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Abstract

One of the grand challenges of reinforcement learning is the ability to generalize to
new tasks. However, general agents require a set of rich, diverse tasks to train on.
Designing a ‘foundation environment’ for such tasks is tricky – the ideal environ-
ment would support a range of emergent phenomena, an expressive task space, and
fast runtime. To take a step towards addressing this research bottleneck, this work
presents Powderworld, a lightweight yet expressive simulation environment running
directly on the GPU. Within Powderworld, two motivating challenges are presented,
one for world-modelling and one for reinforcement learning. Each contains hand-
designed test tasks to examine generalization. Experiments indicate that increasing
the environment’s complexity improves generalization for world models and certain re-
inforcement learning agents, yet may inhibit learning in high-variance environments.
Powderworld aims to support the study of generalization by providing a source of
diverse tasks arising from the same core rules.
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Chapter 1

Introduction

One of the grand challenges of reinforcement learning (RL), and of decision-making

in general, is the ability to generalize to new tasks. RL agents have shown incredible

performance on single task settings [4, 22, 23], yet frequently stumble when presented

with unseen challenges. Single-task RL agents are largely overfit on the tasks they

are trained on [20], limiting their practical use. In contrast, a general agent, which

can robustly perform well on a wide range of novel tasks, can then be adapted to

solve downstream tasks and unseen challenges.

General agents greatly depend on a diverse set of tasks to train on. Recent progress

in deep learning has shown that as the amount of data increases, so do generalization

capabilities of trained models [7, 30, 6, 28]. Agents trained on environments with

domain randomization or procedural generation capabilities transfer better to unseen

test tasks [8, 38, 31, 19]. However, as creating training tasks is expensive and chal-

lenging, most standard environments are inherently over-specific or limited by their

focus on a single task type, e.g. robotic control or gridworld movement.

As the need to study the relationships between training tasks and generalization

increases, the RL community would benefit greatly from a ‘foundation environment’

supporting diverse tasks arising from the same core rules. The benefits of expansive

task spaces have been showcased in Unsupervised Environment Design [39, 9, 16, 25],

but gridworld domains fail to display how such methods scale up. Previous works have

proposed specialized task distributions for multi-task training [34, 36, 10, 37], each
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focusing on a specific decision-making problem. To further investigate generalization,

it is beneficial to have an environment where many variations of training tasks can

easily be compared.

As a step toward lightweight yet expressive environments, this paper presents

Powderworld, a simulation environment geared to support procedural data generation,

agent learning, and multi-task generalization. Powderworld aims to efficiently provide

environment dynamics by running directly on the GPU. Elements (e.g. sand, water,

fire) interact in a modular manner within local neighborhoods, allowing for efficient

runtime. The free-form nature of Powderworld enables construction of tasks ranging

from simple manipulation objectives to complex multi-step goals. Powderworld aims

to 1) be modular and supportive of emergent interactions, 2) allow for expressive

design capability, and 3) support efficient runtime and representations.

Additionally presented is an extensive framework for defining reinforcement learn-

ing tasks with Powderworld. Tasks are viewed as singular points with a larger "task

space", of which three axes of variation are specified – agent space, state generation

space, and reward space. Within this framework, a variety of hand-designed objec-

tives are presented, along with wrappers to add stochastic augmentations to each

task.

Experiments focus on the performance of world models and reinforcement learn-

ing agents as environment complexity is increased. World models trained on increas-

ingly complex environments show superior transfer performance. In addition, models

trained over more element types show stronger fine-tuning on novel rulesets, demon-

strating that a robust representation has been learned. In the reinforcement learning

case, increases in task complexity benefit generalization up to a task-specific inflection

point, at which performance decreases. This point may mark when variance in the

resulting reward signal becomes too high, inhibiting learning. These findings provide

a starting point for future directions in studying generalization using Powderworld as

a foundation.
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Chapter 2

Related Work

2.1 Task Distributions for Reinforcement Learning

Video games are a popular setting for studying multi-task RL, and environments

have been built off NetHack [34, 21], Minecraft [10, 17, 11], Doom [18], and Atari

[3]. [37, 40, 8] describe task distributions focused on meta-learning, and [10, 36,

13, 27] detail more open-ended environments containing multiple task types. The

Atari benchmark is a motivating example of a multi-task generalization benchmark;

as some methods attempt to train on a subset of games, then generalize during test

time to held-out games. However, there are only a fixed number of Atari games, and

the games are largely disctinct from one another. Powderworld instead presents a

multi-task environment where an unbounded number of tasks can be defined, thus

presenting a denser training distribution. Most similar to this work may be ProcGen

[8], a platform that supports infinite procedurally generated environments. However,

while ProcGen games each have their own rulesets, Powderworld aims to share core

rules across all tasks. Powderworld focuses specifically on runtime and expressivity,

taking inspiration from online “powder games" where players build ranges of creations

out of simple elements [1, 2, 5].
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2.2 Generalization in Reinforcement Learning

Multi-task reinforcement learning agents are generally valued for their ability to per-

form on unseen training tasks [24, 20]. The sim2real problem requires agents aim

to generalize to out-of-distribution real world domains [38, 33]. The platforms cited

above also target generalization, often within the context of solving unseen levels

within a game. This work aims to study generalization within a physics-inspired sim-

ulated setting, and creates out-of-distribution challenges by hand-designing a set of

unseen test tasks.
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Chapter 3

Powderworld Environment

The main contribution of this work is the Powderworld simulator, an environment

specifically for examining agent generalization over customizable distributions of tasks.

Towards this aim, Powderworld is built to optimize the following design principles:

• Modularity and support for emergent phenomena. The core of Pow-

derworld is a set of fundamental rules defining how two neighboring elements

interact. The consistent nature of these rules is key to agent generalization; e.g.

fire will always burn wood, and agents can learn these inherent properties of

the environment. Furthermore, local interactions can build up to form emergent

wider-scale phenomena, e.g. fire spreading throughout the world. This capac-

ity for emergence enables tasks to be diverse yet share consistent properties.

Thus, fundamental Powderworld priors exist that agents can take advantage of

to generalize.

• Expressive task design capability. A major blocker in the study of re-

inforcement learning generalization is that tasks are often nonadjustable. In-

stead, an ideal environment should present an explorable space of tasks, capable

of representing interesting challenges, goals, and constraints. Tasks should be

parametrized to allows for automated design and interpretable control. Powder-

world presents a task framework supporting an unbounded number of individual

tasks. Each task is represented as a set of procedural generation rules, and goal
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Figure 3-1: Examples of tasks created in the Powderworld engine. Powder-
world provides a physics-inspired simulation over which many distributions of tasks
can be defined. Pictured above are human-designed challenges where a player must
construct unstable arches, transport sand through a tunnel, freeze water to create a
bridge, and draw a path with plants. Tasks in Powderworld creates challenges from
a set of core rules, allowing agents to learn generalizable knowledge.

states are simple 2D arrays. A multitude of ways exist to test a specific agent

capability, e.g. “burn plants to create a gap". Additionally, all tasks in Powder-

world require the agent to interact with the dynamics of the world, thus even

simple goals like “create plants" may require complex strategies to achieve such

goals through interaction.

• Fast runtime and representation. As multi-task learning can be computa-

tionally expensive, it is important that the underlying environment runs effi-

ciently. Powerworld is designed to run on the GPU, enabling large batches of

simulation to be run in parallel. Additionally, Powderworld employs a neural-

network-friendly matrix representation for both task design and agent obser-

vations. To simplify the training of decision-making agents, the Powderworld

representation is fully-observable and runs on a discrete timescale (but partial-

observability is an easy modification if desired).

3.1 Core Engine

In the following section, an overview of the engine used for Powderworld simulator is

provided.
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World matrix. The core structure of Powderworld is a matrix of elements 𝑊

representing the world. Each location 𝑊𝑥,𝑦 holds a vector of information representing

that location in the world. Specifically, each vector contains 9 channels:

1. The ID of the occupying element. [0,20]

2. The density of the occupying element. [0,4]

3. Flag if element is affected by gravity. [0,1]

4. X-component of Velocity Field. [−∞,∞]

5. Y-component of Velocity Field. [−∞,∞]

6. Color variable. (Unused)

7. Custom variable 1.

8. Custom variable 2.

9. Custom variable 3.

In practice, the world matrix is stored in batch form as a [𝐵,𝑊,𝐻, 9] Pytorch

tensor. This 𝑊 matrix is a Markovian state of the world, and thus past 𝑊 matrices

are unnecessary for state transitions. Every timestep, a new 𝑊 matrix is generated

via a stochastic update function, as described below.

Gravity. Certain elements are affected by gravity, as noted by the IsGravity

flag in Figure 3-2. Each gravity-affected element also holds a density value, which

determines the element’s priority during the gravity calculation. Every timestep,

each element checks with its neighbor below. If both elements are gravity-affected,

and the neighbor below has a lower density, then the two elements swap positions.

This interaction functions as a core rule in the Powderworld simulation and allows

elements to stack, displace, and block each other. Note that it is possible that two

elements will point towards occupying the same position – in this case, ties are broken

by Y-value.
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Element-specific reactions. The behavior of Powderworld arises from a set of

modular, local element reactions. Element reactions can occur either within a single

element, or as a reaction when two elements are neighbors to each other. These

reactions are designed to facilitate larger-scale behaviors; e.g. the sand element falls

to neighboring locations, thus areas of sand form pyramid-like structures. Elements

such as water, gas, and lava are fluids, and move horizontally to occupy available

space. Finally, pairwise reactions provide interactions between specific elements, e.g.

fire spreads to flammable elements, and plants grow when water is nearby. See Figure

3-2 and below for a description of the Powderworld reactions.

Velocity system. Another interaction method is applying movement through

the velocity system. Certain reactions, such as fire burning or dust exploding, add to

the velocity field. Velocity is represented via an two-component 𝑉𝑥,𝑦 vector at each

world location. If the magnitude of the velocity field at a location is greater than a

threshold, elements are moved in one of eight cardinal directions, depending on the

velocity angle. This procedure is run twice per timestep; an element with sufficient

velocity can move two positions per timestep. Velocity naturally diffuses and spreads

in its own direction, thus a velocity difference will spread outwards before fading

away. Walls are immune to velocity affects.

All operators are local and translation equivariant, yielding a simple implementa-

tion in terms of (nonlinear) convolutional kernels. To exploit GPU-optimized opera-

tors, Powderworld is implemented in Pytorch [26], and performance scales with GPU

capacity (Figure 3-3).

3.2 Element Descriptions

In the following list, a description of the Powderworld elements is provided along with

their behavior and reactions.

1. Empty. The default element, it has no special properties and does not di-

rectly have any behaviors. Each coordinate in Powderworld always contains an

element, so "empty" is defined as an element in itself.
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Figure 3-2: A list of elements and reactions in the Powderworld simulation.
Elements each contain gravity and density information. A set of element-specific re-
actions dictates how each element behaves and reacts to neighbors. Certain reactions
manipulate the world’s velocity field, which can push further elements away. To-
gether, the gravity, velocity, and reaction systems create a core set of rules by which
interesting simulations arise.

2. Wall. Wall is also an element that has no direct interactions with other ele-

ments. Wall is not affected by the gravity or velocity systems, and there are

no elements which can create or displace it. Thus, Wall is useful for defining

barriers or constraints in a task.

3. Sand. Sand is a basic element that is affected by gravity. Sand also falls into

lower density positions to the bottom-left or bottom-right, leading to a steady

state of pyramid-style formations.

4. Water. Water is a fluid that is affected by gravity. As a fluid, water will

move to adjacent lower density areas to the left or right. Water conserves its

own momentum, and thus will continue moving right if it has moved right in

the past. Upon hitting an obstacle, a Water element will change directions.

Overall, Water will flow down slopes and fill up containers.

5. Gas. Gas is a fluid with a density lower than empty. Thus, it will naturally

move upwards. Since Gas is a fluid, it additionally fills space to the left and

right. Gas is flammable and will spread Fire at a moderate rate.

6. Wood. Wood is a solid element that is not affected by gravity. Wood is sta-

tionary and largely does not react with other elements, although it is flammable

and spreads Fire at a slow rate.
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7. Ice. Ice is a solid element not affected by gravity. If exposed to greater than

three Empty neighbors, Ice will have a chance of melting to form Water. In

turn, Water that has three or more Ice neighbors will have a chance of freezing

into Ice. Thus large clumps of Ice can form a steady state, while small spots of

Ice will quickly melt into Water.

8. Fire. Fire is a special element that has interactions with many flammable

elements. Fire has a lower-than-empty density and thus naturally rises upwards.

Fire has a chance of dissipating every timestep, unless it is neighbored by a

flammable element. Thus Fire is only present temporarily when burning other

elements, otherwise quickly burning out. When an element burns, it produces

more Fire in empty areas around it, and creates an outwards velocity.

9. Plant. Plant is a solid non-gravitational element that is flammable. Plants

spread through Water – if a Water element is neighbored by a Plant, it has

a chance to also turn into Plant. If the Water is neighbored by more than

four Plants, however, it instead may turn into Empty. This behaviors forms a

natural pattern of Plants and Empty elements spreading through water. Plants

also spread along the surface of Wood and Ice, forming a one-element thick

border.

10. Stone. Stone is a solid gravity-affected element. Stone has a high density and

falls through fluids. If a Stone element is surrounded by Stone on both left

and right sides, it ignores gravity. Thus, Stone formations can form arches and

bridges if correctly supported from both sides.

11. Lava. Lava is a fluid that flows similarly to Water. Lava continually produces

Fire at neighboring positions. When Lava collides with Water, Stone is formed.

12. Acid. Acid is a fluid that dissolves other elements when coming into contact

with them. Certain elements such as Wall and Cloner are immune to the acid

reaction. When an element reacts with acid, both elements are destroyed and

a Gas element is created.
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13. Dust. Dust is an element that behaviors similar to Sand, forming pyramid-like

structures. Dust is also highly flammable and creates large amounts of velocity

when burned.

14. Cloner. Cloner is a special element that remembers the first non-Empty el-

ement that touches it, then continually produces that element at neighboring

positions. A Cloner element therefore acts as a source for other elements, espe-

cially elements that naturally flow away.

3.3 Agent Descriptions

In addition to the natural elements described above, a set of cellular automata agents

are implemented within Powderworld. Internally, these agents are implemented as

elements themselves; the agents are considered elements 14-19. Agents therefore take

up space within the world and can be moved via the gravity and velocity systems.

1. Fish. Fish is a simple agent that randomly moves in the four cardinal directions.

Its density is equal to Water, so Fish in Water will naturally diffuse to fill the

space.

2. Bird. Birds are agents which following a boiding behavior. Specifically, Birds

have an internal direction [0, 2 * 𝜋], and move by applying velocity in that

direction. To enforce the boiding behavior, Birds update their internal direction

as a sum of 1) the average direction of any other birds within a 15x15 radius,

plus 2) directional vectors pointing away from any nearby non-empty elements.

Put together, the Bird update rule results in flocks of Birds that flow with each

other yet do not collide.

3. Kangaroo. Kangaroo is a gravity-obeying agent that moves left and right.

With a small chance each timestep, if a Kangaroo is ontop of a solid element,

the Kangaroo will jump upwards. The jump is implemented as a small impulse

in velocity at the Kangaroo’s position.
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Figure 3-3: Powderworld runs on the GPU and can simulate many worlds
in parallel. GPU simulation provides a significant speedup and allows simulation
time to scale with batch size. Simulation speed is guaranteed to remain constant
regardless of how many elements are present in the world.

4. Mole. Mole is an agent that burrows through solid elements with density >

3. Moles carry an internal cardinal direction, and continue moving in that

direction. With a random chance, a Mole will change direction. As long as a

Mole is moving through an element, the Mole will continue and destroy that

element. If such an element is not present, the Mole will stop moving.

5. Lemming. Lemmings are gravity-obeying agents similar to the Kangaroo.

Instead of occasionally jumping, a Lemming will move left/right and can ascend

one-element heights. Thus a Lemming can climb a pyramid by walking across

it, but will change direction if it encounters any barrier.

6. Snake. Snakes move in the four cardinal directions, randomly changing direc-

tion every few timesteps. Snakes follow the direction of any Snakes ahead of

themselves, thus, individual Snakes form longer multi-position Snake entities.

Snakes burrow through non-Wall elements and produce Acid.

3.4 Technical Details

3.4.1 Pytorch Module

The above operators are implemented as sub-modules of a global Pytorch Powder-

world module, which is referred to as the PWSim module. The PWSim module is
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stateless and simply aims to simulate forwards an input 𝑊 matrix. All the operators

and behaviors are implemented as parallelizable matrix operators. Thus, computation

is calculated across spatial positions and across the batch dimension simultaneously.

This design grants a large speedup as the GPU can be utilized for quick computation,

but it requires careful design as all elemental reactions must be designed to simulta-

neously update. Common failure cases involve multiple elements attempting to swap

into the same position, or a single element duplicating itself into multiple positions.

One bottleneck in the GPU utilization is the bandwith between SRAM and

DRAM. Because the PWSim module is comprised of many small CUDA operators,

the wall-clock bottleneck becomes data transfer within the GPU memory system. To

alleviate this issue, operator fusion can be used. By performing all elementwise oper-

ations in sequence, a chunk of operations can be sent as a single CUDA call, speeding

up the process. PWSim utilizes this fusion through ‘torch.jit‘.

3.4.2 ONNX Format.

Because the PWSim module is a stateless Pytorch module, the static graph of the

module can be exported into the ONNX format. This allows the Powderworld simu-

lator to be run locally on various devices, including the browser via WebGL.
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Chapter 4

Powderworld Task Distribution

A large motivation behind Powderworld is as its use as an environment for defining

a large amount of reinforcement learning tasks. In comparison to multi-task domains

such as Atari or ProcGen, Powderworld defines all of its tasks as objectives within the

same simulation environment. This design choice means that even though the goals

and constraints of a task may change, the underlying behavior of the environment is

consistent.

Another design objective in creating the Powderworld task distribution is that

tasks should form a smooth task space. In the environments mentioned above, tasks

are distinct games and thus are largely unrelated to each other. In Powderworld, tasks

are parametrized, forming a method of sampling new tasks with similar parameters.

Thus it is possible to create 1000 tasks that are slightly similar to a given task, or

interpolate between one task and another.

The general Powderworld task is defined as an OpenAI Gym environment with

observation space 64𝑥64𝑥1. Each spatial position contains an integer encoding of

the element occupying that position. Internally, a policy should learn an observa-

tion layer similar to a vocabulary embedding and learn an N-dimensional embedding

corresponding to each element.

Agents are viewed as disembodied policies who can interact with the world by

placing elements. The action space is a set of discrete actions of size [20, 8, 8, 8, 8, ].

The first dimension corresponds to which element should be placed into the world.
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Figure 4-1: Examples of reinforcement learning tasks in Powderworld. A
flexible framework for defining large distributions of tasks allows Powderworld to be
used as a benchmark for multi-task generalization.

The next two dimensions correspond to the X and Y bins where the new element

should be placed. Each bin is an 8x8 section of the world. The final two dimensions

dictate the XY offset within the bin. Internally, an agent may select each action

independently or autoregressively in sequence. Once an action is specified, a 3x3

square of the chosen element is placed at the chosen XY position.

Each task additionally contains a goal state, which is a [64𝑥64] matrix of element

IDs, plus a [64𝑥64] element of reward weights. Agents receive reward based on which

elements of the world match the goal state, multiplied element-wise by the reward

weights of the location. The objective for the agent is therefore to manipulate the

world state into resembling the goal state.

4.1 Task Space

Tasks within Powderworld can be viewed as points within a 3-dimensional task space.

This space is largely for design purposes, as a task’s position with each dimension is

represented not as a continuous value but as a set of properties. The three axes are

as follows:

1. Agent Space. This axis determines the properties of the agent. How many ac-

tions can the agent take within an episode? How many timesteps are simulated
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Figure 4-2: Tasks in Powderworld can be seen as points in a 3D task space.
The dimensions of Agent Space, State Gen Space, and Reward Space categorize com-
mon axes of variation. Within the global task space, smaller sections can be used as
training or test tasks.

between each action? Which elements is the agent allowed to select?

2. State Gen Space. This axis determines the procedural generation algorithm

used to generate starting states. A set of modular rules defines the algorithm,

e.g. "Create 3 circles of Stone; Create a sine wave of Lava".

3. Reward Space. This axis determines the goal state of the task. It is repre-

sented as the goal matrices described above.

Powderworld tasks are represented programatically as JSON objects encoding the

properties above.

4.2 Distributions of Tasks

A core design choice in Powderworld is that agents should be trained and evalu-

ated over distributions of tasks. For this purpose, the provided Powderworld gym

environment is characterized by a task generator function. This generator function

randomly samples and returns a JSON task. Task distributions can be as small as

always returning the same task, or may return a wide range of tasks.
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Figure 4-3: Example observations from 16 Powderworld tasks. On the left is
the state of the world, and on the right is the goal state given to the agent. Agents
learn to utilize a variety of complex strategies to manipulate the world into resembling
the goal.

This work presents a few frameworks for easily defining task distributions. First,

a set of 30 hand-defined training goals and 10 test goals are provided. These goals are

functions that return matrices as described above. Starting from a randomly sampled

goal, parameters describing agent space can also be randomly sampled – the agent

may have 20 interactions with the world, or 15, or 100.

State generation space can also be easily set using random sampling. The procedu-

ral generation algorithm operates over a set of generation commands, with arguments

dictating the element type as well as a shape. These shapes range from concrete ob-

jects such as circles and squares, to functional shapes such as arches, sine waves, or

ramps.

Finally, augmentation functions can further add randomness to a generated state.

Two augmentations are provided: one adds random perturbations to state generation,

and one adds perturbations to the goal matrix. Together, these augmentations allow

for any task distribution to be further expanded within the global task space.
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Chapter 5

Experiments

The following section presents a series of motivating experiments showcasing task

distributions within Powderworld. These tasks intend to provide two frameworks

for accessing the richness of the Powderworld simulation, one through supervised

learning and one through reinforcement learning. While these tasks aim to specifi-

cally highlight how Powderworld can be used to generate diverse task distributions,

the presented tasks are by no means exhaustive, and future work may easily define

modifications or additional task objectives as needed.

In all settings, the model is provided the 𝑊 ∈ [𝐻,𝑊, 20] matrix as an observa-

tion, which is a Markovian state containing element, gravity, density, and velocity

information. All task distributions also include a procedural generation algorithm for

generating training tasks, as well as tests used to measure transfer learning.

In all experiments below, evaluation is on out-of-distribution tests which are unseen

during training.

5.1 World Modelling

This section examines a world-modelling objective in which a neural network is given

an observation of the world, and must then predict a future observation. World models

can be seen as learning how to encode an environment’s dynamics, and have proven

to hold great practical value in downstream decision making [12, 15, 14]. A model

29



Figure 5-1: World modelling test states are designed to showcase specific el-
ement interactions. Test states are out-of-distribution and unseen during training.
Model generalization capability is measured by how accurate its future predictions
are on all eight tests.

Figure 5-2: Training states are generated via a procedural content gener-
ation (PCG) algorithm followed by Powderworld simulation. Experiments
examine the affect of increasing complexity in PCG parameters.

which can correctly predict the future of any observation can be seen as thoroughly

understanding the core rules of the environment. The world-modelling task does not

require reinforcement learning, and is instead solved via a supervised objective with

the future state as the target.

Specifically, given an observation 𝑊 0 ∈ 𝑅𝐻×𝑊×𝑁 of the world, the model is tasked

with generating a 𝑊 ′ ∈ 𝑅𝐻×𝑊×𝑁 matrix of the world 8 timesteps in the future. 𝑊 ′

values corresponds to logit probabilities of the 𝑁 different elements, and loss is com-

puted via cross-entropy between the true and predicted world. Tasks are represented

by a tuple of starting and ending observations.

Training examples for the world-modelling task are created via an parametrized

procedural content generation (PCG) algorithm. The algorithm synthesizes start-

ing states by randomly selecting elements and drawing a series of lines, circles, and

squares. Thus, the training distribution can be modified by specifying how many of

each shape to draw, out of which elements, and how many total starting states should

be generated. A set of hand-designed tests are provided as shown in Figure 5-1 which

each measures a distinct property of Powderworld, e.g. simulate sand falling through
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Figure 5-3: World model generalization improves as training distribution
complexity is increased. Shown are the test performances of world models trained
with data from varying numbers of start states, number of lines, and types of shapes.
By learning from diverse data, world models can better generalize to unseen test
states. Top-Right: World models trained on more elements can better
fine-tune to novel elements. These results show that Powderworld provides a
rich enough simulation that world models learn robust representations capable of
adaptation to new dynamics. Bottom: Examples of states generated with various
PCG parameters.

water, fire burning a vine, or gas flowing upwards. To generate the targets, each

starting state is simulated forwards for 8 timesteps, as shown in Figure 5-2.

The model is a convolutional U-net network [32], operating over a world size of

64x64 and 14 distinct elements. The agent network consists of three U-net blocks with

32, 64, and 128 features respectively. Each U-net block contains two convolutional

kernels with a kernel size of three and ReLU activation, along with a MaxPool layer in

the encoder blocks. The model is trained with Adam for 5000 iterations with a batch

size of 256 and learning rate of 0.005. During training, a replay buffer of 1024*256

data points is randomly sampled to form the training batch, and the oldest data

points are rotated out for fresh examples generated via the Powderworld simulator.
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Can world models generalize to unseen test states?

A starting experiment examines whether world models trained purely on simulated

data can correctly generalize on hand-designed test states. The set of tests, as shown

in Figure 5-1, are out-of-distribution hand-designed worlds that do not appear in the

training set. A world model must discover the core ruleset of environmental dynamics

in order to successfully generalize.

Scaling laws for training large neural networks have shown that more data con-

sistently improves performance kaplan2020scaling, zhai2022scaling. Figure 5-3 shows

this observation to be true in Powderworld as well; world models trained on increas-

ing amounts of start states display higher performance on test states. Each world

model is trained on the same number of training examples and timesteps, the only

difference is how this data is generated. The average test loss over three training runs

are displayed.

Results show that the 10-state world model overfits and does not generalize to

the test states. In contrast, the 100-state model achieves much higher test accuracy,

and the trend continues as the number of training tasks improves. These results

show that the Powderworld world-modelling task demonstrates similar scaling laws

as real-world data.

How do increasingly complex training tasks affect generalization?

As training data expands to include more varieties of starting states, does world model

performance over a set of test states improve? More complex training data may allow

world models to learn more robust representations, but may also introduce variance

which harms learning or create degenerate training examples when many elements

overlap.

Figure 5-3 displays how as additional shapes are included within the training

distribution, zero-shot test performance successfully increases. World models are

trained on distributions of training states characterized by which shapes are present

between lines, circles, and square. Lines are assigned a random (𝑋1,𝑌 1), (𝑋2,𝑌 2),
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and thickness. Circles and Squares are assigned a random (𝑋1,𝑌 1) along with a

radius. Each shape is filled in with a randomly selected element. Between 0 and 5

of each shape are drawn. Interestingly, training tasks with less shape variation also

display higher instability, as shown in the test loss spikes for Line-only, Circle-only,

and Square-only runs. Additionally, world models operating over training states with

a greater number of lines display higher test performance. This behavior may indicate

that models trained over more diverse training data learn representations which are

more resistant to perturbations.

Results showcase how in Powderworld, as more diverse data is created from the

same set of core rules, world models increase in generalization capability.

Does environment richness influence transfer to novel interactions?

While a perfect world model will always make correct predictions, there are no guar-

antees such models can learn new dynamics. This experiment tests the adaptability of

world models, by examining if they can quickly fine-tune on new elemental reactions.

Powderworld’s ruleset is also of importance, as models will only transfer to new

elements if all elements share fundamental similarities. Powderworld elements natu-

rally share a set of behaviors, e.g. gravity, reactions-on-contact, and velocity. Thus,

this experiment measures whether Powderworld presents a rich enough simulation

that models can generalize to new rules within the environment.

To run the experiment, distinct world models are trained on distributions contain-

ing a limited set of elements. The 1-element model sees only sand, the 2-element sees

only sand and water, the 3-element sees sand, water, and wall, and so on. Worlds are

generated via the same procedural generation algorithm, specifically up to 5 lines are

drawn. After training for the standard 5000 iterations, each world model is then fine-

tuned for 100 iterations on a training distribution containing three held-out elements:

gas, stone, and acid. The world model loss is then measured on a new environment

containing only these three elements.

Figure 5-3 (top-right) highlights how world models trained on increasing numbers

of elements show greater performance when fine-tuned on a set of unseen elements.
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Figure 5-4: In Powderworld RL tasks, agents must iteratively place elements
(including directional wind) to transform a starting state into a goal state.
Within this framework, we present three RL tasks as shown above. Each task contains
many challenges, as starting states are randomly generated for each episode. Agents
are evaluated on test states that are unseen during training.

These results indicate that world models trained on richer simulations also develop

more robust representations, as these representations can more easily be trained on

additional information. Powderworld world models learn not only the core rules of

the world, but also general features describing those rules, that can then be used to

learn new rules.

5.2 Reinforcement Learning Tasks

Note: This section was written before the RL Task Space described in Chapter 4 was

developed. It is included here for completeness, but the following RL experiments use

an older version of the Powderworld RL setup.

Reinforcement learning tasks can be defined within Powderworld via a simple

framework, as shown in Figure 5-4. Agents are allowed to iteratively place elements,

and must transform a starting state into a goal state. The observation space contains

the Powderworld world state 𝑊 ∈ 𝑅64×64×20, and the action space is a multi-discrete

combination of 𝑋, 𝑌,𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝑉𝑥, 𝑉𝑦. 𝑉𝑥 and 𝑉𝑦 are only utilized if the agent is

placing wind.

Tasks are defined by a function that generates a starting state, a goal state, and

any restrictions on element placement. Note that Powderworld tasks are specifically

designed to be stochastically diverse and contain randomly generated starting states.

Within this framework, many task varieties can be defined. This work considers:
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• Sand-Pushing. The Sand-Pushing environment is an RL environment where

an agent must move sand particles into a goal slot. The agent is restricted

to only placing wind, at a controllable velocity and position. By producing

wind, agents interact with the velocity field, allowing them to push and move

elements around. Wind affects the velocity field in a 10x10 area around the

specified position. Reward equals the number of sand elements within the goal

slot, and episodes are run for 64 timesteps. The Sand-Pushing task presents a

sparse-reward sequential decision-making problem.

• Destroying. In the Destroying task, agents are tasked with placing a limited

number of elements to efficiently destroy the starting state. Agents are allowed

to place elements for five timesteps, after which the world is simulated forwards

another 64 timesteps, and reward is calculated as the number of empty elements.

A general strategy is to place fire on flammable structures, and place acid on

other elements to dissolve them away. The Destroying task presents a task

where correctly parsing the given observation is crucial.

• Path-Building. The Path-Building task presents a construction challenge in

which agents must place or remove wall elements to route water into a goal con-

tainer. An episode lasts 64 timesteps, and reward is calculated as the number of

water elements in the goal. Water is continuously produced from a source for-

mation of Cloner+Water elements. In the Path-Building challenge, agents must

correctly place blocks such that water flows efficiently in the correct direction.

Additionally, any obstacles present must be cleared or built around.

To learn to control in this environment, a Stable Baselines 3 PPO agent [29, 35] is

trained over 1,000,000 environment interactions. The agent model is comprised of two

convolutional layers with feature size 32 and 64 and kernel size of three, followed by

two fully-connected layers. A learning rate of 0.0003 is used, along with a batchsize of

256. An off-the-shelf RL algorithm is intentionally chosen, so experiments can focus

on the impact of training tasks.
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Figure 5-5: Increasing the complexity of RL training tasks helps generaliza-
tion, up to a task-specific inflection point. Shown are the test rewards of RL
agents trained on tasks with increasing numbers of shapes (shown in log-scale). In
Sand-Pushing, too much complexity will decrease test performance, as agents become
unable to extract a sufficient reward signal. In Destroying, complexity consistently
increases test performance. While increased complexity generally increases the diffi-
culty of training tasks and reduces reward, in Path-Building certain obstacles can be
used to complete the goal, improving training reward.

Figure 5-6 highlights agents solving the various RL tasks. Training tasks are

generated using the same procedural generation algorithm as the world-modelling

experiments. Task-specific structures are also placed, such as the goal slots in Sand-

Pushing and Path-Building, and initial sand/water elements.

To test generalization, agents are evaluated on test tasks that are out of distribu-

tion from training. Specifically, test tasks are generated using a procedural generation

algorithm that only places squares (5 for Destroying and Sand-Pushing, 10 for Path-

Building). In contrast, the training tasks are generated using only lines and circles.

Figure 5-5 showcases how training task complexity affects generalization to test

tasks. Displayed rewards are averaged from five independent training runs each.

Agents are trained on tasks generated with increasing numbers of lines and circles

(0, 1, 2, 4 ... 32, 64). These structures serve as obstacles, and training reward

generally decreases as complexity increases. One exception is in Path-Building, as

certain element structures can be useful in routing water to the goal.

Different RL tasks display a different response to training task complexity. In

Sand-Pushing, it is helpful to increase complexity up to 8 shapes, but further com-

plexity harms performance. This inflection point may correspond to the point where

learning signal becomes too high-variance. RL is highly dependent on early reward
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Figure 5-6: Agents solving the Sand-Pushing, Destroying, and Path-
Building tasks. In the Sand-Pushing task, wind is used to push a block of sand
elements between obstacles to reach the goal slot on the right. In Destroying, agents
must place a limited number of elements to efficiently destroy the world. In Path-
Building, agents must construct a path for water to flow from a source to a goal
container. Tasks are randomly generated via a procedural algorithm.

signal to explore and continue to improve, and training tasks that are too complex

can cause agent performance to suffer.

In contrast, agents on the Destroying and Path-Building task reliably gain a ben-

efit from increased training task complexity. On the Destroying task, increased diver-

sity during training may help agents recognize where to place fire/acid in test states.

For Path-Building, training tasks with more shapes may present more possible strate-

gies for reaching the goal.

The difference in how complexity affects training in Powderworld world-modelling

and reinforcement learning tasks highlights a motivating platform for further investi-

gation. While baseline RL methods may fail to scale with additional complexity and

instead suffer due to variance, alternative learning techniques may better handle the

learning problem and show higher generalization.
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Chapter 6

Conclusion

Generalizing to novel unseen tasks is one of the grand challenges of reinforcement

learning. Consistent lessons in deep learning show that training data is of crucial

importance, which in the case of RL is training tasks. To study how and when agents

generalize, the research community will benefit from more expressive foundation en-

vironments supporting many tasks arising from the same core rules.

This work introduced Powderworld, an expressive simulation environment that

can generate both supervised and reinforcement learning task distributions. Powder-

world’s ruleset encourages modular interactions and emergent phenomena, resulting

in world models which can accurately predict unseen states and even adapt to novel

elemental behaviors. Experimental results show that increased task complexity helps

in the supervised world-modelling setting and in certain RL scenarios. At times,

complexity hampers the performance of a standard RL agent.

Powderworld is built to encourage future research endeavors, providing a rich yet

computationally efficient backbone for defining tasks and challenges. The provided

experiments hope to showcase how Powderworld can be used as a platform for exam-

ining task complexity and agent generalization. Future work may use Powderworld

as an environment for studying open-ended agent learning, unsupervised environment

design techniques, or other directions. As such, all code for Powderworld is released

online in support of extensions.
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