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Abstract

Numerical modelling of ocean physics is essential for multiple applications such as
scientific inquiry and climate change but also renewable energy, transport, autonomy,
fisheries, water, harvesting, tourism, communication, conservation, planning, and se-
curity. However, the wide range of scales and interactions involved in ocean dynamics
make numerical modelling challenging and expensive. Many regional ocean models
resort to a hydrostatic (HS) approximation that significantly reduces the computa-
tional burden. However, a challenge is to capture and study local ocean phenomena
involving complex dynamics over a broader range of scales, from regional to small
scales, and resolving nonlinear internal waves, subduction, and overturning. Such
dynamics require multi-resolution non-hydrostatic (NHS) ocean models. It is known
that the main computational cost for NHS models arises from solving a globally cou-
pled elliptic PDE for the NHS pressure. Optimally reducing these costs such that the
NHS dynamics are resolved where needed is the motivation for this work.

We propose a new multi-dynamics model to decompose a domain into NHS and HS
dynamic regions and solve the corresponding models in their subdomains, reducing
the cost associated with the NHS pressure solution step. We extend a high-order NHS
solver developed using the hybridizable discontinuous Galerkin (HDG) finite element
methodology by taking advantage of the local and global HDG solvers for combining
HS with NHS solvers. The multi-dynamics is derived, and the first version is imple-
mented in the HDG framework to quantify computational costs and evaluate accuracy
using several analyses. We first showcase results on Rayleigh Taylor instability-driven
striations to evaluate computational savings and accuracy compared to the standard
NHS HDG and finite-volume solvers. We highlight and discuss sensitivities and per-
formance. Finally, we explore parameters that can be used to identify domain regions
exhibiting NHS behaviour, allowing the algorithm to dynamically evolve the NHS
and HS subdomains.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

Applications of numerical modelling of ocean physics range from scientific inquiry

and global climate change to renewable energy, autonomy, fisheries, path planning

and environmental conservation. Over the last few decades, the exponential increase

in computational power and the emergence of novel numerical methods have led to

significant advances in ocean modelling [24, 23, 90, 89]. Yet, accurate numerical

simulations of large-scale three-dimensional ocean problems are often prohibitively

computationally expensive. Therefore, methods to optimize these simulations and

make them more computationally tractable are currently a subject of active research.

The multi-scale interactions associated with ocean dynamics make numerical mod-

elling challenging and expensive. Most regional ocean models employ a hydrostatic

(HS) approximation [49, 15] that significantly reduces the computational burden. The

validity of the hydrostatic approximation relies on the fact that for typical ocean pro-

cesses, the aspect ratio, defined as the ratio of the vertical to the horizontal scale

of the motion, is very small. However, this approximation breaks down when the

aspect ratio becomes substantial, and this limits hydrostatic models from being able

to capture and study complex non-hydrostatic (NHS) ocean phenomena.

Non-hydrostatic phenomena [37, 97], such as nonlinear internal waves [110, 45],

subduction and overturning, are believed to be the link between the slow-moving

large-scale motions and the high-speed mixing scales in the ocean [34]. Such NHS

behaviour, in the form of nonlinear internal solitary waves, was observed in the Lu-
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zon Strait and South China Sea [10]. Some low-order ocean models [11, 48, 52, 69]

with non-hydrostatic capability include the SUNTANS [35], the MIT GCM [72],

PSOM [70, 71], Oceananigans [91], MERF v3.0 [100], FVCOM [55, 56] and CROCO-

ROMS [86, 96]. Over the last few decades, high-order methods [54] have emerged

as candidates for non-hydrostatic ocean modelling but are still nascent. A Hy-

bridizable Discontinuous Galerkin (HDG) [77, 78] discretization scheme based on

the pressure-projection method [16, 101, 6] for the incompressible Navier-Stokes and

non-hydrostatic ocean equations were presented in [103, 106]. This model has also

been extended to study biological processes in regions such as Stellwagen Bank in

Massachusetts [104, 102, 107]. More recently, a Discontinuous Galerkin multi-layered

non-hydrostatic coastal ocean model was presented in [82, 83].

Typically, non-hydrostatic ocean models are based on the pressure decompo-

sition proposed in [12], which splits the pressure into a sum of hydrostatic and

non-hydrostatic components. This results in a globally coupled three-dimensional

pressure-Poisson equation (PPE) to be solved to compute the non-hydrostatic pres-

sure component. However, for large-scale ocean problems, this PPE is poorly condi-

tioned because the vertical and horizontal second-derivative terms are typically two

orders of magnitudes apart [35, 111], drastically increasing the computational cost.

Furthermore, it is understood [110] that accurate simulations of non-hydrostatic ef-

fects come with a significant horizontal resolution requirement that might be beyond

the reach the current state-of-the-art ocean solvers.

1.1 Present Research

In this thesis, as a method to mitigate the computational challenge posed by NHS

simulations, we start developing a multi-dynamics algorithm to decompose a domain

into NHS and HS dynamic regions and solve the corresponding models in their subdo-

mains, thereby reducing the cost associated with the NHS pressure solution step. We

take a look at the advantages and disadvantages of different coupling approaches for

the NHS and HS subdomains before presenting our novel projection-method-based

16



coupling strategy. Implementation details are explained while addressing key ques-

tions related to communication between subdomains and boundary condition treat-

ment at the subdomain interfaces. We then explore parameters that can be used to

identify domain regions exhibiting NHS behaviour, allowing the algorithm to change

the NHS and HS subdomains dynamically. Finally, we show results from a first imple-

mentation of this algorithm on an idealized test case to quantify computational costs,

evaluate the accuracy, and compare against the standard NHS HDG and finite-volume

solvers.

Some of the questions that motivate our research include: Could we use and

interconnect different models in different regions based on the local dynamics in these

regions? How could we accurately couple these modeling subdomains with different

dynamics? What are the correct boundary conditions and global dynamical effects

across such multi-dynamics interconnected subdomains? What are ideal schemes

and implementations for facilitating communication among subdomains that employ

different governing equations and solvers? Can we find and employ specific parameters

to anticipate and predict the local dynamics of subdomains? Using these parameters,

can we adapt the equations used in the subdomains dynamically? When do multi-

dynamics solvers become inefficient, e.g., when should the most complex dynamics

be used everywhere? In what follows, we will start to address some of the questions.

1.2 Thesis Outline

Here we describe the outline of the thesis with a synopsis of each chapter for the sake

of the reader’s convenience.

• Chapter 1 - Introduction: A brief introduction to the application of numerical

modelling for ocean dynamics highlighting the current state of research and

motivation for this thesis.

• Chapter 2 - Numerical Methods for Ocean Modelling : An overview of the deriva-

tion of the hydrostatic and non-hydrostatic ocean equations followed by a dis-
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cussion on the pressure-projection method and the HDG framework.

• Chapter 3 - Multi-Dynamics model : Methods to improve NHS solver efficiency

are discussed, and the proposed multi-dynamics algorithm is derived with at-

tention to implementation details.

• Chapter 4 - Numerical Investigation: An idealized test case of Rayleigh -Taylor-

instability driven striation is used to conduct numerical experiments that im-

plement the multi-dynamics model and estimate accuracy and computational

savings.

• Chapter 5 - Conclusion and Future Work : Results from this thesis are summa-

rized and possible extensions of this work are examined.

18



Chapter 2

Numerical Methods for Ocean

Modelling

The non-linear and anisotropic nature of ocean dynamics makes ocean modelling a

challenging endeavour. The scales associated with ocean phenomena can range from

seconds to geological time scales and meters to thousands of kilometres. Historically,

finite volume methods have been the popular choice for ocean modelling and com-

putational fluid dynamics (CFD) in general. However, finite element methods offer

tools for tackling large-scale multi-resolution simulations on unstructured grids in a

computationally tractable fashion. A finite element method with unstructured grid

capabilities was used for non-hydrostatic modelling for the first time in [29] and later

extended to accommodate a free-surface in [87]. Over the last couple of decades,

Discontinuous Galerkin (DG) finite element methods have gained popularity in the

CFD community. These methods offer high-order accuracy on unstructured grids and

are well-suited for modern-day parallel computing. DG finite element methods have

been applied to hydrostatic models in the context of the shallow water equations with

success in [24, 23] and other ocean and lake dynamics [108, 94, 43, 26]. We refer to

[44] for an introduction to DG methods.

In this chapter, we review the non-hydrostatic and hydrostatic forms of the ocean

dynamics equations and discuss the projection method used to solve the two sets of

equations as described in [103]. We then provide a brief overview of the hybridizable
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Discontinuous Galerkin (HDG) finite element method and its application to such

ocean dynamics.

2.1 Ocean Dynamics Equations

The equations governing ocean dynamics, also known as the primitive equations (PE),

are derived from the Navier-Stokes equations augmented with Coriolis forcing along

with transport equations for temperature and salinity, and an equation of state [20].

It’s also common to consider a density decomposition based on the Boussinesq approx-

imation which is rooted in the fact that density variations in the ocean are typically

small in magnitude (≈ 1%). The density is split into a constant mean density 𝜌0 and

a spatially and temporally varying perturbation as

𝜌(𝑥, 𝑡) = 𝜌0 + 𝜌′(𝑥, 𝑡) where |𝜌′(𝑥, 𝑡)| ≪ 𝜌0 (2.1)

Since typical ocean processes possess vastly different length scales and time scales

along the vertical and horizontal directions, we define the state variables as the hor-

izontal velocities 𝑢 = [𝑢, 𝑣, 0], vertical velocity 𝑤 = [0, 0, 𝑤], pressure 𝑝, density 𝜌,

temperature 𝑇 and salinity 𝑆. Using the Boussinesq approximation and an eddy-

viscosity closure model we can write the governing equations as [103].

20



𝜕𝑢

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑢+∇𝑧 · 𝑤 𝑢 =− 1

𝜌0
∇𝑥𝑦𝑝+∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑢 (2.2)

+∇𝑧 · 𝜈𝑧∇𝑧𝑢− 𝑓𝑘 × 𝑢+
1

𝜌0
𝑓𝑢

𝜕𝑤

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑤 +∇𝑧 · 𝑤𝑤 =− 1

𝜌0
∇𝑧𝑝+∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑤 (2.3)

+∇𝑧 · 𝜈𝑧∇𝑧𝑤 +
𝜌

𝜌0
𝑔 +

1

𝜌0
𝑓𝑤

∇𝑥𝑦 · 𝑢+∇𝑧 · 𝑤 =0 (2.4)
𝜕𝑇

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑇 +∇𝑧 · 𝑤𝑇 =∇𝑥𝑦 · 𝜅𝑥𝑦∇𝑥𝑦𝑇 +∇𝑧 · 𝜅𝑧∇𝑧𝑇 + 𝑓𝑇 , (2.5)

𝜕𝑆

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑆 +∇𝑧 · 𝑤𝑆 =∇𝑥𝑦 · 𝜅𝑥𝑦∇𝑥𝑦𝑆 +∇𝑧 · 𝜅𝑧∇𝑧𝑆 + 𝑓𝑆 (2.6)

𝜌 =𝜌(𝑆, 𝑇 ) (2.7)

where the divergence operators are defined as ∇𝑥𝑦 =
[︁

𝜕
𝜕𝑥
, 𝜕
𝜕𝑦
, 0
]︁

and ∇𝑧 =
[︀
0, 0, 𝜕

𝜕𝑧

]︀
.

The Coriolis parameter is denoted by 𝑓 , the gravity vector by 𝑔 = [0, 0,−𝑔] and the

turbulent viscosities and diffusivities by 𝜈𝑥𝑦/𝑧 and 𝜅𝑥𝑦/𝑧.

We now consider a pressure decomposition formulation, as proposed in [12], wherein

the pressure field is decomposed into hydrostatic and non-hydrostatic components as

𝑝 = 𝑝ℎ𝑦𝑑 + 𝜌0𝑝
′ (2.8)

where the hydrostatic pressure is defined in terms of the density field and free-surface

elevation 𝜂 (𝑥, 𝑦, 𝑡) as

𝑝ℎ𝑦𝑑 (𝑥, 𝑦, 𝑧, 𝑡) =

∫︁ 𝜂(𝑥,𝑦,𝑡)

𝑧

𝜌 (𝑥, 𝑦, 𝜁, 𝑡) 𝑔 d𝜁 (2.9)

We note that the vertical gradient of this hydrostatic pressure ∇𝑧𝑝ℎ𝑦𝑑 = −𝑔𝜌 exactly

cancels the 𝜌
𝜌0
𝑔 term in the vertical momentum equation. In a hydrostatic model,

this means that the effects of the density forcing are fully captured in the horizontal

momentum equations through 𝑝ℎ𝑦𝑑.

Introducing this pressure decomposition into the governing equations and adding
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an equation for the free-surface elevation 𝜂(𝑥, 𝑦, 𝑡) to satisfy the kinematic boundary

condition at the free surface, we get

𝜕𝑢

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑢+∇𝑧 · 𝑤 𝑢 =−∇𝑥𝑦𝑝

′ − 𝑔∇𝑥𝑦𝜂 −
1

𝜌0

∫︁ 𝜂

𝑧

𝑔∇𝑥𝑦𝜌
′d𝜁 (2.10)

+∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑢+∇𝑧 · 𝜈𝑧∇𝑧𝑢− 𝑓𝑘 × 𝑢+
1

𝜌0
𝑓𝑢

𝜕𝑤

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑤 +∇𝑧 · 𝑤𝑤 =−∇𝑧𝑝

′ +∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑤 (2.11)

+∇ · 𝜈𝑧∇𝑧𝑤 +
1

𝜌0
𝑓𝑤

∇𝑥𝑦 · 𝑢+∇𝑧 · 𝑤 =0 (2.12)

𝜕𝜂

𝜕𝑡
+∇𝑥𝑦 ·

∫︁ 𝜂

−𝐻

𝑢d𝑧 =0 (2.13)

which we will henceforth refer to, along with Eqs.2.5-2.6, as the non-hydrostatic

(NHS) ocean equations. From this, we can derive the hydrostatic (HS) equations by

setting 𝑝′ ≈ 0, which leads to

𝜕𝑢

𝜕𝑡
+∇𝑥𝑦 · 𝑢𝑢−∇𝑧 · 𝑤 𝑢 =− 𝑔∇𝑥𝑦𝜂 −

1

𝜌0

∫︁ 𝜂

𝑧

𝑔∇𝑥𝑦𝜌
′d𝜁 (2.14)

+∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑢+∇𝑧 · 𝜈𝑧∇𝑧𝑢− 𝑓𝑘 × 𝑢+
1

𝜌0
𝑓𝑢

∇𝑥𝑦 · 𝑢+∇𝑧 · 𝑤 =0 (2.15)

𝜕𝜂

𝜕𝑡
+∇𝑥𝑦 ·

∫︁ 𝜂

−𝐻

𝑢d𝑧 =0 (2.16)

This amounts to assuming that the vertical scales are much smaller in magnitude

than the horizontal (similar to a thin fluid approximation from lubrication theory).

In other words, we assume that

|𝑤| ≪ |𝑢| ∼ |𝑣| and
𝜕𝑢

𝜕𝑧
≪ 𝜕𝑢

𝜕𝑥
∼ 𝜕𝑢

𝜕𝑦
(2.17)

In Fig.2-1, we summarize the two sets of equations. Note that we have used the
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Figure 2-1: A summary of the non-hydrostatic ocean equations (left) and hydrostatic
ocean equations (right)

equation of state to replace the transport equation for temperature and salinity with

a tracer equation for the density anomaly 𝜌′. Henceforth, we will be working with

this form of the NHS and HS equations.

2.2 Projection Method

As is common for non-hydrostatic models [35, 72, 73], we solve the NHS and HS ocean

equations using a pressure-projection method [16, 101] that decouples the velocities

and the pressure. These methods are based on the Helmholtz decomposition, wherein

vector fields are separated into divergence-free and irrotational parts. Generally, these

schemes constitute an initial step where an intermediate velocity field is computed

that doesn’t satisfy the divergence-free constraint and a final step where a pressure

correction is used to "project out" the divergence-producing part of the velocity field.

Here we will summarize the steps in the semi-implicit pressure-projection method for

the non-hydrostatic and hydrostatic ocean equations as presented in [103]. The initial

steps of the scheme are common to the NHS and HS equations, but the final steps

are different as listed below
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1. First Velocity Predictor - {𝑝′,𝑘, 𝜂𝑘} → {�̄�𝑘+1, �̄�𝑘+1}

The first predictor velocities (�̄�𝑘+1 and �̄�𝑘+1) are computed by solving the momentum

equation using the previous time-step values for the non-hydrostatic pressure 𝑝′,𝑘 and

free-surface elevation 𝜂𝑘

�̄�𝑘+1

𝑎∆𝑡
−∇𝑧 · 𝜈𝑧∇𝑧�̄�

𝑘+1 +∇𝑥𝑦𝑝
′,𝑘 + 𝑔∇𝑥𝑦𝜂

𝑘 = 𝐹𝑢
𝑘,𝑘+1 (2.18)

�̄�𝑘+1

𝑎∆𝑡
−∇𝑧 · 𝜈𝑧∇𝑧�̄�

𝑘+1 +∇𝑧𝑝
′,𝑘 = 𝐹𝑤

𝑘,𝑘+1 (2.19)

where,

𝐹𝑢
𝑘,𝑘+1 =

𝑢𝑘

𝑎∆𝑡
− 1

𝜌0

∫︁ 𝜂𝑘

𝑧

𝑔∇𝑥𝑦𝜌
′,𝑘d𝜁 −∇𝑥𝑦 · 𝑢𝑘 𝑢𝑘 (2.20)

−∇𝑧 · 𝑤𝑘 𝑢𝑘 +∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑢
𝑘 − 𝑓𝑘 × 𝑢𝑘 +

1

𝜌0
𝑓𝑢

𝑘,𝑘+1

𝐹𝑤
𝑘,𝑘+1 =

𝑤𝑘

𝑎∆𝑡
−∇𝑥𝑦 · 𝑢𝑘 𝑤𝑘 −∇𝑧 · 𝑤𝑘 𝑤𝑘 (2.21)

+∇𝑥𝑦 · 𝜈𝑥𝑦∇𝑥𝑦𝑤
𝑘 +

1

𝜌0
𝑓𝑤

𝑘,𝑘+1

with Dirichlet and Neumann boundary conditions given as,

�̄�
⃒⃒𝑘+1

𝜕Ω𝐷
= 𝑔

𝑢,𝐷
�̄�
⃒⃒𝑘+1

𝜕Ω𝐷
= 𝑔

𝑤,𝐷

𝜕�̄�

𝜕�̂�

⃒⃒⃒⃒𝑘+1

𝜕Ω𝑁

= 𝑔
𝑢,𝑁

𝜕�̄�

𝜕�̂�

⃒⃒⃒⃒𝑘+1

𝜕Ω𝑁

= 𝑔
𝑤,𝑁

(2.22)

2. Free-surface Corrector - �̄�𝑘+1 → 𝛿𝜂𝑘+1

The free-surface kinematic condition equation is solved using the first predictor ve-

locities to obtain the free-surface corrector for the next timestep as

𝛿𝜂𝑘+1

𝑎∆𝑡
−∇𝑥𝑦 ·

[︀
𝑎∆𝑡𝑔(𝜂𝑘 +𝐻)∇𝑥𝑦𝛿𝜂

𝑘+1
]︀
= 𝐹 𝑘,𝑘+1

𝜂 (2.23)

where 𝐻 is the depth of the ocean and
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𝐹 𝑘,𝑘+1
𝜂 = −∇𝑥𝑦 ·

∫︁ 𝜂𝑘

−𝐻

�̄�𝑘+1d𝑧 (2.24)

with boundary conditions (𝜕Ω𝑁 and 𝜕Ω𝑂 are boundaries with wall and open condi-

tions for the velocities, respectively)

∇𝑥𝑦𝛿𝜂
⃒⃒𝑘+1

𝜕Ω𝑁
· �̂�𝑥𝑦 =

1

𝑎∆𝑡𝑔(𝐻 + 𝜂𝑘)

∫︁ 𝜂𝑘

−𝐻

(�̄�𝑘+1 − 𝑔
𝑢,𝐷

) · �̂�𝑥𝑦dz (2.25)

𝛿𝜂
⃒⃒𝑘+1

𝜕Ω𝑂
= 𝑔𝜂.𝑂 (2.26)

3. Free-surface corrections - {�̄�𝑘+1, 𝛿𝜂𝑘+1} → {¯̄𝑢𝑘+1, ¯̄𝑤𝑘+1, 𝜂𝑘+1}

The free-surface corrector and first velocity predictors are then used to algebraically

compute the second predictor velocities and the free-surface elevation for the next

timestep as

¯̄𝑢𝑘+1 = �̄�𝑘+1 − 𝑎∆𝑡𝑔∇𝑥𝑦𝛿𝜂
𝑘+1 𝜂𝑘+1 = 𝜂𝑘 + 𝛿𝜂𝑘+1 (2.27)

Once the second predictor velocities and the new free-surface elevations are computed,

the steps followed to arrive at the final velocities differ for the NHS and HS equations.

NHS equations:

4. Pressure Corrector - ¯̄𝑢𝑘+1 → 𝛿𝑝′,𝑘+1

The non-hydrostatic pressure correction is computed using the second predictor ve-

locities by solving the following pressure-Poisson equation (PPE).

∇2
𝑥𝑦𝛿𝑝

′,𝑘+1 +∇2
𝑧𝛿𝑝

′,𝑘+1 =
∇𝑥𝑦 · ¯̄𝑢𝑘+1

𝑎∆𝑡
+

∇𝑧 · ¯̄𝑤𝑘+1

𝑎∆𝑡
(2.28)

with boundary conditions (𝜕Ω𝑁𝑆,𝑆, 𝜕Ω𝜂 and 𝜕Ω𝑂 are boundaries with no-slip, slip,free-

surface and open boundary conditions for the velocities)
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∇𝛿𝑝′
⃒⃒𝑘+1

𝜕Ω𝑁𝑆,𝑆
· �̂� =

1

𝑎∆𝑡
(¯̄𝑢𝑘+1 − 𝑔

𝑢,𝐷
) · �̂�𝑥𝑦 +

1

𝑎∆𝑡
( ¯̄𝑤𝑘+1 − 𝑔

𝑤,𝐷
) · �̂�𝑧 (2.29)

∇𝛿𝑝′
⃒⃒𝑘+1

𝜕Ω𝜂
= 0 (2.30)

∇𝛿𝑝′
⃒⃒𝑘+1

𝜕Ω𝑂
= 𝑔𝑂𝑝′

(2.31)

5. Final Velocity and Pressure - {¯̄𝑢𝑘+1, 𝛿𝑝′,𝑘+1} → {𝑝′,𝑘+1,𝑢𝑘+1}

The final divergence-free velocities and non-hydrostatic pressure are computed using

the pressure corrector as

𝑢𝑘+1 = ¯̄𝑢𝑘+1 − 𝑎∆𝑡∇𝑥𝑦𝛿𝑝
′,𝑘+1 (2.32)

𝑤𝑘+1 = ¯̄𝑤𝑘+1 − 𝑎∆𝑡∇𝑧𝛿𝑝
′,𝑘+1 (2.33)

𝑝′,𝑘+1 = 𝑝′,𝑘 + 𝛿𝑝′,𝑘+1 (2.34)

HS equations:

4. Final Velocity - ¯̄𝑢𝑘+1 → 𝑤𝑘+1

The second predictor horizontal velocities become the final horizontal velocities (𝑢𝑘+1 =

¯̄𝑢𝑘+1) and the final vertical velocities are reconstructed from the 3D continuity equa-

tion such that the divergence-free constraint is satisfied.

∇𝑧 · 𝑤𝑘+1 = −∇𝑥𝑦 · 𝑢𝑘+1 (2.35)

with boundary condition

𝑤𝑘+1
⃒⃒
−𝐻

= −𝑢𝑘+1 · ∇𝑥𝑦𝐻 (2.36)
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2.3 Hybridizable Discontinuous Galerkin Method

Finite element methods offer high-order solutions and ease of implementation on un-

structured grids which makes them suitable candidates for modelling flows in complex

domains. In particular, the Discontinuous Galerkin (DG) finite element methods are

very attractive for modelling advection-dominated flows as the discontinuous poly-

nomial spaces can capture steep gradients and wave behaviour leading to stable and

flexible schemes in comparison to the standard Continuous Galerkin (CG) finite ele-

ment methods. It is also known that DG-FEM methods are well-suited for adaptive

mesh refinement techniques which could be critical in alleviating the computational

demand for large-scale ocean modelling.

Hybridizable discontinuous Galerkin (HDG) finite element methods were intro-

duced in [19] for second-order elliptic problems to address one of the key drawbacks

of DG methods which is the spatial duplication of degrees of freedom. HDG schemes

allow for discontinuous solutions while solving globally coupled unknowns that only

have support on the element interfaces. This results in a significantly reduced linear

system to be solved and a comparison of the distribution of degrees of freedom for

the CG-FEM, DG-FEM and HDG-FEM is shown in Fig.2-2. Since its invention,

HDG has been applied to a wide variety of problems including linear and nonlinear

convection-diffusion [78, 77], linear elasticity [99], Maxwell’s equations [80, 2, 67], in-

compressible flows [18, 79] and compressible flows [85, 84, 76]. More recently, an HDG

scheme for the incompressible Navier-Stokes with Boussinesq approximation based on

projection method [16, 101] was proposed in [106, 102, 103, 107] with implementation

refinements in [30, 33].

In HDG schemes, the element-local solutions are parameterized in terms of a

numerical trace that lives on the global edge space. Then, a glocal problem is solved

on this edge space by enforcing normal flux continuity and the computed values of the

numerical trace are used to reconstruct the element-local solutions. Note that once

the numerical trace is computed on the global edge space, the element-local solutions

can be reconstructed in an independent and parallel fashion suitable for modern-day
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Figure 2-2: Schematic illustrating the coupled degrees of freedom for CG-FEM (left),
DG-FEM (middle) and HDG-FEM (right) - taken from [31]

computer architecture. Furthermore, these schemes also allow for local, element-

by-element postprocessing options to obtain new approximations by exploiting the

superconvergence properties of the HDG [77] method.
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Chapter 3

Multidynamics Model

Non-hydrostatic models are required to capture phenomena such as nonlinear in-

ternal waves, subduction, convection plumes and overturning which are believed to

be crucial to the energy transfer between the slow-moving large-scale motions and

the high-speed mixing scales in the ocean [34]. However, it is well-understood in the

literature that relaxing the hydrostatic pressure constraint comes at a significant com-

putational cost. The three-dimensional globally-coupled elliptic equation that needs

to be solved for the non-hydrostatic pressure component (as shown in Section 2.2)

accounts for the bulk of the workload in most NHS solvers [35, 73, 111]. This three-

dimensional pressure-Poisson equation is poorly conditioned due to the fact that the

vertical and horizontal second-derivative terms are typically two orders of magnitudes

apart. Therefore, over the last few decades, research has been directed towards mak-

ing NHS simulations more feasible. In this chapter, we briefly discuss works from

the literature that address this issue and then present our proposed multi-dynamics

model.

There have been many efforts made towards improving the efficiency of NHS mod-

els over the years. In [91], a non-hydrostatic finite-volume algorithm similar to the

MIT GCM [72] is developed in the Julia programming language that solves geophys-

ical flows on CPUs and GPUs. In [7], a three-mode time-split algorithm is developed

for non-hydrostatic processes in free-surface ocean models. A semi-implicit and vari-

able layers (SIVL) scheme for the non-hydrostatic pressure component calculation
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was introduced in [100] as a method to improve solver efficiency. The PSOM model

[70] uses a multigrid method to solve for the non-hydrostatic pressure component in

a finite-volume framework.

Although most existing ocean solvers are low-order finite volume codes, there are

a few high-order solvers including SEOM [74], the DG NHS code presented in [83, 82],

and our MSEAS non-hydrostatic HDG ocean model [106, 33]. Such high-order meth-

ods are often able to produce more accurate solutions than low-order methods for

similar computational costs [44, 104]. In [30], a distributed implementation of the

HDG projection method algorithm is developed in the context of large-scale ocean

simulations to make the computational cost more tractable. Adaptive mesh refine-

ment schemes [32, 95, 88], which allow for resolution wherever necessary in the do-

main, have also been investigated as a means to alleviate the computational demand

of NHS models.

Another approach for reducing the computational cost of these simulations is to

use approximate NHS models. In [73], the authors propose a quasi-hydrostatic model

wherein the precise balance between gravity and the forces due to the pressure gra-

dient is relaxed by treating the Coriolis force exactly. However, this model does not

account for an NHS pressure component and consequentially, the forces due to its

gradient. A non-hydrostatic model with an isopycnal (density-following) coordinate

system was proposed in [111] and it was demonstrated that this model is able to

capture nonlinear internal solitary waves for some idealized ocean test cases. Yet,

this model has a significant limitation in that its unable to represent unstable strat-

ification and overturning effects that are commonly associated with non-hydrostatic

phenomena.

3.1 Multi-Dynamics Model

The computational cost of non-hydrostatic models aside, a big reason why the ma-

jority of ocean models and solvers are based on the hydrostatic approximation is that

these solvers can capture many oceanic processes very accurately. The hydrostatic
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Figure 3-1: Different approaches to deal with the high computational cost associated
with non-hydrostatic simulations

primitive equations (HPE) are capable of capturing the global circulation of oceans,

wind-driven gyres, geostrophic eddies, and many such features that exhibit horizon-

tal length scales much larger than the vertical ones. The hydrostatic approximation

breaks down when the horizontal length scales of the phenomena in consideration be-

come comparable to the vertical length scales [73]. Therefore, non-hydrostatic effects

tend to be localized and this forms our motivation for developing a coupled NHS-HS

model capable of treating different regions of a domain to be non-hydrostatic and

hydrostatic by solving the appropriate equations with the appropriate solvers at the

appropriate physical locations and times.

Since we have developed solvers for both the non-hydrostatic and hydrostatic

ocean equations (as described in 2.1), we could imagine splitting our domain into

subdomains and employing the requisite solver for each subdomain. However, it is

not obvious how the subdomains would be coupled, and devising an efficient strategy

to facilitate optimal communication between the NHS and HS subdomains is crucial

to this coupled modeling scheme. Our numerical research questions include: What

are the dynamical regimes and domain properties for which multi-dynamics (NHS

and HS) solvers would be most efficient? Can HDG numerical schemes be developed
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such that different dynamics occur within the same solver? Are there advantages for

HDG to achieve this multi-dynamics capability? How could the NHS and HS domains

be connected efficiently and accurately? How could the NHS and HS cell types be

modified during the simulation? One could add several other related questions to this

list. In what follows, we will address several of them.

3.1.1 Preliminary subdomain coupling ideas

One possible approach could be to employ an upwind-Dirichlet coupling between the

NHS and HS subdomains. In the degenerate case of just two subdomains in our

full computational domain, we would solve the "upwind" subdomain with an open

boundary condition at the boundary that coincides with the other subdomain and

supply the computed values at the boundary to the "downstream" subdomain through

a Dirichlet boundary condition (as shown in Fig.3-2). However, this method is unlikely

to be robust for a few reasons. Barring the simple advection-dominated problems, it

would be difficult to identify the upstream subdomains. Additionally, this method

would almost entirely decouple the state variables in the different subdomains.

Figure 3-2: Schematic of an upwind Dirichlet approach to coupling the non-
hydrostatic and hydrostatic subdomains

Another possible approach would be to employ a Schwarz method [36, 98] to

couple the different subdomains. Here, we would define our subdomains such that

they include overlapping regions and then solve each subdomain completely inde-

pendently (as shown in Fig.3-3). Following this, we would perform iterations within

each timestep wherein we re-solve the problem on each subdomain with boundary

conditions obtained from the solutions in the neighbouring subdomains until con-
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vergence is attained. Although this method might facilitate better communication

between subdomains, it introduces a possibility of convergence issues and an increased

computational cost associated with the extended domains and iterations within each

timestep.

Figure 3-3: Schematic of a domain decomposition approach to coupling the non-
hydrostatic and hydrostatic subdomains

3.1.2 Novel Projection method-based coupling of multi-dynamics

subdomains

Figure 3-4: Summary of projection method steps involved in solving the non-
hydrostatic (left) and hydrostatic (right) ocean equations

Figure 3-4 summarizes the steps involved in the HDG pressure-projection method

for the non-hydrostatic and hydrostatic ocean equations. Recognizing that the so-

lution process for the two models only differs in the latter steps, we devise a new
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algorithm wherein the initial projection method steps are executed on the entire do-

main in a coupled manner, and then, the appropriate final steps are carried out on

the NHS and HS subdomains. This way, we solve smaller, local pressure-Poisson

equations for the non-hydrostatic pressure in the NHS subdomains, thereby making

computational savings.

We describe a simple example to illustrate this algorithm. Consider a rectangu-

lar domain where we expect the flow to be hydrostatic towards the right and non-

hydrostatic towards the left, as shown in Fig.3-5. The domain is split into two at

𝑥 = 𝑥𝑠𝑝𝑙𝑖𝑡 and the left subdomain is labelled to be NHS and the right to be HS. At

each timestep, the intermediate values from the projection method are transferred

to the respective subdomains where the dynamic-appropriate steps are followed to

compute the final velocities and pressure. The computed solutions are then returned

to the full domain for the next timestep.

NHS Subdomain HS Subdomain

Full Domain
x = xsplit

¯̄wk+1

¯̄uk+1

p′,k

wk+1

uk+1

p′,k+1

¯̄wk+1

¯̄uk+1

wk+1

uk+1

Figure 3-5: Schematic illustrating a split domain with an NHS subdomain on the left
and an HS subdomain on the right. The intermediate solutions are transferred to the
subdomains where the appropriate equations are solved and the final velocities and
pressure are returned to the full domain.

Overall, at each time step, we execute the steps listed in Algorithm 1.
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Algorithm 1 Projection method-based coupling algorithm

1: Compute first velocity predictors (�̄�𝑘+1, �̄�𝑘+1) in the full domain
2: Compute free-surface corrector 𝛿𝜂𝑘+1 in the full domain
3: Compute second velocity predictors (¯̄𝑢𝑘+1, ¯̄𝑤𝑘+1) and free-surface elevation 𝜂𝑘+1

4: Then, for each subdomain
5: if NHS subdomain then
6: Transfer (¯̄𝑢𝑘+1, ¯̄𝑤𝑘+1) and 𝑝′,𝑘 to subdomain
7: Solve local pressure-Poisson equation to compute 𝑝′,𝑘+1 and (𝑢𝑘+1, 𝑤𝑘+1).
8: Transfer 𝑢𝑘+1, 𝑤𝑘+1 and 𝑝′,𝑘+1 to the full domain
9: else

10: Set non-hydrostatic pressure to zero - 𝑝′,𝑘+1 = 0
11: Set final horizontal velocities as 𝑢𝑘+1 = ¯̄𝑢𝑘+1

12: Reconstruct final vertical velocities 𝑤𝑘+1 from the continuity equation
13: Transfer 𝑢𝑘+1, 𝑤𝑘+1 and 𝑝′,𝑘+1 to the full domain
14: end if

It is important to note that to solve the local pressure-Poisson problems in the

NHS subdomains, we need to specify boundary conditions for 𝛿𝑝′ along the newly

formed internal boundaries. We can choose from a few reasonable options here and

it is not obvious which would be the optimal choice. The possible choices include,

1. Homogeneous Dirichlet boundary condition - 𝛿𝑝′,𝑘+1 = 0

This would be an appropriate boundary condition if the internal boundary is

well within a hydrostatic region of the domain

2. Imposing the previous timestep data - 𝛿𝑝′,𝑘+1 = 𝛿𝑝′,𝑘

This amounts to assuming that the divergence of the velocity predictor has not

changed ∇ · ¯̄𝑢𝑘+1 ≈ ∇ · ¯̄𝑢𝑘, and therefore would be valid if the flow near the

boundary is almost steady.

3. Homogeneous Neumann boundary condition - 𝜕𝛿𝑝′,𝑘+1/𝜕𝑛 = 0

This boundary condition allows for a larger degree of freedom for the values

𝛿𝑝′ and could be used when we have little information about the flow near the

boundary (similar to open boundary conditions).

We note that these boundary conditions might reduce to the same boundary condition

when considering a problem with static subdomains and hydrostatic initial conditions.
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3.2 New numerical non-hydrostatic parameters

Non-hydrostatic effects, such as nonlinear internal waves, are often localized and

associated with small horizontal length scales [110, 10]. The accuracy of models rep-

resenting many other localized ocean wave effects would benefit from some local non-

hydrostatic treatment [47, 46, 27, 28, 50, 51], at least for including wave-breaking

effects. Therefore, it would be useful to have a method to identify regions of our

domain exhibiting NHS behaviour so that the NHS solvers can be employed appro-

priately locally in space and time, where and when needed.

The hydrostatic approximation can be thought of as a thin-fluid assumption and

we can expect to require that

𝑤 ≪ 𝑢 and ℎ ≪ 𝐿 and
𝜕𝑢

𝜕𝑧
≪ 𝜕𝑢

𝜕𝑥
(3.1)

where 𝐿 and ℎ are the horizontal and vertical length scales of the motions, and 𝑢 and

𝑤 are the horizontal and vertical velocities. In [73], the authors present the following

non-dimensional non-hydrostatic parameter to quantify NHS behaviour

𝑛 =
𝑢2

𝐿2𝑁2
=

𝛾2

𝑅𝑖

≪ 1 =⇒ Hydrostatic (3.2)

where 𝑁2 = −(𝑔/𝜌0)(𝜕𝜌/𝜕𝑧) is the Brunt-Väisälä frequency, 𝛾 = ℎ/𝐿 is the aspect

ratio and 𝑅𝑖 = 𝑁2ℎ2/𝑢2 is the Richardson number. This parameter accounts for the

fact that the hydrostatic approximation would be valid even for small aspect-ratio

problems if the stratification is strong enough (𝑅𝑖 >> 1).

Looking at the pressure-Poisson equation (from Sec.2.2) that determines the NHS

pressure field, we see that the forcing function is a scaled divergence of the first

velocity predictors

∇2
𝑥𝑦𝛿𝑝

′,𝑘+1 +∇2
𝑧𝛿𝑝

′,𝑘+1 =
∇𝑥𝑦 · ¯̄𝑢𝑘+1

𝑎∆𝑡
+

∇𝑧 · ¯̄𝑤𝑘+1

𝑎∆𝑡
(3.3)

Further, we know that the Green’s function of the Laplace operator rapidly decays
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and we can thereby expect a correlation between domain regions with non-zero values

of forcing and non-zero values of NHS pressure corrector. Therefore, we construct a

new numerical non-hydrostatic parameter as

𝛼 =
∇𝑥𝑦 · ¯̄𝑢𝑘+1

𝑎∆𝑡
+

∇𝑧 · ¯̄𝑤𝑘+1

𝑎∆𝑡
(3.4)

and expect it can track regions of non-zero pressure corrector values 𝛿𝑝′.

This new parameter could be used to devise an adaptive multi-dynamics algorithm

where the subdomains are evolved dynamically over time. Moreover, since we solve

for both the state variables and the derivatives in the HDG framework, we can readily

compute this numerical non-hydrostatic parameter.
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Chapter 4

Numerical Investigation

In this chapter, we verify some of the claims made in the literature about the com-

putational bottleneck of NHS models and then present various results from a 2D

first-implementation of the proposed multi-dynamics model. Firstly, we introduce an

idealized problem that will serve as the test case for all the following numerical exper-

iments. Our in-house, parallelized, non-hydrostatic C++ HDG code [33] is profiled

to demonstrate that the pressure-Poisson equation solved for the NHS pressure com-

ponent is indeed the computational bottleneck. Following this, we present qualitative

validation of the C++ HDG code against another finite-volume NHS solver. The

multi-dynamics model is implemented and compared with standard NHS simulations

to realize computational savings and evaluate accuracy. Finally, we look at an NHS

parameter that can serve as a tool to predict non-hydrostatic behaviour and facilitate

extension to an adaptive multi-dynamics model.

4.1 Rayleigh-Taylor Instability-Driven Striations

Gravity-driven instabilities seen at interfaces between fluids of different densities are

referred to as Rayleigh-Taylor (RT) instabilities. These instabilities are observed in

processes that span a wide range of length scales ranging from supernova explosions

[92] to turbulence mixing [8, 112]. RT instabilities have garnered a lot of attention over

the years and there have been many investigations into the linear stability analysis
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∂w/∂n = 0

Figure 4-1: Schematic of the domain and boundary conditions considered for the
Rayleigh-Taylor instability-driven striations test case. Here, 𝑢0 denotes the back-
ground velocity, and 𝜌′0 denotes the difference in density between the initial domain
density and the density of the cooler water being dragged into the domain. The verti-
cal momentum diffusivity is chosen to be 0.008𝑚/𝑠2 and the vertical tracer diffusivity
is set to 0.004𝑚/𝑠2 while the horizontal momentum and tracer diffusivities are set to
100𝑚/𝑠2

[53, 113], nonlinear [25] stability analysis and RT instabilities in the context of ocean

dynamics [22, 109, 21, 81].

We have also observed several hydrostatic traces of such instabilities in several of

our MSEAS [75] PE simulations [40, 42, 1].

We construct an idealized test case featuring Rayleigh-Taylor instability-driven

striations which we will use for all the following numerical experiments. We con-

sider a two-dimensional domain of depth 50 metres and length 30 kilometres with a

constant background velocity 𝑢0. We model colder water being pulled into the do-

main through the left boundary by imposing an appropriate density distribution at

the left boundary. Figure 4-1 illustrates the parameters used to model this problem

along with the relevant boundary conditions and dimensions. As the denser water is

advected into the domain, the opposing buoyancy and gravitational forces interact
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Figure 4-2: Density perturbation 𝜌′ profile at 𝑡 = 36ℎ𝑟 illustrating the Rayleigh-
Taylor instability-driven striations that develop as the denser water is pulled into the
domain. These plots correspond to a background velocity of 𝑢0 = 0.3𝑚/𝑠 and a
density perturbation of 𝜌′0 = 1 𝑘𝑔/𝑚3.

with each other leading to Rayleigh-Taylor instability-driven striations as shown in

Fig.4-2.

4.2 Validation with NHS Finite Volume Code

Before we begin our numerical investigations, we verify the HDG non-hydrostatic

solver against our benchmarked in-house finite-volume method (FVM) solver [105,

62]. The FVM solver has non-hydrostatic capabilities but unlike the HDG solver, it

does not accommodate a free-surface (rigid-lid approximation). We simulate the RTI

problem described in the previous section using the two solvers on a 200 × 10 grid

with a polynomial order of 𝑝 = 3 and compare the solutions.

Figure 4-3 compares the velocities and density perturbation produced by the HDG

and finite-volume codes at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}. We see that the two solutions show

good agreement at 𝑡 = 12ℎ𝑟 in terms of the time scales of the flow and magnitudes of

each state variable. However, at 𝑡 = 24ℎ𝑟, although the primary features of the flow

look similar, we see that the HDG solution shows density perturbation waves being

formed that aren’t captured by the finite-volume code and this can be attributed to

the different free-surface models used by the two solvers. We repeat this experiment

while imposing a wind shear of 𝜕𝑢/𝜕𝑦 = 5 𝑑𝑦𝑛/𝑐𝑚2 along the top boundary and see
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that once again, the two sovlers produce qualitatively similar solutions as shown in

Fig.4-4.
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Figure 4-3: Comparison of the density perturbation and velocities between the FVM
and HDG solutions to the RTI test case without wind forcing at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}
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Figure 4-4: Comparison of the density perturbation and velocities between the FVM
and HDG solutions to the RTI test case with wind forcing at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}
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4.3 Code Profiling Results

In order to understand the performance and computational bottlenecks within our

C++ HDG ocean solver, we perform a series of timing analyses, and the results are

presented in this section. As described in Section 2.2, for each timestep of a non-

hydrostatic simulation, the code assembles and solves four systems of equations as

shown below in Algorithm 2.

Algorithm 2 Equations solved in the projection method at each timestep
1: Solve momentum equations to compute first velocity predictors
2: Solve free-surface evolution equation to compute the free-surface corrector
3: Solve the pressure-Poisson equation to compute the NHS pressure component
4: Solve the tracer evolution equation to compute the density perturbation

Figure 4-5 shows the statistics generated from a timing analysis for a simulation of

our RTI-induced striations test case (𝑢0 = 0.5𝑚/𝑠 and 𝜌′0 = 1 𝑘𝑔/𝑚3). We see that

for various choices of grid resolution and solutions orders, computing the solution to

the pressure-Poisson equation (PPE) accounts for about 50% of the total compute

time. The globally coupled nature of elliptic PDEs makes them expensive to solve.

Furthermore, for field-scale ocean applications, the PPE is poorly conditioned because

the vertical second derivative terms are up to two orders of magnitude larger than

the horizontal second derivative terms [35, 73]. The timing analyses also show that

an increase in vertical resolution further increases the fraction of computational cost

spent on the pressure corrector step (Fig.4-6 (left)). We also see that for lower-

order solutions, the pressure corrector step can account for up to 70% of the total

computational workload (Fig.4-6 (right)).

Table 4.1 summarizes the condition number of each linear system and the number

of iterations required by different iterative schemes to solve the system. The condition

number of the PPE linear system and the iteration requirement is about two orders

of magnitude greater than that of the other linear systems. We also see that the

conjugate gradient solver proves to be the most efficient and this is consistent with

what we expect given that the linear system arising from the HDG discretization is

symmetric positive definite (SPD).
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Condition
Number

Iteration Count
CG BiCGStab GMRES

Velocity Predictor 20 50 40 50
Free-surface Corrector 100 100 50 100

Pressure Corrector 40000 1000 900 10000
Tracer Evolution 30 50 40 50

Total Wall Clock Time 6.1s 9.1s 43.2s

Table 4.1: Summary of condition number and iteration count with different solvers for
each projection method step. The pressure corrector system is poorly conditioned and
requires far more iterations until convergence than the other systems. The conjugate
gradient solver performs best in terms of wall-clock time.

Figure 4-5: Distribution of computational cost associated with the different solutions
steps involved within each timestep of a non-hydrostatic simulation. We see that
the pressure corrector step accounts for about 50% of the computational budget
across various resolutions and solution orders. The timing analyses are conducted
on simulations of the RTI-induced striations test case.
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Figure 4-6: The fraction of the total computational budget consumed by the pressure
corrector step as a function of vertical resolution and solution order. The timing
analyses are conducted on simulations of the RTI-induced striations test case.

4.4 Split Domain Results

We have defined our test problem and empirically demonstrated that the pressure-

Poisson equation for the NHS pressure is our solver’s computational bottleneck. Now,

we implement our multi-dynamics model on a simple test case and evaluate the

model’s accuracy and computational savings. For the following simulations, we con-

sider the density difference between the initial domain density and the incoming water

from the left boundary to be 𝜌′0 = 2 𝑘𝑔/𝑚3. This increased density anomaly causes

the flow to quickly re-stratify such that the regions towards the outflow boundary of

the domain are almost hydrostatic. We then consider a split-domain setup where the

domain is divided into two subdomains at 𝑥𝑠𝑝𝑙𝑖𝑡 = 3𝐿/4 = 22.5 𝑘𝑚. A homogeneous

boundary condition for the NHS pressure corrector (𝛿𝑝′ = 0) is imposed along the

subdomain dividing boundary for each of the following simulations. Note that the

errors in the following analyses are calculated and compared in the 𝐿2-norm as

𝐿2𝐸𝑟𝑟𝑜𝑟 (𝑢𝑟𝑒𝑓 , 𝑢) =

√︃∑︀
𝐾∈𝒯ℎ

∫︀
𝐾
‖𝑢𝑟𝑒𝑓 − 𝑢‖2d𝐾∑︀

𝐾∈𝒯ℎ

∫︀
𝐾
‖𝑢𝑟𝑒𝑓‖2d𝐾

(4.1)
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Case 1: NHS-NHS Split Domain

For our first investigation, we employ a split-domain solver comprising of NHS solvers

for both subdomains and compare the resulting solution to the standard NHS solution.

In this case, the only error we have introduced in the split-domain model is due to the

homogeneous boundary condition we impose along 𝑥 = 𝑥𝑠𝑝𝑙𝑖𝑡 for the NHS pressure

corrector. Therefore, we expect the error in the split-domain solution compared to

the standard NHS solution to be minimal.

Figure 4-7 and 4-8 show the density perturbation and NHS pressure profiles at

𝑡 = 12ℎ𝑟 and 𝑡 = 24ℎ𝑟, respectively. As expected, throughout the simulation, we see

that the relative error is below 0.01% for the density perturbation and below 1% for

the NHS pressure. The errors in velocity were also computed and they were limited

to 0.1% for the horizontal velocity and to 0.1% for the vertical velocities. Looking

at the absolute error plots, we see that the errors seem to be mostly localized to

𝑥𝑠𝑝𝑙𝑖𝑡 < 𝑥 < 𝐿. We also note that the jump in error around timestep number 300

indicates the advection flow reaching the subdomain dividing boundary and that the

oscillatory nature of the NHS pressure error curves is due to its wave train-like profile

as seen in Fig.4-8.
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Figure 4-7: Comparison of the density perturbation between a split-domain NHS-NHS
solver (𝑥𝑠𝑝𝑙𝑖𝑡 = 3𝐿/4 = 22.5 𝑘𝑚) and a standard NHS solver at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}.
The non-hydrostatic pressure corrector is set to 𝛿𝑝′ = 0 along the dividing boundary
and the background velocity and density anomaly are 𝑢0 = 0.5𝑚/𝑠 and 𝜌′𝑜 = 2 𝑘𝑔/𝑚3.
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Figure 4-8: Comparison of the NHS pressure between a split-domain NHS-NHS solver
(𝑥𝑠𝑝𝑙𝑖𝑡 = 3𝐿/4 = 22.5 𝑘𝑚) and a standard NHS solver at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}. The non-
hydrostatic pressure corrector is set to 𝛿𝑝′ = 0 along the dividing boundary and the
background velocity and density anomaly are 𝑢0 = 0.5𝑚/𝑠 and 𝜌′𝑜 = 2 𝑘𝑔/𝑚3.
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Case 2: NHS-HS Split Domain

In this case, we use an NHS solver for the left subdomain (0 < 𝑥 < 𝑥𝑠𝑝𝑙𝑖𝑡) and an HS

solver for the right subdomain (𝑥𝑠𝑝𝑙𝑖𝑡 < 𝑥 < 𝐿) and compare the resulting solution to

the standard NHS solution. We impose a homogeneous boundary condition for the

pressure corrector 𝛿𝑝′ = 0 along 𝑥 = 𝑥𝑠𝑝𝑙𝑖𝑡 in the NHS subdomain. In addition to the

error we introduced in case 1, we have introduced a hydrostatic approximation for

the flow in the right subdomain.

Figure 4-9-4-10 show the density perturbation and NHS pressure profiles at 𝑡 =

12ℎ𝑟 and 𝑡 = 24ℎ𝑟 along with the absolute errors incurred by the split-domain solver.

We see that although the relative error has now increased, it is restricted to about

1% for the density perturbation and to 10% for the NHS pressure. Similarly, we

find that the relative error of the horizontal velocity is less than 1% and that of the

vertical velocity is less than 10%. Furthermore, the primary flow features seem to

be captured, and we see that the errors remain bounded at late times. Unlike the

NHS-NHS split domain solver, significant errors are seen to propagate upstream of

the domain. A timing analysis showed that the split-domain NHS-HS solver produced

a computational saving of about 20% compared to the standard NHS solver. We note

that the computational savings depend on how much of the domain exhibits NHS

behaviour and for a more realistic large-scale problem with localized NHS effects, we

can expect even greater computational savings.

We now repeat this simulation to investigate the effects of boundary condition

choice by imposing different boundary conditions along the 𝑥 = 𝑥𝑠𝑝𝑙𝑖𝑡 boundary within

the NHS subdomain. Figure 4-11 illustrates the resulting error curves and we do not

see a significant difference between the three cases. Since we have static subdomains

initialized to a stratified field, we see that imposing the homogeneous Dirichlet con-

dition 𝛿𝑝′,𝑘+1 = 0 and the previous timestep value condition 𝛿𝑝′,𝑘+1 = 𝛿𝑝′,𝑘 results in

the exact same solution. We note that it would be more interesting and informative

to compare these boundary conditions in the context of an adaptive version of this

algorithm where the subdomains are evolved in time as the simulation progresses such
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that subdomains can switch between the NHS and HS models.
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Figure 4-9: Comparison of the density perturbation between a split-domain NHS-HS
solver (𝑥𝑠𝑝𝑙𝑖𝑡 = 3𝐿/4 = 22.5 𝑘𝑚) and a standard NHS solver at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}.
The non-hydrostatic pressure corrector is set to 𝛿𝑝′ = 0 along the dividing boundary
and the background velocity and density anomaly are 𝑢0 = 0.5𝑚/𝑠 and 𝜌′𝑜 = 2 𝑘𝑔/𝑚3.
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Figure 4-10: Comparison of the NHS pressure between a split-domain NHS-HS solver
(𝑥𝑠𝑝𝑙𝑖𝑡 = 3𝐿/4 = 22.5 𝑘𝑚) and a standard NHS solver at 𝑡 = {12ℎ𝑟, 24ℎ𝑟}. The
non-hydrostatic pressure corrector is set to 𝛿𝑝′ = 0 along the dividing boundary and
the background velocity and density anomaly are 𝑢0 = 0.5𝑚/𝑠 and 𝜌′𝑜 = 2 𝑘𝑔/𝑚3.
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Figure 4-11: Comparison of the errors corresponding to the three boundary condi-
tion choices discussed in Section 3.1.2 for the density perturbation (top) and non-
hydrostatic pressure (bottom). We note that the black and blue lines, corresponding
to the homogeneous Dirichlet and previous timestep value boundary conditions, co-
incide here.
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4.5 NHS Parameters

As we have discussed in the previous chapter, there are a few non-dimensional num-

bers that can potentially be used to predict non-hydrostatic behaviour. Here, we look

at the numerical non-hydrostatic parameter defined as,

𝛼 =
∇𝑥𝑦 · ¯̄𝑢𝑘+1

𝑎∆𝑡
+

∇𝑧 · ¯̄𝑤𝑘+1

𝑎∆𝑡
(4.2)

In Fig.4-12, we compare the NHS parameter 𝛼 (scaled divergence of the velocity

predictor) with the NHS pressure corrector 𝛿𝑝′. We see that the NHS parameter

is able to track domain regions with non-zero NHS pressure corrector values well

throughout the simulation. Therefore, we can make use of this parameter to develop

an adaptive algorithm as shown in Algorithm 3. Consider a domain split into multiple

subdomains and initially tagged to be either non-hydrostatic or hydrostatic.

Algorithm 3 Adaptive Multi-dynamics Model
1: At each timestep, for each subdomain,
2: if Non-hydrostatic subdomain then
3: if 𝑝′ < tolerance and 𝛼 < tolerance then
4: Switch subdomain tag to hydrostatic
5: end if
6: else
7: if 𝛼 > tolerance then
8: Switch subdomain tag to non-hydrostatic
9: end if

10: end if

We can adjust the tolerance used as thresholds for transition between the NHS and

HS models to choose between computational savings and accuracy. We are currently

working on implementing this adaptive multi-dynamics model.
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Figure 4-12: Plots of the non-hydrostatic pressure corrector and the divergence of the
velocity predictor at 𝑡 = {3ℎ𝑟, 6ℎ𝑟, 12ℎ𝑟, 24ℎ𝑟}. We see that the divergence of the
velocity predictor can track the non-hydrostatic pressure corrector throughout the
simulation.
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Chapter 5

Conclusion and Future Work

This work presents a projection method-based multi-dynamics model for coupling

the non-hydrostatic and hydrostatic ocean equations in the hybridizable discontin-

uous Galerkin [77] finite element method framework. The proposed model employs

dynamics-appropriate models for different parts of the domain and therefore has the

potential to optimally reduce the computational cost by resolving non-hydrostatic dy-

namics only where and when needed. We have detailed the implementation aspects

associated with this model, emphasising possible boundary condition treatment. Tim-

ing analyses of our in-house, parallelized, C++ non-hydrostatic HDG solver [30, 33]

are conducted to verify that computing the non-hydrostatic pressure is the computa-

tional bottleneck.

A first implementation of the multi-dynamics modeling system, with static subdo-

mains, was developed. It was evaluated in the context of 2D idealized Rayleigh-Taylor

instability-driven striations, inspired by ocean dynamics in multiple regions including

the Mediterranean Sea (Alboran and Balearic Seas) and Gulf of Mexico. Simulation

results were presented with discussions on accuracy evaluations and computational

savings. We then discussed and obtained numerical parameters that could be used

to quantify and anticipate non-hydrostatic behaviour within the domain locally. Our

numerical experiments reveal that the divergence of the velocity predictor can be used

to track regions with non-zero non-hydrostatic pressure.

We are working on an extension to this work where we devise an adaptive algo-

59



rithm that uses the proposed parameter to track non-hydrostatic behaviour to dy-

namically choose regions where the NHS model is needed as the simulation evolves.

Integrating this multi-dynamics algorithm with adaptive mesh refinement schemes

[32] in the HDG framework could prove to be an effective method to optimize NHS

simulations.

Research in the direction of novel numerical schemes and modern-day comput-

ing tools is critical in the pursuit of capturing and understanding a broad range of

non-hydrostatic ocean phenomena. One route could be incorporating reduced-order

methods within our HDG ocean modelling framework to reduce the memory require-

ment. The discovery of effective preconditioners and novel solution methods for the

linear systems arising from HDG discretization is another avenue we are interested

in. In particular, we are looking at multigrid methods [9, 17, 68] as they offer the

attractive possibility of solving linear systems at a mesh size-independent rate. More

sophisticated parameterization of sub-grid processes would go a long way in enabling

large-scale realistic ocean simulations. Present-day data-driven approaches and par-

allel computing with graphics processing units (GPUs) have gained a lot of attention

recently and they could also prove useful in tackling the computational challenge

posed by non-hydrostatic simulations.

Advances towards efficient NHS simulations would enhance the capabilities of

our Multidisciplinary Simulation, Estimation and Assimilation Systems (MSEAS)

[75, 41, 38, 39] ocean modelling to perform realistic simulations and forecasts across

the world’s oceans, several of which have localized non-hydrostatic dynamics [47, 46,

60, 64, 63, 40, 42]. Such localized effects are also often important for underwater sound

propagation and computational ocean acoustics [93, 28, 5, 3, 4]. Their simulations

may also benefit from reduced-order modeling [13, 14], uncertainty quantification

[59, 58], and data assimilation and adaptive sampling [66, 57, 65, 61].
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