rooted in correlations, not precise causal logic. On the other hand, one of the pitfalls of 

analogies is that their need for templates could cause fixation and steer the direction of innovation 

towards areas with templates, even if they are less fruitful. This may be particularly true when 

analogical reasoning becomes automated, as analogy-based technologies like MR and supervised 

machine learning require specifically digitized training data of past successful innovations. 

Analogies may thus lead to “short jumps,” landing on unexplored but near potentially crowded 

areas where it may be harder to unearth new insights. 

6.2.1 Execution 

The first dimension of quality I examine is execution, and I take advantage of measures 

provided in the PDB called the R-free and resolution.19 These are objective metrics used by the 

structural biology community to assess the technical execution—specifically, the accuracy and 

precision—of the structures (Kleywegt and Jones 1997). 

The R-free refers to accuracy or goodness-of-fit: how well the model of the protein structure 

fits the observed experimental data. As discussed in Section 3.2, structural biologists build the 

atomic model of their protein structure from experimentally observed diffraction data. They then 

simulate diffraction patterns based on the model and compare the simulated diffractions to the 

                                                           
19 Hill and Stein (2021) use the R-free and resolution as their main quality measures in their study of how 
competition affects the quality of scientific research. I interpret the R-free and resolution as indicating 
specifically the execution level of the structure. 
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experimentally observed patterns. The R-free can be improved as researchers undergo iterative 

refinement process of their model to better fit the experimental data.  

Resolution refers to precision or the level of detail that can be found in the structure. Figure 

2C shows an example of a protein (tyrosine 103 from myoglobin) at different resolutions, from a 

poor resolution where only general contours are visible to a resolution where individual atoms can 

be plotted. Resolution depends on the degree of order in the crystallized protein. Researchers can 

improve the resolution by obtaining high-ordered crystals (proteins that are packed and aligned 

identically in the crystal), which produce diffraction patterns with fine details. 

With these measures, I investigate the impact of MR on execution in Table 3. Column 1 

reports the same result as Column 1 of Table 2 and shows the impact of MR on the total number 

of structures solved in a cluster. Columns 2-4 decompose this result into terciles based on the 

structure’s R-free values and investigate the impact of MR on the number of structures in the 

bottom tercile (Column 2), middle tercile (Column 3), and top tercile (Column 4) of R-free values. 

Columns 5-7 similarly report results using the resolution of the structures. 

A clear pattern emerges: bright clusters especially received more structures that were well-

executed. For the R-free, there was no difference between bright and dark clusters in the number 

of structures that were solved in the bottom tercile. In contrast, bright clusters received 14% more 

structures that were solved in the top tercile, relative to dark clusters. Likewise, for resolution, 

bright clustered received just 3% more structures from the bottom tercile, but 10% more structures 

from the top tercile. 

6.2.2 Importance 

The second dimension of quality is the scientific importance of the structure: did the structure 

lead to a novel insight about a biological process? When the PDB was established in 1971 with 

only seven structures in its database, every new structure provided valuable information. However, 

as the PDB grew, it became no longer enough to just solve structures for the sake of solving them. 

As early as 1994, the editors of Nature Structural Biology advocated in their inaugural issue, 

“[T]he static image of the molecule is rarely an end in itself, but rather a beginning of 

comprehension” (Nature Structural Biology 1994). Through additional biochemistry or cell biology 

experiments, structural biologists try to explicitly link a protein’s function to its potential function 

to understand the role the protein plays in various biological processes (Cassiday 2014). To 

evaluate whether a structure led to a new biological understanding, I present below three measures. 
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First, did the structure lead to a publication? Structures that were simply deposited at the 

PDB without a corresponding publication to explain their biological significance are structures 

that contributed very little, if at all, to revealing biological insights. As a prominent researcher at 

Yale once declared, “The fact is that protein structures come alive intellectually only when they 

are connected with [other data] indicating what they do” (Moore 2007). There could be several 

reasons why some structures do not have accompanying publications. One structural biologist I 

interviewed noted that a “stamp collection” of structures are sometimes needed to win grants from 

funding agencies. Some of these structures are also from structural genomics consortiums, whose 

goals are to catalogue as many types of structures as possible without necessarily explicating them 

(Petsko 2007; Hill and Stein 2021). 

Second, was the structure cited by Swiss-Prot? The Swiss-Prot database contains extensive 

annotations about a protein’s function and provides references behind each functional annotation. 

Importantly, the references are added manually by experts who follow well-defined curation 

protocols, undergo quality checks, and are updated as new data becomes available, ensuring that 

selection of these references are impartial. 

Finally, I measure whether the structure got cited by a patent, with the assumption that the 

protein must have led to enough functional insights in order for an inventor to develop commercial 

applications. I leverage data from Marx and Fuegi (2020) on patent citations to scientific articles 

to identify structures with papers that were cited by at least one patent. 

Bright clusters especially received more structures that did not reveal functional insights. As 

shown in Table 4, bright clusters received 9% more unpublished structures, which have no 

accompanying articles that describe their function (Column 2). In contrast, bright clusters 

experienced a relative decrease in the number of structures that were cited by a patent (Column 

4), and there were no differences between bright and dark clusters in the number of structures 

that were cited by Swiss-Prot (Column 6)—which are the set of structures that are the most likely 

to have yielded functional insights. 

6.3  How Did the Scientific Community Receive MR? 

How did the scientific community receive this shift in research direction as a result of MR? 

Did the scientific community value the fact that MR led to more structures that are well-executed? 

Or did the community find these types of structures less valuable since they ultimately did not 

lead to new functional insights? 
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To examine this question, I use standard measures of publication impact (citations and 

journal impact factor).20 A natural question is why I interpret these publication measures as 

different from my measures on functional insights. My earlier measures (whether the structure has 

an accompanying publication and whether it was cited by Swiss-Prot or a patent) assess a specific 

fact: did the structure lead to some kind of function insight? In contrast, journal impact factor 

and publication citation serve as proxies for how the scientific community typically rewards a 

piece of research and can be due to either the technical execution or functional insights of the 

research, which is hard to disentangle. For instance, it is unclear whether a structural biology 

paper was published in a prestigious journal because the structure was technically well-executed 

or because it led to a new biological understanding (or a combination). 

The idea behind this analysis is that if the scientific community valued execution more, they 

would have rewarded the well-executed structures in bright clusters by publishing them in 

prestigious journals and highly citing them. In contrast, if the scientific community valued 

functional insights more, they would have punished the structures in bright clusters by publishing 

them in less prestigious journals and citing them less. 

In Table 5, I investigate the effect of MR on the publication impact of the structures, in 

terms of the mean number citations the structure’s publication received and the journal impact 

factor (i.e., journal prestige). In Columns 3-5, I decomposed the total number of solved structures 

in a cluster into terciles based on citations, while in Columns 8-10, I decomposed the total number 

of structures into terciles based on the journal impact factor.21 

Bright clusters especially received more structures with less publication impact. After the 

arrival of MR, bright clusters received approximately 7% more structures that were either 

unpublished or published with very few citations, relative to dark clusters. In contrast, bright 

clusters had a 2% decline in the number of structures with the highest number of citations. In 

terms of journal impact factor, bright clusters received 7% more structures that were published 

in the least prestigious journals, relative to dark clusters. However, there was no difference between 

bright and dark clusters in the number of solved structures that were published in the most 

prestigious journals. This suggests that the scientific community appears to believe that there has 

been a decline in the quality of research conducted as a result of a MR. 

                                                           
20 I linked the primary paper associated with each structure in the PDB to the PubMed data and obtained 
citation data from the Web of Science (specifically, the mean annual number of citations received by each 
structure, within the first five years of paper publication). 
21 Due to data availability, I restricted the panel to end in 2012 for the citation analyses and 2017 for the 
journal impact factor analyses. 
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Taken together, these results indicate that bright clusters received more structures overall 

and particularly structures that were well-executed. However, these structures tended to not lead 

to new functional insights or have a high publication impact. 

6.4  Predicting Brightness 

6.4.1 Specification with Predicted Brightness 

The identification underpinning my difference-in-differences framework hinges on parallel 

trends assumption. While there was no evidence of pre-trends in the event studies as well as in 

other robustness analyses, there may still be concerns over whether bright and dark clusters were 

evolving on different trends for factors unrelated to the introduction of MR. For example, a 

particular concern is that proteins in the dark clusters cannot be crystallized and thus cannot be 

structurally characterized to begin with. 

This concern is mitigated by the evidence in the bioinformatics literature, where it has been 

documented that while there are certain traits (e.g., membrane or disordered proteins) that indeed 

make a protein challenging to crystallize, the crystallization process remains an unpredictable art, 

rather than a science. For instance, Perdigão et al. (2015) surveyed the Swiss-Prot data to 

understand the features of dark proteins; they find that most of the dark proteins cannot be 

explained by the “usual suspects,” that a majority of the dark proteins are in fact not membrane 

or disordered proteins. Other studies also point to the difficulty in predicting which proteins will 

crystallize (Elbasir et al. 2019; Terwilliger, Stuart, and Yokoyama 2009). 

Since there are still some characteristics that are known to confound crystallization, I develop 

a predicted brightness measure, Predicted_Brightc, where I measure whether a cluster was 

predicted to be bright in 1998,22 using the pre-period characteristics of the proteins in the cluster. 

I then modify Equation 1 to estimate the following: 

 

      Yct = β0 + β1PostMRt ×Brightc + β2PostMRt ×Predicted_Brightc + δt + γc + εct     (2) 

  
The thought experiment in Equation 2 is that I compare clusters of proteins that are similarly 

predicted to have their structures characterized by 1998 because they are ex-ante similar in traits 

related to biological importance and crystallization feasibility, but some clusters just happened to 

                                                           
22 Recall that (actually) bright clusters are defined as whether they had a structure by 1998. 
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actually have characterized structures before the arrival of MR while other clusters did not. If I 

observe that only being predicted bright has an impact on the number of structures solved after 

MR (i.e., β1 is non-significant but β2 is significant), then there would be concern that unobserved 

characteristics are driving bright clusters to both have had their structures characterized in 1998 

and subsequent structure characterization after MR. However, if there is an added effect of being 

actually bright in addition to being predicted bright (i.e., β1 is significant), then this reduces the 

concern of omitted variable bias. 

6.4.2 Constructing Predicted Brightness 

I first restrict the sample to proteins that were discovered by 1998 (n = 41,781 proteins), 

and, for each protein, I focus on several sets of characteristics as of 1998. First, I have 

characteristics on how hard it is to crystallize the protein: whether the protein is a membrane 

protein, disordered protein, has compositional bias, and has long sequence length. Second, I have 

characteristics on the biological importance of the proteins: which species the protein is from 

(2,814 indictors), the number of publications written about the protein (10 indicators), and the 

number of approved drugs that target the protein (8 indicators).23 Finally, I have indicators for 

the year of when the protein was discovered (29 indicators). After dropping collinear variables, 

this translates to a total of 817 predictors. 

To avoid overfitting and increase prediction performance, I use Lasso to predict whether a 

protein is predicted to be bright (i.e., structurally characterized by 1998). Appendix Figure 1A 

shows the receiver operating characteristic (ROC) curve of the resulting prediction. The ROC 

curve plots the True Positive Rate (what share of actually bright proteins were correctly predicted 

to be bright?) against the False Positive Rate (what share of actually dark proteins were 

incorrectly predicted to be bright?). The area under the curve (AUC) of the ROC curve evaluates 

the performance of the prediction and can be interpreted as the probability that a random actually 

bright protein will have a higher predicted brightness than a random actually dark protein. The 

AUC can range from 0 to 1, and a general rule of thumb considers an AUC above 0.8 to be 

indicating high performance; the AUC of my prediction exercise is 0.91. 

                                                           
23 Information on drugs is provided by DrugBank. This dataset provides comprehensive information on 
drugs at various development phases and their targets (i.e., proteins.) and is freely available for academic 
use. A limitation of the free version of the data is that it only provides marketing dates for approved drugs, 
and there are no dates on when a drug entered pre-clinical or clinical trial phases. 
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I then use the fitted values to predict each protein’s brightness in 1998. Appendix Figure 1B 

shows the distribution of this predicted brightness, by whether the protein was actually bright by 

1998. There is variation and overlap in the distributions of predicted brightness between actually 

bright and dark proteins, suggesting that while there are some characteristics that may make 

some proteins more likely to be structurally determined, some proteins just happened to have 

structures actually determined by 1998, while other proteins with similarly predicted brightness 

did not. This supports the findings in the bioinformatics literature which also notes that many of 

the dark proteins cannot be explained by the usual factors that defy crystallization and that it is 

in fact difficult to predict crystallization. From this protein-level prediction, I aggregate up to the 

cluster-level by taking the sum of the predicted brightness of all proteins in each cluster to 

construct Predicted_Brightc. 

6.4.3 Results with Predicted Brightness  

I then estimate Equation 2 that additionally controls for Post-MRt × Predicted_Brightc, 
modifying my baseline difference-in-differences framework. Appendix Table 4 shows the results 

from estimating Equation 2. The coefficients on Post-MRt × Brightc remain positive and significant; 

among clusters predicted to be similarly bright, there is still an effect of being actually bright. 

While it may seem surprising that the coefficients on Post-MRt × Predicted_Brightc are not 

significant, MR only works when there are actually solved prior structures in the cluster and 

should not work if the cluster is only predicted to be bright. Appendix Table 4 therefore supports 

the evidence that the arrival of MR indeed caused the number of solved structures in (actually) 

bright clusters to increase, relative to dark clusters, even among clusters that were ex-ante 

similarly predicted to be bright due to their traits related to biological importance or 

crystallization feasibility. 

 

7.  Discussion & Conclusion 

This paper provides, to my knowledge, the first empirical study of how the automation of 

analogical reasoning may shape the direction of knowledge production. Using the setting of 

structural biology, which provides a unique window into the entire idea landscape, I study the 

introduction of an analogy-based technology, MR, which solves protein structures by relying on 

data of prior structures. 
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I find that MR increased the number of solved structures, specifically in bright clusters with 

already solved structure templates. This result from structural biology highlights the power of 

analogies in reducing the cost of producing innovation in certain areas, thereby shifting the 

direction of innovation. In particular, rather than building knowledge from scratch, analogies can 

provide shortcuts that enable knowledge workers to innovate in domains where there is no existing 

knowledge yet (e.g., structurally uncharacterized proteins) by importing knowledge from 

neighboring domains (e.g., borrowing structure information from similar, already solved proteins). 

Yet, because of their very need for templates, analogies could restrict knowledge workers into 

focusing on just domains with neighbors (e.g., bright, already well-explored clusters). 

One may argue that this shift in research direction due to analogies does not necessarily 

imply a decline in the quality of innovation, as analogies allow knowledge workers to quickly make 

progress in previously unexplored domains. An important question then is what quality of 

innovation is ultimately produced. My results suggest that structural biologists used the extra 

time gained from taking a shortcut with MR to improve the technical execution—the resolution 

and the goodness-of-fit—of the structures. These structures, however, had low scientific 

importance and publication impact. That is, at least in this specific setting, knowledge workers 

appear to use the imported knowledge from analogies to focus on incremental execution, rather 

than attempting to discover a fundamental insight. 

Understanding this tradeoff of analogies can have crucial implications for the management 

of knowledge production, given the growing automation of analogical reasoning and, more broadly, 

data-driven exploration. A recent work by Hoelzemann et al. (2022) is close in spirit to this paper: 

using a laboratory experiment, the authors document the “streetlight” effect of data,24 that when 

data reveals a satisfactory—but not the best—option, data can discourage workers from exploring 

further to reach the best. Extending this idea of the streetlight effect, I suggest a “snowballing” 

effect: analogies may steer the direction of innovation towards areas with templates, which in turn, 

gain more templates and thus become more amenable to analogies, while neglected (and 

potentially fruitful) areas without templates may never get attention. 

This snowballing effect can manifest in several ways. In the case of structural biology, bright 

clusters got brighter and brighter after the arrival of MR; among clusters that were predicted to 

have similar crystallization potential and biological importance, clusters that happened to have 

structures before MR took off, while clusters without structures remained dark. This increasing 

                                                           
24 The authors draw from the aphorism of the drunk looking for his keys under the streetlight, despite 
dropping the keys on the other side of the street, because “this is where the light is.” 
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returns to training data can have profound strategic consequences for firms as well. For firms that 

produce products and services based on data, early entrants may use their control over data to 

crowd out competitors (Cockburn, Henderson, and Stern 2018; Bessen et al. 2022). At the frontier 

of AI, there are now even machine learning models (trained on real data) that generate synthetic 

data, which will be fed into other machine learning models, raising the possibility of amplifying 

the influence of the original training data (Zewe 2022). 

A question still remains on what is the net value of increased innovative activities in the 

bright clusters. This is difficult to assess. First, my difference-in-differences framework is limited 

to reporting only the relative increase in solved structures between bright and dark clusters. This 

relative increase can mean either an overall increase in bright clusters or a reallocation of 

innovative efforts from dark to bright clusters. Second, while structures in the bright clusters may 

not have led to novel biological insights, the increased number of (well-executed) structures may 

still be valuable, especially for drug development (which requires precisely solved structures) as 

well as for serving as training data for machine learning algorithms. 

Finally, while this paper focuses on how analogies can potentially constrain the direction of 

innovation, future work can explore other costs of analogies. In particular, because analogies do 

not build foundational knowledge from scratch, innovators may not fully understand the 

underlying mechanisms of how the target domain works. Overreliance on analogies may lead to 

knowledge domains with weak foundation, where only correlations accumulate and causal theories 

are neglected (Zittrain 2019). Popular rhetoric often warns the danger of this “black box” nature 

of AI (and by extension, analogies). For instance, in drug discovery, analogical reasoning and 

pattern recognition can be employed to identify promising drug candidates based on prior 

approved drugs. A downside to this approach is that the drugs’ mechanisms of action remain 

unknown, preventing drugmakers from anticipating side effects or applying the drugs for other 

diseases that may share the same mechanisms. 

The setting of structural biology is currently facing its own AI revolution. In November 

2020, Google’s DeepMind team cracked a 50-year-old grand challenge in biology: to predict how 

a protein folds into its 3D structure from purely its sequence of amino acids. While MR helps with 

only one part of experimental structure solving, AlphaFold bypasses the need to conduct 

experiments at all. Celebrated as perhaps the most important application of AI in science as of 

date, the source code of AlphaFold became publicly available in July 2021, followed by the release 

of a database of predicted structures a year later. 
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Despite its breakthrough, however, AlphaFold also serves as a reminder of the limitations 

of analogies. DeepMind’s claim that AlphaFold has produced enough structures to cover the 

“entire protein universe” (Walsh 2022) must be qualified with important caveats. First, these are 

only predicted structures. When comparing AlphaFold’s structures to experimentally determined 

structures, researchers have found that while many of these predicted structures can be 

remarkably accurate, some are still too inaccurate to be useful (Mullard 2021). Second, and most 

importantly, AlphaFold is limited by its training data, the PDB, and can only populate the protein 

structural space based on analogies to known PDB structures. In particular, protein structures 

can change in the presence of small molecule drugs. Because there could be up to one 

novemdecillion25 small molecules (Reymond and Awale 2012), the PDB does not contain enough 

information on structures bound to small molecules for AlphaFold to predict how proteins might 

interact with drugs (Callaway 2022). Furthermore, diseases are often caused by mutations to 

proteins. Since these mutated proteins have no evolutionarily-related sequences, it is difficult for 

AlphaFold to predict their structures (Buel and Walters 2022; Callaway 2022). This is why, at 

least for now, many remain skeptical that AlphaFold will dramatically impact drug development.26 

Finally, AlphaFold illustrates that analogies work by identifying patterns, not causal 

theories. While AlphaFold has advanced the ability to predict structures, scientists still have little 

understanding of the physics of why proteins fold into their shapes (Lowe 2022). The rise of 

AlphaFold may signal the trend of hypothesis-driven science turning into “data science.” As one 

of the scientists in the field lamented, “We’ve focused too much on data and not enough on 

understanding . . [we may be] going away from human-conceived theories and models of natural 

phenomena to more data-driven methods and models” (Samuel 2019).  

                                                           
25 A novemdecillion is equivalent to million billion billion billion billion billion billion (American Chemical 
Society 2012). 
26 While not about AlphaFold, Lou and Wu (2022) demonstrates the limits of AI in drug development; AI 
is less useful for developing drugs that are radically novel and have no known mechanisms of actions. In 
addition, a recent paper by Cavalli (2022) investigates how AlphaFold changed the organizational structure 
of academic labs in computational biology. 
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Figures & Tables 

FIGURE 1. A TAXONOMY OF SHORTCUTS 

 

 
Vertical Shortcuts 

(Used in older domains  
with foundational knowledge)  

Horizontal Shortcuts 
(Used in newer domains  

w/out foundational knowledge)  

Understanding 

Summaries 
Provide synopses of foundational 
knowledge underlying a domain 

 
e.g., Wikipedia 

Conceptual Analogies 
Understand a new domain by 

importing patterns from a known 
domain 

 
e.g., biomimetics 

Application 

Calculators 
Execute instructions based on 

foundational knowledge underlying a 
domain 

 
e.g., Stata 

Automated Analogies 
Apply patterns to a new domain  

from a known domain 
 

e.g., TensorFlow 

 
 
 
 
NOTES: This figure provides a taxonomy of shortcuts that can be used in cumulative knowledge production. 
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FIGURE 2. STRUCTURAL BIOLOGY 

A. Structure of the SARS-CoV-2 Spike Glycoprotein 

 
 

B. Steps of Crystallography 

 
 

C. Resolution 

                              
 
NOTES: Panel A shows the structure of a spike protein on the surface of the coronavirus (PDB entry 6VYB; source: 
https://www.rcsb.org/structure/6VYB). Panel B shows the three main steps of crystallography; this paper focuses on 
the automation of solving the “phase problem” that occurs during the interpretation of the diffraction data. Panel C 
shows an example of the electron density map behind the structure of tyrosine 103 from myoglobin, at three different 
resolutions; lower resolution is better and shows finer details (source: https://pdb101.rcsb.org/learn/guide-to-
understanding-pdb-data/resolution).  
  

https://www.rcsb.org/structure/6VYB
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
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FIGURE 3. NUMBER OF STRUCTURES SOLVED BY MOLECULAR REPLACEMENT 

 
NOTES: This figure plots the number of X-ray crystallography structures in the Protein Data Bank that were solved by 
molecular replacement (MR) vs. non-MR methods. 
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FIGURE 4. EVENT STUDY: IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES  

Panel A. Log(+1) Transformation 

 

 

Panel B. Levels 

     
 
NOTES: This figure shows the impact of MR on the number of solved structures. The figure plots the coefficients and 
95% confidence intervals from estimating a modified, event studies version of Equation 1 that replaces the pooled 
PostMRt indicator with separate indicators for every year before and after the arrival of MR. The outcome is the total 
annual number of solved structures in a cluster; Panel A reports the outcome after Log(+1) transformation, while Panel 
B reports the outcome in levels. The unit of analysis is a cluster × year, and the sample consists of 6,944 clusters, which 
translates to 145,824 cluster-years. 
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TABLE 1. SUMMARY STATISTICS 

 Bright   Dark 

Mean Median SD   Mean Median SD 
Discovery Year 1983.47 1986.00 7.7  1993.11 1995.00 5.1 
Cluster Size 39.73 15 81.6   7.66 4 15 
Protein Production Feasibility        

Disorder 0.15 0.1 0.2  0.24 0.1 0.2 
Membrane 0.02 0 0.1  0.04 0 0.1 
Compositional Bias 0.01 0 0  0.03 0 0.1 
Sequence Length 513.61 339.1 1,438.50   634.97 457.3 675.5 

Biological Importance        

% of Cluster that is Human 0.18 0.1 0.2  0.36 0.3 0.2 
N of Publications 142.47 75 199.2  26.79 12 57.4 
N of Approved Drugs 3.63 0 14.5   1.23 0 21.8 

N of Solved Structures per Year 1.99 0 5.64  0.23 0 1.78 
N of Clusters 649   6,295 

 
 
NOTES: This table provides the summary characteristics of clusters when MR was introduced. The sample consists of 
6,944 clusters, of which 649 are classified as “bright” (i.e., had at least one structure in 1998) and 6,295 are classified as 
“dark.” 
  



54 
 

TABLE 2. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES 

 
  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 
VARIABLES N Structures N Structures N Structures N Structures 
          
Post-MR × Bright 0.071*** 0.065*** 0.301*** 0.292*** 
 (0.018) (0.018) (0.052) (0.052) 
Cluster Size  0.013**  0.019* 
  (0.006)  (0.011) 
     
R-squared 0.471 0.471 0.400 0.400 
Calendar-year FE YES YES YES YES 
Cluster FE YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcome variable is the 
total annual number of solved structures in a cluster, reported after Log(+1) transformation (Columns 1-2) or in levels 
scaled by the standard deviation (Columns 3-4). The treatment variable “Bright” is defined as clusters that had at least 
one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster 
fixed effects; Columns 2 and 4 additionally control for time-varying (standardized) cluster size. Standard errors are 
clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE 3. IMPACT OF MR ON EXECUTION 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 
All 

Structures 
R-Free  

Bottom Tercile 
R-Free 

Middle Tercile 
R-Free 

Top Tercile 
Resolution 

Bottom Tercile 
Resolution 

Middle Tercile 
Resolution 
Top Tercile 

                
Post-MR × Bright 0.071*** -0.001 0.077*** 0.133*** 0.034*** 0.047*** 0.096*** 

 (0.018) (0.011) (0.012) (0.013) (0.011) (0.012) (0.013) 
        

R-squared 0.471 0.381 0.397 0.403 0.365 0.414 0.427 
Calendar-year FE YES YES YES YES YES YES YES 
Cluster FE YES YES YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 145,824 145,824 145,824 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of execution level 
(a structure’s level of execution can be defined in terms of its R-free value and resolution). The unit of analysis is a cluster × year, and the panel spans from 1999-
2019. The outcomes of all columns are the annual number of solved structures in a cluster, with Log(+1) transformation. Column 1 parallels Column 1 in Table 2 
and reports the total number of solved structures. Columns 2-4 decompose this result by examining the number of solved structures in the bottom (Column 2), 
middle (Column 3), and top terciles (Column 4) with respect to the structures’ R-free values. Columns 5-6 similarly decompose the number of solved structures into 
terciles based on their resolution. The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 
and onwards. All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** 
p<0.01, ** p<0.05, * p<0.1. 
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TABLE 4. IMPACT OF MR ON FUNCTIONAL INSIGHTS  

 
  (1) (2) (3) (4) (5) (6) 

VARIABLES 

All 
Structures 

Unpublished 
Structures 

Published 
Structures 

Not Cited by 
Patent 

Published 
Structures 
Cited by 
Patent 

Published 
Structures 
Not Fxn 

Annotated 

Published 
Structures 

Fxn 
Annotated 

              
Post-MR × Bright 0.071*** 0.085*** 0.117*** -0.064*** 0.039** 0.006 

 (0.018) (0.009) (0.016) (0.011) (0.017) (0.004) 
       

R-squared 0.471 0.221 0.389 0.350 0.473 0.117 
Calendar-year FE YES YES YES YES YES YES 
Cluster FE YES YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 145,824 145,824 

 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different levels of functional insights 
(a structure is considered to have contributed to new insights about a protein’s function if it is published in a scientific article and additionally cited by a patent or 
by the functional summary section of Swiss-Prot). The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcomes of all columns are the 
annual number of solved structures in a cluster, with Log(+1) transformation. Column 1 parallels Column 1 in Table 2 and reports the total number of solved 
structures. Columns 2-4 decompose this result into the number of solved structures that do not get published in a scientific article (Column 2), the number of solved 
structures that are published but not cited by a patent (Column 3), and the number of solved structures that are both published and cited by a patent (Column 4). 
Columns 5 and 6 parallel Columns 3 and 4 but decompose the number of solved structures based on whether they were cited by the functional summary section of 
Swiss-Prot. The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All 
columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** 
p<0.05, * p<0.1. 
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TABLE 5. IMPACT OF MR ON PUBLICATION IMPACT 

 

    Citations     Journal Impact Factor    
 (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

VARIABLES 

All 
Structures 

Unpublished 
Structures 

Citations 
Published 
Structures 
(Bottom 
Tercile) 

Citations 
Published 
Structures 
(Middle 
Tercile) 

Citations 
Published 
Structures 

(Top 
Tercile) 

 

All 
Structures 

Unpublished 
Structures 

JIF 
Published 
Structures 
(Bottom 
Tercile) 

JIF 
Published 
Structures 
(Middle 
Tercile) 

JIF 
Published 
Structures 

(Top 
Tercile) 

                        
Post-MR × Bright 0.056*** 0.075*** 0.067*** 0.012 -0.022**  0.070*** 0.083*** 0.070*** 0.006 0.014 

 (0.017) (0.009) (0.012) (0.012) (0.010)  (0.018) (0.009) (0.012) (0.012) (0.009) 
            

R-squared 0.487 0.227 0.401 0.330 0.331  0.477 0.223 0.378 0.363 0.285 
Calendar-year FE YES YES YES YES YES  YES YES YES YES YES 
Cluster FE YES YES YES YES YES  YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944  6,944 6,944 6,944 6,944 6,944 
N of cluster-years 97,216 97,216 97,216 97,216 97,216   131,936 131,936 131,936 131,936 131,936 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of publication 
impact. A structure’s publication impact is measured as the mean number of citations and the journal impact factor (JIF). The unit of analysis is a cluster × year. 
Due to data availability, the panel ends in 2012 for the citation analyses and in 2017 for the JIF analyses. The outcomes of all columns are the annual number of 
solved structures in a cluster, with Log(+1) transformation. Column 1 parallels Column 1 in Table 2 and reports the total number of solved structures. Columns 2-
5 decompose this result into the number of solved structures that do not get published in a scientific article (Column 2) and the number of solved structures that 
are published and in bottom (Column 3), middle (Column 4), or top (Column 5) terciles in terms of citation impact. Columns 6-7 similarly decompose the number 
of solved structures into terciles based on JIF. The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes 
years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is 
indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Figures & Tables 

APPENDIX FIGURE 1. PREDICTING BRIGHTNESS 

A. ROC Curve 

 

 

B. Distribution of Predicted Brightness 

 

 

NOTES: Panel A plots the ROC curve of a prediction exercise, where I predict whether a protein is bright by 1998. 
Panel B plots the distribution of the resulting predicted brightness by whether the protein was actually bright (i.e., had 
a structure by 1998) or dark (i.e., did not have a structure by 1998). The unit of analysis is a protein. The sample 
consists of 41,781 proteins that were discovered by 1998. Each protein’s predicted brightness was constructed by using 
the fitted values from estimating a Lasso model that predicted whether the protein had a structure by 1998. 
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APPENDIX TABLE 1. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES, INVERSE 
HYPERBOLIC SINE TRANSFORMATION 

  (1) (2) 
 IHS IHS 

VARIABLES N of Structures N of Structures 
      
Post-MR × Bright 0.083*** 0.075*** 

 (0.022) (0.022) 
Cluster Size  0.017** 

  (0.007) 
   

R-squared 0.464 0.464 
Calendar-year FE YES YES 
Cluster FE YES YES 
N of clusters 6,944 6,944 
N of cluster-years 145,824 145,824 

 
 
NOTES: This table parallels Table 2 but presents a robustness analysis using inverse hyperbolic sine transformation of 
the outcome. The table shows the impact of MR on the number of solved structures. The unit of analysis is a cluster 
× year, and the panel spans from 1999-2019. The outcome variable is the total annual number of solved structures in 
a cluster after inverse hyperbolic sine transformation. The treatment variable “Bright” is defined as clusters that had at 
least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and 
cluster fixed effects; Columns 2 additionally control for time-varying (standardized) cluster size. Standard errors are 
clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 2. IMPACT OF MR ON MR VS. NON-MR STRUCTURES 

  (1) (2) (3) 

VARIABLES All 
Structures 

MR 
Structures 

Non-MR 
Structures 

    
Post-MR × Bright 0.071*** 0.143*** -0.007* 
 (0.018) (0.017) (0.004) 
    
R-squared 0.471 0.475 0.101 
Calendar-year FE YES YES YES 
Cluster FE YES YES YES 
N of clusters 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 

  
NOTES: This table parallels Column 1 from Table 2. The table reports results from estimating Equation 1 and shows 
the impact of MR on the total number of solved structures (Column 1) and decomposes this into number of solved MR 
structures (Column 2) and non-MR structures (Column 3). All of the outcomes are Log(+1) transformed. The unit of 
analysis is a cluster × year, and the panel spans from 1999-2019. The treatment variable “Bright” is defined as clusters 
that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-
year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: 
*** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 3. IMPACT OF MR, SPLITTING BRIGHT CLUSTERS 

  (1) (2) (3) 

 
Dark  
vs. 

All Bright Clusters 

Dark 
vs. 

Bright Clusters 
with 1 Structure 

Bright Clusters 
with 1 Structure  

vs. 
Bright Clusters 

with >1 Structures 
        
Post-MR × Bright (1 or 
more structure) 

0.071*** 
(0.018) 

0.072*** 
(0.022)  

 
Post-MR × Bright (more 
than 1 structure)   

-0.002 
(0.034) 

    
R-squared 0.471 0.325 0.595 
Calendar-year FE YES YES YES 
Cluster FE YES YES YES 
N of clusters 6,944 6,558 649 
N of cluster-years 145,824 137,718 13,629 

 

NOTES: Column 1 of this table parallels Column 1 of Table 2 and shows the impact of MR on the total number of 
solved structures in the full sample. Column 2 investigates the impact of MR on the sample of dark clusters and bright 
clusters with just 1 structure solved by 1998; the treatment variable “Bright” is defined as clusters that had just one 
structure by 1998. Column 3 investigates the impact of MR on the sample of bright clusters with 1 or more structures 
solved by 1998; the treatment variable “Bright” is defined as clusters that had more than 1 structure by 1998. All of 
the outcomes are Log(+1) transformed. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. 
All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical 
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 4. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES WITH PREDICTED 
BRIGHTNESS 

  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 

VARIABLES N Structures N Structures N Structures N Structures 
          
Post-MR × Bright 0.049** 0.044** 0.218*** 0.213*** 

 (0.021) (0.021) (0.055) (0.054) 
Post-MR × Predicted Bright 0.024 0.023 0.089 0.087 

 (0.017) (0.016) (0.056) (0.055) 
Cluster Size  0.012**  0.014 

  (0.006)  (0.011) 
     

R-squared 0.472 0.472 0.401 0.401 
Calendar-year FE YES YES YES YES 
Cluster FE YES YES YES YES 
N of clusters 6,878 6,878 6,878 6,878 
N of cluster-years 144,438 144,438 144,438 144,438 

 
 
NOTES: This table reports results from estimating Equation 2 and shows the impact of MR on the number of solved 
structures, controlling for predicted brightness. The unit of analysis is a cluster × year, and the panel spans from 1999-
2019. The outcome variable is the total annual number of solved structures in a cluster, reported after Log(+1) 
transformation (Columns 1-2) or in levels scaled by the standard deviation (Columns 3-4). The treatment variable 
“Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. 
“Predicted Bright” was constructed after predicting whether a protein was structurally characterized by 1998, using its 
pre-period characteristics and aggregating to the cluster-level. All columns include calendar-year and cluster fixed effects; 
Columns 2 and 4 additionally control for time-varying standardized cluster size. Standard errors are clustered at the 
cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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Data Appendix 

A.1 UniProtKB/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProtKB) is a comprehensive database 

of known proteins. A protein is composed of sequence of organic compounds called amino acids. 

Information for making a protein is stored in a gene’s DNA, and, therefore, by translating the 

DNA sequence of a gene, scientists can determine the protein’s existence and the sequence of 

amino acids that will appear in the protein. Protein sequences in UniProtKB are thus sourced by 

translating genes from major genome sequence databases. 

UniProtKB is divided into two parts: Swiss-Prot (manually reviewed) and TrEMBL 

(computationally reviewed). Created in 1986, the Swiss-Prot database is extensively reviewed, 

maintained, and annotated by experts based on experimental results and literature review. As of 

October 2020, Swiss-Prot contains 563,552 protein entries. In contrast, TrEMBL was created in 

1996 and houses computationally annotated protein entries. Once a protein from TrEMBL 

becomes manually reviewed, it is removed from TrEMBL and enters Swiss-Prot. TrEMBL was 

established in recognition that manual curation efforts cannot keep pace with the increased 

number of protein sequences resulting from genome sequence projects and contains nearly two 

hundred million entries. 

To define the complete set of proteins at risk of being structurally characterized by structural 

biologists, I follow Perdigão et al. (2015) —a bioinformatics paper that descriptively mapped out 

which proteins’ structures have been determined—and focus on the proteins in the Swiss-Prot 

database. While smaller than TrEMBL, using the Swiss-Prot database has several advantages. 

First, Swiss-Prot is one of the best datasets of proteins whose existence is experimentally proven 

(Perdigão et al. 2015); TrEMBL primarily contains proteins whose existence is only predicted. 

Second, since Swiss-Prot tends to include more well-described proteins, this allows me to ensure 

that I examine proteins that share a similar baseline level of documentation and thus similarly at 

risk of catching the attention of structural biologists, instead of looking at unreviewed proteins 

that may not even be real proteins. Third, Swiss-Prot’s expertly curated annotation provides rich 

description of each protein, including its function, clinical impact, and sequence features, that 

allows me to develop a “predicted brightness” measure, as described in Section 6.4.  
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A.2  Linking Swiss-Prot to the Protein Data Bank 

The PDB provides crosswalks to Swiss-Prot, allowing me to observe which proteins in Swiss-

Prot have had their structures characterized in the PDB. However, the level of the crosswalk 

between an entry in the PDB and an entry in Swiss-Prot is not a many-to-one crosswalk as one 

might expect (a many-to-one, since a protein in Swiss-Prot can have its structure solved multiple 

times), but rather a many-to-many crosswalk (i.e., a single protein structure in the PDB can also 

be linked to multiple Swiss-Prot entries). This is because in the PDB, large protein structures are 

composed of discrete regions called “entities”; the crosswalk between the PDB and Swiss-Prot is 

at this entity level. Approximately 80% of the structures in the PDB has a single entity, while 

the remaining 20% has multiple entities and therefore linked to multiple Swiss-Prot entries. 

Whenever a single protein structure from the PDB links to multiple Swiss-Prot entries, I split the 

protein structure into fractions based on the percentage of amino acids each Swiss-Prot entry 

contributes to the protein structure. 

A.3 MMseqs2 

MMseqs2 is a software package that clusters databases of proteins and can be downloaded 

at https://github.com/soedinglab/MMseqs2 (Steinegger and Söding 2018; Hauser, Steinegger, and 

Söding 2016). MMseqs2 uses a greedy set cover algorithm and aims to create the fewest number 

of mutually exclusive clusters, given a set of proteins at a user-specified sequence similarity. In 

this paper, I chose the threshold of 30% sequence similarity, given that MR will likely be successful 

if the template and the target proteins share at least 30% sequence identity. If the sequence 

similarity falls below 30%, MR will be usually challenging, if at all possible, to implement 

(Schmidberger et al. 2010; Phenix). The algorithm takes the following steps:  

 

1. MMseqs2 first computes all pairwise sequence identities between proteins in Swiss-Prot 

2. MMseqs2 chooses a “representative” sequence, which is the protein with the highest number 

of neighbors that share at least 30% sequence similarity 

3. MMseqs2 forms the first cluster with this representative sequence and all of its neighbors 

4. MMseqs2 then looks at the remaining sequences and chooses the next representative 

sequence with the highest number of neighbors 

5. MMseqs2 iterates through Steps 2-4 until all sequences belong in a cluster 

 

https://github.com/soedinglab/MMseqs2
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This ensures that each member of a cluster shares at least 30% sequence similarity with the 

representative sequence of the cluster.27 MMseqs2 is used by both Swiss-Prot and the PDB to 

cluster similar proteins. 

A.4  Sample Construction 

Using the MMseqs2 algorithm, I grouped all 563,552 proteins in Swiss-Prot into 74,017 

mutually exclusive clusters, using 30% sequence identity threshold. 

Restricting to clusters with at least one human protein: I then restricted the sample 

to clusters with at least one human protein (n = 13,150 clusters, which is equivalent to 161,392 

proteins). There are two reasons for this restriction. First, restricting to clusters with at least one 

human protein ensures that all of the clusters in the final sample have a minimum baseline level 

of biological importance; one of the main goals of structural biology is to understand human 

biological processes and thus structural biologists are interested in human proteins and proteins 

similar to human proteins. Second, a nice feature of focusing on human proteins (and their 

similarity neighbors) is that this mitigates some of the concern of growing cluster size. The total 

number of possible proteins in the universe is essentially infinite,28 and new protein sequences are 

continuously being discovered. However, all human proteins have been discovered by the early 

2000s when the human genome project was completed; since one gene encodes one protein, and 

humans have approximately 20,000 genes, they also have 20,000 proteins.29 Since the number of 

newly discovered human proteins have plateaued since the early 2000s when MR arrived, this 

alleviates the concern of whether human proteins are getting more structures because of MR or 

because there are simply more human proteins being discovered. To additionally address the 

                                                           
27 A caveat is that while it is likely that all possible pairs of sequences within the cluster also share at least 
30% sequence similarity with each other (since they are all similar to the representative sequence), this is 
not guaranteed. Mirdita et al. (2017) performed a cluster quality check that mitigates this concern; the 
authors computed the mean sequence identity among all possible pairs of sequences in a cluster and found 
that MMseqs2 indeed yielded clusters where all possible pairs of sequences shared on average >30% sequence 
similarity. 
28 Given that there are 20 different amino acids and an average protein has a sequence length of 200 amino 
acids, this amounts to 20200 possible proteins, which is larger than the number of electrons in the universe 
(Koonin, Wolf, and Karev 2002). 
29 This is called the “one gene, one protein” rule, which contributed to the 1941 Nobel Prize in Medicine. As 
explained in Section 4.1, by translating the DNA sequence of a gene, scientists can determine the protein’s 
existence, and the sequence of amino acids that will appear in the final protein. Recently, the “one gene, 
one protein” rule has been challenged, as one gene may produce multiple proteins through, for instance, 
alternative splicing. Nonetheless, this paper follows the “one gene, one protein” rule since Swiss-Prot provides 
a non-redundant set of proteins, in that all proteins that are encoded by one gene in a species is folded into 
a single entry (including alternative splicing isoforms). 
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concern of changing cluster size, I also control for time-varying cluster size in some of my 

specifications. 

Restricting to clusters born on or before 1998: For each cluster, I compute its 

discovery year by taking the earliest discovery year among the proteins in the cluster. (Discovery 

year is defined as the earliest known documentation of the protein’s existence.) Since my panel 

starts in 1999, I only keep clusters that were born on or before 1998 in my sample.30 This led to 

my final sample of 6,944 clusters of proteins. 

                                                           
30 Alternatively, in a robustness analysis, I restricted the sample to clusters born on or before 2003 when 
MR arrived. This unbalanced sample consists of 12,294 clusters. Results remained similar. 



Chapter 3

Is the Patent System Sensitive to

Incorrect Information?

(with Janet Freilich)

Abstract

We investigate whether participants in the patent system are sensitive to information quality

by examining how they treat inaccurate information. We use a novel approach to identify

patents with inaccurate information: patent-paper pairs where the paper has been retracted

and the corresponding patent contains the retracted material. Despite containing inaccurate

information, we find that these patents are prosecuted and maintained by most applicants,

are not rejected by examiners, and continue to be cited by some downstream readers after

retraction. Insensitivity to inaccurate information may lead to erroneous decisions during

examination and has implications for patent quality, disclosure, and knowledge flows.
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1 Introduction

The patent system is only as good as the information it produces. If patents contain

inaccurate information, examiners and readers may incorrectly rely on these statements.

Patents may be erroneously granted to inventors who could not actually make the invention,

and downstream patents may be erroneously rejected as preempted by poor-quality prior

art.1

Consider the example of Theranos. By 2016, it was widely known that Theranos’

vaunted technology—the ability to detect molecules in small amounts of blood—did not

work. Yet in 2018, the U.S. Patent Office (USPTO) granted a Theranos patent that claims

“a method of detecting an analyte in a . . . blood sample having a volume of less than

about 500 µL” (U.S. Patent 10,156,579). The examiner did not question Theranos’ claim.

This reverberated downstream: in 2019, a different examiner cited a Theranos patent as

evidence that a University of Arizona patent application claiming methods of detecting

analytes in small drops of sweat (WO Patent App. 2018013579) was obvious, without

acknowledging the public failure of Theranos’ technology.

In this paper, we seek to understand whether the examples above are isolated incidents,

or whether participants in the patent system are insensitive to information quality. We

make two contributions: a) we develop a new approach to measure inaccurate information

in patents and b) we combine empirical and qualitative analyses to find that examiners and

inventors are often insensitive to inaccurate information.

Since there is no easy way to identify inaccurate information in patents, we propose a

novel method: patent-paper pairs in which the paper has been retracted and the

corresponding patent—which we term an “unsupported patent”—makes claims based on

the retracted information and is thus unsupported by accurate data. Unlike papers, there

is no mechanism to retract a patent,2 so patents continue through the system even after

the corresponding paper has been retracted. We identify the universe of all unsupported

1Examiners assess whether patent applications are novel and nonobvious by searching for earlier published
disclosures called “prior art.”

2Patents can be invalidated or found unenforceable in litigation, but this is not the same as retraction
because the patent can nonetheless be cited as prior art against later applications, and a loss in litigation
does not necessarily mean that information in the patent is wrong. See Appendix D.
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patents in the biomedical sciences, and investigate, using matched controls, whether

patents are treated differently once material in the patent is publicly acknowledged to be

incorrect. Our results from 86 unsupported patent families (589 individual granted patents

or patent applications) and 86 control patent families (576 individual patents or

applications) suggest that the patent system largely does not react to incorrect

information, either during examination or downstream.

During prosecution of the unsupported patents themselves, we find that applicants

overwhelmingly (95%) did not disclose the retraction to the USPTO, and, in 63% of

families, continued prosecuting or maintaining patents after the corresponding retraction.

Examiners in turn almost always (93%) failed to discover that the application contained

retracted material and did not reject unsupported patents.

We then turn to the downstream impact of unsupported patents. Confirming other

studies of retractions in science (Furman et al. 2012; Azoulay et al. 2015; Azoulay et al. 2017;

Jin et al. 2019; Lu et al. 2013), we find that on the paper side, citations to retracted papers

dropped significantly after retraction. In contrast, the reaction by the patent system was

muted. While unsupported patents received fewer citations from downstream applicants after

retraction, this effect was smaller than what was observed on the paper side, and citations

from examiners did not change. Further, although some examiners cited unsupported patents

as a justification for rejecting downstream patents as obvious or not novel, downstream

applicants did not fight back. Only 0.6% challenged the rejection on the basis that the cited

prior art contained retracted material.

This paper contributes to a large literature on the prevalence and effects of poor-quality

patents (Jaffe and Lerner 2004; Lanjouw and Shankerman 2004; Bessen and Meurer 2008;

de Rassenfosse et al. 2016). While the previous literature has predominantly focused on

patents that should never have been granted because they are either obvious or not novel,

this paper joins a smaller literature that focuses on a different type of poor-quality patents:

patents granted incorrectly because they contain problematic information (Ouellette 2017;

Freilich 2019; Freilich and Ouellette 2019; Freilich 2020). These patents are of great concern

because they may be acquired by patent acquisition entities and asserted in a manner that

taxes innovators (Feng and Jaravel 2020), worsens patent thickets (Cohen 2004; Cockburn
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and MacGarvie 2009), and deters genuine innovators in the area covered by the patent

(Government Accountability Office 2016; Tucker 2014).

Although some may argue that it is more efficient to eliminate these patents ex-post

through litigation, that patents with some incorrect information may still contain other

accurate data, or that not all incorrect information requires the patent’s invalidation,3

patents with incorrect information may still be damaging. Inventors may waste resources

relying on or trying to replicate incorrect information. Importantly, inventors may be

discouraged altogether from follow-on research if they believe their patents would be

rejected as obvious based on incorrect prior art—in which case, there would be no

follow-on inventions in the first place and litigation would not occur. This paper does not

address all types of informational inputs into patents (some of which may be correct, even

for unsupported patents), but the consequences of incorrect information in the disclosure

are potentially severe.

While this paper focuses specifically on the biomedical sciences and on the relatively

few patents that incorporate retracted material, patents with incorrect information are

ubiquitous (Freilich 2020). If the patent system is not sensitive to retracted

information—where there is an easily accessible statement that the information is

wrong—the patent system is likely also insensitive to other types of incorrect information.

Such insensitivity leads to errors in the patent system, spreads poor-quality information to

the public, and damages the integrity of the patent system.

2 Institutional Context

Patents contain a substantial amount of information about the invention. Information

quality is vital to a functioning patent system at two stages: examination and downstream

knowledge flows. Examiners must determine whether an applicant invented something new

and useful, and whether the applicant disclosed sufficient information about the invention

to teach others how to make the technology. Examiners necessarily rely on the information

3Because the standards for scientific retraction and patent invalidity are different, a patent may be valid
even if some of the invention’s embodiments do not work. See Appendix D.

70



provided in the application to assess the invention and have access to little evidence beyond

the words of the patent (Freilich 2021).

If patent applications provide incorrect instructions on how to make an invention or

falsely claim that a technology works, examiners who uncritically rely on information in the

application may erroneously grant a patent. Because patent claims are always broader than

the underlying data supporting the invention,4 incorrect data can support claims that cover

both a non-functional invention and related inventions that (unbeknownst to the applicant)

do work. Thus, examiner insensitivity to information quality may result in patentees being

granted exclusive rights over useful technologies that the patentees did not invent.

At the downstream stage, the information in a patent is perhaps even more important.

First, this information becomes “prior art” to later applications and can be used in

rejections for obviousness or lack of novelty (Sampat 2010). Such a rejection is only correct

if the information upon which it is based is correct.5 Erroneous rejections may lead

inventors to mistakenly narrow or abandon a meritorious patent application, dampening

incentives for innovation. Further, an important purpose of the patent system is to publicly

disseminate knowledge that might otherwise be kept private (Ouellette 2012; Sampat

2018). High information quality is key to the disclosure function of patents.

3 Data

1. Retracted papers: We began by retrieving all retracted papers from PubMed that

were published between 2001 and July 2019. We focused on papers that were indexed

in Medline, which exclusively focuses on the life sciences, and matched these papers

to data provided by Retraction Watch, which documents the reasons behind the

retractions (Oransky and Marcus 2010). We excluded papers that are not original

research articles, such as reviews, leaving us with a set of 4,322 retracted papers.

Finally, we only kept papers that specified that the retraction occurred because the

information in the paper was incorrect; we excluded papers that were retracted due

4For example, if a scientist discovers a molecule that reduces tumor in mice, she is likely able to get a
patent that claims use of the molecule for any purpose.

5More detail is provided in Appendix D.
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to reasons that do not cast doubt on the veracity of the retracted information (e.g.,

plagiarism).

2. Identifying unsupported patents: We identified all U.S. patent applications with

(1) inventors who share the same name as the first or last author of the focal retracted

publication and (2) filing dates within +/- 2 years of paper publication. We then

examined which of these patents have a retracted paper pair in two steps. First, we

used a word similarity algorithm (described in Appendix A) and identified potential

pairs where the patent specification contained at least 90% of the words in the retracted

paper abstract. Second, we manually verified that these potential pairs are indeed

true patent-paper pairs. Specifically, we read all retraction notices to confirm that

the patents’ specifications and claims incorporated the retracted material. From our

sample of 4,322 retracted papers, we identified 107 patent-paper pairs (101 papers; 96

patents).

The following example gives a sense of the closeness of the match between retracted

material in the paper and the corresponding patent. In 2012, Cell published a finding

that the compound norspermidine prevented formation of biofilms (communities of

bacteria that are resistant to antimicrobials). Shortly before the paper was published,

the authors filed a patent application claiming methods of reducing biofilm formation

with norspermidine or similar compounds. In 2015, after another group of scientists

challenged the study, the authors of the original paper retracted their findings,

explaining that after repeating their experiments, “the new results can no longer

support our original conclusions.” The retracted material was precisely the central

finding and was squarely encompassed by claim 1 of the patent.

3. Controls: Following papers that have studied the impact of retractions in science

(Furman et al. 2012; Azoulay et al. 2015; Jin et al. 2019), we sought matched

controls. We found control, non-retracted patent-paper pairs, by matching on both

paper and patent characteristics. We first began by identifying all non-retracted,

original research papers in Medline that were published in the same year and journal

as the retracted papers of our patent-paper pairs (n = 127,271 papers). We then

gathered control papers with associated patents to identify patent-paper pairs. We
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used the same word similarity algorithm described above and identified potential

control pairs with overlap score greater than 90% that share the same primary

technology class as the unsupported patents, as defined by the International Patent

Classification (IPC) system (n = 4,550 pairs). We manually reviewed potential

control pairs to confirm that they are indeed pairs. Specifically, for each retracted

patent-paper pair, we sorted the potential control pairs by their word overlap score

and reviewed them in descending order of the score until we identified a true control

pair. After this procedure, we were able to find control patent-paper pairs for 86 of

our retracted patent-paper pairs. More details can be found in Appendix A.

4. Identifying patent family members: Because members of a patent family often

contain identical or very similar specifications, our unit of analysis is a patent family.

For our 86 unsupported and 86 control patents identified above, we sought all family

members. Our final sample consists of 86 unsupported patent families (which include

589 individual granted patents and patent applications) and 86 control patent families

(576 individual patents and applications).

5. Patent data: Filing year and inventor names were obtained from Reed Tech’s Bulk

Data Downloads. Data on prosecution dates and events were obtained from the

USPTO’s Patent Application Information Retrieval (PAIR) system. Information on

technology class was obtained from PatSnap. Forward citations, maintenance fee

payment records, priority dates, and family members were obtained from Google

Patents.

To obtain a more granular understanding of the data, we also manually read all

correspondences between the patent applicant and USPTO for both unsupported

patents and downstream applications rejected over unsupported patents.

Appendix B provides more details on the data sources.
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4 Empirical Strategy

To assess whether the patent system is sensitive to inaccurate information, we studied

participants involved in different stages of the patent system and their treatment of

unsupported patents as compared to controls.

We first investigate the reaction of applicants and examiners of unsupported patents:

Yi = β0 + β1Treatedi + Xi + εi (1)

Yi is an indicator variable for a) whether the applicant prosecuted any application or

paid maintenance fees for any granted patent in patent family i after retraction; and b)

whether the examiner rejected any application in patent family i for lack of either enablement

or written description after retraction. Treatedi is an indicator variable for whether the

family is an unsupported or a control patent family. Xi is a set of controls, including

retraction-year fixed effects, age-at-retraction fixed effects, technology class fixed effects, or

unsupported-control match fixed effects.6

To examine the impact of retraction on downstream applicants and examiners, we

employ a staggered difference-in-differences approach to investigate whether citations to

unsupported patent families decrease post-retraction relative to control families. Note that

we collect information on citations to both applications and granted patents in the family;

applications, including those that are eventually abandoned, are still frequently cited

(Cotropia and Schwartz 2020). We estimate the following regression equation:

Citesit = β0 +β1Post Retractionit+β2Post Retractionit×Treatedi+f(ageit)+δt+γi+εit (2)

6Retraction-year fixed effects consist of full set of seventeen indicator variables, (2002-2019).
Age-at-retraction fixed effects consist of eight indicator variables, with the age one indicator including all
prior age indicators and the age eight indicator variable including all subsequent age indicators. Technology
class fixed effects consist of six indicators. Unsupported-control match fixed effects are indicators for every
unsupported family and its matched control counterpart; since our sample consists of 1-to-1 matching
of unsupported and control families that match on covariates such as technology class and the control
family inherits the counterfactual retraction year from its unsupported counterpart, specifications with
unsupported-control match fixed effects do not include retraction-year or technology class fixed effects.
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Citesit is the number of citations patent family i receives in year t, Post Retractionit

is an indicator that is zero before retraction and one after retraction, Post Retractionit ×
Treatedi is an indicator that turns one after retraction for only unsupported patent families.

β1 controls for any leads and lags around the retraction event that are common to both

unsupported and control patent families (Jaravel et al. 2018), while β2 is our coefficient

of interest and can be interpreted as the impact of retraction on patent citations (average

treatment effect on the treated). Standard errors are clustered at the patent family level.

δt are calendar year fixed effects that control for any calendar year shocks that impact

citations of all patent families in a given year,7 while γi are patent family fixed effects that

control for patent family traits that could affect citations (e.g., technology class). f(ageit)

are indicator variables for patent family age that control for any lifecycle effects (for instance,

newer patents may be cited more than older patents).8 εit is the error term.

To understand the dynamic effects of retraction, we turn to Equation 3:

Citesit = β0 +
N∑

j=−n

βj
1aj

it +
N∑

j=−n

βj
2aj

it × Treatedi + f(ageit) + δt + γi + εit (3)

Equation 3 is a modified version of Equation 2 and includes separate indicator variables

for each year before and after retraction, aj
it, where the subscript j is the window of years

we are interested in before and after the retraction year. For our main analyses, we looked

at the window of five years around retraction.

Recent work has suggested potential problems with staggered difference-in-differences

designs due to treatment heterogeneity (Goodman-Bacon 2021; Sun and Abraham 2021).

Sun and Abraham (2021) proposes a new estimator that addresses this problem, which we

use in a robustness analysis in Appendix C.

Finally, to conduct our analyses, it is important to understand whether the retraction

occurred before or after our outcomes of interest. For instance, to investigate examiner’s

7Calendar year fixed effects consist of twenty-three indicators (1999-2021), with the 1999 indicator
including all prior calendar years.

8Patent family age was defined as calendar year minus the patent family’s priority year. Due to an
imperfect method of determining exact citation dates (see Appendix B), the year of first citation precedes
the priority year for some patent families. Patent age fixed effects consist of fourteen age indicators, with the
age zero indicator including all prior age indicators and the age thirteen indicator including all subsequent
age indicators.
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behavior, the retraction must occur before the patent arrives in the examiner’s desk; if the

retraction occurs after the patent had already been granted or rejected, then this patent

should not be included in our analysis on examiner rejection.

Appendix Figure A.1 shows what fraction of our sample of patent families experienced a

(real or inherited counterfactual) retraction at each stage of a patent life cycle. We selected

the appropriate subsamples for each of our outcomes, such that the timing of the retraction

could have impacted the outcome (Appendix Figure A.1). This resulted in the following: 170

families (85 unsupported and 85 control families) were used for our analysis on the impact of

retraction on downstream citations, 126 families (68 unsupported and 68 control) were used

for our analysis on applicant’s decision to prosecute/maintain the patent, and 100 families

(50 unsupported and 50 control) were used for our analysis on examiner’s decision to reject

or grant the patent.

5 Results

Table 2 reports summary statistics for our sample of retracted and control pairs; Panel

A shows the patent side of the pairs, while Panel B shows the paper side. Although the

retracted and control pairs were only matched on paper publication year, paper journal,

and patent technology class, our sample is similar on other covariates, such as priority year,

whether the patent family is owned by non-industry institutions, and whether the family is

triadic.9 None of the unsupported patent families were involved in litigation. As shown in

Panel B, 60% of the retracted papers were retracted due to error or unreliable results, while

38% were retracted due to fraud or misconduct. The papers in our sample were published in

high-ranked journals (on average in the 87th percentile in terms of journal impact factor),

with more than 30% of the papers from top journals, such as the New England Journal of

Medicine, Nature, Nature Medicine, Science, and Cell.

9A triadic patent family indicates that the applicant filed the application at the USPTO, the European
Patent Office, and the Japan Patent Office, indicating that the applicant considers the invention to be
potentially of high value.
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5.1 How Do Applicants Treat Unsupported Patents?

At the outset, applicants overwhelmingly opt not to tell examiners about the retraction,

despite patent law’s duty of disclosure.10 Our small sample size allowed us to manually

review all correspondences (prosecution histories) between the examiner and applicant for

unsupported patents. Only three applicants disclosed that their application contained

retracted material; two examiners promptly rejected the application while one applicant

preemptively amended the claims to remove the retracted material (though the material

remained in the disclosure), after which the application was granted.

Applicants of unsupported patents treated their patents differently than applicants of

control patents, suggesting some sensitivity to inaccurate information, although more than

half of applicants continued to invest resources in unsupported patents and continue legal

proceedings. For families that were being prosecuted or maintained at the time of the

retraction, 63% of applicants of unsupported patents continued to prosecute or maintain

the patents,11 compared to 84% of control applicants. Columns 1 and 2 of Table 3 report

estimations from Equation 1 and show that the probability of being maintained or

prosecuted after retraction declines by 19% points. This negative reaction by the

applicants of unsupported patents is perhaps expected since applications include at least

one inventor who is also an author on the corresponding retracted paper and thus

applicants must be aware of the retraction. More surprising, however, is that over half of

applicants nonetheless continued prosecuting and maintaining unsupported

patents—spending money to keep the patents alive despite the retraction.

5.2 How Do Examiners Treat Unsupported Patents?

Examiners appear overwhelmingly unaware that unsupported patent applications contain

retracted material. After reviewing all examiner-applicant communications, we found only

four examiners who mentioned the retraction, each of whom rejected the application.

However, examiners might reject an application because of the retraction without outright

mentioning the retraction. If this was the case, examiners might reject the application either

10Applicants have a duty to disclose all material information to the examiner. This arguably includes the
retraction, as discussed in Appendix D.

11Owners of granted patents must pay maintenance fees to avoid abandoning the patent.
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for lack of enablement (on the ground that retracted material cannot teach others how to

make and use the invention) or lack of written description (on the ground that retracted

material indicates that the inventor was not in possession of the invention). Our results

show that examiners are not rejecting applications that contain retracted information. In

fact, surprisingly, as shown in Columns 3 and 4 of Table 3, we find that examiners appear to

be 16% points less likely to reject unsupported patents, relative to controls (although this is

imprecisely estimated).

5.3 How Do Downstream Applicants and Examiners Treat

Unsupported Patents?

Downstream Citations

To understand the downstream impact of unsupported patents, we ask how citations to

applications and granted patents change after the corresponding retraction. Figure 1 shows

the mean annual citations to the patent-paper pairs analyzed in this study. Citations to

retracted papers drop steeply after retraction, while citations to the corresponding

unsupported patent families remain essentially unchanged.

We turn from the descriptive patterns to a difference-in-differences analysis. Table 4

reports the estimations of Equation 2.12 In Column 1, the outcome is the annual number

of total citations, while Columns 2 and 3 decompose the citation counts by whether the

citation was added by the examiner or the applicant of the citing patent. Columns 4-6

report Poisson specifications. Interestingly, for examiner citations, the magnitude of the

point estimates are positive. As shown in Column 2, unsupported patent families experienced

an increase of 0.22 annual number of examiner citations after retraction relative to controls,

which is a 14% increase from a mean of 1.61.13 In Poisson specification, as in Column 5,

retraction was associated with a 13% increase in examiner citations (e0.119 − 1). As for

applicant citations, we find the expected negative effect due to retraction. Unsupported

patent families experienced a decrease of 0.53 annual number of applicant citations (Column

12For our main analyses, our sample is unbalanced, as some patent families have fewer pre- or post-periods.
Appendix A and Appendix Table A.1 detail a robustness check where we narrow our sample to a smaller
but balanced sample.

13Appendix Figure A.2 shows the distribution of annual citations.
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3) or 18% decrease (Column 6). While our results are imprecisely estimated, the lower bounds

of our results suggest that downstream examiners and applicants do not appear to react as

negatively to retraction, particularly in contrast to the scientific publication system where

citations to retracted papers declined significantly. For instance, as discussed earlier, the

annual number of examiner citations to unsupported patent families increased by 0.22, and

this point estimate has a 95% confidence interval of [-0.39, 0.84]. On the paper side, Column

1 of Appendix Table A.2 shows that citations to retracted papers declined by -10.6, and this

point estimate has a confidence interval of [-17.5, -3.7]. The upper bound of the impact of

retraction on papers is more negative than the lower bound of the impact of retraction on

corresponding patents. This pattern holds true across all specifications, suggesting that the

patent system is less sensitive to retraction than scientific publishing.

Figure 2 plots the event study graphs from estimating Equation 3. There are no noticeable

pre-trends before retraction, and downstream examiners and applicants do not appear to

react strongly to the retraction event. As a robustness analysis, in Appendix Figure A.3,

we use an alternative estimator developed by Sun and Abraham (2021) that accounts for

treatment heterogeneity.

Response to Rejections

When examiners reject downstream applications as anticipated or obvious and cite to an

unsupported patent as evidence that the invention was previously disclosed, this rejection

is arguably incorrect. A retraction suggests that the unsupported patent did not actually

disclose the invention, and thus that the downstream patent is novel. Further, a retraction

may indicate that the scientific community believed the invention did not work, and thus

that the downstream patent is nonobvious. Downstream applicants could therefore argue

that a rejection based on an unsupported patent is incorrect.

We read all communications between examiners and downstream applicants where an

unsupported patent was cited in rejecting the downstream application. Only three (0.6%)

applicants responded to the office action with mention that the prior art contained retracted

material. Although downstream applicants are highly incentivized to find and mention the

upstream retraction, they do not and appear to be insensitive to the quality of information

in cited patents.
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6 Discussion

6.1 Mechanisms

Participants in the patent system are largely insensitive to inaccurate information,

leading to dissemination and use of incorrect information. We suggest mechanisms for this

insensitivity below.

Applicants: While applicants of unsupported patents are less likely to prosecute and

maintain their patents relative to controls, more than half still continued to invest resources

into their unsupported patents; several factors may contribute to their continued prosecution

and maintenance. First, some authors may believe in their work even after the retraction.

For instance, after one inventor’s application was rejected by a patent examiner because of

the corresponding paper’s retraction, the inventor claimed that “[b]y definition, a retraction

equates to the data having never been published. . . It is not a declaration that the data is

incorrect” (U.S. Patent App. No. 20150110749).

Second, high rates of continued prosecution may result from a breakdown in institutional

communication. Inventors are often not intimately involved in patent prosecution. Rather,

they delegate that duty to their attorney and/or to an institutional party such as a technology

transfer office (TTO). While the inventor is aware of the retraction, the attorney and TTO

making decisions to continue prosecuting or maintaining the patent may remain unaware.

Supporting this institutional miscommunication hypothesis, one third of the papers in our

sample were retracted after an institutional investigation—yet the corresponding patents

were prosecuted and maintained at similar rates to those where an institutional investigation

did not occur (68% vs. 61%, t-statistic: 0.56). This suggests that the portion of the

institution responsible for the investigation was not communicating with the portion of the

institution responsible for prosecuting the patents.

Moreover, applicants’ reluctance to abandon unsupported patents may reflect the

patents’ value. Some retractions may indicate a partially inoperable—but partially

operable—technology. Even patents that cover no operable technology can be monetized in

nuisance litigation or provide value as part of a large patent portfolio (Hsu and Ziedonis
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2008). Perhaps because of these possibilities, Theranos’ patent portfolio retained value to

investors even after its technology was entirely discredited (McKenna 2018).

Yet, there is little evidence that the technological accuracy of the invention is linked

to decisions to continue prosecuting or maintaining. We classified retracted papers based

on whether the retraction notice retracted the entire paper or only a portion of the paper.

Papers in the latter category might disclose operable discoveries. However, applicants on

patents corresponding to partially retracted papers prosecuted and maintained their patents

at rates comparable to completely retracted papers (74% vs. 59%, t-statistic: 1.09).

Upstream examiners: Why do examiners grant patents containing unsupported

material? In fact, our results show that examiners seem less likely to reject unsupported

patent families, relative to controls. One possibility behind this counterintuitive result is

that inventors who are willing to manipulate data do so thoroughly and produce more

comprehensive support for their claims than would otherwise occur, decreasing the

likelihood of examiner rejection. While our analysis cannot comment on the exact

mechanism, our results broadly suggest that examiners are not rejecting applications that

contain retracted material. Furthermore, though we cannot exclude the possibility that

examiners were aware of the retraction but did not feel a rejection was merited, we believe

this is unlikely. The more plausible explanation is that examiners did not know about the

retraction. Indeed, examiners are pressed for time (Merges 1999) and do not have resources

to replicate experiments themselves. Although examiners do independently search the field

of the invention, they do so in the context of discovering prior art, and therefore truncate

searches at the priority date of the application—usually before the retraction. The

retraction notice may therefore not come up in an examiner search.

Downstream examiners: Lack of knowledge is also likely why downstream examiners

continue to cite unsupported patents. Unlike papers, unsupported patents have no visual

notice indicating retraction, providing no warning to citing examiners. Further, while

examiners have at least a bachelor’s degree in the scientific field in which they work, they

may not be sufficiently familiar with the scientific literature to recognize that unsupported

patents contain retracted material.

Downstream applicants: Downstream applicants appear to cite unsupported patents

less after retraction, while downstream examiners do not appear to react to retraction. We
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find this result to be consistent with the larger patterns of our results where, in general,

applicants are more sensitive to incorrect information than examiners, presumably because

applicants are more familiar with academic work.

More strikingly, however, downstream applicants whose patent application has been

rejected over unsupported prior art do not raise the presence of retracted material in

response to the rejection. Poor communication between parties involved in patent

applications may be again a likely explanation. While the applicants themselves are deeply

involved in the field of the invention and may (perhaps should) notice that the material in

the unsupported patent has been retracted, as a functional matter, attorneys—not

inventors—are often the ones answering office actions, and attorneys would be less likely to

recognize an unsupported patent.

This insensitivity to incorrect information by the patent system is notable, particularly

in contrast to scientific publishing. It is worth noting, however, that standards for scientific

retraction and patent invalidity are different, as explained in Appendix D. Moreover, the

standards for citing in science and the patent system are also different. In science, the

sharp drop in citations after retraction is all the more stark, given that there are still

legitimate reasons for downstream papers to cite a retracted paper—for instance,

“negative” citations, where downstream papers dispute the retracted paper (Catalini et al.

2015). Even with the possibility of negative citations, it is clear that the scientific

community tracks and shuns retracted papers by no longer citing them. On the other hand,

in the patent system, downstream readers, especially examiners, appear largely unaware of

the incorrect information and continue to cite unsupported patents, when they arguably

should not—harming the flow of knowledge, despite the constitutional mandate of the

patent system to “promote the progress of science” (U.S. Constitution Art I, Sec. 8, Cl. 8).

6.2 The Scope of Incorrect Information

One may argue that most patents are low value and that important patents that contain

inaccurate data will be litigated; thus, battling bad data in the patent system ex-post may

be the most efficient way to combat poor information. Furthermore, since the incidence of

unsupported patents is low, perhaps one could accept these patents as acceptable costs of

having the patent system.
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In response, we emphasize that unsupported patents—patents that contain retracted

material—represent just a small fraction of the poor-quality data in the patent system.

While we focused on unsupported patents because retractions permit clear-cut

classification of incorrect information, prior literature suggests that the problem of

incorrect information is much more widespread as most experiments reported in patents

have major methodological flaws that are linked to irreplicability (Freilich 2020; Ouellette

2012; Ouellette 2017). For instance, Freilich (2019) examined the universe of life science

patents and found that half of them contain no experimental data at all and rely only on

conjectures, and, of the patents that do disclose experimental data, approximately one

quarter contain fictional—speculative—experiments. In addition, we note that 18% of the

4,322 retracted papers in our sample were cited by patents.14 While a citation linkage does

not always mean that retracted information is incorporated into a patent, it does suggest

that the problem of retracted information in patents extends far beyond the patent-paper

pairs studied in this paper.

Furthermore, there is reason to believe that despite their low incidence, the unsupported

patents in our sample may be economically important. In Appendix E, using a measure of

patent value developed by Kogan et al. (2017), we conduct a prediction exercise to assess the

economic value of the unsupported patents by adopting a method from Hsu et al. (2021).

We approximate that the unsupported patents are on average worth $7 million.15 While

this is a back-of-the-envelope exercise, this does suggest that the unsupported patents in our

sample may be economically valuable. This is perhaps not surprising given that these patents

are life science patents (which tend to be higher value as compared to patents from other

industries), and many have a corresponding paper published in a high-impact journal from

prestigious institutions. Prior work has also shown that patents that directly cite science

have higher economic value than patents that do not (Krieger et al. 2021).

Finally, the patent system’s failure to recognize inaccurate data ex-ante—before

litigation—may undercut its ability to properly incentivize downstream innovation.

Potential innovators may be deterred from innovation in the first place due to existing bad

patents; in that case, litigation would not come into play at all. Patents granted on the

14Marx and Fuegi (2020) provides data on patents that cite scientific articles.
15In 1982 dollars. In Appendix E, we benchmark this number against other references.
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basis of poor-quality information to patentees who could not actually develop the

technology may therefore tax innovators who could make legitimate progress in the area

covered by the patent because it is more difficult both to do downstream research and to

get a patent as a subsequent entrant in a field (Roin 2008). Further, even patents that will

be found invalid in litigation can be used in nuisance suits, a tactic exploited by so-called

“patent trolls” (Cohen et al. 2019; Feng and Jaravel 2020).

7 Conclusion

The patent system is largely insensitive to inaccurate information, and we believe this is

likely due to lack of awareness and breakdown in institutional communication. While we do

not think patent examiners are well positioned to police information quality for all patents,

nor would it be cost-effective for them to do so, we recommend that applicants,

particularly universities, conduct internal checks to avoid filing patents with retracted

information. Furthermore, downstream applicants should check for the presence of

obviously incorrect information in prior art references used to reject their applications.
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Figure 1: Unsupported Patents vs. Retracted Papers: Mean Annual
Citations Received
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Notes: This figure plots the mean number of annual citations received by the 85 unsupported patent families
of our main sample and their corresponding retracted papers -/+5 years since retraction.
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Figure 2: Event Study: Impact of Retraction on Downstream Citations
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(B) Examiner-Added Citations (C) Applicant-Added Citations
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Notes: These figures plot the coefficients from the estimation of Equation 3 and 95% confidence intervals,
and show the impact of retraction on downstream citations. The outcome variable is the number of annual
citations received by the patent family -/+5 years since retraction; Panel A plots the total citations, while
Panels B and C decompose the citation count into examiner-added and applicant-added citations. The unit
of analysis is a patent family × year, and the sample includes 170 patent families (85 unsupported and 85
control), which is equivalent to 1,648 patent family-years.
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Table 2: Summary Statistics

(A) Patents

Unsupported Controls

Mean Min Max Mean Min Max t-statistic

Priority year of the family 2007.06 1995.00 2016.00 2007.59 1998.00 2015.00 0.82
Retraction year (real or counterfactual) 2013.26 2002.00 2019.00 2013.26 2002.00 2019.00 0.00
Family age at retraction year 6.20 1.00 19.00 5.66 0.00 14.00 -1.02
Family size at retraction year 6.51 1.00 32.00 5.77 0.00 49.00 -0.75

Triadic 30% - - 28% - - -0.33
Non-industry assignee 81% - - 87% - - 1.05

Technology class
A61: Medical 56% - - 56% - -
C12: Biochemistry, microbiology, etc. 24% - - 24% - -
C07: Organic chemistry 10% - - 10% - - -
G01: Measuring, testing 5% - - 5% - -
A01: Agriculture 3% - - 3% - -
G06: Computing, calculating, counting 1% - - 1% - -

Maintained or prosecuted by applicant after retraction 63% - - 84% - - 2.69
Rejected by examiner after retraction 22% - - 40% - - 1.96

N of citations per year
5 years before retraction 2.27 0.00 22.83 3.67 0.00 31.60 1.93
5 years after retraction 1.79 0.00 24.80 3.74 0.00 61.60 2.08

Litigated before retraction 0% - - 1% - - 1.00
Litigated after retraction 0% - - 2% - - 1.42

N of patent families 86 86 -
N of individual patents (granted or application) 589 576 -
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Table 2: Summary Statistics Continued

(B) Papers

Retracted Controls

Mean Min Max Mean Min Max t-statistic

Publication year 2008.93 2001.00 2017.00 2008.81 2001.00 2017.00 -0.19
Retraction year (real or counterfactual) 2013.35 2002.00 2019.00 2013.26 2002.00 2019.00 -0.14
Age at retraction 4.42 0.00 12.00 4.44 0.00 12.00 0.06

Journal Impact Factor 22.75 3.24 91.25 22.95 3.24 91.25 0.07
Journal Impact Factor Percentile 87.17 41.20 99.70 87.37 41.20 99.70 0.09

Retraction reason
Error; unreliable results; contaminated materials 60% - - - - -
Fabrication; fraud; misconduct 38% - - - - - -
Unknown 2% - - - - -
Duplication; plagiarism 0% - - - - -

N of citations per year
5 years before retraction 7.42 0.00 56.00 14.18 0.00 248.67 1.79
5 years after retraction 2.61 0.00 15.60 20.15 0.00 324.20 3.45

N of papers 84 86 -

Notes: This table reports the summary statistics of our main sample: the universe of retracted patent-paper pairs in the biomedical sciences (as
indexed in Medline from 2001 to July 2019) and their control, none-retracted patent-paper pairs. The controls were exactly matched on the publication
year of the paper, journal of the paper, and the primary technology class of the patent and inherited the counterfactual retraction date from their
retracted counterparts. Two of the retracted papers were associated with two patents. The last column reports the t-statistic or the χ2, comparing
the means. All of the patent summary statistics are based on the full sample of 172 patent families (86 unsupported and 86 control), except for the
statistics on citations, maintenance/prosecution by the applicant, and examiner rejection, which were based on subsamples that were used for the
analyses in Table 3 and Table 4.
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Table 3: Impact of Retraction on Prosecution, Maintenance, and Rejection

(1) (2) (3) (4)
VARIABLES Applicant Action Applicant Action Examiner Rejection Examiner Rejection

Retracted -0.192** -0.192** -0.162 -0.151
(0.081) (0.091) (0.100) (0.102)

Retraction-year FE YES NO YES NO
Age-at-retraction FE YES YES YES YES
IPC class FE YES NO YES NO
Unsupported-control match FE NO YES NO YES
N of patent families 126 126 100 100

Notes: The table reports estimation from Equation 1. Linear probability model was used, and the unit of analysis is a patent family. Columns

1 and 2 show applicants’ reaction to retraction and report whether the applicant continued to pay maintenance fees for any granted patent

or prosecute any patent application in the family after retraction. Columns 3 and 4 show examiners’ reaction to retraction and whether the

examiner rejected any patent in the family for lack of either enablement or written description after retraction. We selected the appropriate

subsamples for each of our analyses, such that the timing of the retraction could have impacted the outcome (see Appendix Figure A.1 for

more details); 126 patent families (63 unsupported and 63 control) were used for our analysis on applicant action, and 100 patent families (50

unsupported and 50 control) were used for our analysis on examiner rejection. Columns 1 and 3 include retraction-year, age-at-retraction, and

technology class fixed effects. Columns 2 and 4 include age-at-retraction and unsupported-control match fixed effects. Unsupported-control

match fixed effects are indicators for every unsupported family and its matched control counterpart; since our sample consists of 1-to-1 matching

of unsupported and control families that match on covariates such as technology class and the control family inherits the counterfactual retraction

year from its unsupported counterpart, specifications with unsupported-control match fixed effects do not include retraction-year or technology

class fixed effects. Robust standard errors are in parentheses. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Impact of Retraction on Downstream Citations

(1) (2) (3) (4) (5) (6)
OLS OLS OLS Poisson Poisson Poisson

VARIABLES Total Examiner Applicant Total Examiner Applicant

Treat × Post-Retraction -0.302 0.224 -0.526 -0.001 0.119 -0.198
(0.682) (0.311) (0.572) (0.146) (0.159) (0.207)

Post-Retraction indicator YES YES YES YES YES YES
Calendar-year FE YES YES YES YES YES YES
Patent family age FE YES YES YES YES YES YES
Patent family FE YES YES YES YES YES YES
N of patent families 170 170 170 160 160 128
N of patent family-years 1648 1648 1648 1564 1564 1266

Notes: This table reports results from the estimation of Equation 2 and shows the impact of retraction on downstream citations. The unit of

analysis is a patent family × year, and the sample includes 170 families (85 unsupported and 85 control). In Column 1, the outcome variable is

the number of total annual citations received by the patent family -/+5 years since retraction, while Columns 2 and 3 decompose the citation

counts by whether the citation was added by the examiner or the applicant. Columns 4-6 report results using Poisson specifications; for the

Poisson specifications, some patent families never received a citation in our time period and hence dropped out of the regressions. Standard

errors are clustered at the patent family level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Appendix Figure A.1: Timing of Retraction and Sample Selection

Priority
Grant

Examination

Examiner 
rejects

Patentee
lets lapse

Maintenance

What % of unsupported families and their 
matched control families both had a 

retraction after priority year?
170/172 families (99%) =

sample for downstream citation analysis

What % of unsupported families and their matched 
control families both had a retraction after the 

priority date but before patent 
grant/abandonment/withdrawal (i.e. while a family 

member was being actively prosecuted)?
100/172 families (58%) =

sample for examiner decision analysis

Applicant
abandons

Patent expires

What % unsupported families and their matched control 
families both had a retraction while a family member was 

either being prosecuted or being maintained?
126/172 families (73%) =

sample for applicant action analysis

Active patent/application

Inactive patent/application

Notes: This figure provides a timeline of a patent application as it progresses through the patent system, as well as what fraction of our sample of
172 patent families (86 unsupported and 86 controls) experienced a (real or counterfactual) retraction at each stage of a patent life cycle. We selected
the appropriate subsamples for each of our analyses on applicant actions (Table 3), examiner decisions (Table 3), and downstream citations (Table 4),
such that the timing of the retraction could have impacted the outcome. Note that 72/86 (83%) of the unsupported families had a retraction while
a family member was either being prosecuted or being maintained, while 61/86 (71%) of the unsupported families had a retraction after the priority
date but before patent grant/abandonment/withdrawal. The subsamples in the above figure are smaller since we further restricted the sample to
unsupported families whose matched control families also had relevant retraction timing. See Appendix A for details.
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Figure A.2: Distribution of Patent Citations
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Notes: These figures plot the distributions of annual citations received by the 170 patent families in
our sample on downstream citation analysis (85 unsupported and 85 control families).
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Figure A.3: Event Study: Impact of Retraction on Downstream
Citations - Treatment Heterogeneity

Baseline
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Notes: This figure parallels Figure 2. Panels A-C plot the coefficients from the estimation of
Equation 3, modified to drop the indicators for leads and lags around the retraction event that are
common to both unsupported and control patent families. Panels D-F plot the coefficients from the
same modified version of Equation 3 as Panels A-C but using an alternative estimator developed by
Sun and Abraham (2021) that accounts for treatment heterogeneity. Appendix C provides more
details.
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Appendix Table A.1: Impact of Retraction on Downstream Citations - Balanced Sample

(1) (2) (3) (4) (5) (6)
OLS OLS OLS Poisson Poisson Poisson

VARIABLES Total Examiner Applicant Total Examiner Applicant

Treat × Post-Retraction -0.176 0.163 -0.339 -0.038 -0.046 -0.098
(0.715) (0.392) (0.606) (0.142) (0.181) (0.174)

Post-Retraction indicator YES YES YES YES YES YES
Calendar-year FE YES YES YES YES YES YES
Patent family age FE YES YES YES YES YES YES
Patent family FE YES YES YES YES YES YES
N of patent families 118 118 118 112 111 90
N of patent family-years 826 826 826 784 777 630

Notes: This table parallels the results from Table 4, but using a balanced sample (in relative time to retraction) and examining -/+3 year

window around the retraction event. We selected unsupported patents that have a full citation history of -/+3 years around the retraction

event and whose control patents also have a full citation history of -/+3 years around the retraction event. This led to a sample of 118 patent

families (59 unsupported and 59 control). The unit of analysis is a patent family × year. Statistical significance is indicated as: *** p<0.01, **

p<0.05, * p<0.1. See Appendix A for more details.

98



Appendix Table A.2: Impact of Retraction on Downstream Citations -
Papers

(1) (2)
OLS Poisson

VARIABLES Citations Citations

Treat × Post-Retraction -10.599*** -1.470***
(3.481) (0.121)

Post-Retraction indicator YES YES
Calendar-year FE YES YES
Paper age FE YES YES
Paper FE YES YES
N of papers 166 164
N of paper-years 1505 1488

Notes: This table parallels the results from Table 4, modified for papers. The unit of analysis is a

paper × year. Standard errors are clustered at the paper level. Calendar year fixed effects consist

of full set of twenty-one indicator variables from 2001 to 2021; age fixed effects consist of twelve

indicators, with the age eleven indicator including all subsequent age indicators. The sample includes

the corresponding papers of the 170 patents in Table 4 whose publication year occurred after retraction

year: 166 papers (82 retracted papers and 84 control papers). For the Poisson specification in Column

2, some papers never received a citation in our time period and hence dropped out of the regression.

Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Appendix Table A.3: Predicting Patent Value

(1) (2)
VARIABLES KPSS value KPSS value

N of forward citations (5 years after grant) 0.018*** 0.023***
(0.005) (0.005)

N of backward patent citations 0.002*** -0.001**
(0.001) (0.001)

N of backward non-patent citations 0.025*** 0.036***
(0.003) (0.003)

N of inventors 0.163** 0.055
(0.065) (0.063)

N of claims 0.068*** 0.071***
(0.015) (0.014)

Triadic 4.081*** 4.026***
(0.361) (0.353)

R&D Intensity 117.794***
(4.217)

Investment Intensity -93.529***
(7.004)

SG&A Intensity -95.927***
(1.902)

Ads Intensity 368.342***
(8.448)

R-squared 0.296 0.330
Issue-year FE YES YES
IPC Group FE YES YES
N of patents 68712 68712

Notes: This table shows the relationship between patent value and their characteristics. For patent

value, we use a measure developed by Kogan et al. (2017)—the “KPSS” measure—which estimates

the economic value of a patent by measuring the stock market reaction around the day the patent

is issued to the firm. Adopting an approach by Hsu et al. (2021), using an OLS model, we regress

the KPSS values on various patent and firm characteristics in the sample of patents owned by public

firms provided in Kogan et al. (2017) that were issued from 1997 to 2020, cite at least one scientific

article, and can be matched to the CRSP/Compustat Merged Database. Patent characteristics

were downloaded from PatSnap. Corporate characteristics were downloaded from CRSP/Compustat

Merged Database: R&D intensity (R&D expenditures/total assets), investment intensity (capital

expenditures/total assets), SG&A intensity (selling, general, and administrative expenses/total assets),

and ads intensity (ad expenses/total assets). Issue year and technology class fixed effects were also

included. All of the variables were winsorized at their 1% and 99% percentiles. Statistical significance

is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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A Sample Construction

Retracted patent-paper pairs

1. Identifying retracted papers: We retrieved all retracted papers from Medline that

were published between 2001 and July 2019. We excluded papers that are not

original research articles, such as reviews. We matched the papers to data provided

by Retraction Watch in May 2019 in order to obtain data on reason for reaction. We

only kept papers that specified that the retraction occurred because information in

the paper was incorrect (or did not provide a reason for retraction). We excluded

papers retracted due to reasons that cast no doubt on the veracity of the retracted

information (e.g. plagiarism, IRB problems).

2. Identifying patent pairs:

(a) From the set of retracted papers identified in Step 1, we identified all US patent

applications with (i) inventors who share the same name (first and last) as the first

or last author of the focal retracted publication and (ii) filing dates within +/-

2 years of paper publication. We obtained bibliographic patent data from Reed

Tech (https://patents.reedtech.com/parbbib.php), which provides bulk files

with author information for all applications filed each week.

(b) We ran a word similarity algorithm that calculated the number of words in

common between the paper abstract and the patent specification. The algorithm

stems words in the paper abstract and patent specification. The algorithm then

takes each word in the abstract and seeks that word in the specification. Finally,

the algorithm calculates the percentage of stemmed words in the abstract that

are also in the specification.

(c) For potential pairs that had >90% overlap between words in the paper abstract

and the patent specification, we manually reviewed the patent and the paper to

verify that the potential pairs identified by the algorithm are indeed true

patent-paper pairs. Our manual review incorporated two steps: (i) Review to

determine if the potential match is a true patent-paper pair by making sure that

the patent and the paper contain the same information in the text or in the

figures. (ii) Review to determine if the retracted material (as specified by the

retraction notice) from the paper is present in the patent and supports the
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patent’s claims. For retraction notices that did not specify the particular part of

the paper that was retracted, we assumed that the entire paper was retracted.

3. Some of our unsupported patents belonged to the same patent family. Since we

conducted all of our analyses at the family level, we chose the pair whose paper was

retracted first, and if there were still ties, we chose the pair whose paper was

published first. After these steps, we identified 107 patent-paper pairs at the family

level (101 papers; 96 patent families).

Control patent-paper pairs

1. Identifying control papers: we identified all non-retracted, original research papers in

Medline that were published in the same year and journal as the retracted papers of

our patent-paper pairs (n = 142,579 papers)

2. Identifying control patent-paper pairs: we determined which control papers had

associated patents using the same word similarity algorithm described earlier and

identified potential control pairs with word overlap score >0.9 (n = 11,225 pairs). We

further narrowed down this pool by focusing on potential control pairs with the same

primary technology class as the unsupported patents, using the International Patent

Classification (IPC) system at the class level (n = 4,550 pairs).

Note that while we would have liked to have matched controls on additional covariates

of interest, the pool of potential controls for each unsupported patent is highly skewed.

Some unsupported patents have very few potential controls left after matching on paper

publication year, paper journal, and IPC class and thus we were unable to match on

additional covariates.

3. After matching on paper publication year, journal, and IPC class, we then manually

reviewed the pool of potential control pairs to confirm that these potential pairs were

indeed pairs. Specifically, for each retracted patent-paper pair, we sorted the potential

control pairs by the word overlap score measuring correspondence between patent and

paper and manually reviewed them in descending order of the score until we identified

a true control pair. By sorting the potential control pairs by their word overlap score,

we prioritize the manual review of potential control pairs in which the patent closely

copies the language from the paper or if the patent and the paper use common, generic
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language, but we believe this should not affect the treatment assignment (retraction)

or the outcome (e.g., citations that the patent receives).16

4. Some unsupported patents have the same journal, publication year, and IPC class (and

hence have the same control pool). We randomly assigned one control pair to each such

retracted pair, so the control pair can inherit one counterfactual retraction year.

5. Finally, some patents are associated with multiple papers. For these cases, we chose

the pair whose paper was retracted first. If there were still patents left associated with

multiple papers, then we chose the pair whose paper was published first.

After the 1-to-1 matching procedure, we were able to find control patent-paper pairs for

86 of our retracted patent-paper pairs, leaving us with a sample of 86 retracted pairs (86

unsupported patents and 84 retracted papers; two of the retracted papers were associated

with two patents) and 86 control pairs (86 control patents and 86 non-retracted papers).

Identifying patent family members

Because members of a patent family often contain identical or very similar specifications,

our unit of analysis is a patent family. For our 86 unsupported and 86 control patents

identified above, we sought all of their family members. We defined related applications as

both applications filed in other countries (for example, a U.S. patent may have a Japanese

counterpart) and parent and/or child applications, including divisionals, continuations, and

continuations-in-part. We obtained family information from Google Patents.

Using family members provides a more detailed picture of how applicants are treating

these applications. This is particularly true because patent attorneys in this field tend to

think about patent strategy on the level of the family (or portfolio) rather than the individual

patent, so understanding family-level behavior is a better indicator for applicant behavior

than individual applications.

16We are facing a measurement error problem since the word similarity algorithm is not perfect. We have a
pool of potential control patent-paper pairs that were algorithmically identified—only some of them are true
patent-paper pairs, while others are false pairs. We argue that this measurement error is random—being
a true vs. false pair in this pool of potential pairs is not a confounder and does not affect the treatment
assignment (retraction) or the outcome (e.g., citations that the patent receives). Although patent-paper pairs
may receive more citations than non-pairs, all of our potential patent-paper pairs “look like” patent-paper
pairs, so even if some of them might not actually be true pairs, they will likely still be cited highly.
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Timing of retraction and sample selection

In order to conduct our analyses, it is important to understand whether the retraction

occurred before or after our outcomes of interest. For instance, to investigate whether an

examiner reacts to retraction, the retraction must have first occurred before the examiner

makes a final decision to grant or reject the patent;17 if the retraction occurred after the

patent had already been granted or rejected, then this patent should not be included in our

sample for our analysis on examiner rejection.

Appendix Figure A.1 provides a timeline of a patent application as it progresses through

the patent system, as well as what fraction of our sample of patent families experienced a

(real or inherited counterfactual) retraction at each stage of a patent life cycle. A patent

application undergoes the following stages: (i) the applicant files the first patent application

in the family (the priority stage); (ii) provided the applicant does not abandon the application

beforehand, the application arrives in the examiner’s desk, who either rejects or grants the

patent; (iii) if the patent is granted, the applicant pays maintenance fees to keep the granted

patent active or chooses to let the patent lapse; and (iv) finally, typically after twenty years,

the terms of the patent expire.

We selected the appropriate subsample for each of our outcomes, such that the timing

of the retraction could have impacted the outcome. Among our sample of 172 patent

families, 85 of our unsupported patent families and their matched control families both had

a retraction after the priority year, so the sample of 170 families was used for our analysis

on the impact of retraction on downstream citations. 63 of our unsupported patent families

and their matched control families both had a retraction while a family member was either

being prosecuted or maintained, so this sample of 126 families was used for our analysis on

applicant’s decision to prosecute/maintain the patent. 50 of our unsupported patent

families and their matched control families had a retraction after the priority date but

before patent grant or abandonment (i.e. during prosecution), so this sample of 100

families was used for our analysis on the examiner’s decision to reject or grant the patent.

17Note here that we use the term “final” rejection colloquially to mean a rejection after which the applicant
stops pursuing the application. “Final rejection” is also a term of art used by PTO examiners to describe
certain types of rejections but it is possible under some circumstances for the applicant to continue pursuing
the application even after such a rejection.
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Unbalanced vs. balanced samples for downstream citation analysis

Our main analysis on downstream citations examines a period of +/- 5 years around

the retraction event. This sample is unbalanced, as there are some patent families that

experienced retraction early, leaving them with fewer years of pre-retraction citation data,

while some patent families were retracted recently, leaving them with fewer years of

post-retraction citation data. In order to retain as much of our sample as possible, our

main analysis is based on the unbalanced sample.

As a robustness check, we narrow our sample to a smaller but balanced sample (in

relative time to retraction). We selected unsupported patents that themselves have full

citation history of +/- 3 years around the retraction event and whose control patents also

have full history of +/- 3 years around the retraction event.18 This led to a sample of 59

unsupported and 59 control pairs. As shown in Appendix Table A.1, while the magnitudes

slightly change, the results remain similar.

B Data Collection

Prosecution: We obtained data on whether a US patent application was prosecuted

after the retraction event. Data was collected manually from the USPTO’s Public Patent

Application Information Retrieval system (PAIR). We considered an application to have been

prosecuted after retraction if the prosecution file history contained a filing that required an

affirmative action from the applicant (e.g. responding to an office action or filing an IDS), as

opposed to the examiner, and occurred after the retraction date. Our information is current

as of August 2020 and applies to US patents only.

Maintenance fee payment: We obtained data on payment and dates of payment from

Google Patents, and included that information in our analysis for every country for which

the information was available. Our information is current as of August 2020.

Examiner rejection: We obtained data from the USPTO’s Office of the Chief

Economist.19

18We chose a smaller window of +/-3 years of the retraction event instead of the +/-5 years window
because the +/-5 years window yielded too few patents.

19Available here: https://www.uspto.gov/learning-and-resources/electronic-data-products/

office-action-research-dataset-patents.
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Downstream citations: We obtain citation data for all family members from Google

Patents, which tracks citations from patents filed in 22 jurisdictions. We included citations

to both patent applications and granted patents in the family.

We then sought to determine the citation date for each citing document. Generally,

studies that use patent citation dates assume that the citation date is (1) the priority date

(Bacchiocchi and Montobbio 2009); (2) the year of patent filing (Alcácer and Gittelman

2006); or, most commonly (3) the patent grant date (Hall et al. 2001; Jaffe and Trajtenberg

1999; Nicholas 2008). Because we seek to understand how citation patterns to patents change

when the corresponding paper is retracted, all of these strategies are imperfect measures.

Patent grant date is certainly later than both applicant-added and examiner-added citations,

and, moreover, we use patent applications, not all of which have been granted. Priority

date might be the correct citation date for some applicant-added citations, but is certainly

erroneously early for examiner-added citations. We chose to use filing date to approximate

citation dates because, although it is also likely early for examiner-added citations, it is

more accurate than either the patent grant date or the priority date. Note that due to the

imperfect method of determining exact citation dates, the year of first citation can precede

the priority year for some of our patent families. Citation data was collected in March 2022.

Partial or full paper retraction: In order to determine whether parts of a retracted

paper remained good science even after the retraction, we read the text of each retraction

notice and classified it as partially or entirely retracting the paper. Partial retractions

suggest that some of the results reported in the paper are valid, despite the retraction. Total

retractions suggest that none of the results reported in the paper are valid.

Citation data for papers: Downstream citation data for the papers of our

patent-paper pairs was directly exported from PubMed’s “Cited By” section in March

2022. The “Cited By” section uses data from publishers and the National Center for

Biotechnology Information (which maintains PubMed). Although this citation data may

miss citations from, for instance, non-PubMed articles, since our study focuses on the life

sciences, we do not expect our papers to receive many citations from non-PubMed articles.

Journal impact factor: Journal Impact Factor (JIF) from 2020 of the papers in our

sample were collected from Clarivate Analytics.

Patent owners: We obtained information on assignee from PatSnap and classified the

assignee as either industry or non-industry. Individuals were classified as non-industry.

Patent technology class: We obtained the primary International Patent Classification

(at the class level) of the patent, as identified by PatSnap.
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Litigation: We obtained litigation data from Google Patents. Litigation includes court

trials but does not include administrative proceedings.

Triadic patent families: We collected data on whether and when applications were

filed in the USPTO, EPO, and JPO from Google patents. All triadic patent families had at

least one application filed in each of the USPTO, EPO, and JPO by the retraction date of

the corresponding paper (or counterfactual).

C Treatment Heterogeneity

Goodman-Bacon (2021) highlights that when there is heterogeneity in treatment effects

over time, DD estimates can be biased due to already-treated units serving as controls in

later time periods. A potential solution is an “event studies” framework like Equation 3

that estimates the dynamics of treatment effects over time. However, Sun and Abraham

(2021) shows that treatment heterogeneity can also contaminate event studies if the “shape”

of the treatment effects changes (a slope change in treatment dynamics for cohorts treated

at different times) and proposes a new estimator that addresses this problem.20

Our main event studies specification, based on Equation 3 and shown in Figure 2,

includes indicators for leads and lags around the retraction event that are common to both

unsupported and control patent families (Jaravel et al. (2018)). The alternative estimator

proposed by Sun and Abraham (2021) that accounts for treatment heterogeneity does not

include these leads and lags, so we first estimated a baseline specification based on a

modified version of Equation 3 that dropped these leads and lags (Panels A-C of Appendix

Figure A.3). Then in Panels D-F of Appendix Figure A.3, we plotted the coefficients from

the same modified version of Equation 3 as in Panels A-C but using the alternative

estimator developed by Sun and Abraham (2021). Results remain similar to Figure 2, our

main event studies specification.

D Legal Appendix

20Note that Sun and Abraham (2021) formerly establishes the validity of their estimator for specifically
balanced panels without covariates, and additional assumptions are likely needed to establish validity for
unbalanced panels and inclusion of covariates, particularly to deal with problems like attrition in unbalanced
panels. Although we have an unbalanced panel with covariates, note that our panel is unbalanced not due
to attrition but because patent families are “born” at different calendar times and we do not observe the
patents before they are born.
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Duty of disclosure

Applicants (including attorneys and assignees) for US patents owe a duty of disclosure,

candor, and good faith to the USPTO (37 CFR 1.56) which requires disclosure of “all

information known to that individual to be material to patentability.” (MPEP 2001.01).

Would knowingly prosecuting a patent application that contains retracted material, and

failing to disclose that fact to the PTO, be in violation of the duty of disclosure? The

answer depends on the precise facts of the retraction and patent in question, in particular

how important the retracted material was to patent grant, but it is likely that such a failing

would often violate the duty of disclosure. Although we were unable to find cases directly

addressing the question of retracted information, several cases have found that including

fabricated data21 in the patent specification violates the duty of disclosure (e.g., Techno

Corp. v. Kenko USA, Inc., 515 F.Supp.2d 1086 (N.D. Cal. 2007) and Hoffmann-La Roche,

Inc. v. Promega Corp., 323 F.3d 1354 (Fed. Cir. 2003)).

Ex-post invalidation of patents with inaccurate information

After a patent is granted, it can be challenged in either litigation or a post grant review

proceeding at the USPTO. If a patent with inaccurate information is erroneously granted, a

challenger can raise the presence of inaccurate information in litigation as part of a validity

challenge. However, the presence of inaccurate information cannot be raised in inter partes

review (IPR) proceedings, the most common type of post grant proceeding.

Circumstances under which a patent with incorrect information is invalid

To be valid, a patent must claim an invention that is useful (35 U.S.C. § 101) and describe

the invention in sufficient detail that another skilled in the field of the invention could make

and use the invention without undue experimentation (35 U.S.C. § 112).

Incorrect information in the patent may mean that these requirements are not met. If the

information is sufficiently problematic that the invention does not work at all, it is invalid

under both § 101 and § 112. But a patent with incorrect information could still be valid

if it covers many different variations of an invention, and some work but others do not or

if another scientist could overcome the incorrect information with a reasonable amount of

experimentation.

21Note that not all unsupported patents contain fabricated data—many contain retracted material that
results from errors, not fraud.

108



The quantum and nature of incorrect information that merits retraction of a paper versus

invalidation of a patent differs, and not every paper retraction will require patent invalidation.

Moreover, the patent validity requirements described above are not bright line rules and are

difficult to interpret in specific cases, making it challenging to ascertain precisely when

incorrect information in a patent would require invalidation.

We address this in two ways. First, we removed papers retracted for reasons that would

have little bearing on patent validity (e.g. plagiarism). Second, this study includes only

patent-paper pairs where the patent claim is supported by the retracted data. This increases

the likelihood that the paper retraction indicates a validity problem with the patent.

Circumstances under which an examiner’s rejection based on prior art that

contains retracted material would be erroneous

Patent applications can be rejected for (1) lack of novelty or (2) obviousness. Examiners

issuing either rejection will cite to specific prior art, but the impact of retracted material in

that prior art is different for the two rejections.

1. Lack of novelty: Examiners may only make this rejection if the prior art is enabled,

meaning that the prior art discloses the invention in sufficient detail that others in the

field could make and use the invention. Thus, a rejection for lack of novelty is not

correct if the invention described by the prior art does not work.

2. Obviousness: The prior art in obviousness rejections does not need to be enabled.

Thus, as a theoretical matter, retracted material could properly be used as prior art.

In practice, however, it would often not be proper for an examiner to cite retracted

material as part of an obviousness rejection because the fact of retraction demonstrates

that the retracting scientist could not actually make the invention, which in turn

suggests that it is not obvious to scientists in the field how to make the invention.

E Estimating Economic Value

We use a measure of patent value developed by Kogan et al. (2017)—the “KPSS”

measure—which estimates the economic value of a patent by measuring the stock market

reaction around the day the patent is issued to the firm. Because the KPSS measure only

applies to US patents owned by public firms, and our patents are predominantly owned by
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non-industry institutions, we adopt an approach taken by Hsu et al. (2021), where the

authors estimate the predicted value of academic patents using the KPSS data. We regress

the KPSS values on various patent and corporate characteristics in the sample of patents

owned by public firms provided by Kogan et al. (2017),22 and then apply the coefficients

estimated from this regression to our unsupported patents to predict their value.

Specifically, we first narrowed the Kogan et al. (2017) data to patents that were issued

from 1997 to 2020 and to patents that cite at least one scientific article, using the

patent-science linkages provided by Marx and Fuegi (2020), to ensure that these corporate

patents have direct links to science like the unsupported patents in our sample. Since the

economic value of patents owned by firms in the KPSS data comes from both the

technology underlying the patent and the complementary assets of the firms (Hsu et al.

2021), we further narrowed the sample to patents whose firms have non-missing corporate

characteristics in the CRSP/Compustat Merged Database. This led to a sample of 68,712

patents. Using an OLS model, we then regressed the KPSS value on various patent

characteristics23 (Column 1) and both patent and corporate characteristics (Column 2), as

shown in Appendix Table A.3.

We then applied the coefficients from Column 2 of Appendix Table A.3 on our sample

of unsupported family members and estimated that each member is predicted to have on

average a value of $42 million.24 How can we benchmark this number? The average value

of patents from public firms in the KPSS data (that cite science at least once and can be

matched to the CRSP/Compustat Database) is $27 million, so our unsupported patents are

predicted to have higher value than the average patent in the KPSS data. We were also able

to directly match one of our unsupported families owned by a corporation to the KPSS data,

and this patent had a value of $51 million, which is also higher than the average patent in

the KPSS data.

22Data can be downloaded at https://github.com/KPSS2017.
23We are unable to use the datasets used by Hsu et al. (2021) as some of them end before our sample

period; we thus use a different data source (PatSnap) and patent characteristics. Note that PatSnap may
not define certain types of information exactly the same as Google Patents (the bulk of our data for our
main analyses).

24In 1982 dollars. Academic patents were assumed to have zero values for corporate complementary
assets: R&D intensity (R&D expenditures/total assets), investment intensity (capital expenditures/total
assets), SG&A intensity (selling, general, and administrative expenses/total assets), and ads intensity (ad
expenses/total assets). The KPSS method cannot be applied to non-US patents or patent applications, so
we excluded them from our average (despite the fact that not yet granted patent applications can still be
economically valuable and are often licensed or sold before their grant).
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A caveat is that we believe that the predicted value reported above is an upper-bound

of our unsupported families’ economic value. Since Hsu et al. (2021) found that universities

can capture approximately 16% of the patent’s potential value, we conservatively estimate

that the unsupported patents are on average worth $7 million ($42 million Ö 0.16). Despite

the limitations of this exercise, the results suggest that the unsupported patents may be

economically valuable.
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Chapter 4

Insurance Design and Pharmaceutical

Innovation

(with Leila Agha and Danielle Li)

Abstract

This paper studies how insurance coverage policies impact pharmaceutical innovation. In the

United States, most patients obtain prescription drugs through insurance plans administered

by Pharmacy Benefit Managers (PBMs). Beginning in 2012, PBMs began refusing to provide

coverage for many newly approved drugs when cheaper alternatives were available. We

document a shift in pharmaceutical R&D strategies after this policy took effect: therapeutic

classes at greater risk of exclusion experienced a relative reduction in investments. This shift

reduced development of drug candidates that appear more incremental: that is, those in

drug classes with more pre-existing therapies and less scientifically novel research.

*Published in: Agha, Leila, Soomi Kim, and Danielle Li. 2022. ”Insurance Design and Pharmaceutical

Innovation.” American Economic Review: Insights, 4 (2): 191-208.
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1 Introduction

Technological innovation is a major driver of rising healthcare spending, raising questions

as to whether current payment systems appropriately balance incentives to innovate with

cost containment. While insurance expansions have been shown to spur R&D investments,

critics argue that generous coverage policies create perverse incentives for firms to develop

expensive products with little incremental clinical value.1

As prescription drug costs rise, politicians and policymakers have increasingly called for

the federal government to contain spending by limiting insurance coverage for high-cost,

low-value treatments. Despite the importance of this policy debate and the widespread

adoption of value-based pricing and coverage decisions outside the US, there is limited

empirical evidence on how insurance design shapes incentives for medical innovation.

In this paper, we study the impact of a major change in coverage policies of private sector

prescription drug plans on upstream pharmaceutical R&D. Prior to 2012, private prescription

drug insurance in the US generally provided coverage for all FDA-approved drugs.2 To

manage costs, plans used a combination of cost-sharing tiers and ordeal mechanisms to

direct patients to less expensive drugs. However, these approaches were insufficient to curb

prescription drug spending, which grew rapidly during the 1990s and 2000s (Kamal et al.

2018). Beginning in 2012, Pharmacy Benefit Managers (PBMs), the intermediary firms that

manage most private prescription drug insurance plans, dramatically shifted their policies

and began excluding coverage for some drugs entirely. These exclusions applied to many

newly approved drugs without generic equivalents. This practice, known as maintaining a

“closed formulary,” has since become standard, with 846 branded drugs excluded by at least

one of the three largest PBMs as of 2020 (Xcenda 2020).

Closed formulary policies can substantially reduce the profitability of excluded drugs.

When GlaxoSmithKline’s blockbuster asthma inhaler, Advair, was excluded by Express

1For example, Stanford (2020) and Zycher (2006) have argued that the innovation benefits of generous
drug payment policies are large, while Bagley et al. (2015), Frank and Zeckhauser (2018), and Dranove et al.
(2020) highlight the risk that generous drug payments may yield excessive incremental innovation.

2There are exceptions to this pattern, with some private insurance plans applying restrictive formularies
prior to 2012. Importantly, these early formulary restrictions were set by individual plans, unlike the
post-2012 restrictions we study in this paper, which were centrally negotiated by Pharmacy Benefit Managers
that manage coverage for many different insurance companies with a shared formulary.
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Scripts in January 2014, its US sales fell by over 30% within a few months (Pollack 2014).

Similarly, exclusions can reduce the expected profitability of drugs that have yet to reach

the market. The high blood pressure medication Edarbi received FDA approval in 2011

but was almost immediately excluded by CVS Caremark in 2012, suppressing demand

before it could become established. By September 2013, Edarbi’s manufacturer, Takeda,

had sold off its US distribution rights, despite keeping these rights in other countries.

Declines in the potential profitability of drugs arising from downstream exclusion policies

can potentially affect pharmaceutical firms’ upstream R&D investments. For instance, since

its experience with Edarbi, Takeda has not developed any further drugs for hypertension,

choosing instead to focus on oncology and rare diseases, areas that have seen far fewer

exclusions.

Studying how PBM policies shape pharmaceutical innovation can inform our

understanding of how to design payment policies that balance innovation and cost

containment. These lessons, gleaned from the choices of private sector firms, can provide

insight into the possible effects of policy proposals governing how public insurers interact

with drugmakers.3 Indeed, the largest PBM, CVS Caremark, manages benefits for 75

million Americans—more than the number of enrollees in either Medicare or Medicaid.

We identify the effect of PBM coverage decisions on upstream innovation by comparing

drug development activity across therapeutic classes that vary in their risk of facing

exclusions, before and after the introduction of closed formulary policies. We begin by

matching hand-collected data on PBM’s excluded drugs with information on the

characteristics of over 100 therapeutic classes. We show that exclusions were more common

in drug markets that, prior to the introduction of closed formularies, had more existing

therapies and high prescription volume. Using this information, we create an index that

categorizes drug markets on the basis of their ex-ante predicted exclusion risk. We then use

data on drug development pipelines to track R&D investments across therapeutic classes

that vary in their predicted exclusion risk.

Following the introduction of closed formularies, pharmaceutical investments fell

markedly in drug classes at high risk of exclusions relative to trends in low risk classes. For

3Congressional Budget Office (2007) predicts that the government will not be able to negotiate lower
prices with drug manufacturers unless it adopts a PBM-pioneered model of providing preferential access for
specific drugs on publicly-run formularies.

114



a one standard deviation increase in a drug class’s exclusion risk, there was an 11% decline

in the number of drugs entering pre-clinical and clinical development. These declines affect

drug candidates in all phases of development, but are largest among earlier stage

candidates. We find no evidence that drug classes at higher risk of exclusion were on

different development trends in the five years prior to the introduction of exclusions. R&D

declined the most in high prescription volume markets with a large number of existing

therapies, as well as in classes where drug patents were based on older and less disruptive

science.

Our analysis identifies a relative decline in R&D across drug classes at high vs. low

exclusion risk, but cannot distinguish whether this comes from a total decline in innovative

activity or a reallocation of R&D investment. As a result, we are limited in our ability to

evaluate the full welfare implications of closed formulary policies. Our findings suggest,

however, that the policies of downstream drug buyers can influence the economic returns to

upstream pharmaceutical R&D. Prior to the introduction of closed formularies,

pharmaceutical firms could expect their drugs to be widely covered by insurers if they

become FDA approved. In this world, firms have strong incentives to develop incremental

drugs aimed at large disease markets—such drugs would be likely to receive FDA approval

and to generate a large base of revenues if approved. Yet with closed formularies, these

incremental drugs became precisely those at greatest exclusion risk.

We build on a broad literature examining the drivers of innovation across a range of

settings. A large body of evidence shows that public health insurance expansions create

incentives for firms to develop new technology (Acemoglu et al. 2006; Blume-Kohout and

Sood 2013; Clemens and Olsen 2021; Dranove et al. 2020; Finkelstein 2004; Krieger et al.

2017). Kyle and McGahan (2012) and Budish et al. (2015) highlight the role of patent policy

in encouraging innovation, while Yin (2008) studies the role of tax credits and Clemens and

Rogers (2020) focuses on public procurement incentives. Finally, public research funding

has positive spillovers on private patenting (Azoulay et al. 2019; Li et al. 2017), and local

agglomeration effects are an important driver of innovation (Jaffe et al. 1993) and technology

diffusion (Agha and Molitor 2018; Baicker and Chandra 2010).

Our paper contributes to this literature in two ways. First, to our knowledge, this is the

first study of how restricting prescription drug coverage affects pharmaceutical innovation.
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Theoretical work in this area highlights the tradeoff between insurance design and innovation

(Garber et al. 2006; Lakdawalla and Sood 2009). Although policies that restrict prescription

drug coverage and aggressively negotiate prices are widely used in Europe and Asia, there

is little empirical evidence of how these policies affect dynamic incentives for innovation.

Second, while existing work focuses on the role of public sector policies, ours is the first

to show that the decisions of private firms can have important effects on pharmaceutical

innovation. Our findings suggest that insurance design choices are powerful tools that may

shape the direction of pharmaceutical R&D.

2 Institutional Background

2.1 The Role of Pharmacy Benefit Managers (PBMs)

In the US, three key parties are involved in shaping payments and access to prescription

drugs: manufacturers who develop and produce new drugs, institutional payers such as

insurance companies and large employers, and pharmacy benefit managers (PBMs), who

design and administer drug insurance plans.4

Historically, PBMs were only responsible for processing insurance claims at the

pharmacy: verifying the patient’s coverage, obtaining payment from the insurer, and

transmitting that payment to the pharmacy. Over time, and in concert with a wave of

mergers, PBMs began playing a more active role in designing prescription drug plans on

behalf of insurers (Werble 2014). By 2016, the three largest PBMs—CVS Caremark,

Express Scripts, and OptumRx—collectively designed and administered 70% of private

prescription drug plans (Fein 2017).

Modern PBMs argue that they create value by lowering prescription drug spending for

institutional payers. One way that PBMs limit spending is through prescription drug

coverage that steers patients toward the lowest cost treatment options. Prior to the use of

exclusions, PBMs employed three tools to reduce demand for expensive drugs. First,

insurance plans assign expensive drugs to different coverage tiers, with higher patient

4There are, of course, other parties involved, such as physicians, wholesalers, and pharmacies. We focus
on the parties above because they play the largest role in coverage and R&D decisions. See Government
Accountability Office (2019) report for a more complete picture of the supply chain.
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cost-sharing. Second, prior authorization requirements imposed on select drugs require

physicians to obtain advance approval from the PBM or insurer prior to coverage. Finally,

step therapy requirements allow coverage for certain expensive drugs only after the patient

has tried and failed cheaper alternatives.

PBMs may also lower costs by pooling demand across multiple payers in order to

negotiate bulk discounts. Given the concentration in the industry and their role in shaping

patient demand, PBMs have substantial negotiating power with manufacturers.

Drugmakers routinely offer large rebates in order to secure more favorable formulary

positions. PBMs may return a portion of this savings to institutional payers and keep a

portion for themselves.

2.2 The Introduction of Formulary Exclusions

Prior to the introduction of closed formularies, PBMs had limited success in reducing the

use of expensive medications because pharmaceutical firms employed a variety of techniques

to circumvent their coverage restrictions. For example, to increase the use of drugs placed

in more expensive coverage tiers, pharmaceutical firms introduced “co-pay coupons” that

reduced patients’ out-of-pocket costs.5 Similarly, drug sales representatives actively helped

physicians’ offices fill out the paperwork necessary to request a prior-authorization—in some

cases by developing specialty software that would auto-fill these forms (Pinsonault 2002).6

Beginning with CVS in 2012, major PBMs responded by implementing closed formularies

(Pollack 2014). For the first time, PBMs published lists of drugs that their standard plans

would not cover at all, directing potential users to recommended alternatives.

Exclusions constituted a much more effective tool for formulary management. In an

investor call, Helena Foulkes, the President of CVS Pharmacy at the time, highlighted the

efficacy of exclusions:

“It is only through exclusion where we can prevent manufacturer subversion of a

formulary strategy with co-pay coupons. As shown, an exclusion formulary will

5Because the average implied co-insurance rate of even the highest tier drugs is roughly 30-40%,
subsidizing patient costs still netted pharmaceutical firms substantial revenues via the insurer contribution
(Claxton et al. 2011).

6One audit study found that 88% of prior authorization requests were approved by health plans
(Scott-Levin 2001).
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have more than a 95% preferred drug use versus 55% preferred share in tiered

formularies” (Foulkes 2015).

The success of closed formularies at curbing utilization reduces the profitability of

targeted drugs. Yet, perhaps more importantly, the threat of facing exclusion can also

reduce prices even if a drug is never excluded in practice. Stephen Miller, the Chief

Medical Officer of Express Scripts, describes using the threat of exclusion in price

negotiations with pharmaceutical manufacturers:

“Who is going to give us the best price? If you give us the best price, we will

move the market share to you...We’ll exclude the other products” (Miller and

Wehrwein 2015).7

Consistent with the market dynamics described by Garthwaite and Morton (2017), a credible

threat of exclusions reduces the net price that drugmakers can charge, regardless of whether

exclusions actually take place.

2.3 Formulary Exclusions and Upstream Innovation

As illustrated above, PBMs may use the threat of exclusions to extract surplus from

drug manufacturers. Manufacturers may make price concessions in order to compete for a

spot on the restrictive formulary, or the mere threat of exclusion could lead to lower prices

even if few drugs are actually excluded in equilibrium. In either scenario, closed formulary

policies—which enable the possibility of exclusions—may reduce the expected revenues of

drug candidates that can be credibly threatened with exclusions.

These changes in expected profitability may in turn influence pharmaceutical firms’

upstream R&D decisions. Specifically, concerns about formulary coverage may lead firms

to apply a higher “bar” for drugs at greater risk of facing exclusion. After the introduction

of formulary exclusions, industry consultants began routinely advising pharmaceutical

companies that “[m]arket access strategy should underpin decision-making throughout the

entire product lifecycle, including portfolio decision-making” (Siegal and Shah 2019).

Rather than simply demonstrating safety and efficacy (the standard for FDA approval),

7In line with this description, observers note that within a therapeutic class, PBMs are increasingly
selecting a single brand for coverage (Cournoyer and Blandford 2016).
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firms were also advised to conduct more ambitious clinical trials to demonstrate superiority

in head-to-head comparisons with competitor’s drugs (Schafer 2018; Siegal and Shah

2019).8 Formulary considerations may reduce the number of drug candidates promoted

through clinical testing both by weeding out drugs that do not meet this higher standard,

and by raising the cost and complexity of clinical trial design.

3 Data

To understand the impact of exclusion policies on innovation, the key economic object we

are interested in measuring is pharmaceutical firms’ perceptions of exclusion risk associated

with developing new drug candidates across different classes. The ideal measure would

capture both the risk that the new drug is itself excluded, as well as the risk that the new

drug is less profitable because it must offer large price concessions in order to avoid exclusion.

To develop our measure of exclusion risk, we link data on drug market characteristics

across classes (from First Data Bank) with the incidence of formulary exclusions (from

PBM documents). We then investigate the relationship between exclusion risk and drug

development by linking exclusion risk to Cortellis data on R&D activity. The data underlying

these analyses is summarized below.

1. Formulary Exclusions: We collected data on formulary exclusions, from publicly

disclosed standard formulary lists published by CVS Caremark, Express Scripts, and

OptumRX through 2017. Together, these firms account for approximately 70% of the

PBM market. Our data cover “standard” formulary exclusions: these exclusions apply

to most health plans administered by a particular PBM. Insurers may elect to provide

more expansive coverage by opting out of the standard formulary, but we do not have

information on exclusions within these custom plans.9

8In a related analysis, Seabright (2013) analyzes how drug procurement may affect trial design,
particularly the incentive to investigate treatment effect heterogeneity predictable by biomarkers. Cohen
et al. (2021) discuss how timing considerations may impact firms’ decisions to seek FDA approval.

9Custom plans are less common because they are likely to be substantially more expensive. For example,
on its payer-facing website, CVS encourages insurers to choose its standard (closed) formulary, for an
estimated 29% savings in per member per month drug costs (Brennan 2017).
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2. First Data Bank: We collect data on drug markets from First Data Bank (FDB)

(2018). FDB is a commercial database that contains information on each approved

drug’s ATC4 classification, pricing, and generic substitutes. We use this information

to construct drug-class level predictors of exclusion risk.

3. Cortellis Investigational Drugs: Our main analysis studies the impact of

formulary exclusions on drug development. We obtain data on pipeline drugs,

including both small molecule and biologic drugs, from Cortellis Investigational

Drugs database (Clarivate Analytics 2018). Cortellis tracks drug candidates using

data it compiles from public records: company documents, press releases, financial

filings, clinical trial registries, and FDA submissions. Drug candidates typically enter

the Cortellis database when they enter preclinical development. Because FDA

approval is prerequisite for beginning human clinical trials, Cortellis has near

complete coverage of drug candidates that advance into human testing.

Our primary outcome is the total number of drug candidates within a class that entered

or advanced to any stage of development each year. Table 1 Panel A reports the

summary statistics of development activity across different stages.

Throughout most of the paper, our unit of analysis is a narrowly defined drug class,

following the Anatomical Therapeutic Chemical (ATC) classification system. We use an

ATC4 (four-digit) level classification, which identifies chemical subgroups that share common

therapeutic and pharmacological properties. Appendix Table A.1 lists several examples of

ATC4 designations.

We interpret an ATC4 drug class as a “market,” where drugs within the class will typically

be partial substitutes for one another. We drop ATC4 categories that are not categorized as

drugs in FDB, such as medical supplies. We also restrict to ATC4 categories that contain

at least one branded drug on the market with no generic equivalent, and to those for which

we observe measures of prescription volume and price in 2011. Our primary sample has 127

ATC4 classes. Table 1 Panel B shows the summary statistics of various market characteristics

for our sample of ATC4s.
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4 Understanding Exclusion Risk

4.1 The Rise of Formulary Exclusions

Figure 1 Panel A illustrates the rise of drug exclusions over time and across PBMs. As

described in trade press and national media (Pollack 2014; Fein 2015), CVS began with the

exclusion of 38 drugs in 2012. Over the next five years, CVS oversaw a sustained expansion

in the number and types of excluded drugs. Express Scripts introduced its exclusion list in

2014, followed by OptumRx in 2016. By 2017, a total of 300 drugs were ever excluded by at

least one of the three major PBMs.

Exclusions largely targeted newer branded drugs: 75% of those excluded had no

molecularly equivalent generic substitute. Exclusions are concentrated in therapeutic areas

with large numbers of patients. Appendix Figure A.1 plots exclusions by disease category

at the drug level and shows that diabetes drugs have been the most frequently excluded.

Other disease categories with high numbers of exclusions include cardiovascular, endocrine,

and respiratory diseases.

PBM formulary choices affect patients’ drug use. It has been widely documented that

demand for drugs is elastic to out-of-pocket prices, implying that eliminating insurance

coverage for excluded drugs will suppress demand (Abaluck et al. 2018; Einav et al. 2017;

Choudhry et al. 2011; Tamblyn et al. 2001). In addition, several papers have shown that

formulary exclusions specifically reduce utilization of targeted drugs (Chambers et al. 2016;

Huskamp et al. 2003; Wang and Pauly 2005).10 In Appendix Table A.2, we verify this in our

own data by tracking how PBM exclusions affect Medicare Part D prescription volume over

time. Our findings indicate that a drug’s market share of claims (measured as the fraction

of the drug’s prescription volume relative to other drugs in the ATC4 class) falls by about

25% for each of the 3 major PBMs that exclude it.

10While CVS was the first PBM to implement a national closed formulary in 2012, the two older papers
cited above provide evidence from smaller scale exclusions by individual insurance plans. These earlier
coverage decisions affect many fewer patients than the PBM formularies we study here, but are likely to
have similar effects on the drug choices of enrolled patients.
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4.2 Predictors of Formulary Exclusion Risk

Using the FDB data, we construct several potential predictors of exclusion risk for ATC4

drug classes. We measure the availability of therapeutic alternatives using the number of

existing branded drugs within an ATC4, the number of existing generics within the same

class, and the number of finer-grained ATC7 subclasses. To account for the expected size

of the patient population, we use the total prescription volume across all drugs in a given

ATC4 class; this information is calculated from the Medicare Expenditure Panel Survey.

Finally, we collect data on the price of branded and generic drugs, keeping in mind that

price data do not reflect the rebates that manufacturers often pay to PBMs. All of these

market characteristics are from 2011, before the introduction of exclusions in 2012.

Figure 1 Panel B plots the coefficients from bivariate logit regressions of exclusion on

each drug class characteristic. Drug classes with higher prescription volume and more

treatment options are more likely to experience exclusions. These patterns are consistent

with contemporaneous descriptions of PBMs’ exclusion strategies, which indicate that

exclusions often target “me-too drugs” with multiple therapeutic substitutes (Reinke

2015), as well as drugs with many prescribed patients: “[T]here’s no reason to go after

trivial drugs that aren’t going to drive savings” (Miller and Wehrwein 2015).11

Building on these insights, we estimate a single index of exclusion risk using logistic

regression as follows:

Pr(Excludedc|Xc) = F (αXc) (1)

Excludedc is an indicator for whether drug class c actually experiences exclusions in 2012

or 2013 and Xc is a vector of market characteristics described earlier. We take the resulting

fitted values, denoted Pr(Excluded)c, as our primary measure of exclusion risk for drug class

c. Table 2 shows the results of this exercise, and Appendix Figure A.2 plots the resulting

distribution of predicted exclusions.

To estimate Equation (1), we use market characteristics from 2011, prior to the

introduction of closed formulary policies, in order to avoid confounding our risk measure

11We find no statistically significant relationship between drug prices and exclusion risk, but because our
data does not measure prices net of rebates, these correlations are difficult to interpret.
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with development responses that are endogenous to the exclusion policies we study. We

discuss threats to identification further in Section 5.

For Pr(Excluded)c to capture firms’ perceptions of exclusion risk over the duration of the

post-period, it must meet two conditions. First, drug classes predicted to have high exclusion

risk in 2012 and 2013 should also be more likely to face exclusions in later years. Second,

because exclusion threat can depress profitability even in the absence of actual exclusions

(by forcing drugmakers to grant price concessions), our measure should capture the threat of

exclusion even in classes where no drugs face early exclusions. Appendix Table A.3 provides

support for both predictions. Classes at high risk of early exclusions are also more likely to

see later exclusions: a one standard deviation increase in early exclusion risk correlates with

a 19 percentage point increase in the likelihood that an ATC4 class experiences exclusions

in later periods, from a mean of 39%. Even among drug classes that do not experience

any exclusions in 2012-13, those with higher predicted exclusion risk are more likely to see

exclusions in later periods: a one standard deviation increase in early exclusion risk generates

a 13 percentage point increase in the likelihood of late exclusions, from a base rate of 31%.

5 The Impact of Exclusion Risk on Subsequent Drug

Development

5.1 Empirical Strategy

Our main specification compares drug development behavior across ATC4 drug classes

that vary in their ex-ante risk of exclusion, before and after the rise of closed formulary

policies:

Developmentct = β1Pr(Excluded)c × I(Yeart ≥ 2012) + Xctγ + δc + δt + εct (2)

In Equation (2), Developmentct measures the number of new drug candidates in drug class c

at year t. The index Pr(Excluded)c captures a drug class’s exposure to exclusions, as defined

in the previous section. The regressions control for drug class fixed effects (δc), year fixed

effects (δt), and some specifications include time-varying drug market controls (Xct).
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For the coefficient β1 to represent the causal impact of formulary exclusions on drug

development, the exclusion risk index Pr(Excluded)c must satisfy a conditional exogeneity

assumption. Specifically, market characteristics used to construct this index cannot predict

changes in R&D investment that would have occurred even in the absence of exclusive

formularies, after conditioning on drug class fixed effects, year fixed effects, and other control

variables.

While we cannot directly test this assumption, we can investigate whether these drug

classes were on parallel development trends prior to the introduction of PBM formulary

exclusions. In Figure 2, we report an event study graph over a 5-year pre-period to assess

the plausibility of this assumption. This graph is based on a modified version of Equation

(2), which replaces the single indicator variable for the post period (I(Yeart ≥ 2012)) with a

vector of indicator variables for each year before and after the introduction of PBM exclusion

lists in 2012.

Even with parallel pre-trends, our identification arguments could be threatened if other

changes in global drug development incentives coincided with the introduction of PBM

formulary exclusions, particularly if these changes disproportionately affected drug classes

at high exclusion risk. For example, changes in drug purchasing policies in international

markets may have independent effects on innovation, as might changes in industry

structure resulting from PBM mergers. We discuss these possibilities and interpret our

findings in Section 5.3.

5.2 Main Results

Table 3 presents our main regression results. The outcome is the total number of drug

candidates promoted to the next stage of development each year. In Column 1, we estimate

that a one standard deviation increase in the risk that the class has formulary exclusions

leads to 3.6 fewer advanced drug candidates each year, a 12% reduction from a mean of

30.6 advancing candidates.12 This estimate reflects declining development in higher-risk

classes relative to trends in lower-risk classes. In Column 2, we show that our results are

robust to controlling for time-varying market conditions: the number of approved branded

12As reported in Appendix Figure A.2, the standard deviation of the probability the class faces exclusions
is 0.15. Using the coefficient reported in Table 3, we calculate −24.04 ∗ 0.15 = −3.6.
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drugs, the number of generic drugs, the mean price of branded drugs minus the mean price

of generic drugs, the number of ATC7 subclasses with approved drugs, and prescription

volume. Adding these controls lowers our estimated coefficient slightly from 3.6 to 3.3, which

translates into an 11% decrease in annual development per standard deviation increase in

exclusion risk. In Columns 3 and 4, we consider an alternative functional form: log(1 +

Developmentct). The log-transformed outcome suggests that development activity declines

by 6% for every 1 standard deviation increase in class exclusion risk. In Appendix Table A.4,

we decompose this total effect by drug development stage; across all stages, from preclinical

through Phase 3 trials, a one standard deviation increase in exclusion risk predicts a decline

in innovation ranging from 8% to 14%. We find no significant effect of exclusions on new

drug launches, although our estimate is imprecise relative to the mean frequency of launches.

One concern is that innovation in ATC4 classes at high exclusion risk may have been

evolving on different trends, for reasons other than the introduction of formulary exclusions.

For example, drug classes with many existing treatment options may be both more likely

to face exclusions and, independently, also see natural attenuation in innovative activity.

Figure 2 plots our results in an event study framework, illustrating that there appears to be

little difference in drug development across drug classes at high vs. low risk of exclusions

prior to 2011. In Appendix Figure A.3, we report results from various placebo policy tests to

provide further evidence that our results are not driven by secular differences in innovative

potential across low- and high-exclusion risk classes.

In addition, we conduct a variety of robustness checks. Our results remain statistically

significant when applying a wild cluster bootstrap (see Appendix Table A.5), using

alternative functional specifications such as Poisson regression or the inverse hyperbolic

sine transformed outcome (see Appendix Table A.6), or testing alternative rules for

attributing drug candidates to ATC4 classes (see Appendix Table A.7). Our results are

also robust to a variety of approaches for assessing exclusion risk: predicting based on the

count or share of excluded drugs within an ATC4 class, or simply using an indicator

variable for whether a drug class had any realized exclusions in 2012-2013 (see Appendix

Table A.8). Finally, we obtain similar estimates when augmenting our predictors of

exclusion risk to include 2014 data on copay coupons from Van Nuys et al. (2018) (see

Appendix Table A.9).
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5.3 Discussion

Our results suggest that the policies of US PBMs have a meaningful impact on the drug

development decisions of global firms. To contextualize this result, we consider other possible

changes in pharmaceutical markets and quantify the implications of these results for different

types of drug classes.

First, the strength of formulary exclusion policies is likely related to the market power of

PBMs, which increased over this period through three major mergers: CVS’s acquisition of

Caremark in 2007 (Harris 2007), Express Scripts’ acquisition of Medco Health Solutions in

2012 (Lee 2012), and OptumRx’s (owned by UnitedHealth) acquisition of Catamaran in 2015

(Mathews and Walker 2015). In each case, the acquiring PBM introduced its closed formulary

1–5 years after its acquisition. Our results should therefore be interpreted as describing the

effect of exclusion policies in a setting where downstream buyers have substantial market

power.

Second, while the US drug market plays an outsized role in shaping global development

incentives, accounting for 40% of total pharmaceutical spending in 2018 (IQVIA 2019),

policy changes in other countries may also contribute to our findings. Any changes to

drug purchasing in large markets that occur around 2012 and differentially affect crowded

drug classes would be particularly relevant. The European Union does not centrally control

prices or coverage of prescription drugs (Rodwin 2019) and the five largest European markets

collectively account for only 15% of global spending. As a result, we believe that the ongoing

administration of their national formulary policies is unlikely to explain our results. The most

relevant policy we have been able to identify is a series of initiatives implemented in Japan

beginning in 2006 aimed at encouraging generic substitution of branded drugs. Japan is a

large market for branded pharmaceuticals (second after the US13), representing 7% of the

global spending (IQVIA 2019), and this policy may have depressed incentives for innovation

in markets with generic competition. However, the implementation of these policies was

gradual and began several years prior to the introduction of closed PBM formularies in the

US (Kuribayashi et al. 2015).

13The second largest pharmaceutical market in general is China (11% of global spending), but branded
drugs comprise a much smaller share of this market than in Japan or the US.
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Finally, to better describe the drug markets that experience declines in R&D investment

attributable to formulary exclusions, we use our estimates to conduct a quantification exercise

considering three dimensions of difference across markets: crowdedness, size, and scientific

novelty. Because drug classes with these market characteristics have different predicted

exclusion risk (as estimated in Table 2), our findings imply differential impacts of formulary

exclusions. In Panel A of Appendix Figure A.4, we predict the largest declines in drug

development for drug markets with the most existing therapies; among drug classes in the

top tercile of available therapies, exclusions depress development by over 4%. In Panel B,

we predict larger R&D declines for drug classes with higher prescription volume, topping

out at an 8% fall in the top tercile. In Panels C and D, we apply patent-to-science linkages

created by Marx and Fuegi (2020) to assess the scientific novelty of drug classes as measured

by citations to recent or “disruptive” science.14 In both cases, our calculations show that

formulary exclusions lead to larger R&D reductions in less scientifically novel drug classes.

These calculations suggest that PBMs wielded the threat of formulary exclusion in a

way that disproportionately reduced R&D effort for incremental treatments, with many

existing substitutes and older, less novel underlying science. This analysis is suggestive: our

finding of differential impact on large, crowded drug classes could reflect the possibility that

competition lowered the returns to new investment in these areas. While we see no evidence

of this slow-down for more crowded classes in our placebo analysis reported in Appendix

Figure A.3, other long-run changes in pharmaceutical markets might affect the nature of

these relationships.

6 Conclusion

Amid rising public pressure, government and private payers are looking for ways to

contain drug prices while maintaining incentives for innovation. In this paper, we study

how the design of insurance policies restricting prescription drug coverage affects upstream

investments in pharmaceutical R&D.

14Our measure of “disruptiveness” follows Funk and Owen-Smith (2017) and Wu et al. (2019), which
captures the idea that a research article representing a paradigm shift will generate forward citations that
will not cite the breakthrough article’s backward citations.
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Drug classes facing a one standard deviation greater risk of exclusions see an 11% decline

in drug development activity relative to trends in lower risk classes, following the introduction

of closed formulary policies. These declines in development activity occur at each stage of

the development process from pre-clinical through Phase 3 trials.

The limitations of our current analysis suggest several important directions for future

work. First, our identification strategy allows us to document a relative decline in R&D in

high exclusion risk categories. The overall welfare implications of exclusive formularies will

depend on their impact on aggregate pharmaceutical R&D, which is not identified by our

empirical strategy. Second, it remains challenging to accurately value foregone innovation.

While we focus on the availability of existing treatments, prescription volume, and

measures of scientific novelty, these are not complete descriptions of the clinical and

scientific importance of potentially foregone drugs. Additional research will be needed to

quantify the tradeoffs associated with decreased development. Third, because we cannot

directly observe drug price rebates, there is more work to be done quantifying the impact

of formulary exclusions on pharmaceutical revenue.

Our analysis focuses on the first wave of PBM formulary exclusions, which largely targeted

drugs in markets with many available options. In recent years, formularies have begun to

exclude therapies for relatively rare and sensitive diseases, including HIV, hemophilia, and

certain cancers (The Doctor-Patient Rights Project 2017; Maas 2018). Drug classes that

appeared low risk in our analysis based on early exclusion patterns may become higher risk

as exclusions expand, possibly leading to declines in R&D in those classes as well.

Viewed from a public policy perspective, this research opens the door for insurance design

to be a part of the broader toolkit that policymakers use to encourage and direct investments

in innovation. Existing policy efforts to shape innovation have relied almost exclusively on

directly influencing the costs and returns to R&D, through patents, tax credits, or research

funding. Our results suggest that managers and policymakers can also use targeted coverage

limitations and price negotiation—for example, those generated by value-based pricing—to

reduce R&D efforts in areas with limited incremental clinical value.
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Figure 1: Trends and Predictors of Exclusion

A. Number of Excluded Drugs by PBMs B. Predictors of Exclusion Risk
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Notes: This figure displays the trends and predictors of exclusion. In Panel A, we plot the number of drugs excluded by each of the three largest Pharmacy

Benefit Managers. CVS was the first to begin excluding drugs in 2012, followed by Express Scripts in 2014 and OptumRx in 2016. In Panel B, we used the

2011 market characteristics of the ATC4 class to predict exclusion risk. The plotted average marginal effects were generated by conducting bivariate Logit

regressions of whether an ATC4 class had at least one drug excluded in 2012 or 2013 on each characteristic of the ATC4 class. Independent variables were

standardized (divided by their standard deviation). Data on prices, the number of brand and generic NDCs, and the number of ATC7s are from FDB; data

on total prescription volume are from the 2011 Medical Expenditure Panel Survey.
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Figure 2: Impact of Predicted Exclusion Risk on New Drug Development:
Event Study
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Notes: Figure displays coefficient estimates and 90% confidence intervals from a modified version of
Equation (2). The outcome variable is the annual count of new development activity (across all stages). To
generate the event study graph, we replace the single post-period indicator variable (I(Year ≥ 2012)) with
a vector of indicator variables for each year before and after the introduction of PBM exclusion lists in
2012. We plot the coefficients on the interaction of these year indicators and a continuous measure of
predicted exclusion risk. (Exclusion risk is predicted using 2011 market characteristics, prior to the
introduction of PBM formulary exclusions. Details on the prediction of exclusion risk can be found in
Table 2.) The regression controls for ATC4 fixed effects and year fixed effects. The sample includes 1,397
ATC4-year observations.
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Table 1: Summary Statistics

(A) New Drug Development

Mean Std. Dev. Median
All 30.61 42.06 13.05
Preclinical 17.39 26.13 6.64
Phase 1 6.54 8.84 3.07
Phase 2 4.57 6.04 2.17
Phase 3 2.11 3.04 1.04
Launch 1.02 1.63 0.31

(B) ATC4 Characteristics

ATC4s with ATC4s without
ATC4 market characteristics in 2011 early exclusions early exclusions
Mean N of generic NDCs 767.9 310.3
Mean N of brand NDCs 268 106.8
Mean N of ATC7s within ATC4 14.60 8.518
Mean brand price - mean generic price 5.822 55.98
Mean total prescription volume (millions) 70.46 17.63
Number of ATC4s 15 112

Notes: Panel A summarizes the annual drug development activity from 2007-2017 in the
Cortellis data. The sample includes 1,397 ATC4-year observations. The panel reports the
annual number of drug candidates within an ATC4 class that entered different development
stages. Panel B summarizes ATC4 market characteristics in 2011. Column 1 reports results
for ATC4 classes with at least one excluded drug in 2012-2013; Column 2 reports results for
ATC4s with no exclusions in 2012-2013. Data on pricing and the number of available drugs
are from First Data Bank; data on total prescription volume are from the 2011 Medical
Expenditure Panel Survey.
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Table 2: Predicting Exclusion Risk

(1)
VARIABLES Exclusion

Log(1 + N of generic NDCs) -0.0543**
(0.0252)

Log(1 + N of brand NDCs) 0.0527
(0.0415)

Log(1 + N of ATC7s) 0.0861
(0.0532)

Mean brand price - mean generic price -0.000695
(0.000616)

Total prescription volume 1.37e-09**
(6.17e-10)

Observations 127
Pseudo R2 0.241

Notes: We used the above 2011 market characteristics of the ATC4 class to predict exclusion
risk. Using a logit model, we regressed whether an AT4 class had at least one drug excluded
in 2012 or 2013 on all of the characteristics of the ATC4 class listed in the table; average
marginal effects are reported. We then used the regression’s fitted values to construct
predicted exclusion risk of each ATC4. Data on prices, the number of brand and generic
NDCs, and the number of ATC7s are from FDB; data on total prescription volume are from
the 2011 Medical Expenditure Panel Survey.
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Table 3: Impact of Predicted Exclusion Risk on New Drug Development

(1) (2) (3) (4)
VARIABLES New Development New Development Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -24.04*** -21.99*** -0.382*** -0.333***
(5.898) (6.575) (0.108) (0.115)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES

Notes: This table reports results from estimation of equation (2); each column reports a different regression
specification. The unit of observation is an ATC4 drug class × year. The outcome variable “New
Development” is the annual count of new development activity (across all stages). The treatment variable is a
continuous measure of predicted exclusion risk. (Exclusion risk is predicted using 2011 market characteristics,
prior to the introduction of PBM formulary exclusions. Details on the prediction of exclusion risk can be
found in Table 2.) The “Post” period comprises years 2012 and later, after the introduction of PBM formulary
exclusions. All specifications include year fixed effects and ATC4 fixed effects. Columns 2 and 4 include
time-varying controls for each of the drug class characteristics listed in Table 1. Standard errors are clustered
at the ATC4 level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Figure A.1: Number of Excluded Drugs by Disease Categories
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Notes: Each bubble represents a disease category in a year, and the size of the bubble reflects the number of
drugs that were excluded by CVS, Express Scripts, or OptumRx in that disease category. There were a total
of 300 drugs that were ever excluded from 2012-2017 by at least one of the three PBMs. Of these 300 excluded
drugs, we were able to match 260 of them to the First Data Bank data, from which we obtained the ATC4
data and manually matched each ATC4 to a disease category. This disease taxonomy was adapted from
the disease categories provided by the PBMs in their exclusion lists and summarized by The Doctor-Patient
Rights Project (2017).
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Figure A.2: Distribution of Predicted Exclusion Risk
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Notes: This histogram plots the distribution of predicted exclusion risk of the 127 ATC4s in our main
analyses. Summary statistics are also provided. See notes to Table 2 for details on how the exclusion risk
was calculated.
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Figure A.3: Placebo Test: Impact of Predicted Exclusion Risk on New
Drug Development

Placebo tests

True policy effect

Notes: For a more detailed discussion of this placebo analysis, see Appendix B. This coefficient plot shows
the “placebo tests” of the results reported in Column 2 of Table 3. The red line indicates the baseline,
true policy estimate; it reports β1, the coefficient on predicted exclusion risk interacted with a post period
indicator from Equation 2. This true policy estimate of -22.96 is statistically significant and parallels the
specification in Column 2 of Table 3, but the only difference is that when constructing the exclusion risk, we
dropped the price variables due to missing historical price data covering the placebo policy periods. The blue
coefficients report the “placebo tests” coefficients and 95% confidence intervals, paralleling results reported
in Column 2 of Table 3. First, as in the exclusion risk used in Table 3, the model to predict exclusion risk
was constructed by using 2011 market characteristics to predict exclusions by 2013, but now we applied
the coefficients from this regression to 2001, 2002, 2003, 2004, or 2005 market characteristics to construct
new versions of the exclusion risk. Second, the pre-period and post-periods were adjusted depending on
the placebo policy year, such that we use the same number of pre- and post-period years as Table 3. For
instance, for the 2002 placebo policy, the pre-period was 1997-2001, the post-period was 2002-2007, and we
used 2001 market characteristics to construct the exclusion risk. Due to lack of market characteristics data
in the earlier period of the data, 3 ATC4s were dropped from the sample for 2006 and 2005 placebo policies,
4 ATC4s for 2004 placebo policy, and 5 ATC4s for 2003 and 2002 placebo policies. None of the placebo
estimates were statistically significant.
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Figure A.4: Counterfactual Development Activity by Pre-Period Attributes of
Drug Class: Existing Therapies, Prescriptions, and Scientific Novelty

A. Number of Drugs in Class B. Number of Prescriptions in Class
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C. % Citing Recent Science in Class D. Average “Disruptiveness” Index in Class
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Notes: This figure displays the percent decrease in annual development attributable to exclusions. Predictions

are based on our estimation of equation (2), matching the specification reported in Table 3 Column 2. To measure

predicted new drug candidates in the presence of exclusions, we calculate the fitted value of drug development activity

for every year of the post-period. To recover the predicted new drug candidates absent exclusions, we repeat this

exercise after setting the treatment variable Pr(Excluded)c × I(Yeart ≥ 2012) equal to zero for all observations. The

figure shows the percent difference between predictions at the ATC4 × year with and without exclusions, averaged

over the post-period (2012-2017). In Panel A, we group ATC4 drug classes by terciles of the number of existing drugs

in the class (in 2011); data on existing drugs is from First Data Bank. In Panel B, we group ATC4 drug classes by the

number of prescriptions written in the class (in 2011); data on prescriptions is from the 2011 Medical Expenditure

Panel Survey. Drug classes are weighted by the number of drugs with advancing development over the pre-period.

In Panels C and D, drug classes are divided into terciles according to attributes of patents associated with drug

development activity over the pre-period, averaged from 2007-2011. Panel C groups drug classes by the share of

pre-period patents in a drug class citing recent science as of 2011 (recent is defined as publications since 2006). Panel

D groups drug classes by the average “disruptiveness” index of patents in the drug class over the pre-period, which

is a measure that captures how disruptive the scientific articles associated with the patent are; the index ranges from

-1 (least disruptive) to 1 (most disruptive) and was originally developed by Funk and Owen-Smith (2017).
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Table A.1: Examples of ATC4 Codes Defining Drug Markets

A10 Diabetes drugs
A10A Insulins and analogues
A10B Blood glucose lowering drugs, excluding insulins
A10X Other drugs used in diabetes

C07 Beta blocking drugs
C07A Beta blocking agents
C07B Beta blocking agents and thiazides
C07C Beta blocking agents and other diuretics
C07D Beta blocking agents, thiazides and other diuretics
C07E Beta blocking agents and vasodilators
C07F Beta blocking agents, other combinations

Notes: This table provides examples of ATC4 classes for illustrative purposes. Our
sample includes 127 distinct ATC4 classes. A complete listing of the ATC4 class definitions
that guided this analysis can be found in WHO Collaborating Centre for Drug Statistics
Methodology (2010).
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Table A.2: Prescription Volume

A. Summary Statistics, Part D Claims per Drug

Mean Std. Dev. Median Count
Claims for non-excluded drugs 178,503 932,026 3,841 3,046
Claims for excluded drugs 477,332 1,220,225 52,929 791
Market share, non-excluded drugs 0.225 0.328 0.042 3,046
Market share, excluded drugs 0.116 0.213 0.029 791

B. Impact of Exclusions on Prescription Volume

(1) (2)
VARIABLES Log(Market Share) Log(Market Share)

Number of Excluding PBMs -0.206** -0.293***
(0.0823) (0.0756)

Observations 3,699 3,475
Drug FE YES YES
Cohort X Year FE YES YES
Market Controls NO YES

Notes: For a more detailed discussion of this analysis, see Appendix A. Panel A reports summary
statistics from the Medicare Part D public use file. Data tracks annual claims per drug in 2012-2017;
the unit of observation is the drug-year pair. Market share is calculated as the fraction of prescription
drug claims in the ATC4 class that are for the index drug. The table compares drugs that were
ever excluded to those that were never excluded during the sample period. Panel B estimates the
impact of PBM formulary exclusion on the volume of Medicare Part D insurance claims. The unit
of observation is a drug × year. The outcome variable is the annual market share of the index drug
relative to all other drugs in the ATC4 class, described in Panel A. The key independent variable
of interest is the number of PBMs excluding the drug that year. All regressions include drug fixed
effects and drug age × calendar year fixed effects. (Drug age is measured as number of years elapsed
since market entry.) Specification (2) includes additional controls for ATC4 class × calendar year
fixed effects to account for trends in demand for different drug classes. We analyze exclusions on
161 excluded drugs that are prescribed to Medicare Part D enrollees and are not in a protected
class. Standard errors are clustered at the drug level. Statistical significance is indicated as: ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.3: Early Exclusion Risk and Later Exclusions

(1) (2)
VARIABLES Late Exclusion Late Exclusion

Standardized exclusion risk 0.189*** 0.134**
(0.0468) (0.0543)

Observations 127 112
Sample All ATC4s ATC4s without early exclusions
Fraction with Late Exclusions 0.39 0.31

Notes: Using a logit regression, we investigate whether ATC4 classes that were highly
predicted to be excluded by 2013 were more likely to be actually excluded later after 2013.
Early exclusion risk is a continuous measure defined using the same specification underlying
Table 3; we used 2011 market characteristics of the ATC4 class to predict whether the ATC4
class was at risk of exclusion by 2013. We then standardized this early exclusion risk variable,
dividing by its standard deviation. The outcome variable, late exclusion, is a binary variable
that indicates whether the ATC4 was on any of the PBM’s exclusion list at least once in
2014-2017. Column 1 includes all ATC4s, while Column 2 drops ATC4s that were actually
excluded by 2013. Average marginal effects are reported. Statistical significance is indicated
as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.4: Impact of Predicted Exclusion Risk on New Drug Development
By Stages

(1) (2) (3) (4) (5) (6)
VARIABLES All Preclinical Phase 1 Phase 2 Phase 3 Launch

Post X Pr(Exclusion) -21.99*** -11.05*** -6.010*** -3.831*** -1.100** 0.220
(6.575) (3.405) (2.078) (1.350) (0.422) (0.496)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls YES YES YES YES YES YES
N of Drug Candidates Mean 30.61 17.39 6.54 4.57 2.11 1.02

Notes: See notes to Table 3. Each column reports a regression with a different outcome
variable. Column 1 replicates the result reported in Table 3 Column 2 on total development
activity. The additional columns decompose this affect to explore how drug development
changes at each phase, moving from the earliest observed preclinical activity in Column 2
through the each phase of clinical trials and eventual launch on the market. Standard errors
are clustered at the ATC4 level. Statistical significance is indicated as: *** p<0.01, **
p<0.05, * p<0.1.
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Table A.5: Impact of Predicted Exclusion Risk on New Drug Development:
Wild Cluster Bootstrap

(1) (2)
VARIABLES New Development Log(1+New Dev.)

Post X Pr(Exclusion) -21.99*** -0.333**
[-37.79, -5.854] [-.5375, -.03391]

Observations 1,397 1,397
Year FE YES YES
ATC FE YES YES
Market Controls YES YES

Notes: Columns 1 and 2 of this table repeat the specifications reported in Table 3 Columns
2 and 4, but now using wild cluster bootstrap to calculate the 95% confidence interval (rather
than using conventional inference). Clustering is performed at the ATC4 level. Statistical
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.6: Impact of Predicted Exclusion Risk on New Drug Development:
Alternative Functional Forms

(1) (2) (3) (4)
VARIABLES IHS New Dev IHS New Dev Poisson New Dev Poisson New Dev

Post X Pr(Exclusion) -0.368*** -0.317** -0.524*** -0.455***
(0.123) (0.131) (0.0834) (0.0999)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES

Notes: These results parallel the results in Table 3, but with alternative functional
forms. Columns 1-2 report regressions using the inverse hyperbolic sine transformation
of development activity as the outcome, while Columns 3-4 report results using Poisson
regressions. Standard errors are clustered at the ATC4 level for the regressions with inverse
hyperbolic sine transformation, and robust standard errors are reported for the Poisson
regressions. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: Impact of Predicted Exclusion Risk on New Drug Development:
Alternative ATC4 Linking

Direct Linking Approach Indirect Linking Approach
(1) (2) (3) (4)

VARIABLES New Development New Development New Development New Development

Post X Pr(Exclusion) -20.98*** -18.60*** -4.308*** -4.460***
(6.053) (6.749) (1.331) (1.474)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES

Notes: For a more detailed discussion of ATC4 linking, see Appendix C. These results parallel the
specification underlying Table 3, but with alternative methods for linking drug candidates to ATC4 classes.
We have replaced our baseline outcome measure of development activity with two alternative outcomes that
take different approaches to matching. In Columns 1-2, we only count track development activity among
the subset of drug candidates for which Cortellis directly reports the drug class. In Columns 3-4, we impute
ATC4s from ICD9 codes for all drug candidates, rather than relying on Cortellis’ reporting of drug class.
Standard errors are clustered at the ATC4 level. Statistical significance is indicated as: *** p<0.01, **
p<0.05, * p<0.1..
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Table A.8: Impact of Exclusion Risk on New Drug Development:
Alternative Definitions of Exclusion Risk

Predicted Count Exclusion Predicted Share Exclusion Realized Exclusion
(1) (2) (3) (4) (5) (6)

VARIABLES New Dev. New Dev. New Dev. New Dev. New Dev. New Dev.

Post X Exclusion Risk -7.867*** -7.136** -59.12* -56.76* -5.824** -4.534**
(2.578) (2.748) (33.77) (31.22) (2.568) (2.290)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls NO YES NO YES NO YES

Notes: For a more detailed discussion of alternative measures of exclusion risk, see Appendix D. This
table reports results from estimating a modified version of Equation (2), applying alternative definitions of
exclusion risk. Instead of defining exclusion risk as whether an ATC4 class is predicted to have at least one
drug with an exclusion as in Table 3, the exclusion risk here is defined as how many drugs are predicted to
be excluded in an ATC4 class in Columns 1-2 and what share of drugs are predicted to be excluded in an
ATC4 class in Columns 3-4. In Columns 5-6, rather than using continuous measures of predicted exclusion
risk as our measure of treatment, we use a binary definition of treatment by looking at realized exclusions:
whether at least one drug in an ATC4 class was actually on a PBM exclusion list. For further details on the
regression specifications, see notes to Table 3. Standard errors are clustered at the ATC4 level. Statistical
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.9: Impact of Predicted Exclusion Risk on New Drug Development:
Incorporating Coupon Data

A. Predicting Exclusion Risk with Coupon Data

(1)
VARIABLES Exclusion

ATC4 class with copay coupons 0.153***
(0.0495)

Log(1 + N of generic NDCs) -0.0412*
(0.0246)

Log(1 + N of brand NDCs) 0.0304
(0.0383)

Log(1 + N of ATC7s) 0.0519
(0.0471)

Mean brand price - mean generic price -0.000580
(0.000553)

Total prescription volume 1.03e-09*
(5.94e-10)

Observations 127

B. Impact of Predicted Exclusion Risk on New Drug Development

(1) (2) (3) (4)
VARIABLES New Development New Development Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -18.18*** -16.59*** -0.404*** -0.383***
(4.093) (3.992) (0.102) (0.112)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls NO YES NO YES

Notes: For more details on the measurement of copay coupons see Appendix D. Panel A parallels Table 2
and Panel B parallels Table 3, but now with a measure of drug copay coupons as an additional predictor of
exclusion risk. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. .
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A Impact of Exclusions on Drug Utilization in

Medicare Part D

As discussed in Section 4.1, a PBM’s formulary choices (coverage and prices) have been

shown to have an impact on patients’ drug use. To test whether these patterns hold in our

setting, we investigate the link between PBM formulary exclusions and drug sales. Because

sales volume is not measured by FDB, we turn to publicly available data on annual Medicare

Part D claims volume by drug.1 Most Medicare Part D plan sponsors contract with PBMs

for rebate negotiation and benefit management (Government Accountability Office 2019),

and many Part D plans feature closed formularies (Hoadley et al. 2011), making Medicare

Part D a suitable context to study the impact of exclusions. This data is available from

2012-2017 and reports the annual number of claims for all drugs with at least 11 claims.

We estimate the following regression equation:

Log(Claims)dt = β1Excludeddt + Xdt + δd + δt + εdt (3)

Here, Claimsdt refers to the fraction of Medicare Part D claims made on drug d in year

t, relative to all other drugs in the ATC4 class (i.e., the drug d’s market share in year t).

Because the distribution of Part D claims per drug is highly right-skewed (see Appendix

Table A.2), we report our results in terms of the natural log of the drug’s market share. The

key variable of interest is Excludeddt, how many of the three main PBMs were excluding the

drug in a given year. We include drug fixed effects in all specifications so that our effect is

identified from within-drug changes in formulary exclusion status. We also include drug age

× calendar year fixed effects to capture time trends and drug lifecycle patterns.

Our sample consists of branded drugs that were on the market prior to the introduction

of exclusions, had no generic substitutes, and have at least 11 annual Part D claims.

Because Medicare Part D regulation over this period disallowed formulary exclusions from

six protected drug classes, this analysis studies the 161 excluded drugs that are not in a

1This data is published annually by the Centers for Medicare & Medicaid Services (2018). We accessed
it online at https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Information-on-Prescription-Drugs/Historical_Data, in November 2019.
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protected class.2 Further note that in some cases different formulations or packaging of the

same drug are listed with separate drug names on formulary exclusion lists, but are

reported as a single drug in the Medicare Part D data; we use the more aggregate

definition of a drug for this analysis in keeping with the unit of observation in Part D.

In Appendix Table A.2, we show that each excluding PBM decreases a drug’s market

share by 25% (e−0.293−1), relative to comparable drugs that did not experience an exclusion.

Column 2 shows that our results are robust to including additional controls for time-varying

demand for the drug class, captured with ATC4 X calendar year fixed effects. We note that

this analysis does not allow us to measure prescription drug sales that are not claimed in

Medicare Part D; if formulary exclusions lead patients to pay fully out-of-pocket for the

drugs without requesting insurance coverage, we will not have a record of it in our data.

The effects we measure capture the combined effect of reduced prescriptions for the

focal drug, as well as possible reallocation toward non-excluded drugs in its category.

These findings show that exclusions had a major impact on shifting sales and market share

across competitor drugs, beyond what PBMs previously accomplished for these drugs with

traditional demand management tools such as tiering, prior authorization, or step therapy.

Moreover, our magnitudes are consistent with anecdotal case by case reporting: for

example, after its exclusion by Express Scripts, sales of the asthma inhaler Advair fell 30%

while sales for its non-excluded competitor Symbicort increased 20% over the same period

(Pollack 2014).

2The protected classes are antidepressants, antipsychotics, anticonvulsants, antineoplastic agents,
antiretroviral agents, and immunosupressants. Of the 181 excluded drugs prescribed in Part D, only 20
fall into these classes.
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B Placebo Policy Analysis

We conduct a series of placebo tests of the introduction of closed formularies. If our

measure of exclusion risk captures aspects of a drug class—crowdedness, for instance—that

are predictive of declining R&D independent of formulary exclusions, then we would expect

drug classes with high exclusion risk (measured in earlier pre-period years) to see innovation

fall in response to pre-period placebo exclusion policies. To test this, we use our coefficient

estimates reported in Table 2 to identify drug classes that appear at risk of exclusion based

on their market characteristics as of each year in 2001-2005. That is, we look for drug classes

that, in earlier years, shared the same mix of treatment options and prescription volumes

that would have put them at high risk of exclusions in 2011. These are drug classes that, at

a given point in time, have a relatively large number of treatment options, as well as high

prescription volume. If our results were driven by trends unrelated to exclusions, we should

see R&D in these classes fall in the years following our assessment of their exclusion risk. It

is worth noting that there were other changes in prescription drug markets over this early

pre-period, such as the introduction of Medicare Part D in 2006. While Medicare Part D

did affect drug development investments, there is no evidence to suggest that it differentially

impacted drug classes based on their exclusion risk. To make sure that our results are not

driven by this change, we study a variety of placebo test timing.

Appendix Figure A.3 plots out results for five different tests, corresponding to a placebo

policy change in each of the years 2002 through 2006. The blue horizontal lines plot the

placebo policy estimates and 95% confidence interval, while the vertical red line highlights the

true estimated policy effect. These estimates mirror the specification in Column 2 of Table 3,

except that we drop price when constructing the exclusion risk due to missing historical price

data covering the placebo policy periods.3 For example, the 2002 placebo policy estimates a

positive β̂ coefficient of 2.2 on predicted exclusion risk interacted with a post period indicator

from Equation 2. For this placebo policy, the post period begins in 2002; exclusion risk is

measured using 2001 market characteristics; and we use a corresponding 11-year sample

3The true estimated policy effect of -22.96 is statistically significant and very similar to the estimate of
-21.99 reported in Table 3.
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period from 1997-2007. We end the placebo tests with the 2006 placebo policy change,

because its 5-year post-period ends in 2011, the last year of our true policy pre-period.

Appendix Figure A.3 suggests drug classes with similar features to those eventually

targeted with exclusions did not experience declining investment over the pre-period;

compared to the statistically significant true policy estimate of -22.96, the placebo

estimates range from 2.2 to 9.1, and none are statistically significant.
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C Linking Drug Candidates to ATC4 Classes

We matched the pipeline drug candidates in Cortellis to ATC4 codes in two ways: directly

via EphMRA codes and indirectly via ICD9 codes if the EphMRA codes were missing.

Direct method: matching via EphMRA codes. Cortellis links drug candidates to

chemical drug classes (specifically the EphMRA code, which is a close derivative of the

ATC classification). Using a manually created crosswalk of EphMRA codes to ATC4 codes,

we used the EphMRA codes of the drug candidates to link the drugs to ATC4 classes. A

drug can be linked to many ATC4 classes, and we assigned equal weights of 1 to all ATC4

classes that directly matched to a given drug through their EphMRA codes.

Indirect method: matching via ICD9 codes. An alternative way to link the drug

candidates to ATC4 classes is through the drugs’ areas of therapeutic use (ICD9) provided

by Cortellis. Using the drug to ICD9 crosswalk from Cortellis, we linked to a crosswalk of

ICD9 to ATC4 codes created by Filzmoser et al. (2009), in which the authors assigned a

probabilistic match score of ICD9-ATC4 pairs.4 Since this results in a drug being matched

(indirectly via ICD9) to many ATC4s, we assigned the likelihood of an ATC4 matching to

a drug based on the probabilistic match scores from Filzmoser et al. (2009), such that the

assigned weights sum to 1 for each drug.

For our main analyses, we matched the drug candidates to ATC4 codes using the direct

method via EphMRA codes and used the indirect method via ICD9 codes for drugs with

missing EphMRA codes. As shown in Appendix Table A.7, our results are similar regardless

of the linking method used.

4Filzmoser et al. (2009) merged a dataset of prescriptions (with ATC4 codes) and a dataset of hospital
admissions (with ICD9 codes) at the patient-level. Since the ATC4 code of a patient’s drug matches to many
diagnosis codes of the patient, the authors use a frequency-based measure to calculate a probabilistic match
score of an ICD9-ATC4 pair. They conduct this match specific to gender/age group of the patients. For our
analysis, we take the average match probability across the gender/age groups for a given ICD9-ATC4 pair.
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D Alternative Measures of Exposure to Exclusion Risk

Our analysis is based on differentiating drug classes at varying risk of formulary exclusion.

In our primary analysis, we use 2011 ATC4 market level characteristics to predict exclusion

risk, defined as whether an ATC4 class is predicted to have at least one drug with an exclusion

by 2013. In this section, we describe several alternative approaches.

Alternative functional forms

Appendix Table A.8 tests alternative functional forms for predicting exclusion risk.

Columns 1-2 use 2011 ATC4 market characteristics to predict the count of excluded drugs

in a class by 2013, while columns 3-4 use 2011 ATC4 market characteristics to predict the

share of excluded drugs in a class by 2013. Like our main measure of exclusion risk, both

of these alternatives provide continuous measures of predicted exclusion risk, and thus have

the benefit of capturing variation in the threat of exclusions—in drug classes that are

similar to the initially targeted set but that did not experience early exclusions. Columns

5-6 present results using a binary definition of realized exclusions (whether at least one

drug in an ATC4 class was on a PBM exclusion list by 2013) and show a similar pattern of

results as our main analysis. All of these approaches find that new drug development is

declining in exclusion risk. Scaling each of the coefficients in Appendix Table A.8 by the

standard deviation of the relevant exclusion risk measure, we predict a similar magnitude

reduction in drug development in each specification: 2.7 (column 2), 1.7 (column 4), and

1.5 (column 6).

Copay coupons

Contemporaneous industry reports describe drugs with copay coupons as a major target

of PBM formulary exclusions (Foulkes 2015). This motivates an additional analysis using

copay coupons as a predictor of exclusion risk. We use copay data from Van Nuys et al.

(2018), which are available in the year 2014 and for the top 200 drugs (by sales volume).

Because this coupon data comes from the post-period, after the introduction of PBMs’ closed

formularies, we do not include it in our baseline measure of exclusion risk. We incorporate

copay coupons into our prediction of exclusion risk as an additional robustness check. As
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reported in the logit regression in Panel A of Appendix Table A.9, drug classes targeted

with copay coupons have a large and statistically significant increase in exclusion risk, even

after conditioning on the other measured market characteristics. Using this augmented

measure of exclusion risk, we repeat our analysis testing how exclusion risk predicts changes

in development activity after 2012. Results reported in Panel B of Appendix Table A.9

continue to find that drug classes at higher risk of exclusion experience a relative reduction

in exclusion risk after 2012; a one standard deviation increase in exclusion risk predicts 3.0

fewer promoted drugs per ATC4 class-year.
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