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Abstract 

Decarbonizing the built environment requires immediate actions to meet global climate 
targets. The world population growth and rapid urbanization rate add to the urgency of 
this challenge. In fact, buildings account for about 40% of all energy and carbon emis-
sions from operations and materials’ production and construction processes. More specif-
ically, buildings’ structural systems are responsible for a signifcant share of the upfront 
embodied carbon emissions before construction. Most LCA tools focus on fully detailed 
material takeoffs from high-resolution Building Information Models (BIM) and are there-
fore incomplete during conceptual design. Moreover, Urban building energy modeling 
(UBEM) is a proven technique allowing cities to evaluate technology pathways to achieve 
their net-zero emissions goals. It involves simplifed building archetypes to estimate op-
erational energy on a large scale with reasonable accuracy. However, little attention has 
been paid to urban-level embodied carbon assessment. 

Therefore, this thesis investigates the potential of implementing physics-based struc-
tural quantities estimation in early-stage design for embodied carbon quantifcation at 
the urban scale. This approach combines bottom-up engineering calculations with data-
driven surrogate modeling to automatically predict embodied carbon from a high-fdelity 
model. Finally, structural parameters are defned into energy model archetypes to deploy 
this method into an existing urban scale modeling tool. The feasibility of the proposed 
methodology is assessed through case studies to estimate embodied carbon and en-
ergy use intensities at the individual-building and urban scales. Results show the benefts 
of spatially mapping the distribution of embodied and operational carbon in the building 
stock and obtaining more nuanced estimates of carbon emissions compared with existing 
benchmarking studies. The primary use case of this work is to better inform planning and 
policy decision-making for retroftting strategies and future building design. 
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Chapter 1 

Introduction 

1.1 Context 

In the coming decades, faced with the most acute global climate crisis of human history, 
urgent actions have to be taken to reduce greenhouse (GHG) emissions from the built 
environment, which currently represent about 40% of all carbon emissions globally. The 
building sector is known to consume a large amount of natural resources and energy for 
the extraction, production, and use of construction materials. These emissions are re-
ferred to as embodied carbon. Moreover, throughout the lifecycle of a building, green-
house emissions are also generated during the operations and maintenance of the build-
ing, which are called operational carbon (Kuittinen et al., 2023). 

The world population growth and rapid urbanization rate make this challenge even more 
pressing. By 2050, the total world population will approach 10 billion, and by 2060 the 
global foor area of all building stock is projected to double (Architecture2030, 2023). In 
accordance with the Paris climate agreement, the world needs to halve all carbon emis-
sions by 2030 and reach net-zero reduction targets by 2050. However, the global carbon 
budget for the built environment was currently estimated at 360 GtCO2 (R. Weber et al., 
2021). 

Three scenarios are highlighted in Figure 1.1: 1) “Business-as-usual”, 2) “Net Zero Oper-
ational Carbon,” and 3) “Net Zero Operational Carbon and Embodied Carbon”. According 
to Weber, Mueller, and Reinhart (2021), to reach carbon emissions reduction and not ex-
ceed the remaining carbon budget of about 360 GtCO2, the global renovation rate has 
to increase signifcantly from 1 to 4-5%, and decarbonization efforts need to account for 
both operational and embodied carbon so all new construction becomes carbon neutral 
by 2040. 

13 



Figure 1.1: Three Scenarios of the Building for Zero Challenge (R. Weber et al., 2021). 

1.2 Motivations 

In the past two decades, there has been a tendency to focus on the “Net Zero Opera-
tional Carbon” path only while neglecting embodied carbon. Thus, buildings have become 
more and more energy-effcient while the contribution of embodied carbon to the sum 
total of GHG emissions over a building’s entire lifecycle keeps rising. Today, there is a 
growing consensus in the feld that we need to urgently reduce embodied carbon along 
with operational carbon to achieve net-zero emissions. Therefore, reducing embodied 
carbon in the built environment has attracted increased interest that has led to the devel-
opment of several measurement tools at the material, structural element, or whole build-
ing level using different databases and methodologies (Pomponi & Moncaster, 2018). 

More importantly, reducing embodied carbon in the early design stages is a pressing 
challenge to tackle (Marsh et al., 2018). Given that structural material quantities repre-
sent a large portion of a building’s volume, the structural frame is recognized to have a 
considerable effect on lifecycle embodied emissions (D’Amico & Pomponi, 2020). There-
fore, estimates of structural material quantities in early-stage design contribute to creating 
a valuable assessment of buildings’ embodied carbon emissions which can be refned 
and improved throughout the design process. Thus, informing decision-making for select-
ing low-carbon structural systems from the conceptual design stage (Fang et al., 2023). 

However, Figure 1.2 illustrates a crucial paradox that still exists regarding the use of em-
bodied carbon measurement tools early in the design process, as there is more design 
freedom, but there is also a lack of knowledge of the design variables. Therefore, the pur-
pose of this thesis is to bridge this gap and tackle the challenges posed by the quantifca-
tion of embodied carbon in buildings’ structural systems at the earliest stages of design to 
have the greatest potential for impact. 
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Figure 1.2: Challenges and Opportunities of Early-Stage Design (Courtesy of Caitlin 
Mueller and Demi Fang). 

To achieve this goal, this work is focused on improving tools and methodologies for early-
stage embodied carbon estimation. Figure 1.3 highlights the existing methods and tools 
used before a traditional fully-detailed Building Information Model (BIM) is available such 
as rules-of-thumb and rough estimates of structural material quantities. This thesis aims 
to estimate such quantities as accurately and as early as possible. Therefore, we pro-
pose a physics-based and data-driven method for an “early-stage algorithmic BIM” de-
veloped using a bottom-up approach and creating a high-fdelity structural model to allow 
real-time analysis in early stages when design decisions change very rapidly. 

Figure 1.3: Potential to Develop an Early-Stage Algorithmic-BIM for Early-Stage Embod-
ied Carbon Estimation. 

15 



Furthermore, this new methodology must be rapidly scaled to have a chance to decar-
bonize the Architecture, Engineering, and Construction (AEC) industry since urban-scale 
analyses have a more signifcant impact on achieving net zero targets. However, these 
studies can also be more complex, uncertain, and computationally and time-intensive. 

Urban building energy modeling (UBEM) is a well-established tool that addresses these 
challenges and empowers cities to manage their emissions for decarbonization. For in-
stance, successful case studies developed in collaboration with eight cities have demon-
strated how policy-makers can identify technology pathways to achieve their emissions 
reduction goals at the building stock level (Ang et al., 2023). 

1.3 Problem Statement 

Different tools allow operational energy to be assessed across scales from the individual 
building level with Building Energy Modeling (BEM) to an urban scale using Urban Build-
ing Energy Modeling (Ali et al., 2021). However, most tools for embodied carbon emis-
sions are focused primarily on the individual building scale using Lifecycle Assessment 
(LCA) and parametric models. 

An LCA is an exhaustive approach requiring an inventory of the full materials used in a 
building (Kuittinen et al., 2023). However, building stock data required to estimate embod-
ied carbon of buildings’ structural systems is diffcult to acquire, given privacy rules and 
the sparsity of data. Similarly, producing a parametric model requires expertise with com-
putational tools and in this case a strong knowledge of structural design and engineering 
principles. Therefore, the process of creating a parametric model is challenging due to 
imperfections and uncertainties that can render the model unsatisfactory for use. As a 
result, little attention has been paid to investigating embodied carbon at the urban level. 

1.4 Thesis Scope 

Previous research has demonstrated that the LCA product phase A1-A3 and use phase 
B1-B5 are the biggest contributors to the embodied carbon of buildings (De Wolf et al., 
2017). In particular, the structural system has the highest impact on embodied carbon 
at the product stage, while components that require maintenance and replacement have 
a larger impact on the use phase. Therefore, this thesis focuses primarily on the upfront 
embodied carbon emitted through stages A1-A3, called cradle-to-gate, while still consid-
ering the operational carbon from the use stage B6. 

Moreover, since concrete and steel are by far the most used construction materials today, 
this thesis focuses on reinforced concrete structures. In particular, the methodology for 
bottom-up embodied carbon assessment applies only to the gravity system in low to mid-
rise buildings, thus ignoring the contribution from the lateral system. 
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1.5 Research Questions 

The main goal of this work is to develop a rigorous model to quantify the embodied car-
bon of buildings structural systems at the individual building and urban scales. There-
fore, the central questions of this research are: 

1) What are the key factors to consider for embodied carbon reduction in early-
stage structural design? 

2) How can physics-based structural quantities estimates be included for em-
bodied carbon quantifcation in urban modeling? 

3) How can integrated embodied and operational carbon benchmarks help cities 
meet their carbon reduction goals? 

1.6 Thesis Structure 

To answer these questions, this thesis is divided into fve chapters. Moreover, the three-
part methodology framework of this thesis is shown in Figure 1.4. 

Figure 1.4: Three-Part Research Methodology Diagram. 

First, a parametric model of the structural system in a multi-story reinforced concrete 
building is defned based on building physics to generate bottom-up calculations of struc-
tural material quantities. Second, after sampling the design space, a supervised ma-
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chine learning (ML) model is trained using the acquired data with eight input features 
and eight outputs of structural material quantities. This model serves as a surrogate for 
rapidly predicting the total embodied carbon of a building structure without relying on a 
fully-detailed structural Finite Element Analysis (FEA). This portable ML model is then de-
ployed within an existing urban modeling design tool for architects and engineers. Third, 
building archetypes are extended with the same structural parameters as the ML surro-
gate model and directly implemented in this tool to rapidly obtain embodied carbon re-
sults at the urban scale. 

Following this introduction, Chapter 2 deals with a literature review highlighting the main 
research gap in urban-level embodied carbon assessment. Then, Chapter 3 covers the 
methodology, results, and discussions related to the physics-based and data-driven model. 
In Chapter 4, the methodology for deploying this portable ML model within an existing ur-
ban modeling design tool is given. Two case studies of varying scales are successfully 
conducted. Findings from these studies are also presented in Chapter 4 to validate this 
novel approach. Finally, Chapter 5 summarizes the main conclusions and contributions of 
this work. 
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Chapter 2 

Literature Review 

This chapter begins by reviewing the most infuential body of literature describing the pro-
cess for estimating and benchmarking embodied carbon at the whole-building scale with 
a focus on structural systems and the barriers to its implementation in early-stage design. 
Then, an overview of urban building energy modeling (UBEM) methods will be presented 
to demonstrate the application of building archetype templates for operational energy es-
timation. 

2.1 Early-Stage Embodied Carbon Quantifcation 

It is well known that several guidelines have been published for estimating greenhouse 
emissions in buildings through Life Cycle Assessments (LCAs), such as the Athena guide 
for whole-building LCA (Bowick et al., 2014). Moreover, several commercial and in-house 
LCA tools were created within the industry to measure and manage whole-lifecycle car-
bon emissions in buildings assessment, such as Tally, OneClickLCA, and SimaPro. 
However, most widely-cited reports and papers on LCA results mainly focus on measur-
ing and benchmarking embodied carbon within detailed or as-built designs. Thus, they do 
not inform design decisions for early-stage embodied carbon quantifcation. 

Fang et al. (2023) have recently analyzed the advantages, shortcomings, and state-of-
the-art research of various design strategies proposed to reduce embodied carbon in 
structural systems as well as their compatibility with each other during early-stage de-
sign (Fang et al., 2023). In particular, three strategies directly relating to the assessment 
of material quantities through early-structural design were proven highly compatible with 
each other: 

1) A prerequisite bottom-up approach, 
2) A parametric design space exploration, 
3) And a statistical prediction with data-driven models. 

The relevance and limitations of each of these early-stage strategies are highlighted in 
the following sections. 

19 



 
     

 

2.1.1 Bottom-up Estimation of Buildings’ Structures Embodied Carbon 

Embodied carbon can be measured using a bottom-up approach by multiplying the struc-
tural material quantities (SMQ) of different systems with their associated embodied car-
bon coeffcients (ECC) according to the following formula (expressed in kgCO2e/m2) 
(De Wolf et al., 2015): 

NX 
GW P = (SMQ ∗ ECC) 

i=1 

More than 50 % of the embodied emissions in a building are contained in the structural 
system alone (Kaethner & Burridge, 2012). As seen in Figure 2.1, Ismail and Mueller 
have gauged the signifcant contribution of the structural system to the embodied energy 
(EE) of a conventional multi-story concrete building. Please note that embodied energy 
is directly related to embodied carbon by conversion factors. This analysis reveals that 
to optimize embodied carbon using a holistic approach, designers need to focus on the 
load-bearing structural system, which encompasses, in order of priority: horizontal slabs, 
foundations, as well as columns and beams (Ismail & Mueller, 2021). 

Figure 2.1: Embodied Energy of a Typical Multi-Story Reinforced Concrete Structure (Is-
mail & Mueller, 2021). 

2.1.2 Parametric Modeling for Embodied Carbon Estimation 

During conceptual design, architects and designers can use an iterative design process 
to assess the embodied carbon of a building. The design variables are still highly uncer-
tain and subject to changes at this stage. By defnition, measuring early-stage embodied 
carbon is a process with much uncertainty. Therefore, one effcient technique used to es-
timate embodied carbon before completing a building is through a parametric model. 
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A paper from Marsh, Nygaard Rasmussen, and Birgisdottir (2018) demonstrated that ar-
chitects and engineers could use embodied carbon tools in early design stages by simpli-
fying input data from the building’s geometry and choosing materials and primary building 
elements from a database. Therefore, the outcomes of their study revealed a simplifed 
two-step approach with a 5 to 10 % margin of error (Marsh et al., 2018). This simplifca-
tion approach was deemed effcient by the authors to respond to the plethora of uncer-
tainties in early-stage embodied carbon estimation and optimization. 

Other recent studies have investigated and quantifed correlations between the struc-
tural quantities of a building’s gravity frame and relevant early-design choices (bay size, 
foor loading, and main material: either steel, concrete, or timber) to inform the compari-
son of different design alternatives. D’Amico and Pomponi (2020) generated and studied 
more than 30,000 designs using a parametric structural frame model, which outputted the 
amount of material normalized per foor area (D’Amico & Pomponi, 2020). 

Similarly, Dunant et al. (2021) created a computational generative model satisfying spe-
cifc geometric constraints to sample the design space of different design variants for 
comparison with the real models from a set of nineteen mid-to-low-rise designs for com-
mercial and educational uses (Dunant et al., 2021). Through this research, the authors 
analyzed the infuence of crucial design decisions - namely, the column layout and deck-
ing choice, on reducing steel-framed buildings’ embodied carbon by almost half. 

Finally, Hens, Solnosky, and Brown recently demonstrated the use of design space explo-
ration tools to provide designers with valuable insights and visualize performance trends 
in the early-stage design of timber structures based on embodied carbon estimations. 
The authors have found that the building height and envelope area are directly propor-
tional to embodied carbon at the whole-building level (Hens et al., 2021). 

2.1.3 Surrogate Modeling of Embodied Carbon 

Surrogate modeling is a common statistical approach for solving complex engineering 
problems more effciently based on a predictive model. This is possible because the sta-
tistical regression model is capable of making fast predictions after learning patterns and 
relationships from some input and output data. This process is part of the branch of ma-
chine learning called supervised learning. 

In sustainable design, surrogate models have been used for rapidly predicting and ana-
lyzing the performance of a building, especially when conducting conceptual design, sen-
sitivity analysis, uncertainty analysis, and optimization (Westermann and Evins, 2019). 
Recently, surrogate modeling has also been applied to estimate embodied carbon in 
buildings. Since performing a Finite Element Analysis (FEA) of a structural model is time 
and computationally intensive, a surrogate model has the beneft of enhancing the predic-
tion speed and facilitating predictions on a large scale. 
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Data-driven models used for this purpose have been obtained in two ways: 1) using his-
torical data, or 2) using synthetic data generated through a parametric workfow, for in-
stance. Victoria and Perera created a parametric model and developed a regression model 
of embodied carbon prediction using historical data of offce buildings of low to medium-
rise in the United Kingdom (Victoria & Perera, 2018). 

Furthermore, surrogate models can use several types of algorithms: Random Forest, 
Kernell Ridge Regression, and Neural Network, to cite a few. Tseranidis, Brown, and 
Mueller (2016) demonstrated a validation approach with the comparison of these six sur-
rogate modeling algorithms by evaluating each model’s performance and selecting the 
best model to quickly explore and optimize the design space of civil structures (Figure 
2.2) (Tseranidis et al., 2016). 

Figure 2.2: Application of Surrogate Modeling in Design (Tseranidis et al., 2016). 

Similarly, in a more recent study, Pomponi et al. (2021) compared the performance of dif-
ferent surrogate models and used three types of materials: reinforced concrete, steel, 
and timber, to predict the amount of material and embodied carbon contained in the struc-
tural systems (Pomponi et al., 2021). 

2.2 Context on Embodied Carbon Benchmarking 

While designers have the greatest potential to reduce embodied carbon in buildings’ struc-
tures early in the design process, they are also limited by the lack of global, reliable, and 
comparable benchmarks - mainly due to uncertainties in datasets and methodologies. 
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2.2.1 Research Efforts: Databases and Methodologies 

Databases of Environmental Product Declarations (EPDs) and building data such as 
the Embodied Carbon in Construction Calculator (EC3) database provide pertinent in-
formation to improve embodied carbon estimation in the industry at a national and even 
global scale (De Wolf et al., 2017). Since 2017, the work of Simonen, Rodriguez, and De 
Wolf has allowed to establish a uniform database of embodied carbon at the whole build-
ing level with reliable benchmarks. The authors created an Embodied Carbon Bench-
mark (ECB) Study to address some questions about the order of magnitude and variation 
of embodied carbon, the sources of uncertainty, and different benchmarking strategies 
(Simonen et al., 2017). Figure 2.3 reveals the ranges of the initial embodied carbon as-
sessed in different building types from this database. 

Figure 2.3: Embodied Carbon Benchmark Study (Simonen et al., 2017). 
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The ECB Database is composed of more than 1000 buildings provided by different ar-
chitecture and engineering frms such as Arup, SOM, and Thornton Tomassetti, and re-
search databases such as WRAP and DeQo developed at MIT. 

2.2.2 Challenges and Barriers to Implementation 

Despite these efforts, the AEC industry and researchers have not yet managed to agree 
on a systematic approach to benchmark embodied carbon. Therefore, embodied carbon 
is still at the heart of a “second wave” of the performance gap in buildings’ environmen-
tal assessment. Pomponi and Moncaster have investigated in more detail the data and 
methodologies used in embodied carbon assessments to understand the limitations of 
their applications. Their work revealed some explanations for the gap between calculated 
and actual embodied carbon measurements, such as data scarcity and variability (Pom-
poni & Moncaster, 2018). Similarly, De Wolf, Pomponi, and Moncaster (2017) identifed 
barriers and drivers to the applications of embodied carbon measurement in practice. 

2.2.3 Opportunities: Tools for Integrated Embodied and Operational Car-
bon Assessment 

Promising tools automatically generate a structural model and allow the comparison of 
different design alternatives by rapidly assessing embodied and operational carbon in the 
early design process. In a recent study, Weber, Mueller, and Reinhart have developed a 
physics-based method to measure embodied carbon from existing buildings’ structural 
systems using a generative algorithm. This new method proposes to calculate the struc-
tural quantities and embodied carbon of a steel framing system with a sub-17 % error 
margin and can be applied at the urban scale (R. E. Weber et al., 2021). 

Figure 2.4: Generative Embodied Carbon Model Workfow (R. E. Weber et al., 2021). 
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Architectural, structural, and energy models have their own set of geometric and non-
geometric parameters and requirements used to assess the building’s performance. How-
ever, these models are complementary and can build upon each other when combined to 
improve the accuracy of their associated simulations. 

In 2021, Kral suggested a new algorithm called AutoFrame to convert any architectural 
massing into separate structural and energy models to simulate building performance and 
assess lifecycle carbon emissions (from embodied to operational) at early stages (Kral, 
2021). This new approach aims to integrate the existing energy and daylight simulation 
tools with a robust structural model approximation for estimating material quantities and 
embodied carbon of a framed building made of timber, concrete, or steel. Thus, allowing 
for a dynamic and multi-dimensional environmental performance assessment from the 
onset of the conceptual design process when there is a greater potential for impact. Aut-
oFrame results in a 0.5 to 12.5% error margin in embodied carbon estimation for designs 
with refned inputs and up to 33.5% for those defned with coarser inputs. 

Furthermore, a sensitivity study of various design parameters of typical residential and of-
fce multi-story buildings was recently published to analyze their effects on embodied car-
bon, construction costs, and heating and cooling loads. These parameters included: the 
building’s shape, size, typology, layout, and structural system (Gauch et al., 2023). Gauch 
et al. demonstrated that embodied and operational carbon are most sensitive to the build-
ing size and shape, along with the structural system type and layout, which are decisions 
taken at the early stages of design. There is also a tradeoff between embodied and op-
erational carbon based on the number of stories. The higher the number of stories, the 
higher the embodied carbon and the lower the operational carbon. This is because struc-
tural material quantities will increase with more stories. 

2.3 Urban Building Energy Modeling and Building Archetypes 

2.3.1 State-of-the-art 

Urban Building Energy Models (UBEMs) allow designers, urban planners, and cities to 
determine or predict the operational energy consumption of an existing or new urban 
building stock. Two types of UBEMs exist 1) top-down models and 2) bottom-up models. 
Figure 2.5 summarizes the strengths and limitations of each model. 

The top-down approach relies on aggregated historical data on energy use and techno-
socioeconomic factors on a macro scale to make long-term energy use predictions. In 
contrast, the bottom-up approach is more effective for detailed urban building modeling 
as it uses a disaggregated approach considering individual buildings or groups of build-
ings with simplifed building templates called archetypes (Abbasabadi & Ashayeri, 2019) 
(Ali et al., 2021). 
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Figure 2.5: Strengths and Limitations of Top-down and Bottom-up Urban Energy Use 
Modeling Approaches (Abbasabadi & Ashayeri, 2019). 

Among bottom-up approaches, statistical-based or data-driven models use historical data 
on relevant building characteristics from GIS data and surveyed data such as energy use, 
occupancy, and other socioeconomic factors. On the other hand, simulation models use 
a physics-based approach and require a granular level of buildings’ geometric and non-
geometric input information defned in building archetypes. It is important to calibrate 
the results obtained from physics-based models using real measured data since building 
archetypes only provide a simplifed picture that is not representative of the actual diver-
sity of specifc buildings and can be seen as arbitrary and subjective. Therefore, creating 
physics-based models can be a particularly long and computationally-intensive process 
(Ali et al., 2021). 

Both data-driven and physics-based techniques have limitations in creating realistic UBEMs 
due to the uncertainties in methodologies, the complexity of urban systems, the lack of 
data availability on a large scale, and the signifcant computational needs of urban mod-
eling (Abbasabadi & Ashayeri, 2019). However, this thesis is focused on the bottom-up 
physics-based method, which is currently the most prevalent in urban modeling. 
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2.3.2 Building Archetypes for Urban Scale Energy Modeling 

To perform a physics-based urban scale simulation, a seed model of a city, specifc neigh-
borhood, or site is frst defned. This model covers a limited area composed of airtight 3D 
building massings obtained from GIS data and involves only planar surfaces and context 
objects such as shading, site boundary, and streets. Each massing holds the geometric 
information, complemented by a building archetype including site, climate information, 
and important non-geometric parameters (Cerezo Davila, 2017). 

Building archetypes are defned by segmenting the available building stock data based on 
similar shared attributes such as vintage and program. Following this, each archetype is 
characterized depending on specifc building attributes such as construction assemblies 
and materials. Finally, the archetypes are assigned to the building stock creating a spa-
tial distribution of buildings’ templates and quantifying the number of buildings for each 
archetype. It is essential to defne reliable archetypes to avoid garbage-in and garbage-
out simulations and unacceptable inaccuracies in simulation results (Cerezo Davila, 2017). 

The Urban Modeling Interface (UMI) is a tool implemented in the architectural design 
software, Rhinoceros3D. Developed by the MIT Sustainable Design Lab, this simulation 
tool incorporates six modules enabling designers to effciently conduct a comprehensive, 
multi-dimensional urban-scale analysis for their projects and visualize the results to guide 
their decisions: site analysis, operational energy, lifecycle, district energy, urban agricul-
ture, and design accessibility. Figure 2.6 shows the UMI User Interface and its various 
modules. 

Figure 2.6: UMI User Interface. 
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Figure 2.7: UMI Building Template Library Structure. 

Within UMI, building archetypes are stored in a template Library in the form of XML fles 
holding the information required for urban modeling. A Template Editor was created as a 
UMI-supporting application, allowing users to manage their templates by directly populat-
ing various template-specifc settings for their projects. An extensive library of templates 
has already been established for operational models, including zone information from in-
ternal loads to conditioning systems, energy use schedules, and construction assemblies, 
as shown in Figure 2.7. Before running each urban simulation, it is important to collect 
enough information to have a good representation of the building archetypes and popu-
late them using the Template Editor. 

In the current version of the Lifecycle module in UMI, opaque construction assemblies 
are defned by their composing materials and thicknesses to allow the bottom-up estima-
tion of embodied carbon in the following fve construction systems: ’Facade,’ ’Ground,’ 
’Partition,’ ’Roof,’ and ’Slab,’ as well as ’Windows.’ In addition, an assumption is made to 
consider a constant area normalized ratio for the structure in a specifc building template. 
Based on this rule of thumb, the structural material quantity is then multiplied by the em-
bodied carbon coeffcient of the associated material to determine a zeroth-order approx-
imation of embodied carbon. Accordingly, this estimation is overly-coarse and does not 
provide the designers the fexibility to reduce the embodied carbon of the structural sys-
tem effectively. 

2.3.3 Case Studies on Urban-Level Embodied Carbon Assessment 

Most of the applications and benchmarking efforts of UBEMs conducted in the past have 
focused only on operational energy. However, two types of embodied carbon assessment 
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at the urban level have started to emerge: 1) benchmark analysis with surveyed data and 
2) spatial analysis with maps of carbon hotspots. 

An extensive benchmarking report was recently published using data assembled from 
fve European countries to provide harmonized embodied carbon benchmarks for build-
ings in Europe (Röck et al., 2022). Figure 2.8 presents the breakdown of embodied car-
bon intensities for different building parts: Ground, Structure, Envelope, Internal, Services 
and Appliances. However, the lack of available data and uncertainties in methodologies 
make the process of defning these benchmarks particularly challenging. 

Figure 2.8: EU Benchmark Study Breakdown (Röck et al., 2022). 

Furthermore, an example of a bottom-up spatial analysis that quantifes embodied en-
vironmental impacts was conducted at the city level to model the building stock in Mel-
bourne, Australia (Stephan & Athanassiadis, 2017). This work demonstrates the impor-
tance of quantifying the emissions that could result from rebuilding a city’s stock today 
and highlights the spatial distribution of carbon hotspots. Hence, providing insights to 
cities to better manage their building stock and meet their carbon reduction goals. 

This literature review highlights the critical knowledge gap and opportunity concerning 
the estimation of structural material quantities for embodied carbon assessment in urban 
modeling, which is a major contribution of this thesis. 
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Chapter 3 

Physics-Based and Data-Driven 
Model for Early-Stage Structural 
Sizing 

This chapter describes the frst part of the research methodology designed to develop a 
physics-based and data-driven surrogate model and analyzes the results obtained from 
this early-stage structural quantities estimation. 

3.1 Methodology for Generating a Parametric Structural Model 

As mentioned in the previous chapter, using a parametric model is one of the most eff-
cient techniques for performing a bottom-up estimation of embodied carbon in the early 
design stages. In this study, the full-building parametric model (Figure 3.1) was created 
using Grasshopper - a visual programming environment associated with the 3D modeling 
software Rhinoceros3D. 

Following conventional construction practices in the concrete sector, the model is based 
on a typical reinforced concrete frame with a rectangular grid and comprises three major 
structural systems: 1) the structural frame and 2) the slab system, which constitute the 
superstructure, and 3) the foundations, which represent the substructure. In particular, 
the frame is composed of columns as vertical components and primary and secondary 
beams contributing as horizontal members. 

3.1.1 Structural Assumptions and Limitations 

The parametric model includes specifc ranges of eight input parameters related to the 
building geometry, typology, materials, and soil conditions, as represented in Table 3.1. 
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Figure 3.1: Structural Model. 

Table 3.1: Model Input Parameters and Constraints. 

Model inputs Range Units 
Floor-to-foor height 2.5-5 m 
Number of stories 2-10 
Primary span 3-12 m 
Secondary span 3-12 m 
Program and live load Residential: 1.92 kPa 

Offce: 2.40 
Hospital: 2.87 
Assembly: 4.79 
Retail, Warehouse: 6 

Concrete strength (slabs, 17.3-55.1 MPa 
beams, foundations) 
Concrete strength (columns) 17.3-55.1 MPa 
Soil type and soil bearing Clay: 72 kPa 
capacity Sand: 97 

Gravel: 144 

It is worth noting that the building model is designed to resist gravity loads and does not 
yet include a lateral bracing system. As a result, the number of stories in the model is lim-
ited to 10, a point up to which a building can reasonably rely on the gravity system only 
(D’Amico & Pomponi, 2020). The primary and secondary spans which defne the column 
grid have typical ranges for non-prestressed reinforced concrete, as longer spans would 
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require some post-tensioning to be included. As for building typology, the live loading of 
the following six chosen programs was obtained in Table 4.3-1 from the ASCE/SEI 7-22 
Standard by the American Society of Civil Engineers: residential, offce, hospital, assem-
bly and retail or warehouse. Moreover, two types of concrete with compressive strength 
ranging between 2,500 and 8,000 psi (equivalent to 17.3 and 55.1 MPa) were selected for 
the slabs, beams, and foundations on the one hand and the columns on the other. Given 
that the parametric model represents low-to-mid-rise buildings, the three most common 
types of soil conditions encountered with shallow foundations were considered: clay, 
sand, and gravel. 

Table 3.2: Model Material Properties Assumptions. 

Material Design Modulus of Embodied car- Embodied car-
Strength Elasticity [MPa] bon coeffcients bon coeffcients 
[MPa] [kgCO2/m3] [kgCO2/kg] 

Concrete 17.3 21,029 240 0.100 
20.7 23,002 262 0.109 
27.6 26,561 308 0.128 
34.5 29,696 365 0.152 
41.3 32,491 385 0.161 
55.1 37,528 446 0.186 

Steel 415 205000000 16,020 1.99 

Some assumptions are also made about the reinforced concrete’s mechanical properties 
for the structural analysis and can be found in Table 3.2. The parametric model is built 
assuming a typical normal-weight concrete with a density of 2400 kg/m3. The embod-
ied carbon coeffcients of concrete are obtained from a recently published cradle-to-gate 
LCA report prepared for the National Ready-Mixed Concrete Association (NRMCA) by 
the Athena Sustainable Materials Institute based on national industry average data from 
the United States (Athena Sustainable Materials Institute, 2022). As for the steel rein-
forcement, standard properties from ASTM 50 steel rebars are chosen with a density of 
8050 kg/m3. Finally, an established value of 1.99 kgCO2e/kg is taken for the embodied 
carbon coeffcient of the steel rebar following the ICE database (ICE, 2019). 

3.1.2 Structural Model Analysis 

One of the key contributions of this thesis is the creation of a parametric workfow for 
the structural design of a whole-building reinforced concrete model1. An overview of the 
parametric model workfow is presented in Figure 3.2, which shows the set of constraints 
and checks required in the iterative design process. At the start of this workfow, the foor 
and roof slabs are designed according to engineering frst principles and the ACI 318-
19(22): Building Code Requirements for Structural Concrete. Then, the structural analy-
sis of the frame elements can be carried out using the Grasshopper plug-in Karamba3D 

1The model was designed through a collaborative effort with Yiwei Lyu and Kiley Feickert. 
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Figure 3.2: Parametric Workfow for Structural Model. 

by evaluating the structural performance of each component through streamlined Finite 
Element Analyses (FEA). Finally, the design of the spread foundations is derived from 
analytical relationships involving soil-bearing capacity and column loads established by 
Feickert (Feickert, 2022). 

Based on the sizing of each structural system, the parametric model yields eight out-
puts for the volumetric quantities of concrete and steel material across the slabs, beams, 
columns, and foundations. The following sub-sections will further discuss the design of 
each structural system: 1) slab design, 2) frame design, and 3) foundation design. 

Slab Design 

As a non-prestressed concrete two-way slab system, the current model assumes that the 
foor system is simply-supported on all four sides by beams, thus neglecting the effect 
of torsion at the edges. Therefore, based on the Rankine-Grashoff’s approximate strip 
method, the moment demand of the slab is calculated in the short and long directions 
using the following equations: 

Mux = βxwl
2 , Muy = βywl

2 (3.1)x y 

α4 α2
Where the coeffcients βx = and βy = were calculated using the aspect 

8(1+α4) 8(1+α4) 

ratio, α = l
l 
x

y 

It can be noted that these analytical equations are also valid when designing a one-way 
slab system, given that the moment coeffcients βx and βy refect how the load is propor-
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tionately distributed in both directions. Hence, for one-way slab systems, most of the load 
will be transferred to the shorter span. Because this parametric model assumes that the 
slab is supported by beams on all four sides, in the case of a one-way system, the dimen-
sions of the secondary beams are reduced and yield much thinner cross-sections than 
that of the primary beams. For the slab design, both the concrete cover and the diameter 
of the steel reinforcement bars are fxed at specifc values of 40 mm and 25 mm, respec-
tively. It is also important to note that a minimum slab thickness is initially assumed ac-
cording to equation (2) taken from a code-based rule-of-thumb accounting for defection 
control: 

lx
d = (3.2)
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In addition to calculating the moment demand, the design workfow includes additional 
steps to check the shear demand of the slab. In the calculation for shear capacity , vn, 
only the concrete is assumed to contribute as vc, ignoring the steel reinforcement contri-
bution. Hence, the shear capacity is obtained as follows: 

vn = (vc + 0.66f2bwd) ∗ 103 (3.3)c 

Similarly, the shear demand, vu, based on the tributary area is found to be: 

vu = w(0.5lx − 0.5bw − d) (3.4) 

Where fc represents the concrete strength, and bw and d are the slab cross-section width 
and effective depth. 

The slab dead load includes its self-weight and a superimposed non-structural dead load 
value of 1.0 kPA. Two load cases were considered to be dominant for our model of the 
gravity system, which does not include wind, snow, and earthquake loads: 1) 1.4*Dead 
Load and 2) 1.2*Dead Load + 1.6*Live Load. 

The required slab thickness is then iteratively increased to satisfy the shear check loop 
and considering defection control. Finally, the moment demand, Mu is used to obtain the 
required area of the reinforcing steel based on rule-of-thumb calculations. The equations 
used are detailed as follows and involve a constant derived in metric units by Ismail and 
Mueller (Ismail & Mueller, 2021): 

Mu ∗ 106 

As = 
constant ∗ d 
fy

constant = 0.87 ∗ fy ∗ (1 − 1.005 ∗ ρ ∗ ) ∗ 10−3 

fc 

2 0.36 ∗ fc ϵc
ρ = ∗ ( ) ∗ ( )

3 0.87 ∗ fy ϵs + ϵc 

Where ϵc represents the concrete strain, and fy and ϵs, the steel strength and strain. 
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Frame Design 

The structural analysis of the columns and beams is performed with the parametric struc-
tural design tool, Karamba3D. As mentioned previously, the model focuses on gravity load 
design and ignores lateral loads. A homogeneous reinforced concrete material is created 
for the frame design, assuming that all of the tensile strength of the material is provided 
by the reinforcing steel and thus equals the compressive strength of the concrete. Con-
sequently, an assumption of 2% of reinforcing steel volume was applied to separate the 
volume contribution from the concrete and the steel for the columns and beams. 

The beams and columns cross-sections are optimized to withstand the loading trans-
ferred from the slabs. The beams are given rectangular cross-sections and constrained 
by a maximum height of 1m. Moreover, because the geometries of the beams and slabs 
were initially overlapping in the model, the additional volume of the beams is removed 
from the slabs’ volume. Columns are assumed to have a squared cross-section and not 
rectangular as beams since potential buckling effects are not accounted for in the design. 
Furthermore, the cross-sections of the columns are allowed to change when the num-
ber of stories exceeds fve such that the group of upper columns can take smaller cross-
sections than the group of lower ones. This method is equivalent to changing the rein-
forced concrete strength of the columns based on the number of stories - for example, by 
reducing the area of the reinforcing steel. This is a common construction practice since 
columns on upper foors carry fewer loads and can use lower-strength concrete mixes. 

Foundation Design 

The foundation design follows a workfow developed by Feickert (2022) to size the dimen-
sions of spread and shell footings depending on the soil-bearing capacities and column 
loads. Therefore, this workfow defnes the volume of concrete and steel in the foundation 
system and its resulting embodied carbon. Because of the parametric model’s limitation 
for low- to mid-rise buildings only spread footings and the three most common soil types 
with lower bearing capacities are considered: clay, sand, and gravel. 

3.1.3 Design Space Sampling and Data Processing 

The physics-based model algorithmically generates a simplifed BIM, which outputs the 
volumetric quantities of concrete and steel within each structural system in units of kg/m3. 
Synthetic data from the parametric model can be randomly generated and sampled at a 
signifcantly fast rate of about 5 minutes for 100 designs, or about 3 seconds per design. 
A large dataset of 130,000 data was collected. The reason why the parametric model 
generates structural quantities and not embodied carbon estimates is to facilitate future 
updates to the dataset using more accurate embodied carbon coeffcients. 

Next, the data processing step consisted of calculating each structural system’s embod-
ied carbon from their material quantities with the help of associated embodied carbon 
coeffcients. The structural material quantities and embodied carbon values were also 
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normalized per foor area, allowing for better comparisons across different designs. An-
other crucial part of the data processing step was to scale all input features and outputs 
to obtain a mean of 0 and a standard deviation of 1. 

After sampling the design space and preparing the dataset, a supervised machine learn-
ing (ML) model was trained using the acquired data with eight input features and eight 
outputs of structural material quantities. 

3.2 Methodology for Building a Neural Network Surrogate Model 

3.2.1 Model Training and Hyperparameters Tuning 

The neural network model2 is built using a typical Multi-Layer Perceptron (MLP) archi-
tecture from the Pytorch library environment and learns on the dataset of 130,000 sam-
ples acquired from the parametric model with a validation dataset size of 20% and 80% 
for the training data. This Neural Network is based on a feed-forward model, which in-
cludes an input layer, 14 hidden layers, and an output layer, as shown in Figure 3.3. The 
activation function and optimizer were chosen to be ReLu and Adam, respectively, as is 
usually recommended for neural network model training. The following list provides the 
number of hidden neurons within each hidden layer which was chosen intuitively and 
proven effective during training: [128, 128, 128, 128, 128, 512, 512, 512, 512, 128, 128, 
128, 128, 128]. The loss function used during model training is the mean squared error 
(MSE) which is particularly common in machine learning and data science applications. 

Additionally, three model hyperparameters were systematically tuned in a non-exhaustive 
search to determine the best combination of hyperparameters for the batch size, the 
number of epochs, and the learning rate. 

3.2.2 Evaluating Surrogate Model Performance 

After training nine neural network models by varying their hyperparameters, the training 
and validation sets were used to calculate their associated MSE loss. The best surrogate 
model displaying no signs of overftting was then selected. This means that the model’s 
testing loss was the lowest and did not start increasing at some point, while the training 
loss kept decreasing. Indeed, overftting occurs when the model fts the training data ex-
tremely well and, consequently, cannot generalize to any other dataset. Furthermore, it 
was essential to assess the model performance by determining its generalization error 
on a new unseen testing dataset which was different from the training and validation sets. 
This error allows to characterize the difference between the actual values and the model 
predictions to determine whether the model generalization error is acceptable. 

2The model was designed in collaboration with Yiwei Lyu. 
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Figure 3.3: Feed-forward Neural Network Architecture Representation. 

3.3 Results and Discussion 

3.3.1 Exploratory Data Analysis 

Before using the processed dataset to build the surrogate model, an exploratory data 
analysis was conducted to inspect all 100,000 training data samples. Therefore, different 
visualization tools were used to explore trends or patterns in the data. 

Figure 3.4 shows a histogram of the total normalized embodied carbon distribution and 
highlights the 10th and 90th percentiles to identify designs with the lowest and highest 
embodied carbon values. Values below the 10th percentile are coloured in green; val-
ues above the 90th percentile are shown in yellow while any value in between is shown 
in blue. Even though this frequency graph seems to lean towards a normal distribution, 
it appears slightly skewed to the left, with a smaller noticeable peak below the 10th per-
centile. This observation can be explained due to the assumptions made in the para-
metric model design. Indeed, the slab design process includes a minimum thickness 
as shown in Equation 3.2. Because of this structural code requirement, the minimum 
slab thickness can be chosen more regularly, which leads to this second peak for lowest-
embodied carbon designs. 

In addition, four stacked bar charts in Figure 3.5 display the contribution of concrete and 
steel reinforcement to the embodied carbon within each structural system and for each 
building typology defned previously in Table 3.1. 

38 



Figure 3.4: Total Normalized Embodied Carbon Distribution. 

Figure 3.5: Contributions of Concrete and Reinforcing Steel to Total Embodied Carbon 
Across Different Building Types and Parts of Structural Systems. 
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The contribution from steel and concrete appears to be about the same (50% each) for 
beams and columns; however, for slabs and foundations, the concrete clearly dominates 
(by at least 75 %). Surprisingly, the contribution of steel reinforcement to embodied car-
bon largely exceeds the volumetric ratio used in the structural analysis of these systems. 
For example, only 2% of steel reinforcement is assumed in the frame analysis. This is be-
cause the embodied carbon coeffcient of steel is more than ten times higher than that of 
concrete as seen from Table 3.2. Hence, this graph highlights that steel is an important 
contributor to a reinforced concrete building’s embodied carbon. Regarding the compar-
ison between typologies, it can be noted that the higher the live load (Assembly and Re-
tail), the lower the contribution of the concrete within the slabs is to the total embodied 
carbon, but the higher this contribution will be within the foundations. 

Pie charts in Figure 3.6 show the contribution of the concrete and steel to the total em-
bodied carbon within each structural system. Again, this representation is given for each 
typology and corroborates the previous observation on higher live load and the relatively 
lower contribution of the concrete within the slabs than within the foundations. 

Figure 3.7 shows a parallel coordinate plot highlighting the following relationships be-
tween the model inputs and the total normalized embodied carbon of each design: 

• For best performing designs: only the column concrete strength, foor-to-foor height, 
and soil-bearing capacity do not seem to have much impact. All the other features 
have specifc ranges impacting the best-performing designs. In particular, the pri-
mary span, slab concrete strength, and live load are the top three most important 
features infuencing these best-performing designs (the lower, the better). More-
over, designs including two-way slabs are more effcient than one-way systems, as 
demonstrated by the lower primary and secondary span ratio. 

• Surprisingly, a higher number of foors leads to lower total embodied carbon in this 
dataset. This is because the roof in the parametric model is designed the same way 
as the foor slabs by assuming a two-way system which is seen in some types of 
incremental construction. However, since the roof is not considered to be occupied 
and is excluded from the total foor area, normalizing the embodied carbon of the 
structural system by the total foor area creates a penalty for smaller buildings (with 
two and three stories). 
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Figure 3.6: Contributions of Concrete and Reinforcing Steel in each Structural System. 
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Figure 3.7: Parallel Coordinate Plot of the Model Normalized Inputs and Output. 
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3.3.2 Neural Network Validation 

During validation, a total of nine neural network models were trained, and their perfor-
mance was compared to select the best combinations of hyperparameters for the sur-
rogate model. Table 3.3 summarizes the nine neural network models and their training 
and validation losses. The number of epochs was changed from a list of four values: 100, 
200, 500, and 1000; the batch size was varied from values in the range: 500, 1000, and 
2000; and the learning rate was tuned by comparing three values: 5e-5, 1e-4 and 1e-3. 
Overall, the best model calls for a batch size of 500, with a number of 1000 epochs and a 
learning rate of 1e-4. Amongst the other models, three were found to be overftting. 

Subsequently, Figure 3.8 presents the evolution of the training and validation losses of 
the best model, while Figure 3.9 displays the same graphs for two overftting models. 

Table 3.3: Training and Validation Losses Results. 

Models Batch size No. of Learning MSE Train- MSE Val-
epochs rate ing loss idation 

loss 
1 1000 100 1e-4 0.033795 0.034463 
2 1000 200 1e-4 0.022631 0.023259 
3 (best) 1000 500 1e-4 0.012886 0.015613 
4 (overftting) 1000 1000 1e-4 0.010330 0.015643 
5 500 500 1e-4 0.012460 0.017061 
6 2000 500 1e-4 0.018528 0.022278 
7 (overftting) 2000 1000 1e-4 0.012217 0.015913 
8 (overftting) 1000 500 1e-3 0.004612 0.020922 
9 1000 500 5e-5 0.011649 0.016086 

Figure 3.8: Loss Evolution Plot of the Best Neural Network Model. 
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Figure 3.9: Loss Evolution Plot of two Overftting Neural Network Models. 

3.3.3 Neural Network Model Performance 

Figure 3.10 shows the results of a feature importance study performed on the selected 
Neural Network model. To perform this analysis, the resulting changes in the output were 
calculated with respect to pertubations of each input feature. Then, the magnitude of 
these output changes served as the measure of feature importance for the correspond-
ing input. This approach is referred to as a pertubation-based method. As anticipated 
from the parallel coordinate plot of the training data in Figure 3.7, the primary span, slab 
concrete strength, and live load remain, indeed, the most important features infuencing 
the model. 
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Figure 3.10: Neural Network Feature Importance. 

Finally, Figure 3.11 presents prediction accuracy plots comparing the actual results from 
the parametric model with the predicted results obtained from the Neural Network model. 
Each data point represents the output of a specifc design in each structural system and 
for both concrete (orange points) and steel reinforcement (green points). Overall, the 
data points align well with the central 1-to-1 line and remain within the 10 and 20% er-
ror bounds, which provides some confdence in the model performance. The next chapter 
discusses how to apply this model to urban modeling. 
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Figure 3.11: Neural Network Prediction Accuracy Plots. 
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Chapter 4 

Applications into Urban Modeling of 
Embodied and Operational Carbon 

This chapter describes the last part of the research methodology showing how to deploy 
the surrogate model and create building archetypes with structural parameters for urban-
scale applications. As mentioned in the previous chapters, existing building archetypes 
only consist of a massing and an operational model. Adding structural parameters by cre-
ating an embodied model through this study allows the simulation of both embodied and 
operational carbon within the Urban Modeling Interface, as shown in Figure 4.1. 

Figure 4.1: Structural Parameters Included to Defne an Embodied Model within Building 
Archetypes. 

47 



Finally, the validity and feasibility of the methodology are assessed on two scales: 

1. A whole-building scale using the Department of Energy (DOE) reference building 
templates through a sensitivity study on the impact of the column grid and concrete 
strength on embodied carbon intensity across archetypes. 

2. A neighborhood scale through a case study based on real-world data from an exist-
ing building stock in Lisbon, Portugal, to assess the scenario of replacing the build-
ing stock with new construction and make recommendations on stock-level carbon 
reduction strategies. 

4.1 Methodology for Integrating Structural Quantities Esti-
mates into Urban Modeling 

4.1.1 Framework for Deploying the Surrogate Model into UMI 

One of the main advantages of using a surrogate model in early-stage design and/or ur-
ban modeling is its portability across frameworks, as demonstrated in Figure 4.2. After 
training, the Neural Network model can be exported with the obtained set of weights, 
model parameters, and hyperparameters and deployed into a different software tool to 
perform inferences. In this study, the surrogate model was trained in Python and deployed 
within a C-sharp application to allow its integration into UMI. To do so, the model was 
converted to an open standard format called ONNX (Open Neural Network Exchange) 
to ensure its interoperability (ONNX, 2023). 

Figure 4.2: Three Steps for Deploying Surrogate Model into Urban Modeling Tool. 
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ONNX is a common fle format used to represent machine learning and deep learning 
models so they can be deployed in a different inference environment than the training 
framework where they were originally developed. After the ONNX model is exported, its 
predictions are compared with the original Neural Network model to ensure both models 
yield the same results. Finally, ONNX Runtime is a tool used to load and run the ONNX 
model within the new environment. Moreover, ONNX Runtime provides improvement 
benefts to the model performance, such as a faster prediction speed. 

4.1.2 Assumptions for Populating Embodied Model Structural Parameters 

Integrating the trained surrogate model in the UMI Lifecycle module makes it possible to 
quickly estimate the embodied carbon in buildings’ structural systems more accurately. 
Therefore, structural parameters specifying the live loading, materials from different con-
struction systems, column grid layout, and soil conditions are added to the building archetypes 
and serve as inputs to the surrogate model integrated within UMI, as shown in Figure 4.3. 
This required signifcant updates to the UMI Lifecycle module C-Sharp code. Please re-
fer to the UMI GitHub repository for more details related to these programming updates 1 

(UMI, 2023). 

Figure 4.3: UMI User Interface Improvements to Include Structural Parameters for the 
Embodied Model. 

1These changes were implemented with the help of Cody Rose (Research collaborator at the MIT Sus-
tainable Design Lab). 
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Figure 4.4: Defnition of the Synthetic Material Properties for Use in the Structural Model. 

However, the module also maintains the existing workfow for the bottom-up estimation of 
all non-structural construction assemblies that comprise the building envelope (“Facade” 
and “Windows”) and interior elements such as “Partitions.” Therefore, all contributions of 
the structural materials within the “Ground,” “Roof,” and “Slab” construction assemblies 
are removed, as the surrogate model already accounts for them.To do so, a synthetic 
concrete material with zero embodied carbon coeffcient and zero mechanical properties 
(design strength and modulus of elasticity) is defned in each archetype and used to avoid 
double counting the contribution of structural elements in the “Ground,” “Roof,” and “Slab,” 
as seen in Figure 4.4. 

Another critical assumption when developing archetypes for embodied carbon estima-
tion is to determine specifc carbon intensity factors for electricity, oil, and gas in units of 
kgCO2e/kWh. This is because the carbon intensity of electricity varies depending on the 
electricity mix of different regions. Therefore, specifc factors for the selected region of our 
case study were calculated as follows. 
First, carbon intensity factors of different energy sources for electricity generation were 
obtained in a recent LCA report published by the National Renewable Energy Laboratory 
(NREL) (Nicholson & Heath, 2021). Since region-specifc data on the electricity mix was 
not found for the city of Lisbon, the electricity mix at the national level was obtained from 
an open-source database instead (OurWorldinData, 2023). 
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Then, the carbon intensity of electricity in Portugal was calculated to be 0.234 kgCO2e/kWh 
using a weighted average of the collected information. For oil and gas, intensity factors of 
0.253 and 0.181 kgCO2e/kWh were directly taken from the US Environmental Protection 
Agency (EPA) data on carbon emissions coeffcients per fuel (EPA, 2022). 

After successfully setting up the structure necessary to deploy the surrogate model and 
include an embodied model in building archetypes for urban modeling, two case studies 
are analyzed in the remainder of this chapter. 

4.2 Case Studies Description 

4.2.1 Sample Models Defnition and Sensitivity Analysis 

The US DOE and NREL have established building templates for energy simulations of 
typical residential and commercial buildings (Reyna et al., 2022). Six reference build-
ing archetypes were considered to evaluate the performance of the surrogate model at 
the individual building level: a Single-family detached house, a Multi-family apartment 
building, a Medium offce, a Primary school, a Stand-alone retail, and a (non-refrigerated) 
Warehouse. The characteristics of these sample models are presented in Table 4.1. 

Table 4.1: Sample Models from DOE Residential and Commercial Prototype Buildings. 

Archetypes Single- Multi- Medium Primary Stand- Ware-
Family Family Offce School alone house 

Retail 

Live Load [kPa] 1.92 1.92 2.4 1.92 6 6 
Total Floor Area [m2] 442 3131 4985 7183 2299 4599 
Length [m] 17.16 46.31 49.93 103.63 54.25 100.58 
Width [m] 12.87 16.90 33.28 82.30 42.37 45.72 
Number of Stories 2 4 3 1 1 1 
Floor-to-foor Height 3 3 4 4 6.1 8.5 
[m] 
Soil Type Sand Sand Sand Sand Sand Sand 

Once defned within UMI, a sensitivity analysis was conducted on the chosen DOE refer-
ence building archetypes. Nine cases were obtained by simultaneously varying the col-
umn grid and concrete strength for each building typology, as shown in Table 4.2. Thus, 
yielding a total of 54 test cases. Selected results of the sensitivity study across four ty-
pologies (Multi-family, Single-family, Offce, and Warehouse) and three cases (6x6 m grid 
& low concrete strength, 9x9 m grid & mid concrete strength, 12x12 m grid & high con-
crete strength) are presented in the following section. The complete results of this sensi-
tivity analysis can be found in Appendix A. 
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Table 4.2: Sensitivity Study Cases Varying the Concrete Strength and Spacing Between 
Columns. 

Concrete Strength [MPa] Spans [m] 

Case Slabs, Beams & Columns Primary Secondary 
Foundations 

Case I 17.3 20.7 (Low) 6 6 
Case II 17.3 20.7 (Low) 9 9 
Case III 17.3 20.7 (Low) 12 12 
Case IV 27.6 34.5 (Mid) 6 6 
Case V 27.6 34.5 (Mid) 9 9 
Case VI 27.6 34.5 (Mid) 12 12 
Case VII 41.3 55.1 (High) 6 6 
Case VIII 41.3 55.1 (High) 9 9 
Case IX 41.3 55.1 (High) 12 12 

4.2.2 Lisbon Case Study Defnition 

The methodology was fnally applied to a large-scale case study in the city of Lisbon, Por-
tugal2. It is important to note that the current goals set by the city of Lisbon are to reduce 
its carbon emissions by 60% by 2030 and reach carbon neutrality by 2050 (International 
Energy Agency, 2021). Therefore, this study aims to determine the spatial distribution of 
embodied and operational carbon in a neighborhood representative of the Lisbon building 
stock to inform policy and planning decisions on retroftting strategies and new construc-
tion. 
A seed model of a neighborhood referred to as the C-Tech area served as the focus area 
of the case study. The C-Tech area is located in the northeastern part of Lisbon along 
the Tagus River and spans three parishes or neighborhoods: Parque das Nacoes, Mar-
vila, and Beato. This case study introduces seven building archetypes based on a spe-
cifc construction period from 1961 to 1980. This specifc construction period was marked 
by rapid and intense construction activities in Lisbon - specifcally, a boom in reinforced 
concrete constructions. Most of these constructions are now approaching the end of their 
life. Figure 4.5 illustrate typical examples of these buildings. 
The context of this case study is particularly appropriate since half of the buildings in 
Lisbon include a reinforced concrete structure. In addition, about 70% of these build-
ings were designed before 1980 to sustain gravity loading only, as the role of the lateral 
load system for seismic resistance was introduced in the building code in 1983 (Xavier 
et al., 2022). Therefore, the scope of this case study is limited to low- and mid-rise re-
inforced concrete buildings below ten stories. The surrogate model from this methodol-
ogy is trained to perform accurate early-stage predictions of structural quantities provided 
similar constraints. 

2This case study was made possible thanks to a collaboration between the MIT Sustainable Design Lab, 
the Instituto Superior Técnico (IST) in Lisbon, and local organizations through the MIT Portugal Program. 
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Figure 4.5: Photos from 1961-1980 Typical Reinforced Concrete Buildings and Floor 
Plans in Lisbon (Xavier et al., 2022). 

Thus, the research questions that emerge from this case study are two-fold: 

1) How much embodied and operational carbon would this building stock gen-
erate if it were built again today? 

2) Is it worth constructing new buildings to replace old carbon hotspots, or 
should these existing buildings be retroftted? 

First, reliable building archetypes were created to measure the embodied carbon and en-
ergy use intensities at the stock level within the C-tech area, assuming all buildings would 
be replaced today. Second, a comparison was made between the case study baseline 
results and existing benchmarking studies presented in Chapter 2 to quickly identify the 
buildings better suited for replacement or retroftting. Retroftting strategies per se are 
not evaluated in this study, but some recommendations on whether to conduct a deep or 
shallow retroft are given. 

The segmentation of the building stock into archetypes was based on GIS data avail-
able for this neighborhood. In addition, more data was collected to specify reasonable 
structural parameters for each archetype from existing studies characterizing the Lisbon 
building stock (Xavier et al., 2022) and rules of thumb from local construction practices 
adopted by architects and engineers. For example, different structural grids were consid-
ered based on the typical spans of reinforced concrete beams across different typologies. 
When defning the building archetypes, the soil was assumed to be mainly composed of 
sand, even though there is undoubtedly much more variability in reality. Table 4.3 sum-
marizes the building archetypes’ structural parameters defned for this case study. 

Different urban energy modeling archetypes have been studied extensively in Lisbon for 
residential, offce, and retail typologies (Monteiro et al., 2017). These existing archetypes 
served as a reference to defne the parameters of the operational models used in this 
case study, shown in Table 4.4. It should be noted that the Parking archetype was con-
sidered an unconditioned space with no heating, cooling, mechanical ventilation, or do-
mestic hot water loads. 

53 



Table 4.3: Defnition of Archetypes Structural Parameters for Lisbon Case Study. 

Archetypes Single Multi Offce School Retail Ware- Parking 
Family Family house 

Count 619 621 128 78 29 14 157 

Live load [kPa] 1.92 1.92 2.4 1.92 6 6 1.92 

Floor-to-foor 3 3 4 4 6.1 8.5 3 
height [m] 

Concrete 17.3 17.3 20.7 17.3 20.7 27.6 27.6 
strength [MPa] 
(slabs, beams, 
foundations) 

Concrete 20.7 20.7 27.6 20.7 27.6 34.5 34.5 
strength [MPa] 
(columns) 

Primary span [m] 4 5 8 9 10 12 12 

Secondary span 3 5 8 9 10 6 8 
[m] 

Soil type Sand Sand Sand Sand Sand Sand Sand 

Table 4.4: Defnition of Archetypes Operational Model Parameters for Lisbon case study. 

Archetypes Single 
Family 

Multi 
Family 

Offce School Retail Ware-
house 

Parking 

Occupancy den-
sity [p/m2] 

0.025 0.025 0.055 0.2 0.1 0.001 0.001 

Equipment power 
density [W/m2] 

4 4 8 16 6 3 1 

Lighting power 
density [W/m2] 

7 7 12 12 12 5 5 

Heating COP 1 1 1 1 1 1 -

Cooling COP 3 3 3 3 3 3 -

Infltration rate 0.35 0.35 0.35 0.35 0.35 0.35 0.35 
[ACH] 

Ventilation Natural Natural Mech. Mech. Mech. Mech. -
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The embodied carbon emissions from the replacement of the Lisbon building stock today 
were compared to data from the Embodied Carbon Benchmarking (ECB) database by 
Simonen, Rodriguez, and De Wolf (2017) and the EU-Embodied Carbon Benchmarking 
(EU-ECB) study by Röck and Sørensen (2022). It was essential to ensure a fair compar-
ison with the chosen benchmarking studies. Since the ECB database covers embodied 
carbon emissions from Life Cycle stage A across different buildings’ heights, the bench-
marks selected for the comparison were associated with buildings with less than 14 sto-
ries and thus were assumed only to include a gravity system. Similarly, as the harmo-
nized data from the EU-ECB study cover whole-lifecycle embodied emissions, specifc 
benchmarks for cradle-to-gate embodied carbon were derived using the mean contribu-
tion of the lifecycle product stage A1-A3 estimated at 56%. 

4.3 Results and Discussion 

4.3.1 Sensitivity Analysis Results 

Selected results from the Multi-family, Single-family, Medium offce, and Warehouse sam-
ple models are compared. Figures 4.6 to 4.9 show the embodied carbon intensity (ECI) 
breakdown from the concrete and steel in the Structure (including slabs, beams, columns, 
and foundations) and other non-structural materials in the Envelope and Interior. Since 
this sensitivity study is focused on varying the parameters of the structural systems, no 
variations appear in the embodied carbon intensities of the Envelope and Interior within 
each typology. However, as the column grid takes on larger spans, the proportion of the 
total embodied carbon intensity from the Envelope and Interior is reduced compared to 
that of the Structure. In addition, as the concrete strength increases, the embodied car-
bon increases due to the Structure. In particular, the changes in embodied carbon inten-
sities within the foundations are greater than within the slabs, beams, and columns. 

Figure 4.6: Multi-Family Sensitivity Study Results for Selected Cases I, V, and IX. 
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Figure 4.7: Single-Family Sensitivity Study Results for Selected Cases I, V, and IX. 

Figure 4.8: Offce Sensitivity Study Results for Selected Cases I, V, and IX. 

Figure 4.9: Warehouse Sensitivity Study Results for Selected cases I, V, and IX. 

4.3.2 Case Study Results 

Figures 4.10 and 4.11 present the spatial distribution of the upfront embodied carbon and 
annual operational energy use intensities obtained through UMI. 
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Figure 4.10: Spatial Distribution of Embodied Carbon Intensity. 

Figure 4.11: Spatial Distribution of Energy Use Intensity. 
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The urban-level simulation for the Lisbon case study included 1646 buildings and only 
took one minute to run in UMI. The rest of the building massings outside the scope of 
the case study were treated as shading objects in the operational energy analysis. If built 
again today, the average embodied carbon intensity of the entire site is estimated at 416 
kgCO2e/m2 while the annual operational energy intensity is 98 kWh/m2/yr, which trans-
lates to an annual operational carbon intensity of 21 kgCO2e/m2/yr. 

4.3.3 Comparison with Embodied Carbon Benchmarking Studies 

In their benchmarking study, Simonen et al. concluded that over 95% of buildings re-
ported upfront embodied carbon values lower than 1000 kgCO2/m2 for the building struc-
ture, foundation, and enclosure (Simonen et al., 2017). As shown in Table 4.5, most of 
the archetypes of the Lisbon case study agree with this fnding, except for the Retail and 
Warehouse. For Retail, a little less than 75 % of buildings were found to have an embod-
ied carbon intensity below 1000 kgCO2/m2. And for the Warehouse, only 10% of build-
ings ECI were below 1000 kgCO2/m2, as most of them had upfront embodied carbon in-
tensities above this threshold. 

Moreover, different benchmarks for commercial and residential buildings are highlighted 
within the ECB study. 50% of commercial offce buildings in the database have an em-
bodied carbon ranging from 200 and 500 kgCO2/m2. Low-rise residential buildings have 
an upfront embodied carbon typically lower than 500 kgCO2/m2. In the Lisbon case study, 
all residential archetypes meet this limit. However, in the results obtained from Lisbon, 
50% of offce buildings have an upfront embodied carbon intensity between 459 and 568 
kgCO2/m2, which is a tighter range than that of the ECB fndings. 

Table 4.5: Embodied carbon intensity (ECI) extremes and percentiles per archetype in the 
Lisbon case study. 

Archetype Extremes and percentiles of embodied carbon intensity 
Min 25th 50th 75th Max 

Single Family 250 298 327 358 500 

Multi Family 253 275 287 314 515 

Offce 459 518 568 630 877 

School 505 593 643 676 945 

Retail 793 854 904 1016 1109 

Warehouse 982 1051 1101 1183 1518 

Parking 632 715 763 818 1094 
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Figure 4.12: Comparison of Multi-Family Benchmark Between Lisbon Case Study and 
ECB Database. 

Figure 4.13: Comparison of Single-Family Benchmark Between Lisbon Case Study and 
ECB Database. 

Figures 4.12 to 4.18 compare the Lisbon case study results with the ECB study using 
box-and-whisker plots to display the distribution of embodied carbon intensity values. 
Grey boxplots refer to the ECB study. Results from the Lisbon case study are broken 
down into three boxplots. The embodied carbon intensities of the Structure, and Enve-
lope, and Interior are separated as red and orange boxplots, respectively. Finally, the total 
upfront ECI from the case study is shown as a green boxplot. 

For most archetypes, the upfront embodied carbon intensity range in this case study is 
much smaller than the range taken from the ECB database. Moreover, due to the def-
nition of specifc structural parameters in building archetypes, the Structure ECI shows 
smaller variations than the Envelope and Interior for all archetypes, as red boxplots are 
shorter than the orange ones. The Structure ECI results have little to no outliers across 
all typologies, whereas the Envelope and Interior ECI have noticeable outliers for residen-
tial archetypes. For the Multi-family and Single-family archetypes, it can be noted that the 
median structure ECI is about the same or lower than the median ECI of the Envelope 
and Interior. Therefore, the Envelope and Interior contribution to the upfront ECI is about 
the same for Multi-family and higher for Single-family than the Structure. 
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Figure 4.14: Comparison of School Benchmark Between Lisbon Case Study and ECB 
Database. 

Figure 4.15: Comparison of Offce Benchmark Between Lisbon Case Study and ECB 
Database. 

Figure 4.16: Comparison of Retail Benchmark Between Lisbon Case Study and ECB 
Database. 

In the case of the School and Offce archetypes, the range of ECI of the Structure is higher 
than for the Envelope & Interior. Thus, as the live load increases, the Structure has a 
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larger contribution to a building’s upfront embodied carbon. When comparing the re-
sults of the two studies for the Retail archetypes, it appears that using benchmarks from 
the ECB survey underestimates the upfront ECI in Lisbon. The Warehouse and Parking 
archetypes were defned to have structural parameters with the highest concrete strength 
and primary span. Therefore, the Structure ECI is signifcantly greater than the Envelope 
& Interior. 

Figure 4.17: Warehouse Benchmark in Lisbon Case Study. 

Figure 4.18: Parking Benchmark in Lisbon Case Study. 

Table 4.6 and 4.7 show the results of the Lisbon case study and how it compares with 
the harmonized data from the EU-ECB database. It can be noted that the mean contribu-
tion of the Superstructure to the upfront embodied carbon increases with the live loading, 
concrete strength and column grid. Indeed, in Table 4.6, the Warehouse has the highest 
live loading and its Superstructure is shown to account for 53% of the upfront embodied 
carbon while the reverse is true for the Single-family archetype. Besides, Parking has the 
highest contribution from the Structure at 57% since it has the largest column grid spac-
ing and uses the highest concrete strength. The contribution of the Foundation increases 
more rapidly than the Superstructure as it jumps from only 2% of the embodied carbon 
intensity of the Single-family to 24% for the Retail archetype. In contrast, the contribution 
of the Envelope and Interior varies from 62 % in Single-family to 21% in Parking. The ef-
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fciency of the Multi-family Envelope against that of the Single-Family is also apparent in 
this analysis. All of these fndings agree with the results from the sensitivity analysis at 
the individual building level. 

Table 4.6: Table of Mean Embodied Carbon Intensity (ECI) Results from the Lisbon Case 
Study per Building System for each Typology. 

Mean ECI Superstructure Foundation Envelope & Interior Total 

Archetype Absolute Relative Absolute Relative Absolute Relative Absolute 

Single Family 121 36% 5 2% 207 62% 333 
Multi Family 129 43% 22 7% 151 50% 302 

Offce 285 49% 74 13% 221 38% 580 
School 310 48% 86 13% 250 39% 646 
Parking 443 57% 174 22% 162 21% 779 
Retail 470 51% 222 24% 235 25% 927 

Warehouse 599 53% 261 23% 278 24% 1138 

Table 4.7: Table of Mean Embodied Carbon Intensity (ECI) Results per Building System 
from the Lisbon Case Study and EU-ECB Study. 

Mean ECI Superstructure Foundation Envelope & Interior Mechanical 

Archetype 

EU-ECB 
Lisbon 

Mean 

170 
187 

% Diff 

5% 

Mean 

50 
43 

% Diff 

8% 

Mean 

260 
186 

% Diff 

17% 

Mean 

230 
-

% Diff 

-

Table 4.7 reveals that the ECI results for the Superstructure and Foundation in the Lisbon 
case study are comparable to the benchmarks form the EU-ECB database, as demon-
strated by relative differences of 5% and 8% between both studies. However, there are 
larger differences with the Envelope and Interior, which result in a relative difference of 17 
%. The EU-ECB database also includes the embodied carbon emitted by the mechanical 
systems which is outside of the scope of the Lisbon case study. 

Figure 4.19 shows the comparison of ECI between EU-ECB and all the buildings in the 
case study broken down in three categories (Superstructure, Foundation, and Envelope 
and Interior) in the form of whisker and boxplots. Please note that outliers from the EU-
ECB report are not shown in this graph. The results of the Lisbon benchmarks fall within 
the range of data of the EU-ECB study (excluding outliers) for the Foundation and Su-
perstructure. Whereas, the distribution of data for the Envelope and Interior in the Lisbon 
case study does not match with that of the EU-ECB database. 
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Figure 4.19: Comparison of Structure Benchmark Between Lisbon Case Study and EU-
ECB Database. 

4.3.4 Recommendations for Decision-making in Case Study 

To conclude the case study, a framework of stock-level recommendations is developed 
to inform decision-making while considering the tradeoffs between operational energy 
and embodied carbon intensities from the baseline results. As shown in Figure 4.20, this 
framework allows to classify buildings within four distinct categories. 
First, based on whether their energy use intensity exceeds the mean of the entire building 
stock, they are divided into two categories of buildings: “High Operational Energy” and 
“Low Operational Energy.” Each category is then subdivided based on the buildings’ em-
bodied carbon intensity to defne two additional sub-categories: “High Embodied Carbon” 
and “Low Embodied Carbon.” 
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Figure 4.20: Framework for Decision-making Recommendations Based on Tradeoffs Be-
tween Operational Energy and Embodied Carbon. 

Therefore, buildings belonging to Category I (High Operational Energy and High Embod-
ied Carbon) are excellent candidates for a “Deep Retroft and Reuse” strategy. Applying 
this strategy can prevent signifcant carbon emissions associated with new construction. 
Buildings in Category II (High Operational Energy and Low Embodied Carbon) can be 
considered either for a “Deep Retroft” or a “Replacement” strategy. In both cases, the 
carbon footprint of these buildings can be lower than the current building stock average, 
with a deep energy retroft or with a new low-carbon construction. 

However, further analysis would be required in Category II to select the most appropriate 
and feasible strategy considering additional technological and socioeconomic factors. For 
example, a deep energy retroft might be suffcient to reduce energy use in an existing 
building, yet too expensive or unfeasible given its context. Therefore, rebuilding a low-
carbon and energy-effcient new design might be more benefcial. In contrast, a historical 
building might be more suited for a deep retroft if it represents a symbol for the commu-
nity, who might disapprove of its demolition. 

Similarly, buildings in Category III (Low Operational Energy and High Embodied Carbon) 
would beneft from a “Shallow Retroft and Reuse” strategy, while buildings in Category 
IV (High Operational Energy and High Embodied Carbon) could be subjected either to a 
“Shallow Retroft” or a “Replacement” strategy. Since shallow retrofts are easier to im-
plement than deep retrofts, recommendations in Categories III and IV can be faster to 
execute. At the same time, recommendations associated with buildings in categories I 
and II would have a greater impact on reducing annual operational carbon. 

Based on this framework, the spatial distribution of the Lisbon case study building stock 
is shown in Figure 4.21. Moreover, the different proportions of buildings that fall within 
each category of recommendations are given. Offce, School, and Retail archetypes were 
shown to require the “Deep Retroft and Reuse” strategy, while Parking and Warehouse 
archetypes could be considered for the “Shallow Retroft and Reuse” strategy. Most Single-
family archetypes are suitable for a deep energy retroft or can be replaced, while the 
majority of Multi-family buildings would need a shallow energy retroft or a replacement. 
Figures 4.22 to 4.24 present a closer view of the different strategies proposed for each 
archetype. 
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Figure 4.21: Spatial Distribution of Buildings Based on Stock-level Recommendations. 

Figure 4.22: Rendering of Recommendations for Different Building Archetypes. 
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Figure 4.23: Comparison of Recommendations for Multi-family and Single-family (1/2). 

Figure 4.24: Comparison of Recommendations for Multi-family and Single-family (2/2). 
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Chapter 5 

Conclusion 

5.1 Summary of Contributions 

The work presented in this thesis demonstrates the development and application of a 
new physics-based and data-driven model for rapidly predicting the total embodied car-
bon of a building’s structural system with a few key inputs in early-stage design. A large 
synthetic dataset was generated from a parametric model of a reinforced concrete multi-
story building. The exploratory data analysis provided valuable insights into understand-
ing the parametric model design space and anticipating some behaviors of the Neural 
Network model. After training, validating, and testing the surrogate model, it is capable 
of automatically estimating the volumetric material quantities of the entire structural sys-
tem without requiring an elaborate FEA. The model performs reasonably well and can 
be directly applied to the rapid early-stage estimation of structural material quantities for 
embodied carbon assessment in urban modeling. 

After deploying the surrogate model into the urban modeling tool, UMI, it was possible 
to perform a sensitivity analysis at the individual-building scale and rapidly estimate and 
map the spatial distribution of embodied and operational carbon for an entire neighbor-
hood in Lisbon as if it were built again today. The benchmarks obtained can be consid-
ered as baselines when evaluating the environmental impact of new construction. More-
over, comparing these benchmarks with existing studies demonstrated the advantage of 
specifc stock-level analysis for more accuracy. The integrated assessment conducted 
in the case study provides an opportunity to evaluate the tradeoffs between embodied 
and operational carbon at the urban level and guide planning and policy decision-making 
through stock-level recommendations on retroftting strategies or new construction. 

Therefore, the ultimate contribution of this work is to demonstrate that urban modeling of 
embodied carbon is feasible using the methodology proposed and that greater accuracy 
can be achieved by integrating physics-based estimates of structural material quantities 
within building archetypes. 
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5.2 Potential Impact 

This work is grounded in well-established structural engineering calculations and con-
tributes by creating an algorithmically-generated BIM with high fdelity given limited in-
puts. The methodology used addresses the current gap for estimating the embodied car-
bon of the structural system in early-stage design when there is a lack of knowledge on 
design variables. Therefore, this might lead to a signifcant positive impact on the ability 
of architects and engineers to effectively reduce the carbon footprint of a design in the 
early stages. 

Indeed, the analysis of the synthetic database collected from the parametric model pin-
points the three most impactful design variables of multi-storey buildings to be the pri-
mary span, concrete strength and live load. Moreover, the sensitivity study results suc-
cessfully demonstrate that the physics-based structural quantities estimates from the 
surrogate model allow more nuanced embodied carbon assessments by fne-tuning the 
structural parameters of pre-defned building archetypes. 

Currently, very few urban modeling tools include an embodied model, which contains the 
information that structural engineers typically use in the design process: the structural 
loads, mechanical properties, and soil conditions. Therefore, this methodology can pro-
vide valuable insights when integrated on a large scale within an urban modeling tool 
such as UMI. For example, the main fndings of the Lisbon case study reveal that in all 
commercial building archetypes, the Structure has a larger contribution to the upfront 
embodied carbon than the Envelope & Interior, while the reverse is true for residential 
archetypes. Therefore, the impact of this research provides an opportunity to create local, 
regional, and even national benchmarks of embodied carbon from available GIS data. 

5.3 Limitations and Future Work 

Some limitations remain to the implementation of the physics-based and data-driven 
model in early-stage design and urban modeling. 
First, the structural model only considers the gravity system of typical rectangular struc-
tural frames. More complex frames, including lateral systems, should be considered in 
the future as they were proven to be more carbon-intensive. 
Second, the most time-intensive part of implementing this process in urban modeling is 
collecting data for creating complete archetypes, including both operational and embod-
ied models. This requires some knowledge of local construction standards and manually 
populating archetypes with enough information to perform the urban-scale analysis. 

Finally, future work can expand the structural system model for different materials and 
typologies and validate the outputs with real data. This way, this methodology can be ap-
plied across different scales and case studies. 
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5.4 Concluding Remarks 

In this work, a physics-based and data-driven model allows to estimate the structural sys-
tem’s embodied carbon in reinforced concrete building archetypes in early-stage design 
and on a large scale with increased accuracy and speed. 

By quickly mapping embodied and operational carbon with this new method, carbon hotspots, 
and more accurate benchmarks can be easily identifed at the urban level. Indeed, inte-
grating this analysis into urban modeling tools allows a more granular estimation of em-
bodied carbon to gain valuable insights from the existing building stock. Such tools and 
methodologies can provide users with different ways to leverage this information. Design-
ers, urban planners, and policy-makers can better understand where the most carbon-
intensive buildings are located. They can also infer the cause explaining such higher em-
bodied and operational carbon by fnding which building system contributes the most. 

To conclude, this thesis developed a new methodology to support architects, structural 
engineers, and urban planners in making better design and planning decisions from the 
earliest design stages toward the Net Zero Embodied and Operational reduction goal. 
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Appendix A 

Sensitivity Study 
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Figure A.1: Multi-Family Sensitivity Study Results. 
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Figure A.2: Single-Family Sensitivity Study Results. 
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Figure A.3: Offce Sensitivity Study Results. 
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Figure A.4: Warehouse Sensitivity Study Results. 
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