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Abstract

Real-time video applications, such as video conferencing, have become essential to
our daily lives, and ensuring reliable and high-quality video delivery in the face of
network fluctuation and resource constraints is critical. However, video congestion
control algorithms have been criticized for their sub-optimal performance in managing
network congestion and maintaining satisfactory video quality and latency. At the
same time, state-of-the-art congestion control algorithms have demonstrated remark-
able performance improvements, effectively addressing network congestion challenges
and enhancing the overall quality of data transmission. In this work, we first demon-
strate why there is such a gap between the performance of congestion control schemes
on backlogged flows compared to real-time video streams. Second, we present Dumbo,
a design for reshaping the video traffic to look like backlogged traffic, thus enabling
state-of-the-art delay-sensitive congestion control algorithms for real-time video. We
implemented Dumbo atop WebRTC and evaluated it on emulated network conditions
using real-world cellular network traces. Our results show that Dumbo in comparison
with GCC achieves a 1.5dB improvement in PSNR, 1.6 dB improvement in SSIM,
100 ms lower frame latency, 35x faster convergence time, 16% increase in the video
bitrate, 32% increase in network utilization, and 4x reduction in the network queueing
delay.
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Chapter 1

Introduction

Real-time video applications have become integral to our lives, from cloud video gam-
ing to video conferencing for remote work and online education. In recent years, the
use of real-time video systems has seen a noticeable increase across various domains.
This upward trend can be attributed to several factors. Firstly, technological ad-
vancements and the widespread availability of high-speed internet connections have
significantly improved the quality and reliability of real-time video systems, making
them more accessible and user-friendly [29]. Secondly, the rise of social media plat-
forms and the increasing demand for live-streaming content have contributed to the
surge in real-time video usage [17]. Platforms like Facebook Live, Instagram Live,
and YouTube Live have become popular avenues for individuals and organizations to
reach and interact with audiences across the world.

Additionally, integrating real-time video systems in various industries such as
healthcare, education, and entertainment has fueled their increased adoption [13].
For instance, telemedicine services utilize real-time video systems to enable remote
doctor-patient consultations, while educational institutions employ them for virtual
classrooms and online learning experiences. The growing use of real-time video sys-
tems highlights their versatility and impact in facilitating instant, interactive com-
munication and content sharing.

Several studies and user feedback indicate that people are often unsatisfied with

the quality of real-time video systems. Research conducted by Smith and Anderson
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(2020) found that a significant number of video conferencing users expressed frus-
tration over issues such as poor audio and video quality, frequent lags, and dropped
connections [15]. Furthermore, a survey conducted by Tech Republic revealed that
65% of respondents experienced difficulties with video quality during real-time video
applications, leading to reduced engagement and productivity [48]. These challenges
can be attributed to various factors, including inconsistent network connectivity, lim-
ited internet bandwidth, and hardware limitations. As the demand for real-time video
systems continues to grow, providers must address these quality concerns and invest
in improving the technical infrastructure to enhance user experience. In this work,
we focus on real-time video systems, which are essentially different from other video
systems, such as video streaming. Real-time video systems - examples include cloud
video gaming, video conferencing, teleoperation, and telemedicine - have a two-way

interaction between the users and are highly sensitive to latency.

One primary reason real-time video systems may experience low quality is the lack
of effective video congestion control mechanisms. Video congestion control refers to
the ability of a system to adapt video transmission parameters in response to varying
network conditions and congestion levels. Inadequate or inefficient video congestion
control can lead to network congestion, packet loss, and increased latency, ultimately
resulting in degraded video quality. Research by Zhai et al. (2020) highlights the
importance of adaptive congestion control mechanisms to maintain optimal video
quality during real-time video communication [56]. Furthermore, Li et al. (2018)
emphasize the need for intelligent congestion control algorithms that dynamically
adjust video transmission rates based on network conditions to ensure smooth and

low-latency real-time video [32].

Research has shown that many existing video congestion control algorithms are
often insufficient in handling network congestion and maintaining satisfactory video
quality. A study conducted by Sarker et al. (2019) evaluated several popular video
congestion control algorithms and found that they often struggled to adapt to varying
network conditions, leading to frequent video freezes, buffering, and degraded user

experience |[11]. These findings highlight the need for more robust and adaptive
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video congestion control algorithms to respond dynamically to network conditions
and optimize video transmission parameters accordingly while keeping the latency
low. Further research and development in this area are crucial to address existing

algorithms’ insufficiencies and improve the quality of real-time video systems.

On the other hand, state-of-the-art congestion control algorithms have signifi-
cantly improved data transmission performance in recent year. Delay-sensitive pro-
tocols such as BBR [9] (Bottleneck Bandwidth and Round-trip propagation time),
PCC [15], and Copa |7] dynamically adjusts the sending rate based on the end-to-end
signals like round-trip delay and receive rate, leading to reduced bufferbloat, faster
recovery from congestion, and higher throughput [9]. However, these congestion con-
trol algorithms are typically evaluated on backlogged flows. A backlogged flow is a
data flow that always has a packet to send upon request from the congestion control
layer. Backlogged flows are a convenient traffic source for congestion control, since
the congestion control algorithm can determine precisely when to send or not send
a packet. State-of-the-art congestion control algorithms applied to backlogged flows
can achieve excellent network utilization while controlling delays, far exceeding the

performance of existing congestion controllers designed for real-time video.

In this work, we strived to find out why there is such a gap between the perfor-
mance of backlogged congestion control compared to video congestion control. There
are multiple challenges to sending a real-time video that makes video congestion con-
trol algorithms different from conventional congestion control algorithms. First, the
video stream is not a backlogged flow of data to send. Video frames are generated
periodically and behave as a train of packet bursts with periods of inactivity. Sec-
ond, the video packets have stringent latency requirements; if they arrive too late, it
introduces a high latency in the video, which directly affects the interactivity of the
system. Third, in real-time video applications, unlike on-demand video streaming,
there is minimal buffering at the video player. Ideally, each frame must be delivered
as soon as it arrives. Furthermore, since the video itself is generated in real time,
there is pre-encoded version of the frames available. Thus, the size of the frame after

encoding is not known beforehand. The implication is that a mismatch between the
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video bitrate (produced after encoding) and the network rate determined by con-
gestion control can occur rather easily. Specifically, the encoder may produce more
packets than congestion control wishes to send, or it may produce fewer packets than
congestion control is ready to send. Both situations lead to sub-optimal performance

compared to operating congestion control with backlogged traffic.

To close the gap between the video congestion control algorithms and the back-
logged congestion control algorithms, we propose Dumbo, a simple framework for
making a video traffic source appear like a backlogged flow to congestion control.
Dumbo enables state-of-the-art window-based delay-sensitive backlogged congestion
control algorithm to be used for real-time video traffic without modification, and it
achieves nearly identical performance to using the algorithm for a backlogged flow.
In Dumbo, the congestion control algorithm always sees a backlog of data to send.
If there are unsent video packets, it first sends those. But if the congestion con-
troller senses available bandwidth but there are not video packets, Dumbo generates
“dummy” packets and provides them for transmission. The key observation here is
that the dummy traffic allows the congestion control to maintain its ACK-clocked
feedback loop, and thus helps it maintain an updated video of the network state.
As bandwidth opens up, Dumbo increases the target bitrate of the video encoder,
improving video quality. But in the interim before the video bitrate increases, it uses

dummy traffic to enable efficient congestion control.

We implemented Dumbo atop WebRTC |51] and evaluated it on emulated network
conditions using real-world cellular network traces. We applied Dumbo to two delay-
sensitive backlogged congestion control algorithms: Copa [7], and RoCC [I|. Our
results show that, on average, Dumbo in comparison with GCC [10], WebRTC’s
default video congestion control achieves achieves a 1.5dB improvement in PSNR,
1.6dB improvement in SSIM, 100 ms lower frame latency, 35x faster convergence
time, 16% increase in the video bitrate, 32% increase in network utilization, and 4x

reduction in the network queueing delay.

The rest of this thesis is organized into these chapters: In the Related Work

chapter, we discuss the works done in the backlogged and video congestion control
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and the video platforms that use the video congestion control algorithms. In the
Motivation chapter, we study the behavior of a video congestion control algorithm
and break down the problem we are trying to solve. In the Design chapter, we
propose our solution to the problems we found in Motivation. In the Implementation
chapter, we describe the implementation details of our Design ideas and the technical
details of our proposal. Lastly, in the Evaluation chapter, we compare the end-to-end

performance of the current video congestion control algorithm with our proposal.
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Chapter 2

Related Work

2.1 Congestion Control

Congestion control algorithms operate as the backbone for adjusting the video rate
in video applications and are designed to regulate the flow of data in order to prevent
network congestion. The video congestion control algorithms aim to reduce the delay
in delivering the packets and utilize the bandwidth as much as possible.

Most end-to-end congestion control approaches can be broadly categorized into

delay-based [2, 7, 31, 34, 28, 54, 10, 9] or buffer-filling schemes [15, 19].

2.1.1 Delay-based Congestion Control

Real-time applications, such as video applications, are susceptible to delay. Tradi-
tional loss-based congestion control algorithms, such as TCP [27], are unsuitable for
real-time video applications since they probe the network by inducing long queues
and draining them. These queue oscillations cause a time-varying delay component
that adds to the propagation time and make delay-sensitive communications problem-
atic. Thus, using some sort of delay-based congestion control algorithm is preferable.
There are several delay-based congestion control algorithms to infer congestion. We
describe some of them in this section.

Delay-based protocols are optimized to minimize queueing while achieving a target
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rate. They either use the delay through the queue [13, 28, &], or delay-gradients |10,
, 31] to infer how to adjust the sending rate. Some algorithms like Copa |7] and

BBR [9] explicitly drain the queue in order to accurately estimate minimum round-

trip time (RTT), which in turn helps get a more accurate estimate of the link rate.

A few of these algorithms, such as Timely [34] and DX [31], have also been deployed

in datacenter settings.

Congestion Control Algorithms using round-trip-time (RTT):

These algorithms aim to prevent congestion by adjusting the transmission rate
based on the observed round-trip time of the network. RTT is the time it takes for
a packet to travel from the sender to the receiver and back again. These algorithms
work by continuously monitoring the RTT of the network and dynamically adjusting
the transmission rate based on this value.

One standard RTT-based congestion control algorithm is TCP Vegas [%], which
uses a congestion avoidance mechanism that adjusts the transmission rate based on
the observed RTT of the network. TCP Vegas uses a feedback mechanism that
compares the expected RTT with the actual RT'T and adjusts the transmission rate
accordingly.

Another commonly used RTT-based congestion control algorithm is TCP Reno
[37], which uses a combination of slow start and congestion avoidance mechanisms to
adjust the transmission rate based on the observed RTT of the network. TCP Reno
gradually increases the transmission rate until congestion is detected, at which point
it reduces the transmission rate and gradually increases it again until congestion is
detected once more.

TCP Fast algorithm [28] is based on reducing the time required to open a new
TCP connection, which is a critical factor in reducing latency and improving overall
network performance. The TCP Fast algorithm achieves this by increasing the initial
congestion window (ICW) size, which determines the amount of data a sender can
send before receiving an acknowledgment from the receiver. By increasing the ICW
size, TCP Fast allows more data to be sent at the start of a connection, reducing the

time required to establish the connection and improving the overall performance of
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TCP. The main issues with these algorithms are low channel utilization in the presence
of reverse traffic or when competing with loss-based flows [21] (video conferencing has
reverse traffic).

Congestion Control Algorithms using one-way delay (OWD):

These algorithms estimate network congestion by using the delay between the
sender and receiver. OWD-based algorithms measure the time it takes for a packet
to travel from the sender to the receiver but do not wait for a response from the
receiver. Instead, they estimate the OWD by measuring the difference between the
time the packet was sent and the time the receiver reported receiving it. OWD-based
algorithms assume that the one-way delay is asymmetrical, meaning that the time
it takes for a packet to travel from the sender to the receiver may differ from the
time it takes for the response to travel from the receiver to the sender. OWD-based
algorithms adjust the transmission rate based on the estimated network congestion
level. Examples of these algorithms are LEDBAT (over UDP) [13], and TCP-LP [30].
These algorithms are shown to suffer from the "latecomer effect": when two flows
share the same bottleneck, the second flow typically starves the first one [12].
Congestion Control Algorithms using delay gradient:

These algorithms use the gradient of the delay between consecutive packets that
are sent from the sender to the receiver. In other words, they look at inter-packet
arrival times at the sender and the receiver. They were employed to overcome the
aforementioned "latecomer effect."” Some examples are CDG |[23], Verus [55], and
Google Congestion Control (GCC) [11]. Recently, SQP [38] has also been intro-
duced for interactive video streaming applications that need to stream high-bitrate
compressed video with very low end-to-end frame delay (e.g., AR streaming, cloud
gaming). The video range that SQP performs in is much more than the conventional

real-time video applications (e.g., video conferencing) we have in mind.

2.1.2 Buffer-filling Congestion Control

In contrast, buffer-filling algorithms [15, 22, 17] aim to send as much traffic as possible

until loss or congestion is detected. At that point, these algorithms signal to the sender
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to reduce its sending rate and then back off at that point. Such algorithms typically do
not compete fairly with delay-based algorithms that tend to reduce sending rate at the
slightest increase in queueing delays or RTTs. Active queue management techniques
such as RED [10], PI [21] and DCTCP [11], and approaches [20] that can switch
between delay-based and buffer-filling modes attempt to ameliorate some of these
issues. However, limited attention has been paid to buffer-filling and delay-based
algorithms for application-limited flows [0, 5| because bulk-flow settings where traffic
is generated will allow researchers to reason through steady state behavior easily.
However, video traffic is uniquely application-limited in that frames are generated at
a fixed framerate (typically 30 fps) and, thus, produces data in an on-off pattern only
every 30 ms. This non-backlogged traffic limits the amount of feedback the sender
receives and, consequently, its ability to quickly increase and decrease its sending rate.
Dumbo combats this problem by making video traffic appear like a long-running flow

and is designed to work in conjunction with any delay-based algorithm.

2.2 Video Systems

Many video applications, including Google Meet, Meta Messenger, Discord, and Ama-
zon Chime |1] use Web Real-time Communication (WebRTC) [51] to deliver real-time,
high-quality video and audio content to users. WebRTC is a free, open-source project
that provides a collection of standard APIs and protocols for building real-time com-
munication applications directly in web browsers. WebRTC handles connection es-
tablishment, stream management, end-to-end encryption, and rate control for video
applications. Additionally, WebRTC uses peer-to-peer connections, which can help
reduce network latency and improve video quality, especially in scenarios where tra-
ditional server-based approaches can result in slower connections or higher costs.
WebRTC provides simple JavaScript APIs which enable application developers to
easily span the connections between two browsers with a few lines of code. WebRTC
is built on top of standard web technologies, including HTML, JavaScript, and the

Session Initiation Protocol (SIP), and can be integrated with various other communi-
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cation technologies, such as voice over IP (VoIP) and instant messaging. WebRTC is
also designed with security in mind, using end-to-end encryption and other security
features to protect user privacy and prevent unauthorized access. As a result, We-
bRTC has become a popular choice for building video and audio applications across
a wide range of industries, including healthcare, education, and entertainment. With
the growing popularity of WebRTC, it is expected that more and more video appli-
cations will adopt this technology in the future. As a result, the need for a reliable

and efficient video congestion control algorithm is becoming more pronounced.

Google Congestion Control (GCC) [11] is the rate control mechanism within We-
bRTC. It uses the variations in the inter-packet arrival time of the packets at the
receiver to signal to the sender whether to increase, hold, or decrease the rates. We-
bRTC also uses Transport Wide Congestion Control [25] at the sender to estimate
bitrate based on intra-packet delays. However, in the absence of continuous feedback
due to the on-off patterns of video traffic, GCC is sluggish in increasing and decreas-
ing its rates. This issue, in turn, affects the bitrate of the video delivered; when there
is unused bandwidth, it renders poor-quality video, and when it overestimates the
bandwidth, it leads to stalls and frames with glitches. This control loop is worsened
by the fact that feedback depends on the actual data sent, which in turn is controlled
by the encoder, which is both slow to respond and is operating on faulty estimates
in the first place. Dumbo instead decouples the congestion control loop from the en-
coder’s slow responses by padding the encoder’s output with additional dummy data
to match the desired rate or window at any given moment. This technique provides
faster and more accurate feedback, allowing the video application to respond more
quickly to bandwidth variations. A recent proposal called SQP [38] achieves low end-
to-end frame delay for interactive video streaming applications that stream very high
bitrates (e.g., AR streaming, cloud gaming). However, SQP operates in much higher

bitrate regimes than what Dumbo is designed for.

Adaptive bitrate algorithms [33, 26, 53, 16, 52| are another category of video rate
control solutions. These algorithms run at the application layer and use information

about available bandwidth, buffer size, and current bitrate to determine the next
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bitrate that the video should be encoded at. While these algorithms help influence the
encoder’s compression, the output produced may not match the network’s capacity
due to hysteresis from its past outputs. Salsify [19] combats this by producing two
options for the next encoded frame and using the one that matches the instantaneous
capacity better. Dumbo goes a step further in decoupling the transport and the
encoder by allowing the transport to pad additional data if the encoder fails to match
the instantaneous capacity and to slow down the encoder’s output if it overshoots the

available capacity.
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Chapter 3

Motivation

3.1 Status Quo for Video Rate Control

To understand how the rate control for real-time video works today, we run Google
Congestion Control (GCC) [10], the rate control mechanism inside WebRTC, on a
time-varying periodic link. The link starts with 3 Mbps of bandwidth for 40 seconds,
then drops to 500 Kbps for the next 40 seconds before jumping back up to 3 Mbps
again. The minimum network one-way delay is 25 ms with a minimum round-trip
time (RTT) of 50 ms, and the buffer size at the bottleneck is large enough that there
are no packet drops. We run the experiment for 160 seconds. To illustrate network
measurements, we use the link’s utilization or throughput, which is the rate at the
egress of the link, and the network delay, which is the per-packet queuing delay in
the network. To quantify the video quality, we use per-frame PSNR (Peak Signal-
to-Noise Ratio) [11] and SSIM [50] (structural similarity index measure), which is a
method for predicting the perceived quality by humans of digital cinematic pictures.
We also measure end-to-end frame latency, indicating how laggy the received video
is at the receiving point.

We show GCC’s network utilization in Fig. 3-1 and network delay in Fig. 3-2. The
resulting end-to-end video quality in Fig. 3-4 and Fig. 3-5, and its end-to-end frame
latency in Fig. 3-6. We observe that GCC is very slow to increase the rate when the
link starts, and its capacity is restored to 3 Mbps in the 80s. Specifically, GCC takes
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Figure 3-1: Link’s utilization time series.
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Figure 3-2: In-network queuing delay time series.

Figure 3-3: Network measurements of Copa on a backlogged flow, GCC on a video
flow, and Copa + Dumbo on a video flow. The link is a periodic on-off link with a
maximum of 3 Mbps and a minimum of 500 Kbps with a minimum of RTT of 50 ms.
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Figure 3-4: Frame SSIM for the received video time series.
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Figure 3-5: Frame PSNR for the received video time series.
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Figure 3-6: Frame Latency time series.

Figure 3-7: End-to-end frame measurements of Copa on a backlogged flow, GCC on
a video flow, and Copa + Dumbo on a video flow. The link is a periodic on-off link
with a maximum of 3 Mbps and a minimum of 500 Kbps with a minimum of RTT of
50 ms.
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20 seconds to go from 500 Kbps to 3 Mbps.

This sluggish response manifests itself as lower and slowly increasing visual quality
(Fig. 3-4 and Fig. 3-5). Further, even once in a steady state, GCC under-utilizes the
link, achieving 90% of the link. We also observe that GCC is slow to react when the
link rate drops suddenly to 500 Kbps at the 40s. This is best observed in Fig. 3-6,
where the latency through GCC’s queue spikes to a few seconds at that very moment.
This is because GCC continues to send at a higher rate than the network can support,
causing queue buildup and added delay. The queue buildup can be observed easily in
Fig. 3-2, where GCC cannot back off its rate fast enough and causes a massive queue
in the network. This spike takes 15s seconds to settle down. If such a queue buildup
exceeds the packet buffer, it can cause drops and stalled video due to decoding errors,
which often take a few seconds to recover from at the application level. In contrast to
GCC’s lengthy response to changes in network capacity, traditional congestion control
algorithms |7, 1, 8, 9] operating on backlogged flows, respond much faster, typically on
the order of few RTTs or hundreds of milliseconds as opposed to 10s of seconds that it
takes for GCC. For instance, the “Backlogged Copa” line in Fig. 3-1 shows that when
we run Copa |[7], a recent delay-based congestion controller with a backlogged flow on
the same time-varying link, its behavior reflects a much faster response. Specifically,
Copa matches the link rate of 3 Mbps within a few round-trip-times (milliseconds),
after which its steady-state utilization stays at 3 Mbps. Even when the link rate drops
to 500 Kbps, Copa reacts almost immediately, keeping the delay through the queue
relatively small. This issue manifests as a small blip in Fig. 3-6 for "Copa” around the
20s that drops down in less than 2s. Copa catches up within a second when the link
rate returns to 3 Mbps. This wide disparity between GCC on real-time video traffic
and Copa on backlogged traffic begs the question: Why does the state-of-the-art for

video rate control lag so far behind the state-of-the-art for congestion control?

33



— Target — Achieved
2.5 7

2.0

1.0

Bitrate (Mbps)

0.5

T T T 1

5 10 15 20 25 30
Time (s)

0.0 4
0

Figure 3-8: Encoder’s reaction time: the Target shows the input rate given directly to the
encoder, and the Achieved rate is the encoder’s output rate. The experiment has been done
on WebRTC’s default video encoder (VPS).

3.2 Encoder-driven Rate Control Loop

One natural response to the disparity between GCC and Copa in Fig. 3-1 and Fig. 3-6
would be to claim that GCC is simply a lousy rate control algorithm. However, we
believe otherwise. GCC has been carefully designed with the tight latency bounds
of interactive video applications in mind. Its rate control responds to increases or
decreases in delay gradients over RTT timescales. It is also relatively conservative
in link utilization to not overwhelm the network and invariably cause packet drops
and glitchy frames. The real issue that limits GCC is that, in video applications, the
rate at which data s transmitted on the wire is dictated by the rate that the encoder
outputs. Unfortunately, the encoder is extremely unreliable: it rarely matches the
target bitrate exactly [19] and cannot adapt to target bitrate changes immediately.
We illustrate this behavior in Fig. 3-8 where we supply a target bitrate that switches
between 2Mbps in periods of 5 seconds to the encoder and observes its achieved
bitrate in response to it. Every time the bitrate goes up from 500 Kbps to 2 Mbps,

the encoder takes nearly 3 seconds to catch up. This lag is not surprising: video
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encoders use delta encoding, which encodes the differences between adjacent frames,
and it is difficult to abruptly change the quality or bitrate when frames are so closely
intertwined. However, the effect of this encoder lag is that GCC, which uses the
delay observed for the video packets sent on the wire to infer bandwidth availability,
is very slow in its rate increase. Whenever GCC senses that bandwidth is opening
up, it slightly increases the rate supplied to the encoder, which response over many
seconds. When the feedback from this increased bitrate data trickles in, GCC once
again sets the rate a little higher for the encoder, which takes many more seconds
to match it, and this process continues. Unsurprisingly, this cycle ends up taking
15-20 seconds end-to-end. Moreover, since the encoder cannot immediately reduce
the bitrate (recall Fig. 3-6), GCC has to be conservative and not only increase the
bitrate carefully but also leave some bandwidth headroom in a steady state so that
it reduces the risk of being unable to react to delay increases quickly. Essentially,
GCC’s bandwidth discovery and steady-state behavior are limited by the encoder
output. This is what we call “encoder-driven rate control”.

It is worth noting that GCC tries to mitigate some of the issues arising from
variations in the encoder output with a “pacer queue” [10]. The pacer queue operates
packet-by-packet and paces packets according to a small multiple of GCC’s target rate
(e.g., pacing rate = 1.5xtarget rate). While pacing helps smoothen the occasional
spike in sending rate (e.g., due to a keyframe), it is not helpful in the context of rate
control decisions that cover many RTTs, which are instead dictated by the encoder’s

output rate over several frames.

3.3 Decoupling the Encoder from Rate Control

The above discussion suggests that there is not much one can do to change the
encoder itself, and that relying on the slow encoder for rate control is very ineffective.
In other words, we need to decouple the congestion control loop from the encoder’s
output on small timescales. The goal of this decoupling is to give complete control

to the congestion controller to directly set the data rate on the wire. To achieve this,
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we need two mechanisms: (1) when the encoder overshoots the available capacity, we
need to limit what is sent on the wire avoiding sharp increases in the video delay, and
(2) when the encoder undershoots the available capacity, we need additional data on

the wire to compensate for the encoder’s slow response.

Our design, Dumbo, includes mechanisms for both of these scenarios. To account
for encoder overshooting, Dumbo repurposes the “pacer queue” in GCC to match the
actual rate signaled by the congestion controller. We also bound how big this queue
can grow before we pause encoding of further frames. The intuition here is that there
is no point encoding a frame that cannot be sent with low delay over the network.
Regardless of whether we send the packets of such a frame or hold them in the pacer
queue, the end-to-end delay of the frame will be high, and more importantly, the
congestion created will increase delay for subsequent frames. Instead, Dumbo simply

skips a frame in such situations.

When the encoder undershoots the available capacity, Dumbo sends “dummy pack-
ets” to match the rate requested by the congestion control mechanism. We simultane-
ously signal the latest target rate from the congestion controller to the encoder. This
allows the congestion controller to independently discover bandwidth fast, while also
allowing the encoder to respond at its own pace to the latest bandwidth estimate.
This dummy traffic could also be repurposed for useful information such as forward
error correction (FEC) packets [39, 35] or keyframes for faster recovery from loss.
However, we leave such enhancements to future work and focus solely on the impact

of dummy traffic on video congestion control.

Dumbo effectively makes video traffic look like a backlogged flow: either the en-
coder produces data continuously, or the encoder’s output is padded to produce traffic
at the congestion controller’s will. As a result, a congestion controller operating with
Dumbo has full freedom to adjust the sending rate as it wishes and is not subject
to the vagaries of the video encoder. The net impact of adding these mechanisms is
visible in Dumbo’s lines in Fig. 3-1, 3-5, and 3-6. Dumbo’s response is very similar
to that of Copa on backlogged traffic. Specifically, it discovers bandwidth a lot faster
than GCC when it opens up. Unlike GCC, Dumbo does not face the brunt of the
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Figure 3-9: Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate for
Copa with Dumbo. The link is a periodic on-off link with a maximum of 3 Mbps and a
minimum of 500 Kbps with a minimum RTT of 50 ms.

encoder’s sluggishness over many cycles of small rate increases followed by encoder
responses.

Instead, the dummy traffic allows this bandwidth discovery to happen indepen-
dently of the encoder. Fig. 3-5 shows that this dummy traffic does not eat away at
useful video traffic; it translates to higher PSNR and SSIM for received frames than
GCC. Even when the bandwidth drops, Dumbo keeps the queueing delay slightly like
Copa on backlogged traffic. Lastly, Dumbo’s steady state link utilization is also very
high (almost 100%).

Fig. 3-9 shows the breakdown of the link’s utilization of video traffic and the
dummy traffic. Note that the sum of the video rate and the padding (dummy) rate
equals the "Copa+Dumbo” line in Fig. 3-1. As you can see, the dummy traffic dummy
is only high during transients of the bandwidth where the video encoder cannot reach
the rate as fast as the congestion controller decides and when the output bitrate of
the encoder is transiently lower than the link. The average video bitrate for this
experiment is 1573 Kbps, and the average padding bitrate is only 61 Kbps. This

means that by only sending 3.8% dummy traffic, we will have both lower end-to-end
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frame latency (Fig. 3-6) and higher visual quality (Fig. 3-4).

What about probing mechanisms?

A natural question at this point would be if probing mechanisms, specifically those
already supported within GCC [2], would achieve the same net effect as what we
describe above. While periodic bandwidth probing has been shown to be very effective
for certain CCAs [9], we observe that the mechanism within GCC is relatively ad-hoc.
It uses a periodic timer that fires every few seconds (this parameter can be adjusted)
and sends a little more traffic than the current sending rate in response. Such an
infrequent timer does not help on the finer RTT-level timescales required for precise
rate control. A timer is, in practice, very similar to a sluggish encoder that responds
to the target bitrate over a few seconds. In contrast, we view our approach as a more
systematic way of introducing the right amount of “probing” or dummy traffic when
necessary such that it does not overwhelm the network while still providing useful
feedback for bandwidth discovery.

Fig. 3-10 shows the breakdown of the link’s utilization to video and dummy traffic.
The timing of the probings is off, and their periodic nature is independent of the
underlying changing bandwidth. The probing fires slightly around the 50s (10s later
than the link has changed) and the 130s.
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Figure 3-10: Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate for
GCC with probing enabled. The link is a periodic on-off link with a maximum of 3 Mbps
and a minimum of 500 Kbps with a minimum RTT of 50 ms.
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Chapter 4
Design

The issue with real-time video applications is that the produced traffic is not a back-
logged flow. Our idea is to change the shape of the produced traffic such that from
the congestion control algorithm’s perspective, it looks like a backlogged flow. This
allows us to plug in any state-of-the-art congestion control algorithmdesigned to work
with a backlogged flow. Fig. 4-1, shows the overall structure of Dumbo.
Congestion Controller. This module is a window-based congestion control algo-
rithmthat is responsible for finding the cwnd (number of allowed bytes in flight) at
each point in time. When bytes are sent to the receiver, the number of bytes in flight
increases at the sender. These bytes could belong to either video or dummy packets
and the congestion controller does not differentiate between them. When packets are
received, an acknowledgmentis sent back to the sender and the congestion control
algorithmuses the ACK to compute the RTT (round-trip time of the packets), and
update the cwnd . The congestion controller also computes the sending rate for all the
streams (video, audio) as the cwnd divided by smoothed RTT (using an exponentially
weighted moving average of the RT'T samples). The sending rate is used to set both
the target bitrate of the encoder and to configure the Pacer.

Dumbo can be used with any delay-controlling congestion control algorithm. In
our experiments, we use Copa [7] and RoCC [1], two recently proposed congestion
controllers. These congestion controllers can be tuned to navigate the throughput

and latency tradeoff according to the needs of the application. For example, a video-
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Figure 4-1: Dumbo’s Design: Dumbo is trying to re-shape the video traffic to a backlogged
flow for state-of-the-art window-based backlogged congestion control algorithms.

conferencing application would want a congestion controller that minimizes latency
(potentially at the expense of throughput) while a live video stream may tolerate
moderate increases in latency for better throughput and video quality. In our evalua-
tion, we experiment with two CCAs: RoCC|!] and Copa |7]. RoCC has a parameter -y
which adjusts how much network queuing delay RoCC causes. In Copa, the parameter

0 is responsible for adjusting the throughput and delay tradeoff.

Video Encoder. The encoder receives the video from the application and strives
to produce an average bitrate equal to its target bitrate. The encoded packets are
put in a media queue available to the pacer. In real-time video encoding, the output
size of the encoded frame is not known and the encoder tries its best to output
the congestion control algorithm’s estimate but it has fluctuations. In traditional
video congestion control algorithms, if the encoder produces less data than what
the congestion control algorithmis asking for, the sender has no choice but to send
that much data and disrespect the congestion control algorithm. This means that
congestion control algorithmwill not be able to receive enough acknowledgments it
requires to ramp up its window as fast as the algorithm wants. We propose that
in such scenarios, the transport fill the surplus with dummy packets to respect the
congestion control algorithmrule. This is not a waste of bandwidth, but in fact,

it allows the congestion control algorithmto ramp up as fast as it can to estimate
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the correct link’s bandwidth. This correct higher estimate is fed into the encoder,
enabling it to generate higher quality video in comparison to when the estimate was

incorrect and lower.

Pacer. The Pacer receives cwnd and the target bitrate from the congestion con-
troller. The instantaneous bitrate produced by the encoder may be larger than the
target bitrate as discussed, so the pacer is responsible for controlling sudden bursts
of packets. It does this by spacing packets according to the target rate (WebRTC
already implements this pacing function). In addition to spacing packets, the Pacer
also ensures that the cwnd bound on inflight data is enforced. If the number of un-
acknowledged bytes is less than cwnd and the target rate allows a packet to be sent,
the pacer reads a packet from the media queue and sends it. The Pacer stops sending

if the amount of data in flight exceeds cwnd .

Finally, the pacer also computes the amount of time it takes for the media queue
to be drained by dividing the size of the media queue by the target bitrate from
the congestion controller. If this time is bigger than a threshold, the pacer signals
the encoder to stop encoding because there is no point in generating the data if the
network is congested. We choose to stop the encoding instead of dropping the video
packets in the media queue after encoding because if we drop an encoded frame, the
encoder needs to reset its state and produce a keyframe which in a congested state
could result in a cascading generation of large frames. This feature already exists in

WebRTC and we incorporate it into our system.

Dummy Generator. To make the video flow mimic the behavior of a backlogged
flow, we use a Dummy Generator to produce dummy packets if the media queue is
empty and the congestion control algorithmis ready to send a packet. Specifically,
if cwnd is greater than the amount of data in-flight, for the congestion control algo-
rithmto have proper feedback from the state of the network we need to send a packet.
Whenever this occurs and the media queue is non-empty, the pacer pulls packets from
the media queue and sends them; but if the media queue is empty, the pacer pulls a
packet from the Dummy Generator and sends it. In our implementation, the dummy

generator produces empty packets, but for future work, dummy packets could be used
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to carry useful data like FEC packets.

Latency Control To prevent an unacceptable increase in latency, we have two mech-
anisms. First, the media queue has a latency threshold beyond which the video en-
coder is paused and skips frames. This feature already existed in WebRTC, but we
chose a different threshold. We choose the latency threshold around 100-200 ms based
on human’s sensitivity to the lag time between two consecutive frames.

The second mechanism is adjusting the encoder’s target rate based on the pacer’s
standing queue. The pacer’s standing queue, denoted by Standing PQ), is computed
as the minimum size of the aggregated media and dummy queue over the past T
seconds. We choose T' with the same logic as the latency threshold around 100-200
ms and we want that the standing pacer queue is drained before the receiver notices
the increment in the latency. The congestion controller declares that in the time span

of RTT, cwnd bytes can be sent over the network. This could be translated to a

cwnd

=77 for the whole system, but this rate alone does not have proper

target rate of

control over the pacer queue size. With just declaring the sending rate as %”;jﬂl, the
only knob controlling the pacer queue is the latency threshold which is risky because
it starts skipping frames. Therefore, we incorporate a new term in the Target rate
to show the effects of the standing pacer queue. Note that the congestion control
determines the total bitrate for all the streams of the system, including video, audio,
and control stream. Let’s denote the sum of the audio and the control streams as

Non_Video Rate which is typically a fixed small bitrate. Target rate for the video

encoder is determined as:

cwnd B Standing  PQ

T t Rate =
arget_Rate = - T

— Non_Video Rate
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Chapter 5

Implementation

To realize our design, we’ve implemented our system on top of Google’s WebRTC [51].
This work has taken several months with careful studying of Google’s implementation

of WebRTC.

5.1 WebRT(C’s Structure

Call. This component refers to the high-level process that establishes and manages
real-time audio or video streams and communication sessions between two or more
web browsers. The Call component is responsible for creating the sender and receiver
peers.

Signaling. The signaling component facilitates communication between the peers to
exchange metadata necessary for establishing the call. This can include information
such as session descriptions, which describe the media streams, network configura-
tion, and encryption settings, and ICE (Interactive Connectivity Establishment) [3]
candidates, which are used for NAT traversal |15].

Media Streaming. Once the peer connection is established, the call component
handles the real-time audio and video stream transmission between the browsers.
This includes encoding the media streams into codecs supported by both parties,
packetizing the media, and sending them over the network. The video encoder in We-

bRTC is responsible for converting raw video frames captured from the user’s camera
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or a video file into a compressed format that can be transmitted over the network
efficiently. Video compression is achieved using a variety of encoding techniques, such
as transform coding, motion compensation, and entropy coding. The encoder uses
algorithms to analyze the video frames and identify redundancies in the spatial and
temporal domains, exploiting them to reduce the data needed to represent the video.
This compression process results in a lower bitrate, allowing for faster transmission
and reduced network congestion. WebRTC supports several video codecs, including
VPS8, VP9, and H.264, which are widely used for real-time communication. The choice
of video codec in WebRTC is modular and depends on factors such as codec efficiency,
hardware support, and interoperability among different platforms and browsers. The
knob to change how much data the video encoder should generate is a target bitrate

that is set by the congestion control.

RTP/RTCP. The data generated by the encoder is packetized and converted into
RTP packets. Real-Time Transport Protocol (RTP) [12] is a widely used proto-
col for transmitting real-time multimedia data, such as audio and video, over IP
networks. RTP provides mechanisms for the timely and reliable delivery of media
streams, making it essential for applications that require low-latency and interactive
communication, such as video conferencing, online gaming, and live streaming. RTP
includes features such as sequence numbering, timestamping, and payload type iden-
tification, which help ensure that media streams are delivered in the correct order
and synchronized at the receiver’s end. Additionally, RTP can work in conjunction
with other protocols, such as the Real-Time Control Protocol (RTCP) [12], which
provides feedback on the quality of service and monitoring of RTP streams. During
the call, the call component may also involve the use of the RTCP for monitoring
the quality of service (QoS) and gathering feedback on metrics such as packet loss,
latency, and jitter. This information can adapt the call parameters in real-time, such
as adjusting the codec bitrate or changing the network transport settings, to optimize

the call quality.

Transport. This module is responsible for sending and receiving all the packets

for an endpoint, and it keeps track of the data in the flight, inflight, and the ac-
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knowledgments. Transport has two modules essential for video congestion control: a
pacing controller and a congestion controller. Transport passes the acknowledgments
to the congestion controller, and the congestion controller signals back its update
to the Transport. The update can change the congestion window and the sending
rate. Transport also divides the estimated available bandwidth for audio, video, and
control streams and updates the target bitrate of the encoder. The update from the
congestion controller also contains pacer configurations such as the cwnd, inflight,
and the sending rate. Transport compares the amount of data in flight with the con-
gestion window and sets the pacing controller to the "congested" state if there are
more data in flight than the congestion window. The congestion control estimates
the total available bandwidth. The update could also contain pacer configurations,

and the Transport could change the new config to the pacing controller.

Congestion Controller This module estimates the bandwidth to send using the
signals it receives from the Transport. The congestion controller determines the con-
gestion window and the sending rate all RTP streams should generate. The congestion
controller is flexible to implement both the window-based or rate-based algorithms

based on what the underlying application wants.

Pacing Controller. The Pacing Controller aims to maintain a smooth and steady
transmission rate and avoid bursts of packets. Since the video is generated periodically
bursty, the pacing controller is responsible for pacing the packets in time to achieve
the same average sending rate as the congestion control requires. If cwnd assigned by
the congestion controller is smaller than inflight, the pacing controller stops sending
media packets; otherwise, it schedules the packets such that the average rate of the
sending packets is no more than the bitrate assigned by the congestion controller.
The pacing controller allows occasional bursts of a few milliseconds (variable to tune)
and waits for the queue it has built up in the network to drain. When the pacer is
scheduled to send a packet, it prioritizes the media queue and pulls a packet from it
if it is not empty. However, if the media queue is empty, the pacer calls the dummy

generator module and gets a dummy packet to send.

Dummy Generator. WebRTC has a padding-generating module. We repurpose
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this module for creating padding and sending it as the dummy traffic. Each dummy
packet is capped at a minimum of 200 bytes and cwnd and contains filler bytes.
Dummy packets have padding type, and the receiver acknowledges them, but the

data is not used.

All the packets reach the pacing controller to be sent. The congestion controller
updates the pacing rate and its congestion state. If the pacing controller is in the
“congested” state, the pacer does not send any packets but keepalive packets in some
intervals. Otherwise, the pacer sends packets at scheduled times (nezt-send-time).
We have modified the pacing controller to schedule the nezt-send-time to respect the
pacing rate while occasionally allowing bursts of maximum duration (burst-interval).
If a burst happens, the incoming nezt-send-time is adjusted to let the built-up queue
be drained from the network. When the nezt-send-time has arrived, the pacer sends
a packet from the pacer queue. If there is no packet in the pacer queue, the pacer
generates a dummy packet and sends it to the network. The dummy packet is an
RTP packet of Padding type. Note that stamping the sequence number on the packets
happens after the pacing controller; thus, the acknowledgments will treat the dummy

packets the same as any other application packets as desired.

Adaptive Resolution. WebRTC has a rather complex and sluggish mechanism
for switching the sending resolution based on network conditions. This mechanism
prevents the video bitrate from adapting as fast as possible to the network changes
based on our fast window-based congestion control algorithms. This scheme is a
limitation because we can not make the congestion control faster without the traffic’s
source being as fast. Thus, we disabled the native resolution adaptation of WebRTC
and carefully implemented our resolution logic to fully follow the network’s available
bandwidth while preventing abrupt and fluctuating resolution changes. Our scheme
computes a moving average of the congestion controller’s target rate (smoothed _rate)
over time when receiving the update from the congestion controller. Based on that,
the sending resolution is decided. We update the ith sample of smoothed rate when

receiving the ith bitrate sample, b;, at time ¢; according to:
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Switch Low Threshold Switch High Threshold Resolution

0 Kbps 400 Kbps 320x180
300 Kbps 1500 Kbps 640x 360
1000 Kbps 3000 Kbps  1280x720
2500 Kbps 12000 Kbps 1920x1080

Table 5.1: Mapping between encoder target bitrate and chosen resolution in Dumbo

ti—ti_ ti—ti_
smoothed_rate; = (1 —e” = ' Vb +e T : smoothed _rate;_;

Where 7 shows how much memory our average has for keeping the samples from
the past. This value could be changed based on the application, but we observed that
a value of 500 ms is usually sufficient.

Table 5.1 shows the resolutions and their corresponding thresholds. The threshold
bounds overlap to ensure smooth and stable transitions. That is why the switch low
threshold of each resolution is smaller than the switch high of the previous resolution.
If smoothed rate is lower than the switch low threshold of the current resolution,
the resolution goes down one step, and if it is higher than the switch high threshold

of the current resolution, the resolution goes up one step.

5.2 Implementing the Congestion Control

The congestion control module is responsible for estimating the available bandwidth
and feedbacking this estimation to the encoders for generating data with the correct
bitrate. Congestion control in WebRTC provides an update with these fields: time of
the update, measured round-trip-time, measured loss ratio, the congestion window,
and minimum and maximum pacing rates.

In WebRTC, congestion control is updated from the statistics of the RTP streams
from Transport, specifically the acknowledgments. Based on the algorithm, conges-
tion control can also receive other information, such as the size of the pacer queue, by
slightly modifying the Transport. Congestion control also has specific APIs required

by other layers to implement. These APIs are periodic or event-based, and the con-
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gestion control needs to compute and send its update to the Transport. These events
include sending a packet and, upon receiving an acknowledgment, where the size of
the congestion window and the data in the flight can change.

For the congestion control to perform, it should know about the statistics of sent
and received data and the acknowledgments from the receiver. WebRTC has already
provided APIs from the transport module to provide feedback on this information to
the congestion control as mentioned in Sec. 5.1.

Modifying the Application Congestion Control. WebRTC enables implemen-
tation of custom congestion control algorithmas long as it provides the necessary
APIs. To modify the congestion control component, we should change the name of
the used congestion control algorithmin the call, Transport, and API components
of WebRTC and provide the code to factor the congestion control. We have imple-
mented two congestion control algorithms on top of WebRTC: Copa [7] and RoCC [1].
These algorithms are window-based congestion control algorithms, and they control

the amount of data sent by a congestion window.

5.2.1 RoCC

RoCC sets the congestion window to the number of received bytes in the past time
interval of (14+)min_ rtt plus a constant window size where min_ rtt is the minimum
round-trip time observed in a long period of time. The round-trip time and the
number of received bytes are computed using the acknowledgments received from
Transport. Since in WebRTC, acknowledgments are sent periodically; congestion
control receives aggregated packet feedback. To compute min_rtt, we subtract the
wait time at the receiver for the acknowledgment to be sent. RoCC computes the

window at time t using:

cwndy = # acked bytes in [t - (1 +~)min_rtt , t] + C (5.1)

Where C' is a constant positive window size. The value of C helps RoCC to

achieve eventual fairness. The round-trip time for each packet is not necessarily
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equal to min_rtt because of the possible queue built up in the network. RoCC
measures propagation_time as the smoothed (EWMA) round-trip-time measured
upon receiving each acknowledgment. Upon receiving an ith acknowledgment, RoCC
measures the average round-trip time for those packets, denoted by rtt;. Then, RoCC
updates propagation _time as the following where o shows how sensitive we are to

the latest updates:

propagation_time; = « - rtt; + (1 — «) - propagation _time;_y (5.2)

RoCC updates the sending rate for the total RTP streams as:

sending rate = cwnd/propagation _time (5.3)

This sending rate is notified to the Transport and eventually is allocated between
the audio, video, and control streams. RoCC sets the pacing rate at sending rate,
and the pacer will try to drain the pacer queue at this rate.

The intuition behind this algorithm is that it tries to build a queueing delay of
ymin_rtt in the network. v is a variable that the application can set based on how
delay sensitive the application is. Having some queue built up in the network ensures
high link utilization while application-specific 7, RoCC controls the in-network delay
it introduces.

In an algorithm variation, the application can set a desired queueing delay, denoted
by desired qdelay, and v is updated as v = desired qdelay/min_rtt. Though this
algorithm achieves less delay than the fixed gamma, it is less robust and more prone

to oscillations due to late acknowledgments.

5.2.2 Copa

Copa incorporates three ideas: first, a target window to aim for that is inversely
proportional to the measured queueing delay; second, a window update rule that
depends moves the sender toward the target rate; and third, a TCP-competitive

strategy to compete well with buffer-filling flows [7].
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Copa keeps track of the smoothed RTT values in progapation time similar to
5.2.1. For each congestion control update, Copa computes rtt _standing, which is
the RTT corresponding to a "standing" queue, and it is the minimum observed RTT
in a recent time window of progapation time. Copa calculates the queueing delay,

denoted by d,, in the network by

d, = rtt _standing — min_rtt (5.4)

where min_ rtt is the smallest RT'T observed over a long period of time. The
reason for using the smallest RTT in the recent progapation time duration, rather
than the latest RTT sample, is for robustness in the face of acknowledgment com-
pression [57] and network jitter, which increases the RT'T and can confuse the sender
into believing that a longer RTT is due to queueing on the forward data path. Note
that WebRTC uses acknowledgment compression when sending the packet feedback.

Copa estimates the target congestion window, denoted by target cwnd, using

this function:

target cwnd = p - progapation _time/(qq - 0) (5.5)

where p is the average packet sizes and J is a parameter between 0 and 1 to
control network utilization and network queueing delay tradeoff. § can be tuned and is
application-specific; higher values of § mean lower queueing delay. Note that if ¢; = 0,
there is no queue build-up in the network, and it is safe to set target cwnd = +oo.
If the current congestion window cwnd, exceeds the target, the sender reduces
cwnd; otherwise, it increases cwnd. Let us denote the number of bytes acked since

the last update of cwnd by B. The update rule for the window is:

cund+p-v-B/(6-cwnd) increase
cund = (5.6)

cund —p-v-B/(§-cwnd) decrease

where v is called the "velocity parameter”. The velocity parameter, v, speeds up

the convergence. It is initialized to 1. Once per update of cuwnd, the sender compares
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the current cwnd to the cwnd value when the latest acknowledged packet was sent
(i.e., cwnd at the start of the current window). If the current cwnd is larger than
target cwnd, then set the direction to "up"; if it is smaller than target cwnd, then
set the direction to "down." If the direction is the same as in the window, then double
v. If not, then reset v to 1. However, start doubling v only after the direction has

remained the same for three RTTs [7].
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Chapter 6

Evaluation

We evaluate Dumbo in a simulation environment and atop a WebRTC-based imple-
mentation. We describe our setup in §6.1 and use it to compare existing baselines in

§6.3. In §6.2, we motivate our system design.

6.1 Setup

Testbed. Inspired by [16], we built a testbed in C++ on top of the latest version of
WebRTC that enables a peer-to-peer video call between two endpoints in a headless
setting. Each endpoint could have a sender peer and a receiver peer. The sender
reads the input video from a file instead of a webcam. Similarly, the receiver records
the incoming video as a file. In order to track video frames from the sender to the
receiver, we put a unique 2D barcode on each frame, similar to [19]. The barcode
enables matching sent and received video frames to compute metrics such as frame
latency and frame quality. We emulate different network conditions between the peers
by putting the receiver behind a Mahimahi [36] shell.

Configuration. Each peer has specific configuration parameters that are passed by
JSON files that indicate this information: if the peer is a sender or receiver, the peer’s
assigned IP and port, the duration of the call, video source (which could be from a
file, webcam, or no video), audio source (which could be from a file, microphone, or

no audio), video information (such as fps, width, and height), where to save the final
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video, the format to record the received video, and where to save logs related to the
peers.

Metrics. We quantify the performance of a real-time video system using two pri-
mary metrics: frame quality and frame latency. The testbed evaluates frame quality
as average Structural Similarity (SSIM [50]) to compare the received frames with the
corresponding frames in the source video. The frame latency is determined by mea-
suring the duration between the instant a frame is read at the sender and when it is
ready for display at the receiver. For frames not received at the receiver, a virtual
arrival time is assigned equal to the presentation time of the subsequently displayed

frame [19)].

For any congestion control algorithm, measuring its performance by metrics such
as link utilization, queuing delay it introduces in the network, and round-trip time
(RTT) is crucial. To measure the performance of the congestion controlalgorithm,
we also log all the packet sizes and their types when sending or receiving them to
compute the bitrate associated with each stream. We must identify what proportion
of the link is filled with dummy data; thus, we find the media stream bitrate and the
dummy bitrate and their ratio. Furthermore, in the emulation network, we process
the mahimahi log and compute the arrival rate, departure rate, capacity, and the

per-packet queuing delay of the experiment.

Traces. We evaluate each scheme on 16 cellular traces bundled with Mahimahi [36].
We also have created our custom pulse traces to show simple concepts of convergence
in 3. In a trace file, each line signifies a packet delivery opportunity, indicating
the time when an MTU-sized packet can be delivered in the emulation [36]. Byte-
level accounting is used, where each delivery opportunity corresponds to the possible
delivery of 1500 bytes. As such, a single line in the trace file can represent the delivery
of multiple smaller packets whose cumulative sizes add up to 1500 bytes. We also
used the pre-recorded cellular traces that are available online. We connected to the

links in our real-life experiments and recorded the time series [30].

Videos. We use a YUV video dataset that we generated from youtube. All the videos
have 1920x1080 resolution and 10-minute length at 30 fps. Generating the dataset is
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Videos

Youtuber Total Len. Avg. Bitrate
Adam Neely 10 min 1082 kbps
Xiran Jay Zhao 10 min 2815 kbps
The Needle Drop 10 min 2013 kbps
fancy fueko 10 min 4064 kbps

Kayleigh McEnany 10 min 2521 kbps

Table 6.1: Details of our dataset. All videos are at 1920x 1080.

fully scripted and can be replicated by anyone. The video URLSs, start time, and end
time are available, and we have provided the scripts to download, pre-process, crop
them to the desired resolution, and re-encode at 30 fps. Prior to the experiments,
each video is barcoded using the technique described in Metrics section offline. Table
6.1 displays the details of our dataset.

Baselines. We evaluated WebRTC’s default congestion control algorithm, GCC, in
emulation networks. We also implemented Copa and Rocc in WebRTC, discussed
in 5.2, and evaluated their performance. WebRTC’s main code-base provides the

implementation of PCC [15] as well that we discuss in Appendix A.

6.2 Understanding Dumbo’s Design

6.2.1 Convergence Time

This section studies the transient and steady-state behavior of different schemes in
variable-bandwidth environments. We run all the schemes on a pulse-shaped link.
The link starts with 3 Mbps of bandwidth for 40 seconds, then drops to 500 Kbps for
the next 40 seconds before jumping back up to 3 Mbps again. The minimum network
one-way delay is 25 ms with a round-trip time (RTT) of 50 ms, and the buffer size at
the bottleneck is large enough that there are no packet drops. We run the experiment
for 160 seconds.

We define the convergence time of an algorithm after a link transition to up as
the time it takes to achieve 90% utilization of the max utilization it achieves after the

transition for the first time. We also define the convergence time of an algorithm after
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a link transition to down as the time it takes for it to achieve 110% frame latency of
the steady-state latency it had before the transition. We also define the steady-state
metrics of an algorithm after a link transition as the average of that metric after
reaching a steady behavior.

Rocc. Fig. 6-3 shows the results of the convergence experiment for RoCC. For
RoCC without Dumbo, on a link transition to up, it has a convergence time of 21.1s,
the max utilization of 2.1 Mbps, and a steady-state utilization of 1.5 Mbps. On a
link transition to down, RoCC without Dumbo has a convergence time of 1.1s, a
steady-state frame latency of 173 ms, a max frame latency of 750 ms, and a steady-
state utilization of 0.47 Mbps. For RoCC with Dumbo, on a link transition to up,
it has a convergence time of 700 ms, the max utilization of 3 Mbps, and a steady-
state utilization of 3 Mbps. On a link transition to down, RoCC with Dumbo has a
convergence time of 1.7 s, a steady-state frame latency of 204 ms, a max frame latency
of 1067 ms, and a steady-state utilization of 0.5 Mbps.

On a link transition to up, Dumbo has a 30x faster convergence time

and 2x steady-state link utilization for RoCC while having comparable
results for a link transition to down.
Copa. Fig. 6-6 shows the results of the convergence experiment for Copa. For Copa
without Dumbo, on a link transition to up, it has a convergence time of 2.8 s, the max
utilization of 3 Mbps, and a steady-state utilization of 2.5 Mbps. On a link transition
to down, Copa without Dumbo has a convergence time of 2s, a steady-state frame
latency of 169 ms, a max frame latency of 1378 ms, and a steady-state utilization of
0.41 Mbps. For Copa with Dumbo, on a link transition to up, it has a convergence time
of 250 ms, the max utilization of 3 Mbps, and a steady-state utilization of 3 Mbps. On
a link transition to down, Copa with Dumbo has a convergence time of 2, a steady-
state frame latency of 178 ms, a max frame latency of 1463 ms, and a steady-state
utilization of 0.5 Kbps.

On a link transition to up, Dumbo has an 11x faster convergence time
for Copa while having comparable results for a link transition to down.

GCC. Fig. 6-9 shows the results of the convergence experiment for GCC. On a link
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Figure 6-1: Link’s utilization time series.
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Figure 6-2: Frame latency time series.

Figure 6-3: Convergence measurement for RoCC. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3 Mbps and a minimum of 500 Kbps.
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Figure 6-4: Link’s utilization time series.
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Figure 6-5: Frame latency time series.

Figure 6-6: Convergence measurement for Copa. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3 Mbps and a minimum of 500 Kbps.
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transition to up, GCC has a convergence time of 16.6 s, the max utilization of 3 Mbps,
and a steady-state utilization of 2.8 Mbps. On a link transition to down, GCC has
a convergence time of 10.5s, a steady-state frame latency of 260 ms, a max frame

latency of 5.1s, and a steady-state utilization of 0.46 Mbps.

On a link transition to up, Dumbo has a 35x faster convergence time
and higher steady-state utilization. On a link transition to down, Dumbo
has a 5.6x faster convergence time, a 4x lower max frame latency, and

comparable steady-state frame latency and utilization.

6.2.2 Impact of Dummy Traffic

To evaluate the effect of the dummy stream on the window-based congestion control
algorithms, we compared the performance of ROCC and Copa with and without the
dummy stream on all 16 cellular traces. All experiments are run for 2 minutes with

a link with a one-way minimum delay of 25 ms and no packet drops.

RoCC

Fig. 6-13 shows the comparison of end-to-end frame metrics of RoCC with and without
the dummy traffic on all the cellular traces. On average, RoCC without a dummy
has a PSNR of 39.90, SSIM of 13.90, and frame latency of 557 ms. RoCC-+Dumbo
has a PSNR of 41.1, SSIM of 14.79, and frame latency of 687 ms. Dumbo shows
an average PSNR improvement of around 1.2 dB and SSIM improvement
of 1.07 dB while increasing 23% (130 ms) in the frame latency in RoCC.
Fig. 6-17 compares network metrics on all the cellular traces. On average, RoCC
without a dummy has a network delay of 37 ms, a network utilization of 40.62%,
and a video bitrate of 1804 Kbps, respectively. RoCC+Dumbo’s are 49 ms, 69.88 %,
and 3197 Kbps, respectively. Dumbo achieves on average a 77% increase in
the video bitrate and a 72% increase in network utilization while slightly

increasing the network delay by 12 ms compared with RoCC.
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Figure 6-8: Frame latency time series.

Figure 6-9: Convergence measurement for GCC. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3 Mbps and a minimum of 500 Kbps.
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Figure 6-10: Per-frame SSIM statistics of the received video vs. the original video
E= RoCC RoCC+Dumbo e Average
10" 5
m
£
> [[ [[ Ti
c 3 G 0
8 10”1 Lo =]
3 %é ' II T . % Té T Té T%
© . o o E= A T e ()
E = ? . =on (03] PN vy 0, ®:
: |59 g9 Lo ce i ™ af #1T ¢
I 10”4
- 5 © 5 ) 5 ) 5 - 5 - 5 - 5 o 5
§ § 8§ 3 § &8 § & 5 3§ g § 8 3 % 3
; ; z z = = [= [= 2 2 g g s> s S S
Trace

Figure 6-11: Per-frame latency statistics of the received video vs. the original video

E= RoCC RoCC+Dumbo e Average

46

‘o [

44 % E H [] E -]
ol j - : : l i
m 42 4
s B E
40 % % ] %

g 2
2]
0 38+ 1’ E T T >
% == 513 Ei] 1 1 el Ee3 E:_]
36
34 T T T T T T T T T T T T T T T T
hel S e} =] e} =] el > e} 3 el 3 ke 3 e 3
g ¢ 3 3 3 § 7 =¥ 3 = B B F F & 7
e < < < = = = = [= [= > S S s s s
Trace
Figure 6-12: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-13: End-to-end statistics of quality of experience metrics of RoCC without
the dummy traffic and RoCC+Dumbo on all the Mahimahi cellular traces. All ex-
periments are run for 2 minutes with a one-way minimum delay of 25 ms.
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Figure 6-14: Average throughput of Video traffic vs Dummy traffic for different
schemes
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Figure 6-15: Statistics of link’s utilization per sample of network bitrate.
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Figure 6-16: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-17: Network statistics of RoCC without the dummy traffic and
RoCC+Dumbo on all the Mahimahi cellular traces. All experiments are run for
2 minutes with one-way minimum delay of 25 ms.
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Copa

Fig. 6-21 shows the comparison of end-to-end frame metrics of RoCC with and without
the dummy traffic on all the cellular traces. On average, Copa without a dummy has
a PSNR of 37.19, SSIM of 0.83, and frame latency of 725 ms. Copa+Dumbo has
a PSNR of 40.64, SSIM of 14.05, and frame latency of 874 ms.Dumbo shows an
average PSNR improvement of around 3.45 dB and SSIM improvement of
3.22 dB while having an increase of 20% (149 ms) in the frame latency in
RoCC. Fig. 6-25 compares network metrics on all the cellular traces. On average,
Copa without a dummy has a network delay of 36 ms, a network utilization of 22.15%,
and a video bitrate of 458 Kbps, respectively. Copa+Dumbo’s measurements are 46
ms, 54.67%, and 3129 Kbps. Dumbo achieves on average a 5.8x increase in
the video bitrate and a 1.47x increase in network utilization while slightly

increasing the network delay by 10 ms compared with Copa.

6.3 Overall Comparison with GCC

To compare GCC with Dumbo, we evaluated Copa+Dumbo and RoCC+Dumbo on
all 16 cellular traces. All experiments are run for 2 minutes with a link with a one-
way minimum delay of 25 ms and no packet drops. Fig. 6-29 shows the comparison
of end-to-end frame metrics of GCC, Copa+Dumbo, and RoCC+Dumbo on all the
cellular traces. On average, GCC has a PSNR of 39.41, SSIM of 12.82, and frame
latency of 873 ms. Dumbo schemes show an average PSNR improvement
of around 1.5 dB and SSIM improvement of 1.6 dB while having a 100
ms lower frame latency compared with GCC. Fig. 6-33 compares network
metrics on all the cellular traces. On average, GCC has a network delay of 214 ms, a
network utilization of 47.05%, and a video bitrate of 2706 Kbps, respectively. Dumbo
schemes achieve on average a 16% increase in the video bitrate and a 32%
increase in network utilization while reducing the network delay by 4x

compared with GCC.
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Figure 6-18: Per-frame SSIM statistics of the received video vs. the original video
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Figure 6-19: Per-frame latency statistics of the received video vs. the original video
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Figure 6-20: Per-frame PSNR statistics of the received video vs.

the original video

Figure 6-21: End-to-end statistics of quality of experience metrics of Copa without the
dummy traffic and Copa+Dumbo on all the Mahimahi cellular traces. All experiments
are run for 2 minutes with a one-way minimum delay of 25 ms.
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Figure 6-22: Average throughput of Video traffic vs Dummy traffic for different
schemes
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Figure 6-23: Statistics of link’s utilization per sample of network bitrate.
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Figure 6-24: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-25: Network statistics of Copa without the dummy traffic and Copa+Dumbo
on all the Mahimahi cellular traces. All experiments are run for 2 minutes with one-
way minimum delay of 25 ms.
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Figure 6-26: Per-frame SSIM statistics of the received video vs. the original video
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Figure 6-27: Per-frame latency statistics of the received video vs. the original video
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Figure 6-28: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-29:

End-to-end statistics of quality of experience metrics of GCC,

Copa+Dumbo, and RoCC+Dumbo on all the Mahimahi cellular traces. All experi-
ments are run for 2 minutes with a one-way minimum delay of 25 ms.
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Figure 6-30: Average throughput of Video traffic vs Dummy traffic for different

schemes
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Figure 6-31: Statistics of link’s utilization per sample of network bitrate.
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Figure 6-32: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-33: Network statistics of GCC, Copa+Dumbo, and RoCC-+Dumbo on all
the Mahimahi cellular traces. All experiments are run for 2 minutes with one-way
minimum delay of 25 ms.
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6.4 Probing

To compare Dumbo schemes with the probing mechanism in WebRTC, we enabled
GCC with probing in WebRTC and ran our video application for all 16 cellular traces.
All experiments are run for 2 minutes with a link with a one-way minimum delay of
25 ms and no packet drops. Fig. 6-37 shows the comparison of end-to-end frame
metrics of GCC with probing enabled, Copa+Dumbo, and RoCC+Dumbo on all
the cellular traces. On average, GCC with probing has a PSNR of 40.41, SSIM of
14.04, and a frame latency of 853 ms. Dumbo schemes show an average PSNR
improvement of around 0.47 dB and SSIM improvement of 0.41 dB while
having a 72 ms lower frame latency compared with GCC with probing.
Fig. 6-41 compares network metrics on all the cellular traces. On average, GCC
with probing has a network delay of 248 ms, a network utilization of 48.59%, and a
video bitrate of 2428 Kbps, respectively. Dumbo schemes achieve on average a
30% increase in the video bitrate and a 28% increase in network utilization

while reducing the network delay by 5x compared with GCC with probing.
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Figure 6-34: Per-frame SSIM statistics of the received video vs. the original video
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Figure 6-35: Per-frame latency statistics of the received video vs. the original video
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Figure 6-36: Per-frame PSNR statistics of the received video vs. the original video
Figure 6-37: End-to-end statistics of quality of experience metrics of GCC+Probing,

Copa+Dumbo, and RoCC+Dumbo on all the Mahimahi cellular traces. All experi-
ments are run for 2 minutes with a one-way minimum delay of 25 ms.
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Figure 6-39: Statistics of link’s utilization per sample of network bitrate.
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Figure 6-40: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-41: Network statistics of GCC+Probing, Copa-+Dumbo, and RoCC-+Dumbo
on all the Mahimahi cellular traces. All experiments are run for 2 minutes with a
one-way minimum delay of 25 ms.
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Chapter 7

Conclusion

To bridge the gap between video congestion control algorithms and backlogged con-
gestion control algorithms, we introduce our system called Dumbo. Dumbo effectively
adapts non-backlogged video traffic to work with window-based, delay-sensitive back-
logged congestion control algorithms, taking into consideration the unique character-
istics of video traffic. The key insight behind Dumbo is that by generating dummy
traffic when the congestion control algorithm expects data but no media packets
are available, the congestion control system can maintain its feedback loop without
disruption.

Dumbo schemes can adapt the real-time video stream to any delay-sensitive window-
based backlogged congestion control algorithm. We implemented Dumbo on top of
Google’s implementation of WebRTC and demonstrated the performance of Dumbo
for two algorithms: RoCC and Copa. We compared the resulting performance
with current video congestion control algorithms. The Dumbo schemes demonstrate
noteworthy improvements, such as an average PSNR enhancement of approximately
1.5dB and a 1.6 dB improvement in SSIM, all while maintaining a 100 ms lower frame
latency to GCC. Furthermore, the Dumbo schemes achieve significant benefits com-
pared to GCC. On average, they yield a 16% increase in video bitrate, a 35x faster
convergence time, and a 32% improvement in network utilization. Additionally, they

reduce network delay by a factor of 4 when compared to GCC.
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Appendix A

Supplementary Results

Comparison of Dumbo Schemes with PCC

To compare Dumbo schemes with the PCC [15] in WebRTC, we enabled PCC and
ran our video application for all 16 cellular traces. All experiments are run for 2
minutes with a link with a one-way minimum delay of 25 ms and no packet drops.
Fig. A-4 shows the comparison of end-to-end frame metrics of PCC, Copa-+Dumbo,
and RoCC+Dumbo on all the cellular traces.

PCC has a PSNR of 36.78, SSIM of 9.95, and a frame latency of 705 ms on average.
Dumbo schemes show an average PSNR improvement of around 4.1 dB
and SSIM improvement of 4.5 dB while having a comparable frame latency
compared with PCC. Fig. A-8 compares network metrics on all the cellular traces.
On average, PCC has a network delay of 69 ms, a network utilization of 9.85%, and a
video bitrate of 980 Kbps, respectively. Dumbo schemes achieve, on average, a
2.2x increase in the video bitrate and a 7x increase in network utilization

while having a 20 ms smaller queuing delay.

Adaptive Resolution Scheme

As mentioned in Sec. 5.1, we implemented a new resolution scheme to enable the

video encoder to respond faster than WebRTC’s original resolution scheme to our
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Figure A-2: Per-frame latency statistics of the received video vs. the original video
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Figure A-3: Per-frame PSNR statistics of the received video vs. the original video

Figure A-4: End-to-end statistics of quality of experience metrics of PCC, GCC, and

All experiments are run for 2

RoCC-+Dumbo on all the Mahimahi cellular traces.

minutes with a one-way minimum delay of 25 ms.
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Figure A-5: Average throughput of Video traffic vs Dummy traffic for different
schemes
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Figure A-6: Statistics of link’s utilization per sample of network bitrate.
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Figure A-7: Per-frame PSNR statistics of the received video vs. the original video

Figure A-8: Network statistics of PCC, GCC, and RoCC+Dumbo on all the
Mahimahi cellular traces. All experiments are run for 2 minutes with one-way mini-
mum delay of 25 ms.
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Scheme Hyperparameter Value
RocC 0.1
C 1500 bytes
@ 0.95
Latency threshold 100 ms
Copa 0.5
p 1500 bytes
o 0.95
Latency threshold 100 ms
Setting One-way delay 25 ms
7 for adaptive resolution 500 ms

Wait for resolution switch 4 s

Table A.1: Hyperparameter values for experiments.

fast congestion control algorithm. We ran GCC using WebRTC’s original codebase
(Original GCC) and GCC with our new adaptive resolution scheme to ensure the
new changes have not hurt GCC’s original performance. In our experiments, we ran
our video application for all 16 cellular traces. All experiments are run for 2 minutes
with a link with a one-way minimum delay of 25 ms and no packet drops. As seen in
Fig. A-12 and Fig. A-16, the visual qualities, video bitrate, and network utilization

have been improved for our adaptive resolution while maintaining the frame latency

and the network queueing delay.

Hyperparameters

Table A.1 shows the hyperparameters we chose while running the experiments.

Visual Comparison

In this section, we show the visuals for the same frame for one of the cellular traces

(ALd2u). The link has a minimum one-way delay of 25 ms, and the frame number is
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Figure A-9: Per-frame SSIM statistics of the received video vs. the original video
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Figure A-10: Per-frame PSNR statistics of the received video vs. the original video
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Figure A-11: Per-frame latency statistics of the received video vs. the original video

Figure A-12: End-to-end statistics of quality of experience metrics of original GCC
and GCC with our adaptive resolution scheme on all the Mahimahi cellular traces.
All experiments are run for 2 minutes with a one-way minimum delay of 25 ms.
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Figure A-13: Average throughput of Video traffic vs Dummy traffic for different
schemes
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Figure A-14: Statistics of link’s utilization per sample of network bitrate.

[ Gce Original GCC e Average

- e
.7 T, 1 1l T 1

o—

Network Delay (ms)
{11
HIF
—I+
I—ml
Ik
HIF
Hl -
HO—e—

el 3 e} 3 e} 3 el > e} =] e} =] e =] el =]

s § 3 3 3z & 2 2 3 35 § §& 3 & 3 ;:

3:1 é < < = = [ = = = > > > > > >
Trace

Figure A-15: Per-frame PSNR statistics of the received video vs. the original video
Figure A-16: Network statistics of original GCC and GCC with our adaptive res-

olution scheme on all the Mahimahi cellular traces. All experiments are run for 2
minutes with one-way minimum delay of 25 ms.
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GCC RoCC+Dumbo

Figure A-17: Visual comparison of the same frame for GCC and RoCC+Dumbo

GCC Copa+Dumbo

Figure A-18: Visual comparison of the same frame for GCC and Copa-+Dumbo

691. We compare Dumbo schemes with GCC in Fig. A-17 and Fig. A-18, and PCC
in Fig. A-19, Fig. A-20. For Dumbo, in comparison with GCC and PCC, the details
of the face (around the eyes, the mouth, and the smile line) are clearer, the text in
the background is sharper, and the necklace and the microphone are more visible.
Fig. A-21 and Fig. A-22 compare the congestion control algorithms with and without
Dumbo. Dumbo schemes have sharper images with more high-frequency details than

their vanilla version. In all these examples, Dumbo frames have at least 1dB higher

PSNR values.
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PCC RoCC+Dumbo

Figure A-20: Visual comparison of the same frame for PCC and Copa-+Dumbo

RoCC RoCC+Dumbo

Figure A-21: Visual comparison of the same frame for RoCC and RoCC+Dumbo

82



Copa Copa+Dumbo

Figure A-22: Visual comparison of the same frame for Copa and Copa-+Dumbo
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