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Abstract

This thesis develops transfer learning paradigms for spoken language processing ap-
plications. In particular, we tackle domain adaptation in the context of Automatic
Speech Recognition (ASR) and Cross-Lingual Learning in Automatic Speech Trans-
lation (AST).

The first part of the thesis develops an algorithm for unsupervised domain adap-
tation of End-to-End ASR models. In recent years, ASR performance has improved
dramatically owing to the availability of large annotated corpora and novel neural
network architectures. However, the ASR performance drops considerably when the
training data distribution does not match the distribution that the model encounters
during deployment (target domain). A straightforward remedy is collecting labeled
data in the target domain and re-training the source domain ASR model. However,
it is often expensive to collect labeled examples, while unlabeled data is more ac-
cessible. Hence, there is a need for unsupervised domain adaptation methods. To
that end, we develop a simple but effective adaptation algorithm called the Dropout
Uncertainty-Driven Self-Training (DUST). DUST repurposes the classic Self-Training
(ST) algorithm to make it suitable for the domain adaptation problem.

The second part of the thesis develops a transformer neural network encoder
that embeds speech from several languages into a shared semantically aligned joint
speech-text embedding space. To learn the multimodal semantic embedding space,
we propose a teacher/student learning framework where we fine-tune a pre-trained
multilingual speech encoder (student) using semantic supervision from a pre-trained
multilingual semantic text encoder (teacher). We show that by building multilingual
speech-to-text translation technology using the semantic representations learned by
our speech encoder, we could achieve a significant zero-shot cross-lingual task trans-
fer from seen (during training) high-resource spoken languages to unseen (during
training) low-resource spoken languages.

Thesis Supervisor: James R. Glass
Title: Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This work proposes several methods for tackling the transfer learning problem in

speech processing applications. Transfer learning refers to the problem of transfer-

ring knowledge gained from solving a source task in a source domain to a different

but related target task in a target domain. Several learning frameworks can be seen

as an instance of transfer learning. For example, learning from large amounts of

unlabeled data to facilitate few-shot learning with labeled examples is an instance

of sequential transfer learning, where we first pre-train a model on unlabeled data

using self-supervised learning and then fine-tune it on a small quantity of manually

annotated labeled data. Famous examples of the above-mentioned sequential trans-

fer learning are BERT (Devlin et al., 2019) in Natural Language Processing and

Wav2vec2.0 (Baevski et al., 2020) in Speech Processing (Zoph et al., 2020).

The need for efficient transfer learning is regularly observed when deploying speech

processing models in the real world. Often, there is a mismatch between the training

(source domain) and the data distribution that the model encounters during deploy-

ment (target domain). A straightforward remedy is collecting labeled examples in the

target domain to re-train the ASR model. However, collecting manually annotated

data is highly time-consuming and expensive. In contrast, collecting unlabeled data

is relatively inexpensive. Hence, there is a need for unsupervised domain adaptation

methods. The first part of this thesis (Chapters 3-4) focuses on the problem of un-

supervised domain adaptation of End-to-End Automatic Speech Recognition models.
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We focus on an old algorithm, Self-Training (ST), which has recently seen a resur-

gence in machine translation (He et al., 2019), speech recognition (Q. Xu et al., 2020;

Jacob Kahn, A. Lee, and Hannun, 2020), speech translation (Pino et al., 2020a), and

visual object detection. We repurpose ST to make it more suitable for the domain

adaptation problem (Chapter 3). Chapter 4 shows an interesting application of our

modified ST algorithm for efficiently building ASR models for low-resource languages.

The second part of our work (Chapters 5-6) focuses on cross-lingual transfer learn-

ing. Chapter 5 proposes a novel multilingual speech encoder, the Semantically Aligned

Multimodal Cross-Lingual Speech Representations (SAMU-XLS-R). SAMU-XLS-R is

a joint speech-text embedding learning framework that encodes semantic information

in its learned speech representations, unlike other multilingual speech representa-

tion learning frameworks (Conneau, Baevski, et al., 2020; Babu et al., 2021; Bapna,

Cherry, et al., 2022a), which often encode the less transferable low-level linguistic

knowledge. Since semantic knowledge is language agnostic, building multilingual

speech processing models on top of learned semantic representations should improve

the models’ cross-lingual portability. We show (Chapter 6) that building multilingual

speech translation models with the SAMU-XLS-R speech encoder leads to better

task-specific knowledge transfer from high to low-resource languages than the other

non-semantic speech encoders. Thus, we significantly improve multilingual speech-

to-text translation on several public benchmarks.

The work presented in this thesis is based on the following papers:

• Chapter 3: Sameer Khurana, Niko Moritz, Takaaki Hori, and Jonathan Le

Roux. “Unsupervised Domain Adaptation for Speech Recognition via Uncer-

tainty Driven Self-Training.” In ICASSP 2021.

• Chapter 4: Sameer Khurana, Antoine Laurent, and James Glass. “Magic Dust

for Cross-Lingual Adaptation of Monolingual wav2vec-2.0.” In ICASSP 2022.

• Chapter 5: Sameer Khurana, Antoine Laurent, and James Glass. “SAMU-

XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech

Representation.” IEEE Journal of Selected Topics in Signal Processing, 2022.
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• Chapter 6: Sameer Khurana, Antoine Laurent, and James Glass. “Improving

Cross-Lingual Transfer in Multilingual Speech Translation.” Under Revision

(Journal).

The outline of the thesis is as follows. Chapter 2 presents some preliminary infor-

mation that might be useful for understanding the technical details in the subsequent

chapters. It also presents statistics on the corpora used in the thesis. Chapter 3

presents Dropout Uncertainty-Driven Self-Training, our algorithm for domain adap-

tation of speech recognition models. Chapter 4 presents an exciting application of

DUST for building speech recognition models for low-resource languages. Chapter 5

presents our multilingual semantic speech encoder SAMU-XLS-R, and Chapter 6 ap-

plies SAMU-XLS-R to multilingual speech-to-text translation. Finally, we summarize

the key findings and present ideas about future work in Chapter 7.
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Chapter 2

Background

This chapter introduces transfer learning and four transfer learning scenarios that

arise in practice. We give examples of popular transfer learning frameworks in speech

and natural language processing. We discuss the two-step sequential transfer learning

framework Wav2Vec-2.0 for speech. Wav2Vec-2.0 and its multilingual extension XLS-

R are used throughout this thesis. Also, we give background on different methods of

domain adaptation. In particular, we focus on data augmentation and self-training

methods for domain adaptation, which forms the bulk of our work on this topic. We

end the chapter by discussing several datasets used in our work.

2.1 Transfer Learning

This section discusses transfer learning (TL). How does TL differ from traditional

Machine Learning (ML)? Suppose we have a learning task A in domain A and task

B in domain B. In traditional ML, we collect data for Task A and train a model. We

repeat the same process for task B, independent of what was learned in task A. But,

in TL, we have a source task in the source domain and a target task in the target

domain; the goal is to learn a classifier for the target task in the target domain using

knowledge acquired by performing the source task in the source domain. Figure 2-

1 illustrates the difference between traditional ML and TL. Understanding transfer

learning requires us to define the concept of a task and a domain. We follow the
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Figure 2-1: An illustration of the difference between traditional machine learning and
transfer learning. The key difference is knowledge sharing between the source and
target tasks.

survey in Pan and Q. Yang (2010) to explain the necessary concepts.

Domain. We define domain as a tuple 𝒟 = {𝒳 , 𝑃𝒳 (𝑋)}, where 𝒳 denotes the fea-

ture space, 𝑃𝒳 denotes the probability over the feature space, and 𝑋 = (x1,x2, . . . ,x𝑁)

is the set of observed samples x𝑖 ∈ 𝒳 . For example, in our case, x𝑖 is the feature

sequence representing a speech waveform.

Task. A task is defined as a tuple 𝒯 = {𝒴 , 𝑃𝒴|𝒳 (𝑌 |𝑋)}, where 𝒴 is the label space,

and 𝑃𝒴|𝒳 is the classifier that is learned using paired examples x𝑖 ∈ 𝒳 , y𝑖 ∈ 𝒴 using

a training set. For example, y𝑖 could be the text transcript corresponding to a speech

waveform x𝑖.

Transfer Learning. The objective of transfer learning is to build a classifier 𝑃 (𝑌𝑇 |𝑋𝑇 )

for a target task 𝒯 𝑇 in some target domain 𝒟𝑇 using knowledge gained from solving

the source task 𝒯 𝑆 in a different but related source domain 𝒟𝑆, where 𝒟𝑆 ̸= 𝒟𝑇 ,

or 𝒯 𝑆 ̸= 𝒯 𝑇 . The above inequalities lead to the following four transfer learning

scenarios as shown in Fig. 2-2 and discussed below.

• 𝑃 (𝑋𝑆) ̸= 𝑃 (𝑋𝑇 ): The source and the target feature distributions differ. This

scenario is commonly referred to as domain adaptation. For example, a source

speech sample set 𝑋𝑆 drawn from recordings of speakers reading audiobooks in

English has a different feature distribution from a target sample set 𝑋𝑇 drawn
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Figure 2-2: An illustration of the four transfer learning scenarios arising from the
source and target mismatch, as proposed in Ruder (2019).

from English TED talks or conversations recorded in a meeting room. The first

part of our work focuses on the problem of domain adaptation in the context

of Automatic Speech Recognition.

• 𝒳𝑆 ̸= 𝒳𝑇 : The source and the target features are different. For example,

speech recordings in different languages. This scenario is referred to as cross-

lingual transfer learning. For example, consider the practical application of

intent classification from speech. Training a classifier 𝑃 (𝑌𝑆|𝑋𝑆) on labeled data

in the source language 𝑆 and being able to use it for a different target language

𝑇 is the problem of cross-lingual learning. This transfer is feasible because the

label space (intent) is shared across languages.

• 𝑃 (𝑌𝑆|𝑋𝑆) ̸= 𝑃 (𝑌𝑇 |𝑋𝑇 ): The label distribution is not the same. An example

of this scenario is that the speech recordings are from speakers discussing com-

pletely different topics. The source recordings could be about business news,

while the target recordings are about sports. In such a scenario, the label dis-

tributions could vary.
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• 𝒴𝑆 ̸= 𝒴𝑇 : The label spaces are not same. For example, if the language of

the source and target speech recordings differs, the goal is to generate their

corresponding text transcripts. The label spaces are different in this case, but

the label distribution is also mismatched. Hence, usually. 𝒴𝑆 ̸= 𝒴𝑇 implies

𝑃 (𝑌𝑇 |𝑋𝑇 ) ̸= 𝑃 (𝑌𝑆|𝑋𝑆).

2.2 Transfer Learning Methods

2.2.1 Sequential Transfer Learning

Self-Supervised Learning (SSL) is a widely used sequential transfer learning paradigm

for transfer learning. SSL follows a two-step transfer learning formula.

• Pre-Training (Knowledge Acquisition): First, a neural network is used to learn

abstract representations of our signal of interest, such as speech, text, images,

or protein sequences. This step is usually carried out using unlabeled data,

but labeled data is sometimes used. The goal is to embed the raw input signal

into structured manifolds constructed by several hidden layers of a deep neural

network. The structure of these hidden manifolds is a function of the loss

functions, datasets, and the neural network architectures used for modeling.

• Fine-Tuning (Knowledge use): Second, the pre-trained neural network is fine-

tuned on task-specific labeled data. Often, the pre-trained network leads to

data-efficient task fine-tuning compared with learning the task from scratch.

Examples of SSL

SSL in Natural Language Processing. A famous example of this two-step se-

quential TL in the field of Natural Language Processing is BERT (Devlin et al., 2019)

shown in Figure 2-3. In the pre-training step, a transformer encoder (Vaswani et

al., 2017) is trained to predict the identities of the masked tokens in the input text

sequence and the following sentence in the document. Then, the same pre-trained
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Figure 2-3: BERT: Example of the two-step sequential transfer learning paradigm for
text modeling. The first pre-trains a transformer encoder on unlabeled text sentences
using masked self-prediction. The second step fine-tunes the encoder on several nat-
ural language processing tasks.

1 2Knowledge

Knowledge Acquisition Knowledge Use

transformer encoder is fine-tuned to perform several Natural Language Understanding

tasks such as named entity recognition, sentiment classification, question answering,

etc. Several works extended BERT-style self-supervised learning for languages be-

yond English (Conneau, Khandelwal, et al., 2019a; Ruder, Søgaard, and Vulić, 2019).

Not all SSL frameworks train the transformer encoder using masked self-prediction,

such as GPT (Radford and Narasimhan, 2018; Brown et al., 2020) where the encoder

is trained using next token prediction.

SSL in Speech. A famous example of self-supervised learning in speech pro-

cessing is Wav2Vec-2.0 (Baevski et al., 2020) and its multilingual extension XLS-R

(Conneau, Baevski, et al., 2020; Babu et al., 2021) shown in Fig. 2-4. Similar to

BERT, Wav2Vec-2.0 is a two-step sequential transfer learning paradigm. A trans-

former encoder is trained using unlabeled speech data in the first step. The pre-trained

encoder is then fine-tuned for speech recognition, translation, or classification. The

pre-training step in Wav2Vec-2.0 uses only speech data. HuBERT (Hsu, Bolte, et al.,

2021), and WavLM (S. Chen et al., 2021) are some other works that are competitive

with Wav2Vec-2.0/XLS-R and have a unimodal (speech only) pre-training step. Re-
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Figure 2-4: Wav2Vec-2.0 / XLS-R: Example of a popular two-step sequential transfer
learning framework in speech. The first step trains a transformer encoder on large
amounts of unlabeled speech data collected from several languages. The second step
fine-tunes the pre-trained encoder on several downstream tasks, such as speech recog-
nition, translation, and classification.

1

Pre-Training Fine-Tune

2Knowledge

Knowledge Acquisition Knowledge Use

cently, transfer learning methods that pre-train the transformer encoder using both

speech and text data have emerged, such as MSLAM (Bapna, Y.-a. Chung, et al.,

2021; Bapna, Cherry, et al., 2022a; Cheng et al., 2022), SpeechT5 (Ao et al., 2021),

and MAESTRO (Rosenberg et al., 2022), which perform better than the unimodal

models mentioned above.

Other forms of multimodal SSL are the joint audio-visual embedding frameworks

such as Davenet (Harwath, Torralba, and J. Glass, 2016; Harwath, Hsu, and J. Glass,

2020) that pre-train a speech encoder using semantic supervision from the visual

modality. But, Audio-Visual SSL is not competitive with the other SSL frameworks

on any speech processing tasks of interest to us and hence, not considered in this

thesis. Below we give some details about the Wav2Vec-2.0 framework.

Wav2Vec-2.0

Introduced in (Baevski et al., 2020), Wav2Vec-2.0 is a Self-Supervised learning frame-

work for training a large speech transformer encoder using unlabeled speech data.

The Wav2Vec-2.0 (transformer) encoder consists of a seven-layer CNN that trans-

forms the raw speech waveform a1:𝑆 ∈ R𝑆 into an embedding sequence f1:𝑇 ∈ R𝑇×𝑑,
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which is masked using a two-dimensional masking function similar to SpecAugment

(Section 2.2.2) (Park, Chan, et al., 2019) to give the masked sequence f̃1:𝑇 . A multi-

layered transformer encoder transforms the masked sequence f̃1:𝑇 into a contextual

embedding sequence c1:𝑇 .

The transformer encoder is trained to reconstruct the identities of the masked time

steps in its input sequence f̃1:𝑇 . The labels for the masked time steps are derived by

quantizing the unmasked sequence f1:𝑇 using an online K-means Vector Quantizer,

which outputs a sequence of quantized embeddings q1:𝑇 . The contrastive training loss

is computed as follows:

ℒ𝑡 = score(c𝑡,q𝑡)− log
𝐾∑︁

𝑘=1:𝑘 ̸=𝑡

exp(score(c𝑡,q𝑘))

where score(c𝑡,q𝑡) is the cosine similarity between the contextual embedding of the

masked time step outputted by the transformer encoder, and q𝑡 is the quantized

embedding of the masked time step in the masked input embedding sequence f̃1:𝑇 to

the transformer.

The Wav2Vec-2.0 encoder trained using about 60K hours of unlabeled speech

(J. Kahn et al., 2020) via self-supervised contrastive loss mentioned above is an ex-

cellent few-shot learner of automatic speech recognition learning task. In (Baevski

et al., 2020), a pre-trained Wav2Vec-2.0 fine-tuned using just 10 minutes of tran-

scribed speech can achieve single-digit error rates that previously were possible only

by training ASR models using thousands of hours of labeled data on the Librispeech

benchmark (Panayotov et al., 2015). Our work uses several variations of Wav2Vec-2.0

listed below.

Wav2Vec-2.0 Base. The smallest of the Wav2Vec-2.0 model series. It consists

of 12 transformer layers and 100 million parameters. The model dimension is 768.

The encoder is trained on 960 hours of unlabeled English speech collected from the

audiobooks corpus Librispeech (Panayotov et al., 2015). The transformer encoder

has a similar architecture as the BERT base model (Devlin et al., 2019). The encoder

is introduced in (Baevski et al., 2020).
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Wav2Vec-2.0 Large. Consists of 24 transformer layers and a model size of 1024.

It has 300 million trainable parameters. The encoder is introduced in Baevski et al.

(2020). It is trained using 60K hours of unlabeled English speech collected from

LibriLight audiobooks corpus (J. Kahn et al., 2020).

Wav2Vec-2.0 Robust. Proposed in Hsu, Sriram, et al. (2021), this encoder

has the same architecture as the large Wav2Vec-2.0 encoder. Unlike Wav2Vec-2.0

large, which is trained on the audiobooks domain, the robust Wav2Vec-2.0 is trained

using unlabeled English speech collected from several English speech corpora, such

as CoVo-English (read noisy speech) (Ardila et al., 2020), SWBD (conversational)

(Godfrey, Holliman, and McDaniel, 1992), LibriLight (read audiobooks) (J. Kahn et

al., 2020). The aim is to make the pre-trained encoder robust to domain variations.

XLS-R. XLS-R encoder (Babu et al., 2021) has the same architecture as the

Wav2Vec-2.0 large. Unlike Wav2Vec-2.0, XLS-R is trained using 400K hours of mul-

tilingual unlabeled speech collected from 128 languages. See (Babu et al., 2021) for

more details.

All the above pre-trained speech encoders are publicly available1.

Fine-Tuning of Pre-Trained Model

Above, we discussed the pre-training step in the two-step sequential TL framework.

But, research has also focused on determining the best ways to fine-tune the pre-

trained models. In particular, Houlsby et al. (2019) proposes an adapter-based fine-

tuning method. In this method, a few new task-specific parameters are added to

the pre-trained transformer encoder, and during fine-tuning, the new parameters are

tuned for the downstream task. And the rest of the model’s parameters are kept fixed

to their pre-trained values. In Houlsby et al., 2019, an adapter layer is added to each

pre-trained BERT transformer encoder block. Two adapter layers are inserted in each

block, one after the self-attention module and the other after the feed-forward block.

The equations below show the computation that takes place in a single transformer

1https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
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encoder block augmented with adapter layers (AdaptL):

𝑥 = AdaptL(MHSA(LN(𝑥))) + 𝑥

𝑥 = AdaptL(FC(LN(𝑥))) + 𝑥

where, (MHSA) is the Multi-Headed Self-Attention layer, FC denotes a feed-forward

module, LN is the layer normalization layer (J. L. Ba, Kiros, and G. E. Hinton, 2016),

and AdaptL is the adapter layer. See (Vaswani et al., 2017) for details about MHSA,

and FC modules. The adapter layer is a feed-forward neural network with a single

hidden layer. The adapter layer has a bottleneck architecture; the input and output

layers have the same size, and the hidden layer is a fraction of the size of the input

layer. The adapter layer computation can be described with the following equations:

𝑥down = ACTFn(𝑉@𝑥in + 𝑏)

𝑥up = 𝑈@𝑥down

where 𝑥in ∈ R𝑑 is the input embedding to the adapter layer. 𝑉 ∈ R𝑑×𝑑/𝑟 is the

weight matrix that downsamples the embedding to dimension 𝑑/𝑟, where 𝑟 is the

downsampling rate. Commonly used values of 𝑟 are 4, 8, or 16. 𝑈 ∈ R𝑑/𝑟×𝑑 is a

weight matrix that upsamples the downsampled embedding to its original size. ACTFn

refers to a non-linearity such as ReLU, @ refers to a matrix vector multiplication, and

𝑏 is the bias vector. Some follow-up works have looked at the placement of adapters

Pfeiffer, Vulić, et al., 2020 and fusing multiple parallel adapters (Pfeiffer, Kamath,

et al., 2021). This work uses the adapter setup proposed by Houlsby et al. (2019)

(explained above) for fine-tuning a pre-trained speech transformer encoder for the

task of multilingual speech translation.

2.2.2 Domain Adaptation

We work with the following domain adaptation scenario: labeled data in the source

domain and unlabeled data in the target domain for source-to-target domain adap-
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Figure 2-5: A clean speech waveform sampled from the Librispeech corpus. We
apply different data augmentation methods to this waveform and visualize the impact.
Listen to clean speech.

Figure 2-6: A Mel Spectrogram corresponding to a clean speech waveform considered
for augmentation. We will observe how this Mel Spectrogram changes after applying
different data augmentation methods to the clean speech waveform. Listen to clean
speech.

tation. The source and target tasks are the same 𝒯𝑆 = 𝒯𝑇 , but the data distributions

are mismatched 𝑃 (𝑋𝑆) ̸= 𝑃 (𝑋𝑇 ). The goal is to build a classifier for the target task

in the target domain, using source domain labeled data and target domain unlabeled

data. Below, we explain some of the methods commonly used for domain adaptation.

Data Augmentation

A straightforward approach is to train the model on source domain labeled data

using strong data augmentation to generalize better to the unseen target domain.

Commonly used offline data augmentation strategies for speech are reverberation

(Ko, Peddinti, Povey, Michael L. Seltzer, et al., 2017b), speed perturbation (Ko,
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Figure 2-7: An example of a Room Impulse Response used to corrupt a clean speech
waveform in the Reverb data augmentation method.

Figure 2-8: A speech waveform corrupted by the Reverb data augmentation method.
Listen to the reverberated speech.

Peddinti, Povey, and Khudanpur, 2015), corrupting the speech waveform by adding

Gaussian noise, music, speech (Snyder, G. Chen, and Povey, 2015b). An online data

augmentation method is SpecAugment (Park, Chan, et al., 2019), where we apply a

two-dimensional mask to the speech Mel Spectrogram. Different data augmentation

methods are often used in tandem. The training loss for a classifier 𝑓 trained with

data augmentation 𝐴 is described as follows:

𝐿𝐵 =
1

|𝐵|
𝐿task(𝑓(𝐴(𝐵)),y) (2.1)
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Figure 2-9: An illustration of the Mel Spectrogram of a waveform corrupted by the
Reverb data augmentation method. Listen to the reverberated speech.

where 𝐿task is the task-specific training loss, 𝐵 is the batch of training examples with

labels y. 𝐵 can be seen as the design matrix. The rows of 𝐵 correspond to the

feature representation of a training example. When modeling speech or text, the

feature representation is a two-dimensional sequence of vectors. Below, we list the

commonly used speech data augmentation methods.

Speed Perturbation. This augmentation aims to make the speech processing

model invariant to different speaking rates that the model might encounter during

deployment. Speed perturbation is performed by resampling a speech waveform to

either increase or decrease its speed. Resampling is a standard operation in any audio

processing library such as sox2. The standard recipe is to create three versions of

the clean speech waveform using speed factors of 0.9, 1.0, and 1.1. See Ko, Ped-

dinti, Povey, and Khudanpur (2015) for details on the effect of speed perturbation

on the speech recognition model’s performance. This augmentation method does not

preserve the length of the original waveform.

Reverb. This augmentation aims to make the speech processing model invariant

to different rooms in which the speaker might be situated. Different room dimensions

induce different reverberation effects in the speech waveform. In this method, to

simulate different reverberation effects, we sample impulse responses from the publicly

available Room Impulse Response (RIR) dataset3 introduced in (Ko, Peddinti, Povey,

Michael L Seltzer, et al., 2017a) and convolve it with the original speech waveform to

2https://sox.sourceforge.net/
3https://www.openslr.org/28/

48

https://github.com/sameerkhurana10/assets/blob/master/noise-1746-143015-0004.flac
https://sox.sourceforge.net/


Figure 2-10: Three types of noise signals added to a clean speech waveform in the
MUSAN data augmentation method.

generate a reverberated speech waveform. We show an example of an RIR in Fig. 2-7,

which we convolve with the speech waveform in Fig 2-5 (Mel Spectrogram in Fig. 2-6)

to output the reverberated waveform in Fig. 2-8 (Mel Spectrogram in Fig. 2-9). See

Ko, Peddinti, Povey, Michael L Seltzer, et al. (2017a) for more details about this

augmentation method and how it impacts speech recognition performance. We use

this method in Chapter 3 to improve speech recognition model’s generalization to the

target domain.

MUSAN. This augmentation method aims to make the speech model robust to

background (or foreground) noises such as music, speech (babble), and Gaussian noise

(MUSAN). We sample noise from the MUSAN dataset4 (Snyder, G. Chen, and Povey,

2015a) and add it to the speech waveform according to a pre-defined Signal-to-Noise

Ratio (SNR). Fig. 2-10 shows three different noise waveforms sampled from MUSAN.

We add the three noise signals to the speech waveform in Fig. 2-5 (Mel Spectrogram

in Fig. 2-6) to output the noisy speech waveform in Fig. 2-11 (Mel Spectrogram in

4https://www.openslr.org/17/
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Figure 2-11: A speech waveform corrupted with three types of foreground noise;
music, speech, and gaussian noise. Listen to the noisy speech. Pay attention to three
different noises, one at the beginning, one in the middle, and one towards the end.

Figure 2-12: An illustration of the Mel Spectrogram of a speech waveform corrupted
by music, speech, and gaussian foreground noises. Listen to the noisy speech.

Fig. 2-12). The three noise signals (from left to right) in Fig. 2-10 are added with an

SNR of 10, 5, and 15, respectively, and with an offset (start time of addition with the

original speech waveform) of 0, 1.4, and 8.3 seconds respectively. We add the noises

in the foreground. We use this method and reverberation to improve source-to-target

domain generalization of speech recognition models.

SpecAugment. Unlike the other data augmentation methods mentioned above,

SpecAugment (Park, Chan, et al., 2019) works on the two-dimensional Mel Spec-

trogram rather than the raw speech waveform. In SpecAugment, we apply a two-

dimensional mask to the Mel Spectrogram as shown in Fig. 2-13. We choose the

number of masks and the mask width range for the time and frequency dimensions.

Although SpecAugment was introduced for masking the Mel Spectrogram, the same
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Figure 2-13: An illustration of the SpecAugment data augmentation method. In
SpecAugment, we apply a two-dimensional mask to the Mel Spectrogram.

method can be applied to any two-dimensional embedding sequence. See Baevski

et al. (2020) for an example.

Domain Invariant Representations

This approach aims to project the speech signal into a domain-agnostic representation

space, i.e., two speech utterances with similar content but drawn from two different

data distributions should have a similar representation in the domain-invariant rep-

resentation space. A popular approach for learning domain invariant representations

is domain-adversarial training (Ganin et al., 2016), where the classifier is penalized

if the source and target feature distributions are far apart. To understand domain-

adversarial learning, consider a neural network classifier composed of a feature ex-

tractor neural net 𝑓 that outputs features ℎ for the input signal 𝑥. A classification

head 𝑔 maps ℎ to the output label space. The task is to make 𝑓 domain invariant.

We describe the learning algorithm below:

1. Sample a batch of labeled data from the source domain 𝐵𝐿 ∼ ℒ, and a batch

of unlabeled data from the target domain 𝐵𝑈 ∼ 𝒰

2. Forward pass 𝐵𝐿, and 𝐵𝑈 through the neural net feature extractor 𝑓 :

𝐻𝑈 = 𝑓(𝐴(𝐵𝑈))

𝐻𝐿 = 𝑓(𝐴(𝐵𝐿))
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𝐻 and 𝐵 are matrices. Each row of 𝐻 corresponds to a feature vector corre-

sponding to a row of 𝐵. 𝐵 contains raw signal representation, and 𝐻 contains

hidden representations given by the neural net 𝑓 . 𝐴 is the data augmentation

function.

3. Compute the domain discrimination loss as follows:

ℒ𝑑 =
1

|𝐵𝑈 |
𝐿BCE(𝑔𝑑(𝐻𝑈),y = 0) +

1

|𝐵𝐿|
𝐿BCE(𝑔𝑑(𝐻𝐿),y = 1)

𝑔𝑑 is the domain classifier neural network trained to classify examples into the

source (label=1) or target domain (label=0). The domain classifier’s loss is the

standard binary cross-entropy loss (BCE).

4. Compute the training loss for the model 𝑓 · 𝑔 as follows:

ℒ =
1

|𝐵𝐿|
𝐿task(𝑔(𝐻𝐿),y𝐿)− 𝜆ℒ𝑑 (2.2)

𝐿task is the task-specific loss function, 𝑔 is the task classification head that

maps the hidden representations 𝐻𝐿 to the output label space, and y𝐿 is the

ground-truth label vector. 𝜆 is the strength of the penalty term and is tuned

by hand.

The above algorithm has found its way into some speech recognition research. In par-

ticular, (Adams et al., 2019a) treated different languages as domains and attempted

to design a language-agnostic feature extractor for speech using the above algorithm.

Self-Training

Self-Training (ST) (Scudder, 1965) is an easy-to-use but quite effective method for

domain adaptation, and in general, for semi-supervised learning. As before, the

adaptation scenario is we have access to labeled set ℒ in the source domain and an

unlabeled set 𝒰 in the target domain. ST is a Teacher-Student learning framework.

ST algorithm is sketched below:
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1. Teacher Training: Train a teacher model 𝑓teacher by minimizing a task-specific

loss on the labeled set ℒ.

1

|𝐵|
𝐿task(𝑓teacher(𝐴(𝑋),y)) (2.3)

where 𝐵 = (𝑋,y) ∼ ℒ is a batch of labeled examples (𝑋,y). 𝑋 is the feature

matrix, and y is the label vector. Each row in the feature matrix corresponds

to the feature representation for a particular data point in set ℒ. The length of

the label vector is equal to the number of rows in the feature matrix.

2. Inference: Generate label for each unlabeled data point 𝑥𝑢 ∼ 𝒰 using the

teacher.

𝑦𝑢 = Inference(𝑓teacher(𝑥𝑢)) (2.4)

Add (𝑥𝑢, 𝑦𝑢) ∈ 𝒫 . Inference process is task-specific. E.g., a sequence gen-

eration task such as speech recognition would involve using the beam search

algorithm (Newell, 1973). A multi-label classification task would involve choos-

ing the most likely label (argmax) using a class probability vector outputted by

the teacher model.

3. Student Training: Train a student model 𝑓student on combined ℒ ∪ 𝒫 .

1

|𝐵|
𝐿task(𝑓student(𝐴(𝑋),y)) (2.5)

where 𝐵 = (𝑋,y) ∼ (ℒ∪𝒫). 𝐿task is the same loss used to train the teacher in

step 1.

4. Iterate: Go back to step 2, where 𝑓teacher = 𝑓student the student now becomes

the teacher.

As the student improves each iteration, the quality of pseudo-labels for the next

iteration on the unlabeled data points improves. Hence, the subsequent student

becomes better in the target domain. Recently, ST has been used in deep learning

to improve object detection (Zoph et al., 2020), text-based machine translation (He
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et al., 2019), speech recognition (Q. Xu et al., 2020), and speech translation (Pino

et al., 2020b).

Noisy Student-Training

Noisy Student Training (Xie et al., 2020; Park, Zhang, et al., 2020) is similar to self-

training, except that noise is injected into the student’s training process. The student

model is a neural network in our work. Several noise sources during neural network

training exist, such as using dropout (Srivastava et al., 2014). Also, noise can be in-

jected using different data augmentation techniques mentioned above. Another noise

source is the pseudo-label generation process for student training, such as using beam

search for inference naturally injects some randomness in the pseudo-label generation

step. Noise in the self-training process is essential for achieving success. See He et al.

(2019) for an in-depth analysis of the different noise sources in self-training and the

impact of each on the final student model’s performance.

2.2.3 Multi-Task Learning

Multi-task learning (MTL) refers to the learning framework where a model is trained

simultaneously on several learning tasks, unlike sequential transfer learning, where

we learn several tasks in a sequence. In the context of neural networks, there are two

types of MTL. (i) Hard Parameter Sharing : Most model parameters are shared across

learning tasks, while a few might be task-specific. A typical model specification for

multi-task learning is 𝑓joint · 𝑔task, a composition of a feature extractor (E.g., a deep

neural network) 𝑓joint shared across all tasks, and a task-specific classification head

𝑔task that maps the shared representation ℎjoint = 𝑓joint(𝑥) to the task-specific label

space. This idea goes back to Caruana, 1997. (ii) Soft-Parameter Sharing : In this

setup, each task has its model, but the parameters of all the models are encouraged

to be close by using, for instance, 𝑙2 regularization as in Duong, Cohn, et al. (2015),

or instance norm as in Y. Yang and Hospedales (2016).

MTL (i) Avoids Overfitting : Training a model on combined data from several
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Figure 2-14: An illustration of the motivation for cross-lingual transfer learning. In
the real world, we often have resources for building language technology for high-
resource languages, and there is a long tail of low-resource languages for which we
have limited resources.
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tasks in the hard parameter sharing setup increases the training sample size and

naturally leads to a more robust model, acting as a form of data augmentation. (ii)

Learns Robust Representations : Since the model is trained to perform multiple tasks

simultaneously, it is expected to generalize better to novel tasks than a model trained

on only one task (Baxter, 2000).

We develop a single speech translation model capable of handling several transla-

tion tasks. The translation model is trained using multi-task learning.

2.2.4 Cross-Lingual Learning

Cross-lingual learning forms the majority of this thesis. The motivation for cross-

lingual learning is depicted in Fig. 2-14. A scenario that often arises in the real world

is we have enough data for building language technology in high-resource languages,

and we have a long tail of low-resource languages for which we do not have enough

resources. But, all the languages share some common underlying linguistic struc-

tures. Cross-lingual learning aims to extract these shared structures, build language

technology on top of these common structures, and thus maximize cross-lingual task

transfer from high to low-resource languages. A popular example of cross-lingual
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learning in speech is the two-step transfer learning formula XLS-R discussed above

(Section 2.2.1). In the first step, a neural net encoder is trained using unlabeled

speech in several languages. This step aims to learn a shared cross-lingual represen-

tation space for speech (ideally, a language-agnostic space). The second step involves

building speech technology, such as speech-to-text translation, on top of the acquired

shared cross-lingual representation space. Babu et al. (2021) show that this two-step

method improves performance on multilingual speech-to-text translation over several

previous methods by improving cross-lingual transfer from high to low-resource trans-

lation tasks. Our work aims to improve the cross-lingual transfer further by learning

a shared semantically aligned cross-lingual representation space in the first step of

the two-step method.

2.3 Sequence Generation Tasks

This work focuses on two sequence generation tasks, Automatic Speech Recognition

(ASR), and Automatic Speech Translation (AST). Below, we give details about the

two tasks.

Automatic Speech Recognition. Automatic Speech Recognition (ASR) is a sequence-

to-sequence mapping problem. Given a labeled set ℒ = {x,y𝑖}𝑙𝑖=1, The goal is to learn

a mapping from input speech waveform x to its corresponding output text transcript

y. The ASR mapping problem consists of a learning and inference step.

The learning phase involves tuning the parameters 𝜃 of a classifier ℳ𝜃 to maximize

the the conditional probability 𝑝𝒴|𝒳 (y|x,ℳ𝜃) of observing the transcript y for a given

speech waveform x. Traditionally, the above-mentioned conditional probability has

been estimated using a complicated generative modeling framework (Schwartz et al.,

1985; L. Rabiner and B. Juang, 1986; Lawrence Rabiner and B.-H. Juang, 1993; K.-F.

Lee, 1990; Bellegarda and Nahamoo, 1990; Bahl et al., 1991; Renals et al., 1994;

Morgan and Bourlard, 1995; Young, Odell, and Woodland, 1994; Neto et al., 1995;

Robinson, Hochberg, and Renals, 1996; Ortmanns and H. Ney, 2000; J. R. Glass,
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2003; Mohri, Pereira, and Riley, 2008; Povey, Ghoshal, et al., 2011; Rybach et al.,

2011; Swietojanski, Ghoshal, and Renals, 2013; Graves, Jaitly, and A.-r. Mohamed,

2013) due to the intractability of computing 𝑝𝒴|𝒳 directly. However, recently, due to

the advancements in neural network based "end-to-end" learning frameworks for ASR

(Graves and Jaitly, 2014; Hannun, Case, et al., 2014; Chorowski et al., 2015a; Maas

et al., 2015; Chan et al., 2016; Collobert, Puhrsch, and Synnaeve, 2016; Hannun,

2017; Watanabe, Hori, S. Kim, et al., 2017a; Liptchinsky, Synnaeve, and Collobert,

2017; Chiu et al., 2018; Zeghidour et al., 2018; Sperber et al., 2018; S. Zhou et al.,

2018; Watanabe, Hori, Karita, Hayashi, Nishitoba, Unno, Soplin, et al., 2018; Salazar,

Kirchhoff, and Z. Huang, 2019; Hannun, A. Lee, et al., 2019; A. Mohamed, Okhonko,

and Zettlemoyer, 2019), we can estimate the function 𝑝𝒴|𝒳 directly in a differentiable

manner by using (i) the Connectionist Temporal Classification (CTC) framework of

Graves, Fernández, et al. (2006), (ii) the encoder-decoder based Cross-Entropy (CE)

minimization framework of Sutskever, Vinyals, and Le (2014) and Vaswani et al.

(2017), or (iii) the CTC/CE hybrid learning framework of Watanabe, Hori, S. Kim,

et al. (2017b). In the context of end-to-end neural network-based ASR, the learning

phase can be formulated as the following optimization problem:

𝜃⋆ = argmax
𝜃

E x∼𝑝(x) E y∼𝑝(y|x)[log 𝑝(y|x,ℳ𝜃)] (2.6)

where 𝑝(x), and 𝑝(y|x) are the data generating distributions, and ℳ𝜃 is the model

that forms the conditional probability of observing the sequence y, given the sequence

x. An approximate solution of the above optimization problem is rendered by stochas-

tic approximation methods (Robbins and Monro, 1951) such as stochastic gradient

descent (SGD) using a labeled set of paired examples (x,y). Many SGD variants are

available to find the optimal model parameters 𝜃, such as Adam (Kingma and J. Ba,

2014).

After estimating the model, we use it for inference. Inference can be cast as the

57



following optimization problem:

yMPC = argmax
y

[𝛼 log 𝑝(y|x,ℳ𝜃⋆) + 𝛽 log 𝑝(y|ℳLM))]

Where 𝜃⋆ are the optimal model parameters obtained during the learning phase, ℳ𝐿𝑀

is an external language model that is trained on a collection of text. The out of the

above optimization is the most probable configuration (MPC), yMPC under the acoustic

model ℳ𝜃⋆ , and an external language model ℳLM. Due to the independence assump-

tions inherent in the end-to-end ASR modeling framework, the inference could be cast

as a dynamic programming problem that can be solved efficiently using algorithms

such as Beam Search. We develop CTC-based ASR models in this thesis.

Automatic Speech Translation. Automatic speech translation (AST) refers to

mapping a speech waveform in a source language to its text translation in a target

language. Similar to ASR, AST is a sequence-to-sequence mapping problem. Earlier

works in AST focused on cascading a speech recognition model that maps the source

language speech to its text transcript, followed by a text-to-text translation system

that maps the source text transcript to text in the desired target language (Hermann

Ney, 1999; Nakamura et al., 2006). Recent works use the neural network-based end-

to-end learning framework for AST. Sutskever, Vinyals, and Le (2014) introduced a

Long-Short Term Memory Recurrent Neural Network (Hochreiter and Schmidhuber,

1997) encoder-decoder model for end-to-end text-based machine translation, later

superseded by the transformer model (Vaswani et al., 2017). See Duong, Anasta-

sopoulos, et al. (2016), Mattia A Di Gangi et al. (2019a), Inaguma et al. (2020), and

X. Li et al. (2020b) for recent advancements in AST using end-to-end learning with

neural networks.

In this thesis, we use a transformer encoder-decoder model for building speech-

to-text translation models. The encoder embeds the raw speech waveform into a

contextual embedding sequence, which is used to condition an autoregressive trans-

former decoder which generates the output text translation sequence. The model is
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Table 2.1: Wall Street Journal corpus statistics. The corpus comprises 82 hours of
transcribed read speech from Wall Street Journal news articles.

Characteristic train_si284 test_dev93 test_eval92

Dur. (Hours)
Total 81.5 1.1 0.8
Male 39.8 0.5 0.5

Female 41.6 0.5 0.3

#Segments
Total 37416 503 333
Male 18722 246 210

Female 18694 257 123

#Speakers
Total 283 10 8
Male 142 5 5

Female 141 5 3

Avg. Segment Dur(s) 7.8 7.8 7.6

Table 2.2: Example of English transcripts corresponding to speech segments in the
Wall Street Journal transcribed speech corpus.

the airline said the dispute involved minor repairs
basic engineering design and site preparation studies are to start this winter
mr. moreland who is now working through a company called
continental trading international limited couldn’t be reached for comment
the combined operation will serve more than forty thousand
individual and institutional clients

trained using the standard cross-entropy loss (Baum and Wilczek, 1987) with label

smoothing (Szegedy et al., 2016b).

2.4 Data

2.4.1 Transcription

Below, we list the transcribed speech datasets used in this thesis.
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Table 2.3: TED-LIUM 3 corpus statistics. TED-LIUM 3 comprises around 350 hours
of transcribed speech data collected from TED talks.

Characteristic Train Dev Test

Dur. (Hours)
Total 346.2 3.7 3.8
Male 242.2 2.3 2.4

Female 104.0 1.4 1.4

#Speakers
Total 1938 16 16
Male 1303 10 10

Female 635 6 6

#Talks Total 2281 16 16

Wall Street Journal

This work uses the Wall Street Journal corpus (WSJ) (Douglas B. Paul and J. M.

Baker, 1992) in Chapter 3 as the source domain for the source-to-target domain

adaptation of speech recognition models. The domain of the corpus is read news

speech. Human transcribers are asked to read aloud text collected from wall street

journal news articles. WSJ consists of approximately 81 hours of transcribed speech

data for ASR model training, one hour for model selection, and 48 minutes for model

evaluation. Table 2.1 shows the data distribution of the WSJ corpus. It consists

of 37K transcribed speech segments in training, 503 in development, and 333 in the

evaluation set. There are 283 speakers in the training set, with an equal representation

of male and female speakers. The average duration of a speech segment in the WSJ

corpus is 7 to 8 seconds. Table 2.2 shows a sample of text transcripts in the WSJ

corpus.

TED-LIUM 3

This work uses TED-LIUM 3 (Hernandez et al., 2018a) corpus in Chapter 3 as one of

the adaptation targets for source-to-target domain adaptation of speech recognition

models. The domain of the corpus is oratory speech, which is different from the WSJ

corpus mentioned above. TED consists of 346 hours of training, 4 of development, and
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Table 2.4: Example of English transcripts corresponding to speech segments in the
TED-LIUM 3 transcribed speech corpus of English TED talks.

well i finally found bill about a block away from our house at this public
school playground it was a saturday and he was all by himself
just kicking a ball against the side of a wall
our family was too strange and weird for even santa claus to come visit
and my poor parents were trying to protect us from the embarrassment this
humiliation of rejection by santa who was jolly but let’s face it he was
also very judgmental
this figure shows you the change in the lake level of lake mead that
happened in the last fifteen years you can see starting around the year
two thousand the lake level started

4 hours of evaluation transcribed English speech data. It has around 2000 speakers

(1.3K males and 635 females). Table 2.3 presents the data distribution. Table 2.4

shows transcripts sampled from the TED-LIUM 3 corpus. In general, the transcript

lengths are longer than WSJ. Unlike WSJ, TED transcripts are more colloquial.

Switchboard

This work uses Switchboard (SWBD) (Godfrey, Holliman, and McDaniel, 1992) in

Chapter 3 as one of the adaptation targets for source-to-target domain adaptation of

speech recognition models. SWBD5 is an English conversational speech corpus. It

comprises 260 hours of transcribed telephone conversations from 543 speakers (302

males, 241 females) for training and a small fraction as a development set. We use the

standard 2000 HUB5 English Evaluation Speech corpus6 for model evaluation. Ta-

ble 2.5 shows some sampled transcripts from the SWBD corpus. Notice the speaking

style is more conversational than WSJ or TED corpus.

5https://catalog.ldc.upenn.edu/LDC97S62
6https://catalog.ldc.upenn.edu/LDC2002S09
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Table 2.5: Example of English transcripts corresponding to speech segments in the
Switchboard conversational transcribed speech corpus.

is a person of empty promises you can’t you know it’s hard it’s hard to do
that so it’s hard to change a different- a country especially in the
Middle East which has different views on life
to go against the to exactly you can’t go after the the leader you can’t
legally do that i mean then again you know there’s people who say war is
war everything’s fair
yeah it’s it’s but it’s it’s it’s it’s very hard to deal with people that
don’t believe- don’t believe in the same things and don’t live the same
way that you do you know it’s like as we think that

Table 2.6: Example of multilingual transcripts corresponding to speech segments in
the CommonVoice multilingual transcribed speech corpus.

he later studied sculpting in marble at pietrasanta in tuscany.
where are they now?
la nouvelle demeure est construite pour un montant de livres.
kurz nachdem die räuber die bank verlassen hatten, wurde die polizei verständigt.
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astăzi as, dori să subliniez două aspecte.

CommonVoice

We use CommonVoice (CoVo) (Ardila et al., 2020) corpus in Chapter 5. CoVo is a

multilingual transcribed read speech corpus. There are several versions of CoVo. We

use Version eight. It comprises 14K hours (10M segments) of transcribed speech from

87 languages (26 language families). See Table 5.1 for the detailed summary statistics

of the corpus. Also, Tables 2.15 and 2.16 present language-wise data distribution; we

detail the number of training, development, and test transcribed speech segments

for each language in the CoVo corpus. Also, we detail the total hours of transcribed

speech, the average duration of a speech segment, and the number of speakers for each

language. Table 2.17 presents the same statistics per language family. The average

speech segment duration is around 5-6 seconds for each language in the corpus, which
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Table 2.7: Example of Arabic transcripts corresponding to speech segments in the
Multi-Genre Broadcast 2 Arabic transcribed speech corpus.
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can be considered relatively short segments compared to other speech corpora. See

Table 2.7 for sampled text transcripts from the CoVo corpus. The first two transcripts

are in English, followed by French, German, Arabic, and Romanian. Transcripts are

smaller than the other datasets mentioned above.

Multi-Genre Broadcast News 2

Multi-Genre Broadcast 2 (MGB-2) (Ali et al., 2019) corpus consists of 1,200 hours

of Arabic transcribed speech collected from the Al-Jazeera news channel. Table 2.9

presents the data distribution. For full details, see Ali et al. (2019). Table 2.6

shows some sampled transcripts from the MGB2 corpus. The speech domain is news

broadcast. The transcript lengths are comparable to TED-LIUM 3, and longer than

CoVo transcripts.

2.4.2 Translation

Below, we list the datasets used for building the translation models in this work. All

the datasets are freely available.

CoVoST-2

CoVoST-2 (Changhan Wang, Pino, et al., 2020) is a public speech translation bench-

mark. We use this dataset for developing multilingual speech-to-text translation

models. CoVoST consists of two types of translation tasks: (i) X→EN: where X

denotes the language of the source speech utterances, and EN denotes the language

of target text translations. The translation task is to generate EN text translations
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Table 2.8: CommonVoice corpus statistics. CommonVoice is a multilingual tran-
scribed speech corpus. It comprises 14K hours of transcribed speech (9.5M speech
segments) in 87 languages (26 language families).

Characteristic Train Dev Test

Dur. (Hours)

Total 14122
Male 7196.4

Female 2659.6
Other 81.1

Unknown 4221.6

#Speakers

Total 207602
Male 102762

Female 32522
Other 2499

Unknown 71022

#Segments

Total 9457044 420042 430676
Male 4814401 201364 207518

Female 1776869 80869 82413
Other 54797 2007 2050

Unknown 2810975 135802 138695

#Languages Total 87

#Lang. Families Total 26

corresponding to speech utterances in language X. There are 21 X→EN translation

tasks in this benchmark. Table 2.18 presents the data statistics for each of the 21

translation tasks. For each task, we report number of segments in the training, de-

velopment, and test splits. Also, we report the total number of hours of annotated

data available for each task, average duration of a speech segment, and the number

of speakers. The average speech segment duration is around 5 to 6 seconds, similar

to the CoVo transcribed speech data, since CoVoST is a subset of CoVo. (ii) EN→X:

where source speech is in English, and the target text translation is in some language

X. The task is to translate EN speech into text in language X. CoVoST has 15 EN→X

translation tasks. Table 2.19 shows data statistics for each of the 15 translation tasks.
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Table 2.9: MGB-2 corpus data statistics. MGB-2 is an Arabic transcribed speech
corpus that consists of around 1200 hours of annotated data.

Characteristic Train Dev Test

Dur. (Hours) Total 1200 10 10
#Segments Total 500K 5K 5K

Table 2.10: Example of translation pairs in the CoVoST-2 X→EN translation corpus.
We show the transcript corresponding to speech utterances in language X and their
corresponding text translation in English.

X Source(X) Target(EN)

AR . Yg. ð
�
Im�'.

	áÓ Anyone search will find.

AR !
�
é
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�ºK


	
à


@ ÉîD�



@ AÓ Nothing is easier than getting a bad habit!

FR La famille devra alors tout réapprendre. So the family will need to relearn everything.
DE Hast du dir ein Loch in die rote Mütze gerissen? Did you tear a hole in the red hat?
ID Aku sedang berbicara dengan muridku. I’m talking with my student.
CY Mae hi’n ddeng munud wedi un. It’s ten minutes past one.

Table 2.10 shows some translation pairs sampled from the CoVoST corpus for

X→EN translation tasks. The table shows the transcript corresponding to the source

speech utterances, and their corresponding EN text translations. Table 2.11 shows

sampled translation pairs from EN→X translation tasks in CoVoST-2 corpus.

All state-of-the-art pre-trained multilingual speech encoders, such as XLS-R (Babu

et al., 2021) and MSLAM (Bapna, Cherry, et al., 2022b; Bapna, Cherry, et al., 2022a;

Rosenberg et al., 2022) evaluate the pre-trained encoder’s translation capabilities on

the CoVoST-2 benchmark. We show the English transcript for the source speech

utterance, and its corresponding text translation in different target languages.

Europarl

Another translation benchmark we use to test our translation models is Europarl

(Iranzo-Sánchez et al., 2019), created from the European parliament speech recordings

and their corresponding transcripts in several European languages. Europarl consists

of 72 translation tasks. There are nine spoken languages. Speech utterances in

each language are paired with corresponding text translations in the eight remaining
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Table 2.11: Example of translation pairs in the CoVoST-2 EN→X translation corpus.
We show the transcript corresponding to English speech utterances and their corre-
sponding text translation in language X.

X Source(EN) Target(X)

AR She’ll be all right. .Q�

	
m�'.

	
àñº

�
J�

DE He sat up abruptly. Er setzte sich schlagartig auf.
FA He sat up abruptly. . Y

�
� Y

	
JÊK.

	
àAêÃ A

	
K ð@

SV-SE Man in white shirt standing in a city street. Man i vit skjorta står på en gata.

Table 2.12: Examples of translation pairs in the Europarl corpus. We show two
examples from two of the 72 translation tasks in the Europarl corpus. We show the
transcript corresponding to the source speech utterance and its corresponding text
translation in the target language.

Source(DE) Target(PT)

Herr Präsident! Ich begrüße den Ansatz sehr, Senhor Presidente, muito me congratulo
den wir in dem Weißbuch beschreiben, com a estratégia apresentada
dass wir den Ursachen von Fehlernährung no Livro Branco, que nos permitirá
und Fettleibigkeit und daraus tratar as causas de uma nutricão deficiente e
folgenden Krankheiten auf die Spur kommen. da obesidade e doencas associadas.
Source(EN) Target(PL)

Madam President, are only greed, Pani przewodniczaca! Czy wina za
euphoria and cheap money to całe to zamieszanie należy obarczyć tylko
be blamed for the whole mess? chciwość, euforie i dostepność taniego pieniadza?

languages. Tables 2.20, 2.21, and 2.22 present the data statistics for each translation

task. Unlike for CoVoST-2 X→EN translation tasks, the average speech segment

duration is around 9 to 11 seconds, which is significantly longer than speech segments

in the CoVoST-2 corpus. Table 2.12 shows two paired translation examples from two

different translation tasks in the Europarl corpus. Notice the length of the translations

is significantly longer than the CoVoST dataset. Hence, Europarl could be considered

a much harder translation task than CoVo on European languages.
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Table 2.13: Languages that exist in the CommonVoice Version 8 multilingual tran-
scribed speech corpus.

Lang Code Lang Family Script

ar Arabic Arabic Arabic

as Assamese Indo-Aryan Assamese
hi Hindi Indo-Aryan Devanagari
mr Marathi Indo-Aryan Devanagari
or Oriya Indo-Aryan Odia
pa-IN Panjabi Indo-Aryan Gurmukhi
ur Urdu Indo-Aryan Arabic

az Azerbaijani Turkic Latin-Cyrillic-Persian
kk Kazakh Turkic Cyrillic
ky Kyrgyz Turkic Kyrgyz
tr Turkish Turkic Latin
tt Tatar Turkic Arabic-Cyrillic
ug Uighur Turkic Arabic
uz Uzbek Turkic Latin-Cyrillic

be Belarusian Slavic Cyrillic
bg Bulgarian Slavic Cyrillic
cs Czech Slavic Latin
mk Macedonian Slavic Cyrillic
pl Polish Slavic Latin
ru Russian Slavic Cyrillic
sk Slovak Slavic Latin
sl Slovenian Slavic Latin
sr Serbian Slavic Cyrillic-Latin
uk Ukrainian Slavic Cyrillic

ca Catalan Romance Latin
es Spanish Romance Latin
fr French Romance Latin
gl Galician Romance Latin
it Italian Romance Latin
pt Portuguese Romance Latin
ro Romanian Romance Latin

cy Welsh Celtic Latin-Welsch

da Danish Germanic Latin
de German Germanic Latin
en English Germanic Latin
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Table 2.14: Languages that exist in the CommonVoice Version 8 multilingual tran-
scribed speech corpus.

Lang Code Lang Family Script

fy-NL Western-Frisian Germanic Latin
nl Dutch Germanic Latin
sv-SE Swedish Germanic Latin

el Greek Hellenic Greek

eo Esperanto Esperanto Latin

et Estonian Uralic Latin
fi Finnish Uralic Latin
hu Hungarian Uralic Latin

eu Basque Basque Basque

fa Farsi Iranian Arabic

ga-IE Irish Irish Latin

ha Hausa Afro-Asiatic Latin

hy-AM Armenian Armenian Armenian

id Indonesian Malayo-Polyn Latin

ig Igbo Niger-Congo Latin
rw Kinyarwanda Niger-Congo Latin
sw Swahili Niger-Congo Latin

ja Japanese Japonic Kanji-Kana

ka Georgian Kartvelian Georgian

lt Lithuanian Baltic Latin
lv Latvian Baltic Latin

ml Malayalam Dravidian Malayalam
ta Tamil Dravidian Tamil

mn Mongolian Mongolic Cyrillic

mt Maltese Semitic Latin

th Thai Kra-Dai Thai

vi Vietnamese Vietic Latin

zh-CN Chinese-Mandarin Chinese Chinese
zh-HK Chinese-HK Chinese Chinese
zh-TW Chinese-TW Chinese Chinese
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Table 2.15: CommonVoice language-wise corpus statistics. We report the number of
transcribed speech segments for each language, the total hours of transcribed speech,
the average duration in seconds of a speech segment, and the number of speakers.
The rows are arranged in decreasing order of speech segments in the train set.

#Segments

Lang Code Train Dev Test Total (Hrs) Avg. Dur. (s) #Spks

en 1497733 16326 16326 2185.8 5.1 79398
rw 1406052 15988 16213 2000.7 5.0 1055
eo 817861 14902 14915 1407.9 6.1 1415
de 714468 16007 16007 1062.8 5.1 16390
be 646332 15803 15801 903.9 4.8 6160
ca 575444 16077 16078 916.8 5.4 6665
fr 564816 16021 16021 826.1 5.0 16082
fa 264722 9728 9728 317.3 4.0 4016
es 258330 15440 15440 404.6 5.0 22741
it 179217 14905 14905 310.6 5.3 6576
ta 103042 11473 11499 217.7 6.2 679
pl 99367 7748 7749 142.2 4.5 3026
th 98442 10769 10769 142.1 4.3 7414
ru 93070 9415 9419 162.6 5.2 2452
sw 81987 8805 8941 146.8 5.3 288
pt 78826 8302 8301 112.0 4.2 2365
cy 76468 5131 5144 116.3 4.8 1695
zh-HK 73570 5563 5563 99.7 4.2 2738
nl 61311 10477 10477 98.0 4.3 1462
zh-TW 61109 4200 4200 62.6 3.2 1695
eu 55727 6463 6463 98.9 5.2 1192
ar 54336 10386 10388 85.2 4.2 1216
uz 50094 10849 11598 81.0 4.0 1355
tr 46787 8110 8339 65.1 3.7 1228
uk 35459 5802 5802 63.4 4.9 684
cs 31535 6950 7267 54.9 4.3 525
ug 30225 2742 2744 59.8 6.0 382
fy-NL 29832 3024 3024 49.6 5.0 1132
sv-SE 27695 4764 4843 40.8 3.9 718
zh-CN 27357 9688 9698 68.0 5.2 4013
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Table 2.16: CommonVoice language-wise corpus statistics. We report the number of
transcribed speech segments for each language, the total hours of transcribed speech,
the average duration in seconds of a speech segment, and the number of speakers.
The rows are arranged in decreasing order of speech segments in the train set.

#Segments

Lang Code Train Dev Test Total (Hrs) Avg. Dur. (s) #Spks

ky 26266 1613 1613 37.2 4.5 234
ja 22207 4124 4483 40.8 4.8 550
tt 20204 2812 5086 29.2 3.7 206
id 16059 3207 3608 25.8 4.1 394
et 12077 2613 2613 32.4 6.7 723
sk 11422 2290 2217 17.7 4 133
el 10479 1690 1681 15.9 4.1 312
ro 6855 3683 3843 15.8 4.0 332
hu 6736 3865 4020 19.9 4.9 197
sl 6553 1229 1193 9.6 3.9 125
lt 5146 3370 3647 17.4 5.2 249
mn 4469 1829 1882 12.4 5.5 451
hi 4019 2175 2693 11.7 4.7 276
lv 3565 1829 2148 7.1 3.4 115
fi 3530 1430 1739 8.5 4.5 171
ga-IE 3391 512 509 4.3 3.5 153
gl 3120 2240 2258 10.2 4.8 130
mt 3097 1596 1625 8.3 4.7 203
bg 3087 600 1700 8.2 5.5 60
vi 2946 0 1120 4.5 4.0 200
da 2811 1259 1390 6.6 4.4 137
ka 2407 1348 1345 7.6 5.4 127
ha 1941 0 892 3.4 4.3 25
sr 708 572 598 1.5 2.8 51
pa-IN 590 266 360 1.6 4.8 47
or 546 306 213 1.5 5.1 79
as 508 116 294 1.4 5.3 38
hy-AM 500 229 335 1.8 6.1 32
ur 469 341 341 1.3 4.2 48
mr 429 269 306 1.6 5.8 14
kk 406 316 336 1.5 5.0 75
az 39 15 18 0.1 5.4 10
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Table 2.17: CommonVoice language-family-wise corpus statistics. We report the num-
ber of transcribed speech segments for each language family, the total hours of tran-
scribed speech, the average duration in seconds of a speech segment, and the number
of speakers. The rows are arranged in decreasing order of speech segments in the
train set.

#Segments

Family Train Dev Test Total (Hrs) Avg. Dur. (s) #Spks #Langs

Germanic 2333850 51857 52067 3443.6 4.6 99237 6
Romance 1666608 76668 76846 2596.1 4.8 54891 7
Niger-Congo 1488039 24793 25154 2147.5 5.6 1344 3
Slavic 927624 50409 51746 1364.1 4.5 13219 10
Esperanto 817861 14902 14915 1407.9 6.1 1415 1
Iranian 264722 9728 9728 317.3 4.0 4016 1
Turkic 174021 26457 29734 273.9 4.6 3490 7
Chinese 162036 19451 19461 230.3 4.2 8446 3
Dravidian 103344 11473 11499 218.0 5.2 689 2
Kra-Dai 98442 10769 10769 142.1 4.3 7414 1
Celtic 76468 5131 5144 116.3 4.8 1695 1
Basque 55727 6463 6463 98.9 5.2 1192 1
Arabic 54336 10386 10388 85.2 4.2 1216 1
Uralic 22343 7908 8372 60.8 5.4 1091 3
Japonic 22207 4124 4483 40.8 4.8 550 1
Malayo-Polyn 16059 3207 3608 25.8 4.1 394 1
Hellenic 10479 1690 1681 15.9 4.1 312 1
Baltic 8711 5199 5795 24.5 4.3 364 2
Indo-Aryan 6561 3473 4207 19.1 5.0 502 6
Mongolic 4469 1829 1882 12.4 5.5 451 1
Irish 3391 512 509 4.3 3.5 153 1
Semitic 3097 1596 1625 8.3 4.7 203 1
Vietic 2946 0 1120 4.5 4.0 200 1
Kartvelian 2407 1348 1345 7.6 5.4 127 1
Afro-Asiatic 1941 0 892 3.4 4.3 25 1
Armenian 500 229 335 1.8 6.1 32 1
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Table 2.18: CoVoST-2 X→English speech-to-text translation corpus. We report cor-
pus statistics for each translation task corresponding to each source language X. We
present the speech segments in different data splits, the total hours of translated
speech, the average duration in seconds of a speech segment, and the number of
speakers. Their are 21 translation tasks.

#Segments

Source Lang. (X) Train Dev Test Total (Hrs) Avg. Dur. (s) #Spks

fr 207281 14752 14750 309.2 5.2 7420
de 127585 13503 13504 226.0 5.5 6255
es 78958 13203 13204 157.5 5.8 7265
ca 95833 12730 12726 174.7 5.4 3432
it 31637 8877 8892 73.7 5.7 3096
ru 12112 6110 6300 38.7 5.7 455
zh-CN 7085 4842 4898 26.5 5.8 889
pt 9156 3315 4021 20.0 4.5 319
fa 53920 3429 3422 58.8 4.4 2464
et 1782 1576 1568 9.0 6.6 229
mn 2063 1756 1757 8.4 5.5 237
nl 7108 1699 1699 11.2 4.0 597
tr 3966 1624 1629 7.9 4.0 434
ar 2283 1758 1695 5.8 3.7 132
sv-SE 2160 1349 1595 4.3 3.1 94
lv 2337 1125 1629 4.9 3.5 59
sl 1843 509 360 2.9 3.7 31
ta 1358 384 786 3.1 4.4 53
ja 1119 635 684 3.0 4.6 42
id 1243 792 844 3.0 3.8 51
cy 1241 690 690 3.6 5.0 644
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Table 2.19: CoVoST-2 English→X speech-to-text translation corpus. We report cor-
pus statistics for each translation task corresponding to each source language X. We
present the speech segments in different data splits, the total hours of translated
speech, the average duration in seconds of a speech segment, and the number of
speakers. There are 15 translation tasks.

#Segments

Target Lang. (X) Train Dev Test Total (Hrs) Avg. Dur. (s) #Spks

de 289202 15519 15370 479.8 5.7 23894
zh-CN 289382 15524 15375 480.1 5.7 23894
fa 289367 15531 15374 480.0 5.7 23894
et 287030 15440 15375 476.0 5.7 23894
mn 289402 15531 15362 480.1 5.7 23894
tr 289211 15528 15372 479.8 5.7 23894
ar 289342 15530 15528 480.2 5.7 23894
sv-SE 289301 15526 15368 479.9 5.7 23894
lv 288977 15526 15373 479.4 5.7 23894
sl 289211 15527 15358 479.8 5.7 23894
ta 289395 15531 15375 480.1 5.7 23894
ja 289348 15530 15368 480.0 5.7 23894
id 289398 15530 15372 480.1 5.7 23894
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Table 2.20: Europarl X→Y speech-to-text translation corpus. We report corpus
statistics for each translation task corresponding to each source language X and target
language Y. We present the speech segments in different data splits, the total hours
of translated speech, the average duration in seconds of a speech segment, and the
number of speakers. There are 72 translation tasks.

#Segments

Sorce (X) Target (Y) Train Dev Test Total (Hrs) Avg. Dur. (s)

en de 32628 1320 1253 83.2 8.4
en fr 31777 1281 1214 81.4 8.5
en pt 31750 1294 1262 81.5 8.4
en es 31607 1272 1267 81.5 8.5
en nl 31401 1269 1235 80.4 8.5
en pl 31136 1258 1238 79.6 8.4
en it 29552 1122 1130 80.0 9.0
en ro 28598 1070 1095 72.5 8.4
de en 12904 2603 2631 41.3 8.3
fr en 12446 1481 1804 39.3 9.1
it en 11285 1400 1686 45.0 11.1
pl en 11148 1564 2229 37.8 9.2
fr nl 8524 1128 1150 27.4 9.2
ro en 8376 2018 1963 34.6 10.3
fr pt 8183 1048 1100 26.3 9.2
fr de 8110 1088 1093 26.1 9.2
fr es 7857 1072 1098 25.6 9.2
fr pl 7620 1030 1113 24.9 9.2
de es 7617 1198 1421 23.8 8.4
de fr 7443 1167 1401 23.2 8.4
de nl 7440 1159 1305 22.8 8.3
es en 7402 1947 1816 31.2 10.1
de pt 7385 1162 1387 23.1 8.4
de pl 7351 1159 1376 22.7 8.4
fr it 7245 1004 1046 24.8 9.6
pl es 7177 1100 1253 23.9 9.1
pl de 7117 1085 1283 23.5 9.1
pl pt 7089 1006 1251 23.4 9.1
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Table 2.21: Europarl X→Y speech-to-text translation corpus. We report corpus
statistics for each translation task corresponding to each source language X and target
language Y. We present the speech segments in different data splits, the total hours
of translated speech, the average duration in seconds of a speech segment, and the
number of speakers. There are 72 translation tasks.

#Segments

Sorce (X) Target (Y) Train Dev Test Total (Hrs) Avg. Dur. (s)

pl fr 7079 1047 1258 23.5 9.1
de ro 7065 1031 1233 21.4 8.4
pl nl 7064 1059 1224 23.2 9.1
fr ro 6933 839 949 22.1 9.2
de it 6647 1146 1217 22.1 8.9
it de 6619 894 922 26.1 11.1
it es 6614 877 885 26.0 11.2
it pt 6550 786 871 25.5 11.1
it fr 6466 845 893 25.4 11.1
pl it 6454 1076 1178 22.7 9.5
it pl 6367 831 820 24.9 11.1
it nl 6296 765 837 24.5 11.1
pl ro 6166 804 991 19.9 9.1
it ro 5878 675 742 22.6 11.1
pt en 4918 1747 2286 26.1 10.5
es pt 4727 1141 1089 19.6 10.1
es de 4702 1147 1114 19.6 10.1
es fr 4673 1115 1082 19.4 10.1
es nl 4576 1146 1094 19.2 10.1
es pl 4503 1077 1059 18.8 10.2
es it 4476 1065 1079 19.1 10.4
ro de 4291 1185 1231 19.0 10.3
ro es 4227 1165 1204 18.6 10.3
ro nl 4182 1123 1210 18.4 10.3
ro pt 4180 1144 1200 18.5 10.4
es ro 4156 999 910 17.1 10.1
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Table 2.22: Europarl X→Y speech-to-text translation corpus. We report corpus
statistics for each translation task corresponding to each source language X and target
language Y. We present the speech segments in different data splits, the total hours
of translated speech, the average duration in seconds of a speech segment, and the
number of speakers. There are 72 translation tasks.

#Segments

Sorce (X) Target (Y) Train Dev Test Total (Hrs) Avg. Dur. (s)

ro fr 4117 1160 1157 18.2 10.3
ro pl 4037 1156 1164 17.9 10.3
ro it 3960 1099 1168 18.1 10.6
nl en 3219 1913 1747 15.2 7.9
pt fr 3141 1210 1273 16.6 10.5
pt es 3132 1218 1256 16.5 10.5
pt de 3124 1233 1271 16.5 10.4
pt it 3016 1182 1205 16.3 10.8
pt nl 2986 1107 1228 15.5 10.4
pt pl 2953 1154 1196 15.6 10.5
pt ro 2943 1109 1108 15.0 10.4
nl es 2064 1155 1014 9.6 8.1
nl de 2057 1192 1063 9.6 8.0
nl fr 2042 1144 1012 9.3 8.0
nl pt 1925 1117 942 8.9 8.0
nl it 1875 977 890 8.9 8.6
nl pl 1839 1040 967 8.7 8.1
nl ro 1799 1132 877 8.5 8.0
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Chapter 3

Domain Adaptation of Speech

Recognition Models via

Dropout-Uncertainty Driven

Self-Training

This chapter1 addresses the transfer learning scenario of source-to-target domain

adaptation of End-to-End speech recognition models. The adaptation scenario is

that we have labeled (transcribed) speech data ℒ in a source domain for training an

ASR model, and an unlabeled set 𝒰 of speech utterances 𝑥𝑢 ∈ 𝒰 from the target

domain. The goal is to adapt the ASR model trained on the source domain labeled

data ℒ to the target domain by leveraging target domain unlabeled data 𝒰 . To that

end, we propose a Self-Training (ST) algorithm called Dropout-Uncertainty Driven

Self-Training (DUST). ST is a pseudo-labeling method that uses a pseudo-labeling

(Teacher) function 𝐺PL to label (transcribe) the unlabeled set of speech utterances

𝑥𝑢 ∈ 𝒰 in the target domain. The transcripts 𝑦𝑢 generated for set 𝒰 using 𝐺PL are

known as the pseudo-labels and are denoted by a pseudo-labeled set (𝑥𝑢, 𝑦𝑢) ∈ 𝒫 . Af-

ter pseudo-labeling, we train an ASR model (Student) on a combined source domain

1The work presented in this chapter is published in Khurana, Moritz, et al. (2021)
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labeled and target domain unlabeled set ℒ ∪ 𝒫 . The initial pseudo-labeler 𝐺𝑃𝐿 or

teacher is an ASR model trained on source domain labeled set ℒ. Since the student is

trained on source and target data distributions, it is expected to generalize better to

the target domain. ST is an iterative process where the student becomes the pseudo-

labeler, and another student ASR model is trained using the new pseudo-labeled set.

Figure 3-1: (Left to Right) Overview of the domain adaptation scenario we tackle in
this chapter, the self-training algorithm we use, and our proposed improvement to
classic self-training suitable for the domain adaptation problem.

Labeled
Data in 
Source 
Domain

Unlabeled
Data in 
Target 

Domain

𝒰
Adaptation Scenario

Teacherℒ
Classic Self-Training

Inference

Studentℒ ∪ 𝒫

𝒰

ℒ

𝒫

Teacher

DUST (Ours)

Inference

Studentℒ ∪ 𝒫

𝒰

ℒ

𝒫Filtering

Iterate
Iterate

Since, in our case, there is a mismatch between the source and target data dis-

tributions, i.e., 𝑃 (𝑋source) ̸= 𝑃 (𝑋target), the pseudo-labels generated for the target

domain unlabeled data by the teacher that is trained on source domain could be

quite erroneous, depending on the severity of the source-target domain mismatch.

We address this problem by proposing a Pseudo-Label filtering mechanism, which is

the main contribution of this work.

We show the effectiveness of DUST on two domain adaptation scenarios: (i) Wall

Street Journal read news speech source to TED-LIUM 3 oratory speech target domain

adaptation, and (ii) Wall Street Journal read news speech source to Switchboard

conversational speech target domain adaptation. For background on datasets and how

they differ, see Section 2.4.1. The problem we tackle in this chapter, the algorithm

we use and our contribution is illustrated in Fig. 3-1.
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3.1 Introduction

Over the past years, the performance of end-to-end automatic speech recognition

(ASR) systems has improved dramatically. This success is driven by improved neu-

ral network architectures and training frameworks (Graves, Fernández, et al., 2006;

Graves, A. Mohamed, and G. E. Hinton, 2013; Chorowski et al., 2015b; Povey, Ped-

dinti, et al., 2016; Hori, Watanabe, and Hershey, 2017), increasingly large amounts

of labeled data (Panayotov et al., 2015; Ardila et al., 2020), and increased computa-

tional resources for training complex models. However, ASR performance degrades

significantly when the target domain (testing conditions) does not match the source

domain (training data). Domain mismatch between training and testing conditions

occurs commonly when ASR systems are deployed in the real world, with several

factors contributing to it, such as dialectal and accent variations, speaking style (e.g.,

conversational vs. read), and difference in acoustic conditions (e.g., noisy vs. clean).

A straightforward approach to remedy this problem is collecting labeled data in the

target domain and using it to adapt a pre-trained source model. However, manually

annotating large amounts of data for every new target domain is expensive and time-

consuming. Thus, there is a need for unsupervised adaptation algorithms that can

leverage unlabeled data for source to target domain adaptation (Bell et al., 2020).

Earlier works on domain adaptation for speech recognition explore the framework

of knowledge distillation (G. Hinton, Vinyals, and Dean, 2015), also known as the

Teacher/Student (T/S) framework. The T/S framework applied to ASR (J. Li et

al., 2014) can be summarized as follows. Given 𝒟𝑠 and 𝒟𝑡, denoting the source

and target data distributions, the teacher model is trained on labeled data {𝑥𝑠𝑖 , 𝑦𝑖} :

𝑥𝑠𝑖 ∼ 𝒟𝑠. Then the student model is trained on the parallel source and target data,

{𝑥𝑠𝑖 , 𝑥𝑡𝑖}𝑁
′

𝑖=1 : 𝑥𝑠 ∼ 𝒟𝑠, 𝑥
𝑡 ∼ 𝒟𝑡, to minimize the Kullback-Leibler (KL) divergence

(Kullback and Leibler, 1951) between its output senone posterior distribution on 𝑥𝑡

to that of the teacher’s on 𝑥𝑠. T/S training requires parallel speech data, which can

be easily simulated in some cases, such as adding noise to clean speech. Still, it is

not clear how to design data transformations from 𝒟𝑠 to 𝒟𝑡 in other scenarios such
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as formal speech to dialectal or accented speech, adult speech to child’s speech, read

speech to conversational speech and so on.

Recently, distribution alignment methods that do not require access to parallel

data have become popular for unsupervised domain adaptation. These methods at-

tempt to align the source and target data distributions. Some alignment tools that

have shown promise are optimal transport (Courty et al., 2015), domain-adversarial

training with gradient reversal layer (GRL) (Ganin et al., 2016), and training using

discrepancy losses (Saito et al., 2018). Domain adversarial training uses two players

to align the source and target distributions: domain classifier and feature extrac-

tor. The features from the feature extractor are shared between the task-specific

and domain classifiers. The domain classifier is a binary classifier trained to classify

the data sample as a source or target. The feature extractor attempts to align the

source and target distributions to fool the discriminator. Apart from the adversarial

framework’s optimization challenges, this framework does not consider task-specific

decision boundaries when aligning distributions, although an improvement is sug-

gested in (Saito et al., 2018). Domain adversarial learning with GRL is used for ASR

in (Adams et al., 2019b; Sun et al., 2018).

We focus on self-training (ST) (Scudder, 1965) for unsupervised domain adapta-

tion. ST proceeds by training a teacher model on the labeled source domain data,

which generates pseudo-labels for the unlabeled target domain data to obtain pseudo-

parallel data. A student model is then trained on the augmented training data, in-

cluding labeled and pseudo-parallel data, to obtain a model expected to generalize

better to the target domain. ST has recently shown excellent performance for neural

sequence generation tasks such as machine translation (He et al., 2019) and ASR

(Hsu, A. Lee, et al., 2020; Weninger et al., 2020; Moritz, Hori, and Le Roux, 2020),

achieving state-of-the-art performance for semi-supervised ASR when applied in an

iterative manner (Q. Xu et al., 2020). Classical works in ST (Nigam et al., 2000;

Blum and Chawla, 2001; Z.-H. Zhou and M. Li, 2005) suggest that its performance

is unstable if the generated pseudo-labels are highly erroneous. Hence, ST is often

accompanied by a filtering process to remove such pseudo-labeled utterances from
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the training data. However, recent work on ST in the context of neural networks has

shown strong results with no filtering at all (Q. Xu et al., 2020). We hypothesize that

this is due to two key assumptions made in the work of (Q. Xu et al., 2020):

• No mismatch between the source and target domain. Hence, the teacher model

trained with labeled source domain data can generate relatively clean pseudo-

labels for the unlabeled target domain data. In (Q. Xu et al., 2020), the labeled

and unlabeled data are sampled from the same domain with no mismatch. The

labeled and unlabeled data came from the LibriLight audiobooks corpus (J.

Kahn et al., 2020).

• Access to large amounts of in-domain text data is used to build a robust language

model (LM) for beam search decoding to generate the pseudo-labels for student

model training. In-domain language models could have a significant impact on

generating clean pseudo-labels.

This work considers where these two assumptions do not hold: we focus on a domain

mismatch between the source and target data sets with access to ground-truth labels

for the source domain only. In this case, the pseudo-labels generated by the teacher

model for the unlabeled target domain data may be less accurate, which increases the

need to apply a pseudo-label filtering strategy. To that end, we propose dropout-based

uncertainty-driven self-training (DUST), which filters pseudo-labeled data based on

the model’s uncertainty about its prediction as measured using the degree of agree-

ment between multiple transcriptions obtained with various realizations of dropout

and a reference transcription obtained without dropout (Gal and Ghahramani, 2016;

Vyas et al., 2019).

We make the following contributions. We show that DUST is an effective

method for mismatched domain adaptation and substantially improves over the base-

line model, which is trained on the source domain labeled data only, as well as over

iterative ST without filtering (Q. Xu et al., 2020), whereby the largest gain is ob-

served when the source and target domain mismatch is most severe. In addition,

DUST leads to faster and more efficient training than iterative ST since the filtering

81



process selects only a fraction of the whole unlabeled data set with reliable pseudo-

labels. Finally, we perform a preliminary study showing that DUST can be combined

with a self-supervised representation learning approach for low-resource conditions.

3.2 Method

3.2.1 Using dropout to measure model’s uncertainty

DUST uses the model’s uncertainty about its predictions 𝑦𝑢 for an unlabeled target

data point 𝑥𝑢 to weed out the pseudo-labeled pair {𝑥𝑢, 𝑦𝑢}, if the model’s uncertainty

is high. Assuming the model involves dropout layers (Srivastava et al., 2014), un-

certainty can be quantified by sampling multiple predictions from the model using

dropout and computing agreement between the sampled predictions and a reference

prediction obtained without dropout, with low agreement corresponding to high un-

certainty. Intuitively, this filtering process can be understood as polling multiple

experts to predict an unlabeled data point. If the experts’ predictions agree on a par-

ticular data point, it will likely be correct. Formally, the method can be understood

using the work of Gal and Ghahramani (2016), which connected Bayesian probabil-

ity theory and neural networks trained with dropout. In particular, they show that

a model’s predictive variance approximately equals the sample variance of multiple

stochastic passes through the network. Here, a stochastic pass refers to inference with

a dropout realization. This technique is closely related to (Vyas et al., 2019), which

uses a model’s prediction uncertainty computed using dropout to estimate word er-

ror rates. DUST combines ST and pseudo-label filtering based on the ASR model’s

uncertainty for an unlabeled speech utterance using dropout.

A pedagogical illustration of how we use dropout to compute the model’s predic-

tive uncertainty and weed out noisy pseudo-labels is shown in Fig. 3-3.
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3.2.2 Self-training with DUST

The overall DUST procedure is summarized in Algorithm 1. We assume that we have

access to a set of labeled parallel data ℒ = {𝑥𝑖, 𝑦𝑖}𝐿𝑖=1 in a source domain and a set of

unlabeled data 𝒰 = {𝑥𝑗}𝐿+𝑈𝑗=𝐿+1 in a target domain, with potentially a strong mismatch

between the two domains. DUST proceeds by training a base model 𝑓𝑝𝜃 on the labeled

data ℒ with dropout layers, using a dropout probability 𝑝 ∈ [0, 1]. This base model

is then used to provide predictions on the unlabeled data 𝒰 to generate pseudo-

parallel data, of which only a subset 𝒫 is selected based on the model’s uncertainty

on each unlabeled data point, as described further below. Once the subset 𝒫 has

been determined, a new model is trained on the labeled data ℒ augmented with the

subset 𝒫 of pseudo-parallel data. The procedure can be reiterated, with the newly

trained model used as the base model.

An unlabeled data point 𝑥𝑢 is considered for inclusion in the subset 𝒫 of se-

lected pseudo-parallel data as follows. 1) First, a reference hypothesis 𝑦ref
𝑢 for 𝑥𝑢 is

generated using the model with disabled dropout layers, resulting in a deterministic

inference process which we refer to as deterministic forward pass. 2) Second, multi-

ple hypotheses 𝑦𝑡𝑢 are sampled from the model by running it 𝑇 times with dropout

using different random seeds in 𝒯 , a process we refer to as stochastic forward pass.

3) Finally, the Levenshtein edit distance (Levenshtein, 1966) between each of the 𝑇

sampled hypotheses, and the reference hypothesis is computed, leading to a set ℰ of

𝑇 distances. The edit distance is normalized by the length of the reference hypoth-

esis. If all the values in ℰ are below a pre-defined threshold ratio 𝜏 of the length

|𝑦ref
𝑢 | of the reference hypothesis, then we add the pseudo-labeled data point {𝑥𝑢, 𝑦ref

𝑢 }

to 𝒫 , otherwise we reject it. By setting the filtering threshold low, we can accept

only pseudo-labeled data points on which stochastic samples have a high agreement,

which implies low sample variance and, in turn, low model predictive uncertainty

(Gal and Ghahramani, 2016). Our working hypothesis is that data points on which

the model has a low predictive uncertainty should be good enough for self-training.

We empirically show that low thresholds weed out the noisy pseudo-labels, i.e., inac-
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Algorithm 1 Dropout-based Uncertainty-driven Self-Training (DUST)
1: Given labeled data ℒ and unlabeled data 𝒰
2: Given a set 𝒯 that contains 𝑇 natural numbers
3: Train a base model 𝑓𝑝𝜃 , with dropout 𝑝, on labeled data ℒ
4: repeat
5: Let 𝒫 be the set of selected pseudo-labeled data points
6: Let ℰ be a set of edit distances
7: Initialize 𝒫 and ℰ as empty sets
8: for all 𝑥𝑢 ∈ 𝒰 do
9: Compute deterministic forward pass 𝑓 0

𝜃 (𝑥𝑢)
10: 𝑦ref

𝑢 = beam_search(𝑓 0
𝜃 (𝑥𝑢))

11: for all 𝑡 ∈ 𝒯 do
12: Set random seed to 𝑡
13: Compute stochastic forward pass 𝑓𝑝𝜃 (𝑥𝑢)
14: 𝑦𝑡𝑢 = beam_search(𝑓𝑝𝜃 (𝑥𝑢))
15: 𝑒 = edit_distance(𝑦𝑡𝑢, 𝑦

ref
𝑢 )

16: Add 𝑒 to the set ℰ
17: end for
18: if max(ℰ) < 𝜏 |𝑦ref

𝑢 | (with 𝜏 a filtering threshold) then
19: Add {𝑥𝑢, 𝑦ref

𝑢 } to the set 𝒫
20: end if
21: end for
22: Train a new model 𝑓𝑝𝜃 on 𝒜 = ℒ ∪ 𝒫
23: until convergence or maximum self-training iterations reached

curate pseudo-labels (Section 3.4.1). In practice, running beam search multiple times

is computationally expensive, and hence, we only run stochastic beam search 𝑇 = 3

times to draw three samples from the model.

3.3 Experiment Setup

3.3.1 Domain Adaptation Targets

We use the Wall Street Journal (Douglas B Paul and J. Baker, 1992) (WSJ) dataset

as our source domain, and TED-LIUM 3 (Hernandez et al., 2018b) (TED) as well

as Switchboard (Godfrey, Holliman, and McDaniel, 1992) (SWBD) as our target

domains. WSJ is a read English news speech corpus comprising 80 hours of labeled

training data spoken by 280 speakers from different parts of the United States. TED
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consists of 350 hours of transcribed English Ted Talks on a wide range of topics

by 2,000 speakers worldwide. SWBD consists of 260 hours of two-sided telephone

conversations among 543 speakers (302 male, 241 female) from all areas of the United

States. The domain mismatch between source and target domains is quite evident

(See baseline results in Tables 3.2, and 3.4) and is most severe with the SWBD as the

target domain. See Section 2.4.1 for a detailed analysis of the three transcribed speech

datasets. The domain mismatch could also be seen from the example transcripts from

WSJ, TED, and SWBD in Tables 2.2, 2.4, and 2.5 respectively.

3.3.2 Neural Network Acoustic Model

The neural network model consists of two functions, EncPre(·), which takes in the

input speech sequence and outputs a sub-sampled sequence, and EncBody(·), which

processes the subsampled sequence and outputs the logits for classification (Karita et

al., 2019). The input speech is a sequence of 80-dimensional log-mel spectral energies

plus three pitch features. EncPre(·) is a 2-layer Convolutional Neural Network with

256 channels, stride 2, and kernel size 3 × 3. EncBody(·) consists of 12 transformer

blocks. Each block consists of a self-attention layer followed by two fully connected

layers with an interleaved ReLU non-linearity. A dropout layer is applied after self-

attention and each fully connected layer. Layer-Norm is used after both self-attention

and the two fully connected layers. The number of neurons in the first fully connected

layers is 1024. Each self-attention layer consists of 4 attention heads with an attention

vector dimension of 256. We set the dropout rate to 0.1 during training and used the

same dropout rate when sampling predictions from the model for filtering.

The input to the neural network encoder is the 83 acoustic feature sequence.

The feature vector comprises 80 Mel FBanks, and three pitch features. The acoustic

features are extracted from the corrupted speech waveform using MUSAN and Reverb

data augmentation methods explained in Section 2.2.2. As illustrated in Fig. 3-4, the

forward pass of a single speech waveform can be described as follows:

• We start with a speech waveform a1:𝑆 ∈ R𝑆, sampled at 16KHz, where 𝑆 is the
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Figure 3-4: An illustration of the ASR model used in this chapter. Both the teacher
and student ASR models have this architecture. For better understanding, we sepa-
rate the model architecture into data processing (left) and neural network (right). The
speech waveform is augmented with MUSAN and Reverb data augmentation meth-
ods. We extract 80 Mel FBanks + 3 Pitch features from the augmented waveform to
get a sequence of acoustic feature vectors. We apply SpecAugment to the acoustic
feature sequence. The masked sequence is inputted to the neural network encoder,
which consists of a convolutional neural network followed by a stack of Self-Attention
transformer blocks. The final layer (Linear CTC) maps the encoder representation
to output a character-tokenized transcript. The model is trained using CTC loss.
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• We perform MUSAN and Reverb data augmentation (Section 2.2.2) to get the

augmented waveform ã1:𝑆 ∈ R𝑆.

• We transform the augmented waveform â1:𝑆 to the acoustic feature sequence

x1:𝑇 ∈ R𝑇×83, where 𝑇 = 𝑆/160. Each feature vector x𝑡 ∈ R83 corresponds to

10ms of the input speech segment.

• The acoustic feature sequence x1:𝑇 ∈ R𝑇×83 is transformed by a two-layered

Convolutional Neural Network (CNN) (EncPre(·)) that outputs an embedding
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sequence f1:𝑇/4 ∈ R𝑇/4×256. The CNN downsamples the acoustic feature se-

quence by a factor of four.

• We apply SpecAugment (2D mask) to f1:𝑇/4 to get the masked embedding se-

quence f̃1:𝑇/4. We use two frequency and time masks of size 30 and 40, re-

spectively, and perform time warping with a warping factor of five. The above

setting of the masking parameters is proposed in the SpecAugment paper (Park,

Chan, et al., 2019).

• The masked sequence f̃1:𝑇/4 is transformed by a stack of Self-Attention trans-

former blocks (EncBody(·)) to a contextual embedding sequence c1:𝑇/4 ∈ R𝑇/4×256.

• Finally, a linear projection layer maps the contextual embedding sequence c̃1:𝑇/4

to a distribution over the output character vocabulary o ∈ R𝑇/4×|𝑉 |, where 𝑉 is

the character vocabulary. The output distribution and the character-tokenized

ground-truth text transcript are used to compute the CTC loss for training.

Both the teacher and student models have the same architecture.

3.3.3 Inference

The inference process can be described below:

𝑦 = argmax𝑦 log 𝑝(𝑦|x) + 𝛽 log 𝑝(𝑦) (3.1)

𝑝(𝑦|x) is output by the neural network acoustic model (AM) described above, and

𝑝(𝑦) is an external language model (LM) trained on a text corpus. The scores from

the AM and LM are combined to infer the most likely transcript corresponding to an

acoustic feature sequence x. This work uses beam search for inference and a 10-gram

language model trained using the KenLM language modeling toolkit (Heafield, 2011).

88



Figure 3-5: (Left) Distribution of the variance of the agreement between stochastic
and deterministic samples as a measure of the model’s uncertainty on the source
(WSJ) and target (TED, SWBD) test data. (Right) Influence of filtering threshold 𝜏
on LER [%] of accepted pseudo-labeled utterances for TED.

3.3.4 Hyperparameters

The neural network acoustic model is trained using the Connectionist Temporal Clas-

sification (CTC) framework (Graves, Fernández, et al., 2006). The Adam optimizer

with a learning scheduler given by (Dong, S. Xu, and B. Xu, 2018, Eq. 10) is used with

a learning rate factor of 5.0 and 25k training iterations for warmup. The models are

trained for 100 epochs. The final model is obtained by averaging the ten best models

with the lowest loss on the validation set. For inference, a beam search decoding

algorithm is used with a beam size of 20.

3.4 Evaluation

We show the efficacy of our proposed self-training algorithm DUST on two domain

adaptation scenarios; one with a moderate source-target domain mismatch and the

other with a severe source-target domain mismatch.
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3.4.1 Qualitative Analysis: Pseudo-Label Filtering

In Fig. 3-5, we show the efficacy of our filtering process in weeding out noisy pseudo-

labels. The box plot shows the variance of the agreement (normalized edit distance)

between the stochastic samples and the deterministic sample on source and target

domain data points to measure the model’s prediction uncertainty. The source domain

is WSJ, and the target domains are TED and SWBD. We train a base ASR model

on the source training data and generate ten stochastic samples and a deterministic

sample for each utterance in the test sets of the source and target domains via beam

search with an LM trained on the source domain text. Then, we compute the edit

distance between each sampled hypothesis and the reference hypothesis. Hence, we

get a list of ten edit distances for each utterance. We compute the variance of the

edit distance list and plot the variance corresponding to each speech utterance in

a box plot. Low variance corresponds to the high agreement between the sampled

predictions and hence low model predictive uncertainty. We hypothesize that the box

plot of variances would have a lower mean for in-domain data and increase as the

mismatch between the source and target domains increases. Also, the variance of

the box plot would be higher on speech utterances sampled from mismatched target

domains (TED and SWBD).

The box plot shows that the model’s uncertainty is significantly higher on target

domain data than on source domain data, which concurs with our intuition. Further-

more, the line graph shows the relationship between the filtering threshold 𝜏 and the

label error rate (LER) on the pool 𝒫 of accepted pseudo-labeled utterances for TED

as the target domain. We see that utterances in the set 𝒫 are much cleaner at lower

filtering thresholds, as shown by the low LERs.

3.4.2 Topline and Baseline

For all the experiments in subsequent sections, the baseline refers to the model trained

on WSJ’s labeled source domain training data. Topline refers to models trained on

the WSJ training data augmented with labeled data from the target domain. And,
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Table 3.1: Results on WSJ source to TED target domain adaptation using a 100k
subset of unlabeled target domain data for self-training, investigating different values
of filtering threshold 𝜏 . An LM trained on source domain text is used during the
filtering process and for decoding. #PL[k] is the size of the target domain pseudo-
label set PL used in each iteration of student model training. WERR refers to Word
Error Rate Recovery ( topline−𝑥

topline−baseline), where 𝑥 is the student model’s performance in
each iteration.

WER [%] WERR [%]

Method #PL[k] PL WSJ/eval92 TED/dev TED/test WSJ/eval92 TED/test

Baseline 6.8 37.1 35.0 0 0
Topline 4.6 15.9 14.8 100 100

First Self-Training Iteration
DUST1 (𝜏=0.1) 7 14.0 7.4 33.0 30.0 -27.2 24.7
DUST1 (𝜏=0.3) 38 25.0 6.1 30.0 26.8 31.8 40.6
DUST1 (𝜏=0.5) 70 34.0 6.3 31.3 27.6 22.7 36.6
DUST1 (𝜏=0.7) 90 39.0 6.2 31.1 27.9 27.2 35.1
ST1 (All) 100 42.0 6.3 31.0 27.7 22.7 36.1
Second Self-Training Iteration
DUST2 (𝜏=0.1) 35 14.8 6.9 30.1 27.3 -4.54 38.1
DUST2 (𝜏=0.3) 66 25.0 6.1 28.2 24.9 31.8 50.0
DUST2 (𝜏=0.5) 88 33.8 6.6 29.4 25.6 9.10 46.5
DUST2 (𝜏=0.7) 95 39.0 6.7 29.3 26.1 4.54 44.1
ST2 (All) 100 42.0 6.3 29.4 25.8 22.7 45.5

Self-Training with DUST involves training the model with labeled WSJ data and

pseudo-labeled target domain data.

3.4.3 Adaptation Scenario I: WSJ→TED

In Table 3.1, we first compare classic ST, where we use all of the pseudo-labeled

data since there is no filtering mechanism in classic ST, and DUST, where filtering is

used. We also investigate the effect of different thresholds (𝜏) on the downstream task

performance. This set of experiments is performed using a 100k subset of unlabeled

TED target domain data for self-training. We use an LM trained on source domain

text (WSJ) during the pseudo-label generation process via beam search. We report

both word error rate (WER) and WER recovery rate (WERR). WERR is computed

as follows:
topline − 𝑥

topline − baseline
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Table 3.2: Results on WSJ source to TED-LIUM target domain adaptation using all
unlabeled target domain data for self-training and setting 𝜏 = 0.3. An LM trained
on source domain text is used during the filtering process. #PL[k] is the size of the
target domain pseudo-label set PL used in each iteration of student model training.
WERR refers to Word Error Rate Recovery ( topline−𝑥

topline−baseline), where 𝑥 is the student
model’s performance in each iteration.

WER [%] WERR [%]

Method #PL[k] PL WSJ/eval92 TED/test WSJ/eval92 TED/test

Decoding with an LM trained on source domain text
Baseline 6.8 35.0 0 0
DUST1 100 25.0 5.9 26.5 40.9 40.3
DUST2 170 25.0 5.7 24.3 50.0 50.7
DUST3 185 24.8 5.7 23.5 50.0 54.5
DUST4 210 25.0 5.5 22.4 59.1 59.7
DUST5 230 25.4 5.6 21.1 54.5 66.0
Topline 4.4 13.9 100 100

Decoding with an LM trained on source & target domain text
Baseline 7.0 33.2 0 0
DUST5 230 25.4 5.4 19.3 59.2 67.4
Topline 4.3 12.6 100 100

where 𝑥 refers to the student model’s performance after an iteration of DUST.

We also report the number of selected utterances in PL (#PL) and the WER on

these utterances. With a filtering threshold of 0.3, DUST performs slightly better

than ST (All), 26.8 % vs. 27.7 %, while using approximately one-third of the pseudo-

labeled data (38k vs. 100k). When we compare downstream task performance using

different filtering thresholds, we make the following two observations:

• First, the downstream task performance is significantly better than the baseline

regardless of the filtering threshold.

• Second, the best results are obtained when the filtering threshold 𝜏 is set to mid-

range values, with the best setting being 0.3 based on the TED development

set.

From here on, we fix the threshold value 𝜏 to 0.3. We next perform multiple

rounds of self-training using all of the unlabeled target domain data, again using an
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LM trained on source domain text during the pseudo-label generation process. The

results are shown in Table 3.2. After each iteration, the number of selected utterances

in PL increases while their average WER remains roughly constant. Target domain

WER shows clear improvements, and after DUST5, we can recover 66% of the WER

of the topline when using a decoding LM trained on source domain text and an even

slightly higher 67% for a decoding LM trained on both source and target domain

text. Beyond five iterations of DUST, we do not see a significant improvement in the

student model’s performance.

In Table 3.3, we investigate whether an LM is needed for the pseudo-label gen-

eration. Our filtering process generates multiple stochastic samples, which requires

us to run beam search multiple times. This could be an expensive process, especially

when we have a large set of unlabeled data, and beam search without an LM for

a pseudo-label generation would accelerate the filtering process by a large margin.

The results in Table 3.3 show that we can achieve similar or better results without

using an LM for pseudo-label generation. In particular, we can recover 80% of WER

when decoding using no LM, 79% when using a source domain LM, and 76% when

using an LM trained on both source and target domain text. We achieve a WER of

17.6% on the target domain using DUST, which is quite close to the topline WER

of 12.6% and outperforms the best WER of 19.3% achieved in Table 3.2, where we

used a source domain LM during the pseudo-label generation process. Using a source

domain LM for PL generation biases the generated PL towards the source domain

text. This hinders generalization, assuming the seed model is good enough without

an LM for a sufficient amount of PL utterances to select.

3.4.4 Adaptation Scenario II: WSJ→SWBD

Table 4 shows the results on SWBD as the target domain. As evident from the baseline

results, the domain mismatch is quite severe. Nevertheless, DUST can improve over

the baseline by 22.4 percentage points (pp) and recover 58.9% of WER when using

a source domain decoding LM and 56% when using a decoding LM trained on both

source and target domain text. In this case, we could not get good performance
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Table 3.3: Results on WSJ source to TED-LIUM target domain adaptation using
all unlabeled target domain data, with 𝜏 = 0.3 and no LM used during the filtering
process. #PL[k] is the size of the target domain pseudo-label set PL used in each
iteration of student model training. WERR refers to Word Error Rate Recovery
( topline−𝑥

topline−baseline), where 𝑥 is the student model’s performance in each iteration.

WER [%] WERR [%]

Method #PL [k] PL WSJ/eval92 TED/test WSJ/eval92 TED/test

Decoding without LM
Baseline 15.0 47.9 0 0
DUST1 25 25.0 14.1 37.8 17.6 34.9
DUST2 81 25.0 13.1 31.5 37.2 56.7
DUST3 136 25.8 13.1 28.1 37.2 68.5
DUST4 167 25.0 12.5 25.8 49.0 76.4
DUST5 178 23.8 12.6 24.7 47.0 80.2
Topline 9.9 19.0 100 100

Decoding with an LM trained on source domain text
Baseline 6.8 35.0 0 0
DUST5 178 23.8 5.7 18.4 45.8 78.6
Topline 4.4 13.9 100 100

Decoding with an LM trained on source & target domain text
Baseline 7.0 33.2 0 0
DUST5 178 23.8 5.6 17.6 51.8 75.7
Topline 4.3 12.6 100 100

without using an LM during the filtering process, probably due to the severity of

the domain mismatch. While the results are encouraging, there is still a large gap

between DUST and the topline, which could be addressed by relaxing one of our

assumptions regarding not having access to any target domain text data. We leave

this investigation for future work.

3.4.5 Self-Supervised Speech Representations and DUST for

Low-Resource ASR

Finally, we briefly investigate via a preliminary experiment whether DUST could

be effectively combined with a self-supervised representation learning approach for

low-resource speech recognition. We train the base source model on just 3 hours of
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Table 3.4: Results on WSJ source to SWBD target domain adaptation. An LM
trained on source domain text is used during the filtering process. #PL[k] is the
size of the target domain pseudo-label set PL used in each iteration of student model
training. WERR refers to Word Error Rate Recovery ( topline−𝑥

topline−baseline), where 𝑥 is the
student model’s performance in each iteration.

WER [%] WERR [%]

Method #PL [k] PL WSJ/eval92 SWBD/eval2000 SWBD/eval2000

Decoding with an LM trained on source domain text
Baseline 6.8 64.1 0
DUST1 7 33 7.6 50.0 37.1
DUST2 30 35 7.3 47.3 44.2
DUST3 68 35 6.9 44.1 52.6
DUST4 108 34.9 7.0 42.7 56.3
DUST5 125 35.4 7.1 41.7 58.9
Topline 6.6 26.1 100

Decoding with an LM trained on source & target domain text
Baseline 7.2 61.7 0
DUST5 125 23.8 7.1 39.9 56.2
Topline 6.6 22.9 100

labeled source data using Wav2Vec (W2V) (Schneider et al., 2019) features as input to

the model to remove some of the domain mismatches compared to a baseline trained

without Wav2Vec, as shown in Table 3.5. Two DUST iterations using unlabeled source

and target domain data significantly improve the performance: DUST improves over

the baseline by 31.0 pp and 41.2 pp for the source and target domains, recovering

80% and 50% of the WER, respectively, while Wav2Vec alone only improves by 6.2

pp and 17.4 pp. W2V is trained on Librispeech, and the features are only used to

train the base model. We leave a more thorough investigation for future work.

3.5 Chapter Summary

In this chapter, we proposed DUST, a dropout-based uncertainty-driven self-training

method for unsupervised domain adaptation. DUST uses only unlabeled speech data

from a target domain to transfer a base ASR system trained on a source domain

to the target. Unlike classic Self-Training, in DUST, we proposed a pseudo-label
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Table 3.5: Results on combination of DUST with Wav2Vec (Schneider et al., 2019)
representation learning in low-resource scenario. Baseline and Wav2Vec source models
are trained on three hours of data. An LM trained on source domain text is used
during the filtering process and for decoding. #PL[k] is the size of the target domain
pseudo-label set PL used in each iteration of student model training. WERR refers to
Word Error Rate Recovery ( topline−𝑥

topline−baseline), where 𝑥 is the student model’s performance
in each iteration.

WER [%] WERR [%]

Method #PL [k] PL WSJ/eval92 TED/test WSJ/eval92 TED/test

Baseline 43.2 95.6 0 0
Wav2Vec 37.0 78.2 16.0 21.3
DUST1 60 39.1 16.0 60.0 70.1 43.6
DUST2 112 38.5 12.2 54.4 79.9 50.4
Topline 4.4 13.9 100 100

filtering technique to weed out noisy pseudo-labels on target domain unlabeled speech

utterances. Through several experiments transferring from WSJ to TED-LIUM 3 and

SWITCHBOARD, we show that DUST significantly improves performance over the

baseline model trained only on the labeled source domain data and can recover 60%

to 80% of the WER on the target domain by using only unlabeled speech from that

domain.
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Chapter 4

Cross-Lingual Adaptation of

Monolingual Pre-Trained Speech

Encoders using DUST

In this chapter1, we apply DUST, the self-training-based domain adaptation algo-

rithm introduced in the previous chapter, to an interesting problem; cross-lingual

adaptation of pre-trained speech encoders. We can adapt a pre-trained speech en-

coder, Wav2Vec-2.0 (Baevski et al., 2020), for Speech Recognition in a different (than

English) language using ten hours of annotated data and 100 hours of unlabeled data

in the target language. After adaptation, we show that the ASR performance is at

par with a state-of-the-art large multilingual pre-trained speech encoder fine-tuned

on 10 hours of labeled data for the downstream task of Automatic Speech Recogni-

tion. Compared with the monolingual encoder, the multilingual encoder is trained

on 566% more unlabeled speech data collected from 128 languages. Hence, in this

chapter, we provide an efficient method to perform few-shot learning of Automatic

Speech Recognition for an unseen target language. Our suggestion is a three-step

transfer learning formula: 1) Pre-train a large speech encoder using unlabeled speech

in some source language (e.g., by using the Wav2Vec-2.0 pre-training framework in

Baevski et al., 2020). 2) Fine-tune the pre-trained encoder using a small amount (10
1The work presented in this chapter is published in Khurana, Laurent, and J. Glass (2021)
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hours) of labeled data in the target language. 3) Refine the base model in 2) using

100 hours of unlabeled speech data in the target language via several iterations of the

DUST algorithm (Chapter 3). Note that this three-step formula is different from the

usual two-step formula: 1) Multilingual pre-training of a large speech encoder (E.g.,

the XLS-R framework in Babu et al., 2021), and 2) Fine-tune the pre-trained multi-

lingual speech encoder on 10 hours of transcribed speech data in the target language.

Below, we formally explain the adaptation scenario we tackle in this chapter.

Figure 4-1: An illustration of the domain adaptation scenario and our proposed
cross-lingual adaptation recipe. The goal is to perform few-shot learning of Speech
Recognition in a target language. First, we pre-train a speech encoder in a high-
resource source language (such as English), followed by DUST in the target language.
We use 10 hours of transcribed speech and 100 hours of unlabeled speech data in the
target language for DUST.
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The following adaptation scenario often occurs in practice: We have massive

resources in high-resource languages but want to build language technology for a

low-resource language. This work aims at leveraging the knowledge acquired during

performing a source task (Self-Supervised Pre-training) in a high-resource source lan-

guage such as English and using that knowledge to improve ASR performance in a

target low-resource language. Combining Self-Supervised Learning and our proposed

algorithm, DUST, is a good recipe for efficiently tackling this scenario, as explained

above.

Figure 4-1 illustrates our proposed cross-lingual domain adaptation recipe. We

have 1) extensive unlabeled data (𝒰𝑆) in some high-resource source language, such as
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English, 2) a few hours of labeled data (ℒ𝑇 ) in the target language, and 3) moderately-

sized unlabeled data (𝒰𝑇 ) in the target language. First, we perform Self-Supervised

Pre-Training of an ASR model using unlabeled data 𝒰𝑆 in the source language. Then,

we combine labeled ℒ𝑇 and unlabeled data 𝒰𝑇 in the target language to adapt the

Pre-Trained ASR model to the target language. Even though the Self-Supervised Pre-

Training is performed on a different source language, it acts as a good initialization for

the target language ASR model, which we further improve using Dropout-Uncertainty

Driven Self-Training (DUST).

4.1 Introduction

Few-shot learning, the ability to train a machine to exhibit intelligent behavior via

a small amount of supervision, has been a long-standing research goal in Artificial

Intelligence. To build few-shot learners, we turn to a class of transfer learning (TL)

methods that extract knowledge from vast quantities of unlabeled data to make learn-

ing from a few labeled examples easier. Recently, Self-Supervised Learning (SSL) has

emerged as a promising TL approach to learning from unlabeled data (T. Chen et al.,

2020; Devlin et al., 2019; Oord, Y. Li, and Vinyals, 2019).

SSL (DeSa, 1993; Schmidhuber, 1990) refers to the process of Pre-Training (PT),

a model on unlabeled data using an SSL task, such as masked self-prediction (Devlin

et al., 2019). The Pre-Trained model is then Fine-Tuned (FT) on the target task

via a few labeled examples. Hence, SSL forms the first stage of the PT then FT

(PT → FT) sequential TL framework (D. Wang and Zheng, 2015). Recently, speech

neural net encoders Pre-Trained using the wav2vec2 SSL framework have proven to

be excellent few-shot learners for automatic speech recognition (ASR) across multiple

languages (Baevski et al., 2020; Conneau, Baevski, et al., 2020). However, wav2vec2

assumes access to massive amounts of unlabeled data for PT, which diminishes their

usefulness to resource-scarce languages, where the massive unlabeled data assumption

is unrealistic.

To remedy the above issue, Conneau, Baevski, et al., 2020 proposes XLSR-53, a
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cross-lingual sequential TL framework of the form mPT → FT, i.e., Multilingual Pre-

Training of wav2vec2 followed by target language ASR fine-tuning on a few labeled

examples. Indeed, Pre-Trained XLSR-53 is an excellent few-shot learner for ASR in

multiple languages. However, this work shows that XLSR-53’s ASR performance is

relatively poor if there is a domain mismatch between the target language speech

and the speech data used to Pre-Train XLSR-53. Thus, to make XLSR-53 a truly

universal speech model, we would have to Pre-Train on the speech from all languages

in all possible speech domains, which is an unscalable strategy. Instead, in this work,

we propose a TL framework that could efficiently adapt any Pre-Trained wav2vec2

model, monolingual or multilingual, to make it an excellent few-shot ASR learner in

any target language in any speech domain.

In this chapter, motivated by the SSL framework’s limitations when developing

ASR for a resource-scarce language, we propose a simple yet effective cross-lingual

TL framework for wav2vec2 model adaptation to a target language. Our adaptation

framework (Section 4.2) is a sequential TL framework consisting of three steps: First,

we Pre-Train a wav2vec2 model on a high-resource language. Second, we perform

supervised fine-tuning of the Pre-Trained wav2vec2 model using ten hours of labeled

data on the target language ASR task. Finally, we perform Dropout Uncertainty-

Driven Self-Training (DUST) (developed in Chapter 3) using a hundred hours of un-

labeled speech data in the target language for adaptation of the Fine-Tuned wav2vec2

model. We make the following key observations:

First, we compare the ASR performance of several pre-trained transformer speech

encoders trained on unlabeled speech in the English language with a multilingual pre-

trained transformer speech encoder trained on unlabeled speech data collected from

53 languages. We perform ASR on eight target languages. Through this experiment,

we analyze the cross-lingual transferability of the representations learned by speech

encoders pre-trained only in English for the downstream task of ASR. Interestingly, we

observe that the ASR performance of both the monolingual and multilingual speech

encoders is at par for a target language sampled from a domain not included in the

training pool of the multilingual speech encoder. Unsurprisingly, on target languages
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sampled from the same domain as the multilingual speech encoder’s training pool,

the multilingual speech encoder performs significantly better than the monolingual

encoder. Still, the monolingual encoder performs dramatically better than a randomly

initialized speech encoder fine-tuned on 10 hours of transcribed speech data in the

target language. Hence, an English pre-trained speech encoder is worthy of acting as

the first-generation teacher in the iterative process of DUST (Chapter 3).

Starting with the pre-trained English speech encoder, we develop several genera-

tions of students via DUST using 100 hours of unlabeled data in the target language.

We show that by using just 100 hours of unlabeled target language data, we can

perform ASR at par with the multilingual speech encoder, trained with orders of

magnitude more unlabeled target language data. Furthermore, on the out-of-domain

(for the multilingual speech encoder’s training pool) target language, we can surpass

the ASR performance of the multilingual speech encoder by adaptation of the English

pre-trained speech encoder via DUST.

A key finding of this study is that it is possible to adapt a monolingual speech

encoder pre-trained on a high-resource language by using moderately-sized unlabeled

data and small-sized labeled data in a target language to achieve similar performance

as the multilingual pre-trained speech encoder.

4.2 Method

4.2.1 Transfer Learning Algorithm

The overall transfer learning process is described in Algorithm 1. We assume access to

a set ℒ𝑇 of labeled examples and a set 𝒰𝑇 of unlabeled speech utterances in the target

language. Also, we are given a set 𝒰𝑆 of unlabeled speech utterances in the source

language. The transfer learning process proceeds by Pre-training a neural network 𝑓𝜑,𝑝

on unlabeled source language set 𝒰𝑆 with dropout layers, using a dropout probability

𝑝 ∈ [0, 1]. The Pre-training process leads to the initial model 𝑓𝜑0,𝑝, which is Fine-

Tuned on the target language labeled set ℒ𝑇 to give the first-generation teacher model
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𝑓𝜑1,𝑝 for Dropout-Uncertainty driven Self-Training (DUST). Next, the base teacher

model 𝑓𝜑1,𝑝 is used to provide predictions on the target language unlabeled set 𝒰𝑇
to provide pseudo-parallel data of which a subset 𝒫 is chosen based on the model’s

uncertainty about its predictions on each unlabeled data point 𝑥𝑢 ∈ 𝒰𝑇 . Finally,

a student model is trained on the combined labeled ℒ𝑇 and pseudo-labeled set 𝒫 .

We perform N iterations of the Teacher/Student training, where the student 𝑓𝜑𝑛,𝑝

from the 𝑛𝑡ℎ iteration becomes a teacher for the (𝑛+ 1)𝑡ℎ iteration. Usually, in each

iteration of DUST, a randomly initialized neural network is used as the student model,

but in our adaptation framework, the Pre-Trained source language SSL model 𝑓𝜑0,𝑝

is used as the student in each DUST iteration.

4.2.2 Pre-Trained Models

In our chapter, we explore the following Pre-Trained wav2vec2 SSL models that

provide the initial model 𝑓𝜑0,𝑝 (Algorithm 1) for transfer learning. See Section 2.2.1

for details on the wav2vec2 SSL framework.

• Wav2Vec-2.0 Base (w2v_base) (Baevski et al., 2020): consists of 0.1 billion

parameters and is Pre-Trained on the Librispeech 960 hours (LS960) (Panayotov

et al., 2015) English speech dataset in the read speech domain.

• Wav2Vec-2.0 Large (w2v_large) (Baevski et al., 2020): consists of 0.3 billion

parameters and is Pre-Trained on either LS960 or Libri-Light 60k (LL60k) hours

(J. Kahn et al., 2020) English read speech dataset.

• Wav2Vec-2.0 Robust (w2v_rob) (Hsu, Sriram, et al., 2021): consists of the

same architecture as the large model but is trained on three speech datasets,

namely Switchboard (SWBD) (300 Hours) (Godfrey, Holliman, and McDaniel,

1992), the English part of CommonVoice (CV-En) (2K hours) (Ardila et al.,

2020) and LL60k (J. Kahn et al., 2020). We refer to the combination of these

three datasets as LL60k+. Hsu, Sriram, et al., 2021 show that simultaneous pre-

training on multiple domains makes the speech encoder relatively more robust
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Algorithm 2 Adaptation Recipe for Cross-Lingual Adaptation
1: Given labeled data ℒ𝑆 and unlabeled data 𝒰𝑆 in the source language
2: Given labeled data ℒ𝑇 and unlabeled data 𝒰𝑇 in the target language
3: Given 𝑅 natural numbers
4: Pre-Train 𝑓(𝜑,𝑝) on 𝒰𝑆 to get 𝑓(𝜑0,𝑝)
5: Fine-Tune 𝑓(𝜑0,𝑝) on ℒ𝑇 to get 𝑓(𝜑1,𝑝)
6: for n =1 to N do
7: 𝑓(𝜑𝑛+1,𝑝) = DUST(𝑓(𝜑𝑛,𝑝), 𝑓(𝜑0,𝑝), ℒ𝑇 , 𝒰𝑇 )
8: end for
9: function DUST(𝑔Teacher

(𝜃,𝑝) , 𝑓Student
(𝜓,𝑝) ,ℒ,𝒰)

10: Let 𝒫 be the set of selected pseudo-labeled data points
11: Let ℰ be a set of edit distances
12: Initialize 𝒫 and ℰ as empty sets
13: for all 𝑥𝑢 ∈ 𝒰 do
14: Compute deterministic forward pass 𝑔Teacher

(𝜃,0) (𝑥𝑢)

15: 𝑦ref
𝑢 = beam_search(𝑔Teacher

(𝜃,0) (𝑥𝑢))
16: for all 𝑟 ∈ 𝑅 do
17: Set random seed to 𝑟
18: Compute stochastic forward pass 𝑔Teacher

(𝜃,𝑝) (𝑥𝑢)

19: 𝑦𝑟𝑢 = beam_search(𝑔Teacher
(𝜃,𝑝) (𝑥𝑢))

20: 𝑒 = edit_distance(𝑦𝑟𝑢, 𝑦
ref
𝑢 )

21: Add 𝑒 to the set ℰ
22: end for
23: if max(ℰ) < 𝜏 |𝑦ref

𝑢 | (with 𝜏 a filtering threshold) then
24: Add {(𝑥𝑢, 𝑦ref

𝑢 ), (𝑥𝑢, 𝑦
0
𝑢), . . . , (𝑥𝑢, 𝑦

𝑅
𝑢 }) to 𝒫

25: end if
26: end for
27: Fine-Tune 𝑓Student

(𝜓,𝑝) on 𝒜 = ℒ ∪ 𝒫
28: return 𝑓Student

(𝜓,𝑝)

29: end function

to domain shifts. Since we are interested in cross-lingual adaptation to tar-

get languages sampled from different speech domains, it is natural to consider

w2v_rob pre-trained encoder.

• XLSR-53 (XLSR-53) (Conneau, Baevski, et al., 2020): consists of the same

architecture as w2v_large which is trained on the following datasets Multilin-

gual Speech (MLS) (Pratap et al., 2020), BABEL2, and CommonVoice (CV)

(Ardila et al., 2020), that combined consists of 53 languages. We refer to the

2https://catalog.ldc.upenn.edu/
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combination of these three datasets as MLS+.

We use the publicly available Pre-Trained wav2vec2 model checkpoints3.

4.2.3 Fine-Tuning

The Fine-Tuning of Pre-Trained SSL models consists of 1) Adding a linear projection

layer ℎ𝛼 : R𝑇×𝑑 → R𝑇×|𝑉 | to the output of the pre-trained speech encoder, where 𝑉

is the output character vocabulary for the task of ASR, 2) ASR task Fine-Tuning

of only the projection layer for the first 𝑘 training iterations and 3) Joint ASR task

Fine-Tuning of both the SSL model and the projection layer until convergence. Note

the wav2vec2 SSL models consist of a Convolutional Neural Network (CNN) feature

extractor, followed by a transformer encoder. The CNN feature extractor remains

frozen throughout the ASR Fine-Tuning process. This fine-tuning recipe is proposed

in Baevski et al., 2020 and is widely used for fine-tuning pre-trained wav2vec2 models.

4.3 Experiment Setup

4.3.1 Target Languages

We chose seven languages from the MLS dataset (Pratap et al., 2020) as the targets

for cross-lingual adaptation of the Pre-Trained wav2vec2 SSL models, namely French

(MLS/fr), German (MLS/de), Italian (MLS/it), Polish (MLS/pl), Spanish (MLS/es),

Portuguese (MLS/pt) and Dutch (MLS/nl). In addition, we also target Arabic from

the Multi-Genre Multi-Dialectal Broadcast News (MGB) dataset (Ali et al., 2019).

To simulate the resource-scarce ASR scenario, we assume access to just ten hours

of labeled data and a hundred hours of unlabeled data in each target language. We

use the official (Pratap et al., 2020) nine hours labeled split in MLS for training

and the one-hour split for validation. We report Word Error Rates (WERs) on the

unseen development set. The hundred hours unlabeled set is sampled randomly from

the entire training set (minus the utterances in the ten hours split). For Arabic, we
3https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
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randomly sample ten hours of labeled data, of which nine hours are used for training

and one hour for validation. We also randomly sample a hundred hours of speech

from the 1200 hours of MGB training set for cross-lingual adaptation. The results

are reported on the standard development set. For the XLSR-53 model, MGB/ar

is considered an out-of-domain target language because XLSR-53 is Pre-Trained on

multiple datasets, including MLS, which are in the read speech and conversational

domains, while MGB is in the broadcast news domain. This is evident from the high

WERs of the Fine-Tuned XLSR-53 on the MGB/ar dataset compared to the MLS

target languages in Table 4.1.

4.3.2 Hyperparameters For ASR Fine-Tuning

ASR Fine-Tuning of the Pre-Trained speech encoders is performed on the ten hours

labeled data (𝑥, 𝑦) ∈ ℒ𝑇 in the target language 𝑇 , where 𝑥 is the input speech

waveform and 𝑦 is the corresponding sub-word token sequence. We choose characters

as sub-word units for ASR training. The model is trained using the Connectionist

Temporal Classification (CTC) (Graves, 2012) loss. We use the Adam optimizer with

a three-phase learning rate scheduler (Baevski et al., 2020) for optimization.

The model is trained for a total of 300 epochs. For the first 4k training iterations,

we only train the linear projection layer ℎ𝛼. Batching is performed by pooling raw

speech waveforms so that the total number of samples does not exceed 3.2 million. We

use a gradient accumulation factor of four to ensure the model is updated after every

four training iterations, leading to an effective batch size four times the original. The

feature sequence output by the CNN encoder of the SSL models is randomly masked

in the time dimension. We mask a span of ten consecutive time steps with a masking

probability of 0.65, which leads to 65% of the input signal being masked. We use 4

V100-32gb GPUs for fine-tuning. We use the Espnet2 codebase (Watanabe, Boyer,

Chang, Guo, Hayashi, Higuchi, Hori, W.-C. Huang, Inaguma, Kamo, et al., 2020) to

perform all our experiments.
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4.3.3 Decoding

We use beam search decoding without a language model (LM) with a beam size of

10. We do not use an LM because we are solely concerned about the acoustic model

adaptation in this work. Also, we might not have text data to train an LM in a

resource-scarce ASR scenario.

4.4 Evaluation

4.4.1 Cross-Lingual Transferability of Pre-Trained Speech En-

coders

In Tables 4.1, 4.2, we show the cross-lingual transferability of different Pre-Trained

wav2vec2 models on eight target languages. The goal is to analyze how much of the

multilingual XLSR-53 topline’s performance can be recovered by simply Fine-Tuning

the English wav2vec2 models on ten hours of labeled data in target languages. We

Fine-Tune a randomly initialized transformer encoder with the same architecture as

w2v_base on ten hours of labeled data in each language to use as a baseline. We

perform ASR Fine-Tuning of several Pre-Trained English wav2vec2 on ten hours of

labeled data in target languages and compare their ASR performance against the

Fine-Tuned XLSR-53 model topline.

We make the following conclusions:

Pre-Training Matters. ASR Fine-Tuning of Pre-Trained English wav2vec2 mod-

els significantly improve WERs on target languages over the randomly initialized

encoder baseline. Through the simple PT → FT process, we can recover on average

79% to 86% of the WER and 88% to 93% of the CER of the XLSR-53 topline.

Model Size matters. By Fine-Tuning w2v_large that is Pre-Trained on the

LS960 dataset, we can recover on average 83% of the topline WER compared to

79% achieved by Fine-Tuning w2v_base that is also Pre-Trained on LS960. Hence,
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a larger pre-trained model achieves better cross-lingual transfer.

Pre-Training dataset size matters upto a point. Fine-Tuned w2v_large that

is Pre-Trained on LL60k recovers on average 86% of the topline WER compared to

84% recovered by Fine-Tuning w2v_large that is Pre-Trained on LS960. But the

gap in average Word Error Rate Recovery (WERR) between w2v_rob that is Pre-

Trained on the combined CV, SWBD, and LL60k datasets, and w2v_large that is

Pre-Trained only on LL60k is less than one percentage point (pp).

ASR Fine-Tuning of SSL models on source language hurts transfer. The

average WERR on target languages of w2v_large_sup model, which is Pre-Trained

on LL60k followed by its ASR Fine-Tuning on labeled LS960 is worse than directly

Fine-Tuning the Pre-Trained wav2vec2 models on the target languages. The WERR

for w2v_large_sup is about 8pp worse than w2v_rob that is directly Fine-Tuned

on target languages.

About the out-of-domain Arabic Target Language. We see that on the seven

in-domain languages (MLS/x, where x is the target language) XLSR-53 achieves an

average WER of 16.5% compared to 29.8% achieved by the ASR Fine-Tuning of

w2v_rob, the best of the English wav2vec2 models, giving a performance gap of

about 14pp between the two. However, on the out-of-domain Arabic target language

(MGB/ar), the gap is less than 4pp.

4.4.2 Adaptation of English Wav2Vec-2.0 to French and Ara-

bic

Next, using DUST, we perform a cross-lingual adaptation of Pre-Trained wav2vec2

models. We choose French and Arabic as the target languages for transfer learning

and w2v_rob and XLSR-53 as the target models for adaptation.

In Table 4.3, we use DUST to perform a cross-lingual adaptation of Pre-Trained

w2v_rob to French (MLS/fr). DUST proceeds as follows: 1) First, we perform the
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Table 4.3: Transfer of Pre-Trained w2v_rob to the target French language in the
MLS dataset

WER [%] WERR [%]

Method |𝒫| [k] 𝒫 MLS / fr MLS / fr

Baseline (w2v_rob) 38.3 0
DUST1 11 20.2 31.9 34.4
DUST2 24 20.3 27.4 58.6
DUST3 30 20.0 24.2 75.8
DUST4 30 19.2 23.5 79.6
DUST5 30 18.7 22.3 86.0
Topline (XLSR-53) 19.7 100

ASR Fine-Tuning of the initial w2v_rob (𝑓𝜑0,𝑝) model using the standard nine hours

labeled split provided by MLS/fr dataset to get the first-generation teacher 𝑓𝜑1,𝑝

(Section 4.2). 2) Second, 𝑓𝜑1,𝑝 is used to generate pseudo-labels on the random 100

hours unlabeled split from MLS/fr, which amounts to about 30k utterances, using the

pseudo-label generation process explained in Section 4.2 to give a set 𝒫 of pseudo-

parallel data. We use 0.2 as the value of the DUST filtering threshold 𝜏 . We choose

𝜏 blindly without tuning it on a labeled validation set. 3) Lastly, we Fine-Tune

w2v_rob (student), 𝑓𝜑0,𝑝, on the combined labeled and pseudo-labeled data 𝒫 to get

𝑓𝜑2,𝑝, which is used as the teacher for the next iteration of DUST. We perform a total

of five DUST iterations. The final student model 𝑓𝜑5,𝑝 achieves a WER of 22.3% which

is 16pp lower than the WER of 38.3% achieved by the first generation teacher model

𝑓𝜑1,𝑝. Furthermore, 𝑓𝜑5,𝑝 can recover 86% of the XLSR-53 topline’s WER. Additionally,

we make the following observations: 1) Unsurprisingly, the size of the filtered pseudo-

label set 𝒫 (denoted as |𝒫| in Table 4.3) is larger in later DUST iterations due to

the continual improvement in the quality of the student (see WER [%] in Table 4.3),

which leads to an improved teacher for subsequent DUST iterations; an improved

teacher leads to cleaner pseudo-labels and hence less rejected unlabeled data points

during the pseudo-label filtering process. 2) Also, in the later DUST iterations, the

quality of the pseudo-labels improves, which is implied by the lower WER on pseudo-

label set 𝒫 during the later iterations. Next, we consider Arabic (MGB/ar) the target
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Table 4.4: Transfer of Pre-Trained w2v_rob and XLSR-53 models to the target Arabic
Language in the MGB dataset

WER [%]

Method |𝒫| [k] 𝒫 MGB / ar

Baseline (w2v_rob) 41.6
DUST1 12 21.0 32.7
DUST2 26 21.2 27.4
DUST3 30 20.8 25.2
DUST4 30 19.5 23.1
DUST5 30 18.7 21.2
Topline (XLSR-53) 37.9

Baseline (XLSR-53) 37.9
DUST1 13 20.3 31.1
DUST2 29 20.4 26.3
DUST3 30 20.1 24.1
DUST4 30 18.5 22.5
DUST5 30 18.1 20.8

language for transfer learning, a more challenging transfer learning scenario.

In Table 4.4, we perform adaptation of w2v_rob and XLSR-53 to the MGB/ar

dataset. Here, the results are achieved by following the same adaptation process

detailed above for experiments in Table 4.3. After five DUST iterations, we achieve

the final WER of 20.8% when starting with a Fine-Tuned XLSR-53 model as the first

generation teacher 𝑓𝜑1,𝑝. This result is about 17pp better than the WER of 37.4%

with 𝑓𝜑1,𝑝. Similar improvements are achieved when using the Fine-Tuned w2v_rob

as 𝑓𝜑1,𝑝 for DUST iterations.

4.5 Chapter Summary

We conclude by summarizing the key findings of this chapter. We show (Table 4.1,

4.2) that the Pre-Trained English language wav2vec2 models transfer well across

multiple languages. In particular, we show that by performing ASR Fine-Tuning of

wav2vec2_robust on ten hours of labeled data in a target language, we can recover

on average 86% of the performance of the topline multilingual XLSR-53 model that is
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Pre-Trained on 53 languages and Fine-Tuned on the same amount of labeled target

language data. This finding concurs with similar findings of (Rivière et al., 2020)

on the cross-lingual transfer of monolingual Pre-Trained speech representations to

different target languages for phoneme recognition. Our work goes a step further

and proposes a simple yet effective cross-lingual transfer learning algorithm (Section

4.2) for adaptation of monolingual wav2vec2 models via Dropout Uncertainty-Driven

Self-Training (DUST) by leveraging hundred hours of unlabeled speech data from the

target language. We show (Table 4.3) that DUST improves over the baseline model

that is Fine-Tuned only on labeled target language data and can recover 86% of the

WER of the topline XLSR-53 model when adapting to French. We show similar results

(Table 4.4) when considering Arabic as the target language.

This chapter proposes a departure from the traditional two-step cross-lingual

transfer learning formula of multilingual pre-training followed by target language-

specific ASR task fine-tuning. Instead, we perform Pre-Training on a high-resource

source language and adapt the pre-trained speech encoder via DUST to the desired

target language for the ASR task. Our method is suitable for low-resource ASR

scenarios. In low-resource scenarios, we do not have resources for large-scale self-

supervised learning of speech encoders. But, we might have a related language (in

the same language family) that is high-resource. We can pre-train the speech encoder

on the related language and then use DUST to adapt the pre-trained model to the

low-resource target language as explained in this chapter (Section 4.2).
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Chapter 5

Semantically Aligned Multimodal

Cross-Lingual Speech Representations

Different types of linguistic information exist in a spoken utterance (Fig. 5-1), from

the low-level knowledge of acoustic-phonetics (sound inventories in the utterance),

through morphology (word identities and word time stamps), syntax (the discrete

structure, such as the constituency parse tree, that governs the relationship among

words spoken in the utterance), and finally, semantics which refers to the knowledge

about the literal meaning of the spoken utterance. Self-Supervised Representation

Learning methods that learn from unlabeled speech, such as Wav2Vec-2.0 and XLS-R

that train a transformer-based neural network to encode structured vector representa-

tions of speech in its several hidden layers are excellent at encoding low-level linguistic

knowledge about phonetics.

This chapter1 develops a Semantically Aligned MUltimodal Cross-Lingual Speech

Representation, SAMU-XLS-R, that, unlike the self-supervised transformer encoders

such as Wav2Vec-2.0, encodes high-level linguistic knowledge about the meaning of

the speech utterance. To that end, we propose a multilingual joint speech-text embed-

ding framework. First, we train a speech encoder using semantic supervision provided

by the text modality and a pre-trained Language-Agnostic BERT Sentence Encoder

(LaBSE) introduced in Feng et al. (2020) to learn a joint speech-text embedding

1The work presented in this chapter is published in Khurana, Laurent, and J. Glass (2022)
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space structured to represent semantic knowledge. Then, we analyze the semantic

multilingual joint speech-text embeddings space on cross-lingual speech-to-text and

speech-to-speech translation retrieval. In the next chapter, we build multilingual

speech-to-text translation technology using SAMU-XLS-R. SAMU-XLS-R improves cross-

lingual transfer from high to low-resource language translation tasks.

Figure 5-1: An illustration of a speech utterance’s linguistic knowledge hierarchy. This
work focuses on training a neural network model that encodes semantic knowledge in
its activations.
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5.1 Introduction

Recently, self-supervised pre-training of large transformer encoders on massive amounts

of unlabeled audio data followed by task-specific fine-tuning has emerged as the de-

facto approach for achieving state-of-the-art performance on several tasks in spoken

language processing. However, popular self-supervised representation learning (SSL)

approaches such as Wav2vec-2.0 (Baevski et al., 2020) and others (Y.-A. Chung and

J. Glass, 2020; A. H. Liu, Y.-A. Chung, and J. Glass, 2020; Pascual et al., 2019;

Schneider et al., 2019; Khurana, Laurent, Hsu, et al., 2020; Conneau, Baevski, et al.,

2020; Hsu, Bolte, et al., 2021; Babu et al., 2021; S. Chen et al., 2021; Y.-A. Chung,

Zhang, et al., 2021; Bapna, Cherry, et al., 2022a) learn speech embedding at acoustic
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frame-level, i.e., for short speech segments of duration 10 to 20 milliseconds.

Unlike previous works, this work focuses on learning semantically-aligned multi-

modal utterance-level cross-lingual speech representations (SAMU-XLS-R). The SAMU-

XLS-R’s embedding vector space is multimodal since it is shared between the speech

and the text modalities. It is cross-lingual since various languages share it. Fur-

thermore, it’s semantically aligned since, in the SAMU-XLS-R’s vector space, a spoken

utterance is clustered together with its speech and text translations. We show a two-

dimensional illustration of the desired embedding vector space in Figure 5-2. For ex-

ample, consider the English phrase A bird is bathing in the sink. Now, in SAMU-XLS-R’s

embedding space, the written form of the above phrase should be clustered together

with its written and spoken forms in various languages (Japanese, French, and Ara-

bic in the figure). And, in some other regions of the embedding space, the phrase

Mr. President is clustered with its written and spoken form in several languages.

Unfortunately, the acoustic frame-level unimodal contextual representation learning

frameworks like Wav2vec-2.0 (Baevski et al., 2020) or the multilingual XLS-R (Con-

neau, Baevski, et al., 2020; Babu et al., 2021) do not learn an embedding space with

the same properties. Encoding semantics is among the many missing pieces in the

self-supervised speech representation learning puzzle.

On the other hand, several transformer encoders for text have been proposed in

recent years that go beyond token-level contextual representations and learn cross-

lingual semantically-aligned sentence embedding vector spaces across several lan-

guages (Schwenk and Douze, 2017a; Artetxe and Schwenk, 2019a; Feng et al., 2020).

These models have found use in bi-text data mining. The task is to retrieve the text

translation in a target language for a given sentence query in a source language by

matching the query sentence embedding with those of sentences in the target lan-

guage search database (Schwenk, 2018; Schwenk, Chaudhary, et al., 2019; Schwenk,

Wenzek, et al., 2019a). Given that text encoders can successfully learn semantically

aligned cross-lingual sentence embedding spaces, we ask whether it is possible to make

these text embedding spaces multimodal by learning to map speech utterances in the

semantically-aligned cross-lingual text embedding space.
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Figure 5-2: An illustration of the desired cross-lingual joint speech-text embedding
space. The embedding space is semantically aligned, i.e., a speech utterance such as
Mr. President is clustered together with its corresponding speech and text transla-
tions in the multimodal embedding space in several other languages.

The bird is bathing in the sink (en)

?? ? ??? ? ? ? ?? ? ?  ?? ???  (ar)

L'oiseau se baigne dans l'évie (fr)
? ? ? ? ? ? ? ? ? ? ? ? (ja)

? ? ? ? ? ? ? ? ? ?
?? ? ? ? ?? ??? ?

Monsieur le Président
Mr President

(ar)

(en)

(fr)

To that end, we propose a multimodal learning framework for fine-tuning the

pre-trained multilingual XLS-R speech encoder via knowledge distillation from the pre-

trained language-agnostic BERT sentence encoder LaBSE (Feng et al., 2020). Also, we

append a pooling mechanism and a non-linear projection layer after the last layer of

the pre-trained XLS-R encoder to transform the frame-level contextual representations

into a single utterance-level embedding vector. Then, we train the speech encoder

using transcribed speech; given a speech utterance, the parameters of the speech

encoder are tuned to accurately predict the text embedding provided by the LaBSE

encoder of its corresponding transcript. Because LaBSE’s embedding vector space is

semantically aligned across various languages, the text transcript would be clustered

with its text translations. Hence, we get cross-lingual speech-to-text associations for

free by simply using transcribed speech to train the speech encoder via the proposed

knowledge distillation framework. For a pedagogical description, see Figure 5-3.

One of the use cases of the SAMU-XLS-R embedding space described above is for data

mining. Recent years have seen remarkable progress in Automatic Speech Recognition

across several domains and languages. The next frontier in spoken language process-
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Figure 5-3: A pedagogical description of how learning with transcribed speech data
using LaBSE as the teacher could lead to the emergence of cross-lingual speech and
text associations. In this illustration, we use English speech 𝑥(EN) and its transcription
𝑦(EN) for training. SAMU-XLS-R’s parameters are tuned to close the distance between
the speech embedding given by SAMU-XLS-R in orange and LaBSE’s embedding (An-
chor) of the corresponding text transcript in green. Since LaBSE’s text embedding
space is semantically aligned across various languages, pulling the speech embed-
ding towards the anchor embedding automatically leads to cross-lingual speech-text
alignments in the joint speech-text embedding space without ever seeing cross-lingual
associations during training. In practice, we train SAMU-XLS-R with multilingual tran-
scribed speech, not just English.

LaBSE Embedding Space

A
ll's w

ell that 
ends w

ell

Bien está lo 
que bien acaba

Tout est bien 
qui finit bien Anchor

Pull

ing is automatic speech-to-text and speech-to-speech machine translation. Developing

speech-based MT systems would require massive amounts of parallel translated speech

data in several languages, which could be highly costly to collect. But, the multi-

modal cross-lingual embedding space illustrated in Fig. 5-2 could address this issue.

We could build a cross-lingual speech-to-text and speech-to-speech retrieval pipeline,

which could entirely or, in some cases, partially automate the process of collecting

either text or speech translations corresponding to a spoken utterance. We advise

the reader to look at papers in Natural Language Processing that use multilingual

sentence encoders to perform cross-lingual text mining, such as (Schwenk and Douze,

2017b; Artetxe and Schwenk, 2019b; Schwenk, Wenzek, et al., 2019b; Feng et al.,

2020).

Cross-lingual speech-to-text mining to create parallel speech-text translation datasets

is just one possible application of SAMU-XLS-R. But, the potential application in zero-

shot speech-to-text translation motivates us to work on this problem. The success

of zero-shot translation depends on learning a semantically-aligned language invari-
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ant embedding vector space or an interlingua for different spoken languages, where

speech utterances and their translations are clustered together. We show that this is

an emergent property in SAMU-XLS-R’s embedding vector space as a result of training

SAMU-XLS-R using the proposed multimodal learning framework (Section 5.4.5). Some

text machine translation papers that inspire us in the zero-shot translation are (Gu

et al., 2019; Arivazhagan et al., 2019). We make the following contributions:

• We propose a simple yet effective multimodal learning framework for semantically-

aligned multimodal (joint speech-text) utterance-level speech representation

(SAMU-XLS-R) shared across multiple languages (Section 5.2).

• We demonstrate the effectiveness of our models on several zero-shot cross-lingual

speech-to-text and speech-to-speech translation retrieval tasks (Section 5.4.5).

• We analyze to understand better the various design decisions that went into

constructing SAMU-XLS-R (Section 5.5).

A work similar to ours is presented in (Duquenne, Gong, and Schwenk, 2021). Unlike

the previous work, we evaluate our model on multiple datasets across many languages,

emphasizing low-resource languages.

5.2 Model

5.2.1 Joint Speech-Text Embedding Framework

We train SAMU-XLS-R using a multilingual set 𝒟 of paired examples (𝑥(𝑙), 𝑦(𝑙)), where

𝑥(𝑙) is the speech waveform, and 𝑦(𝑙) is its text transcript in language 𝑙. Given a

training example, (𝑥(𝑙), 𝑦(𝑙)), we transform the sequence of discrete tokens 𝑦(𝑙) to a

dense embedding vector z𝑇 ∈ R𝑑 using a text encoder 𝑔𝜑, and the series of speech

samples 𝑥(𝑙) into a dense embedding vector z𝑆 ∈ R𝑑 using a speech encoder 𝑓𝜃. Then,

we update the parameters of the speech encoder 𝑓𝜃 so that the distance between

the speech embedding z𝑆 and the text embedding z𝑇 is minimized. The following
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Figure 5-4: An illustration of our proposed multimodal training framework. The
learning framework comprises a speech and a text encoder. The speech encoder trans-
forms a raw speech waveform into an embedding vector. The text encoder transforms
the transcript corresponding to the speech utterance into an embedding. The text
encoder is initialized using the pre-trained Language-Agnostic BERT Sentence Em-
bedding (LaBSE) model (Feng et al., 2020). The speech encoder below the pooling
layer is initialized using the pre-trained XLS-R speech encoder (Babu et al., 2021).
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equation gives the training loss for a single example:

𝒥 (𝜃, 𝜑) = distance(z𝑆, z𝑇 ) (5.1)

We use the pre-trained Language-agnostic BERT Sentence Encoder (LaBSE) as the

text encoder 𝑔𝜑 and SAMU-XLS-R as the speech encoder 𝑓𝜃. The parameters 𝜃 of

the speech encoder are updated during training, while the parameters 𝜑 of the text

encoder remain fixed. An illustration of the multimodal learning framework is shown

in Figure 5-4.

5.2.2 SAMU-XLS-R Speech Encoder, 𝑓𝜃

SAMU-XLS-R consists of a pre-trained frame-level XLS-R speech encoder (Babu et al.,

2021) followed by a mechanism for pooling the frame-level contextual representations

into a single embedding vector.

XLS-R Encoder to generate Contextual Embedding

Algorithm 3 presents the computations performed by XLS-R. The XLS-R speech en-

coder consists of a deep convolutional neural network (Conv) that maps 1D time
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Algorithm 3 We detail the computations performed by the XLS-R transformer speech
encoder. LN refers to Layer-Normalization, Conv to a multi-layered Convolutional
Neural Network, DO is Dropout, MHSA is Multi-Headed Self-Attention, ACTFn is an
Activation Function like ReLU, and FC is a Fully-Connected Layer.
1: Input: Raw speech waveform a

2: Output: Contextual speech embedding sequence c

3: h = LN(Conv(a))

4: h = Mask(x)

5: h = h+ PosConv(h)

6: for 𝑖 = 1 to 𝐿− 1 do

7: h = TransformerLayer(𝑖)(h)

8: end for

9: c = LN(TransformerLayer(𝐿)(h))

10: function TransformerLayer(x)
11: x = DO1(MHSA(LN1(x))) + x

12: x = DO3(FC2(DO2(ACTFn(FC1(LN2(x)))))) + x

13: end function

series representing the sample values of the speech waveform (a) into a 2D sequence

of feature vectors h ∈ R𝑇×512. Each feature vector h𝑡 represents 20ms of the speech

signal. The time resolution of h𝑡 is similar to that of an acoustic frame. Therefore, we

refer to h as frame-level representations. Next, the feature sequence h is transformed

into contextual representations c ∈ R𝑇×1024 by a stack of Self-Attention transformer

blocks (TransformerLayer). There are 24 transformer blocks. Each block comprises

a Multi-Headed Self-Attention (MHSA) module, and two Fully-Connected layers (FC1,

FC2). The attention vector size is 1024, with 16 attention heads in each transformer

block. We use the publicly available pre-trained XLS-R checkpoint2 which was trained

on 400k hours of unlabeled speech data in 128 languages.

Pooling the Contextual Embedding

Next, we use Self-Attention pooling (Safari, India, and Hernando, 2020) strategy to

get a single utterance-level embedding vector e ∈ R1024. In this pooling strategy, we

2https://huggingface.co/facebook/wav2vec2-xls-r-300m
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take a weighted combination
𝑇∑︀
𝑡=1

𝑣𝑡c𝑡 of contextual vectors, where v = (𝑣1, . . . , 𝑣𝑇 ) is

the attention vector, given by the following equation:

v = softmax(c @ w) (5.2)

where, c ∈ R𝑇×1024 is the contextual embedding sequence, w ∈ R1024, @ refers to the

matrix-vector product which gives the attention vector v ∈ R𝑇 , such that
∑︀
𝑡

𝑣𝑡 = 1.

The weight vector w is learned during training.

Finally, we take a non-linear projection of the embedding vector e to get the

speech embedding z𝑆. The SAMU-XLS-R speech encoder consists of approximately 300

million trainable parameters (weights and biases).

5.2.3 LaBSE Text Encoder, 𝑔𝜑

Figure 5-5: An illustration of LaBSE’s (Feng et al., 2020) text embedding space.
LaBSE is a multilingual text encoder that can embed text from over 100 hundred
languages in a shared semantically aligned embedding space, i.e., a sentence such as
Cute Puppy is clustered together with its translations in hundred other languages
supported by LaBSE.
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The key ingredient in our proposed multimodal learning framework is the LaBSE

text encoder 𝑔𝜑, which allows us to learn a joint speech-text embedding space that is

semantically aligned and shared across different languages as illustrated in Fig. 5-5.

LaBSE is a language-agnostic text encoder for text with an architecture similar to
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the BERT transformer encoder (Devlin et al., 2019). However, unlike BERT, LaBSE

is a sentence embedding model, which is trained using both masked (Devlin et al.,

2019) and translation language modeling (Lample and Conneau, 2019b) objective

functions. LaBSE consists of a token-level transformer encoder with 12 MHSA layers

and a pooling mechanism to construct a dense sentence-level embedding vector.

The LaBSE’s transformer encoder takes as input text that is tokenized into "word-

pieces" (Schuster and Nakajima, 2012; Yonghui Wu, Schuster, Zhifeng Chen, Le,

Norouzi, W. Macherey, Krikun, Cao, Gao, K. Macherey, Klingner, Shah, Johnson,

X. Liu, L. Kaiser, et al., 2016) and outputs a sequence of contextual token embed-

ding 𝒲 ∈ R𝐿×768. A non-linear projection of the CLS token embedding is used as the

sentence embedding z𝑇 ∈ R768, which is used as the training target for SAMU-XLS-R

training. We use the pre-trained LaBSE model checkpoint3 hosted on the Huggingface

(Wolf et al., 2019) models4 platform. We use CLS token embedding for sentence

representation, called CLS pooling.

LaBSE embeds sentences from 109 languages into a shared semantically-aligned

embedding vector space. Unlike LaBSE, other multilingual text encoders such as XLM-

R (Conneau, Khandelwal, et al., 2019b) do not learn an aligned sentence embedding

space. Therefore, to achieve our goal of embedding speech in a semantically aligned

vector space, we use LaBSE as the teacher for training SAMU-XLS-R.

5.3 Training

5.3.1 Training Data, 𝒟

We train SAMU-XLS-R on transcribed speech in 25 languages derived from the publicly

available CommonVoice-v7 (CoVo) dataset. The 25 languages are namely, English

(EN), French (FR), German (DE), Spanish (ES), Catalan (CA), Italian (IT), Welsh

(CY), Russian (RU), Chinese (China) (ZH_CN), Chinese (Taiwan) (ZH_TW), Chi-

nese (Hong Kong) (ZH_HK), Portuguese (PT), Polish (PL), Persian (FA), Estonian

3https://huggingface.co/sentence-transformers/LaBSE
4https://huggingface.co/models
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(ET), Mongolian (MN), Dutch (NL), Turkish (TR), Arabic (AR), Swedish (SV_SE),

Latvian (LV), Slovenian (SL), Tamil (TA), Japanese (JA) and Indonesian (ID). Ta-

ble 5.1 shows the per-language transcribed data available in CoVo. The total training

data size is 6.8K hours.

The data is highly imbalanced. The top 5 high-resource languages make up 72%

of the training data, while the bottom 14 low-resource languages make up just 10%.

The above-mentioned problem could lead to SAMU-XLS-R severely under-fitting on low-

resource languages because SAMU-XLS-R, during its training lifetime, might encounter

transcribed speech data from low-resource languages in its train mini-batch only a few

times. Following (Lample and Conneau, 2019a; Y. Liu et al., 2020a) we re-balance

the training set 𝒟 by up/down-sampling data from each language 𝑙 with a ratio 𝜆𝑙:

𝜆𝑙 =
1

𝑝𝑙

𝑝𝛼𝑙∑︀
𝑙

𝑝𝛼𝑙
with 𝑝𝑙 =

𝑛𝑙
𝐿∑︀
𝑙=1

𝑛𝑙

(5.3)

where, 𝛼 is the smoothing parameter, 𝑛𝑙 is the number of utterances for language 𝑙 in

the training set. Figure 5-6, shows how varying 𝛼 between 1.0 and 0.05 re-balances the

training set. As we make 𝛼 smaller, observe that the share of low-resource languages

in the training set becomes approximately the same as that of high-resource languages.

It is important to note that when we up-sample data from low-resource languages, we

repeat the utterances from those languages. Down-sampling data from high-resource

languages involve picking random utterances according to the ratio 𝜆𝑙. Hence, training

with a re-balanced training set created using a small value of 𝛼 could result in a drop

in performance on high-resource languages compared to the model trained with the

original unbalanced training set. We study the smoothing parameter 𝑎𝑙𝑝ℎ𝑎’s effect

on the model’s downstream task performance in Section 5.5.

5.3.2 Optimization Settings

We train SAMU-XLS-R for 400K training iterations, on 32 V100-32gb GPUs, with a

per-GPU mini-batch size of approximately 2 hours of transcribed speech. Following
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Figure 5-6: Re-balancing the training set with different smoothing parameter values
𝛼. As we make 𝛼 smaller, the share of low-resource languages in the training set be-
comes approximately the same as that of high-resource languages. Up-sampling data
from low-resource languages implies repeating the utterances from those languages.
Down-sampling data from high-resource languages involve picking random utterances
according to the ratio 𝜆𝑙
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(Conneau, Baevski, et al., 2020), we use the Adam optimizer for updating the model

parameters with a three-phase learning rate scheduler; Warm up the learning rate to

a maximum value of 1e-4 for the first 10% of the training iterations, then the learning

rate remains constant for the next 40% of the training iterations, and finally decays

linearly for the rest of the iterations. For the first 10K training iterations, only

the projection layer of SAMU-XLS-R encoder is trained while the pre-trained frame-

level XLS-R speech encoder remains fixed. We do not update the weights of the

XLS-R’s convolutional feature extractor throughout the training process. Also, we use

a modified version of SpecAugment (Park, Chan, et al., 2019) on the feature sequence

ℋ (Section 5.2.2) to mask the input to the XLS-R’s transformer encoder, which leads

to better performance on downstream tasks. The above-mentioned training settings

are the standard for fine-tuning the pre-trained XLS-R or wav2vec-2.0 speech encoders

on downstream ASR tasks (Baevski et al., 2020; Conneau, Baevski, et al., 2020).
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Table 5.1: Amount of per language transcribed speech data in the CommonVoice-v7
dataset used for multimodal multilingual training of SAMU-XLS-R speech encoder.

Lang EN DE CA FR ES

Dur [Hrs] 2K 960 790 740 380

Lang FA IT CY TA RU

Dur [Hrs] 290 290 220 200 150

Lang PL ZH_HK NL PT AR

Dur [Hrs] 130 96 93 85 84

Lang ZH_CN ZH_TW SV_SE ET TR

Dur [Hrs] 63 59 34 32 32

Lang JA ID MN SL LV

Dur [Hrs] 27 25 12 9 7

We use the cosine distance between the speech and the text embedding as the

training loss (Equation 5.1). We do not update the weights of the LaBSE text encoder

throughout training. The reason for this design choice is straightforward. LaBSE’s

sentence embedding space is already semantically aligned across 109 languages. By

fine-tuning LaBSE along with SAMU-XLS-R on transcribed speech data 𝒟, we run the

risk of destroying this alignment. In fact, LaBSE will have no incentive to maintain

an aligned embedding space. Instead, our learning framework attempts to embed

speech utterances in the LaBSE’s sentence embedding space to make it multimodal.

By forcing the speech embeddings outputted by SAMU-XLS-R to be closer to LaBSE text

embedding, we get the cross-lingual semantic alignments between speech utterances in

different languages and text in 109 languages without ever encountering cross-lingual

associations during the model’s training. It might be possible to train the LaBSE text

encoder along with SAMU-XLS-R and still maintain the LaBSE’s semantically aligned

embedding space. But, it is out-of-scope of this work.
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5.3.3 SAMU-XLS-R Model Card

Table 5.2 summarizes the best configuration of different hyperparameters for train-

ing SAMU-XLS-R encoder. Next, we explain what some parameters in the table mean.

CoVo_25 refers to the multilingual transcribed speech data used for training the

model. We use data in 25 languages from the CoVo dataset. CNN Feature Extrac-

tor refers to the pre-trained XLS-R’s convolutional encoder that maps the 1D speech

waveform to a 2D feature representation used as input to the transformer encoder.

We keep its weights fixed to the pre-trained value. Freeze Fine-tune updates refer

to the number of training iterations to which we only train the projection layer of

SAMU-XLS-R. See Equation 5.3 and the text above it for details on the smoothing

factor 𝛼. The learning rate scheduler (LR scheduler) has a value of 10-40-50 refers

to the learning rate scheduler mentioned in Section 5.3. Training teacher is LaBSE,

which refers to the fact that the training targets for SAMU-XLS-R are the embedding

vectors corresponding to the text transcripts provided by LaBSE. The model supports

25 spoken languages and 109 written languages since SAMU-XLS-R is trained on the

transcribed speech from 25 languages and LaBSE can encode text in 109 languages in

its semantically aligned cross-lingual vector space.

5.4 Evaluation

5.4.1 Task Overview

We evaluate our multimodal framework, consisting of SAMU-XLS-R, a speech embed-

ding model, and LaBSE, a text embedding model, on several downstream translation

retrieval tasks. An illustration of the retrieval task and pipeline is shown in Fig. 5-

7. Retrieval is a common way to evaluate multilingual semantically aligned sentence

embedding vector spaces in Natural language processing (Schwenk and Douze, 2017b;

Feng et al., 2020). As mentioned, our work aims to learn a semantically aligned cross-

lingual multimodal (joint speech-text) embedding space. Hence, if we successfully

achieve our desired goal, the SAMU-XLS-R-LaBSE combination should perform well on
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Table 5.2: SAMU-XLS-R model card. We summarize the best configuration of different
hyperparameters for training the SAMU-XLS-R speech encoder.

Parameters Value

Training Data CoVo_25
Smoothing factor (𝛼) for data re-balancing 0.05
Training updates 200K
Freeze Fine-tune updates 10k
CNN Feature Extractor Frozen
Optimizer Adam
max learning rate (LR) 1e-4
LR scheduler 10-40-50
batch size / GPU 2Hrs
Data Augmentation Masking h

Training Objf. Cosine Distance
Training Teacher LaBSE

Pooling Fn. Self-Attention
Model init. XLSR Pre-Trained checkpoint
Num. GPUs 32
Supported Spoken Langs 22
Supported text Langs 109

127



Figure 5-7: Semantic Retrieval task definition and pipeline. (Left) We show an
example of a retrieval task. Given a speech query in some language (French), the goal
is to retrieve its corresponding text translation in English from a database of English
sentences. (Right) We show the retrieval pipeline. We transform the speech query
into an embedding using a pre-trained SAMU-XLS-R speech encoder. LaBSE transforms
English sentences in the search database into embeddings. We compute the cosine
distance between the query embedding and all the English sentence embeddings and
pick the one with the smallest distance as the translation of the speech query.

Cute Puppy
Nice Weather

Mr. President

What’s up? All’s well that 
ends well

Chiot mignon

Speech Query

English Search Database

SAMU-XLS-R

LaBSE

Speech Encoder

Speech Embedding

Text Embeddings

Text Encoder

Cosine Distance

Task Retrieval Process

cross-lingual speech-to-text translation retrieval tasks. Also, SAMU-XLS-R alone should

be able to perform well on cross-lingual speech-to-speech translation retrieval tasks.

Next, we summarize the retrieval process, evaluation metrics, and the speech-to-

text and speech-to-speech translation retrieval tasks we use to evaluate the SAMU-XLS-R’s

joint speech-text semantic embedding space.

5.4.2 Retrieval process and Evaluation Metrics

We construct two databases (DB), query and search, to perform translation retrieval.

The query DB consists of speech utterances in language X, and in the case of text

translation retrieval tasks, the search DB consists of text sentences in language Y. The

task is to retrieve the correct text translation from the search DB corresponding to
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each speech query in the query DB. To that end, we transform the speech utterances

in the query DB through SAMU-XLS-R to query speech embedding matrix 𝑄 ∈ R𝑁×768,

where 𝑁 is the number of speech queries in the query DB. Also, we transform the

sentences in the search DB through the LaBSE encoder to search text embedding

matrix 𝑆 ∈ R𝑀×768, where 𝑀 is the number of sentences in the search DB. Given

that the vectors are normalized, we could retrieve the text translations for the speech

queries as follows:

𝐴 = 𝑄𝑆𝑇

r = argmax𝑗𝐴:,𝑗

where 𝐴 ∈ R𝑁×𝑀 is the cosine similarity matrix, whose (𝑖, 𝑗)𝑡ℎ element 𝐴𝑖,𝑗 is the

cosine similarity between the speech query embedding 𝑞𝑖 ∈ 𝑄 and the sentence em-

bedding 𝑠𝑗 ∈ 𝑆, and r ∈ R𝑁 is the index vector, such that it’s every component 𝑟𝑖 ∈ r

is the index of the closest match in the text translation search DB. Also, given the

index vector u, where each component 𝑢𝑗 ∈ u is the index of the ground-truth text

translation in the search DB, we compute the model’s retrieval accuracy as follows:

ACC = 100 *

𝑁∑︀
𝑖=1

1{𝑟𝑖 = 𝑢𝑖}

𝑁
(5.4)

where the function 1{𝑟𝑖 = 𝑢𝑖} returns one when 𝑟𝑖 = 𝑢𝑖, the predicted translation

index matches the ground-truth translation index. Otherwise, it outputs zero. Hence,

the numerator is the number of queries for which the model retrieved the correct

translations from the search DB, and the denominator is the total number of queries

in the query DB.

We refer to the retrieval accuracy in Equation 5.4 as Recall@1 or R@1, which

contrasts with another similar metric, R@5, where the indicator function returns one

if any of the top five retrieved search DB indices matches with the correct index.

We report R@5 for speech retrieval evaluation tasks. The recall is commonly used to

evaluate audio-visual multimodal representation learning models (Harwath, Torralba,
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and J. Glass, 2016; Harwath, Hsu, and J. Glass, 2020; Rouditchenko et al., 2020).

In addition to R@1, for text translation retrieval tasks, we also report the Word

Error Rate (WER) (Wikipedia contributors, 2020) between the retrieved and the

ground-truth text translation. The reason is that it is hard to interpret retrieval

accuracies. For example, the WER for model A with a retrieval accuracy of 70%

might not be much worse than the WER for model B with a retrieval accuracy of 80%

because model A might be worse than model B in retrieving the exact translations.

However, it might still recover translations with a significant string overlap with the

actual translation. The retrieval accuracy will fail to capture this.

5.4.3 Retrieval Tasks

X→EN Text Translation Retrieval

We use the CoVoST-2 (Changhan Wang, Pino, et al., 2020) X-EN speech-translation

dataset for this evaluation task. The speech query DB is in a language X∈{RU, IT,

FR, ES, TR, DE, ET, CY, NL, ID, CA, FA, AR, ZH, SV, MN, SL, JA, TA, LV}

and the search DB consists of English sentences. To construct the speech query DB

for each language X, we use the combined testing and development sets (henceforth,

eval set) from CoVoST-2. To construct the search DB, we combine the English text

translation from all the 22 X→EN eval sets in CoVoST-2, which we refer to as 𝑆𝑎.

In addition, we create a search DB 𝑆𝑏 that contains approximately 1.4M English

sentences from the CoVo English transcribed speech data. We use the combined

search DB 𝑆 = 𝑆𝑎 ∪ 𝑆𝑏 for all the 22 X→EN text translation retrieval tasks. We add

𝑆𝑏 to 𝑆𝑎 to make the retrieval task harder than if we search over 𝑆𝑎.

EN→Y Text Translation Retrieval

We use the publicly available CoVoST-2 corpora (Changhan Wang, Pino, et al., 2020)

for this evaluation task, which consists of English speech queries paired with their

text translations. The speech query DB is in English, and the search DB is in a

language Y∈{DE, CA, ZH, FA, ET, MN, TR, AR, SV, LV, SL, TA, JA, ID, CY}.
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For each EN→Y retrieval task, the query DB consists of speech utterances in the

combined development and testing sets. The search DB consists of the ground-truth

text translations in language Y. corresponding to the speech queries. In addition, we

add the Y language text translations available in the EN→Y CoVoST-2 training set

to make the retrieval task harder. Similarly, we create a search DB for each of the 15

languages (Y) for the EN→Y text translation retrieval task.

We also retrieve text translation for this evaluation scenario on the MUST-C

(Mattia A. Di Gangi et al., 2019b) EN→Y corpora. In MUST-C, we have English

speech queries paired with their actual text translation in a language Y∈{ES, PT,

FR, DE, Romanian (RO), NL, IT, Czech (CS), Vietnamese (VI), FA, TR, AR, RU,

ZH}. We create an eval set, a union of MUST-C dev, tst-COMMON, and tst-HE

data splits. The speech query DB consists of speech utterances in the eval set. The

search DB for a language Y consists of sentences from the EN→Y MUST-C eval set

combined with sentences from the EN→Y training set.

X→Y Text Translation Retrieval

We use the MTEDx (Salesky et al., 2021) speech-translation corpora, which consists

of speech queries in language X paired with their ground-truth text translation. For

this evaluation task, we have the translation pairs X_Y∈{IT_ES, IT_EN, ES_FR,

ES_IT, FR_PT, ES_PT, FR_EN, PT_ES, ES_EN, PT_EN, RU_EN}. For a

translation pair X_Y, we have speech queries in language X and the text search DB

in language Y. For a retrieval X→Y, the query DB consists of speech utterances in

the MTEDx X→Y eval set (dev+test), and the text search DB in language consists of

the ground-truth text translations from the X→Y eval set and the X→Y training set.

The reader might observe that the search DB is more significant than the query DB

for all the text translation retrieval tasks and consists of the actual text translations

and random sentences to make the retrieval task harder.

We consider MTEDx X→Y translation retrieval evaluation tasks as out-of-domain

because we train SAMU-XLS-R on transcribed read speech from the CoVo dataset. At

the same time, MTEDx consists of oratory-style speeches collected from TED talks.
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X→EN Speech Translation Retrieval

Finally, we evaluate our model on speech translation retrieval tasks. We get the

parallel X→EN speech-speech translation data from the publicly available VoxPopuli

corpora (Changhan Wang, Riviere, et al., 2021). For this task, speech queries are

in a language X∈{ES, FR, PL, NL, DE, RO, Croatian (HR), CS}, and the search

DB consists of English speech translations corresponding to the queries. Unlike the

text translation retrieval tasks, the search DB is the same size as the query DB and

consists of only actual speech translations corresponding to the queries.

5.4.4 Baseline Retrieval Models

ASR-LaBSE retrieval pipeline

We also perform translation retrieval tasks using an ASR-LaBSE combination, where

we convert the speech queries into text transcripts in the same language as the queries

using an ASR model. Then, we perform ASR transcript-to-text translation retrieval

using LaBSE. We build 25 language-specific ASR models to cover all the spoken

languages in our text translation retrieval tasks. To construct the ASR models,

we fine-tune the pre-trained XLS-R checkpoint on the downstream ASR task using

the transcribed speech data in the target language available from the CoVo dataset

(See Table 5.1 for the amount of per language transcribed speech data). We use

the standard Connectionist temporal Classification (Graves, Fernández, et al., 2006)

based optimization setup for fine-tuning the XLS-R model for the ASR task detailed in

(Conneau, Baevski, et al., 2020). We use a beam size of 20 and a tri-gram character-

level language model for decoding speech queries to text. We use the ESPnet speech

recognition toolkit (Watanabe, Hori, Karita, Hayashi, Nishitoba, Unno, Enrique Yalta

Soplin, et al., 2018; Watanabe, Boyer, Chang, Guo, Hayashi, Higuchi, Hori, W.-C.

Huang, Inaguma, Kamo, et al., 2021) to construct the ASR models and decode them.
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Topline

As a topline, we use the ground-truth transcriptions corresponding to speech queries

and perform ground-truth transcription to text translation retrieval using LaBSE. Our

SAMU-XLS-R-LaBSE retrieval framework cannot perform better than the topline because

the best we can do with our proposed multimodal learning framework is to match the

LaBSE embedding vectors perfectly.

5.4.5 Results

X→EN speech-to-text translation retrieval

Table 5.3 shows the results on X→EN translation retrieval tasks using SAMU-XLS-R-

LaBSE, ASR-LaBSE and Topline LaBSE retrieval pipelines. We report the retrieval

accuracy (R@1) and WERs for different spoken languages X. The task is to retrieve

the English text translation for a given speech query (X). The table shows the num-

ber of speech queries per spoken language X. The number of speech queries in the

evaluation set varies across languages, with more queries for high-resource and fewer

for low-resource languages. It is a function of the evaluation set available for differ-

ent languages in the CoVoST-2 eval set. The search for the English translation is

over a text database comprising 1.6M English sentences. The text DB contains the

ground-truth English translations and transcriptions from the CommonVoice English

dataset. We added the extra English sentences to make the translation retrieval task

harder than searching over a small database of only true English translations. See

Section 5.4.3 for more details on X→EN retrieval tasks.

Interestingly, ASR-LaBSE is significantly worse than SAMU-XLS-R-LaBSE retrieval

model on retrieval tasks where the speech queries are in non-European languages.

For example, on ID→EN, FA→EN, AR→EN, ZH→EN, MN→EN, JA→EN and

TA→EN retrieval tasks, SAMU-XLS-R-LaBSE achieves a WER of 9.5%, 10.2%, 13.8%,

15.2%, 26.0%, 44.7% and 57.7% respectively compared to 23.4%, 16.8%, 34.3%,

36.0%, 41.3%, 72.9%, 75.0% respectively by ASR-LaBSE. On average, SAMU-XLS-R-

LaBSE achieves an average WER of 22.6% compared to 33.7% with ASR-LaBSE on
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non-European spoken languages (X)→EN translation retrieval tasks. On retrieval

tasks, where speech queries are in European languages, SAMU-XLS-R-LaBSE performs at

par with ASR-LaBSE retrieval pipeline. For example, on RU→EN, IT→EN, FR→EN,

ES→EN, DE→EN, ET→EN, CY→EN, NL→EN, CA→EN, SV→EN, SL→EN and

LV→EN translation retrieval tasks, SAMU-XLS-R-LaBSE achieves an average WER of

13.6% compared to 10.2% with ASR-LaBSE retrieval pipeline. These results are un-

surprising given that the ASR system is generally better for European languages

(high and low-resource) than for non-European languages. This is since the XLS-R

speech encoder, which we fine-tune on downstream ASR tasks using language-specific

transcribed data, is pre-trained majorly on European language speech data.

Finally, the topline model uses the ground-truth text transcriptions corresponding

to the speech queries (X) to retrieve the English text translations. This model uses

only LaBSE to perform the text(X)→text(EN) retrieval task. The topline achieves

an average WER of 14.5% on non-European languages X and 4.9% on European

languages, which implies that we could not quite reach the topline performance with

our SAMU-XLS-R-LaBSE retrieval pipeline, and there is room for improvement. We

believe that increasing the scale of the training data and using contrastive loss for

training SAMU-XLS-R could result in improved performance. However, a training setup

with a contrastive loss would require considerable engineering effort because of the

engineering complexity involved in mining negative samples across GPUs as done for

training LaBSE (Feng et al., 2020). Drawing negative samples from the same GPU

device would not be sufficient because of the small per GPU batch size owing to the

large speech encoder size and long speech waveforms. Hence, we leave the exploration

of contrastive learning for future work.

EN→Y speech-to-text translation retrieval

Table 5.4 and 5.5 shows the results on EN→Y speech→text retrieval tasks using

SAMU-XLS-R-LaBSE, ASR-LaBSE and Topline LaBSE retrieval pipelines. We retrieve the

text translation in a language Y for a given speech query in English for the EN→Y

retrieval tasks. In the results table, first, we show the number of English speech
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queries and the sentences in the search database for each language, Y.

For the CoVoST-2 EN→Y retrieval tasks, we have 32K English speech queries in

the query DB and 320K sentences in the search DB in language Y for each EN→Y

retrieval task. See Section 5.4.3 for more details on the EN→Y CoVoST-2 retrieval

tasks.

Table 5.4 shows results on CoVoST-2 EN→Y retrieval tasks. We have 32K English

speech queries in the query DB and 320K sentences in the search DB in language

Y for each EN→Y retrieval task. See Section 5.4.3 for more details on the EN→Y

CoVoST-2 retrieval tasks. We observe that SAMU-XLS-R-LaBSE and ASR-LaBSE retrieval

pipelines perform at par, achieving a retrieval WER of 7.6% and 7.3% respectively. In

contrast, the Topline LaBSE text(EN)→text(Y) retrieval pipeline achieves an average

WER of 2.1% across the 15 retrieval tasks. There is room for improvement. In

particular, for retrieving text translations in non-European languages such as ZH,

MN, JA, FA, AR, and TA, for which the average WER achieved by our proposed

SAMU-XLS-R-LaBSE retrieval pipeline is 9.7% compared to 2.8% with the topline LaBSE

text(EN)→text(Y) retrieval. For European languages, our retrieval model achieves a

WER of 6.1% compared to 1.7% for the topline model. Our model performs better

in European languages (6.1% WER) than non-European languages (9.7% WER).

Table 5.5 shows EN→Y retrieval results on the out-of-domain MUST-C evaluation

corpus. We have the same number of 4K speech utterances in the query DB and

200K sentences in the search DB for all text translation retrieval tasks. We observe

that SAMU-XLS-R-LaBSE perform at par with ASR-LaBSE retrieval pipeline, achieving an

average of 10.3% WER compared to 9.6% achieved by the ASR-LaBSE retrieval pipeline

on the 14 EN→Y retrieval tasks. Our model achieves a WER of less than 10% for

most languages except TR, AR, RU, and ZH, for which the model achieves a WER

of 11.1%, 13.2%, 12.3%, and 20.6%, respectively. These WERs are approximately

double the WERs, achieved by the topline LaBSE text(EN)→text(Y) retrieval model.

However, the WERs are at a respectable less than 20% mark.
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Table 5.7: We perform zero-shot X→EN speech translation retrieval on the VoxPop-
uli dataset. The speech queries are in a language X, and the search database consists
of speech utterances that are translations of speech queries. Unlike text translation
retrieval tasks, where the search DB is much bigger than the query DB, here, the
search and the query DB have the same size. During its training, SAMU-XLS-R had
no access to cross-lingual speech-to-speech associations. Hence, semantic alignment
among speech utterances in different languages is an emergent property of the em-
bedding vector space learned by SAMU-XLS-R via our proposed multimodal learning
framework. We compare SAMU-XLS-R’s vector space with XLS-R.

X ES FR PL NL DE RO HR CS Avg.

SAMU-XLS-R Speech(X)→Speech(EN) Retrieval

Query & Search DB 36K 50K 19K 11K 60K 16K 8K 11K -

R@1[%] 97.9 97.8 97.7 97.5 96.0 76.0 53.3 52.8 83.6
R@5[%] 98.5 98.4 98.4 98.0 97.1 80.9 59.5 58.2 86.1

XLS-R Speech(X)→Speech(EN) Retrieval

R@1[%] - - - - 0.0 - - - 0.0

X→Y speech-to-text translation retrieval

Table 5.6 shows results on out-of-domain MTEDx X→Y text translation retrieval

tasks using SAMU-XLS-R-LaBSE, ASR-LaBSE and topline LaBSE retrieval pipelines. The

table shows the speech queries and text search database combination for each pair

X_Y. We observe that SAMU-XLS-R-LaBSE achieves an average retrieval WER of 9%

compared to 6.8% with ASR-LaBSE and 2.5% with topline LaBSE on the 11 text trans-

lation retrieval tasks. It is unsurprising that ASR-LaBSE retrieval pipeline performs

better than the SAMU-XLS-R-LaBSE model. Because the speech queries for X→Y re-

trieval tasks are in European languages and our European language ASR models are

quite good. The results reported here confirm the observation we made for X→EN

CoVoST-2 translation retrieval tasks, where SAMU-XLS-R-LaBSE performed better than

ASR-LaBSE for non-European languages but not for the European languages. If we

had an ASR model that generated text transcripts that matched the ground-truth

transcripts, then the performance of ASR-LaBSE would be the same as that of the

140



topline model.

X→EN speech-to-speech translation retrieval

The SAMU-XLS-R speech encoder learns a semantically aligned vector space across

several spoken languages. The model can retrieve the correct English speech transla-

tions corresponding to speech queries in a language X with above 96% accuracy for

X∈{ES, FR, PL, NL, DE}. For X∈{RO, HR, CS}, SAMU-XLS-R’s speech translation

retrieval performance lags behind other languages. This result is unsurprising be-

cause SAMU-XLS-R did not see any transcribed data from these three languages during

training. SAMU-XLS-R achieves an average retrieval R@1 accuracy of 83.6% across the

8 X→EN speech translation retrieval tasks. On the other hand, XLS-R fails on this

retrieval task. To get an utterance-level speech embedding from XLS-R, we perform

temporal mean pooling of the contextual frame-wise embeddings from the last layer

of the model. The poor retrieval results show that the XLS-R representation space is

not semantically aligned across different languages. We achieve similarly poor results

with representations from different XLS-R layers.

5.5 Analysis

This section studies various design decisions that went into creating the SAMU-XLS-R

speech encoder.

Loss and pooling functions. While detailing SAMU-XLS-R in Section 5.2.2, we men-

tioned that we use the Self-Attention pooling method to construct an utterance-level

speech embedding from acoustic frame-level contextual embedding vectors. Also, we

use the cosine distance loss for training SAMU-XLS-R. Table 5.8 shows that combining

cosine distance loss and the Self-Attention pooling method is better than combining

other loss functions and pooling methods. We train SAMU-XLS-R with L1, L2, and

cosine distance losses and compare its average text translation retrieval performance

across the 21 X→EN CoVoST-2 retrieval tasks. Also, we compare the retrieval perfor-
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Table 5.8: Avg. retrieval Performance in terms of retrieval accuracy (R@1), and
WER between the retrieved translations and the ground truth translations, on 21
X→EN text translation retrieval tasks for different combinations of loss and pooling
functions. We train SAMU-XLS-R with L1, L2, and cosine distance losses and compare
its average text translation retrieval performance across the 21 X→EN CoVoST-2
retrieval tasks. Also, we compare the retrieval performance with Mean, Max, and
Self-Attention pooling strategies. Three loss functions with three pooling strategies
lead to nine possible training configurations

Loss Pooling R@5 [%] R@1 [%] WER [%]

L1 Max 52.2 44.0 50.9
L1 Mean 52.9 44.6 49.9
L1 Att. 54.0 45.6 48.8
Cos Max 55.4 46.6 47.5
L2 Max 55.6 46.8 47.3
Cos Mean 56.3 47.6 46.2
L2 Mean 57.2 48.2 45.4
L2 Att. 57.6 48.6 45.3
Cos Att. 58.0 48.8 44.6

mance with Mean, Max, and Self-Attention pooling strategies. Three loss functions

with three pooling strategies lead to nine possible training configurations. For quick

analysis, we train SAMU-XLS-R on 8 V100-32GB GPUs for 100K iterations on a sub-

set 𝒟𝑆 of the complete multilingual transcribed training data 𝒟. 𝒟𝑆 is constructed

by randomly sampling 400K training examples from 𝒟. SAMU-XLS-R with the Self-

Attention pooling method and trained with cosine distance loss reaches an average

retrieval R@1 accuracy of 48.8%, better than the other eight training configurations.

Data Re-balancing Smoothing parameter 𝛼. This section studies the effect

on the model’s average retrieval performance across 21 X→EN retrieval tasks when

we train the model with re-balanced training data according to Equation 5.3. The

smoothing parameter 𝛼 is the only hyper-parameter in the data re-balancing equa-

tion. First, we construct several re-balanced multilingual transcribed speech datasets
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Table 5.9: Avg. retrieval performance measured using Retrieval Accuracy (R@1)
and WER between the retrieved and ground-truth translations on 21 X→EN text
translation retrieval tasks for different values of 𝛼.

𝛼 R@5 [%] R@1 [%] WER [%]

1.00 58.0 48.8 44.6
0.70 70.3 60.5 32.2
0.30 79.3 69.5 22.8
0.10 81.6 71.7 20.5
0.01 81.9 72.0 19.9
0.05 82.2 72.4 19.6

Table 5.10: Avg. retrieval performance measured using Retrieval Accuracy (R@1) and
WER between the retrieved and ground-truth translations on 7 X→EN low-resource
text translation retrieval tasks for different 𝛼s.

𝛼 R@5 [%] R@1 [%] WER [%]

1.00 32.1 23.8 72.1
0.05 71.9 61.4 29.7

corresponding to different values of 𝛼. Then, we randomly sample 400K utterances

from re-balanced datasets for SAMU-XLS-R model training. We train SAMU-XLS-R using

the cosine distance loss function for 100K iterations on 8 V100-32GB GPUs.

We observe in Table 5.9 that the models trained with re-balanced data (𝛼 < 1.0)

achieve significantly better average retrieval accuracy across the 21 X→EN text trans-

lation retrieval tasks than the model trained with no re-balancing (𝛼 = 1.0). We

achieve the best performance with 𝛼 = 0.05, where the model’s average retrieval accu-

Table 5.11: Avg. retrieval performance measured using Retrieval Accuracy (R@1)
and WER between the retrieved and ground-truth translations on five high-resource
X→EN text translation retrieval tasks for different 𝛼s.

𝛼 R@5 [%] R@1 [%] WER [%]

0.05 92.0 85.0 9.4
1.00 93.8 87.5 7.3
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Table 5.12: Avg. retrieval performance measured using Retrieval Accuracy (R@1)
and WER between the retrieved and ground-truth translations on 21 X→EN text
translation retrieval tasks for different training data. T1 refers to using multilingual
transcribed speech data for training SAMU-XLS-R, T2 refers to SAMU-XLS-R training on
paired speech-text translation data, and T3 refers to SAMU-XLS-R training on combined
transcribed and translated speech data.

Model R@5 [%] R@1 [%] WER [%]

SAMU-XLS-R_T2 49.9 41.3 54.6
SAMU-XLS-R_T3 79.7 69.5 22.7
SAMU-XLS-R_T1 82.2 72.4 19.6

Table 5.13: Avg. retrieval performance measured using Retrieval Accuracy (R@1)
and WER between the retrieved and ground-truth translations on 7 X→EN high-
resource text translation retrieval tasks for different training data. T1 refers to using
multilingual transcribed speech data for training SAMU-XLS-R, T2 refers to SAMU-XLS-R
training on paired speech-text translation data, and T3 refers to SAMU-XLS-R training
on combined transcribed and translated speech data.

Model R@5 [%] R@1 [%] WER [%]

SAMU-XLS-R_T2 15.5 9.2 91.4
SAMU-XLS-R_T3 67.3 55.7 36.1
SAMU-XLS-R_T1 71.9 61.4 29.7

racy R@1 is 72.4% compared to 48.8% achieved by SAMU-XLS-R trained on the original

dataset without any re-balancing. The massive boost in retrieval performance is due

to the model doing much better on X→EN retrieval tasks where speech queries are in

low-resource languages, which implies that the model was indeed under-fitting on low-

resource languages due to the data imbalance in the training set of SAMU-XLS-R. Ta-

ble 5.10 shows that SAMU-XLS-R trained with data re-balancing (𝛼 = 0.05) achieves an

average retrieval R@1 accuracy of 61.4% compared to 23.8% achieved by SAMU-XLS-R

trained on the unbalanced training set (𝛼 = 1.0). Also, Table 5.11 shows a negligible

performance difference for different 𝛼s on X→EN tasks when speech queries are in

high-resource languages.
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Training Data. In Section 5.3.1, we mention that we train SAMU-XLS-R with mul-

tilingual transcribed speech data collected from the CoVo dataset. In this section,

we study the effect of training SAMU-XLS-R with paired speech-translation data. We

train SAMU-XLS-R using three different training datasets: 1) Transcribed multilin-

gual speech in 25 languages from the CoVo dataset, which we refer to as the train-

ing setup T1, and the model trained with this setup as SAMU-XLS-R_T1, 2) The 22

X→EN CoVoST-2 (Changhan Wang, Pino, et al., 2020) speech-translation training

sets, where speech utterances are paired with their corresponding English text trans-

lations. We refer to that as the training setup T2, and the model trained with this

setup as SAMU-XLS-R_T2. 3) A combination of both T1 and T2. We refer to the model

trained with this setup as SAMU-XLS-R_T3. Also, we re-balance the different training

datasets using 𝛼 = 0.05 and randomly pick 400K examples for training. Finally, we

train the model for 100K iterations on 8 V100-32GB GPUs.

Table 5.12 shows average retrieval performance on 21 X→EN retrieval tasks

achieved by SAMU-XLS-R trained with the three different training setups mentioned

above. We observe that SAMU-XLS-R_T1 achieves the best retrieval performance out

of the three models, implying that we can train SAMU-XLS-R with multilingual tran-

scribed speech. Furthermore, table 5.13 shows that SAMU-XLS-R_T1 is notably better

for X→EN tasks when speech queries are in low-resource languages. The performance

difference among the three models is negligible for speech queries in high-resource lan-

guages.

Qualitative Analysis. In Table 5.14, we show some examples of retrieved transla-

tions using our retrieval pipeline. We can see a semantic similarity between the speech

query and the top-5 English translations retrieved using the joint speech-text embed-

ding space learned by our proposed multimodal learning framework (Section 5.2).
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5.6 Chapter Summary

In this chapter, we proposed a semantically-aligned multimodal (joint speech-text)

utterance-level cross-lingual speech representation (SAMU-XLS-R) learning framework.

Using multilingual transcribed speech to train the proposed representation learning

model, we show that cross-lingual alignments between speech utterances and their

text and speech translations emerge in the learned joint speech-text embedding vector

space.

We show that unlike XLS-R (a speech-only multilingual speech encoder), SAMU-XLS-R

in combination with language-agnostic BERT sentence encoder LaBSE can perform

zero-shot speech-to-text and speech-to-speech translation retrieval across several spo-

ken and written languages. Furthermore, we show that SAMU-XLS-R performs at par

with XLS-R on sequence-to-sequence modeling tasks such as ASR and Phoneme Recog-

nition. In the future, we will extend our multimodal learning framework for zero-shot

speech translation and large-scale speech-to-text data mining to create parallel speech-

text translation datasets for training speech translation models.
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Table 5.14: Given a speech query in language X, we search over a large English
database of 1.6M sentences to retrieve the top-5 translations using our proposed
SAMU-XLS-R-LaBSE retrieval pipeline. We randomly pick five speech queries from the
CoVoST-2 eval set, two in French and one each in German, Arabic, and Spanish. For
each speech query, we retrieve the top-5 English translations.

Speech Query Query Lang. Top-5 Retrieved EN Translations

La chute de la cité FR 1) The fall of the city is difficult to explain

est difficile à expliquer. 2) The origin of the town name is unclear.
3) It’s not easy to describe why it happened.
4) Further history of the village is unclear.
5) The origin of the town is not completely clear.

Elle est le chef-lieu FR 1) It is the seat of Okanogan County.
du département de l’Okano. 2) It is the main city of the Okano District.

3) It is the county seat of Macon County.
4) It is the capital of Otwock County.
5) Its county seat is Oconto.

Die Blütezeit reicht von März DE 1) The flowering season lasts from March

und April vor der Bildung until April, just before foliage develops.

der Laubblätter 2) The flowering period extends from April through June.
3) Flowering occurs from April through July.
4) Its flowering season is around February to April.
5) The blooming starts in the middle of April
and goes almost until mid May.

ñK
 YªK.

�
AÓñK


�
BAÔg

.
X@X 	Q

�
K. AR 1) She’s getting worse every day.

2) It is getting better every day.
3) It’s getting warmer day after day.
4) She gets prettier every day.

5) It’s getting colder day after day.

Fue enfermera voluntaria ES 1) She was a volunteer nurse on World War I.

en la I Guerra Mundial. 2) Her mother was a nurse during World War One.
3) During World War One he served as a paramedic.
4) During World War One he was a medical sergeant
5) In World War One, she was a Red Cross nurse.
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Chapter 6

Multilingual Speech-To-Text

Translation

In this chapter, we show an application of the SAMU-XLS-R semantic speech em-

bedding model to multilingual speech-to-text translation. Multilingual Automatic

Speech Translation refers to the problem of training a single model for several trans-

lation tasks. Often the training pool of translation tasks is imbalanced, where most

of the training data come from a few high-resource tasks, while most other tasks have

very few paired speech-text translation examples for training. We show that build-

ing multilingual translation models on top of the multimodal semantically aligned

representations learned by SAMU-XLS-R (due to the joint speech-text embedding

framework proposed in the previous chapter) leads to significantly better cross-lingual

task transfer from high to low-resource translation tasks than using other multilingual

representations learned by unimodal representation learning frameworks such XLS-R

(Babu et al., 2021), and multimodal multilingual representation learning frameworks

such as mSLAM (Bapna, Cherry, et al., 2022b; Bapna, Cherry, et al., 2022a).

To motivate our work in this chapter, we show the performance of the multilin-

gual XLS-R speech encoder on the CoVoST-2 speech-to-text translation benchmark.

CoVoST-2 comprises 21 X→EN speech-to-text translation tasks, where X refers to the

language of speech utterance, and EN is its corresponding English text translation.

XLS-R speech encoder is pre-trained via Self-Supervised Learning using unlabeled
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speech data in 128 languages. Babu et al. (2021) fine-tunes the pre-trained XLS-R

encoder combined with a pre-trained MBART text decoder (Y. Liu et al., 2020b) si-

multaneously on 21 X→EN translation tasks in CoVoST-2 benchmark. We categorize

the 21 translation tasks into high, mid, and low-resource groups. A task is classified

as high if it has more than 100 hours of paired speech(X)-text(EN) translation train-

ing data, mid if training data is between 10 and 100 hours, and low if training data

is less than 10 hours.

Figure 6-1: We report translation performance on 21 X→EN speech-to-text transla-
tion tasks in CoVoST-2 benchmark with different sized pre-trained XLS-R encoders
fine-tuned on labeled speech translation data. The 21 tasks are categorized into high,
mid, and low resource tasks depending on the available labeled training data for a
task. We report average BLEU-4 scores in the three categories. The important thing
to consider is the performance gap (cross-lingual transfer gap) between high and low-
resource tasks. We address this large gap in this chapter.
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We report the XLS-R(speech encoder)→MBART(text decoder) transformer trans-

lation model on the high, mid, and low translation task groups in Fig. 6-1. We report

the average BLEU-4 score on each translation group. The vital thing to observe is the

performance gap (cross-lingual transfer gap) between high and low-resource transla-

tion groups for different-sized XLS-R encoders ranging from 300M to 2B parameters.

So, increasing the model size from 300M to 2B, a more than 500% increase leads to

only a 16% reduction in the cross-lingual transfer gap. Since the translation model is

built on top of the pre-trained XLS-R encoder’s representations, there is some miss-
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ing ingredient in the pre-trained representations that leads to a poor cross-lingual

translation task transfer. We hypothesize the missing piece is semantic knowledge.

We hypothesize that since SAMU-XLS-R is specifically trained to encode semantic

information about the speech signal in its internal representations, building a trans-

lation model on top of SAMU-XLS-R would lead to better cross-lingual transfer than

reported in Fig. 6-1.

6.1 Introduction

Pre-trained speech encoders like XLS-R (Babu et al., 2021) are considered "foundation

models" (Bommasani and al., 2021) for downstream multilingual speech processing

applications such as Multilingual Automatic Speech Recognition (Conneau, Baevski,

et al., 2020; Rivière et al., 2020; Babu et al., 2021), Multilingual Automatic Speech

Translation (X. Li et al., 2020a; Babu et al., 2021; Bapna, Cherry, et al., 2022b), and

other para-linguistic property prediction tasks (Shor et al., 2021; S.-w. Yang et al.,

2021). This work focuses on Multilingual Automatic Speech Translation.

Multilingual Automatic Speech Translation (MAST) refers to translating speech

in all the source languages in set 𝒳 to text in all the target languages in set 𝒴 ,

which implies a total of |𝒯 | = |𝒳 | × |𝒴| translation tasks. In MAST, we train a

single model for all the translation tasks given by set 𝒯 . The benefits of having a

single model instead of an individual model for each task 𝑡 ∈ 𝒯 are two-fold: First,

it is convenient to maintain and share a single model that can perform multiple

tasks rather than having |𝒯 | separate models, and second, sharing model parameters

amongst |𝒯 | translation tasks could lead to knowledge transfer across tasks, especially

from high-resource to low-resource.

MAST’s standard neural network architecture is the transformer encoder-decoder

model (Vaswani et al., 2017). Recently, MAST has seen significant improvements

owing to; (i) better initialization of the translation model’s encoder and decoder with

pre-trained speech encoders, like XLS-R (Babu et al., 2021), and text decoders, like

MBART (Y. Liu et al., 2020b), (ii) better fine-tuning strategies (X. Li et al., 2020a), and
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(iii) parallel speech-text translation corpora (Iranzo-Sánchez et al., 2019; Changhan

Wang, Pino, et al., 2020). However, as we demonstrate later, the performance on

low-resource tasks remains poor, and in particular, the gap between high- and low-

resource tasks remains large. This is because the XLS-R encoder learns low-level

linguistic knowledge like phonetic knowledge from unlabeled speech data, which is due

to the lack of proper constraints during SSL pre-training for learning representations

that encode high-level linguistic knowledge like semantic knowledge. Since semantic

knowledge is language-agnostic, the representations that encode semantics should

achieve better cross-lingual transfer in the downstream MAST task.

To inject semantic knowledge into the learned XLS-R representations, we turn to

Semantically-Aligned Multimodal Cross-Lingual Representation Learning framework,

SAMU-XLS-R (Khurana, Laurent, and J. Glass, 2022), introduced in the previous chap-

ter. SAMU-XLS-R learns a multilingual multimodal semantically aligned speech repre-

sentation space. This multilingual semantic information space learned by SAMU-XLS-R

encoder could significantly benefit the task of MAST owing to the better cross-lingual

transfer of the abstract semantic representations. This is evident from the significant

cross-lingual task transfer of SAMU-XLS-R over the baseline XLS-R (Section 6.4.4).

In this chapter, we make the following contributions. We doubled the number

of languages previously supported by SAMU-XLS-R encoder from 25 to more than 50.

(Section 6.2). The SAMU-XLS-R encoder embeds speech at the utterance (a spoken

sentence) level. In the previous chapter, we explored using SAMU-XLS-R embedding for

translation retrieval. Also, other works explored the use of SAMU-XLS-R embeddings

for spoken language understanding tasks (Laperrière et al., 2022). Differently, in

this work, we explore the fine-grained representations the SAMU-XLS-R learns below

the pooling layer. We show that the fine-grained representations (corresponding to a

20ms duration speech segment in the input speech waveform) are well-suited for the

sequence generation task of Multilingual Automatic Speech Translation. Through

several experiments, we empirically demonstrate the advantage of using SAMU-XLS-R

on MAST over XLS-R.

On the public CoVoST-2 X→English MAST benchmark (Changhan Wang, Pino,
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et al., 2020), we show (Section 6.4.4) that for MAST, by switching the XLS-R encoder

in the transformer translation model to the SAMU-XLS-R encoder, the performance

improves significantly on medium-resource X→EN tasks by 15.6 BLEU points, and

on low-resource tasks by 18.9 BLEU points, and overall by 13.8 BLEU points. We

also show SAMU-XLS-R’s effectiveness in Zero-Shot settings. In this scenario, we only

train the transformer translation model on high-resource X→EN translation tasks.

We report a significant improvement on unseen (during training) medium and low-

resource tasks of 18.8 and 11.9 BLEU points over the baseline.

We report results on Europarl, yet another speech-to-text translation MAST

benchmark (Section 6.4.4). Europarl has significantly longer speech utterances than

CoVoST-2 (See Section 2.4.2 for corpus comparisons). Europarl consists of 72 transla-

tion tasks of the form X→Y. We train the transformer translation model on a subset

of translation tasks and evaluate the model on both unseen and unseen tasks. We

observe an overall improvement of 8.5 BLEU points average with SAMU-XLS-R encoder

over XLS-R on all translation tasks. The most significant improvement is observed on

unseen tasks of 17 BLEU points.

6.2 Expanding SAMU-XLS-R to more Languages

Table 6.1: The number of hours of transcribed speech data available for training
SAMU-XLS-R in each of the 53 languages from the CommonVoice-Version8 corpus.

ar be bg ca cs cy da de el en eo

85.2 903.9 8.2 916.8 54.9 116.3 6.6 1062.8 15.9 2185.8 1407.9
es et eu fa fi fr fy-NL ga-IE gl ha hi

404.6 33.0 98.9 317.3 8.5 826.1 49.6 4.3 10.2 3.4 11.7
hu id it ja ka kmr ky lt lv mn mt

19.9 25.8 310.6 40.8 7.6 47.0 37.2 17.4 7.1 12.4 8.3
nl pl pt ro ru rw sk sl sv-SE sw ta

98.0 142.2 112.0 15.8 162.6 2000.7 17.7 9.6 40.8 146.8 217.7
th tr tt ug uk uz vi zh-CN zh-HK zh-TW

142.1 65.1 29.2 59.8 63.4 81.0 4.5 68.0 99.7 62.6
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In the previous chapter, we trained SAMU-XLS-R on transcribed speech data in 25

languages. In this chapter, we extend the transcribed speech data to 53 languages

for training SAMU-XLS-R collected from the CommonVoice-Version8 (CoVo-V8) corpus

(Ardila et al., 2020). CoVo-V8 consists of transcribed speech in 87 languages (26

language families). Around 53 languages overlap with the language set supported

by Language-Agnostic BERT Sentence Encoder (LaBSE), which provides semantic

supervision for training the SAMU-XLS-R speech encoder. The 53 languages are: ar,

be, bg, ca, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fr, fy-NL, ga-IE, gl, ha, hi, hu,

id, it, ja, ka, kmr, ky, lt, lv, mn, mt, nl, pl, pt, ro, ru, rw, sk, sl, sv-SE, sw, ta, th, tr,

tt, ug, uk, uz, vi, zh-CN, zh-HK, zh-TW. Table 6.1 presents the number of hours of

transcribed speech available in each of the 53 languages for SAMU-XLS-R training. The

total training hours is 12.7K.

See Tables 2.13, and 2.14 for language code to language name mapping, and

Tables 2.15, and 2.16 for detailed CoVo-V8 corpus statistics (other than hours of

transcribed speech mentioned above) for each of the 53 languages. Also, See Sec-

tion 5.2 for details about the multimodal learning framework for training SAMU-XLS-R

speech encoder.

6.3 Translation Model

6.3.1 Overview

We train a transformer model for multilingual speech-to-text translation. We initial-

ize the transformer encoder using the pre-trained SAMU-XLS-R speech encoder (Sec-

tion 6.2), and the transformer decoder with the decoder of MBART transformer (Y.

Liu et al., 2020b), a pre-trained text-to-text translation model. Initializing the trans-

former decoder of a speech-to-text translation model with MBART is first done in X. Li

et al. (2020a). The translation model is trained using paired multilingual speech-text

translation data.

The translation model’s speech encoder transforms a speech waveform a to a con-

154



Algorithm 4 Computations performed by the decoder of the transformer translation
model.
1: Input: Encoder output c

2: Input: Ground-Truth Text Translation y during training
3: Output: log 𝑝(y|c)
4: y = Embed(y)

5: for 𝑖 = 1 to 𝐿− 1 do

6: y = TransformerLayer(𝑖)(y)

7: end for

8: y = LN(TransformerLayer(𝐿)(y))

9: o = FCProject(y)

10: logprob = log softmax(o)
11: function TransformerLayer(y, c)
12: y = CausalMHSA(LN(y)) + y

13: y = DO(EncoderAtt(𝑞 = LN(y), 𝑘 = c, 𝑣 = c)) + y

14: y = DO(FC2(DO(ACTFn(FC1(LN(y)))))) + y

15: end function

textual embedding sequence c. The encoder has the same architecture as XLS-R. The

previous chapter gives the encoder’s computations in Algorithm 3. The parameters

of the speech encoder are initialized using expanded SAMU-XLS-R (Section 6.2).

The transformer decoder performs the computations described in Algorithm 4.

Decoder comprises several transformer layers TransformerLayer. Transformer lay-

ers comprise of Causal Multi-Headed Self-Attention (CausalSelfAtt), Encoder Cross

Attention (EncoderAtt) that uses the output of CausalSelfAtt as query (𝑞), the en-

coder output c as both key (𝑘), and value (𝑣) to compute the output representation.

Transformer layer also comprises of two fully-connected layers FC1 and FC2, Dropout

(DO), Activation Function (ACTFn), and Layer Normalization (LN). The decoder out-

puts a probability distribution over the text translation. It is conditioned on the

encoder’s output c and the ground-truth text translation corresponding to the speech

utterance. During inference, the decoder cannot access ground-truth translation and

generates it using beam search.
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6.3.2 Learning

Given a speech-text translation pair (a1:𝑆,y1:𝐿), we tune the parameters of the trans-

lation model to maximize the likelihood function 𝑝(y1:𝐿|a1:𝑆), output by the model’s

decoder as explained above. Also, we employ label-smoothing (Szegedy et al., 2016a;

Müller, Kornblith, and G. Hinton, 2019) to compute a label-smoothed likelihood,

where a ground-truth output token y𝑙 is randomly replaced with the label predicted

by the model ŷ𝑙. We set the probability of token replacement as 0.1.

Optimizer Settings. We use the Adam optimizer (Kingma and J. Ba, 2014) with

a learning rate of 5e-4. We use a three-phase learning rate scheduler as in Baevski

et al. (2020): (i) Warm-Up the learning rate to 5e-4 for the first 10% of the training

iterations, (ii) Keep the learning rate constant for the next 40% of iterations, and

(iii) Decay the learning rate linearly for the rest of training. We use 28K training

iterations and train the model on 8 A100 (80 GB) NVIDIA GPUs. The training

can also be carried out on V100 (32 GB) GPUs. A single training iteration uses a

batch size of 10 minutes of speech utterances paired with their text translations. We

use mixed-precision training style (Micikevicius et al., 2017); most computations are

performed on half-precision floating point numbers except the final loss computation.

We use the fairseq toolkit (Ott et al., 2019) for model translation model development.

All the hyperparameters (E.g., learning rate) are manually chosen according to the

translation model’s performance on a small development set.

Masking Parameters. The speech encoder comprising the translation model con-

sists of a Convolutional Network (Conv), followed by a multi-layered transformer en-

coder (See Algorithm 3). Following Baevski et al. (2020), we mask (time and feature

dimension) the input of the transformer encoder. The masking process is performed

in the following two steps: (i) with some probability, referred to as the masking proba-

bility, choose a masking index, and (ii) mask 𝑀 consecutive indices starting from the

chosen index. 𝑀 is known as the masking span. For the time dimension, we set 0.3 as

the masking probability and the mask span of six. We set the masking probability for

156



the feature dimension to 0.5 and 64 as the mask span. The time and feature masking

parameters are chosen according to a development set. The above-mentioned data

augmentation is akin to SpecAugment (Park, Chan, et al., 2019) (Section 2.2.2). The

optimal masking parameters mentioned above are chosen according to the translation

model’s performance on a small development set.

Encoder and Decoder Fine-Tuning. The translation model comprises 700 mil-

lion trainable parameters (300M encoder and 400M decoder parameters). We fine-

tune only 75 million parameters for speech-to-text translation. Most encoder param-

eters are fixed to the pre-trained SAMU-XLS-R parameters, and the decoder parameters

are fixed to the pre-trained MBART decoder. Below we give details about encoder and

decoder fine-tuning.

Encoder Fine-Tuning. We perform adapter-based fine-tuning (Section 2.2.1) of

the translation model’s encoder, introduced in Houlsby et al. (2019). We insert

adapter layers in each transformer layer of the speech encoder. An adapter layer is a

Feed-Forward neural network with one hidden layer. The adapter layer’s input and

output layer sizes are the same size. The hidden layer is a fraction of the input layer

size. So, the adapter layer has a bottleneck architecture. We set the downsampling

factor of the hidden layer to four, i.e., the size of the hidden layer is 1/4 the size of the

input layer. During translation model training, we only fine-tune the Adapter layers.

Algorithm 5 shows the computations performed by the encoder and the placement

of Adapter layers. The primary motivation for using adapters is to avoid forgetting

of semantic knowledge acquired by SAMU-XLS-R during its multimodal pre-training

phase. We show (Section 6.4.4) that preserving semantic knowledge is essential to

achieve good cross-lingual task transfer from high to low-resource translation tasks.

Decoder Fine-Tuning. Like the encoder, we keep most parameters of the transla-

tion model’s decoder fixed to the values of the pre-trained MBART transformer decoder.

We fine-tune only the encoder cross-attention EncoderAtt and layer normalization

LN in the decoder. We fine-tune EncoderAtt because, previously, it is trained as part
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Algorithm 5 Computations performed by the encoder of our translation model. We
insert two Adapter layers (Adapter) in each transformer layer (TransformerLayer) of
the encoder. We only Fine-Tune the Adapter layer during translation model training.
The other layers are frozen to the pre-trained SAMU-XLS-R. The frozen layers are
represented in gray.
1: Input: Raw speech waveform a

2: Output: Contextual speech embedding sequence c

3: h = LN(Conv(a))

4: h = Mask(x)

5: h = h+ PosConv(h)

6: for 𝑖 = 1 to 𝐿− 1 do

7: h = TransformerLayer(𝑖)(h)

8: end for

9: c = LN(TransformerLayer(𝐿)(h))

10: function TransformerLayer(x)
11: x = Adapter(DO1(MHSA(LN1(x)))) + x

12: x = Adapter(DO3(FC2(DO2(ACTFn(FC1(LN2(x))))))) + x

13: end function

of a decoder in a text-to-text translation pipeline. Hence, the EncoderAtt module

needs to be fine-tuned again for the downstream multilingual speech-to-text trans-

lation task to make it amenable to the input from the speech encoder. Moreover,

we fine-tune LN because it is task and dataset-specific and empirically works well, as

shown in X. Li et al. (2020a).

6.3.3 Inference

We use beam search, with a beam size of 5, to generate text translations for a given

speech utterance. The inference process is offline, i.e., the decoder takes the input

speech utterance into account to generate the output translation. The decoder gen-

erates translation in an autoregressive manner. We do not use any external language

model during inference.
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6.4 Evaluation

6.4.1 Translation Scenarios

We tackle the following translation scenarios in this work.

Multilingual Translation. We simultaneously train a translation model on several

speech-to-text translation tasks in this scenario. E.g., we train a single model for all

21 X→EN translation tasks in the CoVoST-2 benchmark. Most of the training data

come from a few high-resource translation tasks such as FR→EN and DE→EN, while

most tasks such as ID→EN are low-resource. In this scenario, we compare different

translation models to test for cross-lingual translation task transfer from high to

low-resource translation tasks.

Zero-Shot Multilingual Translation. Given a set of translation tasks, we train

a translation model on a subset of the tasks while keeping the rest hidden during

training in this translation scenario. E.g., we train an X→EN speech-to-text transla-

tion model using high-resource translation tasks in the CoVoST-2 benchmark while

keeping the mid and low-resource tasks unseen during training. We compare transla-

tion models for zero-shot cross-lingual task transfer in this scenario from high to mid

and low-resource X→EN translation tasks.

6.4.2 Translation Tasks

We build translation models to tackle the following translation tasks in this work.

X→EN Speech-to-Text Translation. We perform of X→EN speech-to-text trans-

lation in this work. We build translation models for the 21 X(Speech)→EN(Text)

translation tasks in the CoVoST-2 translation benchmark (Changhan Wang, Pino,

et al., 2020). The 21 spoken languages in CoVoST-2 are fr, de, es, ca, it, ru, zh, pt,

fa, et, mn, nl, tr, ar, sv, lv, sl, ta, ja, id, and cy. The 21 translation tasks are divided

into high, mid, and low groups, depending on the amount of labeled data available for
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Figure 6-2: Number of hours of labeled training data (Y-Axis) for all the 21 X→EN
translation tasks in the CoVoST-2 benchmark.
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a translation task. High-resource tasks have more than 100 hours of labeled training

data, mid-resource tasks have between 10 and 100 hours, and low-resource have less

than ten hours of labeled training data. CoVoST-2 has four high-resource translation

tasks corresponding to fr, de, es, and ca source languages and five mid-resource tasks

corresponding to it, ru, zh, pt, and fa languages. The rest of the tasks are low-resource.

Fig. 6-2 presents the training data for each of the 21 translation tasks. Notice the

data imbalance among different tasks. See Section 2.4.2 for detailed CoVoST-2 data

statistics, such as the number of hours of training data for each translation task, the

average duration of a speech utterance, etc.

In the multilingual translation scenario, we simultaneously train translation mod-

els on all 21 tasks mentioned above. We only train translation models on the four

high-resource tasks in the zero-shot scenario.

X→Y Speech-to-Text Translation. We develop translation models for the 72

X→Y translation tasks in the Europarl benchmark (Iranzo-Sánchez et al., 2019).

There are nine spoken languages in Europarl namely, en, fr, de, it, es, pt, pl, ro, and

nl. Speech utterances in each spoken language are paired with their corresponding
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Table 6.2: Training data (hours) for the 72 translation tasks X→Y in the Europarl
Speech-to-Text translation benchmark.

SRC/TGT FR DE IT ES PT PL RO NL EN

FR - 21 20 21 22 20 18 22 32
DE 18 - 17 18 18 17 17 18 30
IT 21 21 - 21 21 21 19 20 37
ES 14 14 14 - 14 13 12 13 22
PT 10 10 10 10 - 9 9 9 15
PL 18 18 17 18 18 - 16 18 28
RO 12 12 12 12 12 12 - 12 24
NL 5 5 4 5 4 4 4 - 7
EN 81 83 80 81 81 79 72 80 -

text translations in eight other languages. In the zero-shot scenario, we train the

translation models on 32 tasks corresponding to the following four source languages

en, fr, de, and it. Each of the four source languages is paired with eight target

languages. Table 6.2 shows each translation task’s labeled training data. Also, See

Section 2.4.2 for detailed corpus statistics.

6.4.3 Baseline/Topline Translation Models

We compare our transformer model (SAMU-XLS-R-300M) for translation against several

other translation models listed below.

SAMU-XLS-R-300M. We propose SAMU-XLS-R-300M transformer model for translation

in this work. The encoder is initialized using the pre-trained SAMU-XLS-R speech

encoder (Section 6.2), and the decoder is initialized using the pre-trained MBART text

decoder. The suffix 300M in SAMU-XLS-R-300M refers to the model’s size of 300M

parameters.

XLS-R(-300M, 1B, 2B). We compare SAMU-XLS-R-300M with three XLS-R speech

encoder based translation models namely, XLS-R-300M, XLS-R-1B, and XLS-R-2B. The

three translation models differ from SAMU-XLS-R-300M model in that the encoder of
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the translation model is initialized using pre-trained XLS-R speech encoders of different

sizes ranging from 300M to 2B parameters. The decoder is initialized using the pre-

trained MBART decoder. Unlike our multimodal SAMU-XLS-R speech encoder, XLS-R is

only trained using unlabeled speech data. Also, SAMU-XLS-R is specifically trained

to learn semantic representations, while XLS-R has no constraints imposed during its

training phase to encode semantic knowledge.

mSLAM. We compare SAMU-XLS-R-300M translation model against two mSLAM (Bapna,

Cherry, et al., 2022b) speech encoder based translation models namely, mSLAM-600M,

and mSLAM-2B. Like SAMU-XLS-R, mSLAM speech encoder is a multimodal speech-text

encoder. Unlike SAMU-XLS-R, which is trained using semantic supervision from a pre-

trained semantic text encoder, mSLAM is not trained with explicit semantic supervision.

Cascaded Translation. We compare SAMU-XLS-R-300M with a strong cascaded

translation system. We perform the translation in two steps: (i) Transcribe the

speech utterance using an ASR model, and (ii) Use a text-to-text translation model

to translate the ASR transcript to text in a target language. We use whisper-large-v21

(Radford, J. W. Kim, et al., n.d.) as the ASR model in the first step and MBART (Y.

Liu et al., 2020b) text-to-text translation model for the second step in the cascade.

For X→EN cascade, we use MBART-many-to-English text-to-text translation model2.

The Whisper ASR model is multilingual that supports transcription of around 93

languages. Since Radford, J. W. Kim, et al. (n.d.) shows that whisper achieves

state-of-the-art ASR performance on several public benchmarks, we choose Whisper

for automatically transcribing speech. MBART-many-to-English translation model can

translate text from 50 languages to English.

Transcripts. As a topline, we use the ground-truth text transcripts corresponding

to speech utterances and use MBART-many-to-English to translate to English.

1https://huggingface.co/openai/whisper-large-v2
2https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt

162

https://huggingface.co/openai/whisper-large-v2
https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt


6.4.4 Results

Table 6.3: We compare our proposed SAMU-XLS-R-300M translation model with sev-
eral other translation models, whose encoders are initialized using differently sized
pre-trained XLS-R multilingual unimodal speech encoders. The performance is mea-
sured using BLEU-4, Google-BLEU, ROUGE-L, METEOR, BERTScore, and NIST
translation metrics.

BLEU-4 Google-BLEU

Model High Mid Low TRFGap High Mid Low TRFGap

XLS-R-300M 30.6 18.9 5.1 25.1 0.36 0.24 0.10 0.26
XLS-R-1B 34.3 25.5 11.7 22.6 0.38 0.29 0.16 0.22
XLS-R-2B 36.1 27.7 15.1 21.0 0.39 0.31 0.20 0.19
SAMU-XLS-R-300M 34.4 31.1 20.3 14.1 0.38 0.34 0.24 0.13
Cascaded 32.6 29.7 22.5 10.1 0.36 0.33 0.26 0.10
Transcripts 36.4 34.2 27.9 8.5 0.39 0.37 0.32 0.08

ROUGE-L METEOR

Model High Mid Low TRFGap High Mid Low TRFGap

XLS-R-300M 0.60 0.44 0.23 0.37 0.62 0.45 0.24 0.38
XLS-R-1B 0.61 0.49 0.31 0.30 0.63 0.50 0.32 0.31
XLS-R-2B 0.63 0.53 0.38 0.25 0.65 0.53 0.39 0.26
SAMU-XLS-R-300M 0.62 0.58 0.42 0.19 0.64 0.59 0.45 0.19
Cascaded 0.60 0.56 0.45 0.14 0.61 0.56 0.46 0.15
Transcripts 0.64 0.61 0.52 0.11 0.66 0.62 0.54 0.12

BERTScore NIST

Model High Mid Low TRFGap High Mid Low TRFGap

XLS-R-300M 0.56 0.33 0.04 0.52 8.0 5.0 1.9 6.1
XLS-R-1B 0.58 0.41 0.16 0.42 8.3 5.9 3.0 5.3
XLS-R-2B 0.61 0.45 0.25 0.36 8.6 6.3 3.7 4.9
SAMU-XLS-R-300M 0.59 0.54 0.34 0.25 8.3 7.1 4.4 4.0
Cascaded 0.56 0.50 0.37 0.20 8.2 6.9 4.9 3.3
Transcripts 0.62 0.58 0.47 0.14 8.7 7.7 5.7 3.0

Multilingual X→EN Speech-to-Text Translation. Table 6.3 shows the per-

formance of different translation models on the high, mid, and low-resource trans-

lation groups in the CoVoST-2 speech-to-text translation benchmark. We compare

our proposed SAMU-XLS-R-300M translation model against XLS-R-300M, XLS-R-1B, and

XLS-R-2B translation models. CoVoST-2 comprises 21 X→EN translation tasks, and
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the translation models are trained simultaneously on all translation tasks. See Sec-

tion 6.4.2 for details about the translation tasks, and Section 6.4.3 for details about

the different translation models.

Table 6.4: We compare our proposed SAMU-XLS-R-300M translation model with mSLAM

translation models, whose encoders are initialized using different sized pre-trained
mSLAM multilingual multimodal speech encoders. The performance is measured using
BLEU-4 translation metric.

BLEU-4

Model High Mid Low TRFGap

mSLAM-600M 37.6 27.8 15.1 22.5
mSLAM-2B 37.8 29.6 18.5 19.3
SAMU-XLS-R-300M 34.4 31.1 20.3 14.1

The model performance is measured using the standard translation metrics, namely

BLEU-4 (Post, 2018), Google-BLEU (Yonghui Wu, Schuster, Zhifeng Chen, Le,

Norouzi, W. Macherey, Krikun, Cao, Gao, K. Macherey, Klingner, Shah, Johnson,

X. Liu, Kaiser, et al., 2016), ROUGE-L (Lin, 2004), METEOR (Banerjee and Lavie,

2005), BERTScore (Eddine et al., 2021), and NIST (Doddington, 2002). We make the

following observations: (i) On High resource tasks, the XLS-R-2B model performs

the best, with SAMU-XLS-R-300M lagging a couple of points behind. Compared

to the similar-sized XLS-R-300M model, SAMU-XLS-R-300M performs 4 BLEU points

better. (ii) On Mid resource tasks, SAMU-XLS-R-300M outperforms all the models

achieving a BLEU score of 31.1, which is significantly better than XLS-R-300M model’s

BLEU score of 5.1. SAMU-XLS-R-300M even outperforms the much larger XLS-R-2B

speech encoder by 3.3 BLEU points. (iii) On Low resource tasks, SAMU-XLS-R-300M

performs the best. Compared to the similar-sized XLS-R-300M model, SAMU-XLS-R-

300M does better by 15 BLEU points. It also outperforms the much larger XLS-R-2B

by 5.2 BLEU points. The cross-lingual transfer gap (TRFGap), which is the dif-

ference in performance between high and low resource task groups, is significantly

less (14.1 BLEU) for SAMU-XLS-R-300M model compared to other models. Second, to

SAMU-XLS-R-300M is XLS-R-2B, which has a TRFGap of 21 BLEU points while having

500% more parameters.
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Table 6.4 compares SAMU-XLS-R-300M translation model with mSLAM-600M, and

mSLAM-2B models that use differently sized pre-trained multimodal (speech-text) mul-

tilingual mSLAM speech encoder. SAMU-XLS-R-300M performs better on mid- and low-

resource translation tasks. Importantly, SAMU-XLS-R-300M has a lower cross-lingual

transfer gap (TRFGap) between high and low resource groups of 14.1 BLEU points

compared to 22.5 for mSLAM-600M, and 19.3 for mSLAM-2B. The BLEU scores for

mSLAM models are lifted from Bapna, Cherry, et al. (2022b). Since Bapna, Cherry,

et al. (2022b) report only BLEU scores on the CoVoST-2 benchmark, and we do not

have access to mSLAM models, we could not evaluate the model using metrics other

than BLEU-4.

The above observations validate our claims that building translation technology on

top of semantic speech representations would increase the cross-lingual task knowledge

transfer from high to low-resource languages. Similar inferences can be reached by

using metrics other than BLEU-4.

Language-wise Performance Breakdown. Table 6.5 shows the performance of

different translation models on each of the 21 X→EN speech-to-text translation tasks

in the CoVoST-2 benchmark. We observe that SAMU-XLS-R-300M significantly out-

performs the similarly sized XLS-R-300M translation model on several mid and low-

resource languages. Some notable improvements are for the following source lan-

guages: id (34.4 vs. 1.2 BLEU), cy (34.1 vs. 2.8 BLEU), ja (13.1 vs 0.6 BLEU), sv

(28.5 vs 11.3 BLEU), tr (28.4 vs 6.7 BLEU), ar (36.6 vs. 3.9 BLEU), fa (22.0 vs.

6.3 BLEU), and pt (44.2 vs. 30.8 BLEU). For some source languages SAMU-XLS-R-

300M does not do well, such as lv (1.9 BLEU), sl (12.9 BLEU), mn (3.4 BLEU), et

(11.6 BLEU), ta (4.0), ja (13.1 BLEU), and zh (13.1 BLEU). For ta, ja, mn, and zh,

the topline (Transcripts) model also performs poorly. For sl, and lv, the topline

text-to-text translation and cascaded models perform significantly better than the

SAMU-XLS-R-300M model.

Poor performance of SAMU-XLS-R-300M on lv, mn, and sl can be explained by

the lack of available transcribed speech data in these languages for multimodal pre-
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Table 6.5: We compare our proposed SAMU-XLS-R-300M translation model with several
other translation models, whose encoders are initialized using differently sized pre-
trained XLS-R multilingual unimodal speech encoders. The performance is measured
using the BLEU-4 translation metric.

Model fr de es ca it fa ru zh pt

XLS-R-300M 34.9 29.3 35.9 30.6 30.9 6.3 30.0 5.2 30.8
XLS-R-1B 36.3 31.4 37.8 32.1 33.5 9.1 35.7 6.9 41.4
XLS-R-2B 37.6 33.6 39.1 33.9 35.0 13.0 39.5 9.4 41.8
SAMU-XLS-R-300M 36.1 31.7 37.9 31.9 34.0 22.0 42.1 13.1 44.2
Cascaded 32.7 30.9 36.4 30.3 32.5 14.3 42.9 14.4 44.2
Transcripts 38.4 34.1 41.1 32.1 36.4 24.2 46.0 17.4 46.9

Model nl tr et mn ar sv lv sl ta

XLS-R-300M 25.1 6.7 4.0 0.2 3.9 11.3 7.4 8.3 0.0
XLS-R-1B 29.6 11.1 8.0 0.6 9.3 24.5 15.7 16.8 0.1
XLS-R-2B 31.6 16.9 11.2 1.5 17.1 29.7 19.7 19.0 0.5
SAMU-XLS-R-300M 34.9 28.4 11.6 3.4 36.6 28.5 1.9 12.9 4.0
Cascaded 33.0 25.1 17.4 0.0 35.7 39.6 20.3 27.8 1.6
Transcripts 36.3 28.8 25.6 3.8 44.6 46.4 29.2 38.4 2.2

Model cy ja id

XLS-R-300M 2.8 0.6 1.2
XLS-R-1B 6.61 1.3 7.8
XLS-R-2B 14.2 3.5 16.4
SAMU-XLS-R-300M 34.1 13.1 34.4
Cascaded 6.4 19.4 43.6
Transcripts 9.0 20.8 49.8

training of SAMU-XLS-R (Section 6.2). We have 7 hours for lv, 12 hours for mn, and

9 hours of transcribed speech for sl, compared to 317 hours for fa, 85 hours for ar,

116 hours for cy, 98 hours for nl, 40 hours for sv, 25.8 hours for id, 162 hours for

ru, 400 hours for es, and close to 1K hours for fr, de, and ca. However, for ta, zh,

and ja we have a decent amount of transcribed speech, but still, the performance

is relatively poor. This can be explained away by observing the performance of the

topline (Transcripts), where we use a pre-trained MBART-many-to-English text-to-

text translation model (Details in Section 6.4.3) that translates the ground-truth

transcripts corresponding to speech utterances in language X to text in English. The

topline performance for zh, ja, and ta is relatively poor. Since we use the decoder
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of MBART-many-to-English model to initialize the decoder of our speech-to-text trans-

lation model SAMU-XLS-R-300M, we also observe poor speech-text-translation perfor-

mance on these tasks.

Figure 6-3: We report average BLEU-4 for the zero-shot X→EN multilingual speech-
to-text translation scenario on the high, mid, and low resource task groups in the
CoVoST-2 benchmark. We compare our translation model SAMU-XLS-R-300M with
the similarly sized XLS-R-300M translation model. The translation models are only
trained on high-resource groups, while the mid and low-resource groups are unseen
during training.

31
33.6

5.8

24.6

0.9

12.8

0

5

10

15

20

25

30

35

40

XLS-R-300M SAMU-XLS-R-300M

BL
EU

-4

High Mid Low

Unseen 
Groups

25.2 30.1
9.0 20.8

Unseen 
Groups

Zero-Shot X→EN Speech-to-Text Translation. Next, we train the translation

models on four high-resource X→EN translation tasks in the CoVoST-2 benchmark

(See Section 6.4.2 for details). We evaluate the X→EN translation models on the

high, mid, and low task groups to test for zero-shot cross-lingual transfer capability

of SAMU-XLS-R-300M from high to mid and low-resource X→EN tasks. We compare

SAMU-XLS-R-300 with XLS-R-300M translation model. Figure 6-3 presents the results.

We observe that SAMU-XLS-R-300M performs on average 18.8 BLEU points better in

the mid-resource and 11.9 BLEU points in the low-resource group. The cross-lingual

transfer gap between the high & mid and high & low groups is significantly smaller

for SAMU-XLS-R-300M (9.0, and 20.8) than XLS-R-300M (25.2, and 30.1).
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These results strengthen our claims that building speech translation technology

with semantic speech representations would improve cross-lingual transfer across lan-

guages. Note that zero-shot implies that the translation model during its training

does not see any paired X→EN translation data for mid and low-resource languages

X. But, transcribed speech data was available for these languages during multimodal

pre-training of SAMU-XLS-R speech encoder which is used to initialize the encoder of

the SAMU-XLS-R-300M translation model.

Zero-Shot X→Y Speech-to-Text Translation. Finally, to further bolster our

claims about the usefulness of semantic speech representations for translation, we

compare translation models on the 72 X→Y translation tasks in the Europarl Bench-

mark. See Section 6.4.2 for details about translation tasks and available data for

training translation models.

Figure 6-4: Absolute BLEU score improvements using SAMU-XLS-R-300M over XLS-R-
300M baseline on the 72 X→Y translation tasks in the Europarl benchmark. The
translation models are trained on a subset of 32 translation tasks, corresponding to
four source languages, while 40 tasks are unseen during training corresponding to five
source languages.

SRC/TGT FR DE ES IT PL PT RO NL EN
FR NA 0.8 0 -0.4 -0.1 -1.5 0.7 -0.1 1.2
DE 2.3 NA 1.5 1.3 1 0.9 1.6 -0.1 2
ES 0.9 0.8 NA 0.3 1.7 0.3 1.4 1 2.9
IT -0.8 -0.1 0.1 NA -0.8 -1.6 0.4 -0.4 1.3
PL 19.6 13.7 19.9 14.5 NA 16.1 16.1 15.5 23.8
PT 1.4 1.1 1.6 0.3 0.5 NA 1.9 0.4 2
RO 18.4 11.5 17.2 13.7 11.2 14.8 NA 12.7 21.9
NL 11.5 9.5 8.9 9 7.4 10.9 10.1 NA 13.3
EN 17.7 13.5 19.6 14.1 9.7 16.6 17.5 13.9 NA

Unseen 
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We train translation models SAMU-XLS-R-300M and XLS-R-300M on a 32-task subset

out of 72 tasks. The 32 tasks correspond to four source spoken languages: fr, de, es,

and it, while the remaining 40 tasks correspond to five source languages: pl, pt, ro, nl,

and en. Speech utterances in each source language are paired with text translations in

eight other languages. Unlike X→EN translation models discussed above, we initialize

the decoder of X→Y translation models with the decoder of MBART-many-to-many3

3https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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model instead of MBART-many-to-English, since we have to generate translations in

multiple target languages.

Figure 6-4 compares the performance of XLS-R-300M, and SAMU-XLS-R-300M on

the 72 translation tasks. We report the absolute BLEU-4 score improvement that

SAMU-XLS-R-300M achieves over XLS-R-300M baseline translation model. The darker

the cell in the figure, the greater the improvement in the BLEU score. We observe

that SAMU-XLS-R-300M performs drastically better than XLS-R-300M on the 40 unseen

(during translation model training) translation tasks and at par on the 32 seen (during

translation model training) translation tasks. We observe the biggest improvements in

unseen tasks such as pl→en (23.8), ro→en (21.9), pl→en (19.9), pl→fr (19.6), ro→es

(17.2), etc. Overall, SAMU-XLS-R-300M improves over XLS-R-300M baseline model by

an average of 12 BLEU-4 points.

6.5 Analysis

XLS-R vs. XLS-R-CTC. Figure 6-5 The experiments above compare SAMU-XLS-R

with XLS-R multilingual speech encoder. XLS-R is trained using multilingual unlabeled

speech data in 128 languages via self-supervised learning, while SAMU-XLS-R fine-tunes

pre-trained XLS-R using multilingual transcribed speech data via semantic knowledge

distillation. But, what if instead of fine-tuning pre-trained XLS-R with semantic super-

vision from text transcriptions like SAMU-XLS-R does, we fine-tune XLS-R to generate

the transcriptions automatically? We compare the translation performance of XLS-R

and XLS-R-CTC encoders in Fig. 6-5. XLS-R-CTC refers to the encoder we get after

supervised CTC-based fine-tuning of pre-trained XLS-R using multilingual transcribed

speech data. CTC framework (Graves, Fernández, et al., 2006) for training end-to-

end ASR models is briefly described in Section 2.3. For CTC fine-tuning of XLS-R, we

choose the same multilingual transcribed speech data used for multimodal pre-training

of our semantic speech encoder SAMU-XLS-R. We observe that the pre-trained XLS-R

encoder performs better than XLS-R-CTC encoder. XLS-R-CTC encoder is slightly

better on some translation tasks. Still, the difference is so small that our previous
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Figure 6-5: We compare on the Europarl X→EN benchmark XLS-R and XLS-R-CTC
initialization of the translation model’s encoder. XLS-R is pre-trained using unlabeled
speech via self-supervised learning, while XLS-R-CTC refers to the XLS-R encoder that
is fine-tuned (after self-supervised pre-training) using transcribed speech data. We
report the BLEU-4 score for eight source spoken languages. Speech utterances in
each source language are paired with its English text translations.
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observations on the efficacy of our proposed semantic speech encoder SAMU-XLS-R are

not impacted, even though we compared SAMU-XLS-R with the XLS-R encoder, which

is trained using unlabeled multilingual speech.

Table 6.6: We compare the translation model’s performance when using Adapter-
based fine-tuning vs. fine-tuning all the encoder parameters. The performance is
measured using the BLEU-4 translation metric.

Model fr de es it pl pt ro nl

XLS-R-300M-Full 33.0 25.4 29.4 30.3 2.4 12.7 7.6 5.2
XLS-R-300M-Adapter 29.8 22.4 25.5 27.2 3.2 15.6 9.1 8.2
SAMU-XLS-R-300M-Full 33.2 26.3 29.7 30.7 3.0 12.2 9.8 7.0
SAMU-XLS-R-300M-Adapter 32.3 25.5 29.3 28.7 24.3 18.4 29.9 24.1

Adapter vs. Full Encoder Fine-Tuning. As mentioned in Section 6.3.2, we

perform Adapter-based fine-tuning of the translation model’s encoder, where we insert

new task-specific parameters in the form of adapters in each encoder layer. We only
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fine-tune adapter layers while keeping the rest of the layers frozen to their pre-trained

values. Table 6.6 compares the translation model’s performance when using Adapter-

based fine-tuning vs. fine-tuning all the encoder parameters. We observe that using

adapter fine-tuning with XLS-R-300M translation model brings performance gains on

low-resource tasks such as ro→en, nl→en, pt→en, and pl→en. In contrast, the

performance degrades significantly for higher-resource tasks compared to full encoder

fine-tuning. We observe a similar trend with SAMU-XLS-R-300M translation model.

But, the performance gains for low-resource tasks are drastic with adapter-based fine-

tuning of the encoder. Again, this is due to our proposed semantic speech encoder

SAMU-XLS-R, which results in a significant cross-lingual transfer from high to low-

resource translation tasks. This result also shows that preserving semantic knowledge

during training for downstream translation tasks, learned by the SAMU-XLS-R encoder

as a result of our multimodal learning framework (Section 5.2) is essential.

Translation Model Predictions Tables 6.7, 6.8, 6.9, and 6.10 present outputs

from SAMU-XLS-R-300M, XLS-R-300M, and XLS-R-1B translation models on a few ran-

domly selected speech utterances from the CoVoST-2 X→EN low-resource translation

groups. We couldn’t draw any exciting conclusions from visually comparing the trans-

lations generated by different models.

6.6 Chapter Summary

This chapter addresses the central question of cross-lingual transfer learning in Nat-

ural Language Processing. We focus on the problem of multilingual spoken language

translation, which we model using the standard encoder-decoder model. We ana-

lyze the impact of different encoder initializations on the downstream translation

task performance. We show that by initializing the encoder with an encoder that

we pre-train using the newly introduced semantic knowledge distillation framework

SAMU-XLS-R (Chapter 5), we achieve significantly better cross-lingual transfer in the

downstream speech-to-text translation task than the baselines. The baseline trans-

171



lation models use the state-of-the-art multilingual pre-trained speech encoder XLS-R,

and others for initialization.

To substantiate our claims, we perform multilingual translation on two public

benchmarks, CoVoST-2 and Europarl. On the 21 X→English CoVoST-2 speech trans-

lation tasks, we achieve an average improvement of 12.8 BLEU points. In the zero-

shot scenario, where we train the translation model only on the four high-resource

languages while keeping the rest 17 languages unseen (during training), we achieve

an average improvement of 11.8 BLEU points over the baseline XLS-R encoder ini-

tialization. In particular, we achieve drastic improvements of 18.8 and 11.9 average

BLEU points on medium and low-resource languages, respectively. We made similar

observations on the Europarl X→Y speech-to-text translation benchmark.

Our work has limitations. Currently, training SAMU-XLS-R requires access to mul-

tilingual transcribed data, which could be hard to get for many spoken languages.

Also, the dependence on a pre-trained text encoder hinders expanding SAMU-XLS-R

to more languages. Hence, future work should focus on injecting semantic informa-

tion via weakly supervised learning using unaligned speech and text data and without

using the LaBSE text encoder.
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Table 6.7: We subset the test split of the CoVoST-2 X→EN low-resource corpus. The
subset consists of speech utterances for which SAMU-XLS-R-300M translation model
achieves more than 0.8 Google-BLEU. We present the reference (ground-truth) En-
glish translation and predicted translations with SAMU-XLS-R-300M, XLS-R-300M, and
XLS-R-1B translation models. X refers to the language of the speech utterance.

X Reference SAMU-XLS-R-300M XLS-R-300M XLS-R-1B

sv You can come back You can come back You can come back You can come back
and get more. and get more. and do more. and get more.

ar I like drinking I like drinking I like to I like ice cream
hot coffee. hot coffee. play golf. very much.

ar It is better to go It’s better to go One day, I found As long as you
now before you now before you out that the don’t do it,
miss the bus. miss the bus. house was empty. you won’t be able

to do it.
nl Is the L of It is the L It’s the L It is the L

Land Rover, Lexus of Land Rover, of land Rovers, of Land Rover,
or Lotus. Lexus or Lotus. Lexus or Lotus. Lexus or Lotus.

tr Approximately a hundred Around one hundred The competitions will Approximately
and thirty experts and thirty experts last for around thirty-three people
will participate will participate thirty-eight will participate
in the meetings. in the meetings. hours. in the events.

id Tom died of Tom died of Tom said Tom listened
rabies after rabies after that he was to the tape
being bitten being bitten going to buy recorder while he
by a bat. by a larva. a new car. was listening

to the music.
cy Do you need Do you need I want to Do you

to sit down? to sit down? go to school. want to eat?
sv I just want I just want I’ll give it I don’t want

to end it. to end it. to you all to see you
the time. anymore.

ja Tanaka can Tanaka can Tanaka is a Tanaka’s tennis
play tennis. play tennis. tennis player. is good.

tr The final decision The final decision The book will The final decision
will be taken will be taken not be will be
at the summit. at the summit. published yet. made in Serbia.
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Table 6.8: We subset the test split of the CoVoST-2 X→EN low-resource goup. The
subset consists of speech utterances for which SAMU-XLS-R-300M translation model
achieves between 0.6 to 0.8 Google-BLEU. We present the reference (ground-truth)
English translation and predicted translations with SAMU-XLS-R-300M, XLS-R-300M,
and XLS-R-1B translation models. X refers to the language of the speech utterance.

X Reference SAMU-XLS-R-300M XLS-R-300M XLS-R-1B

nl The exam The exam The exam The exam
consisted of consisted of consisted of consisted of
fifty multiple fifty more fifty more fifty more
choice questions. choice questions. questions. questions.

tr The project is The project is The project is The project is
expected to be expected to be expected to be expected to be
completed in completed within completed in completed in
three days. three years. three years. three years.

ar Her new novel Her novels will I’m going to play I’m going to buy
will be published be published next the violin next a new pair
next month. month. week. of shoes.

cy Morgan and Sara Morgan and Sara Morgan’s sister Morgan and Sara
playing hide are playing is dying. are playing
and seek. hide and seek. chess.

et I am sure There will be Then there are Only new elections
there will be new elections, new developments and new
new elections, new opportunities. and new opportunities remain.
new opportunities. opportunities.

sv I suggest I suggest I suggest I believe
we have we have that we that we
a naughty a nice have a have a
dinner together. dinner together. breakfast at bad meeting

midday. again.
id I brush my I brushed my I’ve never I used to

teeth after teeth after been to play guitar
eating rice. eating rice. Japan before. until I was a kid.

ar Return the Return the There is a This book is
book where book where book in just for you.
you found it. I found it. the library.

lv Awesome, isn’t it? Superb, isn’t it? Can you Can you
help me? help me?

sv Our plan is Our plan is Your plan is Our plan is
to change to change to change to change
the future. this future. this country. this future.
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Table 6.9: We subset the test split of the CoVoST-2 X→EN low-resource goup. The
subset consists of speech utterances for which SAMU-XLS-R-300M translation model
achieves between 0.4 to 0.6 Google-BLEU. We present the reference (ground-truth)
English translation and predicted translations with SAMU-XLS-R-300M, XLS-R-300M,
and XLS-R-1B translation models. X refers to the language of the speech utterance.

X Reference SAMU-XLS-R-300M XLS-R-300M XLS-R-1B

sv It’s enough That is enough It’s about the There comes
for a nice for a nice end of the a final
vacation. semester. semester. semester.

tr However, the However, the However, the However, the
government hasn’t government has not government does government does
paid this amount. paid this figure. not agree not accept

with this this figure.
opinion.

nl They climbed They climbed They gathered They signed
the Mont the Mont-Blanc the Montblanc the Montblain
Blanc together. together. together. together.

cy The truth is, The truth is It is said From time
he couldn’t that we that there to time,
get to Wales could not will be no you can’t
from somewhere get to change to the see Cameroon
like London before Wales from old Linden from the
the afternoon post. somewhere like street that streets of

London before will be in London until
post-dinner. the post office the end of

next year. the day.
tr This is the Visiting Ardon The journey The visit

first visit was the first took eight was attended
of Amon to visit to days. by both
the country. the country. countries.

id Being burnt Turned up For Macarthy, To make
with love. with love. go to Quinta. a fool of

myself.
sv You were You were You were You were

in the at the on time. at the
meeting. meeting. table.
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Table 6.10: We subset the test split of the CoVoST-2 X→EN low-resource goup. The
subset consists of speech utterances for which SAMU-XLS-R-300M translation model
achieves between 0.0 to 0.4 Google-BLEU. We present the reference (ground-truth)
English translation and predicted translations with SAMU-XLS-R-300M, XLS-R-300M,
and XLS-R-1B translation models. X refers to the language of the speech utterance.

X Reference SAMU-XLS-R-300M XLS-R-300M XLS-R-1B

tr This year, Turkey was the Turkey was Turkey was
the partner joint country the eighth the first
country of the of the event country in country in
event was Turkey. this year. this event. this year’s event.

et There was There were no The point When the battles
nowhere to more points of the boat started, the
rise nor fall to be won was to get Paul-Steig-Hae
before the point than at the get out was no
giving Power start of of the Poulstead longer able
Stage, though the Powell and get out to win any of
there was five Stage, but of the Stead the points,
extra points there were up and get out but he was
available - two to five extra of the Stead able to win
more than points, two and get out just five points,
in previous seasons. more than in of the Stead two more than

the previous and get out in the previous
two seasons. of the Stead years.

ja If you eat If you eat There is a There’s a lot
lots of rice, a lot of lot of work of things
your body food, you to be done to do in
will grow will become at the the garden.
strong. a healthy station.

body.
mn This is second This is the It’s like That’s why I’m

card, he second circle. that. so happy.
said.

nl I scooped up With a net With a glass I used a
all the dirt I pulled all of paper, net to fish
from the water the garbage I put all all the fish
with a small out of the the felt out out of the
fishing net. water. of the water water.
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Chapter 7

Conclusions

This thesis addresses two transfer learning problems; unsupervised domain adapta-

tion for End-to-End Automatic Speech Recognition (ASR) and cross-lingual transfer

learning in Automatic Speech-to-Text translation.

7.1 Unsupervised Domain Adaptation

7.1.1 Summary

The performance of an ASR model degrades significantly when the training data dis-

tribution (source domain) does not match the data distribution the model encounters

during deployment (target domain). A straightforward remedy is to collect labeled

examples in the target domain to re-train the ASR model. But, collecting labeled

examples is expensive and time-consuming, while unlabeled target domain data is

often readily available. Therefore, we propose an unsupervised domain adaptation

method for source-to-target domain adaptation.

We focus on self-training, a classic algorithm for semi-supervised learning, which

has recently shown excellent results on neural sequence generation tasks such as speech

recognition, translation, and text-based machine translation. Self-Training (ST) is a

teacher/student learning framework that trains an initial model on labeled examples

and improves it iteratively using unlabeled data points.
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An iteration of self-training consists of three steps: a) A teacher model is trained on

labeled examples using supervised learning. b) Teacher is used to generate predictions

for unlabeled data points. These predictions are called pseudo-labels. c) A student

model is trained on combined labeled and pseudo-labeled examples. Pseudo-labeled

examples are a data augmentation method that improves the student model’s gener-

alization performance. But, the performance of self-training depends on the quality

of pseudo-labels. Pseudo-labels can be erroneous, which could lead to sub-optimal

student training. The noisy pseudo-label problem is amplified in our scenario where

a feature distribution mismatch exists between the labeled source and the unlabeled

target.

In Chapter 3, we propose Dropout Uncertainty-Driven Self-Training (DUST) by

augmenting the classic ST algorithm with a pseudo-label filtering method to alleviate

this issue. Our pseudo-label filtering method involves sampling multiple predictions

from the teacher model for an unlabeled data point and computing agreement among

the sampled predictions. We weed out the unlabeled point and its corresponding

pseudo-label if the agreement is low. We generate different samples by injecting

dropout noise in the model during inference.

We show the effectiveness of DUST in several domain adaptation scenarios; Read

Speech source to Oratory and Conversational speech target domain adaptation. We

make the following key observations. DUST is better than ST in severe source-

target domain mismatch. DUST is more compute and data-efficient than ST in

moderate domain mismatch scenarios. DUST combined with a Self-Supervised Pre-

Trained speech encoder can be quite effective in the low-resource ASR scenario.

We show an interesting application of DUST in Chapter 4 for few-shot learning of

ASR in a target language. Currently, a two-step sequential transfer learning formula

is popular for few-shot learning: First, pre-train a large neural network speech encoder

(usually a transformer encoder) via Self-Supervised Learning (SSL) (E.g., Wav2Vec-

2.0) on massive amounts of unlabeled data in the target language. Second, fine-tune

the pre-trained encoder on the downstream ASR task using a few labeled examples.

The two-step formula fails when the massive unlabeled data assumption does not hold,

178



which is true for many low-resource languages. We address this issue by proposing a

three-step sequential transfer learning formula.

First, we pre-train a transformer encoder on some high-resource source language

(E.g., English) via SSL. Second, we fine-tune the pre-trained encoder on few-labeled

examples (10 hours) in the target language unseen during pre-training (E.g., Arabic).

Third, we start with the fine-tuned target language ASR model and iteratively im-

prove its performance by using unlabeled speech (100 hours) in the target language

via DUST.

We make the following interesting observations. Pre-trained English speech

encoders trained using the Wav2Vec-2.0 SSL framework can be used to build decent

ASR models for languages other than English. We fine-tuned different Wav2Vec-2.0

encoders on eight target languages and found the ASR performance is dramatically

better than fine-tuning a randomly initialized speech encoder on the target language.

By using just 100 hours of unlabeled speech in a target language, we can achieve

significant improvements in performance by using DUST; the ASR performance is

at par with a multilingual pre-trained speech encoder fine-tuned on the downstream

ASR task in the target language. Our work proposes a departure from the traditional

multilingual pre-training, followed by a target language fine-tuning sequential transfer

learning framework since our three-step method requires much less data than the two-

step multilingual method.

7.1.2 Future Work

Our work has several future extensions. In particular, future work should explore

alternate methods for computing the model’s confidence other than sampling multiple

predictions from the model and using sample agreement as the proxy for the model’s

confidence, like DUST. This is because generating samples requires running beam

search decoding numerous times, which could be expensive, especially if the size of the

unlabeled set is significant, which is usually the case. Some other research questions

for future work are the following. Analyze the impact of initializing the student model

with the parameters of the teacher in each DUST iteration, which could lead to faster
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student model training compared to learning the task from scratch. But, this could

also lead to the student model parameters collapsing to the same values as the teacher

model. It might be better to give the student model freedom to explore and hence,

converge to a different, better parameter configuration than the teacher. Another

interesting direction would be to explore the impact of the size of unlabeled target

domain data and labeled source domain data on the domain adaptation performance.

7.2 Cross-Lingual Transfer Learning

7.2.1 Summary

Cross-lingual learning is a learning paradigm where we train a language processing

model, such as Speech-to-Text translation, on a subset of languages and expect it

to do well with little to no fine-tuning on another unseen set of languages during

training. A strategy for cross-lingual learning in speech processing is the following

two-step process: First, pre-train a single multilingual speech encoder using (labeled,

unlabeled, or both) speech data collected from several languages. Second, fine-tune

the pre-trained multilingual encoder on downstream language processing tasks, such

as speech translation.

The pre-training step is essential for achieving good cross-lingual transfer since

the downstream application is built on top of the representations learned by the pre-

trained encoder. Multilingual pre-training promises that the inductive bias of having

a single model shared across languages would lead to the model encoding abstract

high-level (possibly semantics) linguistic knowledge from speech. Our work shows

that the current pre-training paradigms, such as XLS-R and others, fall short of this

promise.

To address the shortcoming of the multilingual pre-training paradigms mentioned

above, in Chapter 5, we propose a joint multilingual speech-text embedding space

learning framework to inject semantic knowledge in the learned representation space

of the pre-trained multilingual speech encoder using semantic supervision from the
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text modality. We fine-tune the speech encoder in a teacher/student learning frame-

work, utilizing a pre-trained multilingual semantic text encoder Language-Agnostic

BERT as the teacher for training the student speech encoder. Chapter 5 analyzes

the semantic structure of the joint speech-text embedding space learned due to our

learning framework using several cross-lingual speech-to-text and speech-to-speech

translation retrieval tasks. Unlike previous representation learning methods, we show

that our approach can learn a semantically structured speech embedding space. We

term our speech encoder the Sematically-Aligned Multimodal Cross-Lingual Speech

Representations (SAMU-XLS-R).

In Chapter 6, we apply the SAMU-XLS-R speech encoder for translation. We

develop a multilingual transformer encoder-decoder model for end-to-end automatic

speech-to-text translation. We build several translation models and compare their

performance on public speech-to-text translation benchmarks. We initialize the en-

coder of the translation model using different multilingual speech encoders for per-

formance comparison, including our proposed speech encoder SAMU-XLS-R. The

decoder of all translation models is initialized with the decoder of a pre-trained text-

to-text translation model MBART. Each translation model (corresponding to dif-

ferent multilingual speech encoders) is simultaneously trained on several translation

tasks. An example of a translation task is FR–>EN, where speech utterances are

in French, and the task is to generate their English text translations. We show that

under different translation task settings, such as multilingual and zero-shot transla-

tion, the translation model initialized using SAMU-XLS-R speech encoder achieves

significantly better cross-lingual transfer from high to low-resource translation tasks

than the models initialized using other multilingual speech encoders. We argue that

this is due to SAMU-XLS-R encoding semantic knowledge in its learned speech rep-

resentations.

7.2.2 Future Work

We require a pre-trained text encoder as semantic supervision for fine-tuning the

speech encoder. However, it could be expensive to train such a massive text encoder.
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Therefore, future work could explore extracting semantic supervision from the visual

modality. It would require a focus on data engineering to extract meaningful ex-

amples of semantic correspondences between speech and visual modality in several

spoken languages. Currently, it is not clear how to build such a dataset cheaply. A

CommonVoice-like (Ardila et al., 2020) project is required, where instead of prompting

humans with text on the web, they are prompted with images on the web and asked

to provide a spoken caption for the image in their language. Past work has explored

using visual modality as a source of semantic supervision (Harwath, Torralba, and J.

Glass, 2016). Another source of semantic supervision worth exploring is the encoders

of large text-to-text translation models, such as the recently introduced NLLB-200

model (Costa-jussà et al., 2022), which supports 200 written languages, unlike 109

supported by the Language-Agnostic BERT encoder used in our work. NLLB-200

encoder can help expand the number of languages our speech encoder SAMU-XLS-R

supports.
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