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Abstract
Previous research has shown that speech can be used to detect cognitive impairment in
patients with dementia and other neurodegenerative diseases. These diseases produce
cognitive deficits that lead to changes in the acoustic and linguistic content of the speech
produced by the patients.

In this thesis, we analyze the speech of subjects with Alzheimer’s Disease (AD), Fron-
totemporal Dementia (FTD), and Primary Progressive Aphasia (PPA). We show that AD
subjects can be distinguished from healthy controls with 85.4% accuracy and that the Mini-
Mental State Examination scores of the subjects can be predicted with a root mean squared
error of 4.56, using sentence embeddings. We present the Crowdsourced Language Assess-
ment Corpus (CLAC), a corpus that we created to provide the community with a collection
of audio samples from various speakers that can be used to learn a general representation for
speech from healthy subjects, as well as complement other health-related speech datasets.

We present a novel, language-agnostic approach for measuring the quality of repetition
in a recording, a method that was inspired by the need to automatically quantify the impaired
repetition abilities that characterize the speech of people with the logopenic variant of PPA
(lvPPA). A subset of the CLAC corpus was used as healthy controls and we demonstrated
the feasibility of our approach by using it to distinguish between healthy and lvPPA speakers
with impaired repetition with 85.7% accuracy. Lastly, we compare standard linguistic
features to more advanced sentence embeddings by using a variety of feature extraction
methods to extract features from picture description and monologue data for four different
FTD/PPA variants. We show that all variants can be distinguished from healthy controls
with >= 90% accuracy using transformer-based sentence embeddings.

We hope that the work presented in this thesis will contribute to the goal of using artificial
intelligence to improve human health, clinical trial design, and drug development.

Thesis Supervisor: James Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

Previous research has shown that speech can be used to detect cognitive impairment in

patients with dementia and other neurodegenerative diseases. These diseases produce

cognitive deficits that lead to changes in the acoustic and linguistic content of the speech

produced by the patients. Examples of these acoustic and linguistic changes include the

voice tremors that are characteristic of Parkinson’s disease (PD) (Perez et al., 1996), the

difficulty with recalling words that Alzheimer’s Disease (AD) patients experience (Martin

et al., 1985), and the changes in pitch, speech timing, and struggles with agrammatical

speech that frontotemporal dementia (FTD) patients experience (Poole et al., 2017). We

are interested in using machine learning techniques to analyze the speech of patients with

various forms of cognitive impairment to identify biomarkers that will help (1) distinguish

between different types of dementia and cognitive impairment and (2) understand how the

acoustic and linguistic symptoms change over time for various neurodegenerative diseases.

In this thesis, we analyze the speech of subjects with AD, FTD, and Primary Progressive

Aphasia (PPA). AD is a progressive, neurodegenerative disease that affects the lives of more

than 5 million Americans every year. The number of Americans living with AD is expected

to be more than double that number by 2050. AD is a deadly and costly disease that has

negative emotional, mental, and physical implications for those afflicted with the disease and

their loved ones (Alzheimer’s Association, 2019). There is currently no cure for AD (Yadav,

2019) and early detection is imperative for effective intervention to occur (De Roeck et al.,

2019). Currently, AD is diagnosed using positron emission tomography (PET) imaging and
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cerebrospinal fluid exams to measure the concentration of amyloid plaques in the brain, a

costly and invasive process (Land and Schaffer, 2020). A more cost-effective, non-invasive

and easily-accessible technique is needed for detecting AD.

FTD is a neurodegenerative disease characterized by behavioral problems and aphasic

issues (e.g. grammatical issues, difficulty with word meaning, reduction in the number of

words produced, etc). FTD is an overarching term given to several related conditions that

are the phenotypes of FTD. There is no known genetic cause of FTD but two proteins are

associated with the phenotypes: TAR DNA binding protein of 43 kDa (TDP-43) and Tau

(Wennberg et al., 2019). Drugs are being developed to target these proteins. While some

phenotypes are associated with just one of the two proteins, it is not clear which protein is

affiliated with the other phenotypes. This makes it dificult to determine which drugs should

be given to which patients during clinical trials. It is known that the speech of patients

with FTD varies significantly from the speech of healthy individuals (Vogel et al., 2017).

There are also some distinguishing speech and language characteristics between different

phenotypes. Therefore, it is possible that analyzing the speech of FTD patients can aid us in

distinguishing between the phenotypes.

PPA consists of a rare set of conditions that affect speech in different ways. Some

forms of PPA are also considered variants of FTD. The FTD/PPA variants that we analyze

in this thesis are the logopenic variant of PPA (lvPPA), the behavioral variant of FTD

(bvFTD), the semantic variant of PPA (svPPA), and the nonfluent variant of PPA (nfvPPA).

Some of the characteristics for each variant can be seen in Figure 1-1 (Poole et al., 2017).

The figure shows that svPPA, lvPPA, and nfvPPA subjects have a decreased speech rate.

bvFTD and lvPPA subjects have altered pause timings compared to healthy controls. The

speech of lvPPA subjects is also characterized by repetition impairment (Haulcy et al.,

2022). svPPA subjects have word recall difficulties and often substitute pronouns for nouns

(Zangrandi et al., 2021), while nfvPPA subjects have agrammatical speech and difficulties

with articulation (Poole et al., 2017). In subsequent chapters, we develop methods for

quantifying some of these characteristics.

In this thesis, AI-based analysis is used to improve upon traditional hand-crafted feature

analysis and identify AD, FTD, and PPA-specific speech biomarkers that can be tracked
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Figure 1-1: Speech characteristics for lvPPA (blue), svPPA (purple), nfvPPA (red), and
bvFTD (green) subjects. Originally published in (Poole et al., 2017).

during clinical trials. The ultimate goal is to provide biomarkers that can be used to track

disease progression with greater confidence in future clinical trials.

1.1 Thesis Overview And Contributions

This thesis has the following structure and makes the following contributions:

In Chapter 2, we present the findings resulting from our participation in the Interspeech

2020 Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) challenge.

We extracted different types of audio and text-based features from the data before training

binary classifiers and regressors. We contributed to the challenge by using features and

model architectures that were not used by any of the other participants and providing insight

into how those factors impact model performance.

In Chapter 3, we present the Crowdsourced Language Assessment Corpus (CLAC), a

corpus that we created to provide the community with a collection of audio samples from

various speakers that could be used to learn a general representation for speech from healthy

subjects, as well as complement other health-related speech datasets (Haulcy and Glass,

2021c). CLAC consists of audio recordings and automatically-generated transcripts from

1,832 speakers located in the United States, as well as 11 other countries. Datasets with
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speech from FTD/PPA subjects are rare and some of the tasks completed by the subjects

do not have data from healthy subjects to complement it. The CLAC corpus was used to

supplement the limited data that we already had. The dataset was also publicly released so

that other researchers could benefit from its creation.

In Chapter 4, we present the results of developing a novel, language-agnostic approach

for measuring the quality of repetition in a recording (Haulcy et al., 2022), a method that

was inspired by the need to automatically quantify the impaired repetition abilities that

characterize the speech of people with lvPPA. A subset of the CLAC corpus was used

as healthy controls and we demonstrated the feasibility of our approach by using it to

distinguish between healthy and lvPPA speakers using classification. Our method is a

general repetition measurement approach that can be applied to research problems in a

variety of areas. It is also minimally invasive, inexpensive, and uses recordings that are

quick/easy to record, making it appealing for use in clinical trials. The language-independent

nature of the approach also makes it potentially useful for global clinical trials.

In Chapter 5, we compare standard linguistic features to more advanced sentence

embeddings by using a variety of feature extraction methods to extract features from picture

description and monologue data for all four FTD/PPA variants mentioned above. We

present the results of training a classifier on the different feature types and comparing the

performance. We perform several ablation studies to gain insight into what information

the sentence embeddings may be capturing, and we show that human transcription can be

replaced with automatic transcription for several variants.

In Chapter 6, we summarize the findings from previous chapters and present plans for

future work.

We believe that the work we’ve done so far and continue to do is significant and beneficial

to the research community, particularly the community of researchers doing work at the

intersection of artificial intelligence and health. We hope that the work presented in this

thesis will contribute to the goal of using artificial intelligence to improve human health,

clinical trial design, and drug development.
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Chapter 2

Classifying Alzheimer’s Disease From

Speech and Text

Alzheimer’s Disease (AD) is a form of dementia that affects the memory, cognition, and

motor skills of patients. Extensive research has been done to develop accessible, cost-

effective, and non-invasive techniques for the automatic detection of AD. Previous research

has shown that speech can be used to distinguish between healthy patients and afflicted

patients. In this chapter, the ADReSS dataset, a dataset balanced by gender and age, was used

to automatically classify AD from spontaneous speech. The performance of 5 classifiers, as

well as a convolutional neural network and long short-term memory network, was compared

when trained on audio features (i-vectors and x-vectors) and text features (word vectors,

BERT embeddings, LIWC features, and CLAN features). The same audio and text features

were used to train 5 regression models to predict the Mini-Mental State Examination score

for each patient, a score that has a maximum value of 30. The top-performing classification

models were the support vector machine and random forest classifiers trained on BERT

embeddings, which both achieved an accuracy of 85.4% on the test set. The best-performing

regression model was the gradient boosting regression model trained on BERT embeddings

and CLAN features, which had a root mean squared error of 4.56 on the test set. The

performance on both tasks illustrates the feasibility of using speech to classify AD and

predict neuropsychological scores.1

1The work in this chapter was previously published in (Haulcy and Glass, 2021a).

35



2.1 Motivation

Previous research has shown that speech can be used to distinguish between healthy and AD

patients (Pulido et al., 2020). Some researchers have focused on developing new machine

learning model architectures to improve detection (Liu et al., 2020; Chen et al., 2019; Chien

et al., 2019), while others have used language models (Guo et al., 2019) to classify AD.

Others have focused on trying to extract acoustic and text features that capture information

indicative of AD. These features include non-verbal features, such as the length of segments

and the amount of silence (König et al., 2015). Other researchers have used linguistic and

audio features extracted from English speech (Fraser et al., 2016; Gosztolya et al., 2019), as

well as Turkish speech (Khodabakhsh et al., 2015). Prosodic features have been extracted

from English speech (Nagumo et al., 2020; Ossewaarde et al., 2019; Qiao et al., 2020) and

German speech (Weiner et al., 2016) to classify AD, and so have paralinguistic acoustic

features (Haider et al., 2019). Other researchers have chosen to focus on the type of speech

data that is used instead of the type of model or type of features and have used speech from

people performing multiple tasks to improve generalizability (Balagopalan et al., 2018).

This provides a brief summary of the work that has been done in the past few years. A more

extensive review of the background literature can be found in the review paper of (de la

Fuente Garcia et al., 2020).

Although promising research has been done, the datasets that have been used are often

imbalanced and vary across studies, making it difficult to compare the effectiveness of

different modalities. Two recent review papers (Voleti et al., 2019; de la Fuente Garcia et al.,

2020) explain that an important future direction for the detection of cognitive impairment

is providing a balanced, standardized dataset that will allow researchers to compare the

effectiveness of different classification techniques and feature extraction methods. This

is what the ADReSS challenge attempted to do. The ADReSS challenge provided an

opportunity for different techniques to be performed on a balanced dataset that alleviated

the common biases associated with other AD datasets and allowed those techniques to be

directly compared.

Previous work has been done using the ADReSS dataset. Some researchers only partici-
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pated in the AD classification task (Yuan et al., 2020; Edwards et al., 2020; Pompili et al.,

2020), others only participated in the Mini-Mental State Examination (MMSE) prediction

task (Farzana and Parde, 2020), and others participated in both tasks (Luz et al., 2020;

Balagopalan et al., 2020a; Martinc and Pollak, 2020; Pappagari et al., 2020; Cummins et al.,

2020; Rohanian et al., 2020; Searle et al., 2020; Sarawgi et al., 2020; Koo et al., 2020;

Syed et al., 2020). The best performance on the AD classification task was achieved by

(Yuan et al., 2020), who obtained an accuracy of 89.6% on the test set using linguistic

features extracted from the transcripts, as well as encoded pauses. The best performance on

the MMSE prediction task was achieved by (Koo et al., 2020), who obtained a root mean

squared error (RMSE) of 3.747 using a combination of acoustic and textual features.

As part of our work, audio features (i-vectors and x-vectors) and text features (word

vectors, BERT embeddings, LIWC features, and CLAN features) were extracted from the

data and used to train several classifiers, neural networks, and regression models to detect

AD and predict MMSE scores. I-vectors and x-vectors, originally intended to be used for

speaker verification, have been shown to be effective for detecting AD (López et al., 2019)

and other neurodegenerative diseases, such as Parkinson’s Disease (Moro-Velazquez et al.,

2020; Botelho et al., 2020). Word vectors have also been shown to be useful for detecting

AD (Hong et al., 2019). I-vectors, x-vectors, and BERT embeddings have been used with the

ADReSS dataset to classify AD (Yuan et al., 2020; Pompili et al., 2020) and predict MMSE

scores (Balagopalan et al., 2020a). (Pompili et al., 2020) used the same audio features

that we used and also used BERT embeddings, but they did not apply their techniques to

the MMSE prediction task and their best fusion model obtained lower performance on the

classification task than our best model. The difference between our work and the work of

(Balagopalan et al., 2020a) and (Yuan et al., 2020) is that they finetuned a pretrained BERT

model on the ADReSS data and used that model for classification and regression, whereas

we used a pretrained BERT model as a feature extractor and then trained different classifiers

and regressors on the extracted BERT embeddings.

CLAN features were used in the baseline paper (Luz et al., 2020) and were combined

with BERT embeddings in this work to explore whether performance improved. Lastly,

LIWC features have been used to distinguish between AD patients and healthy controls
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in the past (Shibata et al., 2016) but the dataset was very small (9 AD patients and 9

healthy controls) and, to our knowledge, literature using LIWC for Alzheimer’s detection is

limited. However, LIWC features have been used to analyze other aspects of mental health

(Tausczik and Pennebaker, 2010) and may be useful in the field of AD. For these reasons,

we wanted to further explore whether LIWC features could be useful for AD detection and

MMSE prediction. Even though our results do not out-perform the best performance on

the classification and MMSE prediction tasks, the approaches we employ are different than

previous approaches, which provides additional insight into which techniques are best for

AD classification and MMSE prediction.

2.2 Materials and Methods

2.2.1 ADReSS Dataset

The ADReSS challenge dataset consists of audio recordings, transcripts, and metadata

(age, gender, and MMSE score) for non-AD and AD patients. The dataset is balanced by

age, gender, and number of non-AD versus AD patients, with there being 78 patients for

each class. The audio recordings are of each patient completing the cookie theft picture

description task, where each participant describes what they see in the cookie theft image.

This task has been used for decades to diagnose and compare AD and non-AD patients

(Mueller et al., 2018b; Giles et al., 1996; Cooper, 1990; Choi, 2009; Mackenzie et al., 2007;

Hernández-Domínguez et al., 2018; Mendez and Ashla-Mendez, 1991; Bschor et al., 2001),

as well as patients with other forms of cognitive impairment, and was originally designed as

part of an aphasia examination (Goodglass and Kaplan, 1983).

Normalized audio chunks were provided for each speaker, in which a voice activity

detection (VAD) system was applied to each patient’s recording to split it into several

chunks. The VAD system used a log energy threshold value to detect the sections of the

audio that contained speech by ignoring sounds below a certain threshold. A 65dB log

energy threshold value was used, along with a maximum duration of 10 seconds per chunk.

Volume normalization involves changing the overall volume of an audio file to reach a
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Table 2.1: Age and gender details for AD patients in the training set, as well as the average
MMSE scores, average years of education, and corresponding standard deviations (sd), for
the patients in each age interval.

Age Interval Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 30.0 (n/a) 12.0 (n/a)

[55, 60) 5 4 16.3 (4.9) 12.4 (1.7)

[60, 65) 3 6 18.3 (6.1) 12.5 (2.1)

[65, 70) 6 10 16.9 (5.8) 12.8 (2.0)

[70, 75) 6 8 15.8 (4.5) 10.4 (2.6)

[75, 80) 3 2 17.2 (5.4) 10.6 (2.7)

Full Set 24 30 17.0 (5.5) 11.9 (2.4)

certain volume level. There was some variation in the recording environment for each

audio file, such as microphone placement, which lead to variation in the volume levels for

different recordings. The volume of each chunk was normalized relative to its largest value

to remove as much variation from the recordings as possible. Each patient had an average of

25 normalized audio chunks, with a standard deviation of 13 chunks. The CHAT coding

system (MacWhinney, 2014) was used to create the transcripts.

The ADReSS dataset is a subset of the Pitt corpus (Becker et al., 1994), which is a

dataset that contains 208 patients with possible and probable AD, 104 healthy patients, and

85 patients with an unknown diagnosis. The dataset consists of transcripts and recorded

responses from the participants for the cookie theft picture description task, a word fluency

task, and a story recall task. In order to provide additional in-domain data for training some

of the feature extractors, the cookie theft data for patients not included in the ADReSS

dataset was separated from the Pitt corpus and used for pretraining. Normalized audio

chunks for this data were created using the steps mentioned above. The pretraining process

is described in greater detail in Section 2.2.2.

The age and gender distributions, along with the average MMSE scores, average years

of education, and corresponding standard deviations, for the training and test sets, can

be seen in Tables 2.1, 2.2, 2.3, and 2.4. Education information was not provided with
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Table 2.2: Age and gender details for non-AD patients in the training set, as well as the
average MMSE scores, average years of education, and corresponding standard deviations
(sd), for the patients in each age interval.

Age Interval Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 29.0 (n/a) 12.0 (n/a)

[55, 60) 5 4 29.0 (1.3) 15.8 (2.8)

[60, 65) 3 6 29.3 (1.3) 13.1 (2.3)

[65, 70) 6 10 29.1 (0.9) 13.8 (3.1)

[70, 75) 6 8 29.1 (0.8) 14.9 (3.4)

[75, 80) 3 2 28.8 (0.4) 14.2 (3.7)

Full Set 24 30 29.1 (1.0) 14.3 (3.1)

Table 2.3: Age and gender details for AD patients in the test set, as well as the average
MMSE scores, average years of education, and corresponding standard deviations (sd), for
the patients in each age interval.

Age Interval Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 23.0 (n/a) 20.0 (n/a)

[55, 60) 2 2 18.7 (1.0) 12.5 (1.0)

[60, 65) 1 3 14.7 (3.7) 13.2 (2.2)

[65, 70) 3 4 23.2 (4.0) 11.7 (1.9)

[70, 75) 3 3 17.3 (6.9) 12.8 (3.6)

[75, 80) 1 1 21.5 (6.3) 13.0 (1.4)

Full Set 11 13 19.5 (5.3) 12.8 (2.7)

the ADReSS dataset. However, the Pitt corpus did have education information and was

cross-referenced with the ADReSS dataset to determine which patients overlapped and to

extract each patient’s education information.

A total of 108 patients (54 non-AD and 54 AD) were selected from the full dataset to

create the training set, and the remaining 48 patients (24 non-AD and 24 AD) were used for

the test set. For both the training and test sets, an equal number of AD and non-AD patients

were included for each age group and the number of male and female AD and non-AD
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Table 2.4: Age and gender details for non-AD patients in the test set, as well as the average
MMSE scores, average years of education, and corresponding standard deviations (sd), for
the patients in each age interval.

Age Interval Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 28.0 (n/a) 12.0 (n/a)

[55, 60) 2 2 28.5 (1.2) 13.7 (2.1)

[60, 65) 1 3 28.7 (0.9) 12.2 (0.5)

[65, 70) 3 4 29.4 (0.7) 13.3 (1.4)

[70, 75) 3 3 28.0 (2.4) 13.2 (1.8)

[75, 80) 1 1 30.0 (0.0) 14.0 (2.8)

Full Set 11 13 28.8 (1.5) 13.2 (1.6)

patients was the same for each age group. For the training set, the average MMSE score

for the AD patients was 17.0 and the average MMSE score for the non-AD patients was

29.1. The average years of education were 11.9 and 14.3 for the AD and non-AD patients,

respectively. For the test set, the AD patients had an average MMSE score of 19.5 and the

non-AD patients had an average MMSE score of 28.8. The average years of education were

12.8 and 13.2 for the AD and non-AD patients, respectively.

2.2.2 Feature extraction

Text features: fastText word vectors, BERT embeddings, LIWC and CLAN features

FastText is an open-source library that is used to classify text and learn text representations.

A fastText model pretrained on Common Crawl and Wikipedia was used to extract word

vectors (Grave et al., 2018) from the transcripts of each speaker. PyLangAcq (Lee et al.,

2016), a Python library designed to handle CHAT transcripts, was used to extract the

sentences from the CHAT transcript of each participant. A 100-dimensional word vector

was computed for each word in each sentence, including punctuation. A dimension of 100

was chosen because this was the value recommended on the fastText website and 100 was

compatible with the size of the pretrained model. The longest sentence had a total of 47

words. For this reason, every sentence was padded to a length of 47, resulting in a (47, 100)
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representation for each utterance.

BERT (Devlin et al., 2018) models are text classification models that have achieved

state-of-the-art results on a wide variety of natural language processing tasks and they

provide high-level language representations called embeddings. Embeddings are vector

representations of words or phrases and are useful for representing language because the

embeddings often capture information that is universal across different tasks. Keras BERT

was used to load an official, pretrained BERT model and that model was used to extract

embeddings of shape (x, 768) for each utterance in the transcript of each speaker, where x

depends on the length of the input. After embeddings were extracted for each utterance, the

largest embedding had an x value of 60. For this reason, the remaining embeddings were

padded to be the same shape, resulting in a (60, 768) embedding for each utterance. For

both the word vectors and the BERT embeddings, features were extracted at the utterance

level, resulting in a total of 1,492 embeddings in the training set and 590 embeddings in the

test set.

Linguistic Inquiry and Word Count (LIWC) (Tausczik and Pennebaker, 2010) features

were also extracted from the transcripts of each speaker. The LIWC program takes in

a transcript and outputs a 93-dimensional vector consisting of word counts for different

emotional and psychological categories, such as emotional tone, authenticity, and clout, to

name a few. The Computerized Language Analysis (CLAN) program (MacWhinney, 2000)

was also used to extract linguistic features from the transcripts of each speaker. The EVAL

function was used to extract summary data, including duration, percentage of word errors,

number of repetitions, etc. This extraction resulted in a 34-dimensional vector for each

speaker. The CLAN features were used as linguistic features in the baseline paper (Luz

et al., 2020). In this work, the CLAN features were combined with the BERT embeddings to

explore whether combining the features improved performance. Both the LIWC and CLAN

features were extracted at the subject-level, resulting in 108 vectors in the training set and

54 vectors in the test set.

More background information about each of the features mentioned in this section can

be found in A.1 and A.2.

42



Audio features: i-vectors and x-vectors

VoxCeleb 1 and 2 (Nagrani et al., 2017) are datasets consisting of speech that was extracted

from YouTube videos of interviews with celebrities. I-vector and x-vector systems (Snyder

et al., 2017, 2018) pretrained on VoxCeleb 1 and 2 were used to extract i-vectors and

x-vectors from the challenge data. The i-vector and x-vector systems were built using Kaldi

(Povey et al., 2011), which is a toolkit that is used for speech recognition. The pretrained

VoxCeleb models were also used to train additional extractors using the original Kaldi

recipes. The original VoxCeleb models were used to initialize the i-vector and x-vector

extractors and then those extractors were trained on the remaining in-domain Pitt data.

I-vector and x-vector extractors were also trained on only the in-domain Pitt data to explore

whether a small amount of in-domain data is better for performance than a large amount

of out-of-domain data. For each type of extractor, the normalized audio chunks provided

with the challenge dataset were first resampled with a sampling rate of 16kHz, a single

channel, and 16 bits, to match the configuration of the VoxCeleb data. The Kaldi toolkit was

then used to extract the Mel-frequency cepstral coefficients (MFCCs), compute the VAD

decision, and extract the i-vectors and x-vectors. The x-vectors had a length of 512, while

the i-vectors had a length of 400. There were a total of 2,834 i-vectors and 2,834 x-vectors,

one i-vector and x-vector for each normalized audio chunk. More background information

about i-vectors and x-vectors can be found in A.1.2.

2.2.3 Experimental approach

Classifiers

Five classifiers were trained on the text and audio features explained in Section 2.2.2:

linear discriminant analysis (LDA), the decision tree (DT) classifier, the k-nearest neighbors

classifier with the number of neighbors set to 1 (1NN), a support vector machine (SVM) with

a linear kernel and regularization parameter set to 0.1, and a random forest (RF) classifier.

The classifiers were implemented in Python using the scikit-learn library Pedregosa et al.

(2011). The word vectors and BERT embeddings were averaged before being used to train

the scikit-learn classifiers, resulting in utterances represented by 100-dimensional vectors
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and 768-dimensional vectors, respectively. When the LIWC and CLAN features were

combined with the averaged BERT embeddings, the subject-level LIWC/CLAN vector was

concatenated with each utterance-level BERT embedding belonging to that subject. Standard

scaling is commonly applied to data before using machine learning estimators to avoid the

poor performance that is sometimes seen when the features are not normally distributed (i.e.

Guassian with a mean of 0 and unit variance). Because we were combining different types

of features with different data distributions, standard scaling was applied to the features after

the LIWC/CLAN vectors were concatenated with the BERT embeddings so that the data

would be normally distributed before training and testing. More background information

about each of the classifiers mentioned in this section can be found in A.3.

Regressors

Five regression models were also trained on the text and audio features explained in Section

2.2.2 for the MMSE prediction task: linear regression (LR), decision tree (DT) regressor,

k-nearest neighbor regressor with the number of neighbors set to 1 (1NN), support vector

machine (SVM), and a gradient-boosting regressor (grad-boost). The regression models

were implemented in Python using the scikit-learn library. Just as with the classifiers, the

word vectors and BERT embeddings were averaged before being used to train the scikit-learn

regressors. When the LIWC and CLAN features were combined with the BERT embeddings,

the subject-level LIWC/CLAN vector was concatenated with each utterance-level BERT

embedding belonging to that subject, and, after the features were concatenated, standard

scaling was applied. More background information about each of the regressors mentioned

in this section can be found in A.3.

Dimensionality reduction

The classifiers and regressors mentioned above were trained with different dimensionality

reduction techniques to see if applying dimensionality reduction improves performance.

Feature sets were created with no dimensionality reduction, with LDA, and with principal

component analysis (PCA), and each classifier was trained on each feature set to see

what effect dimensionality reduction had on performance. The dimensionality reduction
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techniques were applied to all of the audio and text features. When LDA was applied,

the features were reduced to 1 dimension for the classification task and 23 dimensions for

the regression task. With PCA, different dimension values were selected manually. The

best results and corresponding dimension values can be seen in the Results section. More

background information about each of the dimensionality reduction techniques mentioned

in this section can be found in A.4.

Neural networks

A bidirectional long short-term memory (LSTM) network and a convolutional neural network

(CNN) were also trained on the word vectors to see if the neural networks could extract

some temporal information that would lead to better performance compared to the classifiers

mentioned in Section 2.2.3. The topologies of the two networks are shown in Figure 2-1.

The LSTM model had 1 bidirectional LSTM layer with 8 units, a dropout rate of 0.2, and a

recurrent dropout rate of 0.2. The CNN model had the following layers: 3 2D convolution

layers with 32, 64, and 128 filters, respectively, rectified linear unit (ReLu) activation and a

kernel size of 3, 1 2D max pooling layer with a pool size of 3, 1 dropout layer with a rate of

0.5, and 1 2D global max pooling layer. For both models, the output was passed into a dense

layer with sigmoid activation. Both models were implemented in Python using Keras and

were trained with an Adam optimizer. The CNN was trained with a learning rate of 0.001,

and the LSTM was trained with a learning rate of 0.01.

2.3 Results

2.3.1 Classification

Cross-validation

In order to stay consistent with the baseline paper, each of the classifiers and neural networks

were evaluated on the challenge training set using leave-one-subject-out (LOSO) cross-

validation, where there was no speaker overlap between the training and test sets for each

split. Each model was trained and tested at the utterance level, where each utterance
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Figure 2-1: Diagrams of the network topology for the LSTM model (left) and the CNN
model (right).

was classified as belonging to a patient with or without AD. Then majority vote (MV)

classification was used to assign a label to each speaker based on the label that was assigned

most to the speaker’s utterances.

The MV classification accuracy (the number of correctly classified speakers divided by

the total number of speakers), for each feature type can be seen in Table 2.5. The accuracies
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Table 2.5: LOSO accuracies for each of the classifiers. The best-performing models for each
feature type are red.

Features Dim. Red.
(n_comp) LDA DT 1NN SVM RF

LIWC
None 0.741 0.593 0.620 0.833 0.778

LDA (1) 0.741 0.750 0.750 0.731 0.750
PCA (20) 0.778 0.620 0.704 0.787 0.759

BERT

None 0.713 0.676 0.787 0.796 0.769
LDA (1) 0.713 0.657 0.667 0.713 0.657
PCA (2) 0.630 0.648 0.602 0.546 0.694
PCA (20) 0.750 0.713 0.722 0.769 0.796

BERT + LIWC
None 0.750 0.657 0.667 0.824 0.806

LDA (1) 0.750 0.731 0.731 0.741 0.731
PCA (20) 0.824 0.620 0.657 0.824 0.796

BERT + CLAN
None 0.778 0.657 0.759 0.824 0.750

LDA (1) 0.778 0.769 0.769 0.787 0.769
PCA (20) 0.824 0.630 0.657 0.898 0.778

BERT + LIWC + CLAN
None 0.593 0.731 0.713 0.815 0.806

LDA (1) 0.593 0.611 0.611 0.593 0.611
PCA (20) 0.833 0.731 0.713 0.815 0.787

word vectors
None 0.759 0.731 0.694 0.259 0.694

LDA (1) 0.759 0.741 0.731 0.759 0.759
PCA (2) 0.676 0.620 0.565 0.259 0.620
PCA (70) 0.796 0.648 0.759 0.796 0.787

i-vectors (VoxCeleb)
None 0.574 0.423 0.454 0.574 0.500

LDA (1) 0.574 0.500 0.500 0.574 0.500
PCA (2) 0.491 0.500 0.602 0.519 0.491
PCA (10) 0.528 0.556 0.546 0.491 0.528

i-vectors (Pitt)
None 0.528 0.491 0.500 0.509 0.593

LDA (1) 0.528 0.537 0.537 0.537 0.537
PCA (2) 0.463 0.500 0.528 0.343 0.546
PCA (20) 0.565 0.537 0.528 0.565 0.565

i-vectors (VoxCeleb + Pitt)
None 0.528 0.509 0.500 0.528 0.556

LDA (1) 0.528 0.519 0.519 0.528 0.519
PCA (20) 0.519 0.528 0.574 0.472 0.620

x-vectors (VoxCeleb)
None 0.583 0.620 0.509 0.546 0.574

LDA (1) 0.583 0.593 0.593 0.583 0.593
PCA (2) 0.472 0.537 0.491 0.454 0.491
PCA (40) 0.639 0.583 0.528 0.639 0.583

x-vectors (Pitt)
None 0.546 0.546 0.472 0.528 0.481

LDA (1) 0.546 0.500 0.500 0.537 0.500
PCA (40) 0.537 0.481 0.435 0.528 0.491

x-vectors (VoxCeleb + Pitt)
None 0.639 0.602 0.519 0.620 0.509

LDA (1) 0.639 0.509 0.509 0.630 0.509
PCA (40) 0.657 0.574 0.546 0.593 0.593
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are presented as decimals and are rounded to 3 decimal places to match the form of the

accuracies in the baseline paper. For all of the features, the LDA classifier trained on

LDA-reduced features performed the same as the LDA classifier trained on features with

no dimensionality reduction. Although there was no difference in performance, results are

included for completeness.

The LSTM model trained on word vectors had an average accuracy of 0.787, while the

CNN model had an average accuracy of 0.704. The highest-performing classifier trained on

text features was the SVM classifier trained on a combination of BERT embeddings and

CLAN features with PCA dimensionality reduction applied, which had an average accuracy

of 0.898. The highest-performing classifier trained on audio features was the LDA classifier

trained on x-vectors that were extracted using a system that was pretrained on VoxCeleb and

in-domain Pitt data. PCA dimensionality reduction was applied and the classifier had an

average accuracy of 0.657.

The highest-performing classifiers for each feature type, except for the classifiers trained

on x-vectors that were extracted from a system trained on just Pitt data, performed better

than the highest-performing audio and text baseline classifiers that were evaluated using

LOSO on the training set, which had an average accuracy of 0.565 and 0.768, respectively

(Luz et al., 2020).

Held-out test set

The MV classification accuracies on the test set for each of the classifiers can be seen in Table

2.6. The highest-performing text classifiers were the SVM classifier with no dimensionality

reduction and the RF classifier with PCA dimensionality reduction, both trained on BERT

embeddings. Both classifiers had an average accuracy of 0.854. The highest-performing

audio classifier was the 1NN classifier trained on i-vectors that were extracted using systems

pretrained on VoxCeleb with PCA dimensionality reduction applied, which had an average

accuracy of 0.563.

The highest-performing text classifiers outperformed the baseline text classifier, which

was an LDA classifier trained on CLAN features with an average accuracy of 0.75. The

highest-performing audio classifiers did not outperform the baseline audio classifier, which
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Table 2.6: Accuracies for classifiers evaluated on the test set. The test set results for the
best-performing models during cross-validation are red.

Features Dim. Red.
(n_comp) LDA DT 1NN SVM RF

LIWC
None 0.583 0.708 0.583 0.688 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583
PCA (20) 0.771 0.646 0.583 0.792 0.667

BERT

None 0.604 0.708 0.771 0.854 0.750
LDA (1) 0.604 0.604 0.646 0.604 0.604
PCA (2) 0.688 0.562 0.542 0.729 0.625
PCA (20) 0.833 0.646 0.750 0.812 0.854

BERT + LIWC
None 0.583 0.667 0.688 0.729 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583
PCA (20) 0.792 0.708 0.771 0.771 0.792

BERT + CLAN
None 0.729 0.750 0.771 0.812 0.812

LDA (1) 0.729 0.708 0.708 0.708 0.708
PCA (20) 0.729 0.708 0.667 0.771 0.792

BERT + LIWC + CLAN
None 0.625 0.688 0.750 0.750 0.812

LDA (1) 0.625 0.667 0.667 0.625 0.667
PCA (20) 0.812 0.604 0.729 0.812 0.812

word vectors

None 0.813 0.688 0.667 0.500 0.833
LDA (1) 0.813 0.750 0.771 0.813 0.750
PCA (2) 0.729 0.542 0.500 0.500 0.667
PCA (70) 0.812 0.562 0.688 0.500 0.771

i-vectors (VoxCeleb)

None 0.542 0.563 0.521 0.625 0.625
LDA (1) 0.542 0.521 0.521 0.542 0.521
PCA (2) 0.750 0.625 0.563 0.708 0.729
PCA (10) 0.562 0.542 0.438 0.583 0.562

i-vectors (Pitt)

None 0.417 0.521 0.521 0.438 0.542
LDA (1) 0.417 0.542 0.542 0.417 0.542
PCA (2) 0.667 0.583 0.708 0.604 0.646
PCA (20) 0.583 0.542 0.583 0.521 0.479

i-vectors (VoxCeleb + Pitt)
None 0.458 0.521 0.500 0.500 0.563

LDA (1) 0.458 0.542 0.542 0.458 0.542
PCA (20) 0.458 0.563 0.604 0.458 0.479

x-vectors (VoxCeleb)

None 0.604 0.500 0.500 0.563 0.521
LDA (1) 0.604 0.604 0.604 0.604 0.604
PCA (2) 0.625 0.563 0.563 0.625 0.542
PCA (40) 0.479 0.417 0.562 0.458 0.479

x-vectors (Pitt)
None 0.500 0.479 0.417 0.563 0.583

LDA (1) 0.500 0.542 0.542 0.500 0.542
PCA (40) 0.521 0.563 0.521 0.458 0.542

x-vectors (VoxCeleb + Pitt)
None 0.563 0.604 0.479 0.521 0.583

LDA (1) 0.563 0.521 0.521 0.563 0.521
PCA (40) 0.500 0.458 0.646 0.479 0.563
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was an LDA classifier trained on ComParE openSMILE features with an average accuracy

of 0.625.

2.3.2 MMSE prediction

Cross-validation

For the MMSE prediction task, one of the speakers in the training set did not have an MMSE

score and was excluded from training. Each of the regressors was evaluated on the challenge

training set using LOSO cross-validation, where there was no speaker overlap between the

training and test sets for each split. Each model was trained and tested at the utterance

level, where an MMSE score was predicted for each utterance. Then the predicted MMSE

scores of the utterances belonging to a patient were averaged to assign one MMSE score to

that patient. Lastly, the RMSE between the predicted and ground truth MMSE scores was

computed.

The average RMSE scores for each feature type can be seen in Table 2.7. For all of

the features, the LR regressor trained on LDA-reduced features performed the same as the

LR regressor trained on features with no dimensionality reduction. Although there was no

difference in performance, results are included for completeness.

The best-performing regressor trained on text features was the LR regressor trained on

BERT embeddings combined with LIWC and CLAN features with PCA dimensionality

reduction applied, which had an RMSE score of 3.774. The best-performing regressor

trained on audio features was the DT regressor trained on x-vectors that were extracted

using a system pretrained on Pitt. LDA dimensionality reduction was applied and the RMSE

score was 6.073.

The best-performing text regressors for every feature type, except for BERT embeddings

and word vectors, performed better than the baseline text regressor that was evaluated using

LOSO on the training set, which had an RMSE score of 4.38. The best-performing audio

regressors for every feature type performed better than the baseline audio regressor that was

evaluated using LOSO on the training set, which had an RMSE score of 7.28.
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Table 2.7: LOSO RMSE scores for each of the classifiers. The results for the best-performing
models for each feature type are red.

Features Dim. Red.
(n_comp) LDA DT 1NN SVM GradBoost

LIWC
None 10.067 5.766 5.626 6.083 4.014

LDA (23) 8.928 8.738 5.224 6.195 7.654
PCA (20) 4.436 5.383 5.364 6.057 4.640

BERT
None 5.111 5.984 4.953 6.111 5.407

LDA (23) 5.111 6.571 5.805 6.275 6.701
PCA (2) 6.304 5.628 5.851 6.187 6.034

BERT + LIWC
None 9.475 4.956 4.752 5.919 4.050

LDA (23) 8.515 8.038 5.285 6.821 7.234
PCA (20) 4.574 5.228 5.680 5.165 4.509

BERT + CLAN
None 4.810 6.265 4.728 6.009 4.100

LDA (23) 4.810 5.700 4.988 6.173 5.447
PCA (20) 3.991 5.459 4.842 5.254 3.969

BERT + LIWC + CLAN
None 13.877 5.533 4.420 5.846 4.190

LDA (23) 5.243 5.398 5.482 6.477 5.031
PCA (20) 3.774 5.701 5.023 4.966 4.201

word vectors

None 5.294 5.467 5.204 6.146 5.684
LDA (23) 5.294 5.158 4.967 5.936 5.228
PCA (2) 6.359 6.061 5.958 6.148 6.241
PCA (70) 5.419 5.561 4.981 6.177 5.516

i-vectors (VoxCeleb)

None 6.323 6.477 6.612 6.444 6.461
LDA (23) 6.323 6.366 6.384 6.279 6.443
PCA (2) 6.576 6.431 6.361 6.290 6.421
PCA (10) 6.412 6.507 6.524 6.265 6.264

i-vectors (Pitt)

None 6.545 6.850 6.239 6.281 6.513
LDA (23) 6.545 6.524 6.307 6.244 6.499
PCA (2) 6.624 6.606 6.484 6.323 6.598
PCA (20) 6.523 6.575 6.577 6.207 6.511

i-vectors (VoxCeleb + Pitt)
None 6.298 6.363 6.545 6.243 6.445

LDA (23) 6.298 6.399 6.110 6.231 6.459
PCA (20) 6.502 6.558 6.655 6.256 6.475

x-vectors (VoxCeleb)

None 6.424 6.400 6.208 6.400 6.369
LDA (23) 6.424 6.478 6.493 6.162 6.413
PCA (2) 6.618 6.767 6.531 6.381 6.634
PCA (40) 6.246 6.320 6.517 6.329 6.378

x-vectors (Pitt)
None 6.310 6.534 6.445 6.405 6.504

LDA (23) 6.310 6.073 6.403 6.245 6.318
PCA (40) 6.471 6.456 6.181 6.369 6.474

x-vectors (VoxCeleb + Pitt)

None 6.385 6.268 6.394 6.401 6.386
LDA (23) 6.385 6.379 6.230 6.170 6.442
PCA (40) 6.296 6.433 6.411 6.288 6.467
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Held-out test set

The RMSE scores on the test set for each of the regressors can be seen in Table 2.8. The

best-performing text regressor was the grad-boost regressor trained on BERT embeddings

combined with CLAN features with PCA dimensionality reduction applied, which had

an RMSE score of 4.560. The best-performing audio regressor was the 1NN regressor

trained on i-vectors extracted using a system pretrained on VoxCeleb and Pitt with LDA

dimensionality reduction applied, which had an RMSE score of 5.694.

The highest-performing text regressor outperformed the baseline text regressor, which

was a DT regressor trained on CLAN features with an RMSE score of 5.20. The highest-

performing audio regressor outperformed the baseline audio regressor, which was a DT

regressor trained on Multi-resolution Cochleagram (MRCG) openSMILE features that had

an RMSE score of 6.14.

2.3.3 Effects of education and the severity of cognitive impairment

In order to explore what effect the severity of cognitive impairment and education level

had on the classification and MMSE prediction results, the best-performing text and audio

models from both tasks were evaluated on smaller subsets of the test set that were split

based on education level and MMSE score. An MMSE score of 20-24 corresponds to

mild dementia, 13-20 corresponds to moderate dementia, and a score less than 12 is severe

dementia (Alzheimer’s Association, 2020). This information was used to create 4 groups of

cognitive severity: healthy (MMSE score greater than 25), mild dementia (MMSE score of

20-24), moderate dementia (MMSE score of 13-19), and severe dementia (MMSE score less

than or equal to 12). The ranges set by the Alzheimer’s Association were slightly modified

to have unique boundary values.

For education level, the majority of patients had 12 years of education (likely equivalent

to completing high school). Because the test set is small, we wanted to limit our experiments

to a small number of groups. For the reasons previously mentioned, one education group

was for patients that had 12 years of education, another group was for patients with less than

12 years of education, and the last group included patients that had more than 12 years of
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Table 2.8: RMSE scores for classifiers evaluated on the test set. The results for the best-
performing models during cross-validation are red.

Features Dim. Red.
(n_comp) LDA DT 1NN SVM GradBoost

LIWC
None 36.974 7.303 6.403 6.465 4.862

LDA (23) 12.286 9.657 7.388 6.313 8.365
PCA (20) 4.422 5.967 5.990 6.431 4.383

BERT
None 5.365 5.640 4.923 6.169 4.883

LDA (23) 5.365 7.515 6.017 6.253 7.373
PCA (2) 5.661 5.858 6.287 6.067 5.691

BERT + LIWC
None 34.420 7.127 5.021 6.103 5.037

LDA (23) 14.905 8.624 5.742 7.189 6.561
PCA (20) 4.872 7.078 5.159 4.895 4.404

BERT + CLAN
None 4.991 7.218 4.515 6.097 4.901

LDA (23) 4.991 6.523 5.600 6.422 6.660
PCA (20) 4.764 7.577 6.413 5.218 4.560

BERT + LIWC + CLAN
None 15.465 6.112 4.811 6.023 4.724

LDA (23) 8.110 6.500 5.753 6.887 6.021
PCA (20) 4.800 6.196 5.532 4.794 5.087

word vectors

None 4.714 5.280 5.129 6.147 5.361
LDA (23) 4.714 5.111 5.344 6.063 4.955
PCA (2) 5.732 6.452 5.992 6.129 5.803
PCA (70) 4.785 5.700 5.237 6.169 5.271

i-vectors (VoxCeleb)

None 6.600 6.305 6.269 6.161 6.396
LDA (23) 6.600 7.056 6.360 6.461 6.820
PCA (2) 6.194 6.514 6.546 5.999 6.237
PCA (10) 6.335 6.840 6.298 6.110 6.386

i-vectors (Pitt)

None 6.530 6.622 6.758 6.142 6.170
LDA (23) 6.530 6.712 6.133 5.956 6.473
PCA (2) 6.225 6.827 6.370 6.151 6.342
PCA (20) 6.257 6.278 6.110 6.199 6.252

i-vectors (VoxCeleb + Pitt)
None 6.292 6.042 7.391 6.158 6.145

LDA (23) 6.292 6.567 5.694 5.905 6.407
PCA (20) 6.316 6.439 6.607 6.168 6.431

x-vectors (VoxCeleb)

None 6.559 6.665 6.401 6.094 6.309
LDA (23) 6.559 6.289 6.261 6.085 6.312
PCA (2) 6.167 6.669 6.566 6.089 6.164
PCA (40) 6.358 6.058 6.189 6.115 6.160

x-vectors (Pitt)
None 6.428 6.483 6.563 6.287 6.333

LDA (23) 6.428 6.462 6.314 6.097 6.423
PCA (40) 6.424 6.506 6.499 6.322 6.370

x-vectors (VoxCeleb + Pitt)

None 6.644 6.622 6.338 6.096 6.208
LDA (23) 6.644 6.450 6.188 6.059 6.466
PCA (40) 6.173 6.640 6.488 6.123 6.204

53



Table 2.9: Test set accuracies and RMSE scores for different levels of cognitive deficiency
and education. (Feature Modality: Text)

Classification MMSE Prediction
Group

(num. patients) SVM RF GradBoost

MMSE

Healthy (28) 0.857 0.714 3.234
Mild Dementia (8) 0.750 0.750 3.777

Moderate Dementia (8) 0.875 0.625 4.563
Severe Dementia (4) 1.000 0.500 10.241

Education
<12 years (5) 0.800 0.600 7.448
12 years (24) 0.792 0.833 4.128
>12 years (19) 0.947 0.684 3.885

Table 2.10: Test set accuracies and RMSE scores for different levels of cognitive deficiency
and education. (Feature Modality: Audio)

Classification MMSE Prediction
Group

(num. patients) 1NN 1NN

MMSE

Healthy (28) 0.500 4.679
Mild Dementia (8) 0.625 1.801

Moderate Dementia (8) 0.500 6.224
Severe Dementia (4) 0.750 12.323

Education
<12 years (5) 1.000 9.329
12 years (24) 0.458 5.080
>12 years (19) 0.474 5.138

education.

The text and audio models were trained on the full training set and then evaluated on

each MMSE and education group separately by only testing on patients in the test set that

belonged to a particular group. The classification and MMSE prediction results can be seen

in Tables 2.9 and 2.10. For the MMSE groups, the results showed that the best classification

accuracy achieved using a text model was 1.000 and that accuracy was achieved when the

SVM classifier was evaluated on patients with severe dementia. The best RMSE achieved

using a text model was 3.234 and that RMSE was achieved when the GradBoost regressor

was evaluated on healthy patients. For the audio models, the best classification accuracy

was 0.750 and was achieved when the 1NN classifier was evaluated on patients with severe

dementia. The best RMSE was 1.801 and was achieved when the 1NN was evaluated on
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patients with mild dementia.

For the education groups, the best classification accuracy achieved using a text model

was 0.947, when the SVM classifier was evaluated on patients with more than 12 years of

education. The best RMSE was 3.885 and was achieved when the GradBoost model was

evaluated on patients with greater than 12 years of education. For the audio models, the

best classification accuracy was 1.000 and was achieved when the 1NN was evaluated on

patients with less than 12 years of education. The best RMSE was 5.080 and was achieved

when the 1NN was evaluated on patients with 12 years of education.

2.4 Discussion

The held-out test set results for both tasks show that text classifiers trained on BERT

embeddings and text regressors trained on BERT embeddings combined with CLAN features

perform better than text classifiers/regressors trained on only CLAN features (baseline text

feature set). The results also show that audio classifiers trained on x-vectors and i-vectors,

extracted using systems that were pretrained on VoxCeleb and Pitt data, do not perform

better than audio classifiers trained on ComParE openSMILE features (baseline audio feature

set). However, audio regressors trained on x-vectors and i-vectors do perform better than

audio regressors trained on MRCG openSMILE features when (1) the x-vectors are trained

on only out-of-domain data or a combination of in-domain data and out-of-domain data and

(2) when i-vectors are trained on a combination of in-domain and out-of-domain data.

We also note that we achieved better test set results on the classification task and equal

test set results on the MMSE prediction task using a pretrained BERT model as a feature

extractor as opposed to using BERT as a classifier and regressor as (Balagopalan et al.,

2020a) did. We received classification test set results equal to the BERT results of (Yuan

et al., 2020), who also used a BERT model as a classifier and added encoded pauses to

their training regime. Our results show that BERT embeddings can be used to achieve the

BERT model performance of (Yuan et al., 2020) without using the BERT model itself as a

classifier and without using pause information. However, the results of (Yuan et al., 2020)

suggest that we could achieve even greater performance if we include pause information in
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our feature set.

2.4.1 I-vector and x-vector systems

One possible explanation for the poor performance of the i-vectors and x-vectors on the

classification task is the domain-mismatch between the VoxCeleb datasets and the ADReSS

dataset. While the pretrained model may have learned some general representations of

speech from the VoxCeleb datasets, it is possible that the type of representations that the

model learned were not helpful for distinguishing between the speech of AD and non-

AD patients. The VoxCeleb dataset consists of speech extracted from YouTube videos

of celebrities being interviewed. While there is variety in the age, race, and accent of

the speakers in the VoxCeleb dataset, which may help improve the ability of a model to

distinguish between speakers that differ in these qualities, the nature of the recordings

(i.e. background noise, overlapping speech, etc.) varies significantly from the recording

environment of the ADReSS data. There is also less variety in the types of speakers present

in the ADReSS dataset: they are all within a certain age range and do not seem to have

significantly different accents. Therefore, the benefits of the VoxCeleb datasets are not likely

to help with the AD classification task and the difference in recording environments likely

intensifies the domain-mismatch problem, leading to lower performance. It is possible that

i-vectors and x-vectors pretrained on a different dataset with less of a domain-mismatch

would perform better.

The i-vectors extracted from a system that was only trained on Pitt data did not improve

performance on the classification task compared to the i-vectors extracted from a system

that was trained on VoxCeleb but did improve performance on the MMSE prediction task.

Conversely, the x-vectors extracted from a system that was only trained on Pitt did improve

performance on the classification task but did not improve performance on the MMSE

prediction task. The i-vector and x-vector extractors that we pretrained on a combination of

VoxCeleb and Pitt data led to an improvement in performance on the MMSE prediction task,

compared to the performance for i-vectors and x-vectors extracted from a system trained on

VoxCeleb. The x-vector performance also improved on the classification task. This shows
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that a small amount of in-domain data can improve i-vector and x-vector performance for the

MMSE prediction task. When choosing between training i-vector and x-vector extractors on

a large amount of out-of-domain data, a small amount of in-domain data, or a combination

of both, the results suggest that it is best to train on a combination of both.

2.4.2 Pros and cons of linguistic features

The highest-performing models for both tasks were trained on linguistic features (BERT

embeddings). One benefit of using linguistic features is that punctuation can be included.

This allows the model to use semantic and syntactical information, such as how often

speakers are asking questions (‘?’ present in the transcript). Also, because the BERT model

was pretrained on BooksCorpus and English Wikipedia, the data that the pretrained model

saw was likely much more general than the VoxCeleb data and using text data meant that

the model did not face the issue of the recording-environment mismatch.

However, there are some disadvantages associated with linguistic features. As discussed

in the review paper of (de la Fuente Garcia et al., 2020), transcript-free approaches to AD

detection are better for generalizability and for protecting the privacy of the participants.

In order to use linguistic features, the speech must be transcribed, meaning that linguistic

features are worse for model generalizability and patient privacy. Using linguistic features

depends on the use of automatic speech recognition (ASR) methods, which often have a low

level of accuracy, or transcription methods, which can be costly and time-consuming.

Some linguistic features are also content- and language-dependent. There are linguistic

features that are not content-dependent, such as word frequency measures, but it is difficult to

automate the extraction of content-independent linguistic features (de la Fuente Garcia et al.,

2020). For these reasons, it is important that future research explore using AD classification

techniques that only require acoustic features.
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2.4.3 Dimensionality Reduction

For the classification task, none of the highest-performing models had LDA dimension-

ality reduction applied to the feature sets before training. As previously mentioned, the

features were reduced to 1 dimension when LDA was applied. The results suggest that

this dimensionality reduction was too extreme for the classification task and did not allow

for enough information to be retained in the feature set. Conversely, the majority of the

highest-performing classifiers had PCA dimensionality reduction applied to the feature sets

before training. This suggests that applying PCA dimensionality reduction to the features

before training can be useful for AD classification.

For the MMSE prediction task, the features were reduced to 23 dimensions when LDA

was applied. Because the dimension was larger, LDA was more useful for this task. The best-

perfoming audio model had LDA dimensionality reduction applied. PCA dimensionality

reduction was also applied for some of the best-performing models, including the top-

performing text model. This suggests that applying LDA and PCA dimensionality reduction

to the features before training can be useful for MMSE prediction.

2.4.4 Group evaluation

The evaluation results for different MMSE and education groups showed that certain MMSE

groups can be classified more accurately (healthy, moderate dementia, and severe dementia)

while others (mild dementia) are more difficult to classify. This seems very reasonable, as

it is expected that more severe forms of dementia would be more easily distinguishable

from healthy patients. Also, MMSE scores are predicted least accurately when evaluated on

patients with severe dementia, regardless of the type of features used (text or audio).

The education results for the best-performing text-based model showed that patients

with more than 12 years of education can be classified with high accuracy (0.947), while

patients with exactly 12 years (0.792) and less than 12 years (0.800) of education are more

difficult to classify and are classified with similar accuracy. The MMSE scores of patients

with greater than 12 years of education were predicted with the most accuracy.

These results provide some insight into which types of features are best for different
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levels of dementia and education for the classification and MMSE prediction tasks. However,

it is important to note that the evaluation set is small, with as little as 4 speakers in certain

groups (severe dementia). Therefore, these findings may not translate well to larger datasets.

2.5 Chapter Summary

Audio and text-based representations of speech were extracted from the ADReSS dataset for

the AD classification and MMSE prediction tasks. Different dimensionality reduction tech-

niques were applied to the data before training and testing the classification and regression

models to explore whether applying dimensionality reduction techniques improved perfor-

mance on those tasks. LOSO cross-validation was used to evaluate each of the classifiers

and regressors and the models were also evaluated on a held-out test set.

The best-performing text models outperform the baseline text models on both tasks and

the best-performing audio models outperform the baseline on the MMSE prediction task.

The audio results suggest that, given access to a large amount of out-of-domain data and a

small amount of in-domain data, it is best to use a combination of both to train i-vector and

x-vector extractors. The comparison of the dimensionality reduction techniques shows that

applying PCA dimensionality reduction to the features before training a classifier can be

helpful for this particular AD classification task and possibly for other similar health-related

classification tasks. Also, applying LDA and PCA dimensionality reduction to the features

before training a regressor can be helpful for MMSE prediction tasks. Lastly, the evaluation

results on different MMSE and education groups show that patients with more severe forms

of dementia (moderate and severe) and healthy patients are easier to classify than patients

with mild dementia, whereas the MMSE scores of severe dementia patients are the most

difficult to predict. Patients with more than 12 years of education are the easiest to classify

and the MMSE scores of patients with greater than 12 years of education are the easiest to

predict.

In the next chapter, we present CLAC, a dataset consisting of healthy speakers that can

be used to augment datasets with speech from non-healthy subjects, like the datasets used in

this chapter and subsequent chapters.
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Chapter 3

The Crowdsourced Language

Assessment Corpus

This chapter introduces the Crowdsourced Language Assessment Corpus (CLAC), a speech

corpus consisting of audio recordings and automatically-generated transcripts for several

speech and language tasks, as well as metadata for each of the speakers. CLAC was created

to provide the community with a collection of audio samples from various speakers that

could be used to learn a general representation for speech from healthy subjects, as well as

complement other health-related speech datasets, which tend to be limited. In this chapter,

we describe the data collection protocol and summarize the contents of the dataset. We also

extract timing metrics from the recordings of each task to explore what those metrics look

like for a large, English-speaking population. Lastly, we provide an example of how the

dataset can be used by comparing the metrics to those extracted from a small sample of

Frontotemporal Dementia (FTD) subjects. We hope that this dataset will help advance the

state of the art in the health and speech domain.1

1The work in this chapter was previously published in (Haulcy and Glass, 2021c). The dataset is publicly
available at https://groups.csail.mit.edu/sls/downloads/clac/.
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3.1 Motivation

Speech has been shown to be a useful modality for diagnosing subjects with various forms

of cognitive impairment, including Parkinson’s disease (Moro-Velazquez et al., 2021, 2020;

Botelho et al., 2020), Alzheimer’s disease (Haulcy and Glass, 2021a; de la Fuente Garcia

et al., 2020; López et al., 2019; Pompili et al., 2020; Balagopalan et al., 2020a), FTD (Vogel

et al., 2017; Poole et al., 2017; Zimmerer et al., 2020), Huntington’s disease (Grimstvedt

et al., 2021; Vogel et al., 2012; Skodda et al., 2014; Hinzen et al., 2018; Chan et al., 2019),

and more. For this reason, datasets consisting of speech from healthy subjects and subjects

diagnosed with various neurocognitive disorders have been collected and used to distinguish

healthy subjects from cognitively impaired subjects. However, these datasets tend to be

limited in size and often are not publicly available (Cummins et al., 2018; Novikova and

Balagopalan). More speech data is needed for subjects with cognitive impairment for

researchers to be able to generalize their findings.

While speech from impaired subjects is needed, speech from healthy subjects is also

necessary and can be useful for learning what the speech profile of a healthy population

looks like. In a recent review paper, Voleti et al. (Voleti et al., 2019) acknowledged that the

characterization of the variability of the speech in healthy populations is a critical research

area for advancing the state of the art. We hope to contribute to this research area by

providing a dataset of healthy speakers, primarily from the United States, that can be used

to gain a more complete understanding of what variability looks like in healthy populations.

In this paper, we present a speech dataset consisting of audio recordings and automatically-

generated transcripts from speakers that were presumed healthy. They completed several

simple language tasks that are present in other health-related speech datasets (Vogel et al.,

2017; Henry and Grasso, 2018; Nassif et al., 2019), including common picture description

tasks like the cookie theft task (Becker et al., 1994; Kokkinakis et al., 2018; Mueller et al.,

2018a), which has been used to classify numerous cognitive disorders (Mueller et al., 2018a;

Giles et al., 1996; Cooper, 1990; Choi, 2009; Mackenzie et al., 2007; Hernández-Domínguez

et al., 2018; Mendez and Ashla-Mendez, 1991; Bschor et al., 2001). In addition to exploring

what speech looks like in a healthy population, the dataset presented in this paper can be
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used to compare the speech of healthy, English-speaking populations in different countries,

and/or supplement the data in other health-related datasets.

As far as we know, this is the largest collection of healthy English speakers completing

language comprehension tasks and we believe that the scientific community can benefit

from the public release of this dataset.

3.2 Data collection

The audio recordings in the dataset were collected through Amazon Mechanical Turk (AMT),

a crowdsourcing website that allows workers to complete tasks created by businesses and

researchers (Requesters) for a set cost. The tasks that the workers complete are called

Human Intelligence Tasks (HITs). In order to qualify to complete the HIT we created,

workers were required to be in the United States (a small subset of the workers were located

in different countries) and the percentage of assignments that were submitted by the workers

and approved by previous Requesters had to be 90% or higher. Each worker had a unique

worker ID. The worker IDs for approved submissions were used to ensure that each worker

was only allowed to complete the HIT one time.

3.2.1 Task selection

The HIT used to collect the data described in this paper consisted of several tasks. Screen-

shots of the HIT can be seen in Appendix B. Each worker was first asked to select their

gender (“Male”, “Female”, or “Other”) and age (a number between 18 and 90, or “Over 90”).

Some workers were also asked to select the number of years of education they completed,

with 12 years being equivalent to completing high school. There is no education information

for 250 workers because the education question was added after data collection began. Each

worker was also asked to tell us whether they had a cold, allergy, or other health-related

symptoms that might affect their speech the day they completed the HIT (“Yes” or “No”).

After that, the workers were asked to complete several simple tasks, all of which can be

seen in Table 3.1, along with the corresponding prompts and the number of audio files in the

dataset for each task. These tasks were selected because they have been used to assess and
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diagnose subjects with impaired speech in previous research (Vogel et al., 2017) and they

could be easily implemented and completed by the workers without a proctor present.

Table 3.1: The tasks workers were asked to complete, the corresponding prompts, and the
number of audio files in the dataset for each task.

Task Prompt Audio
Files

Counting From 1 To
20

Record yourself counting from 1 to 20. 1,816

Days Of The Week Record yourself saying the days of the week, starting with
Monday.

1,829

Cookie Theft Record yourself describing everything that you see in the
picture below using complete sentences.

1,832

Picnic Record yourself describing everything that you see in the
picture below using complete sentences.

808

Grandfather Record yourself reading the following passage: “You wish
to know all about my grandfather. Well, he is nearly 93
years old, yet he still thinks as swiftly as ever. He dresses
himself in an old black frock coat, usually several buttons
missing. A long beard clings to his chin, giving those who
observe him a pronounced feeling of the utmost respect.
When he speaks, his voice is just a bit cracked and quivers
a bit. Twice each day he plays skillfully and with zest upon
a small organ. Except in the winter when the snow or ice
prevents, he slowly takes a short walk in the open air each
day. We have often urged him to walk more and smoke less,
but he always answers, ‘Banana oil!’ Grandfather likes to be
modern in his language.”

1,832

Rainbow Record yourself reading the following passage: “The rain-
bow is a division of white light into many beautiful colors.
These take the shape of a long round arch, with its path high
above, and its two ends apparently beyond the horizon.”

1,832

Repeat 5 Times Record yourself repeating the following words 5 times each
in the same recording: artillery, catastrophe, impossibility.

250

Repeat 5 Times Ar-
tillery

Record yourself repeating the word “artillery” 5 times. 1,582

Repeat 5 Times
Catastrophe

Record yourself repeating the word “catastrophe” 5 times. 1,582

Repeat 5 Times Im-
possibility

Record yourself repeating the word “impossibility” 5 times. 1,582

SMR Record yourself repeating /pataka/ (pah tah kah) as fast as
you can for 10 seconds.

1,832

Max Phonation Please take a deep breath and then record yourself sustaining
voicing of the vowel /a/ (ah) at a comfortable pitch and
loudness level for as long as you can.

1,832
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The cookie theft and picnic pictures used for the picture description tasks can be seen

in Figures 3-1 and 3-2. For the “repeat 5 times” task, some workers were initially asked to

record themselves saying each of the 3 words 5 times in one recording. Subsequent workers

were asked to submit separate recordings for each word. As a result, there are 250 workers

with one repetition recording and 1,582 workers with 3 separate repetition recordings. The

picnic picture description task was also added after data collection began. As a result, 1,024

workers did not complete the picnic picture description task.

3.2.2 Validation

Transcripts were automatically generated for each of the submitted audio files using the

Google Speech Recognition API (Zhang, 2017). The transcripts were then used to validate

the submitted audio files by checking the number of words in the transcript and the length of

the audio file. If the number of words and length of the audio file were satisfactory (different

threshold values were used for different tasks), then the worker was allowed to move on

to the next task. Otherwise, they were asked to complete the task again. These validation

checks were added to ensure that workers did not submit incomplete assignments.

3.2.3 Summary statistics

916 speakers selected “Female” for their gender, 903 speakers selected “Male”, and 13

speakers selected “Other”. The average age of the workers was 35.7 years and the average

years of education was 15.4. Histograms showing the age and education distributions can be

seen in Figures 3-3 and 3-4. Workers were located in 962 unique cities, all 50 US states, and

12 unique countries. The majority of the workers (1,815) were located in the United States.

3.3 Data analysis

An audio activity detection tool called auditok (aud, 2020) was applied to each AMT

recording to determine the start and end times of the speech. The tool used a log energy

threshold value to detect the sections of audio that contained speech by ignoring sounds
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Figure 3-1: The image the workers were asked to describe for the cookie theft picture
description task.

below a certain threshold. A 65dB log energy threshold value was used. The detected start

and end times were used to extract several timing metrics from the recordings for each task:

the total duration of each audio file (in seconds), the number of speech segments, the speech

rate (speech segments per second), the number of pauses, the total duration of pauses (in

seconds), and the proportion of pause time (total duration of pauses divided by the total

duration of the audio file). Those metrics were used to explore what timing looks like for

a general population that is presumed healthy. The average value for each of the metrics

mentioned above can be seen in Table 3.2 for each of the tasks completed by the workers.

3.3.1 FTD comparison

One way that we anticipate the AMT data being used is to compare the speech of cognitively

impaired individuals with that of healthy speakers. The data can also be used to explore

66



Figure 3-2: The image workers were asked to describe for the picnic picture description
task.

how the speech of healthy speakers differs in different regions/countries. To illustrate this,

we also extracted the timing metrics mentioned above from the cookie theft audio files of

58 healthy Australian subjects, and Australian subjects with different types of FTD. The

FTD data used is a subset of a larger FTD dataset, part of which has been used in previous

research to explore which speech characteristics are most salient for the detection of the

behavioral variant of FTD (bvFTD) (Vogel et al., 2017). Timing metrics were extracted

from 11 subjects with bvFTD, 6 subjects with the semantic variant of Primary Progressive

Aphasia (svPPA), and 7 subjects with the logopenic variant of PPA (lvPPA).

The averaged metrics for each of the FTD variants and the healthy subjects can be seen

in Table 3.3. The results show that each of the timing metrics are lower for the healthy

Australian speakers compared to the healthy speakers in the CLAC dataset, which consists

primarily of American speakers. However, due to the large difference in sample size for the

two groups, we can not draw any strong conclusions from this observation. The results also

show that the timing metrics are the same or higher for each of the FTD groups compared

to the healthy groups. Previous research has shown that the speech of lvPPA and bvFTD
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Figure 3-3: The age distribution of the data. (Minimum: 18 years, Maximum: 80 years)

subjects is characterized by a greater proportion of pause time and an increased number of

pauses, the speech of lvPPA subjects is also characterized by an increase in pause duration,

and the speech of svPPA subjects is characterized by a decreased speech rate (Poole et al.,

2017). All of the results in Table 3.3 are consistent with the findings in previous research,

except for the increase in speech rate for svPPA subjects compared to the healthy subjects.

This discrepancy may be due to the limited sample size of the svPPA subjects.

The comparison of healthy speakers with FTD subjects is just one example of how

CLAC can be used. Similar experiments can easily be conducted with a different kind of

dataset consisting of healthy speech, impaired speech, or both.
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Figure 3-4: The education distribution of the data. (Minimum: 0 years, Maximum: 48 years

3.4 Limitations

While we hope that the dataset can aide researchers in understanding what the speech of the

general population looks like, we acknowledge that there are some limitations associated

with the dataset:

• Self-reported metadata: Each worker was allowed to report their age, gender, and

years of education. The information submitted by the workers could not be verified.

Therefore, some of the information may be incorrect.

• Recording environment: Since the workers were allowed to complete the tasks from

wherever they were, there was a lot of variety in the type of microphones that were

used and the environments that the workers were in. While the difference in recording

quality may make analysis more challenging, the variety will also lead to greater

generalizability.
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Table 3.2: The average values for the timing metrics extracted for each task.

Task Speech
Dura-
tion
(secs)

Num.
Speech
Seg-
ments

Speech
Rate
(seg-
ments/
sec)

Num.
Pauses

Pause
Dura-
tion
(secs)

Proportion
Pause Dura-
tion

Cookie Theft 30.50 13.42 0.45 12.43 6.47 0.21
Picnic 43.04 19.21 0.45 18.22 10.18 0.24
Counting 1 To 20 19.37 17.21 0.92 16.23 6.87 0.33
Days Of The Week 7.30 6.01 0.85 5.04 2.04 0.26
Grandfather 48.45 21.00 0.44 20.00 8.56 0.17
Rainbow 12.49 5.41 0.45 4.42 1.61 0.13
Repeat 5 Times 20.35 12.59 0.63 11.61 6.02 0.28
Repeat 5 Times Ar-
tillery

6.38 4.57 0.74 3.59 1.86 0.26

Repeat 5 Times
Catastrophe

6.65 4.62 0.73 3.65 2.00 0.28

Repeat 5 Times Im-
possibility

7.45 4.59 0.64 3.61 1.81 0.22

Smr 9.94 6.07 0.64 5.10 1.19 0.12
Max Phonation 10.79 4.22 0.48 3.27 2.95 0.22

• Health assumption: We made the assumption that all workers were healthy and did

not ask them about their previous medical history. For this reason, we cannot know

for sure that each speaker is healthy and it is possible that some speakers in the dataset

may have conditions that can impair their speech.

• Different accents: The majority of the workers were located in the United States.

However, there is still a variety of different accents and dialects due to differences

in the locations and backgrounds of the workers. While this makes the dataset less

“clean”, it can also be good for generalizability.

• Duplicate worker submissions: Each worker has a unique worker ID and that infor-

mation was used to ensure that a worker with a particular worker ID was not allowed

to complete our HIT more than once. However, there was no way to check whether

someone had multiple AMT accounts. Therefore, we can not rule out the possibility

that the same speaker completed the HIT multiple times from different AMT accounts.
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Table 3.3: The average values for the timing metrics extracted for each FTD variant and
healthy category on the cookie theft task.

Group Speech
Dura-
tion
(secs)

Num.
Speech
Seg-
ments

Speech
Rate
(seg-
ments/
sec)

Num.
Pauses

Pause
Dura-
tion
(secs)

Proportion
Pause Dura-
tion

CLAC (n =
1,832)

30.50 13.42 0.45 12.43 6.47 0.21

Healthy (n =
58)

26.97 11.29 0.41 10.29 4.79 0.16

bvFTD (n =
11)

60.88 25.63 0.45 24.63 26.18 0.41

svPPA (n = 6) 55.82 22.56 0.60 21.56 34.06 0.51
lvPPA (n = 7) 116.35 51.38 0.433 50.38 67.04 0.58

• Transcript quality: The quality of the automatically-generated transcripts varies

significantly depending on accent and recording quality. Therefore, some transcripts

have high accuracy while others may have incorrect words or may be missing some

words completely. Future releases of the dataset will include a corrected version of

the ASR transcripts.

• Age range: The majority of the participants are not within the age range of subjects

that are typically diagnosed with cognitive disorders. However, it can still be useful to

have speech from younger speakers that can be used to possibly examine how speech

differs between speakers of different ages in our general population.

While there are some limitations, there are also some benefits, including the fact that

(1) diarization is not needed for the recordings in this dataset because only the voice of

the worker is present in the recording and (2) we are not aware of any other datasets

of this magnitude with speech from healthy subjects completing cognitive tasks that can

complement other health-related speech data, making this dataset a significant contribution

to the field.
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3.5 Chapter Summary

In this chapter, we presented CLAC, a speech dataset consisting of audio recordings and

automatically-generated transcripts from 1,832 speakers located in the United States, as

well as 11 other countries. We demonstrated how the dataset can be used to characterize the

speech of a healthy, English-speaking population and distinguish between healthy subjects

and subjects with some form of cognitive impairment. We discussed the limitations of the

dataset and believe that the dataset is a valuable contribution to the scientific community,

despite those limitations.

In the next chapter, we use CLAC to augment the data for patients with lvPPA so that

we can perform binary classification for lvPPA subjects and healthy controls.
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Chapter 4

Repetition Assessment for Speech and

Language Disorders: A Study of the

Logopenic Variant of Primary

Progressive Aphasia

Impaired repetition is a characteristic of several speech and language disorders, including

certain variants of Primary Progressive Aphasia (PPA). People with the logopenic variant of

PPA (lvPPA) can present with impaired repetition abilities and repetition tasks can be used

to distinguish lvPPA speakers from healthy controls. In this chapter, we propose a novel

technique for quantifying the quality of repetition in speech recordings and demonstrate

the utility of the technique by using it to distinguish between healthy speakers and lvPPA

speakers. We train several classifiers on features extracted from the repetition recordings.

The best classifier distinguishes the lvPPA speakers with impaired repetition from the

healthy speakers with 85.7% accuracy and classifies all healthy speakers with perfect

accuracy. Although we evaluate the method on lvPPA detection, we believe that the method

has potential utility for a range of tasks and speech disorders where repetition occurs.1

1The work in this chapter was previously published in (Haulcy et al., 2022).
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4.1 Motivation

It is no secret that speech can be used to detect cognitive impairment in patients with demen-

tia and other neurocognitive disorders (Moro-Velazquez et al., 2021; Botelho et al., 2020;

Haulcy and Glass, 2021a; de la Fuente Garcia et al., 2020; Vogel et al., 2017; Grimstvedt

et al., 2021; Vogel et al., 2012). Spoken repetition tasks have been used for decades to

detect cognitive and language impairment in children and adults. Non-word repetition tasks

have been used to detect language impairment in children (Dollaghan and Campbell, 1998;

Estes et al., 2007; Gutiérrez-Clellen and Simon-Cereijido, 2010; Weismer et al., 2000) and

word/sentence repetition tasks have been used to distinguish healthy controls from patients

with various forms of PPA and Alzheimer’s Disease (Leyton et al., 2014; Lukic et al., 2019;

Bonner et al., 2010; Gorno-Tempini et al., 2011; Mesulam et al., 2012). In previous research,

repetition scores have been manually assigned to each speaker (e.g. by computing how many

syllables a speaker said correctly) by clinicians and graduate students that were trained to

assess the performance of the patients on certain tasks. This process can be biased by the

scorer’s expectations (Clark et al., 2021) and can be tedious to complete. For this reason,

an automatic way of quantifying repetition quality could be beneficial to the research and

clinical communities.

Previous research has explored ways of detecting repetition in audio. Early work on

unsupervised pattern discovery in speech were able to find repeating word-like sequences in

speech signals without prior knowledge of the words or the language being spoken (Park and

Glass, 2007; Jansen et al., 2010). These techniques involved using spectral distance matrices,

segmental dynamic-time-warping (SDTW) and graph-based clustering methods to identify

reoccurring sequences. We were motivated by this work to develop a repetition detection

method that could be used to quantify the quality of repetition in a speech recording.

In this chapter, we describe our repetition detection method and evaluate its ability

to distinguish lvPPA subjects from healthy subjects. The speech of lvPPA subjects is

characterized by a decline in word retrieval, poor repetition, and phonemic paraphasias

(Poole et al., 2017). Speakers with poor repetition abilities are unable to repeat other people’s

speech correctly, often producing phonological speech errors. For this reason, recordings
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of lvPPA subjects completing repetition tasks are particularly illuminating when compared

to the recordings of healthy speakers completing the same tasks. Our work differs from

previous work by providing an approach for computing a metric for repetition quality without

the need for manual evaluation and without needing to know how many syllables/words are

present beforehand. In the following sections, we explain and demonstrate the feasibility of

our approach by training classification models using the extracted metrics as inputs.

4.2 Datasets

The first dataset used for analysis and classification was the Crowdsourced Language

Assessment Corpus (CLAC) (Haulcy and Glass, 2021c), as described in Chapter 3. The

repetition recordings for a subset of the speakers in the CLAC corpus were used as healthy

controls during analysis and classification.

The second dataset consisted of speech from subjects with various forms of Frontotem-

poral Dementia (FTD) and PPA completing speech tasks similar to those found in the CLAC

corpus, including the repetition tasks. The FTD dataset has been used in previous research

to explore which speech characteristics are most salient for the detection of the behavioral

variant of FTD (bvFTD) (Vogel et al., 2017). The repetition recordings associated with the

lvPPA subjects were used for analysis and classification.

4.3 Signal Processing For Repetition Detection

Each repetition waveform was processed in several steps. First, silence was detected and

removed from the beginning and end of each recording. This was accomplished with Pydub

(Robert et al., 2018) with a minimum silence length of 250 ms, and a silence threshold set

to the volume of the recording in dB relative to full scale (dBFS) minus 16.

The next step was to extract 13 Mel Frequency Cepstral Coefficients (MFCCs) from

each waveform, using a window length of 25 ms and analysis rate of 10 ms. The MFCCs

were used as the basis for computing the distance matrices described in the next section.

More background information about MFCCs can be found in A.2.1.
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4.3.1 Self-Distance Matrices

In the general SDTW framework, distance matrices correspond to frame-level distances

between two speech waveforms, with each element being a distance between two individual

frames. In the repetition task however, each waveform contains multiple occurrences of the

same word or syllable, so a (square) self-distance matrix is an appropriate representation

to capture the self-similarity between successive repetitions. For this work, we use the

Euclidean distance metric to compute frame-level MFCC distances. In Figure 4-1, an

example of a self-distance matrix for a recording with unimpaired repetition (top) versus

the matrix for a recording with impaired repetition (bottom) can be seen. In both cases, the

matrix diagonal is zero (blue), since we are comparing a recording to itself. However, in

the unimpaired repetition matrix, we can also see diagonal-like stripes at regular intervals.

These “stripes” correspond to low-distance alignments of successive repetitions. The first

off-diagonal corresponds to matching successive repetitions in the waveform (e.g., 1v2,

2v3, 3v4, 4v5), the second off-diagonal corresponds to matching repetitions spaced two

repetitions apart (1v3, 2v4, 3v5), and so on. In this way, the off-diagonal structure neatly

summarizes the distances between each pair of repetitions.

In contrast to the unimpaired repetition, a poorly spoken repetition recording will not

exhibit the same degree of off-diagonal structure. Aside from the main diagonal, we would

expect to see more random distribution of distances, corresponding to Euclidean distances

between random speech frames. In the impaired repetition example, we see some degree

of off-diagonal structure, but it is clearly weaker and more sporadic than the unimpaired

repetition example.

The self-distance matrix is a useful representation of the self-similarity between repeating

speech patterns. It has the advantage of being agnostic to the chosen word, syllable or even

language being spoken, and requires no task-specific training.

4.3.2 Normalized Diagonal Sum Profile

In order to determine the optimal alignment between successive repetitions, an algorithm

such as SDTW should be used (Park and Glass, 2007). In doing so, we can establish an
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Figure 4-1: Self-distance matrices for an unimpaired (top) and impaired (bottom) repetition
of five instances of the word “catastrophe”.

optimal warping path and an associated alignment cost. In our initial work however, we

chose to approximate the warp by assuming an unimpaired repetition alignment would
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be nearly diagonal, and that the alignment cost could be reasonably represented by the

normalized sum of distances along the diagonal.

As a way of characterizing the overall self-distance matrix, we transformed it into a

one-dimensional profile, with each element corresponding to a normalized sum of distances

along a particular diagonal. An example of a diagonal sum profile is shown in Figure 4-2,

which shows the profile for the unimpaired repetition and impaired repetition examples

from Figure 4-1. The profile is plotted as a function of time, which represents the offset in

seconds between two alignments (1s corresponds to 100 frames) in the self-distance matrix.

From the sum profile, we can easily identify good alignments, as they correspond to local

minima. For an unimpaired repetition (Figure 4-2a), the minima occur at regular intervals

and have consistent magnitude and drop from the average profile value. For an impaired

repetition (Figure 4-2b), the minima are more sporadic and are rather insignificant compared

to the average profile value.

Sum Profile Features

Although the self-distance matrix or the sum profile could have been used directly as a

feature representation for the repetition classification model, we wanted to extract a more

compact set of features due to the lack of data from lvPPA speakers. Since information

about the local minima in the sum profile seemed important, we extracted information about

the offset time and magnitude of the local minima. To accomplish this, the find_peaks

function in Scipy’s signal processing library (Virtanen et al., 2020) was used to find the

minima in each sum profile. An example of the detected minima can be seen in Figure 4-2.

The detected time offsets are shown beneath each minima and the associated range (the

magnitude drop of the local minima) are shown above the lines representing the magnitude.

For each recording, the first three local minima were found and the minima with the

largest range was used to represent the recording, along with the corresponding offset

time. Each speaker had at least two repetition recordings. After each recording had an

associated minima range and time, the minima with the smallest range was selected as

the representation for the speaker. In other words, each speaker was represented by their

worst repetition, since we expected that healthy speakers would perform well in all their
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(a) Unimpaired Repetition Example

(b) Impaired Repetition Example

Figure 4-2: The diagonal sum profile and associated spectral amplitudes for the unimpaired
(a) and impaired (b) repetitions of Figure 4-1.
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recordings whereas struggling speakers might not.

Fourier Analysis Features

As an alternative to the direct feature extraction of local minima information on the sum

profile, we also examined the use of a Fourier analysis. We hypothesized that applying a

discrete Fourier Transform (DFT) to the sum profile could help us identify the regularity of

the local minima structure in the sum profile.

Example DFTs can be seen in Figures 4-2a and 4-2b (bottom plots). In Figure 4-2a,

there are clear DFT peaks at several frequencies. Scipy’s find_peaks function was also used

to find the peaks in the DFT. As can be seen in the Figure, the first harmonic occurs at 1.04

Hz, which, given the DFT resolution, approximately corresponds to the regular minima in

the sum profile.

The DFT in Figure 4-2a also shows that significant harmonics have higher amplitude

values (in contrast to Figure 4-2b). This suggests that the frequency and amplitude values

associated with the harmonics in the DFT may provide a useful representation for analyzing

repetitions. For this reason, we extracted the frequency and amplitude for the largest

harmonic in the DFT and used that to represent the repetition quality in each recording. As

before, we represented each speaker by the smallest amplitude from all of their recordings

(representing the speaker’s worst performance) and used the frequency and amplitude of

that peak to represent the speaker.

More background information about DFTs can be found in A.5.

4.4 Analysis

The processing steps described in Section 4.3 were applied to the audio recordings of healthy

and lvPPA speakers and used to extract four features that were described previously (sum

profile local minima time and range, DFT first harmonic frequency and amplitude). Since

the CLAC corpus contains a wide demographic, a subset of speakers older than 44 was

selected as the healthy subset in order to match the lvPPA speaker age range. The data

thus consisted of recordings from 354 healthy speakers (aged 53.3 ± 8 years; 199 female
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Figure 4-3: A scatter plot of the sum profile local minima range and DFT harmonic amplitude
for healthy and lvPPA speakers.

speakers) and 9 lvPPA speakers (aged 64.1 ± 7 years; 5 female speakers).

We experimented with different combinations of the four features to see which were the

most salient for distinguishing between speakers with unimpaired and impaired repetitions.

One approach that we used to make predictions about which combination of features would

be most salient was to plot one feature as a function of another for each speaker and visualize

the separation. Figure 4-3 shows one such visualization that plots the local minima range as

a function of the harmonic amplitude for lvPPA and healthy speakers.

While lvPPA speakers are known to have difficulty with repetition, there are some that

perform the task well. To better analyze the results, a speech and language pathologist

independently scored all lvPPA speakers on the multisyllabic word repetition task in terms

of speed, precision/accuracy and consistency, before assigning each speaker an overall score.

These scores were used to divide the lvPPA speakers into those with relatively unimpaired
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Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.978 1 0.111 0.143
[HA] 0.975 1 0 0

[MT, MR] 0.981 1 0.222 0.286
[MT, HF] 0.975 1 0 0
[MR, HA] 0.978 1 0.111 0.143
[HF, HA] 0.975 1 0 0
[HF, MR] 0.983 1 0.333 0.429

[MT, MR, HF, HA] 0.981 1 0.222 0.286

Table 4.1: LDA LOSO results for healthy vs. lvPPA speakers with different feature combi-
nations used as inputs (MT: Minima Time, MR: Minima Range, HF: Harmonic Frequency,
HA: Harmonic Amplitude).

repetition abilities, and those with relatively impaired repetition abilities.

In Figure 4-3, the unimpaired lvPPA speakers tend to fall among the cluster of healthy

speakers while all but one impaired lvPPA speaker is separated from the healthy speakers.

The one impaired lvPPA speaker that is among the healthy speakers is dysfluent throughout

the recordings to a lesser degree than the other impaired lvPPA speakers. For this reason,

we think it’s reasonable for that speaker to be close to the border between the clusters.

4.4.1 Classification

In order to explore how useful the features we extracted were for distinguishing between

unimpaired and impaired repetition recordings, we trained five classification models on

several different combinations of features. The five classifiers that we trained were the Linear

Discriminant Analysis (LDA) classifier, the Decision Tree (DT) classifier, the K-Nearest

Neighbors (KNN) classifier, the Random Forest (RF) classifier, and the Support Vector

Machine (SVM) classifier. More background information about each of the classifiers

mentioned in this section can be found in A.3. Because of the small size of the data,

we used Leave-One-Subject-Out (LOSO) cross-validation to train the models. We share

the classification results for all five classifiers trained on all the different combinations of

features (Tables 4.1, 4.2, 4.3, 4.4, and 4.5,), and we also share the best LOSO results for all

five models and the combination of features that the models were trained on (Table 4.6).

Each model output a prediction of “healthy” or “lvPPA”. Since there was a large disparity
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Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.978 0.986 0.667 0.857
[HA] 0.981 0.992 0.556 0.714

[MT, MR] 0.978 0.986 0.667 0.857
[MT, HF] 0.956 0.975 0.222 0.286
[MR, HA] 0.975 0.986 0.556 0.714
[HF, HA] 0.986 0.994 0.667 0.857
[HF, MR] 0.978 0.986 0.667 0.857

[MT, MR, HF, HA] 0.981 0.989 0.667 0.857

Table 4.2: DT LOSO results for healthy vs. lvPPA speakers with different feature combina-
tions used as inputs (MT: Minima Time, MR: Minima Range, HF: Harmonic Frequency,
HA: Harmonic Amplitude).

Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.992 1 0.667 0.857
[HA] 0.989 1 0.556 0.714

[MT, MR] 0.992 1 0.667 0.857
[MT, HF] 0.975 1 0 0
[MR, HA] 0.989 1 0.556 0.714
[HF, HA] 0.989 1 0.556 0.714
[HF, MR] 0.989 1 0.556 0.714

[MT, MR, HF, HA] 0.989 1 0.556 0.714

Table 4.3: KNN LOSO results for healthy vs. lvPPA speakers with different feature
combinations (MT: Minima Time, MR: Minima Range, HF: Harmonic Frequency, HA:
Harmonic Amplitude).

Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.978 0.986 0.667 0.857
[HA] 0.981 0.992 0.556 0.714

[MT, MR] 0.992 1 0.667 0.857
[MT, HF] 0.970 0.992 0.111 0.143
[MR, HA] 0.989 0.997 0.667 0.857
[HF, HA] 0.986 0.997 0.556 0.714
[HF, MR] 0.992 1 0.667 0.857

[MT, MR, HF, HA] 0.989 0.997 0.667 0.857

Table 4.4: RF LOSO results for healthy vs. lvPPA speakers with different feature combina-
tions used as inputs (MT: Minima Time, MR: Minima Range, HF: Harmonic Frequency,
HA: Harmonic Amplitude).

in the number of healthy speakers versus lvPPA speakers, we report the specificity (the

percentage of healthy speakers that were correctly classified as healthy) and sensitivity (the
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Features Acc. Spec. Sens. Imp. Sens.
[MR] 0.992 1 0.667 0.857
[HA] 0.989 1 0.556 0.714

[MT, MR] 0.989 0.997 0.667 0.857
[MT, HF] 0.975 1 0 0
[MR, HA] 0.989 1 0.556 0.714
[HF, HA] 0.989 1 0.556 0.714
[HF, MR] 0.992 1 0.667 0.857

[MT, MR, HF, HA] 0.989 1 0.556 0.714

Table 4.5: SVM LOSO results for healthy vs. lvPPA speakers with different feature
combinations used as inputs (MT: Minima Time, MR: Minima Range, HF: Harmonic
Frequency, HA: Harmonic Amplitude).

Classifier Features Acc. Spec. Imp.
Sens.

LDA [HF, MR] 0.983 1 0.429
DT [HF, HA] 0.986 0.994 0.857

KNN [MR], [MT, MR] 0.992 1 0.857
RF [MT, MR], [HF, MR] 0.992 1 0.857

SVM [MR], [HF, MR] 0.992 1 0.857

Table 4.6: The best LOSO results for each classifier.

percentage of lvPPA speakers that were correctly classified as lvPPA) results in addition to

the average accuracy across all splits. For sensitivity, we were particularly interested in the

sensitivity for the impaired lvPPA speakers, as we expected the unimpaired lvPPA speakers

to be misclassified as healthy. For this reason, we report the impaired lvPPA sensitivity (the

percentage of impaired lvPPA speakers that were classified as lvPPA) in both tables. Table

4.6 shows that the best-performing classifiers had an average accuracy of 0.992, a specificity

of 1, and an impaired lvPPA sensitivity of 0.857.

4.5 Discussion

The classification results demonstrate the feasibility of our approach by distinguishing

between speakers with unimpaired and impaired repetition (healthy and impaired lvPPA

speakers). Only one impaired lvPPA speaker was misclassified as healthy. The misclassified

speaker is the impaired lvPPA speaker that is among the healthy speakers in Figure 4-3,

84



which accounts for the misclassification. The misclassified speaker was also early in their

disease progression (0 years since diagnosis when the task was completed), which likely

made their repetition impairment less severe compared to the other impaired lvPPA speakers

who were all further along in the progression of the disease (the other impaired lvPPA

speakers had an average of 3 years since diagnosis).

4.5.1 Combination Of Features

Table 4.6 shows that the MR feature is present in the feature combinations of all but one

classifier when the best performance for that classifier is achieved. For two classifiers

(KNN and SVM), using only the MR feature achieves the best performance (Table 4.6).

We can conclude therefore that MR is an important feature for quantifying repetition in

audio, perhaps the most important feature. However, only two classifiers achieved the best

performance using only MR features. The other classifiers used a combination of MR and

MT or HF. This suggests that having a feature that represents the time the repetition occurred,

in addition to the minima range, is best for good performance across classifiers.

4.5.2 Benefits Of Our Approach

There are several benefits associated with our approach. The first is that our approach is

agnostic to accent and language. Since an utterance is being compared to itself when the

distance matrix is computed, the approach does not need to be augmented based on what

language someone speaks or what accent they have. Our approach simply tries to capture

and measure repeating sounds. This means that the word the speaker repeats does not matter.

Our approach can also potentially be used to identify repeating sounds that are not words,

like repeating environmental sounds or non-word repetition tasks, like the popular pataka

task that is used to study patients with Parkinson’s disease (Gómez-Vilda et al., 2021). Our

approach can be applied to a variety of problems in addition to the detection of language

impairment.

Our method is also agnostic to the data collection method that is used. Recordings can

be captured in a lab setting, where a proctor is present (e.g. FTD dataset). Recordings can
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also be collected by the speaker themselves without a proctor present, via phone or computer

(e.g. CLAC dataset). The task is simple enough for people to complete on their own from

anywhere.

Variation in the recording environment is not a problem. The concern associated with

having recordings that have been collected in vastly different environments using different

microphones is alleviated by the fact that self-distance matrices are collected and distances

are not being computed between the recordings with vastly different recording environments.

Lastly, our approach does not depend on the amount of input data we have and can be

applied to a single recording. This is useful in situations where data tends to be limited (e.g.

when working with patient data in the health domain).

4.5.3 Sensitivity/Specificity Analysis

Figure 4-4: A plot of the impaired sensitivity vs. specificity values for different threshold
probabilities when training the best KNN model.

For health-related classification, it is important to design systems that prioritize identify-

ing subjects that have the condition, as we do not want anyone with the disease to be missed.

Therefore, we are interested in designing systems that have high sensitivity, even at the cost
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Figure 4-5: A plot of the impaired sensitivity vs. specificity values for different threshold
probabilities when training the best RF model.

of having a less-than-optimal specificity, as it is preferred to misclassify healthy speakers as

impaired if it means that the impaired speakers have a high likelihood of being detected.

There is currently no standard for finding the optimal sensitivity in the medical domain.

While there are techniques that can be used to find an optimal cut off point when sensitivity

and specificity are equally important diagnostically (e.g. Youden’s index (Youden, 1950)),

there is currently no approach for setting a cutoff point when sensitivity is more important,

which is the case in the medical domain.

For this reason, we present impaired sensitivity and specificity values for different

probability thresholds between 0 and 1 for the best models in Table 4.6, excluding the SVM

model. SVM was excluded because it is documented that the prediction probabilities are

calibrated using Platt scaling (Platt, 1999), which is known to have theoretical issues that

result in a sample having a predicted label that is inconsistent with the assigned probability.

For example, the predict function may label a sample as belonging to the positive class even

if the output of the predict_proba function is less than 0.5. Because of the inconsistency,

we thought it best to only include plots for the KNN and RF models. The plots can be seen in

Figures 4-4 and 4-5. We hope that this approach will give readers a complete understanding
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of what sensitivity/specificity values can be achieved and allow them to draw their own

conclusions about the optimal values and thresholds.

4.6 Chapter Summary

In this chapter, we present a novel approach for measuring the quality of repetition in

a recording. We demonstrate the feasibility of this approach by using it to distinguish

between healthy and lvPPA speakers using classification. We discuss the many benefits of

our approach, including the fact that it is a general repetition measurement approach that

can be applied to research problems in a variety of areas. We envision our approach being

used to create an application that allows speakers to record themselves completing a simple

repetition task (e.g. “repeat the word ‘Artillery’ five times”) and get a repetition score in

real time. Our approach is minimally invasive, inexpensive, and uses recordings that are

quick/easy to record, making it appealing for use in clinical trials. The language-independent

nature of the approach also makes it potentially useful for global clinical trials.

In the next chapter, we explore methods for classifying other FTD/PPA variants, in

addition to lvPPA, using other tasks from the same FTD/PPA dataset.
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Chapter 5

Classifying Primary Progressive Aphasia

and Frontotemporal Dementia from

Speech

Frontotemporal Dementia (FTD) and Primary Progressive Aphasia (PPA) are umbrella terms

for a set of neurodegenerative diseases that cause problems with behavior and language.

Extensive research has been conducted to study how these diseases manifest themselves

in the speech of afflicted subjects. In this chapter, we explore using deep learning-based

methods to distinguish between healthy subjects and subjects with some form of FTD/PPA.

Specifically, we experiment with using several transformer models for feature extraction

before training a Logistic Regression classifier on those embeddings for FTD/PPA detection.

We compare the results of manual transcription to automatic transcription and perform

ablation studies to gain insight into what may be distinguishing healthy controls from

FTD/PPA speakers. We show that the Whisper speech recognizer is a viable replacement

for human transcription. We also show that healthy controls can be distinguished from

subjects with the logopenic variant of PPA (lvPPA), the behavioral variant of FTD (bvFTD),

and the semantic variant of PPA (svPPA), with 0.91, 0.91 and 0.90 accuracy, respectively,

when evaluated on a cookie theft task, and the nonfluent variant of PPA (nfvPPA) with 0.90

accuracy on a monologue task.
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5.1 Motivation

Over the past several years, researchers have been applying deep learning/machine learning-

based methods to several different tasks, including the detection of impaired speech. Because

of the limited amount of data available for neurodegenerative diseases like FTD and PPA,

some previous works have resorted to training simple machine learning classifiers on

explainable features (e.g. repetition measures, word usage frequency, etc.) extracted from

the data (Haulcy et al., 2022; Zimmerer et al., 2020; Kim et al., 2019; Cho et al., 2020; Vogel

et al., 2017; Poole et al., 2017; Matias-Guiu et al., 2022; Neophytou et al., 2019; Fraser et al.,

2013; Chlasta and Wołk, 2021; Garcia-Gutierrez et al., 2022; Javeed et al., 2023). While

these methods have lead to promising results, it is possible that better performance could be

achieved using more advanced deep learning architectures. In particular, the effectiveness

of deep learning-based architectures have been demonstrated in several different research

domains and have been used to classify several diseases, such as Alzheimer’s Disease

(Mahajan and Baths, 2021; Pappagari et al., 2021; Balagopalan et al., 2020b; Haulcy

and Glass, 2021b; Martinc et al., 2021; Rohanian et al., 2021; Chlasta and Wołk, 2021),

Parkinson’s Disease (Fang et al., 2020; Chronowski et al., 2022), FTD/PPA (Rezaii et al.,

2021; Themistocleous et al., 2021), and more.

The success of these deep learning-based models in previous work has lead us to explore

the benefits of using more recent state-of-the-art transformers to classify FTD/PPA. While

we hypothesize that the general embeddings will encode information about the speech that

will allow the models to distinguish between healthy speakers and FTD/PPA speakers with

high accuracy, we also acknowledge that interpretation will be a new challenge.

In this chapter, we present the classification results of using the pretrained Difference-

based Contrastive Learning for Sentence Embeddings (DiffCSE) (Chuang et al., 2022)

model, as well as other transformer models that are described in greater detail in Section 5.4,

to extract embeddings from healthy and FTD/PPA transcripts before using those embeddings

to train a classifier using leave-one-subject-out (LOSO) cross-validation. We also perform

ablation studies to gain insight into the model’s decision-making process before explaining

future steps. To the best of our knowledge, we are the first to use DiffCSE embeddings
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to distinguish healthy and FTD/PPA subjects and the first to offer our interpretation of the

model’s predictions on this task.

5.2 Dataset

The dataset used in our experiments consists of speech recordings from Australian English-

speaking subjects, some healthy and some with various forms of FTD and PPA. The subjects

completed several speech tasks, such as the Cookie Theft picture description task (Mueller

et al., 2018a), a word repetition task, and a monologue task, in which the subjects were

prompted to talk about an event they enjoyed, a happy memory, or a topic that they liked,

for approximately one minute. The dataset has been used in previous research to explore

which speech characteristics are most salient for the detection of bvFTD (Vogel et al., 2017).

The monologue (MONL) and cookie theft (COOK) recordings associated with the healthy,

lvPPA, bvFTD, nfvPPA, and svPPA subjects were used for analysis and classification.

nfvPPA results were not computed for the COOK task because the available data was

severely limited (only two speakers). Demographic information about each of the groups in

relation to each task (MONL, COOK) can be seen in Tables 5.1 and 5.2.

Diagnosis n m Ave. Age (+/- std) Male/Female
Healthy 55 55 63.4 (± 7.7) 26/29
lvPPA 18 19 66.3 (± 6.6) 10/8

nfvPPA 10 13 63.4 (± 6.9) 7/3
bvFTD 34 43 62.0 (± 7.4) 25/9
svPPA 13 15 64.6 (± 9.0) 7/6

Table 5.1: Demographic information summarizing the subset of speakers in the FTD/PPA
dataset used for training and analysis. (n: number of subjects, m: number of recordings,
task: MONL)

5.3 Data Preparation

The speech recordings of each subject completing the MONL and COOK tasks were

manually transcribed at Takeda Pharmaceuticals. Two versions of the transcripts were
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Diagnosis n m Ave. Age (+/- std) Male/Female
Healthy 58 58 63.2 (± 7.6) 27/31
lvPPA 6 7 65.1 (± 6.2) 3/3
bvFTD 12 17 62.9 (± 9.0) 10/2
svPPA 6 9 68.1 (± 5.1) 2/4

Table 5.2: Demographic information summarizing the subset of speakers in the FTD/PPA
dataset used for training and analysis. (n: number of subjects, m: number of recordings,
task: COOK)

Whisper Model WER
medium_en_0 19.9%

medium_en_10 19.5%
large-v2_0 21%

large-v2_10 20%

Table 5.3: WER for Whisper models. Computed using the manual transcripts as the ground
truth.

created by human transcribers: (1) transcripts with interviewer speech included (i.e. the

speech of the person administering the test is included in the transcript) and (2) transcripts

without interviewer speech (only the speech of the subject completing the task is included

in the transcript). Whisper (Radford et al., 2022), a speech recognition model trained on

680,000 hours of speech for several different speech processing tasks, was also used to

transcribe the MONL/COOK recordings, so that the effect of manual transcription and

automatic transcription on the classification performance could be compared. Whisper

was chosen because it is a recently-released model that has very good automatic speech

recognition (ASR) accuracy and good robustness to unseen conditions. Several versions of

the pretrained Whisper model are publicly available. Both medium and large versions of the

model were used for English transcription, one of each with greedy decoding and one of

each with a beam search value of 10. More background information about Whisper can be

found in A.1.6.

Previous research has shown that there can be large variation in how punctuation is

applied by different people (Ueffing et al., 2013). After observing some of the transcripts

produced by Whisper, we noticed that punctuation/capitalization was not consistently added.

For this reason, the punctuation originally added to both the manual and automatically-
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generated transcripts was removed and the rpunct library (http://github.com/Felflare/rpunct)

was used to apply punctuation to each of the transcripts. rpunct uses a pretrained BERT

(Devlin et al., 2019) model that has been finetuned on 560,000 product reviews for punctua-

tion restoration to add punctuation to the input text. An example rpunct output can be seen

below:

Before rpunct:

looks like the mother is doing the dishes but um the sink is overflowing the kids are

trying to get cookies from the cookie jar the boy has climbed on a a stool and um it’s

falling over and the girl is saying pass some to me please and outside there’s a garden

um is that enough

After rpunct:

Looks like the mother is doing the dishes, but um, the sink is overflowing. The kids

are trying to get cookies from the cookie jar, the boy has climbed on a a stool and um,

it’s falling over and the girl is saying, pass some to me please And outside there’s a

garden. Um, is that enough?

The manual transcripts were used to compute the word error rate (WER) for the Whisper

transcripts. The WER was computed using the jiwer library (jiw, 2023). The library

computes the number of substitutions (S), deletions (D), insertions (I), and hits (H) using the

ground truth text (manual transcripts) and Whisper transcripts and the WER is computed as:

WER =
(S+D+ I)
(H +S+D)

Punctuation and capitalization were removed from all of the transcripts before the WER

was computed. Table 5.3 shows the WER for the different Whisper models. The WER

is similar for all the Whisper models so transcripts from all the models were used during

classification and the best results were included in Section 5.5.
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5.4 Feature Extraction

Several pre-trained transformer models were used to extract embeddings from the MONL/COOK

data described in Section 5.2, including a BERT model (Devlin et al., 2019), four versions

of the DiffCSE model (Chuang et al., 2022), and a Trans-Encoder model (Liu et al., 2022).

BERT models have been used as the basis for several more recent transformer models

(e.g. DiffCSE). BERT has also been used in previous literature to classify other diseases,

such as Alzheimer’s Disease (Balagopalan et al., 2020b; Haulcy and Glass, 2021b), so we

decided to use BERT as a transformer embedding baseline to compare to the performance

achieved using the other transformer embeddings.

The trans-encoder model (full model name: trans-encoder-cross-simcse-roberta-base)

is an unsupervised sentence representation model that achieved state-of-the-art results

on sentence similarity tasks (Liu et al., 2022). The model consists of a bi-encoder and

cross-encoder that is placed on top of a pre-trained language model and used to perform self-

knowledge-distillation. Since the trans-encoder model is a recently released state-of-the-art

transformer model, we decided to use the embeddings for classification as well.

The DiffCSE model is a recent transformer model that has achieved state-of-the-art

results on semantic textual similarity tasks (Chuang et al., 2022). The model produces

embeddings that are sensitive to the differences between an original sentence and an edited

version of that sentence, therefore making the model useful for focusing on important words

that change the meaning of a sentence. Four pretrained versions of the DiffCSE model are

publicly available. Two of the models used the checkpoints of BERT to initialize the sentence

encoder (“bert-base-uncased” in the model name), whereas the other two models used the

checkpoints of RoBERTa (Liu et al., 2019) (“roberta-base” in the model name). Different

models used different development sets for hyperparameter searching. Models with names

ending with “sts” used the Semantic Textual Similarity (STS) Benchmark validation set

(Cer et al., 2017) and models with names ending with “trans” used the SentEval (Conneau

and Kiela, 2018) development set.

For a standard, non transformer-based baseline, Blabla (Shivkumar et al., 2020) linguistic

features were also extracted from the MONL/COOK transcripts and used for training. The
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Blabla features are a set of linguistic features consisting of metrics like the noun to verb

ratio, the total number of words, the pronoun rate, and more. A total of 39 linguistic features

were extracted from the full transcript and used to create a 1-dimensional input vector used

to train the logistic regression model.

During feature extraction, both full transcripts (transcript-level) and transcripts split into

a list of sentences using punctuation (sentence-level) were used as inputs for the transformer

models. Each model output a tensor of shape [number of sentences, sequence length, hidden

dimension]. Each model had a token appended to the beginning of each sentence (“[CLS]”

or “<s>”). The embedding associated with that token was used to represent each sentence.

The sentence vectors were then averaged to create a single vector of length 768, which was

used during training.

More background information about each of the pretrained models mentioned in this

section can be found in A.1.

5.5 Experiments

A logistic regression model was used for LOSO binary classification (healthy vs. each

FTD/PPA variant). The model was trained with a liblinear solver, an L1 penalty, balanced

class weights, and an inverse regularization strength value of 0.3. The model output a

prediction of “healthy” or the diagnosis (“bvFTD”, “lvPPA”, “nfvPPA”, or “svPPA”). Due

to the imbalance between the number of healthy speakers and the other diagnoses, we

report Area Under the Curve (AUC) results from the corresponding Receiver Operating

Characteristic (ROC) plots, in addition to the classification accuracy.

A few subjects in the dataset completed the tasks more than once (at different times in

their disease progression). For this reason, we needed a way of assigning a single label to

a speaker with multiple data samples. For accuracy and AUC, we scored every recording

sample independently. We also tried additional approaches for AUC, including producing a

single score per subject by using the mean, max, or median probability associated with each

scored recording for a given subject.

Several experiments were conducted to explore the effect of changing different aspects of
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the experimental design. The best independent accuracy and AUC results for each diagnostic

group can be seen in the following subsections. The full tables of results can be found in

Appendix C. More background information about AUC can be found in A.6.1.

5.5.1 Manual vs. Whisper Transcription

Manual Whisper
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.) Model

lvPPA
B 0.824 0.976 0.838 0.927 large-v2_10

DBT 0.865 0.959 0.892 0.953 medium_en_0
nfvPPA blabla 0.853 0.901 0.882 0.933 medium_en_0
bvFTD B 0.867 0.937 0.786 0.896 medium_en_10
svPPA B 0.771 0.839 0.743 0.766 large-v2_10

Table 5.4: LOSO results for a logistic regression model trained on blabla features and
transformer embeddings extracted from sentence-level manual transcripts with interviewer
speech included (“Manual”). The corresponding Whisper results are also presented. (Task:
MONL, B: bert-base-uncased, DBT: diffcse-bert-base-uncased-trans)

Manual Whisper
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.) Model

lvPPA B 0.892 0.978 0.862 0.970 large-v2_0

bvFTD
blabla 0.853 0.915 0.800 0.862 medium_en_0

B 0.827 0.938 0.907 0.973 large-v2_0
svPPA blabla 0.851 0.845 0.851 0.862 medium_en_0

Table 5.5: LOSO results for a logistic regression model trained on blabla features and
transformer embeddings extracted from sentence-level manual transcripts with interviewer
speech included (“Manual”). The corresponding Whisper results are also presented. (Task:
COOK, B: bert-base-uncased)

The results associated with the highest accuracy and AUC values for each diagnosis are

presented in the “Manual” column of Tables 5.4 (MONL) and 5.5 (COOK). The “Whisper”

column contains the classification results for a Logistic regression model trained on the same

type of features extracted from the Whisper transcripts instead of the manual transcripts, as

well as the version of the Whisper model that resulted in the highest accuracy and AUC. The

results are presented using this format so that the performance with manual transcription

can be directly compared to the performance with Whisper transcription. The goal was to

determine whether Whisper models could be used to replace human transcribers.
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When comparing AUC values, Table 5.4 shows that Whisper outperforms manual

transcription for nfvPPA on the MONL task, but manual transcription outperforms Whisper

for lvPPA, bvFTD and svPPA, with the largest reduction in AUC being 0.073 for svPPA. For

the COOK task, Table 5.5 shows that Whisper outperforms manual transcription for bvFTD

and svPPA, and has comparable performance for lvPPA (a reduction in AUC of only 0.008).

For the remaining experiments in the following subsections, Blabla features were not

used during training because the ablation studies were used to gain insight into what

information may be being encoded in the transformer embeddings by making changes to the

transcripts or input format before feature extraction to see how the results changed. For this

reason, if the best performance for a particular variant was obtained using Blabla features

(nfvPPA for the MONL task and bvFTD/svPPA for the COOK task), the second best results

were used for comparison.

5.5.2 Transcript-Level vs. Sentence-Level

Sentence-Level Transcript-Level
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA
B 0.824 0.976 0.784 0.893

DBT 0.865 0.959 0.905 0.969

nfvPPA
DBS 0.838 0.807 0.809 0.820
DBT 0.794 0.825 0.750 0.766

bvFTD B 0.867 0.937 0.704 0.824
svPPA B 0.771 0.839 0.671 0.647

Table 5.6: LOSO results for logistic regression models trained on features extracted from
sentence-level transcripts vs. transcript-level transcripts, with interviewer speech included.
(Task: MONL, B: bert-base-uncased, DBT: diffcse-bert-base-uncased-trans, DBS: diffcse-
bert-base-uncased-sts)

The purpose of this experiment was to determine which input format resulted in the best

classification performance for each feature type. In Tables 5.6 (MONL) and 5.7 (COOK),

the highest sentence-level and transcript-level accuracy and AUC values are presented for

each diagnostic group. For the MONL task, the highest AUC value is always obtained

when embeddings are extracted at the sentence level. For the COOK task, sentence-level

embeddings result in the highest AUC for lvPPA, but transcript-level embeddings result in
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Sentence-Level Transcript-Level
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA B 0.892 0.978 0.877 0.946
bvFTD B 0.827 0.938 0.907 0.961

svPPA
DRS 0.821 0.822 0.896 0.969
DRT 0.776 0.835 0.881 0.985

Table 5.7: LOSO results for logistic regression models trained on features extracted from
sentence-level transcripts vs. transcript-level transcripts, with interviewer speech included.
(Task: COOK, B: bert-base-uncased, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-
base-trans)

the highest AUC for bvFTD and svPPA.

5.5.3 Interviewer Speech vs. No Interviewer Speech

Interviewer No Interviewer
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA
B 0.824 0.976 0.824 0.926

DBT 0.865 0.959 0.838 0.948

nfvPPA
DBS 0.838 0.807 0.868 0.894
DBT 0.794 0.825 0.897 0.877

bvFTD B 0.867 0.937 0.847 0.904
svPPA B 0.771 0.839 0.814 0.899

Table 5.8: LOSO results for a logistic regression model trained on different features extracted
from sentence-level manual transcripts with interviewer speech included vs. without
interviewer speech included. (Task: MONL, B: bert-base-uncased, DBS: diffcse-bert-base-
uncased-sts, DBT: diffcse-bert-base-uncased-trans)

Interviewer No Interviewer
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA B 0.892 0.978 0.877 0.948
bvFTD B 0.827 0.938 0.787 0.908

svPPA
DRS 0.821 0.822 0.806 0.816
DRT 0.776 0.835 0.791 0.732

Table 5.9: LOSO results for a logistic regression model trained on different features extracted
from sentence-level manual transcripts with interviewer speech included vs. without
interviewer speech included. (Task: COOK, B: bert-base-uncased, DRS: diffcse-roberta-
base-sts, DRT: diffcse-roberta-base-trans)
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In this section, we present results using transcripts without interviewer speech included

and compare the results to those with interviewer speech included. For the MONL task,

including interviewer speech results in higher AUC values for lvPPA and bvFTD, while

removing interviewer speech results in better performance for nfvPPA and svPPA. For

the COOK task, including interviewer speech leads to increased AUC values for all three

variants (lvPPA, bvFTD, and svPPA).

5.5.4 Removing Punctuation and Filler Words

Punctuation No Punctuation
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA
B 0.824 0.976 0.811 0.927

DBT 0.865 0.959 0.824 0.955

nfvPPA
DBS 0.838 0.807 0.824 0.815
DBT 0.794 0.825 0.868 0.828

bvFTD B 0.867 0.937 0.776 0.823
svPPA B 0.771 0.839 0.643 0.777

Table 5.10: LOSO results for a logistic regression model trained on features extracted
from sentence-level manual transcripts with interviewer speech included, with punctuation
included vs. without punctuation included. (Task: MONL, B: bert-base-uncased, DBS:
diffcse-bert-base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)

Punctuation No Punctuation
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA B 0.892 0.978 0.754 0.941
bvFTD B 0.827 0.938 0.827 0.913

svPPA
DRS 0.821 0.822 0.806 0.807
DRT 0.776 0.835 0.791 0.814

Table 5.11: LOSO results for a logistic regression model trained on features extracted
from sentence-level manual transcripts with interviewer speech included, with punctuation
included vs. without punctuation included. (Task: COOK, B: bert-base-uncased, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans)

An increased number of pauses and a greater proportion of pause time are speech

characteristics of lvPPA, nfvPPA, and bvFTD subjects (Poole et al., 2017). An increased

use of filler words, such as “uh” and “um”, can indicate pausing in the transcripts. svPPA

is associated with a decrease in speech rate and incomplete sentences (Poole et al., 2017).
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Filler No Filler
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA
B 0.824 0.976 0.797 0.942

DBT 0.865 0.959 0.811 0.937

nfvPPA
DBS 0.838 0.807 0.809 0.759
DBT 0.794 0.825 0.824 0.807

bvFTD B 0.867 0.937 0.857 0.936
svPPA B 0.771 0.839 0.786 0.890

Table 5.12: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
filler words included vs. without filler words included. (Task: MONL, B: bert-base-
uncased, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)

Filler No Filler
Diagnosis Features Acc. AUC (Ind.) Acc. AUC (Ind.)

lvPPA B 0.892 0.978 0.908 0.985
bvFTD B 0.827 0.938 0.840 0.944

svPPA
DRS 0.821 0.822 0.836 0.839
DRT 0.776 0.835 0.791 0.828

Table 5.13: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
filler words included vs. without filler words included. (Task: COOK, B: bert-base-
uncased, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans)

The placement of punctuation in the transcripts can potentially provide some insight into

whether a speaker is impaired and can potentially be used to determine how complete a

sentence is (e.g. an increased number of question marks or punctuation in abnormal places).

For these reasons, we wanted to conduct two ablation studies, where (1) punctuation

and (2) filler words (“uh”, “um”, and “ah”) were removed from the manual transcripts with

interviewer speech included, before extracting embeddings from the transformer models.

We then trained the logistic regression model on the new embeddings so that we could

analyze how the performance changed and gain insight into what information the transformer

embeddings may be encoding.

The results in Tables 5.10 (MONL) and 5.11 (COOK) show that using punctuation

results in higher AUC values for lvPPA, bvFTD and svPPA on both tasks. For nfvPPA, using

transcripts with punctuation removed results in the highest AUC value on the MONL task.

For the filler word experiments, Table 5.12 shows that keeping filler words in the transcript
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results in higher AUC values for lvPPA, nfvPPA, and bvFTD for the MONL task, compared

to transcripts with filler words removed. Table 5.13 shows that removing filler words from

the transcripts results in the highest AUC values from lvPPA, bvFTD, and svPPA on the

COOK task.

Plots of the AUC values in Tables 5.4 - 5.13 for each FTD/PPA variant can be seen in

Figures 5-1 and 5-2.

Figure 5-1: A bar plot of the AUC values for each FTD/PPA variant for each of the
experiments in Sections 5.5.1 - 5.5.4, evaluated on the MONL task.

5.6 Discussion

In addition to training models that can distinguish between healthy and FTD/PPA speakers

with high accuracy, it is important to determine how the models are making decisions,

especially when making health-related predictions, as these predictions have significant

implications and can determine what kind of treatment a subject receives. For this reason,

we attempted to draw conclusions about the impact of certain choices and interpret the

transformer embeddings using the experiments conducted in Section 5.5. In the following
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Figure 5-2: A bar plot of the AUC values for each FTD/PPA variant for each of the
experiments in Sections 5.5.1 - 5.5.4, evaluated on the COOK task.

subsections, we discuss the results of those experiments.

5.6.1 Manual vs. Whisper Transcription

The results in Section 5.5.1 demonstrate the usefulness and potential of Whisper for auto-

matic transcription. In certain cases, Whisper outperforms manual transcription and in other

cases, the results are comparable and may justify using Whisper, despite the decrease in

performance.

The decrease in performance for certain variants is likely due to certain errors that

Whisper sometimes makes. For example, Whisper may miss words depending on how faint

the voice is. For this reason, interviewer speech is not always transcribed because the voice

of the subject is often louder than that of the interviewer due to proximity to the recording

device. Whisper also misses filler words sometimes and does not include punctuation and

capitalization consistently (e.g. some transcripts may have it while others do not). Lastly,

letters are sometimes incorrectly replaced with diacritics, resulting in errors in the transcripts.

However, using Whisper transcripts ultimately still results in comparable performance for
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most variants, if not better performance.

If there are concerns about performance decreases, Whisper could potentially be used to

complement human transcription by giving an initial transcription that can then be corrected

by a human transcriber. Even though the human transcriber is not fully replaced in this

scenario, the time cost of transcribing the audio should be reduced. However, the results

suggest that Whisper is a viable replacement for human transcription for the majority of the

variants on both tasks, despite the WERs of ∼20% (Table 5.3).

5.6.2 Transcript-level vs. Sentence-level

The results in Section 5.5.2 suggest that sentence-level embeddings should be extracted from

the MONL task, regardless of which diagnostic group is being classified, while the COOK

results suggest that sentence-level embeddings should be used for lvPPA and transcript-level

embeddings should be used for bvFTD and svPPA. One potential explanation for these

findings is that there is more variation in the context of the MONL transcripts, since subjects

are allowed to speak freely about any happy experience, compared to the COOK task, where

the topic is very specific. Therefore, there is likely enough information in the content of

a single sentence to provide insight into the level of a subject’s impairment. Since the

COOK task is more confined to a set topic (e.g. describing a specific picture), the words

used by the subjects likely fall into a smaller subset of words than those of the MONL task.

Therefore, less information may be present at the sentence-level for certain variants, making

the transcript-level input more informative.

5.6.3 Interviewer Speech vs. No Interviewer Speech

The goal of this experiment was to see what impact the presence of interviewer speech has

on the classification results. As technology progresses, more data collection protocols are

being designed in a way that allows participants to submit data online, from the comfort

of their own homes. For this reason, interviewer speech will likely not be present in future

recordings. Therefore, it’s important to know how significant the presence of interviewer

speech is and whether the transformer model embeddings can encode information from the
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transcripts that still allows for high AUC values without the interviewer present. We also

wanted to present results that align with the direction of future data collection design, so we

thought it important to include results without interviewer speech present.

Before conducting the experiments, we hypothesized that removing interviewer speech

may result in a decrease in performance, as the presence of interviewer speech often means

that a subject is struggling to complete a task and the interviewer felt the need to provide

additional guidance and instruction. In this particular dataset, the healthy subjects have

very little to no interviewer speech, so it is possible that the presence of speech from a

second subject in the transcript may be something that the model embeddings can encode,

even though the speech from each subject is not clearly marked. The presence of certain

punctuation, such as question marks, for example, may increase for subjects with more

interviewer speech in the recording.

The results in Section 5.5.3 suggest that future data collection protocols without an

interviewer present should not negatively affect the classification performance for nfvPPA

and svPPA when subjects are completing the MONL task, as classification performance

for those variants is better without the interviewer speech. While lvPPA and bvFTD have

a decrease in AUC when the interviewer speech is removed, the AUC is still above 0.900,

which implies that those subjects will likely still be distinguishable from healthy subjects

using data collected without an interviewer present.

For the COOK task, including interviewer speech increases the AUC for all of the

variants. However, similar to the MONL task, similar AUC values (0.900+) can be achieved

without interviewer speech for lvPPA and bvFTD. For svPPA, the drop in AUC is more

significant (-0.101). This may suggest that the COOK task is not the most salient task for

distinguishing healthy subjects from svPPA subjects when interviewer speech is not present

and should not be selected for data collection over other more salient tasks, like MONL. The

saliency of different cognitive tasks is an area of future work that we would like to explore.
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5.6.4 Removing Punctuation and Filler Words

The results in Section 5.5.4 suggest that punctuation is useful for distinguishing between

healthy speakers and lvPPA, svPPA, and bvFTD speakers on both tasks. The decrease in

AUC is less significant for the COOK task (<= 0.037 difference) compared to the MONL

task (<= 0.113 difference). Punctuation seems to be more important for bvFTD and svPPA,

as the removal of punctuation results in a larger AUC decrease compared to the other

variants. For nfvPPA, the highest AUC value is obtained after removing punctuation, but the

value is comparable to the AUC obtained with punctuation included (0.004 difference). We

hypothesize that the amount of punctuation in the nfvPPA transcripts may be less than that

of the other variants since nfvPPA subjects are characterized by disfluent speech, which may

result in longer sequences of words without punctuation being inserted by rpunct because

the sequences are not grammatically correct or recognizable as sentences. If punctuation is

less prevalent in the nfvPPA transcripts, that may explain why removing punctuation did not

signficantly change the results.

The MONL results align with the findings from previous literature that lvPPA, nfvPPA,

and bvFTD subjects are associated with an increased number of pauses, including filled

pauses (filler words). For the COOK task, removing filler words increases the AUC value

for all three variants (lvPPA, bvFTD, svPPA), which suggests that other components of the

text may be more significant for that particular task, such as which words are being used,

since there is a very specific context compared to the MONL task.

These experiments provided some insight into the significance of punctuation and filler

words and whether the transformer models are encoding information about those components

in the embeddings. However, additional experiments are needed to try to understand exactly

how punctuation and filler words are being encoded and used to make predictions, as well

as what other aspects of the text are most salient.

5.6.5 Significance Testing

We used McNemar’s Test (Gillick and Cox, 1989) for significance testing, as a means of

quantifying the significance of the changes in the results for each experiment. Background
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information about McNemar’s Test can be found in A.6.2. For the majority of the exper-

iments, the results were not found to be significantly different. This is likely due to the

small size of the dataset. However, there were two instances where the probability (p) of the

models being the same was noticeably low: the transcript-level experiment for bvFTD (p

= 0.057) and the no punctuation experiment for lvPPA (p = 0.065), both evaluated on the

COOK task. These probabilities being low despite the small size of the dataset suggests that

removing punctuation from lvPPA transcripts and using transcript-level inputs instead of

sentence-level inputs for bvFTD is statistically significant.

5.6.6 Sensitivity/Specificity Analysis

Figure 5-3: A plot of the sensitivity vs. specificity values for different threshold probabilities
when training the best lvPPA vs. healthy model.

For the same reasons mentioned in Section 4.5.3, we present sensitivity and specificity

values for different probability thresholds between 0 and 1 for the best models for each diag-

nostic group. These values can be seen in Figures 5-3, 5-4, 5-5, and 5-6. We hope that this

approach will give readers a complete understanding of what sensitivity/specificity values

can be achieved for each diagnostic group and allow them to draw their own conclusions

about the optimal values and thresholds.
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Figure 5-4: A plot of the sensitivity vs. specificity values for different threshold probabilities
when training the best nfvPPA vs. healthy model.

Figure 5-5: A plot of the sensitivity vs. specificity values for different threshold probabilities
when training the best svPPA vs. healthy model.
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Figure 5-6: A plot of the sensitivity vs. specificity values for different threshold probabilities
when training the best bvFTD vs. healthy model.

5.7 Chapter Summary

In this chapter, human-generated transcripts and automatically-generated transcripts were

used during LOSO binary classification to distinguish FTD/PPA variants from healthy

subjects on two tasks. We conducted several ablation studies and discussed the findings,

including the fact that (1) Whisper is a viable replacement for human transcription and

results in comparable if not better performance for several variants on different tasks, (2)

the input format of the transcripts (transcript-level vs. sentence-level) can impact the

classification performance, (3) the inclusion of interviewer speech in the transcripts has

an impact but is not necessary to achieve high AUC values for most variants, meaning

that future data collection protocols with only subject speech should be viable options for

collecting speech in a timely, cost-effective manner, and (4) punctuation and filler words

impact the classification results for some variants in statistically significant ways, suggesting

that the model is paying attention to those components of the text to some degree and that

information about punctuation and filler words is being encoded in the embeddings in some

way.
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The results show that BERT and DiffCSE embeddings outperform the standard linguistic

features (Blabla) for lvPPA, nfvPPA and bvFTD on the MONL task and lvPPA on the COOK

task, which justifies the use of transformer model embeddings for FTD/PPA classification.

We understand the importance of being able to interpret the predictions of these models

and, to do so, we must have some understanding of what information is being encoded in

the embeddings. We attempted to gain some preliminary insight into what information the

embeddings may encode from the text transcripts, but there is still much work to be done.

In the next chapter, we summarize all of the work described so far and present ideas for

next steps.
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Chapter 6

Conclusions

In this chapter, we present a summary of the findings from previous chapters and propose

directions for future work, including suggesting ways in which the CLAC dataset can be

expanded and improved, making suggestions for how to use the techniques we developed to

measure disease progression, and proposing ideas for expanding the work to other languages

and tasks.

6.1 Summary of Findings

In this section, we summarize the most significant findings from each of the previous

chapters.

6.1.1 AD Classification and MMSE Prediction

In Chapter 2, text features (fastText word vectors, BERT embeddings, LIWC features,

and CLAN features) and audio features (i-vectors and x-vectors) were extracted from 156

subjects, half with AD and half without. Several classification and regression models were

trained for a binary classification task and an MMSE score prediction task.

We found that the SVM and RF classifiers trained on BERT embeddings resulted in the

best test set accuracy of 85.4%, which outperformed the text baseline (an LDA classifier

trained on CLAN features), which achieved an accuracy of 75% on the test set. For
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the MMSE prediction task, the best performance was achieved using a gradient boosting

regressor trained on a combination of BERT and CLAN features, which achieved an RMSE

of 4.560, while the baseline model (a DT regressor trained on CLAN features) obtained an

RMSE of 5.20.

Different dimensionality reduction techniques were applied to the data before training

and testing the classification and regression models to explore whether applying dimension-

ality reduction techniques improved performance on those tasks. Applying PCA dimension-

ality reduction to the features before training a classifier was helpful for AD classification

and applying LDA and PCA dimensionality reduction to the features before training a

regressor was helpful for MMSE prediction.

The best-performing text and audio models from both tasks were evaluated on smaller

subsets of the test set that were split based on education level and MMSE score. This

allowed us to explore what effect the severity of cognitive impairment and education

level had on the classification and MMSE prediction results. We found that patients with

moderate/severe forms of dementia and healthy patients are easier to classify than patients

with mild dementia, whereas the MMSE scores of severe dementia patients are the most

difficult to predict. Patients with more than 12 years of education are the easiest to classify

and the MMSE scores of patients with greater than 12 years of education are the easiest to

predict.

Overall, the work in Chapter 2 illustrated the feasibility of using speech and text to

classify AD and predict neuropsychological scores.

6.1.2 CLAC Dataset

In Chapter 3, we presented CLAC, a speech dataset consisting of audio recordings and

automatically-generated transcripts from 1,832 speakers. The speakers completed a total of

12 tasks, including picture description tasks and passage reading tasks, to name a few. We

demonstrated how the dataset can be used to characterize the speech of a healthy, English-

speaking population and distinguish between healthy subjects and subjects with some form

of cognitive impairment. Specifically, we showed that there can be differences in the timing
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metrics extracted from the speech of different healthy populations, but the differences are

more extreme when comparing the speech of healthy subjects to that of impaired subjects.

We discussed the limitations of the dataset, including the fact that the metadata is self

reported and that the speakers’ health status was not verified (information about medical

history was not collected). However, we believe that the dataset is a valuable contribution to

the scientific community, despite those limitations, and the dataset is now publicly available

for anyone to use.

6.1.3 Repetition Assessment

In Chapter 4, we presented a novel approach for measuring the quality of repetition in

a recording. We demonstrated the feasibility of this approach by using it to distinguish

between healthy and lvPPA speakers using classification. Five classifiers were trained on

features extracted from repetition recordings and we found that those features could be used

to distinguish healthy subjects from lvPPA subjects with an accuracy of 0.992, a specificity

of 1, and an impaired lvPPA sensitivity of 0.857. We discussed the many benefits of our

approach, including the fact that it is a general repetition measurement approach that can be

applied to research problems in a variety of areas, while also being language-independent, a

characteristic that makes it potentially useful for global clinical trials.

6.1.4 Classifying FTD/PPA

In Chapter 5, human-generated transcripts and automatically-generated transcripts were used

during LOSO binary classification to distinguish FTD/PPA variants from healthy subjects

on two tasks: a monologue task and the cookie theft picture description task. We conducted

several ablation studies and discussed the findings, including the fact that:

• Whisper is a viable replacement for human transcription and results in comparable if

not better performance for several variants on different tasks.

• The input format of the transcripts (transcript-level vs. sentence-level) can impact the

classification performance, depending on which task is being completed and which

variant the subjects have been diagnosed with.
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• The inclusion of interviewer speech in the transcripts has an impact but is not necessary

to achieve high AUC values for most variants, meaning that future data collection

protocols with only subject speech should be viable options for collecting speech in a

timely, cost-effective manner.

• Punctuation and filler words impact the classification results for some variants in

statistically significant ways, suggesting that the model is paying attention to those

components of the text to some degree and that information about punctuation and

filler words is being encoded in the embeddings in some way.

The results show that BERT and DiffCSE embeddings outperform the standard linguistic

features (Blabla) for lvPPA, nfvPPA and bvFTD on the MONL task and lvPPA on the COOK

task. Specifically, we show that healthy controls can be distinguished from lvPPA, bvFTD,

and svPPA subjects with 0.91, 0.91 and 0.90 accuracy, respectively, when evaluated on a

cookie theft task, and nfvPPA subjects with 0.90 accuracy on a monologue task. The results

justify the use of transformer model embeddings for FTD/PPA classification.

6.2 Future Work

In this thesis, we presented the work that has been completed so far, but there is always

more work to be done. Below, we present our ideas for next steps for the work completed in

each chapter.

6.2.1 AD Classification and MMSE Prediction: Translation to Larger

Datasets

As a follow-up to the work completed in Chapter 2, it would be interesting to repeat the

experiments, particularly the evaluation of audio and text models on MMSE and education

groups, on a larger dataset to see whether the findings translate. Another interesting future

direction would be relating our findings to apathetic symptoms. Previous research has shown

that patients with moderate or severe forms of AD tend to be apathetic (Lueken et al., 2007).

Signs of apathy include slow speech, long pauses, and changes in facial expressions (Seidl
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et al., 2012). These characteristics can be measured using standardized ratings and we

can explore whether our findings are consistent with the findings related to other forms of

cognitive decline that affect speech. We can also explore extracting sentence embeddings

from the ADReSS data using more recent pretrained state-of-the-art transformer models and

compare the performance to what was obtained using BERT embeddings.

6.2.2 Expanding And Improving The CLAC Dataset

As a follow-up to the work completed in Chapter 3, we think it would be interesting to

use the AMT data collection tool to expand the data collection to include other English

dialects, such as British English, as well as other languages. We also plan to use this

dataset to evaluate the utility of the data for augmenting experimental data for FTD subjects

completing other tasks (e.g. passage reading, sustained phonation, etc.), or for subjects

with conditions other than FTD. We are also interested in using more advanced speech

recognizers, like Whisper (Radford et al., 2022), to generate better transcripts for the CLAC

dataset.

6.2.3 Repetition Assessment: Disease Progression And Design Improve-

ments

As a follow-up to the work completed in Chapter 4, we would like to explore how repetition

score changes over time. We anticipate using this approach to measure changes in the

quality of repetition over time, thus measuring disease progression. In order to complete

these experiments, we would need more longitudinal data from subjects completing the

repetition task. We would also like to have a baseline that directly uses speech features as

input for disorder assessment while also exploring how the number of repetitions affects our

method. In our work, we used a simple approximation of the optimal warping path between

successive repetitions. As a next step, we could use an algorithm like SDTW to determine

the optimal alignment between repetitions and compare the classification performance using

our simplified approach and a more advanced approach.
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6.2.4 Classifying FTD/PPA: Using Whisper to Expand To Other Lan-

guages and Tasks

As a follow-up to the work completed in Chapter 5, we are interested in using diarization

techniques to remove the interviewer speech from the audio recordings so that Whisper

can be used to generate transcripts without interviewer speech. We are also interested in

using Whisper to transcribe other cognitive tasks or speech from subjects with other forms

of cognitive impairment and using those transcripts for classification experiments. Whisper

is a multilingual model and could also be used to classify impairment in different languages.

We would also like to explore using transformer embeddings for FTD/PPA vs. FTD/PPA

classification, in addition to FTD/PPA vs. healthy. If provided with a larger dataset, it

would be interesting to finetune the transformer models on the transcripts and explore using

model explainability tools to interpret the decisions of the models directly. Lastly, we would

like to conduct additional experiments to compare the effectiveness of different tasks for

distinguishing between different diagnostic groups. Determining which tasks are most

salient would be beneficial to clinical trial design.
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Appendix A

Additional Background Information

Additional information about the technical components of the work completed in this thesis

can be found in this section, including information about the pretrained models used for

feature extraction, non-deep learning-based features that were extracted, classifiers that were

trained, and metrics that were used to quantify classification performance.

A.1 Pretrained Models

In this section, we give a concise description of the pretrained models used for feature

extraction in Chapters 2 and 5.

A.1.1 fastText Word Vectors

FastText is an open-source library that is used to classify text and learn text representations.

In Chapter 2, a fastText model pretrained on Common Crawl and Wikipedia was used to

extract word vectors (Grave et al., 2018) from the transcripts of each speaker. The fastText

model can be trained in two ways: using Continuous Bag of Words (CBOW) or skipgram.

CBOW models predict a target word based on the context of the surrounding words in a

sentence or text, while skipgram models use a nearby word to predict the target word. An

example of the difference between CBOW and skipgram can be seen in Figure A-1.

The fastText model that we used to extract word vectors is a CBOW model that has been
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Figure A-1: An example illustrating the difference between CBOW and skipgram. This
figure was used as part of a tutorial on the fastText website (fas).

modified to incorporate position weights and subword information. The model itself is a

feedforward neural network that takes in a set of context words and outputs a target word.

The fastText model extends the standard CBOW model by (1) representing words as bags

of character n-grams and (2) multiplying each word vector by a position-dependent vector

to better capture positional information for each word. The pretrained model that we used

to extract English word vectors used CBOW with position weights, character n-grams of

length five, and a window of size five. During pretraining, representations were learned

for each of the character n-grams associated with a word and those representations were

summed to compute word vectors.

The vectors learned by the model can be used for a variety of Natural Language Pro-

cessing (NLP) tasks, such as sentiment analysis, language translation, and text classification.

The vectors can also be used as input features for classifiers, which is the way that we used

them.

A.1.2 I-vectors and X-vectors

I-vector and x-vector systems (Snyder et al., 2017, 2018) are commonly used for speaker

verification, the task of verifying the identity of a speaker. Figure A-2 shows a high-level
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Figure A-2: I-vector and x-vector diagram illustrating the difference between the two.
Originally shown in (Kelly et al., 2019).

illustration of the i-vector and x-vector systems. I-vectors are low-dimensional representa-

tions of audio signals that result from a high-dimensional representation from a Universal

Background Model (UBM) being projected onto a low-dimensional space using a large

projection matrix. In contrast, x-vectors are extracted from a deep neural network (DNN)

that is trained to discriminate between speakers. X-vectors can be trained on larger amounts

of data and have been shown to outperform i-vectors on speaker recognition tasks. Both

i-vectors and x-vectors have been extracted from speech audio from impaired speakers and

used to train classifiers to detect impairment. For this reason, both were extracted from the

data in Chapter 2 and the impact of both on the performance of the classifiers was compared.

A.1.3 Bidirectional Encoder Representations from Transformers (BERT)

BERT (Devlin et al., 2018) is a general-purpose language representation model that is

pretrained on Wikipedia and Books Corpus, a corpus consisting of passages from over

ten thousand novels. BERT was designed to be trained on large amounts of data from the

web and then finetuned on smaller amounts of task-specific data to address the common

challenge of the lack of training data for certain tasks. BERT has shown great improvements

in accuracy when compared to the performance of models that are trained on smaller
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Figure A-3: The architecture diagram for the BERT model. Originally published in (Devlin
et al., 2018).

task-specific datasets from scratch.

Figure A-3 illustrates the architecture for the BERT model. During pretraining, words in

each input sentence are randomly masked and the model tries to predict what the original

words were. For each input, the text is tokenized, a [CLS] token is added to the beginning

of the first sentence, and a [SEP] token is added at the end of each sentence. A positional

embedding is also added to each token to denote the position of the token in the sentence.

The architecture is the same for both pretraining and fine-tuning for downstream tasks, apart

from the output layers.

What makes BERT unique is that it is a language model that is bidirectionally trained,

meaning that it can consider the full context of a sentence when trying to predict a masked

token. At the time of publishing, BERT provided state-of-the-art results on several tasks,

including natural language inference, question answering, sentiment analysis, and more.

A.1.4 Difference-based Contrastive Learning for Sentence Embeddings

(DiffCSE)

The DiffCSE model is a recent transformer-based sentence embedding model that has

achieved state-of-the-art results on semantic textual similarity tasks (Chuang et al., 2022).

The model architecture diagram can be seen in Figure A-4. First, the tokens in an input

sentence x are randomly masked, creating x′. On the left hand side, the checkpoints of a
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Figure A-4: The architecture diagram for the DiffCSE model. Originally published in
(Chuang et al., 2022).

pretrained model (BERT or RoBERTa) are used to initialize the sentence encoder, which

is used to get a sentence embedding for the original sentence. On the right hand side, a

pretrained masked language model (DistilBert or DistilRoBERTa (Sanh et al., 2019)) is

used as the generator to get predictions for the masked tokens in x′, which produces x′′. The

discriminator (the same pretrained masked language model that was used for the sentence

encoder) is then used to determine whether the token in the original sentence x has been

replaced in x′′ or not.

During training, the discriminator and sentence encoder are both optimized. Due to the

training design, the sentence encoder is encouraged to encode the full meaning of x into the

sentence embedding so that the discriminator can recognize the differences between x and

x′′. After training, the discriminator is discarded and the sentence encoder is used to extract

embeddings from the input data. As a result of the training design, the model produces

embeddings that are sensitive to the differences between an original sentence and an edited

version of that sentence, therefore making the model useful for focusing on important words

that change the meaning of a sentence.
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A.1.5 The Trans-Encoder Model

Figure A-5: The architecture diagram for the trans-encoder model. Originally published in
(Liu et al., 2022).

The trans-encoder model (full model name: trans-encoder-cross-simcse-roberta-base)

is an unsupervised sentence representation model that achieved state-of-the-art results on

sentence similarity tasks (Liu et al., 2022). The model architecture diagram can be seen

in Figure A-5. The blue boxes in the figure represent the same model architecture. The

model consists of a bi-encoder and cross-encoder that is placed on top of a pretrained

language model (PLM) and used to perform self-knowledge-distillation. This process

involves using the weights of the PLM to initialize the bi-encoder and the cross-encoder.

Self-knowledge-distillation is performed in two ways: bi- to cross-encoder and cross- to

bi-encoder.

With bi- to cross-encoder self-distillation, the bi-encoder is used to get two separate

embeddings for each sentence in a sentence-pair. The cosine similarity between the embed-

dings is computed and used as a relevance score for the sentence-pair. The two sentences

and the score are used as input to the cross-encoder, which minimizes the difference between

the score from the bi-encoder and the predictions from the cross-encoder. In this setup, the

bi-encoder is the teacher model and the cross-encoder is the student model.

The cross-encoder that is produced as a result of bi- to cross-encoder self-distillation can

be used in cross- to bi-encoder distillation, with the roles of the bi-encoder and cross-encoder

reversed. The cross-encoder is used to generate the relevance score and is therefore the

122



teacher model, while the bi-encoder is the student model and is further improved by learning

from the cross-encoder.

The model is trained and evaluated on the Quora Question Pair (QQP) dataset and the

question-answering entailment (QNLI) dataset. The QQP dataset consists of question pairs

and the model has to determine whether the questions are duplicates. The QNLI dataset

consists of question-sentence pairs and the model has to determine whether the sentence

answers the question or not.

A.1.6 The Whisper Speech Recognizer

Figure A-6: The architecture diagram for the Whisper speech recognizer. Originally
published in (Radford et al., 2022).

Whisper (Radford et al., 2022) is a speech recognition model trained on 680,000 hours

of speech for several different speech processing tasks. Figure A-6 shows that Whisper is a

transformer model with the recognizable encoder-decoder format. Thirty second audio clips
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are converted into spectrograms before being passed into the encoder. The decoder predicts

the text associated with the input audio, as well as additional special tokens. The special

tokens consist of things such as a language identification token (“EN”), a token to describe

the task (“TRANSCRIBE”), the start and end times of the text tokens, and more.

Because Whisper is trained on a large, diverse dataset, it is robust to accents, background

noise, sped-up speech, and more. It can be used to transcribe several languages, as well as

translate from several languages to English. It can also be used for language identification

and to extract phrase-level timestamps.

A.2 Feature Extraction

In this section, we give a brief description of the non-deep learning-based features that were

extracted prior to training in Chapters 2, 4, and 5.

A.2.1 Mel-frequency Cepstral Coefficients (MFCCs)

Figure A-7: A block diagram summarizing the steps for extracting MFCCs from an audio
signal. Found at https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd.

MFCCs are commonly used as a feature representation of speech audio. MFCCs are

often extracted before training automatic speech recognition (ASR) and speaker recognition

systems. There are several steps involved in extracting the MFCCs from an audio signal

(Figure A-7):
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• Chunking the audio into smaller frames: the audio is processed at the frame level

so that the audio signal does not change too much but also has enough samples to get

a reliable spectral estimate

• Calculate the power spectrum of each frame: identifies which frequencies are

present in the frame

• Apply the mel filterbank to the power spectra and sum the energy in each filter:

determines how much energy exists in different frequency regions

• Take the log of the filterbank energies: compresses the features to match more

closely to what humans actually hear

• Compute the Discrete Cosine Transform (DCT) of the log filterbank energies:

decorrelates the filterbank energies

• Keep DCT coefficients 2-13 and discard the rest: the higher coefficients have been

shown to degrade ASR performance

A full tutorial can be found at http://practicalcryptography.com/miscellaneous/machine-

learning/guide-mel-frequency-cepstral-coefficients-mfccs/.

A.2.2 Linguistic Inquiry and Word Count (LIWC)

The LIWC toolbox (Tausczik and Pennebaker, 2010) was developed as a result of research

that shows that people’s word choice can provide insight into their emotional and psycho-

logical state, as well as their social and behavioral beliefs. LIWC consists of over 100

dictionaries that contain words associated with a particular category. These categories

include positive and negative emotion words (e.g. “happy”, “mad”), I-words (“I”, “me”,

“my”), positive tone, negative tone, social words, and more.

At the time of completing the work for Chapter 2, the LIWC toolbox returned word

counts for each of the categories. A more recent version of the toolbox, LIWC-22, returns

the percentage of total words in the text belonging to a particular category, as well as

the raw word count (the number of words in the file), the number of words per sentence,
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and summary measures. There are four summary measures: Analytical Thinking (based

on different categories of function words), Clout (related to social status, confidence and

leadership demonstrated through the text), Authenticity (tries to measure whether the speaker

is honest or deceptive), and Emotional Tone (combines positive and negative tone measures).

The measures are computed using algorithms that combine values associated with various

LIWC variables.

A.2.3 Computerized Language Analysis (CLAN)

Feature Name Feature Description
Duration total time of the sample in hours:minutes:seconds
Total Utts total number of utterances
MLU Utts number of utterances used to compute MLU

MLU Words MLU in words
MLU Morphemes MLU in morphemes

FREQ types total word types as counted by FREQ
FREQ tokens total word tokens as counted by FREQ
FREQ TTR type/token ratio
Words/min words per minute (FREQ tokens/Duration converted

to minutes)
Verbs/Utt verbs per utterance

% Word Errors percentage of words that are coded as errors
Utt Errors number of utterances coded as errors
Density measure of propositional idea density

% Nouns percentage of nouns
% Plurals percentage of plurals (we, us, our(s) they, them, their)
% Verbs percentage of verbs
% Aux percentage of auxiliaries
% Mod percentage of modals

Table A.1: CLAN feature names and descriptions. (MLU: ratio of morphemes over utter-
ances)

CLAN is a program that was designed to analyze transcripts in the Codes for the Human

Analysis of Transcripts (CHAT) format (MacWhinney, 2000). CLAN can be used to extract

features from CHAT transcripts using several different commands. For example, the FREQ

command can be used to extract information about the frequencies of the words in one or

more files, while TIMEDUR can be used to compute the time durations of the utterances
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Feature Name Feature Description
% 3S percentage of third person singular terms

% 1S/3S percentage of identical forms for first and third person
(e.g., I was, he was)

% Past percentage of words in the past tense
% PastP percentage of past participles
% PresP percentage of present participles
% prep percentage of prepositions
% adv percentage of adverbs
% adj percentage of adjectives

% conj percentage of conjunctions
% det percentage of determiners (includes articles, demon-

stratives, interrogatives, numbers, and possessives)
% pro percentage of pronouns

noun/verb ratio total number of nouns / total number of verbs (exclud-
ing auxiliaries and modals)

open/closed ratio total number of open class words / total number of
closed class words

#open-class total number of open class words
#closed-class total number of closed class words

retracing number of retracings (self-corrections or changes)
repetition number of repetitions

Table A.2: CLAN feature names and descriptions (cont.).

and pauses in one or more files, to name a few. In Chapter 2, the CLAN EVAL program,

which runs several commands, was used to extract several measures from the transcripts

in the ADReSS dataset, all of which can be seen in Tables A.1 and A.2. More information

about each of the features can be found in (MacWhinney, 2000), along with instructions for

how to use CLAN program.

A.2.4 Blabla

Blabla (Shivkumar et al., 2020) is a Python package that is used to extract clinical linguistic

features from transcripts, with support for multiple languages. The supported languages are

English, Arabic, Chinese, French, German, and Spanish. The linguistic features consist of

metrics like the noun to verb ratio, the total number of words, the pronoun rate, and more. A

total of 39 linguistic features were extracted from the full transcript. The name of the 39

features extracted from the transcripts used in Chapter 5, along with the descriptions of the
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Feature Name Feature Description
adjective_rate The rate of adjectives across sentences

adposition_rate The rate of adpositions across sentences
adverb_rate The rate of adverbs across sentences

auxiliary_rate The rate of auxiliaries across sentences
determiner_rate The rate of determiners across sentences
interjection_rate The rate of interjections across sentences

noun_rate The rate of nouns across sentences
numeral_rate The rate of numerals across sentences
particle_rate The rate of particles across sentences
pronoun_rate The rate of pronouns across sentences

proper_noun_rate The rate of proper nouns across sentences
punctuation_rate The rate of punctuations across sentences

subordinating_conjunction_rate The rate of subordinating conjunctions across sen-
tences

symbol_rate The rate of symbols across sentences
verb_rate The rate of verbs across sentences

demonstrative_rate The rate of demonstratives across sentences
conjunction_rate The rate of conjunctions across sentences
possessive_rate The rate of possessive words across sentences
noun_verb_ratio The ratio of nouns to verbs across sentences

noun_ratio The ratio of nouns to the sum of nouns and verbs across
sentences

pronoun_noun_ratio The ratio of pronouns to nouns across sentences
total_dependency_distance The total distance of all dependencies across sentences

average_dependency_distance The average distance of all dependencies across sen-
tences

total_dependencies The total number of unique dependencies across sen-
tences

average_dependencies The average number of unique dependencies across
sentences

closed_class_word_rate The proportions of determiners, pronouns, conjunc-
tions and prepositions to all words across sentences

open_class_word_rate The proportions of nouns, verbs, adjectives and ad-
verbs to all words across sentences

Table A.3: Blabla feature names and descriptions.

features, can be seen in Tables A.3 and A.4. More information about how to extract Blabla

features can be found at https://github.com/novoic/blabla.
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Feature Name Feature Description
content_density The proportions of number of open class words to the

number of close class words
idea_density The proportions of verbs, adjectives, adverbs, preposi-

tions and conjunctions to all words across sentences
honore_statistic Calculated as R = (100*log(N))/(1-(V1)/(V)), where V

is number of unique words, V1 is the number of words
in the vocabulary only spoken once, and N is overall
text length / number of words.

brunet_index Calculated as Nˆ(Vˆ(-0.165)), where V is number of
unique words and N is overall text length / number
of words. Measure of lexical richness. Text-length
insensitive version of TTR.

type_token_ratio The number of word types divided by the number of
word tokens

word_length The mean length of words across the corpus
prop_inflected_verbs The ratio of the number of inflected verbs to the num-

ber of verbs
prop_auxiliary_verbs The ratio of the number of auxiliary verbs to the num-

ber of verbs
prop_gerund_verbs The ratio of the number of gerund verbs to the number

of verbs
prop_participles The ratio of the number of particile verbs to the number

of verbs
num_words The total number of words

num_filler_words The total number of filler words

Table A.4: Blabla feature names and descriptions (cont.).

A.3 Classifiers and Regressors

Several classifiers and regression models were used for classification in Chapters 2, 4, and

5. All of the models were implemented in Python using the scikit-learn library (Pedregosa

et al., 2011). More information about each of the models can be found in the user guides

on the scikit-learn website (https://scikit-learn.org). A brief description of each model is

provided in the following subsections.
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Figure A-8: Partial figure from the LDA user guide on the scikit-learn website (sci, e). The
plot shows decision boundaries for the LDA classifier. The subplots show that LDA can
only learn linear boundaries.

A.3.1 Linear Discriminant Analysis (LDA)

The usefulness of the LDA classifier has been demonstrated in practice for various classi-

fication problems. Some of the appealing attributes of the classifier include the ease with

which solutions can be computed and the fact that hyperparameter tuning is not needed.

Simple probabilistic models are used to model the distribution of the data for each class and

Bayes’ rule is used to get predictions for the training samples. The LDA classifier can only

learn linear boundaries. Examples of linear boundaries computed using LDA can be seen in

Figure A-8.
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Figure A-9: Figure from (Gulve, 2020). Visually shows how linear regression fits a straight
line to a set of data points.

A.3.2 Linear Regression (LR)

LR is a simple model that fits a straight line to a set of data points, as shown in Figure A-9.

The solution is found by minimizing the sum of squared errors between the ground truth

values and the predicted values. The LR algorithm uses the Ordinary Least Squares (OLS)

method, which involves estimating the values of a set of linear coefficients that minimize

the error. The OLS method involves computing the distance from each input data point to a

regression line, squaring those distances to get the error values, and then computing the sum

of those errors. The goal is to find the regression line that minimizes the sum of those errors.

A.3.3 Decision Tree (DT)

DT models can be used for both classification and regression. The models consist of simple

decision rules (e.g. if-then-else statements) that are learned from the training data and that

become more complex as the depth of the tree increases. The simplicity of the decision

rules make DT models easy to interpret and the trees can be visualized. An example of a

visualization of a DT model can be seen in Figure A-10.

There are some disadvantages associated with DT models, including the fact that models
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Figure A-10: Figure from the DT user guide on the scikit-learn website (sci, b). The plot
shows a visualization of the tree for a model trained on features from the iris dataset, a
dataset consisting of four features for different types of flowers.

with a maximum depth that is too large can overfit to the training data and not generalize

well and that small changes in the data can result in completely different models (trees).

Therefore, it is important to try trees with different depths and evaluate the models on unseen

data.

A.3.4 K-Nearest Neighbor (KNN)

The KNN classifier and regressor both use a technique that involves using information about

the closest data points (nearest neighbors) to determine the class or regression value of the

target point. The distances between the current data point and the other data points are

computed and the nearest neighbors are chosen based on the user-selected k value. The most

common label of the k nearest neighbors is assigned to the current point for classification,

132



Figure A-11: Figure from the KNN user guide on the scikit-learn website (sci, c). The plot
shows a visualization of the class boundaries for the iris dataset when a KNN classifier with
the number of neighbors (k) set to 15 is used for classification.

and the average of the k labels is assigned to the current point for regression. The best

k value is data-dependent, meaning that results using several different values should be

compared to find the optimal value.

KNN is a simple algorithm that is easy to implement. The main disadvantage of the

algorithm relates to its scalability: as the size of the data increases, the speed of the algorithm

decreases.

A.3.5 Random Forest (RF)

The RF classifier and regressor consists of several DT models (described in section A.3.3)

trained on subsets of the data. Data samples are randomly drawn from the training set (with

replacement) and those samples are used to create a DT. This process is repeated for several
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trees and then the predictions from the individual DT models are averaged. This improves

the overall accuracy of the RF model and alleviates the issue of overfitting that is sometimes

encountered when using a single DT model.

A.3.6 Support Vector Machine (SVM)

Figure A-12: Figure from the SVM user guide on the scikit-learn website (sci, d). Here,
subplots with class boundaries are shown for SVM models trained and evaluated using
different types of kernels.

SVMs can be used for both classification and regression. SVMs are linear models that

find a line or hyperplane that separates the input data into its respective classes. For linearly

separable datasets, this is achieved by first computing the support vectors, which are the

points from each class that are closest to the line separating the classes. The margin, which

is defined as the distance between the line and the support vectors, is maximized during

optimization so that the optimal hyperplane can be found.
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When a dataset is not linearly separable, the data is first projected onto a higher-

dimensional space so that the data can be separated linearly. Once the optimal hyperplane

is found in the higher dimensional space, the data is then mathematically transformed

back to its original dimensions. Different kernels are used to find the correct mathematical

transformation for a given dataset. Examples of a few kernels can be seen in Figure A-12.

For the work in Chapter 2, a linear kernel was used.

A.3.7 Gradient Boosting (grad-boost)

Figure A-13: Figure from (gee, 2023). The figure shows a high-level illustration of the
training process for a gradient boosting model.

Gradient Boosting can be used for both classification and regression. As Figure A-13

shows, Gradient Boosting creates a model from an ensemble of weaker models. Gradient

boosting models attempt to optimize a specified loss function by using decision trees as

the weak models and adding one model at a time. A weak model is trained on the input

data, the error/loss is computed, and gradient descent is used to add a weak model to the

ensemble of trees that reduces the loss. More weight is placed on observations that are

difficult to classify and the next weak model is trained on those observations to improve the

overall model performance on those instances. Weak models continue to be added until a
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set number of trees are created or the loss reaches a certain value.

A.3.8 Logistic Regression

Figure A-14: The plot shows the standard logistic function, a function used to model
probabilities for the logistic regression model.

The logistic regression model is a linear model that is used for classification. A logistic

function (Figure A-14) is used to model the probabilities that describe possible outcomes.

Similar to the LR model described in section A.3.2, the regression coefficient values are

calculated from the dependent and independent variables in the dataset. However, LR

models can be used to compute actual values for continuous variables, such as price or age,

while the logistic regression model is used to predict a set label for classification (e.g. 0 or 1,

“yes” or “no”, etc.). Regularization is commonly applied when the logistic regression model

is used. Because of the computational simplicity of the model, the calculations are more

transparent and interpretable compared to deep learning models.
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Figure A-15: Figure from the scikit-learn website (sci, a). The plot shows (1) the first
two principal components after PCA is applied to the data samples, which consists of four
attributes for three different kinds of flowers (top) and (2) the LDA components

A.4 Dimensionality Reduction

Both LDA and principal component analysis (PCA) were used to apply dimensionality

reduction to the input features before training the classifiers in Chapter 2. The LDA classifier

described in section A.3.1 can also be used for supervised dimensionality reduction. The

technique involves projecting the data onto a linear subspace by identifying aspects of the

data that result in the most variance between the classes, thus maximizing the separation

between classes. The data has to be projected to a dimension smaller than the number of

classes, making LDA a relatively strong form of dimensionality reduction.

PCA applies singular value decomposition (SVD) to the data to project it onto a subspace

with a smaller dimension by finding the aspects (principal components) that result in the most
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variance in the data. Figure A-15 shows a comparison of the plots of the first component

vs. the second, both computed using PCA (top) and LDA (bottom). In the figures, the

dimensionality reduction techniques are applied to the iris dataset, which consists of four

features for three different types of flowers, and the four original features are projected onto

two dimensions.

The main differences between PCA and LDA, in addition to how the components are

computed, are the fact that LDA is supervised and requires class labels, while PCA does not,

and the fact that LDA reduces the dimensions to a value less than the number of classes,

while the number of PCA components does not depend on the number of classes.

A.5 Discrete Fourier Transform (DFT)

Figure A-16: The DFT of a signal that consists of the combination of two sine waves, one
with a frequency of three Hertz (Hz) and one with a frequency of six Hz. The DFT (bottom
subplot) shows that there are peaks at three and six Hz, as expected.
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The DFT is a tool that allows you to extract information about the frequency content of

a time-domain signal, meaning that the DFT of a signal is a representation of the original

signal in the frequency domain. The DFT is used in many different fields for practical

applications, such as digital signal processing and image processing. It can be used to

perform convolutions and solve differential equations, as well as perform other operations

that would be more complicated in the time domain.

The Python NumPy package (Harris et al., 2020) was used to compute the one-dimensional

DFTs shown in Chapter 4. Figure A-16 shows the DFT of a signal that consists of the

combination of two sine waves, one with a frequency of three Hertz (Hz) and one with a

frequency of six Hz. The DFT (bottom subplot) shows that there are peaks at three and six

Hz, as expected. This example illustrates the purpose of the DFT, which is to identify the

frequencies present in the signal. More information about the implementation details for the

NumPy DFT function can be found in the documentation on the NumPy website (num).

A.6 Metrics

In this section, a few of the metrics used in previous chapters are described in more detail.

A.6.1 AUC

The datasets for rare diseases like FTD and PPA tend to have class imbalances, with there

being more healthy speakers than impaired speakers. This is reflective of the general

population and can make it difficult to judge how well a model performs when using a metric

like accuracy, since a model can have high accuracy simply by predicting that all speakers

are healthy. For this reason, we decided to compute the AUC for each of the classifiers

in Chapter 5, since AUC is recommended for imbalanced datasets and summarizes the

performance of the classifier across several different probability thresholds.

In Chapter 5, the AUC was computed using the scikit-learn (Pedregosa et al., 2011) func-

tion for generating the ROC curve from ground truth labels and positive class probabilities

(roc_curve), as well as the function for computing the AUC value using the trapezoidal

rule (auc). The ROC function sorts the probabilities in descending order and the average
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Figure A-17: Figure from (Letelier, 2021). The plot shows an ROC curve with rectangles
and triangles used to approximate the area under the curve (i.e. trapezoidal method).

probabilities between consecutive points are used as the thresholds, in addition to 0 and 1.

Those thresholds are used to compute the false positive rate (FPR) and true positive rate

(TPR) pairs and then those pairs are returned and can be used to create the ROC curve.

An example curve can be seen in Figure A-17. The AUC function uses the trapezoidal

rule to compute the AUC value from the FPR/TPR pairs used to create the ROC plot. In

our work, the positive class probabilities for each held-out speaker were computed during

LOSO training. Those probabilities were passed into the ROC curve function, along with

the ground truth labels, and used to compute the AUC results that are presented in Chapter

5.

A.6.2 McNemar’s Test

C1/C2 Correct Incorrect
Correct a b

Incorrect c d

Table A.5: The structure of the contingency table used for McNemar’s test when comparing
two classifiers, C1 and C2.
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McNemar’s Test (Gillick and Cox, 1989) is a significance test that can be used to compare

the results from different classifier algorithms. The test measures the probability that two

algorithms are the same by keeping track of which data samples the models disagree on

(e.g. which samples one model makes correct predictions for and the other makes incorrect

predictions for, and vice versa).

The first step of the test involves creating a contingency table similar to what is shown

in Table A.5, where b is the number of data samples that C1 classifies correctly that are not

correctly classified by C2, and vice versa for c. Once b and c are computed, the probability

of both algorithms being the same can be computed using the following equations:

P =
l

∑
k=0

P(k)+
n

∑
k=m

P(k)

P(k) =
(

n
k

)(
1
2

)n

where n = b+ c, l = min(b,c), and m = max(b,c).

This approach was used to compute the statistical significance of the results in Chapter

5. In our case, the classification algorithms were the same but the input data was perturbed

in some way (e.g. interviewer speech was removed from the transcripts) and the predictions

of the the classifier before and after the experimental change were used to compute the

statistical significance of the change.
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Appendix B

Supplementary Material For Chapter 3:

Screenshots of the Tasks That Workers

Completed For Our AMT HIT

The following figures show screenshots of the different components of the AMT HIT that

workers were asked to complete. The screenshots are included here for replication purposes.

The template that we used as a starting point for our AMT task has since been published as an

open-source toolkit called Speak, which can be found at https://github.com/soupdtag/speak-

tool (Song et al., 2022).
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Figure B-1: Information that is placed at the top of every page of the HIT.
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Figure B-2: The metadata task.
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Figure B-3: The instructions for submitting audio recordings, which are placed on each task
page.

Figure B-4: The counting from 1 to 20 task.
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Figure B-5: The days of the week task.
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Figure B-6: The cookie theft picture description task.
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Figure B-7: The picnic picture description task.
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Figure B-8: The grandfather reading task.
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Figure B-9: The rainbow reading task.

Figure B-10: The task for repeating the word “Artillery” five times.
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Figure B-11: The task for repeating the word “Catastrophe” five times.

Figure B-12: The task for repeating the word “Impossibility” five times.
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Figure B-13: The task for repeating “pah tah kah” as fast as possible for 10 seconds.

Figure B-14: The sustained phonation task.
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Figure B-15: The final page where workers submit their work.
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Appendix C

Supplementary Material For Chapter 5:

Full Result Tables

The full tables of results mentioned in Chapter 5. The highest values for each metric are

bolded for each diagnostic group. Accuracies are computed on the independent sample level,

where the predicted label for each data sample is used instead of majority voting.
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla

lvPPA 0.865 0.934 0.933 0.932 0.932
nfvPPA 0.853 0.901 0.944 0.933 0.936
bvFTD 0.663 0.684 0.697 0.676 0.678
svPPA 0.643 0.703 0.734 0.712 0.712

B

lvPPA 0.824 0.976 0.976 0.976 0.976
nfvPPA 0.824 0.803 0.887 0.864 0.860
bvFTD 0.867 0.937 0.944 0.939 0.939
svPPA 0.771 0.839 0.871 0.855 0.855

TE

lvPPA 0.730 0.800 0.797 0.794 0.794
nfvPPA 0.750 0.737 0.795 0.771 0.773
bvFTD 0.714 0.787 0.807 0.796 0.794
svPPA 0.700 0.804 0.828 0.803 0.803

DRS

lvPPA 0.811 0.912 0.908 0.908 0.908
nfvPPA 0.779 0.776 0.851 0.844 0.844
bvFTD 0.776 0.823 0.849 0.827 0.826
svPPA 0.686 0.722 0.729 0.710 0.710

DRT

lvPPA 0.851 0.938 0.935 0.934 0.934
nfvPPA 0.794 0.824 0.902 0.893 0.895
bvFTD 0.663 0.749 0.773 0.747 0.748
svPPA 0.714 0.742 0.740 0.731 0.731

DBS

lvPPA 0.838 0.958 0.957 0.957 0.957
nfvPPA 0.838 0.807 0.898 0.867 0.862
bvFTD 0.633 0.758 0.781 0.765 0.770
svPPA 0.757 0.747 0.744 0.734 0.734

DBT

lvPPA 0.865 0.959 0.961 0.960 0.960
nfvPPA 0.794 0.825 0.935 0.905 0.889
bvFTD 0.776 0.842 0.863 0.849 0.847
svPPA 0.757 0.764 0.751 0.743 0.743

Table C.1: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level manual transcripts with
interviewer speech included. (Task: MONL, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla
lvPPA 0.877 0.941 0.940 0.940 0.940
bvFTD 0.853 0.915 0.941 0.922 0.922
svPPA 0.851 0.845 0.802 0.796 0.796

B
lvPPA 0.892 0.978 0.974 0.974 0.974
bvFTD 0.827 0.938 0.967 0.948 0.948
svPPA 0.761 0.826 0.816 0.807 0.807

TE
lvPPA 0.877 0.904 0.905 0.899 0.899
bvFTD 0.667 0.799 0.879 0.839 0.839
svPPA 0.731 0.791 0.718 0.704 0.713

DRS
lvPPA 0.800 0.921 0.928 0.928 0.928
bvFTD 0.787 0.854 0.935 0.902 0.902
svPPA 0.821 0.822 0.787 0.764 0.764

DRT
lvPPA 0.877 0.938 0.937 0.937 0.937
bvFTD 0.720 0.787 0.879 0.829 0.829
svPPA 0.776 0.835 0.836 0.819 0.813

DBS
lvPPA 0.877 0.943 0.934 0.934 0.934
bvFTD 0.787 0.889 0.971 0.937 0.937
svPPA 0.761 0.755 0.761 0.718 0.718

DBT
lvPPA 0.846 0.956 0.948 0.948 0.948
bvFTD 0.773 0.865 0.943 0.898 0.898
svPPA 0.776 0.722 0.718 0.693 0.690

Table C.2: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level manual transcripts with
interviewer speech included. (Task: COOK, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla

lvPPA 0.824 0.915 0.910 0.910 0.910
nfvPPA 0.824 0.824 0.871 0.856 0.871
bvFTD 0.694 0.716 0.717 0.697 0.700
svPPA 0.743 0.800 0.786 0.779 0.779

B

lvPPA 0.757 0.913 0.911 0.910 0.910
nfvPPA 0.735 0.755 0.824 0.804 0.807
bvFTD 0.755 0.867 0.897 0.881 0.880
svPPA 0.657 0.699 0.697 0.681 0.681

TE

lvPPA 0.730 0.814 0.805 0.805 0.805
nfvPPA 0.676 0.608 0.700 0.667 0.645
bvFTD 0.694 0.746 0.769 0.755 0.754
svPPA 0.800 0.875 0.887 0.876 0.876

DRS

lvPPA 0.743 0.844 0.849 0.844 0.844
nfvPPA 0.735 0.743 0.825 0.802 0.793
bvFTD 0.612 0.677 0.723 0.693 0.690
svPPA 0.771 0.817 0.804 0.803 0.803

DRT

lvPPA 0.703 0.771 0.782 0.771 0.771
nfvPPA 0.809 0.743 0.844 0.825 0.818
bvFTD 0.643 0.693 0.730 0.704 0.706
svPPA 0.757 0.792 0.783 0.776 0.776

DBS

lvPPA 0.851 0.936 0.932 0.932 0.932
nfvPPA 0.735 0.719 0.827 0.789 0.778
bvFTD 0.694 0.796 0.817 0.804 0.809
svPPA 0.757 0.795 0.787 0.782 0.782

DBT

lvPPA 0.824 0.900 0.894 0.894 0.894
nfvPPA 0.721 0.677 0.767 0.736 0.729
bvFTD 0.704 0.787 0.798 0.785 0.787
svPPA 0.743 0.833 0.832 0.825 0.825

Table C.3: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level Whisper transcripts. (Task:
MONL, Whisper model: large-v2 with greedy decoding, B: bert-base-uncased, TE: trans-
encoder, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-
base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla
lvPPA 0.846 0.847 0.822 0.822 0.822
bvFTD 0.800 0.851 0.957 0.914 0.914
svPPA 0.821 0.703 0.638 0.624 0.624

B
lvPPA 0.862 0.970 0.966 0.966 0.966
bvFTD 0.907 0.973 0.993 0.987 0.987
svPPA 0.766 0.843 0.796 0.793 0.796

TE
lvPPA 0.954 0.968 0.966 0.966 0.966
bvFTD 0.827 0.866 0.947 0.914 0.914
svPPA 0.851 0.774 0.693 0.684 0.684

DRS
lvPPA 0.969 0.975 0.971 0.971 0.971
bvFTD 0.827 0.904 0.963 0.931 0.931
svPPA 0.866 0.854 0.790 0.790 0.790

DRT
lvPPA 0.938 0.956 0.948 0.948 0.948
bvFTD 0.813 0.911 0.963 0.931 0.931
svPPA 0.836 0.822 0.773 0.761 0.770

DBS
lvPPA 0.908 0.983 0.980 0.980 0.980
bvFTD 0.800 0.895 0.940 0.908 0.908
svPPA 0.866 0.814 0.764 0.756 0.756

DBT
lvPPA 0.862 0.951 0.943 0.943 0.943
bvFTD 0.813 0.932 0.961 0.945 0.945
svPPA 0.896 0.891 0.845 0.845 0.845

Table C.4: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level Whisper transcripts. (Task:
COOK, Whisper model: large-v2 with greedy decoding, B: bert-base-uncased, TE: trans-
encoder, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-
base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla

lvPPA 0.838 0.933 0.929 0.929 0.929
nfvPPA 0.838 0.869 0.909 0.904 0.907
bvFTD 0.663 0.701 0.703 0.686 0.688
svPPA 0.671 0.748 0.757 0.747 0.747

B

lvPPA 0.838 0.927 0.923 0.923 0.923
nfvPPA 0.735 0.727 0.796 0.771 0.775
bvFTD 0.786 0.871 0.882 0.872 0.874
svPPA 0.743 0.766 0.766 0.758 0.758

TE

lvPPA 0.784 0.878 0.872 0.872 0.872
nfvPPA 0.676 0.593 0.653 0.607 0.598
bvFTD 0.745 0.792 0.796 0.788 0.790
svPPA 0.714 0.857 0.869 0.859 0.859

DRS

lvPPA 0.716 0.819 0.816 0.813 0.813
nfvPPA 0.750 0.715 0.778 0.753 0.753
bvFTD 0.694 0.754 0.811 0.778 0.784
svPPA 0.814 0.856 0.855 0.849 0.849

DRT

lvPPA 0.730 0.834 0.829 0.828 0.828
nfvPPA 0.706 0.680 0.745 0.724 0.731
bvFTD 0.531 0.596 0.649 0.618 0.627
svPPA 0.829 0.851 0.845 0.842 0.842

DBS

lvPPA 0.784 0.883 0.877 0.877 0.877
nfvPPA 0.735 0.666 0.720 0.700 0.702
bvFTD 0.765 0.783 0.782 0.774 0.774
svPPA 0.814 0.885 0.878 0.876 0.876

DBT

lvPPA 0.770 0.854 0.846 0.846 0.846
nfvPPA 0.676 0.634 0.678 0.653 0.655
bvFTD 0.786 0.856 0.863 0.851 0.852
svPPA 0.843 0.919 0.920 0.916 0.916

Table C.5: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level Whisper transcripts. (Task:
MONL, Whisper model: large-v2 with beam search of 10, B: bert-base-uncased, TE:
trans-encoder, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-
bert-base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)

160



Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla
lvPPA 0.754 0.709 0.716 0.710 0.710
bvFTD 0.787 0.850 0.938 0.897 0.897
svPPA 0.821 0.824 0.779 0.776 0.776

B
lvPPA 0.862 0.941 0.931 0.931 0.931
bvFTD 0.800 0.858 0.918 0.891 0.891
svPPA 0.776 0.724 0.695 0.675 0.670

TE
lvPPA 0.892 0.884 0.868 0.868 0.868
bvFTD 0.800 0.882 0.915 0.882 0.882
svPPA 0.806 0.881 0.871 0.853 0.859

DRS
lvPPA 0.892 0.926 0.914 0.914 0.914
bvFTD 0.827 0.903 0.973 0.941 0.941
svPPA 0.806 0.726 0.667 0.647 0.644

DRT
lvPPA 0.815 0.823 0.802 0.799 0.799
bvFTD 0.813 0.928 0.970 0.945 0.945
svPPA 0.776 0.761 0.716 0.704 0.704

DBS
lvPPA 0.846 0.872 0.859 0.856 0.856
bvFTD 0.827 0.895 0.977 0.944 0.944
svPPA 0.806 0.784 0.761 0.741 0.739

DBT
lvPPA 0.862 0.810 0.787 0.784 0.784
bvFTD 0.827 0.907 0.967 0.937 0.937
svPPA 0.821 0.826 0.807 0.793 0.796

Table C.6: LOSO results for a logistic regression model trained on blabla features and
different transformer embeddings extracted from sentence-level Whisper transcripts. (Task:
COOK, Whisper model: large-v2 with beam search of 10, B: bert-base-uncased, TE:
trans-encoder, DRS: diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-
bert-base-uncased-sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla

lvPPA 0.784 0.918 0.915 0.915 0.915
nfvPPA 0.882 0.933 0.951 0.945 0.951
bvFTD 0.694 0.722 0.718 0.704 0.706
svPPA 0.729 0.721 0.712 0.699 0.699

B

lvPPA 0.811 0.941 0.939 0.938 0.938
nfvPPA 0.750 0.738 0.809 0.796 0.805
bvFTD 0.735 0.822 0.853 0.834 0.836
svPPA 0.714 0.768 0.769 0.759 0.759

TE

lvPPA 0.784 0.876 0.876 0.871 0.871
nfvPPA 0.676 0.526 0.587 0.547 0.542
bvFTD 0.694 0.756 0.775 0.757 0.755
svPPA 0.757 0.838 0.857 0.843 0.843

DRS

lvPPA 0.878 0.972 0.972 0.972 0.972
nfvPPA 0.765 0.793 0.878 0.851 0.844
bvFTD 0.571 0.651 0.698 0.664 0.666
svPPA 0.743 0.768 0.751 0.751 0.751

DRT

lvPPA 0.716 0.843 0.843 0.841 0.841
nfvPPA 0.721 0.731 0.816 0.795 0.776
bvFTD 0.592 0.631 0.672 0.643 0.647
svPPA 0.771 0.765 0.765 0.762 0.762

DBS

lvPPA 0.865 0.927 0.926 0.924 0.924
nfvPPA 0.750 0.730 0.758 0.749 0.756
bvFTD 0.755 0.836 0.845 0.833 0.835
svPPA 0.814 0.834 0.821 0.817 0.817

DBT

lvPPA 0.892 0.953 0.952 0.952 0.952
nfvPPA 0.809 0.838 0.882 0.856 0.842
bvFTD 0.714 0.808 0.817 0.810 0.810
svPPA 0.771 0.762 0.779 0.771 0.771

Table C.7: LOSO results for a logistic regression model trained on different features extracted
from sentence-level Whisper transcripts. (Task: MONL, Whisper model: medium with
greedy decoding, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts,
DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla
lvPPA 0.846 0.830 0.807 0.807 0.807
bvFTD 0.800 0.862 0.954 0.915 0.915
svPPA 0.851 0.862 0.833 0.819 0.819

B
lvPPA 0.862 0.929 0.922 0.917 0.917
bvFTD 0.840 0.974 0.983 0.980 0.980
svPPA 0.806 0.874 0.839 0.836 0.833

TE
lvPPA 0.892 0.929 0.925 0.922 0.922
bvFTD 0.867 0.939 0.976 0.961 0.961
svPPA 0.821 0.774 0.690 0.684 0.684

DRS
lvPPA 0.877 0.953 0.971 0.966 0.966
bvFTD 0.813 0.884 0.935 0.908 0.908
svPPA 0.851 0.784 0.695 0.690 0.690

DRT
lvPPA 0.923 0.958 0.963 0.960 0.960
bvFTD 0.813 0.913 0.951 0.934 0.934
svPPA 0.821 0.791 0.707 0.704 0.704

DBS
lvPPA 0.862 0.906 0.894 0.891 0.891
bvFTD 0.840 0.937 0.967 0.948 0.948
svPPA 0.821 0.724 0.681 0.667 0.667

DBT
lvPPA 0.846 0.867 0.848 0.848 0.848
bvFTD 0.853 0.931 0.976 0.957 0.957
svPPA 0.881 0.852 0.805 0.790 0.793

Table C.8: LOSO results for a logistic regression model trained on different features extracted
from sentence-level Whisper transcripts. (Task: COOK, Whisper model: medium with
greedy decoding, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts,
DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla

lvPPA 0.784 0.922 0.920 0.918 0.918
nfvPPA 0.853 0.917 0.951 0.942 0.944
bvFTD 0.694 0.755 0.759 0.743 0.746
svPPA 0.657 0.686 0.708 0.697 0.697

B

lvPPA 0.730 0.854 0.871 0.870 0.870
nfvPPA 0.735 0.669 0.749 0.724 0.713
bvFTD 0.786 0.896 0.926 0.912 0.902
svPPA 0.700 0.756 0.787 0.764 0.764

TE

lvPPA 0.676 0.757 0.759 0.754 0.754
nfvPPA 0.735 0.662 0.762 0.713 0.685
bvFTD 0.602 0.685 0.699 0.686 0.683
svPPA 0.700 0.742 0.768 0.751 0.751

DRS

lvPPA 0.811 0.940 0.942 0.941 0.941
nfvPPA 0.750 0.715 0.798 0.784 0.776
bvFTD 0.694 0.750 0.786 0.768 0.770
svPPA 0.771 0.882 0.880 0.873 0.873

DRT

lvPPA 0.716 0.808 0.813 0.811 0.811
nfvPPA 0.794 0.676 0.780 0.755 0.742
bvFTD 0.653 0.701 0.735 0.713 0.724
svPPA 0.714 0.812 0.814 0.804 0.804

DBS

lvPPA 0.865 0.951 0.951 0.951 0.951
nfvPPA 0.779 0.769 0.831 0.824 0.829
bvFTD 0.776 0.876 0.893 0.880 0.881
svPPA 0.843 0.936 0.931 0.931 0.931

DBT

lvPPA 0.851 0.916 0.913 0.913 0.913
nfvPPA 0.765 0.776 0.833 0.816 0.825
bvFTD 0.776 0.871 0.889 0.879 0.878
svPPA 0.814 0.861 0.881 0.873 0.873

Table C.9: LOSO results for a logistic regression model trained on different features extracted
from sentence-level Whisper transcripts. (Task: MONL, Whisper model: medium with
beam search of 10, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts,
DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

blabla
lvPPA 0.831 0.788 0.756 0.753 0.753
bvFTD 0.760 0.822 0.925 0.878 0.878
svPPA 0.836 0.881 0.842 0.836 0.836

B
lvPPA 0.800 0.909 0.897 0.894 0.894
bvFTD 0.813 0.841 0.876 0.845 0.845
svPPA 0.776 0.860 0.825 0.822 0.822

TE
lvPPA 0.908 0.914 0.902 0.902 0.902
bvFTD 0.840 0.898 0.927 0.904 0.904
svPPA 0.806 0.761 0.672 0.661 0.661

DRS
lvPPA 0.908 0.911 0.897 0.897 0.897
bvFTD 0.853 0.903 0.924 0.905 0.905
svPPA 0.821 0.789 0.710 0.704 0.707

DRT
lvPPA 0.877 0.901 0.888 0.888 0.888
bvFTD 0.840 0.888 0.908 0.885 0.885
svPPA 0.821 0.801 0.747 0.733 0.741

DBS
lvPPA 0.862 0.884 0.865 0.865 0.865
bvFTD 0.827 0.944 0.963 0.947 0.947
svPPA 0.851 0.791 0.741 0.730 0.730

DBT
lvPPA 0.846 0.823 0.796 0.796 0.796
bvFTD 0.760 0.889 0.918 0.886 0.886
svPPA 0.881 0.912 0.888 0.882 0.885

Table C.10: LOSO results for a logistic regression model trained on different features
extracted from sentence-level Whisper transcripts. (Task: COOK, Whisper model: medium
with beam search of 10, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-
sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B

lvPPA 0.784 0.893 0.893 0.892 0.892
nfvPPA 0.794 0.867 0.920 0.916 0.916
bvFTD 0.704 0.824 0.834 0.823 0.826
svPPA 0.671 0.647 0.690 0.657 0.657

TE

lvPPA 0.770 0.871 0.868 0.868 0.868
nfvPPA 0.824 0.880 0.913 0.911 0.913
bvFTD 0.816 0.890 0.897 0.889 0.890
svPPA 0.757 0.842 0.848 0.839 0.839

DRS

lvPPA 0.797 0.851 0.849 0.845 0.845
nfvPPA 0.765 0.780 0.865 0.835 0.816
bvFTD 0.735 0.810 0.829 0.810 0.811
svPPA 0.771 0.779 0.765 0.757 0.757

DRT

lvPPA 0.811 0.842 0.841 0.838 0.838
nfvPPA 0.824 0.822 0.913 0.880 0.860
bvFTD 0.765 0.841 0.856 0.842 0.842
svPPA 0.743 0.795 0.787 0.786 0.786

DBS

lvPPA 0.838 0.956 0.956 0.956 0.956
nfvPPA 0.809 0.820 0.895 0.873 0.856
bvFTD 0.765 0.786 0.804 0.783 0.782
svPPA 0.686 0.713 0.703 0.695 0.695

DBT

lvPPA 0.905 0.969 0.972 0.971 0.971
nfvPPA 0.750 0.766 0.855 0.820 0.813
bvFTD 0.796 0.846 0.863 0.850 0.851
svPPA 0.700 0.724 0.719 0.705 0.705

Table C.11: LOSO results for a logistic regression model trained on different features
extracted from transcript-level manual transcripts with interviewer speech included. (Task:
MONL, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts, DRT:
diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-base-
uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B
lvPPA 0.877 0.946 0.937 0.937 0.937
bvFTD 0.907 0.961 0.970 0.960 0.960
svPPA 0.791 0.747 0.756 0.724 0.718

TE
lvPPA 0.846 0.727 0.796 0.776 0.776
bvFTD 0.813 0.793 0.819 0.802 0.802
svPPA 0.896 0.952 0.960 0.951 0.951

DRS
lvPPA 0.815 0.835 0.810 0.807 0.807
bvFTD 0.787 0.834 0.911 0.876 0.876
svPPA 0.896 0.969 0.974 0.974 0.974

DRT
lvPPA 0.862 0.909 0.894 0.894 0.894
bvFTD 0.773 0.864 0.941 0.905 0.905
svPPA 0.881 0.985 0.986 0.986 0.986

DBS
lvPPA 0.862 0.929 0.917 0.917 0.917
bvFTD 0.867 0.946 0.981 0.967 0.967
svPPA 0.866 0.864 0.922 0.902 0.902

DBT
lvPPA 0.908 0.933 0.922 0.922 0.922
bvFTD 0.867 0.955 0.984 0.973 0.973
svPPA 0.791 0.841 0.871 0.842 0.842

Table C.12: LOSO results for a logistic regression model trained on different features
extracted from transcript-level manual transcripts with interviewer speech included. (Task:
COOK, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts, DRT:
diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-base-
uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B

lvPPA 0.824 0.926 0.924 0.924 0.924
nfvPPA 0.809 0.832 0.909 0.893 0.895
bvFTD 0.847 0.904 0.914 0.904 0.904
svPPA 0.814 0.899 0.933 0.919 0.919

TE

lvPPA 0.757 0.836 0.834 0.833 0.833
nfvPPA 0.765 0.792 0.813 0.811 0.807
bvFTD 0.745 0.799 0.808 0.798 0.798
svPPA 0.571 0.615 0.625 0.594 0.594

DRS

lvPPA 0.784 0.881 0.881 0.879 0.879
nfvPPA 0.809 0.808 0.887 0.873 0.878
bvFTD 0.724 0.773 0.812 0.788 0.786
svPPA 0.757 0.785 0.797 0.785 0.785

DRT

lvPPA 0.811 0.903 0.903 0.901 0.901
nfvPPA 0.809 0.800 0.896 0.875 0.875
bvFTD 0.714 0.768 0.799 0.779 0.782
svPPA 0.671 0.737 0.726 0.717 0.717

DBS

lvPPA 0.824 0.945 0.944 0.943 0.943
nfvPPA 0.868 0.894 0.935 0.927 0.935
bvFTD 0.663 0.754 0.786 0.769 0.772
svPPA 0.771 0.832 0.828 0.821 0.821

DBT

lvPPA 0.838 0.948 0.949 0.948 0.948
nfvPPA 0.897 0.877 0.971 0.940 0.938
bvFTD 0.724 0.805 0.826 0.807 0.806
svPPA 0.757 0.829 0.820 0.818 0.818

Table C.13: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts without interviewer speech included.
(Task: MONL, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts,
DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B
lvPPA 0.877 0.948 0.945 0.945 0.945
bvFTD 0.787 0.908 0.964 0.932 0.932
svPPA 0.687 0.726 0.770 0.736 0.739

TE
lvPPA 0.846 0.542 0.632 0.621 0.621
bvFTD 0.693 0.850 0.927 0.907 0.907
svPPA 0.776 0.732 0.670 0.667 0.667

DRS
lvPPA 0.862 0.884 0.894 0.885 0.885
bvFTD 0.773 0.841 0.911 0.871 0.871
svPPA 0.806 0.816 0.802 0.784 0.793

DRT
lvPPA 0.908 0.951 0.954 0.951 0.951
bvFTD 0.707 0.756 0.899 0.826 0.826
svPPA 0.791 0.732 0.753 0.721 0.718

DBS
lvPPA 0.908 0.943 0.948 0.948 0.948
bvFTD 0.760 0.858 0.960 0.925 0.925
svPPA 0.836 0.791 0.833 0.793 0.784

DBT
lvPPA 0.892 0.968 0.963 0.963 0.963
bvFTD 0.707 0.807 0.915 0.853 0.853
svPPA 0.806 0.757 0.750 0.741 0.736

Table C.14: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts without interviewer speech included.
(Task: COOK, B: bert-base-uncased, TE: trans-encoder, DRS: diffcse-roberta-base-sts,
DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-sts, DBT: diffcse-bert-
base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B

lvPPA 0.811 0.927 0.924 0.924 0.924
nfvPPA 0.824 0.924 0.958 0.956 0.956
bvFTD 0.776 0.823 0.845 0.831 0.832
svPPA 0.643 0.777 0.794 0.786 0.786

TE

lvPPA 0.784 0.909 0.906 0.905 0.905
nfvPPA 0.838 0.838 0.842 0.829 0.825
bvFTD 0.663 0.763 0.783 0.764 0.762
svPPA 0.671 0.704 0.706 0.695 0.695

DRS

lvPPA 0.851 0.946 0.948 0.945 0.945
nfvPPA 0.735 0.793 0.853 0.835 0.827
bvFTD 0.704 0.822 0.834 0.818 0.813
svPPA 0.700 0.816 0.801 0.799 0.799

DRT

lvPPA 0.865 0.922 0.923 0.920 0.920
nfvPPA 0.735 0.713 0.804 0.775 0.764
bvFTD 0.704 0.789 0.794 0.775 0.776
svPPA 0.757 0.799 0.789 0.782 0.782

DBS

lvPPA 0.811 0.945 0.942 0.942 0.942
nfvPPA 0.824 0.815 0.895 0.875 0.880
bvFTD 0.694 0.756 0.786 0.771 0.770
svPPA 0.786 0.779 0.773 0.766 0.766

DBT

lvPPA 0.824 0.955 0.953 0.953 0.953
nfvPPA 0.868 0.828 0.909 0.889 0.885
bvFTD 0.755 0.840 0.858 0.844 0.843
svPPA 0.757 0.782 0.764 0.762 0.762

Table C.15: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
punctuation removed. (Task: MONL, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B
lvPPA 0.754 0.941 0.937 0.937 0.937
bvFTD 0.827 0.913 0.955 0.938 0.938
svPPA 0.791 0.875 0.897 0.885 0.876

TE
lvPPA 0.800 0.828 0.865 0.856 0.856
bvFTD 0.693 0.812 0.895 0.851 0.851
svPPA 0.701 0.724 0.681 0.667 0.661

DRS
lvPPA 0.877 0.980 0.977 0.977 0.977
bvFTD 0.787 0.878 0.955 0.927 0.927
svPPA 0.806 0.807 0.796 0.779 0.779

DRT
lvPPA 0.862 0.916 0.908 0.908 0.908
bvFTD 0.773 0.819 0.917 0.878 0.878
svPPA 0.791 0.814 0.828 0.802 0.802

DBS
lvPPA 0.846 0.906 0.897 0.894 0.894
bvFTD 0.813 0.871 0.970 0.940 0.940
svPPA 0.821 0.830 0.830 0.802 0.802

DBT
lvPPA 0.862 0.904 0.891 0.888 0.888
bvFTD 0.787 0.844 0.931 0.902 0.902
svPPA 0.851 0.875 0.856 0.839 0.845

Table C.16: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
punctuation removed. (Task: COOK, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B

lvPPA 0.797 0.942 0.941 0.941 0.941
nfvPPA 0.809 0.818 0.915 0.895 0.896
bvFTD 0.857 0.936 0.947 0.940 0.940
svPPA 0.786 0.890 0.922 0.909 0.909

TE

lvPPA 0.743 0.784 0.783 0.781 0.781
nfvPPA 0.750 0.769 0.831 0.816 0.820
bvFTD 0.724 0.777 0.806 0.793 0.790
svPPA 0.729 0.771 0.793 0.768 0.768

DRS

lvPPA 0.824 0.916 0.911 0.911 0.911
nfvPPA 0.779 0.780 0.845 0.844 0.844
bvFTD 0.786 0.851 0.878 0.858 0.853
svPPA 0.671 0.731 0.726 0.710 0.710

DRT

lvPPA 0.851 0.953 0.951 0.951 0.951
nfvPPA 0.779 0.801 0.884 0.867 0.869
bvFTD 0.714 0.765 0.788 0.764 0.766
svPPA 0.700 0.714 0.713 0.695 0.695

DBS

lvPPA 0.797 0.919 0.917 0.917 0.917
nfvPPA 0.809 0.759 0.873 0.844 0.825
bvFTD 0.724 0.803 0.827 0.813 0.818
svPPA 0.729 0.727 0.726 0.716 0.716

DBT

lvPPA 0.811 0.937 0.940 0.939 0.939
nfvPPA 0.824 0.807 0.927 0.896 0.878
bvFTD 0.755 0.831 0.852 0.834 0.830
svPPA 0.757 0.748 0.733 0.724 0.724

Table C.17: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
filler words removed. (Task: MONL, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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Features Diagnosis Acc. AUC
(Ind.)

AUC
(Max)

AUC
(Mean)

AUC
(Med.)

B
lvPPA 0.908 0.985 0.983 0.983 0.983
bvFTD 0.840 0.944 0.970 0.954 0.954
svPPA 0.746 0.803 0.796 0.793 0.793

TE
lvPPA 0.862 0.914 0.908 0.905 0.905
bvFTD 0.667 0.819 0.897 0.862 0.862
svPPA 0.731 0.797 0.730 0.721 0.730

DRS
lvPPA 0.815 0.919 0.920 0.920 0.920
bvFTD 0.773 0.863 0.937 0.908 0.908
svPPA 0.836 0.839 0.793 0.773 0.773

DRT
lvPPA 0.877 0.948 0.945 0.945 0.945
bvFTD 0.760 0.807 0.894 0.846 0.846
svPPA 0.791 0.828 0.830 0.813 0.810

DBS
lvPPA 0.877 0.956 0.948 0.948 0.948
bvFTD 0.773 0.888 0.970 0.938 0.938
svPPA 0.731 0.784 0.796 0.759 0.759

DBT
lvPPA 0.846 0.953 0.948 0.948 0.948
bvFTD 0.773 0.869 0.950 0.905 0.905
svPPA 0.791 0.780 0.779 0.759 0.750

Table C.18: LOSO results for a logistic regression model trained on different features
extracted from sentence-level manual transcripts with interviewer speech included, with
filler words removed. (Task: COOK, B: bert-base-uncased, TE: trans-encoder, DRS:
diffcse-roberta-base-sts, DRT: diffcse-roberta-base-trans, DBS: diffcse-bert-base-uncased-
sts, DBT: diffcse-bert-base-uncased-trans)
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