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Abstract

The isolation of broadly neutralizing antibodies (bnAbs) that can neutralize diverse
strains of highly mutable viruses like human immunodeficiency virus (HIV) as well
as identification of mutationally-constrained regions of the proteome that could be
targeted by T cells has led to interest in passive immunotherapies and therapeutic
vaccines as promising methods for treating chronic infection. However, the feasibil-
ity of creating a sufficiently powerful therapy remains uncertain. In this work, we
develop a stochastic computational model of viral dynamics to help characterize the
regimes where viral control or cure may be possible. We study the efficacy of ei-
ther bnAb therapy or therapeutic vaccination that elicits T cell responses that target
mutationally-constrained regions, as well as treatments that combine these two ther-
apeutic modalities. Our results show that combination therapy has the best chance
of maintaining viral control or achieving a cure. this is because administering combi-
nations of bnAbs with broad coverage of viral strains for a sufficiently long time can
potentially clear rare strains from the latent reservoir which are likely to escape T
cell responses resulting in viral rebound. We also describe a strong relation between
the outcome of treatment and the diversity of the reservoir of latently infected cells,
which suggest that the best candidates for immunotherapy are those who started
antiretroviral therapy shortly after infection. Importantly, we find that cure is likely
to be a rare outcome, and that the average time to cure is long and independent of
therapeutic modality as it depends on the rate of activation of the latent reservoir.
Our results will help guide the design of new therapeutics, and provide a platform for
future computational screening of of the efficacy of new treatment regimes.

Thesis Supervisor: Arup K. Chakraborty
Title: Institute Professor
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Introduction

Higher organisms have an adaptive immune system which is remarkable in that it

enables them to mount pathogen-specific responses to a diverse and evolving world of

microbes [1]. B and T Lymphocytes (B cells and T cells) play a key role in mediating

adaptive immune responses. Each human has billions of B cells and T cells, and most

have a receptor on their surface that is distinct from that on another lymphocyte of

the same type. If a B cell’s receptor can bind sufficiently strongly to a pathogen’s

surface proteins, like viral spikes, it can get activated and ultimately produce anti-

bodies specific for this pathogen. The antibodies bind to the viral spike and prevent

the pathogen from infecting other cells. Antibodies can also cause some clearance

of infected cells [2, 3]. T cells can bind to parts derived from a pathogen’s internal

proteins (peptides) that are displayed on the surface of infected cells, and if a T cell

binds sufficiently strongly to a particular viral peptide it can be activated. Activated

T cells can coordinate an immune response in many ways. For example, certain kinds

of T cells, called CD8 T cells, can kill infected cells that display the peptide that

activated them. Upon infection or vaccination, T cells and B cells specific for the

pathogen or vaccine antigen are elicited. The resulting antibodies and memory B

cells and T cells remain after infection is cleared or after vaccination, and can protect

against future infections. Pathogen-specific immunological memory is the basis for

vaccination. To date, despite enormous efforts and expense, a universal vaccine that

can protect against a highly mutable virus like HIV or even the seasonal influenza is

unavailable.

Antibodies have been isolated from some infected persons that can neutralize
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diverse strains of HIV and influenza [4, 5]. Such antibodies are called broadly neu-

tralizing antibodies (bnAbs). For HIV, peptides that are constrained from mutating

because of severe penalties to the virus’ fitness have also been identified, and these

are targets for potent T cell responses that could potentially be elicited by vaccina-

tion [6–13]. These advances suggest that antibody- and T-cell-based therapies are

also promising avenues for the treatment of highly mutable viruses, such as HIV or

influenza [14–17]. The effectiveness of these immunotherapies is linked to the breadth

of coverage of mutant viral strains by bnAbs, and whether or not some mutations in

different sequence backgrounds may still allow the virus to escape T cell responses

that target mutationally constrained peptides. The greater the breadth of coverage

of bnAbs or mutational constraints on a peptide, the lesser the likelihood that the

virus population will be able to produce an escape mutant that will make the treat-

ment ineffective. Thus, current approaches are focused on increasing the breadth of

individual bnAbs and vaccinating with multiple mutationally constrained peptides to

minimize the chance of viral escape [16, 18, 19].

Immunotherapies aim to treat patients with existent viral infection, for whom

there can be a large inter-patient variability in virus sequence diversity at the time

of treatment. Much of the virus diversity, however, may not be contained in the ac-

tively infectious virus population. Retroviruses, like HIV, which will be the principal

example that we will consider, have large latent reservoirs of infected cells which do

not produce new virus but instead accumulate over time while avoiding detection

by the immune system. Because viruses can remain latent for long periods of time,

these latent reservoirs can contain much more diverse virus mutants than the actively

infectious viruses, making escape from treatment more likely when these latent pop-

ulations reactivate [20–23]. Treating viral infections with immunotherapies requires

either supplying exogenous bnAbs that can bind to virus proteins with high breadth

(passive therapy), or inducing a T cell response that targets mutationally constrained

peptides by immunizing with these antigens (therapeutic vaccination).
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For HIV, passive immunization with individual bnAbs, or combinations of bnAbs

that target different regions of the virus, have shown promise in their ability to reduce

viral load in patients [24–27]. These antibody therapies can clear both free virus in

plasma as well as some actively infected cells; however, many patients still experience

viral escape through the emergence of mutations that evade the coverage of the anti-

bodies [21, 27, 28]. Therapeutic vaccination with identified mutationally constrained

peptides to elicit potent T cell responses is still being developed, but such vaccines

containing larger parts of the proteome have been tried [29–31]. In contrast to bnAb

therapies, however, T cell therapies can only target and clear actively infected cells

and thus result in different viral population dynamics during treatment.

Ex-vivo expansion and engineering of T cell populations to treat viral infections

are another possible solution [14]. Recent advancements in chimeric antigen receptor

(CAR) T cell therapies have shown promise in their ability to control these diverse

virus populations [32, 33]. The engineered T cell receptors can bind to a large fraction

of viral strains, and as in the antibody case, T cells with multiple receptors can be

administered simultaneously to increase the breadth of the treatment [33, 34].

The probability of success of such immunotherapy approaches is difficult to predict

for multiple reasons. First, it is challenging to comprehensively measure or compute

the effect of specific mutations on the ability of the virus to escape a particular treat-

ment [35, 36]. Second, the effect of pre-treatment diversity of viral sequences in both

actively infectious and latently-infected cells on the ability of passive therapies to

control virus populations has not been fully characterized [20, 37]. Finally, in the ab-

sence of drugs that promote viral gene expression, it is difficult to clear a significant

portion of the latent viral reservoir during the relatively brief period during which

therapy is administered [24, 38].

Prior attempts to model the dynamics of viral response to treatment used sys-

tems of ordinary differential equations to characterize the time evolution of viruses,
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infected cells, and immune responses during and after treatment. These models can

give us insights into the biological mechanisms underpinning the response to passive

immunotherapies or therapeutic vaccines and help explain the variable responses ob-

served in different patients [2, 39]. However, these models do not include stochastic

effects that are inherent to real biological systems, and have a limited ability to model

viral diversity and heterogeneity [40]. Stochastic versions of a birth-death-mutation

process have been studied previously in the context of other immunological processes,

showing their ability to provide quantitative and qualitative insight into these com-

plex biological systems [41–43]. There are stochastic models that have been used

to study viral dynamics, but they are limited in their ability to describe necessary

features of our problem, such as viral diversity or response to immunotherapies [8, 44].

In this work, we develop a stochastic framework to model the growth, death, and

mutational dynamics of a virus population under the immune pressure imposed by

T cell or antibody therapy. Our model is parameterized with experimental data and

recapitulates viral rebound characteristics observed in clinical trials [24]. In addition,

our stochastic model highlights the effectiveness of combination therapy, wherein an

extended bnAb treatment can help clear rare strains in the latent reservoir that would

otherwise escape the T cell response. We find that this cooperative effect between

bnAbs and T cells is maximized when viral diversity is low. Finally, we show that

the expected time to cure is unaffected by immunotherapies, but can be reduced

by methods that increase the rate of activation of the latent reservoir. With these

findings, we hope to guide therapy design to maximize the chances of sustained viral

control.
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Coarse-grained model for viral dynamics with

bnAb and T cell therapeutics

A complete description of viral and immune dynamics requires the incorporation of

biological details which can be incredibly complex or poorly understood. Thus, our

goal is to design a minimal model that contains sufficient features of the underlying

biological process that we can recapitulate experimentally-observed trends and gain

an understanding of the characteristics relevant to improving bnAb and T cell ther-

apies.

Viral dynamics alone can be a source of great complexity. Free virus in the plasma

can circulate and infect new cells, and infected cells can rapidly produce new virus

leading to rapid proliferation if left unchecked. Because of error-prone reverse tran-

scriptase machinery and an extensive set of post-translational modifications, the HIV

virus mutates often and follows a very complex fitness landscape that makes describ-

ing the possible mutational transitions challenging. Thus, we make some simplifying

assumptions about the characteristics of the dynamics. First, we work explicitly only

with the populations of infected cells. We assume we are in the regime where the

number of uninfected, susceptible cells is larger than our infected population. The

dynamics of free virus in plasma is then incorporated implicitly through the appropri-

ate choice of constants. While there is evidence that cells can be multiply infected by

different virions, we note that the resulting dynamics have been found to be equiv-

alent to singly infected cells [45, 46]. Thus, we do not include any effects of viral

recombination and assume each infected cell can be associated with a single viral
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strain. In this view of infected cells, we adopt a coarse-grained view of viral diversity,

where the virus population can be from one of N discrete strains, ordered from 1

through N . The infected cells can infect new cells with rate constant r and mutate

from strain i to j with a rate µij ⌘ µ|i�j| that decreases the further apart i and j are.

For ease of computation and interpretability, we decouple replication and mutation

in our model; both are simply included as independent first-order reactions.

The infected cells can potentially be cleared upon clearance of these infected cells

can be done with the administration of T cells or bnAbs, each of which has a certain

probability p of covering a particular viral strain. If the strain is covered, it is cleared

with a rate c > r which may be different between T cells and bnAbs. In the context

of bnAbs, the physical notion of the coverage fraction is relatively straightforward,

analogous to the coverage estimated from traditional neutralization assays [47]. In

the case of T cells, the coverage fraction requires a bit more care to interpret. If a T

cell targets an epitope from a mutationally vulnerable region of the virus sequence,

Figure 1: a. The coverage matrix structure, representing the clearance rate of each virus

strain Vi by each therapy. b. Graphical depiction of the dynamics modeled by the stochastic

master equation for three strains, including replication, clearance, and mutation with rates

that are a function of the distance between strains.
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we consider it to have a higher coverage fraction; escape mutations in such a region

would be associated with a large fitness cost, rendering a large fraction of the nearby

sequence space “covered” by the T cell. On the other hand, targeting an epitope from

a highly mutable portion of the virus would result in a T cell with low coverage. In

both cases of bnAbs and T cells, we allow for the possibility of combined treatment;

in such cases, we assume each therapy targets a different epitope allowing for inde-

pendent random selection of their covered strains. The clearance of each strain by

each treatment is encoded in the random matrix A, outlined schematically in Figure

1a. The difference between bnAb and T cell treatments biologically comes from the

ability of antibodies to neutralize free virus. Thus, the presence of bnAbs not only

clears infected cells, but also reduces the rate of replication and mutation. We there-

fore introduce a parameter ↵i which is a constant factor ↵ for a covered strain i and

1 otherwise; the replication rate and mutation rates for strain i are then ri/↵i and

µij/↵i. For bnAbs we set ↵ > 1, and for T cells ↵ = 1. A summary of the dynamics

experienced by the infected cells is presented in Figure 1b.

Each actively infected cell strain also has a latent counterpart which cannot pro-

liferate but also is not cleared by the administration of treatments. To model the

increased diversity in the latent reservoir, we also allow at time 0 there to be strains

with cells in the latent reservoir that are not present in the active population. All

cells in the latent reservoir can activate with a certain rate µL!v and decay slowly

over time. Although we can identify a baseline biological value for µL!v (Appendix

A), we can also treat it as a controllable parameter to model the effect of HIV latency

reversal drugs which increase the rate of HIV activation [48–50].

Each of the rates above describes a stochastic process, which can be described

using master equations, a set of coupled differential equations which describe the

transition rates between states of the system. In our case, the states are described

by the vectors Va 2 NN
0 , VL 2 NN

0 which describe the population in each strain of the

active and latent population, respectively. Then, for a particular strain i, the master
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equations for the probability of being in a particular state read

dpa,i (V i
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dt
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dpL,i (V i
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dt
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�
V i
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�
V i
L (� + µL!v + µv!L)

+ pL,i
�
V i
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�
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�
V i
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� �
V i
L � 1

�
µv!L (2)

where V i
(⇤) is the number of cells in strain i in either the latent (L) or active (a)

reservoir, m indexes over the different applied treatments, and � is the decay rate of

the latent reservoir.

The choice of parameters is determined primarily by known biological values. Pa-

rameters we are able to estimate this way include the replication rate, clearance rate

for bnAb and for T cells, and the latent activation rate. We can also obtain the

rate of mutations µij in this model, but to do so requires some care. Because each

coarse-grained strain in this model can replicate and be targeted by T cell and bnAb

therapies, a coarse-grained strain must only reflect replication-competent viruses.

Thus, the effective mutation rate in the model will be much lower than the observed

in-vivo HIV mutation rate of approximately 4 ⇥ 10�3/base pair/cell [51]. We derive
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the correction factor to the baseline mutation rate by estimating the fraction of non-

synonymous mutations that preserve high fitness [9, 10]. The full calculation of the

mutation rate µ, as well as the values of all parameters, are provided in Appendix A.

We can also biologically motivate our choices for the initial conditions of the active

and latent reservoirs. We set the size of the initial active pool to Va0 = 103 cells and

the initial latent pool to VL0 = 104 cells; such values are in line with the experimen-

tal observation that the latent reservoir can often be much larger than the actively

infectious virus pool [52]. As a matter of convention, we define rebound to occur

when the number of total cells in the active reservoir exceeds 2Va0, and terminate the

simulation at that point.

We model the distribution of these cells among the strains with a geometric dis-

tribution – that is, as

V i
a (t = 0) =

$
Va0 ·

�
1� 1

�

�i�1

�

%
(3)

and similarly for V i
L(t = 0), where we defined a parameter � that controls the mean

of the distribution. By varying �, we can model reservoirs with different diversities;

a larger � corresponds to a more diverse reservoir. This geometric distribution along

the strain axis is analogous to the distribution of sequences observed some time af-

ter infection by a founder strain. In such a case, we would expect that many of

the strains would have high sequence similarity to the founder (i.e. populate coarse-

grained strain 1) and cells with a large number of mutations would be rare. Because

we expect HIV sequence diversity to grow over time (in the absence of treatment),

the low diversity distribution can also be interpreted as the reservoir of an individual

who started antiretroviral therapy soon after infection. A high diversity would then

correspond to a patient with longer-term uncontrolled HIV infection.

Finally, we must determine the total size of the coarse-grained sequence space
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N . Although we know the full length of the HIV sequence, the total number of real

strains is challenging to simulate because of the combinatorial size of the sequence

space. For the parameters we identify above, we find empirically that an N=30 is suf-

ficiently large to not qualitatively affect the dynamics while remaining computational

tractable. A full table of parameters and sources is provided in Table 1 in Appendix A.

To simulate the master equations, we take two approaches. First is to treat the

underlying processes as a chemical reaction network and simulate it directly with a

custom variant of Gillespie’s stochastic simulation algorithm (SSA) designed to run

on GPUs for high throughput and parallelization [53]. This method is faster than

available versions running on conventional CPUs in regimes where the population

size is bounded [54]. The other method is derived from recent results that provide a

framework for analytically solving monomolecular reaction networks with Doi-Peliti

field theory [55]. These results were derived primarily by collaborator Henrik Pinholt,

and thus are beyond the scope of this thesis. The results presented hereafter are

computed by the SSA method described above.
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Results

I. Single-therapy results highlight limitations in time to viral

extinction

We will begin by investigating the administration of bnAb or T cell therapies for a

duration much longer than the time for all the cells in the latent reservoir to activate.

This is a realistic scenario for T cell vaccination, as CD8 T cell responses to vacci-

nation have been shown to persist for extended periods of time [56, 57]. However,

passive immunization with bnAbs decay on the order of weeks, which means long-

duration bnAb coverage requires continual administrations of the treatment which

is not practical. However, it is useful to study this limit to better understand the

behavior of the model. During extended administration of a single therapy, since the

clearance rate of the therapy is larger than the replication rate of the infected cells,

Single bnAb Multi bnAb (p = 0.5)
a b

Figure 2: a. Extinction probability of virus population for bnAbs administered with given

clearance rate and coverage fraction. b. Extinction probability for multiple bnAbs admin-

istered at the same time, where each bnAb has a fixed coverage fraction. We note that the

observed extinction probability in the two cases is nearly identical.
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we expect all outcomes to be either extinction or rebound events. To characterize

these outcomes, we look at three quantities for each simulation: the time to extinc-

tion, the time to rebound, and the probability of extinction. Since both the coverage

matrix and the resulting viral dynamics are both stochastic processes, we compute

averages of the three observables over 10000 realizations of the coverage matrix and

its resulting dynamics.

The main characteristics that define the effectiveness of a treatment are its clear-

ance rate of infected cells and the fraction of viral strains that the treatment can

effectively cover. We can vary these two parameters in the case of bnAb therapy,

and observe the corresponding extinction probabilities in Figure 2. These outcomes

are independent of the clearance rate of the bnAb, as long as it is greater than the

replication rate of the infected cells. We also see that combining multiple bnAbs,

whose coverage of individual strains is drawn independently at random, is equivalent

to administering a single, higher-coverage bnAb such that the probability of cover-

ing any one strain in both situations is the same. Thus, we now focus primarily on

the single-bnAb case, with the understanding that very high coverage fractions (i.e.,

> 0.95) could be achieved by either engineering an exceptional bnAb or combining

multiple bnAbs with more modest coverage fractions. We observe this pattern for T

cell therapy as well (Figure S1).

In Figure 3, we find that the mean time to extinction is independent of both the

clearance rate and coverage fraction of the bnAb. This is because any treatment that

targets only active infected cells must wait for the latent reservoir to activate, which

happens on a timescale much longer than the dynamics of infected cell clearance. As

the situation considered here is more realistic for T cell-based therapeutic vaccination

(see above), unfortunately, this implies that simply increasing the potency of the

magnitude of T cell treatments cannot decrease the average time to cure for HIV-

infected patients. However, Figure 3 also shows that increasing the coverage fraction

of the bnAb does increase the average time to rebound, primarily because the time
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a b

Figure 3: a. Mean time to extinction for the virus population when administered bnAb

therapy. b. Mean time to rebound for the virus population when administered bnAb

therapy. Each color corresponds to a different viral clearance rate of the bnAb therapy. The

extinction time is independent of both the clearance rate and coverage fraction, while time

to rebound increases with increasing coverage.

to find an uncovered strain by accumulating mutations or activating a rare latent cell

increases. We find a similar effect for T cells, indicating the increase in rebound time

is a result of increased coverage and not the mutational inhibition effects particular

to bnAbs.

II. Influence of latent reservoir characteristics on combination

treatment outcomes

Recent findings suggest that administration of bnAbs leads to the formation of im-

mune complexes that result in a T cell response that lasts for much longer than the

bnAb therapy [18]. In addition, new trials combining simultaneous injection of bnAbs

with T cell vaccination demonstrate a promising avenue for combination therapy [30].

Thus, our next goal is to use our model to investigate these scenarios with combined

bnAb and T cell therapy based on vaccination.

To model the transition between bnAb-mediated and T cell-mediated clearance,

we simulate viral dynamics under solely bnAb therapy for some time t, and then

switch instantly to T cell dynamics until the end of the simulation. Physically, this
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Low T cell coverage
(p = 0.25)

Medium T cell coverage
(p = 0.5)

High T cell coverage
(p = 0.9)a

b

Figure 4: a. Extinction probability and b. time to rebound for bnAb therapy followed by a

T cell response as a function of the duration of bnAb therapy with low, medium, or high T

cell coverage. Different colors indicate the diversity of the latent reservoir, parameterized by

� (larger � implies more diverse). Both extinction probability and time to rebound increase

with longer duration bnAb therapy, and decrease with increasing latent diversity.

corresponds to administering bnAbs periodically for a fixed duration, and then giving

a therapeutic T cell vaccine just before bnAb titers decay. As we can see in Figure 4,

the probability of extinction depends strongly on the strength of the T cell response,

for which an increase in coverage from 25% to 50% yields an order of magnitude in-

crease in extinction probability. In this regime of low T cell coverage, even relatively

modest improvements in coverage fraction result in significantly greater chances of

covering escape mutations. These results highlight the how small improvements in T

cells’ ability to target mutationally constrained peptides can have significant thera-

peutic benefit over an unspecific response as elicited by whole-proteome vaccination.

Further comparison with the 90% T cell coverage case indicates that the duration of

bnAb therapy has the greatest percentage impact on extinction probability when the

T cell coverage is low. Thus, when administering highly potent T cells, we do not

need to rely as heavily on bnAb therapy to help control the virus population until

the rare strains in the latent reservoir are eliminated.
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The average time to rebound, however, consistently maintains a linear relation-

ship with the duration of bnAb therapy. This suggests that the virus populations

that are controlled by the bnAb therapy but can escape the T cell response rebound

at a fixed time after the end of bnAb treatment if they are not cleared before then.

In all cases, the extinction probability and time to rebound decrease as the diversity

of the latent reservoir increases, which is in agreement with our intuition that a more

diverse latent reservoir is more challenging to fully cover with a given therapy.

We investigate further how the properties of the latent reservoir affect viral re-

bound and escape; Figure 5a suggests that decreasing the size of the latent reservoir

can significantly improve outcomes, and increases the effect of bnAb therapy du-

ration because there is a greater chance of clearing entire strains from the latent

Low T cell coverage 
(p = 0.25)

Medium T cell coverage 
(p = 0.5)

High T cell coverage 
(p = 0.9)a

b

Figure 5: Extinction probability of the virus population for bnAb followed by T cell therapy,

as a function of the duration of bnAb therapy. a. Different colors denote the size of the latent

reservoir, with a fixed distribution. High T cell coverage after the end of bnAb therapy helps

mitigate the chances of escape for large latent reservoir sizes. b. Different colors denote the

activation rate of cells in the latent reservoir. The extinction probability is independent of

the duration of bnAb therapy until a critical value of the latent activation rate, which is

close to the biological parameter estimate of µL!v = 0.0026.
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a b c

Figure 6: a. Extinction probability of the virus population, b. mean time to extinction and

c. mean time to rebound for bnAb + T cell combination therapy (solid) and bnAb followed

by T cell therapy (dashed), as a function of the duration of bnAb therapy. Different colors

indicate the diversity of the latent reservoir, parameterized by �. The coverage of the bnAb-

only treatment is the same as the bnAb coverage in the combination treatment.

reservoir. Since early initiation of antiretroviral therapy is associated with smaller

HIV reservoirs, we again highlight the therapeutic benefit of early detection and in-

tervention before expansion of the latent reservoir [58]. We can increase the chance

of clearing strains from the latent reservoir during the course of bnAb treatment by

increasing the latent activation rate, analogously to transcription-promoting drugs

that have recently been tested in combination with bnAb regimens [30, 38]. As the

latent activation rate increases, we note an interesting transition in Figure 5b at the

biologically-estimated activation parameter of µL!v = 0.0026 (Table 1). For slower

activation rates, the extinction probability is independent of the duration of bnAb

therapy, because the timescale of clearing the more populated strains is longer than

the course of bnAb therapy. However, as we increase the latent activation rate beyond

the biological baseline, we uncover a strong dependence of extinction probability on

the duration of bnAb therapy, since there is now sufficient time to clear strains from

the latent reservoir before the onset of T cell-mediated clearance.

We can also look at the case where bnAb therapy and a T cell vaccine are ad-

ministered simultaneously, with bnAb therapy terminating at a fixed time and the T

cell response continuing until the end of the simulation. Figure 6 shows how for any

degree of diversity in the latent reservoir, the combination therapy outperforms the

sequential treatment substantially, regardless of the bnAb treatment duration or di-
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versity of the latent reservoir. In particular, increasing the duration of bnAb therapy

has a much greater effect on the time to rebound when it is administered in combina-

tion with T cells. This is because the viral reservoir must escape both bnAb and T

cell clearance to rebound early, which is much less likely than escaping bnAb therapy

alone. We can confirm this hypothesis by comparing the bnAb-T cell combination

with a bnAb-T cell sequential therapy where the bnAb has a 99% coverage fraction to

be equivalent to two independent 90% coverage treatments. In Figure S2, we see that

the sequential case yields comparable or better extinction probabilities and times to

rebound because of its additional suppression of replication and mutation. However,

a bnAb therapy with such high coverage is only achievable using combinations of

bnAbs; thus, it is promising to see that a combination of a single bnAb with T cell

vaccination can yield comparable efficacy to a multi-bnAb treatment.

III. Exploring the space of achievable therapy outcomes

As we consider the clinical implications of these results, it becomes apparent that

certain therapeutic outcomes (i.e., duration and probability of viral control) are only

achievable under certain treatment conditions. Thus, we now leverage our model to

explore the space of achievable therapy outcomes as a function of changeable param-

eters, such as treatment coverage, duration, and latent reservoir characteristics.

To better contextualize our results above, we look at the fraction of simulations

that maintain viral control as a function of time when undergoing a course of bnAb

followed by T cell therapy, which we can characterize using a diverse range of param-

eters (Figure 7). Across all parameter regimes, we observe the same characteristic

curve for the survival probability in which rebound primarily occurs at the onset of

new treatments. In other words, if the virus population is able to escape the bnAb,

it does so soon after treatment onset at t = 0, and the viral populations that are

controlled by the bnAb but survive long enough to escape the T cell similarly tend

to escape soon after bnAb therapy ends. This bimodal distribution in rebound time
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explains why the mean time to rebound is earlier than the end of bnAb therapy, and

validates the decrease in time to rebound for sufficiently fast-activating latent cells

which either escape early or get completely cleared.

We then construct “phase diagrams", to understand how changes in treatment

parameters and latent reservoir characteristics move us in the space of probability of

control vs time to rebound. There are several qualitative heuristics we can obtain

from Figure 8. First, increasing the coverage fraction of the bnAb has a bigger effect

on the probability of indefinite viral control than on the average time to rebound for

shorter bnAb courses. The bnAb therapy can only control the virus population for as

long as it is administered, so for short-duration treatments the virus rebounds quickly

Increasing 
treatment
duration

Coverage fraction

0.5

0.8

0.9

0.95

0.99

0.999

Increasing latent
activation rate

Figure 7: Survival probability plots showing the fraction of simulations which maintain

viral control as a function of time. Each color specifies the coverage fraction of the bnAb

therapy. Each row in the grid of plots has a fixed bnAb treatment duration (top to bottom:

93, 370), and each column has a specified activation rate for cells in the latent reservoir (left

to right: 2.6e-3, 1e-2).
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unless control is achieved. As a result, the most effective way to delay the average

time to rebound is to administer the bnAb for a longer period of time.

Second, varying the diversity of the latent reservoir does not affect the time to

rebound, and simply changes the probability of control. Increasing diversity does not

significantly change the bimodal shape of the rebound time distribution, because the

majority of rebound events are due to highly populated latent strains that activate

soon after coverage is lost. These plots also show the effect of the ballistic trajectories

to viral rebound discussed above, where for fast-activating latent cells exposed to long

durations of bnAb therapy the average time to rebound is close to zero. In a clinical

context, this would manifest as a few patients rebounding early while the remainder

maintain low virus populations for an extended period of time.

Increasing latent
activation rate

Increasing 
latent 

diversity Duration of bnAb treatment (weeks)

18.5 93 185 371

Increasing coverage fraction

0.5 0.8 0.9 0.95 0.99 0.999

Figure 8: bnAb followed by T cell treatment outcome plotted in the space of mean time

of rebound vs probability of control at final time. Each color specifies the duration of the

bnAb treatment, and the arrows show the trajectory of the outcome as the bnAb coverage

fraction increases. Each row in the grid of plots has a given latent reservoir diversity (top

to bottom: mean = 1.2, 2.0), and each column has a specified activation rate for cells in

the latent reservoir (left to right: 2.6e-3, 1e-2). The dashed horizontal lines indicate the

duration of bnAb treatment corresponding to the color of the line.

33



These phase diagrams also give us a way to understand the dynamics of rebound

after the end of bnAb therapy. Specifically, if we look at the time to rebound given

that the simulation maintained control until the end of bnAb therapy, we find that

increasing the coverage fraction of the bnAb therapy has no effect on the time to re-

bound (Figure S3). This suggests that after bnAb treatment end, patients that then

rebound will tend to do around the same time regardless of the coverage fraction of

the bnAb therapy. Because the probability of rebound changes, we conclude that the

bnAb therapy must only be eliminating the rare strains in the latent reservoir, while

the well-populated strains are not significantly depleted. If we recall the equivalence

we demonstrated above between increasing coverage fraction and administering more

bnAbs, we note that this finding is in agreement with clinical trials of bnAb com-

bination therapies. For example, Figure 1b of Gaebler, et al. shows how the time

to rebound after the termination of bnAb therapy is not statistically different for

different numbers of bnAbs [24].
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Discussion

Designing effective therapies for those who have been infected by highly mutable

viruses such as HIV is a major medical and scientific challenge. This task is made

more difficult by the dynamics of HIV infection, during which many infected cells

may remain latent and undetectable to the immune system. Thus, the ultimate goal

is to design therapeutic regimens which are robust to the inter-patient variability of

the sizes and diversities of their active and latent virus populations. In this paper,

we develop a model which incorporates active and latent viral diversity as part of the

viral dynamics and which can distinguish between the differing biological mechanisms

behind bnAb- and T cell-based therapies. This model was designed to be both an-

alytically and computationally tractable, which enabled us to explore large sections

of the parameter space to better understand the theoretical limits of these therapies

and uncover heuristics for their design.

Our model suggests that while combining multiple therapies can provide signif-

icant improvement to the probability of viral extinction, conventional bnAb and T

cell approaches do not have any effect on the time to viral extinction (i.e., cure).

Combining bnAb and T cell therapies does perform better than either therapy alone,

and we find that the best way of delaying viral rebound is to administer bnAb ther-

apy for as long a duration as possible. Administering bnAb and T cell vaccination

in combination performs better than sequential administration, and is comparable

in performance to a multiple-bnAb sequential therapy which would be more cost-

prohibitive in reality. We also find that the efficacy of a particular bnAb or T cell

is determined primarily by its coverage breadth, as there are minimal returns to

increases in clearance rate once it exceeds the replication rate of the virus.
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Clinically and experimentally, our results indicate a path forward for designing

therapeutic regimens. New drugs that increase the transcription rate of latently

infected cells we find can have massive benefits, in particular when given with com-

bination therapy. In addition, bnAb treatments that are given for a short duration

should be optimized to clear rare strains from the latent reservoir to maximize the

chance of subsequent T cell control. Finally, we see a strong dependence of the out-

come on the initial diversity of the latent reservoir; even for reservoirs of the same

size, a reservoir of low diversity can be controlled for longer with greater probability

than a reservoir with high diversity. This highlights the benefits for early intervention

for these HIV treatments, before the accumulation of a large, diverse latent reservoir.

Even in cases where early therapeutic vaccination regimens are not possible, placing

a recently-infected patient on antiretroviral therapy to help limit the expansion of

the latent reservoir can significantly increase the chances of success of bnAb or T cell

therapy in the future.

Our model can be extended to incorporate more biological features that are known

to be important for viral infection. For example, the decay of bnAb concentration over

time could potentially lead to increased viral resistance to those bnAbs, a feature that

is possible to learn from the mutational landscape of the model [25]. We hope that our

work will serve as a platform for further theoretical investigation of immunotherapies,

and that future findings can shape the direction of bnAb and T cell therapeutic design.
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Appendix A: Model parameters

Parameter Value Source
r 0.38 days�1 [59]
c 1.1r — 5r [2]
µ 0.014r [9, 10, 51, 60]

µL!v 0.0026r [39]
µv!L 10�6r [39]
p 0.9 [61, 62]
� 0.0005r [39]

Table 1: Model parameters and sources.

With the exception of the mutation rate µ, we find the specified parameters above

directly from the associated reference, converting units such that the unit of time is

r�1. Below, we describe how µ was estimated.

We want the mutational distance between coarse-grained strains to be representa-

tive of the observed distances between HIV strains in human reservoirs. Thus, with

data from Sohail, et al., we compute the average pairwise hamming distance between

plasma HIV gp160 sequences as 1.8 edits [60]. To estimate the rate at which this

1.8 fitness-preserving nonsynonymous mutation occurred, we assume mutations oc-

cur uniformly on a random sequence background which has fitness cost distribution

given by Louie, et al., 2018 and Murakowski, et al., 2021 [9, 10]. Thus, from the

baseline HIV mutation rate of 4⇥10�3/base pair/replication, we weight by the prob-

ability of a nonsynonymous mutation that is fitness preserving and convert to units

of r to get the estimated µ = 0.014r. Thus, each coarse-grained strain in our model

is defined such that they are sequentially distinct and have sufficiently high fitness to

survive innate immune responses.
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Supplementary Figures

Figure S1: Extinction probability as a function of coverage fraction for left: single bnAb

and right: single T cell therapy.
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a b c

Figure S2: a. Extinction probability of the virus population, b. mean time to extinction

and c. mean time to rebound for bnAb + T cell combination therapy (solid) and bnAb

followed by T cell therapy (dashed), as a function of the duration of bnAb therapy. The

coverage of the bnAb-only treatment was selected to have the same effective coverage fraction

as the bnAb + T cell combination treatment. The extinction probabilities are similar,

although the bnAb-only treatment leads to a longer average duration of viral control.
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Increasing latent
activation rate

Increasing 
latent 

diversity Duration of bnAb treatment (weeks)

18.5 93 185 371

Increasing coverage fraction

0.5 0.8 0.9 0.95 0.99 0.999

Figure S3: bnAb followed by T cell treatment outcome plotted in the space of mean time

of rebound (given control is maintained until the end of bnAb therapy) vs probability of

control at final time. Each color specifies the duration of the bnAb treatment, and the

arrows show the trajectory of the outcome as the bnAb coverage fraction increases. Each

row has a given latent reservoir diversity (top to bottom: mean = 1.2, 2.0), and each column

has a specified activation rate for cells in the latent reservoir (left to right: 2.6e-3, 1e-2).

The dashed horizontal lines indicate the duration of bnAb treatment corresponding to the

color of the line.
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