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Abstract
Discomfort during treatment continues to be a major barrier to adherence to positive
airway pressure (PAP) therapy. Thus, a key pillar of ResMed’s business strategy is to
deliver intelligent tools that assist healthcare providers in identifying which patients
may be struggling with therapy, and why, to enable more effective interventions
and personalized patient education. One potential cause of discomfort is perceived
stuffiness from pressure levels that is lower than tolerable for some patient preferences.
This thesis seeks to explore which patterns in the high-resolution breathing data from
ResMed devices may be used to identify patients who are experiencing breathing
discomfort at low pressures at the beginning of their therapy sessions. Specifically,
time-series clustering is performed on sequential respiratory data to identify groups
of patients with similar breathing patterns. The independence between clusters and
variables pertaining to patients’ demographic characteristics, therapy settings, usage
habits, respiratory characteristics, and self-reported comfort levels are evaluated via
statistical testing. Based on the results, features in breathing data are identified that
may be meaningful indicators for whether a patient is experiencing discomfort or
breathlessness. Additionally, opportunities for additional data collection that would
enable further analysis and more accurate modelling are discussed.
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Chapter 1

Introduction

ResMed is a global leader in medical devices used for the treatment of obstructive sleep

apnea (OSA), a common sleep-related breathing disorder characterized by repeated

obstruction of the upper airway during sleep. Positive airway pressure (PAP) therapy is

a common treatment for OSA, however, many patients struggle to adhere to treatment

long-term, often citing discomfort as a reason for discontinuing therapy. Adjustments

to device settings could help alleviate these issues, but many healthcare providers

do not have access to information that could enable them to proactively intervene.

Therefore, ResMed is experimenting with how the company can deliver intelligent

tools to healthcare providers and patients that support earlier interventions for an

improved therapy experience.

This thesis focuses specifically on the scenario where patients experience breathing

discomfort at pressure levels that are too low for them. This can cause a feeling

of breathlessness which may lead to changes in breathing patterns, and is often

accompanied by stress or anxiety. The aim is to explore whether features in the

respiratory data of patients can be used to identify if they are experiencing breathing

discomfort at low pressures during the first thirty minutes of their therapy sessions.

Time-series clustering is used to automatically identify groups of patients based on

data from ResMed’s AirSense 11 AutoSet devices. These clusters are then inspected

further, revealing which features in ResMed’s device data may be meaningful predictors

of discomfort at low pressures and the limitations of the data in its current form.
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In this chapter, introductory information about ResMed is provided. The project

motivation, objectives and contributions are then discussed in detail. Finally, the

structure of the remaining thesis is outlined.

1.1 Introduction to ResMed

ResMed was founded in 1989 by Dr. Peter Farrell to commercialize the treatment of

OSA with a continuous positive airway pressure (CPAP) machine. Today, the company

primarily provides medical devices for the treatment of sleep-disordered breathing

and other respiratory disorders, which includes CPAP machines and ventilators, as

well as the accompanying tubes and masks. ResMed has recently expanded to provide

software as a service to out-of-hospital health care providers through the acquisitions

of Brightree and MatrixCare.

Within its sleep and respiratory care product portfolio, CPAP machines for the

at-home treatment of OSA are ResMed’s largest product line. Modern versions of

these devices are cloud-connected, allowing for the collection of data pertaining to

patients’ usage of the devices.

ResMed offers several cloud-based products alongside their flow generators, assisting

patients and providers with disease management. AirSense 11 CPAP and APAP

machines include access to myAir, a patient engagement application which allows

patients to track their therapy progress, and provides them with coaching, support and

educational tools. AirView is a patient management tool for healthcare professionals

that includes the abilities to access patient data, and virtually adjust machine settings.

1.2 Project Motivation

Despite numerous technological advancements, adherence to PAP therapy continues to

be a challenge for many patients. Long-term, physicians may observe an adherence rate

between 30 to 60% across patients. [30] One of the primary reasons that patients do not

adhere to PAP therapy is discomfort. There are several root causes for why patients
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may be uncomfortable such as irritation caused by the mask, feeling claustrophobic,

or trouble adjusting to breathing on pressure.

To support patients who may be struggling to tolerate breathing at a continuous

forced pressure, ResMed has designed a ramp feature into their CPAP and APAP

machines. This ramp feature allows patients to start therapy at a lower pressure relative

to their prescribed pressure setting, and gradually ease into the level of pressure that

they require in order to sleep without experiencing sleep-apnea symptoms. However,

while a subset of OSA patients may feel like the pressure being delivered during

therapy is too high without ramp, others may experience breathing discomfort when

initiating therapy at a lower pressures. Patients are able to adjust ramp settings on

their own to a combination that is more comfortable for them, assuming they have

been educated on how to do this. Breathing discomfort can also be resolved with

interventions from healthcare providers. However, providers have limited amounts of

time to spend with patients and may not be aware of the problem unless it is raised

by the patient. Therefore, an opportunity exists for ResMed to identify patients who

may be experiencing breathing discomfort during the sleep onset period of therapy to

enable more effective provider interventions and personalized patient education.

1.3 Objective and Contributions

ResMed strives to deliver intelligent tools that assist healthcare providers identify

patients in need and make faster, more informed decisions, and that support patients

as they navigate PAP therapy. AirSense 11 PAP devices gather data from each

therapy session that a patients completes, including time series data on the pressure

delivered by the flow generator and respiratory measures. This thesis aims to explore

whether features in the breathing patterns of patients can be used to identify if they

are experiencing breathing discomfort during period of therapy prior to sleep onset.

The contributions of this work are summarized as follows:

• A pattern-driven analysis is performed by conducting time-series k-means clus-

tering with respiratory data from the sleep onset period of patients’ therapy
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sessions.

• The statistical significance of differences between clusters in various demographic

variables, signal characteristics, and the frequency of patient reported breathing

discomfort is assessed.

• Features in respiratory signals that may be related to the presence of breathing

discomfort are discussed, and general considerations regarding data management

are discussed.

1.4 Thesis Outline

The remainder of this document elaborates further on the data sources and methodology

used, the results of time-series clustering and statistical analysis, and recommendations

for future work. Chapter 2 provides an overview of relevant background information

pertaining to ResMed Devices and breathing discomfort, and a review of machine

learning in sleep medicine and common techniques for the analysis of time-series data.

Chapter 3 describes in detail the data that was available for this analysis, and the steps

that were taken to clean and process this data into a suitable form. Chapter 4 outlines

the time-series clustering procedure that was used to generate groups of patients

based on similarities in their breathing patterns, and the statistical methods that

were utilized to asses the significance of differences across these groups. The results

of the analysis of reported in Chapter 5. Finally, Chapter 6 provides a discussion of

the results and the limitations of the analysis, as well as a review of relevant data

management considerations.
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Chapter 2

Background

2.1 Overview of Obstructive Sleep Apnea (OSA)

OSA is a sleep disorder that affects millions of people worldwide. The condition is

characterized by repeated episodes of partial or complete blockage of the upper airway

during sleep, which leads to a decrease in oxygen saturation and arousal from sleep.

The resulting symptoms include poor sleep quality, daytime sleepiness, and other

serious health problems such as high blood pressure, cardiovascular problems, and

metabolic syndrome, to name a few.

There are different levels of OSA severity, defined by a patient’s apnea hypopnea

index (AHI): the combined average number of apneas (the temporary cessation of

breathing during sleep) and hypopneas (reductions in ventilation of at least 50% due

to partial airway obstruction) that occur per hour of sleep. According to the American

Academy of Sleep Medicine (AASM) OSA is categorized into mild (AHI of 5-15),

moderate (AHI of 15-30), and severe (AHI greater than 30). [12] Current research

shows that over 900 million adults aged 30-69 years suffer from mild to severe OSA

and more than 400 million adults 30-69 have moderate to severe OSA globally. [4]

The official diagnosis of OSA involves the completing of a sleep study, either in a

laboratory or at home. Several medical interventions are available for the treatment

of OSA, including PAP therapy, oral appliances, and surgery. [33] PAP therapy is

the most common treatment for moderate to severe OSA and involves the use of a
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machine that delivers a constant flow of air through a mask worn over the nose or nose

and mouth during sleep. The airflow from the machine prevents the patient’s airway

from collapsing during an apnea event, keeping the airway open and allowing for the

patient to breathe freely. The pressure level that the machine provides is prescribed

by the healthcare provider based on the patient’s physiology and OSA severity. Oral

appliances are also used to treat OSA, and they work by repositioning the tongue and

lower jaw to keep the airway open. Additionally, surgery to enlarge or stabilize the

upper airway is an option for some individuals with OSA, but it is typically reserved

for cases in which other treatments have failed or are not suitable. Medical devices

that stimulate the hypoglassal nerve can also be implanted. These are turned on by

the patient prior to sleep and send gentle pulses in sync with the patient’s breathing

to prevent airway obstruction.

2.2 Overview of ResMed AirSense 11 Devices

ResMed’s AirSense 11 device is the company’s latest version of its flagship PAP

machine. Each device includes features designed to make therapy a comfortable

experience for patients, as well as access to myAir, ResMed’s therapy tracking and

support platform for patients. AirSense 11 was launched in 2020 both globally and in

the United States, to date thousands of patients rely on the AirSense 11 devices for

treatment of their OSA symptoms. ResMed’s AirSense 11 device, a ResMed tube and

mask, and myAir are shown in Figure 2-1.

2.2.1 Categories of Devices

Three models of the AirSense 11 are currently available: AutoSet, CPAP, and Elite.

CPAP and Elite devices deliver one continuous pressure level of air throughout the

night as prescribed by a healthcare provider. In contrast, AutoSet machines leverage

APAP technology to automatically adjust the pressure level that the device delivers

throughout the night to meet the user’s unique breathing needs as they change on

a breath-by-breath basis. For OSA patients using an AutoSet device, healthcare
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Figure 2-1: ResMed’s AirSense 11 machine, mask, tube, and myAir mobile application.

providers will prescribe a minimum and maximum pressure level. This is the range of

pressures that the AutoSet algorithm is able to output. On all ResMed AirSense 11

devices, the range of possible pressure levels is 4.0 cmH2O to 20.0 cmH2O.

The AutoSet pressure level is determined by analyzing the state of the user’s upper

airway on a breath-by-breath level. When the device senses an airway event such as

an air-flow limitation, an apnea, or snoring, then the amount of pressure generated is

adjusted automatically. In AutoSet mode, the amount of pressure provided by the

device is only what is required to keep the upper airway open. [29] The scope of

this study is limited to ResMed’s AirSense 11 AutoSet devices which utilize APAP

Technologies. For the duration of this paper we will refer to them as “AutoSet Devices.”

2.2.2 Ramp Comfort Setting

Modern PAP devices include comfort settings that can be modified by patients to ease

the process of adjusting to PAP therapy. Examples include climate control features

such as a heated humidifier and expiratory pressure relief which reduces the pressure

level during exhalations to reduce resistance. Many PAP devices also include a ramp

feature which is designed to gradually increase pressure from a starting pressure to

the prescribed pressure level over a set period of time as the patient falls asleep.

All ResMed AirSense 11 devices include an AutoRamp feature, which starts patients

at a low air pressure while they are awake and automatically increases pressure up to

the prescribed minimum level to ensure effective treatment of OSA.
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Patients using AutoSet devices are able to configure their ramp settings in several

different ways. Ramp can be disabled, meaning that patients will start therapy at their

prescribed minimum pressure level as soon as their devices are turned on. Alternatively,

patients can select a start pressure and an amount of time over which ramp will occur.

The ramp time can be set to a value between five minutes and forty-five minutes,

at five minute increments. In this scenario, ramp will occur linearly from the start

pressure to the minimum prescribed pressure over the defined interval of time. Finally,

ramp time can be set to ‘AUTO’, in which case the AutoRamp algorithm increases the

pressure level from the start pressure to the prescribed minimum pressure as described

prior at a rate of 1.0 cmH2O per minute.

2.3 Low Pressure During Sleep Onset and Potential

Breathing Discomfort

Ramp is a feature that has been designed to assist patients who are struggling to

adjust to breathing at higher pressures while on PAP therapy. While effective in many

cases, some patients may find the experience of spending prolonged periods of time

at a low pressure level uncomfortable. If the start pressure is set at a level that is

too low for the patient during AutoRamp, the patient may spend up to 30 minutes

breathing on a pressure level that is uncomfortable for them. As well, if the minimum

pressure prescribed by the healthcare provider is the default 4.0 cmH2O and ramp

is turned on, or if the start and minimum pressures are set to the same value, there

will be no increase in pressure during the sleep onset period. Instead the patient will

spend time on the same low pressure that is potentially causing them discomfort until

the sleep onset period has ended and the AutoSet algorithm turns on.

Interventions from healthcare providers and adjustments to the device settings

can help patients find the most suitable and comfortable settings for them. However,

many providers have a limited amount of time that they can spend with each patient,

and they rely on patients to proactively share about the challenges that they are
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experiencing on PAP therapy.

It is hypothesized that patient’s respiratory characteristics may change when they

experience breathing discomfort at low pressures. In this study, we focus on discomfort

during the sleep onset period when patients when patients may be held at low pressures

for prolonged periods of time depending on their device settings.

2.3.1 Impact on Patient Compliance

Evaluating a random sample of 40,819 ResMed patients revealed that the time spent

on low pressures did have an impact on compliance rates for patients who used their

AutoSet devices for four or more hours per night on average during the first week

of therapy. A patient is considered to have successfully achieved compliance if they

use PAP therapy for at least four hours each night for 70% of the nights in a 30 day

window, within the first 90 days after they were setup with their device.

Compliance rates were generated for the amount of time spent at low pressures,

and compliance was calculated for a variety of patient groups based on average usage

buckets medium to high usage (greater than four hours of usage per night), low usage

(between 45 minutes and four hours of usage per night), and very low usage (less than

45 minutes of usage per night). The 95% confidence interval for each proportion was

generated. For patients who are using their devices for greater than four hours per

night on average during their first week of therapy there was an observable impact to

compliance (approximately 4%) based on the time that patients spent at the minimum

pressure. This motivates the need for continued exploration into breathing discomfort

at low pressure during this period of the therapy session.

2.4 Related Work

2.4.1 Machine Learning in Sleep Medicine

Data analytics and machine learning tools are commonly leveraged to accelerate

discovery and automate existing manual tasks across a variety of industries. The large
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amount of high-resolution data available from sleep monitor devices and devices such

as PAP machines has provided new opportunities for the analysis and extraction of

meaningful information from sleep, cardiac, and respiratory signals. The AASM has

identified several different applications where data science and machine learning could

be leveraged in sleep medicine, such as for improving the diagnosis of sleep disorders,

improving sleep scoring, and predicting disease progression. [28]

In addition to supporting the diagnosis and effective treatment of sleep disorders,

artificial intelligence also has the potential to streamline operations for healthcare

providers, ultimately increasing the amount of time that they have to spend caring

for patients. [15] However, attention must be taken to carefully integrate these tools

to ensure that the highest quality of care continues to be provided.

The treatment of OSA is uniquely positioned to utilize artificial intelligence and

machine learning given the cloud-connected nature of devices. Identifying challenges

that patients are having with therapy could enable real-time interventions to educate

patients and empower them to improve their own treatment adherence. [14]

2.4.2 Methods for Analyzing Time-Series Data

Time series data consists of a sequence of observations recorded at equally spaced

points in time. Examples include stock prices, weather data, and various types of

medical data. The analysis of time series data can be challenging because of its

large size and complexity, especially when multiple series interact with one another.

However, there are several methods for pattern discovery in time series data that can

be used to extract valuable insights.

Several methods for the visualisation of time series data have been developed that

enable a user to interactively explore patterns across samples in a data base. For

example, TimeSearcher2 [6] enables users to query patterns by example and explore

multi-dimensional data through the use of graphs and tables. However, the user must

provide a pattern to search on, so they must have some pre-existing concept of the

interesting patterns that exist in the data. VizTree [21] transforms the time series into

a symbolic representation via symbolic aggregate approximation (SAX) and moves
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a sliding window across the time series to construct a sub-sequence tree with each

branch representing one SAX symbol. Frequent patterns are identified by finding the

thickest branches, and are visualized. One drawback of this method is that the user

must know the approximate length of the pattern that they are searching for in order

to properly define the size of the sliding window.

Principal component analysis has been applied to time-series data as a feature

extraction method. [20] It involves decreasing the dimensions of a data set by mapping

it to a lower dimensional subspace, and is most effective when relationships in the

data are linear.

Clustering has been shown to be an effective method of extracting knowledge from

time series data in various scientific areas. Feature based methods for grouping time

series data and approaches that perform clustering on raw time series data have both

been used for identifying and grouping similar sequences with success. Feature based

methods involve a data processing pipeline where features-based representations of

the temporal data are extracted, dimensionality reduction is performed, and then the

clustering algorithm is applied to group data points. [11] When performing clustering

on raw times series data, similarity measures such as Euclidean distance and Dynamic

Time Warping (DTW) are often used, and a variety of algorithms can be applied. [36]

One of the most popular methods is k-means due to its simplicity and flexibility. [1]

Agglomerative hierarchical clustering algorithms [25] are also commonly used. Finally,

self-organizing maps have also been used for pattern discovery in temporal data. This

is a neural network method for clustering analysis which projects the input onto a

low-dimensional feature map. [13]

Convolutional autoencoders have more recently been applied to the problem of

pattern discovery in multivariate time series data. In this approach, learned convolution

filters capture and represent patterns in the input data. The inclusion of additional

layers and regularization terms ensures that the filters are interpretable. [3] However,

deep learning approaches require a large amount of data.
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Chapter 3

Data

The exploration of patients’ respiratory characteristics in relation to the perception

of breathing discomfort while using ResMed’s APAP machines requires a detailed

analysis of multiple data sources. This includes patient demographic data, therapy

session data, machine settings data, and qualitative responses to a survey about

patients’ comfort levels. The majority of the data is already available is ResMed’s

internal databases. Once gathered, the data was cleaned and processed into a usable

form.

3.1 Data Sources

Data gathered from AutoSet devices is used by physicians to support patients through-

out their PAP therapy journey, and to help patients track their progress and get

comfortable with therapy. This data can be also be used by ResMed for customer

support purposes, machine learning, and business intelligence. Data used in this

study was accessed from a database that contained de-identified data. Specifically,

protected health information (PHI) including name, contact details, and geographical

subdivision is not available.
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3.1.1 Therapy Data

For each therapy session that a patient completes with their AutoSet device, data is

recorded on the respiratory measures of the patient and measurements pertaining to

the therapy provided by the device. This data is in time series format, with successive

measurements recorded at fixed time intervals throughout the night. A therapy session

is defined as the period of APAP usage between the time when the patient puts their

mask on and the time when the patient removes their mask. Thus, it is possible for

a patient to have multiple therapy sessions during a single night. Therapy data is

gathered periodically throughout the night and sent to ResMed via the cloud. For

this analysis we consider data for two respiratory metrics, respiratory signal 1 (RS1)

and respiratory signal 2 (RS2).

Additionally, for each night following the date that a patient was set up on a

ResMed AutoSet device, data is gathered on the total number of minutes that the

patient used their device. In the case where a patient did not use their device on a

specific night, the duration of usage is recorded as 0 minutes.

3.1.2 Patient Demographic and Diagnostic Data

Demographic and diagnostic data about each patient is gathered from ResMed’s

cloud-based software tools for health care providers and patients. Data is either

self-reported by the patient, or manager by their healthcare provider.

• Age - The age of the patient.

• Gender - The gender of the patient. Values include ‘male’, ‘female’, and ‘prefer

not to say’.

• Baseline apnea hypopnea index (AHI) - The combined average number of

apneas and hypopneas per hour of sleep prior to the patient starting therapy,

from myAir. According to the American Academy of Sleep Medicine these values

are categorized into mild (5-15 events/hour), moderate (15-30 events/hour) and

severe (> 30 events/hour).
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• Mask type - The type of mask that a patient is currently using. Values include

‘Full Face’, ‘Nasal’, and ‘Nasal Pillows’. Full face masks cover both the nose

and mouth, nasal mask cover only the nose, and nasal pillows are soft silicone

or plastic pillows that are inserted directly into the nostrils and provide a seal

around the base of the nose.

• Setup date - The date that the patient was set up with their ResMed device.

• Compliance - A value indicating whether or not the patient has successfully

completed their compliance period (at least four hours of use each night for 70%

of the nights in a 30 day window, within the first 90 days following setup).

3.1.3 Device Settings Data

There are many settings on ResMed’s AutoSet devices that can be adjusted to meet

the unique needs of individual patients. Some of these settings, such as the minimum

and maximum pressure setting are prescribed by the physician and cannot be modified

by the patient. Other settings related to comfort features such as ramp can be adjusted

by the patient to a combination that is most suitable for them. For each night that a

patient completes a therapy session, the device settings used for that therapy session

are recorded. Two device settings were considered for this analysis. These will be

referred to as S1 and S2 for the duration of this thesis.

3.1.4 Comfort Survey Data

As part of a broader investigation into the comfort settings available on ResMed

devices, a subset of patients were surveyed on their breathing comfort. The survey

was sent to ten thousand patients, and 4580 responses were received.

This survey contained a number of qualitative questions to gauge whether patient’s

experienced breathing discomfort during the sleep onset period of therapy. Question

1 asked patients about their perception of the quantity of air they receive from the

PAP devices. Question 2 asked patients about the perceived clarity or stuffiness of
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the air that they breath during PAP therapy. The distribution of responses is shown

in Figure 3-1 and Figure 3-2.

Best practices were followed with regards to cleaning duplicate and incomplete

responses from the data set.

Figure 3-1: Responses to the comfort survey question pertaining to quantity of air
during therapy.

3.2 Preparing the Data Set

After joining the data sets described above, several additional pre-processing steps are

required to ensure that the final data set contained sufficient and valid data for the

analysis. First, time series therapy data is cropped to include only the sleep onset

period of the night. For this analysis the scope is limited to the period of time after a

patient puts their mask on for the first time during a night.

Next, general clinical practice related to therapy sessions with high levels of leak

are followed. High unintended air leaks from between the mask and a patient’s nose

and mouth can reduce the accuracy of measurements collected by ResMed devices.
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Figure 3-2: Responses to the comfort survey question pertaining to clarity of air
during therapy.

These cases are excluded from the data set.

Since only one survey response was collected per patient, the assumption is made

that patients are cognitively biased to the most recent therapy session that they

completed. Therefore, only the last night of a patient’s therapy data prior to their

survey response date is considered.

To ensure that there is adequate therapy data for each patient included in the final

data set, therapy sessions that are shorter than 30 minutes are removed. Finally, only

therapy sessions where it is possible that the patient is being held at a low pressure

for an extended period of time are considered. These cases are identified using the

device setting data that is collected for each therapy session. Therapy sessions where

the combination of device settings is such that the patient will not be held on low

pressures for a period of time are excluded from the final data set.

3.3 Feature Engineering

Therapy data related to a patients’ respiratory measures is in the form of time series

data. Therefore, it is necessary to compute various characteristics of the signals
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of interests. Characteristics of the first fifteen minutes of respiratory signal 1 and

respiratory signal 2 are computed. This includes the mean, standard deviation,

maximum, minimum, and range (the difference between the maximum and minimum

values in the signal). Two features related to the device settings and pressure levels

throughout the therapy session are also computed: SF1 and SF2.

3.4 Sample Population Characteristics

The final data set includes N = 1897 subjects who started therapy on ResMed’s

AutoSet devices between January 2022 and August 2022. Summary statistics for the

sample population are described in Table 3.1. The distribution of age and gender is

similar to ResMed’s greater patient population. It is important to note that some de-

mographic data is provided by the patient, so complete accuracy cannot be guaranteed.

Missing Overall

n 1897

AGE, mean (SD) 0 55.7 (12.8)

GENDER, n (%) Female 0 923 (48.7)

Male 967 (51.0)

Prefer not to say 7 (0.4)

MASK TYPE, n (%) Full face 0 727 (38.3)

Nasal 652 (34.4)

Nasal pillows 518 (27.3)

Table 3.1: Summary statistics for the final data set used in the analysis

Figures 3-3 and 3-4 show the distributions of two device settings used during the

therapy sessions included in the final data set. Note that in each figure, patients are

grouped by the value that they have selected for each of the two settings shown. The

majority of patients have device setting 1 set to the same level. There is slightly more

variation in the level that patients have device setting 2 set to. However, most patients

fall into one of five groups — group 2, 6, 7, 10, or 11.
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Figure 3-3: Distribution of device setting #1 in sample population

Figure 3-4: Distribution of device setting #2 in sample population
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Chapter 4

Time Series Clustering Procedure

The goal of this analysis is to explore ResMed’s therapy data using time series clustering

techniques to reveal typical patterns and meaningful features in respiratory measures

that may be related to breathing discomfort during the sleep onset period of therapy

sessions. In this chapter the clustering procedure is described in detail, including

the similarity measure selected, the clustering method, validation metrics, parameter

selection, and statistical tests used to assess differences across clusters.

4.1 Similarity Measure

In clustering, the similarity measure is a way of quantifying how closely related data

samples are to each other. If the scales of features used for clustering are very different,

then features with the largest numeric values will be overemphasized. To prevent

this outcome, especially in the multivariate case, data is normalized to a distribution

between 0 and 1 prior to calculating the similarity measure. Since the goal of this

analysis is to explore whether meaningful patterns exist in respiratory time series

data, we want to minimize the impact that the magnitude of the signals have on the

partitioning of the data. Therefore, min-max scaling is applied to the respiratory

measures for each patient separately.

One widely used similarity measure is the Euclidean distance, which computes the

point-wise distance between the two time series. This is the square root of the sum
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of the squared distances between each point in the series. While this metric is often

used to compare the similarity of two metrics, by definition it enforces a one-to-one

mapping of points at each time step in two series. In other words, this metric is not

invariant to time shifts. Consequentially, times series clustering tasks will break down

if the vectors being compared do not align exactly along the time axis.

Distance metrics dedicated to temporal sequences can produce more meaningful

results by addressing the issues described above. One such metric is Dynamic Time

Warping (DTW), which stretches or compresses different regions of one times series to

best match another. This makes this measure invariant to misaligned data, allowing

the clustering algorithm to identify matching patterns in vectors even if the patterns

occur at different time steps. [32]

First, a cost matrix containing the exhaustive combination of all pairwise Euclidean

distances between points in the time series is constructed. It is then possible to trace

contiguous alignment paths through the cost matrix. For a specific alignment path,

the distance between the two time series is given by the sum of the costs along the

path through the cost matrix. The goal of DTW is to identify the alignment path

with the shortest total cost. This minimal distance is used as the similarity measure

for the clustering algorithm.

Consider two temporal time sequences, x and y, with lengths n and m respectively.

DTW can be formulated as the following optimization problem.

DTW (x, y) = min
⇡

s X

(i,j)✏⇡

d(xi, yj)2

where ⇡ = [⇡0, ..., ⇡K ] is a path that satisfies the following properties:

• It is a list of index pairs ⇡k = (ik, jk) with 0  ik  n and 0  jk  m

• ⇡0 = (0, 0) and ⇡K = (n� 1,m� 1)

• For all k > 0, ⇡k = (ik, jk) is related to pik�1 = (ik�1, jk�1) as follows:

– ik�1  ik  ik�1 + 1
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– jk�1  jk  jk�1 + 1

Figure 4-1: An example of DTW

Figure 4-1 provides an example of the cost matrix and optimal alignment path for

two signals. In summary, DTW is calculated as the square root of the sum of squared

distances between each point in x and the nearest point in y.

4.2 Clustering Method

Clustering analysis is an unsupervised machine learning method for partitioning data

points into groups by minimizing intra-cluster distance between each data point and

the centroid that it is assigned to. K-means is a widely used, easily interpretable and

efficient algorithm for clustering. [17] Utilizing DTW as a similarity measure enables

the production of more meaningful results when applying the k-means clustering

algorithm to time series.

K-means uses an iterative procedure to partition data into k clusters. The value

of k is an input parameter to the algorithm and is determined via the methodology

outlined in Section 4.4. First, cluster centroids are initialized and each time-series is

assigned to its nearest cluster using the similarity measure. Second, cluster centroids
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are recomputed as the barycenters, the time series which minimizes the sum of squared

distances to all of the time series in a given cluster. [24] The process of assigning

time series to centroids and updating the cluster centers continues until the distance

between every time series and its assigned cluster centroid is minimized.

Tslearn, a machine learning toolkit for the analysis of time series data, is utilized

to perform clustering as described in this section. [35]

4.3 Clustering Validation Index

The Clustering Validation Index (CVI) is an indicator of how well clusters are formed,

and is used to determine the optimal number of clusters. [2] For this analysis, two

internal CVIs are used: inertia and silhouette score. Inertia is calculated as the sum

of distances of each data point to their closest cluster center. The goal is to have a

low inertia, as well as a low number of clusters to improve interpretability. Silhouette

score was originally proposed by Rousseeuw as a method of comparing the tightness

of and separation between clusters. [31] A value closer to 1 indicates that clusters are

well separated from each other and clearly distinguished, while a value of -1 indicates

that clusters have been assigned incorrectly.

These CVIs are both considered when selecting the optimal number of clusters

for this analysis. Inertia is calculated using the tslearn library, and silhouette score is

calculated with the sklearn package [23].

4.4 Parameter Selection

The k-means clustering method requires the total number of clusters, k, as an input

parameter. In this study clustering is performed on data from each patient two

separate times: once with time series data from a single respiratory measure, and

again with time series data from two different respiratory measures. The best value of

k is identified for each case by testing values from two to twenty and assessing cluster

quality using the CVIs defined prior. Based on visual inspection of the results shown
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in Figures 4-2 and 4-3, the optimal number of clusters was determined to be four when

preforming clustering in the univariate case, and three when preforming clustering in

the multivariate case.

Figure 4-2: Performance evaluation for time series-clustering of one time series with
different values of k.

Figure 4-3: Performance evaluation for time series-clustering of multiple time series
with different values of k.
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4.5 Statistical Analysis Methods

Performing time-series clustering revealed several groups of patients, each with unique

patterns in their respiratory measure signals. To facilitate a better understanding

of what variables may be correlated with specific patterns in patients’ respiratory

measures during the ramp period, further statistical analysis is performed. The goal is

to identify statistically significant differences between the demographic characteristics,

signal features, and perception of breathing discomfort in patients within each of the

clusters.

The variables being assessed are both numeric and categorical. For numeric vari-

ables the Kruskal-Wallis test, a nonparametric one-way analysis of variance (ANOVA),

is applied to assess the statistical significance of differences in the median values

across the clusters. [34] This test does not require that the data distributions are

normal. The Pearson’s chi-squared test is used to assess the statistical significance

of differences between clusters for the categorical variable in the data set. [19] The

significance level of all tests is fixed at 5%.

While the Kruskal-Wallis and chi-squared tests are useful for determining whether

significant differences exist across clusters, they do not provide insights into exactly

which clusters are different. Therefore, it is necessary to perform additional post hoc

comparisons between pairs of clusters if a significant different is identified. Dunn’s

test is used for this purpose in this analysis. [10] The Bonferroni correction method is

used to adjust p-values. [16]
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Chapter 5

Results

Time series clustering was performed on the data as described in Chapter 4, once with

time series data from a single respiratory measure, and again with time series data

from two respiratory measures. The following sections present the resulting clusters,

and the statistical analysis of the differences in selected variables between clusters.

5.1 Clustering Patients with a Single Respiratory

Measure

When using only respiratory signal 1 as the input time series data to the clustering

algorithm, four clusters of patients were formed. The silhouette score of 0.16, indicates

that while there is likely overlap between groups, the clusters are a relatively good

fit. The median, 25th percentile and 75th percentile respiratory measures for each

cluster are shown in Figure 5-1. Visual inspection of the clusters reveals differences

in the breathing patterns of the four groups during the sleep onset period of therapy

session. Cluster A includes patients whose respiratory measure stays relatively constant

throughout the time period. In contrast, patients in Clusters B, C, and D exhibit

similar patterns in this respiratory measurement: the signals is at its maximum at

the start of the therapy session and then decrease to a relatively stable value over

time. The difference between these three clusters is in the average or the signal during
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the later half of the time series. Cluster B includes patients who exhibit the largest

drop in this respiratory measure from the maximum to the average. In Cluster C the

difference between the peak and the average is slightly smaller, and in Cluster D this

distance is less still.

Figure 5-1: Median and 25th to 75th percentile respiratory measures for each cluster.

5.1.1 Comparison of Variables Across Clusters

Table 5.1 describes and compares the demographic characteristics, device settings,

usage, survey responses, and respiratory signal characteristics of patients in each of

the clusters. Note that the values of the respiratory data have been standardized.

The independence between clusters and each variable is tested via the statistical tests

described in Section 4.5. These tests confirm that the cluster that a patient belongs to

is independent of age and gender. This indicates that the patterns in respiratory signal

1 that are used to determine which cluster a patient belongs to are not determined

by either of these variables, and patients in different demographic groups will likely

exhibit similar breathing patterns.
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Belonging to one cluster versus another is not independent of characteristics of

the patient’s respiratory signal 1 data (p < 0.001 for all variables), and the standard

deviation (p = 0.015), minimum (p = 0.009) and range (p < 0.001) of respiratory

signal 2. Most notably, the frequency of patients that reported experiencing breathing

discomfort during the start of their last therapy session is also found to be statistically

significant (p = 0.009). Patients in Cluster B report experiencing breathing discomfort

at the highest rate (31.2%), while Cluster C includes the smallest portion of patients

reporting breathing discomfort (21.4%). However, there is no significant difference in

the compliance rates of patients in each cluster. There is also no significant difference

in the average number of minutes that patients use their device 28 days days before,

7 days before, 7 days after, 28 days after, and 60 days after completing the comfort

survey. Thus, while patients may be more likely to report that they are experiencing

breathing discomfort in specific clusters, there is not a meaningful difference in therapy

usage over time. Finally, there are no significant differences between any of the features

pertaining to the patient’s device settings — S1, S2, SF1, and SF2 — across clusters.

The differences between the characteristics of respiratory signal 1 and signal 2

during the sleep onset period of therapy are visualized in Figure 5-2. When examining

respiratory signal 1, Cluster B is characterized by a higher mean, standard deviation,

minimum, maximum, and range than all other clusters. Cluster A has the lowest values

across all respiratory signal 1 characteristics. However, there are several cases where

the differences are minimal when compared to Cluster C and Cluster D, specifically

when comparing standard deviation and range. There is slight variation in the median

standard deviation, minimum and range of the respiratory signal 2 data of patients

across clusters, although these differences are more subtle than those that exist when

comparing respiratory signal 1 characteristics.
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Figure 5-2: Comparison of breathing characteristics across the four clusters formed
based on patient’s respiratory signal 1 data
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5.1.2 Post Hoc Analysis

Post hoc tests are conducted to further understand the differences between pairs of

clusters, with results shown in Table 5.2. All pairs of clusters except for Clusters C

and D are statistically different with regards to respiratory signal 1 mean, standard

deviation, and maximum. The mean respiratory signal 1 minimum of Cluster A is

significantly different from all other clusters, and there is also a significant difference

in this variable between Clusters B and D. The respiratory signal 1 range is only

significantly different between Cluster B and all other clusters.

Cluster #1 A A A B B C

Cluster #2 B C D C D D

Reported Breathing Discomfort 0.412 1 1 0.006 0.497 0.471

RS1, Mean <0.001 <0.001 <0.001 <0.001 <0.001 1

RS1, Standard Deviation <0.001 <0.001 <0.001 0.025 0.002 1

RS1, Maximum <0.001 <0.001 <0.001 <0.001 <0.001 1

RS1, Minimum <0.001 <0.001 <0.001 0.318 <0.001 0.170

RS1, Range <0.001 0.268 0.010 <0.001 <0.001 1

RS2, Standard Deviation 1 1 0.415 0.706 0.276 0.011

RS2, Minimum 1 1 0.346 0.155 0.980 0.006

RS2, Range 0.699 1 0.021 0.012 0.444 <0.001

Table 5.2: p-values from post hoc analysis of variables identified as significantly
different across clusters when analyzing respiratory signal 1

The differences in respiratory signal 2 standard deviation are not found to be

statistically significant between any pairs of clusters when compared individually. The

mean respiratory signal 2 minimum is only significantly different between Clusters

C and D (p = 0.006). Significant differences in the respiratory signal 2 range are

found between Clusters D and A (p = 0.021), D and C (p = <0.001), and B and C

(p = 0.012). These results indicates that while patterns in respiratory signal 1 may

be similar within the groups of patients identified by the clustering algorithm, the
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relationship between respiratory signal 1 and respiratory signal 2 over time is likely

different across individuals in each group due to natural biological variability.

When comparing the difference in the frequency of patients who reported expe-

riencing breathing discomfort across clusters, there is only a statistically significant

difference between Clusters B and C (p = 0.006). There are fewer meaningful dif-

ferences in the respiratory signal characteristics between patients in Cluster B and

Cluster C, however there may be additional characteristics that were not explored

that are able to better capture the differences in the respiratory signal 1 patterns of

patients in each group.

5.2 Clustering Patients Based on Multiple Respira-

tory Signals

Time series clustering was performed again on both the respiratory signal 1 and

respiratory signal 2 signals from each patient, forming three clusters with a silhouette

score of 0.173. The median and interquartile range of each signal are shown for each

group in Figure 5-3. Cluster C is characterized by a median respiratory signal 1

that is relatively high compared to other clusters, and a steady respiratory signal

2 throughout the sleep onset period. Cluster B includes patients whose respiratory

signal 1 drops off dramatically after the first one to two time steps after turning on the

machine, while the median respiratory signal 2 increases slightly to a rate that is again

fairly constant throughout the sleep onset period. Finally, Cluster A is characterized

by patients who exhibit a decrease in their respiratory signal 2 as their respiratory

signal 1 decreases throughout the first portion of the sleep onset period.

5.2.1 Comparison of Variables Across Clusters

The demographic characteristics, device settings, usage, survey responses, and res-

piratory measures of the clusters are again compared using the Kruskal-Wallis and

chi-squared tests. Results are summarized in Table 5.3. In this case, statistically
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Figure 5-3: Median and 25th to 75th percentile range respiratory signal 1 and
respiratory signal 2 for each cluster
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significant difference between clusters are seen with regards to all respiratory signal 2

and respiratory signal 1 variables (p = <0.001 for all variables) except for the mean

respiratory signal 2 of subjects (p = 0.821). One feature derived from the device

settings data, SF1, was found to be significantly different across clusters (p = 0.016),

along with the settings features S1 and S2 (p = 0.004 and p = 0.001 respectively).

It is important to note here that the median age of subjects in each cluster is

significantly different with a high confidence level (p = <0.001), and gender is signifi-

cantly different across clusters (p = 0.010). This may indicate that the relationship

between respiratory signals changes as a patient ages, and this is the trend in the data

that is influencing the formation of groups.

In this case, this is no meaningful difference between clusters in the number of

subjects who report wanting more air at the start of their therapy sessions (p = 0.191).

There are also no significant difference in usage variables, patient reports of stuffiness,

compliance, or baseline AHI. Since there is no significant difference in the outcome

variable that we are interested in, an ad hoc analysis is not performed.
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Chapter 6

Discussion and Future Work

6.1 Discussion of Results

This study applies a time-series clustering approach to categorize respiratory data

gathered throughout the night by ResMed’s AirSense 11 machines with the goal

of understanding how different patterns may relate to patient reports of breathing

discomfort. The previous section presents the outputs of two clustering attempts

applied to different combinations of respiratory data. Through the investigation of

various variables pertaining to patient demographics, therapy usage over time, device

settings, breathing characteristics, and self-reported outcomes we see that patterns

in respiratory signal 1 are more useful for grouping patients who are more likely to

be experiencing breathing discomfort than respiratory signal 1 and respiratory signal

2 together. When performing clustering on respiratory signal 1 data, a significant

difference in the frequency of patients who were reported experiencing breathing

discomfort was observed (p = 0.009). In contrast, no significant differences were

found between clusters formed by grouping patients using a combination of respiratory

signals (p = 0.123).

This finding indicates that patterns in respiratory signal 1 from a patient during the

sleep onset period of the therapy session may be a meaningful indicator of whether they

are experiencing breathing discomfort, independent of demographic features including

age and gender. There appears to be some relationship between the magnitude and
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standard deviation of respiratory signal 1 at the beginning of therapy sessions and

the frequency of breathing discomfort reports. However, it is important to note that

although Clusters B and C show significant differences in the reported experiences

of patients, there are no meaningful differences between any other pairs of clusters.

A significant amount of overlap exists in the respiratory patterns of patients who

report experiencing breathing discomfort and those who do not, so it is likely that

these features will not be useful to identify breathing discomfort with a high level

of accuracy. It is possible that the data used in this study are obscuring features

that are unique to the breathing discomfort phenomenon that could be visible in a

breath-by-breath waveform.

When considering the cost of patients spending time at low pressure levels and

breathing discomfort on adherence to therapy, this study yields inconclusive results. A

meaningful difference in average nightly usage following the completion of the comfort

survey was not observed between groups of patients identified through time series

clustering. It is possible that this was the case because patients who were surveyed had

been on PAP therapy for various lengths of time. The early experiences of patients

are critical for determining whether or not they will adhere to therapy long term. [7]

Since the comfort survey was conducted after patients had already completed their

initial weeks, or even months, of therapy, it is possible that breathing discomfort

during the sleep onset period of therapy is a side effect that they had already accepted.

Patients who found breathing discomfort to be a critical enough issue that it caused

them to reduce their PAP usage may not have been willing survey participants. To

fully understand the impact that breathing discomfort has on patient compliance and

long term adherence data, patient reports of breathing discomfort should be gathered

periodically throughout the first month following the date that a patient receives their

AutoSet device.

Finally, it should be noted that the subjective nature of breathing discomfort makes

it difficult to map respiratory signals to anything other than patients’ self-reported

symptoms. It is possible that a patient could feel symptoms of breathing discomfort

and not exhibit any changes in their breathing patterns. Biological variability also
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means that breathing discomfort could present in the respiratory patterns of patients

in ways that are unique to each individual.

6.2 Limitations

As with most studies, the findings presented in this thesis are subject to limitations.

First, the data on each patient’s self-reported experiences with breathing discomfort

was taken from a general survey on all aspects of the patient’s comfort while using

ResMed devices. The data comes from a question that was designed specifically

to measure whether a patient experienced breathing discomfort during the sleep

onset period of their therapy sessions. However, the question asked about patients’

experiences in general, rather than about a specific therapy session. Therefore, it

was not possible to map reports of breathing discomfort to specific therapy sessions

with absolute certainty. Rather than applying the same outcome label to all therapy

session, the assumption was made that patients would weight their recent experiences

most heavily when providing their responses and only the most recent therapy session

prior to the completion of the survey was considered.

6.3 Data Management Considerations

Looking beyond the case study presented in this thesis, there are several aspects

of data management that should be considered when utilizing machine learning

technologies. The quality of data used for training machine learning models, including

its completeness, target accuracy and feature accuracy, can have a significant impact

on performance. [5] Therefore, proper data management is critical for enabling reliable

decision-making.

6.3.1 Data Granularity

One essential consideration when gathering data for machine learning applications is

data granularity — the level of detail in the data set. The granularity of the data is a
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factor in determining what type of analysis can feasibly be performed, and whether

the results of the analysis will lead to meaningful and accurate conclusions. If data

granularity is too low, only large patterns will be visible in the data. Valuable insights

may be lost as disparate trends are compressed into a single result. On the other hand,

data that is too granular can introduce noise that makes it challenging for machine

learning algorithms to distinguish which patterns in the data are meaningful. The

resulting data set can also become extremely large and difficult to process.

In order to select the appropriate level of granularity of time series data for use

in machine learning applications, domain knowledge of the problem is required. It

is necessary to understand which features in the data may be useful for predicting

the desired output, and the timescale at which these features occur at. This will

help determine the frequency at which time series data should be sampled at. If the

goal is to capture trends and patterns at a short-term scale, and it is important to

detect changes in real-time then it is likely necessary to collect data at a fine level

of granularity. Some general examples of applications where this may be the case

include predictive maintenance or stock market analysis. In contrast, machine learning

algorithms that are designed to identify longer-term trends and seasonality in data

may perform better with data collected at a coarser level of granularity. For example,

climate analysis where trends in weather patterns occur over weeks, months, or even

years, and the analysis of seasonal trends in retail.

6.3.2 Data Labeling

A second critical component of data management is ensuring target label accuracy

and precision. A well performing machine learning model requires high-quality data

labels as these provide a "ground truth" for the algorithm. However, acquiring these

high-quality labels can be challenging as it is time consuming and costly. [8]

Several methods exist for acquiring data labels. Data may be labeled by domain

experts, which ensures a higher level of quality but comes at a higher cost and may

take more time. Crowdsourcing leverages the crowd intelligence to generate labels

for data points making it a faster and lower cost option. However, this approach can
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yield results that are not reliable due to poor quality control or a lack of domain

expertise amongst contributors. Synthetic data may also be generated that has the

same attributes of real data. This requires more computational power, but is cost

and time effective, reduces privacy risks, and may yield a more robust data set that

incorporates additional edge cases. The choice of method for labeling data depends

on the complexity of the problem and data, and time and resource constraints.

When looking specifically at clinical applications of machine learning and the use of

patient reported outcomes as labels, it is important to consider the subjective nature

of the outcomes, and the many factors that could influence patients’ responses on the

measures of interest. These factors may include the design of the instrument used to

collect patient responses, the method and setting via which responses are collected,

and patient level behaviors such as response style or recall bias. [9] It is important

to recognize that all data collection is impacted by some level of error. Patient

reported data is still a valuable input for understanding how patients perceive their

health-related quality of life, symptoms and symptom burden, and health behaviors.

[22] Therefore, a reasonable level of imperfection may be acceptable and should not

discourage the continued collection and usage of patient reported outcomes.

It also may be possible to account for the uncertainty of labels when creating

machine learning models. For example, performance was improved by incorporating

the quantification of clinical diagnostic uncertainty when training an algorithm to

detect the development of acute respiratory distress syndrome in patients. [27] The

application of similar approaches could be applied to other types of data labels for

machine learning application across a variety of domains.

6.3.3 Data Considerations for Deep Learning

Long short term memory networks have been applied to time series classification tasks

and achieved competitive performance when compared to fully connected networks.

[18] As well, transformers have shown good modeling capability for dependencies

and interaction in sequential data over long ranges. This makes them well suited for

time series tasks such as classification and forecasting. [37] When considering the
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application of these technologies, it is important to note that these approaches typically

require significantly more labeled data than traditional machine learning approaches.

Leveraging pre-trained models for transfer learning may decrease the amount of

training data required to achieve high levels of performance, however depending on

the application this may or may not be possible. As is the case with traditional

machine learning methods, it is important that the data set has an appropriate level

of granularity, includes a balanced set of diverse samples, and is of high quality (i.e.,

data is clean, in the proper format, consistent, and has been validated). [26]
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Chapter 7

Conclusion

In this thesis the application of time-series clustering analysis to trends in breathing

data was discussed, specifically exploring whether patterns in time series respiratory

data are correlated with patient reports of breathing discomfort. Temporal data from

ResMed’s AirSense 11 machines was categorized via k-means clustering using DTW

as a similarity measure, and a statistical analysis was conducted to understand the

differences in demographics, the number of patients reporting breathing discomfort,

and features in the breathing data across clusters of patients. It was discovered

that when time series clustering was performed on respiratory signal 1, a significant

difference was found in the frequency of patients reporting breathing discomfort across

clusters.

However, further analysis revealed that this difference was only significant between

one pair of the four clusters. Therefore, in conclusion, this data is likely not useful for

identifying patient who are experiencing breathing discomfort in its current form. It

is possible that the biological differences across patients and the subjective nature of

breathing discomfort make it such that breathing patterns in one-minute averaged

data for a patient who is experiencing breathing discomfort at low pressures are

not distinguishable from a patient who is comfortable and breathing normally. To

further this line of research ResMed may choose to explore the use of higher fidelity

data, and the collection of patient reports of breathing discomfort throughout their

therapy journey. The collection of additional data could enable the application of
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other supervised machine learning methods in the future, and the quantification of

the cost of under-ventilation and breathing discomfort on therapy usage over time.
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