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Abstract

The space environment that satellites face is uncertain and challenging for survival
and operation. Traditionally, satellite design methods mitigate the effects of un-
certainty through the use of ample margin. However, robust designs often sacrifice
significant nominal performance in exchange for this reduced sensitivity to uncer-
tainty. Small satellites in particular are limited in size, weight, and power (SWaP)
and do not have the luxury of resources for ample design margin. They can ill-afford
the performance sacrifice of robust design. As SmallSats continue to decrease in size
- even down to the hundreds of grams - the need grows for design techniques that
offer resilience under uncertainty without the inevitable sacrifice of performance that
comes with robust design.

In this thesis, a methodology is presented to mitigate the effects of uncertainty
in the space environment with the ability to adapt the satellite’s behavior during
operation. Compensation for uncertainty on-orbit allows for dynamic allocation of
margin on an as-needed basis, reducing the performance loss while improving the
ability to maintain operation. The methodology covers two phases. First, design
prior to operation enables provisioning of resources to plan for and provide the
capability for passive and active dynamic mitigation of predicted uncertainty. Sec-
ond, reprogramming of dynamic behavior in operation allows for optimal mitigation
actual uncertainty. The resultant designs balance improved resilience in the face of
uncertainty with minimal overdesign and sacrifice of performance.

The methodology is applied to a novel SmallSat concept, WaferSat - a SWaP-
constrained satellite etched on a 300 g silicon wafer using microelectromechanical sys-
tems (MEMS) production. Optimization of active and passive dynamic compensation
is utilized to mitigate effects of thermal uncertainty with limited sacrifice of payload
power. Multiple design families - with the same available payload power (isoper-
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forming) and confidence of operating temperature constraint satisfaction (isofeasible)
are identified utilizing different combinations of responsive and adaptive mitigation
techniques.

Application of the methodology is expanded to a second system, DiskSat, a similar
larger, more thermally complex system. A detailed comparison of the continuum
between responsiveness and adaptability is made, demonstrating the Pareto-set of
isoperforming and isofeasible designs between two mitigation methods. Design for
the balance of active and passive uncertainty mitigation over multiple constraints is
explored, highlighting implementation considerations.

Thesis Supervisor: David W. Miller
Title: Jerome C. Hunsaker Professor of Aeronautics and Astronautics
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Nomenclature

Optimization

Bilevel Optimization Optimization utilizing two loops where one is nested

within the other

Constraint Margin Slackness in an inequality constraint

Design Phase Time period in which static design variables, a pri-

ori design variables, and Tailoring occur.

Dynamic Robustness Ability of a system to maintain feasibility and per-

formance under uncertainty through variation of

dynamic design variables in operation

Fixed Recourse Adjustment of design variables in operation that

follows a predetermined, passive response to uncer-

tainty

Gradient Optimization Algorithms for optimization that utilize calculation

or estimates of the Jacobian to propose continuous

solutions.

Heuristic Optimization Algorithms for optimization that utilize discrete so-
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lution proposals and evaluations. Examples include

genetic algorithms, simulated annealing, particle

swarm optimization

Isofeasiblity Refers to the set of designs that each deliver the

same statistical guarantee of constraint feasibility

over a modeled uncertainty set

Isoperformance Refers to the set of designs over which a measure

of performance is invariant

Nominal Optimal Designs that provide the best performance under

the certain, no uncertainty case only

Operational Phase Time period in which system is assumed to be in

orbit. Dynamic design variable response is fixed;

adaptive design variables may be tuned or retuned

as needed.

Sequential Optimization Optimization with two or more loops where each

occurs successively. See Tailoring then Tuning.

Static Robustness Ability of a system to maintain feasibility and per-

formance under uncertainty through margin or in-

sensitivity to sources of uncertainty

Processes

Adaptive Tailoring Design of the a priori tuning variables that govern

the Adaptive Design Variables. See fixed recourse

Dynamic Tailoring Design of the a priori tuning variables that govern

the Dynamic Design Variables. See fixed recourse
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Static Tailoring Design of a set static variables for robustness in

either performance or feasibility

Tailoring A process to adjust design variables in the design

phase (pre-operationally) for optimal performance

or feasibility

Tailoring then Tuning Sequentially optimized approach where the first Tai-

loring loop provides static and dynamic robustness

and the second Tuning loop provides adapatability

to modeled uncertainty

Tailoring for Tuning Bilevel optimized approach where the outer Tailor-

ing loop optimizes static and dynamic robustness

as well as the a priori tuning variables to govern

adaptability. The inner Tuning loop optimizes for

the adaptive and dynamic design variables in oper-

ation under uncertainty.

Tuning A process to optimally, actively adjust variables

during operation to compensate for the effects of

uncertainty

Uncertainty

Adaptability Ability of a system to maintain feasibility and per-

formance under uncertainty though acitve, dynamic

adjustment of system during operation. See Adap-

tive Design Variables

Robustness Ability of a system to maintain feasibility and per-

formance under uncertainty. See Static Robustess

and Dynamic Robustness
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State of the World A single instantiation of uncertain parameters, drawn

from the modeled uncertainty sets

Variables

Adaptive Variable A variable that can be actively modified as-needed

during system operation

Certain Parameter A design constant with no uncertainty

Dynamic Design Variable A design variable that must be set before opera-

tion and governs either adaptive or response design

variables

Responsive Variable A variable that can be passively adjusts during

system operation following a fixed function; not

actively managed, see fixed recourse

Static Design Variable A variable that is selected in the design phase and

held constant during system operation

Uncertain Parameter A design constant with modeled parametric uncer-

tainty
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Acronyms

AI&T Assembly, Integration, and Test

CONOPS Concept of Operations

GMM Gaussian Mixture Modeling

LEO Low Earth Orbit

LVLH Local Vertical Local Horizontal

MDO Multi-disciplinary Optimization

MEMS Microelectromechanical Systems

MORDM Many Objective Decision Making

PCA Principal Components Analysis

PCB Printed Circuit Board

PCM Phase Change Material

RHU Radioisotope Heater Unit

SA Simulated Annealing
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SoTW State of the World

SWaP Size, Weight, and Power

SWaP-C Size, Weight, and Power, and Cost

TCS Thermal Control System
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Symbols

𝛼 Visible light wavelength absorptivity and emissivity; note that for a

common wavelength, 𝜆: 𝛼𝜆 = 𝜀𝜆

𝜀 Infrared wavelength emissivity and absorptivity; note that for a common

wavelength, 𝜆: 𝛼𝜆 = 𝜀𝜆

𝛾 Attitude angle from Wafer top side normal to Earth-Sun vector

𝜎 Steffan-Boltzmann constant

𝛽𝑆𝐴 Solar array physical fill factor

(·)1−2 Denotes radiation from surface/body 1 to surface/body 2

(·)𝐵−𝐸 Denotes s/c nominal nadir surface to Earth direction

(·)𝐵−𝑆 Denotes s/c nominal nadir surface to sun direction

(·)𝐷 Denotes DiskSat general large surface area-related term

(·)𝐸 Denotes Earth-related term

(·)𝑆𝐴 Denotes zenith solar array surface-related term
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(·)𝑆𝑁 Denotes nadir solar array surface-related term

(·)𝑇−𝐸 Denotes s/c nominal zenith surface to Earth direction

(·)𝑇−𝑆 Denotes s/c nominal zenith surface to sun direction

(·)𝑛 Denotes nadir-related term

(·)𝑠 Denotes free space-related term

(·)𝑠𝑜𝑙 Denotes sun-related term

(·)𝑤 Denotes side wall surface of wafer or disk term

(·)𝑤𝑎𝑓 Denotes WaferSat general large surface area-related term

(·)𝑧 Denotes zenith-related term

𝐴𝐸 Mean Earth albedo

𝐸𝑠𝑜𝑙 Solar irradiance flux density

𝐻∘
𝑡 Latent heat of vaporization

𝐼𝐸 Mean Earth IR flux density

𝑐𝑝 Specific heat capacity at constant pressure
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Chapter 1

Introduction

The space environment that satellites face is uncertain and challenging for survival

and operation. Traditionally, to mitigate the effects of uncertainty - in both the

design process and operation - spacecraft design involves large allocation of margin

across the system to ensure compliance with requirements and constraints in the

worst-case uncertain outcomes. However, this approach often involves large contin-

gencies and margins that are arbitrary functions of the stage of development [1].

Such application of margin is by design conservative, and it has been noted that

this method for allocation often creates overlap and excess margin, especially at the

conceptual stage [2]. This approach to providing guarantees of feasibility results

in overdesign, sacrificing capability and performance. For spacecraft systems that

are more severely constrained - either by limitations of size or due to an extreme

environment - overdesign may not be feasible. As spacecraft systems continue to

shrink in size, methods are required to ensure feasibilty, while limiting the sacrifice

of performance. To illustrate this, the next section will describe some small satellites

and their associated design challenges.
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1.1 WaferSat: Integrated Satellites-on-a-Chip

Richard Feynman once famously said that “there is plenty of room at the bottom”

during a lecture in 1959 [3]. He was speaking of the prospect of miniaturization - in

particular, that the ability to view and manipulate objects at extremely small scale

could allow for greater complexity in a smaller amount of physical space. His ultimate

vision for miniaturization included the rearrangement of atoms at will. While we

have not reached this stage, many advancements in microelectromechanical systems

(MEMS) miniaturization have enabled manufacturing of electrical and mechanical

systems at ever decreasing sizes, with the current state of the art at 10 nm die sizes [4].

If applied to satellite production and integration, continued miniaturization presents a

potentially disruptive change to the traditional paradigms that define satellite designs.

1.1.1 SmallSat Trends

In recent years, there has been a rapid growth of small satellite missions, particularly

at the 1 kg to 10 kg mass-scale. A prolific example of this is the CubeSat, which

has demonstrated useful functionality at low size, weight, and power (SWaP). While

often sacrificing capability in comparison to larger satellites, missions that adopt

small satellites can take advantage of lower launch and manufacturing costs, shorter

development cycle times, and greater potential for rideshare launch opportunities. In

fact, many missions to date have successfully supported scientific payloads [5] and

even operated outside of Earth orbit [6].

While the cost and time advantages of CubeSats from a launch and development

standpoint are notable, the continued reliance on manual assembly, integration, and

test [8] presents a new challenge: the high volume production to supply the many

satellites needed for large distributed systems. A solution is to leverage the existing

global semiconductor and mobile device-manufacturing infrastructure and the related

manufacturing methods to build tightly integrated electronic systems for the high
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Figure 1-1: MEMS-produced, µm-scale, mechanical silicon gear
mechanism by Sandia National Laboratories [7]

volume production of even smaller yet capable satellites i.e. lower mass without

sacrificing useful capability and functionality. A potential solution is to incorpo-

rate silicon-based production methods that utilize MEMS manufacturing, originally

pioneered in the electronics industry to mass produce integrated circuits. MEMS

micromachining processes have expanded to apply to increasingly complex systems

at small scale as demonstrated in Figure 1-1. Advancement in MEMS techniques can

be applied to many subsystems of small satellites such as sensors, microfluidics and

propulsion, and actuators [9].

1.1.2 MEMS Integration

Satellite integration is a traditionally laborious process involving manual assembly.

MEMS production for satellites offers an attractive alternative. The automated,

low touch-labor processes reduce human-in-the-loop interactions, streamlining the

integration and reducing potential errors. Highly efficent, rapid MEMS produc-

tion applied to satellite assembly could enable mass production and the fielding

of proliferated constellations. Such constellations could leverage large numbers of

MEMS wafer-satellites (WaferSats) to form large effective-aperture diameter imaging
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systems [10, 11]. The Rayleigh Criterion indicates that the angular resolution of

an imaging system is linearly proportional to the diameter of a system for a given

imaging wavelength. Formation-flight patterns of WaferSat-like chipsat subapertures

are predicted to have a much lower estimated cost relative to the size of the effective

synthetic aperture [12] as shown in Figure 1-2. All studied 500-member swarm

patterns have a significantly lower scaling of cost to effective diameter than monolithic

aperture systems as diameter becomes large. Thus, proliferated swarms of WaferSats

can open up the possibility of cost-effective, extremely large aperture imaging systems.

Figure 1-2: Comparison of estimated cost relative to effective
aperture diameter of various femtosat swarm patterns [12]

1.2 High Aspect Ratio: A Novel Satellite Design

Regime

MEMS production necessitates the processing of silicon substrate wafers of specific

sizes and dimensions. There are various standard diameters and thicknesses, but the

current state of the art utilizes wafers that are hundreds of millimeters in diameter

34



and less than a millimeter thick.

The flat form factor of standardized silicon wafer sizes can be expressed as an

aspect ratio (A), or a non-dimensional ratio of the diameter, 𝐷 to the thickness, 𝑡.

A =
𝐷𝑤𝑎𝑓𝑒𝑟

𝑡𝑤𝑎𝑓𝑒𝑟

(1.1)

In particular,A is related to the ratio of spacecraft surface area to volume. Whereas

a cube-shape (A ≈ 1) has low surface area to volume, a flat wafer (A ≈ 100) has

extremely high surface area to volume ratio.

1.2.1 Scaling of Surface Area, Volume, and Mass

The surface area and volume scaling can be compared for a cube and a disk of specified

A. For a cube, the volume and surface area are

𝑉𝑐 = 𝑠3

𝐴𝑐 = 6𝑠2
(1.2)

Correspondingly, for a disk, they are

𝑉𝑑 = 𝜋𝑟2𝑡

𝐴𝑑 = 2𝜋𝑟2
(︂
1 +

2

A

)︂ (1.3)

where 𝑠 is the side length, 𝑟 is the radius, and 𝑡 is the thickness.

Although the shapes of a cube and disk are different, a similitude can be generated

by matching the scaling of surface area and volume. The resulting system of equations

matching surface areas and volumes of the cube and disk shapes (Equations 1.2
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and 1.3 respectively) is

𝑠3 = 𝜋𝑟2𝑡

6𝑠2 = 2𝜋𝑟2
(︂
1 +

2

A

)︂ (1.4)

By solving the system of equations in 1.4 for theA, a similar scaling is generated

with roots given in Equation 1.5. A WaferSat with A matching these roots would

exactly match the surface area to volume scaling of a cube. Note that the negative

value for A is a degenerate root, therefore, there are two real physical values for

which A causes a realistic similitude between surface area and scaling of a disk and

cube.

A𝑠𝑖𝑚𝑖𝑙𝑎𝑟 = {−8.683, 0.404, 2.279} (1.5)

Figure 1-3 shows the scaling of surface area to volume of various shapes and aspect

ratios. Note that a sphere has the lowest theoretical ratio of surface area to volume

for a uniform solid. The cube represents a uniform solid cube or that of a disk with

either of the two positive roots of Equation 1.5. There are two reference points along

the cube curve: a standard 1U CubeSat shape, and a 1Q PocketQube shape [13].

A WaferSat of a standard 200 mm diameter and with uniform pure silicon density

and total mass of 150 g has an A of 97.59. Note that this A is far higher than the

values in Equation 1.5 that create a similar scaling with a cube. Furthermore, the

value of the ratio of surface area to volume of the A = 97.6 disk is more than an

order of magnitude higher than that of a cube (or low aspect ratio disk), suggesting

a significantly different A regime than that of other small satellite standards (and

that of other large satellites).

1.2.2 Subsystem Design Implications ofA

The ratio of surface area to volume has many implications in the design and scaling

of spacecraft subsystems such as thermal, power, moment of inertia, and structures.
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Figure 1-3: Surface area vs. volume scaling for specified shapes and
aspect ratios

The dominant mode of heat exchange for spacecraft with the external environment is

through radiation. For a uniform solid, volume and mass will be directly proportional

to the heat capacity. Therefore the extreme temperatures and rates of thermal equi-

libration will increase in magnitude as the ratio of surface area to volume increases.

This is observable in the rearranged 1D heat equation (Equation 1.6). The time rate

of change of heat (dominated by radiation) is proportional to surface areas. Therefore

for large surface areas, the time rate of change of heat, 𝑄, is large. A low volume,

𝑣, yields low heat capacity for a given uniform solid of density, 𝜌 and specific heat

capacity, 𝑐𝑝. The time rate of change of temperature, 𝑇 is expected to be high when

surface area to volume is high and the system will converge on thermal extremes

rapidly.
𝜕𝑇

𝜕𝑡
=
𝜕𝑄

𝜕𝑡

1

𝜌𝑣𝑐𝑝
(1.6)

Figure 1-4 shows the estimated quasi-steady state temperature ranges of blank

silicon wafers1 in a 400 km altitude low Earth orbit (LEO) with one surface always

1These measurements assume emissometer-measured thermal surface properties of a blank Si
wafer measured at MIT LL. 𝛼𝑣𝑖𝑠 = 0.73 and 𝜀𝐼𝑅 = 0.70
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Earth-facing. The difference in rate of thermal change between the high and low A

disks is stark. The extreme temperatures that are attained for the high A disks

suggests that the thermal subsystem will be pushed significantly closer to design

limits of survivability compared to the cases that scale similarly to cube-shapes.

The A = 100 case (solid orange line) is shown with the corresponding theoretical

zero-mass equilibrium temperatures (dashed orange). At the extremes, the transient

temperatures nearly reach equilibration.
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Figure 1-4: Estimated temperature ranges over one orbit for various
aspect ratios of blank silicon wafer in 400 km orbit, nadir-facing
orientation

The highA form factor does have some benefits, particularly to power generation

for solar cell-based systems. A large surface area presents a large potential area

of solar exposure relative to the system mass, resulting in a large mass-specific

power capability. Another high A satellite system in development at the Aerospace

Corporation is DiskSat, a SmallSatellite built into a sandwich composite panel one

meter in diameter and one inch thick. Scaling analysis performed by Welle et al. [14]

for high A DiskSat shows the increased specific power. In Figure 1-5, the estimated
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orbit average power is compared to the system mass for several spacecraft shapes.

HighA DiskSats are shown to have a much higher mass-specific orbit-average power

even when compared to traditional satellites with deployable solar arrays.

0 10 20 30 40 50

Bus Mass (kg)

0

50

100

150

200
O
rb
it
A
ve
ra
ge

P
ow

er
(W

)

Traditional satellites with
standard deployables

12U CubeSat with two
17-fold deployables

DiskSats with no deployables

DiskSats with single rigid deployables

Figure 1-5: Comparison of orbit average power vs. bus mass trends
for disk form factor and traditional s/c [14]

High A has impacts across other subsystems. Since components are typically

populated on the surfaces of the wafer, handling is often restricted to the edges.

In an edge pinned launch configuration, the scaling of static maximum stress scales

as 𝜎𝑚𝑎𝑥 ∝ A2. Dynamic structural modes scale approximately as 𝜔 ∝̃ A−1 (the

scaling is slightly less due to the numerical roots from Mindlin circular plate theory

[15]). Therefore, asA increases, static stresses increase and dynamic modes decrease,

increasing the challenge of structural survival in the launch configuration (noting also

that silicon is a brittle material). Out of plane moments of inertia scale as 𝐼 ∝A2,

increasing the required torques to reorient the system at a given rate. Furthermore,

the highA yields unique rarefied gas effects [16] and solar pressure disturbances [17]

since higherA WaferSats will act as a sail. Drastic scaling withA move the design

regime of WaferSats outside of the norms for large satellite design, presenting unique

design challenges.
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1.3 Margin for Robustness or Lack Thereof

During the design process, analysis is used to predict outcomes in operation. Though

it would be simpler to operate on the assumption that all information is perfectly

known, in practice, some elements of the system may be unknown. This uncer-

tainty manifests in several ways. Parametric uncertainty refers to a lack of accurate

knowledge of the value of a quantity, whereas non-parametric uncertainty refers to

a more complex lack of knowledge (e.g., due to an error or inaccuracy in modeling).

Uncertainty may be further classified as either epistemic or aleatoric. Epistemic,

or systematic, uncertainty refers to a lack of information that could in theory be

measured, but is otherwise unknown. As such, it is considered to be reducible [18]. In

contrast, aleatoric uncertainty is stochastic. Aleatoric uncertainty can be character-

ized as a distribution, but due to its stochastic nature, it is irreducible; at each attempt

at measurement, the value will be different. The type of uncertainty that the work of

this thesis will focus on is aleatoric, parametric uncertainty. Specifically, the sources

of uncertainty (to be described in greater detail in § 4.2) will refer to uncertainty from

the environment. As such theses sources of uncertainty are stochastic and beyond the

control of the satellite designer. The presence is nevertheless ever present and requires

mitigation.

A traditional method to counter the effects of uncertainty in spacecraft design is to

budget for margin and contingency. Approaches within NASA utilize parameterized

data from past missions to prescribe contingencies and margin as functions of design

maturity [1]. These margin allocation schemes are built on the assumption that

uncertainty decreases with time and that application of liberally applied margins

across the system provides a strong bulwark against the effects of uncertainty. While

effective in providing performance guarantees for large systems, this conservatism

often leads to over-design.

When optimizing in the absence of uncertainty, the Pareto optimal set of designs

appear as individual points. However, when evaluated under uncertainty, each non-
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dominated design - once considered to be a single, deterministic outcome - becomes

a distribution of distinct outcomes. In her thesis on Reconfigurable Constellations

(ReCon), Lowey demonstrated that the Pareto front is not a simple curve, but has a

width representing the uncertain maximum and minimum performance range. This

is shown in Figure 1-6a where the non-dominated points are shown with a set of

green maximum and minimum expected performance lines. Interestingly, the higher

performance solutions also have a wider range of performance values. Uebelhart used

a similar method of bounding boxes (similar to uncertainty bars) over multiple metrics

on the Pareto front. As shown in Figure 1-6b, Uebelhart’s analysis further showed

that due to variation in the sizes of bounding boxes, some nominally dominated

designs near the Pareto front can actually provide more reliable performance than

some nominally non-dominated designs [19]. Such designs that are nominally inferior

in performance are more robust under realistic, uncertain conditions.

(a) The non-dominated designs may
exhibit an uncertain range of max-
imum and minimum performance
under uncertainty [20]

(b) Some nominally dominated
designs may actually provide
greater reliability (smaller bound-
ing box) under uncertainty than
nominally non-dominated designs
[19]

Figure 1-6: Two examples of Pareto fronts with uncertain metrics,
expressed as a min/max range (left) and bounding boxes (right).

As noted by the work of Lowey and Uebelhart, it may sometimes be worthwhile

to select a design that is nominally off of the Pareto front (but near to it) if such
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designs exhibit lower sensitivity to uncertainty. This filtering for lower susceptibility

to uncertainty can produce greater robustness of designs in uncertain conditions.

However, the selection of design that are nominally dominated indicates a reduction

in nominal performance; this is the ‘price of robustness’ [21]. Seldom are the best

performing designs also naturally robust. If robustness is desired, nominal perfor-

mance must often be traded. However, if designs are made to dynamically respond

to uncertainty, the deleterious effects could be compensated. Rather than designing

for all worst case outcomes simultaneously, designs could adjust to a given, measured

state of uncertainty in operation, thereby reducing the size of the bounding boxes of

outcomes around designs, potentially saving designs once considered to be nominally

optimal but not robust.

1.4 SmallSats, the Space Environment, & Design Dif-

ficulty

The difficulty of the WaferSat design example is derived from the severe resource

constraints and the high sensitivity of thermal conditions to high A. The design

difficulty makes it challenging to survive and operate in even the relatively simple

space environment of Low Earth Orbit (LEO). In contrast, design difficulty could also

result in a system where the thermal environment is more challenging for survival, but

system resources are less constrained (i.e., a larger system). Such an example might

include a SmallSat (larger than a WaferSat or DiskSat) in deep space. Resource

constraints may be less severe, but a cold thermal environment of deep space is a

significant challenge for survival and operation.

WaferSat and other highA systems serve as an exemplar in this thesis to explore

a new satellite design domain that could benefit from a new design methodology.

However, there are potentially other similarly severely constrained systems that could

also require and benefit. An example is explored from a high level in Appendix B.
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1.5 Research Statement & Thesis Structure

The next generation of SmallSat systems like WaferSat and DiskSat push the bound-

aries of spacecraft design. MEMS processing offers many benefits that can enhance

small satellite production at small scale. The high A can allow for larger areas

for solar arrays, sensors, and apertures. Flat form factor systems can be efficiently

packed for launch, enabling deployment of large ensembles acting in concert. While

each individual system may be small, a constellation could be greater than the sum

of its parts. However, the high-aspect ratio, low SWaP form factor associated with

MEMS processing pushes the design regime to a novel, unexplored design space for

satellites. In particular, constraints related to rapid thermal equilibration on extreme

temperatures in orbit, present new design challenges on other satellite subsystems

such as power. This new design regime offers few feasible solutions for the certain

problem and even fewer when uncertainty is considered. When subjected to uncer-

tainty, low SWaP compounded by tight subsystem couplings causes high sensitivity

to uncertainty.

In order to realize the benefits of new systems like WaferSat, new approaches are

needed to ensure that such systems can reliably survive and operate in the uncertain

and harsh space environment. This work will introduce a novel method of operational

responsiveness and adaptability to address the thermal-power challenges of highly

coupled and sensitive systems under uncertainty. The thesis is structured as follows.

In Chapter 2, the prevailing approaches to SmallSat design, design of coupled systems,

and robust optimization are reviewed. Gaps in previous research are identified,

and an approach to address those gaps is offered. In Chapter 3, the methodology

for operationally responsive and adaptive mitigation of uncertainty is developed in

detail with the aid of a simplified example design problem. The methodology is then

applied to a more detailed WaferSat design problem in Chapter 4. Multiple designs

are identified using different combinations of responsive and adaptive uncertainty

mitigation approaches. The methodology is further applied to another high A
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system, DiskSat in Chapter 5 in which a detailed comparison between responsiveness

and adaptability is explored. In Chapter 6 conclusions, thesis contributions, and

suggestions for future work are discussed.
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Chapter 2

Literature Review

This work is at the juncture of three main fields of research: pico satellite design,

coupled systems & sensitivity, and robust optimization. SmallSat design encompasses

the current state of the art for design, and prior developments in addressing the

challenges as satellite designs decrease in scale. It is noted that as complex systems -

that include a multitude of interacting subsystems - the decrease in scale, the effects

of interactions between subsystems can significantly drive behavior of the system.

As such, methods exploring approaches in quantifying and designing for coupled

and sensitive systems is explored. Finally, in order to design systems that will offer

persistent performance under uncertain conditions, approaches in robust optimization

are reviewed.

2.1 Pico Satellite Design

Small Satellites offer many benefits but also introduce many challenges. Development

of pico satellites (PicoSats), at a smaller scale than CubeSats - and the move to

flat form factor chip-scale satellites in particular - presents a novel design regime,

distinct from that of traditional large satellites or even smaller CubeSats. The design
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approaches to this new design regime are relatively unexplored.

CubeSats, which follow a standard for mass and volume [22], are comprised of one

or more 10 cm cube units. CubeSats typically fall in the nano satellite class, from

1.1 kg to 10 kg. By comparison, smaller systems like WaferSat would likely be in the

pico satellite mass class from 0.1 kg to 1 kg.

2.1.1 History of Chip-Scale Satellites

The concept for silicon-based chip-scale satellites is not new, however, the design for

fully silicon MEMS produced satellites has not yet been realized for spaceflight. As

early as the late 1990’s, Helvajian and Janson of the Aerospace Corporation noted that

the advancements in MEMS technology could be leveraged to mass produce silicon

spacecraft through batch-fabrication [23, 24]. In particular, they noted advancements

in MEMS sensors could allow for micromachined attitude sensors. Microfluidics could

be utilized for micro-thrusters to provide attitude control [23, 25].

Barnhart furthered these concepts with detailed subsystem analysis for SpaceChip,

a monolithic satellite-on-a-chip concept [26]. Barnhart explored the challenges within

the subsystem sizings, noting that unregulated thermal design would experience

temperatures as low as -72 ∘C and as high as 96 ∘C. The design was further matured

with an intermediate PCBSat with a parts list [27]. The most recent publications

on this work from 2009 seem to move away from the monolithic integrated MEMS

SpaceChip concept, opting to encase several PCBSat boards in a thin, aluminum

structure [11].

Similarly, the Aerospace Corporation concepts for ChipSats eventually developed

into the MEMS tethered PicoSatellites. At 400 grams, each consisted of printed

circuit boards encased in an aluminum structure. The MEMS PicoSats were one of

several satellite missions deployed out of the OPAL spacecraft mothership in 2000

[28]. The concept would eventually grow into the CubeSat standard of today [22, 29].
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Figure 2-1: A MEMS PicoSatellite being loaded into a spring-loaded
deployer on the OPAL spacecraft [29]

Recently, there has been interest in the development of ChipSats that range in

the tens of grams total mass (and even single grams [17])). Such spacecraft, adopt

a survival strategy known as R-selection, borrowing a term from biological natural

selection [30]. R-selected spacecraft trade individual probability of success for mass-

reproducibility [31]. Since a large number of identical spacecraft are fielded, mission

success is not reliant on the success of any one satellite. A statistical number of

satellites may survive and operate, but little engineering effort is expended to improve

individual survivability, thus efficiency is low. The R-selection approach is in direct

contrast to the K-selection [30] strategy wherein great effort is expended in order to

ensure survival of one or a few satellites - the more common approach for the satellite

design process.

A version of such R-selected spacecraft, the Sprite ChipSats, flew aboard the

KickSat-1 mission in 2016 [32] and again on KickSat-2 in 2019. The mass-produced,

gram-scale approach favors very simple spacecraft with low individual capability. The

Sprite spacecraft that were deployed from KickSat did not have batteries, thermal

control, or attitude control. Therefore, operation depended on chance illumination

of the solar arrays to power the system as it tumbled in orbit. As such, downlinks
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from only 4 distinct Sprite ChipSats were confirmed out of 128 [33]. Elimination of

batteries reduces the need for thermal control - the Sprites were allowed to equilibrate

on extreme temperatures.

Further concepts for ChipSats and WaferSats also propose interplanetary space-

flight, utilizing the high A to act as a small solar sail [17] or ground-based laser-

accelerated sail [34]. However, such concepts have not yet solved the thermal chal-

lenges of highA, but propose future work for an embedded radioisotope thermoelec-

tric generator or beta converter to heat the system [35]. Further surveys of recent

work on ChipSats note that research is focused on hardware design, communications,

and propulsion, noting that any high power designs that make use of batteries will

first need to solve the thermal challenges arising from the low mass and form factor

[36].

2.1.2 The Thermal-Power Challenge of Small, HighA Satel-

lites

As satellite SWaP decreases, so too does the ability to maintain a survivable tem-

perature range. In particular, as mass decreases, the thermal capacity decreases,

resulting in a high sensitivity of temperature to net heat flow. Furthermore, the

challenge is exacerbated by the large ratio of thermal radiating surface area to mass

of WaferSat. The combination of large radiating surfaces and low thermal capacitance

result in rapid thermal equilibration at extreme temperatures. This is analogous to

the temperature swings of deployed solar panels. Much like WaferSat, solar panels

have high A, very thermally absorptive and emissive solar cell surfaces, and low

thermal capacity. Even though solar cells have greater efficiency at low temperature,

they are typically not thermally regulated and have large temperature swings [37].

The difference however, is that the most thermally sensitive components of larger

spacecraft are not thermally linked to the large radiating solar cell surfaces.
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Recent small satellite concepts in the cube form factor include the PocketQube

- a proposed standard in the hundreds of grams. Analysis of the roughly 250 g

SMOG-1 PocketQube shows that despite the low heat capacity, the relatively low

surface area results in fairly limited temperature extremes attained in a LEO orbit

[13]. Furthermore, the internally closed volume creates thermal gradients through

the structure, resulting in even lower temperature variation near the center of the

spacecraft.

Thermal control of high A spacecraft has not been directly addressed. Previous

designs for chip-scale spacecraft have stated that highA yields rapid equilibration on

thermal extremes that precludes the inclusion of any thermally sensitive components

such as batteries. In a thesis on Monarch ChipSats, Adams states that the energy

requirement of heating batteries to a survivable range during eclipse exceeds the

possible energy generation with solar cells [38].

Thermal analysis of a four inch diameter silicon wafer of various thicknesses in

LEO orbits is shown by Bruno, Maghsoudi, and Martin [39]. They present a simple,

forward Euler based thermal integration to show the estimated transient, quasi-steady

state temperature ranges. The results confirm that thermal cooling equilibration time

constants typically are shorter than the eclipse duration of LEO orbits, resulting in

wide temperature swings per orbit. Several different power dissipation schemes are

presented, but do not allow for significant mitigation of the thermal equilibration on

temperature extremes.

In his Master’s thesis, Stout notes that traditionally, the thermal design of space-

craft is assumed not to be a design driver and as such the thermal control design

is often “outside-the-loop” and occurs late in the design process after other major

design decisions have been finalized [40]. However, at the new scale and form fac-

tor of WaferSat, thermal considerations must be taken into account sooner and in

conjunction with other subsystems.
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2.2 Coupled Systems and Sensitivity

Complex systems such as satellites involve many interacting subsystems. The level of

interaction only increases as the scale is reduced. Mass, volume, and surface area are

limited, and must be shared between the subsystem domains. Furthermore, WaferSat,

with a high A pushes subsystems nearer to their design limits.

2.2.1 Sensitivity Analysis

A prevalent technique for estimating the sensitivity of systems to sources of uncer-

tainty is variance based sensitivity analysis. In particular Monte Carlo sampling over

parameter uncertainty can be used to calculate the Sobol’ Indices [41]. First order

Sobol’ Indices, or main effects, measure the normalized contribution of individual

parameters on the variance of a model output (i.e., variance due solely to that

parameter). Total effect indices map the contribution of parameter variation to the

model output variance and includes effects of interactions between parameters. This

is particularly useful for tracing the impacts of uncertainty to specific areas of the

system. For spacecraft design, this can be applied to understand what areas of the

system and what couplings are most impacted by sources of uncertainty.

More recent work helps to codify components of a system by the relative impact

on propagation of change throughout a system [42]. Components can be one of several

types: constants, absorbers, carriers, or multipliers of change. Constants are areas of

the system that are completely unchanged by uncertainty. Absorbers of change reduce

the propagation of change whereas multipliers generate more changes as the names

suggest. Carriers are neutral, in that they absorb and create new changes at the same

rate. This sorting of components of a system draws attention to areas of the system

where problematic multipliers may cause large variance in outputs relative to input

uncertainty. The design of key absorbers within a system can create buffers to limit

the propagation of change due to uncertainty and maintain predictable performance.
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Realistic models of uncertainty - based on measured data from prior space missions

in literature - will be used to evaluate effects of uncertainty in the application sections

of this thesis. Those sources and models will be discussed as they are introduced

and applied. Techniques for sensitivity analysis are useful to trace the net effects of

uncertainty to identify areas that require mitigation. Strategic placement of absorbers

of change within the system can help to stem the propagation of change. In this work,

the notion of dynamic absorbers of change will be explored.

2.2.2 Design Decision Rules

Work by Gross, presents a complex satellite design example utilizing a rule-based

approach [43]. An integrated model of the theoretical FireSat mission from SMAD

[44] is presented with a constraint network. Design rules are established that aid

in the selection of non-parametric decisions in the design process. Analysis with

the decision rules reveals non-obvious switching points in the optimal topologies in

different areas of the design space. In Figure 2-2, a Pareto front of radio frequency

(RF) systems for a satellite. The different colors at the top surface of the Pareto front

represent the optimal architecture. The bands of distinct RF architectures reveal

that ideal architectural decisions can be identified based on location in the design

space, providing a methodology for architectural decision-making under different

mission scenarios. The architectural design decision rules are established based on

a combination of system sensitivities and design objectives that govern where in the

design-space to search.

There are methods - particularly in linear optimization - that focus on exploring

and maintaining the sets of active constraints in a model. The active constraint

invariancy method by Hadigheh proposes a method for finding the range of tolerable

parameter variations that maintains the same set of active constraints at optimality,

effectively maintaining the same optimal solution basis [45]. Realizations of parameter

uncertainty within the active constraint invariant set result in optimization with

51



Figure 2-2: Plot of optimal communications antenna decisions in
various areas of design space [43]

the same basic solution ‘family’. This ensures that any re-tuning of variables (i.e.,

small changes to maintain optimality and feasibility) to reoptimize in response to

uncertainty involves consideration of the same active and slack constraints.

2.3 Robust Optimization

There are many approaches to the mitigation of uncertainty in the field of robust

optimization. However, many sacrifice some optimality in favor of resistance or

insensitivity to uncertainty. In this section, literature for robust design to mitigate

uncertainty is explored.

2.3.1 Robust Solutions Sacrifice Nominal Performance

It is often noted that optimal solutions in the absence of uncertainty are not nec-

essarily still optimal in the presence of uncertainty. Whereas the nominal solution,

under no uncertainty, may be optimal, its performance often degrades rapidly with
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perturbations due to uncertainty, rendering it unreliable (except where uncertainty

is extremely low). This is illustrated in an example by Deb and Gupta and shown in

Figure 2-3 [46]. Depicted is a 1D minimization of 𝑓(𝑥), where B would be considered

nominally optimal (in the absence of uncertainty). However, slight variations in x

result in significant increases in 𝑓(𝑥), resulting in far worse performance. In contrast,

the performance in the vicinity of A is very reliable even under uncertainty, even

though its best case solution is never as good as the nominal 𝑓(𝑥) of solution B.

For the given assumed uncertainty, A would be considered to be a robust solution; on

average, it performs better than B and is thus more practical. In [46], Deb and Gupta

Figure 2-3: 1D example comparing a robust but non-nominally
optimal solution (A) and a nominally optimal but non robust solution
(B) [46]

propose two metrics of robustness for a given set of neighborhood uncertainty over 𝛿

(i.e., a region ) for a minimization of the function 𝑓 . A solution is Type I robust if it

achieves the global minimum of the mean of 𝑓 over the neighborhood (effectively a

globally optimal expected value). A solution is Type II robust if it achieves a global

minimum for 𝑓 with a constraint that the deviation from the mean is below some

threshold 𝜂 over the 𝛿-neighborhood of uncertainty (effectively a maximum allowable
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variance). These two robustness metrics can be used to augment a multi-objective

optimization problem to return solutions that are robust.

Type I and II robustness metrics are incorporated into the Many Objective Robust

Decision-Making (MORDM) framework [47, 48]. The MORDM framework utilizes

an evolutionary algorithm to propose solutions to a multi objective optimization

problem. For a defined, multi-dimensional uncertainty set, Monte Carlo sampling

is used to generate an ensemble of uncertain ‘states of the world’ (SoTW) - each a

draw from the uncertainty set. Proposed solutions are subjected to the ensemble

and statistical measures - namely expected value and variance - are evaluated. These

objectives augment the original set of nominal objectives, guiding the evolutionary

search towards solutions that have a balance of high nominal performance and Type

I and Type II robustness.

MORDM has been applied extensively in the literature to problems related to wa-

ter distribution wherein uncertainty over future demand and supply of water resources

are deeply uncertain1 [47, 48, 49]. In such optimizations, the objectives are often in

conflict, requiring tradeoff between different objectives. Consideration of the multiple

objectives separately allows for analysis of the Pareto optimal tradeoffs and the costs

associated. Additionally, robustness metrics to assess the expected value, variance,

satisficing constraints, and regret-based metrics are introduced alongside the nominal

performance metrics [51]. Results in the robust design of water distribution networks

show clear tradeoffs between the key nominal and robustness metrics, indicating a

cost of robustness. However, the results do suggest improvement over traditional,

conservative planning methods (in terms of cost and water surplus). Finally, key

constraints related to catastrophic failures - such as flood damage - can aid in parsing

the Pareto front via creation of worst-case percentile objectives [52].

While the statistical objectives of MORDM allow for improvements to identi-

fication of a robust Pareto front, it is observed that the tradeoff of robustness is
1Deep uncertainty refers to scenarios in which the knowledge of the predicted distribution of

uncertain outcomes is lacking [49, 50], elevating the difficulty of planning for uncertain outcomes.
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often a reduction in the level of nominal performance (the original, non-statistical

performance objectives). Designs that persist on the pareto front under uncertainty

modeling rely on designs with statistical margin and natural desensitization to sources

of uncertainty with absorbers of change.

Whereas the NASA systems engineering approach calls for standardized margin

allocation as a function of design maturity [1], recent work by Thunissen proposes a

probablistic method for the optimal allocation of margin for the system at hand [2].

Probabilistic simulations of outcomes are performed to optimally allocate margins to

balance risk across the system. In a distinct approach, Guenov et al., also present

a method to optimally allocate margin across a system, introducing the concept of

a ‘margin space’ containing all allocations of margin [53]. Explorations of margin

allocation reveal that in systems with many interacting subsystems, strategically

placed margin may have impacts in multiple areas, obviating the need for margin

in every subsystem.

2.3.2 Adaptive Approaches to Robustness

The MORDM approach achieves robustness by sacrificing some nominal performance

via insertion of margin in key locations as absorbers of change. However, further im-

provements to robustness can be obtained by adapting to uncertainty as it is realized.

Real Options Theory presents a framework for flexibility in the face of uncertainty by

delaying decision-making until new information is available. By delaying decisions,

there is a ‘right but not an obligation’ to respond with some recourse after uncertainty

is realized [54]. Thus, the value of the delayed decision lies in the ability to choose a

course after new information is available.

Real Options Theory originated in finance [55], focusing heavily on valuation of

a delayed decision and the monetary cost to gain the option. More recently, Real

Options Theory has been applied to engineering applications [56]. In engineering
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applications, there is a focus on the required up front design that enables the option,

for example design of a parking structure foundation to accommodate more stories

later [54] or a phased communications satellite deployment to accommodate an over

or under estimate of demand [57].

The Real Options Theory approach provides insight into the value and require-

ments of delayed decision-making, however the literature focuses mainly on engineer-

ing decisions to expand or contract based on uncertain demand or supply estimates.

Another line of work, Tailoring and Tuning, developed by Masterson [58], focuses

on maintaining performance in the presence of uncertainty via operationally tunable

design elements. The design is posed as a multi-stage process, where the design is first

tailored for a combination of performance and tuneability. After the hardware is built,

it is then tuned to compensate for parametric uncertainty, and maintain performance.

The design approach, Robust Performance Tailoring for Tuning (RPTT) incorporates

both static robustness and tuneable robustness in the cost function. When applied

to a precision optical structures testbed, RPTT is shown to improve the probability

of meeting requirements over the range of worst-case modeled parametric uncertainty

[59]. Due to computational complexity, the tuning optimizations are performed at

the worst-case uncertainty extreme vertices, assuming a convex model.

The Tailoring and Tuning methodology was expanded to incorporate the Isoperfor-

mance methodology [60]. The Isoperformance Tuning method combines modeling and

hardware tuning to successively update the model to reduce the uncertainty set until

the system is tunable to within requirements [61]. The method reduces the required

number of hardware tests while improving the model evaluations to successfully tune

the system.

Other multistage, adaptive approaches to robust optimization focus on the inclu-

sion of safety factors in the robust counterparts [62]. Due to the often prohibitive

growth in computational complexity related to nested optimization, problems are

often reformulated around heuristic decision rules with an approximation of optimal
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behavior. Tuning parameters are defined as functions of realizations of uncertainty

[63]. These decision rules, often in a linear or piecewise linear form, provide a

method for tractable evaluation of near-optimal adaptive behavior over modeled

uncertainty sets. Decision rule polices are usually considered to be near-optimal

as they incorporate the safety factor to provide a probabilistic guarantee of success.

2.3.3 Spacecraft Thermal Adaptive Approaches

There are a number of implementations that could produce operationally adaptive

thermal systems. Large spacecraft, particularly those that experience a widely vari-

able thermal environment due to inner and outer cruise through the solar system [64]

utilize mechanical louvers with a bimetallic strip to open and close as a function

of temperature [65]. The opening and closing of the louvers alters the effective

emissivity of the underlying radiator offering operational adjustment. Note that the

bimetallic strip offers a pre-tuned, fixed recourse response; the response as a function

of temperature cannot be changed on orbit. Attempts have been made to replicate

the same mechanical effect on MEMS wafers [66, 67], however the effective emissivity

change was extremely limited [68].

Progress has been made in solid state dynamic emissivity surfaces. Thermochromics

offer a dynamic emissivity that is a function of temperature [69, 70, 71]. The vari-

ation of emissivity with temperature is fixed in operation but can be tailored in the

design phase for specific temperature ranges (similar again to a fixed-recourse decision

rule). Electrochromics offer a dynamic emissivity surface that is controlled by a bias

voltage [72, 73, 74], allowing for variation of the emissivity at will. The EclipseVED

electrochromic coating has demonstrated variation in mid-IR emissivity from below

0.1 to greater than 0.9 in lab tests [75, 76]. The coating was also successfully tested

in space as a payload aboard the MidSTAR-1 spacecraft in 2007 [75].

Other methods for dynamic thermal-power control involve attitude control to vary
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the thermal view factors to cold space and the sun. Due to a highly elliptical orbit, the

Space Technology Research Vehicle (STRV) spacecraft had insufficient power to heat

the spacecraft to survive long periods of eclipse. Active management of the thermal

view factors via attitude control allowed for mitigation of the thermal extremes with

limited heater power available [77]. Recent work to optimize for solar exposure

and thermal view factors has shown tradeoffs between high power and minimum

temperature variation for a CubeSat payload [78].

Implementations of operationally dynamic thermal systems have also been var-

iously implemented on larger spacecraft. Many deep space missions have utilized

radioisotope heater units (RHU) in order to provide localized heating through ra-

dioactive decay of a small pellet. As the rate of emitted heat is not controllable,

alternative methods of rejecting unwanted heat is required. On the Cassini spacecraft,

RHUs were mounted on the thruster heads on a rotating bimetallic spring [79]. Half

of the RHU canister was radiatively insulated, and half was radiatively emissive. The

bimetallic spring was designed so that during the inner portion of the cruise, when

solar exposure was greatest, the RHUs would be oriented with the insulating side

facing towards the thruster heads and heat would radiate out to space. When in the

outer portions of cruise, as the temperature decreased, the RHUs would be turned

so that the heat was radiated inward towards the thrusters. Thus, the heat capture

rate was automatically regulated - even without control over the radioactive heat

dissipation.

In addition to dynamic variation of thermal radiation, various methods have also

been use to create selectable dynamic thermal conductivities, i.e., the ability to

conductively couple or decouple at will. In order for the Pathfinder Mars rover to meet

the wide thermal requirements of cruise and on the surface of Mars, the temperature

sensitive components were conductively coupled to RHUs. To prevent overheating

during cruise, the temperature sensitive components were also conductively coupled

to a radiator. Once on the surface of Mars, where overheating was not a concern, a

clamp was released, mechanically breaking the conductive pathway to the radiator
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[80, 81]. More recently, there has been development on a device that uses coefficients

of thermal expansion to either create a long, low conductivity thermal pathway, or a

thermally-shorted high conductivity pathway [82].

Operationally dynamic thermal approaches have also been applied to the third

type of heat transfer, convection. The Active Thermal Control for Multispectral

Earth Sensors (ACMES) SmallSat will include a technology demonstration of an

active pumped fluid loop on a SmallSat [83, 84]. Throttling of the working fluid

flow rate affords control over the amount of heat rejection (from payload to radiator)

depending on internal payload power dissipation levels. Furthermore, adjustment of

the orientation of the radiator will provide favorable radiative view factors at different

points in the orbit.

Over the years, various active and passive thermal mitigations have been imple-

mented on large and small spacecraft. However, many of these technologies have been

implemented as one-off technologies, implemented for very specific thermal scenarios.

In general, many of these thermal mitigations were developed to compensate for

a scheduled, gross change in the thermal environment during some phase of the

mission. Moreover, many of the mitigation methods applied to larger spacecraft

involved mechanical systems that may not be as amenable to smaller scale satellites

like WaferSat. Recent development of technologies has focused on generalization of

active methods, but no methodologies exist to model and trade the ability of such

systems to continually compensate for the effects of thermal uncertainty.

2.4 Technical Gap and Research Objective

The move to smaller, high A satellites exposes the challenges associated with de-

signing for static robustness. Whereas it is worthwhile to trade system resources and

performance of larger satellites for feasibility, the heightened thermal sensitivity and

restricted system resources of high A systems renders this tradeoff far more costly.
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At smaller scale, there are also fewer SWaP resources available to use for margin.

A new methodology is needed to ensure that such systems provide a guarantee of

performance under uncertainty (through improved feasibility).

A summary of research gaps and the proposed approaches is shown in Table 2.1.

WaferSats provide many potential benefits by utilizing MEMS processing to enable

reliable, efficient mass-production of small satellites. The flat, high A form factor

for small satellites necessitates design for a novel design space not addressed in

the design of larger satellites. Approaches to date for chip-scale satellites have

avoided the thermal management design challenge of high A by simplifying the

design and eliminating sensitive components such as batteries. Limiting the design to

components that do not require thermal regulation results in much simpler satellites

with more limited capability. At the small scale, there is also a high coupling of

subsystems, necessitating that subsystem design decisions be made jointly.

Many robust optimization approaches focus on allocation of margin and selection

of designs that are desensitized to sources of uncertainty. In this process, these

approaches only need to sacrifice a small relative amount of performance in order

to achieve robustness. However, limited available SWaP on WaferSat and DiskSat

constrains the available static margin that can be allocated to create robust designs

and the associated sacrifice of performance is more severe.
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Table 2.1: Summary of identified research gaps and corresponding thesis contributions

Research Gaps New Approaches to Address Gaps

Robust optimization:

• high performance sacrifice for robustness

• results in overdesign with arbitrary margin across system

Creation of a framework of passively responsive robust
and active adaptive approaches to mitigate the effects of
uncertainty on the active, performance-limiting constraints
through continual compensation of uncertain states during
operation

Previous operational compensation methods:

• robustness, responsiveness, adaptability set by manual
weights, not driven by requirements

• design for tuning of worst-case uncertainty too conservative

• tuning did not optimally compensate over continuously
changing uncertainty in time

Development of a formalized, two-stage optimization method-
ology to:

• design sets of variables before operation

• continuously re-optimize during simulated uncertain states
of the world

• incorporation of selectable statistical feasibility criteria as
optimization objectives

• weighting of tailoring and tuning with constraints on
implementation of mitigations

Sprite ChipSats:

• survival & operational rate of 3%

• avoided thermal design by eliminating batteries

• limited functionality of operating units (RF beacon only)

Application of responsive & adaptive methodology on
WaferSat, a highly SWaP-constrained, novel high A satellite.
Thermal feasibility is increased with limited performance
sacrifice.

DiskSats could offer higher mass-specific power if thermal
sensitivity of high A can be addressed

Application to DiskSat, a larger highA system, demonstrates
a more complex scenario with adaptive redistribution of heat
among nodes of a larger system.



To increase the robust performance of satellites in this regime, the thermal-power

design challenge can be addressed with an adaptive approach, allowing for operational

tuning of design variables in response to uncertainty to allow for greater robust

feasibility of nominally optimal performance.

This thesis will build upon prior methods to adaptive design evaluate, particu-

larly the dynamic tailoring and tuning methodology. Selection of operational tuning

variables can be extended with exploration of active constraint sets in order to select

those that have the greatest impact on the design feasibility. This will allow for

a detailed trade studies of available tuning variables, especially with respect to the

limited resources and space available on small satellites such as WaferSat.

The authority of tuning was previously assessed via the compensated range of

uncertainty. To this end, extreme vertices were evaluated, assuming convex behavior

over the bounded uncertain set in order to avoid many function evaluations in nested

optimization. This had the effect of designing the tune for the worst-case (i.e.,

maximin or minimax), and often sacrificed nominal performance. Mapping of active

constraint sets to feasibility can aid in the creation of optimal decision rules to

optimally or near optimally tune the operational variables in response to a particular

state of the world of uncertain realization. The decision rules can enable evaluation of

full sets of the ensemble of uncertain states of the world, allowing for evaluation of the

statistical robustness objectives to aid in guiding the optimization to further search

the pareto optimal set of solutions that trade robustness and nominal performance.

As a small, flat satellite system, WaferSat will be launched as a member of a

large set of spacecraft. Optimization for performance and adaptability will enable

exploration of multiple types of designs that balance robustness while preserving

nominally optimal performance. Beyond WaferSat, the application of adaptability

could allow for reductions in the overdesign due to excessive margin, whilst limiting

the sacrifice of optimality. These improvements will aid in the advancement of the

design approach to constrained satellite systems, giving rise to capable satellites that
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reliably provide maximal utility with staying power under uncertain conditions.

The objective of this work is to optimize resource-constrained SmallSats with

highly coupled subsystems by designing for operationally responsive and adaptive

mitigation of uncertainty, while maintaining high performance.

Pursuant to this objective to address the gaps in the literature, this work has

produced four contributions.

1. Created a framework of responsive robust and adaptive mitigation of uncer-

tainty with limited performance sacrifice

2. Developed a two-stage optimization methodology for the prior design for and

operational design of responsiveness & adaptability

3. Application to WaferSat: Demonstrated identification of unique designs of equal

performance and feasibility

4. Application to DiskSat: Explored tradeoff between responsiveness & adaptabil-

ity

The first contributions two are related to the methodology. In contribution one, a

framework is created to define two distinct types of mitigations: passive responsive

and active adaptive mitigations. This framework is developed into a two-stage op-

timization methodology to increase constraint satisfaction with limited performance

loss. The second two are applications to two constrained SmallSat systems. In con-

tribution three, three unique design families are identified for the design of WaferSat,

presenting multiple responsive and adaptive avenues to achieve the same goals. The

continuous tradeoff between responsiveness and adaptability is explored in greater

detail in contribution four, the application to DiskSat.
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Chapter 3

Design for Performance, Robustness,

Responsiveness, & Adaptability

In this chapter, a methodology is presented for simultaneous optimization for per-

formance, robustness, and adaptability, building upon current approaches to design

optimization and robust design. A simplified WaferSat design optimization problem

is presented and used as an illustrative example throughout.

3.1 Nomenclature & Relationships

In order to describe the methodology, some nomenclature and the associative relation-

ships must first be defined. For simplicity, the optimization process will be separated

into two phases in time: the a priori phase and the a posteriori . The a priori

phase encompasses the traditional design phase in which variables are selected and

optimized before launch. The a posteriori phase, or the operational phase, involves

the responses or adaptation to specific realizations of uncertainty. The nomenclature

is further separated into variable sets, processes, outcomes, and a quality describing

the outcomes. The relationships are summarized in Table 3.1 and are described in
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more detail in the following subsections.

Table 3.1: Nomenclature Relationships

Variable Set Process Output Resultant Quality

Static Variable1 → Static Tailoring1 → Static Margin Static Robustness
Dynamic Variable1 → Responsive Tailoring1 → Responsive Variable2 Responsive Robustness
Dynamic Variable1 → Adaptive Tailoring1 → Adaptive Variable2 Tuneability
Adaptive Variable2 → Tuning2 → Adaptive Margin Adaptability

1 a priori phase; 2 a posteriori phase

3.1.1 Defining Variable Sets

The two temporal phases contain variable sets. Variable sets defined in the a priori

phase are assumed to be fixed once the a posteriori phase begins (i.e., the values or

decisions made over these sets cannot be adjusted in operation). Variable sets in

the a posteriori phase are changeable during on-orbit operation - either as a passive

response or through active management which can be reprogrammed in flight.

The static variables are traditional variables that are set during the a priori

phase and remain fixed in operation. The dynamic variables are set during the a

priori phase in order to define the variable sets in the a posteriori phase. Note that

the values of dynamic variables themselves do not change in operation, instead they

constrain response or adaptability in the a posteriori phase. As an example, in the

case of the thermal louvers from § 2.3.3, behavior of the slats is defined by the design

of the bimetallic strip. The dynamic variable set would include selection of the metals,

initial shape, and therefore design of the open-close temperature setpoints. However,

once the spacecraft is in orbit, the temperature setpoints cannot be modified. As

such, the louvers are responsive to changes in heat loads, but are not able to adapt

the response.

The operational phase involves two variable sets: responsive variables and

adaptive variables . Responsive variables passively adjust in operation in reaction

to stimulus. The behavior of response variables is therefore said to follow a fixed
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recourse. The opening and closing of bimetallic thermal louvers are an example of

responsive variables. The design of the governing dynamic variables produces a fixed

response to temperature stimulus. In contrast, adaptive variables are changeable

in operation by command. Such variables follow a controlled response in reaction

to stimulus. It is important to note that adaptive variables offer the flexibility of

changing the response on the fly. If the thermal louver angle was controlled by

servos rather than bimetallic strips, the commanded angle would be an example of

an adaptive variable.

3.1.2 Processing Variables Sets

In this work, the variable sets are defined according to several processes. Design of

variable sets in the a priori phase are said to be tailored and variable sets that are

dynamically adjusted in the operational phase are said to be tuned .

Design of static variables using static tailoring is used in order to produce

static margin against active constraints. During static tailoring, a specified amount

of static margin against each constraint can be allocated; static variables are changed

accordingly. The margin against constraints provides a buffer in the event of variance

due to uncertainty. Therefore, more outcomes remain feasible even when perturbed

by uncertainty.

Since the responsive and adaptive variable sets are governed by dynamic variables,

there is a two-step process. Dynamic variables are set via tailoring in the a priori

phase. The process of responsive tailoring produces the responsive variable set

and adaptive tailoring produces the adaptive variable set. The fixed recourse

behavior of the response variables results in responsive robustness; i.e., there is a

passive mitigating response to the effects of uncertainty. The adaptive variables are

actively tuned during operation. This adaptability produces adaptive margin that

can be actively tuned or re-tuned as necessary to mitigate the net effects of off-nominal
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states.

3.1.3 Outputs & Resultant Qualities

Outcomes from the processes and variable sets are described by the associated quality.

Static margin, produced by static tailoring possesses the quality of static robustness.

Static robustness affords the ability to withstand the perturbing effects of uncertainty

without changing. This is a more conservative approach and it is notable that the

design for static margin often involves a sacrifice of optimal performance.

In contrast to the rigidity of the a posteriori behavior of statically robust designs,

design for and operation with responsive variables results in the ability to react to the

perturbations due to uncertainty. This quality is described as responsive robustness.

Responsive robustness is a passive, fixed-recourse reaction to individual draws from

uncertainty, or states of the world (SoTW). Passive response to uncertainty keeps

complexity low, as the response occurs automatically under uncertainty - no active

control or estimation of the SoTW is necessary. Effectiveness of responsive robustness

is dependent on the ability to model and predict the range of uncertain SoTW as the

behavior cannot be changed after the a priori phase. If actual encountered uncertain

states differ drastically from the predicted uncertain states, the intended passive

mitigation may be insufficient.

Adaptive tailoring to produce an adaptive variable set results in the ability to

change variables during the a posteriori phase, described as tuneability. The end

result of the optimized tuning response to uncertain SoTW is in turn described as

adaptability. In distinction to the passivity of responsive robustness, tuning and

adaptability are active mitigations to the effects of uncertainty. Furthermore, since

tuning is active, there is some ability to retune, or change the adaptive behavior in

response to new or unexpected SoTW.

Design for feasibility may combine elements of static robustness, responsive ro-
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bustness, and adaptability. In general, different combinations of the three elements

may provide the same ability to meet the constraints of the system under uncertainty.

The set of designs that produce the same level of performance through different

parametric and non-parametric means are isoperforming [60, 85]. The set of designs

that produce the same modeled statistical probability of constraint satisfaction can

be said to be isofeasible . The intersection of isoperforming and isofeasible designs

achieve the same function with different form. Consideration of non-unique designs

that are isoperforming and isofeasible may provide multiple avenues for reliable design

optimization under uncertainty.

The discussed nomenclature and associated relationships outline at a high level,

the main elements of the methodology. In the next sections, the methodology will be

discussed in greater detail, building up from the outline. Additionally, a simplified

example problem is presented to serve as an application to provide context for the

stages of the methodology.

3.2 A Simplified WaferSat Example Problem

Throughout this chapter, the following example problem will be used to demonstrate

the elements of the methodology. In this section, a simplified WaferSat thermal and

power design problem is posed.

3.2.1 Design Variables & Parameters

In this problem, it is assumed that a 200 mm diameter, 150 gram silicon WaferSat is

in a circular low Earth orbit (LEO) at an altitude of 400 km. The WaferSat is in an

orientation where one surface is always nadir-facing. For worst-case thermal purposes,

all analyses assume a solar 𝛽 angle (the angle between the Earth-Sun vector and its
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projection in the orbit plane) of zero. A depiction of the orbit is shown in Figure 3-1.

Note that only one of the axes in the figure is defined: the Earth-Sun axis. The 𝑦

and 𝑧 axes are deliberately undefined and therefore this orbit and analysis will apply

to any orbit inclination (which does not itself have a direct thermal impact). The 𝛽

angle of zero results in the most challenging thermal extremes; eclipse is longest in

duration (using the simplified cylindrical umbra assumption), and solar exposure of

the zenith surface is greatest for the nadir-facing attitude (at 𝜈 = 0 sunlight incidence

is normal to the zenith surface). As 𝛽 angle increases, the length of eclipse decreases

and the peak solar exposure of the zenith surface occurs at steeper angles of incidence

(for the nominal nadir-facing attitude).

Eclipse
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Figure 3-1: A zero 𝛽 angle, 400 km altitude, circular orbit. WaferSat
is depicted at a true anomaly, 𝜈 referenced to the closest position to
the Sun.

The set of static design variables is summarized in Equation 3.1, which includes the

thermo-optical design of surfaces as well as allocation of solar array area. The solar

array area is expressed as a physical fill factor of the zenith surface, 𝑓𝑆𝐴 (fractional

area coverage). The emissivities, 𝜀* refer to the IR wavelength emissivity of nadir and

zenith surfaces. 𝛼* refers to the visible wavelength absorptivity of the nadir and zenith

surfaces. Note that the thermo-optical properties of the solar array are assumed to be
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constants from literature values for solar cell coverglass: 𝜀𝑆𝐴 = 0.69 and 𝛼𝑆𝐴 = 0.92

[37]. The static design variables are represented in Figure 3-2 with fractional solar cell

coverage and surface thermo-optical variables. Note that in the single-node modeling,

the net thermo-optical surface properties are treated as area-weighted means rather

than the represented non-homogeneous area segments.

v𝑠 =
[︁
𝑓𝑆𝐴, 𝜀𝑧, 𝛼𝑧, 𝜀𝑛, 𝛼𝑛

]︁𝑇
(3.1)
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Figure 3-2: Simplified representation of WaferSat surfaces

As more elements of this simplified WaferSat example are expanded upon, more

sets of design variables will be introduced in the following sections of the chapter.

3.2.2 Power Maximization & Thermal Constraints

To evaluate the ability of WaferSat to support a payload, a nominal power per-

formance metric is introduced. At any given time, the internal power dissipation

levels defined during eclipse, 𝑃 𝑒
𝑖𝑛𝑡 or sunlight, 𝑃 𝑠

𝑖𝑛𝑡 can be distributed throughout the

system (to payload, heaters, subsystems, etc.) and it is assumed that all internally

dissipated power results in internal heat in the system. To measure the ability

of WaferSat to support a high-power payload at an arbitrary point in the orbit,
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the performance objective is maximize the minimum of eclipse and sunlight power

dissipation levels (𝑃 𝑒
𝑖𝑛𝑡 and 𝑃 𝑠

𝑖𝑛𝑡 respectively), shown in Equation 3.2. The resultant

value is the minimum amount of power that can be guaranteed to be supplied at any

point during the orbit. It is also assumed that any internal power dissipation results

in heat dissipation within the system. As such, it is always possible to reduce power

dissipation in the sun to reduce sunlight internal heat and increase power dissipation

in eclipse to increase heating during eclipse to improve thermal survival (this results

reduced performance as 𝑃 𝑠
𝑖𝑛𝑡 is lower). The final two constraints of the formulation

in Equation 3.2 set a ‘performance floor’ - that is, the internal powers must exceed a

threshold of 1.4 W at all times.

max min{𝑃 𝑠
𝑖𝑛𝑡, 𝑃

𝑒
𝑖𝑛𝑡}

s.t. 𝑇𝑚𝑖𝑛 ⩾ 𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 ⩽ 𝑇 𝑟𝑒𝑞
𝑚𝑎𝑥

0 ⩽
∫︁ 2𝜋

0

𝑃𝑆𝐴𝑑𝜃 −
∫︁ 2𝜋

0

𝑃𝑖𝑛𝑡(𝜃)𝑑𝜃

𝑓𝑆𝐴 ⩽ 0.75

𝑃 𝑒
𝑖𝑛𝑡 ⩾ 1.4

𝑃 𝑠
𝑖𝑛𝑡 ⩾ 1.4

(3.2)

The first two constraints of Equation 3.2 are the temperature requirements - set by the

most limited operable temperature limits of all elements in the system. 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥

represent the minimum and maximum temperatures attained in stable temperature

cycling (i.e., per-orbit thermal transients are converged in a repeated cycle). The

third constraint defines a net non-negative electrical energy requirement on a per-

orbit basis. That is, over the course of a single orbit, the total amount of electrical

energy generated with the solar array is greater than or equal to the total internal

electrical energy dissipated (electrical energy generation must exceed or equal internal

dissipation over the course of each orbit). Note, that this does not set any constraint

on when power can be dissipated; the internal power dissipation can occur at different
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values at any point in the orbit. It is assumed that any electrical energy that is not

immediately dissipated is stored in batteries. Additionally, it is assumed that the

maximum possible physical fill factor of the solar arrays is 75% on any surface.

Note that so far, this formulation only provides a method for optimizing in the

absence of uncertainty. As such this serves only as the base of the optimization that

will grow as more subelements of the methodology are introduced in the subsequent

sections.

3.3 Nominal Optimization

Optimization is often first thought of in the absence of uncertainty. In an idealized

and certain world - where all parameters and variables are assumed to be exactly

known and there is full confidence in the validity of the models - all outcomes are

deterministically predictable. With these assumptions, it is reasonable to optimize

without margin. In this section, an approach to nominal optimization is presented.

Through an example, it is shown that while a nominal optimal solution offers high

performance, feasibility under uncertainty is severely limited in sensitive systems.

3.3.1 Optimization for a Certain World

In the nominal optimization process, a heuristic optimizer is used to optimize over the

static variable set. In this work, a simulated annealing optimizer is used, but other

global heuristic optimizers may also be used such as genetic algorithms, particle swarm

optimization, or stochastic gradient descent. The methodology of this thesis is most

amenable to optimization strategies that utilize stochastic sampling of populations

and iterative solution proposals. Such optimizers are more generalizable and do not

require access to derivatives or specifics of the model. Simulated annealing (SA) was
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selected for its generality: it is non-specific to the thermal/power modeling (modeling

is described in greater detail in Chapter 4), and it is amenable to the different types

of static and dynamic variable sets that will be introduced later. The simulated

annealing algorithm is introduced with an adaptive neighborhood sampling scheme

to adjust for variable solution acceptance rates [86] (note that the term ‘adaptive’

in this context is distinct from the adaptive design. The adaptive neighborhood

refers to variance in SA distribution sampling to regulate the probability of solution

acceptance). Other heuristic optimization methods such as genetic algorithms and

particle swarm optimization could also be used for this methodology due to their

similar generalizability around modeling. It is useful to note however, that the

methodology could be adapted to incorporate gradient-based optimization which

could increase computational efficiency - a critical benefit as the scope of modeling

increases.

The nominal optimization process is expressed in Equation 3.3 and is illustrated

in Figure 3-3. In generalized form, the objective of the optimizer is to maximize

a performance objective and is subject to the inequality constraint function, c(𝑥).

Note that c represents an arbitrary set of functions - linear or nonlinear - to generate

any number of 𝑚 constraints. 𝑥 represents the arbitrary list of inputs that define

the constraints. Similarly, an equality constraint function, c𝑒𝑞(𝑦) defines equality

constraints. The optimizer operates over the first variable set described in § 3.1, the

static variable set, v𝑠.

In the certain case, the optimizer will produce a nominal optimal solution (or

a close approximation of global optimality in the case of a heuristic optimizer).

Note that simulated annealing does not provide a guarantee of optimality, but does

aid in the avoidance of local optima. Adjustment of the annealing schedule and

neighborhood search allow for reliable convergence on an optimal solution. In Fig-

ure 3-3, the solution proposal has not yet been subjected to uncertainty; at this point,

its performance is assumed to be a single, deterministic outcome with guaranteed

feasibility.
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max
v𝑠

𝑃𝑒𝑟𝑓

s.t. c(𝑥) ⩽ 0

c𝑒𝑞(𝑦) = 0

(3.3)

In order to evaluate the nominal optimal solution under uncertain conditions,

distributions of uncertain parameters are injected to propagate the nominal optimal

solution to generate a distribution of outcomes under many uncertain SoTW. This is

illustrated in the right block of Figure 3-3 (blue dashed lines). A comparison of the

certain and uncertain evaluations will be shown in § 3.3.3. In the new distribution of

outcomes, a smaller fraction of outcomes are feasible.

Performance 
Optimizer

Solution Proposal

Uncertainty

Outcomes under 
uncertainty

Monte Carlo simulation

Propagation of 
effects of 

uncertainty

Figure 3-3: Nominal Optimization; optimizer does not consider
uncertain outcomes. After the optimization process is complete,
the optimized design may be subjected to models of uncertainty to
evaluate performance under uncertainty to reveal a lack of robustness.

3.3.2 Active Constraint Set

In order to understand how the operational tuning variables will influence feasibility,

it is useful to first identify the key and driving active constraints in the design, i.e.,

those constraints that prevent further increases in performance. Understanding the
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active constraints reveals the design drivers and importantly, the limits of feasibility

under uncertainty. Locating the active constraint sets will allow for later evaluation

of how dynamic and adaptive variables can influence the active constraint sets to

maintain optimality of specific solution families.

In the simplified WaferSat example, the active constraints are the temperature

requirements. In Figure 3-4, the transient, single-node temperature profile of the

WaferSat is shown in stable oscillation over five orbits (note that there is an arbitrary

initialization temperature of 290 K; the temperature trace converges on the stable

oscillation within one cycle). The two insets show a zoom in of the non-monotonic

changes in temperature at two points in the orbit: the start and end of eclipse

(depicted as blue patches) or dawn and dusk respectively. During these two points,

the nadir side of the WaferSat is directly illuminated by the sun. At dusk (just before

the start of eclipse), solar incidence angle - the angle between the nadir surface normal

and the sun-WaferSat vector - is decreasing up until the point that WaferSat passes

into the umbra (assumed in this analysis to be cylindrical). At dawn, as WaferSat

exits the umbra, the angle of nadir solar incidence is high and decreases until the

WaferSat is edge-on to the sun. The result is a period of nadir-surface heating exiting

eclipse, followed by a period of cooling near the edge-on orientation to the sun.

The magenta dashed lines represent the temperature requirements (notional in this

example) and the grayed regions represent temperature requirement violations. The

maximum and minimum temperatures meet the temperature constraints at equality,

indicating that they are active and limiting to performance. For power performance to

increase, the solar array area must increase, resulting in a greater portion of surfaces

coating with highly emissive and absorptive area (exacerbating heating in the sun

and radiative cooling during eclipse, respectively).

In the zero uncertainty case, this nominal solution is feasible. However, as noted in

§ 1.2.2, the highA of the system causes high temperature sensitivity. Any deviation

from the nominal heat flows in or out of the system results in large changes in
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Figure 3-4: Quasi-steady state single-node temperatures of nominal
optimal design with no uncertainty. Note that the temperature
constraints are met at equality.

temperature and thus the ability to meet the active constraints. As uncertainty

is added to the scenario, the feasibility of this nominal optimal solution will diminish.

3.3.3 WaferSat Example: Nominal Optimal Design is not Ro-

bust

In the absence of uncertainty, the performance of the nominal optimal design provides

a guaranteed performance level since the outcome is deterministic and certain. In the

simplified WaferSat example, a simple parametric uncertainty is introduced, resulting

in a varied distribution of performance outcomes. A comparison between the certain

performance outcome and the degraded distribution of performance outcomes in the

presence of uncertainty is presented.

In the absence of uncertainty, there is no variability in outcomes. The modeled

performance of the system is exactly, deterministically known. This is represented
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in Figure 3-5, where there is a 100% probability of producing a power performance

of 1.83 W. There is also a 100% expectation of exceeding the required minimum

performance threshold of 1.4 W and there is a 100% expectation of meeting the

temperature constraints that were met at equality.
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Figure 3-5: One performance SoTW with no uncertainty

In reality, there are potentially many sources of uncertainty and therefore, there

exists variance in outcomes. In this example, a simple parametric uncertainty is

introduced in one variable: the static emissivity coating of the nadir-facing non-solar

array surface area. This could represent an error introduced in manufacturing where

the precise static emissivity coating of the nadir surface is not exactly and reliably

reproduced. This manufacturing error will result in large variability of the thermal

balance which is already at the edge of feasibility.

As shown in Figure 3-3, to model the effects of uncertainty, uncertain parametric

distributions are introduced to evaluate the nominal optimal solution. To generate

a distribution of uncertain emissivities, an uncertain perturbing factor, 𝛿 is sampled

from a Gaussian distribution with zero mean and 0.05 variance, 𝛿 ∼ 𝒩 (0, 0.05).

The distribution in Figure 3-6 represents the weighted range of realizations of the
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nadir-side net emissivity. Note that in this example, this distribution is used as an

illustrative example; it does not represent a realistic distribution of static emissivity

coating variance in manufacturing. The negative tail of the distribution was truncated

in order to prevent emissivity realizations less than 0.08. The mean value of the

distribution is centered on the target emissivity value (the value designed under no

uncertainty). More realistic sources and distributions of uncertainty will be used in

more detailed examples in the following chapters.

Realizations of 𝜀𝑁𝑒𝑓𝑓

Figure 3-6: The effective emissivity, 𝜀𝑁𝑒𝑓𝑓 of the nadir-facing surface
resulting from Gaussian uncertainty in static coatings

When modeling the power performance over the ensemble of SoTW using the

static effective emissivity coating distribution from Figure 3-6, what was once a

single deterministic outcome, becomes a distribution of power performance outcomes.

Histograms of the power performance are shown in Figure 3-7. The minimum power

performance threshold of 1.4 W is shown as a vertical magenta dashed line, and the

infeasible region is grayed out. The nominal optimal outcome under no uncertainty

is shown as a black single-bin histogram, representing this single outcome. Without

uncertainty, there is a 100% guarantee of the nominal 1.74 W of power performance

and a 100% guarantee of meeting the temperature constraints at equality.
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In stark contrast, in the uncertain case, the net radiative heat fluxes changes on

the nadir surface for each 𝜀𝑁𝑒𝑓𝑓 . The power dissipation values must change in the

sunlit and eclipse conditions in order to adhere to the temperature constraints. The

new ensemble of outcomes under the modeled parametric uncertainty is shown in

Figure 3-7 as a blue histogram of power performance outcomes. Under the uncertain

case, the expected value of performance has decreased to 1.46 W. Although this is still

greater than the performance threshold of 1.4 W, the percentage of outcomes that

meet or exceed the threshold is 64%; i.e., the system fails to satisfy the performance

requirement for a significant portion of outcomes. While the design performs very

well without uncertainty, it is unreliable (due to its low feasibility) under this model

of uncertainty.
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Figure 3-7: Distribution of nominal power performance outcomes
under no uncertainty (black), and under modeled uncertainty
(blue). Performance varies widely and degrades with the addition
of uncertainty.

Optimization performed without consideration of uncertainty may yield results

that are impractical for the real world. Whereas nominal performance without

uncertainty is high, this is only guaranteed in the absence of uncertainty. Therefore

the nominal performance outcome may not reliably meet requirements as observed
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in the simplified WaferSat example. Other techniques are required to provide high

performance with a high probability of feasibility.

3.4 Static Robust Optimization

Solutions that are only optimal and feasible in the no uncertainty case are not

necessarily useful in reality where there is uncertainty. In constrained optimization,

the set of active constraints are tight (i.e., the constraints are met at equality, the

edge of satisfaction), and therefore offer no margin against variance in outcomes. One

approach to mitigating the effects of uncertainty is to provide sufficient margin in the

needed areas to account for worst-case outcomes under uncertainty.

3.4.1 Static Tailoring for Static Robustness

The original nominal optimization approach is expanded to include an additional loop

to feed statistical information on the distribution of uncertain SoTW back to the

optimizer as new constraints as shown in Figure 3-8. As an example, the new criteria

may be for greater than 𝑛-𝜎 statistical feasibility over the modeled uncertainty. The

new constraints focus the optimizer search for designs that are both high-performing

and tailored to provide an 𝑛-𝜎 guarantee of feasibility. Designs such as the nominal

optimal are discarded due to their low feasibility.

To identify designs that are statically robust, designs must be filtered for a de-

creased net effect to the active constraints from the sources of uncertainty. This

can be achieved either through a design that has some natural insensitivity to the

uncertainty (i.e., absorbers of change [42]) or through the allocation of margin. This

filtering is expressed in Equation 3.4 as a new set of constraints related to the

probability measure of active constraint satisfaction. The probability measure of

active constraint satisfaction, P𝑓𝑒𝑎𝑠 is the probability that all constraints are met
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Figure 3-8: Feasibility results over the distribution of outcomes are
sent back to the optimizer as new constraints, guiding the optimizer
towards designs that are performance optimal with sufficient static
margin

under modeled uncertainty. The distribution of outcomes in the constraint-space are

evaluated for feasibility and fed back as augmenting constraints to the optimizer.

Note that the active constraints in c and c𝑒𝑞 remain in the formulation, but only

apply to the outer loop in the absence of uncertainty. The constraint functions c

and c𝑒𝑞 are evaluated over the nominal, no uncertainty case, before the sampling

from the uncertain ensemble. As such, these constraints now only enforce active

constraint feasibility of the nominal state. The new augmenting constraint applies to

the uncertain evaluations.

max
v𝑠

𝑃𝑒𝑟𝑓

s.t. c(𝑥) ⩽ 0

c𝑒𝑞(𝑦) = 0

P𝑓𝑒𝑎𝑠 ⩾ P𝑟𝑒𝑞
𝑓𝑒𝑎𝑠

(3.4)

By setting some statistical feasibility criteria for the optimizer, the magnitudes of

static margin are allocated as needed. When evaluated over an ensemble of uncertain
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outcomes, generated from the uncertainty distribution, the 𝑛-𝜎 bounds on the out-

comes can be estimated. A desired 𝑛-𝜎 level of feasibility is used as an augmenting

criteria for the optimizer. For each nominal solution proposal, the estimated feasibility

over the uncertain ensemble is then evaluated against the feasibility criteria. This

focuses the search in the optimizer design towards solutions that provide the requisite

statistical feasibility in addition to performance. In design with only static variables,

desensitization of the active constraints is achieved with static margin. In this process,

static tailoring optimizes the static variables for the original performance objectives

while allocating the requisite static margin to meet the feasibility criteria.

The method for evaluating the active constraint probability of feasibility will be

discussed using the simplified WaferSat example in the next section.
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3.4.2 WaferSat Example: Optimizing for Static Robustness

As observed in the nominal optimal WaferSat scenario from § 3.3.3, the optimal

solution occurs when the temperature constraints are tight, i.e., the temperature

extremes in quasi-steady state meet the temperature requirements at equality. De-

signs that contain margin against the constraints in the zero uncertainty case can

improve feasibility when uncertainty is introduced by allowing some room for extreme

temperatures to increase or decrease and still remain within the constraints.
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Figure 3-9: Static Robust design with static margin against the active
temperature constraints in the zero uncertainty scenario

The optimization formulation is a modified version of Equation 3.2, augmented

with an additional statistical feasibility constraint, shown in Equation 3.5. The

probability measure of thermal requirement satisfaction, P𝑓𝑒𝑎𝑠 must be greater than
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some required probability measure (e.g., for 2-𝜎, 𝑃 𝑟𝑒𝑞
𝑓𝑒𝑎𝑠 = 0.954).

max
v𝑠

min{𝑃 𝑠
𝑖𝑛𝑡, 𝑃

𝑒
𝑖𝑛𝑡}

s.t. 𝑇𝑚𝑖𝑛 ⩾ 𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 ⩽ 𝑇 𝑟𝑒𝑞
𝑚𝑎𝑥

0 ⩽
∫︁ 2𝜋

0

𝑃𝑆𝐴𝑑𝜃 −
∫︁ 2𝜋

0

𝑃𝑖𝑛𝑡(𝜃)𝑑𝜃

𝑓𝑆𝐴 ⩽ 0.75

𝑃 𝑒
𝑖𝑛𝑡 ⩾ 1.4

𝑃 𝑠
𝑖𝑛𝑡 ⩾ 1.4

P𝑓𝑒𝑎𝑠 ⩾ P𝑟𝑒𝑞
𝑓𝑒𝑎𝑠

(3.5)

The probability measure, P𝑓𝑒𝑎𝑠 is the probability that both temperature constraints

are satisfied under uncertainty, as expressed in Equation 3.6. This corresponds to

the right-hand portion of the loop in Figure 3-8 where the temperature extremes

are evaluated under uncertain SoTW. Note that this is distinct from the first two

constraints of Equation 3.5 which enforce feasibility of the nominal, no uncertainty

evaluation of the candidate solution.

P𝑓𝑒𝑎𝑠 = P (𝑇𝑚𝑖𝑛 ⩾ 𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛 ∩ 𝑇𝑚𝑎𝑥 ⩽ 𝑇 𝑟𝑒𝑞

𝑚𝑎𝑥) (3.6)

In the right half of Figure 3-8, the true probability measure, P𝑓𝑒𝑎𝑠 is approximated

using Monte Carlo sampling of outcomes under the uncertainty distribution. The

approximation is expressed as the expected value of the feasible states, 𝑋 under

the probability space being evaluated, 𝒫𝑓 (i.e., a probability space defined through

evaluation of the thermal-power model, subject to the modeled uncertainty). In

practice, the probability measure is estimated using importance sampling of individual

SoTW that meet the temperature requirements over the modeled uncertain ensemble

of size 𝑝, as expressed in Equation 3.7. The weight of the importance sampling is

defined by an indicator function given in Equation 3.8 which checks for temperature
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constraint satisfaction (the active constraint set) at each uncertain SoTW evaluation.

P𝑓𝑒𝑎𝑠 ≈ E[𝑋;𝒫𝑓 ] =
1

𝑝

𝑝∑︁
1

𝑥𝑖; 𝑥𝑖 ∼ 𝒫𝑓 (3.7)

𝑥𝑖 =

⎧⎪⎨⎪⎩1, 𝑇𝑚𝑖𝑛 ⩾ 𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛 ∩ 𝑇𝑚𝑎𝑥 ⩽ 𝑇 𝑟𝑒𝑞

𝑚𝑎𝑥

0, otherwise
(3.8)

An example of a robust design with 85% feasibility is shown in Figure 3-9. The

temperature profile follows a similar general shape to that of the nominal optimal

design, but with static margin allocated to both the maximum and minimum temper-

ature requirements. Note that the optimizer allocated different magnitudes of static

margin for the maximum and minimum temperature requirements. In this example,

this allocation asymmetry is likely due to the differences in heat variance in the sunlit

and eclipse portions of the orbit as well as the nadir-side radiative proportionality to

𝑇 4.

A static robust design is identified through static tailoring for 85% feasibility under

the modeled uncertainty. A histogram of outcomes (orange) is shown in Figure 3-10

with a comparison to the nominal optimal solution under uncertainty (blue from

Figure 3-7). Nearly 70% of outcomes in the static robust design under uncertainty

occur within the tailored static margin (the largest histogram bin in orange). Power

performance begins degrading after the static margin is consumed (in larger uncertain

deviations in the tails of the uncertainty distribution). As a result, the new expected

value of power performance under uncertainty is 1.51 W and 85% of outcomes are

feasible. Note however, that the best case (nominal case) power performance is 1.63

W, less than the best power performance of the nominal optimal design.
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Figure 3-10: Distribution of nominal outcomes and statically robust
outcomes under modeled uncertainty

In the static robust design, margin is allocated against the temperature con-

straints, increasing the percentage of outcomes that remain thermally feasible under

modeled uncertainty. However, there is a tradeoff, as the maximum performance level

of 1.83 W achieved by the nominal optimal design (under no uncertainty) is lost.

3.4.3 Nominal Performance & Static Robustness: Pick One

Providing feasibility guarantees using static margin for the active constraints comes

at a cost. Optimization with static margin improves feasibility in the worst cases at

the expense of performance [21]; this is often referred to as ‘the price of robustness’.

By effectively decreasing the size of the feasible space, the designs identified provide

some guarantee of feasibility through a buffer against the active constraint-space.

However, the decrease in the searchable feasible space (to allow for margin against

active constraints) creates a more constrained problem, resulting in lower optimal

performance. This exchange of optimality for reliability is often accepted because the
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nominal optimal solutions are simply unrealistic under uncertainty and the robust

sacrifice is seemingly the maximum guaranteed performance.

However, when the system at hand is severely limited in SWaP, such as WaferSat,

the sacrifice in performance may be substantial. It may be useful to instead seek de-

signs that may offer another route to improved feasibility with a smaller performance

decrease. A method is needed that does not require a tradeoff between optimality

and robustness.

3.5 Responsive Robust Optimization

Design for responsive robustness involves dynamic behavior of the uncertainty mitiga-

tion mechanism during operation. In this chapter thus far, all design has occurred over

static variables; in order to elicit dynamic behavior in operation, dynamic variables

must be included in the a priori design. In this section, the method for responsive

tailoring is presented, including an expansion of the simplified WaferSat example

problem. A new design variant with a passive response to uncertain states using

phase change materials (PCM) is used to improve thermal feasibility. The behavior

of the PCM is tailored during the design process, but the response cannot be changed

in operation.

3.5.1 Responsive Tailoring

Responsive tailoring follows a similar process to that outlined in Figure 3-8. However,

the responsive tailoring specifically occurs over a new dynamic variable set. For a

given responsive mitigation, there is a set of design decisions that must be made

during the a priori phase that will define the responsive behavior on orbit. Since the

response is set during the a priori phase, the behavior in operation is described as

fixed-recourse; the responding dynamic behavior cannot be reprogrammed.
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During the design loop in Figure 3-8, model propagation over the ensemble of

uncertain states allows for assessment of each candidate design. The feedback of the

statistical feasibility criteria guides the search in defining the characteristics of the

response (the responsive tailoring process), while maintaining the max performance

search objective of the outer loop. This process follows the same optimization formu-

lation as in Equation 3.5, however, during the model evaluations over the uncertain

ensemble, the responsive behavior is propagated. The resultant responsive margin

afforded by the responsive tailoring process will increase the probability of feasibility.

The general form of the optimization formulation in Equation 3.9 is similar to

that in the static robust formulation. The optimization occurs over a new dynamic,

responsive variable set, v𝑟
𝑑 in addition to the original static variable set, v𝑠. The

responsive variable set will govern the response to uncertainty that is modeled for each

uncertain SoTW. During model evaluations under uncertainty, the dynamic behavior

responds to the thermal conditions. Therefore the outcomes under uncertainty are

distinct from those in a non-responsive scenario.

max
v𝑠,v

𝑟
𝑑

𝑃𝑒𝑟𝑓

s.t. c(𝑥) ⩽ 0

c𝑒𝑞(𝑦) = 0

P𝑓𝑒𝑎𝑠 ⩾ P𝑟𝑒𝑞
𝑓𝑒𝑎𝑠

(3.9)

An example responsive robust design will now be presented using phase change

materials in WaferSat. The absorption and emission of heat during phase changes

creates a responsive buffer: the responsive margin.
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3.5.2 Phase Change Materials: Responsive Heat Storage

One example of a responsive robust thermal mitigation is phase change materials

(PCM). Heat storage in materials can occur in several ways. Storage of heat with an

associated rise in temperature - sensible heat storage - comprises the bulk of material

heat capacity. However, during a phase transition, heat is transferred in or out of

the PCM mass at constant temperature. This latent heat storage offers a region of

mass-effective heat capacity without a change in temperature.

Implementation of PCMs requires material selection and mass/volume allocation

in the a priori design phase. The response is realized in the a posteriori phase, where

the solid/liquid fraction acts in response to system single-node temperature and heat

flux. Modeling and operation of PCMs will be discussed in greater detail in § 4.4.1.

Usage of PCMs introduces the new dynamic responsive variable set, v𝑟
𝑑 defined

in Equation 3.10 where 𝑇𝑐 denotes the temperature of phase change, 𝐻∘
𝑐 denotes

latent enthalpy of phase change, and 𝑐𝑝𝑐𝑚𝑝 denotes the sensible specific heat capacity

of the PCM. In practice, these variables may be correlated through the PCM material

selection (or mass-weighted sum combinations of different materials).

v𝑟
𝑑 =

[︁
𝑇𝑐, 𝐻∘

𝑐 , 𝑐𝑝𝑐𝑚𝑝 , 𝑚𝑝𝑐𝑚

]︁𝑇
(3.10)

Selection of these variables, specifically the phase change temperature and latent

enthalpy of phase change, will determine the corresponding response in the evaluations

under uncertain SoTW. Note that each responsive mitigation included will expand

this dynamic variable set.

3.5.3 WaferSat Example: Application of PCM

The simplified WaferSat example can be optimized to include some PCM mass in

order to improve feasibility in the presence of uncertainty. In order to provide a fair
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comparison at constant total system mass, it is assumed that any PCM added to

the WaferSat displaces the equivalent mass of silicon substrate. Similar to the static

robust design of § 3.4.2, a target statistical feasibility of 85% is set in the optimizer;

this appears as the last, augmenting constraint of Equation 3.11. Furthermore,

the addition of PCM as a responsive mitigation introduces the dynamic responsive

variable set, v𝑟
𝑑.

max
v𝑠,v

𝑟
𝑑

min{𝑃 𝑠
𝑖𝑛𝑡, 𝑃

𝑒
𝑖𝑛𝑡}

s.t. 𝑇𝑚𝑖𝑛 ⩾ 𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 ⩽ 𝑇 𝑟𝑒𝑞
𝑚𝑎𝑥

0 ⩽
∫︁ 2𝜋

0

𝑃𝑆𝐴𝑑𝜃 −
∫︁ 2𝜋

0

𝑃𝑖𝑛𝑡(𝜃)𝑑𝜃

𝑓𝑆𝐴 ⩽ 0.75

𝑃 𝑒
𝑖𝑛𝑡 ⩾ 1.4

𝑃 𝑠
𝑖𝑛𝑡 ⩾ 1.4

𝑃𝑓𝑒𝑎𝑠 ⩾ 𝑃 𝑟𝑒𝑞
𝑓𝑒𝑎𝑠

(3.11)

The temperature profile of the resulting responsive design is shown in Figure 3-11.

The allocation of PCM mass creates responsive margin against the active constraints.

Note that the relative allocation of responsive margin bears similarity to that of the

static margin in § 3.4.2; a greater proportion of margin is dedicated to the maximum

temperature constraint.

The regions of constant temperature can be viewed during heating and cooling

through the phase transition temperature of 288K (15 ∘C). The isotemperature

regions effectively lengthen the thermal time constants. The behavior is dynamic,

responding to variances in heat flow for each uncertain SoTW. The result of this

behavior is responsive margin against the temperature constraints. Note that in this

design, the maximum performance is approximately equal to that in the nominal
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Figure 3-11: Responsive robust single-node temperatures in the zero
uncertainty case. Isotemperature regions during cooling and heating
through the phase transition point lengthen the effective thermal time
constants.

optimal design at 1.74 W.

Two dynamic variables were optimized during the responsive tailoring process:

total PCM mass and temperature of fusion (or phase transition temperature). In

this example, for simplicity, the sensible heat storage of the PCM was ignored. The

phase transition temperature or temperature at which latent heat is stored or released

determines the temperature of the phase transition (storage or release of latent heat).

The optimal value of phase transition of 288 K or 15∘C places the phase transition

right at the period of nadir-side heating at the start of eclipse. The result is non-

monotonic heat flows into the system and PCM during the phase transition. The

solid-liquid response as a function of time is shown in Figure 3-12 during the freezing

phase transition (the same time period as the second inset of Figure 3-11). The

period of nadir-side solar illumination results in the non-monotonic behavior; as the

nadir-side is heated at dusk, the PCM partially re-melts, prolonging the period of

isothermal phase transition. The result is a greater effectiveness of the PCM mass in
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Figure 3-12: Liquid mass ratio during phase transition during cooling
at dusk

lengthening the thermal time constant. Selection of a phase transition temperature

near the middle of the temperature oscillation range also has a balancing effect on

the distribution of responsive margin near the maximum and minimum requirements.

A histogram of power performance under uncertainty is shown in Figure 3-13.

Feasibility is improved, to meet the target 85% of outcomes meeting the performance

threshold. The expected value of performance of 1.59 W is also higher than that in

the static robust solution (1.51 W).

One particular advantage of responsive robustness is the passivity of the fixed-

recourse response. Once the dynamic variables have been set during the a priori phase,

no further control is necessary - the response to uncertanity occurs automatically (e.g.,

PCMs melt and freeze as heat flows in and out). This does however, also present a

downside: the response to uncertainty is unchangeable in operation. Responsive

tailoring relies heavily on the uncertainty model used in the tailoring process. The

final method, adaptive optimization, presents an additional alternative with the

ability to actively compensate for uncertainty.
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Figure 3-13: A histogram of responsive robust power performance
outcomes under the modeled uncertainty.

3.6 Adaptive Optimization

Optimization for adaptivity involves optimization during both the a priori and the a

posteriori phases. Like the responsive tailoring, there is a set of dynamic variables

that will govern the behavior in operation. In the a posteriori phase, the adaptive

variables are optimized for compensation of the effects of uncertainty, i.e., the adaptive

behavior is actively optimized for realizations of uncertainty. This process occurs

in two stages: adaptive tailoring of the dynamic variables and tuning of adaptive

variables in operation.

3.6.1 Design for Adaptability & Adapting to Uncertainty

The expanded two-stage process for adaptive tailoring and tuning is shown in Figure 3-

14. In the outer loop, adaptive tailoring over a new set of dynamic variables that

govern the adaptive mitigation are optimized. For each solution proposal within the
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MC simulation block (blue dashed lines), an inner loop tuning optimization designs for

minimum variance of the uncertain solutions. Note that this inner loop optimization

is dynamically constrained by the dynamic variables set during the adaptive tailoring

phase.

Feedback of the tuned distribution of outcomes is used in the outer loop to evaluate

the statistical feasibility. In this way, the desired level of tuneability is designed in

during the a priori phase, and the optimal response to the modeled uncertainty is

realized in the inner loop.

Performance 
Optimizer

Solution Proposal

Uncertainty

Adapted distribution 
of outcomes

Monte Carlo simulation

Uncertain 
outcomes

Adaptive 
Optimizer

estimate

Figure 3-14: Two-stage optimization: adaptive tailoring of dynamic
variables to govern and constrain adaptive behavior, tuning
optimization to determine optimal tuned response to uncertain SoTW

The outer and inner loops of optimization are expressed in Equations 3.12 and 3.13

respectively. The outer loop optimization now includes the dynamic adaptive variable

set, v𝑎
𝑑, the governing set of variables for adaptive behavior. The objective of the inner

loop is to maximize the probability of feasibility of the active constraint set, P𝑓𝑒𝑎𝑠.

This occurs over the adaptive variable set, v𝑎, which is subject to decisions made in

the outer loop. The adaptive constraint function, c𝑎 is also subject to the variables

in v𝑎
𝑑. Therefore, the inner loop optimization defines the optimal tuning behavior in

compensation for uncertain SoTW to maximize the feasible outcomes.
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max
v𝑠,v

𝑟
𝑑,v

𝑎
𝑑

𝑃𝑒𝑟𝑓

s.t. c(𝑥) ⩽ 0

c𝑒𝑞(𝑦) = 0

P𝑓𝑒𝑎𝑠 ⩾ P𝑟𝑒𝑞
𝑓𝑒𝑎𝑠

(3.12)

max
v𝑎

P𝑓𝑒𝑎𝑠

s.t. c𝑎(𝑧,v
𝑎
𝑑) ⩽ 0

(3.13)

The two stage process for the design of adaptability can be broken down with

two segments. In the a priori design phase, the design for adaptability controls how

much tuneability is available. In the a posteriori operations phase, design of the

adaptability produces the ideal, active mitigation of uncertainty.

3.6.2 WaferSat Example: Adaptive Electrochromics

An example of adaptability using dynamically selectable emissivity surfaces - elec-

trochromics - is used to illustrate adaptive mitigation of uncertainty. Dedication

of some WaferSat surface area to electrochromic surface allows for compensation of

errors in the static emissivity coatings of other surfaces. A simple 2-element nadir

surface is shown in Figure 3-15. The static surface consists of a target emissivity,

𝜀𝑁 and an uncertain perturbation 𝛿. The adaptive portion of the surface consists

of electrochromic area selectable over a continuous range, 𝜀𝐸 ∈ [0.2, 0.8]. In this

example, allocation of the area to electrochromics is set through adaptive tailoring,

and the optimal selection of compensating emissivity during operation is set through

tuning.

For an electrochromic fractional fill factor, 𝛽𝐸, the effective emissivity is given as

𝜀𝑁𝑒𝑓𝑓 = 𝛽𝐸𝜀𝐸 + (1− 𝛽𝐸)(𝜀𝑁 + 𝛿) (3.14)
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Figure 3-15: Diagram of nadir surface and thermal properties

A value of 0.5 is assigned for the nominal value of the electrochromic surface, 𝜀𝑛𝑜𝑚𝐸 .

This allows for even compensatory range before saturation at the electrochromic

limits. The electrochromic area fill factor, 𝛽𝐸 is optimized as part of the adaptive

tailoring process. The uncertain perturbing factor, 𝛿 is sampled from the distribution

introduced in § 3.3.3.

In general, the inner loop optimization objective is to maximize feasibility under

modeled uncertain conditions. For simplicity and improved computational speed,

a minimum variance optimization heuristic can be applied as expressed in Equa-

tion 3.15. The emissivity tuning objective is formulated to minimize the difference

between the realized uncertainty and the original nominal target, 𝜀𝑁 . This has the

effect of returning the uncertain realizations back to the nominal state (or as closely

as is possible). The electrochromics are assumed to be continuously commandable

over the range from 0.2 to 0.8 (indicated by the constraints of Equation 3.15).

min
𝜀𝐸

|𝜀𝑁 − [𝛽𝐸𝜀𝐸 + (1− 𝛽𝐸)(𝜀𝑁 + 𝛿)]|

s.t. 𝜀𝐸 ⩽ 0.8

𝜀𝐸 ⩾ 0.2

(3.15)

Since the perturbing uncertainty and the electrochromics act upon the same quantity,

a simple, optimal decision rule can be derived. Note that the finite emissivity range
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of the electrochromics presents three scenarios: exact compensation, saturation high,

and saturation low, shown in Equation 3.16. In exact compensation (first case of

Equation 3.16) there is an exact value of the electrochromics which reproduces the

original target value of 𝜀𝑁 . The magnitude of uncertain emissivity perturbation that

can be exactly compensated, 𝐶 is a function of the electrochromic area allocated

(and is set by decisions during adaptive tailoring) and is shown in Equation 3.17.

In the two saturation cases (cases two and three of Equation 3.16) the effect of the

uncertainty is mitigated, but is not completely compensated. The electrochromics

are set to either the maximum or minimum possible value. In this optimization for a

target 85% feasibility guarantee, the electrochromic area is tailored to cover 11% of

the nadir surface area.

𝜀*𝐸 = 𝑓(𝛿) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝜀𝑁 + 𝛿)− 𝛿

𝛽𝐸
, |𝛿| ⩽ 𝐶

0.8, 𝛿 > 𝐶

0.2, 𝛿 < −𝐶

(3.16)

𝐶 =
𝛽𝐸(0.5− 𝜀𝑚𝑎𝑥

𝐸 )

1− 𝛽𝐸
=
𝛽𝐸(0.5− 𝜀𝑚𝑖𝑛

𝐸 )

1− 𝛽𝐸
(3.17)

Note that 𝐶 is a common value for the range of positive and negative 𝛿 that is

compensatable since the electrochromics are assumed to be nominally centered at 0.5

(the middle of the range). In other words, the electrochromics afford equal tuning

authority for increases and decreases in heat. When the center of the electrochromics

are not at the center of the range, the tuning authority can become asymmetric; this

will be explored later in Chapter 4.

The unmitigated and adaptive realizations of 𝜀𝑁𝑒𝑓𝑓 are shown in Figure 3-16. The

nominal target 𝜀𝑁 is marked with a dashed red line. The center, most-probable set

of outcomes of the electrochromic adaptive histogram (purple) represents the exact

compensation cases, where the electrochromic surface is able to maintain the target

effective emissivity. The left and right tails of the histogram represent the saturation
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Figure 3-16: A comparison of the unmitigated and electrochromic
adaptive distributions of 𝜀𝑁𝑒𝑓𝑓

low and high cases, respectively. The result is a marked reduction in the effective

emissivity variance from 0.05 to 0.02 and in about 45% of outcomes, the nominal

condition is exactly produced.

In this example, there is also a secondary mitigating effect of adding electrochromic

area due to the replacement of static surface area with electrochromics. As the

ratio of electrochromic area increases, the total amount of uncertain static area

decreases. However, in this example, the decrease in net temperature variance due

to the reduction of static coated area is small. An additional set of histograms with

a comparison of the variance is shown in Figure 3-17. The blue histogram shows the

original, nominal solution variance of the uncertain effective nadir emissivity with

variance 0.052 (labeled as unmitigated). The grey histogram shows the variance of

the effective nadir emissivity with the adaptively tailored 11% nadir surface area

coverage, but with the electrochromics inactive - with emissivity value always set to

0.5. There is little change to the distribution of outcomes, compared to the decrease

once the electrochromics are adaptively tuned (Figure 3-16).
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Figure 3-17: A comparison of emissivity outcomes for the unmitigated
case in blue and inactive electrochromics in gray. The inactive
electrochromics are held at a value of 0.5 for all time.

A histogram of outcomes of power performance of the adaptive design is shown

in Figure 3-18. The largest bin of power performance represents the exact compen-

sation cases, where the nominal optimal power performance is realized, even under

uncertainty. For larger uncertain perturbations, the electrochromics saturate (high or

low) and power performance degrades (in the tails of the uncertain distribution). The

expected values, probabilities of meeting the performance threshold, and maximum

performance capability are summarized in Table 3.2 for all cases.

Table 3.2: Summary of expected values and probabilities of success

Design Case E[𝑃𝑖𝑛𝑡] (W) P[𝑃𝑖𝑛𝑡 ⩾ 1.4] max(𝑃𝑖𝑛𝑡) (W)

Nominal Optimal Certain 1.74 1.00 1.74

Nominal Optimal Uncertain 1.46 0.64 1.74

Static Robust Uncertain 1.51 0.85 1.63

Responsive Robust Uncertain 1.59 0.85 1.74

Adaptive Uncertain 1.63 0.85 1.76
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Figure 3-18: Distribution of adaptive optimal solution using
electrochromic-mitigated 𝜀𝑁𝑒𝑓𝑓

The expected values of power performance, probabilities of meeting the power per-

formance threshold, and maximum power performance are summarized in Table 3.2

for all designs and uncertainty cases. The nominal optimal design appears to perform

well under certain conditions. However, the assumed absence of uncertainty is unre-

alistically optimistic. The same nominal optimal design under uncertain conditions

performs poorly in both expected value of performance and probability of constraint

satisfaction. The static robust design increases the probability of feasibility to the

target of 85%, but still has a low expected value and maximum performance. The

responsive design is able to recover the maximum power performance whilst increasing

the probability of feasibility to 85%. Furthermore, the expected value increases to 1.59

W. The adaptive design fares the best in all three categories. Interestingly, it has a

higher maximum power performance than the nominal optimal design under certain

conditions, suggesting that adaptive activity can potentially improve the nominal

performance beyond that of the nominal optimal.
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3.7 The Costs of Static Robustness, Responsive Ro-

bustness, Adaptability

As is noted often in Real Options Theory [87, 56], flexibility provides a way to hedge

against uncertainty, but is not without ‘cost.’ This often is expressed as a literal

monetary cost, but can be extended to the engineering design context to represent

the design ramifications of decisions to include dynamic and/or adaptive variables

including alternatives forgone.

In the WaferSat electrochromics example, the ‘cost’ may be expressed as an

opportunity cost of surface usage. While the surface area to mass ratio of WaferSat

is high in a relative sense, at the absolute scale, the total surface area is limited.

Dedication of surface area to electrochromics must displace other uses of the wafer

surfaces. Electrochromics area on the zenith surface reduces the total potential area of

solar cells and other surface components (e.g., sensors, propulsion, communications).

Therefore, a balance must be found between the surfaces devoted to adaptability

(e.g., electrochromics) and to the nominal objective (e.g., electrical power generating

area). If a balance cannot be found, other responsive or adaptive mitigations should

be considered.

The fact that the limited resources and surface areas pit the nominal and adaptable

objectives at odds with one another prevent the selection of a design that is maximally

adaptable with every and all adaptable variables included as such a design may no

longer satisfy the nominal design objectives. Therefore it may be useful to identify

a set of isoperforming and isofeasble designs in order to search for the balance of

robustness and adaptability that incurs an acceptable implementation cost for the

mission at hand.
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3.8 Summary

In this chapter, the methodology was presented, building up from traditional nominal

and static robust optimization. It is shown through example that the traditional

nominal optimization approaches under severe constraints do not yield reliable solu-

tions under uncertainty. Conversely, the traditional robust approaches that rely on

static margin sacrifice significant performance in pursuit of a feasibility guarantee.

Responsive robustness is introduced with a statistical feasibility criteria, evaluated

over a modeled uncertainty set. Tailoring of a priori dynamic variables define the

response in operation, yielding designs that effect the desired, feasibility-increasing

response in operation. Next, the adaptive approach is introduced, showing the

two-step process of tailoring the dynamic adaptive variable set to optimize the tuning

range relative to the range of uncertainty. Optimization over the uncertain states

identifies the optimal tuning response to continuously changing states of uncertainty

in operation.
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Figure 3-19: A comparison of histograms of performance outcomes
under uncertainty for each individual mitigation method

A simplified WaferSat example problem was used to illustrate the improvements to
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feasibility under a simple parametric uncertainty case. Static robustness, responsive

robustness, and adaptability mitigations were presented in isolation to demonstrate

unique methods to improve feasibility under uncertainty. A summary comparison of

outcomes is presented together in Figure 3-19 and Table 3.2. Note that the responsive

and adaptive designs result in both a greater expected performance under uncertainty

as well as better nominal maximum performance. In other words, there is a smaller

sacrifice of uncertainty in order to elicit the desired reliability under uncertainty.

In the following chapters, more complex examples that utilize and compare non-

unique combinations of static robustness, responsive robustness, and adaptability will

be presented.
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Chapter 4

WaferSat

In this chapter, a more detailed version of the simplified WaferSat example from

Chapter 3 is presented. This design example will incorporate more design variables in

a more thermally constrained problem and will exercise the methodology through opti-

mization of the simultaneous use of three responsive robust and adaptive mitigations.

Through this problem, three unique balances of robustness and adaptability that

produce the same level of performance and feasibility are identified and compared.

Attainment of the same function with different form allows for more informed trades

of different combinations of responsiveness and adaptability

4.1 Problem Definition

In this example, a 300 g WaferSat is in the same orbit as that defined in the simplified

example from §3.2. The WaferSat is in a 400 km altitude orbit with solar 𝛽 angle

of zero. This orbit presents the most thermally restrictive scenario with maximum

eclipse length and most direct solar exposure in the nadir-facing orientation. The

WaferSat will first be nominally optimized for the nominal, zero uncertainty scenario.
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4.1.1 Parameters & Static Design Variables

The description of the scenario is broken into three parts: definition of constant

parameters, description of the set of static design variables, and the definition of the

optimization. There are various constant parameters throughout the system. The

parameters and values are summarized in Table 4.1. Although WaferSat will contain

Table 4.1: Constant parameters used throughout the WaferSat
problem

Parameter Symbol Value Units

WaferSat radius 𝑟𝑤𝑎𝑓 100 mm
WaferSat thickness 𝑡𝑤𝑎𝑓 4.1 mm
WaferSat mass 𝑚𝑤𝑎𝑓 300 g
Si density 𝜌 2330 kgm−3

mean Earth bond albedo 𝐴𝐸 0.31 -
mean Earth black body temperature 𝑇𝐸 255 K
orbit altitude ℎ 400 km
solar array emissivity [37] 𝜀𝑆𝐴 0.86 -
solar array absorptivity [37] 𝛼𝑆𝐴 0.92 -

many embedded components, it is assumed that the silicon substrate is the main mass

component. As such, the properties of silicon are assumed to dominate in sizing and

calculation of thermal mass.

The static design variable set includes the design of static surface thermo-optical

coatings. This includes the zenith, nadir, and radial wall surfaces. The zenith

and nadir surfaces include design parameters for the physical fill factor of solar

array area as a percent coverage (nadir surfaces can generate power from Earth

albedo-reflected sunlight). For the nominal problem, it is assumed that any surface

area not occupied by solar arrays is coated with static thermo-optical coatings.

This set of static design variables will be used for the nominal and static robust

optimization approaches. When including responsive robustness and adaptability in

the optimization, the variable sets will be augmented with dynamic and adaptive

design variables (outlined in §4.4).
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Table 4.2: Set of static design variables, v𝑠

Static Design Variable Symbol

zenith static emissivity 𝜀𝑧
zenith static absorptivity 𝛼𝑧

nadir static emissivity 𝜀𝑛
nadir static absorptivity 𝛼𝑛

radial wall static emissivity 𝜀𝑟
radial wall static absorptivity 𝛼𝑟

zenith solar array physical fill factor 𝑓𝑆𝐴
nadir solar array physical fill factor 𝑓𝑆𝑁

WaferSat is severely limited in SWaP; as such, the optimization objective is to

maximize internal power dissipation capability at all points in the orbit. All internal

power dissipation is assumed to result in heating in WaferSat - a deleterious effect

in the sun, but beneficial during eclipse. Maximized internal power available at all

times to a payload enhances capability and reduces restrictions on when the payload

can operate.

4.1.2 Constrained Optimization

Due to the high A and short thermal time constants of the WaferSat system, it is

anticipated that the temperature constraints may limit performance. A summary of

the estimated temperature constraints of several subsystems of the WaferSat system

are summarized in Table 4.3. The focus of the optimization will be for performance

in operation, so the operational temperature limits will be considered. Note however,

that the wider survival limits present another, non-operational option for survival of

the system. The most temperature-constrained element will be the lithium titanate

batteries. These temperature limits were tested in [88]. Although these batteries

showed operation down to −40 ∘C, the effective capacity suffered a greater than 20%

loss under −15 ∘C. The operational temperature requirements for WaferSat will be

from −15 ∘C to 30 ∘C.
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Table 4.3: General spacecraft subsystem temperature requirements
[44, 89]

Component Operational (∘C) Survival (∘C)

Solar arrays -150 to 110 -200 to 130
Lithium Titanate batteries [88] -15 to 30 -40 to 45
Avionics -20 to 60 -40 to 75
Electrospray propellant[90] -20 to 70 -40 to 200
Antennas -100 to 100 -120 to 120

The WaferSat system will use solar arrays to generate electrical power that is

dissipated and stored in batteries. As an additional constraint, it will be assumed

that over the course of each orbit, the total dissipated power is less than or equal to

the total generated electrical power. This constraint allows for constant operation -

there will not be a need to enter lower power states to recharge.

max
v𝑠

𝑃𝑖𝑛𝑡

s.t. 𝑇𝑚𝑖𝑛 ⩾𝑇 𝑟𝑒𝑞
𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 ⩽𝑇 𝑟𝑒𝑞
𝑚𝑎𝑥

0 ⩽
∫︁ 2𝜋

0

𝑃𝑆𝐴𝑑𝜃 −
∫︁ 2𝜋

0

𝑃𝑖𝑛𝑡(𝜃)𝑑𝜃

𝑓𝑆𝐴 ⩽0.70

𝑓𝑆𝑁 ⩽0.70

(4.1)

The nominal optimization is shown in Equation 4.1. The optimization objective

will be to maximize the mean internal power 𝑃𝑖𝑛𝑡 capability, using the static design

variable set, v𝑠. The temperature requirements constrain the extreme temperatures

attained over the orbit in quasi-steady state. The maximum solar array physical fill

factors are capped at 70% of the respective surfaces.
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4.1.3 Thermal & Power Modeling

Modeling of thermal and power are performed in a coupled model. The defining

equations and propagation method for this model are summarized.

Heat fluxes into and out of the WaferSat system drive changes in temperature.

As shown in Equation 4.2, the derivative of thermal heat is the result of the net heat

flows in (sources: 𝑄𝑠𝑜𝑢𝑟𝑐𝑒) and out (sinks: 𝑄𝑠𝑖𝑛𝑘), and instantaneous internal power

dissipation, 𝑃𝑖𝑛𝑡.

𝑑

𝑑𝑡
(𝑚𝐶𝑝𝑇𝑤𝑎𝑓 ) = Σ𝑄𝑛𝑒𝑡 = Σ𝑄𝑠𝑜𝑢𝑟𝑐𝑒 + Σ𝑄𝑠𝑖𝑛𝑘 + 𝑃𝑖𝑛𝑡 (4.2)

There are many heat source terms, corresponding to unique heat sources incident

upon distinct areas of the WaferSat. These heat source terms follow a similar format,

given in Equation 4.3. Each heat source term from source 1 to surface 2, 𝑄𝑠𝑟𝑐
1−2, is a

function of a source flux density, 𝐸𝑓𝑙𝑢𝑥, an effective area of incidence on surface 2,

𝐴𝑖𝑛𝑐, and an absorptive modifier of surface 2, 𝛼2.

𝑄𝑠𝑟𝑐
1−2 = 𝐸𝑓𝑙𝑢𝑥𝐴𝑖𝑛𝑐𝛼2 (4.3)

The combinations of heat sources are summarized in Table 4.4. Note that the columns

of the table correspond to the terms in Equation 4.3. The subscripts of 𝑄 denote the

heat and incident surface: 𝑄ℎ𝑒𝑎𝑡𝑠𝑟𝑐−𝑠𝑢𝑟𝑓𝑎𝑐𝑒. The subscript indices are summarized in

Table 4.5. The symbol * refers to either any base letter or subscript.

Thermal radiation terms follow the format defined in Equation 4.4 where 𝜎 is the

Stefan-Boltzmann constant, 𝜀 is the radiating surface emissivity, 𝐹1−2 is the thermal

view factor from surface 1 to surface 2, 𝐴1 is the radiating surface area, and 𝑇 refers

to the respective temperatures.

𝑄𝑠𝑛𝑘
1−2 = 𝜎𝜀1𝐹1−2𝐴1

(︀
𝑇 4
1 − 𝑇 4

2

)︀
(4.4)
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Table 4.4: Incident Heat Source Terms

Source Term Source Flux Density Area of Incidence Absorptive Modifier
𝑄𝑠𝑜𝑢𝑟𝑐𝑒 𝐸𝑓𝑙𝑢𝑥 𝐴𝑖𝑛𝑐 𝛼

𝑄𝑠𝑜𝑙−𝑆𝐴 𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝑠𝑜𝑙−𝑆𝐴𝑓𝑆𝐴 𝛼𝑆𝐴 − 𝜂𝑆𝐴

𝑄𝑠𝑜𝑙−𝑧 𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝑠𝑜𝑙−𝑧 (1− 𝑓𝑆𝐴) 𝛼𝑧

𝑄𝑠𝑜𝑙−𝑛 𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝑠𝑜𝑙−𝑛 𝛼𝑛

𝑄𝑎−𝑆𝐴 𝑎𝐸𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝐸−𝑧𝑓𝑆𝐴 𝛼𝑆𝐴 − 𝜂𝑆𝐴

𝑄𝑎−𝑧 𝑎𝐸𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝐸−𝑧 (1− 𝑓𝑆𝐴) 𝛼𝑧

𝑄𝑎−𝑛 𝑎𝐸𝐸𝑠𝑜𝑙 𝐴𝑤𝑎𝑓𝐹𝐸−𝑛 𝛼𝑛

𝑄𝑖−𝑆𝐴 𝐼𝐸 𝐴𝑤𝑎𝑓𝐹𝐸−𝑧𝑓𝑆𝐴 𝜀𝑆𝐴

𝑄𝑖−𝑧 𝐼𝐸 𝐴𝑤𝑎𝑓𝐹𝐸−𝑧 (1− 𝑓𝑆𝐴) 𝜀𝑧

𝑄𝑖−𝑛 𝐼𝐸 𝐴𝑤𝑎𝑓𝐹𝐸−𝑛 𝜀𝑛

The radiating term permutations are summarized in Table 4.6.

At thermal steady state, the net absorbed and radiated heats are equal. Equa-

tion 4.5 can be used to solve for steady state temperatures. Note that the steady state

temperatures approximate a zero-mass system, which would exhibit instantaneous

equilibration.

Σ heat source terms = Σ radiation terms|𝑇𝑤 (4.5)

The transient solution is solved numerically using a forward Euler scheme. Note

that more complex integration schemes may be used, however forward Euler was

selected as a strictly explicit forward solver in time. This is particularly beneficial

when incorporating the thermally responsive and adaptive mitigation methods (since

no implicit solving is required). The stability of the forward Euler scheme is verified

with selection of time step size that is small enough to ensure bounded convergence

on thermal steady state oscillation.

𝑑𝑇

𝑑𝑡

⃒⃒⃒⃒
𝑖

≈ Σ heat source terms − Σ radiation terms|𝑇𝑖

𝑚𝑐𝑝
(4.6)

𝑇𝑖+1 ≈ 𝑇𝑖 +
𝑑𝑇

𝑑𝑡

⃒⃒⃒⃒
𝑖

∆𝑡 (4.7)
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Table 4.5: Summary of heat and radiation subscripts and symbols.
The symbol * refers to either any base letter or subscript.

Terms and Indices Definition

(*)𝑎 albedo heat source
(*)𝑛 nadir surface
(*)𝑆𝐴 zenith solar array
(*)𝑆𝑁 nadir solar array
(*)𝑠𝑜𝑙 sun term
(*)𝑤𝑎𝑓 wafer surface area
(*)𝑧 zenith surface
𝐴* area
𝑎𝐸 effective Earth albedo
𝐹* thermal view factor
𝑓* physical fill factor
𝐼𝐸 effective black body Earth IR

Emissivity and absorptivity, the non-dimensional coefficients on radiative emission

and absorption of grey bodies (i.e., non idealized black bodies), are in reality, a contin-

uous function of wavelength. Although these quantities may vary with wavelength, by

Kirchoff’s law of thermal radiation - shown in Equation 4.8 - for a given wavelength,

all bodies absorb (denoted by 𝛼) and emit (denoted by 𝜀) with the same coefficient

quantity.

𝜀𝜆 = 𝛼𝜆 (4.8)

This work will utilize a common thermal modeling simplification wherein radiative

wavelengths are considered in one of two ‘bins’: visible light, and mid-IR. There

is a single radiative coefficient quantity for each wavelength bin. As a notational

convention for distinguishing the wavelength bins, 𝜀 will always be used in reference

to the radiative coefficient for the mid-IR bin and 𝛼 will always be used for the visible

light bin.

Each flat, circular surface of WaferSat has a 2𝜋 steradian (hemispherical) thermal

view factor. Calculation of view factor from the Wafer to the Earth involves geometry

of the scaled area of the Earth ‘seen’ by each surface. A depiction of the geometry is

shown in Figure 4-1. The WaferSat is at an orbit radius 𝑟𝑜 and the Earth is assumed
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Table 4.6: Thermal Radiation Terms

Radiation Term Radiating Area Emissivity Temp. 1 Temp. 2
𝑄𝑟𝑎𝑑 𝐴𝑟𝑎𝑑 𝜀 𝑇1 𝑇2

𝑄𝑧−𝐸 𝐴𝑤𝑎𝑓𝐹𝑧−𝐸(1− 𝑓𝑆𝐴) 𝜀𝑧 𝑇𝑤𝑎𝑓 -
𝑄𝑧−𝑠 𝐴𝑤𝑎𝑓𝐹𝑧−𝑠(1− 𝑓𝑆𝐴) 𝜀𝑧 𝑇𝑤𝑎𝑓 𝑇𝑠
𝑄𝑆𝐴−𝐸 𝐴𝑤𝑎𝑓𝐹𝑧−𝐸𝑓𝑆𝐴 𝜀𝑆𝐴 𝑇𝑤𝑎𝑓 -
𝑄𝑆𝐴−𝑠 𝐴𝑤𝑎𝑓𝐹𝑧−𝑠𝑓𝑆𝐴 𝜀𝑆𝐴 𝑇𝑤𝑎𝑓 𝑇𝑠
𝑄𝑛−𝐸 𝐴𝑤𝑎𝑓𝐹𝑛−𝐸(1− 𝑓𝑆𝑁) 𝜀𝑛 𝑇𝑤𝑎𝑓 -
𝑄𝑛−𝑠 𝐴𝑤𝑎𝑓𝐹𝑛−𝑠(1− 𝑓𝑆𝑁) 𝜀𝑛 𝑇𝑤𝑎𝑓 𝑇𝑠
𝑄𝑆𝑁−𝐸 𝐴𝑤𝑎𝑓𝐹𝑛−𝐸𝑓𝑆𝑁 𝜀𝑆𝑁 𝑇𝑤𝑎𝑓 -
𝑄𝑆𝑁−𝑠 𝐴𝑤𝑎𝑓𝐹𝑛−𝑠𝑓𝑆𝑁 𝜀𝑆𝑁 𝑇𝑤𝑎𝑓 𝑇𝑠
𝑄𝑤−𝐸 𝐴𝑤𝑎𝑓𝐹𝑤−𝐸 𝜀𝑤 𝑇𝑤𝑎𝑓 -
𝑄𝑤−𝑠 𝐴𝑤𝑎𝑓𝐹𝑤−𝑠 𝜀𝑤 𝑇𝑤𝑎𝑓 𝑇𝑠

to be spherical with radius 𝑟𝑒. The WaferSat is depicted with an Earth angle of

incidence, 𝜙𝑖, or the angle between the nominally nadir-pointing surface normal and

the WaferSat-Earth direction. This angle of incidence is a cone angle. The view

rwaf
'i re

ro

Figure 4-1: Diagram of disk to sphere for Equation 4.9 (not to scale
for Wafer-Earth system)

factor to the Earth from the WaferSat nadir surface, 𝐹𝑛𝑒 is given in Equation 4.9

[91]. There are two distinct view factor states: when either one or both surfaces have

a non-zero view factor to the Earth. The boundary between the states occurs when

a projection along the edge of WaferSat is tangent to the edge of the Earth (when
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|𝜙𝑖| = arccos
(︁

𝑟𝑒
𝑟𝑜

)︁
). As the projection along the WaferSat edge traverses across the

Earth (for increasing 𝜙𝑖), both surfaces have a non-zero view factor to the Earth.

𝐹𝑛𝑒 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cos(𝜙𝑖)
𝑥2 , |𝜙𝑖| ⩽ arccos

(︀
1
𝑥

)︀
1

𝜋𝑥2

(︁
cos(𝜙𝑖) arccos(𝑧)− 𝑦 sin(𝜙𝑖)

√
1− 𝑧2

)︁
+
1

𝜋
arctan

(︂
sin𝜙𝑖

√
1− 𝑧2

𝑦

)︂, |𝜙𝑖| > arccos
(︀
1
𝑥

)︀

for 𝑥 =
𝑟𝑜
𝑟𝑒
; 𝑦 =

√
𝑥2 − 1; 𝑧 = −𝑥 cot(𝜙𝑖)

(4.9)

To calculate thermal view factors from the zenith surface to the Earth, 𝐹𝑧−𝐸, Equa-

tion 4.9 is used with a new angle of incidence, 𝜋 − 𝜙𝑖.

Although WaferSat is a thin disk, the edges still account for approximately 5% of

the total surface area and so must be accounted for. The calculation of the view factor

to the Earth from the edge of WaferSat (assuming that WaferSat is a straight-walled,

short cylinder) is shown in Equation 4.10 [92, 93] for the same angle of incidence, 𝜙𝑖.

𝐹𝑠𝑒 =

arcsin( 𝑟𝑒
𝑟𝑜
)∫︁

0

2𝜋∫︁
0

sin(𝜗)
√
1− 𝑠2

𝜋2
𝑑𝜓𝑑𝜗

for 𝑠 = cos(𝜗) cos(𝜙𝑖) + sin(𝜗) sin(𝜙𝑖) cos(𝜓)

(4.10)

When the nadir surface normal angle of incidence, 𝜙𝑖 is zero (the nominal attitude),

Equation 4.10 simplifies to the result in Equation 4.11.

𝐹𝑠𝑒 =
1

2
− 𝑢

𝜋𝑥
− arcsin(𝑢)

𝜋

for 𝑢 =

√︂
1− 1

𝑥2

(4.11)

Note that Equations 4.9, 4.10, and 4.11 are valid when the disk radius and thickness

are much smaller than the radius of the sphere, 𝑟𝑤𝑎𝑓 ≪ 𝑟𝑒 and 𝑡𝑤𝑎𝑓 ≪ 𝑟𝑒; this is a
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reasonable assumption for virtually any size of WaferSat.

The power terms are given in Equation 4.12 where 𝜂𝑆𝐴 refers to the efficiency of the

solar array and Γ refers to the solar incidence angle (the angle between the sunlight

and the solar array surface normal). Electrical power generation is calculated for

direct solar illumination and indirect Earth albedo illumination. Both terms include

calculated including solar array area on the zenith and nadir surfaces.

𝑃𝑠𝑜𝑙 = 𝐸𝑠𝑜𝑙𝜂𝑆𝐴𝐴𝑤𝑎𝑓 [𝑓𝑠𝑎 cos (Γ𝑆𝐴) + 𝑓𝑆𝑁 cos (Γ𝑆𝑁)] (4.12)

𝑃𝑎𝑙𝑏 = 𝑎𝐸𝐸𝑠𝑜𝑙𝜂𝑆𝐴𝐴𝑤𝑎𝑓 [𝐹𝑧−𝐸𝑓𝑠𝑎 cos (Γ𝑆𝐴) + 𝐹𝑛−𝐸𝑓𝑆𝑁 cos (Γ𝑆𝑁)] (4.13)

Electrical power can either be immediately dissipated or stored in batteries for later

use. Therefore an internal power dissipation function, 𝑃𝑖𝑛𝑡(𝜃) is defined. Note that on

a per-orbit basis, the system must be electrically power neutral. That is, the system

cannot internally dissipate more or less than is generated.

∫︁ 2𝜋

0

𝑃𝑠𝑜𝑙(𝜃) + 𝑃𝑎𝑙𝑏(𝜃)𝑑𝜃 =

∫︁ 2𝜋

0

𝑃𝑖𝑛𝑡(𝜃)𝑑𝜃 (4.14)

4.2 Modeling Parametric Uncertainty

The optimization process relies on evaluations of ensembles of modeled uncertainty to

evaluate the statistical feasibility of designs. In this WaferSat problem, two realistic

sources of uncertainty are used: local albedo and Earth IR variance.

4.2.1 Local Albedo

For traditional satellites of a lowA, Earth bond albedo, or reflected solar irradiance,

is often considered as a bulk average term over the entirety of the surface of the Earth

for most thermal modeling. For satellites with large A and a slow rate of thermal
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equilibration, the local variation has little effect. Therefore, models need not account

for the such variations.

As observed in §1.2.2, as satellite form factor transitions into the highA regime,

thermal time constants decrease, and the system approaches thermal equilibrium

more quickly. Thus, local, transient variances in the net heat flows in and out of the

system translate to large changes in temperature.

At a given point in orbit, the surface that faces the Earth has a thermal view factor

to a local area of the surface of the Earth. Variations due to cloud cover and seasonal

weather change the net albedo and therefore incoming nadir-side solar irradiance as

the spacecraft flies over different regions of the Earth. Variance due to albedo depends

on geometric angles from the solar irradiance direction, spacecraft position, and view

of the Earth. Note that variance due to albedo has no effect during eclipse.

Figure 4-2: Comparison of view of Earth albedo from LEO spacecraft.
Left: realistic local albedo distributions. Right: effective average
constant [94]

The NASA Clouds and the Earth’s Radiant Energy System (CERES) project

has included measurements of local Earth albedo as viewed from LEO spacecraft.

Through the CERES project, multiple spacecraft have mapped local albedo with

variance estimates, resulting in estimated distributions of variance for some common

LEO orbits [94, 95]. A comparison of the local albedo as viewed from a LEO spacecraft

is shown in Figure 4-2 from [94]. On the left is a depiction of a realistic view of
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locally varied albedo, compared to the traditional single-value average model method

on the right. The effects of modeling with local variation for a high A WaferSat are

significant.
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Figure 4-3: Distribution of local albedo using measured data from
NASA CERES project

Modeling of local albedo uncertainty for the WaferSat example will draw upon

the model from [94] for a 400 km circular orbit with inclination 51.6∘ (ISS orbit).

The distribution is modeled as a Gaussian distribution with mean 0.31 and variance

of 0.05, shown in Figure 4-3. Note that this model does not include the correlation

between latitude and albedo.

4.2.2 Earth IR

Due to internal heat, the Earth emits IR radiation which can be approximated using

the Earth black body temperature according to Equation 4.15. The total Earth

IR heat flux, 𝑄𝐸𝐼𝑅, is a function of the Earth black body temperature, 𝑇𝑒, the

Stefan-Boltzmann constant, 𝜎𝑠𝑏, the orbit radius, 𝑟𝑜, and the radius of the Earth,

𝑟𝐸. Similar to the traditional modeling of albedo for larger satellites, the Earth black
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body temperature is often considered to be a constant value. However, much like in

the case with local albedo variation, the variances due to local changes in net Earth

IR heat flux have an impact on temperature variance when A is high.

𝐼𝐸 = 𝜎𝑠𝑏𝑇
4
𝑒

(︂
𝑟2𝑜
𝑟2𝐸

)︂
(4.15)
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Figure 4-4: Estimated distribution of local Earth black body
temperatures encountered by a satellite in LEO based on measured
data from NOAA [96] and CERES projects [94]

There have been measurements and analyses of the Earth heat budget, including

estimates of the incoming and Earth-radiated IR [97, 98]. Variation in local Earth

black body temperature occurs on several time scales: longer seasonal time scales,

as well as short time scales (less than the length of a LEO orbit). Measurements

from the NOAA-9, NOAA-10 [96], and CERES missions [94] provide estimates of

the distributions of local variation of Earth black body temperature encountered over

single orbits in LEO. An estimate of the distribution of Earth black body temperatures

encountered in the short period, over a single orbit in LEO. This distribution, for a

400 km, 51.6∘ inclination ISS orbit is shown in Figure 4-4.
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4.2.3 HighA Sensitivity to Local Uncertainty

To show the high sensitivity of WaferSat to realistic albedo and Earth IR variance

in LEO, a comparison is made between two blank silicon wafers in LEO of different

A. A scaled visual comparison of the two wafers is shown in Figure 4-5. The high

aspect ratio wafer, in blue, has anA of 97.6, roughly equivalent to that of a 200 mm

diameter WaferSat. The low aspect ratio wafer, grey, has anA of 2.27, so chosen to

match one of the disk-to-cube similitude scalings of surface area to mass derived in

§1.2.1. The lowA wafer should have a similar surface area to mass thermal response

to that of a 150 g Si cube.

Figure 4-5: Scaled comparison of high and low A wafers

A comparison of the temperature variation is shown for the high and lowA blank

Si Wafers in Figure 4-6. All surfaces are assumed to have thermo-optical properties

of bare silicon wafers: 𝛼 = 0.73, 𝜀 = 0.7. Both wafers are 150 g in mass and in a 400

km altitude orbit with a 𝛽 angle of zero and one surface normal always nadir-facing.

Over the course of 𝑛 = 103 Monte Carlo runs, the two orbiting wafers are modeled

with uncertainty draws from the local Earth albedo and Earth IR distributions. The

dashed lines represent the estimated 2𝜎 variance over the course of the orbit. In

addition to a general lower temperature sensitivity, the low A system has a much

lower variance due to the modeled uncertainty. The highA wafer, by comparison, has

a much more variable temperature in response to local uncertainties of both types.
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Furthermore, the magnitudes of variance around the mean temperatures are large

relative to the full range of temperature.
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Figure 4-6: Mean temperatures (solid lines) over one orbit with 2𝜎
variance (dashed lines) for a highA and lowA blank Si wafer under
local albedo and Earth IR uncertainty.

While this problem uses two sources of parametric uncertainty, more can be

applied to create a more detailed model of uncertain outcomes. As will be shown later

in § 4.6, optimization for uncertainty sources with different balances of responsive

robustness and adaptability may yield differing levels of tolerance of error in the

predicted uncertainty model used for optimization (i.e., robustness of robustness and

robustness of adaptability for unknown unknowns).

4.3 Nominal & Robust Optimization

When optimizing for the nominal optimal, zero uncertainty scenario, a baseline

performance level is established. The nominal optimal internal power dissipative

capability is a continuous 1.15 W.
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The active constraint-space is shown in Figure 4-7. The x-axis shows the minimum

temperature in quasi-steady state and the y-axis shows the corresponding maximum

temperature. The magenta dashed lines represent the temperature requirements. As

in the simplified WaferSat case, at the nominal optimal solution, the two temperature

constraints are active and performance-limiting (i.e., relaxation of these requirements

would allow for an increase to performance). This is shown by the location of the nom-

inal outcome, the red point, near the intersection of the temperature requirements,

indicating that both are met at equality.
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Figure 4-7: Nominal Optimal Solution, zero margin

4.3.1 The Nominal Optimal Design is Not Robust

The same nominal solution is shown again in Figure 4-8, this time modeled with

an ensemble of uncertain states, drawing from the literature measurement-driven

models of local albedo and local Earth IR uncertainty from §4.2. An estimated 2𝜎

error ellipse is shown to bound the distribution. Under this uncertain scenario, the

once guaranteed nominal outcome in the absence of uncertainty, is now only feasible
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in 13.1% of the modeled outcomes.
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Figure 4-8: Nominal Optimal Solution under modeled uncertainty

The infeasible quadrants of the constraint space (gray) indicate the mode of

temperature requirement failure of the uncertain outcomes. Quadrant IV in the lower

left, which accounts for 27.8% of outcomes, indicates violation of the minimum tem-

perature constraint, but not the maximum temperature constraint. Such outcomes

can be described as cold-biased. Quadrant II in the upper right - the warm-biased

outcomes indicating maximum temperature requirement violation only - account for

49.6% of outcomes.

There is some asymmetry in the distribution about the zero uncertainty outcome;

the nominal (red point) and mean (magenta points) do not align and a significant

plurality of outcomes occur in quadrant II. This is consistent with the sample variance

about the blank wafer as shown in Figure 4-6. Variance of temperature outcomes is

greatest near 𝑇𝑚𝑎𝑥 (manifesting as variance along the y-axis), where albedo and Earth

IR actively contribute to heat variance. By comparison, when near the end of eclipse,

where 𝑇𝑚𝑖𝑛 is usually attained, only uncertainty in Earth IR has an effect, resulting

in lower variance (x-axis aligned variance in points). As such, the distribution is
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skewed to the violations near the maximum temperature constraint. Comparatively,

quadrants I and III contain very few outcomes. Quadrant III corresponds to bias to

the extremes of temperature (most unfavorable) and quadrant I corresponds to bias

towards the mean (most favorable).

The black arrows in Figure 4-8 represent the principal directions of variance from

a principal components analysis (PCA). The principal components are defined by the

eigendecomposition of the covariance of the temperature outcomes. The eigenvectors

indicate the directions of the two principal components and the corresponding eigen-

values indicate the magnitudes of variance along the principal components directions.

From the distribution of outcomes, it is clear that violation of the temperature

constraints due to the temperature uncertainties severely limits the practicality of the

nominal optimal design. Although the power performance that it delivers is desirable,

the low feasibility under uncertainty renders it unreliable in all but the nominal or

seldom-realized best case outcomes.

The uncertain outcomes are shown for an ensemble of size 𝑛 = 104 as blue points

distributed around the nominal point in red. Note that the ensemble population size

was selected to approximate the variance error from MC sampling to < 2% as shown

in Figure 4-9.

4.3.2 The Robust Design is Not Nominal Optimal

The WaferSat problem can also be statically tailored to identify a solution that meets

some statistical feasibility criteria. The active constraint space for this statically

robust design is shown in Figure 4-10. Per the augmenting statistical constraints,

the new estimated feasibility under uncertainty is 2𝜎, or feasible in 95.4% of the

uncertain outcomes. However, in exchange for increased feasibility through static

robustness, the power performance decreased from 1.15 W to 0.84 W. This is shown

in the corresponding 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 constraint space in Figure 4-10. In this design, the
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Figure 4-9: Standard rate of variance convergence error with Monte
Carlo sample size. Population size 𝑁 = 104 correlates to < 2%
variance error.

entirety of the 2𝜎 bounding ellipse is contained in the feasible space. The location

of the nominal outcome is not offset from the temperature requirements indicating

static margin. The directions of the principal components of variance (black arrows)

indicate once again that there is greater variance in the maximum temperatures and

as a result, more static margin is allocated.

Table 4.7: Summary of nominal and robust designs

Variable Symbol Nominal Static Robust units

zenith static emissivity 𝜀𝑧 0.10 0.11 -
zenith static absorptivity 𝛼𝑧 0.09 0.09 -
zenith solar array coverage 𝑓𝑆𝐴 11.1 5.6 %
nadir static emissivity 𝜀𝑛 0.63 0.14 -
nadir static absorptivity 𝛼𝑛 0.09 0.09 -
nadir solar array coverage 𝑓𝑆𝑁 69.7 59.3 %
mean zenith emissivity 𝜀𝑧 0.18 0.15 -
mean nadir emissivity 𝜀𝑛 0.18 0.13 -
mean zenith absorptivity 𝛼𝑧 0.79 0.56 -
mean nadir absorptivity 𝛼𝑛 0.67 0.58 -
Internal Power 𝑃𝑖𝑛𝑡 1.15 0.84 W
Probability of Feasibility P[𝑓𝑒𝑎𝑠] 13.1 95.4 %
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Figure 4-10: Nominal Optimal Solution under modeled uncertainty

The nominal optimal and static robust designs are summarized in Table 4.7.

Notably, in the static robust design, the total solar array area is decreased by about

16% including both zenith and nadir surfaces. Additionally, the nadir static emissivity

is significantly decreased. The result is apparent when observing the mean surface

emissivities and absorptivities. The significant reduction in highly emissive and

absorptive solar array area contributes to large decreases in the mean emissivities

and absorptivites of the static robust design (summarized in lower half of Table

4.7). The net reduction in mean surface emissivity and absorptivity result in lower

mean heat fluxes in and out of the system. This has two net effects: a reduction in

the mean temperature oscillation (i.e., lower amplitude of mean temperature), and

lower sensitivity to ephemeral local heat source variances due to uncertainty. This is

measurable using principal components analysis.

The PCA properties of both designs are summarized in Table 4.8. Notably,

the decreases in mean surface emissivities and absorptivities have contributed to a

decrease in variance of outcomes as indicated by the reduction in both principal

component eigenvalues. There is a reduction in size of both principal dimensions
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of the 2𝜎 error ellipse of the static robust design. The static robust design has

increased feasibility through two methods: tailoring of requisite static margin at

each performance-limiting constraint and a desensitization of the system temperature

extremes to the heat uncertainties. The static margin manifests as a shift in the

entire distribution to provide offsets of all points in the distribution away from the

constraints. The desensitization results in a reduction in the point cloud of outcomes.

The directions of the principal components are largely unchanged.

Table 4.8: Summary of PCA properties for Nominal and Static
Robust Designs

Property Nominal Static Robust

PC 1 eigenvalue 2.23 2.02
PC 2 eigenvalue 0.17 0.11
PC 1 eigenvector [0.36, 0.93]𝑇 [0.41, 0.91]𝑇

PC 1 explained var. 92.6% 94.7%

Whereas the nominal optimal design provides desirable performance, it is severely

lacking in robustness. In stark contrast, the robust design significantly improves on

robustness, but at the expense of the nominal performance. In a low SWaP system

such as WaferSat, this exchange is costly, significantly reducing the utility of each

unit. Responsive robust and adaptive methods may offer the ability to improve

feasibility and maintain more performance through dynamic compensation to states

of uncertainty. Three methods are introduced in the next section.

4.4 Responsive & Adaptive Mitigations

In this WaferSat design problem, optimization will consider combinations of three

responsive and adaptive mitigations: phase change materials, thermal view factor

control, and electrochromic area. Phase change materials, as introduced in the simpli-

fied WaferSat example, offer responsive robustness while thermal view factor control
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and electrochromic area offer adaptability. In this section, a detailed description of

the modeling, variable sets, and design considerations for these three mitigations is

presented.

4.4.1 Phase Change Materials

Phase change materials offer two types of heat storage: sensible and latent. Sensible

heat storage - heat storage associated with changes in temperature - is the most

commonly thought of type of heat capacity. Latent heat is absorbed and emitted at

constant temperature during a phase change. Introduction of phase change material

mass with a tailored phase change temperature creates a period of constant temper-

ature that is a function of net heat flows during the change. The effect is a dynamic

lengthening of the thermal time constant (dynamic since the lengthening is a function

of net heat flows during change).

Common high latent heat capacity PCMs include paraffins. As hydrocarbon

chains, paraffins offer a large variety of materials with different phase change tem-

peratures from which to choose. However, use of paraffins as PCMs has some im-

plementation challenges, notably the containment during solid and liquid phases and

conductivity of heat into and out of the PCM mass. Work on microencapsulation

of PCMs in materials such as silicon nitride helps to solve both implementation

challenges. An example slurry of microcapsules is shown in Figure 4-11 [99]. A

common encapsulation ratio for Silicon Nitride by mass is 50% [100, 101]; this ratio

will be assumed for this analysis.

The governing properties of the amount of heat absorbed and the length of

temperature pause include PCM mass, phase change temperature (through material

selection), encapsulation ratio, and rate of heat absorption/emission. Note that as a

responsive tailoring mitigation, all of these variables are dynamic design variables that

are set during the a priori phase; therefore, they augment the design in the outer loop
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Figure 4-11: Silicon Nitride Paraffin Microcapsules [99]

optimization, while the modeled response is realized in the inner loop evaluations.

Table 4.9: PCM dynamic design variables

Parameter Notation

PCM phase transition temperature 𝑇𝑡
PCM latent heat of phase change 𝐻∘

𝑡

PCM sensible specific heat capacity 𝑐𝑝𝑐𝑚𝑝

PCM mass 𝑚𝑝𝑐𝑚

Equation 4.16 shows the change in sensible heat over a change in temperature

from 𝑇0 to 𝑇𝑓 . The sensible heat is a function of mass, 𝑚, and specific heat capacity,

𝑐𝑝 (which may be a function of temperature).

∆𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 =

∫︁ 𝑇𝑓

𝑇0

𝑚𝑐𝑝𝑑𝑇 (4.16)

Three possible changes in absorbed and emitted heat of a PCM are shown in

Equation 4.17. Line one shows the energy absorbed by a PCM for a temperature

change from 𝑇0 to 𝑇𝑓 with a complete phase change at 𝑇𝑐, therefore 𝑇0 < 𝑇𝑐 < 𝑇𝑓 .

𝐻∘
𝑐 indicates the mass-specific absorbed enthalpy of phase change from phase 1 to 2.

Line two gives the absorbed energy of a partial phase change from temperature 𝑇0 to

𝑇𝑐 where the percentage of PCM mass that is in phase 2 is 𝜒𝑐. 𝜒𝑐 = 0 indicates that

all mass is in phase 1 and 𝜒𝑐 = 1 indicates that all PCM mass is in phase 2. Line
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three of Equation 4.17 indicates the liberated heat during a partial phase change from

phase 2 to 1 during a decrease in temperature from 𝑇𝑓 to 𝑇𝑐. 𝜒𝑐 again indicates the

PCM mass percentage in phase 2. In all three lines, the integral lines (associated with

changes in temperature) correspond to sensible heat and the linear terms represent

the storage of release of latent heat (at constant temperature 𝑇𝑐).

∆𝑄𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒12 =

∫︁ 𝑇𝑐

𝑇0

𝑚𝑐𝑝𝑑𝑇 +𝑚𝑝𝑐𝑚𝐻
∘
𝑐 +

∫︁ 𝑇𝑓

𝑇𝑐

𝑚𝑐𝑝𝑑𝑇

∆𝑄𝑝𝑎𝑟𝑡𝑖𝑎𝑙12 =

∫︁ 𝑇𝑐

𝑇0

𝑚𝑐𝑝𝑑𝑇 +𝑚𝜒𝑐𝐻
∘
𝑐

∆𝑄𝑝𝑎𝑟𝑡𝑖𝑎𝑙21 =

∫︁ 𝑇𝑐

𝑇𝑓

𝑚𝑐𝑝𝑑𝑇 −𝑚𝑝𝑐𝑚(1− 𝜒𝑐)𝐻
∘
𝑐

(4.17)

The duration of constant temperature, 𝑇𝑐, during changes between phases 1 and 2,

is given in Equation 4.18. The time is heavily dependent on the heat flux term, 𝑄𝑐
𝑛𝑒𝑡,

which is a summation of all system heat fluxes during the phase change. This term

is a function of position, temperature, and surface design variables. For complete

change from phase 1 to 2, in line 1, 𝜒𝑐 = 1. For a complete change from phase 2 to 1

in line 2, 𝜒𝑐 = 0.

𝑡12 =
𝑚𝑝𝑐𝑚𝐻

∘
𝑐𝜒𝑐

𝑄𝑐
𝑛𝑒𝑡(𝑇𝑐, 𝜃)

𝑡21 =
𝑚𝑝𝑐𝑚𝐻

∘
𝑐 (1− 𝜒𝑐)

𝑄𝑐
𝑛𝑒𝑡(𝑇𝑐, 𝜃)

(4.18)

When considering use of PCM mass to increase thermal time constants, it is im-

portant to consider the implementation impacts on the system. In order to maintain a

constant total mass constraint on the system, in the WaferSat problem, it is assumed

that any additional PCM mass must displace the equivalent mass of silicon. This

displacement of mass presents a tradeoff: the more the system relies on PCM mass
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to maintain feasibility, the more the usable Si substrate must be reduced in favor of

the functionally inert, but responsive robustness-producing PCM.

4.4.2 Thermal View Factor Control

As shown in §4.1.3, radiative heat flux terms have a linear dependency on view factor

between surfaces. Adjustment of spacecraft attitude has an impact on thermal view

factors - particularly view factors to the surface of the Earth - and can thus be used

to regulate heat flows. This is an actively tuned compensation and would therefore

be classified as thermal adaptability.

Design of adaptive mitigations involves optimization of dynamic variables in the

a priori design phase as well as the tuned response in the a posteriori phase. In

a full design optimization of the system, the adaptive tailoring step would involve

the design of the attitude control system in order to allow the requisite control of

view factors. For simplicity, in this thesis, it is assumed that an electrospray system

thrusts out of plane at the edges of the wafer to enable control of spacecraft roll about

the velocity vector. This does, however, set constraints on the maximum roll rate

of the system. Therefore these assumed dynamic variables still govern the tuneable

response. Therefore, in this example, thermal view factor control presents as a tuning

only mitigation with constraints from assumed, constant dynamic variables (i.e., the

design of the ACS).

Nominally, WaferSat is assumed to be in a low drag configuration, edge on to the

velocity direction with one surface-normal always nadir-facing. In order to maintain

the low drag configuration, it is assumed that any changes in attitude for thermal

view factor regulation will occur about the Local Vertical Local Horizontal (LVLH)

roll axis only (or roll about the alongtrack velocity direction).

The net heat flows as a function of roll angle from Figure 4-12a only consider

the heat flow variation at a single point in the orbit. An expansion of the net heat

129



-2 0 2

yLV LH (m) #106

-3

-2

-1

0

1

2

3

z L
V

L
H

(m
)

#106

?

Nominal Wafer Zenith Normal
Wafer-Sun
Earth-Wafer

(a) View of WaferSat in LVLH
frame, rolled through angle 𝜑

0 0.5 1 1.5

Local roll angle, ? (rad)

0

0.2

0.4

0.6

0.8

1

V
ie
w

F
a
ct
o
r
to

E
ar

th
(-
)

-6

-4

-2

0

2

4

6

8

N
et

h
ea

t
.
ow

(W
)

?

nadir
zenith

(b) View factors of both surfaces to Earth
(blue, left axis) and net heat flow (orange,
right axis) at 𝜃 = 0; LVLH roll angle from
(a) shown with dashed line

Figure 4-12: WaferSat LVLH roll, thermal view factors, and net heat
flows at 𝜃 = 0

flows to show the heat variance as a function of position within the orbit is shown in

Figure 4-13. In addition to the net heat flows, and LVLH roll angle, an additional

axis for true anomaly (or position in the orbit relative to the point in the orbit that

is closest to the sun) is shown. A surface plot shows the variation in net heat flows

in (positive) or out (negative) of the system as a function of roll angle and position.

The gray plane demarcates the boundary between positive and negative heat flows.

Note that the orange edge on the right of the plot matches the orange net heat flow

line from Figure 4-12b. The magenta edge at the back left of the figure represents the

nominal, zero-roll net heat profile. The discontinuous negative section in the middle

of the surface is the eclipse portion of the orbit. Notably, at every sunlit position in

the orbit, there exists a roll angle that can produce a net negative heat flow, or a

cooling effect.

The net heat flows shown in Figure 4-13 are shown as an example for the nominal

case. In reality this would need to be recomputed as needed at each location in

response to uncertainty rather than as an entire surface. Furthermore, the shape
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Figure 4-13: Net heat flows as function of LVLH roll angle and True
Anomaly, 𝛽 = 0

of the surface will vary significantly with changes in the orbit. Notably, as 𝛽 angle

changes, the LVLH roll angle of maximum heating will vary. In this example, a roll

angle of 0 always corresponds to the greatest net heat flows (the magenta edge in the

back left of the figure).

4.4.3 Electrochromics

Another thermal control variable for thermal radiation is the emissivity. In general,

surfaces have a constant profile of emissivity as a function of wavelength. However

electrochromics offer an option to selectively assign emissivity within a bounded range.

This commanded change to emissivity, and thus rate of thermal radiation, can allow

for tuning of net radiative magnitude.

A company, Eclipse Energy Systems has developed, tested, and flown an elec-

trochromic surface, EclipseVED [73]. Measured electrochromic emissivity data as a

function of wavelength is shown in Figure 4-14 [102]. The high emissivity state, red,

and the low emissivity state, blue, bound the range of tunable emissivities of the
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surface.

Figure 4-14: Measurements of EclipseVED electrochromic emissivity
as function of wavelength in: low emissive (blue) and high emissive
(red) states [102]

Although the electrochromic emissivity data indicates a continuous function as a

function of wavelength, modeling of the electrochromics in this work assumes a single

electrochromic value for the bin of IR wavelengths. The peak black body radiating

wavelength is given by Wien’s Displacement Law, shown in Equation 4.19. The peak

wavelength, 𝜆𝑝𝑒𝑎𝑘 is a function of the proportionality constant, 𝑏 = 2898 µm, and the

black body temperature, 𝑇 .

𝜆𝑝𝑒𝑎𝑘 =
𝑏

𝑇
(4.19)

Wien’s displacement law identifies the peak radiating wavelength of Planck’s law,

shown in Equation 4.20. The spectral irradiance intensity, 𝐵, is expressed as a

function of wavelength, 𝜆, and black body temperature, 𝑇 .

𝐵(𝜆, 𝑇 ) =
2ℎ𝑐2

𝜆5
1

𝑒ℎ𝑐/(𝜆𝑘𝐵𝑇 ) − 1
(4.20)

The Planck’s Law curves for spectral irradiance vs. wavelength are shown in Fig-
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ure 4-15 for the two temperature consraints. The peaks of irradiance occur according

to Wien’s Displacement Law. The peak wavelengths are 9.5 and 11.2 µm for the

maximum and minimum operating temperature constraints respectively (shown with

black dashed lines). Therefore, for WaferSat operation within the feasible and op-

erable temperature range, the peak emissive wavelengths should be approximately

bounded by this range. The range from 9.5 to 11.2 µm is approximately aligned with

one of the maximum ranges of the electrochromic emissivity from Figure 4-14. For

simplicity, the range of emissivities used for electrochromic modeling is from 0.2 to

0.8 applied to the IR wavelength bin.
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Figure 4-15: Planck’s curve for the bounding temperature
requirements with Wien’s Law peak irradiance wavelengths.

While three thermal mitigation options are used in this example, there are many

other potential methods for mitigation of the thermal constraints under uncertain

conditions. Optimization with these three mitigations will allow for an exploration of

unique combinations thereof. The three thermal mitigations in this WaferSat problem

will be used to maintain temperature constraint satisfaction under uncertainty whilst

maintaining high power performance.

133



There are more available options for survival, noting the wider temperature re-

quirements for non-operational survival as indicated in Table 4.3, or switching to

non-operational power states that reserve power dissipation for heating in eclipse

and dormancy in the sun. If there are ever conditions in which the system goes

into safe mode or an otherwise non-operational state, the ability to actively control

adaptive mitigations may be lost. By comparison, a responsive mitigation which

acts passively (like PCMs) could continue operation even if the spacecraft is in

safe mode. To this end, a system could be designed to be able to meet the wider

survival temperature constraints with passive responsive mitigations only and meet

the operational temperature constraints with active adaptive mitigations.

4.5 Comparing Isoperforming and Isofeasible Solu-

tions

Optimization for performance and feasibility results in the identification of multiple

solutions that are both isoperforming (equal in performance) and isofeasible (equal

in feasibility). All three designs have been optimized to produce a 2-𝜎 guarantee of

feasibility as well as the same power performance level as the nominal optimal design

of 1.15 W. In this section, three designs utilizing different levels of static robustness,

responsive robustness, and adaptability are compared. The non-uniqueness of the

three designs reveals that the same performance and feasibility are both achievable

with different approaches to mitigation of the effects of uncertainty. Consideration of

the ‘costs’ of implementation might cause a preference for a particular design, based

on the mission at hand. The mission may impose constraints on the implementation

of the responsive or adaptive mitigations compelling a specific relative emphasis.

The optimization process involves the design of static variables, dynamic variables

for responsiveness, dynamic variables for adaptability, and adaptive variables. In

Figure 4-16 an example of the surface design of the zenith and nadir sides of the
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wafer is shown.
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Figure 4-16: WaferSat surface design with allocation of nadir area to
electrochromics (purple).

While all three identified designs utilize each of the three mitigation methods

to some degree, each design has a distinct emphasis on the usage of one mitigation

in particular. The key static and dynamic variables are summarized in Table 4.10.

Design 1, D1 emphasizes PCMs - it has the largest quantity of PCM, and thus the

majority of its mitigation of the effects of uncertainty come from the corresponding

responsive robustness afforded. Design 2, D2, is weighted towards electrochromics

and adaptability. Finally, Design 3, D3 relies most heavily on thermal view factor

management, a different form of adaptability. Furthermore, each design utilizes a

different set of static variables and therefore each design also utilizes a different level

of static margin.

The three designs utilize distinct combinations of robustness and adaptability, but

they also share some commonalities. In all three designs, most of the solar array area

is populated on the nadir surface, with limited area on the zenith surface. As a result,

most of the solar power generation occurs through albedo-reflected sunlight or direct

solar illumination of the nadir surface. Interestingly, this source of solar illumination is

also subject to uncertainty. The zenith surface, which constantly radiates to free-space

with no thermal view factor to the Earth is a large sink of heat out of the system.

Survival and operation during eclipse, without incident solar input, and with limited
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Table 4.10: Summary of key static and dynamic variables of three
isoperforming and isofeasible designs.

Variable Symbol D1 D2 D3 units

zenith static emissivity 𝜀𝑧 0.16 0.14 0.18 -
zenith static absorptivity 𝛼𝑧 0.09 0.09 0.09 -
zenith solar array coverage 𝑓𝑆𝐴 13.3 13.1 16.2 %
nadir static emissivity 𝜀𝑛 0.14 0.62 0.44 -
nadir static absorptivity 𝛼𝑛 0.09 0.09 0.09 -
nadir solar array coverage 𝑓𝑆𝑁 67.4 67.8 64.6 %
PCM mass 𝑚𝑃𝐶𝑀 21.1 10.8 10.1 g
Temperature of fusion 𝑇𝑓 290 261 258 K
electrochromic area coverage 𝑓𝑒 11.1 22.9 10.8 %
electrochromic value at nominal 𝜀𝑐𝑒 0.70 0.63 0.68 -
max LVLH roll angle 𝜑𝑚𝑎𝑥 2.8 5.6 28.6 ∘

internal power, drives the need for low radiation to free space. As a result, the

zenith static emissivity coatings and zenith solar array area (with high emissivity

coverglass) are optimized to low values. The design of power generating area on the

nadir-facing surface, while unusual, has some precedent is spacecraft design. Early

Russian spacecraft utilized bifacial solar cells to augment power generation through

albedo reflected solar irradiance in low Earth orbiters [103]. More recently, analysis

of bifacial solar cells has been shown to potentially increase power output of LEO

satellites with limited increases in mass [104, 105]. Since 2000, the International

Space Station has utilized bifacial solar cells, generating power through albedo and

increasing average power during scenarios when the solar array gimbals must be locked

[106].

4.5.1 Design 1: PCM-Dominant

Design 1 - the PCM-dominant design - derives the lion’s share of its ability to maintain

performance and feasibility from responsive robustness. Phase change material offers

mass with a high net internal heat storage capacity through latent heat absorption

during the phase transition.
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The optimization was guided towards this design by placing additional constraints

in the implementation of the three mitigations. The maximum allowable electrochromic

area, 𝑓𝑒 is 12%, the maximum allowable LVLH roll angle, 𝜑𝑚𝑎𝑥 is 0.1 rad, and the

maximum PCM mass is 30 g. In this scenario, the allowable electrochromic area

and LVLH roll angles are more restricted whereas the total PCM mass is relatively

unrestricted and allowed to displace up to 10% of the total WaferSat mass. This

might correspond to an application where there is a need to populate some of the

surfaces with other components such as instruments (restricting allowable area for

electrochromics) and relatively precise control over pointing is needed (i.e., a desire

not to let thermal view factor control dominate spacecraft attitude).

The realizations under uncertainty - for an ensemble of size 𝑝 = 104 - is shown in

Figure 4-17. The two axes show the quasi-steady state extreme temperatures along

with the respective temperature requirements in magenta dashed lines. The point

cloud of outcomes is characterized using two methods. The first is a 2-element Gaus-

sian Mixture Model (GMM) with 2𝜎 bounding error ellipse. The second method is

Non-Linear Principal Component Analysis. The first principal component of variance

is shown as a green curve through the point cloud. This line indicates the primary axis

of variance. The red point indicates the nominal, zero uncertainty scenario and the

magenta point indicates the mean maximum and minimum steady state temperatures

over the uncertain set of outcomes.

The optimal values of the dynamic variables reveals the mechanism of feasibility

maintenance. The temperature of fusion, 𝑇𝑓 of 290 K is in the upper third of the

feasible temperature range. This bias towards the maximum temperature constraint

increases the responsive margin allocated to the 𝑇𝑚𝑎𝑥 constraint. This is observable

in the locations of the nominal and mean points; they are both further from the 𝑇𝑚𝑎𝑥

constraint, an indicator of margin focused near this constraint. The close proximity of

the nominal point to the 𝑇𝑚𝑖𝑛 constraint indicates that limited responsive robustness

effect for this constraint.
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Figure 4-17: Design 1 distribution of outcomes in 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑎𝑥

constraint space with GMM 2𝜎 error ellipse and NLPCA first
principal axis of variance

The optimal value of the nominal center value of the electrochromics, 𝜀𝑐𝑒 also

reveals the focus of adaptability. The high value of 𝜀𝑐𝑒 of 0.7 within the range 0.2 to

0.8, means that there is much more authority of electrochromics to reduce thermal

radiation from the nominal state. Therefore, the activity of the electrochromics is

more effective at mitigating uncertain effects near 𝑇𝑚𝑖𝑛. This is apparent in Figure 4-

17, where the variance is lower in the 𝑇𝑚𝑖𝑛 (x-axis). Additionally, the direction of

the NLPCA first principal component curve is more aligned with the vertical 𝑇𝑚𝑖𝑛

temperature requirement. Therefore, the principal component of variance (along the

curve) is more aligned with the 𝑇𝑚𝑎𝑥 axis rather than the 𝑇𝑚𝑖𝑛 axis which is favorable

near the 𝑇𝑚𝑖𝑛 temperature requirement.

In this design, responsive robustness is focused near the 𝑇𝑚𝑎𝑥 constraint, and

adaptability is focused near the 𝑇𝑚𝑖𝑛 constraint. This helps to reveal the distinct

mechanisms of reduction in sensitivity of constraint satisfaction. Responsive robust-

ness acts by providing responsive margin, thereby shifting the nominal, mean, and

distribution away from the constraint. In contrast, adaptability that is focused near
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a constraint has a tendency to reduce the magnitude of variance in the direction of

the constraint.

4.5.2 Design 2: Electrochromics-Dominant

Design 2 - the electrochromics-dominant design - relies the most on adaptability.

In this design the mitigation constraints are adjusted to allow for a greater area of

electrochromics: up to 25%. In contrast to Design 1, the PCM mass is limited to 12

g and the maximum LVLH roll angle is 0.10 rad.

As the design that relies most heavily on the adaptability of emissivity regulation,

this design has the lowest overall variance in outcomes as shown in Figure 4-18.

The ensemble of uncertain outcomes is again characterized with a GMM model with

bounding 2𝜎 error ellipse. However, in this design, the distribution of outcomes is

not well defined for NLPCA. Optimization of the PCM temperature of fusion, 𝑇𝑓

at 258.6 K or -14.4∘ C results in the PCM response occurring near the minimum

temperature constraint. There are some uncertain SoTW where incident Earth IR

is higher than nominal during eclipse which result in less cooling during eclipse.

One of these scenarios is shown in Figure 4-19 which shows the quasi-steady state

temperature trace vs. time on top and the PCM liquid ratio, 𝜒𝑙 in the bottom plot.

In this scenario, the PCM only partially freezes, and 𝑇𝑚𝑖𝑛 = 𝑇𝑓 ; this is true for all

partial freeze scenarios (note that the nominal scenario is a partial freeze scenario).

The effect is visible near the vertical 𝑇𝑚𝑖𝑛 line at -14.4∘ C in Figure 4-18 where there

is a faint cluster of points all with 𝑇𝑚𝑖𝑛 = 𝑇𝑓 . This high density of 𝑇𝑚𝑖𝑛 values at the

same value prevents convergence of the NLPCA axis of variance estimate.

Despite the proximity of the PCM temperature of fusion to the minimum tem-

perature requirement, the nominal and mean points in the constraint space are still

closer to the minimum temperature constraint. In this design, there is still responsive

margin focused near the minimum temperature constraint, but it is contained in the
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Figure 4-18: Design 2 distribution of outcomes in temperature
constraint space.

latent heat storage of the PCM.

The nominal value of the electrochromics, 𝜀𝑐𝑒, of 0.63 still provides significantly

more adaptive authority to decrease net thermal radiation than increasing. This

contributes to the asymmetry of the distribution; there is more variance in 𝑇𝑚𝑎𝑥 than

𝑇𝑚𝑖𝑛 and there is greater variance above the nominal 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛. Variance of 𝑇𝑚𝑖𝑛

is strongly reduced by the partial PCM freezing as well as electrochromic range.

As in the simplified example from § 3.6.2, there are three outcomes of elec-

trochromic adaptability at a given point in time and position in the orbit. Exact

compensation, where the electrochromic value is able to completely counter the

perturbing effect of local heat flux uncertainty results in reproduction of the nominal

temperature conditions at that point in the orbit. In this case, the commanded value

of electrochromics is interior to the tuneable range (𝜀𝑚𝑖𝑛
𝑒 < 𝜀𝑒 < 𝜀𝑚𝑎𝑥

𝑒 ). Note that

in the scenario where there is exact compensation of the quasi-steady maximum and

minimum temperatures of the orbit, the red nominal point of Figure 4-18 is repro-

duced under uncertainty (for saturation reasons, this is not a common occurrence).
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Figure 4-19: Design 2 PCM partial freeze scenario.

There are also two saturation cases, wherein the commanded value of electrochromics

is limited by the tuneable range. Saturation high occurs where the electrochromics

value is at the maximum of the range, 𝜀𝑒 = 𝜀𝑚𝑎𝑥
𝑒 . In this scenario, exact compen-

sation is out of reach, and the realized temperature will be greater than nominal.

Conversely, saturation low occurs where 𝜀𝑒 = 𝜀𝑚𝑖𝑛
𝑒 and the realized temperature is

lower than nominal. These cases are viewable in Figure 4-20 which depicts a single,

selected uncertain scenario out of the ensemble. Figure 4-20a shows three cases of the

quasi-steady state temperatures over a single orbit. The red trace shows the nominal,

zero uncertainty temperatures.

141



0 20 40 60 80

Time (min)

-20

-10

0

10

20

30

40

T
em

p
er

a
tu

re
(/

C
)

nominal
echrom inactive
echrom active

(a) Temperatures vs. time over one orbit. Shown: nominal, inactive
electrochromics, optimally tuned active electrochromics

0 20 40 60 80

Time (min)

0.2

0.4

0.6

0.8

E
le
ct

ro
ch

ro
m

ic
em

is
si
v
it
y

(-
)
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Figure 4-20: Temperature and electrochromics response for the
adaptive mitigation of a selected uncertain outcome.

The blue trace shows the tuned, electrochromics-mitigated temperatures. The dashed

trace shows the temperatures under uncertainty if the electrochromic area is inactive

and at the electrochromic value at nominal. The tuned electrochromic values are

shown in Figure 4-20b. As shown by the dashed electrochromics inactive temperature

trace, this uncertain scenario is mostly uncertain in the cold direction. As a result,

there are several cases of saturation low, shown where the green line of Figure 4-20b

is equal to 0.2 and the blue mitigated temperatures are below the red nominal. The
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exact compensation cases occur where the commanded electrochromics values are

not at the limits. At these times, the blue uncertain cases are close to the nominal

temperatures. Note that during the tuning process, it is assumed that local albedo

and 𝑇𝐸 are not directly known. Instead, all commanded electrochromic values are

calculated in reaction to detectable temperature changes. Therefore, there is some

phase lag and some error even in the exact compensation cases.

4.5.3 Design 3: Thermal View Factor-Dominant

Design 3 relies most heavily on thermal mitigation through adaptive view factor

control (VFC). As WaferSat is exposed to perturbing heat flows, adjustments to the

LVLH roll angle are made to gain favorable thermal view factors either to regulate

the system net heat flows up or down. This design allows for the greatest maximum

LVLH roll angle of 28.6∘, while constraining PCM mass to 12 g and electrochromic

area to 12%.

The constaint space and distribution of quasi-steady state temperature distribu-

tion is shown in Figure 4-21 under the local albedo and 𝑇𝐸 uncertainty set. As shown

in § 4.4.2, for a 𝛽 angle of zero, the nominal nadir-facing orientation corresponds to

the greatest net heat absorption due to the greatest solar exposure. As a result, at

all points in the orbit, from this 𝛽 angle, LVLH roll has a cooling effect (turning

away from the sun, reducing view factor to the Earth). In this design, the nominal

point, shown as a red point, is closest of all designs to the maximum temperature

requirement since there is more ability to regulate heat flows down with LVLH roll.

To display the tuning response in one uncertain scenario, a single uncertain SoTW

is shown in Figure 4-22. In Figure 4-22a are the quasi-steady state temperatures

for three cases: nominal (no uncertainty) in red (same as the red point from Fig-

ure 4-21), inactive VFC in the single uncertain SoTW - i.e., WaferSat maintained

in nadir-pointing orientation for all time - in a dashed line, and an active VFC case
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Figure 4-21: Design 3 distribution of outcomes in temperature
constraint space.

in blue. The corresponding LVLH roll angles vs. time for the VFC active case

are shown in Figure 4-22b. Similar to the operation of the electrochromics, there

are several states of operation at each position in the orbit. The saturation cases

indicate times when the roll angle is at its limits: [0∘, 28.6∘] (due to the symmetry

for 𝛽 = 0, only positive roll angles are considered). Note that during eclipse, the

spacecraft always resumes the nadir-facing (0 roll angle) orientation, in order to

retain heat in the absence of sunlight. At several points in the orbit, the LVLH

roll angle assumes a value interior to the range limits, corresponding to an exact

compensation case. However, like the electrochromics compensation cases, since the

roll angle is responding to temperature changes, the exact compensation never results

in exactly nominal temperatures. Furthermore, due to constraints in roll rate due to

the assumed ACS, limits on the rate of roll angle can also prevent the optimal roll

angle at a given position from being attained. The WaferSat was assumed to roll at

a maximum rate of 0.3 radmin−1. This was an assumed constant only; more detailed

exploration of the impacts of maximum roll rate would aid in further evaluation.
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Figure 4-22: Temperature and LVLH roll response for the adaptive
mitigation of a selected uncertain outcome.

As with each of the mitigation methods presented, control of thermal view factors

carries with it an associated cost of implementation. By allowing thermal require-

ments satisfaction to drive spacecraft roll angle, there is a reduction in the ability

to point WaferSat at-will, for example, for payload purposes. While this might

work well for applications where the payload involves an omni-directional sensor,

or where pointing is otherwise unimportant, in the cases where precise pointing is

mission critical, pointing for thermal regulation and payload may be at odds. Another
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strategy might be to restrict thermal view factor control to times when the payload

is not operating, but this involves new mission timeline constraints.
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4.5.4 Summarizing Designs

Optimization with different sets of constraints in the implementation of the responsive

and adaptive mitigations enabled the identification of three unique designs that

achieve the same level of expected performance and feasibility under the modeled

uncertainty ensemble. These unique designs each have a distinct emphasis on one

of the three mitigations introduced. These distinct designs can be said to achieve

the same function with unique form. The defining mitigation variables for the three

design families are summarized in Figure 4-23. The dynamic and adaptive variable

sectors of the radar plot are labeled with the corresponding mitigation. Greater

utilization of a particular area is indicated by greater radius in that area. Design 1 is

the most reliant on the responsive robustness of PCM. Design 2 is most adaptable due

to electrochromics, and Design 3 is most adaptive with thermal view factor control.
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Figure 4-23: A comparison of the relative level of utilization of
the responsive and adaptive mitigations for three isoperforming and
isofeasible designs
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The operation under uncertainty is summarized in Figure 4-24, which shows the

temperature constraint spaces (repeated from §§ 4.5.1 to 4.5.3). The sizes, shapes,

and locations of the uncertain outcomes is indicative of the dominant mechanism

of uncertainty mitigation. Design 1 is responsively robust, therefore there is still

high variance in the outcomes. However, the location of the nominal and mean

outcomes reveals the responsive margin added. Design 2 is very thermally adaptive

with electrochromic areas. The adaptive emissivity is able to regulate heat flows to

reduce variance in temperature. This has the smallest variance of all cases. Design 3

gains adaptability through reorientation of the thermal view factors. All three design

outcome distributions exhibit some re-shaping of the distribution to better fit within

the design space. In particular designs 1 and 3 curve the principal axis of variance

near the minimum temperature constraint so that the tails of the distribution still

partially lie in the feasible space.
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Figure 4-24: A comparison of temperature constraint spaces for
designs 1, 2, 3

Though three individual designs were identified, they exist out of an infinite set

of designs that are both isoperforming and isofeasible. In other words, there exists

an infinite number of combinations (continuously variable relative usage) of the three

mitigations. Constraints related to the application can be used to evaluate where in

this infinite set the design should lie.
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The performance and feasibility estimates thus far are predicated on the as-

sumption that the uncertainty model is accurate. In practice, there may be some

uncertainty in the uncertainty model itself. In the next section impacts of parametric

errors in the uncertainty model are assessed.

4.6 Modeled Uncertainty Error

The prior optimizations design for a threshold level of feasibility under a specified

uncertainty model. Therefore the performance and feasibility guarantees apply for

the modeled uncertainty distribution. In this example, the feasibility guarantees are

explored when there is parametric uncertainty in the uncertainty model.

The variances of the uncertain local Earth black body temperature and Earth

albedo are based on measured data from NOAA and CERES missions. However,

in general, there is always some uncertainty in any model. As an example, in this

scenario, the feasibility of designs is explored when there is a change in the modeled

uncertainty variance. For several designs, the estimated feasibility is examined under

the original modeled variance, for a 2x variance, and for a 3x variance. In particular,

designs will be evaluated based on their resilience to parametric uncertainty in the

model.

Recall the static robust design from § 4.3.2. Nominal performance was sacrificed in

order to create margins against the active thermal constraints. However, the feasibil-

ity guarantee was specifically tailored to just meet the 2-𝜎 feasibility guarantee under

the modeled uncertainty distributions. Therefore, as the variance in the uncertain

parameters is increased, it is expected that the incidence of feasible outcomes will

suffer. This is shown in Figure 4-25 where three different distributions of extreme

temperatures are shown corresponding to the 1x variance (purple), 2x variance (or-

ange), and 3x variance (blue). Since this design specifically tailored only the requisite

static margin against the temperature requirements, there is no extra margin for
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the increased variance cases. Once the tailored margin has been overwhelmed, there

is no other recourse to maintain feasibility. At 3x the original model variance, the

incidence of feasibility is 79%, with many temperature requirement violations of both

the maximum and minimum temperatures.

Figure 4-25: Temperature extreme variance of statically tailored
robust solution for 3 levels of uncertainty model variance. Feasbility
decreases quickly as uncertainty model variance increases.

By contrast, designs that rely on responsiveness and adaptability may offer a more

graceful degradation of feasibility under growth of parametric uncertainty. Design 1,

the PCM-dominant design, is evaluated under the same three uncertainty variance

cases. Note, that for this demonstration, the electrochromic area coverage was

increased from 11.1% to 15.7% (tailored for excess adaptability under 1x variance

model). The corresponding distributions of temperature extreme outcomes are shown

in Figure 4-26. As before, there is a decline in feasibility from the 1x variance case,

however, the decline occurs at a much slower rate. Even under the 3x variance

case, feasibility still stands at 88%. In Figure 4-26, it is also clear that in the

higher variance cases, the majority of constraint violations occur at the maximum
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Figure 4-26: Temperature extreme variance of Design 1: PCM-
dominant for 3 levels of uncertainty model variance. Degradation
of feasibility occurs at slower rate than in static robust design.

temperature constraint. Recall from § 4.5.1 that the electrochromic and PCM mit-

igations were ‘specialized’. PCM melting point was tailored to a relatively high

phase transition point, focusing the responsive margin at the maximum temperature

constraint. Electrochromic behavior was designed with a nominal center at 0.7,

providing much greater dynamic range to decrease emissivity, thereby focusing the

effect on mitigation of cases near the minimum temperature constraint. As variance in

the uncertainty model is increased, the PCM response has a more limited effect. The

tails of the distribution expand beyond the constraint, resulting in more violations.

By contrast, the number of constraint violations near the minimum temperature

constraint are few. Notably, the slight increase in adaptability (which came at no

performance cost; only occupation of area) results in an enhanced ability to mitigate

uncertainty.

In practice, there may be many other types of error that could require robustness

(i.e., robust robustness or robust responsiveness and adaptability). Presented in this

section is a simple parametric error in the uncertainty model. However, further errors
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could be non-parametric in nature and could include unmodeled sources of uncertainty

or model errors. Further exploration is needed to assess the efficacy of responsiveness

and adaptability in the amelioration of such errors. Unlike in the case of parametric

uncertainty, there is no guarantee that the existing mitigation techniques will have

influence over the non-parametric uncertainties. In that scenario, other recourse

would be necessary.

In this chapter, the methodology was applied in detail to a WaferSat design

problem. The sensitivity to realistic thermal uncertainties was first highlighted. The

sensitivity to uncertainty rendered the nominal optimal design unreliable due to a

very low feasibility and the statically robust design sacrificed too much performance

in favor of feasibility. The responsive and adaptive methodology was applied using

three mitigations: responsive PCM, adaptive electrochromics, and adaptive thermal

view factor control. Three isoperforming and isofeasible designs were identified, each

utilizing a different combination of the three mitigations. Though three designs were

specifically identified, they exist out of an infinite set of potential combinations of the

three mitigation techniques explored. This offers multiple options for implementation

where the ‘costs’ of each mitigation are considered, depending on the mission applica-

tion. Missions where maximizing functional mass (i.e., silicon where electronics may

be embedded) may require either Designs 2 or 3 with lower PCM allocation. Missions

where surface area usage is critical may avoid solutions like Design 2 with a heavy

devotion of external surface area to electrochromics. Missions where pointing of a

payload or antennas is critical may preclude the reliance on view factor control as in

Design 3. Finally, one of the designs was evaluated for robustness to errors in the

uncertainty model. The design was originally designed under a set uncertainty model,

but it was shown that it is possible to retailor adaptability to provide a guarantee of

feasibility that is better able to tolerate increases in uncertainty.
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Chapter 5

DiskSat

In addition to Wafersat, other flat form factor, high aspect ratio satellite concepts

exist. One such example is DiskSat, a 1-meter diameter flat satellite in development

at the Aerospace Corporation [14, 107]. As a similar high A system, DiskSat shares

some thermal sensitivity challenges with WaferSat, while offering some new options

for thermal mitigations through its increase in mass. In this chapter, optimization

with dynamic heat flows through several thermal zones in a DiskSat is presented.

Additionally, the continuum between two options offering responsive robustness and

adaptability is explored in greater detail.

Figure 5-1: A 1 meter diameter DiskSat next to a 1.5 U CubeSat.
The internals of a CubeSat are contained in a module in the center
of the disk. [108]
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5.1 A Scaling Revisited

Recall from Chapter 1 that high A systems have distinct advantages and disadvan-

tages. For the thermal problem, the high aspect ratio contributes to a large radiative

heat exchange surface areas relative to heat capacity. In the nominal nadir-facing

attitude, at 𝛽 angle of zero, the zenith surface is maximally exposed to the sun at

times, and the nadir surface always has a maximized view factor to the Earth. At

the same time, the large surface areas offer large areas to populate with solar cells,

potentially creating a high-powered system.

As noted in § 1.2.2, highA results in short thermal equilibration time constants.

A DiskSat of 1-meter diameter and 25 mm thickness has an A of 40 - lower than

that of WaferSat, but still of a short thermal equilibration time constant. Assuming

a total mass of 3.5 kg, the temperature response nears equilibration before the end of

each orbital phase. An example of the near equilibration is shown in Figure 5-2 which

depicts the temperatures over a single orbital period of a 400 km altitude orbit for a

3.5 kg mass (blue) compared to the thermal equilibrium (i.e., a zero-mass equivalent

system, orange). Note that the extremes of the 3.5 kg wafer approach the extremes of

the equilibrium temperature traces by the end of sunlight and eclipse phases; the 3.5

kg temperature amplitude is 94% of the amplitude of the equilibrium temperatures.

DiskSat still lies within the short equilibration, high A thermal design regime.

Whereas the thinness and high thermal conductivity of uniform silicon makes ther-

mal gradients in WaferSat small, scaling up to a larger absolute thickness of DiskSat

adds the possibility of designing for isolation of temperature sensitive components

from the surfaces. In this Chapter, a DiskSat will be modeled as a multi-node system

to design for temperature satisfaction of a select portion of the satellite in the presence

of uncertainty.
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Figure 5-2: Thermal quasi-steady state of 3.5 kg DiskSat compared
to thermal equilibrium. Modeled as a single-node in 400 km altitude
circular orbit, 𝛽 angle of 0.

5.2 Defining the Problem

Much like in the WaferSat example, the design optimization for DiskSat will focus on

thermal survivability whilst maximizing power performance. This approach helps to

realize one of the advantages of highA systems: utilization of the large surface area

available to generate power far above the norms for the weight-class of the satellite.

5.2.1 Multi-Node Thermal Modeling: Axial 1D Gradient

DiskSat has a diameter of 1 meter, and a thickness of 25 mm. Growth in the absolute

thickness as well as the composition with sandwich composite materials may allow for

thermal gradients through the thickness. As shown in Figure 5-3, the DiskSat will be

modeled using three thermal regions: a zenith facesheet node (blue), a nadir facesheet

node (yellow), and a mid-node between the facesheets (orange). It is assumed that all

temperature sensitive components will be housed within this mid-node (limited once
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again by the battery operational limits per § 4.1.2). The facesheets will be subject to

much wider temperature constraints set by the solar cells.

Figure 5-3: Zenith, mid, and nadir nodes. All internal-facing
surfaces are coated with electrochromic surface. Arrows represent
the following parallel heat paths: high conductive coupling between
exterior facesheets (black), low conductive coupling from exterior
facesheets to mid-node (green), and internal radiative heat transfer
between exterior facesheets and mid-node (purple).

The aluminum facesheets covered with solar arrays and static thermo-optical

coatings comprise the zenith and nadir surface nodes. It is assumed that the two

facesheets are thermally conductively coupled (through the honeycomb composite

structure). It is also assumed that the three nodes are equal in mass. The mid-node

is composed of a centrally-located (radially, and longitudinally) disk of surface area

equal to half of that of the facesheets. The mid-node is supported by polyimide aerogel

posts of height 6.5 mm. To keep thermal conductivity low, the total polyimide post

area on each side of the mid-node is equal to 25% of the mid-node area. is supported

by polyimide aerogel posts. The remaining internal area between the mid-node and

the facesheets is covered with electrochromic coating.

5.2.2 New Parameters for DiskSat

The orbital environment is assumed to be identical to that in the WaferSat problem.

The changed parameters of the DiskSat problem are summarized in Table 5.1.
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Table 5.1: Constant parameters used throughout the DiskSat
problem

Parameter Symbol Value Units

Radius 𝑟𝑑 500 mm
Total thickness 𝑡𝑑 25 mm
Total mass 𝑚𝑑 3.5 kg
facesheet thickness 𝑡𝑓 1 mm
mid-node thickness 𝑡𝑚 10 mm
mid-node radius 𝑟𝑚 393 mm
Zenith node mass 𝑚𝑧 1.17 kg
Nadir node mass 𝑚𝑛 1.17 kg
mid-node mass 𝑚𝑚 1.17 kg
Specific heat capacity of Al 𝑐𝑎𝑙𝑝 903 J kg−1K−1

Thermal conductivity of Al 𝑘𝑎𝑙 167 Wm−1K−1

Thermal conductivity of polyimide aerogel 𝑘𝑎 0.029 Wm−1K−1

orbit altitude ℎ 400 km

5.2.3 Internal Facing Electrochromics for Adaptive Heat Flow

In contrast to the WaferSat example where electrochromics were used to compensate

for heat flows in and out of the system, electrochromics will be used for the DiskSat

problem to redistribute heat among the three nodes: zenith, mid, and nadir. As

the temperature sensitive components are assumed to reside solely in the mid-node,

the zenith and nadir nodes are not under temperature constraints. As such the

electrochromics are used to regulate the thermal radiative coupling of the mid-node

to the two surface nodes rather than external heat flows.

The operation of the internal facing electrochromics is shown in Figure 5-4. Shown

in Figure 5-4a are the temperatures of all three nodes (left y-axis) and the elec-

trochromic internal face adaptive behavior (purple, right y-axis). The blue and yellow

traces represent the external facesheets. High thermal conductance between the two

makes for a nearly isothermal set of surfaces in thermal view of the mid-node. The

zenith and nadir facesheets are not subject to the temperature requirements in ma-

genta dashed lines. The mid-node in red, is regulated by the electrochromic surfaces

shown in purple (right y-axis). Electrochromic values are optimized to minimize
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changes in temperature. Note that the directions of heat flow cannot be changed

with electrochromics (second law of thermodynamics), however, the magnitudes of

heat flow can be regulated - increasing heat flow when a favorable directional gradient

exists and isolating when unfavorable. There is greater coupling when the direction

of heat flow is favorable and low coupling when unfavorable.

The corresponding net radiative flows of heat due to electrochromic operation

between the three nodes is shown in Figure 5-4b. Note that by convention, heat flows

from the zenith to nadir direction are positive. The near thermal coupling of the

zenith and nadir wafers results in mirrored heat flow traces as the values of emissivity

of the electrochromics on the internal surfaces area are identical.

Recall from Chapter 4, that electrochromic operation results in three instanta-

neous states: saturation low, saturation high, and exact compensation. These three

modes are again seen, with different effects in Figure 5-4a. In the internal face

configuration, saturation low represents the least radiative coupling (radiative heat

flows as low as possible). Saturation high represents the most radiative coupling.

In this configuration, exact compensation results in constant temperature of the

mid-node. This is seen in two places: the peak mid-node temperatures and just

after re-emergence from eclipse. At these two temperature extremes, the internal face

emissivities of the mid-node can exactly regulate the heat flows to minimize changes

in temperature. Since it is assumed that the temperature requirements do not apply

to the external nodes, they are treated as sources and sinks of heat strictly for the

regulation of the mid-node. The behavior of prolonging the constant temperature

period lengthens the effective time to reach the opposing temperature constraint (the

temperature-pause is similar to the effect of PCMs).
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(a) Temperatures of the three DiskSat nodes (left axis) and inner face
electrochromic emissivity adaptive response (right axis, purple)
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(b) Net radiative heat flows between nodes, regulated by
electrochromic emissivities

Figure 5-4: Internal face electrochromic regulation of mid-node
temperatures through adaption of radiative heat flows.

5.3 Responsive Robustness vs. Adaptability

As noted in Chapter 4, there are multiple combinations of static robustness, responsive

robustness, and adaptability that can equivalently provide the same performance

and statistical guarantee under modeled uncertainty. The three designs identified

in the WaferSat case represented distinct emphases on one of three mitigations,

each representing unique designs. There are, however, an infinite number of designs

between with different relative reliance on each of the three mitigations. In this
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section, the continuum between the adaptive internal-facing electrochromics and

responsive mid-node PCM is explored.

5.3.1 A continuum from most adaptive to most responsive

In the continuum between electrochromic adaptability and PCM responsive robust-

ness, there are two extremes. At one end is a design that achieves the desired

performance and feasibility levels entirely through adaptability, and at the other

extreme, a design that is correspondingly fully responsively robust. Between these

extremes lie the combined designs with varying emphasis or reliance on the two

mitigations.

In this DiskSat example, a fully adaptive design would achieve the power perfor-

mance and feasibility through mitigation of thermal uncertainties purely through the

adaptive, electrochromic compensation of heat flows in and out of the middle node.

The magnitude of compensatory range is a function of internal face electrochromic fill

factor and dynamic range of the electrochromics. However, with the constraints of this

problem, a fully adaptive design is not possible. Instead, there is a most adaptive

design - mitigating uncertainty mostly with adaptability, and providing responsive

margin with a small amount of PCM.

As PCM mass is added to the most adaptive system, responsive robustness in-

creases, lessening the need for adaptive heat flow range, i.e., the maximum magnitude

of adaptive heat flow can decrease. To identify solutions along the continuum, the

comparative usage of both mitigations is simultaneously varied while maintaining

isoperformance and isofeasibility. Results are shown in Figure 5-5, with the PCM mass

shown along the x axis and the corresponding required maximum (red) and minimum

(blue) electrochromic range of the internal faces. From the most adaptive solution,

as more PCM mass is added to the system, the dynamic variables that governing the

electrochromics are adaptively retailored to reduce the electrochromic range utilized.
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Figure 5-5: Continuum from most adaptive to fully responsive robust.
Tailorable excess responsive robust margin cases: (a) cold-limited 2-𝜎
feasible; (b) balanced 2-𝜎+ feasible; (c) hot-limited 2-𝜎 feasible

In this first example, PCM is added with constant temperature of fusion, 𝑇𝑓 = 7.5∘C

- selected as the mean of the temperature constraints (roughly corresponding the

melting point of Pentadecane). Notably, as more PCM as added, there is asymmetry

in the rates of decrease in the minimum and maximum electrochromic limits. In other

words, the latent heat storage affords greater responsive margin to the maximum

temperature constraint. As such, the need for high emissivity (thermal coupling)

between nodes is reduced.

In Figure 5-5, the most responsive design occurs at around 179 g of PCM, where

the maximum and minimum required values of electrochromic range meet at 𝜀 = 0.26.

At this point, there is no requirement for any adaptive adjustment of the internal face

emissivities. All internal facing surfaces can assume the constant value of 𝜀 = 0.26 and

the PCM responsive margin will mitigate the effects of uncertainty for 2𝜎 feasibility.

Note, that 𝜀 = 0.26 is the only value of static emissivity that is permissible. If more

PCM mass is added, there will be excess responsive margin. An example point is

shown at the rightmost edge of Figure 5-5, where 225 g of PCM mass is added.
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(b) Minimum allowable static internal
face emissivity, P𝑓𝑒𝑎𝑠 = 0.954, 𝜀𝑙𝑜𝑤𝑠𝑡𝑎𝑡𝑖𝑐 =
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(c) Maximized and balanced constraint
satisfaction, P𝑓𝑒𝑎𝑠 = 0.983, 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 = 0.284

Figure 5-6: Comparison of tailored margin in three cases: minimum
temperature constraint, maximum temperature constraint, balanced.

With excess PCM, there is now a range of permissible static internal face emissivities

that are permissible whilst maintaining ≥ 2𝜎 feasibility. The limits of the range,

correspond to violation of one of the constraints. The maximum value of 𝜀ℎ𝑖𝑔ℎ𝑠𝑡𝑎𝑡𝑖𝑐 = 0.295

represents the cold-limited case, shown in Figure 5-6a. There is still excess margin

against the maximum temperature constraint, but the 2𝜎 error ellipse is limited by the

minimum temperature constraint. Conversely, the lower static limit, 𝜀𝑙𝑜𝑤𝑠𝑡𝑎𝑡𝑖𝑐 = 0.191 is
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limited by the maximum temperature constraint as shown in Figure 5-6b and there

is excess responsive margin against the minimum temperature constraint. There is

a third point, shown in purple, which represents the balance point of responsive

margin. At this point, where 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 = 0.284, the responsive margin is distributed

so as to maximize the error ellipse size and simultaneously meet the temperature

requirements. This is shown in Figure 5-6c where the ellipse is tangent to both

temperature requirements and the ellipse is maximally sized to provide a feasibility

rate of 98.3%. This point represents the optimal retailoring of excess margin under

these conditions.

5.3.2 Balancing Adaptive Authority

In the previous continuum, PCM mass was added at a constant melting temperature

- arbitrarily selected as the mean of the temperature requirements. As PCM mass

was added, the limits on electrochromic range asymmetrically decreased. In order

to balance the rate of decrease of reliance on electrochromic adaptability, the phase

transition point of the PCM can be retailored as mass is added. A new continuum

is shown in Figure 5-7 where the blue and red points again represent the effective

limits on the required range of electrochromic emissivity (corresponding to the left

axis). The purple plot - which corresponds to the right axis - shows the retailored

temperature of fusion 𝑇𝑓 as PCM mass is added. In this scenario, as PCM mass is

increased, the temperature of fusion decreases. As noted in the operation of PCM

in Chapter 4, decreases in the phase transition point can re-allocate the responsive

margin to the lower temperature constraint. This focusing of margin on the lower

constraint allows for rebalancing of required electrochromic range relief.

In this balanced scenario, the required limits on the electrochromic range decrease

at an even rate, meeting at a static value of 0.5. The even decrease in range can allow

for a decrease in electrochromic area on the inner surfaces while maintaining equal

adaptive authority on the maximum and minimum temperature constraints. Note
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Figure 5-7: Retailoring of PCM temperature of fusion to balance
required electrochromic range

however, that the decrease in electrochromic range requires greater mass of PCM.

The fully responsive design occurs at a PCM mass of 234 g compared to the 179

g in the constant 𝑇𝑓 scenario. The greater PCM mass required to evenly decrease

the reliance on electrochromics presents a ‘balancing cost’. The new temperature of

fusion may now occur at a temperature where the heat gradients are greater, resulting

in faster heat flows at constant temperature, and therefore shorter period of phase

change. The net result is that each gram of PCM results in a shorter thermal time

constant increase. In exchange for responsive margin balancing, the effectiveness of

PCM operation is reduced.

The time constant increase due to PCM mass is longest when the temperature of

fusion occurs at a period with low rates of net heat flow. Typically, this occurs near

the extremes in temperature where the slope is lowest. This however, narrowly focuses

the effect of the responsive margin near the corresponding temperature constraint.

In cases where PCM is used alone or as the dominant thermal mitigation, the effect

should be evenly distributed among the active, performance-limiting constraints.

Such was the case in Design 1 of § 4.5.1. As a PCM-dominated design, the temperature
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of fusion was at a moderate value in the temperature range, so as to elicit responsive

margin at both constraints. However, by comparison in Designs 2 and 3 in §§ 4.5.2

and 4.5.3, the temperature of fusion was very close to the minimum temperature

constraint. In these cases, the PCM responsive margin served to augment the effects

of other thermal mitigations, narrowly providing margin in a specific location. There

was some specialization of effects on specific constraints by specific mitigations.

5.4 Seasonal robustness: variation in 𝛽 angle

In addition to random thermal uncertainties, a DiskSat may encounter seasonal

thermal variance. Notably, the 𝛽 angle, or the angle between the Earth-Sun vector

and its projection onto the orbit plane will vary as a function of time. Thus far,

all analyses have assumed a 𝛽 angle of 0, corresponding to the worst-case thermal

conditions with longest eclipse and greatest net solar incidence on the zenith surface

when in the nominal nadir-facing orientation.

The variation in 𝛽 angle is given by,

𝛽 = arcsin
(︀
cos(Γ) sin(Ω) sin(𝑖)− sin(Γ) cos(𝜖) cos(Ω) sin(𝑖)

+ sin(Γ) sin(𝜖) cos(Ω) sin(𝑖) + sin(Γ) sin(𝜖) cos(𝑖)
)︀

(5.1)

where Γ is the position of the Earth in orbit about the sun relative to a reference

point when the 𝛽 angle is zero, Ω is the longitude of ascending node, 𝑖 is the orbit

inclination, and 𝜖 is the angle of the Earth ecliptic. The bounding extremes of 𝛽 angle

are limited by the inclination and the angle of the Earth ecliptic,

|𝛽𝑚𝑎𝑥| = 𝜖+ |𝑖| (5.2)

The mid-node extreme temperatures and internal power are shown as a function
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of 𝛽 angle in Figure 5-8. The mid-node extremes are shown in red, corresponding to

the left axis. Internal power is shown in purple, corresponding to the right axis. As

𝛽 angle increases, the maximum mid-node temperatures decrease, with the exception

of a few points near 72∘. The general decrease in temperatures is the result of a

decrease in solar exposure in the warmest points in the orbit (since the DiskSat

remains nadir-facing). The mid-node minimum temperatures are slightly more stable;

there is a slight decrease in minimum temperature until about 40∘. There are two

opposing effects: the minimum temperatures are exacerbated by the sharp decrease

in maximum temperatures, but also mitigated by the shortening of eclipse. As eclipse

nears a length of zero, the amount of internal power sharply increases. This is shown

in Figure 5-9, the various sources of power: zenith solar array direct and albedo, nadir

solar array direct and albedo for four 𝛽 angles. As the length of eclipse shortens, the

direct illumination of the nadir-side increases, resulting in a dramatic increase in

power (noting that the nadir side of the DiskSat has nearly 70% coverage with solar

array). As a result, at a 𝛽 angle of 71∘, when eclipse reaches a length of zero, power

is greatest and the temperatures of the mid-node increase in both the minimum and

maximum states. Beyond this point, the internal power and temperatures sharply
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Figure 5-8: Variation of power and mid-node extreme temperatures
with 𝛽 angle
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decrease as the DiskSat is then nearly pointed edge-on to the sun.

In particular for smaller 𝛽 angles, the design exhibits robustness to the seasonal

variation in 𝛽 angle. The optimization was performed for the most constraining

thermal conditions at 𝛽 = 0. The reliance on solar array area on the nadir surface

provides thermal robustness by limiting the emissivity of the zenith surface which is

thermally advantageous as the 𝛽 angle increases and the surface points to free space

with limited solar exposure. Furthermore, the large area of nadir solar array also limits

the drop off in power is 𝛽 angle increases through smaller angles. Albedo-reflected

sunlight - though much lower in flux - has a slower rate of decrease as 𝛽 increases. As

a result, for relatively low inclination orbits, nominal seasonal power loss is limited.

Note that this analysis assumes that the DiskSat remains strictly nadir-facing. With

attitude control, there are more options for maintaining or increasing power seasonally

as 𝛽 changes.
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Figure 5-9: Power generation for various 𝛽 angles
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Usage of nadir area for solar power generation tends to be favorable thermally for

many 𝛽 angles. The reduced heat flux of the nadir surface (pointed at the Earth)

makes it worthwhile despite the reduced effective power generation due to losses from

albedo reflectance.

5.5 Analysis of Radial Gradients

Due to the large surface area, it is likely that a DiskSat might have temperature

gradients across the surface. The spatial locations of the dissimilar thermo-optical

surfaces may result in variation of rates of heat absorption and rejection and therefore

gradients across the surface of DiskSat. A method for accounting for these gradients

is proposed in order to limit the effects of high thermal flux (high 𝛼, high 𝜀) surfaces

on the mid-node temperatures.

Thus far, it has been assumed that the net surface heat fluxes are uniform across

the surface of the DiskSat, resulting in uniform temperature distributions across the

span. To increase fidelity, the model can be expanded to include assumed spatial

locations of the different known thermo-optical surfaces and coatings. To simplify

this analysis, it is assumed that the DiskSat exhibits azimuthal symmetry. Therefore

all gradients are in the radial direction. All temperature sensitive components are

assumed to be housed in a mid-node in a region at the center of the DiskSat. Since

it is known that the solar array area is high in radiative heat flux (it is high in both

emissivity and absorptivity), the solar array area is assumed to be composed in an

annular ring at the edge of DiskSat. In this way, the highest flux surfaces are spatially

furthest from the temperature sensitive components; i.e., there is a long conductive

path length in the radial direction and greatest potential for thermal isolation.

An example of thermo-optical zones is shown in Figure 5-10. All temperature

sensitive components - namely the batteries - are located within the blue ‘avionics

area’. The solar array is denoted by the green annulus along the edge. The gray

169



region represents the area devoted to static thermo-optical surface coatings (and is

statically tailorable).
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Figure 5-10: Surface of DiskSat with non-homogeneous thermo-
optical surfaces. Temperature is evaluated at the annular nodes.

To estimate the thermal gradients, a finite differencing scheme is used, as shown in

Equation 5.3. The temperature of the 𝑖𝑡ℎ node includes conductivity to adjacent nodes

for 𝑖 ∈ [1, 𝑛]. At each annular node, the net external heat flow terms (radiation, solar

exposure, albedo, EIR, internal conductivity) are functions of local thermo-optical

properties. As the nodes are constant-mass annuli, the radial spacing is non-uniform.

Spacing is calculated recursively as shown in Equation 5.4, for the total number of

nodes, 𝑛, and DiskSat facesheet surface area, 𝐴𝐷. An example spacing of node edges

is shown with dashed lines in Figure 5-10.

𝜕2𝑇 (𝑟)

𝜕𝑟2
≈ 𝑘𝑟

(︂
𝑇𝑖+1 − 𝑇𝑖

∆𝑟
− 𝑇𝑖−1 − 𝑇𝑖

∆𝑟

)︂
= 𝑞𝑛𝑒𝑡 = 𝑃 𝑟𝑎𝑑

𝑖 (𝑇𝑖) + 𝑃 𝑠𝑜𝑙
𝑖 + 𝑃 𝑎𝑙𝑏

𝑖 + 𝑃 𝑒𝑖𝑟
𝑖 + 𝑃 𝑐𝑜𝑛

𝑖

(5.3)
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𝑟𝑖 =

⎧⎪⎨⎪⎩
(︀
𝐴𝐷

𝑛𝜋

)︀0.5
, 𝑖 = 1(︀

𝐴𝐷

𝑛𝜋
+ 𝑟2𝑖−1

)︀0.5
, 1 < 𝑖 ⩽ 𝑛

(5.4)

A comparison of the quasi-steady state temperature oscillation of the facesheets

over one orbit is shown in Figure 5-11. The temperatures at the outermost disk edge

- in the solar array area annulus - is shown in green. The outer edge of the area

directly over the avionics is shown in blue. Due to the much higher absorptivity

and emissivity of the outer edges, the heat flows are much greater, resulting in much

larger temperature variation. Recall also from the earlier DiskSat analysis that the

zenith and nadir facesheets are thermally conductively coupled, but isolated from

the mid-node where the batteries are located (along with other temperature sensitive

components). Note that the extent of the temperature range of the avionics facesheet

area is now lower than under the quasi-uniform assumption (shown in Figure 5-4a). In

this scenario, the lower temperature oscillation of the avionics area - directly over the

mid-node - presents internal surfaces that have a lower heat variance. The mid-node

now has a long effective heat path to the most variable heat surfaces, the solar arrays.

Incorporation of radial gradients could allow for a higher fidelity thermal model -

particularly by accounting for the distribution of heats for dissimilar surface thermo-

optical properties. The finite difference scheme presented may be used, or alterna-

tively, a higher fidelity modeling program using finite element modeling in a full three

dimensional model may be used. The increase in fidelity would present some new

considerations for optimization as well as new design variables.

If incorporating a higher fidelity multi-node model in the optimization of DiskSat,

the design of surfaces would be expanded to include a spatial component. That is,

when designing surface coatings, the spatial location on exterior surfaces would be

introduced as new design variables. In addition to the tailoring of surface thermo-

optimal properties, the location of specific thermo-optical surfaces could be used to
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Figure 5-11: Temperatures of facesheets: DiskSat solar array-covered
edge node (green), DiskSat center area directly above avionics (blue).

create favorable thermal gradients. The optimization of the spatial design could be

approached using the level set method introduced by Cohen [109].

The addition of the spatial design of surfaces and corresponding thermal gradients

will result in additional considerations for the optimization. In the radial gradient

example, the large gradients will result in deformations due to coefficient of thermal

expansion (CTE) mismatches. There may be additional constraints on the optimiza-

tion to limit any thermal gradients that may cause significant deformation (in the

radial gradient scenario: bowl-shaped bowing of DiskSat). This set of structural con-

straints would be at odds with the thermal spatial objective of creating large gradients

from the high heat flux surfaces to the batteries. As a result, the optimization might

need to balance these new criteria, increasing the scope of modeling to include other

subsystems. The approach to the mitigation of new constraints, however could still

follow the presented methodology.
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Chapter 6

Conclusion and Future Work

Traditionally, when optimizing systems that are sensitive to uncertainty, the designer

suffers a dilemma. Nominal optimal, as tantalizing as it may be, offers no reliability

under uncertainty. Statically robust designs can increase feasibility under uncertainty

through desensitization and margin, but robustness comes at a cost. Some optimality

must be sacrificed in order to allocate finite resources to create margin. This problem

is exemplified by highA systems like WaferSat and DiskSat with their high sensitivity

to thermal uncertainty. In this work, a methodology has been presented to design

for the combination of responsiveness and adaptability to mitigate uncertainty in

operation. By creating a dynamic response to states of uncertainty as they are

realized, feasibility can be improved with limited nominal performance sacrifice.

Responsiveness is a passive, fixed-recourse response to uncertainty in operation.

The response behavior is defined and constrained by the design of the governing

dynamic variables, set in the a priori design phase before operation. As states of

uncertainty are realized, a dynamic response - such as the change in phase of a material

- provides responsive margin, mitigating the effects of uncertainty. Tailoring of the

response ensures that the responsive behavior aids in the mitigation of the uncertainty

on hand. Adaptability is an active compensation to states of uncertainty in operation
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involving a two stage design process. As with the responsive design, dynamic variables

that govern the adaptive behavior are set in the a priori phase. The initial design

defines the adaptive behavior - specifically the authority of the adaptability. The

adaptive behavior under states of uncertainty must then be optimized to maintain

feasibility of active constraints. Changes in uncertainty in-situ can be further miti-

gated through changes in the adaptation, effectively re-programming the mitigation

as-needed. Together, responsiveness and adaptability allow for the mitigation of

the perturbing effects of uncertainty with a two-stage optimization. On the outer

loop, static and dynamic variable sets are optimized with a maximum performance

objective. In the inner loop, candidate designs are evaluated under an ensemble

of uncertain states. In the inner loop, the responsive behavior is propagated, and

adaptability is optimized to maximize feasibility of the active constraints. Feasibility

is passed back to the outer loop to evaluate against desired feasibility criteria. The

optimization process results in a design (or set of designs) that provide the maximum

performance with desired feasbility under the modeled uncertainty set. The process

both designs for responsiveness and adaptability as well as optimizes the adaptive

response to individual states of uncertainty.

6.1 Thesis Contributions

The contributions of this thesis are summarized as follows:

1. Created a framework of responsive robust and adaptive mitigation of uncer-

tainty with limited performance sacrifice

2. Developed a two-stage optimization methodology for the prior design for and

operational design of responsiveness & adaptability

3. Application to WaferSat: Demonstrated identification of unique designs of equal

performance and feasibility

4. Application to DiskSat: Explored tradeoff between responsiveness & adaptabil-

ity
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In Chapter 3, a framework was introduced to design for responsive robustness and

adaptability to mitigate the effects of uncertainty. Through continuous compensation

for uncertain states of the world as they occur, margin is dynamically allocated, reduc-

ing the need for the sacrifice of performance in traditional robust design approaches

with static margin. Throughout the chapter, a methodology is developed, building

upon traditional robust approaches and expanding to incorporate the responsive and

adaptive framework. The methodology culminates in a two-stage optimization process

that enables the combined design of modeled responsive and adaptive mitigations.

Simplified examples of responsiveness and adaptability are presented.

The methodology is then brought to bear in Chapter 4 in the design of a WaferSat

in LEO. The WaferSat is subject to two sources of thermal uncertainty: localized

Earth effective black body temperature and albedo variance. The models of uncer-

tainty are modeled as ensembles of uncertain states based on local sliding window

measurements from LEO from NOAA and NASA CERES project missions. The

sensitivity of WaferSat is demonstrated and three mitigations are introduced. Phase

change materials offer a responsive, fixed-recourse through latent heat absorption

associated with changes in phase. Electrochromic surface coatings allow for an at-will

selection of surface mid-IR emissivity and absorptivity resulting in tuneable radiating

surfaces to regulate heat flows. Finally, spacecraft attitude is adjusted to modify

thermal view factors and incident heat fluxes. When optimizing, several design

families are identified that are both isoperforming and isofeasible under the modeled

uncertainty set. Differing constraints on the ‘costs’ of implementation of each adaptive

or responsive mitigation guides the design to a combination more suited to the needs

of a specific mission.

In Chapter 5, the continuum between a responsive mitigation and an adaptive

mitigation is explored in more detail. DiskSat is modeled as a three node system in

which the mid node is constrained in temperature and the zenith and nadir nodes

are unconstrained. PCM in the mid node offers responsive margin and a system

of internal facing electrochromics allows for adaptive radiation of heat between the
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nodes. The design space from most adaptive to most responsive is shown, highlighting

the continuous tradeoff between. Modeling of the radial gradients is presented and

a path forward for greater fidelity of surface spatial design and three dimensional

discretization is suggested.

6.2 Future Work

The work of this thesis presents a methodology for the responsive and adaptive

mitigation of uncertainty in operation. The methodology is demonstrated on two

high A systems, but there are many areas for further development. The design of

the WaferSat and DiskSat systems focused on the thermal constraints and power

performance - both highly sensitive aspects of the high A design regime. It would

be useful to expand the modeling and methodology to design over more spacecraft

subsystems jointly. Specifically, the design over more subsystems may offer greater

flexibility to dynamically allocate margin among subsystems, and possible change the

sets of active constraints. Similarly - as suggested in § 5.5 - as the complexity of

the system and integrated modeling grows, higher fidelity methods may be useful to

capture more system effects.

As noted in § 4.6, adaptability may offer opportunities to redefine behavior in the

event of errors in the predicted, modeled uncertainty used in the optimization. Design

under a simple parametric error in the uncertainty models was explored, however,

more types of unknown unknowns may exist. Further exploration of responsive and

adaptive design is warranted for potential mitigation of non-parametric uncertainty

such as unmodeled sources of uncertainty and model error.

In this work, the simulation of effects of uncertainty occurs over several orbits.

However, the MC simulation could be extended to model longer term effects such as

parts degradation over a mission lifetime. Though this would increase the amount

of computation, it could be used to plan for the mitigation of expected degradation

176



as the mission progresses. One such example is the darkening of solar cell coverglass

from ultraviolet exposure over time. If modeled over time, adaptive methods could be

devised to mitigate the power generation reduction in the later stages of the mission.

Furthermore, other off-nominal scenarios such as random parts failures could also be

simulated. Once again, mitigations could be designed and modeled for credible types

of failures to maintain operability.

WaferSat and DiskSat were used as examples for application in this work exten-

sively due to their unique highA design regime and sensitivity to thermal uncertainty.

As relatively small, SWaP-limited systems, improving feasibility without sacrificing

significant performance was critical. The methodology could also be applied to

systems where the design difficulty is derived from the challenging environment as op-

posed to the SWaP orA. Such an example might include larger, deep space satellites,

where responsiveness and adaptability may improve survival and operation further

from the Sun while reducing overdesign due to large allocations of static margin.

Incorporation of more options for both responsive and adaptive mitigation could

allow for more comparisons and trades of enhanced feasibility versus implementation

considerations.

Finally, it would be particularly useful to demonstrate some of the responsive and

adaptive mitigations with hardware in a flight-like test environment for validation.

Beyond that, a flight demonstration mission, perhaps on a set of WaferSats in LEO,

could show the benefits of responsive and adaptive mitigation of uncertainty while

maintaining performance.
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Appendix A

Thermal Model Validation Cases

To provide a validation, results from the thesis MATLAB model are compared against

published results from literature. In particular, the model is compared to two scenar-

ios that bear similarities to the highA form factor of WaferSat and DiskSat thermally.

The first scenario includes analysis of sun-facing solar cells that are thermally isolated

from the rest of the spacecraft. The second case is an analysis of blank silicon wafers

in LEO. In addition, all results are compared with a Thermal Desktop model run on

the SSL lab computer 1.

A.1 Modeling Thermally Isolated Solar Arrays

A large deployed solar array that is thermally isolated from the rest of the spacecraft

provides a valuable analog for the model of a flat, high A system. Kim, et al., [37],

provide a detailed analysis of such a scenario for a sun-tracking orbit configuration

over various 𝛽 angles. This provides a validation case for two elements: the thermal

modeling with extraction of electrical power from incident solar irradiance (resulting

1Special acknowledgment to UROP Ceylan Ceylan for her assistance in running many scenarios
in the Thermal Desktop model.
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in less thermal heating) and the temperature variation of a sun-facing, high A),

thermally isolated unit. Note that the solar power is assumed to be dissipated on

the main spacecraft bus, thermally isolated from the cells. Therefore, the incoming

solar irradiance converted to energy effectively leaves the solar array system thermally

(unlike in WaferSat or DiskSat where the internal power dissipation occurs in the high

A system).

In [37], the deployed solar array is modeled as a sun-tracking system; i.e., the

solar array surface normal is aligned with the solar flux vector. This orbit is shown

pictorially in Figure A-1. The reference orbit has a solar 𝛽 angle of 30∘. Note that the

solar array is sun-tracking in the sun, but reverts to a solar array backside nadir-facing

orientation during eclipse. The model parameters are summarized in Table A.1.

Table A.1: Summary of parameters for solar array thermal modeling
from [37]

Model Parameter Symbol Value Units

solar beta angle 𝛽 30 ∘

solar array efficiency 𝜂𝑆𝐴 0.224 -
solar array absorptivity 𝛼𝑆𝐴 0.920 -
solar array emissivity 𝜀𝑆𝐴 0.696 -
backside paint absorptivity 𝛼𝑏 0.39 -
backside paint emissivity 𝜀𝑏 0.88 -
Earth albedo 𝑎𝐸 0.35 -
orbit altitude ℎ𝑜 400 km

Figure A-1: Visualization of orbit from [37], shown from two viewing
angles.
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The temperature profile over a single orbit in quasi-steady state from the MAT-

LAB model used in this thesis, and a corresponding Thermal Desktop model are

shown in Figure A-2a and are in close agreement. The results from [37] are shown in

Figure A-2b. The temperatures from the MATLAB model and the results from [37]

also match well. Note, for simplicity, the facesheets are modeled as thermally coupled

surfaces, so the thermal gradient through the thickness in the sun is not modeled.
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(b) The results from [37] showing the
solar array temperatures over one orbit

Figure A-2: A comparison of the modeled results against the
literature results. Models are in close agreement.

181



A.2 Modeling a Silicon Wafer in LEO

The second validation scenario is that of a 4-inch nadir-facing silicon wafer in LEO

as modeled in [39]. The modeling scenario is similar to that of WaferSat (with the

exception of the diameter). A summary of the relevant modeling parameters is shown

in Table A.2.

Table A.2: Summary of parameters for solar array thermal modeling
from [39]

Model Parameter Symbol Value Units

solar beta angle 𝛽 0 ∘

solar array efficiency 𝜂𝑆𝐴 0.18 -
zenith side mean absorptivity 𝛼𝑆𝐴 0.8 -
zenith side mean emissivity 𝜀𝑆𝐴 0.8 -
nadir side mean absorptivity 𝛼𝑏 0.39 -
nadir side mean emissivity 𝜀𝑏 0.88 -
Earth albedo 𝑎𝐸 0.7 -
orbit altitude ℎ𝑜 500 km
Earth effective black body temperature 𝑇𝐸 288 K
Temperature of free space 𝑇𝑠 5 K
Black body temperature of sun 𝑇𝑠𝑜𝑙 5780 K
wafer diameter 𝑑𝑤𝑎𝑓 101.6 mm
wafer thickness 𝑡𝑤𝑎𝑓 2 mm

Modeled results from [39] are shown in Figure A-3b. Note that several power

distribution schemes were presented; the constant power scheme was chosen for

comparison. The corresponding results using the thesis MATLAB model and Thermal

Desktop models are shown in Figure A-3. The overall temperature profile is a close

match, however, note that the MATLAB and Thermal Desktop models show the non

monotonic heating and cooling due to nadir-side illumination. The results from [39]

unexpectedly do not exhibit this, instead showing monotonic heating and cooling

phases.

Analysis of the modeling of angles shows a modeling error in 𝜃2, the angle before

the wafer enters eclipse shown in Figure A-4 b.
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Figure A-4: Angles defining satellite tangency and start of eclipse
from [39]

With angle definitions:

𝜃1 = arccos

(︂
𝑟𝑒 + ℎ

𝑏

)︂
(A.1)

𝜃2 = arccos
(︁𝑟𝑒
𝑏

)︁
(A.2)

and nadir-side solar illumination from 𝜃1 to 𝜃2. 𝜃2 should be:

𝜃2 = arccos
(︁𝑟𝑒
𝑏

)︁
+ arccos

(︂
𝑟𝑒

𝑟𝑒 + ℎ

)︂
(A.3)

This model with the error in 𝜃2 is reproduced in the dashed trace of Figure A-3a.

The distinction in temperature ranges is small and the main difference is the loss of

the nadir-side illumination heating transients. However, the result overall provides a

good validation of the thesis MATLAB thermal model.
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Appendix B

A Deep Space SmallSat

In this appendix, a series of approaches are proposed for the design of a SmallSat in

deep space. This is a generalization away from strictly high A systems in LEO. In

this scenario, the design difficulty is drawn not solely from the SWaP constraints, but

from the challenge of the thermal environment far from the sun.

Consider a solar-powered 100 kg SmallSat that will travel beyond Earth orbit.

Traditionally, the distance to Jupiter (∼ 5.2 AU) serves as the boundary beyond

which solar arrays are insufficient to power a spacecraft. Beyond Jupiter, deep

space satellites have used radioisotope thermoelectric generators which in addition to

providing power, provide a large amount of heat. This is particularly advantageous

as the power from the sun is inversely proportional to 𝑟2.
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B.1 A Scaling Reprise

B.1.1 Thermal Optimality Further from the Sun

In recent years, there has been particular interest in exploring Enceladus, an icy

moon of Saturn. The 2022 Planetary Science and Astrobiology Decadal Survey has

highlighted Enceladus as a valuable target for exploration for the search for potential

life [110]. In this section, a 100 kg Disk-shaped SmallSat will be considered near

Enceladus at a distance of 9.5 AU from the sun.

The power output from the sun decreases according to:

𝐸𝑜 = 𝐸𝐸
𝑟2𝐸
𝑟2𝑜

(B.1)

where 𝐸𝐸 is the solar flux at mean Earth orbit distance to the sun, 𝑟𝐸 and 𝑟𝑜 refers

to the deep space distance to the sun. As such, the solar power flux at 9.5 AU is a

little more than 1% of that at Earth orbit. This creates a particular challenge for any

solar powered spacecraft in terms of power generation as well as thermal survival.

As the SmallSat moves further and further from the sun, the amount of heat

variability will decrease; this can be approximated as near steady state temperature

conditions regardless of the mass of the spacecraft. Consider again variation of A

for a constant mass, constant volume system. As disk radius increases, thickness

increases, and A increases. As the disk radius increases, the solar collection area

also increases, increasing heating from the only heat source - as small as it may be.

To maximize solar heating and minimize thermal radiation losses, it will be assumed

that the disk is coated with TiNOX thermal coating with 𝜀 = 0.05, 𝛼 = 0.90. It will

also be assumed that one flat face surface normal will always be sun-facing.

The estimated steady state temperatures for various disk radii at 9.5 AU are shown

in Figure B-1. Notably, as the radius andA increase, the steady state temperatures
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increase monotonically, suggesting that a solar absorber may be helpful for survival.

However, the temperatures seem to asymptotically converge on approximately −50∘

C, far below the estimated operable range for batteries (but note that solar array

area has not been considered yet - the system is currently purely a TiNOX absorber).

Analysis of the contributions of cylinder side walls and flat faces to the total surface
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Figure B-1: Steady State temperatures at 9.5 AU vs. disk radius for
a fixed volume system.

area help explain the increase in steady state temperature with A. At low A (a

thin rod), the side walls dominate the area. Since the axis is aligned with the solar

flux, the side walls radiate, but do not absorb sunlight. When A is high, and the

flat surfaces dominate the surface area, the maximal amount of surface points to

the sun, resulting in greater collection of heat from sunlight. This is further shown

in Figure B-3 which shows the heat flow conditions at steady state for each disk

radius. Solid lines represent absorbed heat and dashed lines represent radiated heat.

At low A, there is limited solar heating and the temperature is governed by large

side wall area. At highA the solar heat absorption is high, and thermal radiation is

dominantly from the flat surfaces. Since these are steady state temperatures, the sum

of absorbed heats and radiated heats are equal. HighA systems at steady state can
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be said to be greater in flux (balanced positive and negative) than low A systems.

There are several regions of Figure B-3. In region a, the radiation is dominated by

side walls:

𝑆𝑇 ≈ 𝑆𝑤 ∝ 𝑟−1 (B.2)

𝑃𝑟𝑎𝑑𝑇 ≈ 𝜎𝜀𝑆𝑇𝑇
4
𝑆𝑆 ∝ 𝑟2 (B.3)

In region b, there is a combination of contribution of side walls and surfaces to the

heat radiation. Is surface area normal to the sun increases, so does the net heat

absorbed.

𝑆𝑇 ∝ 𝑟𝑛 (B.4)

−1 < 𝑛 < 2 (B.5)

In region c, there is asymptotic convergence where the two flat surfaces each account

for half of the heat rejection of the system, but solar heating is maximized. The

steady state temperatures continue to increase as the heat absorbed increases. In the
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limit as A→ ∞, the steady state temperature will be at a maximum (and this will

approximate a Dyson Sphere at a distance of 9.5 AU). Note however, that the system

will nearly converge on the steady state maximum at a radius of 10 m.

𝑆𝑇 ≈ (𝑆𝑊 + 𝑆𝐴) ∝ 𝑟2 (B.6)

𝑃𝑟𝑎𝑑𝑇 ∝ 𝑟2 (B.7)

B.1.2 Power Optimality Further from the Sun

In the previous example, it was assumed that the the surface of a disk was only a

TiNOX-coated surface with no solar array, and thus no power generation (without an

RTG). If some solar array fill factor is assumed, then electrical power will be available

(at the expense of increased net emissivities). In the previous example, the SmallSat

was assumed to be at a distance of 9.5 AU from the sun with no other bodies nearby.

It was observed that the best case steady state temperatures were too low for survival.

In this example, a modifying assumption is made to include Encleadus at a distance
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of 100 km. The high mean bond albedo of 0.85 will provide an addition source of

heating on the backside of the disk.

Contours of mean electrical power for SA physical fill factor on the x axis and the

increasing disk radius on the y axis in Figure B-4a. Notably, asA is increased and SA

fill factor are increased, so too does power. Contours of the steady state temperatures

over SA fill factor and disk radius are shown in Figure B-4b. The warmest conditions

are present when disk radius is maximized and SA fill factor is reduced (due to the

high emissivity of SA coverglass). Note that some technologies exist that could aid

in reducing the emissivity of coverglass which could reduce this issue [111, 112]. The
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Figure B-4: Mean electrical power contours and steady state
temperatures for scaling of disk with various solar array fill factors

same data from Figure B-4 can be plotted as Pareto fronts to show the maximum

power capability vs steady state temperatures for several given disk radii. The results

for 7 radii are shown in Figure B-5. Note that there is a diminishing return for steady

state temperature above a radius of about 2 m. However, increases toA beyond that

have the benefit of greater mean power capabilities for small steady state temperature

decrease.
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B.2 Thermally Adapting in Deep Space

Although the thermal extremes tend towards a cold state, thermal adaptability may

be of use in deep space missions. Several examples are explored a high-level.

B.2.1 Thermal Variability on a Schedule: Inner vs. Outer

Cruise

One scenario where adaptability may be of particular use is for spacecraft that

encounter widely variable distances from the sun. Deep space missions often must

perform inner cruises to perform flyby maneuvers to reach deep space destinations.

As such, they may have need of thermal design for rejection of high heat flows near

the sun as well as adaptability for the cold of deep space at the final destination.

Another example might be a mission in a highly elliptical orbit, such as the Ulysses

spacecraft [113]. The Ulysses spacecraft varied from a perihelion of ∼ 1 AU and
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aphelion of ∼ 5.2 AU. The thermal system of the Ulysses spacecraft was partially

adaptive. It was powered with an RTG, providing an excess of heat and power

for survival in deep space. When nearer to the sun, internal power dissipation was

diverted to resistors on thermal radiators to reject heat from the system.

If we once again consider the disk SmallSat, survival with solar panels only may

be possible in an adaptive configuration. Consider a 1-meter disk radius system with

one flat surface normal always sun-facing. The sun-facing and anti sun-facing surfaces

can be adaptively tailored to include electrochromic area: 𝑓 𝑠
𝑒 = 0.27, 𝑓 𝑠

𝑒 = 0.12.

Additionally, if an ADCS system is included, it will be assumed that the disk can roll

away from the sun, to present a lower angle.

Results of an adaptively tailored system are shown in Figure B-6. Steady state

temperatures are shown for various solar array physical fill factors. The orange lines

represent steady state temperatures at 1 AU, tuned for the hot condition, and the

blue line represents steady state temperatures at 5.2 AU, tuned for the worst case

cold condition. At 1 AU, the system increases electrochromic emissivity to maximize

radiation out of the system and rolls through a large angle to minimally present

area to the sun. At 5.2 AU, the system is normal to the sun and with the lowest

electrochromic emissivity possible. Note that in this design, it is not desirable to

maximize the electrochromic emissivity since the minimum attainable of 0.2 is actually

quite high when in deep space. Therefore the dynamic behavior is balanced against

the worst case cold and a compromise of small electrochromic areas is identified.
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B.2.2 Thermal Spatial Zones

The high-level analysis of this appendix has focused on high A, singular body sys-

tems. For practical reasons, deep space spacecraft, particularly those with large

propellant tanks have deployed appendages and a low A main bus. This presents

opportunities for thermal zoning. For an assumed bus size, using the BCT X-Sat1

with total surface area of 3.6 meter2. The steady state temperatures near Enceladus

can be approximated as a function of heat capture rate as shown in Figure B-7. The

heat capture rate on the x axis estimates the amount of internal power dissipation that

is captured as heat. For systems that are better coupled (allowing for heat capture

of more internal power dissipation) less internal power is required to maintain a

given bus temperature requirement (example in Figure B-7 of −15∘ C). High volume

systems may allow for creation of specific thermal zones, insulated and isolated near

the interior of the spacecraft. As an example, a propellant tank near the center of the

1https://www.bluecanyontech.com/static/datasheet/BCT_DataSheet_Spacecraft_Microsat.
pdf
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Figure B-7: Bus steady state temperature for given internal power
dissipation and contours of percent internal heat capture rate.

spacecraft volume may need to be heated above the bus temperature requirement for

operation. For a partially thermally isolated system, the tank temperatures can be

expressed as a function of internal local heating powers as shown in Figure B-8. For

an assumed propellant density, LMP-103S, the contours show the allowable propellant

masses (and associated assumed spherical tank mass and surface area). As the

tank increases in size, more local heating is required due to the increase in surface

area. This heating could be achieved with dynamic coupling to other internal power

dissipating elements in the spacecraft (perhaps a more efficient, adaptive system) or

dedicated ohmic heating.
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Figure B-8: Propellant tank steady state temperature for local heater
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B.2.3 Power Modes and Mission Sequencing

Finally, in addition to spatial separation of the system, it is possible to devise mission

sequences and specifically power dissipative modes to provide adaptive behavior for

the system. In particular, mission requirements may drive power mode sequences

that vary in time, changing the internal heat dissipation. A system that provides

for some operational adaptability either in selective coupling/decoupling [82] and

heat recapture with varied internal power dissipation levels could increase thermal

survivability. Much more work is needed as this will require modeling of many more

coupled spacecraft subsystems. Application of responsiveness and adaptability to

larger systems allows for many more complex avenues for analysis and the poten-

tial to increase operability under varied conditions whilst maintaining performance

optimality.
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