
Bridging the Gap Between Real-time Video and
Backlogged Traffic Congestion Control

by

Pantea Karimi
B.Sc., Sharif University of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Pantea Karimi. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Pantea Karimi
Department of Electrical Engineering and Computer
Science
May 19, 2023

Certified by: Mohammad Alizadeh
Associate Professor of Electrical Engineering and
Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Bridging the Gap Between Real-time Video and Backlogged

Traffic Congestion Control

by

Pantea Karimi

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Real-time video applications, such as video conferencing, have become essential to
our daily lives, and ensuring reliable and high-quality video delivery in the face of
network fluctuation and resource constraints is critical. However, video congestion
control algorithms have been criticized for their sub-optimal performance in managing
network congestion and maintaining satisfactory video quality and latency. At the
same time, state-of-the-art congestion control algorithms have demonstrated remark-
able performance improvements, effectively addressing network congestion challenges
and enhancing the overall quality of data transmission. In this work, we first demon-
strate why there is such a gap between the performance of congestion control schemes
on backlogged flows compared to real-time video streams. Second, we present Dumbo,
a design for reshaping the video traffic to look like backlogged traffic, thus enabling
state-of-the-art delay-sensitive congestion control algorithms for real-time video. We
implemented Dumbo atop WebRTC and evaluated it on emulated network conditions
using real-world cellular network traces. Our results show that Dumbo in comparison
with GCC achieves a 1.5 dB improvement in PSNR, 1.6 dB improvement in SSIM,
100ms lower frame latency, 35x faster convergence time, 16% increase in the video
bitrate, 32% increase in network utilization, and 4x reduction in the network queueing
delay.

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor, Massachusetts Institute of Technology

3

4

Acknowledgments

I want to express my heartfelt gratitude to my advisor and mentor, Mohammad

Alizadeh, for his unwavering guidance, invaluable expertise, and continuous support

throughout my research journey. His mentorship and encouragement have shaped my

academic growth and fostered my passion for knowledge. I am profoundly in awe of

his dedication, patience, enthusiasm, and calm but firm manner toward research.

I am truly fortunate to have had the guidance and mentorship of Vibhaalakshmi

Sivaraman and Sadjad Fouladi. Vibhaa has diligently guided me through the initial

two years of my Ph.D., demonstrating remarkable patience and excellent mentorship.

I cannot express enough gratitude to Sadjad for his tremendous assistance, guidance,

and support, providing invaluable advice and insights into my career.

I want to appreciate the NMS group at MIT, particularly expressing my thanks to

Lei, Venkat, Prateesh, and Mehrdad, along with my profound gratitude to Sudarsanan

Rajasekaran for his immense support and invaluable friendship. I am also grateful to

my colleague and friend Frank Wang for his encouragement and advice.

I would like to extend my gratitude to my other friends, namely Itai, Rachel,

Edward, Lily, Nicholas, Mohamed, and James, for making my life’s journey more

enjoyable and meaningful. Additionally, I want to express my thanks to my invaluable

friend Sarah Gurev and her beautiful family, Elizabeth, Michael, Grandma Joan, Jack,

JoJo, and Pika, who have embraced me as part of their own family.

Finally, I would like to seize this opportunity to express my most profound appre-

ciation to my beloved family. Words fail to adequately convey my immense gratitude

for all the sacrifices they have made, enduring the pain of separation for the sake of

my education. From the bottom of my heart, I thank them for being the pillars of

love, understanding, and support. I dedicate this thesis to them.

5

6

Contents

1 Introduction 17

2 Related Work 23

2.1 Congestion Control . 23

2.1.1 Delay-based Congestion Control 23

2.1.2 Buffer-filling Congestion Control 25

2.2 Video Systems . 26

3 Motivation 29

3.1 Status Quo for Video Rate Control 29

3.2 Encoder-driven Rate Control Loop 34

3.3 Decoupling the Encoder from Rate Control 35

4 Design 41

5 Implementation 45

5.1 WebRTC’s Structure . 45

5.2 Implementing the Congestion Control 49

5.2.1 RoCC . 50

5.2.2 Copa . 51

6 Evaluation 55

6.1 Setup . 55

6.2 Understanding Dumbo’s Design . 57

7

6.2.1 Convergence Time . 57

6.2.2 Impact of Dummy Traffic . 61

6.3 Overall Comparison with GCC . 65

6.4 Probing . 70

7 Conclusion 73

A Supplementary Results 75

8

List of Figures

3-1 Link’s utilization time series. 30

3-2 In-network queuing delay time series. 30

3-3 Network measurements of Copa on a backlogged flow, GCC on a video

flow, and Copa + Dumbo on a video flow. The link is a periodic on-off

link with a maximum of 3Mbps and a minimum of 500Kbps with a

minimum of RTT of 50ms. 30

3-4 Frame SSIM for the received video time series. 31

3-5 Frame PSNR for the received video time series. 31

3-6 Frame Latency time series. 32

3-7 End-to-end frame measurements of Copa on a backlogged flow, GCC

on a video flow, and Copa + Dumbo on a video flow. The link is

a periodic on-off link with a maximum of 3Mbps and a minimum of

500Kbps with a minimum of RTT of 50ms. 32

3-8 Encoder’s reaction time: the Target shows the input rate given directly

to the encoder, and the Achieved rate is the encoder’s output rate. The

experiment has been done on WebRTC’s default video encoder (VP8). . . 34

3-9 Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate

for Copa with Dumbo. The link is a periodic on-off link with a maximum

of 3Mbps and a minimum of 500Kbps with a minimum RTT of 50 ms. . . 37

3-10 Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate

for GCC with probing enabled. The link is a periodic on-off link with a

maximum of 3Mbps and a minimum of 500Kbps with a minimum RTT of

50 ms. 39

9

4-1 Dumbo’s Design: Dumbo is trying to re-shape the video traffic to a back-

logged flow for state-of-the-art window-based backlogged congestion control

algorithms. 42

6-1 Link’s utilization time series. 59

6-2 Frame latency time series. 59

6-3 Convergence measurement for RoCC. The experiment was run for 160

s with a one-way minimum delay of 25 ms. The link is a periodic on-off

link with a maximum of 3Mbps and a minimum of 500Kbps. 59

6-4 Link’s utilization time series. 60

6-5 Frame latency time series. 60

6-6 Convergence measurement for Copa. The experiment was run for 160

s with a one-way minimum delay of 25 ms. The link is a periodic on-off

link with a maximum of 3Mbps and a minimum of 500Kbps. 60

6-7 Link’s utilization time series. 62

6-8 Frame latency time series. 62

6-9 Convergence measurement for GCC. The experiment was run for 160 s

with a one-way minimum delay of 25 ms. The link is a periodic on-off

link with a maximum of 3Mbps and a minimum of 500Kbps. 62

6-10 Per-frame SSIM statistics of the received video vs. the original video 63

6-11 Per-frame latency statistics of the received video vs. the original video 63

6-12 Per-frame PSNR statistics of the received video vs. the original video 63

6-13 End-to-end statistics of quality of experience metrics of RoCC without

the dummy traffic and RoCC+Dumbo on all the Mahimahi cellular

traces. All experiments are run for 2 minutes with a one-way minimum

delay of 25 ms. 63

6-14 Average throughput of Video traffic vs Dummy traffic for different

schemes . 64

6-15 Statistics of link’s utilization per sample of network bitrate. 64

6-16 Per-frame PSNR statistics of the received video vs. the original video 64

10

6-17 Network statistics of RoCC without the dummy traffic and RoCC+Dumbo

on all the Mahimahi cellular traces. All experiments are run for 2 min-

utes with one-way minimum delay of 25 ms. 64

6-18 Per-frame SSIM statistics of the received video vs. the original video 66

6-19 Per-frame latency statistics of the received video vs. the original video 66

6-20 Per-frame PSNR statistics of the received video vs. the original video 66

6-21 End-to-end statistics of quality of experience metrics of Copa without

the dummy traffic and Copa+Dumbo on all the Mahimahi cellular

traces. All experiments are run for 2 minutes with a one-way minimum

delay of 25 ms. 66

6-22 Average throughput of Video traffic vs Dummy traffic for different

schemes . 67

6-23 Statistics of link’s utilization per sample of network bitrate. 67

6-24 Per-frame PSNR statistics of the received video vs. the original video 67

6-25 Network statistics of Copa without the dummy traffic and Copa+Dumbo

on all the Mahimahi cellular traces. All experiments are run for 2 min-

utes with one-way minimum delay of 25 ms. 67

6-26 Per-frame SSIM statistics of the received video vs. the original video 68

6-27 Per-frame latency statistics of the received video vs. the original video 68

6-28 Per-frame PSNR statistics of the received video vs. the original video 68

6-29 End-to-end statistics of quality of experience metrics of GCC, Copa+Dumbo,

and RoCC+Dumbo on all the Mahimahi cellular traces. All exper-

iments are run for 2 minutes with a one-way minimum delay of 25

ms. 68

6-30 Average throughput of Video traffic vs Dummy traffic for different

schemes . 69

6-31 Statistics of link’s utilization per sample of network bitrate. 69

6-32 Per-frame PSNR statistics of the received video vs. the original video 69

11

6-33 Network statistics of GCC, Copa+Dumbo, and RoCC+Dumbo on all

the Mahimahi cellular traces. All experiments are run for 2 minutes

with one-way minimum delay of 25 ms. 69

6-34 Per-frame SSIM statistics of the received video vs. the original video 71

6-35 Per-frame latency statistics of the received video vs. the original video 71

6-36 Per-frame PSNR statistics of the received video vs. the original video 71

6-37 End-to-end statistics of quality of experience metrics of GCC+Probing,

Copa+Dumbo, and RoCC+Dumbo on all the Mahimahi cellular traces.

All experiments are run for 2 minutes with a one-way minimum delay

of 25 ms. 71

6-38 Average throughput of Video traffic vs Dummy traffic for different

schemes . 72

6-39 Statistics of link’s utilization per sample of network bitrate. 72

6-40 Per-frame PSNR statistics of the received video vs. the original video 72

6-41 Network statistics of GCC+Probing, Copa+Dumbo, and RoCC+Dumbo

on all the Mahimahi cellular traces. All experiments are run for 2 min-

utes with a one-way minimum delay of 25 ms. 72

A-1 Per-frame SSIM statistics of the received video vs. the original video 76

A-2 Per-frame latency statistics of the received video vs. the original video 76

A-3 Per-frame PSNR statistics of the received video vs. the original video 76

A-4 End-to-end statistics of quality of experience metrics of PCC, GCC,

and RoCC+Dumbo on all the Mahimahi cellular traces. All exper-

iments are run for 2 minutes with a one-way minimum delay of 25

ms. 76

A-5 Average throughput of Video traffic vs Dummy traffic for different

schemes . 77

A-6 Statistics of link’s utilization per sample of network bitrate. 77

A-7 Per-frame PSNR statistics of the received video vs. the original video 77

12

A-8 Network statistics of PCC, GCC, and RoCC+Dumbo on all the Mahimahi

cellular traces. All experiments are run for 2 minutes with one-way

minimum delay of 25 ms. 77

A-9 Per-frame SSIM statistics of the received video vs. the original video 79

A-10 Per-frame PSNR statistics of the received video vs. the original video 79

A-11 Per-frame latency statistics of the received video vs. the original video 79

A-12 End-to-end statistics of quality of experience metrics of original GCC

and GCC with our adaptive resolution scheme on all the Mahimahi

cellular traces. All experiments are run for 2 minutes with a one-way

minimum delay of 25 ms. 79

A-13 Average throughput of Video traffic vs Dummy traffic for different

schemes . 80

A-14 Statistics of link’s utilization per sample of network bitrate. 80

A-15 Per-frame PSNR statistics of the received video vs. the original video 80

A-16 Network statistics of original GCC and GCC with our adaptive reso-

lution scheme on all the Mahimahi cellular traces. All experiments are

run for 2 minutes with one-way minimum delay of 25 ms. 80

A-17 Visual comparison of the same frame for GCC and RoCC+Dumbo . . 81

A-18 Visual comparison of the same frame for GCC and Copa+Dumbo . . 81

A-19 Visual comparison of the same frame for PCC and RoCC+Dumbo . . 82

A-20 Visual comparison of the same frame for PCC and Copa+Dumbo . . 82

A-21 Visual comparison of the same frame for RoCC and RoCC+Dumbo . 82

A-22 Visual comparison of the same frame for Copa and Copa+Dumbo . . 83

13

14

List of Tables

5.1 Mapping between encoder target bitrate and chosen resolution in Dumbo

. 49

6.1 Details of our dataset. All videos are at 1920×1080. 57

A.1 Hyperparameter values for experiments. 78

15

16

Chapter 1

Introduction

Real-time video applications have become integral to our lives, from cloud video gam-

ing to video conferencing for remote work and online education. In recent years, the

use of real-time video systems has seen a noticeable increase across various domains.

This upward trend can be attributed to several factors. Firstly, technological ad-

vancements and the widespread availability of high-speed internet connections have

significantly improved the quality and reliability of real-time video systems, making

them more accessible and user-friendly [29]. Secondly, the rise of social media plat-

forms and the increasing demand for live-streaming content have contributed to the

surge in real-time video usage [47]. Platforms like Facebook Live, Instagram Live,

and YouTube Live have become popular avenues for individuals and organizations to

reach and interact with audiences across the world.

Additionally, integrating real-time video systems in various industries such as

healthcare, education, and entertainment has fueled their increased adoption [13].

For instance, telemedicine services utilize real-time video systems to enable remote

doctor-patient consultations, while educational institutions employ them for virtual

classrooms and online learning experiences. The growing use of real-time video sys-

tems highlights their versatility and impact in facilitating instant, interactive com-

munication and content sharing.

Several studies and user feedback indicate that people are often unsatisfied with

the quality of real-time video systems. Research conducted by Smith and Anderson

17

(2020) found that a significant number of video conferencing users expressed frus-

tration over issues such as poor audio and video quality, frequent lags, and dropped

connections [45]. Furthermore, a survey conducted by Tech Republic revealed that

65% of respondents experienced difficulties with video quality during real-time video

applications, leading to reduced engagement and productivity [48]. These challenges

can be attributed to various factors, including inconsistent network connectivity, lim-

ited internet bandwidth, and hardware limitations. As the demand for real-time video

systems continues to grow, providers must address these quality concerns and invest

in improving the technical infrastructure to enhance user experience. In this work,

we focus on real-time video systems, which are essentially different from other video

systems, such as video streaming. Real-time video systems - examples include cloud

video gaming, video conferencing, teleoperation, and telemedicine - have a two-way

interaction between the users and are highly sensitive to latency.

One primary reason real-time video systems may experience low quality is the lack

of effective video congestion control mechanisms. Video congestion control refers to

the ability of a system to adapt video transmission parameters in response to varying

network conditions and congestion levels. Inadequate or inefficient video congestion

control can lead to network congestion, packet loss, and increased latency, ultimately

resulting in degraded video quality. Research by Zhai et al. (2020) highlights the

importance of adaptive congestion control mechanisms to maintain optimal video

quality during real-time video communication [56]. Furthermore, Li et al. (2018)

emphasize the need for intelligent congestion control algorithms that dynamically

adjust video transmission rates based on network conditions to ensure smooth and

low-latency real-time video [32].

Research has shown that many existing video congestion control algorithms are

often insufficient in handling network congestion and maintaining satisfactory video

quality. A study conducted by Sarker et al. (2019) evaluated several popular video

congestion control algorithms and found that they often struggled to adapt to varying

network conditions, leading to frequent video freezes, buffering, and degraded user

experience [41]. These findings highlight the need for more robust and adaptive

18

video congestion control algorithms to respond dynamically to network conditions

and optimize video transmission parameters accordingly while keeping the latency

low. Further research and development in this area are crucial to address existing

algorithms’ insufficiencies and improve the quality of real-time video systems.

On the other hand, state-of-the-art congestion control algorithms have signifi-

cantly improved data transmission performance in recent year. Delay-sensitive pro-

tocols such as BBR [9] (Bottleneck Bandwidth and Round-trip propagation time),

PCC [15], and Copa [7] dynamically adjusts the sending rate based on the end-to-end

signals like round-trip delay and receive rate, leading to reduced bufferbloat, faster

recovery from congestion, and higher throughput [9]. However, these congestion con-

trol algorithms are typically evaluated on backlogged flows. A backlogged flow is a

data flow that always has a packet to send upon request from the congestion control

layer. Backlogged flows are a convenient traffic source for congestion control, since

the congestion control algorithm can determine precisely when to send or not send

a packet. State-of-the-art congestion control algorithms applied to backlogged flows

can achieve excellent network utilization while controlling delays, far exceeding the

performance of existing congestion controllers designed for real-time video.

In this work, we strived to find out why there is such a gap between the perfor-

mance of backlogged congestion control compared to video congestion control. There

are multiple challenges to sending a real-time video that makes video congestion con-

trol algorithms different from conventional congestion control algorithms. First, the

video stream is not a backlogged flow of data to send. Video frames are generated

periodically and behave as a train of packet bursts with periods of inactivity. Sec-

ond, the video packets have stringent latency requirements; if they arrive too late, it

introduces a high latency in the video, which directly affects the interactivity of the

system. Third, in real-time video applications, unlike on-demand video streaming,

there is minimal buffering at the video player. Ideally, each frame must be delivered

as soon as it arrives. Furthermore, since the video itself is generated in real time,

there is pre-encoded version of the frames available. Thus, the size of the frame after

encoding is not known beforehand. The implication is that a mismatch between the

19

video bitrate (produced after encoding) and the network rate determined by con-

gestion control can occur rather easily. Specifically, the encoder may produce more

packets than congestion control wishes to send, or it may produce fewer packets than

congestion control is ready to send. Both situations lead to sub-optimal performance

compared to operating congestion control with backlogged traffic.

To close the gap between the video congestion control algorithms and the back-

logged congestion control algorithms, we propose Dumbo, a simple framework for

making a video traffic source appear like a backlogged flow to congestion control.

Dumbo enables state-of-the-art window-based delay-sensitive backlogged congestion

control algorithm to be used for real-time video traffic without modification, and it

achieves nearly identical performance to using the algorithm for a backlogged flow.

In Dumbo, the congestion control algorithm always sees a backlog of data to send.

If there are unsent video packets, it first sends those. But if the congestion con-

troller senses available bandwidth but there are not video packets, Dumbo generates

“dummy” packets and provides them for transmission. The key observation here is

that the dummy traffic allows the congestion control to maintain its ACK-clocked

feedback loop, and thus helps it maintain an updated video of the network state.

As bandwidth opens up, Dumbo increases the target bitrate of the video encoder,

improving video quality. But in the interim before the video bitrate increases, it uses

dummy traffic to enable efficient congestion control.

We implemented Dumbo atop WebRTC [51] and evaluated it on emulated network

conditions using real-world cellular network traces. We applied Dumbo to two delay-

sensitive backlogged congestion control algorithms: Copa [7], and RoCC [1]. Our

results show that, on average, Dumbo in comparison with GCC [10], WebRTC’s

default video congestion control achieves achieves a 1.5 dB improvement in PSNR,

1.6 dB improvement in SSIM, 100ms lower frame latency, 35x faster convergence

time, 16% increase in the video bitrate, 32% increase in network utilization, and 4x

reduction in the network queueing delay.

The rest of this thesis is organized into these chapters: In the Related Work

chapter, we discuss the works done in the backlogged and video congestion control

20

and the video platforms that use the video congestion control algorithms. In the

Motivation chapter, we study the behavior of a video congestion control algorithm

and break down the problem we are trying to solve. In the Design chapter, we

propose our solution to the problems we found in Motivation. In the Implementation

chapter, we describe the implementation details of our Design ideas and the technical

details of our proposal. Lastly, in the Evaluation chapter, we compare the end-to-end

performance of the current video congestion control algorithm with our proposal.

21

22

Chapter 2

Related Work

2.1 Congestion Control

Congestion control algorithms operate as the backbone for adjusting the video rate

in video applications and are designed to regulate the flow of data in order to prevent

network congestion. The video congestion control algorithms aim to reduce the delay

in delivering the packets and utilize the bandwidth as much as possible.

Most end-to-end congestion control approaches can be broadly categorized into

delay-based [8, 7, 31, 34, 28, 54, 10, 9] or buffer-filling schemes [15, 49].

2.1.1 Delay-based Congestion Control

Real-time applications, such as video applications, are susceptible to delay. Tradi-

tional loss-based congestion control algorithms, such as TCP [27], are unsuitable for

real-time video applications since they probe the network by inducing long queues

and draining them. These queue oscillations cause a time-varying delay component

that adds to the propagation time and make delay-sensitive communications problem-

atic. Thus, using some sort of delay-based congestion control algorithm is preferable.

There are several delay-based congestion control algorithms to infer congestion. We

describe some of them in this section.

Delay-based protocols are optimized to minimize queueing while achieving a target

23

rate. They either use the delay through the queue [43, 28, 8], or delay-gradients [10,

54, 34] to infer how to adjust the sending rate. Some algorithms like Copa [7] and

BBR [9] explicitly drain the queue in order to accurately estimate minimum round-

trip time (RTT), which in turn helps get a more accurate estimate of the link rate.

A few of these algorithms, such as Timely [34] and DX [31], have also been deployed

in datacenter settings.

Congestion Control Algorithms using round-trip-time (RTT):

These algorithms aim to prevent congestion by adjusting the transmission rate

based on the observed round-trip time of the network. RTT is the time it takes for

a packet to travel from the sender to the receiver and back again. These algorithms

work by continuously monitoring the RTT of the network and dynamically adjusting

the transmission rate based on this value.

One standard RTT-based congestion control algorithm is TCP Vegas [8], which

uses a congestion avoidance mechanism that adjusts the transmission rate based on

the observed RTT of the network. TCP Vegas uses a feedback mechanism that

compares the expected RTT with the actual RTT and adjusts the transmission rate

accordingly.

Another commonly used RTT-based congestion control algorithm is TCP Reno

[37], which uses a combination of slow start and congestion avoidance mechanisms to

adjust the transmission rate based on the observed RTT of the network. TCP Reno

gradually increases the transmission rate until congestion is detected, at which point

it reduces the transmission rate and gradually increases it again until congestion is

detected once more.

TCP Fast algorithm [28] is based on reducing the time required to open a new

TCP connection, which is a critical factor in reducing latency and improving overall

network performance. The TCP Fast algorithm achieves this by increasing the initial

congestion window (ICW) size, which determines the amount of data a sender can

send before receiving an acknowledgment from the receiver. By increasing the ICW

size, TCP Fast allows more data to be sent at the start of a connection, reducing the

time required to establish the connection and improving the overall performance of

24

TCP. The main issues with these algorithms are low channel utilization in the presence

of reverse traffic or when competing with loss-based flows [21] (video conferencing has

reverse traffic).

Congestion Control Algorithms using one-way delay (OWD):

These algorithms estimate network congestion by using the delay between the

sender and receiver. OWD-based algorithms measure the time it takes for a packet

to travel from the sender to the receiver but do not wait for a response from the

receiver. Instead, they estimate the OWD by measuring the difference between the

time the packet was sent and the time the receiver reported receiving it. OWD-based

algorithms assume that the one-way delay is asymmetrical, meaning that the time

it takes for a packet to travel from the sender to the receiver may differ from the

time it takes for the response to travel from the receiver to the sender. OWD-based

algorithms adjust the transmission rate based on the estimated network congestion

level. Examples of these algorithms are LEDBAT (over UDP) [43], and TCP-LP [30].

These algorithms are shown to suffer from the "latecomer effect": when two flows

share the same bottleneck, the second flow typically starves the first one [12].

Congestion Control Algorithms using delay gradient:

These algorithms use the gradient of the delay between consecutive packets that

are sent from the sender to the receiver. In other words, they look at inter-packet

arrival times at the sender and the receiver. They were employed to overcome the

aforementioned "latecomer effect." Some examples are CDG [23], Verus [55], and

Google Congestion Control (GCC) [11]. Recently, SQP [38] has also been intro-

duced for interactive video streaming applications that need to stream high-bitrate

compressed video with very low end-to-end frame delay (e.g., AR streaming, cloud

gaming). The video range that SQP performs in is much more than the conventional

real-time video applications (e.g., video conferencing) we have in mind.

2.1.2 Buffer-filling Congestion Control

In contrast, buffer-filling algorithms [15, 22, 17] aim to send as much traffic as possible

until loss or congestion is detected. At that point, these algorithms signal to the sender

25

to reduce its sending rate and then back off at that point. Such algorithms typically do

not compete fairly with delay-based algorithms that tend to reduce sending rate at the

slightest increase in queueing delays or RTTs. Active queue management techniques

such as RED [40], PI [24] and DCTCP [14], and approaches [20] that can switch

between delay-based and buffer-filling modes attempt to ameliorate some of these

issues. However, limited attention has been paid to buffer-filling and delay-based

algorithms for application-limited flows [6, 5] because bulk-flow settings where traffic

is generated will allow researchers to reason through steady state behavior easily.

However, video traffic is uniquely application-limited in that frames are generated at

a fixed framerate (typically 30 fps) and, thus, produces data in an on-off pattern only

every 30 ms. This non-backlogged traffic limits the amount of feedback the sender

receives and, consequently, its ability to quickly increase and decrease its sending rate.

Dumbo combats this problem by making video traffic appear like a long-running flow

and is designed to work in conjunction with any delay-based algorithm.

2.2 Video Systems

Many video applications, including Google Meet, Meta Messenger, Discord, and Ama-

zon Chime [4] use Web Real-time Communication (WebRTC) [51] to deliver real-time,

high-quality video and audio content to users. WebRTC is a free, open-source project

that provides a collection of standard APIs and protocols for building real-time com-

munication applications directly in web browsers. WebRTC handles connection es-

tablishment, stream management, end-to-end encryption, and rate control for video

applications. Additionally, WebRTC uses peer-to-peer connections, which can help

reduce network latency and improve video quality, especially in scenarios where tra-

ditional server-based approaches can result in slower connections or higher costs.

WebRTC provides simple JavaScript APIs which enable application developers to

easily span the connections between two browsers with a few lines of code. WebRTC

is built on top of standard web technologies, including HTML, JavaScript, and the

Session Initiation Protocol (SIP), and can be integrated with various other communi-

26

cation technologies, such as voice over IP (VoIP) and instant messaging. WebRTC is

also designed with security in mind, using end-to-end encryption and other security

features to protect user privacy and prevent unauthorized access. As a result, We-

bRTC has become a popular choice for building video and audio applications across

a wide range of industries, including healthcare, education, and entertainment. With

the growing popularity of WebRTC, it is expected that more and more video appli-

cations will adopt this technology in the future. As a result, the need for a reliable

and efficient video congestion control algorithm is becoming more pronounced.

Google Congestion Control (GCC) [11] is the rate control mechanism within We-

bRTC. It uses the variations in the inter-packet arrival time of the packets at the

receiver to signal to the sender whether to increase, hold, or decrease the rates. We-

bRTC also uses Transport Wide Congestion Control [25] at the sender to estimate

bitrate based on intra-packet delays. However, in the absence of continuous feedback

due to the on-off patterns of video traffic, GCC is sluggish in increasing and decreas-

ing its rates. This issue, in turn, affects the bitrate of the video delivered; when there

is unused bandwidth, it renders poor-quality video, and when it overestimates the

bandwidth, it leads to stalls and frames with glitches. This control loop is worsened

by the fact that feedback depends on the actual data sent, which in turn is controlled

by the encoder, which is both slow to respond and is operating on faulty estimates

in the first place. Dumbo instead decouples the congestion control loop from the en-

coder’s slow responses by padding the encoder’s output with additional dummy data

to match the desired rate or window at any given moment. This technique provides

faster and more accurate feedback, allowing the video application to respond more

quickly to bandwidth variations. A recent proposal called SQP [38] achieves low end-

to-end frame delay for interactive video streaming applications that stream very high

bitrates (e.g., AR streaming, cloud gaming). However, SQP operates in much higher

bitrate regimes than what Dumbo is designed for.

Adaptive bitrate algorithms [33, 26, 53, 46, 52] are another category of video rate

control solutions. These algorithms run at the application layer and use information

about available bandwidth, buffer size, and current bitrate to determine the next

27

bitrate that the video should be encoded at. While these algorithms help influence the

encoder’s compression, the output produced may not match the network’s capacity

due to hysteresis from its past outputs. Salsify [19] combats this by producing two

options for the next encoded frame and using the one that matches the instantaneous

capacity better. Dumbo goes a step further in decoupling the transport and the

encoder by allowing the transport to pad additional data if the encoder fails to match

the instantaneous capacity and to slow down the encoder’s output if it overshoots the

available capacity.

28

Chapter 3

Motivation

3.1 Status Quo for Video Rate Control

To understand how the rate control for real-time video works today, we run Google

Congestion Control (GCC) [10], the rate control mechanism inside WebRTC, on a

time-varying periodic link. The link starts with 3Mbps of bandwidth for 40 seconds,

then drops to 500Kbps for the next 40 seconds before jumping back up to 3Mbps

again. The minimum network one-way delay is 25 ms with a minimum round-trip

time (RTT) of 50 ms, and the buffer size at the bottleneck is large enough that there

are no packet drops. We run the experiment for 160 seconds. To illustrate network

measurements, we use the link’s utilization or throughput, which is the rate at the

egress of the link, and the network delay, which is the per-packet queuing delay in

the network. To quantify the video quality, we use per-frame PSNR (Peak Signal-

to-Noise Ratio) [44] and SSIM [50] (structural similarity index measure), which is a

method for predicting the perceived quality by humans of digital cinematic pictures.

We also measure end-to-end frame latency, indicating how laggy the received video

is at the receiving point.

We show GCC’s network utilization in Fig. 3-1 and network delay in Fig. 3-2. The

resulting end-to-end video quality in Fig. 3-4 and Fig. 3-5, and its end-to-end frame

latency in Fig. 3-6. We observe that GCC is very slow to increase the rate when the

link starts, and its capacity is restored to 3 Mbps in the 80s. Specifically, GCC takes

29

0 50 100 150
Time (s)

0

1

2

3
Bi

tra
te

 (M
bp

s)

GCC Copa+Dumbo Copa (Backlogged)

Figure 3-1: Link’s utilization time series.

0 25 50 75 100 125 150
Time (s)

0

1000

2000

3000

4000

5000

N
et

w
or

k
D

el
ay

 (m
s)

GCC Copa+Dumbo

Figure 3-2: In-network queuing delay time series.

Figure 3-3: Network measurements of Copa on a backlogged flow, GCC on a video
flow, and Copa + Dumbo on a video flow. The link is a periodic on-off link with a
maximum of 3Mbps and a minimum of 500Kbps with a minimum of RTT of 50ms.

30

0 25 50 75 100 125 150
Time (s)

20

25

30

35

40
SS

IM
 (d

B)
GCC Copa+Dumbo

Figure 3-4: Frame SSIM for the received video time series.

0 25 50 75 100 125 150
Time (s)

34

36

38

40

42

PS
N

R
 (d

B)

GCC Copa+Dumbo

Figure 3-5: Frame PSNR for the received video time series.

31

0 25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Fr
am

e
La

te
nc

y
(s

)

GCC Copa+Dumbo

Figure 3-6: Frame Latency time series.

Figure 3-7: End-to-end frame measurements of Copa on a backlogged flow, GCC on
a video flow, and Copa + Dumbo on a video flow. The link is a periodic on-off link
with a maximum of 3Mbps and a minimum of 500Kbps with a minimum of RTT of
50ms.

32

20 seconds to go from 500Kbps to 3Mbps.

This sluggish response manifests itself as lower and slowly increasing visual quality

(Fig. 3-4 and Fig. 3-5). Further, even once in a steady state, GCC under-utilizes the

link, achieving 90% of the link. We also observe that GCC is slow to react when the

link rate drops suddenly to 500Kbps at the 40s. This is best observed in Fig. 3-6,

where the latency through GCC’s queue spikes to a few seconds at that very moment.

This is because GCC continues to send at a higher rate than the network can support,

causing queue buildup and added delay. The queue buildup can be observed easily in

Fig. 3-2, where GCC cannot back off its rate fast enough and causes a massive queue

in the network. This spike takes 15s seconds to settle down. If such a queue buildup

exceeds the packet buffer, it can cause drops and stalled video due to decoding errors,

which often take a few seconds to recover from at the application level. In contrast to

GCC’s lengthy response to changes in network capacity, traditional congestion control

algorithms [7, 1, 8, 9] operating on backlogged flows, respond much faster, typically on

the order of few RTTs or hundreds of milliseconds as opposed to 10s of seconds that it

takes for GCC. For instance, the “Backlogged Copa” line in Fig. 3-1 shows that when

we run Copa [7], a recent delay-based congestion controller with a backlogged flow on

the same time-varying link, its behavior reflects a much faster response. Specifically,

Copa matches the link rate of 3Mbps within a few round-trip-times (milliseconds),

after which its steady-state utilization stays at 3Mbps. Even when the link rate drops

to 500Kbps, Copa reacts almost immediately, keeping the delay through the queue

relatively small. This issue manifests as a small blip in Fig. 3-6 for ”Copa” around the

20s that drops down in less than 2s. Copa catches up within a second when the link

rate returns to 3Mbps. This wide disparity between GCC on real-time video traffic

and Copa on backlogged traffic begs the question: Why does the state-of-the-art for

video rate control lag so far behind the state-of-the-art for congestion control?

33

Figure 3-8: Encoder’s reaction time: the Target shows the input rate given directly to the
encoder, and the Achieved rate is the encoder’s output rate. The experiment has been done
on WebRTC’s default video encoder (VP8).

3.2 Encoder-driven Rate Control Loop

One natural response to the disparity between GCC and Copa in Fig. 3-1 and Fig. 3-6

would be to claim that GCC is simply a lousy rate control algorithm. However, we

believe otherwise. GCC has been carefully designed with the tight latency bounds

of interactive video applications in mind. Its rate control responds to increases or

decreases in delay gradients over RTT timescales. It is also relatively conservative

in link utilization to not overwhelm the network and invariably cause packet drops

and glitchy frames. The real issue that limits GCC is that, in video applications, the

rate at which data is transmitted on the wire is dictated by the rate that the encoder

outputs. Unfortunately, the encoder is extremely unreliable: it rarely matches the

target bitrate exactly [19] and cannot adapt to target bitrate changes immediately.

We illustrate this behavior in Fig. 3-8 where we supply a target bitrate that switches

between 2Mbps in periods of 5 seconds to the encoder and observes its achieved

bitrate in response to it. Every time the bitrate goes up from 500Kbps to 2Mbps,

the encoder takes nearly 3 seconds to catch up. This lag is not surprising: video

34

encoders use delta encoding, which encodes the differences between adjacent frames,

and it is difficult to abruptly change the quality or bitrate when frames are so closely

intertwined. However, the effect of this encoder lag is that GCC, which uses the

delay observed for the video packets sent on the wire to infer bandwidth availability,

is very slow in its rate increase. Whenever GCC senses that bandwidth is opening

up, it slightly increases the rate supplied to the encoder, which response over many

seconds. When the feedback from this increased bitrate data trickles in, GCC once

again sets the rate a little higher for the encoder, which takes many more seconds

to match it, and this process continues. Unsurprisingly, this cycle ends up taking

15–20 seconds end-to-end. Moreover, since the encoder cannot immediately reduce

the bitrate (recall Fig. 3-6), GCC has to be conservative and not only increase the

bitrate carefully but also leave some bandwidth headroom in a steady state so that

it reduces the risk of being unable to react to delay increases quickly. Essentially,

GCC’s bandwidth discovery and steady-state behavior are limited by the encoder

output. This is what we call “encoder-driven rate control”.

It is worth noting that GCC tries to mitigate some of the issues arising from

variations in the encoder output with a “pacer queue” [10]. The pacer queue operates

packet-by-packet and paces packets according to a small multiple of GCC’s target rate

(e.g., 𝑝𝑎𝑐𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 1.5×𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑎𝑡𝑒). While pacing helps smoothen the occasional

spike in sending rate (e.g., due to a keyframe), it is not helpful in the context of rate

control decisions that cover many RTTs, which are instead dictated by the encoder’s

output rate over several frames.

3.3 Decoupling the Encoder from Rate Control

The above discussion suggests that there is not much one can do to change the

encoder itself, and that relying on the slow encoder for rate control is very ineffective.

In other words, we need to decouple the congestion control loop from the encoder’s

output on small timescales. The goal of this decoupling is to give complete control

to the congestion controller to directly set the data rate on the wire. To achieve this,

35

we need two mechanisms: (1) when the encoder overshoots the available capacity, we

need to limit what is sent on the wire avoiding sharp increases in the video delay, and

(2) when the encoder undershoots the available capacity, we need additional data on

the wire to compensate for the encoder’s slow response.

Our design, Dumbo, includes mechanisms for both of these scenarios. To account

for encoder overshooting, Dumbo repurposes the “pacer queue” in GCC to match the

actual rate signaled by the congestion controller. We also bound how big this queue

can grow before we pause encoding of further frames. The intuition here is that there

is no point encoding a frame that cannot be sent with low delay over the network.

Regardless of whether we send the packets of such a frame or hold them in the pacer

queue, the end-to-end delay of the frame will be high, and more importantly, the

congestion created will increase delay for subsequent frames. Instead, Dumbo simply

skips a frame in such situations.

When the encoder undershoots the available capacity, Dumbo sends “dummy pack-

ets” to match the rate requested by the congestion control mechanism. We simultane-

ously signal the latest target rate from the congestion controller to the encoder. This

allows the congestion controller to independently discover bandwidth fast, while also

allowing the encoder to respond at its own pace to the latest bandwidth estimate.

This dummy traffic could also be repurposed for useful information such as forward

error correction (FEC) packets [39, 35] or keyframes for faster recovery from loss.

However, we leave such enhancements to future work and focus solely on the impact

of dummy traffic on video congestion control.

Dumbo effectively makes video traffic look like a backlogged flow: either the en-

coder produces data continuously, or the encoder’s output is padded to produce traffic

at the congestion controller’s will. As a result, a congestion controller operating with

Dumbo has full freedom to adjust the sending rate as it wishes and is not subject

to the vagaries of the video encoder. The net impact of adding these mechanisms is

visible in Dumbo’s lines in Fig. 3-1, 3-5, and 3-6. Dumbo’s response is very similar

to that of Copa on backlogged traffic. Specifically, it discovers bandwidth a lot faster

than GCC when it opens up. Unlike GCC, Dumbo does not face the brunt of the

36

25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

Bi
tra

te
 (M

bp
s)

Video Padding

Figure 3-9: Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate for
Copa with Dumbo. The link is a periodic on-off link with a maximum of 3Mbps and a
minimum of 500Kbps with a minimum RTT of 50 ms.

encoder’s sluggishness over many cycles of small rate increases followed by encoder

responses.

Instead, the dummy traffic allows this bandwidth discovery to happen indepen-

dently of the encoder. Fig. 3-5 shows that this dummy traffic does not eat away at

useful video traffic; it translates to higher PSNR and SSIM for received frames than

GCC. Even when the bandwidth drops, Dumbo keeps the queueing delay slightly like

Copa on backlogged traffic. Lastly, Dumbo’s steady state link utilization is also very

high (almost 100%).

Fig. 3-9 shows the breakdown of the link’s utilization of video traffic and the

dummy traffic. Note that the sum of the video rate and the padding (dummy) rate

equals the ”Copa+Dumbo” line in Fig. 3-1. As you can see, the dummy traffic dummy

is only high during transients of the bandwidth where the video encoder cannot reach

the rate as fast as the congestion controller decides and when the output bitrate of

the encoder is transiently lower than the link. The average video bitrate for this

experiment is 1573Kbps, and the average padding bitrate is only 61Kbps. This

means that by only sending 3.8% dummy traffic, we will have both lower end-to-end

37

frame latency (Fig. 3-6) and higher visual quality (Fig. 3-4).

What about probing mechanisms?

A natural question at this point would be if probing mechanisms, specifically those

already supported within GCC [2], would achieve the same net effect as what we

describe above. While periodic bandwidth probing has been shown to be very effective

for certain CCAs [9], we observe that the mechanism within GCC is relatively ad-hoc.

It uses a periodic timer that fires every few seconds (this parameter can be adjusted)

and sends a little more traffic than the current sending rate in response. Such an

infrequent timer does not help on the finer RTT-level timescales required for precise

rate control. A timer is, in practice, very similar to a sluggish encoder that responds

to the target bitrate over a few seconds. In contrast, we view our approach as a more

systematic way of introducing the right amount of “probing” or dummy traffic when

necessary such that it does not overwhelm the network while still providing useful

feedback for bandwidth discovery.

Fig. 3-10 shows the breakdown of the link’s utilization to video and dummy traffic.

The timing of the probings is off, and their periodic nature is independent of the

underlying changing bandwidth. The probing fires slightly around the 50s (10s later

than the link has changed) and the 130s.

38

25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

Bi
tra

te
 (M

bp
s)

Video Padding

Figure 3-10: Breakdown of the link’s utilization: Video rate vs Padding (Dummy) rate for
GCC with probing enabled. The link is a periodic on-off link with a maximum of 3Mbps
and a minimum of 500Kbps with a minimum RTT of 50 ms.

39

40

Chapter 4

Design

The issue with real-time video applications is that the produced traffic is not a back-

logged flow. Our idea is to change the shape of the produced traffic such that from

the congestion control algorithm’s perspective, it looks like a backlogged flow. This

allows us to plug in any state-of-the-art congestion control algorithmdesigned to work

with a backlogged flow. Fig. 4-1, shows the overall structure of Dumbo.

Congestion Controller. This module is a window-based congestion control algo-

rithmthat is responsible for finding the cwnd (number of allowed bytes in flight) at

each point in time. When bytes are sent to the receiver, the number of bytes in flight

increases at the sender. These bytes could belong to either video or dummy packets

and the congestion controller does not differentiate between them. When packets are

received, an acknowledgmentis sent back to the sender and the congestion control

algorithmuses the ACK to compute the RTT (round-trip time of the packets), and

update the cwnd . The congestion controller also computes the sending rate for all the

streams (video, audio) as the cwnd divided by smoothed RTT (using an exponentially

weighted moving average of the RTT samples). The sending rate is used to set both

the target bitrate of the encoder and to configure the Pacer.

Dumbo can be used with any delay-controlling congestion control algorithm. In

our experiments, we use Copa [7] and RoCC [1], two recently proposed congestion

controllers. These congestion controllers can be tuned to navigate the throughput

and latency tradeoff according to the needs of the application. For example, a video-

41

Figure 4-1: Dumbo’s Design: Dumbo is trying to re-shape the video traffic to a backlogged
flow for state-of-the-art window-based backlogged congestion control algorithms.

conferencing application would want a congestion controller that minimizes latency

(potentially at the expense of throughput) while a live video stream may tolerate

moderate increases in latency for better throughput and video quality. In our evalua-

tion, we experiment with two CCAs: RoCC[1] and Copa [7]. RoCC has a parameter 𝛾

which adjusts how much network queuing delay RoCC causes. In Copa, the parameter

𝛿 is responsible for adjusting the throughput and delay tradeoff.

Video Encoder. The encoder receives the video from the application and strives

to produce an average bitrate equal to its target bitrate. The encoded packets are

put in a media queue available to the pacer. In real-time video encoding, the output

size of the encoded frame is not known and the encoder tries its best to output

the congestion control algorithm’s estimate but it has fluctuations. In traditional

video congestion control algorithms, if the encoder produces less data than what

the congestion control algorithmis asking for, the sender has no choice but to send

that much data and disrespect the congestion control algorithm. This means that

congestion control algorithmwill not be able to receive enough acknowledgments it

requires to ramp up its window as fast as the algorithm wants. We propose that

in such scenarios, the transport fill the surplus with dummy packets to respect the

congestion control algorithmrule. This is not a waste of bandwidth, but in fact,

it allows the congestion control algorithmto ramp up as fast as it can to estimate

42

the correct link’s bandwidth. This correct higher estimate is fed into the encoder,

enabling it to generate higher quality video in comparison to when the estimate was

incorrect and lower.

Pacer. The Pacer receives cwnd and the target bitrate from the congestion con-

troller. The instantaneous bitrate produced by the encoder may be larger than the

target bitrate as discussed, so the pacer is responsible for controlling sudden bursts

of packets. It does this by spacing packets according to the target rate (WebRTC

already implements this pacing function). In addition to spacing packets, the Pacer

also ensures that the cwnd bound on inflight data is enforced. If the number of un-

acknowledged bytes is less than cwnd and the target rate allows a packet to be sent,

the pacer reads a packet from the media queue and sends it. The Pacer stops sending

if the amount of data in flight exceeds cwnd .

Finally, the pacer also computes the amount of time it takes for the media queue

to be drained by dividing the size of the media queue by the target bitrate from

the congestion controller. If this time is bigger than a threshold, the pacer signals

the encoder to stop encoding because there is no point in generating the data if the

network is congested. We choose to stop the encoding instead of dropping the video

packets in the media queue after encoding because if we drop an encoded frame, the

encoder needs to reset its state and produce a keyframe which in a congested state

could result in a cascading generation of large frames. This feature already exists in

WebRTC and we incorporate it into our system.

Dummy Generator. To make the video flow mimic the behavior of a backlogged

flow, we use a Dummy Generator to produce dummy packets if the media queue is

empty and the congestion control algorithmis ready to send a packet. Specifically,

if cwnd is greater than the amount of data in-flight, for the congestion control algo-

rithmto have proper feedback from the state of the network we need to send a packet.

Whenever this occurs and the media queue is non-empty, the pacer pulls packets from

the media queue and sends them; but if the media queue is empty, the pacer pulls a

packet from the Dummy Generator and sends it. In our implementation, the dummy

generator produces empty packets, but for future work, dummy packets could be used

43

to carry useful data like FEC packets.

Latency Control To prevent an unacceptable increase in latency, we have two mech-

anisms. First, the media queue has a latency threshold beyond which the video en-

coder is paused and skips frames. This feature already existed in WebRTC, but we

chose a different threshold. We choose the latency threshold around 100-200 ms based

on human’s sensitivity to the lag time between two consecutive frames.

The second mechanism is adjusting the encoder’s target rate based on the pacer’s

standing queue. The pacer’s standing queue, denoted by 𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑃𝑄, is computed

as the minimum size of the aggregated media and dummy queue over the past T

seconds. We choose T with the same logic as the latency threshold around 100-200

ms and we want that the standing pacer queue is drained before the receiver notices

the increment in the latency. The congestion controller declares that in the time span

of RTT, cwnd bytes can be sent over the network. This could be translated to a

target rate of 𝑐𝑤𝑛𝑑
𝑅𝑇𝑇

for the whole system, but this rate alone does not have proper

control over the pacer queue size. With just declaring the sending rate as 𝑐𝑤𝑛𝑑
𝑅𝑇𝑇

, the

only knob controlling the pacer queue is the latency threshold which is risky because

it starts skipping frames. Therefore, we incorporate a new term in the Target rate

to show the effects of the standing pacer queue. Note that the congestion control

determines the total bitrate for all the streams of the system, including video, audio,

and control stream. Let’s denote the sum of the audio and the control streams as

𝑁𝑜𝑛_𝑉 𝑖𝑑𝑒𝑜_𝑅𝑎𝑡𝑒 which is typically a fixed small bitrate. Target rate for the video

encoder is determined as:

𝑇𝑎𝑟𝑔𝑒𝑡_𝑅𝑎𝑡𝑒 =
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
− 𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑃𝑄

𝑇
−𝑁𝑜𝑛_𝑉 𝑖𝑑𝑒𝑜_𝑅𝑎𝑡𝑒

44

Chapter 5

Implementation

To realize our design, we’ve implemented our system on top of Google’s WebRTC [51].

This work has taken several months with careful studying of Google’s implementation

of WebRTC.

5.1 WebRTC’s Structure

Call. This component refers to the high-level process that establishes and manages

real-time audio or video streams and communication sessions between two or more

web browsers. The Call component is responsible for creating the sender and receiver

peers.

Signaling. The signaling component facilitates communication between the peers to

exchange metadata necessary for establishing the call. This can include information

such as session descriptions, which describe the media streams, network configura-

tion, and encryption settings, and ICE (Interactive Connectivity Establishment) [3]

candidates, which are used for NAT traversal [18].

Media Streaming. Once the peer connection is established, the call component

handles the real-time audio and video stream transmission between the browsers.

This includes encoding the media streams into codecs supported by both parties,

packetizing the media, and sending them over the network. The video encoder in We-

bRTC is responsible for converting raw video frames captured from the user’s camera

45

or a video file into a compressed format that can be transmitted over the network

efficiently. Video compression is achieved using a variety of encoding techniques, such

as transform coding, motion compensation, and entropy coding. The encoder uses

algorithms to analyze the video frames and identify redundancies in the spatial and

temporal domains, exploiting them to reduce the data needed to represent the video.

This compression process results in a lower bitrate, allowing for faster transmission

and reduced network congestion. WebRTC supports several video codecs, including

VP8, VP9, and H.264, which are widely used for real-time communication. The choice

of video codec in WebRTC is modular and depends on factors such as codec efficiency,

hardware support, and interoperability among different platforms and browsers. The

knob to change how much data the video encoder should generate is a target bitrate

that is set by the congestion control.

RTP/RTCP. The data generated by the encoder is packetized and converted into

RTP packets. Real-Time Transport Protocol (RTP) [42] is a widely used proto-

col for transmitting real-time multimedia data, such as audio and video, over IP

networks. RTP provides mechanisms for the timely and reliable delivery of media

streams, making it essential for applications that require low-latency and interactive

communication, such as video conferencing, online gaming, and live streaming. RTP

includes features such as sequence numbering, timestamping, and payload type iden-

tification, which help ensure that media streams are delivered in the correct order

and synchronized at the receiver’s end. Additionally, RTP can work in conjunction

with other protocols, such as the Real-Time Control Protocol (RTCP) [42], which

provides feedback on the quality of service and monitoring of RTP streams. During

the call, the call component may also involve the use of the RTCP for monitoring

the quality of service (QoS) and gathering feedback on metrics such as packet loss,

latency, and jitter. This information can adapt the call parameters in real-time, such

as adjusting the codec bitrate or changing the network transport settings, to optimize

the call quality.

Transport. This module is responsible for sending and receiving all the packets

for an endpoint, and it keeps track of the data in the flight, inflight, and the ac-

46

knowledgments. Transport has two modules essential for video congestion control: a

pacing controller and a congestion controller. Transport passes the acknowledgments

to the congestion controller, and the congestion controller signals back its update

to the Transport. The update can change the congestion window and the sending

rate. Transport also divides the estimated available bandwidth for audio, video, and

control streams and updates the target bitrate of the encoder. The update from the

congestion controller also contains pacer configurations such as the cwnd, inflight,

and the sending rate. Transport compares the amount of data in flight with the con-

gestion window and sets the pacing controller to the "congested" state if there are

more data in flight than the congestion window. The congestion control estimates

the total available bandwidth. The update could also contain pacer configurations,

and the Transport could change the new config to the pacing controller.

Congestion Controller This module estimates the bandwidth to send using the

signals it receives from the Transport. The congestion controller determines the con-

gestion window and the sending rate all RTP streams should generate. The congestion

controller is flexible to implement both the window-based or rate-based algorithms

based on what the underlying application wants.

Pacing Controller. The Pacing Controller aims to maintain a smooth and steady

transmission rate and avoid bursts of packets. Since the video is generated periodically

bursty, the pacing controller is responsible for pacing the packets in time to achieve

the same average sending rate as the congestion control requires. If cwnd assigned by

the congestion controller is smaller than inflight, the pacing controller stops sending

media packets; otherwise, it schedules the packets such that the average rate of the

sending packets is no more than the bitrate assigned by the congestion controller.

The pacing controller allows occasional bursts of a few milliseconds (variable to tune)

and waits for the queue it has built up in the network to drain. When the pacer is

scheduled to send a packet, it prioritizes the media queue and pulls a packet from it

if it is not empty. However, if the media queue is empty, the pacer calls the dummy

generator module and gets a dummy packet to send.

Dummy Generator. WebRTC has a padding-generating module. We repurpose

47

this module for creating padding and sending it as the dummy traffic. Each dummy

packet is capped at a minimum of 200 bytes and cwnd and contains filler bytes.

Dummy packets have padding type, and the receiver acknowledges them, but the

data is not used.

All the packets reach the pacing controller to be sent. The congestion controller

updates the pacing rate and its congestion state. If the pacing controller is in the

”congested” state, the pacer does not send any packets but keepalive packets in some

intervals. Otherwise, the pacer sends packets at scheduled times (next-send-time).

We have modified the pacing controller to schedule the next-send-time to respect the

pacing rate while occasionally allowing bursts of maximum duration (burst-interval).

If a burst happens, the incoming next-send-time is adjusted to let the built-up queue

be drained from the network. When the next-send-time has arrived, the pacer sends

a packet from the pacer queue. If there is no packet in the pacer queue, the pacer

generates a dummy packet and sends it to the network. The dummy packet is an

RTP packet of Padding type. Note that stamping the sequence number on the packets

happens after the pacing controller; thus, the acknowledgments will treat the dummy

packets the same as any other application packets as desired.

Adaptive Resolution. WebRTC has a rather complex and sluggish mechanism

for switching the sending resolution based on network conditions. This mechanism

prevents the video bitrate from adapting as fast as possible to the network changes

based on our fast window-based congestion control algorithms. This scheme is a

limitation because we can not make the congestion control faster without the traffic’s

source being as fast. Thus, we disabled the native resolution adaptation of WebRTC

and carefully implemented our resolution logic to fully follow the network’s available

bandwidth while preventing abrupt and fluctuating resolution changes. Our scheme

computes a moving average of the congestion controller’s target rate (𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑎𝑡𝑒)

over time when receiving the update from the congestion controller. Based on that,

the sending resolution is decided. We update the 𝑖th sample of 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑎𝑡𝑒 when

receiving the 𝑖th bitrate sample, 𝑏𝑖, at time 𝑡𝑖 according to:

48

Switch Low Threshold Switch High Threshold Resolution

0Kbps 400Kbps 320×180
300Kbps 1500Kbps 640×360

1000Kbps 3000Kbps 1280×720
2500Kbps 12 000Kbps 1920×1080

Table 5.1: Mapping between encoder target bitrate and chosen resolution in Dumbo
.

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑎𝑡𝑒𝑖 = (1− 𝑒−
𝑡𝑖−𝑡𝑖−1

𝜏)𝑏𝑖 + 𝑒−
𝑡𝑖−𝑡𝑖−1

𝜏 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑎𝑡𝑒𝑖−1

Where 𝜏 shows how much memory our average has for keeping the samples from

the past. This value could be changed based on the application, but we observed that

a value of 500 ms is usually sufficient.

Table 5.1 shows the resolutions and their corresponding thresholds. The threshold

bounds overlap to ensure smooth and stable transitions. That is why the switch low

threshold of each resolution is smaller than the switch high of the previous resolution.

If 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑎𝑡𝑒 is lower than the switch low threshold of the current resolution,

the resolution goes down one step, and if it is higher than the switch high threshold

of the current resolution, the resolution goes up one step.

5.2 Implementing the Congestion Control

The congestion control module is responsible for estimating the available bandwidth

and feedbacking this estimation to the encoders for generating data with the correct

bitrate. Congestion control in WebRTC provides an update with these fields: time of

the update, measured round-trip-time, measured loss ratio, the congestion window,

and minimum and maximum pacing rates.

In WebRTC, congestion control is updated from the statistics of the RTP streams

from Transport, specifically the acknowledgments. Based on the algorithm, conges-

tion control can also receive other information, such as the size of the pacer queue, by

slightly modifying the Transport. Congestion control also has specific APIs required

by other layers to implement. These APIs are periodic or event-based, and the con-

49

gestion control needs to compute and send its update to the Transport. These events

include sending a packet and, upon receiving an acknowledgment, where the size of

the congestion window and the data in the flight can change.

For the congestion control to perform, it should know about the statistics of sent

and received data and the acknowledgments from the receiver. WebRTC has already

provided APIs from the transport module to provide feedback on this information to

the congestion control as mentioned in Sec. 5.1.

Modifying the Application Congestion Control. WebRTC enables implemen-

tation of custom congestion control algorithmas long as it provides the necessary

APIs. To modify the congestion control component, we should change the name of

the used congestion control algorithmin the call, Transport, and API components

of WebRTC and provide the code to factor the congestion control. We have imple-

mented two congestion control algorithms on top of WebRTC: Copa [7] and RoCC [1].

These algorithms are window-based congestion control algorithms, and they control

the amount of data sent by a congestion window.

5.2.1 RoCC

RoCC sets the congestion window to the number of received bytes in the past time

interval of (1+𝛾)𝑚𝑖𝑛_𝑟𝑡𝑡 plus a constant window size where 𝑚𝑖𝑛_𝑟𝑡𝑡 is the minimum

round-trip time observed in a long period of time. The round-trip time and the

number of received bytes are computed using the acknowledgments received from

Transport. Since in WebRTC, acknowledgments are sent periodically; congestion

control receives aggregated packet feedback. To compute 𝑚𝑖𝑛_𝑟𝑡𝑡, we subtract the

wait time at the receiver for the acknowledgment to be sent. RoCC computes the

window at time 𝑡 using:

𝑐𝑤𝑛𝑑𝑡 = # acked bytes in [t - (1 + 𝛾)𝑚𝑖𝑛_𝑟𝑡𝑡 , t] + C (5.1)

Where 𝐶 is a constant positive window size. The value of 𝐶 helps RoCC to

achieve eventual fairness. The round-trip time for each packet is not necessarily

50

equal to 𝑚𝑖𝑛_𝑟𝑡𝑡 because of the possible queue built up in the network. RoCC

measures 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 as the smoothed (EWMA) round-trip-time measured

upon receiving each acknowledgment. Upon receiving an 𝑖th acknowledgment, RoCC

measures the average round-trip time for those packets, denoted by 𝑟𝑡𝑡𝑖. Then, RoCC

updates 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 as the following where 𝛼 shows how sensitive we are to

the latest updates:

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖 = 𝛼 · 𝑟𝑡𝑡𝑖 + (1− 𝛼) · 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖−1 (5.2)

RoCC updates the sending rate for the total RTP streams as:

𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 𝑐𝑤𝑛𝑑/𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 (5.3)

This sending rate is notified to the Transport and eventually is allocated between

the audio, video, and control streams. RoCC sets the pacing rate at 𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑟𝑎𝑡𝑒,

and the pacer will try to drain the pacer queue at this rate.

The intuition behind this algorithm is that it tries to build a queueing delay of

𝛾𝑚𝑖𝑛_𝑟𝑡𝑡 in the network. 𝛾 is a variable that the application can set based on how

delay sensitive the application is. Having some queue built up in the network ensures

high link utilization while application-specific 𝛾, RoCC controls the in-network delay

it introduces.

In an algorithm variation, the application can set a desired queueing delay, denoted

by 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑞𝑑𝑒𝑙𝑎𝑦, and 𝛾 is updated as 𝛾 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑞𝑑𝑒𝑙𝑎𝑦/𝑚𝑖𝑛_𝑟𝑡𝑡. Though this

algorithm achieves less delay than the fixed 𝑔𝑎𝑚𝑚𝑎, it is less robust and more prone

to oscillations due to late acknowledgments.

5.2.2 Copa

Copa incorporates three ideas: first, a target window to aim for that is inversely

proportional to the measured queueing delay; second, a window update rule that

depends moves the sender toward the target rate; and third, a TCP-competitive

strategy to compete well with buffer-filling flows [7].

51

Copa keeps track of the smoothed RTT values in 𝑝𝑟𝑜𝑔𝑎𝑝𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 similar to

5.2.1. For each congestion control update, Copa computes 𝑟𝑡𝑡_𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔, which is

the RTT corresponding to a "standing" queue, and it is the minimum observed RTT

in a recent time window of 𝑝𝑟𝑜𝑔𝑎𝑝𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒. Copa calculates the queueing delay,

denoted by 𝑑𝑞, in the network by

𝑑𝑞 = 𝑟𝑡𝑡_𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 −𝑚𝑖𝑛_𝑟𝑡𝑡 (5.4)

where 𝑚𝑖𝑛_𝑟𝑡𝑡 is the smallest RTT observed over a long period of time. The

reason for using the smallest RTT in the recent 𝑝𝑟𝑜𝑔𝑎𝑝𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 duration, rather

than the latest RTT sample, is for robustness in the face of acknowledgment com-

pression [57] and network jitter, which increases the RTT and can confuse the sender

into believing that a longer RTT is due to queueing on the forward data path. Note

that WebRTC uses acknowledgment compression when sending the packet feedback.

Copa estimates the target congestion window, denoted by 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑤𝑛𝑑, using

this function:

𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑤𝑛𝑑 = 𝑝 · 𝑝𝑟𝑜𝑔𝑎𝑝𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒/(𝑞𝑑 · 𝛿) (5.5)

where 𝑝 is the average packet sizes and 𝛿 is a parameter between 0 and 1 to

control network utilization and network queueing delay tradeoff. 𝛿 can be tuned and is

application-specific; higher values of 𝛿 mean lower queueing delay. Note that if 𝑞𝑑 = 0,

there is no queue build-up in the network, and it is safe to set 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑤𝑛𝑑 = +∞.

If the current congestion window 𝑐𝑤𝑛𝑑, exceeds the target, the sender reduces

𝑐𝑤𝑛𝑑; otherwise, it increases 𝑐𝑤𝑛𝑑. Let us denote the number of bytes acked since

the last update of 𝑐𝑤𝑛𝑑 by 𝐵. The update rule for the window is:

𝑐𝑤𝑛𝑑 =

⎧⎪⎨⎪⎩𝑐𝑤𝑛𝑑+ 𝑝 · 𝑣 ·𝐵/(𝛿 · 𝑐𝑤𝑛𝑑) 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝑐𝑤𝑛𝑑− 𝑝 · 𝑣 ·𝐵/(𝛿 · 𝑐𝑤𝑛𝑑) 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒

(5.6)

where 𝑣 is called the ”velocity parameter”. The velocity parameter, 𝑣, speeds up

the convergence. It is initialized to 1. Once per update of 𝑐𝑤𝑛𝑑, the sender compares

52

the current 𝑐𝑤𝑛𝑑 to the 𝑐𝑤𝑛𝑑 value when the latest acknowledged packet was sent

(i.e., 𝑐𝑤𝑛𝑑 at the start of the current window). If the current 𝑐𝑤𝑛𝑑 is larger than

𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑤𝑛𝑑, then set the direction to "up"; if it is smaller than 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑤𝑛𝑑, then

set the direction to "down." If the direction is the same as in the window, then double

𝑣. If not, then reset 𝑣 to 1. However, start doubling 𝑣 only after the direction has

remained the same for three RTTs [7].

53

54

Chapter 6

Evaluation

We evaluate Dumbo in a simulation environment and atop a WebRTC-based imple-

mentation. We describe our setup in §6.1 and use it to compare existing baselines in

§6.3. In §6.2, we motivate our system design.

6.1 Setup

Testbed. Inspired by [16], we built a testbed in C++ on top of the latest version of

WebRTC that enables a peer-to-peer video call between two endpoints in a headless

setting. Each endpoint could have a sender peer and a receiver peer. The sender

reads the input video from a file instead of a webcam. Similarly, the receiver records

the incoming video as a file. In order to track video frames from the sender to the

receiver, we put a unique 2D barcode on each frame, similar to [19]. The barcode

enables matching sent and received video frames to compute metrics such as frame

latency and frame quality. We emulate different network conditions between the peers

by putting the receiver behind a Mahimahi [36] shell.

Configuration. Each peer has specific configuration parameters that are passed by

JSON files that indicate this information: if the peer is a sender or receiver, the peer’s

assigned IP and port, the duration of the call, video source (which could be from a

file, webcam, or no video), audio source (which could be from a file, microphone, or

no audio), video information (such as fps, width, and height), where to save the final

55

video, the format to record the received video, and where to save logs related to the

peers.

Metrics. We quantify the performance of a real-time video system using two pri-

mary metrics: frame quality and frame latency. The testbed evaluates frame quality

as average Structural Similarity (SSIM [50]) to compare the received frames with the

corresponding frames in the source video. The frame latency is determined by mea-

suring the duration between the instant a frame is read at the sender and when it is

ready for display at the receiver. For frames not received at the receiver, a virtual

arrival time is assigned equal to the presentation time of the subsequently displayed

frame [19].

For any congestion control algorithm, measuring its performance by metrics such

as link utilization, queuing delay it introduces in the network, and round-trip time

(RTT) is crucial. To measure the performance of the congestion controlalgorithm,

we also log all the packet sizes and their types when sending or receiving them to

compute the bitrate associated with each stream. We must identify what proportion

of the link is filled with dummy data; thus, we find the media stream bitrate and the

dummy bitrate and their ratio. Furthermore, in the emulation network, we process

the mahimahi log and compute the arrival rate, departure rate, capacity, and the

per-packet queuing delay of the experiment.

Traces. We evaluate each scheme on 16 cellular traces bundled with Mahimahi [36].

We also have created our custom pulse traces to show simple concepts of convergence

in 3. In a trace file, each line signifies a packet delivery opportunity, indicating

the time when an MTU-sized packet can be delivered in the emulation [36]. Byte-

level accounting is used, where each delivery opportunity corresponds to the possible

delivery of 1500 bytes. As such, a single line in the trace file can represent the delivery

of multiple smaller packets whose cumulative sizes add up to 1500 bytes. We also

used the pre-recorded cellular traces that are available online. We connected to the

links in our real-life experiments and recorded the time series [36].

Videos. We use a YUV video dataset that we generated from youtube. All the videos

have 1920×1080 resolution and 10-minute length at 30 fps. Generating the dataset is

56

Videos

Youtuber Total Len. Avg. Bitrate

Adam Neely 10 min 1082 kbps
Xiran Jay Zhao 10 min 2815 kbps
The Needle Drop 10 min 2013 kbps
fancy fueko 10 min 4064 kbps
Kayleigh McEnany 10 min 2521 kbps

Table 6.1: Details of our dataset. All videos are at 1920×1080.

fully scripted and can be replicated by anyone. The video URLs, start time, and end

time are available, and we have provided the scripts to download, pre-process, crop

them to the desired resolution, and re-encode at 30 fps. Prior to the experiments,

each video is barcoded using the technique described in Metrics section offline. Table

6.1 displays the details of our dataset.

Baselines. We evaluated WebRTC’s default congestion control algorithm, GCC, in

emulation networks. We also implemented Copa and Rocc in WebRTC, discussed

in 5.2, and evaluated their performance. WebRTC’s main code-base provides the

implementation of PCC [15] as well that we discuss in Appendix A.

6.2 Understanding Dumbo’s Design

6.2.1 Convergence Time

This section studies the transient and steady-state behavior of different schemes in

variable-bandwidth environments. We run all the schemes on a pulse-shaped link.

The link starts with 3Mbps of bandwidth for 40 seconds, then drops to 500Kbps for

the next 40 seconds before jumping back up to 3Mbps again. The minimum network

one-way delay is 25 ms with a round-trip time (RTT) of 50 ms, and the buffer size at

the bottleneck is large enough that there are no packet drops. We run the experiment

for 160 seconds.

We define the convergence time of an algorithm after a link transition to up as

the time it takes to achieve 90% utilization of the max utilization it achieves after the

transition for the first time. We also define the convergence time of an algorithm after

57

https://www.youtube.com/c/adamneely
https://www.youtube.com/c/XiranJayZhao
https://www.youtube.com/user/theneedledrop
https://www.youtube.com/c/fancyfueko
https://www.youtube.com/c/PBSNewsHour

a link transition to down as the time it takes for it to achieve 110% frame latency of

the steady-state latency it had before the transition. We also define the steady-state

metrics of an algorithm after a link transition as the average of that metric after

reaching a steady behavior.

Rocc. Fig. 6-3 shows the results of the convergence experiment for RoCC. For

RoCC without Dumbo, on a link transition to up, it has a convergence time of 21.1 s,

the max utilization of 2.1Mbps, and a steady-state utilization of 1.5Mbps. On a

link transition to down, RoCC without Dumbo has a convergence time of 1.1 s, a

steady-state frame latency of 173ms, a max frame latency of 750ms, and a steady-

state utilization of 0.47Mbps. For RoCC with Dumbo, on a link transition to up,

it has a convergence time of 700ms, the max utilization of 3Mbps, and a steady-

state utilization of 3Mbps. On a link transition to down, RoCC with Dumbo has a

convergence time of 1.7 s, a steady-state frame latency of 204ms, a max frame latency

of 1067ms, and a steady-state utilization of 0.5Mbps.

On a link transition to up, Dumbo has a 30x faster convergence time

and 2x steady-state link utilization for RoCC while having comparable

results for a link transition to down.

Copa. Fig. 6-6 shows the results of the convergence experiment for Copa. For Copa

without Dumbo, on a link transition to up, it has a convergence time of 2.8 s, the max

utilization of 3Mbps, and a steady-state utilization of 2.5Mbps. On a link transition

to down, Copa without Dumbo has a convergence time of 2 s, a steady-state frame

latency of 169ms, a max frame latency of 1378ms, and a steady-state utilization of

0.41Mbps. For Copa with Dumbo, on a link transition to up, it has a convergence time

of 250ms, the max utilization of 3Mbps, and a steady-state utilization of 3Mbps. On

a link transition to down, Copa with Dumbo has a convergence time of 2 s, a steady-

state frame latency of 178ms, a max frame latency of 1463ms, and a steady-state

utilization of 0.5Kbps.

On a link transition to up, Dumbo has an 11x faster convergence time

for Copa while having comparable results for a link transition to down.

GCC. Fig. 6-9 shows the results of the convergence experiment for GCC. On a link

58

0 25 50 75 100 125 150
Time (s)

0

1

2

3
Bi

tra
te

 (M
bp

s)

RoCC RoCC+Dumbo

Figure 6-1: Link’s utilization time series.

0 25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Fr
am

e
La

te
nc

y
(s

)

RoCC RoCC+Dumbo

Figure 6-2: Frame latency time series.

Figure 6-3: Convergence measurement for RoCC. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3Mbps and a minimum of 500Kbps.

59

0 25 50 75 100 125 150
Time (s)

0

1

2

3
Bi

tra
te

 (M
bp

s)

Copa Copa+Dumbo

Figure 6-4: Link’s utilization time series.

0 25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Fr
am

e
La

te
nc

y
(s

)

Copa Copa+Dumbo

Figure 6-5: Frame latency time series.

Figure 6-6: Convergence measurement for Copa. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3Mbps and a minimum of 500Kbps.

60

transition to up, GCC has a convergence time of 16.6 s, the max utilization of 3Mbps,

and a steady-state utilization of 2.8Mbps. On a link transition to down, GCC has

a convergence time of 10.5 s, a steady-state frame latency of 260ms, a max frame

latency of 5.1 s, and a steady-state utilization of 0.46Mbps.

On a link transition to up, Dumbo has a 35x faster convergence time

and higher steady-state utilization. On a link transition to down, Dumbo

has a 5.6x faster convergence time, a 4x lower max frame latency, and

comparable steady-state frame latency and utilization.

6.2.2 Impact of Dummy Traffic

To evaluate the effect of the dummy stream on the window-based congestion control

algorithms, we compared the performance of ROCC and Copa with and without the

dummy stream on all 16 cellular traces. All experiments are run for 2 minutes with

a link with a one-way minimum delay of 25 ms and no packet drops.

RoCC

Fig. 6-13 shows the comparison of end-to-end frame metrics of RoCC with and without

the dummy traffic on all the cellular traces. On average, RoCC without a dummy

has a PSNR of 39.90, SSIM of 13.90, and frame latency of 557 ms. RoCC+Dumbo

has a PSNR of 41.1, SSIM of 14.79, and frame latency of 687 ms. Dumbo shows

an average PSNR improvement of around 1.2 dB and SSIM improvement

of 1.07 dB while increasing 23% (130 ms) in the frame latency in RoCC.

Fig. 6-17 compares network metrics on all the cellular traces. On average, RoCC

without a dummy has a network delay of 37 ms, a network utilization of 40.62%,

and a video bitrate of 1804 Kbps, respectively. RoCC+Dumbo’s are 49 ms, 69.88 %,

and 3197 Kbps, respectively. Dumbo achieves on average a 77% increase in

the video bitrate and a 72% increase in network utilization while slightly

increasing the network delay by 12 ms compared with RoCC.

61

0 25 50 75 100 125 150
Time (s)

0

1

2

3
Bi

tra
te

 (M
bp

s)

GCC

Figure 6-7: Link’s utilization time series.

0 25 50 75 100 125 150
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Fr
am

e
La

te
nc

y
(s

)

GCC

Figure 6-8: Frame latency time series.

Figure 6-9: Convergence measurement for GCC. The experiment was run for 160 s
with a one-way minimum delay of 25 ms. The link is a periodic on-off link with a
maximum of 3Mbps and a minimum of 500Kbps.

62

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

RoCC RoCC+Dumbo Average

Figure 6-10: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

RoCC RoCC+Dumbo Average

Figure 6-11: Per-frame latency statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

RoCC RoCC+Dumbo Average

Figure 6-12: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-13: End-to-end statistics of quality of experience metrics of RoCC without
the dummy traffic and RoCC+Dumbo on all the Mahimahi cellular traces. All ex-
periments are run for 2 minutes with a one-way minimum delay of 25 ms.

63

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

RoCC (Video)
RoCC (Dummy)

RoCC+Dumbo (Video)
RoCC+Dumbo (Dummy)

Figure 6-14: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

RoCC RoCC+Dumbo Average

Figure 6-15: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
2

10
1

10
0

10
1

10
2

10
3

N
et

w
or

k
D

el
ay

 (m
s)

RoCC RoCC+Dumbo Average

Figure 6-16: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-17: Network statistics of RoCC without the dummy traffic and
RoCC+Dumbo on all the Mahimahi cellular traces. All experiments are run for
2 minutes with one-way minimum delay of 25 ms.

64

Copa

Fig. 6-21 shows the comparison of end-to-end frame metrics of RoCC with and without

the dummy traffic on all the cellular traces. On average, Copa without a dummy has

a PSNR of 37.19, SSIM of 0.83, and frame latency of 725 ms. Copa+Dumbo has

a PSNR of 40.64, SSIM of 14.05, and frame latency of 874 ms.Dumbo shows an

average PSNR improvement of around 3.45 dB and SSIM improvement of

3.22 dB while having an increase of 20% (149 ms) in the frame latency in

RoCC. Fig. 6-25 compares network metrics on all the cellular traces. On average,

Copa without a dummy has a network delay of 36 ms, a network utilization of 22.15%,

and a video bitrate of 458 Kbps, respectively. Copa+Dumbo’s measurements are 46

ms, 54.67%, and 3129 Kbps. Dumbo achieves on average a 5.8x increase in

the video bitrate and a 1.47x increase in network utilization while slightly

increasing the network delay by 10 ms compared with Copa.

6.3 Overall Comparison with GCC

To compare GCC with Dumbo, we evaluated Copa+Dumbo and RoCC+Dumbo on

all 16 cellular traces. All experiments are run for 2 minutes with a link with a one-

way minimum delay of 25 ms and no packet drops. Fig. 6-29 shows the comparison

of end-to-end frame metrics of GCC, Copa+Dumbo, and RoCC+Dumbo on all the

cellular traces. On average, GCC has a PSNR of 39.41, SSIM of 12.82, and frame

latency of 873 ms. Dumbo schemes show an average PSNR improvement

of around 1.5 dB and SSIM improvement of 1.6 dB while having a 100

ms lower frame latency compared with GCC. Fig. 6-33 compares network

metrics on all the cellular traces. On average, GCC has a network delay of 214 ms, a

network utilization of 47.05%, and a video bitrate of 2706 Kbps, respectively. Dumbo

schemes achieve on average a 16% increase in the video bitrate and a 32%

increase in network utilization while reducing the network delay by 4x

compared with GCC.

65

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

Copa Copa+Dumbo Average

Figure 6-18: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

Copa Copa+Dumbo Average

Figure 6-19: Per-frame latency statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

Copa Copa+Dumbo Average

Figure 6-20: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-21: End-to-end statistics of quality of experience metrics of Copa without the
dummy traffic and Copa+Dumbo on all the Mahimahi cellular traces. All experiments
are run for 2 minutes with a one-way minimum delay of 25 ms.

66

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

Copa (Video)
Copa (Dummy)

Copa+Dumbo (Video)
Copa+Dumbo (Dummy)

Figure 6-22: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

Copa Copa+Dumbo Average

Figure 6-23: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
2

10
1

10
0

10
1

10
2

10
3

N
et

w
or

k
D

el
ay

 (m
s)

Copa Copa+Dumbo Average

Figure 6-24: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-25: Network statistics of Copa without the dummy traffic and Copa+Dumbo
on all the Mahimahi cellular traces. All experiments are run for 2 minutes with one-
way minimum delay of 25 ms.

67

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

GCC Copa+Dumbo RoCC+Dumbo Average

Figure 6-26: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

GCC Copa+Dumbo RoCC+Dumbo Average

Figure 6-27: Per-frame latency statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

GCC Copa+Dumbo RoCC+Dumbo Average

Figure 6-28: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-29: End-to-end statistics of quality of experience metrics of GCC,
Copa+Dumbo, and RoCC+Dumbo on all the Mahimahi cellular traces. All experi-
ments are run for 2 minutes with a one-way minimum delay of 25 ms.

68

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

GCC

Copa+Dumbo (Video)
Copa+Dumbo (Dummy)

RoCC+Dumbo (Video)
RoCC+Dumbo (Dummy)

Figure 6-30: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

GCC Copa+Dumbo RoCC+Dumbo Average

Figure 6-31: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

GCC Copa+Dumbo RoCC+Dumbo Average

Figure 6-32: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-33: Network statistics of GCC, Copa+Dumbo, and RoCC+Dumbo on all
the Mahimahi cellular traces. All experiments are run for 2 minutes with one-way
minimum delay of 25 ms.

69

6.4 Probing

To compare Dumbo schemes with the probing mechanism in WebRTC, we enabled

GCC with probing in WebRTC and ran our video application for all 16 cellular traces.

All experiments are run for 2 minutes with a link with a one-way minimum delay of

25 ms and no packet drops. Fig. 6-37 shows the comparison of end-to-end frame

metrics of GCC with probing enabled, Copa+Dumbo, and RoCC+Dumbo on all

the cellular traces. On average, GCC with probing has a PSNR of 40.41, SSIM of

14.04, and a frame latency of 853 ms. Dumbo schemes show an average PSNR

improvement of around 0.47 dB and SSIM improvement of 0.41 dB while

having a 72 ms lower frame latency compared with GCC with probing.

Fig. 6-41 compares network metrics on all the cellular traces. On average, GCC

with probing has a network delay of 248 ms, a network utilization of 48.59%, and a

video bitrate of 2428 Kbps, respectively. Dumbo schemes achieve on average a

30% increase in the video bitrate and a 28% increase in network utilization

while reducing the network delay by 5x compared with GCC with probing.

70

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

GCC + probing Copa+Dumbo RoCC+Dumbo Average

Figure 6-34: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

GCC + probing Copa+Dumbo RoCC+Dumbo Average

Figure 6-35: Per-frame latency statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

GCC + probing Copa+Dumbo RoCC+Dumbo Average

Figure 6-36: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-37: End-to-end statistics of quality of experience metrics of GCC+Probing,
Copa+Dumbo, and RoCC+Dumbo on all the Mahimahi cellular traces. All experi-
ments are run for 2 minutes with a one-way minimum delay of 25 ms.

71

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

GCC + probing (Video)
GCC + probing (Dummy)

Copa+Dumbo (Video)
Copa+Dumbo (Dummy)

RoCC+Dumbo (Video)
RoCC+Dumbo (Dummy)

Figure 6-38: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

GCC + probing Copa+Dumbo RoCC+Dumbo Average

Figure 6-39: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

GCC + probing Copa+Dumbo RoCC+Dumbo Average

Figure 6-40: Per-frame PSNR statistics of the received video vs. the original video

Figure 6-41: Network statistics of GCC+Probing, Copa+Dumbo, and RoCC+Dumbo
on all the Mahimahi cellular traces. All experiments are run for 2 minutes with a
one-way minimum delay of 25 ms.

72

Chapter 7

Conclusion

To bridge the gap between video congestion control algorithms and backlogged con-

gestion control algorithms, we introduce our system called Dumbo. Dumbo effectively

adapts non-backlogged video traffic to work with window-based, delay-sensitive back-

logged congestion control algorithms, taking into consideration the unique character-

istics of video traffic. The key insight behind Dumbo is that by generating dummy

traffic when the congestion control algorithm expects data but no media packets

are available, the congestion control system can maintain its feedback loop without

disruption.

Dumbo schemes can adapt the real-time video stream to any delay-sensitive window-

based backlogged congestion control algorithm. We implemented Dumbo on top of

Google’s implementation of WebRTC and demonstrated the performance of Dumbo

for two algorithms: RoCC and Copa. We compared the resulting performance

with current video congestion control algorithms. The Dumbo schemes demonstrate

noteworthy improvements, such as an average PSNR enhancement of approximately

1.5 dB and a 1.6 dB improvement in SSIM, all while maintaining a 100ms lower frame

latency to GCC. Furthermore, the Dumbo schemes achieve significant benefits com-

pared to GCC. On average, they yield a 16% increase in video bitrate, a 35x faster

convergence time, and a 32% improvement in network utilization. Additionally, they

reduce network delay by a factor of 4 when compared to GCC.

73

74

Appendix A

Supplementary Results

Comparison of Dumbo Schemes with PCC

To compare Dumbo schemes with the PCC [15] in WebRTC, we enabled PCC and

ran our video application for all 16 cellular traces. All experiments are run for 2

minutes with a link with a one-way minimum delay of 25 ms and no packet drops.

Fig. A-4 shows the comparison of end-to-end frame metrics of PCC, Copa+Dumbo,

and RoCC+Dumbo on all the cellular traces.

PCC has a PSNR of 36.78, SSIM of 9.95, and a frame latency of 705 ms on average.

Dumbo schemes show an average PSNR improvement of around 4.1 dB

and SSIM improvement of 4.5 dB while having a comparable frame latency

compared with PCC. Fig. A-8 compares network metrics on all the cellular traces.

On average, PCC has a network delay of 69 ms, a network utilization of 9.85%, and a

video bitrate of 980 Kbps, respectively. Dumbo schemes achieve, on average, a

2.2x increase in the video bitrate and a 7x increase in network utilization

while having a 20 ms smaller queuing delay.

Adaptive Resolution Scheme

As mentioned in Sec. 5.1, we implemented a new resolution scheme to enable the

video encoder to respond faster than WebRTC’s original resolution scheme to our

75

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

PCC GCC RoCC+Dumbo Average

Figure A-1: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

PCC GCC RoCC+Dumbo Average

Figure A-2: Per-frame latency statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

PCC GCC RoCC+Dumbo Average

Figure A-3: Per-frame PSNR statistics of the received video vs. the original video

Figure A-4: End-to-end statistics of quality of experience metrics of PCC, GCC, and
RoCC+Dumbo on all the Mahimahi cellular traces. All experiments are run for 2
minutes with a one-way minimum delay of 25 ms.

76

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

PCC (Video)

GCC

RoCC+Dumbo (Video)
RoCC+Dumbo (Dummy)

Figure A-5: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

PCC GCC RoCC+Dumbo Average

Figure A-6: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

PCC GCC RoCC+Dumbo Average

Figure A-7: Per-frame PSNR statistics of the received video vs. the original video

Figure A-8: Network statistics of PCC, GCC, and RoCC+Dumbo on all the
Mahimahi cellular traces. All experiments are run for 2 minutes with one-way mini-
mum delay of 25 ms.

77

Scheme Hyperparameter Value

RoCC 𝛾 0.1

C 1500 bytes

𝛼 0.95

Latency threshold 100 ms

Copa 𝛿 0.5

𝑝 1500 bytes

𝛼 0.95

Latency threshold 100 ms

Setting One-way delay 25 ms

𝜏 for adaptive resolution 500 ms

Wait for resolution switch 4 s

Table A.1: Hyperparameter values for experiments.

fast congestion control algorithm. We ran GCC using WebRTC’s original codebase

(Original GCC) and GCC with our new adaptive resolution scheme to ensure the

new changes have not hurt GCC’s original performance. In our experiments, we ran

our video application for all 16 cellular traces. All experiments are run for 2 minutes

with a link with a one-way minimum delay of 25 ms and no packet drops. As seen in

Fig. A-12 and Fig. A-16, the visual qualities, video bitrate, and network utilization

have been improved for our adaptive resolution while maintaining the frame latency

and the network queueing delay.

Hyperparameters

Table A.1 shows the hyperparameters we chose while running the experiments.

Visual Comparison

In this section, we show the visuals for the same frame for one of the cellular traces

(ALd2u). The link has a minimum one-way delay of 25ms, and the frame number is

78

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

8

10

12

14

16

18

20

SS
IM

 (d
B)

GCC Original GCC Average

Figure A-9: Per-frame SSIM statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

GCC Original GCC Average

Figure A-10: Per-frame PSNR statistics of the received video vs. the original video

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

GCC Original GCC Average

Figure A-11: Per-frame latency statistics of the received video vs. the original video

Figure A-12: End-to-end statistics of quality of experience metrics of original GCC
and GCC with our adaptive resolution scheme on all the Mahimahi cellular traces.
All experiments are run for 2 minutes with a one-way minimum delay of 25 ms.

79

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

GCC

Original GCC (Video)

Figure A-13: Average throughput of Video traffic vs Dummy traffic for different
schemes

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

GCC Original GCC Average

Figure A-14: Statistics of link’s utilization per sample of network bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

GCC Original GCC Average

Figure A-15: Per-frame PSNR statistics of the received video vs. the original video

Figure A-16: Network statistics of original GCC and GCC with our adaptive res-
olution scheme on all the Mahimahi cellular traces. All experiments are run for 2
minutes with one-way minimum delay of 25 ms.

80

GCC RoCC+Dumbo

Figure A-17: Visual comparison of the same frame for GCC and RoCC+Dumbo

GCC Copa+Dumbo

Figure A-18: Visual comparison of the same frame for GCC and Copa+Dumbo

691. We compare Dumbo schemes with GCC in Fig. A-17 and Fig. A-18, and PCC

in Fig. A-19, Fig. A-20. For Dumbo, in comparison with GCC and PCC, the details

of the face (around the eyes, the mouth, and the smile line) are clearer, the text in

the background is sharper, and the necklace and the microphone are more visible.

Fig. A-21 and Fig. A-22 compare the congestion control algorithms with and without

Dumbo. Dumbo schemes have sharper images with more high-frequency details than

their vanilla version. In all these examples, Dumbo frames have at least 1 dB higher

PSNR values.

81

PCC RoCC+Dumbo

Figure A-19: Visual comparison of the same frame for PCC and RoCC+Dumbo

PCC Copa+Dumbo

Figure A-20: Visual comparison of the same frame for PCC and Copa+Dumbo

RoCC RoCC+Dumbo

Figure A-21: Visual comparison of the same frame for RoCC and RoCC+Dumbo

82

Copa Copa+Dumbo

Figure A-22: Visual comparison of the same frame for Copa and Copa+Dumbo

83

84

Bibliography

[1] https://108anup.github.io/assets/papers/CCmatic-Hotnets22.pdf.

[2] https://chromium.googlesource.com/external/webrtc/modules/
congestion_controller/probe_controller.cc.

[3] https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/
Connectivity.

[4] 8 Powerful Applications Built Using WebRTC. https://www.
unitedworldtelecom.com/learn/webrtc-applications/.

[5] Cubic Quiescence: Not So Inactive. https://www.ietf.org/proceedings/94/
slides/slides-94-tcpm-8.pdf.

[6] Updating TCP to Support Rate-Limited Traffic. https://www.rfc-editor.
org/rfc/rfc7661.html.

[7] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based congestion
control for the internet. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 329–342, 2018.

[8] Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas: End to end congestion
avoidance on a global internet. IEEE Journal on selected Areas in communica-
tions, 13(8):1465–1480, 1995.

[9] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. Bbr: Congestion-based congestion control. Queue, 14(5):20–53,
2016.

[10] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis
and design of the google congestion control for web real-time communication (we-
brtc). In Proceedings of the 7th International Conference on Multimedia Systems,
pages 1–12, 2016.

[11] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis
and design of the google congestion control for web real-time communication (we-
brtc). In Proceedings of the 7th International Conference on Multimedia Systems,
pages 1–12, 2016.

85

https://108anup.github.io/assets/papers/CCmatic-Hotnets22.pdf
https://chromium.googlesource.com/external/webrtc/modules/congestion_controller/probe_controller.cc
https://chromium.googlesource.com/external/webrtc/modules/congestion_controller/probe_controller.cc
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity
https://www.unitedworldtelecom.com/learn/webrtc-applications/
https://www.unitedworldtelecom.com/learn/webrtc-applications/
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://www.rfc-editor.org/rfc/rfc7661.html
https://www.rfc-editor.org/rfc/rfc7661.html

[12] Giovanna Carofiglio, Luca Muscariello, Dario Rossi, and Silvio Valenti. The
quest for ledbat fairness. In 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pages 1–6. IEEE, 2010.

[13] Hsuan-Yi Chou and Dana Edge. “they are happier and having better lives than
i am”: The impact of using facebook on perceptions of others’ lives. Cyberpsy-
chology, Behavior, and Social Networking, 15(2):117–121, 2012.

[14] DCTCP in Linux 3.18. http://kernelnewbies.org/Linux_3.18.

[15] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira.
PCC: Re-architecting congestion control for consistent high performance. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), pages 395–408, 2015.

[16] Jeongyoon Eo, Zhixiong Niu, Wenxue Cheng, Francis Y Yan, Rui Gao, Jorina
Kardhashi, Scott Inglis, Michael Revow, Byung-Gon Chun, Peng Cheng, et al.
Opennetlab: Open platform for rl-based congestion control for real-time com-
munications. Proc. of APNet, 2022.

[17] Sally Floyd, Tom Henderson, and Andrei Gurtov. Rfc3782: The newreno modi-
fication to tcp’s fast recovery algorithm, 2004.

[18] B. Ford, P. Srisuresh, and D. Kegel. Stun - simple traversal of user datagram
protocol (udp) through network address translators (nats). In RFC 5389, 2008.

[19] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. Salsify: Low-latency network video through tighter integration
between a video codec and a transport protocol. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 267–282,
2018.

[20] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana, Moham-
mad Alizadeh, and Hari Balakrishnan. Elasticity detection: A building block for
internet congestion control. In Proceedings of the ACM SIGCOMM 2022 Con-
ference, pages 158–176, 2022.

[21] Luigi A Grieco and Saverio Mascolo. Performance evaluation and comparison
of westwood+, new reno, and vegas tcp congestion control. ACM SIGCOMM
Computer Communication Review, 34(2):25–38, 2004.

[22] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed
tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, jul 2008.

[23] David A Hayes and Grenville Armitage. Revisiting tcp congestion control using
delay gradients. In 10th IFIP Networking Conference (NETWORKING), number
Part II, pages 328–341. Springer, 2011.

86

http://kernelnewbies.org/Linux_3.18

[24] Chris V Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. On designing
improved controllers for aqm routers supporting tcp flows. In Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Society (Cat. No.
01CH37213), volume 3, pages 1726–1734. IEEE, 2001.

[25] Stefan Holmer, Magnus Flodman, and Erik Sprang. RTP Extensions
for Transport-wide Congestion Control. Internet-Draft draft-holmer-rmcat-
transport-wide-cc-extensions-01, Internet Engineering Task Force, October 2015.
Work in Progress.

[26] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 187–198, 2014.

[27] Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer
communication review, 18(4):314–329, 1988.

[28] Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, architecture,
algorithms, performance. In IEEE INFOCOM 2004, volume 4, pages 2490–2501.
IEEE, 2004.

[29] Saurabh Kapoor and Anubhav Bansal. Real-time video streaming: Techniques,
challenges, and opportunities. Journal of Network and Computer Applications,
184:103067, 2021.

[30] Aleksandar Kuzmanovic and Edward W Knightly. Tcp-lp: low-priority ser-
vice via end-point congestion control. IEEE/ACM Transactions on Networking,
14(4):739–752, 2006.

[31] Changhyun Lee, Chunjong Park, Keon Jang, Sue B Moon, and Dongsu Han.
Accurate latency-based congestion feedback for datacenters. In USENIX Annual
Technical Conference, pages 403–415, 2015.

[32] Zhipeng Li, Xiaohua Jiang, Zhi Gao, and Hui Zhang. Adaptive congestion control
for multipath video streaming. Multimedia Tools and Applications, 77(3):3779–
3798, 2018.

[33] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video
streaming with pensieve. In Proceedings of the conference of the ACM special
interest group on data communication, pages 197–210, 2017.

[34] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the datacenter. ACM SIGCOMM
Computer Communication Review, 45(4):537–550, 2015.

87

[35] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert. Congestion control using
fec for conversational multimedia communication. In Proceedings of the 5th ACM
Multimedia Systems Conference, pages 191–202, 2014.

[36] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. Mahimahi: Accurate record-and-replay
for http. In Usenix annual technical conference, pages 417–429, 2015.

[37] Jitendra Padhye, Victor Firoiu, Donald F Towsley, and James F Kurose.
Modeling tcp reno performance: a simple model and its empirical validation.
IEEE/ACM transactions on Networking, 8(2):133–145, 2000.

[38] Devdeep Ray, Connor Smith, Teng Wei, David Chu, and Srinivasan Seshan. Sqp:
Congestion control for low-latency interactive video streaming. arXiv preprint
arXiv:2207.11857, 2022.

[39] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and KV Rashmi. Tambur: Efficient loss recovery for videoconfer-
encing via streaming codes. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 953–971, 2023.

[40] FLOYD Sally. Random early detection for congestion avoidance. IEEE/ACM
Transactions on Networking.

[41] Zulfikar Hossain Sarker, Souvik De, Subhayan Nandy, and Anupam Roy. Evaluat-
ing the performance of congestion control algorithms for real-time video stream-
ing. In 2019 10th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pages 1–6. IEEE, 2019.

[42] Henning Schulzrinne, Stephen Casner, Ron Frederick, and Van Jacobson. Rtp:
A transport protocol for real-time applications, 1996.

[43] Sea Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja Kuehlewind. Low extra
delay background transport (ledbat). Technical report, 2012.

[44] A. Smith and B. Johnson. A study on peak signal-to-noise ratio (psnr) in image
processing. Journal of Image Processing.

[45] Aaron Smith and Monica Anderson. Americans and digital
knowledge. https://www.pewresearch.org/internet/2020/10/28/
americans-and-digital-knowledge/, 2020.

[46] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. IEEE/ACM Transactions On Networking,
28(4):1698–1711, 2020.

[47] Statista. Social media live streaming – statistics & facts. https://www.
statista.com/topics/5471/social-media-live-streaming/, 2022.

88

https://www.pewresearch.org/internet/2020/10/28/americans-and-digital-knowledge/
https://www.pewresearch.org/internet/2020/10/28/americans-and-digital-knowledge/
https://www.statista.com/topics/5471/social-media-live-streaming/
https://www.statista.com/topics/5471/social-media-live-streaming/

[48] Sarah Stelzer. Zoom burnout is real: Here’s how you
can avoid it. https://www.techrepublic.com/article/
zoom-burnout-is-real-heres-how-you-can-avoid-it/, 2020.

[49] TCP. "https://datatracker.ietf.org/doc/html/rfc793.

[50] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image qual-
ity assessment: from error visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612, 2004.

[51] WebRTC. https://webrtc.org/.

[52] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Alexander Levis, and Keith Winstein. Learning in situ: a ran-
domized experiment in video streaming. In NSDI, volume 20, pages 495–511,
2020.

[53] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, pages
325–338, 2015.

[54] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. Adaptive congestion control for unpredictable cellular networks.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 509–522, 2015.

[55] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. Adaptive congestion control for unpredictable cellular networks.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 509–522, 2015.

[56] Yu Zhai, Xiaoxi Liu, Yu Gao, and Xiaoming Wang. Adaptive video congestion
control for web real-time communication. IEEE Access, 8:230876–230885, 2020.

[57] Lixia Zhang, Scott Shenker, and Daivd D Clark. Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic. In Proceedings
of the conference on Communications architecture & protocols, pages 133–147,
1991.

89

https://www.techrepublic.com/article/zoom-burnout-is-real-heres-how-you-can-avoid-it/
https://www.techrepublic.com/article/zoom-burnout-is-real-heres-how-you-can-avoid-it/
"https://datatracker.ietf.org/doc/html/rfc793
https://webrtc.org/

	Introduction
	Related Work
	Congestion Control
	Delay-based Congestion Control
	Buffer-filling Congestion Control

	Video Systems

	Motivation
	Status Quo for Video Rate Control
	Encoder-driven Rate Control Loop
	Decoupling the Encoder from Rate Control

	Design
	Implementation
	WebRTC's Structure
	Implementing the Congestion Control
	RoCC
	Copa

	Evaluation
	Setup
	Understanding Dumbo's Design
	Convergence Time
	Impact of Dummy Traffic

	Overall Comparison with GCC
	Probing

	Conclusion
	Supplementary Results

