
Privacy-Preserving Video Analytics
by

Francis Cangialosi

B.A., University of Maryland (2016)
B.S., University of Maryland (2016)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

June 2023

© 2023 Francis Cangialosi. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or release

the thesis under an open-access license.

Authored by: Francis Cangialosi
Department of Electrical Engineering and Computer Science
May 19, 2023

Certified by: Hari Balakrishnan
Fujitsu Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Privacy-Preserving Video Analytics

by
Francis Cangialosi

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As video cameras have become pervasive in public settings and accurate computer
vision has become commonplace, there has been increasing interest in collecting and
processing data from these cameras at scale (“video analytics”). While these trends
enable many useful applications (such as monitoring the mobility patterns of cars and
pedestrians to improve road safety), they also enable detailed surveillance of people at
an unprecedented level. Prior solutions fail to practically resolve this tension between
utility and privacy, as they rely on perfect detection of all private information in each
video frame—an unrealistic assumption.

In this dissertation, we present Privid, a privacy-preserving video analytics sys-
tem that aims to provide both a meaningful guarantee of privacy and an expressive,
general query interface that is amenable to a wide range of analysts. In particular,
Privid’s privacy definition does not require perfect detection of private information,
and its query interface allows analysts to provide their own arbitrary (untrusted)
machine learning (ML) processing models.

The key takeaway from our evaluation is that Privid can provide a practical bal-
ance between privacy and utility: across a variety of queries over both real surveillance
videos and a simulated city-wide camera network, Privid protects the appearance of
all people with differential privacy, and maintains accuracy within 79-99% relative to
a non-private system.

Thesis Supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

It takes a village to produce a PhD thesis. Truly. I feel incredibly grateful and
privileged for my village of mentors, colleagues, friends, and family who have shaped
me, both during my PhD and all the years leading up to it. If not for them, none of
this would have been possible.

I want to start by thanking my advisor, Hari Balakrishnan, for all of his mentorship
and the many ways he supported me since I arrived at MIT seven years ago. I
am especially grateful for Hari’s patience and guidance as I meandered, working
on different projects and trying to hone my interests throughout grad school. Hari
continually pushed me to pursue my own interests rather than those of anyone else,
even when that ultimately led me outside of his typical domain. Nevertheless, he
always managed to provide sound guidance and critical insight into my work. Many
of the lessons I learned from Hari were non-technical, subtle things that cannot be
easily articulated on paper, but I am certain they made me a better researcher and
person.

Ravi Netravali was also an advisor to me in every way except by title. Ravi and
I first shared an office during his last year at MIT, and I feel very fortunate that we
began chatting about research ideas just before he left. Little did I know that those
chats would eventually lead to this thesis! Ravi collaborated with me closely on all
aspects of this work and was extremely generous with his time and energy every step
of the way. In particular, Ravi taught me a lot about refining and communicating
technical ideas. His attention to detail and persistence on clarity were instrumental
in making this work as polished as it is. On top of his technical contributions, Ravi
was a boundless source of encouragement, positivity, wisdom, and life advice. I often
went into conversations with Ravi feeling anxious about one thing or another, but
always left feeling at ease.

I am grateful to Henry Corrigan-Gibbs for serving on my thesis committee and
providing much-needed encouragement, reassurance, and advice near the end of my
PhD. I am also grateful to Nickolai Zeldovich and Danny Weitzner for their helpful
feedback and (constructive) criticism which kept me on the right track.

I am indebted to all of my collaborators on the Privid project. Venkat Arun was
a consistent sounding board, always eager for a spontaneous chat, many of which
strengthened the ideas in this thesis. In particular, Venkat helped to fill in my gaps
in mathematical formalism and caught subtle mistakes in my proofs. On top of his
technical contributions, I am thankful to have had Venkat as an officemate and close
friend. I enjoyed all of our discussions–ranging from deeply technical to frivolous and
everything in between–and the many jokes that kept our office environment light-
hearted. Neil Agarwal played a key role in the implementation and evaluation of
Privid. As anyone in systems knows, these things are subtly difficult and time-
consuming. I especially appreciated Neil’s enthusiasm and thoughtfulness; he always
carefully considered the work we were doing, rather than blindly following suggestions.
Junchen Jiang and Srinivas Narayana provided guidance and feedback from the very
beginning, and were instrumental in crafting the problem and scope for Privid. I am

5

especially appreciative of the excitement, enthusiasm, and experience they brought
to all of our project meetings. Anand Sarwate was always happy to chat with me on
topics ranging from the philosophy of privacy to the technical weeds of a proof. Our
conversations helped me to iron out bugs and gave me confidence in the theoretical
foundations of Privid.

Before working on the contents of this thesis, I was fortunate to work with a num-
ber of great collaborators on a series of projects adjacent to congestion control: Deepti
Raghavan, Akshay Narayan, Prateesh Goyal, Srinivas Narayana, Radhika Mittal, and
Mohammad Alizdeh. Although these projects are not included in this thesis, they
contributed to my growth and made me a better researcher, which in turn enabled
this work. In particular, I grew as a software engineer and systems builder by work-
ing alongside Akshay and benefited tremendously from the many chats and words of
encouragement from Prateesh.

My research was greatly enriched by the opportunity to collaborate with folks in
industry:

I am grateful to Ranjeeth Dasineni for initiating my two-year collaboration with
Facebook and the opportunity to bring our work on CCP [62] into the real world (i.e.,
Facebook’s codebase). Udip Pant graciously supported this project, and provided not
only technical advice, but also great conversations and friendship. I am also thankful
for Yang Chi, Luca Niccolini, Matt Joras and all of the other members of the transport
team who provided a great working environment and were always eager to help when
I had a question.

During my last year, Hari provided me the opportunity to continue my work on
privacy in a very practical setting with Cambridge Mobile Telematics. I greatly ap-
preciate and admire his desire to prioritize doing the right work, above publication
or financial motivations, and this collaboration was just one example of that. Every
single person I interacted with at CMT was extremely welcoming, kind, and enthusi-
astic. In particular, I am grateful to Paresh Malalur for being both a mentor and core
collaborator on my work at CMT. Paresh never hesitated to hop on a call outside of
our scheduled meetings and was always ready dive into the weeds of an implementa-
tion detail or proof. I am especially appreciative of his patience with me whenever
the work ventured into technical details that were outside of my area of expertise.
Rather than taking the easier route of filling in gaps, he took the time to help me
learn what was necessary so that I could fill them in myself.

I am extremely grateful to all of my colleagues from my days as an undergraduate
at the University of Maryland for providing my foundations as a researcher. In
particular, this starts with Dave Levin. When I expressed interest in thinking more
about a class project during my sophomore year, Dave eagerly invited me to work
with him. That project transitioned into a three-year collaboration, throughout the
school years and summers, on three separate publications. From the very beginning,
and before I deserved it, Dave gave me the attention and mentorship one would give a
PhD student and also treated me as one of his peers. Dave taught me many invaluable
lessons about how to both approach and execute good research. He also instilled in
me a high bar for presentations and publications, and graciously taught me many of

6

his Keynote tricks. As a testament to his dedication, Dave helped me practice my first
conference talk (IMC 2015 in Tokyo) more times than I can count and was apparently
more nervous about the talk than I was myself. If not for Dave, I certainly would not
have made it1 to MIT. Furthermore, Dave gave me the opportunity to work with his
fantastic group of collaborators outside of MIT, who were welcoming and gracious
with their advice and encouragement: Alan Mislove, Christo Wilson, Dave Choffnes,
and Bruce Maggs. I’m also grateful to Neil Spring and Bobby Bhattacharjee for their
insightful and candid feedback on papers and presentations.

It was also in the UMD Systems lab that I met Matt Lentz, who has been both a
close friend and “life advisor” ever since. Matt accompanied me to my first conference,
and taught me, by example, the fundamentals of networking. Matt has consistently
served as a role model and inspiration for me as a researcher, especially for his good
taste and extreme attention to detail when it comes to figures and slides. He has
sharpened my abilities through feedback on most of the visual content I’ve made. I
am grateful for all of the feedback and advice he’s given over the years, but most
importantly, I am grateful for his friendship.

Thank you to my G982 officemates, NMS labmates, and G9 cohabitants, past and
present (in alphabetaical order)—Venkat Arun, Arjun Balasingam, Inho Cho, Jon
Gjengset, Prateesh Goyal, Pouya Hamadanian, Songtao He, Peter Iannucci, Pantea
Karimi, Mehrdad Khani, Moein Khazraee, Sunghyun Kim, Derek Leung, Chenning
Li, Alex Mallery, Hongzi Mao, Akshay Narayan, Srinivas Narayana, Arash Nasr-
Esfahany, Vikram Nathan, Pari Negi, Ravi Netravali, Amy Ousterhout, Seo Jin Park,
Deepti Raghavan Sudarsanan Rajasekaran, Harsha Sharma, Vibhaa Sivaraman, Will
Sussman, Lily Tsai, Frank Wang, Lei Yang, and Zhizhen Zhong—for making the
Stata center a fun and pleasant place to work, and for all of the conversations over
the years. I have fond memories of our regular table tennis matches, badminton
games, hikes, and trips to Tosci’s. In particular, thank you to Vibhaa for all of her
(often underappreciated) work organizing so many things for our group, including
many of those social activities, and many thesis defenses. Thank you also for being
a caring friend, listener, and sounding board for me through some difficult moments.

I am also very grateful for all of the administrative staff—Sheila, Angelly, Janet,
and Alicia—who worked tirelessly behind the scenes to support all of the activities
that fueled our research, including conference travel, funding, reimbursements, snacks,
and group lunches.

Katie Lewis and David Palmer were my problem set partners and the reason I
survived (and learned immensely from) David Karger’s advanced algorithms course.
We somehow fell into a tradition of going to A4 roughly once a semester and ordering
the exact same two pizzas every single time. I am thankful that we somehow managed
to keep that consistently through the rest of grad school and hope that there will be
more in the future.

My community outside of MIT provided me with much-needed balance, perspec-
tive, and purpose.

1The jury is still out as to whether I am thanking or blaming him for this.

7

Symphony Church provided a warm and welcoming community for me in Boston
from the moment I moved here. In particular, I want to acknowledge Pastor Barry,
the worship team, the Cambridge family group, and the JP microchurch for their
friendship, words of wisdom, and encouragement throughout all of the difficult seasons
during my PhD. And thank you to Sarah Yoo for introducing me to Symphony in the
first place.

My housemates in “3251”—Colin, Brian, and Su-Young—were my family in Boston,
and living with them marked the moment when Boston began to feel like my new
home. We prepared and shared countless meals together, watched dramas, played
games, took trips, laughed a lot, and overall just did life together. I cherish all the
memories we made and am indebted for all the emotional and moral support they pro-
vided throughout our time living together. I am thankful to Tony Lee for providing
that home and unique opportunity for us.

Running has been foundational to my physical and mental health over the last
few years of my PhD. Thank you to everyone who has shared the streets with me for
a run at some point. In particular, I am grateful to my fellow Rat City Run Club
members—James and Sunny—for inspiring my interest in marathons, and traveling
across Europe with me to run the 2022 Berlin Marathon. And I am grateful for the
6:34am Volt group, KC, and the broader Heartbreak Running community for the
many track workouts and long runs that improved my fitness and gave me energy for
the rest of my workdays.

Finally, I am forever grateful to my entire family, including the extended Can-
gialosi family, for always believing in me and building me up, from the very beginning
and continuously to this day. Thank you to my parents, for their unconditional love
and endless desire to provide for me and help me in any way they can. Thank you
to my in-laws, for welcoming me into their family with open arms and for breaking
all of the negative Korean in-law stereotypes. And thank you to my beautiful wife,
Su-Young, who has been my dearest friend, life partner, and number one cheerleader
and advocate for the past 10 years, through all the ups and downs of my PhD. I am
indebted to her for the many sacrifices she made to be by my side throughout this
process. She often reminds me that less is more and that I shouldn’t overthink or
overcomplicate things. I am still working on that, but for everyone else’s sake, I will
condense all the acknowledgements she deserves into this brief sentiment: thank you
for all the joy and happiness you’ve given me. There is truly never a dull moment
with you! I feel confident in my career ahead knowing that I have you by my side.

8

Previously Published Material

The contents of this thesis extend a conference paper at NSDI 2022 [27], which was
joint work with Neil Agarwal (Princeton), Venkat Arun (MIT), Junchen Jiang (Uni-
versity of Chicago), Srinivas Narayana (Rutgers), Anand Sarwate (Rutgers), and Ravi
Netravali (Princeton).

9

10

Contents

Acknowledgements 5

Previously Published Material 9

List of Figures 14

List of Tables 15

1 Introduction 17
1.1 Motivation . 17
1.2 Problem Definition and Goals . 19
1.3 Prior Solutions . 21
1.4 Contributions . 22
1.5 Key Takeaways . 23

2 Prior Work 25
2.1 Visual Denaturing . 25
2.2 Systems . 29
2.3 Differential Privacy . 31

3 A New Privacy Definition: Event-Duration Privacy 35
3.1 Intuition . 35
3.2 Formal Definition . 36
3.3 Choosing a Privacy Policy . 38
3.4 Privacy Guarantee Semantics . 40

3.4.1 Privacy is Proportional to Duration 41
3.4.2 Detection Probability . 42
3.4.3 Multiple Appearances . 44
3.4.4 Multiple Cameras . 44
3.4.5 Multiple Targets . 45

11

3.5 Alternative Formulations . 46
3.5.1 Why specify 𝐾? . 46
3.5.2 Why not define 𝜌 as the total time? 46
3.5.3 Why not define policies relative to window size? 47
3.5.4 Why not provide a guarantee over multiple camearas? 47

4 Privid: A System for Event-Duration Privacy 49
4.1 Overview . 49

4.1.1 Threat Model . 49
4.1.2 Query Support . 50
4.1.3 Execution Model . 51
4.1.4 Components . 51

4.2 Query Interface . 51
4.2.1 Query Contents . 51
4.2.2 Privid Query Language (PQL) 54
4.2.3 Query Compiler . 57
4.2.4 Query Executables . 57
4.2.5 Execution Environment . 58

4.3 Query Sensitivity . 61
4.3.1 Relative Privacy Guarantees 67

4.4 Query Composition . 68
4.5 Spatial Masking . 71

4.5.1 Intuition . 71
4.5.2 Usage in Privid . 73
4.5.3 Choosing Masks . 75
4.5.4 Microbenchmarks . 77
4.5.5 I thought you said denaturing was bad! 78

4.6 Spatial Splitting . 81
4.6.1 Intuition . 81
4.6.2 Usage in Privid . 81
4.6.3 Microbenchmarks . 82
4.6.4 Discussion . 82

4.7 Example Query . 82
4.7.1 Benevolent Query . 82
4.7.2 Malicious Query Attempt . 84

4.8 Limitations . 85

12

5 Evaluation 87
5.1 Setup . 87
5.2 Query Case Studies . 88

5.2.1 Case 1: Counting Private Objects Over Time (Q1-Q3) 89
5.2.2 Case 2: Aggregating Over Multiple Cameras (Q4-Q6) 92
5.2.3 Case 3: Counting Non-Private Objects (Q7-Q9) 94
5.2.4 Case 4: Duration of Non-Private Objects (Q10-Q12) 95
5.2.5 Case 5: Trajectory Queries (Q13) 96

6 Privid in Practice 97
6.1 Video Owner’s Perspective . 97

6.1.1 Decisions . 97
6.1.2 Estimating Durations Using CV 99

6.2 Analyst’s Perspective . 100
6.2.1 Decisions . 101
6.2.2 Budget-Granularity Tradeoff 101
6.2.3 Best Practices for Query Writing 102

6.3 Discussion: Social Implications . 105

7 Conclusion and Future Work 107

13

List of Figures

Figure 2-1 Example shortcomings of denaturing 26
Figure 2-2 Example where masking some objects impedes detection of non-

masked objects . 28
Figure 2-3 Example where denaturing changes CV model output 28

Figure 3-1 Example where object tracking accuracy is high despite low
object detection accuracy . 38

Figure 3-2 Probability that an adversary can detect an individual as a
function of the duration they are visible 42

Figure 4-1 Privid’s query grammar . 54
Figure 4-2 Privid runtime AppArmor policy 60
Figure 4-3 Privid’s sensivity calculation rules 65
Figure 4-4 Example of query budget allocation strategy 69
Figure 4-5 Heatmap highlighting areas of a scene where individuals spend

the most time . 72
Figure 4-6 Distribution of object durations before and after applying fixed

spatial masks. 74
Figure 4-7 Impact of progressively larger spatial masks on object duration

and detection . 79
Figure 4-8 Example PQL query . 83
Figure 4-9 Example analyst PROCESS executable 83

Figure 5-1 Accuracy of Privid for time-series count queries 89

Figure 6-1 Relationship between number of queries and query granularity,
for a fixed error bound . 102

Figure 6-2 Relationship between number of queries and error bound for a
fixed query granularity . 103

14

List of Tables

Table 3-1 Comparison of privacy provided by event-duration privacy vs.
masking using the same object detection results 38

Table 4-1 Effectiveness of spatial masking 78
Table 4-2 Example menu of semantically-useful spatial masks 80
Table 4-3 Benefit of spatial splitting . 81

Table 5-1 Summary of case study queries and achieved accuracy 89

Table 6-1 Hyperparameters for the DeepSORT algorithm tracking people 99
Table 6-2 Hyperparameters for SORT algorithm tracking vehicles 99

15

16

Chapter 1

Introduction

1.1 Motivation

As technology has progressed, it has become easier and easier to collect data about
our personal lives from more and more sources. Today, data can be collected from the
usage of our laptop, the location and movement of our phone, the physical activity
of our watch, the operation of our car, the usage of lights in our home, and from the
security cameras that line our streets, to name just a few examples.

Data fuels the development of many of the important services we use, both directly
(e.g., wellness apps analyze our physical movements to help us track our health and
identify issue) and indirectly (e.g., the government collects traffic and mobility data
to mediate traffic congestion). Collecting more of this data enables organizations to
create better algorithms, better models, better results, and ultimately offer us better
utility and new services.

However, this data covers an increasing fraction of our lives, both online and in
the physical world. This means that our level of “privacy”—informally, the fraction of
our lives that is not available to be scrutinized and judged—is quickly vanishing. In
other words, there is an inherent tension between utility and privacy : the same data
can power both new technology and better surveillance.

This makes it difficult when we have to decide whether or not to share data.
Unfortunately, in most cases the options are black and white: trust the organization
offering the service in exchange for data (“giving up” on privacy), or prioritize privacy
by denying the service, “giving up” on the potential utility of it. But “trusting”
an entire organization is precarious and difficult to reason about. There is always
the chance that an organization could be outright malicious. But there are many

17

more dangerous scenarios: they could hide malicious intent behind a genuine service,
begin with good intent but succumb to mission creep [25], fail to implement their
policies [36], sell data to untrusted parties [60], be subject to a data breach, or have
some malicious employees internally.

However, the pressure to share data is great. There are often strong economic (an
organization is willing to pay a lot for useful data) or moral (contributing data could
help an organization on their quest to make the world a better place) incentives. It
is easy to protect privacy by never sharing any data, but this is not desirable, and
impedes a lot of exciting and useful technological progress.

Can we get the best of both worlds? In many of these cases, we just want to
allow the organization to make some inferences about our data. Is there a way to
enable organizations to make the inferences they need to carry out their services
without giving them access to our data directly? In this dissertation, we explore that
question for a particular emerging domain where the potential utility is high, but the
threat of surveillance is particularly concerning: video analytics.

High-resolution video cameras are now pervasive in public settings [3, 5, 8, 1, 4, 75],
with deployments throughout city streets, in our doctor’s offices and schools, and
in the places we shop, eat, or work. Traditionally, these cameras were monitored
manually, if at all, and used for security purposes, such as providing evidence for a
crime or locating a missing person. However, steady advances in computer vision [26,
53, 55, 77, 50] have made it possible to automate video-content analytics (both live
and retrospective) at a massive scale across entire networks of cameras. While these
trends enable a variety of important applications [2, 9, 11, 10] and have received much
positive attention in the computer systems community [45, 23, 46, 54, 21, 41, 42, 39,
88], they also enable privacy intrusions at an unprecedented level [7, 76].

As a concrete example, consider the operator for a network of city-owned cameras.
Different organizations (i.e., “analysts”) want access to the camera feeds for a range of
needs: (1) health officials want to measure the fraction of people wearing masks and
following COVID-19 social distancing orders [37], (2) the transportation department
wants to monitor the density and flow of vehicles, bikes, and pedestrians to determine
where to add sidewalks and bike lanes [18], and (3) businesses are willing to pay to
analyze shopping behaviors to improve their operations [16].

Unfortunately, freely sharing the video with these parties may enable them to
violate the privacy of individuals in the scene by tracking where they are, and when.
For example, the “local business” may actually be a bank or insurance company
that wants to track individuals’ private lives for their risk models, while well-known

18

companies or government agencies may succumb to mission creep [15, 14, 17]. Further,
any organizations with good intentions could have employees with malicious intent
who wish to spy on a friend or co-worker [12, 13]. In other words, the camera owner’s
options are at opposite ends of the spectrum and are both undesirable: freely sharing
the video gives up on privacy, while not sharing it gives up on utility.

In this dissertation, we offer a third option that strikes a practical balance between
privacy and utility: a new video analytics system that allows analysts to process
video data for a wide range of use cases, while providing a privacy guarantee ensuring
citizens cannot be tracked. As a result, we show that it is indeed possible to build
a general video analytics system that serves both analysts and citizens. Before we
describe the gap we seek to fill in prior work (§1.3), we define our problem and goals
more precisely to put everything into context.

1.2 Problem Definition and Goals

Video analytics broadly refers to the application of computer vision algorithms to
large amounts of video data to extract insights about its contents. A typical video
analytics setting involves four parties (though some may pertain to the same entity):

• A Video Owner, who operates one or more cameras and owns the video data
they capture,

• Individuals, whose behavior and activity are observed by these camera(s),

• Analyst(s), who wish to analyze the video data, and a

• Compute Provider, who executes the analyst’s computation.

Analysts are interested in questions about the video data, such as “How many
people entered store X each hour?” or “Which roads suffered from the most accidents
in 2020?” (see Chapter 5 for more specific examples). Analysts express a question
as a “query”, which is a function that takes a video as input and outputs the answer
to the question (e.g., a statistic)1. A query typically involves a pipeline of separate
algorithms—some using machine learning, and others using traditional programming
logic—where the output of one provides the input for the next. For example, to
answer the question “what is the average speed of red cars traveling along road Y?”,

1Related work typically defines a query as returning “intermediate” results (e.g., bounding boxes).
Our definition is distinct in that we consider a query to return the final answer to the high-level
question at hand, and to encompass all of the necessary computation.

19

the “query” would include an object detection algorithm to recognize cars, an object
tracking algorithm to group them into trajectories, an algorithm for computing speed
from a trajectory, and logic to filter only the red cars and average their speeds.

In this work, we are concerned with the dilemma of a Video Owner: they would
like to enable a variety of (untrusted) analysts to run queries over their videos, as
long as the results do not infringe on the privacy of any individuals who appear in
the videos. Informally, privacy “leakage” occurs when an analyst can learn something
about a specific individual that they did not know before executing a query. To
practically achieve these properties, a system must meet three concrete goals:

Goal 1: Formal notion of privacy. The system’s privacy policies should formally
(rigorously) describe both the type and amount of privacy that could be lost
through a query. Given a privacy policy, the system should be able to provide a
guarantee that it will be enforced, regardless of properties of the data or query
implementation. Without such a guarantee, it is difficult for anyone to reason
about what privacy is actually being provided and whether or not it is sufficient.

Goal 2: Maximize utility for analysts. The system should support (i.e. with
reasonable accuracy) any query whose final result does not infringe on the pri-
vacy of any individuals. A key factor of the potential for video analytics is the
diversity of information it captures and thus the range of applications it could
enable. A system that achieves high accuracy and privacy for a very limited
set of queries would leave the vast majority of use cases unaddressed and thus
would not ease the tension between privacy and utility in practice. Further, if
accuracy loss is introduced to improve privacy for a given query, it should be
possible to bound that loss (relative to running the same query over the original
video, without any privacy preserving mechanisms). Without such a bound,
analysts would be unable to rely on any provided results and would be unlikely
to use the system.

Goal 3: “Bring Your Own Model” . Computer vision models are at the heart
of modern video processing. However, there is not one or even a discrete set
of models for all tasks and videos. Even the same task may require different
models, parameters, or post-processing steps when applied to different videos.
In many cases, analysts will want to use models that they trained or fine-tuned
themselves, especially when they have proprietary data for their task. Thus,
in order for a system to be practical, it must allow analysts to use their own
video-processing models.

20

Scope. The class of analytics queries we seek to enable is distinct from security-
oriented queries (e.g., finding a stolen car or missing child), which require identifica-
tion of a particular individual, and are thus directly at odds with individual privacy. In
contrast, analytics queries involve searching for patterns and trends in large amounts
of data; intermediate steps may operate over the data of specific individuals, but they
do not need to distinguish individuals in their final aggregated result.

1.3 Prior Solutions

Over many years, the computer vision and systems communities have proposed a wide
variety of approaches to address privacy concerns for visual data. However, most use
some variant of the same strategy: first find all private information in the video, then
hide it. Unfortunately both steps fundamentally conflict with the goals laid out in
the previous section.

The first step alone can be unrealistic in practice (§2.1); it requires: (1) an explicit
specification of all private information that could be used to identify an individual,
and then (2) the ability to spatially locate all of that information in every frame
of the video. For the former, while some information is obviously identifying (e.g.,
one’s face), it is difficult to enumerate the full set of objects that could identify an
individual in all scenarios (e.g., a distinctive backpack or bike, the individual’s walking
gait, their car, or even the building they exit). For the latter, even state-of-the-art
CV algorithms are imperfect [6], especially in the challenging conditions (i.e., poor
lighting, distant objects, frequent occlusions) that are prevalent in public video.

Further, if these approaches cannot find some private information, they funda-
mentally cannot know that they missed it. Taken together, they can provide, at best,
a conditional and brittle privacy guarantee such as the following: “if an individual is
only identifiable by their face, and their face is detectable in every frame of the video
by the system’s specific CV model implementation in the specific conditions of this
video, then their privacy will be protected.” In other words, these approaches fail to
provide a meaningful guarantee of privacy for individuals, because whether or not any
given individual will be protected depends heavily on the data and implementation.
CV is rapidly advancing, and there is no systematic way to determine which informa-
tion is or is not detectable in a video. Just because the system’s CV model cannot
detect a particular individual does not mean a malicious analyst’s model would not
be able to do so.

The second step precludes many common applications. Often the objects whose

21

individual privacy we want to protect (people, cars, etc.) are the very objects that we
wish to analyze in aggregate at the population level. By obscuring the individuals,
we prevent the analysis of them in aggregate. A careful balance here is crucial; even
if a system significantly reduces privacy threats, if it is not practical for analysts it
will never be chosen over the black and white options of all-or-nothing privacy, and
thus will not ease any privacy-utility tensions in practice.

On the other hand, Differential Privacy (DP) [34] has arisen as the gold standard
framework for devising rigorous and meaningful privacy guarantees in many settings.
Although DP has been studied extensively and applied to many adjacent problems,
the framework does not directly apply to the video analytics setting. In simple terms,
creating a differentially-private version of an algorithm requires analytically bounding
the “sensitivity” of the algorithm, which is the amount any single individual in the
input could contribute to the computation’s output. This is incongruent with video
analytics data for two reasons: (1) videos do not directly encode the individuals they
observe (they can only be inferred from pixels using a computer vision algorithm),
and (2) modern video processing relies on custom machine learning models (§1.2),
but it is impractical to analytically bound all the ways an individual could impact a
single model, much less the full set of models an analyst may want to use.

1.4 Contributions

The primary goal of this thesis is to bring the rigorous theory of differential privacy
to the video analytics setting in practice. Towards this end, we make the following
contributions:

• We design a new variant of differential privacy tailored to the video analytics
setting: event-duration privacy. The key idea with this definition is that we take
an entirely different approach to avoid the issues that plague prior approaches:
rather than defining privacy over people, we define it over durations of time,
which we use as a proxy for the existence of people. Importantly, this definition
has a clear interpretation, well-defined semantics, and it can be enforced without
knowledge of the latent private information in the video.

• We design a system, Privid, that provably satisfies event-duration privacy
while supporting the use of arbitrary analyst-supplied (and thus untrusted)
ML models. Privid provides a custom SQL-like interface that is familiar to
analysts and can express a wide range of queries. We believe these properties

22

will minimize the barrier to entry for analysts, and will make the key ideas in
Privid amenable to inclusion in future video analytics systems.

• We implement Privid and evaluate it using a variety of queries across different
objects and videos. The key takeaway from our evaluation is that, even when
parameterized to protect the appearance of all individuals in standard surveil-
lance videos, Privid can achieve accuracy close (within 1-21%) to that of a
non-private system. We believe these results provide evidence that differetially-
private guarantees could be feasible in the video analytics setting.

• We discuss a variety of concerns that arise when using Privid in practice, from
both the video owner and analyst perspective, including parameter tradeoffs
and best practices for designing queries to maximize utility.

1.5 Key Takeaways

There are two key takeways from this dissertation:

Rigorous privacy guarantees can exist in practice. Often times, rigorous pri-
vacy guarantees, such as those based on differential privacy, are seen as difficult to
deploy in practice, as they impose restrictions on queries, and degrade utility. In
fact, sometimes the only way to satisfy such a guarantee is to entirely impede utility.
This work offers some hope that, even in scenarios where it does not seem obviously
achievable at first, such as video analytics, rigorous privacy guarantees can be satisfied
without giving up on utility. In our case, the key to making progress was re-defining
the query interface.

It’s all about the interface. It is easy to take interfaces as a given. In typical video
analytics systems, the “interface” is that queries output a primitive, such as bounding
boxes, that can then be used to fuel downstream tasks. In typical visual privacy
works, the “interface” is just the video itself. They assume computations need direct
access to a video, and thus they aim to make a “safe” (denatured) version. Both of
these interfaces evade a formal privacy guarantee. With Privid, we make progress
by reframing our view of the interface: ultimately, analysts often do not care about
bounding boxes directly, just the output of some computation over those bounding
boxes. By creating an interface that requires analysts to specify their entire end-
to-end query, we create a balance between query interpretability (for the purpose of
managing privacy) and query expressivity (for the purpose of maximizing versatility
for analysts).

23

24

Chapter 2

Prior Work

In this chapter, we review prior work on related privacy mechanisms to motivate our
claim that a new approach is needed for the video analytics scenario.

2.1 Visual Denaturing

The predominant approach to privacy preservation with video data is denaturing [67],
whereby systems aim to obscure (or, “denature”) any private information in the video
before releasing it for analysis. In principle, if nothing private is left in the video,
then privacy concerns are eliminated. To the best of our knowledge, all prior work
uses one or more [87] of the following strategies:

1. “Masking”: these approaches [81] simply replace the bounding box (or silhou-
ette) of an object with black (or some other fixed color) pixels. The aim is to
entirely remove the information in the bounding box.

2. “Masking with metadata”: these approaches also remove the pixels of a bound-
ing box, but they attempt to replace it with some useful bits of information.
Some replace it with metadata about the object that was masked, others [28, 84]
attempt to replace it with encrypted bits of the object. This would allow au-
thorized parties to recover the masked portions.

3. “Blurring” (or more generally, resolution reduction): these approaches blur ei-
ther the pixels inside a bounding box (e.g., I-pic [20]) or the entire frame (e.g.,
Dai et. al [30]) rather than removing anything entirely. The intention is to
retain some of the information, while ensuring it cannot be identified. However,

25

A

B

A

B

C

Figure 2-1: A video clip after “masking” denaturing (using silhouettes) exemplifying
some of its shortcomings: (A) entirely missed detections, (B) potentially-identifying
objects not incorporated in privacy definition (e.g., bag or bike), (C) silhouette may
reveal walking gait, which could be uniquely identifying [65, 61].

prior work has shown that blurring is reversable [64, 52, 63] and low resolu-
tion can be upsampled using super-resolution techniques [47], which defeats its
purpose.

4. “𝑘-same”: these approaches [64] aim to ensure each face or object is indistin-
guishable from at least 𝑘 other objects, e.g. by replacing each of the objects
with an average of the pixels of those 𝑘 objects.

5. “Inpainting”: these approaches [29] aim to “remove” an object by replacing a
bounding box with the most likely “background”, i.e. what would have been
observed if the object did not exist at all.

6. “Adversarial perturbations”: these approaches [74, 71] aim to add noise to the
pixels of an image that are imperceptible to humans, but sufficient to fool an
ML model and prevent it from recognizing objects.

Unfortunately, all of these denaturing approaches share the same fundamental
issue: they require perfectly accurate and comprehensive knowledge of the spatial
locations of private information in every frame of a video. Any private object that
goes undetected, even in just a single frame, will not be obscured and thus directly
leads to a leakage of private information.

To detect private information, one must first semantically define what is private,
i.e., what is the full set of information linked, directly or indirectly, to the privacy
of each individual? While some information is obviously linked (e.g., an individual’s

26

face), it is difficult to determine all such information for all individuals in all scenarios.
For instance, a malicious analyst may have prior information that a Video Owner
does not, such as knowledge that a particular individual carries a specific bag or
rides a unique bike (e.g., Figure 2-1-B). Further, even with a semantic definition,
detecting private information is difficult. State-of-the-art computer vision algorithms
commonly miss objects or produce erroneous classification labels in favorable video
conditions [89]; performance steeply degrades in more challenging conditions such as
poor lighting, distant objects, and low resolution, all of which are common in public
video. These techniques give a false sense of privacy. While they certainly “appear” to
make objects unrecognizable, it does not mean that a CV model could not be trained
to recognize the object. Taken together, the problem is that denaturing systems
cannot guarantee whether or not a private object was left in the video, and thus fail
to provide a formal notion of privacy (violating Goal 1).

Denaturing also falls short from the analyst’s perspective. First, it inherently
precludes (safe) queries that aggregate over private information (violating Goal 2).
For example, an urban planner may wish to count the number of people that walk
in front of camera A and then camera B. Doing so requires identifying and cross-
referencing individuals between the cameras (which is not possible if they have been
denatured), but the aggregate count may be large and safe to release.1 Second,
denatured objects are not naturally occurring and thus video processing pipelines are
not designed to handle them. If the analyst’s processing code and models have not
been trained explicitly on the type of denaturing the Video Owner is employing, it
may behave in unpredictable and unbounded ways (violating Goal 2). For example,
in Figure 2-2, we show an example where masking people prevented the detection of
nearby objects, and in Figure 2-3, we show examples where masking people allowed
some objects to be discovered that were originally missed. Thus, even in cases where
denatured objects do not directly conflict with the query at hand, analysts would need
to re-train their CV models with denatured objects in the training set (conflicting
with Goal 3). Given the immense resources required to train accurate vision models,
this requirement would be a huge barrier in real deployments.

A few recent proposals (e.g. Wu et. al [86]) aim to address the utility shortcomings
of denaturing by training a model to learn an optimal denaturing transform. The
primary limitation of such approaches is that they require explicitly specifying a set
of target tasks up front when training the denaturing method. This means they would

1As a workaround, the Video Owner could annotate denatured objects with query-specific infor-
mation, but this would conflict with Goal 3.

27

(a) Frame 3: Before masking (b) Frame 3: After masking

Figure 2-2: The left column shows the output of the Detectron2 [38] object detection
model, where detected objects (people and cars) are covered with a colored silhouette.
Example where masking some objects impedes the detection of other nearby non-
masked objects. The car in the red circle is not detected after the intersecting person
is masked.

(a) Frame 1: Before masking (b) Frame 1: After masking

(c) Frame 2: Before masking (d) Frame 2: After masking

Figure 2-3: For each row, the left column shows the output of the Detectron2 [38]
object detection model, where detected objects (people and cars) are covered with a
colored silhouette. For the right column, we replace the pixels of all detected objects
with a black box, and show the output of the detection algorithm on this modified
frame. The red circle in each figure highlights objects that were visible both before
and after denaturing, but were only detected by the CV algorithm after denaturing
(compare left and right for the same row).

28

not support new tasks (Goal 2) or even new models for the same task (Goal 3).

Synthetic Videos. One tempting approach used in other domains is the idea of
generating and releasing a synthetic dataset (or in this case, video stream) rather
than the real one. Ideally, if this video captures key properties of the original video
data, it can still be used by analysts, and if it does not contain any actual people, then
there are no privacy concerns and it can be released safely. Unfortunately, there are
a number of fundamental issues with this approach. First, these approaches require
modeling invariants of the data. A key characteristic of video data is that it captures
a wide variety of information and complex interactions between objects. While it
may be possible to model (and thus expose to an analyst) a few invariants, it would
not be feasible to model all possible invariants, and anything not modeled could not
be reliably queried by an analyst (Goal 2). Second, generating synthetic data is
computationally expensive. Another key characteristic of video analytics is scale and
liveness: there are many cameras, each camera is recording 24/7, and many are high
resolution. Although not a technical limitation, in practice it would be infeasible to
generate synthetic video proportional to the amount of real video data being recorded.

2.2 Systems

Denaturing Systems. In the previous section, we reviewed a variety of denaturing
mechanisms for providing privacy, primarily developed in the computer vision com-
munity. In the systems community, many of the proposals (e.g., Wong et. al [83]
and PECAM [84]) aim to address the challenges with operationalizing one of these
denaturing techniques. These papers address a variety of related issues, but when it
comes to protecting the privacy of citizens from analysts, they use denaturing, and
thus all of the issues related to both privacy and utility from the previous section
apply here.

Edge Computing. A general systems (rather than visual) approach suggested by
a variety of different systems (e.g. EdgeEye [56]) is to move video processing to
the “edge.” While the edge can refer to many different things in different contexts,
it typically means processing the video either directly on the camera itself, or at a
physically-proximate server (e.g., for a traffic camera, the server may be at the traffic
pole). While this vaguely “reduces” potential privacy issues or makes compromising
privacy “more difficult,” it does not prevent privacy issues or guarantee protection
(violating Goal 1): it is still possible to deploy surveillance algorithms at the edge

29

and send back the results! For example, the deployed model could detect faces and
send back a stream of (name, location, activity). Nothing at the technology layer
moderates this output, only policy. Even if the recipient of the data does not get to
see the video directly (which is the only stated goal of the edge paradigm), arbitrary
control over the computation could allow them to compromise citizens’ privacy.

Pre-Defined Queries. Some real deployments of cameras for video analytics sidestep
the privacy issues we target by combining edge computing with a pre-defined (and
agreed upon) list of aggregate results. The results are computed at the edge, and only
the results are released. One example is the City of Boston’s 2016 Vision Zero pilot
project, where Verizon installed (and managed) 6 cameras at traffic intersections.
A public notice [78] states that the cameras process all video at a server mounted
on the same light pole, and only aggregate counts of traffic statistics are sent over
the network to city data analysts. The benefit of this approach is that it does not
require any noise in order to protect privacy. The downside is that it is not a gen-
eral system (violating Goals 2 and 3). The City of Boston must rely on Verizon to
properly implement any computer vision tasks. Allowing city analysts to supply their
own models for the pre-defined tasks (Goal 3), or more generally allowing analysts to
come up with new queries (Goal 2) could not be supported without blindly trusting
the analysts. This is exactly the issue Privid aims to solve.

Privacy in Cloud Environments. Visor [70] addresses privacy concerns that arise
when video analytics are executed in cloud environments. In their threat model, the
Video Owner trusts the analyst, but does not trust the compute provider. They
assume both the Video Owner and analyst have full access to the video, but want to
preserve the confidentiality of both the Video Owner’s video and the analyst’s ML
model from cloud co-tenants and the cloud provider themselves. These concerns are
orthogonal to our scenario, where we assume the cloud provider is trusted, but the
analyst is not. Further, their techniques are complimentary to Privid: a practical
deployment of Privid in the cloud could use Visor to run the analyst’s ML models.

In summary, all prior approaches from the vision and systems communities fail
to provide a balance between privacy, utility, and generality. Focusing on privacy at
the cost of the other two does not actually solve the problem at hand: if analysts
are unwilling to use a privacy-preserving system, then we are back at the same sce-
nario where data is simply not shared and video data cannot be leveraged to its full
potential. As stated in our goals (§1.2), we believe that the way forward for privacy-
preserving video analytics involves not just privacy mechanisms, but an equal focus

30

on utility and generality. Thus, we seek a general system that enables analysts to use
their own code and models, and to process the real unaltered video data, while still
providing privacy. To achieve this, we turn to the theory of differential privacy.

2.3 Differential Privacy

Differential Privacy (DP) is a formal definition of privacy for traditional databases [33].
It enables analysts to compute aggregate statistics over a database, while protecting
the presence of any individual entry in the database. DP is not a privacy-preserving
mechanism itself, but rather a goal that an algorithm can aim to satisfy. Informally
speaking, an algorithm satisfies DP if adding or removing an individual from the in-
put database does not noticeably change the output of computation, almost as if any
given individual were not present in the first place. More precisely,

Definition 2.3.1. Two databases 𝐷 and 𝐷′ are neighboring if they differ in the
data of only a single user (typically, a single row in a table).

Definition 2.3.2. A randomized algorithm 𝒜 is 𝜖-differentially private if, for all
pairs of neighboring databases (𝐷,𝐷′) and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒜):

Pr[𝒜(𝐷) ∈ 𝑆] ≤ 𝑒𝜖Pr[𝒜(𝐷′) ∈ 𝑆] (2.1)

A non-private computation (e.g., computing a sum of bank balances) is typically
made differentially private by adding random noise sampled from a Laplace distribu-
tion to the final result of the computation [33]. The scale of noise is set proportional
to the sensitivity (∆) of the computation, or the maximum amount by which the
computation’s output could change due to the presence/absence of any one individ-
ual. For instance, suppose a database contains a value 𝑣𝑖 ∈ 𝑉 for each user 𝑖, where
𝑙 ≤ 𝑣𝑖 ≤ 𝑢. If a query seeks to sum all values in 𝑉 , any one individual’s 𝑣𝑖 can
influence that sum by at most ∆ = 𝑢− 𝑙, and thus adding noise with scale 𝑢− 𝑙 would
satisfy DP.

Challenges. Determining the sensitivity of a computation is the key ingredient of
satisfying DP. It requires understanding (a) how individuals are delineated in the data,
and (b) how the aggregation incorporates information about each individual. In the
tabular data structures that DP was designed for, these are straightforward. Each
row (or a set of rows sharing a unique key) typically represents one individual, and
queries are expressed in relational algebra, which describes exactly how it aggregates

31

over these rows. However, these answers do not translate to video data; we next
discuss the challenges in the context of several applications of DP to video analytics.

Regarding requirement (a), as described in §2.1, it is difficult and error-prone to
determine the full set of pixels in a video that correspond to each user (including all
potentially identifying objects).

Regarding requirement (b), typical video processing algorithms (e.g., ML-based
CV models) are not transparent about how they incorporate private objects into
their results. Thus, without a specific query interface, the “tightest” possible bound
on the sensitivity of an arbitrary computation over a video is simply the entire range
of the output space. In this case, satisfying DP would add noise greater than or equal
to any possible output, precluding any utility (violating Goal 2).

Given that DP is well-understood for tables, a natural idea would be for the Video
Owner to use their own (trusted) model to first convert the video into a table (e.g., of
objects in the video), then provide a DP interface over that table2 (instead of directly
over the video itself). However, in order to provide a guarantee of privacy, the Video
Owner would need to completely trust the model that creates the table. This entirely
precludes using a model created by the untrusted analyst (violating Goal 3).

We now review a few lines of work that are adjacent, but do not provide the link
between DP and video analytics.

Synthetic Videos. Two prior approaches, Verro [79] and VideoDP [80], use DP to
guide the creation of a synthetic video. VideoDP [80] aims to generate a video whose
pixels do not depend too much on any private object. Verro [79] first removes all
objects from the scene using inpainting techniques then inserts avatars to replace the
true objects, ensuring that no individual influences the set of avatars too much. How-
ever, both approaches define neighboring databases over the set of objects detected
by a computer vision algorithm ([80]-§2.1, [79]-§2.2). As a result, they suffer from
both of the shortcomings of denaturing approaches described above: their privacy
definition is linked to the success of a computer vision algorithm, and they remove
information about the target objects that are necessary for many queries.

DP for Streaming Data. Video is a form of streaming data. While there exist a
wide variety of approaches for providing DP over continuous streams of time-series
data, to the best of our knowledge, all assume the private individuals are explicitly
delineated in the data, which is not true for video. The closest definition to our own
is from Kellaris et. al [48], which assumes the database is an infinite stream of binary

2This would be equivalent to adding DP to an existing video analytics interface, such as [45, 23],
which treat the video as a table of objects.

32

matrices 𝐷𝑡 of pre-defined users and events for each timestep 𝑡. It then introduces
the notion of 𝑤-event privacy over this infinite stream, which protects the presence of
a semantic event that occurs within a series of 𝑤 consecutive timesteps. For example,
if a user execute a series of events that form a trajectory in a location service, this
definition would protect any trajectories of length less than 𝑤. While this is similar
to our notion, it does not have any semantic meaning in the context of video due to
the reliance on pre-defined individuals. In particular, how should we choose 𝑤 for
video? What is a bound on the portion of a video that any one individual could
occupy? Our notion of event-duration privacy can be viewed as an answer to this
question. Further, they do not support untrusted user-defined functions, which are a
key requirement (Goal 3) and contribution of Privid.

DP for Machine Learning. Papers at the intersection of privacy and machine
learning typically focus on model training. One body of work broadly focuses on
ensuring the machine learning models do not retain too much information about
the training data, and thus cannot identify individuals in the training data during
inference. Another body of work, typically referred to as federated learning takes this
one step further and aims to ensure that the training data is never centralized in the
first place by training the model in a secure distributed fashion. However their end
goal is the same, to protect the privacy of the individuals in the training data. The
common thread among both pieces of work is that their focus is on the model itself.
In this thesis, we are not concerned with the contents of the model, but rather how
it is used ; we are concerned with the privacy of the production data at the inference
(or runtime) phase, rather than the training phase. As stated in Goal 3, we are given
a model which has already been trained by the analyst, so training-based techniques
do not apply here. Even if a model was trained in a privacy-preserving fashion that
protects it from being used to reverse-engineer the training data, it could still be used
to identify individuals at inference time and thus contribute to privacy leakage in our
setting.

Subsample and Aggregate. The technique of splitting data into disjoint subsets
and re-aggregating it to provide privacy is not new. Dwork and Roth [35] (Chapter
7.1) introduce the idea of “Subsample and Aggregate,” where a standard database 𝑥

is randomly partitioned into 𝑚 blocks 𝐵𝑖, each block is processed by some function 𝑓 ,
and then the 𝑓(𝐵𝑖) are aggregated using a standard differentially-private mechanism.
The Airavat system [73] broadly leverages this idea to create a privacy-preserving
version of MapReduce [31]. In both cases, the target dataset is a traditional database,
and thus they cannot be readily applied to video data. In particular, they do not

33

address the key questions of how video should be divided, how privacy should be
defined, and how to compute a bound on the sensitivity of a video. Our contribution
is to provide answers to these questions and build a general-purpose video analytics
system that puts them all together.

34

Chapter 3

A New Privacy Definition:
Event-Duration Privacy

In this chapter, we introduce “event-duration privacy,” a new definition of privacy
motivated by the video analytics setting. We begin with the intuition behind the
definition (§3.1), then state it formally (§3.2). We discuss why the definition is prac-
tical (§3.3), how to interpret the guarantees it provides (§3.4), and finally why the
definition is formulated exactly as it is (§3.5).

3.1 Intuition

Differential privacy (DP) aims to enable aggregate computations over an entire pop-
ulation that do not reveal information about any one of the individuals that comprise
that population. Creating a new privacy definition for a new scenario within the
framework of DP requires one to: (a) define the structure of the database (popula-
tion), then (b) define a notion of “neighboring databases,” i.e. what it means for two
databases to differ by at most one “individual” of the population.

The key challenge when applying DP to video analytics is the fact that video does
not directly encode the private individuals it contains, and thus we cannot define
neighboring databases as usual. We can first use an (imperfect) CV algorithm to
locate private individuals, but if we use this as the basis for our definition, then our
guarantee will be contingent on the success of the CV algorithm.

To remove this dependence, we propose an alternative definition of privacy. Our
key insight is based on two observations: (1) a large body of video analytics queries
involve processing the data of individual people and objects, but they ultimately ag-

35

gregate all of this data into a statistic, and (2) they typically aggregate over durations
of video (e.g., hours or days) that far exceed the duration of any one individual in
the scene (e.g., seconds or minutes) [45]. Thus, we reframe the approach to privacy
to instead focus on the temporal aspect of private information in video data, i.e.,
how long something is visible to a camera: the video is the database, time units are
“individuals,” and we define neighboring databases based on durations of time as a
proxy for the existence of people.

This notion of privacy has three benefits. First, it decouples the definition of
privacy from its enforcement. Video naturally encodes units of time, and thus the
enforcement mechanism does not need to make any decisions about what is private
or find private information to protect it; everything (private or not) captured by a
duration bound can be protected. Second, a duration bound that captures a set
of individuals implicitly captures and thus protects any information visible for the
same (or less) time without specifying it (e.g., an individual’s backpack, or even their
gait). Third, protecting all individuals in a video scene requires only specifying their
maximum duration, and estimating this value is far more robust to the imperfections
of CV algorithms than precisely locating those individuals and their associated objects
in each frame. For example, even if a CV algorithm misses individuals in some frames
(or entirely), it can still capture a representative sample and piece together trajectories
well enough to estimate their duration (§3.3).

3.2 Formal Definition

We consider a video 𝑉 to be an arbitrarily long contiguous sequence of frames,
sampled at a fixed 𝑓 frames per second, and recorded directly from a camera (i.e.,
unedited). A “segment” 𝑣 ⊂ 𝑉 of video is a contiguous subsequence of those frames.
The “duration” of a segment 𝑑(𝑣) is measured in real time (seconds), as opposed to
frames. An “event” 𝑒 is abstractly anything that is visible within the camera’s field
of view. A set of video segments fully contain an event if the event is not visible in
any frames outside of those segments.

As a running example, consider a video segment 𝑣 in which individual 𝑥 is visible
for 30 seconds before they enter a building, and then another 10 seconds when they
leave some time later. The “event” 𝑒 of 𝑥’s visit (or, their “presence”) is comprised of
one 30-second segment (𝑒𝑒𝑛𝑡𝑒𝑟), and another 10-second segment (𝑒𝑙𝑒𝑎𝑣𝑒).

Definition 3.2.1 ((𝜌,𝐾)-bounded events). An event 𝑒 is (𝜌,𝐾)-bounded if there

36

exists a set of ≤ 𝐾 video segments that fully contain the event, and each of these
segments individually have duration ≤ 𝜌.

Definition 3.2.2 ((𝜌,𝐾) bound tightness). Consider an event 𝑒 that is (𝜌,𝐾)-
bounded. If 𝑒 is also (𝜌′, 𝐾 ′)-bounded for some 𝜌′ ≤ 𝜌 and 𝐾 ′ ≤ 𝐾, then the (𝜌′, 𝐾 ′)

bound is “tighter”. Any bound of (𝜌′′ ≥ 𝜌,𝐾 ′′ ≥ 𝐾) is “looser”. If 𝑒 is exactly (𝜌,𝐾)-
bounded (i.e. it is not bound by any other (𝜌′ ≤ 𝜌,𝐾 ′ ≤ 𝐾)), then this bound is
“tight.”

(Example). The tightest bound on 𝑥’s visit using this definition is (𝜌 = 30𝑠,𝐾 = 2).
Even though 𝑒𝑙𝑒𝑎𝑣𝑒 is only 10 seconds, it is not possible to choose 𝜌 < 30 as this would
not contain 𝑒𝑒𝑛𝑡𝑒𝑟. To be explicit, 𝑥’s visit is also (loosely) (𝜌,𝐾)-bounded for any
𝜌 ≥ 30𝑠 and 𝐾 ≥ 2.

Definition 3.2.3 ((𝜌,𝐾)-neighboring videos). Two video segments 𝑣, 𝑣′ (of the
same length and frame rate) are (𝜌,𝐾)-neighboring if the set of frames in which they
differ1 is (𝜌,𝐾)-bounded.

(Example). Suppose 𝑣 contains the event 𝑒 (𝑥 entering and leaving the building).
One potential 𝑣′ is a hypothetical video in which 𝑥 was never present (but everything
else observed in 𝑣 remained the same). Note this is purely to denote the strength of
the guarantee in the following definition, no parties need to construct such a 𝑣′.

Definition 3.2.4 ((𝜌,𝐾)-event-duration 𝜖-differential privacy). A randomized mech-
anism ℳ satisfies (𝜌,𝐾)-event-duration 𝜖-differential privacy (abbreviated (𝜌,𝐾)-
duration privacy) iff for all possible pairs of (𝜌,𝐾)-neighboring videos 𝑣, 𝑣′, any finite
set of queries 𝑄 = {𝑞1, 𝑞2, ...} and all 𝑆𝑞 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ(·, 𝑞)):

𝑃𝑟[(ℳ(𝑣, 𝑞1), . . . ,ℳ(𝑣, 𝑞𝑛)) ∈ 𝑆𝑞1 × · · · × 𝑆𝑞𝑛] ≤

𝑒𝜖𝑃𝑟[(ℳ(𝑣′, 𝑞1), . . . ,ℳ(𝑣′, 𝑞𝑛))) ∈ 𝑆𝑞1 × · · · × 𝑆𝑞𝑛]

Guarantee. (𝜌,𝐾)-duration privacy protects all (𝜌,𝐾)-bounded events (such as
𝑥’s visit to the building) with 𝜖-DP: informally, if an event is (𝜌,𝐾)-bounded, an
adversary cannot increase their knowledge of whether or not the event happened
by observing a query result from ℳ. To be clear, (𝜌,𝐾)-duration privacy is not a
departure from DP, but rather an extension to explicitly specify what to protect in
the context of video.

1A pair of frames from the same timestamp of 𝑣 and 𝑣′ differ if any pixel values are not identical.

37

Figure 3-1: The results of a state-of-the-art object detection algorithm (filtered to
“person” class) on one frame of urban. The algorithm misses 76% of individuals in the
frame, but is still able to produce a conservative bound on the maximum duration of
all individuals (Table 3-1).

Video Maximum Duration % Objects
CV MissedGround Truth CV Estimate

campus 81 sec 83 sec 29%
highway* 316 sec 439 sec 5%
urban 270 sec 354 sec 76%

Table 3-1: Despite the imperfection of current CV algorithms (exemplified by % ob-
jects they failed to detect), they still produce a conservative estimate on the duration
of any individual’s presence. *For the purposes of this experiment, we ignored cars
that were parked for the entire duration of the segment.

3.3 Choosing a Privacy Policy

The Video Owner is responsible for choosing the parameter values (𝜌,𝐾) (“policy”)
that bound the class of events they wish to protect. They may use domain knowledge,
employ CV algorithms to analyze durations in past video from the camera, or a mix
of both. Regardless, they express their goal to Privid solely through their choice of
(𝜌,𝐾). Overall, their goal is to choose the tightest possible policy that satisfies their
goals. Choosing a loose policy is relatively easy, but will result in an unnecessarily
large amount of noise and thus low utility for analysts. The Video Owner wants to
maximize the utility of analysts subject to the constraint that its privacy goals are
satisfied.

Automatic setting of (𝜌,𝐾). The primary reason (𝜌,𝐾)-duration privacy is practi-
cal is that, despite their imperfections, today’s CV algorithms are capable of produc-

38

ing good estimates of the maximum duration any individuals are visible in a scene.
We provide some evidence of this intuition over three representative videos from our
evaluation in Table 3-1. For each video, we chose a 10-minute segment and manually
annotated the duration of each individual (person or vehicle), i.e., “Ground Truth”,
then used state-of-the-art object detection and tracking to estimate the durations
(“CV”). The table reports the maximum duration in each case. The third column (“%
Objects CV Missed”) is the fraction of objects in our ground that were not identified
in at least one frame by the CV algorithm. The key takeaway from these results
is that, while object detection misses a non-trivial fraction of bounding boxes, the
tracking algorithm is able to fill in the gaps for enough trajectories to capture a “con-
servative” (i.e., greater than the ground truth) estimate of the maximum duration.
In other words, for our three videos, using these imperfect CV algorithms to pick
(𝜌,𝐾) would successfully capture the duration of, and thus protect the privacy of, all
individuals, while using the same CV algorithms to implement any prior approach
would not.

Relaxing the set of private individuals. Sometimes protecting all individuals is
unnecessary. Consider a camera in a store; employees will appear significantly longer
and more frequently than customers (e.g., 8 hours every day vs. 30 minutes once a
week), but if the fact that the employees work there is public knowledge, the Video
Owner can pick a policy (with smaller 𝜌 and 𝐾) that only bounds the appearance of
customers.

Generic policies. Alternatively, the Video Owner can choose a policy to place
a generic limit on the (temporal) granularity of queries. Consider a policy (𝜌 =

5min, 𝐾 = 1). Suppose individual 𝑥 stops and talks to a few people on their way to
work each morning, but each conversation lasts less than 5 minutes. Although the
policy does not protect 𝑥’s presence or even the fact that they often stop to chat on
their way to work, it does protect the timing and contents of each conversation.

Time-Varying Policies. Policies are defined over a segment of video from a camera,
not an entire camera itself. Thus, different policies can be used for different time
ranges of the same camera. For example, when roads are congested in the mornings
and evenings, the maximum duration and thus tightest policy may be much higher
than night or mid-day when roads are clear and cars can pass freely. Similarly,
walkways may be more congested by pedestrians during weekends than weekdays.
The more data the Video Owner can analyze, the more of these patterns they can
capture and thus exploit to ensure the tightest possible policy for each time period

39

and thus minimum amount of noise for analysts.

The Video Owner can choose to set different policies at any temporal granularity,
but if they are too fine-grained an analyst may not be able to take advantage of them;
if a query aggregates over a segment of video with multiple policies, in the worst case
the event could have occurred during the time range with the loosest policy (i.e., the
policy that translates to the largest number of chunks) and thus the loosest policy
applies. However, since policies are public information, analysts can take this into
account when structuring their queries. For example, consider a camera observing a
traffic light, where the light is green for 3 minutes, then red for 1 minute. The Video
Owner could set (𝜌 = 10𝑠,𝐾 = 1) during green lights and (𝜌 = 1𝑚𝑖𝑛,𝐾 = 1) during
red lights. However, a query over an entire hour of video would use (𝜌 = 1𝑚𝑖𝑛,𝐾 = 1)

because it is the loosest of the included policies.

Updating Policies. The distribution of durations tends to be a property of a scene,
including the buildings and infrastructure present which define how individuals move
through the scene and where they spend their time. Intuitively, these properties
of a scene do not change over short periods of time (hours, days, or weeks), but
may change over longer periods of time (months or years). Thus, the Video Owner
should periodically (or continuously) re-run their analysis to monitor the distribution
of durations and update the policy as necessary.

3.4 Privacy Guarantee Semantics

In the previous section, we discussed different methods for choosing a privacy policy.
A key claim was that this policy need not be “perfect.” A privacy policy protects
(𝜌,𝐾)-bounded events with 𝜖-DP, but in practice most events will not be exactly
contained by (𝜌,𝐾). They may be shorter or longer. They may occur multiple times
or be observed by multiple cameras. A key claim of this thesis is that capturing all
of these nuances is impractical. Importantly, (𝜌,𝐾)-duration privacy provides some
level of privacy for all individuals. In this section we explore what level of privacy
individuals are afforded based on how long they are visible.

In short, events that are visible for longer receive proportionally less privacy.
However, by definition, events that are visible for longer are coarser, and less specific.

40

3.4.1 Privacy is Proportional to Duration

A (𝜌,𝐾) policy provides a relative reference point: events that exactly match the
policy (i.e., made up of exactly 𝐾 segments each of duration 𝜌) are protected with
𝜖-DP, while events that are visible for shorter or longer durations are protected with
a proportionally (w.r.t. the duration) stronger or weaker guarantee, respectively.

Theorem 3.4.1. Consider a camera with a fixed policy (𝜌,𝐾, 𝜖) and an event 𝑒.
If the tighest bound on 𝑒 is (�̂�, �̂�), then (𝜌,𝐾)-duration privacy protects 𝑒 with �̂�-
DP, where �̂� = �̂��̂�

𝜌𝐾
, which grows (degrades) as (�̂�, �̂�) increase while (𝜌,𝐾, 𝜖) are fixed.

The actual guarantee provided by Privid is a (slightly) looser �̂� = 𝑂(�̂��̂�
𝜌𝐾

)𝜖 (where the
constants do not depend on the query) due to the quantization of time by chunking.
We state this formally and prove it in §4.3.1.

(Example 1). Given a policy of (𝜌 = 1ℎ𝑟,𝐾 = 1), a single 2-hour appearance would
be protected with ∼ 2𝜖-DP (weaker) and a single half-hour appearance would be
protected with ∼ 1

2
𝜖-DP (stronger).

(Example 2). Given a policy of (𝜌 = 30𝑚𝑖𝑛,𝐾 = 2), the situation is the same: a
single 2-hour appearance would be protected with

∑︀
2𝜖-DP and a single half-hour

appearance would be protected with ∼ 1
2
𝜖-DP.

(Example 3). Suppose Alice and Bob are eating lunch at a restaurant and are ob-
servable by a camera with a policy of (𝜌 = 60𝑠,𝐾 = 1). Let us consider some
increasingly coarse characterizations of events that comprise this lunch and how long
they are “visible:”

• Specific words that are spoken have a duration < 1s (and are thus protected
with 1

60
𝜖-DP).

• Specific actions, sentences and behaviors have a duration on the order of a few
seconds (and are thus protected with ∼ 1

10
𝜖-DP).

• Conversation topics have a duration on the order of minutes (and are thus
protected with ∼ 𝜖-DP).

• The mood and sentiment of their conversation may have a duration on the order
of tens of minutes (and are thus protected with ∼ 10𝜖-DP).

• The event of them meeting together may have a duration of 1-2 hours (and is
thus protected with ∼ 60𝜖-DP).

41

10
1

10
0

10
1

0.00

0.25

0.50

0.75

1.00
m

ax
 p

ro
ba

bi
lit

y
of

de
te

ct
in

g
an

 in
di

vi
du

al

< >= 1

0.1% false detection
1% false detection
10% false detection
20% false detection

Figure 3-2: Plot of Equation 3.3 for a few different levels of 𝛼. Note that the 𝑥-axis
is plotted for absolute values of 𝜖 and is using a log scale. The y-axis is the maximum
probability that an adversary with a given confidence level could detect whether or
not 𝑥 was present. If one draws a vertical line at the value of 𝜖 being enforced (e.g., we
mark 𝜖 = 1 here), the trend to the left shows how privacy is improved for individuals
who are visible for less time, and the right shows how it degrades for those who are
visible for more.

In other words, although this policy does not necessarily prevent an adversary from
detecting that Alice and Bob met in general, it does protect most of the details of
their meeting.

Graceful degradation. An important corollary of this notion of proportional pri-
vacy guarantees is that the level of privacy degrades “gracefully”. As an event’s �̂�

increases further from 𝜌 (or �̂� from 𝐾), its effective �̂� increases linearly, yielding a
progressively weaker guarantee. (The reverse is true, as �̂� and �̂� decrease, it yields
a stronger guarantee). Thus, if �̂� (or �̂�) is only marginally greater than 𝜌 (or 𝐾),
then the event is not immediately revealed in the clear, but rather is protected with
�̂�-DP, which is still a DP guarantee, only marginally weaker: a malicious analyst has
only a marginally higher probability of detecting 𝑥 in the worst case. This in effect
relaxes the requirement that (𝜌,𝐾) be set strictly to the maximum duration an in-
dividual could appear in the video to achieve useful levels of privacy. We generalize
and provide a visualization of this degradation in the following subsection.

3.4.2 Detection Probability

Although �̂� provides a way to quantify the level of privacy provided to each individual,
it can be difficult to reason about relative values of 𝜖 and what they ultimately mean

42

for privacy in practice. We can use the framework of binary hypothesis testing to
develop a more intuitive understanding and ultimately visualize the degradation of
privacy as a function of �̂� relative to 𝜖.

Consider an adversary who wishes to determine whether or not some individual 𝑥
appeared in a given video 𝑉 . They submit a query 𝑄 to the system, and observe only
the final result, 𝐴, which Privid computed as 𝐴 = 𝑄(𝑉) + 𝜂, where 𝜂 is a sample of
Laplace noise as defined in the previous section. Based on this value, the adversary
must distinguish between one of two hypotheses:

ℋ0 : 𝑥 does not appear in 𝑉

ℋ1 : 𝑥 appears in 𝑉

We write the false positive 𝑃𝐹𝑃 and false negative 𝑃𝐹𝑁 probabilities as:

𝑃𝐹𝑃 = P(𝑥 ∈ 𝑉 |ℋ0)

𝑃𝐹𝑁 = P(𝑥 /∈ 𝑉 |ℋ1)

From Kairouz [44, Theorem 2.1], if an algorithm guarantees 𝜖-differential privacy
(𝛿 = 0), then these probabilities are related as follows:

𝑃𝐹𝑃 + 𝑒𝜖𝑃𝐹𝑁 ≥ 1 (3.1)

𝑃𝐹𝑁 + 𝑒𝜖𝑃𝐹𝑃 ≥ 1 (3.2)

Suppose the adversary is willing to accept a false positive threshold of 𝑃𝐹𝑃 ≤ 𝛼. In
other words, they will only accept ℋ1 (𝑥 is present) if there is less than 𝛼 probability
that 𝑥 is not actually present.

Rearranging equations 3.1 and 3.2 in terms of the probability of correctly detetecting
𝑥 is present (1− 𝑃𝐹𝑁), we have:

1− 𝑃𝐹𝑁 ≤ 𝑒𝜖𝑃𝐹𝑃 ≤ 𝑒𝜖𝛼

1− 𝑃𝐹𝑁 ≤ 𝑒−𝜖(𝑃𝐹𝑃 − (1− 𝑒𝜖)) ≤ 𝑒−𝜖(𝛼− (1− 𝑒𝜖))

Then, for a given threshold 𝛼, the probability that the adversary correctly decides 𝑥

is present is at most the minimum of these:

P(𝑥 ∈ 𝑉 |ℋ1) ≤ min{𝑒𝜖𝛼, 𝑒−𝜖(𝛼− (1− 𝑒𝜖))} (3.3)

43

In Figure 3-2, we visualize 3.3 as a function of 𝜖 for 4 different adversarial confidence
levels (𝛼=0.1%,1%,10%,20%). As an example of how to read this graph, suppose
Privid uses a (𝜌 = 60𝑠,𝐾 = 1, 𝜖 = 1) policy (𝜖 = 1 marked with the dotted line). An
individual who appears 3 times for < 60𝑠 each is (𝜌 = 60𝑠,𝐾 = 3)-bounded, and thus
has an effective �̂� = 3 relative to the actual policy for most queries (Theorem 3.4.1).
If an adversary has a 𝛼 = 1% confidence level, then they would have at most a ∼ 20%

chance of correctly detecting the individual appeared, even though they appeared for
far more than the policy allowed. We can also see that, for sufficiently small values
of 𝜖 (e.g., 𝜖 < 1), even if the adversary has a very liberal confidence level (say, 20%),
a marginal increase in �̂� relative to 𝜖 only gives the adversary a marginally larger
probability of detection than they would have had otherwise.

An important takeaway is that, when an individual exceeds the (𝜌,𝐾) bound
protected by Privid, their presence is not immediately revealed. Rather, as it exceeds
the bound further, �̂� increases, and it becomes more likely an adversary could detect
the event.

3.4.3 Multiple Appearances

The larger the time window of video a query analyzes, the more instances an indi-
vidual may appear within the window, even if each appearance is itself bounded by
𝜌. Consider our example individual 𝑥 and policy (𝜌 = 30𝑠,𝐾 = 2) from §3.2. In the
query window of a single day 𝑑, 𝑥 appears twice; they are properly (𝜌,𝐾)-bounded
and thus the event “𝑥 appeared on day 𝑑” is protected with 𝜖-DP. Now, consider a
query window of one week; 𝑥 appears 14 times (2 times per day), so the event “𝑥
appeared sometime this week” is (𝜌, 7𝐾)-bounded and thus protected with (weaker)
7𝜖-DP. However, the more specific event “𝑥 appeared on day 𝑑” (for any 𝑑 in the
week) is still (𝜌,𝐾)-bounded, and thus still protected with the same 𝜖-DP. In other
words, while an analyst may learn that an individual appeared sometime in a given
week, they cannot learn on which day they appeared. Thus, in order to get greater
certainty, the analyst must give up temporal granularity.

3.4.4 Multiple Cameras

When an individual appears in front of multiple cameras, their privacy guarantees
are analogous to the previous case of repeated appearances in a single camera. If
they appear in front of 𝑁 different cameras, where the event of their appearance in
camera 𝑖 is protected with �̂�𝑖-DP, then the event of their appearance across all the

44

cameras is protected with
∑︀

𝑖 �̂�𝑖-DP. Suppose they appear in front of some 10 cameras
in a large (1000 camera) network, and that

∑︀
�̂�𝑖 is large enough for the adversary to

detect their appearance with high confidence. Then while the adversary could infer
the person appeared somewhere in the camera network, the adversary would not learn
which cameras they appeared in or when; appearances within individual cameras are
still protected by 𝜖-DP.

Limitation. One caveat of the above is when a set of cameras can be used to infer a
semantically-meaningful trajectory for an individual, and the adversary knows this.
For example, consider the route from one’s home to work. If there are 10 cameras
along this route, and the individual is unlikely to take this route to reach a different
destination, then a query indicating they were present in a majority of these 10
cameras could be enough to infer that they took the trip to work. In other words, even
though our guarantee (as described above) protects exactly which camera at exactly
which time, the correlation between cameras allows the adversary to infer more. In
this case, the more cameras uniquely associated with a particular trajectory, the
more confidence an adversary could gain about the trajectory. Solving this situation
is difficult and would be an important direction for future work (see the challenges
described in §3.5.4).

3.4.5 Multiple Targets

DP defines a worst-case guarantee for a single individual. In other words, in the
worst case, if an analyst uses the entire available query budget 𝜖 to pose a query
about the presence of some event or person, X, they necessarily cannot pose another
query about the presence of some other event, Y. If they want to learn about both
X and Y, they must split the budget between these two queries. The more events
they wish to target, the more they must split the budget. This naturally inhibits
surveillance. Our ideal goal is to ensure that it is not possible to target even a single
person. However, surveilling multiple people is proportionally more difficult and less
feasible or accurate. Even in cases where it is possible to learn some information
about one person, it is likely infeasible to learn much significant information about
multiple people. Further, DP bounds the worst-case privacy leakage in the event that
an adversary specifically targets an individual. However, if they do not (or are not
able to), then the actual privacy leakage may be less (or zero). These properties are
not unique to our notion of privacy, they are inherited from DP.

45

3.5 Alternative Formulations

In this section we explain why we chose the particular formulation of the definition
as opposed to some similar alternatives.

3.5.1 Why specify 𝐾?

If the video is split into individual frames, 𝐾 is unnecssary. Consider a window of 100
frames of video, split into individual frames. Whether an event appears in frames 1
and 2 or 1 and 100, it ultimately occupies a total of 2 frames. This can be captured
by 𝜌. If we wanted to protect two of these events, we could just pick a policy of 2𝜌.
However, a key practical requirement of Privid is the ability to operate over chunks
of frames to execute queries that require (temporally) local state. When using chunks,
time is quantized. If chunks are 10 frames, for example, an event appearing in frames
1 and 2 is spanned by a single chunk, while an event appearing in frames 1 and 100
is spanned by two chunks. In other words, there is a difference between consecutive
and disjoint events when dealing with chunks. 𝐾 allows us to specify when we want
to protect disjoint events so that our sensitivty calculation can account for them
properly.

3.5.2 Why not define 𝜌 as the total time?

In (𝜌,𝐾)-duration privacy, 𝜌 is the length of each of the 𝐾 segments. We could instead
define 𝜌 as the total duration, distributed arbitrarily across 𝐾 segments. However,
this bears less resemblance to real events and results in a far looser bound when we
quantize time based on chunks in our implementation of Privid: in the worst case,
the event could be divided into 𝜌 × fps segments of single frames, each appearing
in a different chunk. As the chunks get longer, this allows a single event to span
more and more chunks. While this may not seem realistic, it would be allowed by the
definition. Alternatively, we could specify the length of each of the 𝐾 segments, rather
than assigning them all the same length 𝜌. However this quickly becomes complicated
and more difficult to reason about. While there is nothing fundamentally preventing
either of these formulations, we felt that our particular formulation struck the right
balance between practicality and interpretability.

46

3.5.3 Why not define policies relative to window size?

One formulation we initially considered was a privacy policy that was a function of
the query window size. This was motivated by the recognition that recurring events,
such as an individual entering and leaving their workplace, can be observed more by
aggregating over a larger window. Over a single day, the event occurs twice, but over
a month, the event occurs 40 times (ignoring weekends). If an adversary aggregates
over an entire month, a standard (𝜌,𝐾 = 2, 𝜖) policy would protect an individual on
any one day, but would reveal that they frequently went to work during that month.
In this case, we can semantically capture the desired privacy goal by defining the
number of events per time period. In this case, we want to protect 2 events per day.
Then, if a query aggregated over a single day, the policy would protect 2 events as
normal with 𝜖-DP, but if they aggregated over a month, the policy would dictate that
the set of 40 events should be protected with 𝜖-DP. This is equivalent to protecting
each individual event with the much stronger 1

40
𝜖-DP.

Unfortunately, this fundamentally does not work. The analyst could issue a sep-
arate query for each day of the month, which protects each day with 𝜖-DP. They
could then average these results (query composition) to get a result that satisfies only
40𝜖-DP, which is not strong enough to prevent detection.

3.5.4 Why not provide a guarantee over multiple camearas?

Given the limitations described in §3.4.4, it is tempting to scale the privacy definition
based on the number of cameras included in the query aggregation. For example, in
the case of a unique trajectory captured by a set of camears, adding noise proportional
to the number of cameras would protect the existence of that trajectory. However,
this fundamentally does not work for the same reason we cannot scale based on
the window size (§3.5.3): the analyst could issue a query over each of the cameras
observing the trajectory independently then average out the noise, which would defeat
the purpose. Thus, malicious queries could avoid the restriction, and it would only
penalize benevolent queries that have a genuine need for aggregating across multiple
cameras in one query.

47

48

Chapter 4

Privid: A System for Event-Duration
Privacy

In this chapter, we present Privid, a general-purpose video analytics system that
both (a) satisfies (𝜌,𝐾)-duration privacy (§3) and (b) provides an expressive query
interface which allows analysts to supply their own (untrusted by Privid) video-
processing code.

Privid does not take a particular stance on what is private, it simply satisfies the
definition given to it by the Video Owner. It also contains a wide number of knobs
for analysts to customize their queries. The goal of this chapter is to explain how
Privid works, given a particular policy from the Video Owner and query from the
analyst. In Chapter 6 we step back and discuss how Video Owners and analysts can
make informed decisions about these parameters in practice.

In the first section (§4.1), we provide a birds-eye view of the system and all of its
components. The following sections elaborate on each of these components in greater
detail. We evaluate Privid in Chapter 5.

4.1 Overview

4.1.1 Threat Model

Recall from §1.2 that the Video Owner does not trust the analyst enough to freely
share their video streams. Instead, they employ Privid as an intermediate layer
between the raw video and the analysts. Privid retains full control over the video
data, analysts can only extract inferences from the video via Privid’s query interface.
Privid is responsible for executing the query and adding noise such that the result

49

satisfies (𝜌,𝐾)-duration privacy. It returns only the result to the analyst. The only
side channel available to the analyst is the time they receive the result. Privid

protects this side channel, which we describe in §4.2.4.
The Video Owner does not place any trust in the intentions of the analysts or any

of their query processing code. Analysts pose queries to Privid adaptively: the full
set of queries is not known ahead of time and analysts may use the results of prior
queries when posing new ones. Any number of analysts may be malicious and may
collude to violate the privacy of the same individual.

However, we assume analysts trust the Video Owner and Privid to faithfully
execute their query, and they are willing to share their processing code so that the
Video Owner can execute it. This trust requirement could be alleviated by deploying
Privid in the cloud and using a trusted execution environment tailored to video
analytics, such as Visor [70].

Policies. Privid does not guarantee a particular semantic definition of privacy.
Rather, the Video Owner picks a policy (𝜌,𝐾) and privacy budget (𝜖) for each cam-
era they manage that matches their desired semantic level of privacy. Given these
parameters, Privid provides a guarantee of (𝜌,𝐾)-duration privacy (Theorem 4.4.1)
for all queries over all cameras it manages.

Metadata. The only other information released by Privid aside from query results
is fixed per-camera metadata (described in §6.1), which is made publicly available to
analysts to guide their query creation. This includes the policy, the available budget,
and details about the camera itself. Privid does not provide any privacy guarantees
about this information. However, this information is manually supplied by the Video
Owner, fixed a priori, and is not a function of the video data that the analyst queries,
so any potential privacy leaks are clearly interpretable and can be minimized.

4.1.2 Query Support

In particular, Privid supports aggregation queries, which process a “large” amount
of video data (e.g., several hours/days of video) and produce a “small” number of
bits of output (e.g., a few 32-bit integers). Examples of such tasks include counting
the total number of people that passed by a camera in one day, or computing the
average speed of cars observed. In contrast, Privid does not support a query such
as reporting the location (e.g., bounding box) of a particular person or car within the
video frame. Privid can be used for one-off queries or standing queries running over
a long period, e.g., the total number of cars per day over a year.

50

4.1.3 Execution Model

Privid requires queries to be expressed using a split-process-aggregate model, where
(1) the video is split (temporally) into chunks, (2) each chunk is processed to form
rows of a table, and (3) a SQL-like aggregation query is run over the table to produce
a raw result. The analyst has control over each stage of this pipeline, which allows
analysts to express a wide range of queries. While video analytics queries are typically
constructed this way implicitly, by forcing queries to be expressed this way explicitly,
Privid provides the following primitive regarging the aggregate result: the duration
an event is visible to a camera is directly proportional to the amount it can impact
the result. This primitive is the key piece that allows Privid to compute a reason-
able bound on the sensitivity of a query, which is necessary to satisfy DP. Privid

adds noise to queries using the standard Laplace mechanism, scaled according to the
sensitivity of the query.

4.1.4 Components

Algorithm 1 provides an overview of the entire Privid mechanism in pseudocode.
The rest of the chapter is structured as follows. In §4.2 we describe Privid’s

domain specific query language. In §4.3 we explain how Privid computes the sensi-
tivity of a query and prove that it satisfies our definition of (𝜌,𝐾)-duration privacy.
In §4.4 we explain how Privid ensures that queries compose safely, i.e. that the
privacy guarantee is upheld even when many queries are posed over the same video.

The noise that Privid adds to a query result is proportional to both: (a) the
privacy policy (𝜌,𝐾), which determines the number of chunks an individual can
occupy, and (b) the query’s constraints, which determine how much each chunk can
impact the aggregate output. Privid includes two optional components to improve
query accuracy for analysts while maintaing an equivalent level of privacy for Video
Owners. The first, spatial masking (§4.5), enables a tighter privacy policy, while the
second, spatial splitting (§4.6) enables tighter constraints on the range of each chunk.

4.2 Query Interface

4.2.1 Query Contents

A Privid query must contain (1) a block of statements in a SQL-like language, which
we introduce below and call PrividQL, and (2) video processing executables.

51

Algorithm 1: Privid Mechanism
Input : Privid query 𝑄 = {[𝐹...], [𝑆...], 𝑐, 𝜖𝑄}, videos 𝑉 , policy (𝜌,𝐾, 𝜖)
Output: Query answer(s) 𝐴
// Ensure sufficient budget for entire interval and 𝜌 margin for

all aggregations
1 foreach 𝑠 ∈ 𝑆 do
2 foreach 𝑓 ∈ 𝑠.𝑉 [𝑠.𝐼 ± 𝜌] do
3 if 𝑓.𝑏𝑢𝑑𝑔𝑒𝑡 < 𝜖𝑄 then
4 return DENY

// There is enough budget for all aggregations, so query is
permitted, decrement budget for entire interval for all
aggregations

5 foreach 𝑠 ∈ 𝑆 do
6 foreach 𝑓 ∈ 𝑠.𝑉 [𝑠.𝐼] do
7 𝑓.𝑏𝑢𝑑𝑔𝑒𝑡 -= 𝜖𝑄

// Create intermediate tables 𝑇
8 foreach 𝑐 ∈ 𝐶 do
9 itable ← Table(c.output_schema)

10 chunks ← Split 𝑉 [𝐼] into sequential segments each of length
c.chunk_sec with stride c.chunk_stride_sec

11 foreach 𝑐ℎ𝑢𝑛𝑘 ∈ 𝑐ℎ𝑢𝑛𝑘𝑠 do
12 rows ← F[c.process_using](chunk) // Executed in confined

environment
13 itable.append(rows)

14 tables[c.table_name] ← itable

// Compute output and add noise
15 foreach (𝑖, 𝑠) ∈ 𝑆 do
16 𝑟 ← execute SQL query 𝑠 over table(s) in 𝑇 , includes joins etc.
17 ∆(𝜌,𝐾) ← compute recursively over 𝑠, using rules in Table 4-3 Equation 4.2
18 𝜂 ← 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇 = 0, 𝑏 = Δ

𝜖𝑄
)

19 𝐴𝑖 ← 𝑟 + 𝜂

52

(1) PrividQL statements. A valid PQL block involves one or more of each of the
3 following statements:

∙ SPLIT statements choose a segment of video (camera, start and end datetime) as
input, and produce a set of video chunks as output. They specify how the segment
should be split into chunks, i.e., the chunk duration and stride between chunks.

∙ PROCESS statements take a set of SPLIT chunks as input, and produce a traditional
(“intermediate”) table. They specify the executable that should process the chunks,
the schema of the resulting table, and the maximum number of rows a chunk can
output (maxrows, necessary to bound the sensitivity, Equation 4.1). Any rows output
beyond the max are dropped.

∙ SELECT statements resemble typical SQL SELECT statements that operate over the
tables resulting from PROCESS statements. However, they must have an aggregation
as the final operation, and they must supply some additional constraints on the
values they operate over (described in Figure 4-3). Privid supports the standard
aggregation functions (e.g., COUNT, SUM, AVG) and the core set of typical operators as
internal relations. Each SELECT constitutes a separate data release, and thus receives
its own sample of noise and consumes some privacy budget. The only special case
is a SELECT with a GROUPBY (time), which executes the same query over subsequent
time ranges (e.g. a count per hour). This is just syntactic sugar for a separate query
for each hour, and thus each group is a separate data release, receive its own sample
of noise, and consumes privacy budget. In order to aggregate across multiple video
sources (separate time windows and/or multiple cameras), the query can use a SPLIT

and PROCESS for each video source, and then aggregate using a JOIN and GROUPBY in
the SELECT.

(2) PROCESS executables. Analysts must also attach the executable(s) used by the
PROCESS statements in their query. Executables take one chunk as input, and produce
a set of rows (e.g., one per object) as output.

In practice, it does not matter whether these statements are provided within the
same request, or separate ones. The system could receive request A which creates
chunks AC and table AT and then aggregates over AT to release result AR. A future
request B could also aggregate over table AT to release a different result BR. From
the system’s perspective, for the purpose of sensitivity calculation, this is equivalent
to a “single” query involving chunks AC, table AT, and result BR.

53

� ⊵
query := split_stmt | process_stmt | select_stmt
split_stmt := SPLIT camera_id

BEGIN timestamp
END timestamp
BY TIME chunk_sec STRIDE stride_sec
[BY REGION ...] // optional, see Section 7
[WITH MASK ...] // optional, see Section 7
INTO chunk_set_id;

process_stmt := PROCESS chunk_set_id
USING binary_name
TIMEOUT timeout_sec
PRODUING maxrows
WITH SCHEMA /* list of */ column_schema
INTO table_id;

select_stmt := outer_select FROM inner_select
[GROUP BY col_list WITH KEYS ...]

outer_select := SELECT agg_fun(col_name)
inner_select := table_id | process_stmt

| SELECT expr_list FROM inner_select
[WHERE condition] [LIMIT rows]

| inner_select GROUP BY col_list [WITH KEYS ...]
| inner_select JOIN inner_select ON col_list

column_schema := col_name:dtype=default
agg_fun := SUM | COUNT | AVG | ...
expr := col_name | expr + expr | expr * expr | ...
dtype := STRING | NUMBER

� �
Figure 4-1: Privid Query Grammar. Terms in capital letters are query language
keywords. Keywords in square brackets are optional. The term col_name stands for
the name of an analyst-provided column.

4.2.2 Privid Query Language (PQL)

In this section, we provide a more in-depth description of Privid’s query language,
PQL. This language is a domain-specific version of SQL, which is intentionally as close
to SQL as possible to be friendly to analysts. Figure 4-1 contains the full grammar.

A valid PQL statement contains at least one split_stmt, followed by at least one
process_stmt, and finally at least one select_stmt.

A split_stmt converts a segment of video data from a single camera into a named
set of chunks by specifying the following:

• The BEGIN and END timestamps describe the bounds of time the analyst is inter-
ested in. Tables are evaluated lazily only once they are needed for an aggregation

54

so the analyst can choose large time bounds (e.g.,, an entire year) but narrow
to specific times (e.g.,, 1 hour per weekday) using the aggregation statement.
These times may be in the past or future (i.e., for streaming queries). Any
values that only depend upon past timestamps will be processed and released
as soon as possible (limited only by the processing time requirements described
in §4.2.4). Any values that depend upon future timestamps will be released as
soon as possible (given the timeout) after all of the timestamps needed have
elapsed.

• BY TIME describes the duration of each chunk, and the STRIDE between chunks.
Both values must correspond to an integer number of frames (e.g., at a frame
rate of 30 fps, 0.5 seconds is permitted because it corresponds to 15 frames, but
0.25 seconds is not permitted because it corresponds to 7.5 frames). The chunk
duration must be positive. The stride defaults to matching the chunk duration
(sequentual non-overlapping chunks), but can be less than the chunk duration
(for overlapping chunks) or greater than the chunk duration (to intentionally
skip space between chunks).

• BY REGION describes the scheme used to further split each chunk spatially. The
set of possible schemes is determined manually by the Video Owner and made
available as part of the public camera metadata.

• WITH MASK specifies the id of a Video Owner-provided mask. A mask specifies a
set of pixels to remove from the video (i.e., replace with black pixels). This mask
is applied to the video before splitting, and thus before the analyst’s executable
is able to view the video.

A process_stmt uses the analyst-provided executable to convert a set of chunks
(created by a split_stmt) into an intermediate table by specifying the following:

• USING provides the path of the analyst-provided executable that should be used
to process each chunk of this camera’s video data. Analysts may supply any
number of executables and use different executables for different cameras. These
executables take as input a list of (contiguous) frames from the video (a “chunk”),
and output rows of a table (whose schema is defined by the PRODUCING directive).
Each chunk is processed by an independent instantiation of the executable in a
confined execution environment (§4.2.5).

55

• TIMEOUT specifies the maximum amount of time that can be used to process
each chunk. If execution exceeds this time for any chunk, it is immediately
terminated and a row is output with the default values for each column as
specified in the user_schema. The existence of the TIMEOUT clause is crucial for
preventing side-channel information leakage via the execution time (§4.2.4).

• PRODUCING maxrows WITH SCHEMA schema specifies the schema of columns in
the table and the maximum number of rows each chunk will output. For each
column, the schema specifies a name (for reference in aggregations), a data
type (either STRING or NUMBER, used to determine the types of aggregations
permitted over the column), and a default value (to be output if the processing
for that chunk crashes or exceeds TIMEOUT). Privid does not place any trust
in the executable or make any assumptions about the content of the output; it
truncates the output as necessary to ensure that it adheres to the schema.

In addition to the user-specified columns, Privid also adds a chunk column
to every table which contains the timestamp of the first frame of the chunk.
This can be used to narrow time ranges (e.g., only 12pm-2pm each weekday),
aggregate over different amounts of time (e.g., group results per hour), or match
times across cameras or days.

• INTO table_id specifies the name of the resulting table. The PROCESS directive
always creates a new table, it cannot add rows to an existing table. Tables can
be appended to each other, but this must be done in the SELECT statement, so
the impact of the append on the sensitivity can be computed properly.

Table Selection and Aggregation. A selection-aggregation statement select_stmt
computes aggregate statistics from intermediate tables (produced by process_stmts)
using familiar SQL syntax, with some important restrictions to properly control sen-
sitive data leakage:

• The outer-most select (outer_select) must be an aggregation. Each aggre-
gation must be over a single column (with the exception of COUNT(*)) and is
treated as an independent result 𝑟𝑖. Privid uses the Laplace mechanism to add
an independent sample of noise to each 𝑟𝑖 before releasing it to the analyst, and
subtracts from the privacy budget for each 𝑟𝑖 as well. The select can optionally
group results using a GROUP BY, but only if it explicitly provides the keys (using
WITH KEYS [...], so that they are not dependent on the data) or groups over

56

the chunk column (which Privid created and therefore can trust). Figure 4-3
lists the supported aggregation functions and some restrictions.

• An inner_select statement is nested inside an outer_select statement and
can be nested inside other inner_select statements. An inner_select may
transform the original table into a new one, combine multiple tables, and select
and project rows and columns.

• Some aggregation functions require the range of a column or the number of rows
to be constrained (Figure 4-3). When these cannot be inferred automatically,
they must be explicitly provided by the analyst as part of the select via the
range(col, low, high) function or the LIMIT rows directive, respectively.

• Privid includes helper functions, such as hour(chunk) or day(chunk), which
convert the chunk timestamp into the corresponding hour or day. We note their
existence simply because they make queries much easier to read.

• The CONSUMING directive specifies how much 𝜖 budget the analyst wants to use
for this aggregation. This budget will be subtracted from all frames that the
select uses to produce a result. If there is insufficient budget, the query will be
rejected.

4.2.3 Query Compiler

The query compiler converts each select command into an abstract syntax tree with
the table at the bottom, inner selects in the middle that transform the table, and
finally an aggregation at the top-most layer. The sensitivity engine computes sen-
sitivity recursively starting from the tables at the leaves. While some variables can
be unconstrained temporarily during the intermediate layers, all variables must be
constrained at the root when the sensitivity of the aggregation function is computed,
otherwise the query is rejected.

4.2.4 Query Executables

Since Privid assumes it cannot trust the analyst’s executable, it enforces the privacy
guarantee using constraints during the execution process.

When running a Privid query, an analyst can observe only two pieces of infor-
mation: (1) the query result, and (2) the time it takes to receive the result.

57

Query result. In order to link an event’s duration to its impact on the output,
Privid ensures that the output of processing a chunk 𝑖 can only be influenced by
what is visible in chunk 𝑖 (not any other chunk 𝑗). Then, an individual can only impact
the outputs of chunks in which they appear, and the duration of their appearance is
directly proportional to their contribution to the output table.

To achieve this, Privid processes each chunk using a separate instance of the
analyst’s executable, each running in its own isolated environment. This environment
enforces that the executable can read only the video chunk, camera metadata, and
a random number generator, and can output only values formatted according to the
PROCESS schema. However, the executable may use arbitrary operations (e.g., custom
ML models for CV tasks).

Execution time. To prevent the execution time from leaking any information, we
must add two additional constraints. First, each chunk must complete and return a
value within a pre-determined time limit 𝑇 , otherwise a default value is returned for
that chunk (both 𝑇 and the default value are provided by the analyst at query time).1

Second, Privid only returns the final aggregated query result after |𝑐ℎ𝑢𝑛𝑘𝑠| · 𝑇 . By
enforcing these constraints, the observed return time is only a property of the query
itself, not the data.

4.2.5 Execution Environment

Formal Specification. Formally, this environment can be modeled as a turing
machine with the following properties (where 𝑅, 𝑇 , schema, and default are specified
a priori as part of the query Q):

• Takes as input: a set of frames representing a chunk, timestamp of the first
frame, frame rate (in fps), camera ID, and (optionally) any additional meta-
data the Video Owner wishes to provide that is not dependent on any private
information, such as the amount of daylight at that time.

• Has access to a random tape that is uncorrelated with any of the other chunks

• Produces as output at most 𝑅 rows, each with columns specified by schema.

• Executes for exactly 𝑇 seconds. If it finishes early, it must wait until 𝑇 seconds
have elapsed. If it does not finish in time or crashes, it produces a default

value.
1Timeouts can impact query accuracy, hence analysts should first profile their code to select a

conservative limit 𝑇 .

58

Implementation. In this section, we list the core components used by our prototype
runtime to isolate analyst executables. We believe this environment satisfies the
formal specification requirements.

1. Our runtime uses chroot to set the root directory for the executable to be
an empty directory, so that (1) it cannot view any other files in the system
and (2) it is free to write temporary files during its execution. While this is
not strictly necessary, it makes it makes the environment much more friendly
to existing libraries, e.g., PyTorch and Tensorflow, which depend on creating
many temporary files. Once the executable finishes processing this chunk, this
fake root directory (and any files created inside it) are removed.

2. Our runtime uses AppArmor with a barebones policy (shown in Figure 4-2) that
only whitelists a few particular system files and devices needed for common
operations. Anything not explicitly listed in the policy is denied, including
most system devices, /proc, network sockets, IPC mechanisms, etc. Note that
we assume /dev/urandom has sufficient entropy that a future value cannot be
predicted. If this cannot be guaranteed, an AppArmor rule can be used to map
/dev/urandom to /dev/random (or another source of cryptographically secure
randomness).

3. Our runtime executes each instance within its own namespaces, giving it the
impression that it is the only process on the system, run by the only user,
and providing another layer of defense (on top of AppArmor) preventing it from
access any IPC mechanisms or network interfaces.

4. Our runtime uses cgroups to ensure that one instance of the executable cannot
communicate with another by exhausting system resources.

5. Our runtime disables (by unsetting the relevant hardware flags to make them
privileged) the following CPU instructions that could be used to mount side
channel attacks such as those described in [69, 66]: RDTSC, RDPMC, RDTSCP,
RDMSR, WRMSR, RDPKRU, WRPKRU, UMONITOR, RDPID. We checked that other in-
structions capable of creating side channels (e.g., RDMSR which can check CPU
temperature) are already privileged and thus not accessible to the executable.

6. Our runtime processes chunks serially, as opposed to in parallel. While we
are not aware of any side channels that exist given the above combination of

59

� ⊵
/privid/runtime {

this /tmp is only visible to this execution and
is deleted immediately after execution
/tmp/** rwalk,
these are frequently used and safe
/dev/null rw,
/dev/zero rw,
/dev/random r,
/dev/urandom r,

glibc's *printf protections read the maps file
@{PROC}/@{pid}/{maps,auxv,status} r,
glibc malloc (man 5 proc)
@{PROC}/sys/vm/overcommit_memory r,

allow using common libraries
(from default apparmor policy)
/{usr/,}lib{,32,64}/* r,
/{usr/,}lib{,32,64}/**.so* mr,
/{usr/,}lib/@{multiarch}/** r,
/{usr/,}lib/@{multiarch}/**.so* mr,

allow this exe to be traced and sent signals
ptrace (readby),
ptrace (tracedby),
signal (receive) peer=unconfined,
allow exe to signal itself
signal peer=@{profile_name},

}� �
Figure 4-2: The AppArmor policy used by our runtime. Each line has the form
“{path} {permissions}”. For the permissions, “r” and “w” refer to read and write
access, while “m” means “memory-mapped executable”. Any file paths not explicitly
listed in this policy cannot be accessed.

60

mechanisms, this automatically prevents a wide class of side channels that can
only succeed when both processes are active.

Dependencies. Privid expects PROCESS executables to be standalone executa-
bles. They must entirely embed any libraries or ML models they use. We wrote
all PROCESS executables in our evaluation using Python, and in particular used the
detectron2 [38] library (which itself internally uses pytorch [68]) for ML models.
We then used cython3 to create a standalone executable that worked successfully in
the constrained runtime environment.

> cython3 --embed -o model.c model.py
> gcc -I /usr/include/python3 model.c -lpython3 -o model

Performance. All PROCESS executables in our evaluation were able to run success-
fully within this confined environment, and our benchmarks did not indicate any
statistically significant overhead relative to the amount of time necessary to process
an entire chunk of frames.

Public Availability. The exact implementation that will be used by the system
must also be made available to analysts to ensure their executables run properly
before submitting a query.

4.3 Query Sensitivity

The sensitivity of a Privid query is the maximum amount the final query output
could differ given the presence or absence of any (𝜌,𝐾)-bounded event in the video.
This can be broken down into two questions: (1) what is the maximum number
of rows a (𝜌,𝐾)-bounded event could impact in the analyst-generated intermediate
table, and (2) how much could each of these rows contribute to the aggregate output.
We discuss each in turn.

Contribution of a (𝜌,𝐾) event to the table. An event that is visible in even a
single frame of a chunk can impact the output of that chunk arbitrarily, but due to
Privid’s isolated execution environment, it can only impact the output of that chunk,
not any others. Thus, the number of rows a (𝜌,𝐾)-bounded event could impact is
dependent on the number of chunks it spans (an event spans a set of chunks if it is
visible in at least one frame of each).

In the worst case, an event spans the most contiguous chunks when it is first
visible in the last frame of a chunk. Given a chunk duration 𝑐 (same units as 𝜌) a

61

single event segment of duration 𝜌 can span at most max_chunks(𝜌) chunks:

max_chunks(𝜌) = 1 + ⌈𝜌
𝑐
⌉ (4.1)

Definition 4.3.1 (Intermediate Table Sensitivity). Consider a privacy policy (𝜌,𝐾),
and an intermediate table 𝑡 (created with a chunk size of 𝑐𝑡 in the SPLIT and maximum
per-chunk rows maxrows𝑡 in the PROESS). The sensitivity of 𝑡 w.r.t (𝜌,𝐾), denoted
∆(𝜌,𝐾), is the maximum number of rows that could differ given the presence or absence
of any (𝜌,𝐾)-bounded event:

∆(𝜌,𝐾)(𝑡) ≤ maxrows𝑡 ·𝐾 ·max_chunks(𝜌) (4.2)

Proof. In the worst case, none of the 𝐾 segments overlap, and each starts at the last
frame of a chunk. Thus, each spans a separate max_chunks(𝜌) chunks (Eq. 4.1). For
each of these chunks, all of the maxrows output rows could be impacted.

Sensitivity propagation for (𝜌,𝐾)-bounded events. Prior work [58, 43, 49] has
shown how to compute the sensitivity of a SQL query over traditional tables. As-
suming that queries are expressed in relational algebra, they define the sensitivity
recursively on the abstract syntax tree, where: the tables are the leaves, the rela-
tional operators which transform those tables are the intermediate nodes, and the
aggregation function (over the transformed tables) is at the root. Beginning with the
maximum number of rows an individual could influence in the input table, they pro-
vide rules for how the influence of an individual propagates through each relational
operator and ultimately impacts the aggregation function.

Unlike prior work on propagating sensitivity recursively, the intermediate tables
in Privid are untrusted, and thus require careful consideration to ensure the privacy
definition is rigorously guaranteed. In this work, we determined the set of operations
that can be enabled over Privid’s intermediate tables, derived the sensitivity for
each, and proved their correctness. Many rules end up being analogous or similar to
those in prior work, but JOINs are different. We provide a brief intuition for these
differences below. Figure 4-3 contains the complete definition for sensitivity of a
Privid query.

Each aggregation operation is executed over some inner relation 𝑅. The simplest
possibility is a selection of a single column from a base table directly, but it could
also be over a base table transformed by some inner relational operators. Either way,
the sensitivity of the aggregation is defined as a function of the range of the column

62

and the size of 𝑅. The size and range must be “constrained” explicitly, i.e. they must
have a fixed value that does not depend on the video data. When this is not known
directly, analysts must explicitly supply it. Privid’s query compiler checks to ensure
that the size and range are constrained before accepting a query. If not, the query
is rejected. There is no harm to the analyst for submitting queries that are rejected,
and the process of rejecting a query does not leak any information about the video
data or use up any budget.

Privacy semantics of untrusted tables. As an example, consider a query that
computes the size of the intersection between two cameras, PROCESS’d into interme-
diate tables 𝑡1 and 𝑡2 respectively. If ∆(𝑡1) = 𝑥 and ∆(𝑡2) = 𝑦, it is tempting to
assume ∆(𝑡1 ∩ 𝑡2) = min(𝑥, 𝑦), because a value needs to appear in both 𝑡1 and 𝑡2 to
appear in the intersection. However, because the analyst’s executable can populate
the table arbitrarily, they can “prime” 𝑡1 with values that would only appear in 𝑡2,
and vice versa. As a result, an event need only appear in either 𝑡1 or 𝑡2 to impact the
intersection, and thus ∆(𝑡1 ∩ 𝑡2) = 𝑥+ 𝑦.

Why not use an existing DP library? As described earlier, the idea of computing
the sensitivity of a SQL query and adding noise to the result is not novel to Privid.
While there are some libraries that are capable of performing this process, there are a
few details of Privid that prevent us from using any out-of-the-box. Thus, we derived
all of the necessary requirements and properties in detail. If a general-purpose DP
implementation arises in the future, Privid should be implemented to use this rather
than roll its own implementation, as DP (or any privacy/security process) is especailly
prone to subtle bugs.

• Per-frame 𝜖 budget (as opposed to a single budget for the entire dataset). Sup-
porting this requires both maintaining an efficient sparse data structure for the
remaining budget across all frames and efficiently checking it for each query.

• Unconstrained variables. Since Privid allows the analyst to populate the in-
termediate table using their own untrusted code, the results cannot be blindly
trusted. The query itself must explicitly constrain the variables (e.g., the range
of a column), so that Privid can compute the appropriate noise. Thus, it must
be capable of tracking and propagating unconstrained variables and ensuring
that variables have been constrained.

• 𝑐-group DP. Privid supports standard aggregation functions, but the sensitivity
of those aggregations depends upon how much a (𝜌,𝐾) event could impact the

63

aggregation’s child relation.This is equivalent to ensuring 𝑐-group DP over that
child relation, where 𝑐 is ∆(𝜌,𝐾)(𝑅). No public libraries we found support 𝑐-
group DP.

64

N
o
ta

ti
o
n

P Privacy policy for each camera:
{(𝜌,𝐾)𝑐 ∀ 𝑐 ∈ cameras}

ΔP (𝑅) Maximum number of rows in relation 𝑅 that
could differ by the addition or removal of any
(𝜌,𝐾)-bounded event.

𝐶�̃�(𝑅, 𝑎) Range constraint: range of attribute 𝑎 in 𝑅

𝐶�̃�(𝑅) Size constraint: upper bound on total number
of rows in 𝑅

∅ Indicates that a relational operator leaves a
constraint unbound. If this constraint is re-
quired for the aggregation, it must be bound
by a predecessor. If it is not required, it can
be left unbound.

A
g
g
r
eg

at
io

n
F
u
n
ct

io
n
s

Function Definition Constraints Sensitivity (Δ(Q))

Count 𝑄 := Πcount(*)(𝑅) Δ 1 · Δ(𝑅)

Sum 𝑄 := Πsum(𝑎)(𝑅) Δ, 𝐶�̃� Δ(𝑅) · 𝐶�̃�(𝑅, 𝑎)

Average 𝑄 := Πavg(𝑎)(𝑅) Δ, 𝐶�̃�, 𝐶�̃�
Δ(𝑅)·𝐶�̃�(𝑅,𝑎)

𝐶�̃�(𝑅)

Std. Dev 𝑄 := Πstddev(𝑎)(𝑅) Δ, 𝐶�̃�, 𝐶�̃� Δ(𝑅) · 𝐶�̃�(𝑅, 𝑎)/
√︁

𝐶�̃�(𝑅)

Argmax 𝑄 := Πargmax(𝑎)(𝑅) Δ, 𝑎 ∈ 𝐾 max𝑘∈𝐾 Δ(𝜎𝑎=𝑘(𝑅))

R
el

at
io

n
a
l

O
pe

r
at

o
r
s

Operator Type Definition ΔP (R
′) Cr̃(R

′, ai) Cs̃(R
′)

Base Case Base Table 𝑅 𝑚𝑟 · 𝐾 · (1 + ⌈ 𝜌
𝑐
⌉) ∅ ∅

Selection
(𝜎)

Standard: rows from 𝑅 that match WHERE clause 𝑅′ := 𝜎where(...)(𝑅) ΔP (𝑅) 𝐶�̃�(𝑅, 𝑎𝑖) 𝐶�̃�(𝑅)

Limit: first 𝑥 rows from 𝑅 𝑅′ := 𝜎limit=𝑥(𝑅) ΔP (𝑅) 𝐶�̃�(𝑅, 𝑎𝑖) min(𝑥,𝐶�̃�(𝑅))

Projection
(Π)

Standard projection: select attributes 𝑎𝑖, . . . from 𝑅 𝑅′ := Π𝑎𝑖,...
ΔP (𝑅) 𝐶�̃�(𝑅, 𝑎𝑖) 𝐶�̃�(𝑅)

Apply (user-provided, but stateless) 𝑓 to column 𝑎𝑖 𝑅′ := Π𝑓(𝑎𝑖),...
ΔP (𝑅) ∅ 𝐶�̃�(𝑅)

Add range constraint to column 𝑎𝑖 𝑅′ := Π𝑎𝑖∈[𝑙𝑖,𝑢𝑖],...
ΔP (𝑅)

[𝑙𝑖, 𝑢𝑖] if 𝑎𝑖 ̸= ∅
𝐶�̃�(𝑅, 𝑎𝑖) otherwise 𝐶�̃�(𝑅)

GroupBy
(𝛾)

Group attribute(s) (𝑔𝑖) are chunk or region
𝑅′ := 𝑔𝑗,...

𝛾agg(𝑎𝑖),...

𝑔𝑗 := chunk|bin(chunk)
Equation 4.2 Δ(agg(𝑎𝑖))

𝐶�̃�(𝑅)
(bin size)

Group attribute(s) (𝑔𝑗) are not chunk or region 𝑅′ := 𝑔𝑗,...
𝛾agg(𝑎𝑖),...

ΔP (𝑅) ∅ ∅

... discrete set of keys provided for each group 𝑅′ := 𝑔𝑗∈𝐾𝑗,...
𝛾agg(𝑎𝑖),...

... ... Π𝑗 |𝐾𝑗 |

... aggregation constrains range: 𝑎𝑔𝑔(𝑎𝑖) ∈ [𝑙𝑖, 𝑢𝑖] 𝑅′ := 𝑔𝑗,...
𝛾agg(𝑎𝑖)∈[𝑙𝑖,𝑢𝑖],...

...
[𝑙𝑖, 𝑢𝑖] if 𝑎𝑖 ̸= ∅
𝐶�̃�(𝑅, 𝑎𝑖) otherwise ...

Joins*
(⋊⋉)

*immediately preceeded by GroupBy over same key(s)
𝑅′ := 𝑔𝛾agg(𝑎)(𝑅1 ⋊⋉𝑔 . . . ⋊⋉𝑔 𝑅𝑛)

𝑅′ := 𝑔𝛾agg(𝑎)(𝑅1 ⋊⋉𝑔 . . . ⋊⋉𝑔 𝑅𝑛)

∑︀𝑛
𝑖=1 ΔP (𝑅𝑖)

(GroupBy
rules)

(GroupBy
rules)... equijoin on 𝑔𝑗 (intersection on 𝑔𝑗)

... outer join on 𝑔𝑗 (union on 𝑔𝑗)

Figure 4-3: Full set of rules for Privid’s sensitivity calculation, defined over a query
expressed in relational algebra. All queries contain an aggregation statement at the
outer-most layer. The sensitivity of this aggregation is a function of the inner relation
𝑅, which itself is a function of any inner relations that compose it. This can be
followed all the way down to the base table at the leaf, which ends the recursion,
and the sensitivity propagates back to the aggregation at the top. In the same way,
range and size constraints propagate as well. The range and size must be constrained
somewhere along the way from the base table to the aggregation layer, otherwise the
sensitivity is undefined and the query must be rejected.

65

Lemma 4.3.1. Given a relation 𝑅, the rules in Figure 4-3 are an upper bound on
the global sensitivity of a (𝜌,𝐾)-bounded event in an intermediate table 𝑡.

Proof. Proof by induction on the structure of the query.

Case: 𝑡. ∆P (𝑡) is given directly by Equation 4.2.

Case: 𝑅′ := 𝜎𝜃(𝑅). A selection may remove some rows from 𝑅, but it does not add
any, or modify any existing ones, so in the worst case an individual can be in just
as many rows in 𝑅′ as in 𝑅 and thus ∆P (𝑅

′) ≤ ∆P (𝑅) and the constraints remain
the same. If 𝜃 includes a limit = 𝑥 condition, then 𝑅′ will contain at most 𝑥 rows,
regardless of the number of rows in 𝑅.

Case: 𝑅′ := Π𝑎,...(𝑅). A projection never changes the number of rows, nor does it
allow the data in one row to influence another row, so in the worst case an individual
can be in at most the same number of rows in 𝑅′ as in 𝑅 (∆P (𝑅

′) ≤ ∆P (𝑅)) and
the size constraint 𝐶�̃�(𝑅) remains the same. If the projection transforms an attribute
by applying a stateless function 𝑓 to it, then we can no longer many assumptions
about the range of values in 𝑎 (𝐶�̃�(𝑅

′, 𝑎) = ∅), but nothing else changes because the
stateless nature of the function ensures that data in row cannot influence any others.

Case: GroupBy. A GROUP BY over a fixed set of a 𝑛 keys is equivalent to 𝑛 sep-
arate queries that use the same aggregation function over a 𝜎WHERE𝑐𝑜𝑙=𝑘𝑒𝑦(𝑅). If
the column being grouped is a user-defined column, Privid requires that the analyst
provide the keys directly. If the column being grouped is one of the two implicit
columns (chunk or region), then the set of keys is not dependent on the contents of
the data (only its length) and thus are fixed regardless.

Case: Join. Consider a query that computes the size of the intersection between two
cameras, PROCESS’d into intermediate tables 𝑡1 and 𝑡2 respectively. If ∆(𝑡1) = 𝑥 and
∆(𝑡2) = 𝑦, it is tempting to assume ∆(𝑡1 ∩ 𝑡2) = min(𝑥, 𝑦), because a value needs to
appear in both 𝑡1 and 𝑡2 to appear in the intersection. However, because the analyst’s
executable can populate the table arbitrarily, they can “prime” 𝑡1 with values that
would only appear in 𝑡2, and vice versa. As a result, a value need only appear in
either 𝑡1 or 𝑡2 to show up in the intersection, and thus ∆(𝑡1 ∩ 𝑡2) = 𝑥+ 𝑦 (the sum of
the sensitivities of the tables).

Theorem 4.3.2. Privid (Algorithm 1) provides (𝜌,𝐾)-duration privacy for a query
𝑄 := 𝐴𝑔𝑔(𝑅) over video 𝑉 , where 𝑅 is a series of relational operators applied to 𝑉 .

66

4.3.1 Relative Privacy Guarantees

In this section, we prove the Privid satisfies the relative privacy guarantee described
in §3.4.1. We begin with a lemma that will be helpful for the proof.

Lemma 4.3.3. Consider an individual 𝑥 whose appearance is bound by (�̂�, �̂�) in
front of a camera whose policy is (𝜌,𝐾, 𝜖). For every query 𝑄 there exists 𝛼, 𝛽 ∈ R
such that 𝛼𝐾(1 + 𝛽𝜌) ≤ ∆(𝜌,𝐾)(𝑄) ≤ 𝛼𝐾(2 + 𝛽𝜌).

Proof. Any Privid query must contain some aggregation 𝑎𝑔𝑔 as the outer-most rela-
tion, and thus we can write 𝑄 := Π𝑎𝑔𝑔(𝑅). ∆(𝜌,𝐾)(𝑄) is defined in Figure 4-3 for five
possible aggregation operators, which are each a function of ∆(𝜌,𝐾)(𝑅) (the sensitivity
of their inner relation 𝑅).

First, we will prove these bounds are true for the inner relation ∆(𝜌,𝐾)(𝑅) by induction
on 𝑅 (all rules for ∆(𝜌,𝐾)(𝑅) given by Figure 4-3):
Case (Base): 𝑅 := 𝑡 When 𝑅 is an intermediate Privid table 𝑡, its sensitivity is
given directly by Equation 4.2, where 𝛼 = maxrows𝑡 and 𝛽 = 1/𝑐. Note, the (1+ · · ·)
and (2 + · · ·) in the lemma inequalities bound ⌈𝜌

𝑐
⌉.

Case (Selection): 𝑅 := 𝜎(𝑅′). When 𝑅 is a selection from 𝑅′, ∆(𝜌,𝐾)(𝑅) =

∆(𝜌,𝐾)(𝑅
′). If ∆(𝜌,𝐾)(𝑅

′) is bound by the inequalities in the lemma statement, then
∆(𝜌,𝐾)(𝑅) is too.
Case (Projection): 𝑅 := Π(𝑅′). Same as selection.
Case (GroupBy and Join): 𝑅 := 𝛾(𝑅1 ⋊⋉ . . . ⋊⋉ 𝑅𝑖) When 𝑅 is a join of relations
𝑅𝑖 proceeded by a GroupBy, ∆(𝜌,𝐾)(𝑅) =

∑︀𝑁
𝑖=1∆(𝜌,𝐾)(𝑅𝑖). Let ∆(𝜌,𝐾)𝑅𝑖 be parame-

terized by 𝛼𝑖 and 𝛽𝑖. If each of ∆(𝜌,𝐾)(𝑅𝑖) are bound by the inequalities in the lemma,
then

∑︀
𝑖∆(𝜌,𝐾)(𝑅𝑖) is as well, but with 𝛼 =

∑︀𝑁
𝑖=1 𝛼𝑖 and 𝛽 =

∑︀𝑁
𝑖=1 𝛽𝑖.

Finally, each of the supported aggregation operators only involve multiplying ∆(𝜌,𝐾)(𝑅)

by constants (with respect to 𝜌 and 𝐾), and thus these constants can be subsumed
into 𝛼.

Theorem 4.3.4. Consider a camera with a fixed policy (𝜌,𝐾, 𝜖). If an individual 𝑥’s
appearance in front of the camera is bound by some (�̂�, �̂�), then Privid (Algorithm 1)
effectively protects 𝑥 with �̂�-DP, where �̂� is 𝑂(�̂��̂�

𝜌𝐾
)𝜖, which grows (degrades) as (�̂�, �̂�)

increase while (𝜌,𝐾, 𝜖) are fixed, and the constants do not depend on the query.

Proof. Privid uses the Laplace mechanism: it returns 𝑄(𝑉)+𝜂 to the analyst, where
𝑄(𝑉) is the raw query result, and 𝜂 ∼ Laplace(0, 𝑏), 𝑏 =

Δ(𝜌,𝐾)(𝑄)

𝜖
and ∆(𝜌,𝐾)(𝑄) is

the global sensitivity of the query over any (𝜌,𝐾)-neighboring videos. Note that the

67

sensitivity is purely a function of the query, and thus Privid samples noise using the
same scale 𝑏 regardless of how long any individual is actually visible in the video.

By Theorem 4.4.1, this mechanism provides 𝜖-DP for all (𝜌,𝐾)-bounded events.
If we rearrange the equation for 𝑏 so that 𝜖 =

Δ(𝜌,𝐾)(𝑄)

𝑏
, we can equivalently say that

Privid guarantees Δ(𝜌,𝐾)(𝑄)

𝑏
-DP for all (𝜌,𝐾)-bounded events. Or, more generally,

that a particular instantiation of Privid with policy 𝑝 = (𝜌,𝐾, 𝜖) guarantees �̂�-DP
for all (�̂�, �̂�)-bounded events in query 𝑄, where 2

�̂�𝑝(�̂�, �̂�, 𝑄) =
∆(�̂�,�̂�)(𝑄)

𝑏
=

∆(�̂�,�̂�)(𝑄)

∆(𝜌,𝐾)(𝑄)/𝜖
=

∆(�̂�,�̂�)(𝑄)

∆(𝜌,𝐾)(𝑄)
𝜖

In other words, for a fixed policy, �̂� defines the effective level of protection provided
to an event as a function of the event’s (not policy’s) (�̂�, �̂�) bound.

From Lemma 4.3.3, we can bound �̂� as 𝛼�̂�(1+𝛽�̂�)
𝛼𝐾(2+𝛽𝜌)

𝜖 ≤ �̂� ≤ 𝛼�̂�(2+𝛽�̂�)
𝛼𝐾(1+𝛽𝜌)

𝜖. To see where
this comes from, note that �̂� is minimized when the numerator is minimized (the lower
bound from Lemma 4.3.3) and the denominator is maximized (the upper bound from
Lemma 4.3.3). The same logic applies to the upper bound on �̂�.

We can simplify both bounds by first canceling 𝛼 and then picking units of time
such that 𝛽 = 1 (𝛽 has dimensions of chunks per unit time). Thus, �̂� ≈ �̂��̂�

𝜌𝐾
𝜖.

4.4 Query Composition

In traditional DP, the parameter 𝜖 is viewed as a “privacy budget”. Informally, 𝜖

defines the total amount of information that may be released about a database, and
each query consumes a portion of this budget. Once the budget is depleted, no further
queries can be answered. This ensures that, in the worst case, if all analysts were
malicious and coluded, combining their query answers together would still at best
satisfy 𝜖-DP (not anything weaker).

Since tables are dynamically generated in Privid as an intermediate representa-
tion of the underlying video data, we cannot assign a privacy budget to those tables
directly, otherwise each query could create a new table based on the same segment
of video without depleting the budget. Instead, we allocate budget independently to
each frame of each camera. The Video Owner can choose to set 𝜖 however they wish;
it may be different between separate cameras or even separate time ranges of the same
camera. Each table is tied to the set of frames that generated it. Whenever an ag-

2Note the difference in subscript in the numerator and denominator.

68

Figure 4-4: Example of query budget decrement over a series of three queries. All
frames are initialized with 𝜖 budget. Time flows from top to bottom, where the three
queries are executed one after another. We show the updated budget per frame after
each query is executed (or not). Query 2 is rejected due to the budget used by Query
1, and thus does not decrement any budget.

gregation and data release is performed on a table, the budget for the corresponding
frames are decremented accordingly.

When Privid receives a query 𝑄 over frames [𝑎, 𝑏] requesting budget 𝜖𝑄, it only
accepts the query if all frames in the interval [𝑎−𝜌, 𝑏+𝜌] have sufficient budget ≥ 𝜖𝑄,
otherwise the query is denied (Alg. 1 Lines 2-4). If the query is accepted, Privid

then subtracts 𝜖𝑄 from each frame in [𝑎, 𝑏], but not the 𝜌 margin (Alg. 1 Lines 6-7).
We require sufficient budget at the 𝜌 margin to ensure that any single segment of an
event (which has duration at most 𝜌) cannot span two temporally disjoint queries.

Note that since each SELECT in a query represents a separate data release, the
total budget 𝜖𝑄 used by a query is the sum of the 𝜖𝑖 used by each of the 𝑖 SELECTs.

The amount of privacy budget remaining per frame is public information because
it is only a function of past queries, not of the data or any query results. If analysts
wish to query the interval [𝑎, 𝑏] but only part of the range has sufficient budget, they
can adjust their interval to only consider frames with sufficient budget.

Example. To put all of this together, we provide an example scenario in Figure 4-4.
The video is composed of 8 frames and each is initialized with a budget of 𝜖, and 𝜌 is 1
frame. The first query requests to use 𝜖

2
over the time (frame) range [2,4]. Since there

is enough budget within the 𝜌 margin, i.e. [1,5], the query is accepted and executed,
and we decrement 𝜖

2
from the range [2,4]. The second query requests 𝜖 over the time

69

range [3,5]. Thus, we check the range [2,6]. Although t=5 and t=6 have sufficient
budget, t=[2,4] does not because of the previous query. Thus, the second query is
rejected, no results are released, and no budget is decremented. Since the budget
information is public, the analyst could check this for themselves before submitting
the query, rather than submitting queries to poll for available budget. Finally, the
third query is accepted because we did not lose any budget from the second query.
However, t=[6,7] is now completely depleted, so no further queries will be able to
analyze them. Further, any queries which include t=6 or t=7 at their margin will
also be denied.

Theorem 4.4.1. Consider an adaptive sequence of 𝑛 queries 𝑄1, . . . , 𝑄𝑛, each over
the same camera 𝐶, a privacy policy (𝜌𝐶 , 𝐾𝐶), and global budget 𝜖𝐶 . The Privid

mechanism (Algorithm 1) provides (𝜌𝐶 , 𝐾𝐶 , 𝜖𝐶)-privacy for the set of 𝑄1, . . . , 𝑄𝑛 in
aggregate.

Proof. Consider two queries 𝑄1 (over time interval 𝐼1, using chunk size 𝑐1 and budget
𝜖1) and 𝑄2 (over 𝐼2, using 𝑐2 and 𝜖2). Let 𝑣1 = 𝑉 [𝐼1] be the segment of video 𝑄1

analyzes and 𝑣2 = 𝑉 [𝐼2] for 𝑄2. Let 𝐸 be a (𝜌,𝐾)-bounded event.

We say two intervals 𝐼1 and 𝐼2 are “𝜌-disjoint” (with 𝐼1 < 𝐼2 by symmetry) if the
last time unit of 𝐼1 is 𝜌 time units ahead of the first time unit of 𝐼2.

Case 1: 𝐼1 and 𝐼2 are not 𝜌-disjoint The budget check (lines 1-3 in Algorithm 1)
ensures that these two queries must draw from the same privacy budget, because their
effective ranges overlap by at least one frame (but may overlap up to all frames). By
Theorem 4.3.2, Privid is (𝜌,𝐾, 𝜖1)-private for 𝑄1 and (𝜌,𝐾, 𝜖2)-private for 𝑄2. By
Dwork [33, Theorem 3.14], the combination of 𝑄1 and 𝑄2 is (𝜌,𝐾, 𝜖1 + 𝜖2)-private.

Case 2: 𝐼1 and 𝐼2 are 𝜌-disjoint In other words, 𝐼1 + 𝜌 < 𝐼2− 𝜌, thus the budget
check (lines 1-3) allows these two queries to draw from entirely separate privacy
budgets. Since the intervals are 𝜌-disjoint, and all segments in 𝐸 must have duration
≤ 𝜌, it is not possible for the same segment to appear in even a single frame of both
intervals.

Let 𝐾1 be the number of segments contained in 𝐼1, each of duration ≤ 𝜌, and 𝐾2

be the remaining segments contained in 𝐼2, each of duration ≤ 𝜌. In other words, 𝐸
is (𝜌,𝐾1)-bounded in 𝑣1 and (𝜌,𝐾2)-bounded in 𝑣2. Since 𝐸 has at most 𝐾 segments,
𝐾1 + 𝐾2 ≤ 𝐾. We need to show that the probability of observing both 𝐴1 and

70

𝐴2 if the inputs are the actual segments 𝑣1 and 𝑣2 is close (𝑒𝜖) to the probability of
observing those values if the inputs are the neighboring segments 𝑣′1 and 𝑣′2:

Pr[𝐴1 = 𝑄1(𝑣1), 𝐴2 = 𝑄2(𝑣2)]

Pr[𝐴1 = 𝑄1(𝑣′1), 𝐴2 = 𝑄2(𝑣′2)]
≤ exp(𝑒)

Since the probability of observing 𝐴1 is independent of observing 𝐴2 (randomness is
purely over the noise added by Privid):

Pr[𝐴1 = 𝑄1(𝑣1), 𝐴2 = 𝑄2(𝑣2)]

Pr[𝐴1 = 𝑄1(𝑣′1), 𝐴2 = 𝑄2(𝑣′2)]

≤ Pr[𝐴1 = 𝑄1(𝑣1)] Pr[𝐴2 = 𝑄2(𝑣2)]

Pr[𝐴1 = 𝑄1(𝑣′1)] Pr[𝐴2 = 𝑄2(𝑣′2)]

≤
1
2𝑏1

exp(− |𝐴1−𝑄1(𝑣1)|
𝑏1

) 1
2𝑏2

exp(− |𝐴2−𝑄2(𝑣2)|
𝑏2

)

1
2𝑏1

exp(− |𝐴1−𝑄1(𝑣1′)|
𝑏1

) 1
2𝑏2

exp(− |𝐴2−𝑄2(𝑣2′)|
𝑏2

)

(By Algorithm 1, Line 13)

= exp(
|𝐴1−𝑄1(𝑣

′
1)|−|𝐴1−𝑄1(𝑣1)|

𝑏1
+

|𝐴2−𝑄2(𝑣
′
2)|−|𝐴2−𝑄2(𝑣2)|

𝑏2
)

If 𝐾1 segments are in 𝑣1 and 𝐾2 segments are in 𝑣2, the numerator of each fraction
above is the sensitivity of a (𝜌,𝐾1)-bounded event and a (𝜌,𝐾2)-bounded event,
respectively. 𝑏1 and 𝑏2 are the amount of noise actually added to the query, which
are both based on 𝐾:

≤ exp(
∆(𝜌,𝐾1)(𝑄1)

∆(𝜌,𝐾)(𝑄1)/𝜖
+

∆(𝜌,𝐾2)(𝑄2)

∆(𝜌,𝐾)(𝑄2)/𝜖
)

= exp(𝜖 · (
𝐾1(⌈ 𝜌

𝑐1
⌉+ 1)

𝐾(⌈ 𝜌
𝑐1
⌉+ 1)

+
𝐾2(⌈ 𝜌

𝑐2
⌉+ 1)

𝐾(⌈ 𝜌
𝑐2
⌉+ 1)

))

(by Equation 4.2)

= exp(𝜖 · (𝐾1

𝐾
+

𝐾2

𝐾
)) (recall 𝐾 ≥ 𝐾1 +𝐾2)

≤ exp(𝜖)

4.5 Spatial Masking

4.5.1 Intuition

Observation. In some settings, a few individuals may be visible to a camera for far
longer than the majority, creating a heavy-tailed distribution of presence durations.

71

(a) campus (b) highway (c) urban

Figure 4-5: (Top) Heatmap measuring the maximum time any object spent in each
pixel, noramlized to the max (yellow) per video. (Bottom) The resulting masks
used for our evaluation, chosen from the list of masks automatically generated using
Algorithm 2.

For example, on a city street, most cars are visible for a short time as they drive past
the camera, while a small number of cars may be visible for hours if they park on
the street in front of the camera. Alternatively, most individuals are visible briefly as
they walk down a sidewalk, while a few are visible for far longer if they stop to sit at
a bench or table. The maximum duration in such distributions is tight only for those
few lingering individuals, and is a “loose” bound for everyone else. Setting (𝜌,𝐾) to
this maximum will result in a large amount of noise to protect those individuals at
the tail; all others could have been protected with a far lower amount of noise.

As in the motivating examples above, we observe that these “lingering” individuals
at the tail tend to spend the majority of their time in one of a few fixed regions in the
scene, but a relatively short time in the rest of the scene. For example, a car may be
parked in a parking spot for hours, but only visible for 1 minute while entering/leaving
the spot. Further, these regions tend to be static over time and are thus amenable to
discovery by analysis of past data from a camera.

We demonstrate this observation for 3 videos from our evaluation in the top row
of Figure 4-5. For each scene, we analyzed 12 hours of video data and computed
a “duration heatmap” visualizing the amount of time individuals (people or cars)
occupied each region of the frame relative to the maximum duration object. Yellow
denotes regions where individuals spent the most time, while grey denotes regions
where individuals spent a very short time relative to yellow. In campus, the colored
region in the center corresponds to a street corner where individuals wait for a few
minutes to cross the street during a red light. In highway, the colored regions in the

72

top left and right cover spots where cars are parked for hours at a time. In urban,
the colored regions again represent street corners where individuals wait to cross.

Opportunity. Masking fixed regions (i.e., removing those pixels from all frames
prior to running the analyst’s video processing) in the scene that contain lingering
individuals can drastically reduce the observable maximum duration of those indi-
viduals. For example, the parked car mentioned in the previous paragraph would be
observable for 1 minute rather than hours. This would permit a tighter policy (i.e., a
lower value of 𝜌) that provides the same semantic guarantee–all appearances would
still be bound by the policy. To demonstrate this opportunity, we use the heatmaps
in the top row of Figure 4-5 to generate the masks in the bottom row of Figure 4-5. In
Figure 4-6 we plot the distribution of durations before and after applying the mask.
In each case, the mask significantly reduces the maximum duration, resulting in a
factor of 1.71-9.65× less noise, while blocking only a relatively small fraction of the
target objects.

Of course, this technique is only useful to an analyst if the remaining (unmasked)
part of the scene includes all the information needed for the query at hand. For
example, if counting cars, masking sidewalks would be reasonable, but masking roads
would not.

4.5.2 Usage in Privid

At camera-registration time, instead of providing a single (𝜌,𝐾) policy to Privid

(for a given camera), the Video Owner can provide a (fixed) “menu” of a few frame
masks and, for each, a corresponding (𝜌,𝐾) policy that would provide a semantically-
equivalent level of privacy when that mask is applied. At query time, the analyst can
choose a mask from the menu that would minimally impact their query goal while
maximizing the reduction in noise (via the tighter (𝜌,𝐾) bound). They specify a
mask using the optional WITH_MASK [NAME] directive in a split_stmt (or simply
leave out the directive for no mask). Privid applies the mask to all video frames
in that video block before passing it to the analyst’s PROCESS executable (i.e., the
analyst’s executable only “sees” the masked video), and uses the corresponding (𝜌,𝐾)

in its sensitivity calculation (§4.3).
It is the Video Owner’s responsibility to choose the menu of masks and policies and

to ensure that those policies match the definition of privacy they desire. For example,
if the Video Owner came up with an initial bound on 𝜌 by analyzing prior video from
the camera, they can apply that same process (but with the mask applied to the

73

0 1 2 3 4 5 6 7 8 9 10 11
Persistence in log(seconds)

0.0

0.1

0.2

0.3
R

el
at

iv
e

Fr
eq

ue
nc

y
4.99x

Original (1.4k people) Masked (1.3k people)

(a) campus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Persistence in log(seconds)

0.0

0.1

0.2

R
el

at
iv

e
Fr

eq
ue

nc
y

9.65x

Original (48.7k cars) Masked (47.7k cars)

(b) highway

0 1 2 3 4 5 6 7 8 9 10 11 12
Persistence in log(seconds)

0.0

0.1

0.2

R
el

at
iv

e
Fr

eq
ue

nc
y

1.71x

Original (43.3k people) Masked (40.5k people)

(c) urban

Figure 4-6: The distribution of private objects’ durations (persistence) is heavy-
tailed. Applying the masks from the bottom row of Figure 4-5 significantly lowers
the maximum duration, while still allowing most target objects to be detected. The
key denotes the total number of target objects detectable before and after applying
the mask. The dotted lines highlight the maximum persistence, and the arrow text
denotes the relative reduction in maximum persistence after applying the mask.

74

video first) to estimate the maximum observable duration of objects they wish to
protect. Privid takes a menu of masks and policies as input and simply ensures that
the correct policy is enforced. It does not make any guarantees about the semantic
meaning of a policy.

Regardless of how the masks are chosen, the masks themselves are static (i.e.,
the same pixels are masked in every frame regardless of its contents), and the set of
available masks is fixed. Neither depend on the query itself or the specific content of
the video being queried. Further, the mask itself does not reveal anything about how
the Video Owner generated it or which specific objects contributed to it, it only tells
the analyst that some objects appear for a long duration in the masked region.

4.5.3 Choosing Masks

Which masks should the Video Owner provide? The space of all possible masks
(𝑂(21920×1080) for 1080p video) is infeasible to enumerate, and even computing the
𝜌 bound for a single iteration (via object tracking) is computationally expensive.
However, the set of masks that would actually reduce the observable duration is
relatively small and query-agnostic, so exploring the entire space is unnecssary. For
example, suppose we create a mask that removes only the roads in campus. Since the
maximum duration individuals in this scene are present on the sidewalks, this mask
would not actually reduce the observable 𝜌 at all.

Recall that our goal in choosing a masked region is to reduce 𝜌. To do this, note
that 𝜌 is defined by the maximum duration individual. In order to decrease 𝜌, we
must decrease the observable duration of this individual. While masking any pixels
this individual visited could decrease 𝜌, the smallest region that will decrease 𝜌 the
most is exactly the highlighted region in our heatmaps from Figure 4-5.

We can use this intuition to create an efficient recursive algorithm which requires
only a single run of the (expensive) object tracking routine. We begin with the empty
mask, and we will progressively add more pixels to the mask, creating a checkpoint
of mask options along the way. First, we compute object tracks for a portion of past
video and create a duration heatmap. We can compute an estimate of (𝜌,𝐾) based on
these object tracks. This provides the initial policy for the null mask. Then, we pick
the highest duration region from the duration heatmap, and add this to our running
mask. We adjust the object tracks to remove portions that would not have been
visible with this mask, and recompute a (𝜌,𝐾) policy for this mask, which becomes
the next option in the menu. At this point, we proceedrecursively. We consider the

75

Algorithm 2: Generate Menu of Useful Masks
◁ Input : 𝑛,𝑚: camera resolution (𝑛×𝑚)
◁ Input : 𝑔 : grid size, frame pixels will be divided evenly into boxes of size

𝑏× 𝑏
◁ Input : 𝑜𝑏𝑗𝑠: list of all object tracks, each object track is a list of

(frame_id, bounding_box) tuples corresponding to the same
object

◁ Output: 𝑚𝑒𝑛𝑢: list of tuples of (𝑚𝑎𝑠𝑘, 𝑝𝑜𝑙𝑖𝑐𝑦), mask is an 𝑛×𝑚 binary
matrix, policy is a (𝜌,𝐾) bound for the corresponding mask

1 𝑜𝑏𝑗_𝑏𝑜𝑢𝑛𝑑𝑠← array of tightest (𝜌,𝐾) bound for each track in 𝑜𝑏𝑗𝑠
◁ Initialize the empty mask and corresponding policy

2 𝑐𝑢𝑟𝑟_𝑚𝑎𝑠𝑘 ← []
3 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦 ← 𝑚𝑎𝑥(𝑜𝑏𝑗_𝑏𝑜𝑢𝑛𝑑𝑠)
4 𝑙𝑎𝑠𝑡_𝑝𝑜𝑙𝑖𝑐𝑦 ← 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦
5 𝑚𝑒𝑛𝑢 = [(𝑐𝑢𝑟𝑟_𝑚𝑎𝑠𝑘, 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦)]

◁ Add boxes to the mask one by one
6 𝐵 ← set of pixel boxes available to be masked, 𝑛×𝑚 divided into 𝑔× 𝑔 boxes
7 while 𝐵 is not empty do

◁ Pick the box that, if removed, will reduce the bound the most
8 𝑚𝑎𝑥_𝑜𝑏𝑗 = 𝑜 ∈ 𝑜𝑏𝑗_𝑏𝑜𝑢𝑛𝑑𝑠 with largest (𝜌,𝐾) bound
9 𝑚𝑎𝑥_𝑔𝑟𝑖𝑑_𝑏𝑜𝑥 = 𝑏 ∈ 𝐵 that overlaps 𝑚𝑎𝑥_𝑜𝑏𝑗 for max number of

frames
10 𝑐𝑢𝑟𝑟_𝑚𝑎𝑠𝑘 += 𝑚𝑎𝑥_𝑔𝑟𝑖𝑑_𝑏𝑜𝑥

◁ Remove any detections that are no longer observable after applying the
mask and recompute the new tightest observable policy

11 𝑜𝑏𝑗𝑠 −= any bounding boxes that are completely covered by 𝑐𝑢𝑟𝑟_𝑚𝑎𝑠𝑘
12 𝑜𝑏𝑗_𝑏𝑜𝑢𝑛𝑑𝑠← recompute tighetst (𝜌,𝐾) bounds for each track in 𝑜𝑏𝑗𝑠
13 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦 ← 𝑚𝑎𝑥(𝑜𝑏𝑗_𝑏𝑜𝑢𝑛𝑑𝑠)

◁ Add this mask to the menu if this policy improves on the bound
14 if 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦 tighter than 𝑙𝑎𝑠𝑡_𝑝𝑜𝑙𝑖𝑐𝑦 then
15 𝑚𝑒𝑛𝑢 += (𝑐𝑢𝑟𝑟_𝑚𝑎𝑠𝑘, 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦)

16 𝑙𝑎𝑠𝑡_𝑝𝑜𝑙𝑖𝑐𝑦 ← 𝑐𝑢𝑟𝑟_𝑝𝑜𝑙𝑖𝑐𝑦
17 𝐵 −= 𝑚𝑎𝑥_𝑔𝑟𝑖𝑑_𝑏𝑜𝑥

76

highest duration unmasked region, add it to the mask, recompute the policy, then
add the current mask and policy as another option in the menu. Eventually, either
we will reach a policy of 𝜌 = 0, or the entire mask will be added to the frame, at
which point we are done. We provide this algorithm as pseudocode in Algorithm 2.

It is important to note here that adding a masked region may create a discontinuity
in an object’s appearance and thus require increasing 𝐾. Consider the example car
from earlier. While they were originally bound by (𝜌 = 61𝑚𝑖𝑛,𝐾 = 1), adding a mask
around the parking spot could change their observable bound to (𝜌 = 45𝑠𝑒𝑐,𝐾 = 2)

(suppose they are visible for 45 seconds while entering the spot and then 15 seconds
at a different time while leaving the spot).

For a visual intuition of this algorithm, imagine the heatmaps in Figure 4-5 denote
a convex surface where the color denotes the depth, with grey being the top level and
yellow being the deepest point. We can think of this procedure as a water-filling
algorithm, where adding more water to the surface is equivalent to increasing the size
of the mask.

4.5.4 Microbenchmarks

We validate the effectiveness of masking over 3 videos from our own dataset, and 7
other videos from the datasets of related work (BlazeIt [45] and Miris [23]). For each
video, we run Algorithm 2 to generate a series of masks and policies. Figure 4-7 plots
a summary. The x-axis represents the fraction of the frame that has been included
in the mask. Initially, we begin with the null mask, so none of the frame is masked
(𝑥 = 0). As we run the algorithm, we progressively mask a greater fraction of the
frame, up until the entire frame is masked at 𝑥 = 100 (%). Each 𝑥 value represents
a particular mask.

In the top plot, the y-axis measures the maximum duration (“persistence”) of any
object observable with that mask applied, normalized to the persistence with no mask
applied (so that we can easily compare videos with different 𝜌 in the same graph).
By definition, 𝑦 will be 100% of 𝑥 = 0 at 𝑥 = 0 and 0% at 𝑥 = 100 when the entire
frame is masked and nothing is visible.

In the bottom plot, the y-axis measures the number of objects that remain visible
with that mask applied. Again this value is normalized to the number of objects
visible with no mask applied.

For each video, we can see that a large drop in persistence occurs before a large
drop in the number of objects. In other words, for each video, there exists a mask

77

Before Mask After Mask

Dataset Video
Name

Max
Duration
(Frames)

%Frame
Masked

Max
Duration
(Frames)

Duration
Reduction

% Objects
Retained

Privid
campus 1951 17% 190 10.27x 91.06%
highway 28800 30% 601 47.92x 91.3%
urban 2746 19% 497.16 5.52x 87.24%

BlazeIt [45]
grand-canal 10930 35% 2496 4.38x 26.67%
venice-rialto 37992 6% 7696 4.94x 94.21%
taipei 56931 20% 2444 23.29x 99.94%

Miris [23]

shibuya 9363 2% 2182 4.29x 96.43%
beach 4843 5% 843.2 5.74x 94.79%
warsaw 6479 4% 1147 5.65x 94.82%
uav 595 40% 130 4.58x 75.57%

Table 4-1: Effectiveness of applying masks in terms of reducing the observable dura-
tion with obscuring too many target objects.

that significantly reduces the maximum observable duration without removing too
many of the target objects.

To highlight this, we pick a particular mask for each video and display the effec-
tiveness in Table 4-1. The left side of the table displays the max duration 𝜌 before
applying any mask. The right side shows the impact of the mask. “% Frame Masked”
is equivalent to the 𝑥 value from Figure 4-7, indicating the fraction of pixels that
the mask covers.The remaining columns show the max duration 𝜌 after applying that
mask, the relative reduction in 𝜌, and the fraction of objects that are still visible.
Ideally a larger duration reduction and a higher fraction of objects retained are bet-
ter. In each case, we were able to find a mask that reduces 𝜌 by 4-24x (indicating a
proportional increase in query accuracy due to lower noise) while retaining a majority
of the objects, ensuring the query still has a representative sample to analyze.

4.5.5 I thought you said denaturing was bad!

Although masking is a form of denaturing, Privid uses it differently than the prior
approaches in §2.1, in order to sidestep their issues. Rather than attempting to
dynamically hide individuals as they move through the scene, Privid’s masks cover
a fixed location in the scene and are publicly available so analysts can account for them
in their query implementation. Also, masks are used as an optional modification to the
input video; the rest of the Privid pipeline, and thus its formal privacy guarantees,
remain the same.

78

0.0

0.2

0.4

0.6

0.8

1.0

%
 M

ax
 P

er
sis

te
nc

e
Pr

es
en

t

10 2 10 1 100 101 102

% Grid Boxes Masked (Log Scale)

0.0

0.2

0.4

0.6

0.8

1.0

%
 Id

en
tit

ie
s P

re
se

nt Privid-highway
Privid-campus
Privid-urban
BlazeIt-venice-grand-canal
BlazeIt-venice-rialto
BlazeIt-taipei-hires
Miris-shibuya
Miris-beach
Miris-warsaw
Miris-uav

Figure 4-7: Cumulative impact of masking on the maximum observable duration
and number of target objects retained. Boxes are masked in the order calculated
by Algorithm 2. In both plots, the 𝑦-axis is scaled relative to 𝑥 = 0 for ease of
visualization. We chose a particular 𝑥 for each video and show the absolute 𝑥 and 𝑦
values in Table 4-1.

79

Name View Region Masked Ideal For Policy

None (𝜌=250𝑠,𝐾=1)

A Street corner People (𝜌=24𝑠,𝐾=2)

B All walkways (no
people visible)

Cars (𝜌=15𝑠,𝐾=2)

C No people or cars
visible

Traffic lights,
trees, sky

(𝜌=0𝑠,𝐾=0)

Table 4-2: Example of menu of semantically-useful masks that could be generated for
the campus camera.

80

Video Max(frame) Max(region) Reduction
campus 6 3 2.00×
highway 40 23 1.74×
urban 37 16 2.25×

Table 4-3: Reduction in max output range from splitting each video into distinct
regions. Reduction shows the factor by which the noise could be reduced. A reduction
of the max by 2× corresponds to a reduction in the level of noise by 2× as well.

4.6 Spatial Splitting

4.6.1 Intuition

Observation. (1) At any point in time, each object typically occupies a relatively
small area of a video frame. (2) Many common queries (e.g., object detections) do
not need to examine the entire contents of a frame at once, i.e., if the video is split
spatially into regions, they can compute the same total result by processing each of
the regions separately.

Opportunity. Privid already splits videos temporally into chunks. If each chunk
is further divided into spatial regions and an individual can only appear in one of
these chunks at a time, then their presence occupies a relatively smaller portion of
the intermediate table (and thus requires less noise to protect). Additionally, the
maximum duration of each individual region may be smaller than the frame as a
whole.

4.6.2 Usage in Privid

At camera-registration time, Privid allows Video Owners to manually specify bound-
aries for dividing the scene into regions. They must also specify whether the bound-
aries are soft (individuals may cross them over time, e.g., between two crosswalks) or
hard (individuals will never cross them, e.g., between opposite directions on a high-
way). At query time, analysts can optionally choose to spatially split the video using
these boundaries. Note that this is in addition to, rather than in replacement of, the
temporal splitting. If the boundaries are soft, tables created using that split must
use a chunk size of 1 frame to ensure that an individual can always be in at most 1
chunk. If the boundaries are hard, there are no restrictions on chunk size since the
Video Owner has stated the constraint will always be true.

81

4.6.3 Microbenchmarks

We demonstrate the potential benefit of spatial splitting on three videos from our
evaluation (Q1-Q3). For each video, we manually chose intuitive regions: a separate
region for each crosswalk in campus and urban (2 and 4, respectively), and a separate
region for each direction of the road in highway. Table 4-3 compares the range neces-
sary to capture all objects that appear within one chunk in the entire frame compared
to the individual regions. The difference (1.74-2.25×) represents the potential noise
reductions from splitting: noise is proportional to max(frame) or max(region) when
splitting is disabled or enabled, respectively.

4.6.4 Discussion

To increase the applicability of spatial splitting, Privid could allow analysts to divide
each frame into a grid and remove the restrictions on soft boundaries to allow any
chunk size. This would require additional estimates about the max size of any private
object (dictating the max number of regions they could occupy at any time), and the
maximum speed of any object across the frame (dictating the max number of regions
they could move between). We leave this to future work.

4.7 Example Query

In this section, we consider a very simple hypothetical query as an example to tie
everything together. We will first show a benevolent query, then show a malicious
query that looks the same from Privid’s perspective, and explain how Privid’s
privacy protection works without needing to differentiate intent.

4.7.1 Benevolent Query

Suppose a Video Owner provides access to camA via Privid, with a policy (𝜌 =

60𝑠,𝐾 = 2). The city transportation department wishes to collect statistics about
vehicles passing camA during October 2021. We formulate two questions as a Privid

query:
The SPLIT selects 1 month of video from camA, then divides the frames into a list

of 10-second-long chunks (267k chunks total). The PROCESS first creates an empty ta-
ble based on the SCHEMA (3 columns). Then, for each chunk, it starts a fresh instance
of traffic_flow.py inside a restricted container, provides the chunk as input, and

82

-- Select 1 month time window from camera, split into chunks
SPLIT camA

BEGIN 10-01-2021/12:00am END 11-01-2021/12:00am
BY TIME 10sec STRIDE 0sec
INTO chunksA;

-- Process chunks using analyst's code, store outputs in tableA
PROCESS chunksA USING traffic_flow.py TIMEOUT 1sec

PRODUCING 20 ROWS
WITH SCHEMA (plate:STRING="", type:STRING="", speed:NUMBER=0)
INTO vehiclesA;

-- S1: Number of unique cars per day
SELECT day,COUNT(DISTINCT plate) FROM vehiclesA WHERE type=="car"

GROUP BY day CONSUMING eps=0.5;
-- S2: Average speed of trucks
SELECT AVG(range(speed, 30, 60)) FROM vehiclesA WHERE type=="truck"

CONSUMING eps=0.5;

Figure 4-8: Example Privid query, whose intent (benevolent or malicious) is un-
known. The intent depends partially on the PROCESS executable (which we do not
vet) and partially on the analyst’s interpretation of the output (which we cannot
anticipate).

traffic_flow.py

import detectron
import deepsort
import openalpr

tracker = deepsort.Tracker()

for frame in sys.stdin.buffer.read(FRAME_SIZE_BYTES):
objects = detectron.detect(frame)
for car in filter(objects, label="car"):

plate = openalpr.process(car)
car.plate = plate
color = compute_obj_color(car)
car.color = color

tracker.add(objects)

for car in tracker:
print(car.plate, car.color, car.speed)

Figure 4-9: PROCESS executable referenced by benevolent analyst’s query (Figure 4-8)

83

appends the output as rows to vehiclesA. The executable traffic_flow.py (Fig-
ure 4-9) contains off-the-shelf object detection and tracking models, a license plate
reader, and a speed estimation algorithm.

The first SELECT filters all cars, then counts the “distinct” license plates to estimate
the number of unique cars per day. Each day is a separate data release with an
independent sample of noise. The second SELECT filters all trucks, then computes the
average speed across the entire month of footage. It uses the same input video as the
first select, and thus draws from the same budget, so in aggregate the two SELECTs
consume 𝜖 = 1.0 budget from all frames in October 2021.

4.7.2 Malicious Query Attempt

Now consider a malicious analyst Mallory who wishes to determine if individual 𝑥
appeared in front of camA each day. Assume 𝑥’s appearance is bound by the Video
Owner’s (𝜌,𝐾) policy.

To hide their intent, Mallory disguises their query as a traffic counter, mimicking
𝑆1 from the previous example. They write identical query statements, but their
“traffic_flow.py” instead includes specialized models to detect 𝑥. If 𝑥 appears,
it outputs 20 rows (the maximum) with random values for each of the columns,
otherwise it outputs 0 rows. This adds 20 rows to the corresponding daily count for
each chunk 𝑥 appears.

Amplification attempt. Due to the isolated environment (§4.2.5), the PROCESS

executable can only output rows for a chunk if 𝑥 truly appears. It has no way of
saving state or communicating between executions in order to artificially output rows
for a chunk in which 𝑥 does not appear. It could output more than 20 rows for a
single chunk, but Privid ignores any rows beyond the PROCESS’s explicit max (20),
so this would not increase the count. Increasing the rows per chunk parameter would
also be pointless: Privid would compute a proportionally higher sensitivity and add
proportionally higher noise.

Side channel attempt. The executable could try to encode the entire contents of a
frame in a row of the table, either by encoding it as a string, or a very large number
of individual integer columns. But in either case, the analyst cannot view the table
directly or even a single row directly, it can only compute noisy aggregations over
entire columns.

Summary. Privid would compute the sensitivity of 𝑆1 (identical in both the benev-
olent and malicious cases) as ∆(60,2)(𝑄) ≤ 20 · 2 · (1 + ⌈60

10
⌉) = 280 rows, meaning it

84

would add noise with scale 280 to each daily count. Regardless of how Mallory changes
her executable, it cannot output more than 280 rows based on 𝑥’s presence. Thus,
even if she observed a non-zero value ∼ 280, she could not distinguish whether it is a
result of the noise or 𝑥’s appearance.

Mallory’s query gets a useless result, because her target (𝑥’s appearance) was close
in duration to the policy. In contrast, the benevolent query can get a useful result
because the duration of its target (the set of all cars’ appearances) far exceeds the
policy. Privid’s noise will translate to ℒ−1(𝑝 = 0.99, 𝑢 = 0, 𝑏 = Δ

𝜖
= 280

0.5
) ≤ 2200

cars with 99% confidence. If, for example, there are an average of 10 cars in each
chunk (and thus 86000 in one day), 2200 represents an error of ±2.5%.

4.8 Limitations

Privid does not explicitly prevent many queries from being “expressed”, but it does
prevent some classes of queries from achieving reasonable utility. In this sense, Privid

does not support the following classes of queries:

• Fine-grained queries, such as those explicitly looking for a particular individual.

• Unlimited queries over the same portion of video.

• Processing algorithms that require maintaining state over the whole video.

85

86

Chapter 5

Evaluation

In this chapter, we demonstrate that Privid supports a diverse range of video ana-
lytics queries, including filtered object counting, duration queries, and multi-camera
aggregations over three real-world video streams. For each, we show that Privid

can simultaneously achieve both high utility and a meaningful privacy guarantee: we
choose a policy for each video stream that protects the presence of all individuals,
and Privid only increases error by 1-5% relative to a non-private system.

5.1 Setup

Datasets. We evaluated Privid primarily using three representative video streams
(campus, highway and urban, screenshots in Figure 4-5) that we collected from
YouTube spanning 12 hours each (6am-6pm). These videos cover low and high object
density scenarios as well as a mix of people and cars. They are also representative of
typical camera resolutions (1080p) and angles.

For the multi-camera case study (Case 2), we use the Porto Taxi dataset [59]
containing 1.7mil trajectories of all 442 taxis running in the city of Porto, Portugal
from Jan. 2013 to July 2014. We apply the same processing as [40] to emulate a
city-wide camera dataset; the result is the set of timestamps each taxi would have
been visible to each of 143 cameras over the 1.5 year period.

Implementation. Our prototype implementation of Privid consists of a few sepa-
rate parts:

• The query sensitivity engine is implemented using 2k lines of Rust. In particular,
we define the language as a parsing expression grammar and use the Pest [19]
crate (library) to build the query parser.

87

• The execution environment is described in §4.2.5 and uses standard Linux se-
curity primitives: chroot, AppArmor, namespaces, and cgroups.

• The overall query engine which handles actually splitting the videos, running
the analyst-provided processing code, creating the intermediate tables, and com-
puting raw (pre-noise) results is implemented in 4k lines of Python.

• For all PROCESS executables and camera-owner (𝜌,𝐾) estimation, we used the
Faster-RCNN [72] model in Detectron-v2 [85] for object detection, and Deep-
SORT [82] for object tracking. For these models to work reasonably given the
diverse content of the videos, we chose the hyperparameters for detection and
tracking on a per-video basis (details in §6.1.2).

Privacy policies. We assume the Video Owner’s underlying privacy goal is to
“protect the appearance of all individuals”. For each camera, we use the strategy
in §4.5, to create a map between masks and (𝜌,𝐾) policies that achieve this goal.
All policies use 𝐾 = 1 to protect single appearances since our video data did not
indicate reappearances were typical or expected.

Privacy budget. We assign a budget of 𝜖 = 1 to all frames of each camera as
this is well-accepted as a reasonable level of privacy in many standard settings.This
translates to protecting the appearance of each individual with 𝜖 = 1-DP. We consider
each case study independently. That is, the full budget is available to the set of queries
in each case study, but must be shared among queries in the same case study. If our
dataset spanned a longer time frame, we could simply execute them over disjoint
ranges of time to achieve this.

Baselines. For each query, we compute accuracy by comparing the output of Privid

to running the same exact query implementation without Privid. We execute each
query 1000 times, and report the mean accuracy value ± 1 standard deviation.

5.2 Query Case Studies

We formulate five types of queries to span a variety of axes (target object class,
number of cameras, aggregation type, query duration, standing vs. one-off query).
Figure 5-1 displays hourly results for Q1-Q3 as a time-series. Table 5-1 summarizes
the remaining queries (Q4-Q13), which return only a single value (shown in the “Query
Output” column).

88

6a 8a 10a 12p 2p 4p
0

200

400

Un

iq
ue

 P
eo

pl
e Q1 (campus)

6a 8a 10a 12p 2p 4p
Time (Hours)

0

2000

4000

Un

iq
ue

 C
ar

s Q2 (highway)

Original
Privid (No Noise)
Privid

6a 8a 10a 12p 2p 4p
0

2000

Un

iq
ue

 P
eo

pl
e

In
 C

ro
ss

wa
lk

s Q3 (urban)

Figure 5-1: Time series of Privid’s output for Case 1 queries. “Original” is the
baseline query output without using Privid. “Privid (No Noise)” shows the raw
output of Privid before noise is added. The final noisy output will fall within the
range of the red ribbon 99% of the time.

Case # Q# Query Description Query Parameters Video 𝜌 Query Output Accuracy

Case 1 Q1 Count Unique People Per Hour |𝑊 | = 1 hour, 𝑐 = 30 sec,
Agg = SUM, range = (0, 6)

campus 49 sec Fig. 5-1 90% ± X

Case 1 Q2 Count Unique Cars Per Hour 𝑐 = 2.0 min, range = (0, 100) campus 2.0 min Fig. 5-1 90% ± X

Case 1 Q3 Count Unique People Per Hour
(Filter: in crosswalks) 𝑐 = 30 sec, range = (0, 23) campus 3.3 min Fig. 5-1 90% ± X

Case 2 Q4 Average Taxi Driver Working Hours
(union across 2 cameras)

|𝑊 | = 365 days, 𝑐 = 15 sec,
Agg = avg, range = (0, 16)

porto10, porto27 [45, 195] sec 5.87 hrs 94.14%± 0.18%

Case 2 Q5 Average # Taxis Traversing 2 Locations on
Same Day (intersection across 2 cameras)

|𝑊 | = 365 days, 𝑐 = 15 sec,
Agg = avg, range = (0, 300)

porto10, porto27 [45, 195] sec 131 taxis 99.80%± 0.13%

Case 2 Q6 Identifying Camera with Highest Daily Traffic
(argmax across all 143 cameras)

|𝑊 | = 365 days, 𝑐 = 15 sec,
Agg = argmax

porto1, ..., porto143 [15, 525] sec porto20 100.00%

Case 3
Q7

Fraction of trees with leaves (%) |𝑊 | = 12 hrs, 𝑐 = 1 frame,
Agg = avg, range = (0, 100)

campus 49 sec 15/15 = 1.00 99.90%± 0.11%
Q8 highway 6.21 min 3/7 = 0.43 98.24%± 1.90%
Q9 urban 3.34 min 4/6 = 0.67 99.39%± 0.66%

Case 4
Q10

Duration of Red Light (seconds) |𝑊 | = 12 hrs, 𝑐 = 10 min,
Agg = avg, range = (0, 300)

campus 0 sec 75 sec 100.00%
Q11 highway 0 sec 50 sec 100.00%
Q12 urban 0 sec 100 sec 100.00%

Case 5 Q13 # Unique People (Filter: trajectory
moving towards campus)

|𝑊 | = 12 hrs, 𝑐 = 10 min,
Agg = sum, range = (0, 25)

campus 49 sec 576 people 79.06%± 4.75%

Table 5-1: Summary of query results across all case studies.

5.2.1 Case 1: Counting Private Objects Over Time (Q1-Q3)

One of the most common and useful query primitives for large-scale video analytics
systems is a count of unique objects over time. To demonstate Privid’s support for
standing queries and short (1 hour) aggregation durations, we compute a count of
unique objects observed per hour over the 12 hours in each of our videos. For each
query, we first describe our design decisions, then provide the PQL statement we
constructed as a result.

Q1. Our goal is to count the number of unique people observed per hour in campus.
One consideration is whether or not to use a mask. A menu of possible masks for
campus is shown in Table 4-2. Since we only need to observe someone once to count
them, we can use a mask that removes the center portion (“A”): all individuals walk
from one edge of the frame to the other and will be countable before and after they
enter this region. Any masks that remove more of the frame would disrupt our count
and may miss some individuals.

To ensure that we do not double count individuals who either appear in multiple
chunks or who pass through the masked region during a single chunk, our process ex-
ecutable, count_ppl_campus.py only counts individuals that enter the frame within

89

a chunk. Once an individual enters, they are ignored. Thus, whether or not they
pass through the masked region does not impact any future counts. We do not need
to maintain any information about each person, so we create a table with a single
column ppl and output a single row per chunk that corresponds to the number of
people observed during that chunk.

Finally, we construct our aggregation. All Privid tables include a system-provided
chunk column which can be used to aggregate over time. To release one result per
hour, we use a GROUP BY over the chunk column, with the hour(chunk) helper
to transform each chunk to the corresponding hour. For each hour, we want to sum
the ppl column. However, since the ppl column does not have a range constraint by
default, we must supply one. To choose this value, we manually observe the sample
clip. This intersection is not very busy, and the clip indicates that there are typi-
cally at most 6 people entering at any one time. If there are any chunks where more
than 6 people enter, our result will be trimmed to 6. However, as long as this is not
persistent, this is likely a favorable tradeoff: increasing the range would incur more
noise.

Case 1: Query 1

SPLIT campusCam
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 30sec STRIDE 0sec
WITH MASK C1
INTO campusChunks;

PROCESS campusChunks USING count_ppl_campus.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (ppl:NUMBER=0)
INTO campusTable;

SELECT hour,sum(RANGE(ppl,0,6)) from campusTable
GROUP BY hour(chunk)
CONSUMING eps=1.0;

Q2. Our goal is to count the number of unique cars per hour in highway. Most
of our decisions here are analogous to Q1. We choose a mask that removes parked
cars, but leaves the highway portion visible. Similarly, our process executable just
outputs the number of cars per chunk. Our executable, count_cars.py addresses
double counting by only counting cars that pass a virtual line in the road, rather
than all cars visible in the frame. The sample clip indicates that this portion of road
can get quite busy, we estimate that there are typically at most 100 cars in any 2
minute period, which gives our range constraint.

90

Case 1: Query 2

SPLIT highwayCam
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 2min STRIDE 0sec
WITH MASK H2
INTO highwayChunks;

PROCESS highwayChunks USING count_cars.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (cars:NUMBER=0)
INTO highwayTable;

SELECT hour, sum(RANGE(cars,0,100)) from highwayTable
GROUP BY hour
CONSUMING eps=1.0;

Q3. Our goal is to count the unique people crossing the intersection per hour in
urban. Since some individuals loiter in other parts of the frame, we choose a mask that
removes all pixels except the crosswalks to get the tighest possible policy (Figure 4-
5c). This scenario is also a good candidate for spatial splitting (§4.6): an individual
can only be in one crosswalk region at a time, and the number of people is fairly evenly
distributed across crosswalks. We specify this using BY REGION “crosswalk”.

While there are typically at most 40 people visible across all of the crosswalks,
there are at most 23 visible in any single crosswalk. Thus, when writing our aggre-
gation, we can choose a range constraint of 23, rather than 40, which we would have
to use without spatial splitting.

Case 1: Query 3

SPLIT urban
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 30sec STRIDE 0sec
BY REGION "crosswalk"
WITH MASK U2
INTO urbanChunks;

PROCESS campusChunks USING count_ppl_urban.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (ppl:NUMBER=0)
INTO campusTable;

SELECT hour, sum(RANGE(ppl,0,23)) from campusTable
GROUP BY hour
CONSUMING eps=1.0;

Sources of Inaccuracy. Privid introduces two sources of inaccuracy to a query
result: (1) intentional noise to satisfy (𝜌,𝐾, 𝜖)-privacy, and (2) (unintentional) inac-
curacies caused by the impact of splitting and masking videos before executing the
video processing. Figure 5-1 shows these two sources separately for queries Q1-Q3
(Case 1): the discrepancy between the two curves demonstrates the impact of (2),
while the shaded belt shows the relative scale of noise added (1). In summary, the

91

scale of error added by Privid allows the final result to preserve the trend of the
original.

5.2.2 Case 2: Aggregating Over Multiple Cameras (Q4-Q6)

In this case, we demonstrate (1) Privid’s ability to express complex queries over
multiple cameras and (2) the ability to execute multiple aggregations over the same
intermediate tables. We chose 3 representative questions an analyst might seek to
answer about the mobility patterns of taxis in a city, using the Porto Taxi Dataset:

• What are the average working hours of taxis?

• How many taxis made the trip from region A to region B in a single day?

• Which region of the city (camera) had the most congestion each day?

Each of these queries requires the same underlying primitive data: a table of taxi
appearances per camera. Thus, we can strucutre our PQL query as follows. We first
use a SPLIT per camera to break the full set of video data into chunks, then use a
PROCESS to create a table per camera. In contrast to the previous queries, in this case
we do care about details of the objects, so a simple count will not suffice. We need to
know the license plate of each object so that we can aggregate over the same objects
observed in separate cameras. Thus, our executable outputs a row per car observed,
with a single column for its license plate. The result is a table of car appearances, one
row per appearance (the same taxi may appear in the same camera multiple times).

Then, we can formulate each of our queries as three separate SELECT aggregations
over the same intermediate tables. Each table is tied to the video that created it, so
after each aggregation, the budget will be decremented accordingly. Assuming that
there is a budget of 𝜖 = 1 available, we choose to allocate our budget evenly among
the queries, using 1

3
for each.

92

Case 2: Queries 4-6

-- Repeat for portoCam1...portoCam127:
SPLIT portoCam1

BEGIN 07-01-2013/12:00am END 07-01-2014/12:00am
BY TIME 15sec STRIDE 0sec
INTO chunks1;

-- Repeat for chunks1...chunks127:
PROCESS chunks1 USING porto.py TIMEOUT 1sec

PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO table1;

-- Query 4: Average Taxi Working Hours
SELECT avg(avg_shift) FROM

(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day,(max(chunk)-min(chunk) as shift) FROM

table10 UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)

CONSUMING eps=0.33;
-- Query 5: # Taxis Traversing Both Locations On Same Day
SELECT day,count(DISTINCT plate) FROM

(SELECT day,plate FROM
table10 INNER JOIN table27 ON
(table10.plate=table27.plate AND table10.day=table27.day)

)
GROUP BY day

CONSUMING eps=0.33;
-- Query 6: Camera with highest daily traffic
SELECT argmax(arg=cam, target=avg_daily) FROM

(SELECT "cam1" as cam, avg(daily) as avg_daily FROM
(SELECT day,count(DISTINCT plate) as daily FROM

table1 GROUP BY day))
UNION
// ...
UNION
(SELECT "cam127" as cam, avg(daily) as avg_daily FROM ...)

CONSUMING eps=0.33;

Policy. We chose a 𝜌 for each camera by chosing the maximum amount of time a
car was visible at any camera over the course of the entire dataset. We chose a value
of 𝐾 = 1, because we expect most cars to pass through each camera only once in a
typical day. While taxis likely pass through more often, their existence is not private
information. We only seek to hide their movement patterns, which is achieved by
using a proper 𝜌 to bound each individual appearance. There are too many cameras
to include the policies for each inline, so we supply just two here which we will use for
the example sensitivity calculations below: P = {(𝜌 = 45𝑠,𝐾 = 1)𝑐1 , (195𝑠,𝐾 = 1)𝑐2}

Sensitivity of Q4. We can express this query in relational algebra as follows:

93

ΠAvg(hrs)(𝜎limit(plates)=300(plate,day𝛾range(chunks)∈[0,16](𝑡1 ∪ 𝑡2)))

First, we compute the base sensitivity of each table. The SPLIT statement specifies
the video will be split into 15 second chunks with 0 stride, and that each chunk will
produce a maximum of 3 rows. With this we can compute: ∆P (𝑡1) = ⌈ (45*fps−1

15*fps ⌉+1 =

4 · 3 = 12 and ∆P (𝑡2) = ⌈195*fps−1
15*fps ⌉ + 1 = 14 · 3 = 42. When we combine them

with a union, their sensitivities add: ∆P (𝑡1 ∪ 𝑡2) = 12 + 42 = 54. The GROUP BY

creates a new table with a row per plate per day, and constrains the range of the
aggregate value shift to [0, 16] (range(𝑎, 𝑏) returns |𝑏 − 𝑎|, i.e., the time between
the first and last appearance of a taxi on a given day), but we don’t know how many
unique plates there might be, so the size 𝐶�̃�(𝛾(...)) is unconstrained. We add 𝜎limit to
manually enforce a maximum of 300 plates per day (based on the publicly available
number of taxis), which gives us a constraint 𝐶�̃�(𝜎(...)) = 300plates * 365days =

109, 500. We now have all the constraints necessary to compute the sensitivity of the
average aggregation: ∆AVG

P (𝑅) = ΔP (𝑅)𝐶�̃�(𝑅,shift,)
𝐶�̃�(𝑅)

= 54·16
109,500

= 0.0079. Since Privid

uses the Laplace mechanism to add noise, we can use the inverse CDF of the Laplace
distribution to bound the expected error based on ∆ with a given confidence level. For
example, ℒ−1(𝑝 = 0.999, 𝑢 = 0, 𝑏 = Δ

𝜖
= 0.0079

0.33
) ≤ 0.15 hours with 99.9% confidence.

5.2.3 Case 3: Counting Non-Private Objects (Q7-Q9)

For this case, we construct queries similar to Q1-Q3, but increase the query window.
Although the scale of noise is the same regardless of query window, the impact is
decreased relative to the total. We measure the fraction of trees (non-private objects)
that have bloomed in each video. While this query could be done manually for a
single camera, it would be cumbersome for a huge network of cameras. Across the
entire network, this query could quick identify regions with the best foliage in spring.
Relative to Case 1, we achieve high accuracy by using a longer query window of 12
hours (the status of a tree does not change on that time scale), and minimal chunk
size (1 frame, no temporal context needed).

94

Case 3: Q7-Q9

SPLIT campus
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 1frame STRIDE 1min
WITH MASK C2
INTO campusChunks;

PROCESS campusChunks USING trees.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (frac:NUMBER=0)
INTO campusTrees;

// Repeat for highway WITH MASK H3
// Repeat for urban WITH MASK U1
SELECT avg(frac) FROM campusTrees

CONSUMING eps=1;
SELECT avg(frac) FROM highwayTrees

CONSUMING eps=1;
SELECT avg(frac) FROM urbanTrees

CONSUMING eps=1;

5.2.4 Case 4: Duration of Non-Private Objects (Q10-Q12)

For this case, we demonstrate the utility of the most extreme masks which remove
all pixels of the frame that ever observe a private object. In particular, we aim to
compute the duration that a traffic light stays red in each video. Thus, we can choose
a mask which removes all pixels except the traffic lights. This corresponds to a 𝜌

bound of 0, which means that our query can be executed without any noise, and thus
can also be executed over a finer temporal granularity (in this case, one result every
10 minutes).

Case 4: Q10-Q12

SPLIT campus
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 10min STRIDE 0sec
WITH MASK C3
INTO campusChunks;

PROCESS campusChunks USING lights.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (duration_secs:NUMBER=0)
INTO campusLights;

// Repeat for highway WITH MASK H4
// Repeat for urban WITH MASK U3
SELECT chunk,avg(duration_secs) FROM campusLights;
SELECT chunk,avg(duration_secs) FROM highwayLights;
SELECT chunk,avg(duration_secs) FROM urbanLights;

95

5.2.5 Case 5: Trajectory Queries (Q13)

For this case, we consider a scenario where the analyst needs to observe the entire
movement pattern of an individual within a single chunk. In particular, we aim to
compute the set of individuals in campus that enter from the south and exit at the
north. This requires a larger chunk size (relative to Q1-Q3) to ensure that we observe
the full trajectory.

Case 5: Q13

SPLIT campus
BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm
BY TIME 1min STRIDE 0sec
INTO campusChunks;

PROCESS campusChunks USING trajectory.py TIMEOUT 1sec
PRODUCING 1 ROWS
WITH SCHEMA (ppl:NUMBER=0, trajectory=STRING="")
INTO campusPpl;

SELECT sum(RANGE(ppl,0,25)) FROM campusPpl WHERE enter=="south" AND exit=="north";

96

Chapter 6

Privid in Practice

In this chapter, we discuss the practical aspects of operationalizing Privid from the
perspective of both the Video Owner and the analyst(s). We enumerate the decisions
that each party needs to make and provide some suggestions and best practices.

6.1 Video Owner’s Perspective

6.1.1 Decisions

The Video Owner must “register” a set of cameras with Privid. For each camera,
they must supply: (1) a (𝜌,𝐾) bound (or more generally a map of masks to bounds),
(2) a privacy budget allocation strategy (𝜖), and (3) some metadata describing the
scene to analysts (e.g., a short video clip, since they cannot view the camera feed
directly). All of this is public to analysts. Below we provide general suggestions
for the Video Owner, but ultimately they are responsible for choosing these values.
Privid does not generate policies, it only handles enforcing them.

(1) (𝜌,𝐾) bounds. In most cases, a good starting place is the following: record
a representative sample of video from the camera, measure durations of objects of
interest (typically cars and people) using off-the-shelf CV algorithms for detection
and tracking, and then pick the tightest possible (𝜌,𝐾) that would bound all objects.
There are a few important considertaions at each step. First, the Video Owner should
include as much video as possible in their representative sample. Ideally, it should be
at least one week to capture both diurnal patterns and differences between weekdays
and weekends. Depending on the scene, there may be other factors to consider about
how durations may change over longer periods of time. They could also continue
to analyze the distriubtion of durations each day until the bound stabilizes and no

97

new outliers are found. Even once a bound is picked, the Video Owner may want
to periodically analyze recent video data to ensure that duration patterns have not
changed. The estimation of an object’s duration depends on the performance of
the detection and tracking algorithms. Each of these algorithms offer a number of
hyperparameters that tradeoff different aspects of their performance. We suggest
choosing conservative hyperparameters that err on the side of grouping more (and we
provide guidance on how to do this in §6.1.2). Finally, there should be a human in the
loop to debug this process. The produced value should align with what is reasonable
based on the scene. If it is far tighter or looser, the Video Owner should inspect
the object tracks and adjust the parameters as necessary. Once they are confident
that the object tracks are reasonable, they must also consider whether they want to
protect multiple appearances. If the scene allows reliable person re-identification, this
process could also be automated. If not, the Video Owner may want to manually pick
a value of 𝐾 based on the scene. For example, if it is a typicaly street, 𝐾 = 1 is
probably reasonable. If it overlooks a building, 𝐾 = 2 would protect a single person
both entering and exiting. Finally, if it is an office building that the same people visit
every day, 𝐾 = 2 · 5 would protect an entire week of their appearances.

To provide better utility for analysts, the Video Owner can offer a menu of static
masks that remove some of the scene in exchange for tighter noise bounds than the
original policy (which is itself mapped to the empty mask). Algorithm 2 provides
an efficient algorithm for generating a list of useful masks and policies. As with the
single policy case, the Video Owner should not trust these results blindly, but should
use them instead as a starting point and adjust if necessary.

The Video Owner may draw masks manually or generate them automatically,
e.g., by analyzing past trends from the camera. In general, we expect masks to
be static properties of each scene, dependent only on dynamics of the scene type,
rather than behaviors of any individuals. However, it is ultimately the Video Owner’s
responsibility to ensure any masks it provides do not reveal anything private, such
as a person’s silhouette. Privid focuses on preventing the leakage of privacy when
answering queries. It does not make any guarantees about the mask itself.

(2) Budget 𝜖. As in any deployment of DP, the choice of 𝜖 is subjective. Academic
papers commonly use 𝜖 ≈ 1 [51] while recent industry deployments have used 1 < 𝜖 <

10 [57, 22, 32]. In the simplest case, the Video Owner can choose a reasonable global
𝜖 to initialize the budget for all frames of all cameras. They can choose to lower the
budget or even set it to zero for all frames in a particularly sensitive time range. They
can also choose to lower or raise it for some cameras with more (e.g., homes) or less

98

sensitive viewing areas. The only Privid-specific consideration for choosing 𝜖 is that
cameras with overlapping fields of view should share the same budget.

(3) Video Clips. The Video Owner should release sample video clip(s)1 repre-
sentative of the scene so that analysts can calibrate their executable2 and query3

accordingly.
To be explicit, Privid does not provide any privacy guarantees around these

clips. Although these video clips do contain the same objects whose privacy we wish
to protect using Privid, we believe releasing these clips is a worthwhile trade-off: they
result in limited one-time privacy loss (which can be manually vetted and controlled
by the Video Owner), and they stand to make the system significantly more useful
from the analyst’s perspective. This is in line with Privid’s overarching goal of
thwarting tracking and surveillance; a single appearance of an individual in a fixed
clip does not aid a malicious analyst in tracking them outside of this clip.

(3) Other Metadata. Optionally, the Video Owner can release additional infor-
mation to aid analysts, such as the camera’s GPS coordinates, make, or focal length
settings.

6.1.2 Estimating Durations Using CV

video cos iou age n_init
campus 0.1, 0.3, 0.5, 0.7,

0.9
0.1, 0.3, 0.5, 0.7,
0.9

16, 32, 48, 64, 80,
96, 112

2, 3, 5, 7, 9

urban 0.1, 0.3, 0.5, 0.7,
0.9

0.1, 0.3, 0.5, 0.7,
0.9

8, 16, 32, 48, 64,
80, 96

2, 3, 5, 7, 9

Table 6-1: Set of hyperparameters used for tuning DeepSORT for the campus and
urban videos. The set of parameters that we ultimately used for our experiments are
bolded.

video max_age min_hits iou_dist
highway 240, 480, 720 3, 5, 7, 9 0.1, 0.3, 0.5, 0.7

Table 6-2: Set of hyperparameters used for tuning SORT for the highway video. The
set of parameters that we ultimately used for our experiments are bolded.

1While a clip is not needed in principle, without it, the analyst “runs blind” and will not have
confidence in the correctness of their results.

2ML models may perform better when retrained on a particular scene.
3For example, queries must specify bounds on the amount of output per chunk, which depend on

the amount of activity in the scene.

99

Estimating duration values for a given scene requires the ability to track individ-
uals in that scene. Unfortunately, even state-of-the-art vision techniques for object
tracking are riddled with inaccuracies that stem from occlusion (i.e., line of sight to
an object is blocked), illumination, and poor video quality; these challenges are exac-
erbated in low-quality public surveillance videos. Manual annotation of individuals
in video can overcome these challenges but is far from scalable and is difficult to use
for real-time video analysis.

We observe that, even though the aforementioned challenges preclude off-the-shelf
algorithms from perfectly tracking every individual, their hyperparameters can be
trained in a way that generates a reasonably accurate distribution of duration values,
which is sufficient for Privid to provide meaningful privacy guarantees.

For each of the three video in our dataset, we first ran object detection using
Facebook’s Detectron2 [85] library with the included Faster-RCNN model [72]. Using
these object detection results, we then manually annotated a subset of video for each
camera, producing a ground truth dataset of duration values. Annotation for a video
involved recording the exact time each unique individal entered and exited the scene
at the second granularity.

Using our ground truth dataset, we then tuned the hyperparameters of a state-
of-the-art tracking algorithm called DeepSORT [82] for each camera’s video. Our
goal was to find the configuration of parameters that produced the distribution of
duration values which most closely matched that of the annotated ground truth data.
To do this, we ran DeepSORT with all possible combinations of the hyperparameters
listed in Table 6-1. For each configuration, we computed the distribution of duration
values, and compared it to our ground truth distribution.

In highway, we consider cars as the private object rather than people because
no people are visible in the video, but a car’s license plate, or their combination of
make, model and color may be enough to identify an individual. As DeepSORT is
specific to tracking people, we used SORT [24] instead. Table 6-2 lists the set of
hyperparameters we considered and chose for tuning SORT. In practice, if a video
contains both people and cars, the duration distribution analysis should account for
both.

6.2 Analyst’s Perspective

We first outline the decisions the analyst must make, then explore some of the trade-
offs in more detail in the following subsections.

100

6.2.1 Decisions

In order to formulate a Privid query the analyst must make the following decisions.
For each decision, we provide an example for the query in §4.7.1 (counting cars cross-
ing a virtual line on a highway).

Choose a mask (from the list provided by the Video Owner) based on the query
goal. For example, they should select a mask that covers as much of the scene as
possible without covering the area near the virtual line. This would significantly
reduce the bound by removing parking spots and intersections where objects linger.

Choose a chunk size based on the amount of context needed. A larger chunk size
permits more context for each execution of the PROCESS, but results in more noise
(§4.3). Thus, the analyst should choose the smallest chunk size that captures their
events of interest. For example, 1 second is likely sufficient to capture cars driving
past a line. If they instead wanted to calculate car speed, they would need a larger
chunk size (e.g., 10 seconds) and less restrictive mask to capture more of the car’s
trajectory.

Choose upper bound on number of output rows per chunk based on the
expected (via the video sample) level of activity in each chunk. For counting cars
over a short chunk, especially in less busy scenes, each chunk may see 1-2 cars and
thus need 1-2 rows. For calculating speed over a larger chunk, especially in more busy
scenes, each chunk will see more cars and may need 10 or 100 rows.

Create a PROCESS executable. This involves tuning their CV models based on
the scene (via the sample video), and combining all tasks into a single executable.
For example, their executable may include an object detector to find cars, an object
tracker to link them to trajectories, a license plate reader to link cars across cameras
or prevent double counting, and an algorithm to compute speed or determine car
model.

Choose query granularity and budget. The query granularity and budget are
directly proportional to accuracy. Given a fixed value for each, improving one requires
worsening another proportionally. We elaborate upon this tradeoff in the following
subsection.

6.2.2 Budget-Granularity Tradeoff

Analysts have two main knobs for each query 𝑄 to navigate the utility space: (1) the
fraction 𝜖𝑄 of the total budget 𝜖 used by that query, and (2) the duration (granularity)

101

0 10 20 30 40 50
Queries Sharing Budget (=1)

0

100

200

300

400
Qu

er
y

Gr
an

ul
ar

ity
 (H

rs
)

1 day

1 week

Query 1
Query 2
Query 3

Figure 6-1: Given a fixed query and accuracy target, decreasing the amount of budget
used by each query allows more queries to be executed over the same video segment,
but requires a proportionally coarser granularity. The 𝑥-axis plots the number of
queries evenly sharing a budget of 𝜖 = 1, thus 𝑥 = 10 means 10 instances of the
same exact query over the same video segment, each using a budget of 1

10
. We fix the

accuracy target to be 99% of values having error ≤ 5%.

of each aggregation (i.e., “one value per day for a month” has a granularity of one
day). The query budget is inversely proportional to both the query granularity and
error (the expected value of noise Privid adds relative to the output range). Thus,
to decrease the amount of budget per query (or equivalently, increase the number of
queries sharing the budget), an analyst must choose a (temporally) coarser result, a
larger expected error bound, or both. Figure 6-1 shows that, for example, 5 instances
of Query 3 could release results daily or 40 instances of Query 3 could release results
weekly, while achieving the same expected accuracy. Figure 6-2 shows that, for ex-
ample, 20 separate instances of Query 1 (𝑥 = 20) executed over the same target video
could each expect 4.8% error if they release one result daily, 0.7% error if they release
one weekly, or 0.16% error if they release one monthly. Importantly, this tradeoff is
transparent to analysts: Figures 6-1 and 6-2 rely only on information that is publicly
available to analysts and did not require executing any queries.

6.2.3 Best Practices for Query Writing

In the following subsections we provide strategies for designing queries that optimize
utility.

Counting Unique Objects. The main limitation of Privid’s query interface is the
inability to write queries that maintain state across separate chunks. However, in

102

0 10 20 30 40 50
Queries Sharing Budget (=1)

0
2
4
6
8

10

Er
ro

r (
%

 o
f M

ax
) Granularity

Daily
Weekly
Monthly

Figure 6-2: Given a fixed query and granularity, decreasing the amount of budget
used by each query allows more queries to be executed over the same video segment,
but results in proportionally higher error. The 𝑥-axis is the same as Figure 6-1. Each
line corresponds to Q1 using a different granularity. The 𝑦-axis plots the error for
99% of values. Error is the amount of noise added relative to the maximum query
output. For example, in Q4, the final output is the average number of working hours
in the range [0,16]. Thus an error of 1% would mean the noisy result is within 0.16
hours of the true result.

most cases this does not preclude queries, it simply requires them to be expressed in
a particular way. One broad class of such queries are those that operate over unique
objects.

Consider a query that wants to count the total number of cars or people that pass
a camera. A straightforward implementation might detect car or people objects,
output one row for each object, and then compute an aggregate count of the number
of rows. However, if a car enters the camera view in chunk 𝑖 and is last visible in
chunk 𝑖 + 𝑛, the PROCESS table will include 𝑛 rows for the same car instead of the
expected 1.

The are two possible cases: either the objects of interest have globally unique
identifiers or not. If these identifiers exist and are reliable, such as the license plate
on a car, we can adjust our query to leverage this identifier: our executable can
incorporate a license plate reader which outputs a row with a plate string for each
car, and then we can count(DISTINCT plate) in the SELECT (as in §4.7.1). This
DISTINCT directive will remove any duplicates in the license plates before executing
the count. This will make our count more accurate, but it does not actually change
the number of plates a (𝜌,𝐾)-bounded event could impact, and thus does not change
the sensitivity or require adding any more noise.

103

For people we can use similar stretgies. If faces are recognizable and can be
represented in a vector format, we can output this vector as a row. We can then
use a user-defined function to define whether or not two vectors are close enough to
represent the same face.

When these identifiers are not easily idenfiable or are not reliable (e.g., the angle
of the camera does not capture the plate or face), a general strategy is to adjust the
query and redefine our event of interest such that it is only visible in a single chunk.

For example, if the goal is simply to count the number of unique pedestrians that
a camera observes, rather than counting all individuals that are visible at any time,
we can decide to (a) only count people that enter the scene, or (b) only count people
that cross a virtual line. Consider case (b). We count any object track that crosses
the virtual line during the chunk, except during the first frame of the chunk. If the
track crosses it during the first frame, then it means it must have been observed
entering the link during the previous chunk. The result is that all individuals that
“appear” will contribute a total count of 1. If the query chunks are strided such that
chunks overlap and any given frame can be in at most 𝑠 frames, then we can adapt
the same strategy, but instead output 1

𝑠
for each individual that enters.

Finally, if the event of interest requires a lot of context, e.g. counting the set of
individuals that enter at one side of the frame and leave at the other, we can set the
chunk size to the typical amount of time it takes to cross the frame and then use a
stride to make sure each individual’s trajectory is captured in at least one full chunk.
We only count it if it the full movement happens in a chunk. For all the partially
overlapping chunks where the trajectory is only partially visible, we do not count it
at all.

Spread queries over time. Suppose you have access to one month of video from a
highway camera and want to answer to entirely separate queries: (1) the distribution
of car types, and (2) the average speed per car type. This month has 𝜖 budget
remaining. Running both of these queries over the same portion of video would
require splitting this budget among the queries, using at most 𝜖

2
for each. Instead,

if we expect these distributions to remain the same over time, we can execute them
over disjoint time frames (e.g. the first query over the first two weeks, and the second
query over the second two weeks) so that we can use the full 𝜖 budget for each.
The downside is that each query is aggregating over less data, and thus may be less
representative of the true distribution. To combat this, we can break each of our
queries into two parts, one to test the consistency of the distribution over time, and
another to actually release the distribution itself. First, we compute the distribution

104

over both the two-week period and the month. Then, we compute the similarity
between these distributions and only release a binary answer of whether or not the
similarity is above a certain threshold (not the distributions themselves). Due to
the low sensitivty of this threshold query, we can answer it with high accuracy using
only a small portion of the budget (e.g. 𝜖

10
). We can repeat this for the second

query as well, and we are left with 8𝜖
10

budget remaining across the entire both. If
the distribution is consistent over time, now we can release the full distribution for
the first query over the first two week period, and the full distribution for the second
query over the second two week period. In each case we can use 8𝜖

10
rather than 𝜖

2
,

which will give lower noise bounds.

6.3 Discussion: Social Implications

An important question to ask ourselves is: how would our society be impacted if
Privid were widely deployed? In other words, if there was an expectation that all
(or most) cameras we pass on a daily basis were being actively analyzed using Privid,
would that cause us to act differently? While we do not have a definitive or exhaustive
answer, we raise one potential concern that is worth further consideration: given that
privacy is tied to duration of visibility, it could cause people to become anxious about
staying in one place for too long, or doing any activity for too long, for fear that it
could be detected.

105

106

Chapter 7

Conclusion and Future Work

Today, copious amounts of video data are recorded and stored, not only by surveillance
cameras, but also by all of our dashcams and smartphones. The field of computer
vision has given us an amazing opportunity to make sense of all this data, but much
of its promise is stunted by serious privacy concerns, and rightfully so. In order to
move forward, it is critical that we have systems that incorporate privacy as a first
principle, not in isolation, but alongside utility and generality. In this dissertation, we
presented Privid, a general-purpose video analytics system that aims to provide this
balance. In particular, Privid exposes a query interface that is familiar to analysts,
which allows them to use their existing vision models without retraining. At the
same time, our privacy definition has a clear interpretation, and Privid provides a
rigorous guarantee that it satisfies this definition, which can serve as the foundation
for reliable privacy policies that people can trust.

My hope is that Privid will provide a way forward for video analytics to progress
without eroding our privacy in the process. That being said, Privid in its current state
represents only a first step, and there are still opportunities to improve its usefulness
for analysts. In particular, in this work we focused on the temporal aspect of videos,
but there are other dimensions along which videos could be individually processed,
such as by spatial region—both at the micro level by dividing individual frames into
smaller pieces, and at the macro level by combining frames from multiple cameras at
the same time instant—or by color spectrum. Any other processing dimension could
be incorporated into Privid’s pipeline and would expand the set of queries it supports.

More broadly, I hope that this work adds a small piece of evidence that it is indeed
possible to achieve a healthy balance between privacy and utility in practice. I hope
this encourages more systems researchers and practitioners to consider incorporating
privacy as a first principle in their work.

107

108

Bibliography

[1] Absolutely everywhere in beijing is now covered by police video surveillance.
https://qz.com/518874/.

[2] Are we ready for ai-powered security cameras? https://thenewstack.io/are-
we-ready-for-ai-powered-security-cameras/.

[3] British transport police: Cctv. http://www.btp.police.uk/
advice_and_information/safety_on_and_near_the_railway/cctv.aspx.

[4] Can 30,000 cameras help solve chicago’s crime problem? https://
www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html.

[5] Data generated by new surveillance cameras to increase exponentially in the
coming years. http://www.securityinfowatch.com/news/12160483/.

[6] Detection leaderboard. https://cocodataset.org/#detection-leaderboard.

[7] Epic domestic surveillance project. https://epic.org/privacy/
surveillance/.

[8] Paris hospitals to get 1,500 cctv cameras to combat violence against staff. https:
//bit.ly/2OYiBz2.

[9] Powering the edge with ai in an iot world. https://www.forbes.com/sites/
forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-
world/.

[10] Video analytics applications in retail - beyond security. https:
//www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-
ga.16620.html/.

[11] The vision zero initiative. http://www.visionzeroinitiative.com/.

[12] What’s wrong with public video surveillance? https://www.aclu.org/other/
whats-wrong-public-video-surveillance, 2002.

[13] Abuses of surveillance cameras. http://www.notbored.org/camera-
abuses.html, 2010.

109

https://qz.com/518874/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
http://www.securityinfowatch.com/news/12160483/
https://cocodataset.org/#detection-leaderboard
https://epic.org/privacy/surveillance/
https://epic.org/privacy/surveillance/
https://bit.ly/2OYiBz2
https://bit.ly/2OYiBz2
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
http://www.visionzeroinitiative.com/
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.aclu.org/other/whats-wrong-public-video-surveillance
http://www.notbored.org/camera-abuses.html
http://www.notbored.org/camera-abuses.html

[14] Mission creep-y: Google is quietly becoming one of the nation’s most
powerful political forces while expanding its information-collection em-
pire. https://www.citizen.org/wp-content/uploads/google-political-
spending-mission-creepy.pdf, 2014.

[15] Mission creep. https://www.aclu.org/other/whats-wrong-public-video-
surveillance, 2017.

[16] How retail stores can streamline operations with video content analyt-
ics. https://www.briefcam.com/resources/blog/how-retail-stores-can-
streamline-operations-with-video-content-analytics/, 2020.

[17] The mission creep of smart streetlights. https://www.voiceofsandiego.org/
topics/public-safety/the-mission-creep-of-smart-streetlights/,
2020.

[18] Video analytics traffic study creates baseline for change. https:
//www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-
Baseline-for-Change.html, 2020.

[19] Pest. the elegant parser. https://github.com/pest-parser/pest, 2022.

[20] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Be-
nenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu.
I-pic: A platform for privacy-compliant image capture. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’16, page 235–248, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[21] Ganesh Ananthanarayanan, Yuanchao Shu, Mustafa Kasap, Avi Kewalramani,
Milan Gada, and Victor Bahl. Live video analytics with microsoft rocket for
reducing edge compute costs, July 2020.

[22] Apple Differential Privacy Team. Learning with privacy at scale. Apple Machine
Learning Journal, 1(8), 2017.

[23] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. Miris: Fast object track queries in video. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1907–1921, New York, NY, USA, 2020. Association for Computing
Machinery.

[24] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple
online and realtime tracking. In 2016 IEEE International Conference on Image
Processing (ICIP), pages 3464–3468, 2016.

[25] Sam Biddle. https://theintercept.com/2023/05/15/abortion-
surveillance-dataminr/, May 2023.

110

https://www.citizen.org/wp-content/uploads/google-political-spending-mission-creepy.pdf
https://www.citizen.org/wp-content/uploads/google-political-spending-mission-creepy.pdf
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.voiceofsandiego.org/topics/public-safety/the-mission-creep-of-smart-streetlights/
https://www.voiceofsandiego.org/topics/public-safety/the-mission-creep-of-smart-streetlights/
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://github.com/pest-parser/pest
https://theintercept.com/2023/05/15/abortion-surveillance-dataminr/
https://theintercept.com/2023/05/15/abortion-surveillance-dataminr/

[26] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-
aware cascades for deep pedestrian detection. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV), ICCV ’15, pages 3361–
3369, Washington, DC, USA, 2015. IEEE Computer Society.

[27] Frank Cangialosi, Neil Agarwal, Venkat Arun, Srinivas Narayana, Anand Sar-
wate, and Ravi Netravali. Privid: Practical,{Privacy-Preserving} video analytics
queries. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 209–228, 2022.

[28] Ankur Chattopadhyay and Terrance E Boult. Privacycam: a privacy preserving
camera using uclinux on the blackfin dsp. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[29] S-CS Cheung, M Vijay Venkatesh, Jithendra K Paruchuri, Jian Zhao, and Thinh
Nguyen. Protecting and managing privacy information in video surveillance
systems. Protecting Privacy in Video Surveillance, pages 11–33, 2009.

[30] Ji Dai, Behrouz Saghafi, Jonathan Wu, Janusz Konrad, and Prakash Ishwar.
Towards privacy-preserving recognition of human activities. In 2015 IEEE in-
ternational conference on image processing (ICIP), pages 4238–4242. IEEE, 2015.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. 2004.

[32] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry
data privately. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 3571–3580. Curran Associates, Inc., 2017.

[33] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin,
editors, Theory of Cryptography, volume 3876 of Lecture Notes in Computer
Science, pages 265–284, Berlin, Heidelberg, March 2006. Springer.

[34] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential
privacy under continual observation. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 715–724. ACM, 2010.

[35] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[36] Geoffrey A. Fowler. Google promised to delete sensitive data. it logged my
abortion clinic visit. https://www.washingtonpost.com/technology/2023/05/
09/google-privacy-abortion-data/, May 2023.

111

https://www.washingtonpost.com/technology/2023/05/09/google-privacy-abortion-data/
https://www.washingtonpost.com/technology/2023/05/09/google-privacy-abortion-data/

[37] Isha Ghodgaonkar, Subhankar Chakraborty, Vishnu Banna, Shane Allcroft, Mo-
hammed Metwaly, Fischer Bordwell, Kohsuke Kimura, Xinxin Zhao, Abhinav
Goel, Caleb Tung, et al. Analyzing worldwide social distancing through large-
scale computer vision. arXiv preprint arXiv:2008.12363, 2020.

[38] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming
He. Detectron. https://github.com/facebookresearch/detectron, 2018.

[39] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low cost. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages
269–286, 2018.

[40] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and
Joseph E. Gonzalez. Scaling Video Analytics Systems to Large Camera Deploy-
ments. In ACM HotMobile, 2019.

[41] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen
Jiang, Yuanchao Shu, Victor Bahl, and Joseph Gonzalez. Spatula: Efficient cross-
camera video analytics on large camera networks. In ACM/IEEE Symposium on
Edge Computing (SEC 2020), November 2020.

[42] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication,
pages 253–266. ACM, 2018.

[43] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential
privacy for sql queries. Proceedings of the VLDB Endowment, 11(5):526–539,
2018.

[44] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem
for differential privacy. IEEE Transactions on Information Theory, 63(6):4037–
4049, 2017.

[45] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazeit: optimizing declarative ag-
gregation and limit queries for neural network-based video analytics. Proceedings
of the VLDB Endowment, 13(4):533–546, 2019.

[46] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment, 10(11):1586–1597, 2017.

[47] Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K Katsaggelos. Video
super-resolution with convolutional neural networks. IEEE transactions on com-
putational imaging, 2(2):109–122, 2016.

112

https://github.com/facebookresearch/detectron

[48] Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias.
Differentially private event sequences over infinite streams. Proceedings of the
VLDB Endowment, 7(12):1155–1166, 2014.

[49] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-
jjhala, Michael Hay, and Gerome Miklau. Privatesql: A differentially private sql
query engine. Proc. VLDB Endow., 12(11):1371–1384, July 2019.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May
2017.

[51] Y.-H. Kuo, C.-C. Chiu, D. Kifer, M. Hay, and A. Machanavajjhala. Differen-
tially private hierarchical count-of-counts histograms. Proceedings of the VLDB
Endowment, 11.11:1509—1521, 2018.

[52] Karen Lander, Vicki Bruce, and Harry Hill. Evaluating the effectiveness of pix-
elation and blurring on masking the identity of familiar faces. Applied Cognitive
Psychology: The Official Journal of the Society for Applied Research in Memory
and Cognition, 15(1):101–116, 2001.

[53] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network
cascade for face detection. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5325–5334, June 2015.

[54] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry
Xu, and Ravi Netravali. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. SIGCOMM ’20, page 359–376, New York, NY, USA,
2020. Association for Computing Machinery.

[55] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 936–944, July 2017.

[56] Peng Liu, Bozhao Qi, and Suman Banerjee. Edgeeye: An edge service framework
for real-time intelligent video analytics. In Proceedings of the 1st international
workshop on edge systems, analytics and networking, pages 1–6, 2018.

[57] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. Vilhuber. Privacy:
Theory meets practice on the map. In ICDE, 2008.

[58] Frank D. McSherry. Privacy integrated queries: An extensible platform for
privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, page 19–30,
New York, NY, USA, 2009. Association for Computing Machinery.

[59] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and
Luis Damas. Predicting taxi–passenger demand using streaming data. IEEE
Transactions on Intelligent Transportation Systems, 14(3):1393–1402, 2013.

113

[60] Mozilla. Shady mental health apps inch toward privacy and security improve-
ments, but manystill siphon personal data. https://foundation.mozilla.org/
en/blog/shady-mental-health-apps-inch-toward-privacy-and-
security-improvements-but-many-still-siphon-personal-data/, May
2023.

[61] Athira Nambiar, Alexandre Bernardino, and Jacinto C Nascimento. Gait-based
person re-identification: A survey. ACM Computing Surveys (CSUR), 52(2):1–
34, 2019.

[62] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. Re-
structuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pages 30–43, 2018.

[63] Carman Neustaedter, Saul Greenberg, and Michael Boyle. Blur filtration fails
to preserve privacy for home-based video conferencing. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(1):1–36, 2006.

[64] Elaine M Newton, Latanya Sweeney, and Bradley Malin. Preserving privacy by
de-identifying face images. IEEE transactions on Knowledge and Data Engineer-
ing, 17(2):232–243, 2005.

[65] Mark S Nixon, Tieniu Tan, and Rama Chellappa. Human identification based
on gait, volume 4. Springer Science & Business Media, 2010.

[66] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of aes. In Cryptographers’ track at the RSA conference, pages
1–20. Springer, 2006.

[67] José Ramón Padilla-López, Alexandros Andre Chaaraoui, and Francisco Flórez-
Revuelta. Visual privacy protection methods: A survey. Expert Systems with
Applications, 42(9):4177–4195, 2015.

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[69] Colin Percival. Cache missing for fun and profit, 2005.

[70] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. Visor: Privacy-preserving video analytics as a cloud service.
In 29th {USENIX} Security Symposium ({USENIX} Security 20), pages 1039–
1056, 2020.

114

https://foundation.mozilla.org/en/blog/shady-mental-health-apps-inch-toward-privacy-and-security-improvements-but-many-still-siphon-personal-data/
https://foundation.mozilla.org/en/blog/shady-mental-health-apps-inch-toward-privacy-and-security-improvements-but-many-still-siphon-personal-data/
https://foundation.mozilla.org/en/blog/shady-mental-health-apps-inch-toward-privacy-and-security-improvements-but-many-still-siphon-personal-data/

[71] Nisarg Raval, Ashwin Machanavajjhala, and Landon P Cox. Protecting visual
secrets using adversarial nets. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 1329–1332. IEEE, 2017.

[72] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[73] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett
Witchel. Airavat: Security and privacy for mapreduce. In NSDI, volume 10,
pages 297–312, 2010.

[74] Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y
Zhao. Fawkes: Protecting privacy against unauthorized deep learning models.
In Proceedings of the 29th USENIX Security Symposium, 2020.

[75] Hao Sheng, Keniel Yao, and Sharad Goel. Surveilling surveillance: Estimating
the prevalence of surveillance cameras with street view data. In Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages 221–230,
2021.

[76] J. Stanley and American Civil Liberties Union. The Dawn of Robot Surveillance:
AI, Video Analytics, and Privacy. American Civil Liberties Union, 2019.

[77] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade
for facial point detection. In Proceedings of the 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR ’13, pages 3476–3483, Washington,
DC, USA, 2013. IEEE Computer Society.

[78] Verizon. Smart communities / vision zero pilot statement of work.
https://www.boston.gov/sites/default/files/file/document_files/
2016/11/bostonverizonpilotsowexecutable11.17.16.docx_.pdf, 2016.

[79] Han Wang, Yuan Hong, Yu Kong, and Jaideep Vaidya. Publishing video data
with indistinguishable objects. Advances in database technology : proceedings.
International Conference on Extending Database Technology, 2020:323 – 334,
2020.

[80] Han Wang, Shangyu Xie, and Yuan Hong. Videodp: A universal platform for
video analytics with differential privacy. arXiv preprint arXiv:1909.08729, 2019.

[81] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman
Sadeh, and Mahadev Satyanarayanan. A scalable and privacy-aware iot service
for live video analytics. In Proceedings of the 8th ACM on Multimedia Systems
Conference, pages 38–49. ACM, 2017.

[82] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime
tracking with a deep association metric. In 2017 IEEE International Conference
on Image Processing (ICIP), pages 3645–3649. IEEE, 2017.

115

https://www.boston.gov/sites/default/files/file/document_files/2016/11/bostonverizonpilotsowexecutable11.17.16.docx_.pdf
https://www.boston.gov/sites/default/files/file/document_files/2016/11/bostonverizonpilotsowexecutable11.17.16.docx_.pdf

[83] Kok-Seng Wong, Nguyen Anh Tu, Anuar Maratkhan, and M.Fatih Demirci. A
privacy-preserving framework for surveillance systems. In 2020 the 10th Interna-
tional Conference on Communication and Network Security, ICCNS 2020, page
91–98, New York, NY, USA, 2021. Association for Computing Machinery.

[84] Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan,
Fengyuan Xu, and Sheng Zhong. Pecam: Privacy-enhanced video streaming and
analytics via securely-reversible transformation. In ACM MobiCom, October
2021.

[85] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. https://github.com/facebookresearch/detectron2, 2019.

[86] Zhenyu Wu, Zhangyang Wang, Zhaowen Wang, and Hailin Jin. Towards privacy-
preserving visual recognition via adversarial training: A pilot study. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 606–624,
2018.

[87] Xiaoyi Yu, Kenta Chinomi, Takashi Koshimizu, Naoko Nitta, Yoshimichi Ito,
and Noboru Babaguchi. Privacy protecting visual processing for secure video
surveillance. In 2008 15th IEEE International Conference on Image Processing,
pages 1672–1675. IEEE, 2008.

[88] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with
approximation and delay-tolerance. In NSDI, volume 9, page 1, 2017.

[89] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided
feature aggregation for video object detection. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 408–417, 2017.

116

https://github.com/facebookresearch/detectron2

	Acknowledgements
	Previously Published Material
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Definition and Goals
	Prior Solutions
	Contributions
	Key Takeaways

	Prior Work
	Visual Denaturing
	Systems
	Differential Privacy

	A New Privacy Definition: Event-Duration Privacy
	Intuition
	Formal Definition
	Choosing a Privacy Policy
	Privacy Guarantee Semantics
	Privacy is Proportional to Duration
	Detection Probability
	Multiple Appearances
	Multiple Cameras
	Multiple Targets

	Alternative Formulations
	Why specify K?
	Why not define ρ as the total time?
	Why not define policies relative to window size?
	Why not provide a guarantee over multiple camearas?

	Privid: A System for Event-Duration Privacy
	Overview
	Threat Model
	Query Support
	Execution Model
	Components

	Query Interface
	Query Contents
	Privid Query Language (PQL)
	Query Compiler
	Query Executables
	Execution Environment

	Query Sensitivity
	Relative Privacy Guarantees

	Query Composition
	Spatial Masking
	Intuition
	Usage in Privid
	Choosing Masks
	Microbenchmarks
	I thought you said denaturing was bad!

	Spatial Splitting
	Intuition
	Usage in Privid
	Microbenchmarks
	Discussion

	Example Query
	Benevolent Query
	Malicious Query Attempt

	Limitations

	Evaluation
	Setup
	Query Case Studies
	Case 1: Counting Private Objects Over Time (Q1-Q3)
	Case 2: Aggregating Over Multiple Cameras (Q4-Q6)
	Case 3: Counting Non-Private Objects (Q7-Q9)
	Case 4: Duration of Non-Private Objects (Q10-Q12)
	Case 5: Trajectory Queries (Q13)

	Privid in Practice
	Video Owner's Perspective
	Decisions
	Estimating Durations Using CV

	Analyst's Perspective
	Decisions
	Budget-Granularity Tradeoff
	Best Practices for Query Writing

	Discussion: Social Implications

	Conclusion and Future Work

