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Abstract

The study of C and assembly language can provide valuable insight about the innate
nature of computing systems and higher level programming languages. However, be-
fore September 2022, the MIT Department of Electrical Engineering and Computer
Science (MIT EECS) had not required students to take any class that covers this ma-
terial and these relationships. The classes included in the introductory programming
sequence taken by most MIT EECS students place a stronger emphasis on high-level
languages such as Python, which abstract away the interactions that a program must
have with memory. Previously, if C had been introduced in an introductory-level
class, it was one of several simultaneous concepts being taught to the students and
therefore was not explored in depth. In September 2022, MIT EECS revised the
class requirements for two of its degrees, Electrical Engineering and Computer Sci-
ence (Course 6-2) and Computer Science and Engineering (Course 6-3) [1] to require
a six-unit introductory course that focuses on low-level programming using C and
assembly language. This thesis focuses on the establishment of this introductory
low-level programming class intended for students positioned early in the EECS cur-
riculum. Students taking this class study C and assembly language so that they can
enter later coursework with both the ability to use these programming languages and
a basic understanding of computing systems and associated constraints.
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Chapter 1

Background

There are various software applications, such as systems-level programming and em-

bedded firmware development, where it is critical for a programmer to have control

over computing resources such as memory. The C programming language is widely

used for these applications due to its nature as a low-level language that allows pro-

grammers access to these resources while still being compatible with various computer

architectures. After a programmer writes a C program, it is compiled into an assem-

bly language program, which is made up of the basic instructions that can be directly

understood and executed by a computer. Different architectures understand different

sets of instructions, so the set of assembly language instructions that a C program

is ultimately translated into depends on the architecture of the computer being pro-

grammed. As a result of this dependence and the basic nature of assembly language

instructions, assembly language is used much less frequently by programmers than

C. This necessary translation of C programs to assembly language programs is done

by sophisticated tools such as compilers. However, the study of assembly language

provides valuable insights into how a program is ultimately translated into the binary

data that is stored in memory, as well as how a program is executed by a processor.

Although exposure to low-level programming can deepen one’s understanding of

software programming and underlying computing systems, the MIT Department of

Electrical Engineering and Computer Science (MIT EECS) has not historically re-

quired its students to take a course dedicated to it. However, in 2022, the department
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updated the curricula for some of its majors. One significant change made during

this update was the inclusion of a half-semester class that specifically focused on low-

level programming [1]. This course is required of all students completing certain MIT

EECS majors, and it is a prerequisite to a foundational digital systems and computer

architecture course.

This thesis discusses the development of this new low-level programming course,

named Introduction to Low-level Programming in C and Assembly (6.190), which has

been offered at MIT during the last five academic quarters, starting in the second

half of the spring 2022 semester. In the future, it will be offered during both halves

of just the spring semester (the third and fourth quarters of the academic year). This

course focuses on exploring various low-level programming topics, such as memory,

binary encoding, bit manipulation, using C and assembly language. We developed a

six-week curriculum that covers these topics, and we designed various hardware and

software tools to enhance students’ understanding of material covered in the course.

1.1 Massachusetts Institute of Technology (MIT)

The development of this course was primarily motivated by the curriculum transi-

tion that MIT EECS underwent in the fall semester of 2022, because the proposed

curriculum would include a low-level programming course requirement [1]. We be-

gan development of the course during the fall 2021 semester in anticipation of this

transition.

1.1.1 Old Curriculum (2017-2022)

Prior to 2022, the MIT Department of Electrical Engineering and Computer Science

had three core majors: Electrical Science and Engineering (Course 6-1), Electrical

Engineering and Computer Science (Course 6-2), and Computer Science and Engi-

neering (Course 6-3). The most recent curriculum, established in 2017, included a

programming track containing three courses, none of which explicitly covered low-level

programming. This programming track is shown in Figure 1-1. The introductory pro-
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gramming course, required of students in all three EECS majors, was Introduction to

Computer Science Programming in Python (6.0001). The following two courses were

strictly required of computer science students, and they could fulfill requirements for

students in the other two majors. The first class, Fundamentals of Programming

(6.009), also used Python almost exclusively, and the second, Software Construction

(6.031), used Java, but was updated to utilize TypeScript in 2022.

Figure 1-1: Relevant courses in the pre-2022 MIT EECS curriculum, which was in-
troduced in 2017.

Other introductory-level courses utilized low-level languages, but they did not

focus on them. Students in all three majors were required to take Computation

Structures (6.004), a foundational course that introduced digital systems and com-

puter architecture. It had just 6.0001 as a programming prerequisite, as shown in

Figure 1-1. So, students who had taken just this class had only basic familiarity

with Python, a high-level programming language. In order to provide the necessary

background for the computer architecture portion of the course, the early weeks of

6.004 focused on binary encoding and RISC-V assembly language, bypassing the C

programming language entirely. While it was critical for 6.004 to cover binary encod-

ing and RISC-V assembly language, the time spent on those topics left little room for

the class to cover more complex topics, such as operating systems. As a result, those

topics were only lightly covered. Additionally, topics such as assembly language and

operating systems could have been more effectively and efficiently taught if students
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had some working knowledge of the C language.

Additionally, another course, named Interconnected Embedded Systems (6.08),

commonly fulfilled the “Introductory Subject” requirement for all three majors, and

it used a mix of C and C++, a superset of C, as a tool to program an Arduino-based

microcontroller. While students gained familiarity with the language, they frequently

relied on various external libraries and packages that abstracted away many details

of low-level programming, including how the programming language would directly

interact with the physical hardware. Additionally, the course was extremely broad. It

covered a wide variety of topics, such as the Internet of Things (IoT) and databases,

and it also required students to use high-level programming languages such as Python

and SQL. While students did gain exposure to C, the course did not provide a solid

foundation in the language and associated low-level programming topics.

Because no introductory-level or required course adequately covered low-level pro-

gramming, upper-level courses that relied on C or assembly language needed to in-

troduce the languages as they were needed, either by dedicating class time to cov-

ering them or requiring students to learn them on their own outside of class. These

classes would not focus on the fundamentals of either language, but rather on how

the languages could be applied to a given area. As a result, students could poten-

tially complete these classes, and graduate with an MIT EECS degree, without truly

understanding low-level programming.

1.1.2 New Curriculum (2022-)

In 2022, the department revised the curricula for the Electrical Engineering and

Computer Science major (Course 6-2) and the Computer Science and Engineering

major (Course 6-3). Additionally, the department updated all of its subject numbers

in the fall of 2022.1 The required programming track subjects did not change, as

1All MIT EECS courses were assigned updated numbers, starting in the fall 2022 semester. In
the programming track, 6.0001 (Introduction to Computer Science Programming in Python) became
6.100A, 6.009 (Fundamentals of Programming) became 6.101, and 6.031 (Software Construction)
became 6.102. Additionally, 6.004 (Computation Structures) became 6.191, 6.08 (Interconnected
Embedded Systems) became 6.901, and 6.0004 (Introduction to Low-level Programming in C and
Assembly, the subject of this thesis) became 6.190.
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shown in Figure 1-2, and it continues to focus on programming using higher level

languages.

Although the main programming track remained the same, the department added

a required six-unit, half-semester course, Introduction to Low-level Programming in

C and Assembly (6.190, previously 6.0004). This course focuses on low-level program-

ming via both C and assembly language, and it serves as a prerequisite course for

Computation Structures (6.191, previously 6.004). 6.191 no longer explicitly teaches

assembly language because it is taught in this new course. Students are expected to

have taken the first course in the programming sequence, 6.100A (previously 6.0001)

or equivalent before taking this class, so this course will not need to cover basic pro-

gramming skills. The order of these courses in the new curriculum is shown in Figure

1-2. Because 6.191 is a prerequisite course for most classes that cover systems-level

programming, and the new course is a prerequisite for 6.191, students will enter those

upper-level classes with an understanding of basic low-level programming concepts.

Figure 1-2: Relevant courses in the current MIT EECS curriculum, which was intro-
duced in 2022. Notably, 6.190 was inserted to be taken between 6.100A and 6.191.

1.2 Improvements upon Existing MIT Courses

As previously noted, there were two courses in the old curriculum that did cover

low-level programming: Interconnected Embedded Systems (6.08, now 6.901), which
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covered C, and Computation Structures (6.004, now 6.191), which covered assembly

language. Due to the curriculum change, 6.901 is not currently being offered at MIT,

and 6.191 no longer teaches assembly language, instead expecting that students learn

RISC-V assembly language prior, while taking 6.190. As a result, some of our course

materials are adapted from 6.901’s coverage of C and 6.191’s coverage of RISC-V

assembly language.

In 6.901, students learned C primarily as a tool to program an Arduino-based

microcontroller. However, there were various compatible external libraries that stu-

dents were allowed to use to control the peripherals on the microcontroller. These

library functions abstract away key elements of low-level programming and hardware-

software interactions, such as bit manipulation and direct memory accesses. 6.190

places more of a focus on low-level programming, such as interpreting and interacting

with individual bits stored in memory.

The overall treatment of RISC-V assembly in 6.190 is largely similar to that in

6.191. However, since students have familiarity with low-level programming in C from

the first portion of the course, we can assume exposure to ideas such as pointers and

bit manipulation. This allows us to focus more on other key concepts, such as how

RISC-V instructions are represented and organized in memory. We also developed

new educational tools, such as a more convenient and user-friendly RISC-V simulator,

to help students better understand how registers and memory evolve as different types

of RISC-V assembly instructions are executed.
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Chapter 2

Course Content

The main, universal theme of Introduction to Low-level Programming in C and As-

sembly Language (6.190) is memory and how low-level programming can be used to

interact with it. All of the topics covered in the class relate to this overall theme in

some way, and the class uses C and RISC-V assembly extensively as tools to explore

them. Students, having taken an introductory programming course, should enter this

class familiar with the idea that data is stored somewhere in memory. However, only

having exposure to high-level programming in Python, they would not have previ-

ously needed to explicitly explore this idea in depth or even consciously interact with

memory itself. This class and associated materials were designed with the primary

goal of giving students an understanding of a program’s underlying memory structure,

how it naturally evolves throughout a program, and how to access and manipulate it

using software.

The primary topics covered in this class are summarized in its listing in the MIT

course catalog:

“Introduction to C and assembly language for students coming from a

Python background (6.100A). Studies the C language, focusing on mem-

ory and associated topics including pointers, and how different data struc-

tures are stored in memory, the stack, and the heap in order to build a

strong understanding of the constraints involved in manipulating complex
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data structures in modern computational systems. Studies assembly lan-

guage to facilitate a firm understanding of how high-level languages are

translated to machine-level instructions” [3].

6.100A is the introductory Python course offered at MIT that students are required

to take, or otherwise show proficiency with its material, before taking this class.

2.1 C

We use the C programming language as the primary tool to understand and interact

with memory because it is more similar to higher level languages, such as Python,

than assembly language is. We use The C Programming Language, Second Edition by

Brian Kernighan and Dennis Ritchie [4] as the textbook and C reference for the course.

Because students are expected to have been exposed to programming in Python, the

course does not introduce or focus on topics such as variables, arithmetic and logical

computation, and control flow. Instead, it initially highlights where Python and

C differ, primarily syntactically, then it shifts focus to new concepts such as how

program variables and their contents reside in memory.

For example, a student entering this class should be able to understand the fol-

lowing line of Python code: x = 5. This is simply assigning the variable x to hold

the value 5. In C, an equivalent line of code would be int x = 5;. This idea of vari-

able assignment should be familiar to a student with a Python background, however,

this course further enhances their understanding of variable assignment by explaining

that:

• An int is a 32-bit (on the machine used in our class and in 6.191) integer value.

So, 32 bits in memory will be dedicated to holding this variable, x.

• One byte corresponds to 8 bits. So, an int, which is a 32-bit value, is 4 bytes.

• Memory is byte-addressable, meaning that each address corresponds to one byte.

Because an int is 4 bytes, the variable x will occupy 4 addresses in memory.
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• Memory is made up of bits, which can only hold the value 0 or 1. So, numerical

values stored in memory are encoded in base-2, or binary, and the base-10 value 5

will be stored in memory as the base-2 value 00000000000000000000000000000101.

This example highlights one key topic in this class – how information is represented

in memory. We introduce various information encoding schemes, including binary,

hexadecimal, and ASCII so students can become familiar with this idea.

Another area of focus in this class is how a programmer can directly interact

with and modify memory, which is a new concept for the average student taking

this course. The course discusses bitwise operations to expose students to the idea

of manipulating individual bits in memory, and it introduces pointers so students

can gain confidence with using addresses to access particular values in memory. The

laboratory component of this class especially reinforces these concepts, with each

laboratory assignment requiring some form of bit manipulation. This also allows

students to understand how more complex data structures, specifically arrays, are

represented in memory. The course also explores how pointers enable software control

of physical hardware via memory-mapped input and output.

2.2 Assembly Language

This class introduces assembly language with the ultimate goal of providing students

with an understanding of how a higher level language, such as Python or C, is trans-

lated into the binary instructions that are stored in memory and directly understood

and executed by a computer. This understanding is critical for students who plan on

taking any computer architecture course in the future. Students taking MIT’s foun-

dational digital design and computer architecture course, 6.191, actually implement

single-cycle and pipelined RISC-V processors, so this course focuses on the RISC-V

instruction set architecture (ISA) [5] to ensure that students have the prerequisite

knowledge for those assignments. Specifically, it introduces the subset of the user-

level RV32I (RISC-V 32-bit integer) ISA introduced in 6.191. Notably, this subset

does not include sub-word load and store instructions, control and status register
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instructions, or any other instructions that interact with the operating system. We

also introduce a set of relevant RISC-V pseudoinstructions, while emphasizing the

fact that psuedoinstructions must be translated into equivalent RISC-V instructions

before being assembled into the 32-bit binary encodings understood and executed by

a processor.

Students first gain familiarity with the RISC-V ISA and its different instruction

types, then they spend time compiling C programs into equivalent RISC-V assem-

bly programs. Although this translation from C to assembly language is a process

normally done by a software compiler, it is important for students to understand it,

as it can inform how they write higher-level programs and provide the background

necessary to explore compilers in future coursework. As this course places a strong

emphasis on memory, students also learn how RISC-V assembly instructions are en-

coded into binary values that are stored in a particular section of memory. This

course focuses on the 32-bit instruction encoding of RISC-V instructions because this

class, along with MIT’s 6.191, uses a 32-bit machine.

Due to the limited amount of time available to introduce material in the class,

6.190 does not introduce compiler design, in favor of focusing on more memory-related

topics. If this class were to be extended to be offered over a full semester, this topic

would be given priority above the other topics we could introduce, as it would give

students the more complete picture of how high level languages are translated into

binary machine code. Currently, in 6.190, students act as the compilers, manually

translating C programs into assembly language instructions and the corresponding bi-

nary, gaining the background knowledge necessary for learning about compiler design

in future coursework.

Assembly language also allows students to directly interact with the stack, and

they must use the stack in order to adhere to RISC-V calling convention. This is

something that is not explicitly necessary when programming in C or a higher-level

language, as it is generally handled when those higher-level programs are compiled

into assembly language and machine code. Learning about RISC-V calling conven-

tions and stack discipline gives students a deeper understanding of how the stack
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section of memory is structured and how it evolves throughout a program.

2.3 Course Structure

Given the goals we established for this class, we identified the topics that we wanted

it to cover. This course was designed with the intention to offer it during a half of a

given semester at MIT, so, constrained by MIT’s academic calendar, we distributed

topics to create six weeks’ worth of material as shown in Table 2.1.

Week 1 C Syntax
Data types in C
Unsigned binary encoding
Hexadecimal encoding
Bitwise operations
Pointers in C

Week 2 Signed (two’s complement) binary encoding
ASCII character encoding
Arrays in C
Pointer arithmetic in C

Week 3 Strings in C
Structures in C

Week 4 RISC-V assembly language
RISC-V instruction encoding
Instruction memory

Week 5 RISC-V calling convention
Stacks

Week 6 Memory layout
Heap
Dynamic memory allocation

Table 2.1: The topics covered in 6.190 are distributed over six weeks, because the
course is offered during half of an academic semester at MIT.

A typical week in 6.190 includes three class meetings: a lecture, a recitation and

a laboratory section, and three assignments: a lab, a post-lab, and a set of exercises.

There is one exam administered at the end of the class.

The week’s material is first introduced during lecture, then it is reinforced through

examples and practice problems in recitation. Students will then attend a labora-
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tory section where they explore the week’s concepts via developing firmware for an

embedded system based on a RISC-V microcontroller. Weekly assignments include

completing the lab from class, as well as completing a related “postlab” and a problem

set consisting of various exercises.

2.3.1 Lecture

Each week includes a 90-minute lecture where the week’s material is first introduced

by an instructor of the class. The lectures are primarily presentation-based, but

certain weeks feature live coding demos. The lecture meeting is scheduled at the

beginning of a given week, so students can spend the rest of the week interacting

with the material via the other components of the class.

2.3.2 Recitation

After lecture, students attend a 90-minute recitation section led by a course teaching

assistant. Recitations focus on guiding students through solving problems using the

concepts introduced in lecture.

2.3.3 Exercises

Each week, students are assigned a set of exercises to complete. These exercises range

from simple examples, such as converting the binary representation of a number to

its decimal representation, to more complex problems, such as writing nontrivial C

functions or assembly procedures. Some exercises have been adapted from those used

in 6.191 and 6.901, and some are new, original exercises developed specifically for this

class.

2.3.4 Laboratory-Based Assignments (Labs and Postlabs)

There are two types of laboratory-based assignments, labs and postlabs, where stu-

dents explore a week’s concepts by developing firmware for an embedded system based
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on a RISC-V microcontroller. The labs are attempted during a weekly 2.5-hour in-

class session, so they are designed to take students that amount of time, on average,

to complete. Postlabs are often continuations or extensions of that week’s lab, so they

are designed to be completed independently outside of class after completion of the

lab. Labs and postlabs both include short check-in conversations with a staff mem-

ber to verify system functionality and student understanding of their implementation

and related course topics. The development of the lab and postlab assignments is a

central focus of this thesis, and it is discussed in depth in Chapter 3.

2.3.5 Final Exam

There is an exam during the sixth week of classes that assesses students’ understand-

ing of topics covered during the first five weeks of the course. Because the topics

at the core of the course are emphasized and applied during the labs and postlabs,

exams include questions related to them. Topics, including memory layout, the heap,

and dynamic memory allocation, introduced during Week 6 are not included on the

final exam due to Institute regulations surrounding scheduling exams at the end of

the term.
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Chapter 3

Laboratory Component

One noteworthy aspect of this course is its laboratory-based assignments. These

hands-on exercises focus on developing firmware for an embedded system that we

assembled specifically for the class. The primary goal of these assignments is to

provide students with the opportunity to apply particular core topics introduced in

class to a practical application, thus enhancing their understanding of the material.

Additionally, these assignments introduce students to the field of embedded systems

early in their electrical engineering and computer science careers and provide exposure

to other areas, such as circuits. We created one laboratory assignment (lab) and one

post-laboratory assignment (postlab) for each of the first five weeks of the course.

3.1 Laboratory Infrastructure

The lab and postlab assignments rely on programming a physical embedded system,

so we needed to identify and design software and hardware tools to support embed-

ded systems development. Specifically, we needed to design an embedded system

and select useful software development tools. While doing this, we considered im-

portant factors including availability, cost, user experience, and educational benefits.

Availability and cost are critical because we must obtain sufficient quantities of any
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necessary items in a timely manner so that hundreds1 of students at a given time

have the necessary tools to complete the assignments. User experience is a significant

factor because students completing these assignments are not expected to have any

relevant background beyond basic Python programming exposure. Ideally, the tools

would be simple to use so that they don’t distract students from the educational

goals of the assignments. Lastly, this system is being used as an educational tool in

a classroom environment, so some components were selected based on how well they

could facilitate understanding of the course material.

3.1.1 Hardware

Figure 3-1: A 6.190 lab kit containing a RISC-V development board, course-specific
printed circuit board, and an LED display.

Each student taking 6.190 is given a physical kit that they are required to use

while completing labs and postlabs throughout the class. This kit consists of three

main hardware components: a development board based on a RISC-V microcontroller,

a printed circuit board (PCB) containing buttons and switches, and an 8x32 LED
1Based on historical enrollment in this class and in 6.191, we anticipate that enrollment in future

offerings of 6.190 may reach upwards of 300 students per offering.
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display. It also includes a wiring kit and breadboards to connect these components,

as well as a cable and corresponding adapter to connect the microcontroller to their

computer to power the development board and program the microcontroller. A lab

kit, as it would be provided to students at the beginning of the class, is shown in

Figure 3-1.

The focal component of the lab kit is the development board containing the RISC-

V microcontroller that the students will program. We initially developed the labs

and postlabs around the SparkFun RED-V Thing Plus development board, which

features a SiFive FE310 system-on-a-chip with a RISC-V processor. However, during

development, we encountered an intermittent problem with uploading programs to

the board, so we decided to base the assignments on the Espressif Systems ESP32-

C3-DevKitM-1 development board. This development board includes an Espressif

Systems ESP32-C3-MINI-1 module with an ESP32-C3 RISC-V microprocessor. One

additional advantage of the Espressif board is the cost: on Digi-Key Electronics,

as of May 2023, the Espressif development board cost $8.00,2 while the Sparkfun

development board cost $32.50.3 At scale, when hundreds of students are taking the

class at a given time, the $24.50 price difference per individual board can result in a

significant reduction in cost.

Most of the designs the students are targeting in these assignments require user

input in the form of pressing a button or toggling a switch. In total, the assignments

require eight switches and six buttons. We designed a printed circuit board containing

these components so they are positioned in a uniform arrangement convenient for

interacting with the systems developed for the assignments. Students can easily

connect the buttons and switches to the microcontroller using just one wire for each

input and one wire for ground, reducing the amount of time and thought required to

set up the hardware system for each lab. The circuit is designed so that when a switch

2Espressif ESP32-C3-DEVKITM-1 Development Board (Digikey): https://www.digikey.com/
en/products/detail/espressif-systems/ESP32-C3-DEVKITM-1/13684315. Price reference in
text accurate as of April 29, 2023.

3Sparkfun DEV-15799 Development Board (Digikey): https://www.digikey.com/en/
products/detail/sparkfun-electronics/DEV-15799/10715591. Price referenced in text accu-
rate as of April 29, 2023.
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is in the down position or a button is pressed, a connection can form between the

corresponding input pin and ground, resulting in a digital low value on the pin. When

a switch is in the up position or a button is not being pressed, the corresponding input

pin would be disconnected from ground and an internal pull-up resistor would make

the pin input have a digital high value.

Figure 3-2: The printed circuit board (PCB), containing six buttons and eight
switches, designed specifically for use in the 6.190 embedded system.

Some assignments require the system to provide feedback to students on a display.

We could have simply used the serial output from the microcontroller that students

could view on their computer screens to achieve the necessary functionality. However,

we wanted to use something more compelling that could further motivate our choice

to focus the labs on embedded systems applications and that could potentially assist

students in understanding the material presented in the course. We ultimately chose

to use an LED display with 8 rows and 32 columns, choosing it over an LCD display

due to the educational benefits of its low resolution and simplicity.

A simple, low-resolution display is especially favorable for use in a class focused on

memory because it can be used to visualize the individual bits in a fathomable data

structure, such as a one-dimensional array. In this class, we use the 8x32 LED display
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to represent an array with eight unsigned 32-bit integer elements. Each element in

the array corresponds with a row on the display, and each bit in a given element

corresponds with a pixel in that row.

We strategically chose the origin point, or orientation, of the display so that the

LEDs would directly match the contents of memory. The first element of the array is

be rendered in the top row of the display, and each row is a direct representation of

the binary encoding of the corresponding value in the array – the leftmost LED in a

given row corresponds to the most significant bit, and the rightmost LED in a given

row corresponds with the least significant bit. For example, putting this together, if

a student modifies the least significant bit of the first array element, the rightmost

pixel in the top row of the display would change. Figure 3-3 provides an example of

how the contents of a one-dimensional array in memory correspond to the contents

of the LED display.

Figure 3-3: The contents of a software screen buffer array directly correspond to the
contents of the 8x32 LED display included in the 6.190 lab kit.

We provide students with the SPI interface that transmits data from an array in

memory to the LEDs on the display. We chose to implement this interface purely

using software, rather than using the hardware SPI peripheral available on the mi-

crocontroller. This software SPI interface is educationally beneficial for two main

reasons: it is primarily driven by functions that are ultimately implemented by stu-

dents during the labs, and the interface can be understood by the students taking the
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class.

3.1.2 Software

Students are instructed to use the PlatformIO Visual Studio Code extension to com-

plete the lab and postlab assignments. We chose to use PlatformIO for this class

because it is simple for beginners to learn and use, supports a myriad of microcon-

troller hardware platforms, and is compatible with all of the major computer operating

systems (Windows, MacOS, and Linux). Students are instructed to use Visual Studio

Code as their code editor due to its integration with PlatformIO.

PlatformIO is also available to be used as a command-line interface (CLI), which

would remove the dependency on Visual Studio Code, but we decided against using

it. We do not expect students to have any familiarity with using the command line

and, because this class is only six weeks long, it would be suboptimal for the tools

to have a learning curve that would distract students from the course material. If

the prerequisite course, 6.100A, were to explore using the command line and related

tools, this option would become more compelling, as it would not require as much

overhead to become familiar with the tools.

3.2 Laboratory Assignments

There are two types of laboratory-based assignments: labs and postlabs. They are

designed to be completed sequentially, with the lab coming before the postlab. Stu-

dents are provided with detailed instructions and starter code (see Appendix A), that

includes any code necessary for the system’s functionality but will not be implemented

by students due to time constraints, for each assignment.

3.2.1 Lab 1: Introduction

The first lab provides an overview of the lab kit and PlatformIO, then it guides

students through writing C functions that interact with the general purpose input and
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output (GPIO) pins on the ESP32-C3 microcontroller. Students are given a header

file (see Appendix A.1.2) with declarations of board-specific parameters and functions

that are used extensively in future labs and postlabs. Some of these functions are

already implemented for students, and the rest of them are implemented by students

during this lab.

Conceptually, this lab connects to the central theme of memory because it focuses

on writing low-level software to interact with individual bits in memory using C. This

requires the use of bitwise operations and pointers. The lab first introduces students

to three main bit operations: setting bits, clearing bits, and reading bits. Then,

students apply these operations to three GPIO-related functions:

• pinSetup, a function to configure a GPIO pin on the ESP32-C3 as either an

input or an output

• pinWrite, a function to write a digital value to an output pin on the ESP32-C3

• pinRead, a function to read a digital value from an input pin on the ESP32-C3

These functions are used for the same purposes as Arduino’s pinMode [6], digitalWrite

[7], and digitalRead [8], respectively. Oftentimes, hobbyists or beginner-level stu-

dents taking classes such as MIT’s 6.901 would have used these functions without

needing to understand the details of their implementations. However, this class re-

quires them to actually implement them and think about the underlying memory

structure.

For example, the ESP32-C3 microcontroller has a designated memory address,

0x6000403C, that holds a 32-bit value where each bit corresponds to the digital value

of a GPIO input pin [9]. For a program to obtain the value of a GPIO input pin, it

must first access the contents of that memory address, then extract the individual bit

that corresponds with the input pin of interest. This requires the use of pointers, bit

shifting, and bitwise logical operations, which are key topics central to the first week

of 6.190.

Students develop each individual function on the class website, using checkers that

run the their code submissions against various test cases to verify functionality and
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assign a grade accordingly. Once a student’s code passes the online test cases, they can

transfer it locally to Visual Studio Code, then use PlatformIO to compile the project

and upload the resulting binary to the development board. They further verify the

behavior of the GPIO output pins by connecting two LEDs to two output pins on

the microcontroller, and they use a button input and serial monitor output to verify

the functionality of the input pins. Then, they expand their program so that they

use logical operations based on two button inputs to control the two LED outputs –

for example, they are instructed to make one LED consistent with the output of an

exclusive-or function between the two button inputs. This exercise is included with

the lab to require students to reason about logical and bitwise operations in C.

3.2.2 Postlab 1: Hit the Bit

In Postlab 1, students build a game named “Hit the Bit,” which is based on an early

computer game called “Kill the Bit.” For this game, the system uses eight switch

inputs and eight adjacent LEDs on the LED display. The game starts with one

illuminated LED that continuously shifts to the right until it reaches the rightmost

column, then it wraps around to the leftmost column and continues to move to the

right. This behavior, independent of the game logic, is displayed in Figure 3-4.

Each switch maps to one of the eight LEDs, and on each step, the state of each

switch is compared to the state of each LED on the display. A switch in the up

position matches an illuminated LED, and a switch in the down position matches an

LED that is turned off. If a switch does not match its corresponding LED, then that

LED should be illuminated on the next step. Otherwise, that LED should become

or stay turned off. The player’s objective is to turn off all of the LEDs by flipping

the switches so that they match the state of the eight LEDs. Figure 3-5 provides an

example of typical gameplay.

Students implement three main components of the game. First, they implement

the right-shifting and wrapping behavior. The LEDs are represented by an unsigned

eight-bit integer variable. Next, they write a function to store the states of the eight

switches in another unsigned eight-bit integer variable, which also requires the use of
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Figure 3-4: Postlab 1 initial right shifting behavior independent of switch inputs and
game logic. The state of the rightmost column wraps around to the leftmost one on
each step.

their pinRead function from Lab 1 and bit shifting. Last, they write a line of code to

compare the state of the eight LEDs to the state of the eight switches. Throughout

these exercises, students are required to write C code that uses bit shifting and bitwise

operations to achieve a working game.

3.2.3 Lab 2: ASCII

In Lab 2, students create a system that displays messages on an LED display, as shown

in Figure 3-6. While developing this system, students are introduced to higher-level,

relevant ideas such as ASCII encoding, null-terminated strings, state, and character

rendering while still being required to interact with individual bits in memory. Stu-

dents also gain familiarity with arrays – this lab is the first where students use an

array in memory to represent the contents of the 8x32 LED display, and the message

ultimately rendered on the LED display is initially stored in a character array.

Students first write a function to read the input pins connected to seven switches
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Figure 3-5: Example of typical Postlab 1 gameplay. Two switches, SW6 and SW1,
are in the incorrect positions, while the rest are correct. As a result, the LED corre-
sponding with SW6 will turn on, and the LED corresponding with SW1 will stay on.
The rest of the LEDs will become or remain turned off. Then, all of the LEDs will
shift to the right, and the rightmost LED will wrap around to the leftmost column.

and interpret them as an eight-bit integer, with the most significant bit set to 0.

Switch 0 (SW0) on the printed circuit board (PCB) corresponds to the least significant

bit in the value, and switch 6 (SW6) corresponds to the most significant bit, as

displayed in Figure 3-7. This orientation was chosen because it matches that of

a binary number, making each switch input equivalent to the corresponding bit in

an eight-bit value. This function should use bit shifting and bit masking, requiring

students to recall core concepts from the previous week. The eight-bit value returned

from this function is then interpreted as an ASCII character when it is printed on the

serial monitor.

Students then add a button input to their system so that the switch inputs are

only sampled once upon a button press. After verifying that the system correctly

prints a single character upon a button press, students are instructed to write a

program that uses the switches and button inputs to fill an array of characters with a

null-terminated string. A character should be added to the string upon each button
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Figure 3-6: Lab 2 system displaying the message “RISC” on the 8x32 LED array.

press, and the string should be printed to the serial monitor when the null-terminating

character is entered. Once the string has been printed, the array should be reset so

that the same section of memory can be used again to store another string. This

exercise requires students to work with arrays using C, and it helps them to become

familiar with how strings are represented in memory.

The remainder of the lab focuses on rendering these messages on the system’s LED

display. First, students are introduced to an adapted header file, named ascii.h, con-

taining an 8x8 bitmap for each character [10]. The file consists of a two-dimensional

array with one entry for each of the 128 ASCII characters. Each entry is an array

containing eight unsigned eight bit integers – each integer maps to a row, and each

bit indicates whether or not a pixel in that row should be illuminated, as displayed

in Figure 3-8.

Students must write a C function that, for up to the first four characters in a

given string, places the contents of the 8x8 bitmap from the header file into the

screen buffer array so that,when the data in the array is transmitted to the LED
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Figure 3-7: In Lab 2, switch inputs on the lab kit are interpreted as eight-bit binary
numbers and ASCII characters.

display, the message will correctly appear on it. This requires students to interact

with memory by accessing or modifying both entire array elements and the individual

bits in those elements.

Due to the unconventional way we chose to orient the LED display, the bitmaps

from the original ASCII header file resulted in the letters appearing to be flipped

horizontally on our display, as shown in Figure 3-9. During the first three offerings of

the course, students were required to correct this using a provided helper function to

reverse the bits in each value they used from the ASCII header file before placing it in

the screen buffer. This ended up being a large source of confusion for students, and

it distracted them from the intended purpose of the lab, so in more recent iterations

of the class, we provided students with an updated ASCII header file where the bits

in each array entry are oriented so that students can use the values directly, as shown

in 3-9.

3.2.4 Postlab 2: Scrolling Text

For the second postlab, students develop a system that displays a scrolling message

on the 8x32 LED display. The rest of the system is fairly similar to that from Lab

2, where students wrote a program that would statically display a message, except,

rather than requiring students to enter the message through switches and button

presses, messages are hard-coded in the program. The scrolling effect is created by
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Figure 3-8: An example of rendering an 8x8 character on the LED display using a
provided bitmap.

moving the message on the LED display one spot to the left periodically, as shown in

Figure 3-10. In the lab, we update the display approximately every 100 milliseconds

to create a smooth scrolling effect.

For this assignment, students first write a function that, given a null-terminated

C string, calculates the number of characters in the message. This is similar to the

C library function strlen [4]. The program then uses the calculated length of the

string to determine the number of images, or frames, that must be rendered in total

to display the entire message – each successive frame effectively replaces the leftmost

column in the image by shifting every column to the left and filling the rightmost

column with new data, so this can also be thought of as the number of columns

required to render the entire message. The starter code for the lab then iterates

through each column in the message, showing the relevant portion of the message on

the LED display on each iteration.

The majority of the postlab involves writing a function that, given an array con-

taining a null-terminated string and the number of loop iterations that have occurred

since the beginning of the message, displays the correct portion of the message on
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Figure 3-9: Using the values from the original ASCII header file directly resulted
in letters appearing flipped on our LED display. The values needed to be reversed
in order for the letter to appear correctly. Students originally had to use a helper
function in their program to reverse the bits in each value they used from the file, but
in later iterations of the course we provided them with an updated ascii.h file with
the entries flipped for them.

the LED display. In Lab 2, the LED display rendered four 8x8 characters, which

were aligned in the 32-bit wide screen buffer. In this assignment, these characters

may not be perfectly aligned, so portions of the leftmost and rightmost character may

be displayed. This function must first determine which characters, as well as what

portions of those characters, to render. Then, it must obtain the bitmap for each

of those characters from the ASCII header file used in Lab 2 and set the bits in the

screen buffer accordingly, with the new consideration that only portions of the first

and last character may be displayed. This assignment is intended to give students

more exposure to arrays in C, as well as to manipulating individual bits in memory

through their interactions with the screen buffer.
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Figure 3-10: A scrolling effect can be created on the LED display by periodically
shifting the contents of the display. Above, the message. "Hi, there!" begins to scroll
across the display.

3.2.5 Lab 3: Snake I

During Lab 3 and Postlab 3, students implement a Snake game, where the objective

is to grow a continuously-moving snake as large as possible without allowing it to

collide with itself. A player navigates the snake around the board in search of food,

and, when the snake encounters food, it eats it and grows. The game ends when

the snake’s head collides with its body. Some game variations also end the game

when the snake collides with the edge of the game board, but our implementation

instead has the snake wrap around to the other side of the board when it encounters
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an edge. This lab requires five button inputs: four for navigation and one for game

reset. Additionally, the LED display is used to render the game board.

The lab opens with a discussion of how to represent a given location on the game

board. We use the 8x32 LED display as our game board, so the representation must

be able to encode at least 256 unique location values. We initially considered repre-

senting each location with two unsigned eight bit integers, one for the x-coordinate

and one for the y-coordinate. The primary benefit of this representation is that it’s

straightforward and intuitive; many students would have likely chosen this approach

if not given any guidance. We ultimately decided to represent each location as a

single unsigned eight-bit integer, where the x-coordinate is encoded in the upper five

bits and the y-coordinate is encoded in the lower three bits, as shown in Figure 3-11.

This approach requires half of the memory than the original, and it employs a more

interesting and educational encoding scheme that requires students to use bitwise

operations and shifting to extract and modify individual bits in the variable. Lastly,

there is a modulus built into this encoding, since there are not any extra, unused bits.

This results in the game having the desired “wrap-around” behavior without needing

to explicitly implement it.

Students first implement four helper functions to extract information from vari-

ables representing locations:

• getX: returns the x-coordinate of a location

• getY: returns the y-coordinate of a location

• setX: updates the x-coordinate of a location

• setY: updates the y-coordinate of a location

These functions require the use of operations that modify or extract bits stored in

memory, which strongly reinforces key concepts that have been introduced during the

first three weeks of the course.

The following section of the lab involves rendering the game board on the LED

display. Each of the objects in the Snake game is associated with an unsigned eight-
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Figure 3-11: In Lab 3 and Postlab 3, locations on the 8x32 LED display are repre-
sented using a single unsigned eight-bit variable, with the upper five bits encoding
the column and the lower three bits encoding the row.

bit value indicating its location on the board, using the representation previously

discussed. The program uses these locations to set the corresponding bits in the

software screen buffer, which is then transmitted to the LED display. Students are

first instructed to write a function named setPixel that sets a bit in the software

screen buffer given a location and a binary value indicating whether or not the LED at

that location should be on. This function is conceptually relevant because it requires

the manipulation of individual bits in the screen buffer array.

Structures in C are introduced during the third week of the class, so the snake used

in the game is represented using a C structure containing three members: an array

representing the snake’s body, the direction of the snake’s movement, and the length of

the snake. The elements of the body array are unsigned eight-bit integers representing

the locations on the game board occupied by the snake. The first element in this array

is the front of the snake, or its head, and the number of array elements considered

when rendering the snake is dictated by the length member of the structure. The

other object in the game is the food eaten by the snake, and the program keeps track
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of its location in an unsigned eight-bit integer variable. Students are instructed to

write a function, drawBoard, that renders both the snake and the food on the game

board using the setPixel function they had previously implemented.

The program must then be updated so that the player can use button presses to

change the snake’s direction of travel. Then, students implement a function named

updateSnake that moves the snake one step in its current direction of travel. This

function requires students to update the Snake structure by using a pointer to it,

which is a topic introduced in the third week of the class. The final task in the lab

portion of the Snake project is implementing a function to randomly generate food

for the snake. After this lab is completed, the system is in a state where a player

can interact with a continuously-moving snake, but the game logic has yet to be

implemented.

3.2.6 Postlab 3: Snake II

In Postlab 3, students complete their Snake game by implementing the game logic.

First, the game must be able to detect when the snake has eaten food, which occurs

when the snake runs into it. Students implement a function, snakeAteFood, that,

given the locations of the snake’s body and food, returns whether or not the snake’s

head is occupying the same location on the game board as the food. The game

must also be able to identify when the snake collides with itself, resulting in a loss.

Students implement a function, snakeCollisionCheck, that, given a pointer to a

Snake structure, returns whether or not the snake’s head has collided with its body.

After these functions have been implemented, the system works like a conventional

Snake game.

Students must update their program so that the game will restart if the user

presses a reset button after the previous game has ended. Lastly, because this is

the final lab that focuses on C, students are given the opportunity to implement one

open-ended enhancement to their snake game. These enhancements include:

• Ending the game if the snake travels out of bounds.
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• Adding a pause button to the game.

• Having the snake move faster every time it consumes food, and having the snake

slow down each time it moves without eating food. The game ends if the snake

slows down too much.

• Keeping track of the score throughout the game and reporting it at the end.

• The snake should visibly decay until it’s no longer visible when the game ends.

Students are not provided any written guidance for any of these enhancements so

they can independently reason about how they should design and implement them.

3.2.7 Lab 4: Introduction to Assembly

The fourth lab is the first that focuses on RISC-V assembly language, and it is specif-

ically designed to help students become comfortable translating C programs into

assembly language programs so they can better understand the exact operations car-

ried out by the processor during program execution. Students are given an assembly

file (shown in Appendix A.6.2), where they will put their RISC-V assembly imple-

mentations of various C functions. This file will be used along with the existing 6.190

C header file throughout the remaining lab and postlab assignments.

First, students translate some of the C functions written during Lab 1 into RISC-

V assembly language. The lab instructs students to translate pinRead first because

its RISC-V assembly implementation does not require any control flow instructions

beyond the provided return instruction. This allows students to become comfortable

with using computational instructions before moving on to implement more complex

procedures. Then, students implement pinWrite and pinSetup, which do require the

use of control flow instructions to implement conditional statements. All of these ex-

ercises require students to use RISC-V assembly instructions to interact with memory

and perform computation on registers. Students verify functionality of these functions

in the same way they did during Lab 1, using two LEDs connected to two output pins

and printing messages to the serial monitor in response to the button input. Students
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also implement a function extremely similar to their setPixel C function from Lab

3 in RISC-V assembly, as future assignments will involve setting bits in the software

screen buffer.

Writing programs in RISC-V assembly language can be a large jump from writing

programs using higher-level languages, including C, so we looked for opportunities to

simplify other aspects of the lab. In particular, we chose to have students translate C

functions they had previously written, rather than introducing a new application re-

quiring new C functions. Students should already be familiar with these functions, so

they can focus on how to translate them into assembly, rather than first needing to fa-

miliarize themselves with new C functions. Additionally, these functions in particular

allow students to review concepts core to the class, such as bit manipulation.

The fourth week of the class, during which Lab 4 and Postlab 4 are assigned,

does not cover some critical elements of assembly language, including procedure calls,

RISC-V calling conventions, the stack, or the specific purpose of each RISC-V register.

This both limits the types of procedures that students can write and requires the lab

instructions to provide strategic guidance to students. First, none of the procedures

that students are instructed to implement in this lab call other assembly procedures,

so, for every procedure, a correct implementation that does not require any additional

instructions for adherence to RISC-V calling conventions exists. However, we must

impose a constraint on the registers that students may use in order to ensure that their

implementations will follow RISC-V calling conventions without the use of additional

instructions.

We also limit the set of registers that students may use in their implementations

to register x0 and registers a0 through a7. We allow the use of x0 because its value is

zero, which is convenient for assembly language programs, and it is immutable, mean-

ing that no procedure needs to be concerned with about its value being overwritten

by another procedure. We chose to use registers a0 through a7 for two main reasons.

First, they are caller-saved registers, meaning that a procedure is not responsible for

maintaining their values unless it is making procedure calls itself. None of of the

procedures in this assignment call any other procedures, they do not need to include
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additional instructions to adhere to RISC-V calling conventions. Additionally, stu-

dents will have needed to use these registers as function arguments and return values

anyways.

Although the assembly procedures implemented by students in this lab do not call

procedures, they are called by other functions. We cannot ignore some aspects of these

interactions, even though students have not yet been introduced to them. First, each

procedure implementation will need to use specific registers as function arguments

and return values. Students have not yet been introduced to the specific purposes

of registers, so the lab instructions tell students which register holds each function

argument at the start of the procedure and which register to place the function’s

return value in before the procedure ends. Furthermore, each assembly language

procedure requires a dedicated instruction to return control back to the procedure

that called it. This instruction is included in the lab starter code at the end of every

procedure.

Additionally, during the second quarter of the spring 2023 semester, we banned

students from using RISC-V pseudoinstructions during the fourth week of the course,

which includes Lab 4 and Postlab 4. This requires students to write assembly code

using just operations that are directly carried out by a RISC-V processor.

3.2.8 Postlab 4: Bubble Sort

The fourth postlab is adapted from part of an MIT 6.191 assignment, where students

translate a Python or C implementation of the bubble sort algorithm into RISC-V

assembly. For this class, we removed the reference Python implementation of the

algorithm because students taking this course should be comfortable with reading C

programs by the time they are given this assignment. Additionally, students will add

code to their bubble sort implementation that will render the algorithm on the LED

display. However, after students implement the bubble sort algorithm, they will need

to add a procedure call to invoke a C function that renders an eight-element array on

the LED display. Students must strategically place this procedure call within their

implementation so that the display updates every time a swap takes place. After
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completion of the postlab, the system displays the bubble sort algorithm repeatedly

on the LED display.

Just as with Lab 4, this postlab is assigned before students are familiar with topics

related to assembly procedure calls, so students are provided with the same guidance

regarding these topics and their implementations are subject to the same register

usage constraints. We also provide students with the code necessary to make the

single procedure call that they must add to their bubble sort algorithm to render the

array on the LED display. This code includes both the procedure call itself, as well as

the instructions necessary to adhere to RISC-V calling conventions, so that student

implementations will still work as expected after the addition of the procedure call.

Additionally, during the second half of the spring 2023 semester, students were not

permitted to use pseudoinstructions while completing this assignment.

The postlab also includes an exercise from the same 6.191 lab where students

explore the disassembly of an assembly procedure, particularly focusing on the bi-

nary encoding of RISC-V instructions. We especially prioritized keeping this exercise

because this class aims to emphasize how RISC-V instructions are represented in

memory in addition to how RISC-V instructions can be used.

3.2.9 Lab 5: Game of Life

The fifth lab guides students through implementing Conway’s Game of Life using

RISC-V assembly language, placing a particular focus on RISC-V procedure calls.

In particular, it reinforces concepts pertaining to control transfer among procedures,

RISC-V calling conventions, the stack, and the purposes of the different RISC-V

registers. In this lab and the following postlab, students may use all RISC-V registers,

and they are responsible for ensuring that their procedures all adhere to RISC-V

calling convention. Students completing this lab during the second quarter of the

spring 2023 semester, who were not permitted to use pseudoinstructions to complete

the previous week’s assignments, are allowed to use them during this lab and Postlab

5. Students completing this lab during the other offerings of the course were allowed

to use psuedoinstructions for all assignments, including this lab.
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The lab first introduces students to the rules of the game [2]:

1. A living cell with less than two living neighbors dies due to underpopulation.

2. A living cell with two or three living neighbors stays alive.

3. A living cell with more than three living neighbors dies due to overpopulation.

4. A dead cell with three living neighbors becomes a living cell due to reproduction.

These rules are simplified to:

1. A living cell with two or three living neighbors stays alive.

2. A dead cell with three living neighbors becomes a living cell.

3. All other living cells die, and all other dead cells remain dead.

The reduced set of rules is used for the lab’s implementation of the game. These rules

are applied repeatedly to a game board full of cells, as shown in Figure 3-12.

Figure 3-12: The Game of Life rules [2], applied four times to two initial configurations
of an 8x8 game board. The Loaf configuration does not change in response to the
rules, while the Glider configuration does.

The assignment uses the lab kit’s LED display to visualize the game board. A

living cell will correspond to an illuminated LED, and a dead cell will correspond
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to an LED being off. Due to the LED display only having eight rows and thirty-

two columns, which is much smaller than the size of a typical game board used

for the Game of Life, the lab implementation will allow cells to “wrap around” the

game board. That is, a cell in the top row of the board will have neighbors in the

corresponding columns of the bottom row, and a cell in the leftmost column of the

board will have neighbors in the corresponding columns of the rightmost row.

At a high level, the Game of Life can be implemented using an infinite loop that

calls a function that updates the board on each iteration. Students are provided with

a C implementation of this update function, and they must translate it into RISC-V

assembly. This update function loops through every cell on the game board, each of

which maps to a pixel on the LED display, and:

• Determines its current status.

• Determines how many of its neighbors are alive.

• Determines the new status of the cell accordingly, using the rules of the game.

Students are provided with a helper procedure named getPixel that returns the

status of a cell given its location (in x and y coordinates) and a pointer to the game

board array.

The update function uses a helper function named checkNeighbors that, given

a pointer to the game board and a set of coordinates, returns how many of the

corresponding cell’s neighbors are alive. Students must implement this function using

RISC-V assembly language. One key aspect of this checkNeighbors procedure is that

it uses a helper procedure named tallyNeighbors to actually count and return the

number of living neighbors that the given cell has. So, students must pay special

attention to make sure they adhere to RISC-V calling conventions, which is a central

theme of this week’s content, when implementing this procedure and using the helper

procedure.

After successfully implementing the checkNeighbors procedure using RISC-V as-

sembly, students then complete an exercise pertaining to the tallyNeighbors helper
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function used in their implementation. For this exercise, students are provided with

a complete RISC-V implementation of tallyNeighbors, that will work as expected

once it adheres to RISC-V calling convention. Students must add instructions to the

procedure to make it follow calling conventions. The instructions they may add are

limited to those that increment or decrement the stack pointer, push data onto the

stack, or pop data from the stack. We only require students to handle the calling

convention portion of this procedure so that they can focus on understanding those

concepts in particular.

The final portion of this lab requires students to translate the board update func-

tion from C to assembly language, making sure to follow RISC-V calling conventions

where applicable. After students complete this, their system will be able to run the

Game of Life. Students are provided with a couple of initial game configurations and

are encouraged to create their own.

3.2.10 Postlab 5: Quicksort

The fifth postlab assignment is another adaptation of an existing MIT 6.191 assign-

ment. It is similar to Postlab 4, however, the sorting algorithm to be translated

to RISC-V assembly is quicksort rather than bubble sort. We modified the assign-

ment from the 6.191 version so that students implement and test the partitioning

procedure separately from the main quicksort procedure that calls it. Implementing

quicksort in assembly requires strategic use of the stack to make the procedure adhere

to calling convention. Similar to Postlab 4, the lab instructs students to call an array

visualization procedure from their quicksort procedure so that they can visualize the

sorting algorithm on their LED display. However, in this assignment, students are not

given the code to call this procedure, and instead must write it themselves, because

procedure calls and calling conventions are a central focus of this week’s material.
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Chapter 4

RISC-V Debugging Tool

The low-level nature of assembly language programs makes it difficult to gain an un-

derstanding of their general behavior by just reading them. This results in assembly

language programs often being difficult to debug when they don’t work as expected,

requiring a programmer to walk step-by-step through each of the individual instruc-

tions to find the root cause of the unexpected behavior. While it is possible for a

programmer to manually keep track of the state of registers and memory as they step

through the program, that approach is tedious, inconvenient, and prone to error.

All exercises and assignments in 6.190 are submitted via CAT-SOOP [11] [12]

checker questions embedded in the course website. CAT-SOOP has many question

types used to verify different types of submissions, from numerical answers to pro-

grams [12]. While preparing for the preliminary offering of the course, we had created

a RISC-V assembly program checker question type that uses a derivation of RiscEmu,

a RISC-V emulator written in Python [13], to run assembly programs submitted by

students against sets of test cases.1 This chapter discusses this extension of this RISC-

V assembly program checker to include a convenient, user-friendly debugging tool. In

addition to helping students debug their assembly programs, this tool can enhance

their understanding of how individual RISC-V instructions interact with registers and

memory.
1Future mentions of RiscEmu refers to our derivation of the package, rather than the package

from the original source [13]. The derivation can be found at this link: https://github.com/
jodalyst/riscemu

59

https://github.com/jodalyst/riscemu
https://github.com/jodalyst/riscemu


4.1 Features and Typical Use

The debugger is integrated with the existing RISC-V assembly program checker ques-

tions on the course website, and it is activated when a student submits a program

including at least one breakpoint instruction. This breakpoint instruction, named

csbreak (for CAT-SOOP-Breakpoint), is unique to this class and is not in the RV32I

instruction set. If a student submits a program without any breakpoints, the question

will behave as it did before: the debugger will not be invoked, the submission will

receive a grade, and the results of each test case will be generated for the student to

view.

Figure 4-1: A RISC-V assembly checker question after a student submits code in-
cluding a breakpoint instruction.

When the debugger is invoked, the submission is given a grade of 0% and an

informative message will be displayed as shown in Figure 4-1. The question type

assigns all submissions containing breakpoints a grade of 0%, because the breakpoint

instruction is not an actual RISC-V instruction and would trigger assembler errors

if the code was transferred to any other system. This issue is extremely pertinent

to the lab and postlab assignments in 6.190, where the programs developed in the
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online checkers must ultimately be run on a physical microcontroller. Lastly, a toggle

button appears that, when clicked, will show or hide the debuggers.

Every test case in the checker has a separate debugger that is generated auto-

matically when a student submits code with a breakpoint. Each debugger highlights

the instruction that is about to be run and also shows the instructions immediately

surrounding it. It also shows the stack and has collapsible containers for registers and

memory. The debugger is initially paused at the beginning of the submitted program,

and there are three buttons that the user can use to interact with the program:

• Step: Advances the debugger to the following instruction.

• Continue: Advances the debugger to the next breakpoint instruction.

• Reset: Returns the debugger to the beginning of the program.

The number of instructions executed since the beginning of program execution is

also displayed. This number includes every instruction executed for the test case,

not just those included in the submission. Figure 4-2 shows an example debugger at

the beginning of the program. The registers and memory are collapsed to conserve

space in the web browser, but they can be expanded if the user wants to view them.

The stack is empty because this program has not yet put any data on it. This

particular test case, as well as the majority of test cases, ran assembly instructions

before invoking the submitted code, so the displayed instruction count is greater than

zero.

The primary benefit of a debugger comes from observing how the values in registers

and memory change as each instruction is executed. The “Registers” section of the

debugger displays the values stored in the 32 RISC-V registers at the current point

in the program, which is before the highlighted instruction is executed. Additionally,

if the previous instruction had modified a register, that register will be highlighted

for emphasis, as shown in Figure 4-3.

The “Memory” section of the debugger displays a section of memory. In order

for a particular address (and its neighboring addresses) to be shown automatically,
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Figure 4-2: The initial state of a RISC-V debugger instance, prior to executing any
of the program’s instructions. The highlighted instruction is the one that is about to
be executed.

Figure 4-3: The RISC-V assembly debugger highlights the register modified by the
most recently executed instruction. Here, the previous instruction, addi x7, x0, 40
modified register x7, so it is highlighted in the “Registers” section of the debugger.
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it must be modified by an instruction that accesses memory. Otherwise, the user

can manually search for specific memory addresses using the search bar. Similar to

registers, a memory address will be highlighted for emphasis if the previous instruction

had written to it or if the user had searched for it. This behavior is displayed in Figure

4-4.

Figure 4-4: The RISC-V assembly debugger highlights either the memory address
either modified by the instruction executed most recently or an address explicitly
searched for by the user. Here, the user had searched for the memory address 0x724,
so the contents of that and the surrounding memory addresses are shown.

Students can also monitor the evolution of the stack throughout a program in the

“Stack” window. To illustrate the last-in-first-out nature of the stack, the stack shown

on the debugger grows as the stack pointer decrements and shrinks as it increments.

The stack is displayed separately from the rest of memory to emphasize how it grows

and shrinks. If the stack grows so that it no longer fits in the provided window, the

user can scroll to view all of its contents. An example stack is shown in Figure 4-5.
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Figure 4-5: The RISC-V assembly debugger displays the stack section of memory
separately, highlighting the element added to the stack by the previous instruction.

4.2 System Design and Implementation

The RISC-V debugging tool is integrated with the existing RISC-V assembly checker

questions located on the assignment’s webpage to reduce the overhead associated with

using it compared to if we were to use a separate debugging tool. An overview of

the new RISC-V assembly checker with debugging functionality is provided in Figure

4-6. If a student would like to use the debugger, they must simply submit a RISC-V

assembly program that includes a breakpoint instruction. Once finished debugging,

they must remove all breakpoints from their program and submit it again to receive

a grade.

4.2.1 Preserving Existing RISC-V Code Submission Behavior

It is imperative that the original functionality of the online RISC-V checker questions

be preserved after adding the debugging capabilities, as students still need to use these

checkers to submit and receive grades for their RISC-V assembly language programs.

When a student submits their RISC-V assembly code on the website, a Python

function is invoked to handle the submission. Originally, this function iterated through

every test case, comparing the behavior of the student’s submission agsinst the so-

lution and assigning a grade accordingly. After adding debugging capabilities, this

behavior comparison and grade assignment only occurs when a student submits a

RISC-V assembly program that does not contain a breakpoint.
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Figure 4-6: Overview of the RISC-V checker question with debugging capability. The
debugger is activated when a student submits code including a breakpoint instruction
named csbreak. Otherwise, the debugger will not be activated and the submitted
code will receive a grade.
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4.2.2 Identifying Breakpoints and Instructions to Log

The debugger is only activated when the submitted RISC-V assembly program con-

tains a breakpoint, so each submission must first be scanned to identify the presence

or absence of breakpoints in the program. We implemented this scan using RiscEmu

in a sandboxed environment to parse every instruction in the program. The program

counter is initialized to the first memory address containing an instruction, and it is

incremented until has gone through the entirety of instruction memory.

Because this breakpoint instruction needs to be parsed and used like any other

RISC-V instruction, we added a custom instruction named csbreak to the RiscEmu

instruction set. It behavior is comparable to that of a no-operation instruction – the

checker software just uses its presence or absence to determine whether or not the

debugger should be activated. If a csbreak instruction is encountered during this

preliminary scan of the program, a Boolean flag is set to indicate that the debugger

must be activated. Otherwise, the original behavior of the RISC-V assembly checker

is carried out and the submission will receive a grade.

When a student’s submission is run, it is integrated with additional test code that

may include solutions to other procedures they may have to write to complete the

assignment. For example, an assignment could instruct students to write a procedure

to calculate the sum of squares of values in an array, and this sum of squares procedure

must call a multiplication procedure that is defined and implemented in the test

code. It would be undesirable for the debugger to reveal the implementation of this

multiplication procedure in the case that students need to implement it at some point

during the class, so the debugger may only reveal instructions that are implemented

by the student. This requires the checker to determine which instructions may be

logged for debugging purposes.

During the checker’s initial scan for breakpoints, which is run in a sandboxed en-

vironment, a Python dictionary mapping each memory address encountered during

the scan to whether or not the behavior of the corresponding instruction should be

logged for debugging purposes is created. To determine whether or not an instruction
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and its behavior should be logged, the code submitted by the student must be dis-

tinguished from the test code. We added two more custom instructions to RiscEmu,

named startlog and stoplog, that simply mark the beginning and end of the stu-

dent’s code submission, as shown in Figure 4-7. These instructions do not modify

the state of the system and are each implemented as a no-operation instruction for

the RiscEmu emulator, just like the csbreak instruction used to set breakpoints. We

assume that RiscEmu stores instructions in memory contiguously, so that the instruc-

tions encountered between startlog and stoplog are those written by the student.

Additionally, this initial scan maps each program counter to the instruction stored

at the corresponding memory address. Only instructions that should be logged for

debugging purposes, as described previously, are included in this mapping.

4.2.3 Logging Program State

After the initial program scan, the RISC-V assembly checker’s submission function

has the information necessary to determine whether or not the debugger should be

activated. If the debugger is activated, it will run the program submitted by the stu-

dent against each test case in a sandboxed environment using RiscEmu. Additionally,

during program execution, RiscEmu is also used to gather and log the state of the

emulated system before specific instructions are run. This program state is stored in

a Python dictionary that is ultimately converted to a JSON object to be used in the

front-end JavaScript code that renders the debugger on the webpage. Examples of

entries in this JSON object are shown in Figures 4-8, 4-9, 4-10, and 4-11.

Using RiscEmu extensively, the program creates and configures an instance of a

RV32I processor, loads the program, consisting of the student submission and test

code as shown in Figure 4-7, into its memory. Then, the emulated processor executes

the program. For each instruction, the program first uses the current program counter

to determine whether or not the current system state should be logged. If it should

not be logged, the emulated processor simply executes the instruction and proceeds

to the next one. If the instruction should be logged, the current state of the system

must be saved.
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Figure 4-7: The structure of the assembly code used for the initial scan to identify
breakpoints and distinguish the assembly instructions submitted by the student from
the assembly instructions injected by course staff.
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We use a Python dictionary to store the state of the system at each necessary

point in the program before executing the instruction. The state consists of:

• inscount: The number of instructions that have been executed since the be-

ginning of the program, including those not logged for debugging purposes.

• pc: The current value of the program counter.

• ins: The instruction about to be executed.

• final_state: Indicates whether or not this state is the final one of the program.

• updated_register: The register updated by the previous instruction.

• updated_addr: The memory address updated by the previous instruction.

• new_reg_vals: The updated register value. If the previous instruction was

not logged, or the current instruction is a breakpoint, it includes all 32 register

values.

• new_mem_vals: The updated memory value. If the previous instruction was not

logged, or the current instruction is a breakpoint, it includes all memory values

of interest.

• stack_top: The value of the stack pointer.

• stack_bottom: The memory address indicating the bottom of the stack.

• stack_data: The contents of the stack.

Each “current state” Python dictionary, like the ones shown in Figures 4-8, 4-9, 4-10,

and 4-11, is then added to an “overall state” Python dictionary, and its key is the

number of instructions that have been logged since the beginning of the program.

This data structure is used extensively when rendering the front-end of the debugger.
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1 "0": {
2 "pc": 460,
3 "ins": "addi a0, x0 , 1",
4 "inscount ": 1,
5 "final_state ": false ,
6 "updated_register ": null ,
7 "updated_addr ": null ,
8 "new_mem_vals ": {},
9 "new_reg_vals ": {

10 "zero": 0,
11 "ra": "Undefined",
12 "sp": 524792 ,
13 "gp": "Undefined",
14 "tp": "Undefined",
15 "t0": "Undefined",
16 "t1": "Undefined",
17 "t2": "Undefined",
18 "s0": "Undefined",
19 "s1": "Undefined",
20 "a0": "Undefined",
21 "a1": "Undefined",
22 "a2": "Undefined",
23 "a3": "Undefined",
24 "a4": "Undefined",
25 "a5": "Undefined",
26 "a6": "Undefined",
27 "a7": "Undefined",
28 "s2": "Undefined",
29 "s3": "Undefined",
30 "s4": "Undefined",
31 "s5": "Undefined",
32 "s6": "Undefined",
33 "s7": "Undefined",
34 "s8": "Undefined",
35 "s9": "Undefined",
36 "s10": "Undefined",
37 "s11": "Undefined",
38 "t3": "Undefined",
39 "t4": "Undefined",
40 "t5": "Undefined",
41 "t6": "Undefined"
42 },
43 "stack_top ": 524792 ,
44 "stack_bottom ": 524792 ,
45 "stack_data ": {}
46 },
47

Figure 4-8: An example of the first entry in a program state JSON object. It records
the state of the system before the first student-written instruction is executed.
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1 "1": {
2 "pc": 464,
3 "ins": "addi sp, sp , -4",
4 "inscount ": 2,
5 "final_state ": false ,
6 "updated_register ": "a0",
7 "updated_addr ": null ,
8 "new_reg_vals ": {
9 "a0": 1

10 },
11 "new_mem_vals ": {},
12 "stack_top ": 524792 ,
13 "stack_bottom ": 524792 ,
14 "stack_data ": {}
15 },
16

Figure 4-9: An example entry in the program state JSON object, where the previ-
ous instruction had modified register a0. This information is communicated via the
updated_register and new_reg_vals fields in the entry. Note that this is the state
of the system before the instruction included in this entry, addi sp, sp, -4, is exe-
cuted.

1 "3": {
2 "pc": 472,
3 "ins": "lui t0, 6",
4 "inscount ": 4,
5 "final_state ": false ,
6 "updated_register ": null ,
7 "updated_addr ": 524788 ,
8 "new_reg_vals ": {},
9 "new_mem_vals ": {

10 "524788": 1
11 },
12 "stack_top ": 524788 ,
13 "stack_bottom ": 524792 ,
14 "stack_data ": {
15 "524788": 1
16 }
17 },
18

19

Figure 4-10: An example entry in the program state JSON object, where the previous
instruction had written the value 1 to the memory address 524788. This is communi-
cated through the updated_addr and new_mem_vals fields in the entry. This memory
address modified was also a part of the stack, which is determined using the fields
stack_top and stack_bottom, so the stack_data field is also updated to reflect this
memory write.
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1 "5": {
2 "pc": 480,
3 "ins": "csbreak ",
4 "inscount ": 6,
5 "final_state ": false ,
6 "updated_register ": null ,
7 "updated_addr ": 24576 ,
8 "new_mem_vals ": {
9 "24576": 1,

10 "524788": 1
11 },
12 "new_reg_vals ": {
13 "zero": 0,
14 "ra": "Undefined",
15 "sp": 524788 ,
16 "gp": "Undefined",
17 "tp": "Undefined",
18 "t0": 24576,
19 "t1": "Undefined",
20 "t2": "Undefined",
21 "s0": "Undefined",
22 "s1": "Undefined",
23 "a0": 1,
24 "a1": "Undefined",
25 "a2": "Undefined",
26 "a3": "Undefined",
27 "a4": "Undefined",
28 "a5": "Undefined",
29 "a6": "Undefined",
30 "a7": "Undefined",
31 "s2": "Undefined",
32 "s3": "Undefined",
33 "s4": "Undefined",
34 "s5": "Undefined",
35 "s6": "Undefined",
36 "s7": "Undefined",
37 "s8": "Undefined",
38 "s9": "Undefined",
39 "s10": "Undefined",
40 "s11": "Undefined",
41 "t3": "Undefined",
42 "t4": "Undefined",
43 "t5": "Undefined",
44 "t6": "Undefined"
45 },
46 "stack_top ": 524788 ,
47 "stack_bottom ": 524792 ,
48 "stack_data ": {
49 "524788": 1
50 }
51 },
52

Figure 4-11: An example entry in the program state JSON object, where the cur-
rent instruction is a csbreak instruction, indicating that the program has reached a
breakpoint. Due to the way the state of the system is rendered on the front-end of
the debugger, the entire state of the system must be logged at each breakpooint.
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4.2.4 Debugger Front-end

The central submission Python function included in the checker software will condi-

tionally generate certain HTML elements depending on whether or not the debugger

is activated. A separate debugger is instantiated for every individual test case, so

that interactions with the debugger for one test case does not impact the status of

any of the other debuggers. After initially being rendered, these HTML elements are

each controlled by JavaScript listener functions that respond to user interaction in

the form of button clicks. There are four buttons that a user can interact with: Step,

Continue, Reset, and Memory Search.

First, JavaScript objects are generated so that information about the program’s

state can be used for the debugger’s front end. The first object is simply the dictionary

containing the state of the system, as defined in the previous section, throughout

program execution.

The second object contains information about the system state that should be

rendered on the debugger at a single point in time, as shown in Figure 4-12. It has

the following properties:

• ins: The number of instructions simulated by the debugger.

• done: Whether or not the debugger has reached the end of the program.

• reg_state: A mapping between the 32 registers and their values at the current

point in time.

• mem_state: A mapping between the memory addresses of interest and their

associated values at the current point in time.

• min_pc: The lowest memory address containing an instruction from the stu-

dent’s code submission.

• max_pc: The highest memory address containing an instruction from the stu-

dent’s code submission.
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1 {
2 "ins": 1,
3 "done": false ,
4 "reg_state ": {
5 "zero": 0,
6 "ra": "Undefined",
7 "sp": 524800 ,
8 "gp": "Undefined",
9 "tp": "Undefined",

10 "t0": "Undefined",
11 "t1": "Undefined",
12 "t2": "Undefined",
13 "s0": "Undefined",
14 "s1": "Undefined",
15 "a0": 0,
16 "a1": "Undefined",
17 "a2": "Undefined",
18 "a3": "Undefined",
19 "a4": "Undefined",
20 "a5": "Undefined",
21 "a6": "Undefined",
22 "a7": "Undefined",
23 "s2": "Undefined",
24 "s3": "Undefined",
25 "s4": "Undefined",
26 "s5": "Undefined",
27 "s6": "Undefined",
28 "s7": "Undefined",
29 "s8": "Undefined",
30 "s9": "Undefined",
31 "s10": "Undefined",
32 "s11": "Undefined",
33 "t3": "Undefined",
34 "t4": "Undefined",
35 "t5": "Undefined",
36 "t6": "Undefined"
37 },
38 "mem_state ": {},
39 "min_pc ": 460,
40 "max_pc ": 492,
41 "pc_to_inst ": {
42 "460": "addi a0, x0, 0",
43 "464": "addi a1, x0, 0",
44 "468": "addi a2, x0, 40",
45 "472": "csbreak ",
46 "476": "bge a0 , a2 , end",
47 "480": "lw a4, 1792(a0)",
48 "484": "add a1 , a1 , x8",
49 "488": "addi a0, a0, 4",
50 "492": "jal x0 , loop"
51 },
52 "addr_viewing ": null
53 }
54

Figure 4-12: An example of the JavaScript object containing data about the current
state of the system that is used to render the front-end of the debugger at that point
in time.
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• pc_to_inst: A mapping between each program counter and its corresponding

instruction, for every instruction in the program submitted by the student.

• addr_viewing: The memory address being highlighted at the current point in

time.

The third object contains variables that refer to each HTML element that will either

invoke or be updated by JavaScript event listeners. These HTML elements are: a step

button, a reset button, a continue button, a container to display the registers and

their values, a container to display memory addresses and their values, a memory

search bar, a memory search button, a memory search error message container, a

container to display the stack, a container to highlight the current instruction, and

an instruction count container. These three objects are then passed into a JavaScript

function that will provide them with the necessary functionality.

There are four main JavaScript functions that are invoked by user interaction –

step, continue, reset, and memory search. The step operation simulates the execution

of a single instruction, the operation function simulates the execution of multiple

instructions until a breakpoint is encountered, the reset operation resets the state of

the debugger to be at the beginning of the program, and the memory search operation

allows the user to view the contents of memory at certain addresses.
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Chapter 5

Discussion

Introduction to Low-level Programming in C and Assembly (6.190) has been offered

by the MIT Department of Electrical Engineering and Computer Science for five con-

secutive academic quarters, beginning in the second half of the spring 2022 semester.

For the rest of this chapter, we will refer to each academic quarter as follows:

• SP22 H2: The second half of the spring 2022 semester.

• FA22 H1: The first half of the fall 2022 semester.

• FA22 H2: The second half of the fall 2022 semester.

• SP23 H1: The first half of the spring 2023 semester.

• SP23 H2: The second half of the spring 2023 semester.

Throughout these offerings, we have collected data and information from in-class

surveys and observation that can inform the effectiveness and impact of the class.

5.1 Enrollment

One key metric of a class is its enrollment, because it is an indicator of overall stu-

dent interest in the class as well as the amount of resources needed for its successful

execution. Approximately 622 students have taken 6.190 across the first five offerings
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of the 6.190, as shown in Table 5.1. This is not the number of unique students who

have taken the class, as students have repeated the class under circumstances such

as receiving a non-passing grade. We consider enrollment to be the number of stu-

dents who have completed the class as demonstrated by taking the final exam. As of

writing, the final exam had not yet been administered for the SP23 H2 offering of the

class, so we define that term’s enrollment as the number of students. taking the class

for-credit, who are eligible to submit a MIT-administered subject evaluation for the

class.

Offering SP22 H2 FA22 H1 FA22 H2 SP23 H1 SP23 H2 Total
Enrollment 8 89 199 176 150 622

Table 5.1: Student enrollment in Introduction to Low-level Programming in C and
Assembly during each of the first five offerings of the class. Here, we define enrollment
as the number of students who completed the final exam, with the exception of the
SP23 H2 offering of the class because the exam had not been administered as of
writing. Instead, the enrollment for the SP23 H2 offering of the class is defined as the
number of students taking the course for credit who are eligible to complete a MIT
subject evaluation for the class.

The very first offering of the class, during SP22 H2, had just eight students.

Enrollment for that quarter was low for three main reasons. First, it was the initial,

pilot offering of the class, so students may not have heard about it or planned to

take it. Additionally, only students entering MIT in fall 2022, the following semester,

would need to take 6.190 to fulfill the new requirements for the Course 6-2 or Course

6-3 majors [1]. Students who were enrolled at MIT before the fall 2022 semester could

choose between completing the old major requirements, that did not include 6.190,

and the new ones. Finally, 6.190 was not an enforced corequisite for 6.191 until the

spring 2023 semester, one year later [1]. Consequently, the enrollment figure for the

second half of the spring 2022 semester can be treated as an outlier, as the class was

offered under various conditions that were unique to that academic quarter and are

no longer applicable.

Student enrollment in the class quickly grew. It increased to 89 students in the

FA22 H1 offering and reached a maximum of 199 students during the FA22 H2 offering
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of the class. This increase between the first and second halves of the semester could,

in part, be due to students needing to complete the prerequisite class, 6.100A, prior

to enrolling in 6.190. Because 6.100A is offered during the first half of the semester,

students could conveniently take 6.100A during the first half and 6.190 during the

second. Additionally, word may have simply started to spread about the class itself.

Enrollment then declined slightly, decreasing to 176 students in the SP23 H1

offering and 150 students in the SP23 H2 offering. The spring 2023 semester was the

first where 6.190 was an enforced corequisite for 6.191, so many students took 6.190

during the first half so that they could enroll in 6.191.

If we consider only the four offerings of the class throughout the 2022-2023 aca-

demic year, this class was offered to 614 students. On average, there were 153.5

students per offering. In the future, 6.190 will only be offered twice per year, during

both halves of the spring semester. Under this planned decrease in annual offerings

of the class, if the number of students who need to take the class annually remains

the same, at 614, the average enrollment would double to 312 students per offering.

The maximum number of students taking the class during a given offering thus far

has been 199, so this potential significant increase in enrollment must be considered

when allocating resources, such as staff, toward the 6.190 in the future.

5.2 Time Commitment

Introduction to Low-level Programming in C and Assembly (6.190) is a six-unit class

that students take during one half of a given semester, so the expectation set by

MIT is that a student will need to dedicate 12 hours per week to the class [14]. We

designed the class with this expectation in mind. During the first three offerings

of the course (the SP22 H2, FA22 H1, and FA22 H2 offerings), we administered a

weekly survey, prompting students to report how much time they spent on various

components of the course. This data allows us to understand how well the actual

weekly time commitment associated with the class aligns with the expected time

commitment set by its units. Additionally, administering this survey on a weekly
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basis allows us to identify weeks, and even particular assignments, that require a

different amount of time than expected. It is important to emphasize that this data

is self-reported by the students, so it may not be a completely accurate representation

of the actual amount of time students spent on the class. However, this data does

provide us with an idea of how much time students devoted toward completing the

class.

A typical week in 6.190 consists of five main components: a lecture, a recitation,

a lab, a postlab, and exercises. Lecture and recitation are each scheduled for an hour

and a half every week, and our calculations assume that the average student is in

attendance at both of these class sessions weekly.

On average, the self-reported weekly time commitment for 6.190 is 12.08 hours,

as shown in Table 5.2, which is very close to the expected weekly time commitment

of 12 hours – it is only about five minutes more than expected. This overall weekly

average is broken down into 3 hours spent in lecture and recitation, 4.02 hours on

exercises, 3.04 hours on the lab, and 2.01 hours on the postlab. Week 5, which is

dedicated to RISC-V calling conventions and the stack, had the largest time commit-

ment, with students, on average, dedicating 13.14 hours to it. Week 1, which focuses

on introducing students to C and the idea of manipulating individual bits in memory,

had the smallest time commitment, with students spending an average of 10.26 hours

on the class that week.

5.3 Effectiveness of Course Components

During the final week of each of the first three offerings of the course, we administered

a survey prompting students to indicate their level of agreement with various state-

ments on a scale of 0 through 4. A rating of 0 means that the respondent strongly

disagreed with the statement, a rating of 2 means that the respondent was neutral to-

ward the statement, and a rating of 4 means that the respondent strongly agreed with

the statement. The first set of statements pertained to how students felt that various

course components contributed to their learning. We can use this feedback to eval-
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Week 1 2 3 4 5 Overall (Average)
Lecture 1.50 1.50 1.50 1.50 1.50 1.50
Recitation 1.50 1.50 1.50 1.50 1.50 1.50
Exercises 2.90 4.11 4.54 4.32 4.24 4.02
Lab 2.63 3.44 3.04 2.88 3.23 3.04
Postlab 1.73 2.09 1.80 1.77 2.67 2.01
Total (Hours) 10.26 12.64 12.39 11.97 13.14 12.08

Table 5.2: The average self-reported amount of time (in hours) that a student would
spend on Introduction to Low-level Programming in C and Assembly weekly. The
overall average is provided, as well as averages for each week and course component.
The data pertaining to the time spent on exercises, labs, and postlabs was collected
from weekly surveys administered to students during the first three offerings of the
course. We assume that the average student attends the 1.5-hour lecture and 1.5-hour
recitation each week.

uate the effectiveness of the different aspects of the course and make improvements

accordingly. The statements provided in the survey and their average responses are

shown in Table 5.3. Additionally, histograms presenting the frequency distributions

of the responses to each statement are shown in Figures 5-1 and 5-2.

Students found the labs to be the aspect of the class most helpful to their under-

standing of a given week’s material, rating their agreement with the statement, “The

labs helped me better understand the material presented in lecture and recitation,”

3.65/4 on average. The matching statements about hands-on components of the class,

such as the postlabs and exercises, that required students to practice applying the

concepts learned in lecture and recitation, were also generally agreed with. However,

students found more the more traditional class session components of the course least

helpful, rating their agreement with the statements, “The lectures were helpful to my

learning,” and “The recitations helped me better understand the material presented

in lecture” as 2.79/4 and 2.82/4, respectively. While both of these average responses

indicate agreement, they indicate less agreement than those to affirmative statements

about other aspects of the course.

On average, students agreed with the statement that they were provided with

enough exercises to gain comfort with the course material, however, they also were
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Figure 5-1: Histograms displaying the frequencies of student responses to first six
final survey prompts pertaining to their experience with the different components of
the class. A response of 0 indicates that the respondent strongly disagreed with the
statement, a 2 indicates that the respondent was neutral towards the statement, and
a 4 indicates that the respondent strongly agreed with the statement.
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Figure 5-2: Histograms displaying the frequencies of student responses to the seventh
through ninth final survey prompts pertaining to their experience with the different
components of the class. A response of 0 indicates that the respondent strongly dis-
agreed with the statement, a 2 indicates that the respondent was neutral towards the
statement, and a 4 indicates that the respondent strongly agreed with the statement.
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Prompt Average Standard Deviation Respondents
The lectures were helpful 2.79 1.05 208
to my learning.
The recitations helped me better 2.82 1.16 211
understand the material presented
in lecture.
The labs helped me better 3.65 0.66 210
understand the material
presented in lecture and
recitation.
The postlabs helped me better 3.31 0.80 210
understand the material presented
in lecture and recitation.
I felt prepared to complete the 3.39 0.80 210
postlab independently after
completing the lab.
I enjoyed working with physical 3.33 1.06 211
hardware during the labs and
postlabs.
The exercises helped me better 3.29 0.90 208
understand the material presented
in lecture and recitation.
There were enough exercises for 3.43 0.83 210
me to become comfortable with
the material.
There were too many exercises. 2.80 0.83 210

Table 5.3: Student responses to a series of prompts pertaining to their experience
with the different components of the class. This data was collected from a survey
administered to students at the end of each of the first three offerings of the class. A
response of 0 indicates that the respondent strongly disagreed with the statement, a
2 indicates that the respondent was neutral towards the statement, and a 4 indicates
that the respondent strongly agreed with the statement. The responses shown in the
table imply that students, on average, found the hands-on portions of the class, such
as laboratory assignments and exercises, more useful to their overall understanding
of the course material than the other portions, such as lecture and recitation.

in slight agreement with the statement that there were too many exercises. We

responded to this feedback by evaluating the necessity of each of the exercises that

were assigned to students and making adjustments to them accordingly. For example,

Week 3 initially contained an exercise that required students to implement a nontrivial

function in Python. We found that this exercise wasn’t reinforcing any concepts
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covered in the class and removed it.

Students reporting that they found the labs and postlabs to be helpful, and that

they enjoyed working with hardware during those assignments, particularly validates

the decision to incorporate an embedded systems laboratory component into the

curriculum of the class.

5.4 Learning Objectives

The final class survey discussed in the previous section included a second set of state-

ments that primarily asked about the student’s perceived understanding of various

course topics. These responses allow us to gain insight to what students felt they

had learned from taking the class and compare that to what we would have expected

them to learn. The statements and their average responses, on a scale from 0 to 4

as defined previously, are displayed in Table 5.4. Additionally, histograms presenting

the frequency distributions of the responses to each statement are shown in Figures

5-3, 5-4, and 5-5.

According to these survey responses, students most strongly agreed that they

understood how C pointers are translated into RISC-V assembly instructions and how

to translate between different numerical representations. Students agreed least with

the statements that they understood how floating point numbers and C structures

are represented in memory.

One promising insight gained from the responses to these survey prompts is that

students overall felt as though they had some level of understanding of each of the

topics mentioned in the survey. The average student response to every statement,

which affirmed understanding of a particular topics or action, was greater than the

neutral response of 2. However, it is possible that these average figures are inflated

due to this data being self-reported.

One goal of this class is for other, more advanced, classes offered by the MIT

Department of Electrical Engineering and Computer Science to be able to use the C

programming language without needing to use class time to introduce it to students.
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Prompt Average Standard Deviation Respondents
I am able to write programs using 3.44 0.67 209
the C programming language
I understand how data is 3.39 0.72 209
represented in memory
I understand how to access data 3.41 0.73 209
stored in memory using C
I feel comfortable using pointers 3.24 0.77 209
in C
I can translate C programs into 3.50 0.61 208
RISC-V assembly code
I understand how C pointers 3.67 0.52 6
translate into RISC-V assembly
instructions.
I understand how to use RISC-V 3.49 0.64 200
assembly instructions to access
and modify memory.
I understand how different areas 3.19 0.81 205
of memory are used throughout a
program
I am comfortable translating 3.60 0.64 207
between decimal, binary, and
hexadecimal encoding of numbers.
I am comfortable using two’s 3.40 0.79 206
complement encoding of numbers.
I am comfortable using floating 2.62 1.16 207
point representation for numbers.
I understand how characters and 3.40 0.73 207
strings are represented in memory.
I understand how structs are 2.87 0.97 199
represented in memory.

Table 5.4: Student responses to a series of prompts pertaining to their perceived
understanding of main course topics and comfort with using them. A response of 0
indicates that the respondent strongly disagreed with the statement, a 2 indicates
that the respondent was neutral towards the statement, and a 4 indicates that the
respondent strongly agreed with the statement. These responses were gathered via a
survey administered at the end of each of the first three offerings of the course.

Th students who responded to the survey, on average, agreed with the statement

that they were able to write programs using the C programming language, and they

responded favorably to the other C-related prompts. This indicates that students,

on average, comfortable with the C programming language, meaning that they would
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potentially be able to use it in future coursework without needing to dedicate a

significant amount of time to becoming familiar with it.
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Figure 5-3: Histograms displaying the frequencies of student responses to the first
six final survey prompts pertaining to their perceived understanding of main course
topics and comfort with using them. A response of 0 indicates that the respondent
strongly disagreed with the statement, a 2 indicates that the respondent was neutral
towards the statement, and a 4 indicates that the respondent strongly agreed with
the statement.
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Figure 5-4: Histograms displaying the frequencies of student responses to the seventh
through twelfth final survey prompts pertaining to their perceived understanding of
main course topics and comfort with using them. A response of 0 indicates that the
respondent strongly disagreed with the statement, a 2 indicates that the respondent
was neutral towards the statement, and a 4 indicates that the respondent strongly
agreed with the statement.
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Figure 5-5: Histogram displaying the frequencies of student responses to the thir-
teenth final survey prompt pertaining to their perceived understanding of main course
topics and comfort with using them. A response of 0 indicates that the respondent
strongly disagreed with the statement, a 2 indicates that the respondent was neutral
towards the statement, and a 4 indicates that the respondent strongly agreed with
the statement.
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Chapter 6

Future Work

After developing this course and running it for five academic quarters, we have iden-

tified four viable extensions of this work. Additionally, it will be important for future

instructors of the course to continuously evaluate the effectiveness and relevance of

the existing materials and make improvements accordingly.

6.1 Stable Toolchain for Laboratory Assignments

The embedded development toolchain that we use extensively for lab and postlab

assignments is reliant on various external software applications and packages working

as expected. When these applications and packages update, sometimes automatically,

new behavior can be introduced.

For example, the Espressif32 development platform updated from version 5.1.1

to version 5.2.0 during the fall 2022 semester, and the ESP32 microcontroller would

consistently enter a boot loop, despite being programmed with a known program using

the exact same workflow and settings as we had used successfully many times before.

Additionally, students must use their own personal computers for these assignments,

some of which require different configuration settings.

It would be ideal if our development tools did not depend on software applications

that could potentially update or on students’ computers having particular hardware

or software specifications. Developing a stable toolchain that is compatible with all
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major operating systems and processors would significantly reduce the amount of

time students and staff members spend troubleshooting software and hardware issues

associated with system setup during the first week of the class. A future project could

involve exploring options, such as using Docker, for enabling this.

6.2 C Debugging Tool

A typical student taking this course has only ever been exposed to basic, high-level

programming in Python, so they may find C programs difficult to understand, es-

pecially early in the course. They could potentially benefit from a debugging tool

that would allow them to walk through C programs and observe how memory and

the different program variables evolve as the lines are run. Similar to the RISC-V

debugging tool, this could be integrated with existing C program checker questions

on the course website.

A C program debugging tool would be useful for troubleshooting C programs, but

it also has some potentially-significant educational benefits. Strategically-designed

visuals could emphasize the different types of variables and data structures and how

they are stored in memory. For example, the tool could clearly display that a uint8_t

variable, upon declaration, occupies a single byte in memory, while a uint16_t vari-

able occupies two. Additionally, it could display more complex ideas such as how

pointers reference values in memory while still themselves being stored in memory.

6.3 Full-Semester Version of 6.190

One significant constraint faced during the design and development of 6.190 was the

short, half-semester length. This only allows for about six weeks’ worth of material,

and schedule constraints require us to administer the final exam during the sixth week

of the course, so it does not test students on the material introduced during the sixth

week of classes, which includes dynamic memory allocation. Additionally, there is

no lab or postlab this week. Ideally, students would get the opportunity to explore
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dynamic memory allocation in an assignment and be asked questions about it during

the exam, because this topic is integral to understanding how memory is managed in

C programs.

In addition to allowing time for proper coverage of dynamic memory allocation,

extending the course to last for an entire semester would allow for the coverage of more

related topics, including compilers, software performance and optimization, and oper-

ating systems. The additional time would provide the ability to administer multiple

quizzes throughout the semester, rather than just one final exam, and the possibility

of a guided or open-ended final project could be explored.

6.4 Analyzing Impact on Follow-on Classes

This class (6.190) was designed with MIT Computation Structures (6.191) in mind:

moving assembly language content from 6.191 to 6.190 would allow 6.191 to introduce

more topics related to computing systems and explore existing ones in more depth.

6.190 became an enforced corequisite for MIT Computation Structures (6.191) in

the Spring 2023 semester, so 6.191 updated accordingly – new content includes a

more in-depth treatment of virtual memory and exceptions and a lecture dedicated

to parallel processing. Additionally, because 6.190 now covers the RISC-V assembly

content that the first two 6.191 labs had focused on, 6.191 has replaced those labs

with two new ones: the first focuses on implementing a four-stage pipelined RISC-V

processor with full bypassing (this had previously been an optional design exercise),

and the second focuses on operating systems. Additionally, 6.191 has introduced

a new optional design project, as a primary aspect of the previous one is now the

required four-stage pipelined processor lab. As these changes were all introduced in

the Spring 2023 semester, their success could not be evaluated as part of this thesis.

Future work could explore 6.190’s impact on 6.191 by analyzing the changes 6.191

made in response to the inclusion of 6.190.

Additionally, the changes made to 6.191 would allow its follow-on classes to adjust

accordingly. More future work could analyze how the inclusion of 6.190 ultimately
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impacts classes taken later in the curriculum, such as 6.192 (Constructive Computer

Architecture) and 6.205 (Digital Systems Laboratory), due to the changes it allowed

6.191 to make.
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Appendix A

Code Appendix

A.1 Lab 1 Starter Code

A.1.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"

3

4 void setup(){

5 /* Setup function to configure GPIO pins and real -time clock.

Today , the real -time

6 clock has already been configured for you. */

7

8 timerSetup (); // Initialize timer driven by real -time clock.

9

10 // pinSetup(LED1 , GPIO_OUTPUT); // Configure pin connected to

LED1 as output

11 // pinSetup(LED2 , GPIO_OUTPUT); // Configure pin connected to

LED2 as output

12

13 // pinSetup(BTNL , GPIO_INPUT); // Configure pin connected to

BTNL as input

14 // pinSetup(BTNR , GPIO_INPUT); // Configure pin connected to

BTNR as input
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15 }

16

17 void app_main () {

18 /* Main function , your program starts here. Any functions

19 you call here must be defined above or in 6s077.h. */

20

21 setup();

22

23 // pinWrite(LED1 , 1); // Turn LED1 on

24 // pinWrite(LED2 , 0); // Turn LED2 off

25

26 while (1){

27 // main loop of our program

28

29 // int x = pinRead(BTNL); // Read value of BTNL

30 // if (x == 1){

31 // printf (" button not pressed\n");

32 // } else if (x == 0){

33 // printf (" BUTTON PRESSED !\n");

34 // }

35 }

36 }

A.1.2 6.190 Header File

1 #include <stdio.h>

2 #include <stdint.h>

3

4 /* Header File for 6.190 , using the ESP32 -C3 */

5 /* ESP32 -C3 Reference: https ://www.espressif.com/sites/default/files

/documentation/esp32 -c3_technical_reference_manual_en.pdf */

6

7 // /////////////////////////////

8 // Peripheral Base Addresses //

9 // /////////////////////////////

10
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11 #define GPIO_BASE_ADDR 0x60004000 // Base address for memory

locations dedicated to GPIO matrix

12 #define IO_MUX_BASE_ADDR 0x60009000 // Base address for memory

locations dedicated to IO multiplexer addresses

13 #define TIMER_BASE_ADDR 0x6001F000 // Base address for memory

locations dedicated to timer

14

15

16 // /////////////////////////////////////////////

17 // General -Purposed Input/Output Definitions //

18 // /////////////////////////////////////////////

19

20 /* GPIO Addresses */

21 #define GPIO_OUT_ADDR (GPIO_BASE_ADDR + 0x0004)

22 #define GPIO_ENABLE_ADDR (GPIO_BASE_ADDR + 0x0020)

23 #define GPIO_IN_ADDR (GPIO_BASE_ADDR + 0x003C)

24 #define IO_MUX_GPIOn_ADDR (IO_MUX_BASE_ADDR + 0x0004) // 1 memory

location/pin , need to add 4n for pin n

25

26 /* GPIO Pin Modes */

27 #define GPIO_INPUT 0

28 #define GPIO_OUTPUT 1

29

30 /* GPIO -> Peripheral Mapping */

31

32 // Switches

33 #define SW7 9

34 #define SW6 8

35 #define SW5 7

36 #define SW4 6

37 #define SW3 5

38 #define SW2 4

39 #define SW1 18

40 #define SW0 19

41

42 // Buttons
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43 #define BTNF 9

44 #define BTNU 8

45 #define BTNC 7

46 #define BTND 6

47 #define BTNR 5

48 #define BTNL 4

49

50 // LEDs

51 #define LED1 2

52 #define LED2 3

53

54

55 /* GPIO Functions */

56 void pinSetup(int pin_num , int mode){

57 /* Setup function to configure GPIO pin (pin_num) as either an

input

58 or an output , as defined by mode.

59

60 Arguments:

61 pin_num: GPIO pin number (0 - 31)

62 mode: Mode to configure pin as. GPIO_INPUT = 0, GPIO_OUTPUT =

1

63 */

64

65 if (mode == GPIO_INPUT){

66 // Configure GPIO pin pin_num as input

67 int* io_mux_gpio_addr = (int*) (IO_MUX_GPIOn_ADDR + (4*

pin_num));

68 *io_mux_gpio_addr = // YOUR CODE HERE

69 } else if (mode == GPIO_OUTPUT){

70 // Configure GPIO pin pin_num as output.

71 int* gpio_enable_addr = (int*) GPIO_ENABLE_ADDR;

72 *gpio_enable_addr = // YOUR CODE HERE

73 }

74 }

75
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76

77 void pinWrite(int pin_num , int value){

78 /* Function to write either 0 or 1 (value) to an output GPIO pin

(pin_num)

79 Arguments:

80 pin_num: GPIO pin number (0 - 31)

81 value: digital value (0 or 1) to write to GPIO pin

82 */

83

84 int* output_val = (int*) GPIO_OUT_ADDR;

85

86 // YOUR CODE HERE ...

87

88 }

89

90

91 int pinRead(int pin_num){

92 /* Function to read the value of an input GPIO pin (pin_num).

93 Arguments:

94 pin_num: GPIO pin number (0 - 31)

95 Returns:

96 int: digital value (0 or 1) read from GPIO pin

97 */

98

99 int* input_val = (int*) GPIO_IN_ADDR;

100

101 // YOUR CODE HERE ...

102

103 return 0; // replace 0 with return value of pinRead

104

105 }

106

107 // /////////////////////

108 // Timer Definitions //

109 // /////////////////////

110
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111 /* Timer Addresses */

112 #define TIMER_CONFIG_ADDR (TIMER_BASE_ADDR + 0x0000)

113 #define TIMER_COUNT_LO_ADDR (TIMER_BASE_ADDR + 0x0004)

114 #define TIMER_COUNT_HI_ADDR (TIMER_BASE_ADDR + 0x0008)

115 #define TIMER_COUNT_UPDATE_ADDR (TIMER_BASE_ADDR + 0x000C)

116

117 #define WATCHDOG_CONFIG_ADDR (TIMER_BASE_ADDR + 0x0048)

118 #define WATCHDOG_WRITE_PROTECT_ADDR (TIMER_BASE_ADDR + 0x0064)

119

120 /* Timer Functions */

121 void timerSetup(void){

122 /* Setup function to initalize Timer 0 in the ESP32 -C3 Timer

Group. */

123

124 // Configure timer by choosing clock source (external clock),

prescalar value (0x01) and direction (increment).

125 int* timg_t0_config = (int*) TIMER_CONFIG_ADDR;

126 *timg_t0_config = (* timg_t0_config) | (0x01 << 9) | (0x01 << 13)

| (0x01 << 30);

127

128 // Start timer by setting most sigificant bit (MSB) of value at

timer configuration memory address

129 *timg_t0_config |= (0x01 << 31);

130

131 // Turn off watchdog timer timeout messages

132 int* wdog_addr = (int*) WATCHDOG_WRITE_PROTECT_ADDR;

133 *wdog_addr = 0x50d83aa1;

134

135 int* wdog_cfg = (int*) WATCHDOG_CONFIG_ADDR;

136 *wdog_cfg &= ~(0x01 << 31); // clear bit 31

137 }

138

139

140 uint64_t millis(void){

141 /* Converts the value of the counter driven by a 40MHz clock

142 to a time -stamp in milliseconds.*/
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143

144 // write to MSB of value at timer counter update address to latch

(update/retain) value of counter

145 int* timg_to_update = (int*) TIMER_COUNT_UPDATE_ADDR;

146 *timg_to_update |= (1 << 31);

147

148 // (2) actually read ...

149 int* timer_lo = (int*) TIMER_COUNT_LO_ADDR; // read low 32 bits

of counter value

150 int* timer_hi = (int*) TIMER_COUNT_HI_ADDR; // upper 22 bits of

counter value

151 uint32_t timer_lo_val = (uint32_t) *timer_lo;

152 uint32_t timer_hi_val = (uint32_t) *timer_hi;

153 uint64_t bigger_timer_hi = (uint64_t) timer_hi_val;

154

155 return (( bigger_timer_hi << 32) + timer_lo_val) >> 14;

156 }

157

158

159 uint64_t micros(void){

160 /* Converts the value of the counter driven by a 40MHz clock

161 to a time -stamp in microseconds.*/

162

163 // write to MSB of value at timer counter update address to latch

(update/retain) value of counter

164 int* timg_to_update = (int*) TIMER_COUNT_UPDATE_ADDR;

165 *timg_to_update |= (1 << 31);

166

167 int* timer_lo = (int*) TIMER_COUNT_LO_ADDR; // read low 32 bits

of counter value

168 int* timer_hi = (int*) TIMER_COUNT_HI_ADDR; // upper 22 bits of

counter value

169 uint32_t timer_lo_val = (uint32_t) *timer_lo;

170 uint32_t timer_hi_val = (uint32_t) *timer_hi;

171 uint64_t bigger_timer_hi = (uint64_t) timer_hi_val;

172
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173 return (( bigger_timer_hi << 32) + timer_lo_val) >> 4;

174 }

A.2 Postlab 1 Starter Code

A.2.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"

3

4 const int TIME = 1000; // loop time

5 int switch_pins [] = {SW0 ,SW1 ,SW2 ,SW3 ,SW4 ,SW5 ,SW6 ,SW7};

6

7 // TASK 1:

8 // Get updateLeds working below

9 void updateLeds(int* leds){

10

11 // TODO: right -shift (and wrap) the value pointed to by leds

12

13 }

14

15 // TASK 2:

16 // Get getInputs working below

17 int getInputs (){

18

19 // TODO: return an integer with the lower eight bits

representing our switches in order

20 // use switch_pins and values at address location

GPIO_INPUT_VAL_ADDR

21

22 return 0; // replace return 0 with getInputs return value

23 }

24

25 // positions the 8-long led array into the larger screen buffer:

26 void drawLedArray(int leds){
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27 screen_buffer [7] = leds <<8;

28 drawBuffer ();

29 }

30

31 void app_main (){

32 timerSetup ();

33 setupDisplay ();

34 for(int i=0; i<8; i++){

35 pinSetup(switch_pins[i],GPIO_INPUT);

36 }

37 eraseBuffer ();

38 int leds = 0x10; // initial state of LEDs

39 int old_switches =0; // for remembering switches

40 drawLedArray(leds); // draw initial state on LED array

41 long timer = millis ();

42 while (1){

43 while(millis ()-timer < TIME){ // wait for TIME milliseconds

44 int new_switches = getInputs ();

45 if (new_switches != old_switches){

46 leds = leds; // TASK 3 (update so new_switches

alters leds!)

47 drawLedArray(leds); // draw immediately

48 old_switches = new_switches; // remember what the

switches were.

49 break;

50 }

51 }

52 while(millis ()-timer < TIME); // wait for remainder of loop

time

53 timer = millis (); // update and remember

54 updateLeds (&leds); // update LED array

55 drawLedArray(leds);

56 }

57 }
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A.2.2 6.190 Header File Code for Driving LED Display

This code is added to the 6.190 header file that students used in Lab 1. Students will

use this file for the remainder of the labs, making slight modifications to it depending

on the assignment.

1 // ///////////////////////////////////////////////

2 // Serial Peripheral Interface (SPI) Functions //

3 // ///////////////////////////////////////////////

4

5 /* Mapping of GPIO pin to SPI signal */

6 #define CLK 0

7 #define CS 1

8 #define MOSI 10

9

10 void spiPause (){

11 /* 1 microsecond delay for SPI timing */

12

13 uint64_t t = micros ();

14 while(micros ()-t<1);

15 }

16

17

18 void spiWrite(uint8_t *data , uint8_t len , uint8_t clk_pin , uint8_t

mosi_pin , uint8_t cs_pin ){

19 /* Performs software -driven SPI write

20 Arguments:

21 data: pointer to array of 8-bit values to be sent serially

22 len: number of 8-bit values to write

23 clk_pin: GPIO pin used to generate clock signal

24 mosi_pin: GPIO pin used to transmit data serially

25 cs_pin: GPIO pin used for chip select

26 */

27

28 pinWrite(cs_pin ,0); // bring chip select signal low

29

30 // Send data in buffer in 8-bit chunks
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31 // Generate clock signal and send 1 bit/clock period

32 for (int q=0; q<len; q++){

33 for (int p=0; p<8; p++){

34 pinWrite(clk_pin ,0);

35 pinWrite(mosi_pin ,(( data[q]>>p)&0x01));

36 spiPause ();

37 pinWrite(clk_pin ,1);

38 spiPause ();

39 }

40 }

41 pinWrite(cs_pin ,1); // bring chip -select signal high

42 }

43

44 // ///////////////

45 // LED Display //

46 // ///////////////

47

48 // LED Display Driver (MAX7219) Documentation: https :// datasheets.

maximintegrated.com/en/ds/MAX7219 -MAX7221.pdf

49

50 /* Helper functions for flipping bits */

51 void bit_reverse(int value , int *dump){

52 for (int i = 0; i<32; i++){

53 *dump = ((* dump) <<1)|((value >>i)&0x1);

54 }

55 }

56

57 uint8_t flip_8(uint8_t value){

58 uint8_t t =0;

59 for (int i = 0; i<8; i++){

60 t = (t<<1)|((value >>i)&0x1);

61 }

62 return t;

63 }

64

65 /* LED Display Driver Functions */

105



66 void setupDisplay (){

67 /* Function to set up LED display */

68

69 // Set up necessary GPIO pins

70 pinSetup(CS , GPIO_OUTPUT);

71 pinSetup(MOSI , GPIO_OUTPUT);

72 pinSetup(CLK , GPIO_OUTPUT);

73

74 // Pull chip select , clock , and data out high

75 pinWrite(CS ,1);

76 pinWrite(MOSI ,1);

77 pinWrite(CLK ,1);

78

79 // Configure LED display

80 int DISP_TEST = 0x0F000F00; // display test

81 int DISP_OFF = 0x0C000C00; // display off

82 int DISP_ON = 0x0C010C01; // display on

83 int DEC_0 = 0x09000900; // decode mode 0

84 int SCAN_M = 0x0B070B07; //scan mode setting

85 int INTENSITY = 0x0A010A01; // screen intensity

86

87 int config_buffers [] = {DISP_TEST , DISP_OFF , DISP_ON , DEC_0 ,

SCAN_M , INTENSITY };

88

89 for (int i = 0; i < 6; i = i + 1){

90 int t[2] = {0,0};

91 bit_reverse(config_buffers[i],t);

92 bit_reverse(config_buffers[i],t+1);

93 uint8_t *s = (uint8_t *)t;

94 for (int i = 0; i<4; i++){

95 spiWrite(s,2,CLK ,MOSI ,CS);

96 }

97

98 int del = millis ();

99 while(millis ()-del <5);

100 }
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101 }

102

103 uint32_t screen_buffer [8]; // 8x32 array for storing LED display

image

104

105 void eraseBuffer (){

106 /* Function that clears screen buffer by setting all bits to 0.

*/

107

108 for (uint8_t i=0; i<8; i++){

109 screen_buffer[i]=0; //set all 32 bits to 0

110 }

111 }

112

113 void drawBuffer (){

114 /* Function that sends bytes in screen buffer to be displayed on

LED array.*/

115

116 uint8_t buffer [8];

117 for (int k = 1; k <9; k++){

118 for (int m=0; m<4;m++){

119 buffer [0+2*m] = (uint8_t)flip_8(9-k);

120 uint8_t temp = (uint8_t)(screen_buffer[k-1]>>(8*m));

121 buffer [1+2*m] = temp & 0x000000FF;

122 }

123 spiWrite(buffer ,8,CLK ,MOSI ,CS);

124 }

125 }

A.3 Lab 2 Starter Code

A.3.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"
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3

4 int switch_pins [8] = {SW0 , SW1 , SW2 , SW3 , SW4 , SW5 , SW6 , SW7};

5

6 void setup(){

7

8 timerSetup (); // Configure timer

9 setupDisplay (); // Configure display

10 eraseBuffer (); // Erase random data from display

11 drawBuffer (); // Display contents of buffer on LED array

12

13 for (int i = 0; i < 7; i++){

14 pinSetup(switch_pins[i], GPIO_INPUT);

15 }

16 pinSetup(BTNF , GPIO_INPUT);

17

18 }

19

20

21 char switchToBinary (){

22 /*

23 Return:

24 char: 8-bit value. Bits 0-6 correspond to switch inputs , bit

7 is 0.

25 */

26

27 // ///////////////////////////////////////

28 // TO-DO: Complete switchToBinary () //

29 // ///////////////////////////////////////

30

31 return 0; // replace!

32 }

33

34

35 void drawAsciiString(char* string_to_draw){

36 /* Function that draws a string on the LED array using the

mapping defined in ascii.h
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37 by filling in a buffer.

38

39 Argument:

40 char* string_to_draw: String to draw on the LED array.

41 */

42

43 // ///////////////////////////////////////

44 // TO-DO: Complete drawAsciiString () //

45 // ///////////////////////////////////////

46

47

48 }

49

50

51 void app_main (){

52 setup();

53

54 char ascii_input = 0;

55

56 while (1){

57 ascii_input = switchToBinary ();

58 printf("Integer value: 0x%x, ", ascii_input); // printing

this value using %x formatter gives a hexadecimal value ...

59 printf("ASCII character: %c\n", ascii_input); // ...

printing the same value with %c formatter gives a character

60

61 // int btnf = pinRead(BTNF); // read BTNF to obtain

the current state of the button

62 // if (btnf == 0){

63 // /* TO-DO: Put your print statements from the last

part in here */

64 // }

65

66 // Code to slow down loop so that "bouncing" associated with

a single button press doesn ’t

67 // look like more than one button press. Write all of your
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code in above this point in the loop.

68 int start = millis (); // Get "start" time stamp

69 while(millis () - start < 50); // Wait until current time

stamp - "start" is greater than 50ms

70 }

71 }

A.3.2 ASCII Header File

This file is used for rendering ASCII characters on the labkit’s LED display. This

header file is derived from [10] – the sole difference is that we reversed the bits in each

byte in the array to improve compatibility with the existing laboratory infrastructure.

1 #include <stdint.h>

2

3 // Source: https :// github.com/dhepper/font8x8/blob/master/

font8x8_basic.h

4

5 uint8_t ascii [128][8] = {

6 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0000 (

nul)

7 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0001

8 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0002

9 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0003

10 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0004

11 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0005

12 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0006

13 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0007

14 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0008

15 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0009

16 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000A

17 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000B

18 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000C

19 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000D

20 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000E

21 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+000F
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22 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0010

23 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0011

24 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0012

25 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0013

26 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0014

27 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0015

28 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0016

29 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0017

30 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0018

31 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0019

32 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001A

33 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001B

34 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001C

35 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001D

36 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001E

37 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+001F

38 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0020 (

space)

39 { 0x18 , 0x3C , 0x3C , 0x18 , 0x18 , 0x00 , 0x18 , 0x00}, // U+0021

(!)

40 { 0x6C , 0x6C , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0022

(")

41 { 0x6C , 0x6C , 0xFE , 0x6C , 0xFE , 0x6C , 0x6C , 0x00}, // U+0023

(#)

42 { 0x30 , 0x7C , 0xC0 , 0x78 , 0x0C , 0xF8 , 0x30 , 0x00}, // U+0024 (

$)

43 { 0x00 , 0xC6 , 0xCC , 0x18 , 0x30 , 0x66 , 0xC6 , 0x00}, // U+0025

(%)

44 { 0x38 , 0x6C , 0x38 , 0x76 , 0xDC , 0xCC , 0x76 , 0x00}, // U+0026

(&)

45 { 0x60 , 0x60 , 0xC0 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0027

(’)

46 { 0x18 , 0x30 , 0x60 , 0x60 , 0x60 , 0x30 , 0x18 , 0x00}, // U+0028

(()

47 { 0x60 , 0x30 , 0x18 , 0x18 , 0x18 , 0x30 , 0x60 , 0x00}, // U+0029

())
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48 { 0x00 , 0x66 , 0x3C , 0xFF , 0x3C , 0x66 , 0x00 , 0x00}, // U+002A

(*)

49 { 0x00 , 0x30 , 0x30 , 0xFC , 0x30 , 0x30 , 0x00 , 0x00}, // U+002B

(+)

50 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x30 , 0x30 , 0x60}, // U+002C

(,)

51 { 0x00 , 0x00 , 0x00 , 0xFC , 0x00 , 0x00 , 0x00 , 0x00}, // U+002D

(-)

52 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x30 , 0x30 , 0x00}, // U+002E

(.)

53 { 0x06 , 0x0C , 0x18 , 0x30 , 0x60 , 0xC0 , 0x80 , 0x00}, // U+002F

(/)

54 { 0x7C , 0xC6 , 0xCE , 0xDE , 0xF6 , 0xE6 , 0x7C , 0x00}, // U+0030

(0)

55 { 0x30 , 0x70 , 0x30 , 0x30 , 0x30 , 0x30 , 0xFC , 0x00}, // U+0031

(1)

56 { 0x78 , 0xCC , 0x0C , 0x38 , 0x60 , 0xCC , 0xFC , 0x00}, // U+0032

(2)

57 { 0x78 , 0xCC , 0x0C , 0x38 , 0x0C , 0xCC , 0x78 , 0x00}, // U+0033

(3)

58 { 0x1C , 0x3C , 0x6C , 0xCC , 0xFE , 0x0C , 0x1E , 0x00}, // U+0034

(4)

59 { 0xFC , 0xC0 , 0xF8 , 0x0C , 0x0C , 0xCC , 0x78 , 0x00}, // U+0035

(5)

60 { 0x38 , 0x60 , 0xC0 , 0xF8 , 0xCC , 0xCC , 0x78 , 0x00}, // U+0036

(6)

61 { 0xFC , 0xCC , 0x0C , 0x18 , 0x30 , 0x30 , 0x30 , 0x00}, // U+0037

(7)

62 { 0x78 , 0xCC , 0xCC , 0x78 , 0xCC , 0xCC , 0x78 , 0x00}, // U+0038

(8)

63 { 0x78 , 0xCC , 0xCC , 0x7C , 0x0C , 0x18 , 0x70 , 0x00}, // U+0039

(9)

64 { 0x00 , 0x30 , 0x30 , 0x00 , 0x00 , 0x30 , 0x30 , 0x00}, // U+003A

(:)

65 { 0x00 , 0x30 , 0x30 , 0x00 , 0x00 , 0x30 , 0x30 , 0x60}, // U+003B

(;)
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66 { 0x18 , 0x30 , 0x60 , 0xC0 , 0x60 , 0x30 , 0x18 , 0x00}, // U+003C

(<)

67 { 0x00 , 0x00 , 0xFC , 0x00 , 0x00 , 0xFC , 0x00 , 0x00}, // U+003D

(=)

68 { 0x60 , 0x30 , 0x18 , 0x0C , 0x18 , 0x30 , 0x60 , 0x00}, // U+003E

(>)

69 { 0x78 , 0xCC , 0x0C , 0x18 , 0x30 , 0x00 , 0x30 , 0x00}, // U+003F

(?)

70 { 0x7C , 0xC6 , 0xDE , 0xDE , 0xDE , 0xC0 , 0x78 , 0x00}, // U+0040 (

@)

71 { 0x30 , 0x78 , 0xCC , 0xCC , 0xFC , 0xCC , 0xCC , 0x00}, // U+0041 (

A)

72 { 0xFC , 0x66 , 0x66 , 0x7C , 0x66 , 0x66 , 0xFC , 0x00}, // U+0042 (

B)

73 { 0x3C , 0x66 , 0xC0 , 0xC0 , 0xC0 , 0x66 , 0x3C , 0x00}, // U+0043 (

C)

74 { 0xF8 , 0x6C , 0x66 , 0x66 , 0x66 , 0x6C , 0xF8 , 0x00}, // U+0044 (

D)

75 { 0xFE , 0x62 , 0x68 , 0x78 , 0x68 , 0x62 , 0xFE , 0x00}, // U+0045 (

E)

76 { 0xFE , 0x62 , 0x68 , 0x78 , 0x68 , 0x60 , 0xF0 , 0x00}, // U+0046 (

F)

77 { 0x3C , 0x66 , 0xC0 , 0xC0 , 0xCE , 0x66 , 0x3E , 0x00}, // U+0047 (

G)

78 { 0xCC , 0xCC , 0xCC , 0xFC , 0xCC , 0xCC , 0xCC , 0x00}, // U+0048 (

H)

79 { 0x78 , 0x30 , 0x30 , 0x30 , 0x30 , 0x30 , 0x78 , 0x00}, // U+0049 (

I)

80 { 0x1E , 0x0C , 0x0C , 0x0C , 0xCC , 0xCC , 0x78 , 0x00}, // U+004A (

J)

81 { 0xE6 , 0x66 , 0x6C , 0x78 , 0x6C , 0x66 , 0xE6 , 0x00}, // U+004B (

K)

82 { 0xF0 , 0x60 , 0x60 , 0x60 , 0x62 , 0x66 , 0xFE , 0x00}, // U+004C (

L)

83 { 0xC6 , 0xEE , 0xFE , 0xFE , 0xD6 , 0xC6 , 0xC6 , 0x00}, // U+004D (

M)
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84 { 0xC6 , 0xE6 , 0xF6 , 0xDE , 0xCE , 0xC6 , 0xC6 , 0x00}, // U+004E (

N)

85 { 0x38 , 0x6C , 0xC6 , 0xC6 , 0xC6 , 0x6C , 0x38 , 0x00}, // U+004F (

O)

86 { 0xFC , 0x66 , 0x66 , 0x7C , 0x60 , 0x60 , 0xF0 , 0x00}, // U+0050 (

P)

87 { 0x78 , 0xCC , 0xCC , 0xCC , 0xDC , 0x78 , 0x1C , 0x00}, // U+0051 (

Q)

88 { 0xFC , 0x66 , 0x66 , 0x7C , 0x6C , 0x66 , 0xE6 , 0x00}, // U+0052 (

R)

89 { 0x78 , 0xCC , 0xE0 , 0x70 , 0x1C , 0xCC , 0x78 , 0x00}, // U+0053 (

S)

90 { 0xFC , 0xB4 , 0x30 , 0x30 , 0x30 , 0x30 , 0x78 , 0x00}, // U+0054 (

T)

91 { 0xCC , 0xCC , 0xCC , 0xCC , 0xCC , 0xCC , 0xFC , 0x00}, // U+0055 (

U)

92 { 0xCC , 0xCC , 0xCC , 0xCC , 0xCC , 0x78 , 0x30 , 0x00}, // U+0056 (

V)

93 { 0xC6 , 0xC6 , 0xC6 , 0xD6 , 0xFE , 0xEE , 0xC6 , 0x00}, // U+0057 (

W)

94 { 0xC6 , 0xC6 , 0x6C , 0x38 , 0x38 , 0x6C , 0xC6 , 0x00}, // U+0058 (

X)

95 { 0xCC , 0xCC , 0xCC , 0x78 , 0x30 , 0x30 , 0x78 , 0x00}, // U+0059 (

Y)

96 { 0xFE , 0xC6 , 0x8C , 0x18 , 0x32 , 0x66 , 0xFE , 0x00}, // U+005A (

Z)

97 { 0x78 , 0x60 , 0x60 , 0x60 , 0x60 , 0x60 , 0x78 , 0x00}, // U+005B

([)

98 { 0xC0 , 0x60 , 0x30 , 0x18 , 0x0C , 0x06 , 0x02 , 0x00}, // U+005C

(\)

99 { 0x78 , 0x18 , 0x18 , 0x18 , 0x18 , 0x18 , 0x78 , 0x00}, // U+005D

(])

100 { 0x10 , 0x38 , 0x6C , 0xC6 , 0x00 , 0x00 , 0x00 , 0x00}, // U+005E

(^)

101 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0xFF}, // U+005F (

_)
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102 { 0x30 , 0x30 , 0x18 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+0060

(‘)

103 { 0x00 , 0x00 , 0x78 , 0x0C , 0x7C , 0xCC , 0x76 , 0x00}, // U+0061 (

a)

104 { 0xE0 , 0x60 , 0x60 , 0x7C , 0x66 , 0x66 , 0xDC , 0x00}, // U+0062 (

b)

105 { 0x00 , 0x00 , 0x78 , 0xCC , 0xC0 , 0xCC , 0x78 , 0x00}, // U+0063 (

c)

106 { 0x1C , 0x0C , 0x0C , 0x7C , 0xCC , 0xCC , 0x76 , 0x00}, // U+0064 (

d)

107 { 0x00 , 0x00 , 0x78 , 0xCC , 0xFC , 0xC0 , 0x78 , 0x00}, // U+0065 (

e)

108 { 0x38 , 0x6C , 0x60 , 0xF0 , 0x60 , 0x60 , 0xF0 , 0x00}, // U+0066 (

f)

109 { 0x00 , 0x00 , 0x76 , 0xCC , 0xCC , 0x7C , 0x0C , 0xF8}, // U+0067 (

g)

110 { 0xE0 , 0x60 , 0x6C , 0x76 , 0x66 , 0x66 , 0xE6 , 0x00}, // U+0068 (

h)

111 { 0x30 , 0x00 , 0x70 , 0x30 , 0x30 , 0x30 , 0x78 , 0x00}, // U+0069 (

i)

112 { 0x0C , 0x00 , 0x0C , 0x0C , 0x0C , 0xCC , 0xCC , 0x78}, // U+006A (

j)

113 { 0xE0 , 0x60 , 0x66 , 0x6C , 0x78 , 0x6C , 0xE6 , 0x00}, // U+006B (

k)

114 { 0x70 , 0x30 , 0x30 , 0x30 , 0x30 , 0x30 , 0x78 , 0x00}, // U+006C (

l)

115 { 0x00 , 0x00 , 0xCC , 0xFE , 0xFE , 0xD6 , 0xC6 , 0x00}, // U+006D (

m)

116 { 0x00 , 0x00 , 0xF8 , 0xCC , 0xCC , 0xCC , 0xCC , 0x00}, // U+006E (

n)

117 { 0x00 , 0x00 , 0x78 , 0xCC , 0xCC , 0xCC , 0x78 , 0x00}, // U+006F (

o)

118 { 0x00 , 0x00 , 0xDC , 0x66 , 0x66 , 0x7C , 0x60 , 0xF0}, // U+0070 (

p)

119 { 0x00 , 0x00 , 0x76 , 0xCC , 0xCC , 0x7C , 0x0C , 0x1E}, // U+0071 (

q)
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120 { 0x00 , 0x00 , 0xDC , 0x76 , 0x66 , 0x60 , 0xF0 , 0x00}, // U+0072 (

r)

121 { 0x00 , 0x00 , 0x7C , 0xC0 , 0x78 , 0x0C , 0xF8 , 0x00}, // U+0073 (

s)

122 { 0x10 , 0x30 , 0x7C , 0x30 , 0x30 , 0x34 , 0x18 , 0x00}, // U+0074 (

t)

123 { 0x00 , 0x00 , 0xCC , 0xCC , 0xCC , 0xCC , 0x76 , 0x00}, // U+0075 (

u)

124 { 0x00 , 0x00 , 0xCC , 0xCC , 0xCC , 0x78 , 0x30 , 0x00}, // U+0076 (

v)

125 { 0x00 , 0x00 , 0xC6 , 0xD6 , 0xFE , 0xFE , 0x6C , 0x00}, // U+0077 (

w)

126 { 0x00 , 0x00 , 0xC6 , 0x6C , 0x38 , 0x6C , 0xC6 , 0x00}, // U+0078 (

x)

127 { 0x00 , 0x00 , 0xCC , 0xCC , 0xCC , 0x7C , 0x0C , 0xF8}, // U+0079 (

y)

128 { 0x00 , 0x00 , 0xFC , 0x98 , 0x30 , 0x64 , 0xFC , 0x00}, // U+007A (

z)

129 { 0x1C , 0x30 , 0x30 , 0xE0 , 0x30 , 0x30 , 0x1C , 0x00}, // U+007B

({)

130 { 0x18 , 0x18 , 0x18 , 0x00 , 0x18 , 0x18 , 0x18 , 0x00}, // U+007C

(|)

131 { 0xE0 , 0x30 , 0x30 , 0x1C , 0x30 , 0x30 , 0xE0 , 0x00}, // U+007D

(})

132 { 0x76 , 0xDC , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00}, // U+007E

(~)

133 { 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00} // U+007F

134 };

A.4 Postlab 2 Starter Code

A.4.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"
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3

4 void setup(){

5

6 timerSetup (); // Configure timer

7 setupDisplay (); // Configure display

8 eraseBuffer (); // Erase random data from display

9 drawBuffer (); // Display contents of buffer on LED array

10 }

11

12

13 int messageLength(char* message){

14

15 // ////////////////////////////////////////

16 // TO-DO: Complete messageLength () //

17 // ////////////////////////////////////////

18

19 return 0; // Replace!

20 }

21

22

23 void fillScreenBuffer(char* message , int total_offset){

24

25 // ////////////////////////////////////////

26 // TO-DO: Complete fillScreenBuffer () //

27 // ////////////////////////////////////////

28

29 }

30

31

32 void app_main (){

33 setup();

34

35 char message [] = " THEY SEE ME SCROLLIN ’ THEY HATIN’ ";

36 int len = messageLength(message); // TASK 1: CALCULATE MESSAGE

LENGTH

37 int offset = 0;
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38 while (1){

39 if (offset == len * 8){

40 offset = 0; // Reset if we have reached the end of the

message

41 } else {

42 eraseBuffer (); // Clear screen buffer

43 fillScreenBuffer(message , offset); // TASK 2: FILL

SCREEN BUFFER WITH CORRECT DATA

44 drawBuffer (); // Transmit screen buffer data to screen

45 offset ++; // Move forward

46 }

47

48 int start = millis (); // Get "start" time stamp

49 while(millis () - start < 100); // Wait until (current time

stamp - "start ") >= 100ms

50 }

51 }

A.5 Lab 3 Starter Code

A.5.1 Main C File

This starter code is the basis for both Lab 3 and Postlab 3.

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "6190.h"

4

5 // Constants

6 #define SCREEN_ROWS 8

7 #define SCREEN_COLS 32

8 enum snake_direction { up, down , left , right };

9

10 // Setup for random value generator

11 #define RANDOM_VALUE_ADDR 0x600260B0

12 #define RTC_CNTL_CLK_CONF_REG 0x60008070
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13

14 void setupRandom (){

15 int *rtc_cntl_clk_conf_rg = (int*) RTC_CNTL_CLK_CONF_REG;

16 *rtc_cntl_clk_conf_rg |= (1 << 10);

17 }

18

19

20 // Snake struct definition

21 struct Snake {

22 uint8_t body[SCREEN_COLS*SCREEN_ROWS ]; // can get as large as

entire screen in theory

23 uint8_t direction;

24 uint8_t length;

25 };

26

27

28 void setup(){

29 timerSetup ();

30 setupRandom ();

31 setupDisplay ();

32 eraseBuffer ();

33 int snake_buttons [5] = {BTNF , BTNU , BTND , BTNR , BTNL};

34 for (int i = 0; i < 5; i++){

35 pinSetup(snake_buttons[i], GPIO_INPUT);

36 }

37 }

38

39

40 uint8_t getX(uint8_t location){

41 /* Function that returns the x coordinate from an 8-bit value

containing both x and y coordinates.

42 The x coordinate is encoded in the upper (most significant)

5 bits of the input.

43 Arguments:

44 location: an unsigned 8-bit value representing a location on

an 8x32 gameboard.
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45 Returns:

46 uint8_t representing the x-coordinate (0 -31) encoded in the

upper 5 bits of the argument.

47 */

48

49 // ////////////////////////////

50 // TO-DO: Implement getX() //

51 // ////////////////////////////

52

53 return 0; // replace

54 }

55

56

57 uint8_t getY(uint8_t location){

58 /* Function that returns the y coordinate from an 8-bit value

containing both x and y coordinates.

59 Arguments:

60 location: an unsigned 8-bit value representing a location on

an 8x32 gameboard.

61 Returns:

62 uint8_t representing the y-coordinate (0-7) encoded in the

lower 3 bits of the argument.

63 */

64

65 // ////////////////////////////

66 // TO-DO: Implement getY() //

67 // ////////////////////////////

68

69 return 0; // replace

70 }

71

72

73 void setX(uint8_t *location , uint8_t new_x){

74 /* Function that updates the upper 5 bits of the value stored at

location to be equal to new_x.

75 Arguments:
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76 uint8_t *location: a pointer to an unsigned 8-bit value

representing a location on an 8x32 gameboard.

77 uint8_t new_x: an unsigned integer representing the value

(0-31) that we’d like to set for the x location.

78 */

79

80 // ////////////////////////////

81 // TO-DO: Implement setX() //

82 // ////////////////////////////

83

84 }

85

86

87 void setY(uint8_t *location , uint8_t new_y){

88 /* Function that updates the lower 3 bits of the value stored at

location to be equal to new_y.

89 Arguments:

90 uint8_t *location: a pointer to an unsigned 8-bit value

representing a location on an 8x32 gameboard.

91 uint8_t new_y an unsigned integer representing the value

(0-7) that we’d like to set for the y location.

92 */

93

94 // ////////////////////////////

95 // TO-DO: Implement setY() //

96 // ////////////////////////////

97 }

98

99

100 void setPixel(uint8_t location , uint8_t val){

101 /* Function that sets the value of an indivdual pixel (LED) on

the display.

102 Arguments:

103 location: The location of the LED to be turned on/off on the

LED array
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104 val: The binary (0 or 1) value indicating if the LED at the

location

105 should be off (0) or on (1).

106 */

107

108 // ///////////////////////////////

109 // TO-DO: Implement setPixel () //

110 // ///////////////////////////////

111

112 }

113

114

115 void drawBoard(struct Snake *snake , uint8_t food){

116 /* Function to render the snake and food on the board on each

given time -step.

117 Arguments:

118 struct Snake *snake: pointer to snake struct

119 uint8_t food: location of food to render

120 */

121

122 // ////////////////////////////////

123 // TO-DO: Implement drawBoard () //

124 // ////////////////////////////////

125

126 }

127

128

129 void updateSnake(struct Snake *snake){

130 /* Function to update the snake on each time -step based on its

direction.

131 Arguments:

132 struct Snake *snake: pointer to snake struct

133 */

134

135 // //////////////////////////////////

136 // TO-DO: Implement updateSnake () //
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137 // //////////////////////////////////

138

139 }

140

141

142 int generateFood(struct Snake *snake , uint8_t *food){

143 /* Function to randomly generate food for the snake.

144 Arguments:

145 struct Snake *snake: pointer to snake struct

146 uint8_t *food: pointer to variable holding the food’s

location

147 Returns:

148 int: 0 if food does not conflict with the snake , 1 if it

does.

149 */

150

151 int *random_value_ptr = (int*) RANDOM_VALUE_ADDR; // read this

address to obtain a random integer value

152

153 // //////////////////////////////////

154 // TO-DO: Complete generateFood () //

155 // //////////////////////////////////

156

157 return 0; // UPDATE

158 }

159

160

161 uint8_t snakeAteFood(uint8_t *snake_body , uint8_t food){

162 /* Function to determine if the snake collided with (and ate)

the food.

163 Arguments:

164 uint8_t *snake_body: pointer to the snake body array

165 uint8_t food: variable holding the food’s location

166 Returns:

167 int: 0 if the snake did not eat the food , 1 if it did.

168 */

123



169

170 // ///////////////////////////////////

171 // TO-DO: Implement snakeAteFood () //

172 // ///////////////////////////////////

173

174 return 0; // UPDATE

175 }

176

177

178 uint8_t snakeCollisionCheck(struct Snake *snake){

179 /* Function to determine if the snake collided with itself.

180 Arguments:

181 struct Snake *snake: pointer to snake struct

182 Returns:

183 int: 0 if the snake did not collide with itself , 1 if it did

.

184 */

185

186 // //////////////////////////////////////////

187 // TO-DO: Implement snakeCollisionCheck () //

188 // //////////////////////////////////////////

189

190 return 0; // UPDATE

191 }

192

193

194 void app_main () {

195 setup(); // System setup

196

197 // Snake initialization

198 struct Snake snake;

199 // COMMENT OUT FOR PART 10

200 snake.body [0] = 0;

201 snake.direction = left;

202 snake.length = 1;

203
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204 // UNCOMMENT FOR PART 10

205 // for (int i=0; i<3; i++){

206 // setX(&snake.body[i], 5);

207 // setY(&snake.body[i], 3-i);

208 // }

209 // snake.length = 3;

210 // snake.direction = left;

211

212 uint8_t food = 0; // food in top right corner of the game board

213

214 while(generateFood (&snake , &food) != 0); // Generate food

initially

215 drawBoard (&snake , food);

216

217 while (1){

218

219 // ////////////////////////////////////////////

220 // INSERT BUTTON PRESS DETECTION LOGIC HERE //

221 // ////////////////////////////////////////////

222

223 updateSnake (& snake);

224 drawBoard (&snake , food);

225

226 if (snakeAteFood(snake.body , food) == 1){

227 // ////////////////////////////

228 // TO-DO: "Grow" snake //

229 // ////////////////////////////

230

231 // Generate food

232 while (generateFood (&snake , &food) != 0); // generate

food

233 }

234

235 if (snakeCollisionCheck (&snake) == 1){

236 // Game ends

237 eraseBuffer (); // Clear game board
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238 drawBuffer ();

239 while (1); // Infinite loop since game is over.

240 }

241

242 // Code to limit frequency of loop so that gameplay is

possible.

243 // Put all game code above this point.

244 int start = millis ();

245 while (millis () - start < 200); // One loop iteration every

~200ms

246 }

247 }

A.6 Lab 4 Starter Code

A.6.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"

3

4 void setup(){

5 timerSetup ();

6

7 pinSetup(LED1 , GPIO_OUTPUT); // Configure LED1 GPIO pin as

output

8 pinSetup(LED2 , GPIO_OUTPUT); // Configure LED2 GPIO pin output

9

10 pinSetup(BTNC , GPIO_INPUT); // Configure BTNC GPIO pin as input

11

12 setupDisplay ();

13 eraseBuffer(screen_buffer);

14 drawBuffer ();

15 }

16

17 void app_main () {
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18 setup();

19

20 // CODE TO TEST pinWrite

21 // pinWrite(LED1 , 1);

22 // pinWrite(LED2 , 0);

23

24 int evens = 1, odds = 0;

25 while (1){

26

27 // CODE TO TEST pinRead

28 int x = pinRead(BTNC); // Read value of GPIO pin 7

29 if (x == 1){

30 printf("button not pressed\n");

31 } else if (x == 0){

32 printf("BUTTON PRESSED !\n");

33 }

34

35 // CODE TO TEST setPixel

36 // evens ^= 1;

37 // odds ^= 1;

38

39 // for (int i = 0; i < 32; i = i + 1){

40 // for (int j = 0; j < 8; j = j + 1){

41 // if (j%2== 0){

42 // setPixel(screen_buffer , i, j, evens);

43 // }

44 // else{

45 // setPixel(screen_buffer , i, j, odds);

46 // }

47 // }

48 // }

49

50 // drawBuffer ();

51 // long start = millis ();

52 // while (millis () - start < 1000);

53
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54 }

55 }

A.6.2 Assembly Language File for Hardware-Related Proce-

dures

1 .section .text # indicates a code segment

2 .align 2 # specifies how data should be arranged in

memory

3 //. globl pinSetup # makes pinSetup able to be used outside of this

file

4 .globl pinWrite # makes pinWrite able to be used outside of this

file

5 .globl pinRead # makes pinRead able to be used outside of this

file

6 .globl setPixel # makes setPixel able to be used outside of this

file

7 .globl eraseBuffer # makes eraseBuffer able to be used outside of

this file

8

9 # C declaration: int pinRead(int pin_num)

10 # ARGUMENTS a0: pin_num

11 # RETURNS bit read from GPIO pin

12 pinRead:

13 lui a2, 0x60004

14 addi a2, a2 , 0x3C # GPIO_IN_ADDR

15

16 # YOUR CODE HERE ...

17

18 jalr x0, 0(ra)

19

20

21 # C declaration: void pinWrite(int pin_num , int value)

22 # ARGUMENTS a0: pin_num , a1: value

23 # RETURNS: Nothing
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24 pinWrite:

25 lui a2, 0x60004

26 addi a2, a2 , 0x4 # GPIO_OUT_ADDR

27

28 # YOUR CODE HERE ...

29

30 jalr x0, 0(ra)

31

32

33 # C declaration: void pinSetup(int pin_num , int mode)

34 # ARGUMENTS a0: pin_num , a1: mode

35 # RETURNS: Nothing

36 pinSetup:

37 lui a2, 0x60009

38 addi a2, a2 , 0x4 # IO_MUX_GPIOn_ADDR

39

40 lui a3, 0x60004

41 addi a3, a3 , 0x20 # GPIO_ENABLE_ADDR

42

43 # YOUR CODE HERE ...

44

45 jalr x0, 0(ra)

46

47

48 # C declaration: void setPixel(uint32_t* screen_buffer_addr , uint8_t

x, uint8_t y, uint8_t val);

49 # ARGUMENTS a0: screen_buffer base address , a1: x, a2: y, a3: val

50 # RETURNS: Nothing

51 setPixel:

52 # YOUR CODE HERE ...

53

54 jalr x0, 0(ra)

55

56

57 # C declaration: void eraseBuffer(uint32_t* screen_buffer_addr)

58 # ARGUMENTS a0: screen_buffer base address
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59 # RETURNS: Nothing

60

61 eraseBuffer:

62 addi a1, x0 , 8 # upper bound on for loop

63 addi a2, x0 , 0 # "i" for for loop

64 looping:

65 slli a3, a2 , 2 # calculate 4*i

66 add a4, a0, a3 # get address of array element by adding

base address + 4*i

67 sw zero , 0(a4) # write 0 to memory address

68 addi a2, a2 , 1 # increment i

69 bne a2, a1, looping # continue looping if i < 8

70 jalr x0, 0(ra) # return from eraseBuffer

A.7 Postlab 4 Starter Code

A.7.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"

3

4 // Declaration for part 1 of lab.

5 int collatz(int n);

6 void bubblesort(int *p, int n);

7

8 void setup(){

9 timerSetup ();

10 setupDisplay ();

11 eraseBuffer(screen_buffer);

12 drawBuffer ();

13 }

14

15

16 void arrayViz(int *arr_to_viz){

17 int val , val_for_buf;
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18 for (int i = 0; i < 8; i += 1){

19 val_for_buf = 0;

20 val = arr_to_viz[i];

21 for (int j = 0; j < val; j+=1){

22 val_for_buf |= (1 << j);

23 }

24 screen_buffer[i] = val_for_buf;

25 }

26 drawBuffer ();

27 eraseBuffer(screen_buffer);

28 long start = millis ();

29 while(millis () - start < 50);

30 }

31

32 int testArr [8] = {32, 16, 28, 12, 24, 20, 8, 4};

33

34 void app_main () {

35

36 setup();

37 srand (13);

38

39 while (1){

40 arrayViz(testArr);

41 long start = millis ();

42 while(millis () - start < 2000);

43 bubblesort(testArr , 8);

44

45 // Restarts automatically

46 testArr [0] = rand() % 32;

47 testArr [1] = rand() % 32;

48 testArr [2] = rand() % 32;

49 testArr [3] = rand() % 32;

50 testArr [4] = rand() % 32;

51 testArr [5] = rand() % 32;

52 testArr [6] = rand() % 32;

53 testArr [7] = rand() % 32;
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54

55 start = millis ();

56 while(millis () - start < 2000);

57 }

58 }

A.7.2 Bubble Sort Assembly File

1 .section .text

2 .align 2

3 .globl bubblesort

4

5 bubblesort:

6 # a0: first memory address of array (DO NOT MODIFY)

7 # a1: length of array

8

9 # YOUR CODE HERE!

10

11 jalr x0, 0(ra)

A.8 Lab 5 Starter Code

A.8.1 Main C File

1 #include <stdio.h>

2 #include "6190.h"

3 #include <stdlib.h>

4

5 uint32_t temp_buffer [8]; // temporarily holds new board

6

7 void initializeLoaf(uint32_t* gb){

8 gb[0] = 0;

9 gb[1] = 0;

10 gb[2] = 0x3 << 15;

11 gb[3] = 0x9 << 14;
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12 gb[4] = 0x5 << 14;

13 gb[5] = 0x1 << 15;

14 gb[6] = 0;

15 gb[7] = 0;

16 }

17

18 void initializeGlider(uint32_t* gb){

19 gb[0] = 0;

20 gb[1] = 0x7 << 1;

21 gb[2] = 0x1 << 3;

22 gb[3] = 0x1 << 2;

23 for (int i = 4; i < 8; i++){

24 gb[i] = 0;

25 }

26 }

27

28 // Setup for random value generator

29 #define RANDOM_VALUE_ADDR 0x600260B0

30 #define RTC_CNTL_CLK_CONF_REG 0x60008070

31 void setupRandom (){

32 int *rtc_cntl_clk_conf_rg = (int*) RTC_CNTL_CLK_CONF_REG;

33 *rtc_cntl_clk_conf_rg |= (1 << 10);

34 }

35

36 void initializeRandom(uint32_t* gb){

37 int *r = (int *) RANDOM_VALUE_ADDR;

38 for (int i =0; i<8; i++){

39 gb[i] = *r;

40 long start = millis ();

41 while(millis ()-start < 100);

42 }

43 }

44

45 void updateBoard(uint32_t *current_board , uint32_t *new_board);

46

47 void app_main () {
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48 timerSetup ();

49 setupRandom ();

50 setupDisplay ();

51 eraseBuffer(screen_buffer);

52 const int TIME = 100; //loop time.

53 // Choose an initializer:

54 initializeLoaf(screen_buffer);

55 // initializeGlider(screen_buffer);

56 // initializeRandom(screen_buffer);

57 while (1){

58 long start = millis ();

59 while(millis ()-start < TIME); //wait for TIME milliseconds

60 drawBuffer ();

61 updateBoard(screen_buffer , temp_buffer);

62

63 // copy game_board back into screen_buffer

64 for (int i=0; i<8;i++){

65 screen_buffer[i] = temp_buffer[i];

66 }

67 }

68 }

A.8.2 Game of Life Assembly File

1 .section .text

2 .align 2

3 .globl updateBoard

4

5 # updateBoard

6 # ARGUMENTS a0: screen buffer (current board), a1: temporary output

buffer (for new board)

7 # RETURNS: Nothing

8 updateBoard:

9

10 # TO -DO: Translate the C implementation of updateBoard to

assembly.
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11 # Make sure to follow RISC -V calling convention!

12

13 ret

14

15 # getPixel

16 # ARGUMENTS a0: screen_buffer , a1: x, a2: y

17 # RETURNS: 1 if cell occupied , 0 otherwise

18 getPixel:

19 # your code here

20 slli a2, a2 , 2 # a2: 4 * y for address

21 add a2, a2, a0 # a2: screen_buffer + 4*y

22 lw a3, 0(a2) # a3: screen_buffer[y]

23 srl a3, a3, a1 # a3: screen_buffer[y] >>_l x

24 andi a0, a3 , 1 # a0: a3 & 1

25 ret

26

27 # checkNeighbors

28 # ARGUMENTS a0: game_board , a1: x index , a2: y index

29 # RETURNS: total occupied cells in the eight surrounding cells of (x

,y) (game board wraps in x and y)

30 checkNeighbors:

31 # TODO: Determine left , right , up, and down indices for

neighbors.

32

33 call tallyNeighbors # tallyNeighbors(game_board , x, y, left ,

right , up, down)

34

35 # TODO: Return result of tallyNeighbors

36

37 ret

38

39 # tallyNeighbors

40 # ARGUMENTS a0: game_board , a1: current x index , a2: current y index

, a3: left neighbor index ,

41 # a4: right neighbor index , a5: up neighbor index , a6: down neighbor

index
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42 # RETURNS: total occupied cells in the eight surrounding cells of

current (x,y)

43 tallyNeighbors:

44 # TODO: This procedure is functionally correct , but doesn ’t

follow RISC -V calling convention.

45 # Make this procedure follow calling convention. You may only

add instructions that:

46 # 1. Increment/decrement the stack pointer

47 # 2. Put elements on the stack

48 # 3. Take elements off the stack.

49

50 mv s0, a0 # s0: game_board

51 mv s1, a1 # a1: x

52 mv s2, a2 # a2: y

53 li s3, 0 # s3: tally

54

55 mv a1, a4

56 mv a2, a5

57 call getPixel # getPixel(game_board , x-1, y-1)

58 add s3, s3, a0

59

60 mv a0, s0

61 mv a1, a4

62 mv a2, s2

63 call getPixel # getPixel(game_board , x-1, y)

64 add s3, s3, a0

65

66 mv a0, s0

67 mv a1, a4

68 mv a2, a6

69 call getPixel # getPixel(game_board , x-1, y+1)

70 add s3, s3, a0

71

72 mv a0, s0

73 mv a1, s1

74 mv a2, a5
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75 call getPixel # getPixel(game_board , x, y-1)

76 add s3, s3, a0

77

78 mv a0, s0

79 mv a1, s1

80 mv a2, a6

81 call getPixel # getPixel(game_board , x, y+1)

82 add s3, s3, a0

83

84 mv a0, s0

85 mv a1, a3

86 mv a2, a5

87 call getPixel # getPixel(game_board , x+1, y-1)

88 add s3, s3, a0

89

90 mv a0, s0

91 mv a1, a3

92 mv a2, s2

93 call getPixel # getPixel(game_board , x+1, y)

94 add s3, s3, a0

95

96 mv a0, s0

97 mv a1, a3

98 mv a2, a6

99 call getPixel # getPixel(game_board , x+1, y+1)

100 add s3, s3, a0

101

102 mv a0, s3

103

104 ret

A.9 Postlab 5 Starter Code

A.9.1 Main C File
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1 #include <stdio.h>

2 #include "6190.h"

3

4 void quicksort(int *p, int start , int end);

5

6 void setup(){

7 timerSetup ();

8 setupDisplay ();

9 eraseBuffer(screen_buffer);

10 drawBuffer ();

11 }

12

13

14 void arrayViz(int *arr_to_viz){

15 int val , val_for_buf;

16 for (int i = 0; i < 8; i += 1){

17 val_for_buf = 0;

18 val = arr_to_viz[i];

19 for (int j = 0; j < val; j+=1){

20 val_for_buf |= (1 << j);

21 }

22 screen_buffer[i] = val_for_buf;

23 }

24 drawBuffer ();

25 eraseBuffer(screen_buffer);

26 long start = millis ();

27 while(millis () - start < 100);

28 }

29

30 int testArr [8] = {32, 16, 28, 12, 24, 20, 8, 4};

31

32 void app_main () {

33

34 setup();

35 srand (60004);

36
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37 while (1){

38 arrayViz(testArr);

39 long start = millis ();

40 while(millis () - start < 2000);

41 quicksort(testArr , 0, 7);

42

43 // Restarts automatically

44 testArr [0] = rand() % 32;

45 testArr [1] = rand() % 32;

46 testArr [2] = rand() % 32;

47 testArr [3] = rand() % 32;

48 testArr [4] = rand() % 32;

49 testArr [5] = rand() % 32;

50 testArr [6] = rand() % 32;

51 testArr [7] = rand() % 32;

52

53 start = millis ();

54 while(millis () - start < 2000);

55 }

56 }

A.9.2 Quicksort Assembly File

1 .section .text

2 .align 2

3 .globl quicksort

4

5 quicksort:

6

7 ret

8

9

10 partition:

11

12 ret
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