
Dynamic Neural Network for Efficient Video Recognition

By

Bowen Pan

B.S., Shanghai Jiao Tong University (2019)

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2023

©2023 Bowen Pan. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to

exercise any and all rights under copyright, including to reproduce, preserve, distribute and
publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Bowen Pan
 Department of Electrical Engineering and Computer Science
 May 17, 2023

Certified by: Aude Oliva
Senior Research Scientist of the Computer Science and Artificial
Intelligence Laboratory

 Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
 Professor of Electrical Engineering and Computer Science
 Chair, Department Committee on Graduate Students

Dynamic Neural Network for Efficient Video Recognition

by

Bowen Pan

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract
Recognizing real-world videos is a challenging task that requires the use of deep
learning models. These models, however, require extensive computational resources to
achieve robust recognition. One of the main challenges when dealing with real-world
videos is the high correlation of information across frames. This results in redundancy
in either temporal or spatial feature maps of the models, or both. The amount of
redundancy largely depends on the dynamics and events captured in the video. For
example, static videos typically have more temporal redundancy, while videos focusing
on objects tend to have more channel redundancy.

To address this challenge, we propose a novel approach that reduces redundancy by
using an input-dependent policy to determine the necessary features for both temporal
and channel dimensions. By doing so, we can identify the most relevant information
for each frame, thus reducing the overall computational load. After computing the
necessary features, we reconstruct the remaining redundant features from those using
cheap linear operations. This not only reduces the computational cost of the model
but also keeps the capacity of the original model intact.

Moreover, our proposed approach has the potential to improve the accuracy of
real-world video recognition by reducing overfitting caused by the redundancy of
information across frames. By focusing on the most relevant information, our model
can better capture the unique characteristics of each video, resulting in more accurate
predictions. Overall, our approach represents a significant step forward in the field of
real-world video recognition and has the potential to enable the development of more
efficient and accurate deep learning models for this task.

Thesis Supervisor: Aude Oliva
Title: Senior Research Scientist

3

4

Acknowledgments

I would like to express my deepest gratitude to my family for their unwavering support

and encouragement throughout my academic journey. Their love, patience, and

understanding have been invaluable to me.

I am also immensely grateful to my advisor, Aude Oliva, for her guidance, wisdom,

and expertise. Her mentorship has been instrumental in shaping my research and

helping me grow as a researcher.

I would like to acknowledge MIT-IBM Watson AI Lab for generously sponsoring

my research and providing me with access to their resources. Their support has been

instrumental in enabling me to pursue my research goals.

I would like to thank my collaborator Ramesware Panda, as well as Rogerio Feris,

Camilo Fosco, and Alex Andonian, for their invaluable contributions to my research.

Their insights, feedback, and collaboration have been critical to the success of my

work.

I am also grateful to my lab mates for creating a supportive and stimulating

research environment. Their friendship, encouragement, and constructive feedback

have been invaluable to me.

Finally, I would like to express my gratitude to my friends for their unwavering

support, encouragement, and understanding. Their love and laughter have been a

constant source of joy and inspiration.

Thank you all for your invaluable contributions to my academic journey.

5

6

Contents

1 Introduction 17

1.1 Background . 17

1.2 Motivation and Goal . 18

1.3 Our Idea . 19

1.4 Contributions . 20

2 Related Work 23

2.1 Efficiency in Video Understanding Models 23

2.2 Adaptive Inference . 24

2.3 Neural Architecture Search . 25

3 Method 27

3.1 Approach Overview . 27

3.2 Soft Modulation Gate for Differentiable Optimization 28

3.3 Shared-weight Training and Inference 30

3.4 Efficiency Loss . 30

4 Experiments 33

4.1 Datasets . 33

4.2 Model Architectures . 33

4.3 Implementation Details . 34

4.4 Results on Video Action Recognition 35

4.5 Results on Spatio-Temporal Action Localization 39

7

4.6 Effect of Efficiency Loss . 40

4.7 Ablation Experiments on Dynamic Modeling 40

4.8 Visualization and Analysis . 42

5 Innovation and Intellectual Property 43

5.1 Context . 43

5.2 Introduction to the Patent . 44

5.3 Explanation of the Technology . 45

5.4 Potential Impact . 46

A Technical Details 49

A.1 Dataset Details . 49

A.2 Implementation Details . 50

B Analysis 51

B.1 Redundancy Analysis . 52

B.2 VA-RED2 on Longer-training Model 53

B.3 Feature Map Visualizations . 54

B.4 Policy Visualizations . 54

B.5 Qualitative Results . 56

8

List of Figures

1-1 Our VA-RED2 framework dynamically reduces the redundancy in two

dimensions. Example 1 (left) shows a case where the input video has

little movement. The features in the temporal dimension are highly

redundant, so our framework fully computes a subset of features, and re-

constructs the rest with cheap linear operations. In the second example,

we show that our framework can reduce computational complexity by

performing a similar operation over channels: only part of the features

along the channel dimension are computed, and cheap operations are

used to generate the rest. 18

3-1 An illustration of dynamic convolution along temporal dimension (a) and

channel dimension (b) respectively. �t and �s represent the temporal

cheap operation and spatial cheap operation respectively. In (a), we

multiply the temporal stride S with the factor R = 2pt to reduce

computation, where pt is the temporal policy output by soft modulation

gate. In (b), we compute part of output features with the ratio of

r = (12)
pc , where pc is the channel policy. Best viewed in color. 29

4-1 Ratio of computed feature per layer and class on Mini-Kinetics-200

dataset. We pick the first 25 classes of Mini-Kinetics-200 and visualize the

per-block policy of X3D-M on each class. Lighter color means fewer feature

maps are computed while darker color represents more feature maps are

computed. 41

9

4-2 Validation video clips from Mini-Kinetics-200. For each category, we

plot two input video clips which consume the most and the least computational

cost respectively. We infer these video clips with 8-frame dynamic R(2+1)D-

18 model trained on Mini-Kinetics-200 and the percentage indicates the ratio

of actual computational cost of 2D convolution to that of the original fixed

model. Best viewed in color. 41

B-1 Visualization of the first 9 filters of the first layer of I3D, on examples

with most (top) and least (bottom) redundancy in the temporal dimen-

sion. We exemplify the results on frames 1, 2 and 3. As can be seen,

the video with most redundancy consists of a relatively static video

with little movement, and the sets of feature maps from frame to frame

harbor heavy similarity. The video with least redundancy consists of a

gift unwrapping with rapid movement (even in the first few frames) and

the corresponding feature maps present visible structural differences

from frame to frame. Although in both cases, redundancy is present, it

is clear that some examples present much more redundancy than others,

thus motivating our input-dependent redundancy reduction approach. 53

B-2 Visualization of temporal-wise feature maps. We plot the tempo-

ral feature maps which are fully computed by the original convolution

and those mixed with cheaply generated feature maps. The feature

maps marked with red bounding boxes are cheaply generated. We

do this analysis on 8-frame dynamic R(2+1)D-18 pretrained on Mini-

Kinetics-200. These feature maps are the output of the first spatial

convolution combined with ReLU non-linearity inside the ResBlock_1.

We can see that most of the cheaply generated feature maps looks no

difference from the original feature maps, which further support our

approach. Best viewed in color. 55

10

ResBlock_1

B-3 Visualization of channel-wise feature maps. We plot the feature

maps across the channel dimension. We contrast two kinds of feature

maps: fully computed by the original convolution and those mixed

with cheaply generated feature maps. The feature maps inside the

red bounding boxes are cheaply generated. The analysis is performed

on 8-frame dynamic R(2+1)D-18 model which is pretrained on Mini-

Kinetics-200 dataset and we extract these feature maps which are

output by the first spatial convolution layer inside the ResBlock_1.

Best viewed in color. 56

B-4 Ratio of computed feature per layer and class on Kinetics-400

dataset. We visualize the per-block policy of X3D-M and R(2+1)D-18 on

all 400 classes. Lighter color means fewer feature maps are computed while

darker color represents more feature maps are computed. While X3D-M

tends to consume more temporal-wise features at the early stage and compute

more channel-wise features at the late stage, R(2+1)D choose to select fewer

features at early stage by both temporal-wise and channel-wise policy. For

both architectures, the channel-wise policy has more variation than the

temporal-wise policy among different categories. 57

B-5 Ratio of computed feature per layer and class on Moments-In-Time

dataset. We visualize the per-block policy of X3D-M and R(2+1)D-18 on

all 339 classes. Lighter color means fewer feature maps are computed while

darker color represents more feature maps are computed. 58

B-6 Computational cost distribution across different models on different

datasets. We count the computation of each instance cost by different models

on different datasets. For instance, for the upper-left one, we use the model

backbone of R(2+1)D-18 on Mini-Kinetics-200. This sub-figure indicates

that there are 87.7% of videos in Mini-Kinetics-200 (Dataset) consuming

38.6 � 41.4 GFLOPs by using R(2+1)D-18 (Backbone), 8.8% of videos

consuming 35.9� 38.6 GFLOPs, and 3.5% of videos consuming 41.4� 44.2

GFLOPs. 59

11

ResBlock_1

B-7 Validation video clips from Kinetics-400. For each category, we plot two

input video clips which consume the most and the least computational cost

respectively. We infer these video clips with 16-frame dynamic R(2+1)D-18

which is pre-trained on Kinetics-400. The percentage in the figure indicates

the ratio of the actual computational cost of 2D convolution to that of the

original fixed model. Best viewed in color. 59

B-8 Validation video clips from Moments-In-Time. For each category, we

plot two input video clips which consume the most and the least computational

cost respectively. We infer these video clips with 16-frame dynamic R(2+1)D-

18 which is pre-trained on Moments-In-Time. The percentage in the figure

indicates the ratio of the actual computational cost of 2D convolution to that

of the original fixed model. Best viewed in color. 60

12

List of Tables

4.1 Action recognition results using different number of input

frames and different search space. We choose R(2+1)D-18 on

Mini-Kinetics-200 and study the performance with different number of

input frames and different search space (denoted as Sea. Sp.). Search

space of 2 means that both temporal-wise and channel-wise policy

network have 2 alternatives: computing all feature maps, or computing

only 1
2) of the feature maps. Similarly, search space 3 have 3 alternatives:

computing 1) all feature maps, 2) 1
2 of feature maps, 3) 1

4 of feature

maps. 7 denote the base model and 3 denote the dynamic model

trained using our proposed approach VA-RED2. We also report the

average speed of different models in terms of number of clips processed

in one second (clip/second). 35

4.2 Action recognition results on Mini-Kinetics-200. We set the

search space as 2 and train all the models with 16 frames. The metric

speed uses clip/second as the unit. 36

4.3 Action recognition results with Temporal Pyramid Network

(TPN) on Mini-Kinetics-200. TPN-8f and TPN-16f indicate that

we use 8 frames and 16 frames as input to the model respectively. . . 36

4.4 Comparison with CorrNet [48] and AR-Net [34] on Mini-

Kinetics-200. We set the search space as 2 and train all the models

with 16 frames. 37

13

4.5 Action recognition results on Kinetics-400. We set the search

space as 2, meaning models can choose to compute all feature maps or
1
2 of them both on temporal and channel-wise convolutions. Here we

set the number of frames as 16. 37

4.6 Action recognition results on Kinetics-400. We set the search

space as 2, meaning models can choose to compute all feature maps or
1
2 of them both on temporal and channel-wise convolutions. Here we

set the number of frames as 32. 38

4.7 Action recognition results on Moments-In-Time. We set the search

space as 2, i.e., models can choose to compute all feature maps or
1
2 of them

both on temporal and channel-wise convolutions. The speed uses clip/second

as the unit. 38

4.8 Comparison with network pruning methods. We choose R(2+1)D

on Mini-Kinetics-200 dataset with different number of input frames. Num-

bers in green/blue quantitatively show how much our proposed method is

better/worse than these pruning methods. 39

4.9 Action localization results on J-HMDB. We set the search space as 2

for dynamic models. The speed uses clip/second as the unit. 39

4.10 Effect of efficiency loss on Kinetics-400. 40

4.11 Ablation experiments on dynamic modeling along temporal

and channel dimensions. We choose R(2+1)D-18 on Mini-Kinetics-

200 and set the search space to 2 in all the dynamic models. Here we

experiment with the 8-frame model. 40

4.12 Ablation experiments on dynamic modeling along temporal

and channel dimensions. We choose R(2+1)D-18 on Mini-Kinetics-

200 and set the search space to 2 in all the dynamic models. Here we

experiment with the 16-frame model. 41

14

B.1 Quantitative results of redundancy experiments. We compute

the correlation coefficient, RMSE and redundancy proportions (RP)

for feature maps in well-known pretrained video models on Moments-

in-Time and Kinetics-400 datasets. RP is calculated as the number of

tensors with both CC and RMSE above redundancy thresholds of 0.85

and 0.001, respectively. We show results corresponding to averaging the

per layer values for all videos in the validation sets. We observe that

networks trained on Moments-In-Time (and evaluated on the Moments

in Time validation set) tend to present slightly less redundancy than

their Kinetics counterparts, and the time dimension tends to be more

redundant than the channel dimension in all cases. We observe severe

redundancy across the board (with some dataset-model pairs achieving

upwards of 0.8 correlation coefficient between their feature maps), which

further motivates our redundancy reduction approach. 52

B.2 Comparison between the performance of VA-RED2 on 120-

epoch X3D model and 256-epoch X3D model. We choose X3D-M

as our backbone architecture and set the search space as 2. We train

one group of models for 120 epochs and the other for 256 epochs. . . 54

15

16

Chapter 1

Introduction

1.1 Background

Large, computationally expensive models based on 2D or 3D convolutional neural

networks (CNNs) have become the cornerstone of video understanding in recent years,

as evidenced by numerous studies [44, 4, 46]. As a result, the pursuit of increasing

computational efficiency has emerged as a critical area of interest and research [9, 62, 63].

Despite the fact that the majority of these efficiency-driven approaches primarily

concentrate on architectural modifications in order to maximize network capacity while

maintaining a compact model [63, 9], or on refining the network’s ability to effectively

process temporal information [10, 28], they often neglect to address the unnecessary

computations performed by CNNs at various levels of the network [16, 21, 40, 9, 37].

This oversight is particularly relevant for video models, given the high appearance

similarity between consecutive frames that inevitably leads to a considerable amount

of redundancy. This redundancy not only increases computational demands but

also slows down the processing time for video recognition tasks, making it a critical

issue to address in order to improve the overall efficiency and effectiveness of video

understanding models.

In light of this, it becomes increasingly important for researchers and practitioners

to develop novel techniques and approaches that can systematically identify and

eliminate these redundancies while preserving the network’s ability to accurately

17

Output layer

“rafting”

……

……

……

……

Stem L1 L2 LN
f1

f2

f3

f4

“adult+
male+
speaking”

Output layer
f1

f2

f3

f4

Stem
……

……

……

……

L1 LN

�1C1
out (1 � �1)C1

out �NCN
out (1 � �N)CN

out

temporal-wise fully-computed feature channel-wise fully-computed feature

temporal-wise cheaply-generated feature channel-wise cheaply-generated feature

convolution

temporal-wise cheap operation

channel-wise cheap operation

Example#1: adaptive temporal redundancy reduction Example#2: adaptive channel redundancy reduction

* dashed arrow means closed

Figure 1-1: Our VA-RED2 framework dynamically reduces the redundancy in two
dimensions. Example 1 (left) shows a case where the input video has little movement.
The features in the temporal dimension are highly redundant, so our framework fully
computes a subset of features, and reconstructs the rest with cheap linear operations. In
the second example, we show that our framework can reduce computational complexity
by performing a similar operation over channels: only part of the features along the
channel dimension are computed, and cheap operations are used to generate the rest.

interpret and understand video data. By doing so, the field of video recognition

can make significant strides in optimizing computational resources and reducing the

processing time required for a wide range of applications, from video analytics and

content-based retrieval to real-time surveillance and automated video editing.

1.2 Motivation and Goal

In this paper, our primary objective is to dynamically reduce the internal computations

of widely-used video CNN architectures by effectively tackling the internal redundancy

that pervades both time and channel dimensions in video models. Our motivation

stems from the realization that feature maps exhibit a high degree of similarity in these

dimensions, with the level of redundancy varying depending on the specific input. For

instance, static videos are characterized by a higher degree of temporal redundancy,

whereas videos that depict a single large object in motion tend to generate a greater

number of redundant feature maps.

To address and combat this varied redundancy across channel and temporal dimen-

sions, we introduce an innovative, input-dependent redundancy reduction framework

specifically tailored for efficient video recognition (refer to Figure 1-1 for a visual

18

representation). This cutting-edge framework dynamically adjusts its operations

based on the input, allowing it to effectively minimize redundancy while maintaining

high-quality recognition results.

A significant advantage of our approach is its model-agnostic nature, which means

it can be seamlessly integrated into any state-of-the-art video recognition networks

without the need for extensive modifications or adaptations. This versatility ensures

that our framework has the potential to greatly impact the field of video recognition,

improving efficiency and reducing computational demands across a wide range of

existing and future network architectures.

By dynamically reducing internal computations and addressing redundancy in a

targeted manner, our framework paves the way for more efficient and effective video

recognition tasks. This, in turn, has the potential to revolutionize various applications

of video recognition, from surveillance and security systems to video content analysis

and beyond.

1.3 Our Idea

Our framework significantly enhances efficiency by strategically replacing full com-

putations of certain redundant feature maps with more cost-effective reconstruction

operations. To accomplish this, our framework deliberately avoids computing all

feature maps. Instead, it focuses on calculating only the non-redundant portions of

feature maps and subsequently reconstructing the remaining maps using efficient linear

operations derived from the non-redundant feature maps. This targeted approach

helps to streamline the computation process.

Moreover, our framework is designed to adapt its decision-making process on a

per-input basis, ensuring optimal efficiency for each unique input. It achieves this

by learning an input-dependent policy that establishes a "full computation ratio"

for every layer of a 2D/3D network. This crucial ratio determines the proportion of

features that will be fully computed at a given layer, as opposed to the features that

will be reconstructed using the non-redundant feature maps as a basis.

19

It is important to note that this strategic approach is applied consistently across

both time and channel dimensions, further optimizing the efficiency of the framework.

Through our extensive testing, we demonstrate that this innovative method significantly

reduces the total floating-point operations (FLOPs) on a variety of common video

datasets, all without sacrificing the accuracy of the results. This holds true when our

method is applied to traditional video models, such as I3D [4] and R(2+1)D [46], as

well as more advanced models like X3D [9]. The success of our approach in maintaining

accuracy while reducing computational requirements showcases the potential of our

framework in revolutionizing video recognition tasks.

1.4 Contributions

The primary contributions of our work encompass several key aspects: (1) We

present a groundbreaking input-dependent adaptive framework for efficient video

recognition, which automatically determines the feature maps to compute for each

input instance. This approach stands in stark contrast to the majority of existing

video processing networks, where feature redundancy across both time and channel

dimensions is not directly addressed or mitigated. (2) We propose an adaptive

policy that is jointly learned with the network weights using a fully differentiable

method and a shared-weight mechanism. This enables us to make informed decisions

regarding the number of feature maps to compute at any given time. Our approach

is model-agnostic, allowing it to be applied to any backbone network and effectively

reduce feature redundancy in both time and channel domains. (3) We demonstrate

the impressive results of our framework when compared to baseline models,

achieving a 30% reduction in computation relative to R(2+1)D [46], a 40% reduction

compared to I3D-InceptionV2 [4], and approximately 20% less computation than the

recently proposed X3D-M [9], all without sacrificing performance in video action

recognition tasks. We extensively test the superiority of our approach on three video

recognition datasets (Mini-Kinetics-200, Kinetics-400 [4], and Moments-In-Time [36])

and one spatio-temporal action localization dataset (J-HMDB-21 [25]), showcasing its

20

effectiveness. (4) We also present a generalization of our framework to various

tasks, such as video action recognition, spatio-temporal localization, and semantic

segmentation. In doing so, we achieve promising results while delivering significant

computational reductions compared to competing methods, further highlighting the

potential of our proposed framework.

21

22

Chapter 2

Related Work

2.1 Efficiency in Video Understanding Models

In recent years, video understanding has made significant progress, thanks to the

adoption of convolutional neural networks (CNNs), specifically 2D CNNs [26, 41, 5, 11,

13, 49, 59, 31, 8] or 3D CNNs [44, 4, 18, 46]. While these networks have shown promising

results on common benchmarks, there is a growing interest in developing more efficient

techniques and smaller models that can still deliver reasonable performance.

To achieve this goal, previous works have explored various approaches such as hybrid

2D-3D architectures [53, 62, 63], group convolution [45], and selecting salient clips [28].

Other approaches have attempted to reduce the amount of temporal information

consumed by the network, such as Feichtenhofer et al.’s dedicated low-framerate

pathway [10].

Moreover, researchers have proposed expansion of 2D architectures through a

stepwise expansion approach over key variables such as temporal duration, frame rate,

spatial resolution, and network width, as recently proposed in [9]. Additionally, some

works have focused on learning motion dynamics of videos with a self-supervised task

for video understanding [6], incorporating an efficient learnable 3D-shift module into

a 3D video network [7], devising a correlation module to learn correlation along the

temporal dimension [48], and encoding the clip-level ordered temporal information

with a CIDC network [30].

23

While these approaches have brought considerable efficiency improvements, none

of them dynamically calibrates the required feature map computations on a per-input

basis. In contrast, our proposed framework achieves substantial improvements in

average efficiency by avoiding redundant feature map computation depending on

the input. This approach has the potential to enable the development of even more

efficient and accurate video understanding models in the future.

2.2 Adaptive Inference

In recent years, there has been a surge in the development of adaptive computation

methods aimed at improving efficiency in deep learning models [1, 2, 47, 50, 14, 35].

These methods typically add decision branches to different layers of CNNs, enabling

the network to learn whether to exit the network for faster inference. For instance,

Yu et al. [57] proposed adding decision branches to each layer of a network to enable

dynamic network width, while Wang et al. [50] proposed skipping convolutional blocks

on a per-input basis using reinforcement learning and supervised pre-training. Veit

et al. [47] proposed a block-skipping method controlled by samples from a Gumbel

softmax, while Wu et al. [51] developed a reinforcement learning approach to achieve

this goal.

Adaptive computation time for recurrent neural networks is also presented in [14].

SpotTune [15] learns to route information through finetuned or pre-trained layers

adaptively. Several recent works have focused on selecting salient frames conditioned

on the input [55, 52, 28, 12] while recognizing actions in long untrimmed videos.

In contrast, our goal in this paper is to remove feature map redundancy by dynami-

cally calibrating the necessary computations for temporal and channel dimensions on a

per-input basis. Our approach is different from adaptive data sampling [55, 52, 28, 12],

which focuses on selecting salient frames. Our method reduces redundancy in both

temporal and channel dimensions, making it applicable to both 3D and 2D models.

Moreover, our method integrates all the inference routes into a single model, which

is almost the same size as the original base model. This is in contrast to AR-Net [34],

24

which recently learned to adaptively choose the resolution of input frames with several

individual backbone networks for video inference. However, AR-Net is only applicable

to 2D models and is focused on spatial resolution, while our method is applicable to

both 2D and 3D models and focuses on reducing redundancy in both temporal and

channel dimensions. Additionally, our method is significantly smaller than AR-Net in

terms of the number of model parameters.

Overall, the proposed approach has the potential to enable the development of even

more efficient and accurate video understanding models in the future. It represents

a significant step forward in the field of adaptive computation and has practical

implications for a wide range of video recognition tasks.

2.3 Neural Architecture Search

Automated architecture search has been a popular research direction in recent years,

with several approaches proposed for discovering optimal architectures for deep learning

models. Liu et al. [32] have formulated the architecture search task in a differentiable

manner, enabling efficient optimization through gradient descent. Cai et al. [3] have

proposed a method for directly learning architectures for a target task and hardware,

while Tan et al. [43] have designed a compound scaling strategy that searches through

several key dimensions for CNNs (depth, width, resolution). Furthermore, Tan et

al. [42] have incorporated latency into the architecture search process to find efficient

networks adapted for mobile use.

Our approach is different from these methods, as it learns a policy that chooses

between full or reduced convolutions at inference time. By effectively switching between

various discovered subnetworks, our method minimizes redundant computations while

delivering high accuracy. This approach is unique in its focus on reducing redundancy

in both temporal and channel dimensions, making it applicable to both 2D and 3D

models.

In addition, our approach is inspired by recent work on adaptive computation,

which has also focused on optimizing the computations required for deep learning

25

models. For instance, Yu et al. [57] proposed a method for dynamically adjusting the

width of CNNs, while Wang et al. [50] proposed a method for skipping convolutional

blocks on a per-input basis. These approaches are complementary to our method, as

they aim to optimize different aspects of the computation required for deep learning

models.

Overall, the proposed method represents a significant step forward in the field of

automated architecture search and adaptive computation. It has practical implications

for a wide range of video recognition tasks and has the potential to enable the

development of even more efficient and accurate deep learning models in the future.

26

Chapter 3

Method

Our main goal is to automatically decide which feature maps to compute for each

input video in order to classify it correctly with the minimum computation. The

intuition behind our proposed method is that there are many similar feature maps

along the temporal and channel dimensions. For each video instance, we estimate the

ratio of feature maps that need to be fully computed along the temporal dimension

and channel dimension. Then, for the other feature maps, we reconstruct them from

those pre-computed feature maps using cheap linear operations.

3.1 Approach Overview

Without loss of generality, we start from a 3D convolutional network G, and denote its

l
th 3D convolution layer as fl, and the corresponding input and output feature maps

as Xl and Yl respectively. For each 3D convolution layer, we use a very lightweight

policy layer pl denoted as soft modulation gate to decide the ratio of feature maps

along the temporal and channel dimensions which need to be computed. As shown in

Figure 3-1, for temporal-wise dynamic inference, we reduce the computation of 3D

convolution layer by dynamically scaling the temporal stride of the 3D filter with a

factor R = 2pl(Xl)[0]. Thus the shape of output Y
0
l

becomes Cout ⇥ To/R ⇥Ho ⇥Wo.

27

To keep the same output shape, we reconstruct the remaining features based on Y
0
l

as

Yl[j + iR] =

8
<

:
�t

i,j
(Y 0

l
[i]) if j 2 {1, ..., R� 1}

Y
0
l
[i] if j = 0

, i 2 {0, 1, ..., To/R� 1}, (3.1)

where Yl[j+iR] represents the (j+iR)th feature map of Yl along the temporal dimension,

Y
0
l
[i] denotes the i

th feature map of Y 0
l
, and �t

i,j
is the cheap linear operation along the

temporal dimension. The total computational cost of this process can be written as:

C(f t

l
) =

1

R
· C(fl) +

X

i,j

C(�t

i,j
) ⇡ 1

R
· C(fl), (3.2)

where the function C(·) returns the computation cost for a specific operation, and

f
t

l
represents our dynamic convolution process along temporal dimension. Different

from temporal-wise dynamic inference, we reduce the channel-wise computation

by dynamically controlling the number of output channels. We scale the output

channel number with a factor r = (12)
pl(Xl)[1]. In this case, the shape of output Y

0
l

is rCout ⇥ To ⇥ Ho ⇥ Wo. Same as before, we reconstruct the remaining features

via cheap linear operations, which can be formulated as Yl = [Y 0
l
,�c(Y 0

l
)], where

�c(Y 0
l
) 2 R

(1�r)Cout⇥To⇥Ho⇥Wo represents the cheaply generated feature maps along

the channel dimension, and Yl 2 R
Cout⇥To⇥Ho⇥Wo is the output of the channel-wise

dynamic inference. The total computation cost of joint temporal-wise and channel-wise

dynamic inference is:

C(f t,c

l
) ⇡ r

R
· C(fl), (3.3)

where f
t,c

l
is the adjunct process of temporal-wise and channel-wise dynamic inference.

3.2 Soft Modulation Gate for Differentiable Opti-

mization

We adopt an extremely lightweight policy layer pl called soft modulation gate for each

convolution layer fl to modulate the ratio of features which need to be computed.

28

t
avg. pool

0 1 2Temporal policy: 2

1 2 3 4 5 6 7 8 9 10 11 12

1 2' 3' 4' 5 6' 7' 8' 9 10'11'12'

Conv.
stride: S � R

S : 1
R : 22

�t �t �t

Cin � T � H � W

CinT � 1 � 1
c
avg. pool

Cin � T � H � W

CinT � 1 � 1

0 1 2Channel policy: 1

rCout � T � H � W

Spatial Conv.

�cIdentity

⨁

 Temporal-wise dynamic convolution(a) Channel-wise dynamic convolution(b)

Concat

rCout � T � H � W (1 � r)Cout � T � H � W Cout � T � H � W

Output features

r : 1
2

1

Figure 3-1: An illustration of dynamic convolution along temporal dimension (a) and
channel dimension (b) respectively. �t and �s represent the temporal cheap operation
and spatial cheap operation respectively. In (a), we multiply the temporal stride S

with the factor R = 2pt to reduce computation, where pt is the temporal policy output
by soft modulation gate. In (b), we compute part of output features with the ratio of
r = (12)

pc , where pc is the channel policy. Best viewed in color.

Specifically, the soft modulation gate takes the input feature maps Xl as input and

learns two probability vectors V
l

t
2 R

St and V
l

c
2 R

Sc , where St and Sc are the

temporal search space size and the channel search space size respectively. The V
l

t
and

V
l

c
are learned by:

[V l

t
, V

l

c
] = pl(Xl) = �(F(!p,2, �(N (F(!p,1, G(Xl))))) + �

l

p
), (3.4)

where F(·, ·) denotes the fully-connected layer, N is the batch normalization, �(·)

represents the tanh(·) function, G is the global pooling operation whose output shape

is Cin ·T ⇥1⇥1, �(·) is the output activation function, here we just use max(tanh(·), 0)

whose output range is [0, 1), and !p,1 2 R
(St+Sc)⇥Dh , !p,2 2 R

Dh⇥Cin·T are the weights

of their corresponding layers, Dh is the hidden dimension number. V l

t
and V

l

c
will then

be used to modulate the ratio of the feature maps to be computed in temporal-wise

dynamic convolution and channel-wise dynamic convolution. During training, we

obtain the final output of the dynamic convolution by weighted sum of all the feature

29

maps which contains different ratio of fully-computed features as follows:

Y
l

c
=

ScX

i=1

V
l

c
[i] · f c

l
(Xl, r = (

1

2
)(i�1)), Yl =

StX

j=1

V
l

t
[j] · f t

l
(Y l

c
, R = 2(j�1)), (3.5)

where f
c

l
(·, r) is the channel-wise dynamic convolution with the channel scaling factor

r, and f
t

l
(·, R) it the temporal-wise dynamic convolution with the temporal stride

scaling factor R. During the inference phase, only the dynamic convolutions whose

weights are not zero will be computed.

3.3 Shared-weight Training and Inference

Many works in adaptive computation and neural architecture search suffer from very

heavy computational cost and memory usage during training stage due to the large

search space. In our case, under the naive implementation, the training computational

cost and parameter size would linearly grow as the search space size increases. To

train our model efficiently, we utilize a weight-sharing mechanism to reduce the

computational cost and training memory. To be specific, we first compute all the

possible necessary features using a big kernel. Then, for each dynamic convolution

with different scaling factor, we sample its corresponding ratio of necessary features

and reconstruct the rest features by cheap operations to get the final output. Though

this, we are able to keep the computational cost at a constant value invariant to the

search space. More details on this are included in Section A.2 of the Appendix.

3.4 Efficiency Loss

To encourage our network to output a computational efficient subgraph, we introduce

the efficiency loss Lc during the training process, which can be formulated as

Le = (µ0

LX

l=1

C(fl)P
L

k=1 C(fk)
· r

s

l

R
s

l

)2, µ0 =

8
<

:
1 if correct

0 otherwise
, (3.6)

30

where r
s

l
is channel scaling factor of the largest filter in the series of channel-wise

dynamic convolutions, and R
s

l
is stride scaling factor of the largest filter of temporal-

wise dynamic convolutions. Overall, the loss function of our whole framework can be

written as L = La + �eLe, where La is the accuracy loss of the whole network and �e

is the weight of efficiency loss which can be used to balance the importance of the

optimization of prediction accuracy and computational cost.

31

32

Chapter 4

Experiments

4.1 Datasets

We conduct our video action recognition experiments on three standard benchmarks:

Mini-Kinetics-200, Kinetics-400, and Moments-In-Time. Mini-Kinetics-200 (assembled

by [34]) is a subset of full Kinetics dataset [4] containing 121k videos for training

and 10k videos for testing across 200 action classes. Moments-In-Time dataset has

802,244 videos in training and 33,900 videos in validation across 339 categories. To

show the generalization ability to different task, we also conduct the video spatio-

temporal action localization on J-HMDB-21 [25]. J-HMDB-21 is a subset of

HMDB dataset [29] which has 928 short videos with 21 action categories. We report

results on the first split. For semantic segmentation experiments, we use ADE20K

dataset [60, 61], containing 20k images for training and 2k images for validation.

ADE20K is a densely labeled image dataset where objects and object parts are

segmented down to pixel level. We report results on validation set.

4.2 Model Architectures

We evaluate our method on three most widely-used model architectures: I3D [4],

R(2+1)D [46], and the recent efficient model X3D [9]. We consider I3D-InceptionV2

(denoted as I3D below) and R(2+1)D-18 (denoted as R(2+1)D below) as our base

33

model. In our implementation of X3D, we remove all the swish non-linearity [39]

except those in SE layer [22] to save training memory and speed up the inference

speed on GPU. We choose X3D-M (denote as X3D below) as our base model and

demonstrate that our method is generally effective across datasets.

4.3 Implementation Details

We train and evaluate our baseline models by mainly following the settings in their

original papers [46, 53, 9]. We train all our base and dynamic models for 120 epochs

on mini-Kinetics-200, Kinetics-400, and 60 epochs on Moments-In-Time dataset. We

use a mini-batch size of 12 clips per GPU and adopt synchronized SGD with cosine

learning rate decaying strategy [33] to train all our models. Dynamic models are

finetuned with efficiency loss for 40/20 epochs to reduce density of inference graph

while maintaining the accuracy. During finetuning, we set �c to 0.8 and learning rate

to 0.01 for R(2+1)D and 0.1 for I3D and X3D. For testing, we adopt K-LeftCenterRight

strategy: K temporal clips are uniformly sampled from the whole video, on which we

sample the left, center and right crops along the longer spatial axis, the final prediction

is obtained by averaging these 3 ⇥ K clip predictions. We set K = 10 on Mini-

Kinetics-200 and Kinetics-400 and K = 3 on Moments-In-Time. More implementation

details are included in Section A.2 of Appendix. For video spatio-temporal action

localization, we adopt YOWO architecture in [27] and replace 2D branch with 3D

backbone to directly compare them. We freeze the parameters of 3D backbone as

suggested in [27] due to small number of training video in J-HMDB-21 [25]. The rest

part of the network is optimized by SGD with initial learning rate of 10�4. Learning

rate is reduced with a decaying factor of 0.5 at 10k, 20k, 30k and 40k iterations.

For semantic segmentation, we conduct experiments using PSPNet [58], with dilated

ResNet-18 [56, 20] as our backbone architecture. As PSPNet is devised for image

semantic segmentation, we only apply the channel-wise redundancy reduction to the

model and adopt synchronized SGD training for 100k iterations across 4GPUs with 2

images on each GPU. The learning rate decay follows the cosine learning rate schedule

34

Table 4.1: Action recognition results using different number of input frames
and different search space. We choose R(2+1)D-18 on Mini-Kinetics-200 and
study the performance with different number of input frames and different search
space (denoted as Sea. Sp.). Search space of 2 means that both temporal-wise and
channel-wise policy network have 2 alternatives: computing all feature maps, or
computing only 1

2) of the feature maps. Similarly, search space 3 have 3 alternatives:
computing 1) all feature maps, 2) 1

2 of feature maps, 3) 1
4 of feature maps. 7 denote

the base model and 3 denote the dynamic model trained using our proposed approach
VA-RED2. We also report the average speed of different models in terms of number of
clips processed in one second (clip/second).

length sp. GFLOPsAvg GFLOPsMax GFLOPsMin avg speed clip-1 video-1

8

7 27.7 27.7 27.7 192.1 56.4 66.8
2 20.0(�28%) 22.1(�20%) 18.0(�35%) 205.5 57.7 68.0

3 21.6(�22%) 23.2(�16%) 19.8(�29%) 201.4 58.2 67.7

16
7 55.2 55.2 55.2 97.1 57.5 67.5
2 40.4(�27%) 43.2(�22%) 36.6(�34%) 108.7 60.6 70.0

32
7 110.5 110.5 110.5 49.6 60.5 69.4
2 79.3(�28%) 89.5(�19%) 72.4(�34%) 53.4 63.3 72.3

schedule [33].

4.4 Results on Video Action Recognition

We first evaluate our method by applying it to R(2+1)D-18 [46] with different number

of input frames and different size of search space. Here we use GFLOPs (floating

point operations) to measure the computational cost of the model and report clip-1,

video-1 and video-5 metrics to measure the accuracy of our models, where clip-1 is the

top-1 accuracy of model evaluation with only one clip sampled from video, video-1 and

video-5 are the top-1 and top-5 accuracy of model evaluated with K-LeftCenterRight

strategy. Note that we report the FLOPs of a single video clips at the spatial resolution

256 ⇥ 256 (for I3D and X3D) or 128 ⇥ 128 (for R(2+1)D). In addition, we report

the speed of each model with the metric of clip/second, which denotes the number

of video clips that are processed in one second. We create the environment with

PyTorch 1.6, CUDA 11.0, and a single NVIDIA TITAN RTX (24GB) GPU as our

testbed to measure speed of different models. Table 4.1 shows the results (In all of the

35

Table 4.2: Action recognition results on Mini-Kinetics-200. We set the search
space as 2 and train all the models with 16 frames. The metric speed uses clip/second
as the unit.

Model Dy. GFLOPs Speed clip-1 video-1

R(2+1)D
7 55.2 97.1 57.5 67.5
3 40.4 108.7 60.6 70.0

I3D
7 56.0 116.4 59.7 68.3
3 26.5 141.7 62.2 71.1

X3D
7 6.20 169.4 66.5 72.2

3 5.03 178.2 65.5 72.1

Table 4.3: Action recognition results with Temporal Pyramid Network (TPN)
on Mini-Kinetics-200. TPN-8f and TPN-16f indicate that we use 8 frames and 16
frames as input to the model respectively.

Model Dy. GFLOPs clip-1 video-1

TPN-8f
7 28.5 58.9 67.2
3 21.5 59.2 68.8

TPN-16f
7 56.8 59.8 68.5
3 41.5 60.8 70.6

tables, 7 represents the original fixed model architecture while 3 denote the dynamic

model trained using our proposed approach). Our proposed approach VA-RED2

significantly reduces the computational cost while improving the accuracy. We observe

that dynamic model with the search space size of 2 has the best performance in

terms of accuracy, GFLOPS and speed. We further test our VA-RED2 with all of the

three model architectures: R(2+1)D-18, I3D-InceptionV2, and X3D-M (Table 4.2)

including the very recent temporal pyramid module [54] and correlation module [48]

on Mini-Kinetics-200 dataset. We choose R(2+1)D-18 with TPN and CorrNet as

the backbone architecture and test the performance of our method using a search

space of 2 in Table 4.3 and Table 4.4 respectively. Table 4.2 shows that method

boosts the speed of base I3D-InceptionV2 and R(2+1)D models by 21.7% and 10.6%

respectively, showing its advantages not only in terms of GFLOPS but also in actual

speed. Table 4.4 shows that our dynamic approach also outperforms the baseline

CorrNet by 1.8% in top-1 video accuracy, while reducing the computational cost by

36

Table 4.4: Comparison with CorrNet [48] and AR-Net [34] on Mini-Kinetics-
200. We set the search space as 2 and train all the models with 16 frames.

Model Dy. GFLOPS clip-1 video-1 Method Params GFLOPs clip-1

CorrNet
7 60.8 59.9 68.2 AR-Net 63.0M 44.8 67.2

3 45.5 60.4 70.0 VA-RED
2

23.9M 43.4 68.3

Table 4.5: Action recognition results on Kinetics-400. We set the search space
as 2, meaning models can choose to compute all feature maps or 1

2 of them both on
temporal and channel-wise convolutions. Here we set the number of frames as 16.

Model Dynamic
16-frame

GFLOPs speed clip-1 video-1 video-5

R(2+1)D
7 55.2 97.1 57.3 65.6 86.3
3 40.3 105.9 58.4 67.6 87.6

I3D
7 56.0 116.4 55.1 66.5 86.7
3 32.1 140.7 58.6 67.1 87.2

X3D
7 6.42 169.4 63.2 70.6 90.0
7 5.38 177.6 65.3 72.4 90.7

25.2% on Mini-Kinetics-200. Furthermore, we compare our method with AR-Net [34],

which is a recent adaptive method that selects optimal input resolutions for video

inference. We conduct our experiments on 16-frame TSN [49] with ResNet50 backbone

and provide the comparison on FLOPs, parameter size, and accuracy (Table 4.4).

To make a fair comparison, we train AR-Net using the official implementation on

the same Mini-Kinetics-200 dataset with Kaiming initialization [19]. Table 4.4 shows

that our method, VA-RED2 outperforms AR-Net in both accuracy and GFLOPS,

while using about 62% less parameters. Table 4.5, Table 4.6, and Table 4.7 show the

results of different methods on Kinetics-400 and Moments-In-Time, respectively. To

summarize, we observe that VA-RED2 consistently improves the performance of all the

base models including the recent architectures X3D, TPN, and CorrNet, while offering

significant reduction in computation. Moreover, our approach is model-agnostic, which

allows this to be served as a plugin operation for a wide range of action recognition

architectures. From the comparison among different models, we find that our proposed

VA-RED2 achieves the most computation reduction on I3D-InceptionV2, between 40%

37

Table 4.6: Action recognition results on Kinetics-400. We set the search space
as 2, meaning models can choose to compute all feature maps or 1

2 of them both on
temporal and channel-wise convolutions. Here we set the number of frames as 32.

Model Dy.
32-frame

GFLOPs speed clip-1 video-1 video-5

R(2+1)D
7 110.5 49.6 61.5 69.0 88.6
3 80.7 53.0 61.5 70.0 88.9

I3D
7 112.0 57.6 57.2 64.9 86.5
3 64.3 71.7 61.0 68.6 88.4

Table 4.7: Action recognition results on Moments-In-Time. We set the search space

as 2, i.e., models can choose to compute all feature maps or
1
2 of them both on temporal and

channel-wise convolutions. The speed uses clip/second as the unit.

Model Dynamic GFLOPs speed clip-1 video-1

R(2+1)D
7 55.2 97.1 27.0 28.8
3 42.5 105.5 27.3 30.1

I3D
7 56.0 116.4 25.7 26.8
3 32.1 140.7 26.3 28.5

X3D
7 6.20 169.4 24.8 24.8
3 5.21 177.4 26.7 27.7

and 50%, while reducing less than 20% on X3D-M. This is because X3D-M is already

very efficient both in terms of channel dimension and temporal dimension. Notice

that the frames input to X3D-M are at the temporal stride of 5, which makes them

share less similarity. Furthermore, we observe that dynamic I3D-InceptionV2 has very

little variation of the computation for different input instances. This could be because

of the topology configuration of the InceptionV2, which has lots of parallel structures

inside the network architecture.

We also compare VA-RED2 with a weight-level pruning method [17] and a automatic

channel pruning method (CGNet) [23] on Mini-Kinetics-200. Table 4.8 shows that

our approach significantly outperforms the weight-level pruning method by a margin

of about 3%-4% in clip-1 accuracy with similar computation over the original fixed

model and consistently outperforms CGNet while requiring less GFLOPs (maximum

2.8% in 16 frame). These results well demonstrate the effectiveness of our dynamic

38

Table 4.8: Comparison with network pruning methods. We choose R(2+1)D on

Mini-Kinetics-200 dataset with different number of input frames. Numbers in green/blue

quantitatively show how much our proposed method is better/worse than these pruning

methods.

Method Frames GFLOPs clip-1

Weight-level

8 19.9 (-0.1) 54.5 (+3.2)

16 40.3 (-0.1) 57.7 (+2.9)

32 79.6 (-0.3) 59.6 (+3.7)

CGNet

8 23.8 (+3.8) 56.2 (+1.5)

16 47.6 (+7.2) 57.8 (+2.8)

32 95.3 (+16.0) 61.8 (+1.5)

Table 4.9: Action localization results on J-HMDB. We set the search space as 2 for

dynamic models. The speed uses clip/second as the unit.

Model Dy. GFLOPs speed mAP Recall Classif.

I3D
7 43.9 141.1 44.8 67.3 87.2
3 21.3 167.4 47.2 65.6 91.1

X3D
7 5.75 176.3 47.9 65.2 93.2

3 4.85 184.6 50.0 65.8 93.0

video redundancy framework over network pruning methods.

4.5 Results on Spatio-Temporal Action Localization

We further extend our method to the spatio-temporal action localization task to

demonstrate the generalization ability to different task. We conduct our method on

J-HMDB-21 with two different 3D backbone networks: I3D-InceptionV2 and X3D-M.

We report frame-mAP at IOU threshold 0.5, recall value at IOU threshold 0.5, and

classification accuracy of correctly localized detections to measure the performance of

the detector. Table 4.9 shows that our dynamic approach outperforms the baselines

on all three metrics while offering significant savings in FLOPs (e.g., more than 50%

savings on I3D). In summary, VA-RED2 is clearly better than the baseline architectures

in terms of both accuracy and computation cost on both recognition and localization

tasks, making it suitable for efficient video understanding.

39

Table 4.10: Effect of efficiency loss on Kinetics-400.

Model Efficency loss? GFLOPs clip-1 video-1

R(2+1)D
No 49.8 57.9 66.7
Yes 40.3 58.4 67.6

I3D
No 56.0 58.0 66.5
Yes 32.1 58.6 67.1

Table 4.11: Ablation experiments on dynamic modeling along temporal and
channel dimensions. We choose R(2+1)D-18 on Mini-Kinetics-200 and set the
search space to 2 in all the dynamic models. Here we experiment with the 8-frame
model.

Dynamic Temporal Dynamic Channel
8-frame

GFLOPs speed clip-1 video-1

7 7 27.7 192.1 56.4 66.8
3 7 23.5 198.6 57.1 66.8
7 3 22.7 196.5 57.0 66.7
3 3 20.0 205.5 57.7 68.0

4.6 Effect of Efficiency Loss

We conduct an experiment by comparing the model performance before and after

being finetuned with our proposed efficiency loss. Table 4.10 shows that finetuning

our dynamic model with efficiency loss significantly reduces the computation without

any accuracy loss.

4.7 Ablation Experiments on Dynamic Modeling

We test performance of or approach by turning of dynamic modeling along temporal

and channel dimensions on Mini-Kinetics-200. Table 4.11 and Table 4.12 show that

dynamic modeling along both dimensions obtains the best performance while requiring

the least computation. This shows importance of input-dependent policy for deciding

how many features need to be computed for both temporal and channel dimensions.

40

Table 4.12: Ablation experiments on dynamic modeling along temporal and
channel dimensions. We choose R(2+1)D-18 on Mini-Kinetics-200 and set the
search space to 2 in all the dynamic models. Here we experiment with the 16-frame
model.

Dynamic Temporal Dynamic Channel
16-frame

GFLOPs speed clip-1 video-1

7 7 55.2 97.1 57.5 67.5
3 7 46.1 105.0 58.6 67.6
7 3 46.3 102.0 59.2 68.3
3 3 40.4 108.7 60.6 70.0

residual layers

(d) Temporal-wise policy of R(2+1)D-18 layers for each category

(a) Channel-wise policy of X3D-M layers for each category (b) Temporal-wise policy of X3D-M layers for each category

point-wise layers point-wise layers

(c) Channel-wise policy of R(2+1)D-18 layers for each category

residual layers

Figure 4-1: Ratio of computed feature per layer and class on Mini-Kinetics-200

dataset. We pick the first 25 classes of Mini-Kinetics-200 and visualize the per-block policy

of X3D-M on each class. Lighter color means fewer feature maps are computed while darker

color represents more feature maps are computed.

cooking eggs

Less computation: 52.9%

More computation: 66.7%

Less computation: 53.8%

More computation: 66.2%

playing volleyball

Less computation: 52.1%

More computation: 65.8%

flipping pancake

Figure 4-2: Validation video clips from Mini-Kinetics-200. For each category, we plot

two input video clips which consume the most and the least computational cost respectively.

We infer these video clips with 8-frame dynamic R(2+1)D-18 model trained on Mini-Kinetics-

200 and the percentage indicates the ratio of actual computational cost of 2D convolution to

that of the original fixed model. Best viewed in color.

41

4.8 Visualization and Analysis

To better understand the policy decision process, we dissect the network layers and

count the ratio of feature maps that are being computed during each convolution

layers for each category. From Figure 4-1, we observe that: In X3D, point-wise

convolutions which right after the depth-wise convolutions have more variation among

classes and network tends to consume more temporal-wise features at the early stage

and compute more channel-wise features at the late stage of the architecture. The

channel-wise policy has also more variation than the temporal-wise policy among

different categories. Furthermore, we show few contrasting examples which are in

the same category while requiring very different computation in Figure 4-2. Video

clips which have more complicated scene configuration (e.g. cooking eggs and playing

volleyball) and more violent camera motion (e.g. flipping pancake) tend to need more

feature maps to do the correct predictions. More qualitative results can be found in

Section B.3, Section B.4 and Section B.5 of the Appendix.

42

Chapter 5

Innovation and Intellectual Property

5.1 Context

The primary objective of this thesis is to explore the use of a dynamic network to dy-

namically allocate computational resources for processing different inputs, specifically

focusing on video understanding tasks. In these tasks, computation can be highly

resource-intensive. The proposed dynamic network aims to optimize computation

allocation, resulting in improved performance without compromising the quality of

the results.

The core idea of this thesis has led to the development of a patented method [38]

(ADAPTIVE REDUNDANCY REDUCTION FOR EFFICIENT VIDEO UNDER-

STANDING, United States Patent Application 20230082448, 09/15/2021, Pan, Bowen,

Panda, Rameswar, Fosco, Camilo Luciano, Feris, Rogerio Schmidt, Oliva, Aude

Jeanne) for improving the performance of a computer that uses a convolutional neural

network (CNN) to carry out video processing tasks. The method revolves around

applying an input-dependent policy network for each convolution layer in the CNN to

determine the fraction of input feature maps to be fully computed and the fraction

to be reconstructed. This dynamic approach to computation allocation allows for

efficient processing while maintaining the quality of the output.

The patented method consists of several claims that detail the process of applying

the input-dependent policy network, the determination of fractions based on redundant

43

and non-redundant feature maps, and the simultaneous joint training of the CNN and

the policy network. Furthermore, the method also considers the dynamic scaling of

temporal strides and the number of output channels based on the output of the policy

network.

This thesis investigates the implications of incorporating the patented method

in video understanding tasks, such as video recognition, spatio-temporal action lo-

calization, and video segmentation. The goal is to assess the effectiveness of the

dynamic network in optimizing computational resources for different input types,

ultimately enhancing the performance and efficiency of video processing tasks. The

successful application of the patented method based on this research will serve as a

foundation for exploring the potential of dynamic computation allocation in various

video understanding tasks and applications.

5.2 Introduction to the Patent

The present patent [38], titled "Adaptive Redundancy Reduction for Efficient Video

Understanding" (United States Patent Application 20230082448), focuses on a novel

method that improves the performance of a computer utilizing a convolutional neural

network (CNN) to carry out video processing tasks. This innovative method, developed

by inventors Pan, Panda, Fosco, Feris, and Oliva, is designed to optimize the efficiency

of CNNs by applying an input-dependent policy network to each convolution layer.

The input-dependent policy network helps to determine two fractions of input

feature maps for each convolution layer: the first fraction, whose corresponding

output feature maps are to be fully computed, and the second fraction, which will be

reconstructed from the first corresponding output feature maps instead of being fully

computed. This approach enables the CNN to prioritize non-redundant feature maps,

reducing computational overhead without sacrificing the quality of the output.

The patented method also encompasses the simultaneous joint training of the CNN

and the policy network, allowing for dynamic scaling of temporal strides and the number

of output channels. This results in a more efficient and optimized network for video

44

understanding tasks such as video recognition, spatio-temporal action localization,

and video segmentation.

5.3 Explanation of the Technology

The technology described in the patent involves adaptive redundancy reduction for

efficient video understanding using convolutional neural networks (CNNs). It addresses

the challenge of performing inference on deep learning models for videos, which requires

a large amount of computational resources for robust recognition. Real-world videos

have a high correlation of information across frames, leading to redundancy in temporal

or spatial feature maps, or both. Static videos tend to have more temporal redundancy,

while videos focusing on objects often have more channel redundancy.

The invention offers techniques to improve the performance of a computer using a

CNN for video processing tasks. It does so by applying an input-dependent policy

network for each convolution layer in the CNN. The policy network determines the

following:

• A first fraction of input feature maps for which the corresponding output feature

maps are fully computed by the given convolution layer.

• A second fraction of input feature maps for which the corresponding output

feature maps are not fully computed by the given convolution layer but are

reconstructed from the first corresponding output feature maps.

For each convolution layer in the CNN, the method involves fully computing

the first corresponding output feature maps from the first fraction of input feature

maps and reconstructing the second corresponding output feature maps from the first

corresponding output feature maps. Finally, for the last convolution layer, the first

and second corresponding output feature maps are input to an output layer to obtain

an inference result.

The apparatus implementing this method includes a memory embodying computer-

executable instructions and at least one processor coupled to the memory. The

45

processor operates by executing the instructions to perform the method. The method

involves instantiating a CNN and an input-dependent policy network, applying the

policy network for each convolution layer, fully computing the first corresponding

output feature maps, reconstructing the second corresponding output feature maps,

and obtaining an inference result.

The technology provides substantial beneficial technical effects, such as reducing

central processing unit (CPU) and memory requirements and reducing runtime for

video processing tasks using neural networks on a computer. It enhances efficiency by

exploiting temporal and channel redundancy in videos. The accompanying drawings

illustrate a framework and a system for adaptive temporal and channel redundancy

reduction, as well as dynamic convolution along temporal and channel dimensions,

action recognition results, visualizations of temporal-wise and channel-wise feature

maps, and policy visualizations for learning different network layers.

More details can be referred to the patent [38].

5.4 Potential Impact

The technology of adaptive redundancy reduction for efficient video understanding

using convolutional neural networks has both positive and negative potential impacts:

Positive Impacts:

• Improved efficiency: By exploiting temporal and channel redundancy in videos,

this technology can greatly improve the efficiency of video processing tasks using

neural networks, resulting in faster processing times and reduced computational

costs.

• Reduced resource requirements: The technology can significantly reduce the

CPU and memory requirements for video processing tasks, making it more

accessible to users with limited resources, such as those using consumer-grade

hardware.

• Enhanced video understanding: With more efficient video processing, this

46

technology can lead to more accurate and robust video recognition, benefiting

various applications like video surveillance, autonomous vehicles, robotics, and

content analysis.

• Energy savings: Reducing computational complexity and resource requirements

can lead to energy savings, which is essential for reducing the environmental

impact of computing technologies and enabling their use in battery-powered

devices.

• Scalability: The technology enables the processing of large-scale video datasets

or real-time video streams with minimal resource requirements, facilitating the

development and deployment of scalable video analysis solutions.

Negative Impacts:

• Over-reliance on automation: As video understanding technology becomes more

efficient, there could be an over-reliance on automation, leading to reduced

human involvement in video analysis tasks. This may result in a lack of critical

thinking or oversight in certain situations where human intervention is necessary.

• Privacy concerns: Enhanced video understanding technology could potentially

be misused for mass surveillance or invading people’s privacy. With more efficient

video processing, it could become easier for governments or organizations to

analyze and monitor video feeds without consent, leading to potential privacy

violations.

• Unemployment: The increased efficiency and automation in video processing

tasks may lead to job displacement for people working in fields related to video

analysis, as machines become capable of performing these tasks more effectively

and efficiently.

• Bias and discrimination: If not carefully designed, the technology could per-

petuate or exacerbate biases present in the training data, leading to unfair or

discriminatory outcomes in video analysis tasks.

47

• Misuse: The technology can be used for malicious purposes, such as creating

deepfakes or manipulating video content to spread misinformation or cause

harm.

The overall impact of this technology depends on its implementation, regulation,

and responsible use. Ensuring transparency, addressing ethical concerns, and develop-

ing guidelines for the technology’s application can help mitigate the negative impacts

and maximize its positive contributions to society.

48

Appendix A

Technical Details

A.1 Dataset Details

We evaluate the performance of our approach using three video action recognition

datasets, namely Mini-Kinetics-200 [34], Kinetics-400 [4], and Moments-In-Time [36]

and one spatio-temporal action localization task namely J-HMDB-21 [25]. Kinetics-

400 is a large dataset containing 400 action classes and 240K training videos that

are collected from YouTube. The Mini-Kinetics dataset contains 121K videos for

training and 10K videos for testing, with each video lasting 6-10 seconds. The

original Kinetics dataset is publicly available to download at https://deepmind.com/

research/open-source/kinetics. We use the official training/validation/testing

splits of Kinetics-400 and the splits released by authors in [34] for Mini-Kinetics-200

in our experiments.

Moments-in-time [36] is a recent collection of one million labeled videos, involving

actions from people, animals, objects or natural phenomena. It has 339 classes and

each video clip is trimmed to 3 seconds long. This dataset is designed to have a very

large set of both inter-class and intra-class variation that captures a dynamic event at

different levels of abstraction (i.e. "opening" doors, curtains, mouths, even a flower

opening its petals). We use the official splits in our experiments. The dataset is

publicly available to download at http://moments.csail.mit.edu/.

Joints for the HMDB dataset (J-HMDB-21 [25]) is based on 928 clips from HMDB51

49

https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
http://moments.csail.mit.edu/

comprising 21 action categories. Each frame has a 2D pose annotation based on a

2D articulated human puppet model that provides scale, pose, segmentation, coarse

viewpoint, and dense optical flow for the humans in action. The 21 categories are

brush hair, catch, clap, climb stairs, golf, jump, kick ball, pick, pour, pull-up, push,

run, shoot ball, shoot bow, shoot gun, sit, stand, swing baseball, throw, walk, wave.

The dataset is available to download at http://jhmdb.is.tue.mpg.de/.

A.2 Implementation Details

Details of Shared-weight Training and Inference. In this section, we provide

more details of the shared-weight mechanism presented in Section 3 of the main paper.

We first compute all the possible necessary features using a big kernel and then for

each dynamic convolution with different scaling factor, we sample its corresponding

ratio of necessary features and reconstruct the rest features by cheap operations to

get the final output. For example, the original channel-wise dynamic convolution at

ratio r = (12)
(i�1) can be analogized to

⇥
(f c

l
(Xl, r = (

1

2
)i

c
s�1)[0 : (

1

2
)(i�1)

Cout]), (�
c(f c

l
(Xl, r = (

1

2
)i

c
s�1)[0 : (

1

2
)(i�1) · Cout]))

⇤
,

(A.1)

where [· : ·] is the index operation along the channel dimension, and i
c

s
is the index

of the largest channel-wise filter, during training phase, we have i
c

s
= 1, while during

inference phase, ic
s

is the smallest index for V l

c
, s.t.V l

c
[ic
s
] = 0. By utilizing such a share-

weight mechanism, the computation of the total channel-wise dynamic convolution is

reduce to (12)
i
c
s�1 · C(fl). Further, we have the total computational cost of the adjunct

process as

C(f t,c

l
) = (

1

2
)i

c
s+i

t
s�2 · C(fl), (A.2)

where i
t

s
is the index of largest temporal-wise filter.

50

http://jhmdb.is.tue.mpg.de/

Appendix B

Analysis

Training and Inference. We apply our method mainly to 2D convolutions in

R(2+1)D since 2D convolution takes the most computational cost compared with 1D

convolution. We train most of our models on 96 NVIDIA Tesla V100-32GB GPUs and

perform synchronized BN [24] across all the GPUs. For R(2+1)D [46], the learning

rate is initialized as 0.18 and the weight decay is set to be 5⇥ 10�4. For I3D [4, 53]

and X3D [9], the learning rates both start from 1.8 and weight decay factors are

1⇥ 10�4 and 5⇥ 10�5 respectively. Cosine learning rate decaying strategy is applied

to decrease the total learning rate. All of the models are trained from scratch and

warmed up for 15 epochs on mini-Kinetics/Kinetics, 8 epochs on Moments-In-Time

dataset. We adopt the Nesterov momentum optimizer with an initial weight of 0.01

and a momentum of 0.9. During training, we follow the data augmentation (location

jittering, horizontal flipping, corner cropping, and scale jittering) used in TSN [49] to

augment the video with different sizes spatially and flip the video horizontally with 50%

probability. We use single-clip, center-crop FLOPs as a basic unit of computational

cost. Inference-time computational cost is roughly proportional to this, if a fixed

number of clips and crops is used, as is for our all models. Note that Kinetics-400

dataset is shrinking in size (⇠15% videos removed from original Kinetics) and the

original version used in [4] are no longer available from official site, resulting in some

difference of results.

51

Table B.1: Quantitative results of redundancy experiments. We compute the
correlation coefficient, RMSE and redundancy proportions (RP) for feature maps in
well-known pretrained video models on Moments-in-Time and Kinetics-400 datasets.
RP is calculated as the number of tensors with both CC and RMSE above redundancy
thresholds of 0.85 and 0.001, respectively. We show results corresponding to averaging
the per layer values for all videos in the validation sets. We observe that networks
trained on Moments-In-Time (and evaluated on the Moments in Time validation
set) tend to present slightly less redundancy than their Kinetics counterparts, and
the time dimension tends to be more redundant than the channel dimension in all
cases. We observe severe redundancy across the board (with some dataset-model pairs
achieving upwards of 0.8 correlation coefficient between their feature maps), which
further motivates our redundancy reduction approach.

Dataset Model Dimension CC RMSE RP

Moments-In-Time

I3D Temporal 0.77 0.083 0.62

I3D Channel 0.71 0.112 0.48

R(2+1)D Temporal 0.73 0.108 0.49

R(2+1)D Channel 0.68 0.122 0.43

Kinetics-400

I3D Temporal 0.81 0.074 0.68

I3D Channel 0.76 0.091 0.61

R(2+1)D Temporal 0.78 0.081 0.64

R(2+1)D Channel 0.73 0.088 0.58

B.1 Redundancy Analysis

To motivate our redundancy reduction approach, we measure and visualize the internal

redundancy of well known pretrained networks. We analyze the internal feature maps

of existing pre-trained I3D-InceptionV2 and R(2+1)D networks on Moments in Time

and Kinetics. For each model-dataset pair, we extract feature maps for all examples in

the validation sets, in both time and channel dimensions, and measure their similarity.

In detail, our method consists of the following steps: (1) For a given input, we

first extract the output feature maps from all convolutional layers in the network at

hand. (2) In each layer, we measure the similarity of each feature map to each other

with Person’s correlation coefficient (CC) and root mean squared error (RMSE). We

additionally flag feature maps that exhibit high similarity as redundant. (3) After

computing this for the validation sets, we average the values over all examples to

obtain mean metrics of redundancy per model and per dataset. We additionally

52

Figure B-1: Visualization of the first 9 filters of the first layer of I3D, on examples with
most (top) and least (bottom) redundancy in the temporal dimension. We exemplify
the results on frames 1, 2 and 3. As can be seen, the video with most redundancy
consists of a relatively static video with little movement, and the sets of feature maps
from frame to frame harbor heavy similarity. The video with least redundancy consists
of a gift unwrapping with rapid movement (even in the first few frames) and the
corresponding feature maps present visible structural differences from frame to frame.
Although in both cases, redundancy is present, it is clear that some examples present
much more redundancy than others, thus motivating our input-dependent redundancy
reduction approach.

compute the ranges of these values to visualize how much redundancy can vary in a

model-dataset pair. We present quantitative results in Table B.1 and show examples

of our findings in Figure B-1.

B.2 VA-RED
2

on Longer-training Model

In our experiments, all of our models are trained under a common evaluation protocol

for a fair comparison. To balance the training cost and model performance, we use a

smaller epoch size than the original paper to train our models. For example, authors in

[46] and [9], train the R(2+1)D models and X3D models for 188 epochs and 256 epochs

respectively to pursue the state-of-the art. However, we only train the models for 120

epochs to largely save the computation resources and training time. However, to rule

53

out the possibility that our base models (i.e., without using Dynamic Convolution)

benefit from longer training epochs while our VA-RED2 may not, we conduct an

ablation study on the epoch size in Table B.2. We can see that our method still shows

superiority over the base model in terms of the computational cost and accuracy

on the 256-epoch model. Thus we conclude that the effectiveness of our method in

achieving higher performance with low computation also holds on the longer-training

models.

Table B.2: Comparison between the performance of VA-RED2 on 120-epoch
X3D model and 256-epoch X3D model. We choose X3D-M as our backbone
architecture and set the search space as 2. We train one group of models for 120
epochs and the other for 256 epochs.

Model Dynamic
120 epochs 256 epochs

GFLOPs clip-1 video-1 GFLOPs clip-1 video-1

X3D-M
7 6.42 63.2 70.6 6.42 64.4 72.3
3 5.38 65.3 72.4 5.87 66.4 73.6

B.3 Feature Map Visualizations

To further validate our initial motivation, we visualize the feature maps which are fully

computed by the original convlution operation and those which are generated by the

cheap operations. We demonstrate those in both temporal dimension (c.f. Figure B-2)

and channel dimension (c.f. Figure B-3). In both cases we can see that the proposed

cheap operation generates meaningful feature maps and some of them looks even no

difference from the original feature maps.

B.4 Policy Visualizations

To compare with the policy on Mini-Kinetics-200 (Figure 3 of the main paper), we

also visualize the ratio of features which are consumed in each layer on Kinetics-400

(c.f. Figure B-4) and Moments-In-Time (c.f. Figure B-5). We can see from these two

figures that the conclusions we draw from Mini-Kientics-200 still hold. Specifically, In

54

X3D, point-wise convolutions which right after the depth-wise convolutions have more

variation among classes and network tends to consume more temporal-wise features

at the early stage and compute more channel-wise features at the late stage of the

architecture. However, R(2+1)D choose to select fewer features at early stage by both

temporal-wise and channel-wise policy. Furthermore, we count the FLOPs of each

instance on Mini-Kinetics-200, Kinetics-400, and Moments-In-Time and plot pie charts

to visualize the the distribution of this instance-level computational cost. We analyze

such distribution with two models: R(2+1)D-18 and X3D-M. All of the results are

demonstrated in Figure B-6.

Input

frames

Original

feature maps

Our

feature maps

Input

frames

Original

feature maps

Our

feature maps

Figure B-2: Visualization of temporal-wise feature maps. We plot the temporal
feature maps which are fully computed by the original convolution and those mixed
with cheaply generated feature maps. The feature maps marked with red bounding
boxes are cheaply generated. We do this analysis on 8-frame dynamic R(2+1)D-18
pretrained on Mini-Kinetics-200. These feature maps are the output of the first spatial
convolution combined with ReLU non-linearity inside the ResBlock_1. We can see
that most of the cheaply generated feature maps looks no difference from the original
feature maps, which further support our approach. Best viewed in color.

55

ResBlock_1

B.5 Qualitative Results

We show additional input examples which consume different levels of computational

cost on Kinetics-400 dataset (c.f. Figure B-7) and Moments-In-Time dataset (c.f.

Figure B-8). To be consistent, we use the 16-frame dynamic R(2+1)D-18 as our

pre-trained model. We can see that the examples consuming less computation tend to

have less temporal motion, like the second example in Figure B-7, or have a relatively

simple scene configuration, like the first and second examples in Figure B-8.

Input

frames

Original

feature maps

Our

feature maps

Input

frames

Original

feature maps

Our

feature maps

Input

frames

Original

feature maps

Our

feature maps

Input

frames

Original

feature maps

Our

feature maps

Figure B-3: Visualization of channel-wise feature maps. We plot the feature
maps across the channel dimension. We contrast two kinds of feature maps: fully
computed by the original convolution and those mixed with cheaply generated feature
maps. The feature maps inside the red bounding boxes are cheaply generated. The
analysis is performed on 8-frame dynamic R(2+1)D-18 model which is pretrained on
Mini-Kinetics-200 dataset and we extract these feature maps which are output by the
first spatial convolution layer inside the ResBlock_1. Best viewed in color.

56

ResBlock_1

(a) Channel-wise policy of X3D-M layers for each category

(d) Temporal-wise policy of R(2+1)D-18 layers for each category

(b) Temporal-wise policy of X3D-M layers for each category

(c) Channel-wise policy of R(2+1)D-18 layers for each category

residual layers

point-wise layers point-wise layers

residual layers

Figure B-4: Ratio of computed feature per layer and class on Kinetics-400 dataset.

We visualize the per-block policy of X3D-M and R(2+1)D-18 on all 400 classes. Lighter color

means fewer feature maps are computed while darker color represents more feature maps are

computed. While X3D-M tends to consume more temporal-wise features at the early stage

and compute more channel-wise features at the late stage, R(2+1)D choose to select fewer

features at early stage by both temporal-wise and channel-wise policy. For both architectures,

the channel-wise policy has more variation than the temporal-wise policy among different

categories.

57

(a) Channel-wise policy of X3D-M layers for each category

(d) Temporal-wise policy of R(2+1)D-18 layers for each category

(b) Temporal-wise policy of X3D-M layers for each category

(c) Channel-wise policy of R(2+1)D-18 layers for each category

residual layers

point-wise layers point-wise layers

residual layers

Figure B-5: Ratio of computed feature per layer and class on Moments-In-Time

dataset. We visualize the per-block policy of X3D-M and R(2+1)D-18 on all 339 classes.

Lighter color means fewer feature maps are computed while darker color represents more

feature maps are computed.

58

Backbone = X3D-M

Datasets = Mini-Kinetics-200

Backbone = X3D-M

Datasets = Kinetics-400

Backbone = X3D-M

Datasets = Moments

Backbone = R(2+1)D-18

Datasets = Mini-Kinetics-200

Backbone = R(2+1)D-18

Datasets = Kinetics-400

Backbone = R(2+1)D-18

Datasets = Moments

Figure B-6: Computational cost distribution across different models on different

datasets. We count the computation of each instance cost by different models on different

datasets. For instance, for the upper-left one, we use the model backbone of R(2+1)D-18 on

Mini-Kinetics-200. This sub-figure indicates that there are 87.7% of videos in Mini-Kinetics-

200 (Dataset) consuming 38.6� 41.4 GFLOPs by using R(2+1)D-18 (Backbone), 8.8% of

videos consuming 35.9� 38.6 GFLOPs, and 3.5% of videos consuming 41.4� 44.2 GFLOPs.

washing dishes

Less computation: 57.2%

More computation: 69.2%

Less computation: 59.0%

More computation: 76.0%

tying knot

Less computation: 57.2%

More computation: 70.1%

surfing crowd

Figure B-7: Validation video clips from Kinetics-400. For each category, we plot two

input video clips which consume the most and the least computational cost respectively.

We infer these video clips with 16-frame dynamic R(2+1)D-18 which is pre-trained on

Kinetics-400. The percentage in the figure indicates the ratio of the actual computational

cost of 2D convolution to that of the original fixed model. Best viewed in color.

59

typing

Less computation: 59.6%

More computation: 69.2%

Less computation: 61.4%

More computation: 69.9%

punching

Less computation: 59.6%

More computation: 70.1%

skating

Figure B-8: Validation video clips from Moments-In-Time. For each category,

we plot two input video clips which consume the most and the least computational cost

respectively. We infer these video clips with 16-frame dynamic R(2+1)D-18 which is pre-

trained on Moments-In-Time. The percentage in the figure indicates the ratio of the actual

computational cost of 2D convolution to that of the original fixed model. Best viewed in

color.

60

Bibliography

[1] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Con-
ditional computation in neural networks for faster models. arXiv preprint
arXiv:1511.06297, 2015.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model
and the kinetics dataset. In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6299–6308, 2017.

[5] Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-cnn: Pose-based cnn
features for action recognition. In Proceedings of the IEEE international conference
on computer vision, pages 3218–3226, 2015.

[6] Ali Diba, Vivek Sharma, Luc Van Gool, and Rainer Stiefelhagen. Dynamonet:
Dynamic action and motion network. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6192–6201, 2019.

[7] Linxi Fan, Shyamal Buch, Guanzhi Wang, Ryan Cao, Yuke Zhu, Juan Carlos
Niebles, and Li Fei-Fei. Rubiksnet: Learnable 3d-shift for efficient video ac-
tion recognition. In European Conference on Computer Vision, pages 505–521.
Springer, 2020.

[8] Quanfu Fan, Chun-Fu Richard Chen, Hilde Kuehne, Marco Pistoia, and David
Cox. More is less: Learning efficient video representations by big-little network and
depthwise temporal aggregation. In Advances in Neural Information Processing
Systems, pages 2261–2270, 2019.

[9] Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recog-
nition. arXiv preprint arXiv:2004.04730, 2020.

[10] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast
networks for video recognition, 2018.

61

[11] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal
multiplier networks for video action recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4768–4777, 2017.

[12] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. Listen to
look: Action recognition by previewing audio. arXiv preprint arXiv:1912.04487,
2019.

[13] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 759–768,
2015.

[14] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv
preprint arXiv:1603.08983, 2016.

[15] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing,
and Rogerio Feris. Spottune: transfer learning through adaptive fine-tuning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4805–4814, 2019.

[16] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems, pages 1135–1143, 2015.

[18] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d
cnns retrace the history of 2d cnns and imagenet? In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 6546–6555, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7132–
7141, 2018.

62

[23] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and G Edward Suh.
Channel gating neural networks. In Advances in Neural Information Processing
Systems, pages 1886–1896, 2019.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[25] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J
Black. Towards understanding action recognition. In Proceedings of the IEEE
international conference on computer vision, pages 3192–3199, 2013.

[26] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014.

[27] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. You only watch once: A
unified cnn architecture for real-time spatiotemporal action localization. 2019.

[28] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient
clips from video for efficient action recognition. In Proceedings of the IEEE
International Conference on Computer Vision, pages 6232–6242, 2019.

[29] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and
Thomas Serre. Hmdb: a large video database for human motion recognition.
In 2011 International Conference on Computer Vision, pages 2556–2563. IEEE,
2011.

[30] Xinyu Li, Bing Shuai, and Joseph Tighe. Directional temporal modeling for
action recognition. In European Conference on Computer Vision, pages 275–291.
Springer, 2020.

[31] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient
video understanding. In Proceedings of the IEEE International Conference on
Computer Vision, pages 7083–7093, 2019.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architec-
ture search. arXiv preprint arXiv:1806.09055, 2018.

[33] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[34] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid
Karlinsky, Aude Oliva, Kate Saenko, and Rogerio Feris. Ar-net: Adaptive frame
resolution for efficient action recognition. 2020.

63

[35] Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid Kar-
linsky, Kate Saenko, Aude Oliva, and Rogerio Feris. Adafuse: Adaptive temporal
fusion network for efficient action recognition. In International Conference on
Learning Representations, 2021.

[36] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ramakrishnan, Sarah Adel
Bargal, Tom Yan, Lisa Brown, Quanfu Fan, Dan Gutfreund, Carl Vondrick, et al.
Moments in time dataset: one million videos for event understanding. IEEE
transactions on pattern analysis and machine intelligence, 42(2):502–508, 2019.

[37] Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang, Bolei Zhou, and Cewu Lu.
Recurrent residual module for fast inference in videos. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[38] Bowen Pan, Rameswar Panda, Camilo Luciano Fosco, Rogerio Schmidt Feris,
and Aude Jeanne Oliva. Adaptive redundancy reduction for efficient video
understanding, March 16 2023. US Patent App. 17/476,437.

[39] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

[41] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in neural information processing
systems, pages 568–576, 2014.

[42] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2820–2828, 2019.

[43] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946, 2019.

[44] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Proceedings
of the IEEE international conference on computer vision, pages 4489–4497, 2015.

[45] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli. Video classification
with channel-separated convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5552–5561, 2019.

[46] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. A closer look at spatiotemporal convolutions for action recognition. In

64

Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 6450–6459, 2018.

[47] Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference
graphs. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 3–18, 2018.

[48] Heng Wang, Du Tran, Lorenzo Torresani, and Matt Feiszli. Video modeling with
correlation networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 352–361, 2020.

[49] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang,
and Luc Van Gool. Temporal segment networks: Towards good practices for
deep action recognition. In European conference on computer vision, pages 20–36.
Springer, 2016.

[50] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 409–424, 2018.

[51] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis,
Kristen Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in
residual networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8817–8826, 2018.

[52] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis.
Adaframe: Adaptive frame selection for fast video recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1278–1287, 2019.

[53] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy.
Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 305–321, 2018.

[54] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei Zhou. Temporal
pyramid network for action recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[55] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning
of action detection from frame glimpses in videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2678–2687, 2016.

[56] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 472–480, 2017.

[57] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. arXiv preprint arXiv:1812.08928, 2018.

65

[58] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2881–2890, 2017.

[59] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal
relational reasoning in videos. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 803–818, 2018.

[60] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[61] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Semantic understanding of scenes through the ade20k
dataset. International Journal on Computer Vision, 2018.

[62] Yizhou Zhou, Xiaoyan Sun, Zheng-Jun Zha, and Wenjun Zeng. Mict: Mixed
3d/2d convolutional tube for human action recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 449–458, 2018.

[63] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient
convolutional network for online video understanding. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 695–712, 2018.

66

	Introduction
	Background
	Motivation and Goal
	Our Idea
	Contributions

	Related Work
	Efficiency in Video Understanding Models
	Adaptive Inference
	Neural Architecture Search

	Method
	Approach Overview
	Soft Modulation Gate for Differentiable Optimization
	Shared-weight Training and Inference
	Efficiency Loss

	Experiments
	Datasets
	Model Architectures
	Implementation Details
	Results on Video Action Recognition
	Results on Spatio-Temporal Action Localization
	Effect of Efficiency Loss
	Ablation Experiments on Dynamic Modeling
	Visualization and Analysis

	Innovation and Intellectual Property
	Context
	Introduction to the Patent
	Explanation of the Technology
	Potential Impact

	Technical Details
	Dataset Details
	Implementation Details

	Analysis
	Redundancy Analysis
	VA-RED2 on Longer-training Model
	Feature Map Visualizations
	Policy Visualizations
	Qualitative Results

