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ABSTRACT

New CVEs are discovered each year and their underlying bugs leave applications vulnerable
to exploitation. Software is still frequently written in bug prone languages, e.g. C and C++,
and a single missed check during manual testing can result in vulnerabilities. Existing auto-
mated testing tools such as fuzzing are limited in scope or in the case of static analysis, have
a high false positive rate. Without improved automated testing, it can be challenging for
developers to debug large, complex codebases. In this paper, Hybrid Testing is presented
as a solution. Hybrid Testing combines static and dynamic analyses, leveraging static anal-
ysis to perform complex reasoning about logic, memory management, and concurrency. It
creates a novel orchestration system which allows us to automatically verify the output of
static analysis tools using directed fuzzing. Hybrid Testing is the first vulnerability detection
technique with full codebase coverage and no false positives. It can be seamlessly integrated
into the development cycle and scales well to large codebases. This work details the de-
sign and implementation of Hybrid Testing and evaluates its performance across a corpus
of open-source C and C++ applications in the Magma benchmark. Hybrid Testing aims to
promote more secure software through rigorous testing, making it easier for developers to
detect security issues. We demonstrate Hybrid Testing can find vulnerabilities up to 25%
faster with 17% higher accuracy (when detecting additional bugs) than current automated
testing strategies.
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Chapter 1

Introduction

New vulnerabilities are discovered each year in critical applications. For example, CVE-2022-

2602 [18] in the Linux Kernel enables local privilege escalation and CVE-2022-3602 [19] in

OpenSSL can cause a denial of service. Erroneous, insecure software can have consequences,

especially in a government or industry context, leaving applications vulnerable to exploita-

tion. Data breaches due to insecure software are commonplace and could be mitigated

through improved automatic testing. In 2015 alone, the U.S. Office of Personnel Manage-

ment suffered multiple security breaches leaking sensitive information of approximately 25

million people [58]. There remains a need to improve software quality and assurance through

rigorous testing.

A subset of current software testing practices rely on developers to manually create test

cases to validate the behavior of a program. Two common testing practices are unit testing

small, isolated code segments and integration testing the behavior of an entire application.

Unit testing has the benefit of being fine-grained as it is targeted towards smaller code seg-

ments, but it is time-intensive to create as the number of lines of code increases. Integration

testing, conversely, has higher code coverage than unit testing but it is coarse-grained as

testing is performed at the application level [11]. All forms of manual test creation require

developers to reason about possible inputs and edge cases which may be less obvious. As

codebases grow larger and more complex, security issues and bugs slip through the cracks on

a regular basis, often resulting in the aforementioned vulnerabilities. Testing and verifying

lines of code can easily be overlooked and the complexity of a codebase brings new challenges

during the testing process. A single missed edge case could result in a new vulnerability.
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Automated testing is a promising solution to this problem as it can be seamlessly inte-

grated into the development cycle, scales well to large codebases, and is capable of complex

reasoning about logic, memory management, and concurrency. Automated testing typi-

cally requires minimal deployment effort from the developer compared to manual test case

creation and acts as a secondary assurance metric during the development cycle. Within

the growing repertoire of automated software testing tools, there are two predominant tool

classes: static and dynamic.

Static analysis inspects an application’s source code and attempts to flag bugs in the im-

plementation without executing the application [17, 6]. Static analysis has been successfully

deployed to large codebases such as Google and Facebook where it has helped prevent null-

pointer dereferences, buffer overflows, and unsatifisable control logic [5, 23]. A core strength

of static analysis is high code coverage. Static analyzers can examine an entire codebase,

processing millions of lines of code at a time [9]. This efficiency is enabled in part because

static analysis does not depend on execution traces, making it highly scalable. Static ana-

lyzers are capable of complex reasoning about logic, memory management, and concurrency.

With this complexity comes the core weakness of static analysis: false positives. Without

execution, it is often not possible to guarantee that a bug exists. Additionally, false positives

diminish the effect of the analysis on the developer, who must decide to fix an issue based

on the analyzer output [63, 9, 42]. There are numerous open-source and proprietary static

analyzers which have been heavily evaluated and pitted against each other [22, 69]. Across

each tool, one tenant is clear: there is no single best option.

Dynamic analysis attempts to find concrete inputs triggering a bug and is dependent on

execution traces. In contrast to static analysis, dynamic analysis yields no false positives.

A common sub-class of dynamic analysis, and the focus of this work, is fuzzing. Common

fuzzers such as AFL [1], AFL++ [28], and libFuzzer [49] attempt to generate invalid or

erroneous inputs resulting in a crash. A byproduct of a zero false positive rate is the

time intensive nature of fuzzing. A program must be executed each time a new input

is generated. Fuzzers operate with limited insight into the logic and control flow of the

program. Canonically, inputs are randomly generated based on extracted control flow graphs

and flow analysis. This implies a key limitation: fuzzers are only capable of testing code

reachable by execution of a given input [84]. Fuzzing has also been widely deployed for open-

source projects such as OpenSSL, Nginx, and QEMU which are part of Google’s OSS-Fuzz,
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a community effort to deploy continuous dynamic analysis to open-source applications [33].

The two classes, static and dynamic, complement each other, the weaknesses of static

analysis are the strengths of dynamic testing and vice versa. An overview of the trade-offs

present in each class are depicted in Figure 1-1. Static analysis does not depend on execution

traces and thus an entire codebase can be ingested and analyzed in a finite amount of time.

Common static analyzers such as CodeChecker [27] and FlawFinder [29] can detect bugs

like unsatisfiable logic and infinite loops, null pointer dereferences and use-after-free bugs,

as well as data races due to concurrency. The downside of such ubiquity and generality is

a large number of results as shown in Table 5.1, 20% [78] or more of which could be false

positives. Dynamic analysis is the counterpart to static analysis in this sense because it has

a zero false positive rate. Dynamic analysis, specifically fuzzing, observes execution traces

and attempts to generate inputs causing a program to crash. These traces serve as feedback

to inform future input generation, enabling dynamic analysis to explore different paths of

execution. Additionally, by using concrete input values, dynamic analysis explores data and

control flows which occur in practice. The downside of dynamic analysis is an unbounded

amount of time to detect a bug. The code may be bug free or the fuzzer may be incapable

of reaching the problematic line of code from the program’s entry-point.

Figure 1-1: Comparison of Static vs. Dynamic Testing

One of the pitfalls of static analysis is the high false positive rate [54], often 20% [78] or
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more of all static analysis results. This can be reduced or eliminated entirely with the advent

of a new type of dynamic analysis: directed fuzzing [10, 65, 57, 16, 40, 85, 45, 25, 35, 48, 70].

Prior to this work, the findings of a static analyzer typically had minimal bearing on the

results of a dynamic analysis tool [84]. Specifically, fuzzing tools were not informed by the

errors detected during static analysis. The recent innovation of directed fuzzing enables

their combination, forming a synergy between the strengths of one and the weaknesses of

the other. Combining static analysis with directed fuzzing allows fuzzing target lines of code

which are more likely to contain a bug (according to static analysis) and thus more likely

to cause a crash.

Directed fuzzers function much like their undirected counterparts, but can probe specific

code segments by attempting to generate inputs which drive execution towards a problematic

line of code. For example, AFLGo [10] calculates the distance to a target location and

uses simulated annealing to craft inputs which come closer to the target. SieveFuzz [70]

contrastingly prunes infeasible paths at runtime via statically generated preconditions to

reach a target.

To date, research in automated testing has largely remained siloed within each class

(static and dynamic analysis). Combining analyses is a promising step towards reducing

false positives. At the time of this writing, we are only aware of two works in this space:

Arbiter [74] and Batg [75]. Arbiter and Batg attempt to bridge static and dynamic analysis,

but neither leverage fuzzing. Both techniques leverage static analysis to detect vulnerabilities

and use symbolic execution (see Section 2.3) to find triggering inputs for said vulnerabilities.

With the growing research in directed fuzzing, the time is ripe to combine static analysis

and directed fuzzing. The high code coverage of static analysis and the zero false positive

rate of directed fuzzing are a complementary match. A static analyzer can first examine

a codebase, highlighting areas likely to contain security issues, and use this to inform the

directed fuzzer. The directed fuzzer can then better reason about the program’s behavior,

crafting inputs to reach the target areas specified by the static analyzer.

This work utilizes static analyzers to examine an application for likely bugs, extract

the relevant source code line numbers and filenames, and provide this information to a di-

rected fuzzer. The directed fuzzer then fuzzes the application, attempting to trigger the

bugs detected by the static analyzer and produce a crash. An orchestration layer parses

static analyzer output and generates an intermediate representation we call the Static Anal-
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ysis Intermediate Representation (SA-IR). The orchestration layer prioritizes the SA-IR for

fuzzing based on the static analyzer’s predicted likelihood a vulnerability exists.

We employ exemplar static analysis tools CodeChecker [27] and FlawFinder [29] to mit-

igate the possibility that a single static analyzer does not detect a likely security issue. We

use directed fuzzers AFLGo [10] and SieveFuzz [70] to evaluate the existence of a bug, cat-

egorizing it as a true or false positive. Multiple directed fuzzers are selected to avoid the

same bias towards a single tool. To conduct this research, we use C and C++ applications

from the Magma fuzzing benchmark [36] to provide ground truth data for both the static

analyzers and directed fuzzers.

This work creates a new class of software testing techniques with full code coverage

and zero false positives by integrating static analysis with directed fuzzing. We name this

technique Hybrid Testing and demonstrate that it can automatically detect and triage bugs.

We evaluate Hybrid Testing’s ability to reduce static analyzer false positives across a corpus

of open-source applications in the Magma benchmark and compare its detection capabilities

to AFL [1]. We show that Hybrid Testing finds 17% more bugs than AFL and can detect

bugs up to 25% faster. We demonstrate that Hybrid Testing is a step towards finding bugs

with zero false positives. We aim for Hybrid Testing to improve software quality and security

by expanding the code coverage of automated testing and eliminating false positives.
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Chapter 2

Related Work

Recent research in automated testing has primarily focused on a single class of tools. This

work broadly categorizes these classes as static analysis, dynamic analysis in the context

of fuzzing, and symbolic execution. This chapter aims to provide an overview of research

in an individual tool class as well as work on combining tool classes to improve automated

testing. To date, there has been little related work on the focus of this thesis: combining

directed fuzzing and static analysis to eliminate false positives with full codebase coverage.

2.1 Static Analysis

Static analysis, in the context of this work, examines a program’s source code and attempts to

detect errors in the implementation by pattern matching, solving constraints, or attempting

to prove theorems regarding concurrency, data flow, or general program state [17, 6]. Static

analysis has no dependence on execution traces and can detect common weaknesses described

by the MITRE CWE [2, 52]. Previous work has shown that static analysis can assist in early

detection of software bugs, but existing tools are imperfect, often yielding many reports with

a high degree of false positives [83, 55, 76].

Current efforts aiding in the evaluation of static analysis tools and their respective ac-

curacies include NIST SAMATE [34], NIST SARD [64], NIST SATE [22], and FAULT-

BENCH [37]. Software Assurance Metrics and Tool Evaluation (SAMATE) catalogs static

analyzers and classifies bugs detectable through such tools. The Software Assurance Ref-

erence Dataset (SARD) is a ground truth static analysis benchmark which can be used

to measure the accuracy of a tool. The Static Analysis Tool Exposition (SATE) presents
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current static analysis tools, how they are deployed in the real world, and their capabilities

and limitations. FAULTBENCH is an additional static analysis benchmark geared towards

precisely specifying false positives and evaluating false positive mitigation techniques.

The effective integration of static analysis into the development workflow has been a topic

of significant research. Large codebases prove especially tricky as static analyzers frequently

report many potential errors, false or true positive status unknown [13]. If a developer is

unable to understand or easily digest these errors, it was found that they would often go

unfixed [63, 23, 72]. At Google and Facebook, static analysis was integrated into the code

review process, displaying only the most likely of errors side-by-side with code reviews. This

improved bug tractability and helped detect many common bugs such as buffer overflows

and null pointer dereferences.

Significant work on static analysis tools themselves has focused on usability, namely

making errors understandable and reducing false positives [9, 42]. Though static analyzers

are capable of complex analyses, it is ultimately the developer who must validate the bug

because it could be a false positive. The interfaces presented by static analyzers as well as

their easy integration into the development cycle were found to be top priorities for usability,

matching the observations at Facebook and Google [68].

To better understand existing false positive patterns, previous evaluations of static anal-

ysis also identify and categorize false positives by common code structures including memory

leaks originating from an unsatisfiable condition, file descriptor management, and reading

from or inserting into a buffer [62]. Research on false positive detection and classification

found trends in the false positive rate based on CWE, source code origin, and location within

a program [13]. A recurring theme across recent work is identifying potential false positives

before attempting to mitigate a tool warning.

Combating the high degree of false positives has been a key area of work in promoting

more secure software. Example strategies include interactively ranking the likelihood a

warning is a false positive, using model checking to generate assertions for each warning,

and classifying false positives through machine learning via neural networks [53, 46, 72].

Despite existing elimination strategies, no method is full-proof. There still exists a need for

full codebase coverage with no false positives.

Work on the analytical capabilities of static analyzers has continued since their inception.

The Static Analysis Symposium (SAS) showcases recent such advancements which include
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optimizing for performance, making the analysis interactive rather than generating reports

to later be evaluated, and improvements to concurrency analysis [39, 66]. Tools such as Ca-

lysto [8], an interprocedurally path sensitive analyzer, and TRACER [43], a tool performing

signature based taint analysis of recurring code segments, are being developed and deployed

to the wider software testing ecosystem. Despite advancements in analytical capabilities,

developers frequently abandon tools due to false positives and cumbersome workflows.

2.2 Fuzzing-Based Dynamic Analysis

In contrast to static analysis, fuzzing is highly dependent on execution traces. Fuzzing at-

tempts to force a program into an erroneous state, typically leading to a crash, by executing a

program with generated, malformed inputs [51]. These erroneous inputs are often generated

based on the initial input, or seeds, fed to the fuzzer. Mutation-based fuzzing is a popular

technique which applies transformations to the initial seeds. Recent work has shown that the

seeds selected for fuzzing can heavily impact the number of bugs detected [38]. For example,

MOPT [50] is a mutation scheduling algorithm for selecting seeds which has demonstrated

improved performance in comparison to AFL [1]. SLF [80], on the other hand, attempts to

create valid inputs when minimal initial seed data is available.

Fuzzing techniques can be further broken down into three main families: black-box,

grey-box, and white-box [26, 31, 14, 47, 51]. Black-box fuzzing requires no knowledge of

a program’s source code and relies solely on knowledge of crashes to generate inputs and

detect bugs. Without knowledge of a program’s internals, the fuzzer is unable to determine

if an input expanded code coverage. This implies that a large selection of input seed data

may be necessary for black-box fuzzing to be effective. Example use cases of black-box

fuzzing include testing applications with complex input formats such as SQL or the HTML

DOM [3]. Web applications are predominant subjects for black-box fuzzing.

White-box fuzzing requires full access to source code and often uses in-depth program

analysis to reason about a program’s behavior and generate corresponding inputs. The

overhead required for white-box fuzzing is typically much higher than black-box fuzzing

due to this dependence on program internals [51]. White-box fuzzing functions similarly

to concolic execution (see Section 2.3) in that it records the branch constraints along the

execution trace for a given input. It then attempts to create a new input by negating and

17



mutating these constraints [47]. SAGE [32] is one such popular white-box fuzzer.

Grey-box fuzzing lies in the middle and is the primary focus of this work. Popular grey-

box fuzzers include AFL [1], AFL++ [28], and libFuzzer [49]. Grey-box fuzzers require some

knowledge of program internals and use code instrumentation to detect the code coverage of

a generated input during execution. Based on the instrumentation output, fuzzers commonly

use mutation strategies including bit flips, copying, and deleting to create new inputs [47, 51].

Recent work on grey-box fuzzing include GREYONE [30], MUZZ [15], CONZZER [41], and

SGFuzz [7]. GREYONE is a data flow sensitive fuzzer which applies taint analysis to

reach code regions typically unexplored under normal execution conditions. MUZZ and

CONZZER, on the other hand, are designed to fuzz concurrent applications by exploring

different thread interleavings and attempting to detect data races or leaks. SGFuzz aims to

explore bugs resulting from complex program states, or bugs only occuring after a specific

sequence of inputs are fed to a program.

A common thread among many grey-box fuzzing techniques is coverage guided fuzzing

(CGF) which uses program instrumentation to detect code segments fuzzing has explored

and attempts to increase code coverage. Recent work on techniques for CGF include AFLs-

mart [60] and MobFuzz [82]. AFLsmart improves upon existing mutation strategies for

test case generation through input structure awareness, providing a higher level of rea-

soning about the initial seeds. MobFuzz takes a new approach by modeling fuzzing as a

multi-objective problem instead of the single objective to increase code coverage. This is

accomplished by adaptively selecting which objective to optimize for given a generated in-

put, including speed, input size, and potential reward for a given input. In contrast to

AFLsmart and MobFuzz, UnTracer [56] and Fine-Grained Coverage-Based Fuzzing [79] of-

fer improvements to existing coverage analysis techniques. UnTracer reduces the overhead

incurred during fuzzing with additional instrumentation on how much of the codebase has

currently been explored during a fuzzing campaign. Fine-Grained Coverage-Based Fuzzing

differentiates itself by examining control and data flow rather than overall branch coverage

to determine if a fuzzer test case increased code coverage.

The advent of directed grey-box fuzzing has helped to deliver new work on code coverage.

Directed fuzzing can be further broken down by the techniques used to drive execution to-

wards a specific code segment. A common technique across all fuzzers cited is a reachability

analysis. This is generally performed by extracting a control flow graph and computing the
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distance from a program’s entry point to the target location’s basic block. AFLGo [10], UA-

Fuzz [57], Hawkeye [16], Windranger [25], and LOLLY [48] implement novel seed selection

algorithms based on coverage information at runtime. Beacon [40] and SieveFuzz [70] make

use of static analysis to prune impossible paths, greatly reducing the input space. MC2 [65]

is a provably efficient directed fuzzer which relies heavily on Monte Carlo simulation and a

randomized binary search algorithm. CAFL [45] and Dowser [35] combine symbolic execu-

tion to constrain and create new inputs. Finally, FuzzGuard [85] approaches fuzzing from

an AI perspective and uses deep learning to compute likely inputs.

While directed fuzzing in the context of this work attempts reach a specific code region,

other forms of guided fuzzing include ParmeSan [59] and MemLock [77]. ParmeSan uses

santizers such as AddressSantizer (ASan) and UndefinedBehaviorSanitizer (UBSan) to guide

fuzzing towards code segments likely to violate sanitizer checks. MemLock, contrastingly, is

designed to generate test cases with high memory consumption and cause corruption.

Fuzzers are commonly paired with sanitizers such as address sanitization (ASan) to am-

plify detection of different classes of bugs. Not all bugs lead to program crashes; pairing

fuzzing with a sanitizer can help detect bugs which may otherwise slip through the cracks.

Even if a program does crash, the bug could have occurred much earlier in runtime which fur-

ther complicates root cause analysis. Sanitizers often act as an early or additional detection

mechanism during the fuzzing process.

2.3 Symbolic Execution

Symbolic execution is a mathematical testing technique which reasons about inputs at a

given code segment on all possible execution paths by applying constraints to the input.

It then uses a constraint or satisfiable modulo theory (SMT) solver such as Z3 [81] to

solve for possible inputs. The downside of symbolic execution is that it must track all the

constraints for a given input, which can quickly explode as the execution path expands. At

this point, symbolic execution cannot reason deeper into the code as the constraint solver is

unable to find a solution. To combat this, many symbolic execution tools perform concolic

execution, augmenting their analysis with concrete inputs to relax constraints. Popular

symbolic execution tools include Angr [67] and KLEE [12] which are capable of more complex

reasoning than fuzzing, at the cost of constraint explosion. New tools such as SymCC [61],
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which embeds concolic execution instrumentation directly into a compiled binary, are also

being developed within the symbolic execution testing landscape.

2.4 Combining Analyses

Hybrid Testing is not alone in its goal to create a scalable automated testing tool with no

false positives. Arbiter [74] is a black-box binary analysis tool which combines static analysis

and symbolic execution. Arbiter has proven capable of detecting CWEs such as unchecked

return values (CWE-252), uncontrolled format strings (CWE-134), and predictable seeds in

a PRNG (CWE-337). It operates by statically analyzing a binary for predefined conditions

such as the CWEs above and uses symbolic execution to derive an input to reach the code

segments from static analysis.

Batg [75] is another automated testing tool which combines static analysis and symbolic

execution. Batg detects vulnerabilities by creating a test suite to bound the behavior of

a program. Unlike Arbiter, Batg is a white-box testing tool. It requires source code for

static analysis to detect potential program errors then uses symbolic execution to explore

all inputs along the path to those errors.
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Chapter 3

Design

Hybrid Testing combines static and dynamic analysis by using directed fuzzing to fuzz the

target lines of code flagged during static analysis. It aims to automatically verify true posi-

tive static analysis targets and eliminate false positives. Our goals are for Hybrid Testing to

provide full codebase coverage with complex reasoning about potential bugs, a core strength

of static analysis, with the zero false positive rate of fuzzing. We aim for Hybrid Testing to

promote more secure software by detecting deeper bugs than current testing techniques.

Hybrid Testing must be fully modular, supporting interchangeable static analyzers and

directed fuzzers. This enables us to generalize Hybrid Testing to any toolkit (any subset of

static analyzers or directed fuzzers used for automated testing). A new static analyzer or

directed fuzzer should be easily integratable into the workflow. Hybrid Testing must also be

fully automated. To support this, it should be capable of ingesting the output from static

analysis and using this to begin directed fuzzing a given target code location. Modularity

and automation is a core requirement for adoption of new testing techniques.

Hybrid Testing requires three component pieces: a set of static analyzers, an orchestra-

tion layer, and a set of directed fuzzers. The components are connected sequentially as shown

in Figure 3-1, allowing each stage to be fully modular. Figure 3-1 shows that Hybrid Testing

supports interchangeable static analyzers and directed fuzzers. Our pipeline runs a static

analyzer then parses and ingests its output using an orchestration layer. The orchestration

layer acts as an intermediary between static analysis and a directed fuzzer, translating the

outputs of one to the input of the other. The orchestration layer is responsible for gener-

ating a novel Static Analysis Intermediate Representation (SA-IR) and lowering the SA-IR
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Directed Fuzzer Directed Fuzzer

Figure 3-1: Hybrid Testing Pipeline Design

to any directed fuzzer. In this chapter, we examine the properties each component must

have to automate the Hybrid Testing workflow. We also introduce the novel Static Analysis

Intermediate Representation (SA-IR) and explain the choices we made to enable lowering

the SA-IR to any directed fuzzer.

3.1 Static Analyzer Requisite Properties

The first component in the Hybrid Testing toolchain is static analysis. Figure 3-1 shows

how the results of static analysis are then fed to the orchestration layer. We require a static

analyzer to maintain the following properties for compatibility with Hybrid Testing:

• Provide full codebase coverage and be executable from the command line.

• Detect weaknesses which can be validated using existing santizers.

• Assign a severity to detected results and output results in a standardized format.

We require a static analyzer to provide full codebase coverage to identify potential vul-

nerabilities anywhere within a program’s source code. We assume that a static analyzer

outputs vulnerabilities which then act as input for directed fuzzing. Full codebase coverage

also allows Hybrid Testing to meet its goal of zero false positives because Hybrid Testing

can exhaustively fuzz all static analysis targets.

We further require the vulnerabilities found during static analysis to trigger an existing

sanitizer. This allows us to verify if a bug actually exists, or if the static analysis result is a

false positive. If a bug exists, an existing sanitizer such as address sanitization should detect

the bug. A key advantage of this approach is that Hybrid Testing only has to run a sanitizer

when a directed fuzzer reaches a bug location reported by static analysis. Sanitizers are
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time intensive and computationally expensive, allowing us to prioritize fuzzing additional

static analysis targets instead of running every fuzzing input with sanitization enabled.

Assigning a severity to static analysis targets and standardizing output allows Hybrid

Testing to fully automate bug detection. We can prioritize which static analysis targets

to fuzz based on severity and easily integrate new tools into Hybrid Testing. This allows

Hybrid Testing to generalize to any static analyzer. While it is not strictly necessary for a

tool to be executable from the command line, it enables the creation of a fully automated

pipeline without manually loading and storing results.

3.2 Orchestration Layer and SA-IR Overview

The second component in the Hybrid Testing toolchain is the orchestration layer as shown

in Figure 3-1. The orchestration layer is responsible for parsing the output of a static

analyzer then using those results to inform directed fuzzing. The orchestration layer must

be modular, allowing for easy integration of a new parser for each static analyzer’s results.

It should accept configuration parameters on which static analyzers and directed fuzzers will

be run. This allows the orchestration layer to select a parser and select how to lower static

analysis results.

Hybrid Testing’s orchestration layer design is centered around the SA-IR. The SA-IR is

a lightweight, simplified format used to extract metadata from any static analyzer and is

capable of being lowered to a directed fuzzer’s input format. To meet these requirements,

the SA-IR must minimally have the following properties:

• Uniquely identify the location of a static analysis result within a codebase — including

file name, line number, and relative path within the codebase.

• Identify which static analyzer produced the SA-IR to refine results by tool.

• Categorize the SA-IR by a bug class, such as by CWE.

• Identify the severity of static analyzer warning, allowing prioritization of flagged results

by severity thresholds.

We require the SA-IR to uniquely identify a static analysis target so it can be lowered

to any directed fuzzer. A directed fuzzer must know exactly which code region it should

attempt to fuzz and the SA-IR retains the full metadata associated with a given line of

code. Regardless of the input format required by a directed fuzzer, the SA-IR can pinpoint
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an exact line of code and the orchestration layer can transform this target line into the

required format. It is also worth noting that a SA report may be in the vicinity of a bug,

but not at the exact line of code where the bug is detected. This is discussed further in

Section 4.4 and may necessitate a root cause analysis for why a bug actually occurred. We

discuss the root cause analysis we performed in Section 5.5.

Categorizing the SA-IR by bug class, severity, and analyzer are essential for meta-analysis

and prioritization. We can prioritize which static analysis results to fuzz by examining

the severity stored within the SA-IR. For example, Hybrid Testing could target only static

analysis results deemed high severity. We can also prioritize by which bug class was assigned

to the SA-IR; this provides additional flexibility by allowing us to fuzz only memory or

concurrency issues, for example. Tagging the SA-IR with the analyzer that produced the

report allows for report generation and gathering statistics on which tool produced the SA-

IR. The fields in the SA-IR ensure that the orchestration layer is highly configurable and

customizable to different toolkits.

3.3 Directed Fuzzing Requirements

The final component in the Hybrid Testing toolchain is directed fuzzing (see Figure 3-1).

We require a directed fuzzer to be executable from the command line and to accept input

on which code segment should be fuzzed. The fuzzer should be able to instrument a variety

of open-source applications, accept a standardized input format, and output relevant data

related to crashes. It should also be noted that Hybrid Testing is sensitive to the performance

of a directed fuzzer. To apply Hybrid Testing, a directed fuzzer must be able to run an

application and attempt to reach a static analysis target. Hybrid Testing’s performance

could vary significantly due to the underlying capabilities of a directed fuzzer to run a

program and reach a target. Ideally, a directed fuzzer would also produce data flows and

statistics if a target line of code was reached.

Hybrid Testing aims to mimic current fuzzing techniques in that it is fully automatic

and should require minimal user intervention. Due to the flexibility of the SA-IR, Hybrid

Testing imposes looser requirements on which directed fuzzers are compatible. This enables

easier integration of fuzzers and preserves the modular design of Hybrid Testing.
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Chapter 4

Implementation

Hybrid Testing combines static analysis with directed fuzzing to automatically analyze a

codebase to detect bugs and begin fuzzing a region of code based on the static analysis. The

Hybrid Testing pipeline is fully modular, supporting interchangeable static analyzers and

directed fuzzers. This work implements a novel Static Analysis Intermediate Representation

(SA-IR) which enables translation from a static analyzer and can then be lowered to the

format required for directed fuzzing. Hybrid Testing is highly generalizable to different tool

kits due to this modular setup.

Hybrid Testing is implemented as a three stage pipeline. A pipeline diagram is shown

in Figure 4-1. The first stage is static analysis of a codebase, the second is an orchestration

layer responsible for generating the SA-IR and lowering it to the format required for directed

fuzzing, and the final stage instruments and fuzzes a program. Each pipeline stage is sepa-

rated to allow easy integration of new tools as well as inspection of static analysis results,

the SA-IR, and fuzzing results. The role of each component is explained in the relevant sec-

tion. To evaluate Hybrid Testing, the ground truth fuzzing benchmark Magma [36] is used.

This work makes multiple enhancements to Magma to support Hybrid Testing, including

integrating directed fuzzing and static analysis.

4.1 Static Analysis

The first step in detecting bugs with Hybrid Testing runs two open-source static analyzers,

CodeChecker [27] and FlawFinder [29], on a codebase. These static analyzers were selected

for their widespread usage and documentation, compatibility with C and C++ code, and
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Figure 4-1: Hybrid Testing Pipeline Implementation

easy integration into the development workflow from the command line. However, these

analyzers are only a subset of possible tools due to the modular design. Throughout the

development process, we observed that CodeChecker and FlawFinder often found different

bugs. This is consistent with prior evaluations of static analysis tools [22, 4]. To minimize the

impact of a single tool’s shortcomings on Hybrid Testing, this work combines two unique

tools running in parallel to increase the probability of detecting a bug and reduce false

negatives. Expanding the number of static analyzers used changes false positive mitigration

strategies, expanding the design space of static analysis tools and potentially enabling better

bug detection with Hybrid Testing.

CodeChecker is built on top of the LLVM Clang Analyzer and requires building an

application before static analysis. This has the benefit of inspecting compiler commands

and generating a compilation database. FlawFinder, contrastingly, is a Python framework

which does not require compilation. The combination of the two provide Hybrid Testing

with unique insights into the source code and the compiled application. Combining multiple

tools promotes generalizability and in practice yielded more potential bugs than a single

static analyzer. Hybrid Testing is only able to validate vulnerabilities detected through

static analysis and more potential bugs allows for more rigorous testing of an application.

Hybrid Testing integrates two exemplar static analyzers for the purpose of this work; fur-

ther evaluation of the ability of a static analyzer to detect a bug is out of scope. FlawFinder

and CodeChecker support detection of many common weaknesses such as use-after-free,

buffer overflows, and null pointer dereferences [29, 73]. By capturing a wide class of weak-

nesses through the combination of two static analyzers, this work expands the design space
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Table 4.1: FlawFinder Output Format

File Line Column Level Category Name

libxml2/repo/os400/dlfcn/dlfcn.c 466 22 5 race readlink

of Hybrid Testing, augmenting the number of code regions to target.

A shortcoming of multiple static analysis tools is the differing output formats across tools.

Each analyzer is unique and may provide more or less metadata when reporting a potential

bug. Figure 4-2 shows a sample output from CodeChecker in JSON format. CodeChecker

reports bug locations, a message about the potential vulnerability, an estimated severity, as

well as events along the path to the bug. Table 4.1 shows sample output from FlawFinder

in CSV format. Compared to CodeChecker, FlawFinder outputs similar metadata with the

exception of bug path events. The varying output formats require writing a new parser

for each static analyzer integrated into Hybrid Testing. The parsers for CodeChecker and

FlawFinder require 50 to 100 lines of Python code and use simple tokenization to extract

the metadata necessary for the SA-IR. Writing a new parser requires minimal development,

provided that a static analyzer produces a standardized output format which can be reliably

parsed. The orchestration layer implements such parsers to support translation from static

analysis into SA-IR. Figure 4-1 details the static analysis stage of the pipeline with the

outputs of FlawFinder and CodeChecker passing into the orchestration layer.

4.2 Orchestration Layer

Hybrid Testing implements the second stage of Figure 4-1 as a command line tool in

Python. The orchestration layer is responsible for parsing the raw output of CodeChecker

and FlawFinder to generate the SA-IR. SA-IR standardizes the raw output snippets shown

in Figure 4-2 and Table 4.1 to enable both directed fuzzing and manual inspection of results.

The orchestration layer is highly configurable, allowing specification of input and output for-

mats, filtering static analysis results by severity, and including or excluding specific code

regions by inputting diff files. After generating the SA-IR, the orchestration layer lowers the

SA-IR to the desired output format for directed fuzzing.
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1 {
2 "file": {
3 "path": "libxml2/repo/include/libxml/list.h"
4 },
5 "line": 122,
6 "column": 33,
7 "message": "’old ’ declared with a const -qualified

typedef type; results in the type being ’struct
_xmlList *const ’ instead of ’const struct _xmlList
*’",

8 "checker_name": "misc -misplaced -const",
9 "severity": "LOW",

10 "analyzer_name": "clang -tidy",
11 "category": "misc",
12 "type": null,
13 "bug_path_events": [
14 {
15 "file": {
16 "path": "libxml2/repo/include/libxml/list.

h"
17 },
18 "line": 24,
19 "column": 18,
20 "message": "typedef declared here"
21 },
22 ...
23 ],
24 "macro_expansions": []
25 }

Figure 4-2: CodeChecker Output Format

4.2.1 Generating Static Analysis Intermediate Representation

The orchestration layer accepts a static analysis tool name as input to select a parser.

CodeChecker requires parsing a JSON file while FlawFinder requires parsing a CSV file.

Each parser extracts the fields described in Figure 4-3 from a static analyzer’s output to

create the SA-IR. Hybrid Testing implements SA-IR as a Python object and generates a

new SA-IR for each result produced during static analysis. Initial development showed that

the fields in SA-IR were sufficient to provide information to AFLGo [10] and SieveFuzz [70]

to begin fuzzing an application.

SA-IR provides flexibility to the Hybrid Testing architecture. By creating an intermedi-
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class SA_IR:
file: str = ""
line: str = ""
target: str = ""
checker: str = ""
category: str = ""
analyzer: str = ""
severity: str = ""
bug: str = ""
edges: list

• file: The relative path to the file containing a potential bug.

• line: The line number where the bug occurs.

• target: The file name without its path, a colon, and the line number ("file:line").

• checker: Which static analyzer module discovered the bug.

• category: Class of bug determined by static analysis (buffer overflow, data race, etc.)

• analyzer: Which analyzer discovered the bug.

• severity: The estimated impact of the bug.

• bug: An optional field used for ground truth testing. See Section 4.4.

• edges: If available, a list of "file:line" targets along the execution path to the bug.

Figure 4-3: Static Analysis Intermediate Representation (SA-IR)

ate representation, this work generalizes all static analyzers to a single format. Integrating

an additional static analyzer is simple, requiring only a parser capable of ingesting the an-

alyzer’s output. Because static analysis often produces thousands of results with varying

severities, the orchestration layer is capable of prioritizing results by command line argu-

ment. This prevents data bloat by reducing the number of SA-IR generated and enables this

work to evaluate a subset of static analysis targets with potentially high impact. Table 4.2

and Table 4.3 show examples of summary data outputted when parsing SA results.

4.2.2 Lowering SA-IR

After generating the SA-IR, the orchestration layer accepts configuration parameters to

specify how the SA-IR should be lowered. During this step, a user can specify a list of

source code files to include, limiting the static analysis results to only those occurring in

the inputted files. A user can further refine the static analysis results by inputting diff files,
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Table 4.2: Orchestration Layer Output — Parsing CodeChecker

Checker Name Category Severity Location

core.uninitialized.Assign Logic Error HIGH xpointer.c:2313
cppcheck-oppositeInnerCondition Warning MEDIUM xmlcatalog.c:136

misc-misplaced-const Misc LOW list.h:122

Table 4.3: Orchestration Layer Output — Parsing FlawFinder

Checker Name Category Severity Location

readlink race 5 dlfcn.c:466
strcpy buffer 4 HTMLparser.c:6534
strcat buffer 4 HTMLparser.c:6535

allowing Hybrid Testing to perform patch testing and target (or avoid) select regions of code.

This is necessary because Magma injects bugs by applying a diff to a codebase and Hybrid

Testing prioritizes static analysis results within these injected bug regions. Prioritizing and

filtering the SA-IR by severity and code location allows Hybrid Testing to first fuzz areas of

interest in lieu of sequentially fuzzing all static analysis results.

In practice, specifying a diff file is imperfect. Diff files only include lines of code which

changed and static analysis results could occur within some delta of any line present in the

diff. The orchestration layer has a configurable parameter for this delta and when a diff is

inputted, it performs a bisection search on the lines within the diff to find the closest line to

a given SA-IR. If the SA-IR is within the configured delta of the diff, it can then be used as

a target location for the desired fuzzer. This configurable delta has two benefits: it allows

Hybrid Testing to evaluate potential bugs close to the input diffs (downstream or upstream)

and those explicitly within changed code regions.

After the filtering process, the orchestration layer writes the lowered SA-IR to an output

file in the format which will be used for fuzzing. AFLGo requires a list of "file:line" pairs to

identify which basic blocks to direct fuzzing towards. Initial testing showed that this poses a

problem as each SA-IR produces a single "file:line" pair and AFLGo frequently was unable

to identify any target basic block when fed a single pair. To mitigate this, the orchestration

layer lowers SA-IR to AFLGo by padding the output with a parametrizable number of lines
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before and after that in the SA-IR. We found that this was sufficient for AFLGo to fuzz an

assortment of applications used to evaluate Hybrid Testing.

SieveFuzz, in contrast to AFLGo, requires a specific function name as input to target

during fuzzing. Neither CodeChecker nor FlawFinder output the function associated with a

static analysis result. To combat this and lower SA-IR to SieveFuzz, Hybrid Testing utilizes

GDB’s info module to extract the function from a "file:line" pair. While this approach may

not work for results occuring in global variables or header files, it was sufficient to allow

Hybrid Testing to fuzz a subset of the applications for evaluation. Automatically extracting

the function name from a "file:line" pair requires no manual intervention during the testing

process, maintaining the fully automated architecture required by Hybrid Testing.

4.3 Directed Fuzzing

Figure 4-1 shows the orchestration layer lowering the SA-IR and beginning the fuzzing

process. The orchestration layer requires configuration parameters to specify the directed

fuzzer when lowering the SA-IR; this input is parameterized for full automation. Hybrid

Testing currently supports two directed fuzzers: AFLGo [10] and SieveFuzz [70]. Both are

open-source and have readily available documentation for installation and usage. AFLGo

has served as a standard of comparison for many directed fuzzing evaluations and is actively

maintained by the open-source community [65, 57, 16, 40, 85, 45, 25, 70, 48]. SieveFuzz is

a new directed fuzzer which incorporates static value flow analysis to restrict program state

during fuzzing. Directed fuzzers remain an active research technology and are constantly

evolving. Hybrid Testing integrates multiple directed fuzzers for the same reason multiple

static analyzers are utilized: to reduce the bias and probability that one fuzzer is unable to

detect a bug due to inherent limitations of the tool. This work assumes that by expanding

the number of fuzzers, the chance of triggering a true positive bug increases. However, the

ability of a directed fuzzer to reach and trigger a bug is out of the scope of this work.

In practice, multiple directed fuzzers also increased the number of applications Hybrid

Testing could evaluate. AFLGo and SieveFuzz insert checks and logging instrumentation

when compiling a codebase. This instrumentation informs input generation and is used to

direct fuzzing towards a code region. AFLGo and SieveFuzz are imperfect and frequently fail

to instrument codebases, meaning that applications cannot be fuzzed. This work evaluates
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two directed fuzzers as an initial proof of concept.

4.3.1 AFLGo

When SA-IR is lowered to AFLGo, it produces a series of "file:line" target pairs. AFLGo

then performs two compilations: the first attempts to identify basic blocks corresponding to

the inputted "file:line" pairs and the second instruments the application based on a distance

calculation to the target basic blocks [10]. During development, it was found that AFLGo

often failed to identify basic blocks or generate the distance to a basic block. Because of

this, there are intermittent static analysis targets which cannot be fuzzed. AFLGo also

requires applications to be built with link time optimization (LTO). If an application does

not support LTO, Hybrid Testing attempts to use SieveFuzz, which does not require LTO.

Hybrid Testing makes additional enhancements to AFLGo such as recursive detection

of intermediate files used for distance calculation (which was previously hardcoded) and the

ability to compile applications with assembly only source files. During the evaluation process,

we found this necessary to support fuzzing applications within Magma [36]. Despite these

enhancements, AFLGo frequently failed to build applications because its distance calculator

was unable to identify basic blocks to target based on our static analysis results.

4.3.2 SieveFuzz

When we lower SA-IR to SieveFuzz, it produces a function name where the static analysis

result occurs. SieveFuzz utilizes SVF [71] to generate fuzzing test cases and is built on top

of a now deprecated version of AFL++ [28]. During the development cycle, we found that

applications fuzzable with a non-deprecated AFL++ (such as SQLite3) were unable to be

fuzzed by SieveFuzz. Future improvements to Hybrid Testing (and SieveFuzz) could include

porting SieveFuzz to a newer version of AFL++. We also found that larger codebases such

as OpenSSL caused SieveFuzz to crash, failing to generate any test cases. SieveFuzz was,

however, able to fuzz applications AFLGo failed to build such as Lua, making it a valuable

integration by expanding the landscape of evaluated applications. In the event that both

AFLGo and SieveFuzz are unable to instrument and fuzz an application, Hybrid Testing is

currently unable to evaluate it.

To integrate SieveFuzz into Hybrid Testing, it was necessary to remove the job deploy-

ment architecture included with SieveFuzz. Section 4.4 describes a containerization policy
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used instead of this architecture. Additionally, we found that SieveFuzz frequently timed

out when evaluating input seeds for fuzzing, even when the same seeds produce no timeouts

for AFL or AFL++. If this occurs, we remove the seeds causing the timeouts from an

application’s seed corpus.

4.4 Magma

This work applies Hybrid Testing to the Magma ground truth fuzzing benchmark [36],

integrating AFLGo and SieveFuzz into Magma as well as adding an execution harness to

Magma’s existing toolset. Magma runs each fuzzer inside a separate Docker [24] container

to guarantee cross platform portability and consistency. The integration of AFLGo and

SieveFuzz is as described in Section 4.3 where each fuzzer runs in a separate Docker container.

Hybrid Testing also integrates CodeChecker and FlawFinder as a "pseudo-fuzzer", meaning

that the analyzers are run in exactly the same environment as a fuzzer in the benchmark

but perform static analysis in lieu of fuzzing.

Hybrid Testing achieves full automation with Magma via an execution harness which

chains together the stages of Figure 4-1. The workflow for Magma first builds a Docker

container for a given Magma application and then performs static analysis. The harness

then extracts the results from the container, runs the orchestration layer to parse the outputs

and generate an SA-IR for each result, and finally signals the orchestration layer to lower

the SA-IR to a given fuzzer. Each SA-IR corresponds to a new Docker container which runs

the desired directed fuzzer and targets the location specified in the SA-IR. Because static

analysis generates many potential results and limited CPU cores were available for the scope

of this work, each Docker container is pinned to a CPU core. This enables Hybrid Testing

to fuzz many static analysis results in parallel, with the fuzzer responsible for a given result

isolated to a single core. While both AFLGo and SieveFuzz are capable of utilizing multiple

cores to fuzz an application (and could potentially discover more bugs when doing so),

fuzzing many static analysis results in parallel yielded initial results described in Chapter 5.

A key downside to the current Magma containerization policy used by Hybrid Testing

is that creating a new Docker container for each SA-IR is storage expensive, requiring an

estimated 10 GB of disk space on average per container. Specifying a new lowered SA-IR for

each container (and therefore fuzzer) requires repeated instrumentation of an application in
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1 {
2 "aflgo": {
3 "libxml2": {
4 "xmllint": {
5 "0": {
6 "reached": {
7 "XML009": 10,
8 "XML012": 10,
9 "XML017": 5,

10 "XML003": 10,
11 "XML006": 10,
12 "XML008": 2705,
13 "XML001": 10
14 },
15 "triggered": {
16 "XML017": 80
17 },
18 "sa_target": "parser.c:2688",
19 "bug": "XML010"
20 },
21 }
22 }
23 }
24 }

Figure 4-4: Example Results from Magma with Hybrid Testing — The notation
"XML009":10 signifies that AFLGo reached the bug with ID XML009 after 10 seconds
of fuzzing.

every container. This can be time intensive as the number of static analysis results scale.

Additionally, Magma uses diff files to inject bugs into the benchmark applications. Hy-

brid Testing inputs these diff files to the orchestration layer, allowing us to automatically

tag an SA-IR with a known bug (see Figure 4-3). This enables the evaluation of static

analysis results both within injected bugs and those outside, allowing for true positive and

true negative verification. Section 4.2.2 describes how this method is imperfect because diff

files in Magma do not always contain bugs (some are instrumentation for logging an already

present bug).

Figure 4-4 shows a sample output from fuzzing libxml2. Hybrid Testing augments the

output with the static analysis result and the bug corresponding to that result, provided

that the static analysis result is within a bug region injected by Magma. This enables the
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analysis in Chapter 5 and uniquely identifies a fuzzing campaign.

4.5 Discussion

Current limitations of the Hybrid Testing integration with Magma include the repeated

creation of Docker [24] containers for each new SA-IR. This significantly hinders performance

as each container requires 10 GB of disk space and multiple time-intensive instrumentation

stages to compile a Magma application. The majority of disk utilization is derived from

custom LLVM installations required for each directed fuzzer. To combat this, Magma could

be augmented to use shared memory for each directed fuzzer. The shared memory could be

marked readable and executable only, acting as a common layer in each Docker container.

This would dramatically reduce the size of each Docker container, enabling higher utilization

of compute resources and increasing the maximum number of concurrent fuzzing campaigns.

With respect to the time-intensive instrumentation stages, potential solutions to consol-

idate the stages are being developed for AFLGo. This could dramatically decrease the time

to build an application and begin fuzzing, a process which can take minutes to hours depend-

ing on available compute resources. SieveFuzz, on the other hand, recently open-sourced its

codebase and has yet to announce any plans to combine instrumentation stages.
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Chapter 5

Evaluation

Hybrid Testing is a novel automated testing solution to detect bugs with no false positives

and full codebase coverage. It combats the approximately 20% [78] false positive rate of static

analysis by using directed fuzzing to validate true positives and eliminate false positives.

This work presents initial results using the Magma [36] ground truth fuzzing benchmark

and exemplar static analysis tools. The evaluation of Hybrid Testing attempts to answer

the following research questions:

• RQ1: Does Hybrid Testing find bugs which are not found through undirected fuzzing

(e.g. with AFL), confirming Hybrid Testing can find deeper, complex bugs?

• RQ2a: Can Hybrid Testing validate true positive static analysis reports?

• RQ2b: Can Hybrid Testing eliminate false positives, confirming if a static analysis

report is a bug?

• RQ3: Does Hybrid Testing find bugs faster than undirected fuzzing?

To conduct the experiments described in this chapter, we leverage six virtual machines

with 32 CPU cores, 64 GB of memory, and 200 GB of physical storage. Each virtual machine

has the following CPU specifications:
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Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   40 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          32
On-line CPU(s) list:             0-31
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
CPU family:                      6
Model:                           79
Thread(s) per core:              1
Core(s) per socket:              1
Socket(s):                       32
Stepping:                        1
BogoMIPS:                        4399.99
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep 
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb 
rdtscp lm constant_tsc arch_perfmon rep_good nopl cpuid tsc_known_freq pni 
pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt 
tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 
3dnowprefetch invpcid_single pti ssbd ibrs ibpb tpr_shadow vnmi flexpriority 
ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed 
adx smap xsaveopt arat md_clear
Virtualization:                  VT-x
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       1 MiB (32 instances)
L1i cache:                       1 MiB (32 instances)
L2 cache:                        128 MiB (32 instances)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-31
Vulnerability Itlb multihit:     KVM: Mitigation: VMX disabled
Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional 
cache flushes, SMT disabled
Vulnerability Mds:               Mitigation; Clear CPU buffers; SMT Host 
state unknown
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Mmio stale data:   Vulnerable: Clear CPU buffers attempted, no 
microcode; SMT Host state unknown
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass 
disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and 
__user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, 
IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Mitigation; Clear CPU buffers; SMT Host 
state unknown

It should be noted that this evaluation does not perform parallel fuzzing. The Magma

benchmark pins each fuzzing campaign to a single CPU core, disabling parallel fuzzing.

The virtual machines used for this evaluation have 32 CPU cores, allowing a maximum of 32

concurrent fuzzing campaigns. Section 4.4 further describes that the current implementation

of Hybrid Testing is not capable of fully utilizing all 32 cores due to limited physical storage,

supporting an average of 24 concurrent fuzzing campaigns per virtual machine.
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5.1 Methodology

We leverage the Magma fuzzing benchmark [36] for evaluation. Magma consists of multiple

open-source applications with injected bugs from real world vulnerabilities, making it an

ideal candidate to show Hybrid Testing is capable of detecting true and false positives.

In total, Hybrid Testing was able to evaluate six of the nine benchmarks included in

Magma. This includes libpng, libsndfile, libtiff, libxml2, lua, and poppler. Hybrid Testing

was unable to evaluate openssl, php, and sqlite3 because both AFLGo and SieveFuzz failed

to build and instrument the Magma applications. It should also be noted that the experi-

ments conducted using Magma were performed with a single fuzzing harness per application.

Applications such as libxml2, poppler, and libtiff provide multiple fuzzing harnesses which

can be used to fuzz different parts of the application. The initial results shown in this

chapter use a single fuzzing harness per application due to the limited CPU power available

during the course of this work.

Throughout the course of this chapter, we use bug severity and location as experimental

parameters to setup our evaluation of Hybrid Testing. This allows us to performs three

classes of evaluation using Magma to answer our research questions:

• Hybrid Testing fed with static analysis results deemed high severity and are within

the injected bug regions

• Hybrid Testing fed with static analysis results deemed medium or higher severity and

are within the injected bug regions

• Hybrid Testing fed with static analysis results deemed high severity and are outside

of the injected bug regions

Splitting the evaluation by static analysis report severity allows us to prioritize fuzzing

SA results of higher severity. We prioritize higher severity results because we assume that

these SA reports are more likely to be true positive bugs. As future work, Hybrid Testing

should be evaluated using all SA reports, regardless of severity. For the remainder of the

evaluation, we compare Hybrid Testing’s ability to detect more bugs, validate true and false

positives, and detect bugs faster across different severities of static analysis warnings.

This work also splits the evaluation by static analysis results within the bugs injected

by Magma and those outside the injected bug regions. This is accomplished by the method

described in Section 4.2.2. Splitting the evaluation along this axis allows confirmation of

38



true positives and elimination of false positives. If a static analysis result is within an

injected bug region, we fuzz the result using Hybrid Testing and detect it through Magma’s

Ideal Sanitizer instead of AFLGo or SieveFuzz’s Address Sanitizer. We chose to use the

Ideal Sanitizer for Magma injected bugs as it produces a crash any time an injected bug is

triggered and has low overhead. Without the Ideal Sanitizer, a Magma injected bug may

not cause a crash. If a static analysis result is outside an injected bug region, we again use

Hybrid Testing but instead detect any bugs using an address sanitizer and crashing inputs

found through fuzzing. We chose to use an address sanitizer because it can detect a wide

class of bugs and must only be run for crashing inputs found through fuzzing as part of

our root cause analysis described in RQ2b. Splitting the evaluation along this axis allows

Hybrid Testing to evaluate scenarios where ground truth is known (i.e. the injected bug

regions) and scenarios where ground truth is unknown.

As a baseline of comparison, this work pits Hybrid Testing against AFL, a long-standing,

undirected fuzzer supported by Magma. Comparing against AFL enables analysis of Hybrid

Testing’s performance with respect to current testing tools and its ability to find different

bugs or detect bugs faster. This is an important step in demonstrating that Hybrid Testing

is an improvement to current automated testing solutions.

To answer RQ1, we feed Hybrid Testing static analysis results inside the bugs injected

by Magma. We examine if fuzzing SA results inside the injected bug regions detects more of

Magma’s constituent bugs. We compare the number of bugs detected per application fuzzed

by Hybrid Testing to a baseline of AFL.

To answer RQ2a, we compare Hybrid Testing’s ability to fuzz and trigger an injected

bug at a given static analysis location. This allows us to evaluate how well Hybrid Testing

can detect true positives when ground truth data is available (in the form of an injected

bug). To answer RQ2b, if Hybrid Testing eliminates false positives, we feed Hybrid Testing

SA reports outside of Magma’s injected bugs and examine if any crashes detectable with

address sanitization (ASan) are found.

To answer RQ3, we feed Hybrid Testing static analysis results inside of Magma’s injected

bug regions. Magma’s instrumentation allows us to capture the time to reach and trigger a

crash for each injected bug. This enables our performance analysis against AFL.

Each class of evaluation, and the baseline of AFL, was performed with adherence to

fuzzing practices suggested by Evaluating fuzz testing [44]. Fuzzing results can vary dramat-
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ically across runs and as the time spent fuzzing changes. This work runs each evaluation

class for 24 hours. We compute the mean time to reach and trigger ground truth bugs across

three such runs. We also present the total unique bugs detected across all three runs.

5.2 Static Analysis Results

We evaluate Hybrid Testing across two experimental parameters, severity of static analysis

results and if a result is within a bug injected by Magma. Table 5.1 shows the number

of SA results for each application included in the Magma benchmark. The table includes

results from both CodeChecker [27] and FlawFinder [29]. We elected to combine results

from both static analyzers to increase the total number of bugs detected by Hybrid Testing.

The columns marked injected correspond to static analysis results within the bugs injected

by Magma and the severity corresponds to the minimum threshold a static analysis result

must have to be included in the count. The table shows that as the severity threshold

decreases, the number of results increases. This is consistent with previous evaluations of

static analyzers [4, 22]. In Table 5.1, we also show the number of bugs injected by Magma

and the number of bugs we failed to detect with static analysis.

Table 5.1: Magma Static Analysis Results Count — The counts shown in this table include
results from both CodeChecker and FlawFinder which we ran in parallel. The number of
bugs not detected are bugs injected by Magma which Hybrid Testing did not detect with
static analysis.

Target High Severity — Injected Medium Severity — Injected High Severity Medium Severity Total Injected Bugs Injected Bugs Not Detected

libpng 1 5 35 490 7 5
libsndfile 2 15 21 370 25 15

libtiff 7 22 29 770 14 8
libxml2 0 13 35 906 17 11

lua 1 8 46 222 4 1
poppler 1 14 202 1100 22 17

This work evaluates static analysis results with high and medium severities. However,

future evaluation of Hybrid Testing should attempt to test all results detected via static

analysis. It is possible that even though an injected bug exists, a static analyzer could deem

it low severity.

Table 5.3 shows a further breakdown of static analysis results by the injected bug corre-

sponding to a SA result. It should again be noted that high severity results are a subset of

the medium severity results. Hybrid Testing uses the severity as a threshold for what should
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Table 5.2: Injected Bugs in Magma Applications and Bugs Found with Static Analysis

Magma Application Injected Bugs Injected Bugs Detected by SA

libpng 7 2
libsndfile 25 10

libtiff 14 6
libxml2 17 6

lua 4 3
poppler 22 5

be fuzzed. Setting a medium threshold allows Hybrid Testing to capture static analysis tar-

gets with a minimum severity that correspond to the same bug. For example, TIF001 has six

high severity threshold results and 12 medium severity threshold results shown in Table 5.3.

This decision was made to prioritize bugs with more static analysis results, fuzzing different

targets within the same bug.

Table 5.2 complements this data, showing that static analysis did not detect every in-

jected bug. Static analysis detected 29% of bugs in lua, 40% in libsndfile, 43% in libtiff,

35% in libxml2, 75% in lua, and 23% in poppler. The number of injected bugs detected is

discussed further in Section 5.4 as part of Hybrid Testing’s false negative rate.

During the evaluation, some SA targets were unable to be instrumented and thus are

excluded from the evaluation. The number of targets which were unable to be fuzzed are

shown in Table 5.5. In total 61% of libpng, 11% of libsndfile, 36% of libtiff, 23% of libxml2,

87% of lua, and 82% of poppler static analysis results were unable to be instrumented.

The failure to instrument many of these targets can be explained by multiple scenarios: the

algorithm used by a directed fuzzer to perform instrumentation fails to identify the SA target

(frequently the case with AFLGo’s distance calculator) or the fuzzer imposes unsupported

requirements such as LTO capabilities on a codebase. Further work on filtering which static

analysis targets to instrument and fuzz is discussed in Chapter 6.

5.3 RQ1 — Bug Detectability

A primary goal of Hybrid Testing is to improve upon traditional fuzzing techniques by finding

new or different bugs. Table 5.4 shows the bugs found by Hybrid Testing within Magma.

The table is broken down by each evaluation class described in Section 5.1 and shows the
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Table 5.3: Breakdown of Static Analysis Targets by Bug — The table shows only Magma
injected bugs with one static analysis result or more.

BugID Severity SA Targets from Bug

TIF012 Medium 1
TIF007 Medium 2
TIF004 Medium 1
TIF002 Medium 2
TIF001 Medium 12
TIF003 Medium 1
TIF001 High 6
TIF003 High 1
SND005 Medium 1
SND015 Medium 2
SND014 Medium 2
SND010 Medium 1
SND012 Medium 2
SND013 Medium 3
SND004 Medium 1
SND002 Medium 1
SND025 Medium 1
SND017 Medium 1
SND004 High 1
SND025 High 1
PNG004 Medium 1
PNG007 Medium 1
PNG004 High 1
PDF018 Medium 1
PDF008 Medium 2
PDF003 Medium 4
PDF002 Medium 1
PDF012 Medium 1
PDF008 High 1
XML010 Medium 1
XML008 Medium 1
XML003 Medium 1
XML006 Medium 5
XML005 Medium 2
XML011 Medium 3
LUA002 Medium 1
LUA004 Medium 4
LUA003 Medium 3
LUA004 High 1
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Table 5.4: Unique Bugs Triggered by Each Fuzzing Evaluation Class — This table shows
only Magma applications which were successfully evaluated using Hybrid Testing.

Fuzzer Magma Application BugID

afl libpng PNG003,PNG007
afl libsndfile SND005,SND017
afl libtiff TIF007,TIF009,TIF012,TIF014
afl libxml2 XML017
afl lua LUA004
afl poppler PDF011,PDF016

aflgo_inj_high libpng PNG003,PNG007
aflgo_inj_high libsndfile SND005,SND017
aflgo_inj_high libtiff TIF006,TIF007,TIF009,TIF012,TIF014
aflgo_inj_high poppler PDF011,PDF016

aflgo_inj_medium libpng PNG003,PNG007
aflgo_inj_medium libsndfile SND005,SND017
aflgo_inj_medium libtiff TIF006,TIF007,TIF009,TIF012,TIF014
aflgo_inj_medium libxml2 XML017
aflgo_inj_medium poppler PDF011,PDF016
sievefuzz_inj_high lua LUA004

sievefuzz_inj_medium lua LUA004,LUA003

In the this table, the suffix "inj" signifies that the static analysis targets fed to the fuzzer
were located within the bugs injected by Magma. The suffixes "high" and "medium" signify
that the static analysis targets were given that severity or higher by the static analyzer.

unique bugs triggered for each class and Magma application. The table shows that Hybrid

Testing finds every bug found by AFL. Hybrid Testing also finds two bugs which AFL does

not, TIF006 and LUA003. AFL detected 12 total bugs while Hybrid Testing found 14.

The table shows that the bug LUA003 is only detected when fuzzing static analysis results

of medium severity or higher. Figure 5-1 complements this data, showing Hybrid Testing

performs at least as well as AFL when fed with SA targets inside Magma’s injected bugs.

Hybrid Testing finds more bugs, including those AFL finds as depicted by Table 5.4.

Hybrid Testing is an improvement to existing techniques, demonstrating a 17% increase in

total bug detection across all applications in Magma. It should also be noted that Hybrid

Testing did not detect all Magma bugs with static analysis as shown in Table 5.2. Integrating

additional static analyzers or lowering the severity threshold of flagged SA reports could

allow us to fuzz and detect more of Magma’s injected bugs. Detecting more bugs is a crucial

step towards more secure software and Hybrid Testing has proven it can aid in this detection.
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Table 5.5: Breakdown of Static Analysis Targets Unable to be Fuzzed by Hybrid Testing

Fuzzer Magma Application Number of SA Targets that Failed to Build
aflgo_inj_medium libtiff 3

aflgo_high libtiff 17
aflgo_inj_high libtiff 1

aflgo_inj_medium libsndfile 0
aflgo_high libsndfile 4

aflgo_inj_high libsndfile 0
aflgo_inj_medium libpng 3

aflgo_high libpng 22
aflgo_inj_high libpng 0

aflgo_inj_medium poppler 5
aflgo_high poppler 173

aflgo_inj_high poppler 0
aflgo_inj_medium libxml2 0

aflgo_high libxml2 11
sievefuzz_inj_medium lua 7

sievefuzz_high lua 41
sievefuzz_inj_high lua 0

In the this table, the suffix "inj" signifies that the static analysis targets fed to the fuzzer
were located within the bugs injected by Magma. The suffixes "high" and "medium" signify
that the static analysis targets were given that severity or higher by the static analyzer.

RQ1 Key Takeaways:

• Hybrid Testing finds a strict super set of the all Magma bugs found by AFL

• Hybrid Testing found 17% more bugs than AFL when fuzzing the Magma suite

5.4 RQ2a — True Positive Verification

To evaluate Hybrid Testing’s ability to validate true positives, this work examines scenarios

where a static analysis target is within a bug injected by Magma. We compare the bug

found by static analysis to the bugs triggered when directed fuzzing to determine if a SA

target is a true positive. Section 4.4 discusses how we augment Magma’s output with the

bug and SA target used for a given fuzzing campaign. We use this comparison to generate

the data for this portion of the evaluation.

Figure 5-2 shows the percentage of static analysis results confirmed as true positives by
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Figure 5-1: Fuzzing Medium and High Severity Static Analysis Targets Inside of Injected
Bugs vs. AFL

Hybrid Testing. The percentages shown are reflective of static analysis targets which were

successfully instrumented by the directed fuzzer. While it is possible that other injected bugs

may be triggered while attempting to verify a true positive, this portion of the evaluation

focuses only on scenarios where a directed fuzzer reached the location it was attempting to

(as specified by the SA-IR), triggering a bug.

When fuzzing medium severity SA targets, Hybrid Testing had a 50% true positive

rate for libpng, 20% for libsndfile, and 33% for libtiff. Hybrid Testing did not find any

true positives for libxml2 and poppler, but did have a 67% true positive rate for lua. The

results in Figure 5-2 show that static analysis targets corresponding to true positive bugs

are frequently marked as medium severity, consistent with Table 5.3.

Table 5.6: Hybrid Testing False Negative Rate

Magma Application Injected Bugs Injected Bugs Detected by SA

libpng 7 2
libsndfile 25 10

libtiff 14 6
libxml2 17 6

lua 4 3
poppler 22 5

The percentage of true positives detected in Figure 5-2 could be explained partially
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Figure 5-2: Percentage of Static Analysis Results Verified as True Positives by Hybrid
Testing — The percentage of true positive bugs is calculated by taking the number of
Magma injected bugs detected through fuzzing divided by the total number of injected bugs
Hybrid Testing identified with static analysis.

because of the number of injected bugs Hybrid Testing found with static analysis. Table 5.2

shows that Hybrid Testing’s static analysis stage did not detect five bugs in libpng, 15 in

libsndfile, eight in libtiff, 11 in libxml2, one in lua, and 17 in poppler. Table 5.10 provides

further insight, showcasing that Hybrid Testing was able to reach many of the injected bugs

but did not satisfy the conditions to trigger a crash.

The results in this section are impacted by Hybrid Testing’s inability to detect many

bugs with static analysis as shown in Table 5.2. If Hybrid Testing does not detect a bug

with SA, it cannot fuzz a code region. Of the bugs Hybrid Testing did detect with SA, it

triggered an average of 28% of those bugs. This corresponds to an average of 14% of all bugs

injected by Magma, which is again heavily impacted by the limitations of static analysis. In

comparison, AFL verified 18% of all Magma’s injected bugs. This makes sense given that it

is undirected and can fuzz any code location regardless of SA results.

The other side of Hybrid Testing’s true positive rate is the false negative rate. We define

false negatives as bugs injected by Magma into an application, but not detected by static

analysis. If no static analysis target corresponds to a bug, Hybrid Testing is unable to fuzz

it and is thus a false negative. Table 5.6 shows the number of bugs injected by Magma

into each application as well as the number of unique bugs detected by static analysis. This

table shows that libpng has a false negative rate of 71%, libsndfile 60%, libtiff 57%, libxml2
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65%, lua 25%, and poppler 77%. This false negative rate could be reduced by integrating

additional static analyzers as well as lowering the severity threshold for allowed SA targets.

The static analyzers have been tuned to reduce false positives given the high and medium

severity thresholds, which is likely increasing false negatives. In the future, Hybrid Testing

could act as a better triaging tool for future work on more sensitive static analyzers.

Figure 5-2 shows that Hybrid Testing failed to validate any SA targets as true positives

for both libxml2 and poppler. This could be explained by two potential scenarios: the

bugs take longer than 24 hours of fuzzing to detect or the bugs are deeper in the codebase,

requiring passing through other injected Magma bugs. This especially holds true when

examining Table 5.10 for bugs in libxml2 (prefix XML) and bugs in poppler (prefix PDF).

The XML and PDF bugs are often triggered within seconds of beginning fuzzing, implying

that they are likely shallow bugs. If a static analysis result occurred deeper within the

codebase, it is possible that it must pass through a shallow bug to reach that static analysis

result. Such shallow bugs could be blocking fuzzing from reaching further into the codebase,

preventing detection with Hybrid Testing. It is possible that directed fuzzing is not able to

find a path to a deeper, more complex bug if it must first pass through a shallow bug.

Table 5.10 also shows that in many cases, directed fuzzing was able to reach but not

trigger bugs for libxml2 and poppler. Magma defines reaching as arriving at the lines of code

where a bug exists but not satisfying the input conditions to trigger the bug. Fuzzing all

of the applications for a longer duration could increase the number of true positives Hybrid

Testing is able to verify. Future work could include symbolizing the generated test cases

which reach an injected bug but do not trigger it. This would allow us to examine if there

exists a data flow which would trigger the bug along the execution path that reached the

injected bug instrumentation. Analysis of this data flow could then corroborate if more

fuzzing time is needed to achieve the correct variable values to trigger the bug.
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RQ2a Key Takeaways:

• Hybrid Testing verified an average of 28% of the 32 bugs detected by static analysis

across all applications in the Magma suite

• Hybrid Testing successfully instrumented and evaluated 59 of the 77 static analysis

reports corresponding to Magma bugs

• Hybrid Testing verified an average of 14% of all bugs injected by Magma while

AFL verified 18% of all injected bugs

• Hybrid Testing has an average false negative rate of 59% for Magma injected bugs

5.5 RQ2b — False Positive Elimination

A crucial component of Hybrid Testing is its ability to detect false positives and correctly

classify these false positive reports as true negatives. One of the greatest shortcomings of

static analysis is the high false positive rate, frequently causing developers to ignore tool

warnings and decreasing software security [63, 23].

We classify the static analysis targets within bugs injected by Magma as true positives

and preliminarily classify those outside of Magma as false positives. We then use Hybrid

Testing to validate if the SA targets outside the injected bugs are false positives. To eliminate

false positives and verify that a static analysis result is a true negative, Hybrid Testing

fuzzes a SA target for 24 hours. If any crashes are detected during this fuzzing campaign,

the Magma application is built with ASan and the location of the crash is compared against

the SA target fed to the directed fuzzer. If no crashes are found at the location of the

static analysis target, the result is deemed a false positive and is thus a true negative. The

limitations to this approach are discussed in Chapter 6.

In this section, we analyze Hybrid Testing’s ability to find vulnerabilities when ground

truth data is unavailable . We evaluate if Hybrid Testing detects additional bugs when using

SA targets to inform directed fuzzing. We compare against AFL to determine if undirected

fuzzing finds the same set of vulnerabilities as Hybrid Testing. This comparison allows us

to evalaute if Hybrid Testing is an improvement to current automated testing practices.

Table 5.7 shows a breakdown of crashes by fuzzer and Magma application. The figure

48



reports the number of crashing inputs found during fuzzing and a classification for the

crash. Libpng reported 140 crashes and lua reported 12 crashes when using AFL, however

these were due to the memory limit of 100 MB imposed on each fuzzer test case. To validate

this, we ran the crashing inputs for libpng and lua on binaries built with address sanitization

without memory limits and no crashes were detected. The same memory limit issue occurred

when fuzzing libpng with AFLGo. Future work should run all fuzzing experiments again

with a memory limit greater than 100 MB to capture memory intensive bugs.

Table 5.7 also shows that libxml2 and poppler, when fuzzed with AFL, reported 1405

and 573 crashes respectively. Poppler fuzzed with AFLGo reported 110 crashes and libxml2

reported 0. We ran each crashing test case with address sanitization and no errors were

reported. Upon closer inspection of libxml2’s and poppler’s output logs, these crashes were

detected as syntax errors and warnings by each application; libxml2 and poppler gracefully

exited after detecting malformed inputs. There was also one such graceful exit when fuzzing

libsndfile with AFL. To combat this, Hybrid Testing could attempt to detect such graceful

exits and not report them as crashes.

We inspected the summary reports generated by ASan for libsndfile and libtiff using

AFL’s crashing test cases, as well as libtiff for AFLGo. Table 5.7 shows that we found two

unique crashing lines of code for libsndfile and two unique lines for libtiff using the test

cases generated by AFL. Table 5.8 shows that the crashing lines for libsndfile corresponded

to the Magma injected bugs SND005 and SND017. The two unique crashing lines found in

libtiff by AFL also corresponded to TIF009. Given that AFL is undirected, it likely explored

execution paths containing injected bugs. AFLGo, on the other hand, was directed towards

static analysis targets outside of those injected by Magma which could be why it did not

trigger bugs in libsndfile.

When we analyzed the ASan summary reports for libtiff generated by AFLGo’s crashing

test cases, we found four unique crashing lines of code listed in Table 5.8. Two of these

lines were identical to those found by AFL, again corresponding to the injected bug TIF009.

Additionally, AFLGo found two lines that are direct results of CVE-2022-4645, which exists

outside of the Magma benchmark [20, 21]. However, cross referencing the four crashing lines

with the static analysis targets fed to AFLGo showed that no crashes occurred at locations

AFLGo attempted to direct fuzzing towards. This could be because the static analysis

target was deeper into the codebase than where a bug occurred, meaning that while trying
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to reach a static analysis target the fuzzer triggered a bug along the execution path to that

target. In this case, CVE-2022-4645 could be blocking AFLGo from reaching deeper into

the codebase to a given static analysis target. Future evaluation should attempt to patch

this bug and fuzz libtiff again to analyze if directed fuzzing was able explore deeper into the

source code.

Table 5.7: Unique Bugs Detected with ASan

Fuzzer Magma Application Graceful Exits Crashes due to Memory Limit Crashes Triggering ASan Unique Crash Locations

afl libpng 0 140 0 0
afl libsndfile 1 0 33 2
afl libtiff 0 0 13 2
afl libxml2 1405 0 0 0
afl lua 0 12 0 0
afl poppler 573 0 0 0

aflgo_high libpng 0 109 0 0
aflgo_high libsndfile 0 0 0 0
aflgo_high libtiff 0 0 180 4
aflgo_high libxml2 0 0 0 0
aflgo_high poppler 110 0 0 0

sievefuzz_high lua 0 0 0 0

In the this table, the suffix "high" signifies that the static analysis targets were given that
severity by the static analyzer.

Table 5.8: Hybrid Testing ASan Crashes

Fuzzer Magma Application Crashing Line Cause

afl libsndfile aiff.c:1790 SND005
afl libsndfile wavlike.c:353 SND017
afl libtiff tif_dirwrite.c:2111 TIF009
afl libtiff tif_dirwrite.c:2124 TIF009

aflgo_high libtiff tif_dirwrite.c:2111 TIF009
aflgo_high libtiff tif_dirwrite.c:2124 TIF009
aflgo_high libtiff tiffcp.c:948 CVE-2022-4645
aflgo_high libtiff tif_dir.c:498 CVE-2022-4645

Table 5.9 shows a breakdown of the high severity SA targets for each application evalu-

ated within the Magma benchmark. The number of high severity SA targets is computed by

subtracting the targets which failed to be instrumented in Table 5.5 from the high severity

targets (outside of Magma injected bugs) in Table 5.1. The number of SA targets validated

is the number of high severity targets Hybrid Testing verified with address sanitization.
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Table 5.9: Hybrid Testing High Severity Analysis — Only the static analysis targets which
were successfully instrumented and evaluated are shown.

Fuzzer Magma Application High Severity SA Targets SA Targets Validated

aflgo libpng 13 0
aflgo libsndfile 17 0
aflgo libtiff 12 0
aflgo libxml2 24 0

sievefuzz lua 5 0
aflgo poppler 29 0

Of the high severity SA targets we evaluated, Hybrid Testing did not detect any crashes

at the lines of code flagged by static analysis. This is primarily a symptom of the directed

fuzzer’s inability to instrument a codebase for a given SA target. Table 5.5 again shows

that we were unable to evaluate the majority of high severity SA results. While this would

mean that all SA targets shown in Table 5.9 are false positives, this is not representative

of the underlying static analyzers due to the failed instrumentation. Hybrid Testing should

integrate additional directed fuzzers to increase its ability to instrument and evaluate targets.

Additional time should be spent fuzzing each Magma application to catch deeper bugs which

are not detectable within 24 hours of fuzzing.

RQ2b Key Takeaways:

• Hybrid Testing marked all high severity SA targets as false positives, primarily

due to the inability of a directed fuzzer to instrument the majority of SA targets

• Hybrid Testing should incorporate additional directed fuzzers and fuzz applications

for more than 24 hours to increase the number of SA targets we can instrument

and validate

5.6 RQ3 — Performance Analysis and Time to Detection

A secondary goal of this work was to evaluate how efficiently Hybrid Testing finds bugs in

comparison to current techniques, namely fuzzing with AFL. Table 5.10 shows a breakdown

of how long it took to reach and trigger a bug injected by Magma. To reach a bug, a fuzzer
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must find an input that arrives at the line of code where a bug was injected. To trigger

said bug, the input must satisfy a constraint when it reaches that line of code, causing a

crash. The figure shows that AFLGo was generally slower to detect and trigger a bug, while

SieveFuzz was faster in every scenario. Table A.1 complements this conclusion, showing the

standard error and average time in seconds to reach each Magma bug. Hybrid Testing beats

AFL for five bugs in libsndfile, one in libpng, three in libtiff, one in poppler, and two in lua.

For bugs in both libtiff and lua, Hybrid Testing triggered bugs AFL was unable to detect

(TIF006, LUA003) and reached the same bugs in all applications as AFL, except PDF008

in poppler.

Table 5.10: Time to Reach and Trigger: Static Analysis Targets Inside of Injected Bugs and
AFL — In the table header, R represents the time to reach a bug, T represents the time to
trigger said bug, and ∆ represents the difference in time to trigger a bug versus AFL. The
suffix I.M. signifies Injected Medium, I.H. signifies Injected High, and SF represents Sieve-
Fuzz. In the table data, X signifies that Hybrid Testing was unable to fuzz the application
where a given bug occurs while ’-’ signifies that fuzzing did not reach or trigger said bug. A
positive ∆ indicates it took more time than AFL and a negative ∆ represents less time. A
∆ of ’-’ means that AFL did not trigger the bug.

Fuzzer AFL AFLGo I.M. AFLGo I.H SF I.M. SF I.H.

Metric R T ∆ R T ∆ R T ∆ R T ∆ R T ∆

Bug ID

PNG003 5s 10s 0s 5s 10s 0s 5s 10s 0s X X X X X X

PDF016 5s 35s 0s 5s 2m +2m 5s 1m +1m X X X X X X

SND005 5s 17m 0s 5s 22m +5m 5s 30m +13m X X X X X X

SND017 6m 50m 0s 8m 1h +10m 15m 1h +10m X X X X X X

TIF007 13m 2h 0s 14m 4h +2h 16m 5h +3h X X X X X X

PDF011 10s 3h 0s 10s 10h +7h 10s 2h -1h X X X X X X

XML017 5s 1m 0s 5s 1m 0s - - - X X X X X X

TIF009 9h 9h 0s 14h 14h +5h 12h 12h +3h X X X X X X

TIF012 5s 10h 0s 5s 12h +2h 5s 14h +4h X X X X X X

LUA004 16h 16h 0s X X X X X X 12h 12h -4h 14h 14h -2h

TIF014 13m 16h 0s 14m 17h +1h 16m 19h +3h X X X X X X

PNG007 10s 21h 0s 10s 22h +1h 10s 15h -6h X X X X X X

TIF006 - - 0s 18h 18h - 18h 18h - X X X X X X

Continued on next page
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Fuzzer AFL AFLGo I.M. AFLGo I.H SF I.M. SF I.H

Metric R T ∆ R T ∆ R T ∆ R T ∆ R T ∆

Bug ID

LUA003 - - 0s X X X X X X 1m 23h - 1m - -

TIF002 - - 0s 18h - - 18h - - X X X X X X

TIF003 10s - 0s 10s - - 10s - - X X X X X X

TIF008 - - 0s - - - 23h - - X X X X X X

TIF010 9h - 0s 10h - - 12h - - X X X X X X

XML001 10s - 0s 10s - - - - - X X X X X X

XML003 10s - 0s 10s - - - - - X X X X X X

XML006 10s - 0s 10s - - - - - X X X X X X

XML008 27m - 0s 40m - - - - - X X X X X X

XML009 10s - 0s 10s - - - - - X X X X X X

SND024 1m - 0s 21s - - 10s - - X X X X X X

SND020 7m - 0s 12m - - 16m - - X X X X X X

PDF009 10s - 0s 11s - - 12s - - X X X X X X

SND016 1m - 0s 21s - - 10s - - X X X X X X

PDF007 15s - 0s 16s - - 17s - - X X X X X X

PDF012 10s - 0s 10s - - 10s - - X X X X X X

PDF014 10s - 0s 15s - - 15s - - X X X X X X

PDF005 17s - 0s 6h - - 16h - - X X X X X X

PDF019 25s - 0s 29s - - 33s - - X X X X X X

PDF021 15s - 0s 16s - - 17s - - X X X X X X

PNG001 10s - 0s 10s - - 10s - - X X X X X X

PDF003 12s - 0s 15s - - 17s - - X X X X X X

PNG004 10s - 0s 10s - - 10s - - X X X X X X

PNG005 10s - 0s 10s - - 10s - - X X X X X X

PNG006 10s - 0s 10s - - 10s - - X X X X X X

SND001 1m - 0s 21s - - 10s - - X X X X X X

XML012 10s - 0s 10s - - - - - X X X X X X

SND006 1m - 0s 21s - - 10s - - X X X X X X

Continued on next page
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Fuzzer AFL AFLGo I.M. AFLGo I.H SF I.M. SF I.H

Metric R T ∆ R T ∆ R T ∆ R T ∆ R T ∆

Bug ID

SND007 1m - 0s 21s - - 10s - - X X X X X X

PDF008 20s - 0s - - - - - - X X X X X X

PDF002 17s - 0s 6h - - 16h - - X X X X X X

Table 5.11 shows the average time to reach and trigger a bug for each application in

the Magma suite. The table is broken down by fuzzer and is computed across three fuzzing

runs of 24 hours, with the standard error for each average shown. The table shows that

Hybrid Testing (when using SieveFuzz) was 66% faster to reach and 25% faster to trigger

bugs in lua. Hybrid Testing was 25% faster to trigger a bug than AFL when fuzzing poppler

with high severity SA targets; however, it was 240% slower to trigger bugs when fed with

SA targets given a medium severity threshold. This is likely explained by PDF011, which

is triggered in two hours with high severity targets, but 10 hours with a medium severity

threshold. Table A.1 shows the standard error to reach and trigger PDF011, indicating that

it can vary two to six hours across fuzzing runs. The difference between trigger times for high

and medium severity thresholds could be due to directed fuzzing inadvertently triggering

PDF011 while trying to reach deeper into the codebase to fuzz medium severity targets.

Table 5.11: Average Time to Reach and Trigger a Magma Bug with Standard Error — The
average time to a bug is computed across three fuzzing runs of 24 hours. The standard error
is also computed across three such runs. Only targets which were successfully evaluated
with Hybrid Testing are shown.

Fuzzer Target Reach Time Avg. (s) Reach Time Std. Err. (s) Trigger Time Avg. (s) Trigger Time Std. Err. (s)
afl libpng 9.2 1.9 15312.5 26504.7
afl libsndfile 151.5 160.1 2028.3 1585.6
afl libtiff 11636.9 15980.9 35405.4 17234.5
afl libxml2 244.8 692 90 21.2
afl lua 60123.3 657.2 60123.3 657.2
afl poppler 13.8 5.3 5757.5 5722.5

aflgo_inj_high libpng 9.2 1.9 15466 20744.1
aflgo_inj_high libsndfile 249 586.5 3455.8 2360.2
aflgo_inj_high libtiff 14463.6 20233.1 41326 20129.2
aflgo_inj_high poppler 15.3 7.6 4324.2 6797.1

aflgo_inj_medium libpng 9.2 1.9 24112.2 34550
aflgo_inj_medium libsndfile 169.2 417.8 2888.7 1983.3
aflgo_inj_medium libtiff 15857.5 22147.4 39934.4 20819
aflgo_inj_medium libxml2 355.3 975.3 107.2 49.9
aflgo_inj_medium poppler 15 6.5 19538.6 25043.6
sievefuzz_inj_high lua 25750 25680.3 51430 169.5

sievefuzz_inj_medium lua 20208.9 22738.5 45347.7 14877.4
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With respect to cases where AFLGo is marginally slower than AFL, this could be ex-

plained by their similar underlying architecture. AFLGo is built on top of AFL, with

additional calculations and instrumentation feedback for directing execution towards a tar-

get location. For example, PDF016 is triggered in 35 seconds by AFL and two minutes by

AFLGo. The difference in trigger time is small and could be explained by inherent ran-

domness during the input generation process. However, AFLGo does realize advantages

for PDF011 and PNG007, triggering both bugs over an hour faster than AFL. Table A.1

shows that the standard error to trigger PDF011 varies two to six hours across different

static analysis severity thresholds. Table A.1 also shows that the error to trigger PNG007

varies between three to four hours across SA target severities. While the efficiency of di-

rected fuzzing is out of the scope of this work, Hybrid Testing does show that it can offer

performance improvements over current testing tools.

Though SieveFuzz was only capable of evaluating lua, it performed substantially better

than AFL. For LUA004, SieveFuzz found the bug over four hours faster than AFL. For

LUA003, AFL was unable to reach or trigger the bug while SieveFuzz accomplished both.

The standard error for reaching and triggering both bugs is shown in Table A.1. Performance

gains in SieveFuzz could be attributed to multiple factors. It is built on top of AFL++,

which has been shown to outperform AFL [28]. SieveFuzz also uses a novel state restriction

algorithm, potentially allowing it to better direct fuzzing towards a target location. Hybrid

Testing again outperforms traditional, undirected fuzzing when we use SieveFuzz.

RQ3 Key Takeaways:

• Hybrid Testing is 25% faster than AFL to trigger bugs in lua and poppler

• Hybrid Testing finds bugs AFL does not and on average finds bugs as fast as AFL
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Chapter 6

Future Work and Discussion

.

Throughout the completion of this work, one of the biggest drawbacks was the inability

to fuzz many static analysis targets, detailed in Table 5.5. If Hybrid Testing is unable to

fuzz a SA target, it cannot classify the result as a true or false positive. One potential

solution to this problem is integrating additional directed fuzzers. We found that AFLGo

and SieveFuzz were able to evaluate distinct applications; expanding the number of directed

fuzzers could allow evaluation of new applications and code locations with Hybrid Testing.

We also found that Hybrid Testing is extremely sensitive to the performance of the

underlying directed fuzzer. There is a significant difference in the results for SieveFuzz and

AFLGo. SieveFuzz, when evaluating lua, triggered more of Magma’s injected bugs than

AFL and did so hours faster. AFLGo was consistently slower than AFL to detect the same

Magma bugs. In the future, integrating additional directed fuzzers could help amortize the

performance hit due to the underlying toolkit.

Another solution involves further refining static analysis targets before beginning fuzzing.

Table 6.1 shows a breakdown of the categories of SA results for which Hybrid Testing was

able to reach and trigger a bug. A key takeaway is that checkers associated with memory,

including buffers and pointer manipulation, are a prime candidate for Hybrid Testing. Hy-

brid Testing could filter SA results by specific bug classes such as null pointer dereferences

or buffer overflows to increase the chance a bug is detectable via fuzzing.

Another drawback to the current evaluation of Hybrid Testing is the limited fuzzing

time. This work presents initial results using three runs of 24 hours of fuzzing. However,
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Table 6.1: Static Analysis Target Categories Reached and Triggered by Hybrid Testing

Static Analyzer Checker Name Category Reached Triggered

CodeChecker core.DivideZero Logic error Yes No
CodeChecker core.NullDereference Logic Error Yes Yes
CodeChecker misc-macro-parentheses misc Yes Yes
CodeChecker clang-diagnostic-unused-variable clang Yes Yes
CodeChecker cppcheck-nullPointerRedundantChecker warning Yes No
FlawFinder strcat buffer Yes No
FlawFinder getenv buffer Yes Yes
FlawFinder tmpfile tmpfile Yes Yes
FlawFinder fopen misc Yes Yes
FlawFinder char buffer Yes Yes
FlawFinder atoi integer Yes Yes
FlawFinder memcpy buffer Yes Yes

many bugs within Magma, which are representative of real world CVEs, require more than

24 hours of fuzzing to be detected [36]. Further evaluation should attempt to run multi-

day to multi-week long campaigns, collecting data from extended fuzzing and analyzing the

impact of fuzzing time on results. Directed fuzzing is still an active area of research and

though its performance is out of scope, extending fuzzing time could shed more light on

Hybrid Testing’s ability to better validate true and false positives.

In addition to longer fuzzing campaigns, parallel fuzzing could boost the performance

of Hybrid Testing. Our evaluation utilizes Magma which restricts fuzzing to a single cpu

core, disabling capabilities for parallel and distributed fuzzing. If instead of restricting

fuzzing to a single core, mutiple cores were used, Hybrid Testing could realize better bug

detection over time. However, many current fuzzing techniques (AFL included) also support

parallel fuzzing, meaning that further quantitative evaluation is needed to determine parallel

fuzzing’s benefits.

A potential source of inaccuracy in our evaluation of Hybrid Testing is false positive clas-

sification. Currently, Hybrid Testing attempts to classify a bug as a false positive (meaning

that it is a true negative) by directed fuzzing a static analysis target outside of Magma’s

injected bugs. If after 24 hours of fuzzing, Hybrid Testing does not find a bug at that loca-

tion, we deem the static analysis target a false positive. This is potentially inaccurate if the

bug requires more than 24 hours of fuzzing to be detected, does not cause a crash or mem-

ory bug detectable with address sanitization, or is unreachable through fuzzing. Potential
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solutions to this include increasing fuzzing time or manual inspection of a static analysis

result, especially if the result is deemed high severity by a static analysis tool.

A final limitation of Hybrid Testing stems from its constitutent pieces: static analyzers

and directed fuzzers. If a static analysis tool is inherently weaker at detecting a given class

of vulnerabilities, Hybrid Testing will not have a static analysis target to begin analyzing.

This could be mitigated by integrating additional static analyzers or fine tuning the settings

used to run static analysis. If a directed fuzzer performs poorly when attempting to reach

a target code location, Hybrid Testing will likely misclassify many bugs as false positives

because the directed fuzzer fails to reach the bug location. Redundancy through additional

directed fuzzers is again a solution to this problem, as well as amortization through running

fuzzing campaigns multiple times.

6.1 Discussion

When we first performed the experiments evaluating Hybrid Testing’s ability to triage false

positives, we enabled Magma’s Ideal Sanitizer. The Ideal Sanitizer caused every crash

detected through fuzzing to also be detectable through ASan; it inserts a call to kill once a

bug is triggered. This produced skewed results, often hundreds of thousands of crashing test

cases per fuzzing run. When we examined the reports generated by ASan, we found that

every report was due to Magma’s Ideal Sanitizer. We did not find any of the bugs shown in

Table 5.8. We disabled the Ideal Sanitizer and re-ran each experiment when fuzzing static

analysis targets outside of the Magma injected bugs, which produced more coherent data

which we were able to manually inspect.

We also acknowledge that directed fuzzers are severely impacted by their own ability

to detect a bug. Both AFLGo and SieveFuzz rely on crashes to identify bugs, but not all

bugs result in a crash. If a bug were to instead trigger a race condition but not cause a

crash, it would go undetected by both AFLGo and SieveFuzz. While sanitizers can help

mitigate these effects, sanitizers are computationally expensive and can greatly impact the

performance of fuzzing. We hope that future research on directed fuzzing continues to

improve bug detection capabilities without using crashes to verify bug existence.
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Chapter 7

Conclusion

In this work we present Hybrid Testing, the first vulnerability detection technique with full

codebase coverage and no false positives. Hybrid Testing is the next step in automated

software testing, combining the strengths of static analysis and directed fuzzing. We de-

tailed the design and implementation of Hybrid Testing and evaluated its accuracy across a

corpus of open-source applications from the Magma fuzzing benchmark. We demonstrated

that Hybrid Testing finds 17% more bugs than AFL when fuzzing Magma and can detect

bugs up to 25% faster. It can be easily integrated into the development cycle, is highly

generalizable to different tool kits of static analyzers and directed fuzzers, and scales well

to large codebases. Future work should include integrating additional directed fuzzers and

static analyzers, fuzzing Magma applications for more than 24 hours at a time, and applying

Hybrid Testing to real world scenarios such as the applications from OSS-Fuzz. The initial

results presented in this work show that Hybrid Testing is an improvement to traditional

software testing techniques. Hybrid Testing promotes more secure software and provides

software assurance through automatic bug detection and triage.
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Appendix A

Tables

Table A.1: Standard Error Computed Across Three Fuzzing Runs for Each Magma Injected
Bug — A standard error of zero indicates that only one sample was available while a ’-’
indicates that the bug was not reached or triggered.

BugID Fuzzer Reach Std. Err. (s) Trigger Std. Err. (s)

LUA003 sievefuzz_inj_high 0 -

LUA003 sievefuzz_inj_medium 1.3 555

LUA004 afl 657.2 657.2

LUA004 sievefuzz_inj_high 169.5 169.5

LUA004 sievefuzz_inj_medium 12895.5 12895.5

PDF002 afl 2.4 -

PDF002 aflgo_inj_high 0 -

PDF002 aflgo_inj_medium 1.8 -

PDF003 afl 2.4 -

PDF003 aflgo_inj_high 2.4 -

PDF003 aflgo_inj_medium 0 -

PDF005 afl 2.4 -

PDF005 aflgo_inj_high 0 -

PDF005 aflgo_inj_medium 1.8 -

PDF007 afl 0 -

PDF007 aflgo_inj_high 2.4 -

PDF007 aflgo_inj_medium 1.6 -

Continued on next page
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BugID Fuzzer Reach Std. Err. (s) Trigger Std. Err. (s)

PDF008 afl 0 -

PDF009 afl 0 -

PDF009 aflgo_inj_high 2.4 -

PDF009 aflgo_inj_medium 2.2 -

PDF011 afl 0 22.7

PDF011 aflgo_inj_high 0 7487.6

PDF011 aflgo_inj_medium 0 22388.5

PDF012 afl 0 -

PDF012 aflgo_inj_high 0 -

PDF012 aflgo_inj_medium 0 -

PDF014 afl 0 -

PDF014 aflgo_inj_high 0 -

PDF014 aflgo_inj_medium 0 -

PDF016 afl 0 0

PDF016 aflgo_inj_high 0 9.4

PDF016 aflgo_inj_medium 0 221.4

PDF019 afl 0 -

PDF019 aflgo_inj_high 4.7 -

PDF019 aflgo_inj_medium 3.6 -

PDF021 afl 0 -

PDF021 aflgo_inj_high 2.4 -

PDF021 aflgo_inj_medium 1.6 -

PNG001 afl 0 -

PNG001 aflgo_inj_high 0 -

PNG001 aflgo_inj_medium 0 -

PNG003 afl 0 0

PNG003 aflgo_inj_high 0 0

PNG003 aflgo_inj_medium 0 0

PNG004 afl 0 -

Continued on next page
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BugID Fuzzer Reach Std. Err. (s) Trigger Std. Err. (s)

PNG004 aflgo_inj_high 0 -

PNG004 aflgo_inj_medium 0 -

PNG005 afl 0 -

PNG005 aflgo_inj_high 0 -

PNG005 aflgo_inj_medium 0 -

PNG006 afl 0 -

PNG006 aflgo_inj_high 0 -

PNG006 aflgo_inj_medium 0 -

PNG007 afl 0 0

PNG007 aflgo_inj_high 0 13415

PNG007 aflgo_inj_medium 0 9778.3

SND001 afl 4.7 -

SND001 aflgo_inj_high 0 -

SND001 aflgo_inj_medium 44.4 -

SND005 afl 0 2.4

SND005 aflgo_inj_high 0 844.2

SND005 aflgo_inj_medium 0 758.8

SND006 afl 4.7 -

SND006 aflgo_inj_high 0 -

SND006 aflgo_inj_medium 44.4 -

SND007 afl 4.7 -

SND007 aflgo_inj_high 0 -

SND007 aflgo_inj_medium 44.4 -

SND016 afl 4.7 -

SND016 aflgo_inj_high 0 -

SND016 aflgo_inj_medium 44.4 -

SND017 afl 4.7 1751.7

SND017 aflgo_inj_high 827.5 2307.4

SND017 aflgo_inj_medium 318.2 1602.7

Continued on next page
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BugID Fuzzer Reach Std. Err. (s) Trigger Std. Err. (s)

SND020 afl 2.4 -

SND020 aflgo_inj_high 825.9 -

SND020 aflgo_inj_medium 837.9 -

SND024 afl 4.7 -

SND024 aflgo_inj_high 0 -

SND024 aflgo_inj_medium 44.4 -

TIF002 aflgo_inj_high 18237.5 -

TIF002 aflgo_inj_medium 20892.6 -

TIF003 afl 0 -

TIF003 aflgo_inj_high 0 -

TIF003 aflgo_inj_medium 0 -

TIF006 aflgo_inj_high 18237.5 18237.5

TIF006 aflgo_inj_medium 20897 20897

TIF007 afl 7.1 1045

TIF007 aflgo_inj_high 39.6 14882.8

TIF007 aflgo_inj_medium 33.8 12409.9

TIF008 aflgo_inj_high 0 -

TIF009 afl 2915 2915

TIF009 aflgo_inj_high 5177 7369.6

TIF009 aflgo_inj_medium 16856.2 16848.3

TIF010 afl 2895.2 -

TIF010 aflgo_inj_high 9121.3 -

TIF010 aflgo_inj_medium 7607.2 -

TIF012 afl 0 3213.5

TIF012 aflgo_inj_high 0 4790.9

TIF012 aflgo_inj_medium 0 6876.8

TIF014 afl 7.1 3855.1

TIF014 aflgo_inj_high 39.6 7943.5

TIF014 aflgo_inj_medium 33.8 7942.5

Continued on next page
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BugID Fuzzer Reach Std. Err. (s) Trigger Std. Err. (s)

XML001 afl 0 -

XML001 aflgo_inj_medium 0 -

XML003 afl 0 -

XML003 aflgo_inj_medium 0 -

XML006 afl 0 -

XML006 aflgo_inj_medium 0 -

XML008 afl 1010.4 -

XML008 aflgo_inj_medium 1276 -

XML009 afl 0 -

XML009 aflgo_inj_medium 0 -

XML012 afl 0 -

XML012 aflgo_inj_medium 0 -

XML017 afl 0 21.2

XML017 aflgo_inj_medium 0 49.9
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