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Abstract
Geometry processing is a diverse field studying questions such as how to represent
a shape, how to modify a shape, and how shapes respond to perturbation. These
questions lie at the heart of many applications in computational design, simulation,
fabrication, and animation. We approach these problems through the lens of ge-
ometric optimization where solutions are acquired by defining application specific
objective functions paired with geometry dependent constraints. These problems can
generically be solved with Newton’s method to initialization dependent local optima.
In this thesis, we examine whether problem specific knowledge can be leveraged to
employ more advanced optimization techniques and obtain better results. We specifi-
cally explore the use of convex relaxation, variable augmentation and sum-of-squares
programming to target cross-field based quad meshing, hexahedral mesh quality en-
hancement, and algebraic collision detection. With these tools, we manage to avoid
shallower local minima and sometimes to reach or even surpass globally optimal so-
lutions. We conclude with some principles by which these methods can be generally
applied to other parts of geometry processing or optimization.
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Title: Associate Professor of Electrical Engineering and Computer Science
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1

Introduction

1.1 Motivation

Geometry processing is a broad field studying questions such as how to represent a

shape, how to modify a shape, and how shapes respond to perturbation. This sequence

of questions forms the digitization pipeline by which real world geometries can be

understood digitally through computation and lies at the heart of many applications

in computational design, simulation, fabrication, and animation. While many tools

have been built to tackle parts of the pipeline, the vast diversity of geometries and

applications provides a seemingly endless supply of open problems.

A key contributor to the diversity of problems in geometry processing comes from

the different choices of representation. Common 2D geometry representations are

triangle/quadrilateral meshes, Catmull-Clark/Loop subdivision surfaces (subsurfs)

[Loo87; CC78], NURBS patches or signed distance fields (SDF). Similarly, 3D ge-

ometries can be encoded with Lagrangian point clouds, or tetrahedral/hexahedral

meshes, some of which extend to subdivision volumes. The number of different rep-

resentations increases as new geometry types emerge such as polyhedral meshes or

neural radiance fields (NERFs).

Assuming we have picked a geometry type, we need to understand how to ma-

nipulate it. Typically modifications can be classified as geometric or topological. Ge-

ometric modifications deal with quantities like control point displacements, while
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topological modifications deal with changing the connectivity between control points.

These modifications are often performed to bring out desirable properties of that rep-

resentation. For example, among triangle meshes, one may prefer triangle elements to

contain their own circumcenters, leading to geometric deformations of triangle mesh

to become Delaunay. On the topological side, Loop subdivision surfaces often priori-

tize the property that most of its vertices should connect to 6 neighboring triangles.

Any vertex failing that criterion is singular and introduces visual artifacts. Since this

criteria deals with connectivity, it requires topological modifications to change.

Once a shape is satisfactorily digitized, one may inquire how it reacts to per-

turbations. Of particular interest to us is how multiple geometries react to each

other. Answering this requires solving the key problem of collision detection that

asks whether multiple geometries intersect, or will intersect on a given trajectory.

Since collision detection algorithms between specific geometry types typically don’t

extend to other geometry types, the number of collision detection algorithms required

expands quadratically with the number of geometry types.

1.2 Geometric Optimization

Despite the diversity of challenges in geometry processing, solutions can frequently

be obtained via geometric optimization. In essence, geometric optimization problems

are posed by defining application specific objective functions paired with geometry de-

pendent constraints. In this general form, black box solvers for optimization problems

can be applied to reach initialization dependent local optima.

Two main difficulties affect this approach. First, it is often non-obvious how

to pose a mathematically well-defined objective function that accurately captures the

qualitative goal. Second, generic optimization problems are often solved with Newton

or quasi-Newton methods which are susceptible to getting stuck in local optima or

failing to converge at all. Even obtaining a feasible initialization can be difficult

so generic solvers are non-ideal especially when applications can necessitate globally

optimal solutions.
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In this thesis, we leverage problem specific knowledge to enable more sophisticated

optimization techniques, yielding improvements across the pipeline. We specifically

target cross-field based quadrilateral (quad) meshing, hexahedral (hex) mesh quality

enhancement, and algebraic collision detection as representative problems in geom-

etry processing. Each of these topics have specific exploitable properties that are

fortuitously compatible with advanced optimization techniques such as convex re-

laxation, variable augmentation and sum-of-squares programming. This allows us to

avoid shallower local minima and sometimes to reach or even surpass globally optimal

solutions. We conclude with some principles by which these methods can be more

generally applied to other parts of geometry processing.

1.3 Related work

Out of all the different geometry types, we primarily focus our attention on quadri-

lateral and hexahedral meshes. Quad meshes are often preferred by artists due to

their compatibility with Catmull-Clark subsurfs. Hexahedral meshes are preferred in

solving numerical PDE because the results they produce with tri-linear basis func-

tions are often superior to those produced with linear basis functions on tetrahedral

meshes [Wei94; CK92]. They have also been shown to perform better with quadratic

basis functions in the context of nonlinear elasto-plastic simulation [Ben+95]. Due

to the persistent demand for quad and hex meshes, a variety of techniques exist to

generate them.

1.3.1 Cross Fields and Quad Meshing

The generation of tangential n-RoSy fields over surfaces has many applications rang-

ing from surface BRDFmodification [Bra+18] to fabrication [Plu+21; Zhu+20; Cig+14]

to texture synthesis [Knö+15] and sketch-based modeling [IBB15; BS19]. Surveys of

n-RoSy field design methods are provided in [Vax+16] and [GDT15].

The n = 4 case (cross fields) have been especially well-studied for their applications

in quadrilateral (quad) meshing where their π
2
-symmetry allows them to guide the
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layout of quad elements without rotational seams. Methods to compute intrinsically-

smooth cross fields with alignment and singularity constraints are studied in [Ray+08;

CDS10; Knö+13]. To contrast, [Jak+15] formulate an extrinsic smoothness functional

on cross fields i.e. crosses are compared without a shared tangent space or connection.

The resulting energy is non-convex but is minimized to local optimality, often resulting

in many regions of irregular topology. Huang and Ju [HJ16] analyze this extrinsic

energy, and find that it is decomposable into an intrinsic smoothness energy combined

with an extrinsic curvature alignment term.

Once a cross field is obtained, standard procedures for quad meshing compute a

parameterization i.e. a seamless function whose differential aligns to the cross field.

Finally isolines of the parameterization yield edges of a discrete quad mesh [BZK09;

KNP07]. Alternative approaches can skip parameterization by instead solving for a

position field encoding quad mesh vertices directly [Jak+15].

1.3.2 Octahedral Fields and Hexahedral Meshing

The three-dimensional counterpart to a cross field is an octahedral field. A single octa-

hedral frame consists of three mutually-orthogonal vectors and their negations. Huang

et al. [Hua+11] introduced a particularly convenient representation of an octahedral

frame as a rotation of the spherical function g(x, y, z) : (x, y, z) ∈ S2 7→ x4 + y4 + z4,

encoded by coefficients in the spherical harmonic (SH) basis. Ray, Sokolov, and

Lévy [RSL16] and Solomon, Vaxman, and Bommes [SVB17] use this representation

to generate volumetric normal-aligned octahedral fields.

Analogously to cross fields in quad meshing, octahedral fields are often used to

generate hexahedral meshes. Once an octahedral field is obtained, [NRP11a] com-

putes a volumetric parameterization so that its differential aligns to the octahedral

field. Isoplanes of the parameterization then partition a volume into hexes in the hex

extraction step [LBK16]. Unsurprisingly, these steps are significantly more challeng-

ing than in the 2D case. Octahedral fields contain singular curves and singular nodes

that can be topological barriers to hex meshability. Methods like [Li+12; Jia+14]

try to repair singularities in existing octahedral fields [Li+12; Jia+14] to make them
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meshable. Other works have derived conditions and algorithms to compute frame

fields with constraints imposed on the singularities [Liu+18; CC19]. Despite these

improvements, frame field based hexahedral meshing remains an open problem. Re-

cent hex mesh generation methods have taken very different approaches by leveraging

mesh-cutting operations and poly-cubing [Liv+20; Li+21].

1.3.3 Collision Detection and Intersection

Once a shape is satisfactorily digitized, we can answer how that shape responds to

perturbation by simulating it. Trusty, Chen, and Levin [TCL21] develop a method

for simulation of elasticity on volumes enclosed by NURBS patches without volu-

metric remeshing. Catmull-Clark surfaces have been used in [WHP11] for thin shell

simulation. Schneider et al. [Sch+19; Sch+18] use higher-order basis functions to

solve various PDEs, including linear elasticity. While these methods enable dynamic

simulation in algebraically modeled surfaces, there is a notable lack of exact collision

detection and intersection prevention.

Classic approaches exist for adjacent problems such as surface-surface intersection

(SSI) where one computes intersection curves between static curved surfaces. SSI is

frequently used in computer aided design (CAD), where curves are obtained by first

linearizing the surfaces to find an initial intersection point, followed by stepping along

the common tangent direction of the two surfaces. This method requires tuning of

various tolerance parameters, as well as a sufficiently dense initial linearization. We

refer the reader to [Bar+87] for a summary of SSI in CAD. Unfortunately, failure to

find an intersection does not guarantee non-intersection.

1.4 Overview

In this thesis, we target problems across geometry processing through the lens of

geometric optimization. In Chapter 2 we target the cross field generation problem, a

key step in quad mesh generation. Through an uncommon formulation of cross field

generation we enable convex relaxation to achieve better representations of surfaces.
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In Chapter 3 we examine the problem of improving hex meshes, the volumetric coun-

terpart of quad meshes. By identifying topological barriers to quality, we create a

mesh augmentation strategy to surpass locally optimal hex meshes. In Chapter 4,

we explore the use of sum-of-squares programming to tackle collision detection and

adjacent problems between algebraically formulated geometries. Finally in Chapter 5

we reflect on generalizations of these methods to the rest of geometry processing.
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2

Feature-Aligned Cross Field Generation

via Convex Relaxation

This chapter is based on work in [Zha+20] and focuses on a method for design-

ing feature-aligned cross fields on surfaces. The intro and related works have been

trimmed to remove redundancy with Chapter 1. A greater emphasis is also put on

the convex relaxation aspect of the final optimization problem.

Inspired by work in the study of octahedral fields, we borrow their encoding and

apply it to crosses. We pair this representation with a class of convex energy func-

tionals generalizing the commonly used Dirichlet energy. Our theoretical analysis

of these energies in the smooth setting shows they penalize deviations from surface

creases while otherwise promoting intrinsic smoothness. Furthermore, this represen-

tation lends itself well to convex relaxation resulting in high quality cross fields that

automatically align to sharp features of an underlying geometry. We demonstrate

the applicability of our method to quad-meshing and include an extensive benchmark

comparing our fields to other automatic approaches for generating feature-aligned

cross fields on triangle meshes.
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Figure 2-1: A variety of feature-aligned cross fields computed using our cross field
formulation.

2.1 Introduction

N -rotationally symmetric (RoSy) tangential vector fields over surfaces are ubiquitous

in computer graphics. Depending on the application, n-RoSy field design algorithms

must trade off between several desirable properties of the field. In almost all cases,

n-RoSy fields are expected to be as smooth as possible. For surfaces with boundary,

constraints on how the field aligns to the boundary are common, and for artistic

applications, users may wish to prescribe a sparse set of streamlines that the field

must follow. For meshing applications, alignment of n-RoSy fields to salient geometric

features is also critical as a means to identify or preserve mesh detail. Our target is

to improve this latter aspect for the important case of 4-RoSy fields.

There are two broad strategies for achieving feature alignment. The first is to

optimize only for smoothness, under the assumption that a well-chosen functional for

measuring cross-field smoothness will automatically penalize fields that fail to align to

geometric features. The most commonly-used smoothness functionals (including the

Dirichlet energy and its variants) are intrinsic, and recover solutions that are unique

only up to rotation [Knö+13]. These are ambivalent to isometric deformations of the

surface and ignore extrinsic features such as creased folds.

An alternative strategy is to include energy terms that explicitly enforce align-

ment to an input guiding field of principal curvature directions during cross-field

design [Knö+13; Bra+18]. Drawbacks include the difficulty of robustly computing

15



Figure 2-2: Two surfaces (the three-cylinder-intersection and wavy-box) whose
maximal curvature directions (blue lines) contradict its feature curves (red lines).

principal curvature directions on noisy meshes, the fact that forcing alignment to a

guiding field based on local geometry may exclude cross-field designs that are glob-

ally more optimal, and more critically the fact that principal curvature directions are

often different from features e.g. Figure 2-2.

Our main observation is that neither of the above strategies adequately identify

those features most important to generating high-quality quad meshes. Often the

surface being modelled is constructed from smooth patches that are joined along sharp

extrinsic feature curves where the normal direction is discontinuous or changes rapidly.

On the one hand, such features are invisible to intrinsic smoothness functionals; on the

other, the orientation of the feature curves often contradict that of nearby curvature

lines.

Consider the surfaces shown in Figure 2-2: Neither existing strategy will promote

alignment to the features curves shown in red. Both of these shapes are developable

away from a sparse set of cone singularities at the corners; the gaussian curvature is

nearly zero at creased edges and curved facets, and so purely intrinsic approaches have

no hope of aligning to the creases. Augmenting with a guiding field based on extrinsic

curvature is counter-productive, as the curvature lines (blue) are not compatible with

the surface’s more important crease features curves (red).
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We approach feature alignment in a new way, which detects and aligns cross fields

to sharp features in a stable fashion. Our method is based on an extrinsic representa-

tion of cross fields using spherical harmonic (SH) basis functions. SH functions have

been used successfully in volumetric octahedral field problems for hexahedral mesh-

ing [SVB17; Hua+11; RSL16], and we argue that this representation is well-suited

not only for computing octahedral fields in volumes but also for field computation

on surfaces. In particular, we apply an SH representation of octahedral frames, or

frames of three orthogonal directions in R3, proposed by Huang et al. [Hua+11]; when

one of its directions is constrained to the surface normal, it exhibits the same sym-

metry as a two-dimensional cross. We use this fact to devise a class of cross field

energies that promote intrinsic smoothness in smooth regions of the surface. Over

sharp creases, however, our energy aligns the field to the crease direction, achieving

automatic feature alignment without the need for explicit computation of extrinsic

curvature directions or feature curves.

Contributions In this work, we

• introduce spherical harmonic functions for the computation of surface cross fields;

• propose a family of convex field smoothness energies whose optima are feature-

aligned cross fields;

• provide a theoretical analysis of the behavior of a few important members of this

family; and

• introduce cross fields with soft normal alignment for increased versatility/robust-

ness.

Our approach is able to extract feature-aligned fields with comparable levels of effi-

ciency to those of purely intrinsic algorithms. We test our algorithm extensively on

over 200 different meshes with results in both § 4.6 and in supplementary materials

of [Zha+20]. We leverage our algorithm to produce feature-aligned cross fields and

demonstrate their usefulness for quad meshing.

17



e[v]−→

−→
ev·L

Figure 2-3: rotation of octahedral frame

2.2 Related Work

When using cross fields for quad mesh parameterization or processing, methods [BZK09;

Cam+16; Knö+13; Bra+18] often promote feature alignment by including a loss term

penalizing disagreement with curvature directions. However, as we argue in the in-

troduction and illustrate in Figure 2-2, alignment to curvature directions is often less

important than alignment to sharp creases. Other parameterization methods such as

[BZK09; Bom+13; CBK15] allow feature alignment but just assume that such feature

curves are provided as input.

2.3 Preliminaries

Since our formulation relies heavily on both the spherical harmonic representation of

octahedral frames and vectorial total variation, we present a preliminary introduction

to these topics.

2.3.1 Spherical Harmonic (SH) Octahedral Frames

As introduced by Huang et al. [Hua+11], the canonical axis-aligned octahedral frame

can be represented by spherical harmonics as a function g0 : S2 → R written as

g0 =
√

5
12
Y44+

√
7
12
Y40, where Ylm denotes the basis for real spherical harmonics. The

function g0 can be understood as the scaled projection of x4+ y4+ z4 onto the fourth

band (l = 4) of spherical harmonics. Written differently, we can encode g0 as a vector

18



++=

Figure 2-4: SH frame as sum of three lobes

of coefficients in the full basis of fourth-band spherical harmonics Y4(−4), . . . , Y44:

f0 =

[
0, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12

]T
.

The space of octahedral frames can be described as all rotations of the canonical

octahedral frame, that is, the orbit of f0 under the group of 3D rotations SO(3)

[PBS19, Definition 3.5]. We write this via exponentiation of the Lie algebra elements:

the set of octahedral frames is

V =
{
f
∣∣∣ there exists v ∈ R3 with f = ev·Lf0

}
,

where v ·L = vxLx+vyLy+vzLz and Lx, Ly, Lz are the angular momentum operators

expressed in the basis of band-four spherical harmonics. In this basis, Lx, Ly, Lz are

each 9× 9 matrices. The angular momentum operators are explicitly written in sup-

plementary materials, §4. In this description, v can be interpreted as an axis-angle

representation of rotation, with corresponding rotation matrix e[v]. [v] denotes the

skew-symmetric matrix that acts as [v]u = v×u. Accordingly, ev·Lg0 encodes the octa-

hedral frame whose directions are x̂, ŷ, ẑ rotated by e[v], whereˆdenotes normalization

(see Figure 2-3).

Using such SH rotations, we can present an alternative interpretation of the oc-

tahedral frame f0 as the sum of three orthogonal SH lobe-shaped functions. The

z-aligned lobe is l = [0, 0, 0, 0,
√

7
12
, 0, 0, 0, 0] and is depicted in the inset. Lobes can

be rotated in the same way that frames can i.e. by applying ev·L. The canonical
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octahedral frame can therefore be equivalently expressed as f0 = l + e
π
2
Lxl + e

π
2
Ly l

(see Figure 2-4).

The space of octahedral frames that are aligned to a unit vector n̂ can be described

by the set {
evn·LeθLzf0

∣∣∣ θ ∈ S1
}
,

where vn is any axis-angle rotation taking ẑ to n̂, (e.g., the vector parallel to ẑ× n̂ and

has magnitude equal to the angle from ẑ to n̂) and θ encodes an additional twist of the

frame about n̂. The first rotation about ẑ can be written in explicit form [Hua+11]

as

eθLzf0 =

[√
5

12
cos 4θ, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
sin 4θ

]T
.

The above allows us to formulate the set of all octahedral frames g aligned to a given

direction n̂ in terms of two constraints:

‖f‖2 = 1, Wnf = u0 =

[
0, 0, 0,

√
7

12
, 0, 0, 0

]T
, (2.1)

where Wn is the second through eighth rows of e−vn·L. The linear constraint rotates

the frame from normal alignment to ẑ alignment, and the norm constraint ensures

that the first and last components are of the appropriate form.

Lastly, we will make use of the projection operator πV : R9 → V onto the space

of octahedral frames V , as defined in [PBS19, § 2.5.5].

2.3.2 Vectorial Total Variation

We will later make use of a total variation energy (amongst others) to analyze the

behavior of our cross fields on creased surfaces. Here, we introduce total variation

and vectorial total variation definitions in Rn and provide intuition about their use.

The extension to functions on a Riemannian manifold is straightforward, using the

standard intrinsic gradient and divergence operators.

The total variation of a differentiable scalar function h : Ω → R is TV [h] =
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∫
Ω
‖∇h‖2 dA where Ω ⊂ Rn [AFP00]. For non-differentiable h, the relevant definition

is:

TV [h] = sup
ϕ∈C1

c ,∀x∥ϕ(x)∥2≤1

(∫
Ω

h∇ · ϕ dA

)
,

where C1
c denotes differentiable, compactly-supported vector fields. For smooth h,

equivalence to
∫
Ω
‖∇h‖ follows from integration by parts and Stokes’s theorem. In

this case, the maximizing ϕ is −∇h/∥∇h∥. If h is the indicator function of a suitably

regular (e.g., non-fractal) subset A ⊂ Ω, then TV [h] is the perimeter of A.

When h : Ω → Rm is vector-valued rather than scalar-valued, there are many

different definitions for the vectorial total variation V TV [h] [Sap96]. We use one

proposed by Di Zenzo [Di 86], which for differentiable h is given by V TV [h] =∫
Ω
‖∇h‖F dA, where ‖ · ‖F is the Frobenius norm. More generally, we can take

V TV [h] = sup
ϕ∈C1

c ,∀x∥ϕ(x)∥F≤1

(
m∑
i=1

∫
Ω

hi∇ · ϕi

)
, (2.2)

where h = (h1, h2, . . . , hm), and ϕ = (ϕ1, ϕ2, . . . ϕm) is a differentiable, compactly-

supported m-tuple of vector fields. This definition is not equivalent to a sum of m

independent scalar total variations: The constraint on ϕ introduces nontrivial cou-

pling between the dimensions. This definition of total vectorial variation is considered

in the case where Ω is a surface in R3 by Bresson and Chan [BC08], but without spe-

cific analysis for discontinuous h.

2.4 Spherical Harmonic Octahedral Frames as Cross

Fields

We use normal-aligned octahedral fields to encode tangent cross fields on surfaces,

with the goal of computing a smooth cross field on a surface aligned to sharp features.

The SH representation will enable us to capture features even when they are purely

extrinsic. To this end, our next task is to define a means of measuring smoothness

by examining the gradient of a SH field along the surface.
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2.4.1 Derivatives of SH Octahedral Frames

To calculate ‖∇f‖2, we first express it in an appropriate local coordinate system that

simplifies the formulas in coordinates and better reveals the structure. Following the

notation in § 2.3.1, an octahedral field f(r) : Ω → V ⊂ R9 can be parameterized

relative to a point r∗ by v(r) : Ω → R3, where v(r) is the axis-angle rotation from

f(r∗) to f(r). This implies that v(r∗) = [0, 0, 0]. Without loss of generality, we rotate

the surface so that the normal of Ω at r∗ is ẑ. We can then compute the gradient ∇f

at the point r∗ from the formula f(r) = ev(r)·Lf(r∗):

∇f(r)|r∗ =


| | |

Lxf(r
∗) Lyf(r

∗) Lzf(r
∗)

| | |



| | |

∇xv ∇yv ∇zv

| | |


r∗

. (2.3)

As the field f(r) encodes an extrinsically embedded frame at each point, we take

the gradient ∇ to be the component-wise derivative of the field’s nine scalar functions

rather than a covariant or Lie derivative along the surface in order to capture the

extrinsic geometry of the surface. We use [Ros02, §1.2.5] and the fact that v(r∗) =

[0, 0, 0] to derive Equation 2.3.

By combining facts about the SH representation and standard results in differen-

tial geometry we show that the squared norm ‖∇f(r)‖2 at r∗ can then be expressed

in the following more intuitive way:

Proposition 1. Let f(r) : Ω → V ⊂ R9 be a normal-aligned octahedral field over

a smooth surface Ω. Then at every point r∗ ∈ Ω, ‖∇f‖2F = k2
1 + k2

2 + w, where

k1 and k2 are the principal curvatures and w measures the intrinsic tangential twist

of the octahedral field. Using mean and Gauss curvatures H and K, we can write

‖∇f‖2F = 2H2 −K + w.

Full proof of this formula is provided in § 2.8.1. Proposition 1 gives a more

intuitive form for Equation 2.3 and relates the spherical harmonic representation

of an octahedral frame to properties of the frame it represents. Most notably, the

Dirichlet energy of the SH representation can be effectively decoupled into extrinsic
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dependence of ‖∇f‖2F on the surface Ω and the intrinsic tangential twisting of the

normal-aligned octahedral field f(r). The values of H and K simply contribute a

fixed quantity depending on Ω rather than the field. Therefore, the influence of f on

‖∇f‖2F is just in w, the intrinsic twist of the cross field it represents. We stress that

this behavior is quite different from the behavior of the component-wise derivative

evaluated on vectors, as studied in [HJ16], where their smoothness energy promotes

alignment to extrinsic curvature directions.

2.4.2 Lp Smoothness Energy of SH Cross Fields

Suppose we wish to measure smoothness of a normal-aligned octahedral field in the

SH representation. We define the following class of convex smoothness energies using

the Lp-norm of ‖∇f‖F over the surface Ω for p ≥ 1:

Ep(Ω, f) =

(∫
Ω

‖∇f‖pF dA

) 1
p

. (2.4)

We now analyze the behavior of the Ep energy for cross fields in several select cases.

Case p = 2: Dirichlet Energy

We begin with a common choice in geometry processing when smoothness is desirable:

the Dirichlet energy E2. Given Proposition 1, we can write the Dirichlet energy as∫
Ω
2H2 − K + w. Since H and K are independent of the octahedral field f , they

have no influence over the f that minimizes E2. Therefore on smooth Ω, we recover

intrinsically smooth cross fields.

Since the Dirichlet energy may diverge at singularities [Knö+13], this choice of

energy has the theoretical drawback of diverging for all f in the neighborhood of

creases which break octahedral symmetry. In the discretized setting, however, the

behavior of E2 is dependent on mesh resolution and empirically leads to strong feature

alignment as demonstrated in §4.6. It also leads to an easily-solved optimization

problem described in §2.5.2.
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Case p = 1: Vectorial Total Variation

As noted in the previous section, the conventional means of measuring field smooth-

ness fails to be well-defined for our field representation on creased surfaces. We show

here that the E1 energy is not only finite across sharp edges and around singular points

but also provides an intuitive measure of field quality that captures both smoothness

and feature alignment. It is also known as the vectorial total variation.

Consider a function f : Ω→ R9 that is piecewise smooth on n closed patches Ωj

intersecting in a finite-length curve network Γ =
⋃s

k=1 γk, where each γk is a C1 curve.

Equivalently Γ =
⋃n

j=1 ∂Ωj, and the vectorial total variation can be decomposed into

integrals over each patch and Γ.

Proposition 2. For compact Ω and f as above, V TV [f ] is finite and given by the

following equation:

V TV [f ] =
n∑

j=1

∫
Ω̊j

‖∇f‖F dA+
s∑

k=1

∫
γk

‖f+ − f−‖2 dL, (2.5)

where f+ and f− refer to the limiting values of f on either side of γk, and Ω̊j denotes

the interior of Ωj.

The basic argument starts from Equation 2.2, splits it into integrals over the

patches, applies integration by parts, and utilizes partitions of unity to construct a

maximizing sequence of ϕ’s. The full argument is contained in § 2.8.2. An analogous

result, which applies to arbitrary functions on Rn with bounded variation, is contained

in [AFP00], with the addition of a third term representing the Cantor part of f . Since

our f is piecewise smooth, however, we can safely ignore the Cantor part. The second

term is often referred to as the jump part in the total variation literature.

Equation 2.5 provides an intuitive description of the total variation of an octahe-

dral field in the SH basis as a measure of intrinsic smoothness with extra jump terms.

Letting f represent a normal-aligned octahedral field we obtain:

V TV [f ] =
n∑

j=1

∫
Ω̊j

√
2H2 −K + w dA+

s∑
k=1

∫
γk

∥∥f+ − f−∥∥
2
dL (2.6)
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Figure 2-5: Octahedral frames near crease

Generalizing to Creased Surfaces While the above result is derived for smooth sur-

faces Ω and discontinuous f , we can further generalize the result to a surface Ω

constructed from smooth open patches Ωj joined along a network of sharp creases

Γ =
⋃s

k=1 γk. As there is neither a consistent metric nor a consistent tangent space on

Ω across Γ, there is no well-defined choice of gradient. We therefore use Equation 2.6

as the definition for E1 on such a creased surface. Since f is a normal-aligned octa-

hedral field, it is necessarily discontinuous across creases, resulting in contributions

to the jump term.

The jump ‖f+ − f−‖2, where f+ and f− represent octahedral frames aligned to

different normal directions, is minimized if f+ and f− are both aligned to the axis of

rotation from one normal to the other. We formalize this property by Proposition 3

Proposition 3. Let Ω+ and Ω− be smooth patches of a surface with normal directions

n̂+ and n̂− that meet at a crease. Let d̂ denote the intersection of their tangent spaces

at the crease. Let f+
θ and f−

ϕ be the octahedral frames on either side of the crease

aligned to n̂+ and n̂− respectively. θ and ϕ denote their deviation from alignment to

d̂. The cost ‖f+
θ − f−

ϕ ‖2 is minimized by θ = ϕ = 0.

Proof of this proposition is left to § 2.8.3. The setup is depicted in Figure 2-5,

showing discontinuous normal directions n̂+ and n̂− as the left and right red arrows

respectively. The crease direction d̂ is shown by the middle red arrow. We emphasize

that this proposition implies (locally) crease alignment always minimizes the VTV.
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We extensively test and show in § 4.6 that this crease alignment tends to globally

hold on surfaces with complicated geometry and topology as well.

General p ≥ 2

By Equation 2.4, and Proposition 1, Ep incentivizes intrinsic smoothness for all p on

smooth domains. On creased domains, we have demonstrated (local) crease-alignment

for the p = 1 case. For p ≥ 2, the value of Ep diverges for a creased surface. However,

we find empirically that minimizing Ep (by recovering solutions to Equation 2.7) on

a discretized surface leads to stronger feature alignment as p increases. This behavior

may be explained by Proposition 3, which affects all edges regardless of p. The p

simply exponentiates the energy across each edge before accumulating it into the

total Ep. Local to a single edge, the energy-minimizing configuration is unaffected

by p. Based on our experiments, we further conjecture that the sequence of fields

obtained by minimizing E2 on an increasingly dense discrete approximation of Ω

converges to a feature-aligned cross field. This intrinsically smooth feature-alignment

is empirically shown in Figure 2-10. We leave proof of this conjecture to future work.

Relation to Polycube Surfaces

We achieve an additional property for all values of p through our use of SH octahedral

frames. Consider the case of Ω being a cube: minimizers of Ep will have zero energy,

despite the cube’s sharp corners, since the field’s octahedral symmetry allows it to

simultaneously align to all three creases at each corner. Effectively a surface with

many angle-π
2
turns and cube-corners can have just as low of an energy as one with

no creases at all. More generally, if Ω is a polycube surface, Ep(Ω, f) = 0 by choosing

f to be a facet aligned uniform frame field.

2.5 Optimizing for an Octahedral Frame Field

Our discussion above provides a new class of energies based on the SH representation

of cross fields, which naturally promote both intrinsic smoothness and extrinsic crease
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alignment without the need for feature curve detection or reliance on potentially noisy

local curvature estimates. For this reason, we propose solving the following variational

problem to find a cross field f ∗ over a surface:

f ∗ = argmin
f

Ep(Ω, f)

subject to Wn(x)f(x) = u0.

(2.7)

Recall that the constraint encodes normal alignment of the frame field (see equation

(2.1)). Some past algorithms have an extra ||f(x)||2 = 1 constraint which results in

uniform-scale isotropic octahedral fields over Ω. This constraint makes the problem

nonconvex, and causes the functional to diverge in the neighborhood of field singu-

larities, which are unavoidable on generic surfaces by the Poincaré-Hopf Theorem.

Accordingly, a relaxation is naturally required; we drop the constraint ‖f(x)‖2 = 1,

yielding a convex problem with globally-optimal solution. Dropping the ‖f(x)‖2 = 1

constraint allows the frame’s two tangential components to scale independently from

its normal component, resulting in anisotropic octahedral fields. We obtain octahe-

dral fields with uniform-magnitude normal-lobes, and varying scale in the magnitude

of the tangential cross field. This relaxation is similar in spirit to the one which

appears in [Knö+13] , and has similar benefits, including automatic placement of

singularities, and bounded-energy minimizers in the smooth limit (which is necessary

in order for the field to be insensitive to the underlying mesh).

2.5.1 Soft Normal Alignment

It is sometimes beneficial to relax the normal alignment constraint, e.g., in cases

where the mesh contains sliver triangles with unstable normal directions. In these

cases, a smoother cross field can be obtained by deviating slightly from exact normal

alignment. This relaxation changes the optimization problem from Equation 2.7 into
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Figure 2-6: Maximum angle deviation w.r.t. soft normal alignment

the following:
f ∗ = argmin

f

Ep(Ω, f)

subject to ‖Wn(x)f(x)− u0‖2 ≤ ϵ.

(2.8)

This problem imposes a point-wise normal alignment constraint with tolerance ϵ.

When ϵ = 0, we recover the hard normal alignment formulation Equation 2.7. On

the opposite side of the spectrum, as ϵ → ‖u0‖2 =
√

7
12
≈ 0.76, the solution to

Equation 2.8 approaches a constant octahedral field. This is the case where normal

alignment has relaxed so far that the octahedral frames are effectively unconstrained.

For values in between we perform the following experiment to obtain a rough

correspondence between soft normal alignment parameter ϵ and maximum angle de-

viation from normal alignment: For each value of ϵ between 0 and .7 (at intervals of

.05), we sample 100000 ϵ-perturbations of a ẑ−aligned frame, extract the frame they

represent, and compute its maximum angle deviation from the ẑ-axis. Results are

shown in Figure 2-6.

We highlight that this parameter encodes a point-wise constraint uniformly ap-

plied over the mesh. As such its interpretation does not change with different meshes.

The benefit of soft normal alignment is demonstrated in Figure 2-7. Due to the

influence of a sliver triangle in the buste mesh with unstable normal direction, the

hard-normal-aligned cross field is forced to create a localized artifact. By using soft
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normal alignment, the sliver triangle’s unstable normal direction has less influence

over the resulting cross field, therefore increasing the quality of the result. A similar

benefit is demonstrated on the duck and armchair meshes shown in the supplemen-

tary materials.

Additionally we test soft normal alignment on a cube-mesh with artificial noise

added in Figure 2-9. With hard normal alignment the cross fields exhibit undesirable

alignment to noise which increases with p. With soft-normal alignment, the cross

fields show significantly decreased sensitivity to noise.

2.5.2 Discretization

Now we describe how to construct smooth cross-fields by numerically optimizing a

discretization of Ep. We assume the surface Ω has been triangulated into a manifold

meshM = (V,E, F ). Let nt be the normal direction of triangle t ∈ F . We represent

a cross on M as a normally-aligned octahedral frame ft ∈ V ⊂ R9 per triangle. We

use the shorthand f to denote the concatenation of all ft into a single 9|F |×1 vector.

V is a nv×3 matrix of vertex positions, where nv is the number of vertices. E denotes

the ne × 2 matrix of edges, where ne is the number of edges. The energy Ep can be

discretized as

Ep =

(∑
e∈E

we‖ft1 − ft2‖
p
2

) 1
p

(2.9)

where t1 and t2 are triangles adjacent to edge e, and we are weights corresponding to

the dual Laplacian. We use we =
∥e∥
∥e∗∥ , where ‖e‖ is the length of edge e and ‖e∗‖ is

the distance between barycenters of t1 and t2.

For ϵ = 0, the normal alignment constraint is discretized by the linear constraint

Wf = u, where W is a sparse block-diagonal matrix with a block Wnt for each

triangle. It has dimensions 7|F | × 9|F |. The vector u is a repetition of u0 for each

triangle, resulting in a 7|F | × 1 vector. For ϵ > 0, the normal alignment constraint is

discretized by a second-order cone constraint: ‖Wntft − u0‖2 ≤ ϵ per triangle.

For the case p = 1 and a completely flat surface Ω, our discretization agrees with

the standard discretization of total variation in image processing [ROF92; Cha+10].
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(a) hard normal-aligned
streamlines

(b) hard normal-aligned
crosses

(c) mesh normal directions
near sliver triangle (zoom ×
1)

(d) soft normal-aligned
streamlines

(e) soft normal-aligned
crosses

(f) mesh normal directions
near sliver triangle (zoom ×
2)

Figure 2-7: Soft normal alignment increases quality of the cross field and decreases the
influence of mesh artifacts. The buste mesh is shown with p =∞ and varying normal
alignment: ϵ = 0 for the top figure and ϵ = 0.5 on the bottom. (a) Hard normal
aligned streamlines; (b) magnified crosses shows a small patch of diagonal crosses
in an otherwise regular region; (c) magnified triangle normals visualized with sliver
triangle 4611 shaded in blue; (d) soft normal aligned streamlines; (e) magnified crosses
no longer shows diagonal artifacts; (f) extra-magnified triangle normals visualized
with sliver triangle 4611 shaded in blue. While the normal direction of the region
points diagonally up and right, the sliver triangle’s normal direction points almost
completely to the right.
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2.5.3 Meshes with Boundary

When the mesh contains boundaries, we do not enforce any boundary conditions; in

PDE parlance, this choice corresponds to “natural boundary conditions.” While it is

tempting to expect the natural boundary conditions for p = 2 to imply zero Neumann

boundary conditions [Ste+18], the SH representation vector is complicated by being

constrained to a spatially varying linear subspace. We simply allow the cross on the

boundary to be that which minimizes total energy. If desired, one can enforce a

constraint that the cross field on the boundary be aligned to the boundary through

the method described in § 2.5.4.

2.5.4 Manual Guidance

To support manual guidance of the octahedral frame field, we can prescribe align-

ment of the frame field to streamlines. Streamline constraints combined with normal

alignment result in a fully-determined frame. Therefore, prescribing streamlines is

equivalent to prescribing the value of ft on a subset of triangles Tp. Denote the pre-

scribed octahedral frame on triangle t as Ft. We then add a new linear constraint

that

∀t ∈ Tp, ft = Ft. (2.10)

This technique is demonstrated in Figure 2-8.

2.5.5 Non-Triviality Constraint

As a result of dropping the unit-norm constraint from Equation 2.7, we have no

explicit guarantee that the tangential components of octahedral frames do not degen-

erate to zero. On a surface with a crease, however, the normal alignment constraint

on one side of the crease imposes that the magnitude of the tangential component on

the other side of the crease is close to one. As a result, we observe empirically that

the vast majority of our octahedral frames do not degenerate.

In the case that octahedral frames do degenerate significantly, their norms can
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(a) before (b) after

Figure 2-8: Octahedral fields obtained by minimizing E∞ on the hand mesh before
and after adding manual direction. The manually-added streamline is shown by the
inset black arrow. This constraint removes a singularity from the original octahedral
field.

be too small to project robustly. We locate these by using the octahedral projection

from [PBS19] to measure the distance from ft to the octahedral variety V : d(ft) =

‖πV(ft)−ft‖2, and thresholding by d(ft) > .665. If such frames are found, we run the

optimization again while holding non-degenerate frames to their projected values. In

our experiments, just one round of re-solving results in 99.8% non-degenerate frames.

2.5.6 Solving For an Octahedral Field

In its most general form, our problem formulation consists of minimizing a mixed-

norm objective, with both linear and second-order cone constraints. This results in a

convex problem that we solve with Mosek 9 to global optimality [ApS17]. The normal

alignment constraint becomes
[
ϵ, (Wntft − u0)

T
]
∈ L8, where L8 is the 8-dimensional

Lorentz cone. Likewise, the energy is formulated using a single p-norm cone. Our

code is written in Matlab with a mex interface to Mosek; it builds cross-platform.

Since our problem is convex, any dependence on initialization would entirely be due

to non-unique solutions, which we do not observe in practice. Furthermore, we use
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the interior point method, which does not require or accept manual initialization. In

the specific case of ϵ = 0, p = 2, solving this optimization is equivalent to solving a

linear system.

2.6 Results

We begin with a comparison of the behavior of our energy for different values of p.

This experiment is depicted in Figure 2-11. We observe that our cross fields naturally

align to features with increasing strength for higher p. In the case p = 1, our cross

field is discontinuous over all creases, but while it is provably incentivized to align, it

sometimes deviates due to the influence of neighboring creases, e.g. on the top surface

of the fandisk. For p = 2, our cross fields achieve close alignment to the upper half of

the shallow crease, as well as alignment on the top face where the p = 1 case failed.

Finally for p = ∞ our fields align down the entirety of the shallow crease. While

in theory, Ep for p ≥ 2 diverges on creases, we observe that its discretization yields

empirically strong crease alignment. This may be due to application of Proposition 3

over all edges of the mesh. We show our fields for different discretizations of the same

geometry in Figure 2-12 and observe that in all cases, we achieve crease alignment.

Supplementary Materials In our supplementary document we perform an empirical

study to evaluate the performance of our method. We evaluate our method on a

number of models drawn from the Thingi10k [ZJ16] dataset, as well as a number of

other commonly used benchmark models to demonstrate effective crease alignment

on real-world models. We also compare our approach to several baseline methods

([Jak+15; Bra+18; Knö+13]), by generating fields on the models in the “Robust Field-

Aligned Global Parametrization” dataset [MPZ14], taking care to sample the relevant

parameter space for each formulation. While it is difficult to precisely quantify the

quality of a vector field, we highlight a number of cases where our method recovers

fields which more faithfully conform to mesh features than baseline methods on real-

world models.
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Number of Bases Biharmonic Instant Globally Ours
triangles setup solve meshes optimal

3K 5 .005 .026 .85 2.8
12K 24 .005 .053 20.46 15.058
20K 44 .005 .080 21.913 25.895
69K 170 .006 .141 62.733 135.09
80K 181 .006 .222 71.15 112.3

Table 2.1: Runtimes in seconds for computing cross-fields using different methods on
meshes with a varying number of triangles. Methods listed are those of Brandt et al.
[Bra+18], Jakob et al. [Jak+15], Knöppel et al. [Knö+13], and our own. Runtimes for
fields from [Bra+18] are split into time needed for the setup of 500 bases eigenfields
and the field computation separately because of drastically differing timescales.

Our runtimes are shown for a set of meshes with 240 to 76K vertices and 480 to

152K faces in Figure 2-15. Runtimes naturally increase with mesh size and appear to

grow linearly with number of triangles in our mesh test set. Memory costs are incurred

to store aWnt per triangle, a single u0, we per edge, and ft per triangle. Hence, storage

is linear in size of the mesh. More detailed information regarding parameter choices

and runtimes is provided in the supplementary materials. Table 2.1 shows a summary

of our runtimes in comparison to that of other methods. Our runtimes are on the

same scale as [Knö+13] and to the bases setup step in [Bra+18].

Comparison to Explicit Feature Curves. Next, we compare our feature-aligned cross

fields to those produced with the help of explicitly-computed feature curves. We

obtain feature curves on the 1904-triangle Moai mesh from [GLK16, Fig. 9]. We

compute a cross field with additional hard constraints as described in § 2.5.4 to enforce

alignment to the precomputed feature curves. We compare the resulting field with

and without explicit feature-curve alignment in Figure 2-13. While the feature curves

help guide the cross field, just a few artifacts in the computed features drastically

influence the resulting cross field to have more singularities and be less smooth without

clear benefit. The Moai is shown from an angle where these differences are most

pronounced.
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Effect of Mesh Resolution on Crease-Alignment vs Extrinsic Curvature. In this ex-

periment we test on a geometry where a sharp crease is mis-aligned to extrinsic cur-

vature directions. We generate meshes of this geometry at varying resolution to see

how crease-alignment interacts with extrinsic curvature. Results of this experiment

are depicted in Figure 2-10. As mesh resolution increases our cross fields become

crease-aligned and intrinsically smooth, agreeing with the theory. For very low mesh

resolution, the cross fields are more sensitive to the underlying meshing pattern.

Comparison to 3D Octahedral Fields. Due to similarity of frame representation,

we compare our method to surface cross fields obtained by optimizing a volumetric

octahedral field. Algorithms like those of [Hua+11; RSL16] can generate surface

cross fields by approximating the surface with the limiting behavior of a thin layer of

tetrahedra or prism elements. However, prism elements are non-standard and both

element types will be poorly conditioned without introducing further restrictions such

as zero normal gradient to mimic a triangle mesh. We instead opt to compare with the

Boundary Element Method (BEM) [SVB17] which acts directly on surface triangle

meshes. We use the 2500 triangle fandisk mesh for this comparison. As observed

earlier, our method has increasing feature alignment with increased values of p. In

comparison, Figure 2-14 shows that the BEM field fully ignores the shallow crease of

the fandisk, running through it at a 45◦ offset. Moreover, despite the fact that the

BEM only needs boundary data as input, its runtime is close to 50 times slower than

ours.

Challenging Test Cases We compare feature alignment of our cross fields with that

of existing methods on several meshes illustrative examples in Figure 2-16. As

pointed out in the introduction, a key advantage of our technique is that it recov-

ers crease aligned fields on models whose maximal curvature directions disagree with

their creases. This occurs naturally when models are specified by the intersections

of developable patches, a very common primitive in CAD tools. We introduce two

benchmark models for testing crease alignment when creases disagree with intrinsic
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notions of curvature. The three-cylinder-intersection mesh is composed of 12

quadrilateral patches where each patch is a subset of a cylinder and has maximal

curvature directions making π
4
angles with its boundary creases. The wavey-box

example has the same creases as a standard cube, with the modification that each

of its faces has a sine wave ripple running diagonally through it. These two cases

are shown in Figure 2-2. The fandisk mesh is another example of a challenging case

for feature-alignment due to its shallow crease with strong non-aligning neighbor-

ing creases which is representative of one way that such features arise in real-world

models.

Our cross fields on these test cases are shown in Figure 2-16. We observe proper

feature alignment in our fields and while other methods can sometimes be tuned per

model to achieve the same feature alignment, there is no choice of parameters that

worked on all test cases. In particular:

• fields from [Jak+15] are distracted by extrinsic curvature on the three-cylinder-

intersection and entirely pave over the shallow crease of the fandisk. Their

results on wavey-box, and wedge are successfully aligned to the creases.;

• fields from [Bra+18] are challenging to tune with λ representing alignment to a

guiding extrinsic curvature field. We show their method for the biharmonic energy

(m = 2) as a point of contrast to Dirichlet energy. We choose two values of λ,

λ = −.0001 for slight extrinsic curvature alignment, and λ = −.1 for stronger

extrinsic curvature alignment. Their fields are unable to align to features of the

three-cylinder-intersection in both cases, and specifically for λ = −.1 the field

strongly aligns to noise on the flat upper face of the fandisk mesh. Their fields

are successfully crease-aligned for the wedge mesh;

• we compare against both the anti-holomorphic and Dirichlet energies of [Knö+13]

with the curvature alignment parameter λ set to −0.1. This results in good align-

ment on the three-cylinder-intersection, but noisy or unaligned fields for the

remaining test cases.
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In contrast, our method for p = 2 achieves feature alignment on all test cases without

unnecessary discontinuities in the field over flat faces.

Quad Meshing Feature alignment is especially important when using cross fields

to guide high-fidelity quad meshing. We generate quad meshes using [CBK15] to

parameterize our cross fields. We compare against a standard quad meshing pipeline

using cross fields from [BZK09] and [CBK15] for parameterization. We also test

against parameterization by [Cam+16], which introduces extra guidance to encourage

extrinsic curvature alignment.

For the fandisk mesh prior methods generate quad meshes that are influenced by

the shallow crease, but do not manage to capture it sharply (see Figure 2-17). We

observe that by placing singularities near the shallow crease of the fandisk, our quad

meshes manage to align much more sharply. The quad mesh generated by minimizing

E∞ aligns even better than for E2.

We also compare quad meshes generated from our cross fields against the prior art

on the anchor, spot, moomoo, and three-cylinder-intersection meshes. These

results are shown in Figure 2-18. We observe generally better alignment in the quad

meshes generated from our method. By placing singularities on the cylindrical region

of the anchor, our quad meshing manages to align better to its creases. On the

spot mesh we see a straighter connection between the ear and the head. For the

three-cylinder-intersection, the quad mesh generated from our fields clearly align

better. Since the moomoo is a relatively smooth mesh, we do not see particularly

defining differences in quality.

2.7 Discussion

Feature alignment is a desirable property in many geometry processing applications.

In the context of cross fields and remeshing, we consider features to be creases where

the surface changes non-smoothly. Quality of feature detection and alignment can

significantly impact quality of the remeshing and the usefulness of the resulting cross
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fields. While significant effort has been put into extrinsic alignment of cross fields to

curvature directions, they are not always appropriate substitutes for crease alignment.

By specifically targeting discontinuities of the surface we have created a new class of

octahedral frame field energies parameterized by p ≥ 1 for computing crease-aligned

cross fields on surfaces. The resulting fields are intrinsically smooth over smooth

surfaces, and can be used for crease-aligned quad meshing. Moreover, alignment is

fully automatic and does not rely on explicit extraction of feature curves, itself an

open problem and active area of research.

We find the behavior of Ep for p ≥ 2 over creases of a discretization to be an

interesting point for further exploration since all practical computations on surfaces

are necessarily discrete and we observe strong feature alignment, despite the problem

being ill-posed in the smooth setting. Theoretical analysis of anisotropic normally-

aligned octahedral frame fields combined with Proposition 3 may be able to explain

this behavior. Since all edges of a mesh are creases of a piecewise linear domain, the

behavior of geometry processing algorithms on creased domains merits further study.

There are also further extensions of soft-normal-aligned octahedral frame fields.

While in this paper we fix ϵ as a single parameter per mesh, it could also be defined

as a scalar field representing “trust” in the quality of a mesh. It would be interesting

to explore a spatially-varying ϵ dependent on triangle quality or other metrics in

the future. If we treat the mesh itself as variables, soft normal alignment enables a

surface flow towards meshes with lower cross-field energy. Our analysis can be further

extended to SH representations of n-RoSy fields or even platonic solid symmetries

[She+16].

Even without these extensions, our method provides a practical solution to a

challenging problem. By pairing a new representation of cross fields with convex

relaxation we achieve crease-aligned cross fields on surfaces.
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2.8 Appendix: Proofs

2.8.1 Proof of Proposition 1

We carry over assumptions §4.1. While Equation (2.3) parameterizes the octahedral

field by a single axis-angle rotation v(r) per point r ∈ Ω, for the case of a surface, it

is more intuitive to decompose v(r) into two rotations, one that accounts for intrinsic

twisting, and one that accounts for the change in normal direction of the surface.

First, we set a local parametrization of the embedding, via exp|r∗ : Tr∗Ω → Ω.

WLOG, we set coordinates (µ, ν) on Tr∗Ω such that axes µ and ν align with principal

curvature directions (with r∗ = (0, 0) of course).

We split v(µ, ν) into one rotation about the normal direction ẑ by an angle amount

t(µ, ν), and a second rotation about a vector k(µ, ν) = ẑ× n̂(µ, ν) by angle arccos(ẑ ·

n̂(µ, ν)). Note that this means k(µ, ν)z = 0. We can re-express g(µ, ν) as the following

g(µ, ν) = ek(µ,ν)·Le[0,0,t(µ,ν)]·Lg(r∗).

This can be interpreted as first applying a twisting rotation about the normal, followed

by a normal adjustment rotation. This implies that similar to v(µ, ν), k(r∗) = [0, 0, 0]

and t(r∗) = 0 as well. For shorthand, let w(µ, ν) = k(µ, ν) + [0, 0, t(µ, ν)].

We can derive a very similar result to Equation (2.3) with the following changes.

∇g(µ, ν)|r∗ =


| | |

Lxg(r
∗) Lyg(r

∗) Lzg(r
∗)

| | |



| |

∇µw ∇νw

| |


r∗

(2.11)

This implies that our quantity of interest the squared norm ‖∇g(µ, ν)‖2 at r∗ is

∥∇g(µ, ν)∥2 = Tr




| |

∇µw ∇νw

| |


T

20

3
I3


| |

∇µw ∇νw

| |




=
20

3
Tr

[
(∇w)T∇w

]
(2.12)
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The 20
3
I3 comes from the fact that gLT

i Ljg = 20
3
δij for i, j ∈ x, y, z and any g ∈

V [PBS19, Equation 3] . We now expand the expression ‖∇w(µ, ν)‖2F as |∇k(µ, ν)x|22+

|∇k(µ, ν)y|22 + |∇t(µ, ν)|22.

Since k(µ, ν) is an axis-angle rotation describing the change in normal from n̂(r∗)

to n̂(µ, ν), we recognize its relationship to the principal curvatures. As µ and ν were

chosen to align with principal curvature directions, ∂kx
∂µ

= 0, ∂ky
∂ν

= 0, ∂kx
∂ν

= k1,
∂ky
∂µ

= k2, where k1 and k2 are the principal curvatures of Ω at r∗. Finally denote tµ

and tν to be ∂t
∂µ

and ∂t
∂ν

respectively. We are left with ‖∇g(µ, ν)‖2F = k2
1 + k2

2 + t2µ+ t2ν .

Substituting in w for t2µ + t2ν , and re-expressing with Gauss and mean curvatures,

K and H, we obtain

‖∇g(µ, ν)‖2F = k2
1 + k2

2 + w = 2H2 −K + w.

Recall that t(r∗) = 0. This motivates our view of w as tangential intrinsic twisting.

2.8.2 Proof of Proposition 2

For more compact notation, let Φ := {ϕ | ∀x|ϕ(x)|F ≤ 1, ϕ ∈ C1
c }. Starting from

Equation (2), we may split the term into integrals over the patches Ωj:

V TV [f ] = sup
Φ

m∑
i=1

∫
Ω

fi∇ · ϕi

= sup
Φ

m∑
i=1

n∑
j=1

∫
Ωj

f̃ j
i∇ · ϕi

= sup
Φ

m∑
i=1

n∑
j=1

(∫
∂Ωj

f̃ j
i ϕi · n̂−

∫
Ω̊j

∇fi · ϕi

)

= sup
Φ

n∑
j=1

((
m∑
i=1

∫
∂Ωj

f̃ j
i ϕi · n̂

)
−

(
m∑
i=1

∫
Ω̊j

∇fi · ϕi

))
.

Here, we’ve applied integration-by-parts and Stokes’ theorem, and switched sum or-

ders for simpler argument below.

Let us consider the pointwise maxima over Ω for the integrands. For the in-
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tegrals over Ω̊j, they are maximized for ϕ set to the negated, normalized ∇f =

(∇f1, . . . ,∇fm)T . This results in an integrand value of |∇f |F pointwise.

The integrals over ∂Ωj may be considered as integrals over Γ, the curve network

separating the patches Ω̊j. For all but a finite set, points of Γ lie on the interior

of a curve γk and separate the neighborhood into patches. For each γk, choose one

patch and let f+ denote the limiting value from this side, and let f− denote the other

limiting value. The maximizing ϕ will be such that ϕi = ((f+ − f−)i/|f+ − f−|2) n̂+

where n̂+ is the unit normal to the + patch. This results in an net integrand value

of |f+ − f−|2 once over the total curve network Γ.

The final step is to construct a sequence of differentiable ϕ’s that converge point-

wise to these optimal values, achieving the maximum in the limit and proving our

theorem. This can be done with partitions of unity, subordinate to a constructed cover.

For simplicity, we assume that ∇f 6= 0 on Ω̊j and f+−f− 6= 0 on γk. In this case, con-

sider an ϵ > 0 and the open cover consisting of n sets U ϵ
j := {x|x ∈ Ωj, d(x, ∂Ωj) > ϵ}

and s sets V ϵ
k := {x|d(x, γk) < 2ϵ}.

On the sets U ϵ
j , we multiply the associated partition function by the negated

normalized ∇f . On the sets V ϵ
k , we multiply the associated partition function by any

differentiable extension of ϕ|γk = (. . . , ϕi, . . .) where ϕi = ((f+ − f−)i/|f+ − f−|2) n̂+.

The sum of these is a differentiable ϕ that approaches the pointwise maximizers as

ϵ→ 0. In the case when ∇f or f+−f− vanishes, note that the value of ϕ is irrelevant

at those points, and a slight modification of this argument with additional open covers

(about the vanishing regions) will provide the result.

2.8.3 Proof for Proposition 3

First we derive an expression for difference between two normally aligned octahe-

dral frames f0 and f1 across a crease. Let f0 be the canonical frame, and f1 =

eb[cosa,sina,0]·LetLzf0. The angle t represents an initial twist in the ẑ direction, and the

angle b represents a bend across a crease in the xy-plane. The crease direction is de-

scribed by angle a relative to x̂. The difference between these two octahedral frames

is then E(a, b, t) = |f0 − eb[cosa,sina,0]·LetLzf0|22.
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Consider the case where a = 0, we can interpret f0 as an octahedral frame aligned

to the normal ẑ and the crease direction x̂. f1 is then the octahedral frame on the

other side of a crease of angle π − b. t describes how misaligned f1 is to the crease

direction x̂. The cost of deviating from crease-alignment is then E(0, b, t)−E(0, b, 0).

Now consider cases where a 6= 0. Since a describes the direction of the crease, its

deviation from 0 corresponds to deviation of f0 from crease alignment. To prove that

cost is minimized by crease alignment, it suffices to show that E(a, b, t)−E(0, b, 0) is

non-negative for all values of a,b, and t.

We will first derive an expression for E(a, b, t) without matrix exponentials and

then use Mathematica code in § 2.8.4 to prove

E(0, b, t)− E(0, b, 0) =
5

24
(7 + cos 4b) sin2 2t ≥ 0,

and that E(a, b, t)−E(0, b, 0) is non-negative for all values of a, b, and t. The reason

we need to first derive a form without matrix exponentials is so that Mathematica

has an easier time manipulating our equations of interest. With matrix exponentials,

Mathematica often hangs and is unable to output a result.

The derivation for an expression for E(a, b, t) without matrix exponentials is as

follows. First we split an octahedral frame f0 into its three lobes. f0 = lx + ly + lz,

where lz = [0, 0, 0, 0,
√

7
12
, 0, 0, 0, 0], lx = e

π
2
Lxlz and ly = e

π
2
Ly lz. We can therefore

compute E(a, b, t) as follows.

E(a, b, t) = |f0 − eb[cosa,sina,0]·LetLzf0|22

= |(lx + ly + lz)− eb[cosa,sina,0]·LetLz(lx + ly + lz)|22

Denote the rotation eb[cosa,sina,0]·LetLz by R(a, b, t). This results in

E(a, b, t) = |(lx + ly + lz)−R(a, b, t)lx −R(a, b, t)ly −R(a, b, t)lz)|22

= |lx + ly + lz −R(a, b, t)lx −R(a, b, t)ly −R(a, b, t)lz)|22

The above expression is be composed of many terms of the following two forms

lTd1R(a, b, t)ld2 for d ∈ {x, y, z} and |ld1−R(a, b, t)ld2 |. Note that both these expressions
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are variables depending on the angle between two lobes. We therefore compute |lv1 −

lv2 |22 and lTv1lv2 in Mathematica, where lv is a lobe oriented in the v direction as a

function of the angle θ between v1, v2. We obtain

|lv1 − lv2 |22 =
5

42
(9 + 7cos2θ)sin2θ

and

lTv1lv2 =
1

336
(9 + 20cos2θ + 35cos4θ).

In the notebook these are denoted by “d2t[a]” and “kt[a]” respectively, where “a” in

the notebook represents θ. Finally we substitute these terms into E(a, b, t). The final

expression is derived by the Mathematica code in § 2.8.4.

2.8.4 Feature Alignment Proof Notebook

In[60]:= (*First we set up the E(a,b,t) function using helpers d2t \

and kt. d2t is |l1-l2|^2 and kt is l1'l2*)

In[61]:= n = {0, 0, 1}; t1 = {1, 0, 0}; t2 = {0, 1, 0};

R12 = {{0, -1, 0}, {1, 0, 0}, {0, 0, 1}}; Rn1 = {{0, 0, 1}, {0, 1,

0}, {-1, 0, 0}}; Rn2 = {{1, 0, 0}, {0, 0, 1}, {0, -1, 0}};

d2t[theta_] := 35/96*(9 + 7*Cos[2*theta])*Sin[theta]^2*(16/49);

kt[theta_] := 7/768*(9 + 20*Cos[2*theta] + 35*Cos[4*theta])*(16/49);

v2r[v_] :=

MatrixExp[{{0, -v[[3]], v[[2]]}, {v[[3]], 0, -v[[1]]}, {-v[[2]],

v[[1]], 0}}];

R[eangle_, bend_, twist_] :=
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FullSimplify[

ComplexExpand[

v2r[(Cos[eangle]*t1 + Sin[eangle]*t2)*bend].v2r[n*twist]]];

R2A[R_] := ArcCos[(Simplify[TrigExpand[Tr[R]]] - 1)/2];

Energy[R_] :=

d2t[ArcCos[t1.R.t1]] + d2t[ArcCos[t2.R.t2]] + d2t[ArcCos[n.R.n]] +

12*kt[Pi/2] - 2*kt[ArcCos[t1.R.R12.t1]] -

2*kt[ArcCos[t2.R.Transpose[R12].t2]] - 2*kt[ArcCos[n.R.Rn1.n]] -

2*kt[ArcCos[n.R.Rn2.n]] - 2*kt[ArcCos[t1.R.Transpose[Rn1].t1]] -

2*kt[ArcCos[t2.R.Transpose[Rn2].t2]];

Energy[eangle_, bend_, twist_] :=

Simplify[TrigExpand[Energy[R[eangle, bend, twist]]]];

In[70]:= (*Final expression of the energy*)

In[71]:= Energy[a, b, t]

Out[71]= -(1/1536)

5 (-564 + 84 Cos[4 a] - 56 Cos[4 a - 2 b] + 14 Cos[4 (a - b)] +

112 Cos[2 b] + 196 Cos[4 b] + 14 Cos[4 (a + b)] -

56 Cos[2 (2 a + b)] + 70 Cos[8 a - 4 t] -

8 Cos[8 a - 3 b - 4 t] - 56 Cos[4 a - 2 b - 4 t] +

28 Cos[8 a - 2 b - 4 t] - 56 Cos[8 a - b - 4 t] +

56 Cos[b - 4 t] - 56 Cos[8 a + b - 4 t] + 8 Cos[3 b - 4 t] -

8 Cos[8 a + 3 b - 4 t] + 28 Cos[2 (b - 2 t)] -

56 Cos[2 (2 a + b - 2 t)] + 28 Cos[2 (4 a + b - 2 t)] +

84 Cos[4 (a - t)] + 14 Cos[4 (a - b - t)] + Cos[4 (b - t)] +
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14 Cos[4 (a + b - t)] + Cos[4 (2 a + b - t)] + 70 Cos[4 t] +

Cos[4 (b + t)] + 28 Cos[2 (b + 2 t)] + 56 Cos[b + 4 t] +

8 Cos[3 b + 4 t] + Cos[8 a - 4 (b + t)])

In[72]:= (*This is the one-sided cost of deviating from \

crease-alignment*)

In[73]:= ECt = Energy[0, b, t] - Energy[0, b, 0] // Simplify

Out[73]= 5/24 (7 + Cos[4 b]) Sin[2 t]^2

In[74]:= (* We look for and find no solutions where E(a,b,t)-E(0,b,0) \

is negative *)

In[75]:= diff = Energy[a, b, t] - Energy[0, b, 0];

diffSimp = diff // FullSimplify;

Solve[diffSimp < 0, {a, b, t}]

{}
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2.8.5 Angular Momentum Operators

Lx =
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Ly =



0
√
2 0 0 0 0 0 0 0

−
√
2 0

√
7
2

0 0 0 0 0 0

0 −
√

7
2

0 3√
2

0 0 0 0 0

0 0 − 3√
2

0 0 0 0 0 0

0 0 0 0 0 −
√
10 0 0 0

0 0 0 0
√
10 0 − 3√

2
0 0

0 0 0 0 0 3√
2

0 −
√

7
2

0

0 0 0 0 0 0
√

7
2

0 −
√
2

0 0 0 0 0 0 0
√
2 0



Lz =



0 0 0 0 0 0 0 0 4
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0 0 0 0 0 0 0 0 0
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−4 0 0 0 0 0 0 0 0
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p = 2, ϵ = 0 p = 3, ϵ = 0 p = 6, ϵ = 0 p = 8, ϵ = 0

p = 2, ϵ = .2 p = 3, ϵ = .2 p = 6, ϵ = .2 p = 8, ϵ = .2

p = 2, ϵ = .525 p = 3, ϵ = .525 p = 6, ϵ = .525 p = 8, ϵ = .525

p = 2, ϵ = .55 p = 3, ϵ = .55 p = 6, ϵ = .55 p = 8, ϵ = .55

Figure 2-9: As ϵ increases or as p decreases, the cross fields become less sensitive to
noise added to the cube-mesh.
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Figure 2-10: On this developable surface, our cross fields are intrinsically smooth in
the limit of refinement, but exhibit some mesh sensitivity on coarse meshes, particu-
larly for higher p values. They are crease-aligned for all resolutions. Note that the
extrinsic curvature of the cylindrical bend has no effect on the cross fields at higher
resolutions.

(a) Fandisk mesh (b) p = 1 (c) p = 2 (d) p =∞

Figure 2-11: Cross fields generated by minimizing Ep for p = 1, 2,∞ on the fandisk
mesh. The shallow crease of the fandisk mesh is marked in red. Our cross fields
naturally align to the shallow crease with increasing strength for higher p.
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(a) 1.3k (b) 5.4k (c) 21.8k (d) 11.6k (e) Multires

Figure 2-12: Cross fields generated by minimizing E2 on different meshings of the
three-cylinder-intersection with number of faces indicated. Cross field (d) is com-
puted on the multi-resolution mesh (e). Notice that we obtain the same feature-
aligned cross field each time.

(a) Moai and explicit fea-
ture curves(red edges)

(b) Explicit Feature Curve
Alignment: p = 2, ϵ = 0

(c) Our method: p = 2, ϵ =
0

Figure 2-13: Comparison of our feature-aligned cross fields to those generated when
adding additional explicit feature curve alignment constraints. Explicit feature curves
were obtained from [GLK16, Fig. 9] Despite the extra cost of precomputing explicit
feature curves, slight artifacts in the feature curves (most pronounced on the side)
force the explicitly guided cross field to have lower quality.

(a) Ours p = 2, ϵ = 0: 3.9s (b) Ours p =∞, ϵ = 0: 3.5s (c) BEM: 161s

Figure 2-14: Cross field and runtime comparison of our method to a method optimiz-
ing volumetric octahedral frames [SVB17]. The fandisk used contains 2.5k triangles.
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Figure 2-15: Runtimes to compute cross fields over various mesh sizes.

(a) Ours p =
2

(b) [Jak+15] (c) [Bra+18]
λ = −.1 Bi-
harmonic

(d) [Bra+18]
λ = −.0001
Biharmonic

(e) [Knö+13]
λ = −.1 A-
holomorphic

(f) [Knö+13]
λ = −.1
Dirichlet

Figure 2-16: Various cross field methods compared on several meshes with complex
features and geometry. We test on the three-cylinder-intersection, wavey-box, wedge,
and fandisk meshes and compare against the following works: [Jak+15; Bra+18;
Knö+13] with various parameters. We use normal aligned octahedral fields generated
by minimizing E2. We achieve crease-alignment on all test cases where other methods
succeed sporadically.
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(a) E2 (b) E∞ (c) QGP (d) Curvature filter

Figure 2-17: Quad meshes of the fandisk mesh generated using cross fields from
E2, E∞, MIQ + QGP [CBK15], and MIQ + Curvature filter [Cam+16] respectively.
Our methods achieve sharp alignment to the shallow crease with increased depth for
higher p. Alternative methods are influenced by the crease only to a shallower extent.

(a) Anchor Mesh with
E2

(b) Anchor Mesh with
[BZK09; CBK15]

(c) Spot Mesh with E2 (d) Spot Mesh with
[BZK09; CBK15]

(e) Moomoo Mesh
with E2

(f) Moomoo Mesh
with [BZK09;
CBK15]

(g) 3 Cylinder Inter-
section with E2

(h) 3 Cylinder Inter-
section with [BZK09;
CBK15]

Figure 2-18: Quad meshes of the anchor, spot, moomoo, and three-cylinder-
intersection meshes. We compare quad meshes generated using cross fields from
our E2 energy with quad meshes generated through [CBK15] and [BZK09]. Our
methods achieve sharper feature alignment on the anchor, spot (on the ear), and
three-cylinder-intersection meshes.

51



3

Hexahedral Quality Enhancement with

Variable Augmentation

This chapter is based on work in [Zha+23] and focuses on topological modifications

of hexahedral meshes. The introduction has been re-arranged to emphasize mesh

quality and how it is affected by singularities. A greater emphasis is also put on

the interpretation of sheet inflation as variable augmentation in the scaled Jacobian

optimization. Lastly, we extrapolate from our new understanding of the formation of

singular nodes to infer that Dirichlet energy is a poor objective function for octahedral

field computation.

3.1 Introduction

Hexahedral (hex) meshing is a long studied topic in geometry processing with many

challenging associated problems. In essence, the goal is to tessellate a volume with

minimally distorted cubes (hexahedra). This distortion is scored by a geometric

measure, the scaled Jacobian [Qua21]. On the topological side, hex meshes can vary

from structured to unstructured. Fully structured meshes require that all interior

mesh edges be adjacent to four hexes each. Edges failing this criteria are singular and

indicate an unstructured hex mesh. Singular edges join together into singular curves

that can collide to form singular nodes, a complex junction of multiple singular curves.
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Unsurprisingly, the topology and geometry of hex meshes are intertwined; Hex meshes

with more complex singular nodes are forced to have more distorted elements with

smaller scaled Jacobian scores.

In this chapter, we study topological modifications of hex meshes to increase the

scaled Jacobian. We find that the prescence of singular nodes significantly hinders the

quality of a hex mesh. Fortuitously, we discover that all eight of the most common

singular nodes are also decomposable into just singular curves through topological

modifications of the mesh. We further show that all singular nodes, regardless of edge

valence, are locally decomposable. Finally we demonstrate these decompositions on

hex meshes, thereby decreasing their distortion and converting all singular nodes into

singular curves. With this decomposition, the enigmatic complexity of 3D singular

nodes becomes effectively 2D.

Our contributions are as follows:

• We show by construction that all eight of the most practically relevant singular

nodes are decomposable into just singular curves.

• We show that all singular nodes, regardless of valence, are locally decomposable.

• We apply our decompositions to hex meshes demonstrating that entire singular

graphs can be separated into independent singular curves.

• We leverage these topological decompositions to increase the geometric quality of

hexahedral meshes

3.2 Preliminaries

Our exploration of singular nodes is motivated by the following question. What if

a singular node is formed when singular curves just barely graze each other as they

pass by? If that were the case, then we could separate the curves with a sheet and

increase its thickness to force the curves away from each other, thereby unmaking the

singular node. To formalize this idea, we begin with the following definitions.
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3.2.1 Singular Vertices, Curves, and Nodes

We denote a hex mesh as {V ,H} where V is a list of vertices embedding the mesh

and H is a list of hexes of the mesh. Let F denote the quadrilateral faces of the mesh,

E denote the edges of the mesh, and deg(e ∈ E) denote the number of hexes adjacent

to edge e, i.e., its degree or valence. A regular edge is an interior edge e satisfying

deg(e) = 4. All other interior edges are singular edges. We will not address cases

where deg(e) ≤ 2 since these are not typically accepted as valid hex meshes. We

will also not consider singular boundary edges in this paper but refer the interested

reader to [Liu+18] for the corresponding definition. For our purposes, one can ignore

boundary singularities or push them all to the interior by adding one layer of padding

to the hex mesh boundary. A singular vertex is a vertex of the mesh that is adjacent

to any singular edge. A singular node is a vertex of the mesh that is adjacent to more

than two singular edges. A singular curve is an alternating sequence of singular edges

and singular vertices that either forms closed cycles or, ends at a boundary vertex

or a singular node. Note that we have deviated from the language of [Liu+18] by

distinguishing singular nodes from singular vertices. Singular nodes are reserved for

the junctions of multiple singular curves and will be the primary focus of this work.

Figure 3-1 depicts a summary of this terminology.

For a singular node v ∈ V , let T (v) be the triangle mesh in bijection with that

node according to [NRP11b]. This bijection is formed by intersecting the singular

node of the hex mesh with an infinitesimally small sphere. Since the intersection of

a corner of a hex with a sphere forms a triangle, the hexes adjacent to the singular

node partition the sphere into triangular regions thus forming a sphere triangulation.

Triangulations formed this way are naturally regular i.e. they contain no loop edges

or multi-edges. This is depicted on the right of Figure 3-1. The sphere triangulation

encodes the singular node type. Two isomorphic sphere triangulations encode singular

nodes of the same type. The signature of a singular node is a list of numbers indicating

how many of its adjacent singular edges are of each degree. Since singular edges have

degree 3 or higher, the signature of a node starts with the number of edges with
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Singular curve

Singular node

Singular vertices

Figure 3-1: (Left) We show the singular graph of a hex mesh of a sphere. Singular
edges are red, singular nodes are large black circles and singular vertices are small blue
vertices. (Right) A close-up view of one singular node. Faces adjacent to the singular
node are displayed in purple. A yellow sphere is overlayed on top of the singular node.
Its intersection with the hex mesh partitions the sphere into triangular regions thus
forming a sphere triangulation.
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Figure 3-2: (Left) Red quads indicate a sheet inside of a hex mesh of an ellipsoid.
Red curves depict the singular graph of that ellipsoid. The sheet is manifold with
boundary on the boundary of the hex mesh. (Right) Blue quads indicate all faces of
the inflated sheet.

degree 3. For singular nodes whose adjacent singular edges have only valence 3, 4, or

5, the signature uniquely identifies the singular node type [Liu+18]. For this reason

we identify singular nodes by their signature e.g. (4, 0, 0) is the signature identifying

the singular node type generated by subdividing a single tetrahedron into four hexes

as illustrated in the first image of Figure 3-4.

3.2.2 Sheet Inflation

Let a sheet Q ⊂ F be a manifold quad mesh whose boundary is a subset of the

boundary of H. A sheet inflation of Q is a mesh modifying operation by which each

q ∈ Q is inflated from a 2D quad face to a hex element [LS10]. One such sheet inflation

is depicted in Figure 3-2. If the inflated sheet passes through a singular node, the

singular type of that node may change. One can interpret this as the sheet slipping

through an infinitesimally small gap between singular curves and forcing them apart,

or alternatively as cutting a singular node into separate pieces.
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Figure 3-3: (Left) The yellow sphere triangulation indicates the structure of a singular
node. Red quads indicate a sheet intersecting the singular node. The sheet intersects
the sphere triangulation on a cycle of red curves that divide the sphere triangulation
into two disks. (Right) Two singular nodes are visualized post sheet inflation with
their sphere triangulations. Blue quad faces are newly created faces from the inflation.
Blue edges indicate newly created edges in each sphere triangulation.

3.2.3 Effect of Sheet Inflation on T (v)

As singular nodes are often represented and visualized as sphere triangulations we

describe here how sheet inflation through a singular node corresponds to a splitting

of the sphere triangulation. This splitting is illustrated by Figure 3-3. Given a sheet

Q ⊂ F passing through singular node v, the faces of Q adjacent to v correspond

to edges of T (v). These edges trace out a cycle in the graph of T (v) partitioning

the sphere into two disk triangulations D1 and D2. When the sheet is inflated into

a layer of hexes, D1 and D2 are separated. Each disk is restored back into sphere

triangulations by attaching triangles from the boundary of each disk to a respective

new vertex. The end result is two sphere triangulations one built from D1 and one

built from D2. These sphere triangulations track the modifications to v on either side

of the inflated sheet and are both regular since they are still in bijection with hex

mesh nodes.
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3.3 Singular Node Decomposition (Valences 3, 4,

and 5)

We are now equipped with the mechanism by which all practically relevant singular

nodes are decomposed into singular curves. These nodes are enumerated in [Liu+18,

Figure 6] and will also be shown at the beginning of each respective decomposition.

Various singular decompositions will be depicted throughout the remainder of this

paper. Valence 3 singular curves will be red, valence 5 singular curves will be green

and higher valence singular curves will be blue. We omit drawing interior regular

edges to minimize visual clutter.

In the first row of Figure 3-4 we start with the (4,0,0) singular node, which consists

of four valence 3 singular curves joined at a junction. With a single sheet inflation,

this singular node is revealed to actually be two valence 3 singular curves that pass

each other transversally. A similar theme follows for (2,2,2) in the second row which

is revealed to be a valence 3 and a valence 5 singular curve passing each other transver-

sally. Finally in the third row, the (0,4,4) node decomposes into two valence 5 singular

curves passing each other transversally.

From these three examples, it is tempting to think all singular nodes may consist

of singular curves glued together transversally. One might conclude as well that the

number of singular curves of a particular valence meeting at a singular node from

this construction must be even. The (1, 3, 3) singular node, shown in Figure 3-5,

presents a curious counterexample. Since it consists of one valence 3 singular curve

and three valence 5 singular curves, it is impossible to decompose this node into just

two singular curves passing each other transversally in a valid hex mesh.

This conundrum is resolved by realizing that one of the regular edges adjacent

to this singular node is actually a pair of valence 3 and valence 5 singular curves,

glued together in parallel. Another way to understand this node is that one valence

5 singular curve has split an otherwise parallel pair of valence 3 and 5 curves. The

decomposition of this node into one valence 3 and two valence 5 singular curves is
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Figure 3-4: From top to bottom the (4,0,0), (2,2,2), and (0,4,4) singular nodes are
depicted. Left to right indicates steps to decompose each singular node. Red quads
indicate the sheet to be inflated. Blue quads indicate faces of the newly inflated hexes.
One sheet inflation is sufficient to decompose each of these nodes.

59



Figure 3-5: The (1,3,3) singular node is decomposed into two valence 5 and one
valence 3 curve via two sheet inflations.

Figure 3-6: The (0,3,6) singular node is decomposed into three valence 5 curves via
three sheet inflations.

illustrated in Figure 3-5.

In Figure 3-6 we decompose the (0,3,6) singular node into three valence 5 singular

curves. It is also valuable to think of the (0,3,6) node as a combination of two

(0,4,4) singular nodes. In this way, one only needs to decompose a singular node into

constituent nodes that are already known to be decomposable. The fourth image of

Figure 3-6 shows exactly this decomposition which we will notate as:

(0, 3, 6) = (0, 4, 4) +5 (0, 4, 4)

The subscript 5 on the plus symbol denotes that two singular nodes are joined along

a valence 5 edge, followed by an inverse sheet inflation (sheet collapse). This notation

serves only as a shorthand and does not uniquely encode how to glue two singular

nodes together. The non-uniqueness is clear from the fact that (0, 5, 2) +4 (2, 3, 0)

can be either (0, 6, 0) or (2, 2, 2). These additions serve more as schematics than

as an equation with any algebraic properties. For completion, we decompose the

constituent (0, 4, 4) in the latter half of Figure 3-6.

The (0,2,8) singular node is decomposed in Figure 3-7 into four valence 5 curves.

In the fourth image, we see that

(0, 2, 8) = (0, 3, 6) +5 (0, 4, 4)
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Figure 3-7: The (0,2,8) singular node is decomposed into four valence 5 curves via
five sheet inflations.

Figure 3-8: The (2,0,6) singular node is decomposed into four valence 5 and two
valence 3 curves via seven sheet inflations.

and both constituent singular nodes have already been shown to be decomposable.

For completion, the rest of the decomposition steps are also shown.

The (2,0,6) singular node is decomposed in Figure 3-8 into four valence 5 and two

valence 3 curves. By the fourth image we see

(2, 0, 6) = (1, 3, 3) +4 (1, 3, 3).

While similar to the already shown decompositions, this decomposition introduces a

valence 6 singularity in the fifth image and a singular node with signature (1,3,3,1).

This valence 6 singular curve is removed in image 9 by splitting a valence 5 curve off

of its node. This node exemplifies that the singularities of a certain degree does not

have to strictly decrease from sheet inflations or a decomposition.

Finally the (0,0,12) singular node decomposition is shown in Figure 3-9 to become

six valence 5 curves. This singular node is counter-intuitive because we were unable
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Figure 3-9: The (0,0,12) singular node is decomposed into six valence 5 curves via
seven sheet inflations.

to show a decomposition of the form

(0, 0, 12) = (0, 4, 4) +n (0, 2, 8).

Even though the number of singular curves present is sufficient, we were not able to

split the six valence 5 curves into a group of four and two. This demonstrates that

the order in which singular curves are combined matters. As this figure is especially

complex to comprehend, we offer the following roadmap of how the decomposition is

performed.

(0, 0, 12) = ((0, 3, 6) +5 (0, 3, 6))

(0,2,8,1)

+6 ((0, 4, 4) +5 (0, 4, 4))

(0,4,4,1)

Again, a valence 6 curve is created at an intermediate step of the decomposition.

While this paper focuses primarily on singular node decomposition via sheet in-

flation, it is also possible to simplify singular graphs via sheet collapse e.g.

(1, 3, 3) +3 (4, 0, 0) = (0, 6, 0).

In this case, two singular nodes joined by a valence 3 curve can be entirely annihi-

lated into a regular node: (0, 6, 0). Furthermore, the symmetries of the (4, 0, 0) node

make the resulting combination independent of the ambiguities of +3. Having such

a configuration within a hex mesh is fortuitous but unreliable.
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3.4 Decomposing General Singular Nodes

Given that the eight singular nodes of valence 3, 4, or 5 are decomposable into singular

curves, it’s natural to ask whether decomposition extends to higher valence singular

nodes. In fact, the decompositions of the (0,0,12) and (2,0,6) nodes both already

required decomposing the following singular nodes with valence 6: (0,4,4,1), (0,2,8,1)

and (1,3,3,1). We will refer to previously known decomposable singular nodes and

their associated sphere triangulations as base cases. To generalize decomposability of

singular nodes we offer the following result.

Proposition 4. Given a regular sphere triangulation T with some vertex u of degree

larger than 5, there exists a splitting such that either the number of vertices in both

resulting triangulations decreases or the resulting triangulations are base cases.

Proof. The local neighborhood of u is an umbrella U of at least 6 triangles. The

boundary of this umbrella is a cycle of at least 6 vertices denoted by C. To construct

a splitting of T into triangulations of fewer vertices, we need a pair of vertices a and

b adjacent to u that are at least 3 edges apart from each other in C such that there

is path p from a to b through the interior of T − U . This construction is illustrated

in Figure 3-10. The sequence of edges [(ua), p, (bu)] partitions T into D1 and D2

where each disk triangulation has at least 2 interior vertices. Since splitting a sphere

triangulation replaces all vertices on the interior of either side with just one new vertex

each, both resulting triangulations will have fewer vertices than T . For readability,

we leave more detailed construction of the splitting to § 3.8

Applying the splitting in Proposition 4 could result directly in base cases, where

the rest of the recipe for decomposition into singular curves is already known. If

the splitting does not result in base cases, then it produces triangulations with fewer

vertices. This can be repeated until there are not enough vertices to have a degree 6

vertex. Since sheet inflation at a singular node corresponds to splitting of a sphere

triangulation, Proposition 4 allows us to recursively find a sequence of sheets whose

inflation results in singular nodes that have lower than valence 6 singular edges. We
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b
u a

p

D1

D2

Interior vertices

Interior vertices

Figure 3-10: Illustration of how to find a cycle such that splitting along that cycle
results in two sphere triangulations, each with fewer vertices. The only requirement
is that there is a vertex u of degree ≥ 6. The required cycle is then [(ua), p, (bu)].
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Algorithm 1 Decomposes all singular nodes of a hex mesh into singular curves.
1: procedure Decompose-Singular-Graph(H)
2: do
3: N ← GetRandomSingularNode(H)
4: if OnlyHasValence345(H,N) then
5: C ← GetHardcodedCut(H, N)
6: else
7: C ← GetGeneralCut(H, N)
8: end if
9: S ← PropagateCut(H, C)

10: H ← SheetInflation(H, S)
11: while N 6= ∅
12: return H
13: end procedure

have already enumerated singular decompositions for all singular nodes with valence

lower than 6 and can therefore decompose any singular node into singular curves.

The primary limitation of Proposition 4 is that it restricts attention to individual

singular nodes while ignoring the full singular graph of the mesh. Doing so implicitly

assumes that the prescribed local splitting of a singular node can be extended to

a sheet inflation on the hex mesh. Removing this assumption separates the proven

local decomposability of singular nodes from the desired global decomposability of en-

tire hexahedral meshes. We present our empirical bridge between local and global

decomposition in § 3.5.

3.5 Singular Graph Decomposition

We develop a procedure to perform singular graph decompositions on full hex meshes

rather than on individual singular nodes. Pseudocode for this procedure is given in

Algorithm 1 and Algorithm 2 First, we randomly select a singular node. For any

singular node with valence restricted to 3, 4, or 5, we hard-code a subset of faces

adjacent to the node to be inflated. If the node has valence 6 or higher, we use

Proposition 4 (denoted GetGeneralCut in Algorithm 1) to select these faces. These

faces form a partial sheet that locally decomposes the initially selected node, but need

to be extended through the rest of the mesh in order to be inflatable.
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Next we propagate the partial sheet throughout the hex mesh following Algo-

rithm 2. Let a face be parallel to the partial sheet if they share a regular edge but

share no adjacent hexes. We greedily add parallel faces to the partial sheet until no

more parallel faces can be found. Next we look for any interior singular vertices on the

boundary of the partial sheet. If such a vertex is found, then we compute the smallest

number of new faces that need to be added to the partial sheet so that its boundary

excludes this singular vertex. This is denoted by Put-v-In-S in Algorithm 2 and is

equivalent to a graph shortest path computation on the triangulation representing

this singular vertex.

These two steps are repeated until no more parallel faces can be found, and the

boundary of the partial sheet is entirely on the boundary of the hex mesh. If at

any stage of the algorithm, the partial sheet became non-manifold then the sheet

propagation algorithm has failed. This is because sheet inflation in a hex mesh is not

well defined for general non-manifold sheets. Note that self-intersecting sheets are

also counted as non-manifold and while specific sheet inflation algorithms could be

used to handle them, we make the simplistic demand that all sheets are manifold. If

the sheet is manifold then we inflate it resulting in the decomposition of at least one

singular node. All results shown were generated by Algorithm 1.

3.6 Results

Applying our decomposition strategy to a hex mesh of a sphere reveals that it has

the same singular graph structure as that of a padded tetrahedron. Figure 3-11

shows this correspondence where inflating one sheet that passes through seven singular

nodes, simultaneously decomposes three of them. The end result is a singular graph

composed of four (4,0,0) singular nodes. One of these nodes has singular curves that

all connect directly to the boundary. The other four of these nodes connect to each

other and the boundary via valence 3 singular curves in a tetrahedral arrangement.

This singular graph is exactly what one obtains by padding a hex mesh of a regular

tetrahedron i.e. padding a (4,0,0) node.
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Algorithm 2 Propagates a partial sheet into a full sheet recursively.
1: procedure PropagateCut(H, S)
2: Q←GetFaces(H)
3: while ∃f ∈ Q :Parallel(H, S, f) do
4: S ← S ∪ f
5: end while
6: V ←GetVertices(H)
7: VS ←GetInteriorSingularVertices(H)
8: if ∃v ∈ (∂S ∩ VS) then
9: S ← Put-v-In-S(H, S, v)

10: else
11: if NonManifold(H, S) then
12: return ERROR
13: else
14: return S
15: end if
16: end if
17: return PropagateCut(H, S)
18: end procedure

Changing how the sheet cuts through the singular graph produces different inter-

mediate and final singular graphs. In Figure 3-12, we decompose a padded cube in

two different sequences and show the their intermediate singular graphs. To improve

clarity, we provide schematics of a subset of the singular graphs. The ending singular

graphs from both sequences are also topologically distinct i.e. no purely geometric

deformation maps one singular graph into the other. They do however appear to

invariably contain a single singular cycle.

Figure 3-11: (Left) Hex mesh of sphere with singular graph. (Mid-left) Blue hexes are
newly inflated hexes. (Mid-right) Hex mesh post-inflation. (Right) Singular graph
of a padded hex mesh of a tetrahedron. The last two images have topologically
equivalent singular graphs.
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Figure 3-12: We show two sequences of singular graph decomposition starting from
the same hex mesh on the left to a fully decomposed singular graph on the right. The
first row indicates select singular graph schematics for the first sequence. The last
row indicates select singular graph schematics for the second sequence. Even though
both singular graphs start out identical, the ending singular graphs are different due
to different sheet inflations.

The first sheet inflation of the second sequence results in the same singular graph

as a padded hex mesh of a triangular prism: a padded (2,3,0). Since the hex mesh

of a sphere has the same singular graph as the padded cube, these results indicate

that singular graphs for a padded cube, padded tet, and padded triangular prism are

identical up to a series of sheet inflations and collapses.

In Figure 3-13, we apply our decomposition to more complex singular graphs.

The first two rows depict the decomposition of the G1 hex mesh. The starting

singular graph consists of 12 nodes connected by 36 singular curves. This graph is

successfully decomposed into seven singular curves, one of which is a closed cycle. The

last two rows depict the decomposition of the G2 hex mesh. The starting singular

graph consists of 16 nodes connected by 40 singular curves. This graph is successfully

decomposed into 12 singular curves, two of which are closed cycles. While the starting

singular graphs are different, both meshes are fully decomposed with the same number

of sheet inflations.

Finally, we apply our decomposition in Figure 3-14 to the cactus mesh from

[Bra+19]. While the mesh starts with only singularities of valence 3, 4 and 5, the de-

composition results in intermediate singular graphs with nodes of signature (2,3,0,2).
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Figure 3-13: We apply singular decomposition to the G1 and G2 hex meshes. The
first two rows correspond to the sequence of singular graphs from decomposing G1.
The last two rows correspond to the sequence of singular graphs from decomposing
G2. The number of singular nodes decreases each sheet inflation ultimately resulting
in a singular graph with no nodes at all.

Figure 3-14: We apply singular decomposition to the cactus mesh from [Bra+19].
The number of singular nodes decreases with each sheet inflation ultimately resulting
in a singular graph with no nodes at all. While the original singular graph consisted
of only valence 3, 4 and 5 nodes, intermediate singular graphs from this sequence
contain singular nodes with signature (2,3,0,2). The fully decomposed singular graph
has valence 6 curves.
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The final configuration is seen to contain singular curves of valence 6. Since our goal

is only to remove singular nodes, we terminate with valence 6 curves.

3.6.1 Scaled Jacobians

The minimum scaled Jacobian of a hex mesh is a common metric by which to evaluate

distortion of the mesh [Qua21]. We maximize the minimum scaled Jacobian before

and after singular decomposition of each singular node with the following geometric

optimization. First, we assemble the 8H × 1 vector J of scaled Jacobians, one per

corner of each hex. We then minimize the optimization energy Ep = ‖1 − J‖pp via

gradient descent on mesh vertices with free boundaries. We perform 100 iterations

of gradient descent on E2, E4, and E8 consecutively while using line search to ensure

energy decrease. As p → ∞, the p-norm emulates a max operation, but in practice

we see no significant difference past p = 8. The resulting minimum scaled Jacobians

from this optimization are summarized in Table 3.1. Unsurprisingly, singular nodes

have lower scaled Jacobians than singular curves.

By symmetry, the minimum scaled Jacobian of any hex mesh, regardless of reso-

lution, containing a (4,0,0) node is upper bounded by 4
3
√
3
= .7698. The same bound

for a hex mesh containing a (0,0,12) node is
√

2(5+
√
5)

5
= .761. These bounds are ex-

actly attained in Table 3.1 for the (4,0,0) and (0,0,12) nodes. The same upper bound

computed for meshes containing valence 3 singular curves is sin(2π
3
) = .866 and for

meshes containing valence 5 singular curves is sin(2π
3
) = .951.

By performing a sheet inflation to split singular nodes into singular curves, the

minimum scaled Jacobian of the (4,0,0) node is increased to .86, almost the theoretic

upper bound. For (0,4,4) as well, decomposing the singular node into two valence

5 curves brings the minimum scaled Jacobian to almost the theoretic upper bound.

Decomposing (0,0,12) node into six valence 5 curves brings significant improvement

to the minimum scaled Jacobian, though it is not as close to the theoretic upper

bound due to interactions between singular curves.

Moving towards full singular graphs, we perform the same scaled Jacobian opti-
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Mesh Original Decomposed UpperBound
(4,0,0) 0.769 0.86 0.866
(2,2,2) 0.807 0.862 0.866
(0,4,4) 0.896 0.943 0.951
(1,3,3) 0.822 0.865 0.866
(0,3,6) 0.863 0.939 0.951
(0,2,8) 0.82 0.937 0.951
(2,0,6) 0.745 0.856 0.866
(0,0,12) 0.761 0.926 0.951
Sphere 0.768 0.849 0.866

Padded Tet 0.715 0.812 0.866
G1 0.769 0.811 0.866
G2 0.757 0.820 0.866

Ellipsoid 0.767 0.825 0.866

Table 3.1: For various hex meshes, we indicate the maximized minimum scaled Jaco-
bian before and after singular decomposition. The first column indicates the mesh,
the second column indicates before singular decomposition, and the third column
indicates after. The fourth column indicates a theoretic upper bound on the mini-
mum scaled Jacobian for the decomposed mesh. It essentially indicates the presence
of a valence 3 or 5 singular curve. The maximized minimum scaled Jacobians are
frequently at global optimality before decomposition, and unable to increase due to
a singular node. The scores are invariably higher post singular decomposition.

mization for a sphere mesh. Maximization of its minimum scaled Jacobian results in

a value of .768, close to the upper bound for any mesh containing a (4,0,0) node. We

apply our decomposition to this mesh and re-optimize its scaled Jacobian resulting

in a significant improvement to .849. We run the same optimizations on the padded

tetrahedron, G1, and G2 resulting in similar increases in the minimum scaled Jaco-

bian. These results are summarized in Table 3.1. The topological process of singular

decomposition on cactus unfortunately created geometric inversions we could not un-

tangle. This reflects the difficulty of untangling meshes, but does not affect singular

node removal nor our conclusion that the minimum scaled Jacobians can be increased

through singular decomposition.
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3.6.2 Implications for Octahedral Field Based Hex Meshing

Our results have indicated so far that singular nodes in a hex mesh tend to increase

scaled Jacobian. In this subsection we explore how singular nodes form to begin with

in the context of octahedral field based hex meshing. This approach starts with the

construction of an octahedral field (also frequently called a frame field): a map from

the domain of interest into the space of rotated cubes SO(3)/O [Hua+11; SVB17].

The frame field map is invariably computed by minimizing Dirichlet energy, thus

promoting smooth solutions. Parameterization and hex extraction ultimately convert

the frame field into a hex mesh where singularities of the field match singularities of

the mesh.

It may be tempting to think of singular nodes as some kind of point defect of

the frame field, however, π2(SO(3)/O) = ∅, so frame fields necessarily do not contain

point defects. Instead, [Mer79, Figure. 42-45] most crucially show that when two

singular curves pass through each other they necessarily create a new singular curve

with type equal to their commutator. Frame field singular curve types are elements of

π1(SO(3)/O) = BO, the binary octahedral group, which is non commutative [Mer79].

Therefore, having singular curves pass through each other is highly dis-incentivized

in frame field computations since singularities increase Dirichlet energy. The effect of

minimizing Dirichlet energy is essentially that singular curves try not to pass through

each other.

Since Dirichlet energy promotes smoothness, it also shortens the length of singular

curves. When this shortening effect pulls singular curves into each other, they may

either pass through incurring the cost of creating a new singular curve, or the curves

can remain tautly in contact thus creating a singular node. The optimization of

Dirichlet energy is therefore responsible for the formation of singular nodes in frame

fields that are then replicated in the output hex meshes. As we have seen, singular

nodes hurt hex mesh quality so Dirichlet energy is not a good optimization objective

in frame field computations. Unfortunately, it is by far the most popular objective

function in frame field computation.
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3.7 Discussion

This chapter presents singular nodes as the result of gluing singular curves together at

a point and shows that the reverse can be done via sheet inflation to unmake singular

nodes into simple singular curves. This removes the 3D complexity of singular nodes

leaving meshes with lower distortion. We demonstrate this procedure on a variety

of meshes showing in all cases that no singular nodes are left behind and that mesh

distortion is reduced.

The main limitation of our work is that the local sheets we prescribe for decom-

posing a singular node are not guaranteed to propagate globally while avoiding self-

intersection. This can result in the inability to decompose a singular graph entirely.

We expect that a valid sheet inflation can always be found and leave its efficient

computation to future work.

While our method decreases the number of singular nodes in a mesh, its base

complex [GDC15] may increase in size. This tradeoff should be considered by the user

as they may have to choose between a larger scaled Jacobian or maintaining a small

number of base complex cells.

Our results can be extended to design new ways of modifying the singular graph

of a mesh. Instead of only decomposing nodes into curves, one can rewire singular

curves by merging them at a node with sheet collapse, and decomposing them in a

different way from how they were combined. For example, the sphere triangulation of

the (4,0,0) node contains three distinct cycles of length four. Therefore, it is possible

to bring two valence 3 singular curves together to form a (4,0,0) node and split them

apart again in three distinct ways.

Many works aim to build minimal degree smooth parameterizations of quad

meshes with singularities [KP16; KP19]. These methods do not clearly generalize

to the volumetric case where singular nodes may suffer decreased continuity from

methods designed for 2D singularities. A promising approach following our work is

then to decompose any given singular graph so that no singular nodes exist. We

expect that it is easier to adapt quad mesh singular parameterization methods to
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singular curves that are just 2D singularities extruded into 3D than it is to adapt

parameterization methods for singular nodes. Even if one derived a singular node

parameterization method for a specific node type, it may not extend to other node

types. This problem is made easier by only needing to consider singular curves after

decomposition.

3.8 Appendix: Proof of Proposition 4

Figure 3-15: Illustrations of T − U in various situations. This figure considers the
cases where there are no isolated vertices, or when there is at least one isolated vertex
and t has all its vertices on C.

We show here how to construct a splitting satisfying Proposition 4. For the

majority of cases we will construct a path p such that the splitting is [(ua), p, (bu)]

as described in the main document. In a few cases, we will explicitly construct the

splitting cycle without using u or p. Recall from the main document that in order for

the splitting to result in sphere triangulations with fewer vertices, it must partition

T into regions with at least two interior vertices each.

We define an isolated vertex to be a boundary vertex of T − U with degree 2.

Isolated vertices are impossible to build path p from since they have no path to the

interior of T − U . For the rest of the proof we will repeatedly reference the labeled

cases in Figure 3-15, Figure 3-16 and Figure 3-17. These figures depict T − U with

the following color coding. The purple vertex is an arbitrary isolated vertex. The red

vertex is labeled a, and the green vertex is labeled b. Cyan vertices are optionally

present to indicate that C has more than or equal to 6 vertices.
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Case 0 First, we consider the case where no vertices on C are isolated. We can

choose a and b arbitrarily as long as they are 3 or more edges apart in C and compute

p as the shortest path between them in the interior of T −U . If such a path is found,

then we have our splitting. If the path does not exist, there must be an interior edge

e between boundary vertices on C separating a from b. Since no isolated vertices

exist, we can simply choose endpoints of e as the new a and b with p = e. This is

illustrated by the first image of Figure 3-15.

The rest of the proof considers the case where at least one isolated vertex i0 exists.

Let its neighboring vertices be i1, i2. (i0, i1, i2) must be a triangle in T − U with an

interior edge (i1, i2). Since every interior edge is adjacent to two triangles, flipping

across (i1, i2) brings us to a triangle we will denote t. t can be arranged in a few

different ways.

Case 1a The triangle t is completed with a boundary vertex adjacent to i2. Without

loss of generality, i1 is exchangeable with i2. This is illustrated in the second image

of Figure 3-15. The single red edge in t is p.

Case 1b The triangle t can be completed with a boundary vertex not adjacent to

either i1 or i2. This is illustrated in the third image of Figure 3-15. As long as one or

more cyan vertices are present, the red edge separates C such that both sides have at

least 2 interior vertices.

Case 1c This case is identical to Case 1b except there are no cyan vertices i.e. C has

exactly 6 vertices. This configuration is special in that we are unable to split T into

two triangulations each with fewer than 7 vertices. Thus the full sphere triangulation

is depicted including u and its neighborhood U with dashed edges in the fourth image

of Figure 3-15. For this configuration, we specify the full splitting by the red edges.

This splitting turns the sphere triangulation into

(3, 0, 3, 1) = (2, 2, 2) +4 (1, 3, 3).
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Figure 3-16: Illustrations of T − U in various situations. This figure considers the
cases where t has one vertex on the interior of T −U and C has more than 6 vertices.

Figure 3-17: Illustrations of T − U in various situations. This figure considers the
cases where t has one vertex on the interior of T − U and C has exactly 6 vertices.

Even though the number of vertices in one of the resulting triangulations is still 7, all

vertex degrees are less than or equal to 5, thus they are base cases.

Case 2 The last possibility is that triangle t is completed with one interior vertex

i3 of T − U . We illustrate this in the first image of Figure 3-16 and refer to its

labels. Since i2 is adjacent to both i3 and d there must be a path from i3 to d that is

entirely adjacent to i2. This is indicated by the dashed black edge. The rest of Case

2 enumerates different possibilities for this path.

Case 2a If the path is fully on the interior of T − U , then p is indicated by the red

edges in the second image of Figure 3-16.

Case 2b If the path connects i3 to any vertex labeled f in the third image of Figure 3-

16, then p is indicated by the red edges.

Case 2c The only remaining possibility is that the path connects i3 to g depicted

in the fourth image of Figure 3-16. Assuming at least one cyan vertex is present, the

red edges form p.
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Case 3 If there are no cyan vertices, i.e. C contains only 6 vertices, then the red

edges from Case 2c do not partition C into two regions of at least two interior vertices.

In this setting we consider the last few cases.

Case 3a If there is an interior path from i3 to i4 as labeled in the first image of

Figure 3-17, then the red edges form p.

Case 3b, 3c The only way for the interior path from case 3a to not exist is if an

edge prevents an interior path between i3 and i4. This edge is labeled (i1, i5) in the

second and third images of Figure 3-17. These two images show explicit splittings for

T in the case that there is an interior vertex of T − U that is not i3.

Case 3d Finally, if there are no interior vertices of T − U except for i3, then we

know the full sphere triangulation T . This triangulation has signature (4,0,0,4) and

is fully depicted in the last image of Figure 3-17. The red edges indicate the following

splitting:

(4, 0, 0, 4) = (3, 0, 3, 1) +5 (1, 3, 3, 1).

Both of the resulting sphere triangulations are base cases.

In summary, we have explicitly constructed splittings of T that result in two

sphere triangulations each with fewer vertices than T . The two exceptions are cases

1c and 3d where we construct splittings that result in base cases.
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4

Algebraic Collision Detection with

Sum-of-Squares Programming

This chapter is based on work in [Mar+21], which spun out as a sequel to [Mar+20].

[Mar+20] originated as an Undergraduate Research Opportunities Program (UROP)

project where David Palmer and I co-mentored Zoë Marschner. We initially aimed for

the modest task of repairing tangled hexahedral meshes using sum-of-squares (SOS)

programming. After that initial success, we realized the sum-of-squares machinery

was extremely general and started brainstorming other problems to tackle, eventually

resulting in [Mar+21]. Zoë implemented at least the first working iteration of each

problem formulation, and generated all the figures. I ran the batch experiments

generating the bulk of the empirical results. David and I wrote and revised most

of the text, and David helped elucidate various aspects of the SOS theory. We all

contributed to the problem formulations presented. Compared to [Mar+21], the

discussion section has been modified to reflect more recent understanding of open

problems in SOS programming.

4.1 Introduction

Of the many geometric representations available today, polynomial patches are excep-

tionally powerful. They are a mainstay of computer-aided design and digital sculpting,
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Self intersections in Coons patches Continous collision detection in NURBS patches Bounding ellipsoids of tensor product patches

Figure 4-1: We describe a framework for solving many different geometry processing
problems on polynomial patches using sum-of-squares relaxation. Here, we show
three of the problems we discuss in this paper: Self-Intersection, Continuous Collision
Detection, and Minimal Bounding Ellipsoid. Our formulation is very general, working
for any piecewise polynomial or rational patch type. We show each problem here on a
model with a different patch type: cubic Coons patches from [SBS20], bicubic NURBS
patches from [TCL21], and bicubic Bézier tensor patches.

where they provide piecewise-smooth parametrization. They can represent complex

shapes with just a few control points. And in finite-element modeling, high degree

polynomial bases can be used to construct high-fidelity solutions to partial differential

equations.

Polynomial patches have recently made inroads into geometry processing problems

involving PDEs and simulation [Sch+19; Sch+18; MC20; TCL21; Jia+21]. However,

basic geometric kernels that are straightforward to implement for piecewise-linear

meshes remain challenging for higher-order patches. These kernels include detecting

self-intersections and collisions, computing bounding volumes, and measuring dis-

tances. Such kernels become especially important in dynamics problems, which in

principle require continuous-time maintenance of physical feasibility.

We propose to bring the methods of sum-of-squares programming (SOS) to bear

on this domain. The core idea of SOS programming is the replacement of polyno-

mial positivity constraints with more computationally tractable SOS constraints of

bounded degree d, which can be represented by semidefinite programs. The miracle of

SOS programming comes from the Positivstellensatz [BPT12], which states that for

a large enough d, the globally-optimal solution to the modified problem is certifiably

equivalent to the globally-optimal solution of the original problem. This certificate of
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correctness comes from the theory of SOS programming and is known as exact recov-

ery. Thus, the SOS machinery allows us in many cases to solve seemingly non-convex

optimization problems to global optimality.

A caveat to SOS relaxation is that the cost of solving the relaxed problem in-

creases factorially with d [BPT12]. While the minimal required d for exact recovery

is problem-dependent and can be large in general, it is often close to the degrees of

the polynomials in the original problem formulation, thereby maintaining tractability.

Furthermore, we find that in practice the d required to obtain the correct solution to

the original problem is often lower than the d required to obtain an exact recovery

certificate. Since one often only cares about correctness of the solution, choosing the

lower d allows the cost of the problem to be driven down in this case. If an alge-

braic proof of correctness is desired, the higher d can be chosen, at the expense of an

increase in the cost of the problem.

Returning to geometry processing on polynomial patches, many geometric kernels

can be formulated as polynomial optimizations. For example, surface-surface inter-

section (SSI) of quadratic triangles can be written as the minimization of a quartic

objective function with linear inequality constraints. Applying SOS relaxation then

yields a convex problem directly, and it only remains to verify that the relaxation

successfully produces a solution to the original problem, i.e., that d was large enough.

As illustrated by this example, the simplicity of SOS relaxation makes it readily

adaptable to a wide variety of problems.

In this paper, we apply SOS methodology to several core problems in geometry

processing on polynomial surfaces of varying degree. We show that a minor modifica-

tion to our problem formulation allow us to support rational surfaces as well—namely,

those consisting of NURBS patches. We verify the success of our SOS formulations on

an exhaustive suite of test data. An overview of these results is provided in Table 4.1,

where we show the experimentally determined minimum degree dcorrect required to

solve each problem with 100% accuracy. Finally, we apply these geometric kernels on

various higher-order meshes, demonstrating the extensibility of geometry processing

methods on linear meshes to higher-order surfaces. With these low-level operations
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out of the way, we pave the way for development of higher-level geometry processing

techniques on higher-order surfaces.

4.2 Related Work

SOS programming Sum-of-squares (SOS) programming is a type of convex relaxation

in which polynomial positivity constraints are replaced by SOS constraints. These

can be transformed further into semidefinite optimization problems (SDP), which

are solvable in polynomial time via interior-point methods [Ali95; NN94; BBV04].

Modeling frameworks such as yalmip [Löf04; PPP02] convert SOS formulations into

SDPs, which can be solved by black-box solvers such as mosek and sdpt3 [ApS17;

TTT01]. We provide the mathematical background relevant to this paper in § 4.3.

For a comprehensive review of this field, see [BPT12].

4.3 Preliminaries

For a complete review of sum-of-squares theory we refer the reader to [BPT12; Par19];

Marschner et al. [Mar+20] also present similar background in the context of a geome-

try processing problem. For completeness, we recall the most relevant concepts here.

4.3.1 Positive Polynomials and SOS Polynomials

Let R[u] = R[u1, ..., uk] be the ring of real multivariate polynomials in u. R[u]d
denotes the subset of polynomials of degree at most d. We will use [u]d to denote the

basis of monomials up to degree d. Any member f(u) ∈ R[u]d can be written in this

basis: f(u) = [u]⊤d f, where f denotes the vector of coefficients of monomials in f .

A special subset of R[u] (resp. R[u]d) is the cone of positive polynomials P (resp.

Pd). As the name suggests, positive polynomials f(u) ∈ P satisfy f(u) ≥ 0 for all

u. Many polynomial optimization problems can naturally be written with positive

polynomial constraints, and thus it is highly desirable to be able to optimize over P .

Unfortunately, even membership testing in P is NP-hard in general [BPT12, §3.4.3].
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This leads us to the more restrictive subset Σ of sum-of-squares (SOS) polynomials;

we use Σd to denote SOS polynomials of bounded degree d. Members of this set

f(u) ∈ Σ can be decomposed into sums of squares of polynomials: f(u) =
∑

i si(u)2

for si ∈ R[u]. Naturally, they form a subset of P , giving us the following inclusions:

Σd ⊂ Pd ⊂ R[u]d (4.1)

Unlike Pd, Σd is computationally tractible—feasibility and optimization problems over

Σd translate naturally in to SDPs. This will be made explicit in § 4.3.2.

4.3.2 SOS Optimization

Membership in Σd can be expressed via semidefinite programming. Using 〈·, ·〉 to

denote the Frobenius inner product, an SOS polynomial is equivalently written as

f(u) =


s1(u)

...

sk(u)


⊤

s1(u)
...

sk(u)



= [u]⊤⌊d/2⌋
(

s1 · · · sk
)

s⊤1
...

s⊤k


S

[u]⌊d/2⌋

=
〈
S, [u]⌊d/2⌋[u]⊤⌊d/2⌋

〉
,

(4.2)

where the coefficients si are now encoded in the matrix S. Equation 4.2 provides a

linear relationship between f and S, which is positive semidefinite by construction.

Indeed, we have shown that the existence of such an S � 0 is equivalent to f ∈ Σd.

See Table 4.1 for rough dimensions of the SDP problem.

Using the above transformation to render SOS constraints into semidefinite con-

straints, one can perform optimization over f(u) ∈ Σd with relative ease. For this

reason, it is often profitable to transform a problem involving a positivity constraint
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f ∈ P to one with a set of constraints of the form si ∈ Σd—resulting in an SOS

program. A key theorem in SOS programming, the Positivstellensatz, explains how

to effect this transformation so that the global optimum of the original problem is

recovered in the limit of increasing SOS degree d [BPT12]. We will use a specialized

version of the Positivstellensatz below.

4.3.3 SOS Optimization on a Compact Domain

In the context of geometry processing, one frequently seeks to optimize a functional

over a compact domain, rather than over all of Rk. Thus, one often encounters

constraints of the form f(u) ≥ 0 for u ∈ D where D is compact. SOS programming

can be extended to handle such constraints. Here the key theorem is Putinar’s variant

of the Positivstellensatz:

Theorem 1 (Putinar’s Positivstellensatz [Put93]; see also [BPT12], Theorem 3.138).

Let D = {u ∈ Rk : gi(u) ≥ 0} be a domain with an algebraic certificate of compact-

ness. Any polynomial f(u) that is strictly positive on D admits a decomposition

f(u) = s0(u) +
m∑
i=1

si(u)gi(u), (4.3)

with SOS polynomials si ∈ Σd for high enough degree d.

Observe that the decomposition Equation 4.3 provides a certificate of nonnega-

tivity by construction, since all si are nonnegative and all gi are nonnegative on D.

For brevity we omit details of the required algebraic certificate of compactness and

refer the interested reader to [BPT12]. For all domains encountered in this paper,

compactness certificates are readily computable. The theory of SOS programming

has an elegant dual formulation that allows us to determine a sufficiently large d, but

we will defer discussion of this dual to § 4.5 to prioritize presenting concrete examples

of what SOS programming can achieve for geometry processing.

Equality Constraints It is often convenient to consider semialgebraic domains D

defined by polynomial inequalities and equations. This generalization does not pose
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Figure 4-2: Quadratic triangle patch

a significant problem for SOS methods, for the reasons we will outline below.

Given a domain defined by equations and inequalities D = {u : gi(u) ≥ 0, hi(u) =

0}, a decomposition of the form

f(u) = s0(u) +
m∑
i=1

si(u)gi(u) +
n∑

i=1

pi(u)hi(u), (4.4)

where the si are SOS and the pi are arbitrary polynomials, certifies the nonnegativity

of f on D.

One can formally rewrite each equality constraint hi(u) = 0 as a pair of inequality

constraints hi(u) ≥ 0 and −hi(u) ≥ 0, reducing D to the form required in Theorem 1.

Then the theorem shows existence of a certificate of the form

f(u) = s0(u) +
m∑
i=1

si(u)gi(u) +
n∑

i=1

(t+i (u)− t−i (u))hi(u), (4.5)

where the si, t+i , and t−i are SOS. But such a certificate is a fortiori of the form

Equation 4.4. In this way, Theorem 1 extends to the case of mixed constraints.

4.3.4 Polynomial Patches

Definition 1. A polynomial patch is a map x : D ⊂ Rk → Rn from a compact

semialgebraic base domain D = {u ∈ Rk : gi(u) ≥ 0}, and such that each component

of x is a multivariate polynomial of bounded degree dx.
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In practice, the base domain is typically a canonical triangle, square, cube, or

similar, and so the polynomials gi are affine. The dimension of the patch for most

geometry processing tasks is k ∈ {1, 2, 3}, and n controls the embedding dimension

of the patch.

It is often useful to parameterize these polynomials x by linear combinations of

a few basis functions, with coefficients that are obtained from control points pi ∈

Rn. Patches of this form include Bézier and Coons patches, and they generalize

the simplest polynomial patch, the linear triangle, which we will describe here for

illustrative purposes. For the linear triangle patch, D is the triangle with vertices

(1, 0), (0, 1), (0, 0), n = 3, and the basis functions (in barycentric coordinates) are

ϕ1(u) = u1, ϕ2(u) = u2, and ϕ3(u) = 1− u1− u2. If the vertices of the linear triangle

in R3 are p1, p2 and p3, then x(u) = ϕ1p1 + ϕ2p2 + ϕ3p3.

By varying the degree and number of basis functions, one can realize a variety of

patch types. For example, a quadratic triangle is parameterized by six basis functions

with control points p located at the vertices and edge midpoints. Such a quadratic tri-

angle, along with its control points, is depicted in Figure 4-2. We will use nB to denote

the number of basis functions needed for a particular patch. For the purposes of this

paper, we will focus our attention on quadratic and cubic triangles, quadratic Bézier

curves, bicubic Bézier tensor patches, cubic Coons patches, and B-spline surfaces.

4.4 Geometric Kernel Problems

In this paper, we show that a variety of geometric problems on polynomial patches

can be solved with SOS programming. Our key observation is that most of these can

be formulated in a very similar way. In particular, we offer the following template

problem:
f ∗ = min

u∈D
f(u)

u∗ = argmin
u∈D

f(u).
(4.6)
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where

D = {u ∈ Rk : gi(u) ≥ 0, hi(u) = 0}, (4.7)

is a compact semialgebraic domain. In what follows, we will outline how to compute

the globally optimal value f ∗ using the machinery of SOS programming, and we will

apply this to a variety of patch problems. In § 4.5, we will discuss how to compute

u∗ and determine the correct degree for the relaxation.

To apply SOS methods, we rewrite the problem in terms of an additional variable

λ, which acts as a lower bound on f(u) for u ∈ D. This is equivalent to asking

that the polynomial f(u) − λ be positive for u ∈ D. Applying Theorem 1, such a

requirement is equivalent to the SOS constraints

f − λ−
∑
i

hipi −
∑
i

gisi ∈ Σ, si ∈ Σ, pi ∈ R[u]. (4.8)

We have thus relaxed the problem Equation 4.6 into the SOS form

λ∗ =



max
λ∈R

λ

s.t. f − λ−
∑
i

hipi −
∑
i

gisi ∈ Σd,

si ∈ Σd

pi ∈ R[u]d


. (4.9)

As d increases, Theorem 1 guarantees that λ∗ converges to the globally optimal value

f ∗. For high-enough d, the relaxation will be accurate to within numerical precision,

and as we observe in § 4.6, the convergence is dramatic at a fairly low d.

4.4.1 Optimization over a Polynomial Patch

The template problem Equation 4.6 allows us to optimize arbitrary polynomial objec-

tive functions over a polynomial patch. One only needs to choose the gi that encode

a base domain D along with an appropriate objective function f . We now give several

examples of objective functions of interest to geometry processing.
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Closest Point (CP) The closest point problem aims to find the minimum distance

between a target point t and a polynomial patch. Let x(u) be the shape function of

the patch. Then one simply chooses the objective function f(u) = ‖x(u)− t‖22 in the

template problem.

Minimal Axis Aligned Bounding Box (MBB) The axis aligned bounding box problem

finds the smallest-volume AABB containing a polynomial patch x(u). The bounds

can be obtained by choosing the objective function f(u) = ±xi(u).

Hexahedron Quality Evaluation The hexahedral quality evaluation problem pre-

sented by Marschner et al. [Mar+20] also fits into the template. Here D is a unit

cube, x(u) encodes trilinear interpolation, and f(u) is the Jacobian determinant of

x(u), i.e., f(u) = det(∇ux).

4.4.2 Multiple Patches in One Optimization

Often it is desirable to optimize an objective over multiple patches, or multiple copies

of the same patch, simultaneously. Such problems can often be recast as optimization

problems over a higher-dimensional base domain formed from the Cartesian product

of the original base domains.

To wit, let polynomial patches x1, and x2 map respectively from base domains

D1 = {u1 : g1i (u1) ≥ 0}, and D2 = {u2 : g2i (u2) ≥ 0} into Rn. Let

D = {(u1,u2) : g1i (u1) ≥ 0, g2i (u2) ≥ 0, qj(u1,u2) ≥ 0}

⊆ D1 × D2,
(4.10)

where the qj are additional problem-dependent and/or symmetry-breaking constraints.

One can then define a new patch x(u1,u2) = (x1(u1),x2(u2)) and rewrite f relative

to x and D. For notational convenience, we will continue to use u1, u2, x1, and x2

directly.
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Patch Diameter (PD) The diameter of a patch is the distance

between the two most distant points on that patch. This can

be found using the template problem with two identical base

domains D1 = D2 and maps x1 = x2. Then one simply chooses

the objective f(u1,u2) = −‖x1(u1)− x2(u2)‖22.

Surface-Surface Intersection (SSI) This problem detects when two polynomial patches

intersect each other. As described previously, we use an augmented constraint set

consisting of constraints from both patches. We further add the equality constraints

h(u1,u2) = x1(u1)−x2(u2) = 0. This restricts optimization from the domain D1×D2

to its subset on which intersections occur. Feasibility of this problem determines

if the two surfaces intersect. We can arbitrarily choose as an objective function

f(u1,u2) = u1
1.

Self-Intersection (SI) The self-intersection problem finds places where a single poly-

nomial patch intersects itself. To fit this into the template problem, we start with the

constraints of the SSI problem for two identical domains D1 = D2, x1 = x2. Then we

choose the objective to be f(u1,u2) = −‖u1 − u2‖22. This gives us points that are as

far apart as possible in the base domain but map to the same embedded point in Rn.

Continuous Collision Detection (CCD) The Continuous Collision Detection problem

aims to find out if and when two patches on a time varying trajectory will intersect

in a given time interval. Figure 4-3 shows an example of the CCD problem. Let two

patches x1, x2 be defined by control points p1
i , p2

i via x(u) =
∑nB

i piϕi. Let control

points have velocities v1i and v2i . We then define time-dependent patches by linear

interpolation x(u, t) =
∑nB

i (pi + vit)ϕi, mapping from the augmented base domain

D1 ×D2 × [0, tmax] to Rn. We wish to determine if the provided velocities will result

in a collision within tmax units of time.

As in the SSI case, we augment the constraint set with an equality constraint

h(u1,u2, t) = x1(u1, t) − x2(u2, t) = 0. This restricts the optimization to the subset

of the joint base domain on which space-time collisions occur. It just remains to
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1t = 0

t = 0.8377

Figure 4-3: The CCD problem is demonstrated on two time-varying quadratic triangle
patches over the time interval [0, 1]. The patches are shown at the time of first collision,
at t = 0.8377, in the inset, with the collision point marked in red.

choose f(u1,u2, t) = t to find the earliest collision.

4.4.3 Outside the Template

Rational Surfaces A natural generalization of polynomial surfaces are rational sur-

faces—surfaces whose shape functions x are rational. Using control points pi and

basis functions ϕi, rational surfaces are decomposable as follows

xj(u) =
∑

i pijϕi(u)
b(u) =

aj(u)
b(u) , (4.11)

for polynomials aj, b, ϕi ∈ R[u]. Straightforward application of problem formulations

from § 4.4.1 and § 4.4.2 to rational surfaces may seem not to fit the template Equa-

tion 4.6. The key observation for applying SOS programming to rational surfaces is

that we simply need to clear the denominators. We demonstrate here the SSI prob-

lem on rational surfaces, with all other problems following mutatis mutandis. The

SSI formulation applied to rational surfaces starts with

min
u1∈D1,u2∈D2

u1
1

s.t. a1(u1)

b1(u1)
=

a2(u2)

b2(u2)

(4.12)
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By cross-multiplying denominators, the rational constraints are transformed back into

polynomial constraints.

min
u1∈D1,u2∈D2

u1
1

s.t. a1(u1) b2(u2) = a2(u2) b1(u1)

(4.13)

Thus problems that can be solved on polynomial patches via SOS programming can

be extended to rational surfaces.

Minimal Enclosing Ellipsoid (MEE) The Minimal Enclosing Ellipsoid problem finds

the ellipsoid of smallest volume that fully contains a polynomial patch. Smallest

ellipsoids enclosing point sets have a long history in convex optimization, where they

are known as Löwner-John ellipsoids [Tod16]. The MEE of a finite collection of points

or ellipsoids can be computed exactly via SDP. This involves a reduction from the

problem of computing the smallest ellipsoid with arbitrary center to the case of an

ellipsoid centered at the origin. We will combine this reduction with SOS methods

to compute the MEE of a polynomial patch.

We can parameterize an ellipsoid in R3 by a positive definite matrix A ∈ S3
++ and

center point c ∈ R3:

E(A, c) = {p ∈ Rn : (p− c)⊤A(p− c) ≤ 1},

Vol(E(A, c)) ∝ det(A−1) = (detA)−1.
(4.14)

Given D and x describing a 3D polynomial patch, the MEE can be computed as the

solution to

(A∗, c∗) =


argmin

A∈S3
++, c∈R3

Vol(E(A, c))

s.t. 1 ≥ max
u∈D

(x(u)− c)⊤A(x(u)− c)

 (4.15)

The problem in this form does not clearly fit into the template due to the inner

maximization, which can also be viewed as a universal quantification. But as we will
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now show, we can still apply SOS optimization to obtain the MEE. The first step is

to reduce the general MEE problem Equation 4.15 to an equivalent centered MEE

problem in one higher dimension:

B∗ =



argmin
B∈S4

++

Vol(E(B, 0))

s.t. 1 ≥ max
u∈D

y⊤(u)By(u)

y(u) =

x(u)

1




(4.16)

From B∗, one can recover A∗ by completing the square [Tod16]. The constraints

of Equation 4.16 require that the polynomial 1 − y⊤By ∈ R[u] be nonnegative for

all u ∈ D. Theorem 1 allows us to encode this requirement with SOS constraints,

resulting in the following SOS program.

B∗ =



argmin log(Vol(E(B, 0)))

s.t. si ∈ Σ, si ∈ R[u]d

1− y⊤By−
∑
i

gisi ∈ Σ

B ∈ S4
++


, (4.17)

where we have also convexified the objective by taking its log. Both the objective and

constraints are now convex, and we can solve Equation 4.17 to global optimality, and

by extension the MEE problem.

Our ability to solve the MEE problem hinges on the fact that MEE has an equiv-

alent centered formulation wherein c = 0. Consider what would happen if we tried to

relax Equation 4.15 directly. We would require 1− (x− c)⊤A(x− c) ≥ 0 for u ∈ D.

Our constraints would contain bilinear terms like x⊤Ac and linear-quadratic terms

like c⊤Ac, thus breaking convexity. While our solution to the MEE problem does

not generalize directly to other problems outside the template, it illustrates what can

and cannot be handled by SOS programming.
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Minimal Surrounding Sphere (MSS) The Minimal Surrounding Sphere problem finds

the sphere of smallest volume that fully contains a polynomial patch. This can be

solved with a minor modification to Equation 4.17. Let B3 be the top left 3× 3 block

of B. We simply add the constraint that B3 = aI3, where I3 is the 3×3 identity matrix

and a is a scalar variable. This additional constraint reduces the MEE program to

an MSS program without affecting convexity.

4.5 Moment Relaxation in Theory and Practice

While the previous section lists a variety of problems that can be solved with SOS

programming, two points remain. First, while the SOS approach of the previous

section gives us a way to compute the optimal value of Equation 4.6 by way of

Equation 4.9, we do not have a way to compute the argmin of Equation 4.6. Using

CP as an example, we can find the distance from a target point to its projection on a

patch, but do not have the projected point. Second, we have not mentioned how to

certify correctness of a solution and determine if d is large enough for Theorem 1 to

hold. This section will address both points.

4.5.1 Moment Relaxation in Theory

Consider an alternative formulation of Equation 4.6 as a measure relaxation:

f ∗ := min
µ∈P(D)

Eµ[f ], (4.18)

where P(D) is the space of probability measures on D, and Eµ[f ] =
∫
D f dµ denotes

integration against µ. If u∗ = argminu∈D f(u), then the optimum of Equation 4.18 is

achieved by placing all the mass of µ at u∗—that is, the delta measure δu∗ minimizes

Equation 4.18 [Las01]. While this relaxation convexifies Equation 4.6, optimization

over the infinite-dimensional space of measures P(D) is intractable. To realize the

measure relaxation computationally, µ must be represented by its moments. Using

the multi-index α to index monomial exponents of f , the α-moment of µ is defined as
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Figure 4-4: For the SSI problem on quadratic triangles, all intersections are correctly
identified for degree d ≥ 2, and the distance between extracted points of intersection
drops to 6.7e-05 at degree d = 5, even though exact recovery does not yet occur
at these degrees. Triangle control points were sampled from i.i.d. standard normal
distributions.
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µα := Eµ[uα]. Let fα be the coefficient of uα. Then the expectation in Equation 4.18

can be expressed as

Eµ[f ] =
∑
α

fαµα, (4.19)

a simple linear function of finitely many moments. It remains to constrain µα to be

valid moments of a distribution over D, a task fulfilled by the following theorem:

Theorem 2 ([Las01], Theorem 4.2). Suppose D is a compact domain with algebraic

certificate of compactness. Let d be large enough for f(u)− f ∗ to admit the decom-

position in Equation 4.3. Then the following moment relaxation SDP computes

f ∗:

f ∗ =



min
µ∈Md

Eµ[f(u)]

s.t. Eµ[q(u)2] ≥ 0, ∀q ∈ R[u]⌈d/2⌉

Eµ[q(u)2gi(u)] ≥ 0, ∀q ∈ R[u]⌈d/2⌉−wi

Eµ[1] = 1,


(4.20)

where wi = ddeg gi/2e, and Md is the space of moment vectors up to degree d.

Furthermore, the moment vector corresponding to δu∗ minimizes Equation 4.20.

We now have two SDP-based approaches to solving the same polynomial optimiza-

tion problem—one derived by SOS programming, and one via moment relaxation. As

the reader may have guessed, the two SDPs are dual to each other [Las01].

If the moment vector µ solving Equation 4.20 corresponds to a valid probability

measure, then we know the relaxation was tight and we have achieved the global opti-

mum of the original measure relaxation Equation 4.18, and in turn of the polynomial

problem Equation 4.6. Verifying this when the optimal measure is a delta measure

is particularly simple—this will be the case if and only if the semidefinite matrix cor-

responding to the first constraint in Equation 4.20 has rank one. This phenomenon

is known as exact recovery, and it provides an optimality certificate verifying that

d was chosen sufficiently high for the relaxed problem to solve the original problem

Equation 4.6. Finally, when we have exact recovery, u∗ can be recovered as the mean
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Table 4.1: Overview of SOS results on quadratic and cubic triangle patches. For
each problem, we randomly generate 1000 test cases. Specifically for CCD on cubic
triangles we test on a reduced set of 300 cases. We show the minimum SOS polynomial
degree dcorrect for which all problem instances are solved correctly. This degree is
generally less than the degree dexact required for exact recovery. For problems where
it is applicable (SSI,SI,CCD), we provide the percentage of the data that intersects
or collides. We also provide the number of optimization variables for each problem,
which indicate the dimensions of the ultimately solved SDP problem. Additionally,
we provide the median runtimes over 50 instances of each problem with standard
deviations. We separate out the time spent in yalmip converting to mosek’s input
form, and the time spent in mosek actually solving the SDP problem. CCD on
cubic triangles takes the longest, which is unsurprising given the large number of
optimziation variables. Lower-degree problems like MBB and MSS are already fast
enough to be used on large meshes out of the box. *For SI, 100% exact recovery is
taken out of cases where the patch did self-intersect. Exact recovery is not expected
if the patch does not self-intersect.

dcorrect % Correct % Exact % Intersects # Vars yalmip Time (s) mosek Time (s)
Triangle dx 2 3 2 3 2 3 2 3 2 3 2 3 2 3

CP 3 5 100 100 100 100 - - 31 64 .56±.04 .52±.04 .14±.02 .10±.08
MBB 2 4 100 100 100 100 - - 19 46 .48±.02 .49±.02 .002±.0003 .004±.0007
PD 4 6 100 100 100 100 - - 491 1471 .49±.02 .5±.02 .05±.009 1.24±.19
SSI 5 6 100 100 27 0 60 85 757 1261 .6±.02 .66±.08 .78±.12 6.19±1.4
SI 4 4 100 100 100* 0 51 84 491 491 .38±.02 .5±.03 .29±.06 .39±.09
CCD 5 6 100 100 1 0 82 90 2017 3697 .69±.04 1.31±.09 25.9±4.4 699±49
MSS 2 4 100 100 - - - - 36 63 .41±.03 .38±.008 .006±.002 .012±.002
MEE 4 6 100 100 - - - - 68 107 .42±.04 .37±.03 .13±.02 .13±.01
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(i.e., vector of first moments) of δu∗ :

u∗ = (µu1 , ..., µuk
) (4.21)

Revisiting PD and SI With Equation 4.21 we are equipped to extract u∗ for prob-

lems with a unique global minimum. Problems like PD, however, have multiple

global minima due to the exchange symmetry u1 ↔ u2, which leaves the objective

function unchanged. Such a symmetry means that the computed optimum µ, even

if it corresponds to a valid measure, will not in general be a delta measure, making

exact recovery elusive. Moreover, the mean extraction Equation 4.21 will yield the

Euclidean mean of optimal values, which may not itself be optimal.

To address these issues, we break the exchange symmetry by adding the generic

constraint

g(u1,u2) = (u1 − u2) · v⃗ ≥ 0, (4.22)

where v⃗ is a randomly sampled unit vector. With this modification, generic uniqueness

of the argmin is restored, allowing for exact recovery.

SI has the same symmetry and requires the same symmetry-breaking constraint.

Furthermore, exact recovery is only possible for SI if the patch has a self-intersection.

Otherwise, any pair of points u1 = u2 ∈ D are globally optimal with an optimal value

of 0. Despite the possible lack of exact recovery, we address in § 4.5.2 how to solve

problems like SI reliably in practice.

4.5.2 Moment Relaxation in Practice

A general algorithm to achieve exact recovery might be to incrementally increase

the SOS degree d from 1 until exact recovery is achieved. While this strategy may

succeed eventually, Marschner et al. [Mar+20] observe that moment relaxations of a

specific problem class tend to achieve exact recovery at the same degree, independent

of the specific numbers involved. In particular, they observe that for a trilinear

hexahedron, the hexahedron validity problem consistently achieves exact recovery
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Figure 4-5: Conversion from Equation 4.9 to functioning yalmip code for CP. The
yalmip code matches the mathematical formulation almost line to line. After specify-
ing the the primal SOS problem, the dual moment vector and u∗ are easy to extract.
To solve other problems on different patches, only gi, trimapX and f need to be
changed.

with d = 4. Given a problem type, one might determine d empirically by generating

many randomized instances of the same problem and increasing d until these generic

instances can be solved to exact recovery. Then the empirically-determined degree

can be applied to untested instances of the same problem.

Curiously, we observe that it is frequently possible to obtain f ∗ and u∗ ∈ D

even without exact recovery. When d is smaller than required for exact recovery, the

moment vector µ does not encode a delta measure. Nevertheless, we can take its

mean following Equation 4.21 and treat that as a proxy for u∗. While this leaves the

realm of formal SOS theory, we find in practice that this strategy is extraordinarily

robust. Consider the SSI problem on quadratic triangles in Table 4.1. Choosing

degree d = 5 provides us with exact recovery for only 27% of the instances of this

problem. However, we can correctly detect intersection 100% of the time, and our

extracted u∗ gives us the correct intersection points 100% of the time. The same

phenomenon is observed for SI and CCD—exact recovery is not required to obtain

the correct solution.

Thus we distinguish the degree dexact at which exact recovery is achieved from
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the degree dcorrect at which a correct solution is achieved. In problems like SSI where

numerical verification of intersection is easy given the candidate points of intersection,

having an accurate u∗ is just as effective a certificate of intersection as exact recovery.

Since the cost of solving an SOS program is primarily dictated by d, it is extremely

fortunate that for practical purposes one does not require exact recovery.

We demonstrate in Figure 4-4 the percentage of correctly solved SSI problems out

of 200 for each of d ∈ 1, 2, 3, 4, 5 using randomly sampled quadratic triangles. Our

sampling strategy is described in § 4.6.2. 128 of these problems have intersections.

Out of problems with intersections, we plot the percentage of them that exhibit exact

recovery for each degree. This percentage never reaches 100% and our key observation

is that it does not need to! We do not require exact recovery to obtain the correct

solution. We plot the percentage of problems where the SOS formulation misidentifies

whether an intersection exists. At degree only d = 2, the percentage misidentified

is already zero. Thus we are already able to determine whether a pair of quadratic

triangles intersect with 100% accuracy. Finally, for problems that have intersections,

using Equation 4.21 we can extract the points on each surface that intersect. When

the SSI problem is correctly solved, their distance must be 0. We plot the maximum

distance between the extracted points over all intersecting examples at each degree.

At d = 5, the points of intersection are identified with high precision. While these

problem instances do not exhaustively cover SSI, they provide very strong empirical

evidence that exact recovery is not required.

4.6 Results and Applications

4.6.1 Implementation

Modern problem modeling languages such as yalmip [Löf04] allow one to specify

an SOS program in the concise form Equation 4.9, automatically converting it to

a primal-dual SDP formulation from which one can obtain the moment vector µ of

Equation 4.20. Figure 4-5 demonstrates how easy it is to specify and solve the primal
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and dual problems. The details of converting SOS or moment constraints into an

SDP can be entirely left to the modeling language.

All batch experiments were run on an Intel i7-8700K CPU @ 3.70GHz with 16

GB of RAM. Problems were all written in matlab 2021a using yalmip version

20200116 to formulate the problems and mosek 9.2 to solve. Default modeling and

solver parameters were maintained. Table 4.1 lists the median runtimes and standard

deviations for 50 random instances of each problem for quadratic and cubic triangles.

Time spent in yalmip converting the problem into a form that mosek can handle

does not vary significantly across problems or patch types. Time spent actually

solving the problem in mosek varies much more. Clear trends are that solver time

increases for each problem with SOS degree, which increases with patch degree. While

CCD seems to be a significantly challenging problem, MBB is fairly easy. For most

problems, the table shows that the majority of the time is spent in yalmip. This

time can be cut out entirely by formulating the problem directly as an SDP problem,

or by taking advantage of yalmip’s ability to precompile problems. We expect the

runtime can be further improved by engineering tailor made optimization strategies

for these problems.

4.6.2 SOS Problems Overview

A key parameter of our SOS formulations is the degree d. Since it controls the size of

the SDP in Equation 4.2, we naturally want to choose a small d. However, if d is too

small, the SDP may not successfully solve the unrelaxed problem. In Table 4.1, we

show the minimal degree dcorrect required to solve each problem for 100% of our test

cases on various triangular patches. As mentioned in § 4.5.2, this is not necessarily

the same degree dexact needed to achieve exact recovery.

For each problem, 1000 test instances were generated, except for CCD on cubic

triangles, for which we used 300 instances. For CP, MBB, PD, SI, SSI, MSS, and

MEE, we randomly sampled quadratic and cubic triangles by picking all dimensions

of all control points independently according to a normal distribution with variance

1. For CCD, pairs of triangles are sampled the same as before, but then shifted by
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(0, 0,
√
2
2
) and (0, 0,−

√
2
2
) respectively. Velocity vectors are sampled the same way, but

shifted by (0, 0,−
√
2
2
) and (0, 0,

√
2
2
) respectively. This is done to increase the number

of problem instances that successfully collide without starting out in an intersecting

configuration. With this sampling strategy, 82% (90%) of the sampled quadratic

(cubic) triangles collide in spacetime while 22.5% (28%) of configurations start out

intersecting. We verify correctness of the SOS solutions by comparing to the same

problem solved on a linearization of the polynomial patch. Patches are uniformly

subdivided so that each edge is split into 10 segments. We then check that solutions

for the SOS solution and the linearization match up to a threshold of 10−2 in both

the parametric and embedded spaces. In a few cases where they do not match, we

increase density of the linearization until they do.

Table 4.1 demonstrates how challenging it can be to guess dcorrect in advance. The

SOS degrees we end up with are not clearly correlated with the degrees of the objective

or constraints. The clearest trend is that dcorrect increases with the degree of the shape

function dx. There does not seem to be a monotonic relationship between dcorrect and

the degree of the objective function. For example, CP has an objective degree of 2dx

while needing fairly low dcorrect. On the other hand, CCD has an objective degree of

just 1 but needs a much higher d. Even if we consider the constraint degrees as well,

the degree of the CCD constraint is only dx +1 which is still less than CP’s objective

degree 2dx.

4.6.3 Closest Point

As described in 4.4.1, our method of formulation is applicable to the problem of

finding the closest point on a polynomial patch to a target point.

Applying this method for all patches in a model lets us find the closest point on

the model to a target. In Figure 4-6, we show this procedure applied to a collection of

points surrounding the bicubic Bézier tensor patch teapot model, where dx = 6 and

we chose d = 5. We can solve an analogous problem in one lower ambient dimension,

finding the closest point to a Bézier curve in R2. This formulation allows for the

creation of Voronoi diagrams of 2D objects formed from Bézier curves, as shown in

100



Figure 4-6: Closest point projections onto a bicubic Bézier tensor patch teapot.

Figure 4-7: Cross field generated via walk-on-spheres

Figure 4-8. In this figure, the 2D objects are letters consisting of quadratic Bézier

curves, where dx = 2 and d = 3. We color points in the 2D domain by which curve

segment they are closest to, forming curve-segment Voronoi cells.

Closest point queries allow us to build more complex operations on domains with

curved boundaries. For example, the Monte Carlo walk-on-spheres procedure intro-

duced to geometry processing in [SC20] builds a stochastic solver for linear PDE

out of closest point queries. Using the SOS formulation of CP as a building block,

such a procedure can solve a PDE on a domain defined by polynomial bounding

curves with exact boundary conformation, without linear remeshing. In Figure 4-7,
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we demonstrate walk-on-spheres applied to computing a boundary aligned cross-field.

Each frame is computed by averaging complex fourth powers sampled from 100 ran-

dom walks, each stopping when it arrives within 10−3 of the boundary. No mesh of

the domain interior is required, and in principle, samples can be adapted to resolve

singularities precisely.

4.6.4 Intersections

It is worth revisiting the intersection problems (SSI, SI, CCD) in Table 4.1. First,

for SI on quadratic triangles, dcorrect = dexact. The same property does not extend to

cubic triangles or SSI on quadratic triangles since the percentage that achieve exact

recovery is different from the percentage that have intersection.

An interesting feature of SI is that the degree dcorrect is the same for both quadratic

and cubic triangles. This is surprising given that for other problems the cubic triangles

require higher dcorrect. We note here that CCD was almost the same in that 93% of

cubic triangle CCD instances succeeded using d = 5 with runtime comparable to

CCD for quadratic triangles. Only for the remaining percentage was d = 6 necessary.

Due to the large time cost of CCD on cubic triangles with d = 6, one can imagine an

optimization where d = 5 is used first to prune cases where a collision happens and

is certifiably found. Only in the absence of this collision would one resort to d = 6.

In Figure 4-10 we demonstrate application of SI and SSI tests to airplane meshes

from Smirnov, Bessmeltsev, and Solomon [SBS20]. These models use cubic Coons

patches for which dx = 4. The SI and SSI problems are solved with d = 4. We are

able to find intersections for both SI and SSI and provide their exact locations. This

enables users in a CAD pipeline to discover and manually fix problems in a design.

In Figure 4-9 we demonstrate application of the SOS relaxed CCD problem to

detect collision of a rigid bicubic Bézier tensor patch teapot and elephant. Velocities

were chosen to guarantee collision within 1 unit of time. This problem was solved with

d = 4. Using CCD we are able to find the earliest instance of collision, the patches

that collide, and the location of their collision. With the location of the collision we

can get exact surface normals at the collision point, which can then be passed onto
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Figure 4-8: Curve segment Voronoi diagrams for the glyphs H and N from [Smi+20],
each composed of 15 quadratic Bézier curves. On the left, we show the calculation
of the closest point on each of the curve segments to the red point, with the distance
to each curve represented by a circle. On the right, we show the Voronoi diagram,
computed by finding the curve with the minimum distance to each point in a 500 by
500 grid around each letter.
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(a) Problem Setup (b) Bounding Sphere CCD

(c) Exact CCD (d) First Intersection
Figure 4-9: We show the application of our CCD solution to the problem shown in (a),
where the teapot moves rigidly into the elephant. The teapot and elephant models
are comprised of 32 and 128 bicubic Bézier tensor patches, respectively. To accelerate
the calculation of the collisions, we first use our MSS method to pre-compute a set of
bounding spheres for each model, and use these to determine which pairs of patches
may intersect. In (b) we color in red the bounding spheres of the elephant and
bounding capsules of the teapot for which at least one intersection was found. We
then solve the SOS patch CCD problem on the remaining candidate intersections.
The results of this are shown in (c), where each patch is colored based on the time
at which it first collides (with darker colors representing earlier times). We can also
determine the exact moment in time when the two models first intersect, shown in
(d).
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Surface-Surface Intersections

Self-Intersections
Figure 4-10: Our method for finding self-intersections and surface-surface intersec-
tions applied to an invalid airplane mesh, obtained from the pipeline of [SBS20]. In
the top row, we show on the left all the patches that intersect with another patch
in red. On the right, two of those surface-surface intersections are shown, with a
red point marking the intersection point calculated by our method. In the bottom
right, all the patches that include self-intersections are shown in red. Two of these
self-intersections are shown on the left, with the intersection points plotted in red.
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later steps in a simulation pipeline such as collision response.

4.6.5 Bounding Volumes

Bounding volumes are useful to speed up various intersection-type problems. They

can be used in ray tracing to quickly detect if a ray will not intersect an object.

They can also be used to quickly detect if rigid objects will not collide. The tighter

a bounding volume is, the more non-collisions/intersections can be quickly pruned.

On the other hand, employing a more complex bounding volume shape can result in

increased computation and updating costs in cases when bounding volumes cannot

be precomputed. As such, there is a tradeoff between the computation saved by

having a tighter bounding volume and the cost of maintaining the bounding volume

itself. SOS optimization is flexible enough to target multiple points along this tradeoff

e.g. MBB, MSS, and MEE. In Figure 4-11 we compute the MBB, MSS, and MEE

evaluated on bicubic Bézier tensor patches of the teapot mesh. As expected the total

volume of MEEs is less than that of MSSs or that of MBBs. The MBB problem fits

into the framework of § 4.4.1, and so we can generically expect exact recovery for

high enough d. The MSS and MEE problems are different in that the MSS (MEE)

generically intersects the polynomial patch it bounds at multiple points. Thus we do

not ever expect exact recovery. Nevertheless, we can obtain the minimal volume and

the parameters of the MSS (MEE) achieving that volume from Equation 4.17.

In Figure 4-9, we demonstrate the MSS on rigid bicubic Bézier tensor patches as

a way to shorten computation time of CCD problems between meshes. Instead of

running CCD between all pairs of patches, we can drastically cut down computation

time by precomputing the MSS for each patch. It is straightforward to check if

two moving spheres will collide or not, allowing us to reduce the number of CCD

computations required.
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vol = 44.27 vol = 180.45 vol = 33.34

vol = 1.4256 vol = 7.3138 vol = 1.0752

Figure 4-11: In the top row, we show a comparison of the MBB, MSS, and MEE
for the bicubic Bézier tensor patch teapot. The total volume of bounding elements is
computed for each type; ellipsoids provide the tightest bounding volume. The bottom
row shows a comparison of the three different bounding types for an individual patch.

Figure 4-12: The MBB and SSI problems solved on generic NURBS patches. On the
left, two bounding boxes are drawn around the blue and green patches. On the right,
the red point indicates where these patches intersect.
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Figure 4-13: This helical gear, from the ABC dataset [Koc+19], is modeled with
NURBS surfaces defining its teeth, shown in blue in the left figure. To determine
whether the two gears intersect, we can apply our SSI formulation to the NURBS
surfaces in the two gears. To speed up the runtime, we first compute the bounding
boxes of each patch with our MBB method and use these to identify patches which
may intersect. The patches in the two gears that intersect are shown in red on the
right.

4.6.6 Rational Surfaces

We demonstrate application of SSI to NURBS in Figure 4-13 on gears obtained from

[Koc+19]. Intersecting teeth are easily detected and highlighted. We also demonstrate

CCD in Figure 4-1 on the castle from [TCL21] to find which patches of the rocket

will first collide with patches of the castle. These collisions could then be fed back

into their elasticity simulation to render colliding elastic objects without need for

linearization or volumetric remeshing.

While handling of rational surfaces allows us to process generic NURBS surfaces,

we find that many of the models in [Koc+19] and [TCL21] have mainly patches

with constant denominators b = 1, making them simply B-Splines. The primary

exceptions in these datasets are patches that comprise spherical or cylindrical features.

In Figure 4-12, we show MBB and SSI on generic rational surfaces without constant

denominator computed using SOS programming.
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4.7 Discussion

Many problems in geometry processing suffer from nonlinearity, forcing users to cope

with only locally optimal solutions. Even when one does succeed in reaching global

optimality, it is usually impossible to verify. This nonlinearity makes it challenging

to leave the realm of piecewise linear geometry, where at least low-level operations

such as closest-point queries, injectivity testing, intersection, and collision detection

can be solved with confidence, a solid base facilitating development of more complex

algorithms.

With our SOS framework, these and other low level operations are readily ex-

tended to higher-order surfaces. SOS geometry processing alleviates concerns, for

example, that curved surface continuous collision detection might miss collisions due

to linearization error, leading to unrealizable states. Similarly, SOS-based closest

projection does not suffer from local optima that could affect processes down the line.

SOS programming transforms these and other problems on a huge variety of curved

patch types into problems where a user can confidently certify a global optimum.

Several avenues for further exploration are listed below.

Hardware Despite the flexibility of SOS programming, the runtime cost of solving

SDPs can be substantial. Similar to how the availability of high-performance GPUs

catalyzed deep learning, we expect that design of specialized SDP hardware would

enable the use of SOS programming in many more contexts where runtime was pre-

viously too large. At the least, individual kernel problems do not interact and so can

be parallelized.

Self-Intersection Barrier (CSB) In the case of two polynomial patches, quantifying

their separation distance produces a natural and algebraic barrier function to collision

that can be used in methods like [Li+20]. In the case of a single polynomial patch

however, the barrier function becomes far less clear since the distance between a patch

and itself is always 0. Formulating such a barrier, however, is necessary for methods
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like [Li+20] to extend to higher-order surfaces.

Degenerate Instances and Generalized Exact Recovery Our discussion of exact re-

covery has focused on the case where the optimal moments correspond to a delta

measure, i.e., where the moment matrix has rank one. For some problems, optimal

measures generically have more than one support point; this is the case for MSS and

MEE, for which optimal measures are supported on points where the patch contacts

the surface of the bounding sphere or ellipsoid. PD and SI would exhibit similar

behavior if not for our symmetry-breaking modification. Other problems, such as

CP, have degenerate instances, i.e., problem instances for which there are multiple

global optima to the polynomial optimization problem. For these instances, optimal

solutions to the measure relaxation are mixtures of these global optima.

In such cases, one might still be interested in extracting the support points. While

more complicated than in the rank-one case, it is still possible to extract an atomic

measure—a mixture of deltas—corresponding to a moment matrix when it satisfies

the so-called flat extension property. This property holds when increasing the degree

of the moment relaxation does not increase the rank of the moment matrix. When

flat extension holds, one can apply a procedure based on diagonalization of a set of

commuting multiplication operators to extract the measure support points [BPT12,

§3.5.6]. It would be interesting to test whether our MEE and MSS relaxations satisfy

the flat extension property, which would serve as a certificate of generalized exact

recovery and allow for extraction of the support points.

These opportunities for further development aside, our broad SOS framework

and specific model problems are already beneficial to geometry processing. These

problems would otherwise each require their own solutions, including heuristics for

number of initial points, density of linearization, tolerance for intersection, gradient

step size, and many other nonlinear optimization parameters, all of which must be

tuned per surface type. SOS instead provides a single unified framework for common

objectives across the most popular surface representations.
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5

Conclusion

This thesis tackles several problems across the geometry processing pipeline. In par-

ticular, we address methods in quad mesh generation, hex mesh modification, and

algebraic collision detection. In this chapter we reflect on the wider applicability of

our approaches to problems outside these specific examples.

The first project demonstrates that pairing convex relaxation with the spheri-

cal harmonic representation produces crease-aligned cross fields. Convex relaxation

was conveniently within reach because even when the non-convex constraint was re-

moved, we could still obtain non-trivial solutions. Furthermore, projection onto the

un-relaxed solution only required normalization. In general it is usually not hard

to simply remove all non-convex constraints. A non-convex objective can also fre-

quently be convexified by adding new variables with non-convex constraints that are

later relaxed away. Computing a projection from the relaxed solution onto the origi-

nal non-convex feasible space may unfortunately be challenging. It’s recommended in

[BBV04] to practice disciplined convex programming, where one limits the operations

available to them during the problem formulation stage to always arrive at a convex

problem.

The use of variable augmentation for hexahedral mesh quality enhancement, falls

into a broad class of widely used adaptive remeshing techniques. Often when com-

puting solutions to numerical PDE such as linear elasticity, a geometric solution can

be obtained to local optimality on a fixed mesh topology. Many adaptive remeshing
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techniques exist that can quantify where a mesh needs more resolution to produce

an improved solution [FD09]. Adding that resolution typically involves subdividing

mesh elements, and increasing the number of mesh control points which yields an

augmented problem. Adaptive remeshing is then alternated with recomputing the so-

lution to the PDE of interest until error is below some threshold. Despite its history,

the majority of mesh modifications to a hexahedral mesh do not improve the scaled

Jacobian bounds. Global hex mesh subdivision does not change singular structure,

while local hex mesh subdivision only creates more singular nodes. Strategic sheet

inflation is the first method that can decrease singular node count to prioritize mesh

element distortion.

SOS programming is a form of convexification where instead of removing con-

straints as in the case of relaxation, more are added. Its wide applicability speaks for

itself, so instead we’ll discuss limitations. The primary limitation is that the entire

problem must be algebraically formulated i.e. using polynomials. Trigonometric func-

tions are naturally problematic, however, sometimes re-parameterization techniques

can express trigonometric functions algebraically [RKC00; Kav+08; Ami+22]. Still,

an exact spiral geometry is out of reach [WS11]. Thankfully, there is no shortage of

algebraic problems.

Beyond the problems and methods in this thesis, various creative geometric op-

timization strategies exist including pre-conditioning [YSC21; NJJ21], competetive

gradient descent [Sol+21], and non-convex alternating direction method of multipli-

ers (ADMM) [Mar+20]. Geometric optimization continues to be a very fruitful tool

for studying geometry processing.
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