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Abstract

The goal of this thesis is to develop an off-lattice Kinetic Monte Carlo (KMC) frame-
work to simulate the atomistic dynamics of materials at extreme conditions over long
time scales. Despite the dramatic increase in computational power over the last few
decades, rigorous approaches such as classical Molecular Dynamics (MD) techniques
cannot access the engineering and experimental time scales due to the fundamental
scaling limitation constrained by atomic vibrations. KMC approaches are powerful
stochastic computational techniques that focus on the simulation of rare atomistic
events in order to analyze the coarse-grained dynamics of condensed matter systems
and replicate non-equilibrium phenomena in a statistical fashion. However, their ap-
plication to problems at extreme conditions — such as those encountered in materials
science under high pressure, temperature, and radiation — has been limited by the
complexity of atomistic interactions, by the variability and instability of underlying
structures, and by the computational cost of simulating large systems over sufficiently
long time-scales.

To address such challenges, this thesis proposes an off-lattice, modular and scalable
KMC framework that features adaptive inferred structures, efficient process sampling
and dynamic rate constant calculations, together with the corresponding Julia im-
plementation. The developed KMC framework is justified theoretically, described
step-by-step methodologically, and then validated against MD results for early-time
dynamics.
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Chapter 1

Introduction

1.1 Motivation

Over the last few decades, the unprecedented increase in computing power enabled

by modern supercomputers has transformed the fields of computational chemistry,

computational physics and materials science by allowing simulations at unparalleled

fidelity and scale.

These communities have flourished by focusing on a relatively limited variety

of foundational computational techniques, such as density functional theory (DFT)

[ED11, DG12] and molecular dynamics (MD) [HJMM93, BM96]. Such methods have

been successfully and efficiently adapted to run on high performance, parallel plat-

forms, but feature intrinsic limitations. Most of the progress enabled by the increasing

availability of computing power has been steered towards weak-scaling, meaning that

a greater number of processors permits to simulate larger problems. In other words,

thanks to larger and larger computers, we are now able to simulate larger and larger

systems, but are still severely limited in terms of increasing the physical time sim-

ulated. Ideally, computational advances should apply equally to system time-scales,

length-scales (system sizes), or accuracy [PPV20].

Although computational processing gains are always welcome, computational gains

in parallel processing are typically hard to translate into longer time integration, which

is difficult to parallelize. This is a rather important consideration for a wide range on
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practical problems of interest which feature a large gap between the "outer", meso-

scopic, or possibly macroscopic, time-scale of interest and the "inner", microscopic

time-scale at which these algorithms operate (which in most cases is an integration

timestep associated with atomistic vibrations). Examples of such problems include

heterogeneous catalysis [APR19] and materials degradation [RS06].

In this context, Kinetic Monte Carlo (KMC) [Gil77, Gil07] techniques have emerged

as a powerful method for bridging this time-scale gap. The core idea behind Kinetic

Monte Carlo methods is to adopt a coarse-grained approach, which post-processes the

information it receives from higher-fidelity methods such as DFT and MD, with the

goal of describing only rare events that govern the (relatively) slow conformational

changes (from 10−9 s to s, see figure 1-1).

In this thesis we will describe the theoretical and mathematical framework gov-

erning Kinetic Monte Carlo algorithms and analyse how it can find its place in a

hierarchical multi-scale modeling approach, by focusing on a material system of cur-

rent practical interest.

Figure 1-1: The time-scale problem: DFT and MD cannot access time scales much
larger than those of atomic vibrations; KMC can simulate longer times, but involves
potentially large approximations of the individual atomistic dynamics (adapted from
[Kra09]).
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1.2 Objectives

The MIT Center for the Exascale Simulation of Materials in Extreme Environments

(CESMIX) is focused on the creation of the next generation of simulation tools per-

forming predictive simulations of the degradation of complex materials under extreme

loading (within the context of supersonic vehicles, for instance), which are inaccessi-

ble to direct experimental observation. Among the main objectives, we would like to

develop ab initio computational methods for modeling such materials at high temper-

atures, and design inference-based methods for coarse-graining quantum mechanical

interaction potentials.

One of the specific objectives of this research is to develop atomistic simulations

to study the oxidation of materials at long time scales, which requires bridging the

gap between the quantum mechanical and experimental time scales. In this thesis,

we perform the first steps towards addressing such challenges by developing a dy-

namic Kinetic Monte Carlo framework which reproduces and extrapolates molecular

dynamics results in an accelerated and coarse-grained fashion, in the context of a

specific material of interest, namely hafnium and its oxidation.

1.3 Outline

The thesis outline is as follows. In Chapter 2, we will first motivate and detail

our Molecular Dynamics approach to the problem of interest. We will then discuss

possible coarse-graining approaches and methods to isolate rare events, and finally

introduce the mathematical framework shaping the Kinetic Monte Carlo approach.

In Chapter 3 we describe the methodology that we have designed to tackle our

specific problem of interest using a Kinetic Monte Carlo framework. We start by de-

scribing the mechanics of the off-lattice Kinetic Monte Carlo that we have constructed.

We will then detail our approach for dynamically evaluating the rate constants as-

sociated with the coarse-grained system description. Finally, we will introduce the

Julia implementation.
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Chapter 4 includes the results of our simulations. We will present long-time Ki-

netic Monte Carlo simulations of hafnium oxidation and validate its key features for

early times by comparing them to those of Molecular Dynamics simulations. We also

discuss a series of ideas for further extensions and improvements.

We will conclude in Chapter 5 by summarizing our results and outlining future

work suggestions.
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Chapter 2

Theoretical Framework

2.1 Molecular Dynamics

Molecular Dynamics (MD) [AY20] is a computational approach for studying the mo-

tion and interactions of sets of atoms and molecules. Given a specific interatomic

potential (IAP), the core idea is to generate the individual atomic trajectories of the

particles comprising the system of interest by integrating numerically Newton’s equa-

tions of motion. Overall, molecular dynamics is a powerful tool for understanding

the dynamic behavior of complex systems at the atomic and molecular scale, and

has applications in many fields, including materials science, chemistry and biophysics

[Li05].

Let us consider a system with 𝑁 atoms in a volume Ω, yielding a 3𝑁 -dimensional

configuration space ℛ = {r1, r2, . . . , r𝑁}. To initialize a standard MD simulation

algorithm, we define the initial conditions in terms of particle positions and velocities,

which in turn determine the macroscopic quantities of the system, such as pressure

and temperature. The total energy of the system can be written as the sum of the

kinetic and potential energy:

𝐸 ≡ 𝐾 + 𝑉 =
𝑁∑︁
𝑖=1

1

2
𝑚𝑖|ṙ𝑖(𝑡)|2 + 𝑉 (ℛ(t)) (2.1)
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Figure 2-1: Schematic flowchart of a Molecular Dynamics algorithm.

Among the essential components of a molecular dynamics calculation, we highlight

the importance of an appropriate initialization, of an efficient parallelization, and of

force calculations. A flowchart of the algorithm is also illustrated in figure 2-1.

As we have mentioned previously, the initialization of the simulation includes

the definition of the initial conditions and of the boundary conditions. The initial

structure at the start of the simulation clearly depends on the problem of interest, and

can have large implications on the early-time dynamics. For crystalline solids — such

as the hafnium bulk we will study in further chapters — the generation of the structure

is usually straightforward, and simply requires the knowledge of key material-specific

properties, such as bond lengths, lattice constants and coordination numbers. For

liquids or for amorphous materials, such a generation can be more challenging. Once

one defines appropriately the initial positions, characterizing the configuration space

ℛ(𝑡 = 0), one also defines initial velocities. In the absence of more precise information,

these are typically initialized from the equilibrium distribution parameterized by the

simulation temperature. According to the equipartition theorem [Li05], this can be

done by drawing each component of the 3𝑁 -dimensional space ℛ̇(𝑡 = 0) from a

Gaussian (Maxwell-Boltzmann, Normal) distribution 𝒩 (0, 𝑘𝐵𝑇/𝑚𝑖), where 𝑚𝑖 is the
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mass of the 𝑖-th particle. The boundary conditions are usually set to be periodic for

a bulk system (or periodic in some directions but not others for a system comprising

a material slab featuring an interface).

The treatment of the system’s boundaries also plays an important role in the

parallelization of molecular dynamics algorithms, in which different parts of the sys-

tem are assigned to different computing cores for processing [PPV20]. To do so, one

discretizes space and assigns each atom or molecule to a given core, and then per-

form periodic checks to prevent conflicts and account for crossings between different

sections. As long as the communication cost (or delay) is much smaller than the com-

putational gain obtained from increasing the number of cores, one can use this process

to simulate progressively larger systems: the speedup resulting from this process is

quantified by the weak-scaling that we referred to in the introduction 1.3. Increasing

the number of cores usually helps distribute calculations among more processing units

and thus treat more atoms, but cannot help accelerate the calculation of forces acting

on individual atoms: this is the main reason molecular dynamics techniques are said

to perform poorly in terms of strong-scaling.

Figure 2-2: Molecular Dynamics techniques perform well in terms of weak-scaling:
by increasing the number of cores, we can increase the system’s size (adapted from
[PPV20])
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Force calculations lie at the core of molecular dynamics, since an overwhelming

majority of the computational time is dedicated to integrate Newton’s equation to

obtain those forces. In the context of the Born-Oppenheimer approximation [CDS81],

which considers the nuclei to be fixed when solving for the electronic structure, we

can predict molecular motion by solving:

𝑚𝑖r̈𝑖(𝑡) = F𝑖 ≡ −∇𝑉 (r𝑖(𝑡)) (2.2)

where r𝑖(𝑡) describes the position of the 𝑖-th particle at time 𝑡.

Several methods exist for integrating the equations of motion, exemplified by the

Verlet algorithm [Ver67]:

r𝑖(𝑡0 +∆𝑡) = 2r𝑖(𝑡0)− r𝑖(𝑡0 −∆𝑡) + r̈𝑖(𝑡0)(∆𝑡)2 +𝒪((∆𝑡)4) (2.3)

= 2r𝑖(𝑡0)− r𝑖(𝑡0 −∆𝑡) + (f𝑖(𝑡0)/𝑚𝑖) (∆𝑡)2 +𝒪((∆𝑡)4) (2.4)

a fourth-order (for positions [AT17]), fixed-time-step integrator (the time step, ∆𝑡

remains constant throughout the simulation). This algorithm has served as one of

the workhorses in the field due to its ability of combine extreme simplicity, good

numerical stability, good accuracy and good conservation properties [AT17], provided

that ∆𝑡 is small enough.

The interatomic potential has a large effect on the computational cost of the sim-

ulations as well as the fidelity of the computational results. From an uncertainty

quantification perspective, it is also worth noting that molecular dynamics trajecto-

ries inherit all intrinsic approximations and errors carried by the potential [BKC12].

In other words, the accuracy of interatomic potentials is a critical ingredient of atom-

istic simulations. Developing accurate potentials is a complex, time-consuming effort

which requires a judicious combination of experimental data, theoretical calculations,

as well as considerable domain knowledge.

Due to the complexity and diversity of types of interatomic interactions, inter-

atomic potentials need to be tailored to the material or class of material of interest,
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while in many cases only a subset of properties of the material of interest can be

captured accurately (e.g. thermal versus mechanical versus electrical). As a result,

a number of such potentials exists. Common types of interatomic potentials include

classical pair potentials [Jon24], which describe the interactions between pairs of

atoms, and more and more complex — and computationally expensive — potentials,

such as embedded atom models [DB84], which takes into account the electron den-

sity, bond order potentials [SB12], accounting for the strength of chemical bonds, or

modern machine-learning potentials [BP07]. The CESMIX project in part concerns

itself with the task of designing an accurate and efficient interatomic potential for

modeling the physical, thermal and oxidation properties of hafnium at high temper-

atures [NR23]. Beyond addressing the immediate modeling need associated with this

project, this effort will be valuable in answering the question whether training a large

amount of diverse and even suitably chosen data using machine learning techniques

can replace the domain expertise that is so central to the success of potentials for

complex materials and processes.

In this thesis, we also use the Charge-Optimized Many-Body (COMB) empiri-

cal potential [RSB94]. The COMB potential is part of the class of variable charge

potentials: besides pairwise interactions between atoms, the COMB potential takes

into account many-body interactions, including electrostatic and polarization effects,

to more accurately capture the behavior of complex materials. To do so, it relies

on an amalgamation of quantum mechanical and classical approaches. Specifically,

the potential energy of a given system is calculated using a combination of ab initio

electronic structure calculations — which provide insights on the charge distribution

and the bonding in the material — and empirical fitting to experimental observations

and data — which essentially fits the potential to match material properties such as

lattice constants and elastic properties. The potential energy of a system reads:

𝐸𝑃 =
∑︁
𝑖

𝐸self
𝑖 (𝑞𝑖) + 𝐸barr(𝑞𝑖) +

∑︁
𝑗>𝑖

𝐸short
𝑖𝑗 (𝑟𝑖𝑗, 𝑞𝑖, 𝑞𝑗) + 𝐸Coul

𝑖𝑗 (𝑟𝑖𝑗, 𝑞𝑖, 𝑞𝑗) + 𝐸corr(𝑟𝑖𝑗, 𝜃𝑖𝑗)

(2.5)

where 𝐸self
𝑖 is the self-energy of atom 𝑖, including atomic ionization energies and the
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descriptors of the electronic structure, 𝐸barr is a charge barrier function, 𝐸self
𝑖𝑗 is the

bond-order potential between atoms i and j, 𝐸Coul
𝑖𝑗 is the Coulomb interaction, and

𝐸corr are angular correction terms [RSB94].

Overall, COMB is a relatively expensive potential in computational terms, due to

the inclusion of many-body interactions and electrostatics. However, it is generally

considered to be quite accurate for complex materials featuring several many-body

interactions, and features the advantage of accurately capturing the behaviour of

solid-state materials — and especially hafnium [SDK+10] — over a wide range of

temperature and pressure conditions, making it a valuable tool for simulating systems

in extreme conditions or in (quasi) non-equilibrium states.

We will present the results of our molecular dynamics simulations for our problem

of interest in section 4.1.

2.2 Rare Events Simulation and Coarse Graining

Molecular dynamics methods have enjoyed considerable success over the last few

decades. Their simplicity and robustness have made this method a workhorse in

chemistry, materials science and computational physics, and are widely used to gain

key insights on the structure, dynamics, and thermodynamics of complex material

systems. As we have suggested in the motivation, section 1.1, however, a fundamen-

tal limitation exists: accessing macroscopic — or even mesoscopic — timescales is

prohibitively expensive.

This limitation arises from the nature of the atomistic dynamics of such complex

material systems, which feature rare events that follow from overcoming high acti-

vation barriers, typically much larger than 𝑘𝐵𝑇 [MS05, APR19]. While molecular

dynamics techniques resolve atomic vibrations in energetic basins accurately (using

a much smaller time step, of the order of the femtosecond, 10−15 s), such rare events

typically occur on time scales which four or more orders of magnitude larger (of the

order of the 10s or 100s of picoseconds, ∼ 10−10 s) [Vot07]. As a consequence, molec-

ular dynamics simulation trajectories spend the majority of time in the vicinity of
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local energy minima without ever accessing the time scales of the high-barrier elemen-

tary processes of interest. This discrepancy poses severe constraints to the usefulness

of molecular dynamics methods when it comes to studying the dynamics of systems

featuring such high-barrier processes.

To overcome this time-scale problem, it is worth noting that such a bottleneck

suggests its own solution. Namely, the overwhelming majority of moves is not signif-

icant from a mesoscopic perspective, because the system essentially oscillates around

local minima without meaningful dynamics on a larger scale, which are driven by

the aforementioned rare events. This leads us to the definition of metastates and

metastability. From a mesoscopic perspective, the potential energy surface (PES)

of a system can be described as a collection of metastates (usually represented by

individual energy basins), which are separated by high-energy barriers.

Figure 2-3: Two-dimensional projection of a molecular dynamics trajectory on a
potential energy surface and graphical intuition of the characterization of metastates.

A given atom on such PES will likely remain trapped in a metastable state for a

significant period of time, before gaining enough energy to escape it, and ending up

in another metastate [UMGV05], as illustrated in figure 2-3.
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These concepts enable the abstraction of molecular dynamics trajectories onto

coarse-grained chains transitioning from one metastate to another, rather than con-

sidering the details of the behavior of the particles while they are trapped in a given

metastate. In other words, rather than following the trajectory through every vibra-

tional period, we can consider these state-to-state transitions directly.

Moreover, it is intuitively reasonable to assume that after a certain amount of

time spent in a given metastate (inside a given energy basin), the future behaviour of

the system will not be affected by the preceding state-to-state trajectory, but simply

dictated by the local topology of the metastate. In other words, the probability of

a system transitioning from one state to another features the Markovian property,

and the state-to-state dynamics is simply a Markov chain [VK11]. From the perspec-

tive of Transition State Theory [CN17], such probability of a system overcoming a

high-energy barrier and transitioning from one metastate 𝑖 to another metastate 𝑗 is

described by a rate constant [TGK96] that we denote by 𝑘𝑖𝑗. Hence, a comprehen-

sive description of the state-to-state dynamics is provided by the following Markovian

master equation for each particle 𝑖 [Jan12]:

d𝑃𝑖(𝑡)

d𝑑𝑡
= −

∑︁
𝑗 ̸=𝑖

𝑘𝑖𝑗𝑃𝑖(𝑡) +
∑︁
𝑗 ̸=𝑖

𝑘𝑗𝑖𝑃𝑗(𝑡) (2.6)

Although conceptually and mathematically simple, this system of coupled differ-

ential equations can become prohibitively expensive to simulate if not approached

properly [APR19]: as an example, let us consider a simple on-lattice representation

of a bulk of hafnium oxide with a hundred hafnium atoms and two hundred oxygen

atoms, and let us restrict ourselves to the study of the dynamics of the oxygen atoms.

Each oxygen site can assume two occupation states (free or occupied), meaning that

there are 2200 possible configurations in such a simple system, and that the full tran-

sition matrix contains (2200)2 ≈ 2.58 × 10120 entries. In other words, formulations

which avoid evaluation and manipulation of the complete transition matrices are key

to tractability.
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2.3 Kinetic Monte Carlo

In the last few decades, Monte Carlo methods — taking advantage of random numbers

to explore vast configuration spaces and tackle complex problems in a statistically

accurate fashion — have been very successful in predicting equilibrium properties

[MU49, BH10]. An ingenious idea to address the high-dimensional Markovian problem

2.6 is to use Monte Carlo methods to approximate dynamical properties [Vot07].

The core idea behind a Kinetic Monte Carlo (KMC) algorithm is to generate

individual state-to-state trajectories in a stochastic fashion, in order to obtain statis-

tically accurate trajectories, and thus dynamical properties, without calculating the

entire transition matrix. Such a state-to-state dynamic corresponds in mathematical

terms to a Markov walk. Note that by displacing atoms or groups of atoms from one

metastate to another, we are transitioning the entire system from a previous state to

an updated state.

Operationally, a KMC method needs to perform three crucial tasks at every step.

First, for a given configuration, it needs to enumerate accurately the possible tran-

sitions. Second, it has to pair to every possible transition — that we can also call

process — a rate constant that accounts for the relative likelihood of that specific

process. Third, it must sample a process, execute it, and update the time of the

simulation in an appropriate fashion, precisely according to the number of available

processes and to their relative probability, embodied by the rate constant.

2.3.1 Enumerating Processes

Addressing the first challenge amounts to finding an appropriate balance between

accuracy and efficiency. Theoretically speaking, in an unconstrained Markov chain,

the system could transition from any state to any other state. In practice, as we will

justify in our discussion regarding rate constants, the only realistic transitions occur

between states neighboring each other on the potential energy surface. Hence, one

can construct the list of available processes by enumerating the available transitions

between neighbor sites. Note that to do so, one needs to characterize the concept of

21



neighborhood. For most of the systems that are tackled with KMC methods, it is

possible to map the problem onto a lattice [Reu11] — by exploiting the crystalline

structure of the material of interest, for example — which makes it straightforward

to define neighborhood around a particular site. As we will explain in section 3.1,

however, this method was not viable for our problem of interest, due to the evolu-

tion of the crystalline structure during the oxidation process. The characterization of

neighborhoods is particularly important from an uncertainty quantification perspec-

tive too: miscalculating the number of available processes for a given initial state can

lead to significant errors in the time inference.

2.3.2 Calculating Rate Constants

To tackle the second problem of calculating rate constants, one summons Transition

State Theory (TST) [Eyr35, TG80], which is the theoretical framework addressing

the calculation of rates of chemical reactions.

The fundamental assumption of TST is that there exists a hypersurface in phase

space which divides the space into reactants and products, and that the trajectories

passing through such surface — going from the reactants to the products — will not

cross the surface again before being captured in a product state (dynamical bottleneck

assumption). This hypersurface acts as a high-energy intermediate state, called the

transition state.

The transition state is characterized by the atomistic geometries and electronic

configurations of the system’s atoms, which determine its stability and reactivity.

For activated processes, it represents the point of highest energy along the reaction

pathway, and the rate of a chemical reaction is determined by the energy barrier that

separates the reactants from the transition state. This energy barrier is called the

activation energy, and it is the energy that must be supplied to the reactants in order

to reach the transition state and initiate the reaction. The rate of a chemical reaction,

corresponding to the rate constant that we are interested in in our KMC framework,
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is then calculated using the Arrhenius equation:

𝑘TST
𝑖𝑗 = 𝐴 exp

(︂
−∆𝐸𝑖𝑗

𝑘𝐵𝑇

)︂
(2.7)

where 𝑘TST
𝑖𝑗 is the rate constant for an activated process between states 𝑖 and 𝑗, 𝐴

is the pre-exponential factor that depends on the details of the reaction mechanism,

∆𝐸𝑖𝑗 is the energy barrier between states 𝑖 and 𝑗, 𝑘𝐵 is Boltzmann’s constant, and T

is the temperature.

Figure 2-4: Diffusion paths between metastates (for all 𝑖, 𝑗 and 𝑘, 𝑟𝑖 are configuration
states, 𝑟𝑖𝑗𝑘 are saddle points between state 𝑖 and state 𝑗, ∆𝐸𝑖𝑗𝑘 is the energy barrier
from 𝑖 to 𝑗 going through saddle point 𝑘) and corresponding energy barrier (adapted
from [KSDK18]).

As can be seen from equation 2.7, rate constants depend linearly on the TST

pre-factor, and exponentially on the energy barrier. As a consequence, coarser ap-

proximations are usually adopted when considering pre-factors compared to energy

barriers. The predominant resource is the harmonic approximation [TGK96], which

is a simplifying assumption according to which the potential energy surface around

the transition state can be approximated by a quadratic potential energy function.

This allows one to treat atomic vibrations as a collection of independent harmonic

oscillators, each with a characteristic frequency and energy, and reduces greatly the

number of vibrational modes that need to be considered. Instead of dealing with

the complex anharmonic vibrations that may characterize the transition state, the
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harmonic approximation assumes that the vibrational motions can be described by

a set of normal modes that obey the laws of classical mechanics [XH08]. Such an

assumption is only valid when the vibrational motions of the atoms in the transition

state are small compared to the vibrational motions of the atoms at the local mini-

mum, or — in other words — if the energy barriers are much larger than 𝑘𝐵𝑇 . Our

calculations show that this assumption is reasonable for hafnium oxidation at high

temperatures (𝑘𝐵𝑇 ≈ 0.2eV, whereas the average energy barriers between metastates

were of the order of 3eV).

In the harmonic approximation of transition state theory, the rate constants can

be calculated with the so-called Eyring equation [Lai87]:

𝑘hTST
𝑖𝑗 =

𝑞vib
𝑇𝑆

𝑞vib
𝑖

𝑘𝐵𝑇

ℎ
exp

(︂
−∆𝐸𝑖𝑗

𝑘𝐵𝑇

)︂
(2.8)

where 𝑞vib
𝑇𝑆 is the vibrational partition function at the transition state, 𝑞vib

𝑖 is the

vibrational partition function at the initial state, and ℎ is Planck’s constant. In the

context of harmonic TST, the ratio of the partition functions is generally fitted to a

constant value characteristic of the process studied [APR19]:

𝑞vib
𝑇𝑆

𝑞vib
𝑖

≡ 𝑘0 (2.9)

to avoid the considerable cost of vibrational calculations.

An important class of processes for which these considerations do not apply is

non-activated adsorption, also called physisorption. The rate constant for adsorption

of a species 𝑖 onto a free site 𝑓 is related to the kinetic impingement rate onto the

whole surface unit-cell, and the fraction of incoming particles which actually adsorb

on a a given free site is governed by a sticking coefficient 𝑆𝑖,𝑓 (𝑇 ) [RS06]:

𝑘ads
𝑖,𝑓 (𝑇, 𝑝𝑖) = 𝑆𝑖,𝑓 (𝑇 )

𝑝𝑖𝐴UC√
2𝜋𝑚𝑖𝑘𝐵𝑇

(2.10)

Here, 𝑘ads
𝑖,𝑓 is the rate constant for a non-activated adsorption process of a species 𝑖

onto a free site 𝑓 on a unit cell of area 𝐴UC, 𝑝𝑖 is the partial pressure of species 𝑖, 𝑚𝑖
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is the mass of species 𝑖, and 𝑆𝑖,𝑓 (𝑇 ) is the sticking coefficient introduced above.

The sticking coefficient can be estimated in several ways. For a majority of non-

activated processes, it can be approximated to 1: a particle impinging on the surface

at a high-velocity at the location of an adsorption site will always stick, provided that

the adsorption site is not occupied (and thus that such a process exists, from a KMC

perspective). For more complicated adsorption dynamics, where the velocity of the

incoming particles is not high-enough to overcome the barrier along the trajectory to

the surface, the process becomes activated, and the sticking coefficient can be related

to an activated transition. In other words, within the TST framework, the sticking

coefficient can be expressed as [RS06]:

𝑆𝑖,𝑓 (𝑇 ) =
𝑞vib
𝑇𝑆

𝑞trans
𝑖,gas 𝑞

int
𝑖,gas

𝑘𝐵𝑇

ℎ

𝐴𝑖,𝑓

𝐴UC
exp

(︃
−
∆𝐸ads

𝑖,𝑓

𝑘𝐵𝑇

)︃
(2.11)

where 𝑞trans
𝑖,gas is the two-dimensional translational partition function over the surface

unit cell, 𝑞int
𝑖,gas is the partition function of the internal degrees of freedom of the free

gas phase, 𝐴𝑖,𝑓 is the surface area of the free adsorption site 𝑓 for species 𝑖, and ∆𝐸ads
𝑖,𝑓

is the energy barrier along the minimum energy path connecting the gas phase and

the adsorption site.

2.3.3 Updating Time and Sampling Processes

A KMC algorithm has to reproduce the time evolution of the dynamics in an appropri-

ate manner despite the coarse graining, precisely because of the time-scale separation

between vibrations and translations, and by taking advantage of the knowledge of the

rate constants.

Let us fix a given state 𝐴 in our configuration space, and let us consider a neighbor,

accessible state 𝐵. The rate constant characterizing the translation of the system

from 𝐴 to 𝐵 is described by 𝑘𝐴𝐵, as detailed in the previous sections. What does 𝑘𝐴𝐵

represent? Mathematically speaking, 𝑘−1
𝐴𝐵 describes the average time at which the

system is expected to transition from state 𝐴 to state 𝐵. Because the probability of

the translation is constant for each fraction of time, the probability that the system
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has not transitioned after a time 𝜏 follows a Poisson distribution:

𝑃Pois(𝑖 = 0, 𝑘𝐴𝐵𝜏) =
(𝑘𝐴𝐵𝜏)

𝑖 exp(−𝑘𝐴𝐵𝜏)

𝑖!
= exp(−𝑘𝐴𝐵𝜏) (2.12)

Figure 2-5: Schematic representation of the sampling of a process by weighing the
energy barriers.

To calculate the probability that a transition does occur by the time 𝜏 +∆𝜏 , we

can take the product of the probability that no reaction occurred in the time interval

𝜏 times the probability that a reaction occurs in the time interval (𝜏,∆𝜏), which is

∆𝜏/𝑘−1
𝐴𝐵 = ∆𝜏𝑘𝐴𝐵. Hence, we have:

𝑃Pois(𝑖 > 0, 𝑘𝐴𝐵𝜏)∆𝜏 = 𝑘𝐴𝐵 exp(−𝑘𝐴𝐵𝜏)∆𝜏 (2.13)

𝑃Pois(𝑖 > 0, 𝑘𝐴𝐵𝜏) = 𝑘𝐴𝐵 exp(−𝑘𝐴𝐵𝜏) (2.14)

Then, our goal is to sample from such Poisson distributions, in order to generate

representative samples of 𝜏 , which represents the time needed to observe a transition.

To do so, we can use the inverse transform method. We start by calculating the

cumulative distribution function of our Poisson distribution:

𝐹Pois(𝑖 > 0, 𝑘𝐴𝐵𝜏) =

∫︁ ∞

𝜏

𝑘𝐴𝐵 exp(−𝑘𝐴𝐵 d𝑡) d𝑡 = exp(−𝑘𝐴𝐵𝜏) (2.15)
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Because time is continuous, such a cumulative distribution follows a uniform distri-

bution 𝐹Pois(𝑖 > 0, 𝑘𝐴𝐵∆𝑡) ∼ 𝒰(0, 1). Hence, to sample from 𝑃Pois(𝑖 > 0, 𝑘𝐴𝐵𝜏), it

suffices to draw a uniform random number 𝑢 ∼ 𝒰(0, 1) and solve for 𝜏 :

𝜏 = − ln(𝑢)

𝑘𝐴𝐵

(2.16)

It is straightforward to generalize this argument to a generic transition from a metas-

tate 𝑖 to any other accessible metastate 𝑗: the cumulative rate is 𝐾𝑖 =
∑︀

𝑖 ̸=𝑗 𝑘𝑖𝑗, and

the time increment for a generic step of the Kinetic Monte Carlo algorithm starting

at configuration 𝑖 reads:

∆𝑡 = − ln(𝑢)

𝐾𝑖

(2.17)

Note that the time increment does not depend on which process was sampled,

but only on the cumulative rate of the processes available at a given step. Sampling

the process for the algorithm to execute is actually simpler, and requires a second

uniform random number 𝑢′ ∼ 𝒰(0, 1), which is then normalized by the cumulative

rate constant. For a generic step starting at a configuration 𝑖, one picks the process

𝑝 such that:
𝑝−1∑︁
𝑗=1

𝑘𝑖𝑗 ≤ 𝑢′𝐾𝑖 = 𝑢′
∑︁
𝑖 ̸=𝑗

𝑘𝑖𝑗 ≤
𝑝∑︁

𝑗=1

𝑘𝑖𝑗 (2.18)

This ensures that processes are chosen with the correct probability: faster processes

— with a large rate constant — are sampled with a higher probability than slower

ones — with a smaller rate constant. By doing so, one ensures that the generated

trajectories satisfy the master equation 2.6.

In figure 2-6, we illustrate the schematic flowchart of a full, generic KMC algo-

rithm. A more detailed representation of our implementation is provided in figure

3-9.
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Figure 2-6: Schematic flowchart of a Kinetic Monte Carlo algorithm.
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Chapter 3

Methodology

3.1 Off-Lattice Kinetic Monte Carlo

The goal of this chapter is to describe the methodology of our Kinetic Monte Carlo

approach to the oxidation of hafnium. We start by justifying an important modeling

choice that we have briefly discussed in section 2.3.1: instead of mapping the problem

to a lattice, the Kinetic Monte Carlo algorithm used here operates off-lattice.

Mapping the structure to a lattice [MHS05] simplifies the algorithm drastically:

by reducing memory (and thus also computational time) requirement, by providing a

direct way to characterize neighborhoods of arbitrary size (and thus of enumerating

processes), and by enabling reuse of energy barriers (and thus of rate constant) calcu-

lations. Indeed, because the processes are mapped to specific lattice configurations,

the number of different transitions is finite, and all transitions can in principle be

calculated and characterized in advance.

3.1.1 Motivation

The choice to develop an off-lattice KMC simulation was motivated by the following

observations. First — and most importantly — hafnium dioxide (HfO2) is typically

amorphous at the high-temperature and pressure conditions that we are interested

in. In other words, hafnium dioxide does not have the regular crystalline structure
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needed for an on-lattice KMC simulation. The lack of long-range order in amor-

phous materials itself results in several unique physical and chemical properties. For

example, amorphous materials typically have a higher degree of structural disorder,

lower density, and higher specific surface area than their crystalline counterparts

[Gas83]. Unfortunately, for the purposes of our KMC simulation, the mapping of

such a problem involving an amorphous structure on a lattice pattern can generate

several significant inaccuracies, stemming from an incorrect atomic configuration that

results in erroneous representation of energies and forces.

Second, hafnium expands as it oxidizes. As highlighted by early-time molecular

dynamics calculation, the reaction of hafnium with oxygen results in a volume increase

in the material, leading to expansion. Such an expansion is of concern in materials

science and engineering, as it can cause stress buildup and potentially lead to cracking

or other types of structural damage [WCC+20]. From the KMC perspective, this leads

to additional complications when trying to map even just the non-oxidized layers to

a lattice: conserving and enforcing a pre-defined lattice structure to model a material

that is expanding leads to inaccuracies in the description of atomic positions and in

the generation of stress and strain. In other words, the calculated barriers will not

be accurate if we do not allow for relaxation, and consequent modeling will bias the

system’s dynamics.

Third, a lattice model does not appropriately capture the evolution of the surface

as the material oxidizes. The displacement and variation of adsorption sites is often

difficult to track and predict, which makes it problematic even for off-lattice models,

but on-lattice models lack the flexibility to address the complicated dynamics of an

oxidizing surface. Off-lattice models allow more versatility in the treatment of oxide

layers at the surface, in modeling the complex behaviours of surface re-arrangement,

and in addressing the emergence of repulsive forces at the surface.

As a summary, an on-lattice Kinetic Monte Carlo framework is not well suited to

our problem of interest, at least as long as we are interested in replicating the exact

dynamical evolution of the system (as, for example, given by molecular dynamics

simulations–see discussion in section 4.3). In a more coarse-grained model [VMG02]
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in which accurate atomic positions are not so important, an on-lattice framework

(or adaptive lattice) might offer a satisfactory compromise between accuracy and

computational efficiency [HJ01]. For our purposes, the above-described limitations

motivated the development of the off-lattice framework described below.

Figure 3-1: Schematic representation of an atom overcoming an energy barrier on a
potential energy surface and transitioning from one state to another state.

3.1.2 Voronoi Tessellation

As we have underlined in section 2.3.1, one of the key challenges associated with a

Kinetic Monte Carlo algorithm is the identification of neighborhoods. Consider for

instance an atom located in a local energetic minimum during the material oxidation.

Eventually, after a large number of escape attempts driven by thermal fluctuations,

it will exit its potential well, traverse the transition state (on a 𝑁 -th dimensional

surface, the location of the transition state is also referred to as the saddle point),

and reach another potential well beyond that energy barrier. MD simulations allow for

a precise reconstruction of the atomic trajectory. KMC simulations, however, need
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to characterize such translations not only by evaluating and weighing the energy

barriers, but also by enumerating the total number of processes available, to make

sure that the sampled dynamics are statistically accurate.

To discretize the number of possible events at the atomistic scale, we endow our

Kinetic Monte Carlo framework with a Voronoi tessellation [Aur91, For95]. From a

mathematical perspective, a Voronoi tessellation is a decomposition of a given space

into a set of non-overlapping, convex regions based on the positions of a specified set

of points. Formally, let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} be a set of 𝑛 points in a 𝑑-dimensional

Euclidean space K. For all 𝑖, the Voronoi cell 𝑉𝑖 of point 𝑝𝑖 is the set of all points in

the space K that are closer to 𝑝𝑖 than to any other point in 𝑃 :

𝑉𝑖 = {𝑥 ∈ K | dist(𝑥, 𝑝𝑖) ≤ dist(𝑥, 𝑝𝑗), ∀𝑗 ̸= 𝑖} (3.1)

where dist(·, ·) is the Euclidean distance over K. Collectively, the Voronoi tessellation

of 𝑃 is the collection of the Voronoi cells of every point in 𝑃 :

𝑉𝑃 = {𝑉1, 𝑉2, . . . , 𝑉𝑛} =⇒ K =
𝑛⋃︁

𝑖=1

𝑉𝑖 (3.2)

Each Voronoi cell 𝑉𝑖 is a convex polyhedron, and the Voronoi tessellation 𝑉𝑃 divides

the space K into 𝑛 disjoint regions, one for each point in 𝑃 . Mathematically, the

vertices 𝒱(𝑉𝑃 ) of such a tessellation are defined as the intersection points of the hyper-

planes that define the boundaries of the Voronoi cells. Each vertex corresponds to a

pair of neighboring points in the original point set 𝑃 , and it is equidistant from those

two points.

The relevance of such tessellations to atomistic modeling has been known for some

time [WS33]. One proceeds by defining 𝑃 to be the R3×𝑁 matrix containing the posi-

tions of the 𝑁 atoms of a given configuration. The resulting Voronoi decomposition of

𝑃 divides the space in 𝑁 regions, and the vertices 𝒱(𝑉𝑃 ) of the tessellation represent

the points in space that are equidistant to the nearest neighboring atoms.
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Figure 3-2: Two-dimensional Voronoi tessellation of an arbitrary set of atoms.

The tessellation is used as follows: at each step of our KMC algorithm, we generate

a Voronoi tessellation based on the positions of the hafnium atoms. Then, the vertices

of the tessellation represent the predicted stable positions for oxygen atoms (see figure

3-2). These predictions can be post-processed to improve algorithmic stability: for

example, we can merge two tessellation points which are close to each other, and

discard tessellation points which are too close to hafnium atoms (much closer than

the bonding length, for instance, which would lead to strong repulsive forces). Once

we obtain a simplified tessellation, the task of enumerating processes and keeping

track of neighborhoods is greatly simplified, and in some sense, become very similar

to an on-lattice framework: for every oxygen atom in our configuration, we can collect

the predicted stable states within a given cutoff range, discard those which are already

occupied by another oxygen atom, and we obtain the list of all possible destinations

sites for our atom to translate. This results in a sort of discretization of the space

which is similar to a dynamic lattice mapping, but nevertheless much more flexible

and versatile, as it is recomputed at each step and does not include any positional
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constraint, meaning that the experimental bond lengths are not enforced explicitly.

Such a procedure features obvious limitations: the predicted stable states are cal-

culated in a purely geometrical fashion, without any energetic argument involved.

This is why our KMC implementation includes a regular minimization of the config-

uration. Minimization refers to the process of finding the lowest energy configuration

of a system of atoms or molecules by adjusting iteratively the positions of the atoms

to minimize the total potential energy of the system, and thus converge towards the

most stable configuration of the system. The most commonly used method for mini-

mizing the potential energy of a system is the gradient descent method [JMJ98]. This

involves calculating the gradient of the potential energy with respect to the atomic

positions and iteratively moving the atoms in the direction of the negative gradient

— and thus downhill on the potential energy surface — until the energy is minimized.

This ensures that the predicted tessellation locations towards which we displace oxy-

gen atoms are actually stable, by correcting angles, distances and separations between

all atoms in the configuration.

On the other hand, the tessellation procedure is particularly cheap from a com-

putational standpoint: the cost of computing the Voronoi tessellation of an atomic

structure using the Qhull algorithm scales as 𝒪(𝑁 log𝑁), where 𝑁 is the number of

atoms [BDH96].

3.2 Dynamic Calculations of Rate Constants

By setting up the off-lattice framework of our algorithm, generating the tessellation

and collecting the possible and available processes, we have addressed the first main

challenge of a Kinetic Monte Carlo simulation, as described in section 2.3. The two

other challenges — weighing the relative probability of each process and inferring

time — depend directly on rate constants which we discuss extensively below.

In our case study of the oxidation of hafnium, as confirmed by molecular dynamics

simulations and experiments, the dynamics of the oxidation can be decomposed into

two main classes of processes: adsorption and diffusion. We start with a pristine
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hafnium structure, which is progressively oxidized. As layers of hafnium dioxide start

to form, the oxygen atoms start diffusing in the material. Diffusion is a much slower

process compared to adsorption: as mentioned in section 2.3.3, adsorption is generally

a non-activated process, in which particles impinging the surface have a sufficiently

high velocity to surmount energy barriers. In contrast, diffusion is a slow, collective

process in which individual atoms have to cross relatively high energy barriers to

diffuse inside the material. Due to the differences between these processes, they

require different treatments, as discussed below.

3.2.1 Adsorption Model

The Transition State Theory background justifying the treatment of adsorption as a

non-activated process as well as the characterization of the related rate constant 2.10

was introduced in section 2.3.2.

Figure 3-3: Two-dimensional representation of the simplified off-lattice adsorption
model.

The adsorption model of our KMC implementation is therefore simple and schematic,

and it is designed to capture the core physical aspect of the problem. At each step, as
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we recalculate the Voronoi tessellation of the present configuration, the tessellation

points which lie on the surface of the structure are considered as possible adsorption

sites. To each adsorption site which is not already occupied by an oxygen atom, we

assign a potential adsorption process. Collecting all possible processes, we obtain

the list of possible adsorption moves which are then considered in the sampling and

inference sections of the KMC algorithm.

This means that at the very early stages of the KMC simulation, the great ma-

jority of processes will be adsorption processes. As the surface becomes covered and

the number of available diffusion moves increases (see section 3.2.2), the fraction of

adsorption processes decreases.

For early times — that is, for times also accessed by our molecular dynamics

simulations — we treat the sticking coefficient 𝑆𝑖,𝑓 (𝑇 ) of 2.10 as a constant: if a

site is free and the process is sampled, an oxygen atom is adsorbed. However, we

have noticed that this simplistic approximation introduces inaccuracies as the surface

becomes more and more oxidized and transitions from a regular crystal structure to

an amorphous form, most likely due to the emergence of repulsive forces originating

from atoms at the surface (and the consequent transition towards the activation of

the adsorption process).

As a first approximation for early times, we have not incorporated any correction

for these effects. In other words, our adsorption model is given by:

𝑘ads
𝑖,𝑓 (𝑇, 𝑝𝑖) =

𝑝𝑖𝐴UC√
2𝜋𝑚𝑖𝑘𝐵𝑇

(3.3)

We intend to transition towards a more tailored approach in future work, in order

to avoid biasing longer-times dynamics.

3.2.2 Atomistic Diffusion Model

As we have mentioned above, diffusion is a slower process: not only because it happens

as a consequence of collective movements of atoms, but because such atoms need

to overcome high energy barriers to translate. Therefore, in a KMC framework,
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translation processes will advance the inferred simulation time significantly, much

more than faster processes such as adsorption. Thus, it is particularly important

to calculate transition rates accurately, and as we have detailed in section 2.3.2, the

(exponentially) predominant quantity determining the rate constant of such activated

processes is the energy barrier they need to overcome (see equation 2.8).

Figure 3-4: Schematic representation of an arbitrary two-dimensional potential en-
ergy surface with multiple energy minima (red wells), with initial and final states
reproduced as diamonds and the saddle point of the (dashed) minimum energy path
represented as a cross (adapted from [APR19]).

There are two classes of methods addressing the problem of determining energy

barriers: interpolation methods and local methods [APR19]. When both the ini-

tial and the final state of a given elementary process are well-known, interpolation

methods are generally preferable, and permit to analyze the potential energy surface

between such states. When only the initial state is known, local methods are needed to

take advantage of the local topology in order to explore the possible escape pathways

from the initial state. Because our initial formulation did not include a description

of the potential destination states given an initial state, our earlier efforts focused

on local methods. By setting up a discretized off-lattice framework (as described in
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section 3.1) which collects and describes all possible processes that can happen given

an initial state, however, we could transition to an interpolation setting. Among in-

terpolation methods, the two most popular types of methods are drag methods and

chain-of-state methods [HJJ02].

Drag methods [HL77] are the simplest form of interpolation methods: the idea is to

identify a small number of degrees of freedom — typically, in our case, the dimensions

along which a given atom moves — which characterize the most significant differences

between the initial and the final state, and then to optimize along those degrees of

freedom while maintaining all others fixed. In considering a simple transition of a

single atom from one metastate to another, one could consider as little as the three

degrees of freedom describing the coordinate of the atom, for instance. Such methods

are particularly successful in analyzing reaction paths dominated by one, two or

three degrees of freedom, but are completely dependent on such choices of reaction

coordinates, and tend to fail when applied to systems with multiple pathways or

complex energy landscapes.

Chain-of-state techniques use strings of images, which are virtual replicas of the

system in different positions (and thus configurations) of the reaction coordinate. The

images are connected by springs, which represent the energy barriers that the system

must overcome as it moves along the reaction coordinate. The free energy profile is

then calculated by minimizing the energy of the string subject to the constraint that

the images remain on the reaction coordinate (up to arbitrary thresholds for energies

and forces). The most popular algorithm is the Nudged Elastic Band (NEB) method

[JMJ98].

Formally, the chain of images is initiated as a chain ℛNEB = [R0,R1, . . . ,R𝑁 ]

where the end points R0 and R𝑁 are fixed and include the configurations corre-

sponding to the initial and final energy minima — and thus represent the initial and

final states. The goal of the NEB algorithm is to optimize the positions of the 𝑁 − 1

intermediate images along the minimum energy path to estimate the location of the

saddle point. To do so, one minimizes the objective function of the elastic band

[JMJ98], regrouping the energy of the intermediate images and featuring a penalty
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term through a spring constant 𝑘:

𝐺EB(ℛNEB) =
𝑁−1∑︁
𝑖=1

𝐸(R𝑖) +
𝑁∑︁
𝑖=1

1

2
𝑘(R𝑖 −R𝑖−1)

2 (3.4)

To decrease the sensitivity to the spring constant in the vicinity of the transition

state, only the tangential component of the spring force is considered. We illustrate

the NEB method on a sample PES in figure 3-5.

Figure 3-5: Illustration of the NEB method of a sample PES, with a closeup describing
the composition of forces at a given step (adapted from [APR19]).

More specifically, the total force acting on a given image 𝑖 at any given iterative

step of the Nudged Elastic Band algorithm is:

FNEB
𝑖 = F𝑠

𝑖 ||| − F𝑖|⊥ (3.5)

where the true force acting on the image reads:

F𝑖|⊥ = ∇𝐸(R𝑖)|⊥ = ∇𝐸(R𝑖)−∇𝐸(R𝑖) · 𝜏𝑖 (3.6)
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and the sum of the spring forces reads:

F𝑠
𝑖 ||| = 𝑘 (|R𝑖+1 −R𝑖| − |R𝑖 −R𝑖−1|) 𝜏𝑖 (3.7)

where 𝜏𝑖 is the tangent unit vector at image 𝑖.

Finally, an additional improvement comes from adding a Climbing-Image feature

(CI-NEB) [HUJ00]. When using this feature, after a few iterations, one can identify

the highest-energy image and drive it upward the potential energy surface — and thus

toward the saddle point — by loosing spring forces and by reversing the component

of the true force parallel to the chain. For such an image 𝑖max, the force reads:

FNEB
𝑖max

= −F𝑖max|⊥ + F𝑖max||| = −F𝑖max + 2F𝑖max||| (3.8)

By doing so, the maximum energy image is not affected by spring forces and is

free to move up the potential energy surface along the elastic band and down the

potential energy surface perpendicular to the band, making the CI-NEB more robust

on complex energy landscapes.

The structure of the NEB method makes it particularly easy to parallelize: one

can distribute every image on a different processing core, requiring only modestly fast

communication. On the other hand, a clear limitation of the NEB algorithm is the

high computational cost: the procedure involves a large number of energy and force

evaluations, the optimization of various configurations, and — typically — a large

number of iterations.

To reduce the number of iterations, we propose in this work the addition of an

initial pre-processing of the configuration, as we now describe. The main idea is to

use a discretized approximation of the PES to provide a good initial guess for the

NEB procedure.

Given an initial setting (so an initial state and a final state), we start by interpo-

lating between the two states and building a matrix containing the values of energies

at each point of the resulting three-dimensional grid. We illustrate this schematically

in figure 3-6 for a sample two-dimensional PES, where the matrix entries are the dis-
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cretization points (the matrix is two-dimensional for clarity; in our implementation,

it is three-dimensional).

Figure 3-6: Discretization of the pointwise energy on a sample two-dimensional PES.

Then, we find an optimal path connecting the two states on the resulting high-

dimensional grid, as shown in figure 3-7. Finally, we map the solution of the optimiza-

tion problem back to the atomistic configuration: we use the discretized locations on

the grid as initial locations for the replicas (see figure 3-8). In other words, we use

the optimal path as an initial guess for the NEB calculation, instead of starting from

a simple linear interpolation.

By doing so, we observe empirically that the number of iterations decreases dras-

tically, because the initial guess is typically already close to the minimum energy

path when starting the NEB calculation. Naturally, one needs to find a compromise

regarding the number of discretization points: the higher the number of points, the

higher the accuracy of the predicted initial guess, but also the higher the computa-

tional cost (due to the number of energy calculations and to the increase of images

in the NEB calculation).
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Figure 3-7: The discretized version of the atomistic problem can be transformed into
an optimization problem: in the discretized framework, an appropriate initial guess
for the NEB calculation is the optimal energetic path between the initial state and
the final state. The grid is two-dimensional for clarity: in the atomistic framework,
it is three-dimensional.

Figure 3-8: Finding the optimal path and using it as an initial guess for the NEB
calculation.
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With this integrated framework, we could compute energy barriers efficiently and

thus to calculate dynamically the rate constants of the simplified Eyring equation:

𝑘𝑖𝑗 =
𝑘𝐵𝑇

ℎ
exp

(︂
−
𝐸TS𝑗

− 𝐸𝑖

𝑘𝐵𝑇

)︂
(3.9)

where 𝐸TS𝑗
is the energy at the transition state between 𝑖 and 𝑗, and 𝐸𝑖 is the energy

of the initial state.

3.2.3 Rejection Scheme

There are two fundamentally similar classes of Kinetic Monte Carlo algorithms, which

differ in the way one treats the execution of processes and the calculation of rate con-

stants at each move: the so-called rejection-KMC algorithms (rKMC) and rejection-

free-KMC algorithms (rfKMC) [Jan12].

The standard version of the algorithm is rejection-free [Gil76] KMC: one calculates

the rate constant of every possible process, and then choses the one to be executed

according to the framework described in section 2.3.3. The alternative version includes

a rejection scheme: at every move, only the rate constant of a single, randomly

sampled process — among all possible processes — is calculated, and then the move

is either accepted or rejected according to the relative probability of the sampled

event.

To account for the bias in the uniform sampling of an event, one has to include

in the acceptance step a judiciously chosen upper bound for the rate constant of the

process; at an arbitrary step where the system lies at state 𝑖, we sample uniformly

the event corresponding to a transition to a state 𝑗, we calculate the rate constant

𝑘𝑖𝑗, and then we accept the process with probability [Jan12]:

P𝑖𝑗["accept the process"] =
𝑘𝑖𝑗
𝑘0
𝑖

(3.10)

where 𝑘0
𝑖 is an upper bound for the transition from state 𝑖 to any generic state 𝑖′.
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In our implementation, when we ran simulations with such a rejection scheme in

which we estimated the upper bound empirically — by running the rejection-free

version for long enough — and in an adaptive fashion — by adapting the upper

bound to the stage of the simulation. It is important to adapt the upper bound

throughout the simulation, especially if the different classes of processes treated in

a same KMC simulation (like adsorption and diffusion processes in our case study)

feature important disparities in terms of rate constants: in specific regimes of the

simulation where only fast processes can happen, it would be extremely inefficient

to use the same upper bound as the one needed to address regimes in which slower

processes can happen too. But despite such adaptations, one still needs to guarantee

that 𝑘0
𝑖 is actually an upper bound, to avoid biasing the dynamics [Jan12].

A correction is also required for the time inference step. Suppose that we enumer-

ate 𝐾𝑖 possible different processes at stage 𝑖; then, we advance the simulation time

by

∆𝑡rej = − ln(𝑢)

𝐾𝑖 · 𝑘0
𝑖

(3.11)

where 𝑢 ∼ 𝒰(0, 1). Crucially, we advance time in any case, whether the process

was accepted or not. Also, it is important to note that the time increment ∆𝑡rej

is potentially much smaller than the time increment ∆𝑡 of rejection-free algorithms

described by equation 2.17.

It is quite straightforward to show that both methods converge to the same distri-

butions and are statistically equivalent [Ser11, Sad84]. Rejection-free-KMC schemes

may require more simulation time to converge because they involve the calculation of

potentially large lists of possible processes. In contrast, rejection-KMC avoids such

a computational burden, but advances the simulation clock by much smaller incre-

ments. What makes one version of the algorithm preferable to the other is essentially

dictated by two variables: the time it takes to calculate rate constants (which itself

depends on the number, variety and complexity of processes) and on how efficient

the acceptance-rejection criterion can be designed (which depends on the variance of

rate constants between processes). For our purposes, the fast changes in the orders
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of magnitude of the rate constants — as part of the transition from an adsorption-

controlled regime to a diffusion-controlled one — made it challenging to design an

efficient rejection scheme. As a result, most of the calculations presented in chapter

4 were performed with a rejection-free procedure.

3.3 Implementation

In this section, we present an overview of the off-lattice Kinetic Monte Carlo frame-

work developed here for simulating the oxidation of hafnium. A schematic flowchart

of the implementation is shown in figure 3-9.

The code is written in Julia, as part of the CESMIX efforts to design an inte-

grated computational framework to advance the state-of-the-art in predictive simula-

tion [Git]. It is designed to be modular, highly parallelizable, and scalable.

The modularity feature appears in various forms: first and foremost, in terms of

compatibility with — and integration of — various potentials. As discussed in sec-

tion 2.1, the results obtained in section 4.2 are calculated with the COMB potential,

mainly for validation purposes with our molecular dynamics simulations. Through-

out our work, however, we have transitioned towards fast, tailored machine-learned

potentials. Most notably, we integrated the possibility to run KMC simulations

with a trained Proper Orthogonal Descriptors (POD) potential [NR23] on CPUs

and with a trained Neural Equivariant Interatomic Potentials (NequIP/Allegro) po-

tential [MBJ+23] on GPUs. Due to the current cataloguing and characterization of

processes, the code is naturally designed for simulation of oxidation, but it would be

straightforward to implement new classes of processes: as long as one can describe

their activated (or non-activated) character and an expression for the rate constant,

any rare event at the atomistic level can be included. Input parameters include the

simulation conditions (pressure and temperature), the description of the structure to

analyze (the material, the size and experimental values of bond lengths to serve as

initial guesses for the tessellation [BT15, GGS+17, VSA+14]), as well as simulation

parameters (such as length of simulation and number of cores).
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The resulting code is highly parallelizable, in the sense that it it decomposed in

distinct collections of actions which can either run in parallel or cannot, as illustrated

in figure 3-9. The actual atomic processes — the steps of the KMC algorithm — are

executed sequentially: one process is treated at the time, and at most one atom is

moved at every step. The treatment itself, however, is performed in parallel: the rate

constants characterizing the available processes are calculated simultaneously through

parallel Nudged Elastic Band calculations. Moreover, as discussed in section 4.2, NEB

calculations themselves parallelize their images, making it a two-layer parallelism.

The parallelism associated with the NEB calculations is implemented through the

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [TAB+22],

while the parallelism associated to the distribution of the various NEB calculations

across the cores is performed intrinsically in the algorithm. The structural updates,

such as the structural relaxations and minimizations, is performed in LAMMPS in

parallel as well, thanks to the very effective spatial weak-scaling of static atomistic

simulation discussed in section 2.1.

Finally, the scalability feature comes in some sense as a consequence of the two

previous arguments. In terms of spatial scalability, the code can be easily adapted,

because most challenges introduced by a larger structure are already treated in a

parallel fashion (minimization, calculation of energy barriers). Interestingly enough,

however, the code is potentially scalable from a temporal perspective too: as will be

discussed in greater detail in sections 4.2 and 4.3, the time-scale of interest in this

study is dictated by validation purposes, and thus focused on shorter time scales.

Therefore, processes that contribute relatively little to the time evolution of the sys-

tem are considered and included thoroughly, in order to avoid biasing early-times

dynamics. However, if one is interested in the simulation of events that are even less

frequent, to access larger time scales, the general structure of the code (the off-lattice

character, the rate constant treatment and the time inference) is still adapted, as one

could alter the selection and filtering of atomic processes to focus on rarer events.

In terms of dependencies on external codes and libraries, the code is largely self-

contained. The important exception is — as mentioned above — the use of LAMMPS
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as an engine for energetic calculations and structure minimization. The minimization

of the structure is actually performed through LAMMPS.jl, the Julia bindings to the

LAMMPS API developed as part of CESMIX. The two other external libraries used

in the code are the Julia bindings to the Atomic Simulation Environment (ASE),

to generate the initial configuration, and the Julia bindings to the Qhull library, to

generate the Voronoi decomposition of the space.
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Figure 3-9: Flowchart of the off-lattice KMC implementation.
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Chapter 4

Results

4.1 Molecular Dynamics Simulation of Oxidation

The goal of this chapter is to validate our KMC methodology and implementation by

comparing its results for hafnium oxidation to MD simulations of the same system.

We will start by describing the results of our Molecular Dynamics simulations.

To accelerate the dynamics and to approach the experimental conditions of inter-

est, the longest MD runs were performed at 𝑇 = 2400 K, 𝑝 = 1.013 bar, just below

the melting point of the material. The simulation setup is as follows: we built in

LAMMPS a simulation cell containing a hafnium surface in contact with an oxygen

gas phase. Hafnium has a Hexagonal Close-Packed (HCP) crystal structure at room

temperature and ambient pressure. However, at such extreme conditions, hafnium

undergoes a phase transition and transforms into a Body-Centered Cubic (BCC) crys-

tal structure [HZZ+11]. In the BCC crystal structure, hafnium atoms are arranged in

a cubic lattice with one atom at each corner of the cube and one atom at the center

of the cube. This results in a total of two atoms per unit cell. The BCC structure

is characterized by a coordination number of 8, meaning that each hafnium atom is

surrounded by eight nearest-neighbor atoms. The simulation cell is periodic in two

dimensions (𝑥 and 𝑦). The oxygen gas phase is represented by individual oxygen

molecules with initial velocity based on a Maxwell-Boltzmann velocity distribution.

At the bottom of the simulation cell, we include a fixed sheet of hafnium — to
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stabilize the system — which is also thermostated — to keep temperature constant.

All hafnium layers that are treated dynamically in the simulation rest on top of such

layers.

As explained and justified in section 2.1, the interatomic potential used in this

simulation is the Charge-Optimized Many-Body (COMB) potential.

Figure 4-1: Snapshots of our MD simulation of the oxidation of hafnium at 𝑇 = 2400K
at various timesteps.

The simulation was performed on a relatively small system, running on a 32-core

3970x architecture. The KMC simulation will be performed on a system of the same

size.

The simulation results were in line with our expectations: molecular dynamics

simulations allow to replicate the kinetics with fidelity and provide key insights into

the dynamics of the oxidation process. However — because they need to resolve

atomic vibrations — they are very slow: our longest MD simulations ran for six

months and managed to simulate 500 nanoseconds of system evolution.

Among the metrics that can describe significant collective dynamics of the oxida-

tion process, the oxidation rate is particularly useful. In figure 4.1, we observe the

characteristic oxidation behaviour that we expected: at early stages, the dynamics are

dominated by the fast adsorption of oxygen on the initially pristine surface. As the
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surface gets covered, an oxide layer forms, and slower processes — such as diffusion

inside the structure — become more significant, and the dynamics become diffusion-

controlled. The oxidation rate is expected to continue decreasing: as the thickness

of the oxide layer increases, the probability for a vacancy to form at the surface gets

smaller and smaller. Note that there is a direct parallelism between the diffusion of

oxygen atoms downwards in the structure and the the diffusion of vacancies upwards

towards the surface: the formation of vacancies at the surface is the consequence of

a collection of individual oxygen translations.

Figure 4-2: Adsorbed oxygen atoms as a function of the MD simulation time.

4.2 Kinetic Monte Carlo Simulation of Oxidation

Our Kinetic Monte Carlo simulations of the system were performed following the

methodology described in chapter 3. Using the same 32-core 3970x architecture, the

simulation of the first 500 nanoseconds of the oxidation process (of a domains of

the same size and at the same conditions as the MD simulations) was performed in
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Figure 4-3: Snapshots of our KMC simulation of the oxidation of hafnium at 𝑇 =
2400K at various timesteps (the same as figure 4-1).

approximately two hours, achieving a speed-up of approximately 2000 in terms of

computational speed.

Figure 4-4: Adsorbed oxygen atoms as a function of the KMC simulation time for
various distinct KMC runs with the same initial conditions.

Although detailed comparisons will follow in the validation section 4.3, here we

note the existence of the two oxidation regimes (see figure 4-4): the oxidation is

first adsorption-controlled, with high oxidation rates for early times, then transitions
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towards a diffusion-controlled regime. Note that KMC has a stronger stochastic

component than MD: it is expected to replicate the atomistic dynamics on average,

but individual runs can naturally feature quite different trajectories.

Figure 4-5: Number of KMC moves and empirical computational time as a function
of the KMC simulation time.

Finally, we make a few remarks on the behavior of the KMC simulation in terms of

computational time and simulation time. Consider figure 4-5. We are interested in the

evolution of two measures throughout the oxidation simulation: the number of moves

within the KMC algorithm and the computational time. The first quantity highlights

— once again, quite clearly — the existence of different regimes in the oxidation

dynamics: at early times, fast processes such as adsorption moves are sampled with

much higher probability (because of the disparity in the rate constants and because at

the beginning many adsorption sites are available and few diffusion moves possible).

As the surface is progressively covered, fast processes become more rare, and thus

single processes (such as high-barrier diffusion processes) advance the simulation time

more significantly. Conversely, regarding the computational time, as the number of

activated processes increases (each activated process requires the calculation of an
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energy barrier through the adaptive Nudged Elastic Band procedure described in

section 2.3.2), the time required to tackle a single process increases significantly.

The growth is slower than one could expect because the increased amount of oxygen

atoms adsorbed in the structure does not lead directly to an increase in the number

of diffusion processes available: such a variable is dictated by the concentration of

vacancies inside the structure.

4.3 Validation

A main objective of this research effort was validation of the Kinetic Monte Carlo

results using Molecular Dynamics simulations. Such a goal is somewhat ambiguous,

because MD serves both as a validation tool and as a training instrument, considering

that the MD data is practically the only reliable atomistic description of the oxidation

dynamics available.

The aim is to extract as many insights as possible from the molecular dynamics

simulation to generate a coarse-grained framework that can not only replicate the

early-times dynamics, but also simulate the oxidation behavior at longer times by

perpetuating and extrapolating the same elementary processes. Hence, validation

serves as a confirmation that the coarse-grained description does indeed replicate the

early-times dynamics with fidelity.

As we have mentioned in section 4.2, one of the most instructive metrics of com-

parisons is that of oxidation rates. Figure 4-6 shows that the oxidation rates predicted

by the two methods are very similar: despite small discrepancies in the adsorption-

controlled regime, the KMC simulation reproduces well the transition to the diffusion-

controlled regime, both in terms of timing and in terms of slopes.

Additional and independent validation can be obtained by comparing oxygen con-

centration profiles as a function of distance from the material surface. A comparison

between the concentration profiles of oxygen in the structure as the MD and KMC

simulations evolve is displayed in figure 4-7.
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Figure 4-6: Comparison of the oxidation rates predicted by MD and KMC simulations
at the same experimental conditions.

The figure shows that the KMC model is coarser in its treatment of successive

oxide layers, most likely as a consequence of the soft constraints enforced by the

tessellation grid. We observe for example a larger accumulation of oxygen atoms near

the surface in the KMC model than in the MD model, and a more homogeneous

distribution of the oxygen density in the oxide layer in the latter. Nevertheless, it is

also worth noting that the speed of the diffusion — in terms of hafnium unit cells

oxidized as a function of time — is very similar, resulting in a similar oxidation

resistance.

Figure 4-7: Comparison between the concentration profiles of oxygen in the structure
as the MD and KMC simulations evolve (surface is at 𝑧 = 30).
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Finally, a third validation metric we can use is the analysis of Radial Distribution

Functions (RDFs). Radial Distribution Functions describe the probability density

of distances between particles in a system. In that sense, they provide important

insights on the characterization of structural properties, by quantifying structural

features such as coordination numbers, bond lengths and bond angles. Thus, by

comparing the RDFs obtained from KMC simulations to the RDFs obtained with

MD simulations, we can validate the accuracy of the KMC model in capturing the

structural properties of the system.

Figure 4-8: Comparison of the raw Radial Distributions Functions of MD and KMC
simulations (KMC RDFs are shifted upwards for comparison purposes).

Figure 4-8 highlights that the RDFs produced by the two methods are not very

similar. In particular, the RDF peaks — representing the most likely distance be-

tween two pairs of atoms — are relatively close, but the widths of the distributions

are quite different: this is due to the fact that despite regular structural minimiza-

tions, the tessellation-based KMC imposes harder constraints on the atomic positions

than one would expect. This is likely due to the intrinsically geometric nature of
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the method: tessellation points will always be as far as possible from any other sur-

rounding atom, before being driven downward the potential energy surface by the

minimization process. The RDFs of the MD simulations look different: the peaks of

the distribution match those of the KMC (highlighting the fact that the equilibrium

bond lengths are close), but the widths of the curves differ significantly. This is most

likely due to the constant atomic vibrations that atoms undergo in the MD algorithm,

that end up increasing the variance around the equilibrium peaks.

Interestingly enough, by adding some noise to all atomic positions after tessella-

tion calculations but before minimization the agreement between the two methods

improves (see figure 4-9). More work is needed to understand the precise origin of the

discrepancy between the KMC and MD results and how a KMC formulation which

reproduces MD RDFs — assumed here to be the ground truth — can be developed.

Figure 4-9: Comparison of the Radial Distributions Functions of MD and KMC
simulations when allowing for artificial vibrations.

To assess the robustness of our KMC methodology, we have also performed simu-

lations at a different temperatures, 𝑇 = 2000 K. Crucially, the phase transition from

the HCP crystal structure to the BCC crystal structure occurs around 𝑇PT = 2030
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K [Jam63, KRES18]. Figure 4-10 is a comparison of the predicted oxidation rates at

the two different temperatures, above and below the phase transition. In figure 4-11,

we focus on the 2000 K run in particular and validate the oxidation rate predicted by

MD and KMC simulations as well.

Figure 4-10: Comparison of the oxidation rates predicted by KMC runs at different
temperatures.

We can see that the two methods predict very similar oxidation rates for early

times. This is a particularly important confirmation from an algorithmic standpoint:

as we could observe in figure 4-10, the oxidation rates differ significantly at different

temperatures, mainly because of the different crystal structures. To be able to match

with relatively good accuracy the early-time dynamics in both cases without changing

anything but the initial crystal structure is a demonstration of the robustness and of

the versatility of our KMC framework.

Overall, the off-lattice Kinetic Monte Carlo scheme appears to reproduce the early-

time dynamics with fidelity, especially from a mesoscopic perspective. At the micro-

scopic scale, our Kinetic Monte Carlo simulations are replicating with a fair accuracy
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Figure 4-11: Comparison of the oxidation rates predicted by MD and KMC simula-
tions at 𝑇 = 2000 K.

the expected structural properties (the benchmark and validation instrument be-

ing the Molecular Dynamics simulation), such as radial distribution functions, bond

lengths, and coordination numbers. More importantly, from the long-time integra-

tion perspective, our Kinetic Monte Carlo simulations appear to reproduce with fi-

delity dynamic properties at the mesoscopic scale, such as oxidation rates. Although

this specific study focuses on the early-times dynamics, the significant computational

speed-up (approximately ×2000 compared to Molecular Dynamics calculations) is

promising for tackling longer-times dynamics.
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Chapter 5

Conclusion

In conclusion, we have constructed an off-lattice Kinetic Monte Carlo framework to

bridge the large range of timescales present when simulating oxidation of hafnium at

the atomistic level.

Our approach features a dynamic tessellation to account for the expansion of the

underlying structure, accelerated estimation of rate constants by optimizing Nudged

Elastic Band calculations and a scalable and modular Julia implementation integrated

within the CESMIX software framework.

The presented results are exclusively focused on the early-time dynamics and on

the validation effort with respect to Molecular Dynamics calculations. Future work

will focus on the following challenges.

First, long-time integration remains a challenge: the current model is fast, accu-

rate and robust at early times, but the evolution of metrics such as computational

time as a function of simulation time (see figure 4-5) suggests that such an approach

— reproducing structural properties with fidelity and including and considering fast

processes — might reach computational bottlenecks preventing it to access longer

time-scales. In future work we plan to investigate whether formulations with a pro-

gressive increase in the level of coarse-graining are possible and provide a worthwhile

performance improvement.

Second, validation at longer time scales is very challenging since those timescales

cannot be accessed by our molecular dynamics simulations, considered here as ground
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truth. The wide time-scale gap between molecular dynamics simulations (on the

order of nanoseconds) and experimental results (usually on the order of seconds)

can be potentially bridged by Kinetic Monte Carlo methods using successive coarse-

graining, as discussed above, for example. Unfortunately, results in this intermediate

regime would be hard to validate.

Finally — in parallel with our simulation efforts — our goal is to develop an

uncertainty quantification framework coupled with the Kinetic Monte Carlo scheme,

in order to provide intrinsic metrics to evaluate the fidelity of Kinetic Monte Carlo

simulations. In such a multi-scale and hierarchical effort, it will be important to

extend the reasoning at all levels: by quantifying the impact of inherited errors (from

Density Functional Theory calculations and Inter-Atomic Potentials, for instance);

by formalizing the approximations in the current Kinetic Monte Carlo mathematical

model; and by quantifying the uncertainty associated with key steps of our Kinetic

Monte Carlo framework (namely, the generation of the tessellation and associated

geometric approximations, the criteria for the enumeration of processes, the number

of saddle point searches for a given process and the uncertainty in the evaluation of

energy barriers, as discussed in sections 2.3.1, 3.1 and 3.2).
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