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Abstract

This thesis investigates the connection between the geometry of Schubert varieties and
Gelfand-Cetlin coordinates on flag manifolds. In particular, we discovered a connection

between Schubert calculus and combinatorics of the Gelfand-Cetlin polytope.
In [13] Guillemin and Sternberg constructed a set of action coordinates on a flag man-

ifold, which maps this flag manifold to the Gelfand-Cetlin polytope. We show that every
Schubert cycle is equivariantly cohomologous to a canonical linear combination of preimages
of faces of the Gelfand-Cetlin polytope.

These faces can be identified with RC-graphs, which play a crucial role in the theory
of Schubert polynomials. Using RC-graphs, we give a generalized Littlewood-Richardson
rule, which provides an algorithm for multiplying certain Schubert polynomials by Schur
polynomials.
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Chapter 1

Introduction

The main goal of this thesis is to understand the connection between the classical theory

of Schubert varieties and the less studied theory of Gelfand-Cetlin action coordinates. The

thesis contains two almost independent parts. The first part constructs new cycles for

Schubert varieties using faces of the Gelfand-Cetlin polytope and the second part describes

a generalized Littlewood-Richardson rule for multiplying Schur polynomials by Schubert

polynomials. This rule involves the theory of RC-graphs, which are generalizations of Young

tableaux and turn out to be closely related to the Gelfand-Cetlin polytope.

1.1 Schubert varieties and Gelfand-Cetlin theory

In [13] Guillemin and Sternberg defined a set of action coordinates on each flag manifold.

Given a weight A of SU(n), these coordinates give a “moment” map ® on the manifold

of complete flags Fl,,, which takes Fl, onto the classical Gelfand-Cetlin polytope. (This

polytope was originally introduced in [10]. Lattice points inside the polytope give a canon-

ical basis of the irreducible representation of SU(n) with the highest weight A.) Roughly

speaking, the set of these action coordinates is a classical mechanic analogue of the Gelfand-

Cetlin basis in quantum mechanics. Since we can think of a set of action coordinates as a

solution to a classical mechanical system, it is natural to assume that we can learn a lot

about Fl, just by looking at these coordinates.

In the second chapter we try to show how most of the information about the Schubert

calculus can be extracted from the combinatorics of the Gelfand-Cetlin polytope.

Let us recall a few facts about Schubert varieties. For each permutation w € S, we



can define a subvariety X,, € Fl,, called a Schubert variety. The cohomology classes

[Xy] defined by Schubert varieties form a basis for the cohomology of Fl,. Moreover, if

we consider the standard n — 1 torus T' action on Fl,, each Schubert variety defines an

equivariant cohomology class and they generate H(Fly) as a S(t") module (S(t*) is the

algebra of the polynomials on the dual t* of the Lie algebra of T'.)

In Section 2.2 we will define a set of reduced faces of the Gelfand-Cetlin polytope and

for each reduced face D define a permutation w(D). (These faces can be identified with an

already known combinatorial object called RC-graphs.) It turns out that all the information

about the equivariant cohomology classes of the Schubert varieties is contained in these

reduced faces. We will prove the following three theorems, which link the Schubert calculus

to the combinatorics of the Gelfand-Cetlin polytope.

The first theorem says which Schubert varieties map to faces of the Gelfand-Cetlin poly-

tope under the map ® and hence have a set of action coordinates themselves. Proposition

2.3.2 also shows that these Schubert varieties are actually Kempf varieties, which were

algebraically degenerated to toric variety by Gonciulea and Lakshmibai in [12].

Theorem 2.3.1 If, for a permutation w, there is a unique reduced face D with w(D) = w

then ®~Y(D) = X,,,.

The second theorem shows that each equivariant cohomology class defined by a Schubert

variety is given by an equivariant cycle, defined by taking preimages of certain prescribed

reduced faces of the Gelfand-Cetlin polytope.

Theorem 2.4.1 For a permutation w € S,,, let

Wy =o J
w=

D)

Then W,, defines an equivariant cohomology class (W,,| € HX (Fl,) and

Xl = Wy

The third theorem shows that double Schubert polynomials P,, can be written explicitly

in terms of the combinatorial information about the reduced faces of the Gelfand-Cetlin

vd



holytope. We will define P,, as well as polynomials Pp for each reduced face D in Section

D5.

Theorem 2.5.1 For a permutation w, Py 15 equal to the sum of Pp with w(D) = w, that 1s

P., &gt;. Po
w(DY=w

The organization of the second chapter is the following. In section 2.1 we fix nota-

tions and recall basic definitions. Section 2.2 deals with combinatorics of the faces of the

Gelfand-Cetlin polytope. In particular, we define reduced faces and their corresponding

permutations. Section 2.3 proves Theorem 2.3.1, while Section 2.4 proves our main result:

Theorem 2.4.1. The proof of this theorem contains two major parts. The first part shows

that the equivariant cohomology class [W,,] is well defined using the technical Lemma 2.4.2.

The second part proves that [X,] = [Wy] using Kirwan injectivity theorem. In Section

2.5 we present Theorem 2.5.1 and show that it is essentially equivalent to a result proved

by Fomin and Kirillov in [7]. Section 2.6 gives another example of equivariant cohomology

classes, which can be realized using preimages of faces of the Gelfand-Cetlin polytope. Fi-

nally, in the Appendix, we define equivariant cohomology using currents and prove that this

definition coincides with the standard definition of equivariant cohomology. (We need this to

define equivariant cohomology classes given by preimages of the faces of the Gelfand-Cetlin

polytope.)

1.2 RC-graphs and Littlewood-Richardson rule

In the third chapter we provide a ”Littlewood-Richardson” rule for multiplying certain

Schubert polynomials by Schur polynomials. It turns out that we can think of Young

tableaux as being special RC-graphs (which are also reduced faces of the Gelfand-Cetlin

polytope). This leads to a straightforward generalization of the Schensted algorithm (see

1]). In the special case, considered by us in this thesis, this algorithm preserves some of

the key properties of the classical Schensted algorithm for Schur polynomials. (This allows

us to prove a more general Littlewood-Richardson rule than was previously known.)

We will denote by w a permutation, which permutes all integers, which are not greater

than n, such that there exists N with w(i) = i for every i &lt; —N. Moreover, we will always

 |



assume that w possesses the following property:

w(i) &gt;w(i—1)ifi &lt;0

Let up = (u1,..-, un) be a partition with pu; &gt; ... &gt; u,. Then we can associate to each

partition a permutation w(u), which will be defined in Section 3.1. Let Sy, be the Schu-

bert polynomial of w and let S;, = Sy) be the Schur polynomial of yu. Since Schubert

polynomials form a basis for the ring of all polynomials, we can write

SwSu=Y_c% Su

where the sum is taken over all permutations u. The coefficients cy,,are known to be

positive and are called the generalized Littlewood-Richardson coefficients. Our goal is to

provide a rule for computing these coefficients.

An RC-graph R will be a collection of tuples {(i, k)|i,k &lt; n}, which satisfy some addi-

tional properties. Graphically an RC-graph represents a planar history of the permutation

wr (again, we always assume wg satisfies the property that w(i) &gt; w(i —1) if+&lt;0). Each

RC-graph can be thought of as a table of intersecting and nonintersecting strands, such

that no two strands intersect more than once. The details are provided in Section 3.1.

Define z% to be the product of all zx’s, with one z; for each (i,k) € R. Then we have

Sa — &gt;
wp=w

a
T

Moreover to each Young tableaux Y of shape u(Y) we can associate a unique RC-graph

R(Y), which satisfies wry) = w(u(Y)) and

i= Y= 3
w(Y)=wu w(Y)=u

This shows that RC-graphs are generalizations of Young tableaux and suggests that we can

generalize a lot of properties of Young tableaux to RC-graphs.

In particular, Bergeron and Billey in [1] provided a generalization of the Schensted

insertion algorithm to the case of RC-graphs. We describe this algorithm for the special

Schubert polynomials considered here in Section 3.2. We denote by R «+ k the result of



the insertion of a number 1 &lt; k &lt; n into an RC-graph R, and by R + Y, the result of the

insertion of a Young tableau Y into an RC-graph R.

The key fact, which makes the generalized Littlewood-Richardson rule possible to prove

is the following lemma, which generalizes the row bumping lemma (see [9]) in the case of the

classical Schensted algorithm. We will give precise definitions of the paths of insertions in

Section 3.3. Roughly speaking these paths are the parts of RC-graphs, which are changed

during the insertion algorithms. Let us emphasize the fact that the following lemma does

not hold for the general insertion algorithm of Billey and Bergeron, but works only in the

special case we consider.

Lemma 3.2.2 Ifx&lt;y, then the path ofxis weakly to the left of the path ofyin R «+ xy

Ifx&gt; y then the path ofxis weakly to the right of the path ofyin R + zy.

This lemma plays a pivotal role in the proof of the following theorem which describes

the Littlewood-Richardson rule mentioned above.

Theorem 3.3.1 Let w be a permutation, which satisfies w(i) &gt; w(i — 1) for each i &lt; 0

and let pu be any partition. Choose any RC-graph U and set wy = u. Then op 1s equal to

the number of pairs (R,Y) of an RC-graph R and a Young tableau Y with w(R) = w and

u(Y) =u, such that R+&lt;Y =U.

The proof of this theorem consists of three major steps. The first step is to prove the

theorem for the simplest partitions v,,, which are just given by one number m. The second

step is to show that all other Schur polynomials can be expresses in terms of the simplest

Schur polynomials S,,,,. And finally, the third step is to prove (R + Y;) «+ Yo, = R «

(Y7 «+ Ys). The theorem follows easily from these facts.

The organization of the third chapter is as follows. In Section 3.1 we recall basic defini-

tions and properties of RC-graphs and Young tableaux. Section 3.2 describes the insertion

algorithm together with the proof of Lemma 3.2.2, and section 3.3 proves Theorem 3.3.1

using the three facts mentioned above. Finally Section 3.4 proves these three technical facts.
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Chapter 2

Equivariant Cohomology Classes of

Schubert Varieties and

Gelfand-Cetlin Action Coordinates

2.1 Preliminaries

2.1.1 Flag manifolds

Let G = SU(n) with a Cartan subtorus T'. Let g, t be their Lie algebras and let g*, t* be

the corresponding duals. We can identify g* with n x n traceless Hermitian matrices, while

t, which consists of diagonal matrices with (zp, ...,z1) on the diagonal and with )_, z; = 0.

gets identified with R"~!. Choose a positive Weyl chamber t% inside t* such that simple

roots are given by z;41 — xz; € t*. For A € int(t}) let O) be the coadjoint orbit which passes

through A.

We will think of O), as the set of n xn traceless Hermitian matrices with fixed eigenvalues

given by A = (Aq,..., An) with Ay &lt; ... &lt; A. If A € O) and vy,...,v, are the respective

eigenvectors of the matrix A then the vector spaces V; spanned by vi, ..,v; form a complete

flag in C*. This identifies Oy with the flag manifold Fl...

The Weyl group of G is generated by simple reflections s; given by sending z+; to x;

and x; to z;11. It can be identified with the group S,, of permutations of n elements. When

no confusion may arise we will also denote by s; a simple transposition, which permutes

elements 7 and 7 + 1 when acted on a right of a permutation w, that is ws;(i) = w(s +

|



1) and ws;(z +1) = w(¢). s1,...,Sp—1 generate S,. The composition w = s;,...s;, is a

reduced expression of w if there is no way of writing w as a product of less than k simple

transpositions. The length of w is then equal to k and is denoted by I(w). The longest

permutation wy has length n(n) and satisfies wy(i) = n—i+1. We say that a permutation

w is greater than w’' with respect to the Bruhat order if there exist a reduced expression

w = 8;,...5;, such that by deleting some simple transpositions from it we get a reduced

expression for w'.

For a permutation w we define the Schubert variety X,, C Fl, as the set of all flags

V = (W1,.., Va) in C* which satisfy dim(V; N F;) &gt; #{k &lt; 4,w(k) &gt; n — j} for all 4,5

((Fy,..., Fy) is the flag given by the diagonal matrix (Ay, ...,A1).) A result of Chevalley (see

[5]) states that w &lt; w' with respect to the Bruhat order if and only if X,» C X,,.

The Cartan subgroup of G, the n — 1 dimensional torus T', acts on Fl, in a Hamiltonian

fashion. Denote by ¢ : FL, — t* a moment map of this action. We can choose ¢ to be

just the composition of the inclusion O) — g* and the projection g* — t*. More explicitly,

¢(A) is given by taking the diagonal elements of a Hermitian matrix A. The image of ¢ is

a convex polytope which is invariant with respect to the Weyl group W = S,, action.

The fixed point set of the T' action on Fl, is given by the preimages of the vertices of

the polytope ¢(Fl,). These vertices form a Weyl group orbit Wo (Ay, ..., Ar). To a fixed

point p we associate a permutation wy, such that ¢(p) = wp(An, ...; Ar) = (Ayn) +r Aw,(1))-

This identifies the set of the fixed points of the T' action with the Weyl group S;,.

Let us describe the weights of the T action on the tangent space T, Fl, for each fixed

point p. If wy is just the identity element of Sy, then this set of weights is just the set of

all negative roots A_ = {z; — z;|i &lt; j}. For general p, the set of weights of the T' action

on T, Fl, is given by w,A_ = {z,-1 — T1058 &lt;j}

2.1.2 Gelfand-Cetlin action coordinates on flag manifolds

The Gelfand- Cetlin action coordinates on Fl,,, which originally appeared in [13], are defined

as follows. For a Hermitian n x n matrix A with eigenvalues 1, ..., An, consider a (n — k) x

(n — k) submatrix Aj consisting of the intersection of the first n — k rows and the first

n — k columns. Denote by Agy1x&lt; ... &lt; Ap the eigenvalues of Ag, where Aio = Ai. The

collection of all of these functions for all k forms a set of Gelfand-Cetlin coordinates on Fl.

These functions satisfy the following inequalities which come from the classical minimax

0



principle:

Aik =&lt; Air kt S Aik

These inequalities define the Gelfand-Cetlin polytope in R55

Moreover, if we denote by ® the map which takes Fi, to RYE then ®(Fl,) is the

whole Gelfand-Cetlin polytope and ® provides a set of action coordinates on Fl, (with

respect to the Kirillov-Kostant symplectic form on Oy). In other words, the functions

Aix form a set of commuting independent Hamiltonians, whose flows, where defined, are

periodic. Notice that the function A;xis not smooth if and only if Aj = Aj11xor Aj =

Ai—1k- So, if we define an open dense set U in Fl, to be the set of all Hermitian matrices

with A;x# Aip1,x for every ¢, k, then ®|y is a moment map of anal)dimensional torus

action on U.

The action of the Cartan subtorus T on Fl, is a subaction of thenal) dimensional

torus action on U mentioned above. So that, if P is the natural projection from the Gelfand-

Cetlin polytope to t*, then ¢ = P o ®. This projection P is given by:

P(Xik) = (Anan-1, &gt; Ain—2 = Ann—1.--- &gt; Ail — &gt; Ai 2, &gt; Ai — &gt; Ail)

or, in other words, the coordinate xj of the moment map ¢ is given by &gt;. Aj x—1 — &gt;; Aik.

For more details about Gelfand-Cetlin action coordinates see [13]

2.2 Combinatorics of the Gelfand-Cetlin polytope

[t turns out that there is a strong connection between Schubert varieties and preimages

of the faces of the Gelfand-Cetlin polytope. We devote this section to talking about the

combinatorics of these faces.

2.2.1 Reduced Faces

[t is easy to see that each face D of the Gelfand-Cetlin polytope is given by a set of equalities

of types A and B:

Aik = Nit1k+1 (Aig)

Aik = XNiks1 (Bik)



Fach face will be described by a triangular diagram (denoted by the same letter D) which

will consist of these equalities. To explain better what we mean by these diagrams we

provide the following examples.

i

-

 Ww

L|

BB

Figure 1: Examples of faces of the Gelfand-Cetlin polytope.

In Figure 1, n = 3, the first diagram is the face given by the equalities A;9,B3oand Bs;

(in other words: A; = Ao; and A3 = X31 = Az2). The second face is defined by A; and

Az1 (AM = Ag;1 = M32). Finally, the last diagram is defined by As; and Asp (M21 = As

and Ag = Az 1).

A word of warning is in place. Not all these equalities are independent. For example, if

the equalities A;;and B;;xhold then they force both A; ;_; and B; _1 to hold. So, we

will always assume that all the equalities for the given face are included in the triangular

diagrams. For example, in Figure 2 all diagrams define the same face, but we will only use

the third diagram when we talk about this face.

i
Ro

' 8 "

3 &gt; 3 » 8

A

Figure 2: These diagrams define the same face in the Gelfand-Cetlin polytope.

We will be mainly interested in the faces given only by the equalities of type A; x. For

each such face D we define a permutations w(D) in the following way. Each equality A;xwill

produce a simple transposition s;. To define w(D) we compose these simple transpositions

by going from right to left in each row of the diagram D and by going from the bottom row

to the top one. We will be interested only in those faces for which the expressions for the

permutation w(D) given by our diagrams are reduced. We call these faces reduced.

For example, Figure 1 contains two diagrams with no B;x’s in them. These are the sec

ond and third diagrams. But only the second diagram is reduced, since w(third diagram) =

$989 =id, while w(second diagram) = s1s9 = (231).

The reduced faces of the Gelfand-Cetlin polytope have been studied before. They turn

rv



out to be equivalent to the RC-graphs, which were introduced by Fomin and Kirillov in [7]

and were later studied by Bergeron and Billey in [1]. (Indeed, if we substitute each equality

A; in D by intersecting strands, and all the equalities A; not in D by nonintersecting

strands and then connect the strands, we will get an RC-graph.)

We will not attempt to give here a detailed discussion of RC-graphs and postpone it

until Chapter 3, but will recall some basic facts about them and translate these facts into

the language of the Gelfand-Cetlin polytope.

» Let D be a reduced face, such that A;x,A;11xandA; 441 k+¢ are not in D for some

i,k and £, but all other A;pywith k &lt;k &lt;k+£fand0&lt; (¢' —k')— (1 —k) &lt;1 are in

D. Then we can substitute A; ¢k+¢ by Ait1, without changing w(D). (We also can

go backwards.) These operations are called ladder moves of size ¢ at the place (i, k).

Examples of ladder moves of sizes 1 and 2 are shown on Figure 3.

» For every permutation w there exist a unique reduced diagram D,, (which we will

call the Gelfand-Cetlin diagram of w), such that every other reduced diagram D

with w(D) = w can be constructed from D,, by a sequence of ladder moves, which

substitute A; ip x+¢ by Aij+1x (but not the other way).

» Each Gelfand-Cetlin diagram D,, satisfies the following property. If an equality A;x

is a part of it and «+ &gt; k + 1, then A;_;xis also a part of D,,. In other words, the

equalities A; are concentrated strictly to the left in each row of D,,.

SY

by &gt;

»

figure 3: Examples of ladder moves of sizes 1 and 2.

We need to describe all the permutations w for which there is a unique face D with

1 J



w(D) = w. It is easy to see that each Gelfand-Cetlin face D,, produces a reduced expression

of w(D) of the form wu;...up_1 with ug = sj, 85, +1...Sk—15k-

Proposition 2.2.1 A permutation w has a unique face D with w(D) = w if and only if

Jk +1 &gt; jgy1 for every k.

Proof. Look at the Gelfand-Cetlin diagram D,, of w. It is clear that it is impossible to

apply any ladder moves to it if and only if jx + 1 &gt; jx41 for every k. Hence proposition

holds.

2.2.2 Nondegenerate Vertices

Another type of face we are going to be interested in is a vertex (face of dimension zero)

of the Gelfand-Cetlin polytope for which A;x# Aj41x for every 4,k. In other words, each

such vertex is an image of some fixed point p € FIL. The diagram D, which defines such a

vertex has the following property:

e Each row k of D contains exactly n — k — | equalities and A; x's are strictly to the left

of Bis.

These vertices will be called nondegenerate vertices of the Gelfand-Cetlin polytope. (We

call them nondegenerate vertices, since these are exactly the simple vertices of the Gelfand-

Cetlin polytope, i.e. vertices with preciselyn(n 1) edges coming out of them.) For example.

the first diagram in Figure 1 is a nondegenerate vertex.

For each nondegenerate vertex p (which is denoted by the same letter p as the fixed point

of the T action it corresponds to) we define the diagram D, to contain all the equalities A;x

from the diagram which defines p but none B; x's. Clearly D, is a reduced face (moreover.

it is even a Gelfand-Cetlin face), so we set wp, = w(Dp). To check that the definition of wy

coincided with the geometric definition given in the previous section we will give another

combinatorial definition of w,,.

Since p is a vertex, each A;xhas to be equal to one of A;’s. For each A; choose the

largest k with A;x= A; for some 4 and set wy(k + 1) = j. It is easy to see that wy is

well-defined and the two combinatorial definitions of wj, are the same.

Let us now use the second combinatorial definition of wy, to show that it coincides with

the geometric definition given in the previous section. We can think of the preimage do 1(p)

27)



of a nondegenerate vertex p as of a diagonal matrix A given by by its diagonal elements

(Ai, yr Ai; ). We need to prove that i = wp(k). Recall that in the row k— 1 of the diagram

p, the unique eigenvalue which is not equal to any A; is Ajk—1 = Ay (x). But, since all

the eigenvalues of Ax_; are the same as the eigenvalues of Ag, except for the eigenvalue

Aik—1 = Aw,(k), and A is diagonal, we can conclude that A; x1 = Ay,x)= Ai, and hence

ir = wp(k). This shows that the three definitions of w, are the same.

2.2.3 Edges coming out of the nondegenerate vertices

Let us describe all the edges, which come out of the nondegenerate vertices. The direction

of these edges will determine the weights of the n(n-1) dimensional torus action on T,F,.

It is not difficult to explicitly describe these weight, but we will be only interested in the

projection of these edges onto t*. In other words, we will need to know the weight of the T

action on 1, Fi,

There are exactly nl) edges coming out of each nondegenerate vertex, one edge for

each equality A;xorB; in the diagram of p. If we remove one equality A;x(or B; x) from

the diagram of p, we get an edge (a one-dimensional face of the Gelfand-Cetlin polytope)

coming out of p, which we denote bye;x.

Recall that the projection P, takes the Gelfand-Cetlin polytope to t* by

Pik) = Cnn) Min—2 = dando DA — 3 Xiz, Odio — 3 Ait)

Moreover, P o @ is the moment map ¢ of the T' action on Fl, and takes Fl, to t*

Fix a nondegenerate vertex p, set w = w,. We are interested in the projections of the

edges P(e;x)foreach A; in the diagram of p. This projection will clearly be a ray coming

out of the vertex P(p) and pointing into the direction of the root z; +1 — Zk+1 of G, where k

is the largest possible row of the diagram of p with the property that A;x= A . i. for some j

Proposition 2.2.2 For each edge e;xdefined by removing A;ifrom p, the root Ti —Tk+1

satisfies

 os k&lt;k

» wk +1) &gt;wlk +1).

In particular, all of the above roots form the set A. Nw.
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Proof. The fact that k &lt; k is obvious. To prove the second property, find ¢; which satisfies

Mey = Ai = Aik Then w(k + 1) = #1. Let fy = w(k + 1) then there exists j' such

that Ag, = Aji,moreover,k is the largest possible with this property. This implies that

neither Aj,nor Bj;are in the diagram of p, but since A; is in the diagram of p we

conclude that j' &gt; j. Hence Ajj &gt; Ak, which implies that As, &gt; As,. Hence £5 &gt; ¢; and

w(k +1) &gt; wk +1).

Finally, recall that w takes z; — z; into Ty-1(3) — Ty-1(j)- Hence the two properties of

Tip1 — Th+l show that each such root is indeed in AL NwA_. Since the number of roots

in A; NwA_ and the number of equalities A; in the diagram of p are the same and both

equal to £(w), we can easily conclude that A, NwA_ and the set of roots Thi — Th+l

defined by the edges with A,.removed are the same.

2.2.4 Fl; inside Fl,

For each ladder move we are going to define an inclusion of Fl3 into Fl,,. These inclusions

will be used in the proof of Lemma 2.4.2.

Given a ladder move at the place (m,k) of size £ set ky = k+£+ 2, ks = k + 2 and

ks = k+1. Then we take all matrices A € O,, which are diagonal outside the intersection of

the rows ki, ko, k3 and the columns kq, ko, k3 of A (the rows of A are numbered starting with

the bottom one, going to the top one, similarly the columns are numbered from right to left).

Moreover, we specify the diagonal entries of A as follows. Starting at the top left corner

and going to the bottom right corner of A, the diagonal entries should be Aq, ...., A\pp—g—»

then A149, ..., Ap between the rows 1 and ki, then A141, ..., Am43 between the rows ky

and ko and then A, _,..., Amo between the rows k3 and n.

The set of all matrices A, which are described above form a three dimensional flag

manifold Fl3, which is embedded into Fl,,. Moreover, the image of this Fl3 under the

map ® is given by the three-dimensional face Fy,x4,whichlookslike the three dimensional

Gelfand-Cetlin polytope and whose diagram can be defined as follows. Fi,x¢containsall

equalities of type A in each row above k; — 1. Below the row k3 — 1, each row k’ contains

every A; with + &lt; m + 1 and every B;prwith ¢ &gt; m + 3. Between the rows ki — 1

and k3 — 1 each row k' contains every A;iwith i — k¥' &lt;m —k + 1 and every B;yswith

i —k' &gt; m—k+3. The row k; — 1 contains all equalities A; 5, 1 with7 &lt;m+£—1 and all

B;._1 with 4 &gt; m + £ + 2. Finally, the row k3 — 1 contains every A; ;._1 withz &lt;m —1

r
rySo



and every B; x,—1 with « &gt; m + 3.

The reason we are interested in these faces of the Gelfand-Cetlin polytope is the fol-

lowing. Because of the very special choice of the embedding of Fl3 into Fly, it is easy to

understand how ® behaves in the neighborhood of Od Y( Fike) = Fl3. More details will be

given later, during the proof of Lemma 2.4.2.

2.3 Schubert varieties with action coordinates

The Gelfand-Cetlin action coordinates are defined on the flag manifold, so it is natural to

ask whether they also provide action coordinates when restricted to the Schubert varieties.

[t turns out that it happens only for those Schubert varieties which map to faces of the

Gelfand-Cetlin polytope. They are described in the following theorem.

Theorem 2.3.1 If, for a permutation w, there is a unique reduced face D with w(D) = w

then ®~1(D) = X,.

Proof. First of all, recall that by Proposition 2.2.1, if for a permutation w there is a unique

face D with w(D) = w then w = uy...up—1 with ug = 55,8, 41..-Sk—15k and jg + 1 &gt; jr

for every k. Hence it is easy to see that X, is the Schubert variety which contains only

those flags (V7, ..., V,) which satisfy

Le (2.1)

This can be shown by induction. Let w; = u;...u;. We will prove X,,, is defined by the

inclusions (2.1) for k &lt;i. Clearly, X,,, contains only those flags, which satisfy V;, C F,_;.

Moreover from w;u; 41 = w;41, we know that w; &lt; wi; and thus X,,,C Xy,. So, if (2.1)

for k &lt;4 holds for flags in X,,, it has to hold for flags in X,, ,. Moreover, flags in X,,

also have to satisfy Vj, ,_; C Fr,_;_1, since if k &lt; j;41 — 1 then w;;1(k) &gt; n —i — 1 because

of u;y1. This proves that X,, is defined by the inclusions (2.1).

To prove the theorem we have to apply the classical minimax principle. Recall that if

there is just one D with w(D) = D then D is actually the Gelfand-Cetlin diagram of w.

so that equalities in each row k are concentrated strictly on the left and there are exactly

jk — k + 1 of them. Let some Hermitian matrix A be in ®~1(D). The bottom row of

the diagram D implies that 7; smallest eigenvalues of A and A; coincide (where A; is the
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(n — 1) x (n — 1) submatrix of A). Using minimax principle we can show that not only

the smallest eigenvalues Aq,...,A;; but the corresponding eigenvectors v1,...,v;, of these

two matrices coincide as well. Hence we conclude that V; C F,_;, which is exactly the

condition (2.1) for k = 1. Similarly, we know that the first jp — k + 1 eigenvectors of the

matrix Ax and Ag_; coincide, but using the fact that jx +1 &gt; jry1 for each k, we conclude

that the first jx — k + 1 eigenvectors of Ax and A are the same. So, we can conclude that

Vj. —k+1 C Fp_k. Hence every element in the preimage of the face is indeed in X,,.

Conversely, suppose we are given a Hermitian matrix A whose corresponding flag satisfies

(2.1). Then Vj, _g41 C Fp_j implies that the smallest ji — k + 1 eigenvalues of the matrices

Ag and Agy; coincide and again the minimax principle tells us that the corresponding

eigenvalues should be the same. This proves that ®(A) € D and ®(X,) C D, which

finishes the proof of the Theorem.

The permutations which appear in the above theorem have been studied by Lakshmibai

in [18]. (This is the point of the next proposition. Since this proposition is not going to be

used later, the reader can skip it if he so desires.)

Proposition 2.3.2 Ifwis a permutation, which has a unique face D with w(D) = w, then

it is a Kempf permutation and consequently X,, is a Kempf variety.

Proof. We start by recalling one of Lakshmibai’s definition of Kempf permutation given in

[18]. She proves that every permutation w’ could be written uniquely in the form wou ...u;,,

where wy is the longest permutation and each wu}, is of the form s;,...sx115; for some ig,

k &lt; ir &lt;n. Then w' = wou)...u;, is Kempf if it satisfies uj &lt; uj sx for every 1 &lt;k &lt; nor

in other words i; &lt; iyi. (Actually, the index conventions in [18] are different from ours.

so the definition of Kempf varieties in [18] looks different from the one above. We had to

adopt Lakshmibai’s definition to make conventions and notations fit.)

Recall that Proposition 2.2.1 shows that if w has a unique face D with w(D) = w, then

W = Uy...Un—1 With ug = sj, Sj, +1..-Sk—15k and jx + 1 &gt; jg4q for every k.

We will prove by induction on n that if we have two permutations w' = wou} ...u], and

W = Uj...Unp_—1 With 4; + jr = n — k then vw’ = w. If w' is Kempf and 4x &lt; 4x41 this will

imply that jx +1 &gt; jx41, which will prove the proposition.

For n = 2 the statement above is trivial. Let’s assume we have proved this statement

for n — 1 and we need to prove it for n.
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We will prove that (w')~!w =id that is

(ul)7H (W)(uf)(uy) wouy...un—1 = id (2.2)

Actually, if wg is the longest permutation on the elements 2, ..,n, we will just have to prove

Fhat

Fo Fy—1 —

uy)” ‘woul=Wo, 1

and then apply the induction assumption to prove (2.2)

Using the fact that s;wg = wgs,—; we have:

(u))woul=WoSp_1...Sn_i;Si;-.-S1=WoSn_1...51=Wo.

This proves (2.3) and finishes the proof of the proposition J

Remark 2.3.3 Gonciulea and Lakshmibai in [12] showed how to algebraically degenerate

each Kempf variety to a toric variety. Our approach produces a set of action coordinates

on each Kempf variety by Theorem 2.3.1. We believe this is consistent with Gonciulea

and Lakshmibai’s result in the sense that these action coordinates should come from the

moment map on the degenerated toric variety. But we do not have the precise proof of this.

2.4 Main theorem and its proof.

Unfortunately, most Schubert varieties do not map to faces of the Gelfand-Cetlin polytope.

It is not clear what the image ®(X,,) is in general, but we will show below that the equivari-

ant cohomology class associated with X,, can be defined by a cycle consisting of preimages

of faces of the Gelfand-Cetlin polytope.

The flag manifold Fl, is equipped with a classical action of an n — 1 torus (a Cartan

subtorus T' of SU(n)). It is clear that every Schubert variety as well as every preimage

of a face of the Gelfand-Cetlin polytope is invariant under this action. Moreover, since

every Schubert variety has algebraic singularities of codimension at least 2, it defines an

equivariant cohomology class [X,] € HX (Fl,).

4
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Theorem 2.4.1 For a permutation w € Sy, let

Nw == dH J DD)
w(D)=w

Then Wy, defines an equivariant cohomology class (Wy) —

Xl — (Wal

HY(Fl,) and

The rest of this section is concerned with the proof of this theorem. The first part of the

proof will show that W,, indeed defines an equivariant cohomology class, while the second

part will check that [X,,] = [Wy].

In the first part we have to use the definition of the equivariant cohomology, which uses

invariant currents. This definition is provided in the Appendix. If W,, were just an invariant

smooth submanifold of Fl,,, we could regard the equivariant cohomology class [W,] as the

equivariant Thom class of W,,. Unfortunately, W,, is not smooth. But we can talk about

the current {W,,}, which is a sum of currents (one current for each face D with w(D) = w)

and has some nontrivial singularities. It turns out that all the codimension one singularities

of {Wy} come in pairs with opposite orientations (two singularities for each ladder move.)

So that 0r{W,} = 0 and [W,,] can be indeed defined.

More precisely, fix w and let Dy,..., D, be all the reduced faces with w(D;) = w. Let

C = (¢;,j) be an r x r matrix with each ¢;;being either 1 or 0, (1 if there is a ladder move,

which changes D; to D; and 0 otherwise.) Clearly, the matrix C' is symmetric.

If ¢;j= 1 then D; and D; differ by a single ladder move. Let’s assume this ladder move

is of size £ at the place (m, k). Let D;;be the face whose triangular diagram contains all the

equalities of D; and D; plus equalities By x, with 0 &lt;m' —m —1 =k — k &lt; { (examples

are shown on Figure 4). Notice that dim D; = dim D; = dim D;;+ 2.

Lemma 2.4.2

or{e~! (D;)} =} 2 {oH (Di )}veoa= nn
(2.4)

Moreover, the orientations of ®~1(D;;)inducedby ®~1(D;) and ®~1(D;) are opposite.

Before proving the lemma. let us look at the two simplest examples, which will help to
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explain the main ideas in the proof of this lemma.

. 5

Figure 4: Ladder moves and faces which produce codimension one singularities

Example 2.4.3 The first set of diagrams in Figure 4 corresponds to n = 3 and a ladder

move of size 1. Label the diagrams by Dy, Dy and Dj5.Itturns out that ®=1(D;5)isjust

a three sphere $3, and it is the boundary of both ®~!(D;) and ®~1(D,). Moreover, they

induce different orientation on ®~1(D; 5). Hence, in this special case, Lemma 2.4.2 holds

and implies that ®~1(D; U D,) defines an honest cycle, which in turn defines an equivariant

cohomology class.

Let us give a more detailed description of the codimension one singularity at ®~1(D; 3).

We will show later that all codimension one singularities of general ® look like the singu-

larities on F'l3 described below.

The Gelfand-Cetlin polytope ®(Fl3) in this case is shown on Figure 5. It has only one

vertex with four edges coming out of it. This vertex is given by the diagram D;5and it is

the only non-smooth value of &amp;.
—

 Jy

Figure 5: The Gelfand-Cetlin polytope for Fls.

Let us investigate the neighborhood of the singular sphere S® = ®~1(D;3)inFli3 in

details. It turns out that S® is Lagrangian and hence its small neighborhood is symplecto-

morphic to the neighborhood of the zero section of T*S3

(ntroduce the following coordinates: S% = {(z1,22) € C?| |21|? + 12012 = 1}. Let 2
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T1 + iz9 and 22 = z3 + iz4. Then we can identify T*S3 = {(¢,2) € Rt x RY|¢ L z,|z| = 1}.

Moreover, we have a Hamiltonian action of a two dimensional torus on 7*S3 and another

commuting Hamiltonian, which is not smooth on the zero section of T*S3. The two torus

acts by (01, 02)(21, 22) = (0121, 0223), with (01,05) € SxS! C Cx C. The two Hamiltonians

for this action are g; = z1&amp;3 — 2&amp;1 and go = 2364 — 4&amp;3. The third Hamiltonian is given

by f =VE+.+E. Then, as expected, f is not smooth at £ = 0. (Notice that f? is

smooth, which coincides with the fact that Aa1— Az; is not smooth, while (Ag; — M31)? is

smooth on Fl3.)

Moreover, we can choose the above coordinates so that f = X21 — A3; while g; + ¢2 =

2X20—A21—A31 and g1 —g2 = 2X32 — X21 — As. Then ®~1(D,) in the neighborhood of S3

is just the submanifold of T*S® where f = g1 + go, which is given by: {(z,¢) € T*S3|z; =

€o,x9 = —&amp;1, 23 = &amp;4, x4 = —€3,21 &gt; 0}. Clearly, this manifold has boundary, which is the

zero section of T*S3. Similarly, the boundary of ®~1(D3) is also S32, but the orientations

induced on S% by ®~1(D;) and ®~!(D,) are going to be different.

Example 2.4.4 In the second row of Figure 4, n = 4 and the ladder move is of size 2.

®~1(Dy5)isofdimension 5, while both ®~1(D;) and ®!(D3) are of dimension 6. Moreover

®~1(D;2)isa part of boundaries of ®~1(D;) and ®~!(D3). But the orientations induced

on ®-1(D;5)by®1(D;) and ®~!(Dy) are different. At the same time, ®~!(D; U D3) does

not define a closed cycle, since there are other codimension one singularities in ®~1(D1).

which come from ladder moves of size 1.

Let us carefully explain why 0p{®~1(D3)} = {®71(D;2)}. The following argument will

later be generalized in the proof of Lemma 2.5.

First of all let us rename the Gelfand-Cetlin coordinates for a 4 x 4 Hermitian matrix

as shown in Figure 6 below, this will simplify the notations in this example.

pr Ho

vr Vp 13

AM Ao Ar Aa

Figure 6: The Gelfand-Cetlin coordinate on F's

Then the face Dj is given by v1 = pu; and Ay = vo = pg, while Dy, is given by

U1 = Uo = 1 = Un = Ao = ~. Let us introduce the faces F. G and H as shown on Figure

20



7. Face G is 4-dimensional (given by v; = pi and v2 = ug) and both Dy and D13sit in G,

so we will restrict our attention to ®}(G). Clearly, F is contained in G as well. Let us

also denote by G° the union of the interior of all subfaces F' of G such that F' intersects

F nontrivially, then G° = G — H.

F

 BR

»
\

\

A
%

- .

 IT

Zs  a4

Figure 7: Faces F,G and H

Actually, if we use the notation introduced in Section 2.2, we can see that F' is equal

to Fpo.o. In particular, ®~!(F) is an embedded copy of Fl3 in Fl4 and contains all the

Hermitian matrices with eigenvalues Ai, Ag, A3, Ag of the form shown below (x indicates that

any number can be places there given that other conditions are satisfied).

[

|

0 )

Notice, that in the neighborhood of F, GG is just a product of F' and a one dimensional

ray. This ray is just given by letting v3 vary and leaving the other coordinates fixed. The

map, defined by the coordinate v3, is smooth in the neighborhood of ®~!(F) and is a

moment map of a circle action S! in this neighborhood.

By local canonical form theorem (see, for example the book of Guillemin and Sternberg

'15]) we know that we can choose a neighborhood Ur C ®71(G) of ®~1(F) Cc 1G),

which can be identified with a neighborhood of the zero section of some two dimensional

symplectic vector bundle V over Fl3 = ®~1(F). Then the action of the circle S! mentioned

above is linear on the fibers and ®~1(F) is the fixed point set of this action. Moreover, the

Gelfand-Cetlin action coordinates on Ur are given by v3 together with vq, v5,v, which are

the pullbacks from ®~!(F) = Fl; of the Gelfand-Cetlin coordinates on Fl3.

Set Dy = Do NF and Dj, = D3 NF. Then by Example 2.4.3, we know that

9%~1(D}) = ®~1(D} ,). Moreover, since v1, va, 7, are just the pullbacks from ®~1(F) = Fl;

we can conclude that ®=1(D;4)NUr(or ®~1(D}) Nn Ur) is locally a product of o~1(Dj,)

 oJ
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(respectively ®71(D3)) and the fiber of V. Hence we proved

ND Dy) NUR) = d~ YD.) NU;

In other words, ®~1(D;3)isthe boundary of ®~!(D3) in the neighborhood of ®~1(F). Let

us prove that the same holds if in the formula above we substitute Ur by ®~!(G°) (set

®~1(G°) = U and notice that v3 is smooth on U and hence defines S* action on it). This

will be enough to prove that 8p{®~1(D3)} = {®1(D12)}, since "HG — G°) N &amp;~1(Dy)

is of codimension at least 2 in ®~!(D;) and hence cannot change the cohomology class.

To prove the above statement denote by Z, = {A € U|v3(A) = a}. Then M, = Z,/S’

is the reduction at a with respect to the S' action. (Recall, that the moment map of this

action is v3). We can also define action coordinates on M,. Indeed, restrict ® to Z,, then

®|, is invariant with respect to S!, hence we can define action coordinates ®, on M,.

It is easy to see from the canonical local form theorem, that if a is close to )\4, that

is Zo C Up, then M, is symplectomorphic to Fl3 and action coordinates on M, (denoted

by ®,) are just the Gelfand-Cetlin action coordinates on Fl3. Since v3 is smooth and has

no critical points on the preimage of the interior of the face GG, the same holds for every

A3 &lt;a &lt; Mg.

The neighborhood U, of each Z, can be identified with a neighborhood of the zero

section of Z, x R, where R is the dual of the the Lie algebra of S'. And the Gelfand-

Cetlin coordinates on this neighborhood are given by v3 and pullbacks of the coordinates

on Z,, while the coordinates on Z, are just the pullbacks of the coordinates on M,. So if

U, — M, is the natural fibration, then the action coordinates on U, are pullbacks of the

action coordinates on M,.

In particular, ®~1(D;) NU, is a smooth fibration over ®,1(D}), where Dj, is the corre-

sponding face in the three dimensional Gelfand-Cetlin polytope. The same holds for D; »,

that is ®~1(D;2)NU,is a smooth fibration over ®;*(D},). But since by Example 2.4.3.

we have 9(®,1(Dy)) = ®;71(D},), we conclude:

ADP HD) NU,) =d D5) NU,

This implies

HD HD) NU) = dH D15) NTU
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since U can be covered by open sets U,. This finishes the proof that or{® !(D3)}

(®1(D12)}. I

Proof. (of Lemma 2.4.2) We start with showing that if D; is a reduced face then ®~1(D;)NU

is a smooth integrable manifold (recall that U is the open dense subset of Fl,, where the

Gelfand-Cetlin map is smooth). We know that ® is an honest moment map on U, and

since ®~1(D;) NU is a connected component of the fixed point set of some subtorus of

75 action, we can show that ®~1(D;) NU is symplectic (hence orientable) submanifold

of dimension 2dim(D;). Moreover, it is clearly of finite volume and hence we can define

integration over it, which defines {®~1(D;)}.

Consider a ladder move at (m, k) of size £, which changes D; to Dj, so that the corre-

sponding face D;;jproduces a singularity of codimension 1. Let the face Gy,x¢begivenby

a diagram containing equalities Ap,prwithm—k&lt;m'—k&lt;m—k+1land k &lt;k' &lt; k+£.

so that this face contains faces D;, D; and D;;. (In Example 2.4.4 we have Gop2 = G.)

Recall that Fy, i, was defined in section 2.2 and it is clear that Fy,x¢CGmke. Let us also

define Gr kt to be a subset of Gy,x¢whichcontains the interior of all faces F' in Gy,x4,

which intersect nontrivially with Fy, x». (Again, in Example 2.4.4 Goo2 = G°.)

Let Uj; be a subset of Fl,, which is open and dense in ®!(G,, tr), such that most

of the Gelfand-Cetlin coordinates on Uj;; are smooth (that is A;x# Aiy1), but we allow

Am+1,k+1 = Am42,k+1. Hence all the singularities on U;;come from the non-smoothness of

Am+1k+1 and Appi g42 When Apiq kr = Amt gro. We will prove ®~1(D; ;) is an honest

boundary of ®!(D;) on U;;outside some set of codimension at least 2.

This will prove the Lemma, since all other singularities of ®~!(D;) (those, which do not

come from the ladder moves) are of codimension greater than one, real algebraic and hence

do not change 87{®~1(D;)}. Actually, it is enough to prove this when D; is of codimension

2¢ —1 in the Gelfand-Cetlin polytope, (in other words it has the largest possible dimension

given that the ladder move is of size £.) Indeed, for other faces we just have to intersect

D; of codimension 2¢ — 1 with another face given by some equalities A;,so that both

®~1(D;) and ®~!(D;;) are intersected transversely with the same manifold, which proves

that ®~1(D;;)isstill a boundary of ®~1(D;) in U; ;. So. we will assume from now on that

D; has codimension 2¢ — 1.

Starting from this point we will proceed along the lines of the argument presented in
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Example 2.4.4. Recall that the preimage of the face Fi, is Fl3, which is embedded

smoothly into Fl,. Moreover, U;;in the neighborhood of OY (Fk) is just the preimage

of the face Gy,kr¢.Analogouslytothe circle action from Example 2.4.4, there is a smooth

ani) —1—2¢ torus T action on a neighborhood Uy ,,,¢C U;;ofthe SY (Fk), such that

SY Fie) 1s the fixed point set of this action. (Notice Up, x» NU;;was denoted by Ur in

Example 2.4.4.) Moreover, the moment map ® for this action is given by composing ® with

the projection of RF onto RY /R3, where R3 are the three nontrivial directions of

Fon ke In particular, it is clear that we can extend the action of T to YG} 1.0):

Hence, by local normal form theorem Uy,,»can be identified with a neighborhood of the

zero section of a symplectic vector bundle V over Fl3. Then, analogously to Example 2.4.4.

we can conclude that locally, the singularities produced by ®~1(D,;)in®~1(D;) are just

the products of the corresponding singularities on Fl3 and the fiber of the vector bundle V

In other words, we can prove that in some small neighborhood of Fl3 the preimage

®~1(D,;)isgoing to be the boundary of both ®~1(D;) and ®~1(D;), that is

HP HD) NUpie) = HDs) N Unie (2.5)

Moreover, the orientations on ®~1(D;;)inducedby ®~1(D;) and ®~!(D;) are opposite.

To finish the proof look at U;;= (Gy x0) (here U;;corresponds to U in Example

2.4.4). Then Uj;; is dense in U;;and the difference ®1(Dq) — (®71(D2) NU;;)is at least

of codimension 2 in ®~1(D,). Hence it is enough to prove (2.5) with U,,x¢substitutedby

Ui5.
Analogously to Example 2.4.4, denote by M, the symplectic reduction of U with respect

to the T' action at a regular value a € (UT; 5). Then, since ® is smooth and has no critical

points on the interior of the face Gy,x¢,M,canbeidentifiedwith Fl3 and the neighborhood

Uy, of Z, = d~1(a) is a smooth fibration over M,.

So, similarly to Example 2.4.4 we can prove (2.5) with Uy,1¢substitutedby U, for

regular values of a. It is also very easy to see by local canonical form theorem, that we can

actually take any a € dU; 5). Since these U, cover Ui i, (2.5) holds with Ui i instead of

Unm.k.e- This finishes the proof of the lemma.
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This lemma leads to the proof of the first part of the Theorem. Indeed, set {Wy} =

&gt; {®71(D;)}, then

oriWn} = 2 {#7(Dey)} =0
1 c=]

since C is symmetric, and each ®~1(D;;)iscounted twice and with the opposite orienta-

tions. So, 8r{Wy} = 0 and the equivariant cohomology class [W,,] is well-defined.

For the second part of the theorem we need the following result of Kirwan (see [16])

about equivariant cohomology of Hamiltonian group actions, which is usually called the

injectivity theorem.

Theorem 2.4.5 Let M be a compact symplectic manifold with a Hamiltonian torus T

action. Let i: F — M be the inclusion of the fixed point set of the T action. Then the map

* : Hy (M) — H}(F) is an injection.

In other words to check that two equivariant cohomology classes on M are the same we

just have to check that their restrictions to the fixed points are the same. Actually, in the

case of flag manifold this result can be improved as follows.

Recall that we have identified the fixed point of the T" action on Fl, with the permu-

tation group S,. So that to each fixed point p (or nondegenerate vertex p) we associate a

permutation wy. Denote the restriction of a cohomology class h to the fixed point p by hs.

In the case of the flag manifold stronger version of the Kirwan injectivity theorem holds.

The following proposition was proved by Goldin in [11]. (Our statement of it differs slightly

from hers, since we had to adopt it to our notations and conventions.)

Proposition 2.4.6 If [Wy]|p, = [Xu]|p for every p, for which wy, is not strictly greater than

w (with respect to the Bruhat order), then [Wy] = [X,]. Moreover, if w,, = w then

| Xw]lpa = 11 «
aCALNWA_

where Ay (or A_) is the set of all positive (respectively negative) roots of SU(n) and w

acts on each a as an element of the Weyl group.

Since [Xyl|, = 0 if w, # w, all we have to prove to show that [W,] = [X,] is the

following two assertions:
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L.. W,, is supported outside of the fixed points p with w, ? w and hence [Wy]|, =

1 Xw]|p = 0 for the fixed points w, # w.

2. (Wyllpo = | NTN a, where wy, = w.

The first statement is easy. Indeed, if some nondegenerate vertex p is contained in some

reduced face D with w(D) = w, then the diagram of D sits inside the diagram of D,, (D,

was defined in Section 3) and we can write a reduced word for w = w(D) which is a subword

of wp, = w(Dp), in other words w, &gt; w. Hence W,, is supported outside of all the points p

with w, # w.

To prove the second statement we have to understand how to compute [Wy]|p, with

wp, = w. Clearly, Wy, is just an invariant smooth manifold in a neighborhood of pg, since ®

is an honest moment map in the neighborhood of every fixed point and W,, is a preimage of

the Gelfand-Cetlin face D,, in the neighborhood of py (D,, is the only face with w(D) = w,

which contains pg). Let NW,, be the normal bundle of W,, in some small neighborhood of

po. Then

Wullpo = er (NW)|p = er (NWylp,)

where ep denotes the equivariant Euler class. Since NW,|p, is just a vector space, the T

action on it is given by some set of weights A. Moreover, it can be shown (see, for example,

[14]) that

er(NWylp,) = 11 a
a€A

So we just need to show that A = AL NwA_.

Notice that A can be described as follows. wA_ is the set of weights of the T' action

on the tangent space Tp, Fl,. This set can be identified with the directions of the projec-

tions P(e;;)ofall the edges e;xof the Gelfand-Cetlin polytope, which come out of the

nondegenerate vertex pg. A C wA_, since NWy|p, is a subspace of Tp, F'l,. Moreover. A

contains only those weights which come from edges which are not contained in the Gelfand-

Cetlin face D,,. But these edges are exactly those which are constructed from the diagram

of p by removing the equalities A;,. Thus we can apply Proposition 2.2.2 to show that

A=A, NwA_.

This finishes the proof of Theorem 2.4.1.
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2.5 Formulas for double Schubert polynomials.

In this section we give formulas for computing Schubert and double Schubert polynomials in

terms of reduced faces of the Gelfand-Cetlin polytope. The classical Schubert polynomials

were introduced by Bernstein, Gelfand, Gelfand in [3] and by Lascoux, Schutzenberger in

[19]. An exposition of the theory of double Schubert polynomials can be found in a book

by Macdonald [20].

First of all we will recall some well known facts about the T' equivariant cohomology

ring of Fl,. It is given by

Clz1, os Try Yly ory Yn)

1 (Fln) = Fi 2) TIO+90),3 2

where, morally speaking, the z;’s are the variables which come from the torus action (the

equivariant cohomology of a point is equal toHogensmnl, the z;’s can also be thought of as the

coordinates on the dual of the Lie algebra t*) and the y;’s are the variables which come from

the regular cohomology of Fl,. We will denote the quotient map from Clz,y] = H}(Fly)

by f. It can be shown that f(z;)|p = z; and f(y;)|p = Ty=13:) for every p € FIL. More

details can be found in [11].

There is an iterative procedure which allows us to define double Schubert polynomi-

als Py,(z,y) € Clz,y] such that these polynomials represent cohomology classes [X,] €

H}.(Fl,), that is f(Py(z,y)) = [Xu].

We define a divided difference operator 9;, which acts on a polynomial P(z,y) by:

op PosiP
Ti4+1 — 4

where s; acts on P by interchanging z; with z;;;. Then if w = s;,...8;, is a reduced

expression for w we define 8,, = 0;,...0;,. It is easy to see that J, does not depend on a

reduced expression of w. Then we define Py, = [[,,.&lt;,(y; — zi), where wg is the longest

permutation, and

PP, = Oy —140 Pun -

These are called double Schubert polynomials and they satisfy f(Py,(z,v)) = [Xu].

For every reduced face D let us define a polynomial Pp(z,y) as follows. We label each

equality A;xby the monomial y;_. — zr; (see Figure 8 for n = 4). Then Pp is equal to
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the product of all the monomials which are contained in D. For example, for the second

diagram from picture 1 this polynomials is (y; — z1)(y1 — z2).

Figure 8: Labeling the diagram by monomiais

Now, we are ready to state the following theorem

Theorem 2.5.1 For a permutation w, Py, is equal to the sum of Pp with w(D) = w, that is

1)-11) &gt; Pp.
w(D)Y=w

We will omit the proof of this theorem, since it was proved by Fomin and Kirillov in [7]

and several modifications of this result also appeared in [8], [4], [1]. We have yet another

combinatorial argument which proves this theorem, but this argument does not seem to

explain the theorem any better than already known proofs. At the same time it is clear

that there should be a purely geometric proof of this theorem, which is based on the new

cycles for Schubert polynomials constructed in Theorem 2.4.1 and the Kirwan injectivity

theorem. We were not able to find this geometric argument. But the proof of Theorem

2.6.1 in the next section suggests that such an argument should exist.

Remark 2.5.2 If we set the y;’s equal to zero we get regular Schubert polynomials, actually

Sw = (=) P,(z,0) will be the classical Schubert polynomials. The above theorem

clearly provides a rule for computing Schubert polynomials and not only double Schubert

polynomials.

2.0 Other cohomology classes constructed using faces of the

Gelfand-Cetlin polytope.

Until this point we have been looking only at the very special faces of the Gelfand-Cetlin

polytope. It is interesting to see if other faces can be incorporated into a more general pic-

ture. In this section we provide one example of the construction of equivariant cohomology
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classes on F'l,, which are different from the Schubert classes, using faces of the Gelfand-

Cetlin polytope. We will do this for the equivariant cohomology class given by y; — x with

+ + k &lt;n. This example suggests that it might be possible to construct a much wider set

of equivariant cohomology classes using the Gelfand-Cetlin polytope.

In this section we will work with only those faces which are given by a single equality

A;xor Bj; jx, we will denote these faces by DZ, and DZ, respectively.

For 7, k with 2 + k &lt;n, define two unions of faces

. — A BFir = Diik—1k-1 Jw DP)

with ¥ &lt;k—2andi—k'=14+iand

Gik = U D7
a

with ¥' &lt;k—1 and ¢/ — k' =+¢. Then

Theorem 2.6.1 The current

Tix = {21(Fip)}—{1(Gip))

s closed and defines an equivariant cohomology class on Fl,,. Moreover.

T:i]=fly; — zx)

Proof. Using the same argument as in the proof of Theorem 2.4.1 we can prove that

or(T;x)=0. Again, the preimage of each face has codimension one singularities, but they

all cancel out at the end, since each singularity is counted twice and with the opposite signs.

To show that [T;x]=f(y; — zx) we will prove that for each fixed point p of the T' action

on Fl.

[T; kl» = fly; — z)|p.

This will be enough to prove the theorem by the Kirwan injectivity Theorem 2.4.5.

We know that

Ur — T° n =  Tr ol
nD vo} LL.
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We will prove by induction on n that

Tikllp = Toy 10 ~ I'L (2.6)

When n = 2 this is easy. Let’s assume we have proved it for n — 1 and we need to prove it

for n.

If Big (or Ay x) is a part of the diagram for the nondegenerate vertex p, then the

equivariant cohomology class in a small neighborhood of the fixed point p of the restriction

{2~1(D7 1) }Hp (respectively {2"H(D# 1) }p) is given by the root, which is pointing in the

direction of the projection P(e; x) of the corresponding edge e; x» coming out p. If Byp

(or Ay gr) is not a part of p then this restriction is 0.

This fact can be used as follows. Let the nondegenerate vertex p have j; equalities

A;o in the bottom row of its diagram. Then w, = uwp, where u = s;,...s7 and wj is the

permutation on the elements 2,...,n, which is constructed by removing the bottom row of

the diagram of p and taking the permutation of the new diagram p. Then, by the induction

assumption, we can conclude:

Ti kllp = Low 1(i+1) — Tp + O01 + (2.7)

where a1, as are the weights which come from the restrictions of DE and DE. to p

respectively (these weights might be equal to 0).

We will look at three cases:

1. 4; &gt;i.

2. j=

3. 7 &lt; 1.

In the first case, p is not contained in Df, and DE. so both «a; and a9 are zero.

Moreover, w=!(i) = wy (i + 1) (remember, that ws permutes 2.....n). so inserting this

information in (2.7) we get (2.6).

In the second case, p € Df, but not in Df, Soa; =0 and as = x1 — Topi (itl)

Plugging this into (2.7) and using w (4 +1) = wy(i+1)we get

Likiip = oA 0s
Ta

yor



which proves (2.6), since in this case w, '(i) = 1

For the third case, p is contained in both Df, and Df 10 so a; = —(x1 — Tri) and

Ng = TL — Ty=1(;41)" Moreover wt (4 +1) = wy (i +1). So we have:

Tilly = T7104) = Tk = (81 = Typ10) +21 = Bypigpn = Typ P1,

which is exactly (2.6).

There is only one situation left to check, that is when k = 1. Then F;; is just one face

Df, while G;1 is also one face DE, Every nondegenerate vertex p is contained in exactly

one of the two faces. If p € Dj, then P(e;o) produces the weight Tywsl(@) — TL while if

pE Df, then P(e;o)points in the direction of z; — Zy=1(i): but we have to take ®~1(G;,)

with the minus sign. So (2.6) holds for any 7 when k = 1.

This finishes the induction and the proof of the Theorem.
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Chapter 3

RC-graphs and

Littlewood-Richardson Rule

3.1 RC-graphs and Young Tableaux.

[n this section we give a combinatorial description of RC-graphs, show that they can be

identified with reduced faces of the Gelfand-Cetlin polytope and explain how Young tableaux

can be thought of as RC-graphs of permutations constructed out of partitions.

We start with a definition of RC-graphs. (Our conventions are not standard and differ

from the conventions in [1] and [7], since we've chosen them to fit the standard notations

for Young tableaux.) Let R be a finite set of pairs of integers R = {(i,k)|i &lt; n,k &lt; n}

(both 4, k can be negative). We will think of R as a table of intersecting and nonintersecting

strands. Strands intersect for each (i,k) € R and do not intersect otherwise. The examples

are provided on Figure 9, where we have three tables of strands Ry = {(2,1),(1,1),(-1,2)},

Ry, = {(3,1),(2,3),(1,2)} and Rs = {(3,2),(2,2),(1,2),(2,3)}.

2 -1 -1

ant 0 0
p= 0 Roe 1 J R11

o— = 2—\-y B=
3—L + 3—~ :

1) i | | i ) 0)
2 1 0 -1 -2 3 2 1 0 -1 3 210-1

figure 9: Examples of RC-graphs.

R is called an RC-graph if no two strands intersect twice. We can think of each RC-
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graph as a planar history of a permutation wg, which is defined as follows. If we label each

strand by the row where it starts from, then wg(i) is given by the column, where i" strand

ends. Bach wr permutes all the integers, which are less than or equal to n. There always

exists some negative INV such that wg(¢) = for : &lt; N.

It is also very simple to see that R also provides a reduced expression for wg, in other

words we can write wg in terms of a minimal length product of simple transpositions. One

way to do it is to read each row of the RC-graph from right to left, from the bottom row

to the top one and multiply out simple transpositions s;,x_,_1 for each (i,k) € R (each s;

interchanges 7 and j + 1 and j might be negative).

For example, for the RC-graphs from Figure 9, the corresponding permutations are given

by wg, (2,1,0,-1,-2) = (2,-2,1,0,—1) with wg, (i) =i for i &lt; 2, wg,(3,2,1,0,—-1) =

(3,1,—1,2,0) with wg, (4) = i for everyi&lt; —1 and finally wg,(3,2,1,0,—-1) = (3,-1,1,2,0)

with wg, (i) = i for every i &lt; —1.

Each reduced face D of the Gelfand-Cetlin polytope can be identified with an RC-graph.

Indeed, we can change each equality A;xin the diagram of D by an intersecting strand at

the place (n + k — i,n — k) and all other inequalities by nonintersecting strands and then

connect the strands. It is easy to see that this constructs an RC-graph for each reduced

face.

So, let us repeat some properties of RC-graphs, which have already been stated in the

language of reduced faces in Section 3:

» Let R be an RC-graph, such that (i,k),(: — 1,k) and (i — 1,k — £) are not in R for

some i,k and £, but all other (¢,k') with k &gt; kK" &gt; k+ andi &gt; 4 &gt; i+1 are in

R. Then we can substitute (i,k — £) by (i — 1, k) without changing wg. (We also can

go backwards.) These operations are called ladder moves of size £ at the place (i,k).

Examples of ladder moves of sizes 1 and 2 are shown on Figure 10

» For every permutation w there exist a unique RC-graph R,, (which we will call a top

RC-graph of w), such that every other RC-graph R with wr = w could be constructed

from R,, by a sequence of ladder moves, which change (i,k — £) to (i — 1.k) (but not

the other way).

» Each top RC-graph R,, has the property that if (i,k) € Ry, and ¢ &lt;n, then (i+1,k) €

R.,. In other words, all intersecting strands of R,, are concentrated strictly to the left



in each row of R,,.

Q-0 4-H
Figure 10: Examples of ladder moves on RC-graphs of sizes 1 and 2

From now on we will only work with those permutations w for which w(¢) &gt; w(¢ —1) for

each 1 &lt; 0. Equivalently, every RC-graph R with wg = w can be defined by the following

property:

» R has no two nonpositive intersecting strands

[n particular, if R satisfies the above property it lies below the 0" row, that is if (i,k) € R

then k£ &gt; 1. This shows that the above property just says that we do not want to consider

any permutations w which have RC-graphs partially located above the zeroth row. Let us

emphasize that starting from this point every RC-graph mentioned in this text has to satisfy

the above property. In particular, the property is implicitly assumed in all the statements

of theorems and lemmas stated below.

Let us now define Young diagrams and tableaux. A Young diagram will be given by a

partition pu = (u1,..., tn), where pu; &gt; po &gt; ... &gt; pun. Graphically it will be given by pu;

boxes in i*! row, as shown on the Figure 11, where Young diagrams correspond to partitions

wr = (3), p= (2,1) and ps3 = (3,1, 1) respectively.

11 fe +- —

Figure 11: Examples of Young diagrams.

A Young tableaux Y is a filling of a Young diagram with numbers 1, ...,n which satisfies

the following properties. If a and b are two boxes of the Young diagram, which lie in the

same row, and a is to the left of b then the number in a is not greater than the number in

b. If a and b are in the same column and a is on top of b, then the number in a should be

strictly less than the number in b. We denote by u(Y') the partition, which corresponds to

the Young tableaux Y. Examples of Young tableaux are shown on Figure 12.
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qn=1]1]2]  Yo=[1]3] Y;=[1]2]2

[Figure 12: Examples of Young tableux.

Given a partition pu, we construct an RC-graph R(u) as follows. Let R(u) = {(i,k)|1 &lt;

k&lt;n,n&gt;i&gt;n-— p+ 1}. Then, set w(p) = wg). R(w) is going to be the top RC-

graph of w(u). Every such permutation has a unique ascent at 0, that is w(1) &lt; w(0) but

w(i) &gt; w(i—1) ifi# 1 In particular every permutation w(u) satisfies w(i) &gt; w(i—1) ifi&lt;0.

The following lemma shows why we can think about RC-graphs as about generalizations of

Young diagrams (similar results were obtained by Winkel in [24]).

Lemma 3.1.1 RC-graphs R with wg = w(u) are in one to one correspondence with Young

tableauz Y with p(Y) = pu.

Proof. It is easy to see that we can apply only ladder moves of size 1 to any R with

wr = w(w). Start with the top RC-graph R(u) and the top Young diagram, which is given

by filling the i*® row of the Young diagram with entries 4. Associate to each ladder move

of size 1 an increase by 1 of the corresponding box in the Young tableaux. This obviously

constructs a one to one correspondence between RC-graphs with permutation w(u) and

Young tableaux with partition pu. O

Denote by R(Y) the RC-graph, which is constructed out of the Young tableau Y. As

an illustration to the above lemma, let us mention that the first Young tableau Y; on Figure

12 correspond to the first RC-graph R; on Figure 9. At the same time w(u(Y2)) = wg, but

R(Y3) # Ro».

Call any finite sequence of numbers 1, ...,n a word. For each Young tableau Y, associate

a word v(Y), which is given by reading the entries of the tableau from left to right in each

row, starting from the bottom row and going to the top one. For example, the words of

Young diagrams from Figure 12 are v(Y1) = 112, v(Y3) = 313 and v(Y3) = 42122.

On the set of all words we define Knuth moves (originally they appeared in [17]). These

Knuth moves allow the following changes to a word:

YTZ.. = yz... fx of
 Zz y ~2



and

T2Y... &amp; ozzy... if z&lt;y 2

We say that two words v; and vy are Knuth equivalent if we can go from one of them to

another by applying a sequence of Knuth moves.

The following theorem is the key fact in the Littlewood-Richardson rule for multiplying

Schur polynomials and will be extremely useful to us. The proof of it can be found in [9].

Theorem 3.1.2 IfY] and Ys are two distinct Young tableaux then v(Y1) and v(Y2) are not

Knuth equivalent. Moreover, each word v is Knuth equivalent to exactly one word v(Y).

At the end of this Section we recall the definitions of Schur and Schubert polynomials.

Each Young tableaux Y defines a monomial z¥, which is equal to the product of z;’s with

one z; for each entry 7 in the tableaux. Each partition yu defines a Schur polynomial

S,= &gt;. @
w(Y) =u

It is well known that Schur polynomials are symmetric polynomials and that they form a

basis for the space of symmetric polynomials in n variables.

Similarly, given an RC-graph R we define x to be the product of z;’s with one xj for

each (i,k) € R. Then the Schubert polynomial for the permutation w is given by

S,, = 2,”
we=1w

Polynomials S,, form a basis for the space of all polynomials in n variables.

Since zR(Y) = z¥, Proposition 3.1.1 implies that Sw(u) = Su, in other words we can

think of Schubert polynomials as generalizations of Schur polynomials.

3.2 Insertion Algorithm

The key tool in the classical Littlewood-Richardson rule for multiplying Schur polynomials

is the Schensted insertion algorithm. This algorithm was generalized to the case of RC-

graphs in [1] and used to prove Monk’s formula. We will show that in a special case. this

generalized algorithm can be used to provide the Littlewood-Richardson rule for multiplying
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some Schubert polynomials by Schur polynomials. This section defines the algorithms and

discusses its basic properties.

Let R be an RC-graph. We would like to provide an algorithm for inserting a number

1 &lt;k &lt;n into R.

Let us call a pair (4,7) an open space, if (i,7) ¢ R (two strands at position (i,j) do not

intersect) and the top strand of the intersection is labeled by a nonpositive number, while

the bottom strand is labeled by a positive number. (See Figure 13.)

Figure 13: An example of an open space: a &gt; 0 &gt; b.

Start at the row number k; = k and find the smallest 7; such that the space (iy, k1) is

open (sometimes we will write (i1(k), k1(k)) to indicate the dependence on k). Insert (iq, k1)

into R, in other words change the corresponding nonintersecting strands to intersecting. If

a,b are the two labels of the strands going through the place (i1,k1) we set a;(k) = a

and by (k) = b. If we constructed an RC-graph we stop, otherwise, it is easy to see that

the two stands which now intersect at the place (1, k1) must also intersect at some other

place (2, ko) with ko &gt; ki. Then we remove (£2, kz) from R and find the smallest ia &gt; £9

such that (ig, ko) is open (we can find such iy, since the strand labeled by b; &lt; 0 passes

through the row ks to the left of (£2, ko) and the row ko also has a positive strand to the

left of the strand labeled by b;). We insert (io, k2) into R (again, sometime we denote it by

(i2(k), k2(k))), set ag(k) and ba(k) to be the labels of the strands passing through (iz, k2)

and continue the process until it stops. For notational convenience set kj 1(k) =n + 1, if

the last intersection we inserted was (i;(k), k;(k)).

The resulting RC-graph will be denoted by R « k. Note, R + k and R have the same

number of crossings in each row. except for the row k, where R + k has an additional

crossing. This immediately leads to the following consequence

r ,L _ pe Kk
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If v is a word, we denote by R + v the RC-graph we get after inserting one by one the

letters of v. If Y is a Young tableau, we say R + Y = R &lt; v(Y). Obviously we have:

pla rom— oe

The above algorithm is a generalization of the Schensted insertion algorithm, which

originally appeared in [23]. To prove this we just have to translate what this algorithm

means in the language of Young tableaux, in the case when R = R(Y') is constructed from

some young tableau Y as in Lemma 3.1.1. We omit the simple technical details of this proof.

but recall a very important fact about this algorithm (see [9]). For two Young tableaux Y;

and Yo we have

v(Y1 « Y2) is Knuth equivalent to v(Y1)v(Y2) 5.1)

where v(Y1)v(Y2) is just the concatenation of the two words v(Y7) and v(Ya).

Let us introduce a few new notations, which will be used later. During the insertion

algorithm of k into R, each place (i;,k;) was connected to (£;41,k;+1) by two pieces of

strands s; and s7. (Let us emphasize that sj and s7 are just pieces of strands, which are

between rows k; and kj; and their labels change during the insertion.) We say that the

left strand s; is a part of the left path £(k) of the insertion while the right strand s’ is a

part of the right path r(k) of the insertion. Both £(k) and r(k) are collections of pieces of

stands. The labeling of each piece s; in #(k) changes from being positive a; to nonpositive

b;, while the labeling of s/ in r(z) change from b; to a;.

Lemma 3.2.1 If no two nonpositive strands intersect in R, then no two nonpositive strands

intersect in RB + k.

Proof. During the insertion algorithm the only possibility for introducing new intersections

of nonpositive strands is when a strand s; from ¢(k) becomes nonpositive.

Let us show by contradiction that s; cannot intersect any nonpositive strand. Assume

that s; (labeled by b; &lt; 0) in R « k is intersected by some nonpositive strand s in row

kj &lt; k' &lt; kj;1. Look at the whole strand s’ in R « k, which is labeled by a. s’ starts

below zero, while s starts above zero, at the same time s is to the left of s’ in the row k'

hence these two strands must intersect in R « k above the row k’. The strand s’ above the



row k’ consists of two parts: one of them is s/, which was labeled by b in R, and the other

one is the rest of the strand above the row k;, which is labeled by a in both R and R « k.

s cannot intersect s7, since no two nonpositive strands intersect in R. At the same time

s cannot intersect the rest of s’, since it already intersects the strand labeled by a in R once,

and cannot intersect it for the second time. So we found a contradiction and this lemma is

proved.

The lemma immediately leads to the following property

e All strands passing between r(k) and £(k) are positive.

Indeed, each strand between r(k) and £(k) has to cross at least one strand from r(k) or £(k),

but, since r(k) is nonpositive in R and £(k) is nonpositive in R &lt; k, and no two nonpositive

strand can intersect, the above property holds.

Here is a very important lemma, which does not hold in the case of the more general

algorithm given in [1].

Lemma 3.2.2 Ifx&lt; vy, then the path ofxis weakly to the left of the path ofyin R + zy.

Ifx&gt; y then the path ofxis weakly to the right of the path ofyin R + zy.

Remark 3.2.3 When we say that the path of z is to the left (right) of the path of y, we

imply that the right path of = is to the left of the left path of y (respectively, the left path

of z is to right of the right path of y). The word weakly stands for the fact that r(x) and

¢(y) (respectively (x) and r(y)) might have some common parts of some strands.

Proof. For the case z &lt; y the right path r(z) of z in R «+ x contains strands which are all

greater than zero after the insertion. Thus when we start inserting y into R &lt; x each row

k &gt; x should contain an open space to the right of the right path of x (since the right path

of z is positive). Hence the left path of y is going to stay strictly to the right of the right

path of z, until at some point it might happen that left path of y is the same as the right

path of =.

It can occur only when an open space (i,k) = (i;(y),k;(y)) in R &lt;— x contains strands

sj(y) and s’(y), such that part of s;(y) is a part of r(x). In other words, s;(y) and $7 (z)

have some common parts. If the insertion algorithm stops at this point there is nothing

else to prove. Otherwise. there should be a place (i;41(y), kj+1(y)) where strands s;(y) and



s?(y) intersect again. We would like to show that

civ1(y) &gt; kjr41(x) 3.2)

This will imply that the path of y at the row k;41 is strictly to the right of the path of z and

(3.2) will be enough to prove the first part of the lemma. Indeed if 7(z) and ¢(y) coincide

at some row k, they have to separate at the rowkj 41(z) by (3.2) and r(x) have to stay to

the left of £(y). If they coincide again at some lower row, we can repeat the argument and

show that they have to separate again.

7’ (x) was nonpositive in R, hence it cannot intersect s7, which was also nonpositive in

R. Thus if s;j(y) and s’(y) intersect again, it should happen below the row where si" (z)

ends, in other words, below the row of intersection of sj (z) and si'(z), but this row is

exactly kj 41(z). Therefore (3.2) holds and the first part of the lemma is proved.

In the case z &gt; y, the right path of y gets changed from being a set of nonpositive strands

to positive strands. The left path of z in R «+ z contains only nonpositive strands after the

insertion, so these two paths cannot intersect (but some parts of them can coincide), since

no two nonpositive strands can intersect.

Let’s now argue by contradiction that r(y) is weakly to the left of £(x) using the fact

that r(y) cannot intersect ¢(z). Pick the smallest k, such that the right path of y is to the

right of the left path of z. This could not happen because of an intersection of r(y) and 4(z).

Thus in the row k the insertion of = into R had to remove some (¢;(z), kj(z)) = (¢;(z), k)

from R and add some (i(k), k) to R, moving £(z) to the left. But only nonpositive strands

pass in row k between £;(z) and ¢;(k) (otherwise, we would get an open space there, which is

impossible), hence r(y) cannot pass between £;(z) and i;(x) and it must coincide with £(z)

in the row k — 1). Moreover, the strand passing the row k directly to the left of (¢;(z), k) is

nonpositive in R + x. At the same time, the strands between right and left paths of y are

always positive, so the strand passing the row k directly to the left of (¢;(z), k) is positive.

We found a contradiction, which means that the second part of the lemma is proved. O

This Lemma immediately proves that if 0 &lt; z &lt; y &lt; z &lt; n then

R + yrz = R + yzzx 23)
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Indeed in R + yz we know that #(y) is weakly to the right of r(z), so r(y) is unchanged

when we insert z into R + y. At the same time when we insert z in R «+ y the left path

¢(z) is weakly to the right of r(y). So, paths of x and z are separated by the path of y

and, in particular, do not have any common strands. Hence multiplication of R «+ y by =

commutes with multiplication by z, which proves (3.3).

Thus if v1 and v9 are two Knuth equivalent words, which can be gotten from one another

using only Knuth moves of the first type, we have

R+ vy =R + vg

Let us talk about how the permutation of R changes after insertion. Notice that after

each step of the algorithm the permutation wg does not change except for the last step. At

the end we make two nonintersecting stands labeled by ¢ and d intersect, which means that

WRex = Sc. dWR

where s.4is the transposition (with ¢ &gt; 0 &gt; d), which interchanges ¢ and d, when it acts

on a permutation from the right. Moreover.

(5. qwr) = (wg) +

Conversely, given an RC-graph R' with wr = s. qwr, such that I(s. qwr) = (wg) + 1 and

c¢ &gt; 0 &gt; d we can traverse the above algorithm backwards starting by finding the unique

intersection of strands labeled by c¢ and d, making them nonintersecting and then proceeding

in the opposite order. For more details about the inverse of the insertion algorithm see [1].

This immediately leads to a special case of the Monk’s formula (the more general case

of Monk’s formula was proved using the more general algorithm in [1]). We postpone the

proof of the following theorem until the proof of the more general statement in Lemma

3.3.2

Theorem 3.2.4

Sw * (1 + BE § + Zn) = &gt; Sse qu
c&gt;S0&gt;d

where the sum is taken over all pairs (c.d) with l(s. yw) = l(w) +1
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3.3 Littlewood-Richardson rule for multiplication Schubert

polynomials by Schur polynomials.

Given a Schur polynomial S,, and a Schubert polynomials S,, their product can be uniquely

written as a sum of Schubert polynomials:

SwSu=Y_ ck Su.

where the sum is taken over all the permutations u. The coefficients c,,are called

Littlewood-Richardson coefficients and are known to be positive. The following theorem

provides a rule for computing these coefficients:

Theorem 3.3.1 Let w be a permutation, which satisfies w(i) &gt; w(i — 1) for each i &lt; 0

and let 1 be any partition. Choose any RC-graph U and set wy = u. Then cy,,is equal to

the number of pairs (R,Y) of an RC-graph R and a Young tableau Y with w(R) = w and

w(Y) =u, such that RY =U.

The next three lemmas will lead to the proof of the above theorem. Let us define a

Young diagram v,, to be just one row of m boxes, so that the corresponding partition is

given by one number m.

Lemma 3.3.2 Theorem 3.3.1 holds when pu = vy,.

Remark 3.3.3 The above lemma is just a special case of the Pieri formula, which was

conjectured to hold for a more general insertion algorithm in [1] and was later proved by

other methods by Bergeron and Sotille in [2].

Lemma 3.3.4 The polynomials S,_ generate the ring of symmetric polynomials in n vari-

ables. That is each symmetric polynomial S can be written as

 Ny — &gt; Sumy + Som, —
(mi,....,mE)EML

&gt; S, ,em m Sy /
{o.4)J

where M. and M_ are two sets of sequences of positive numbers.
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Lemma 3.3.5 Let R be an RC-graph then

H yrz=R+—yzzx if 0&lt;z&lt;y&lt;z&lt;n

re A

R—zzy=R+z2zy if 0&lt;z&lt;y&lt;z&lt;n.

Corollary 3.3.6 If R is an RC-graph and Y1 and Ys are two Young tableaux then

R— (1 «Y)=(R+ YY) «Ys.

We postpone the proofs of the above three lemmas until the next Section. Let us just

note that Corollary 3.3.6 follows easily from Lemma 3.3.5 and Fact (3.1).

Let us show how Theorem 3.3.1 can be proved using the above three lemmas. We define

the sets R,, and ), to be

R., = UJ R and Y= J
WR=w w(Y)=u

R=Ry Y= U R + Y,
RER., YEY,

we would like to show that

R=|JRu (3.5)

This implies that each R, is taken cj, , times in the above union, since there is a unique

way of writing S,,.5,, as a sum of Schubert polynomials. Hence (3.5) will prove the theorem.

Use Lemma 3.3.4 to write

yw
(m,....,mp)EML

 Sy,Sn. &gt; Som. Som,
(mi....mue)YEM.

this immediately implies that

Yu = J Vy, oe Vom,
‘mi ....mn EM

U Yim Yom,
(mi ....mu)EM

3.6)
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where the minus stands for the set theoretic difference of the two sets and where V,, - VV,

Unvi)=us (v2) =z 1+ T.

The reason why we can take the set theoretic difference in the above formula is the

following. By Lemma 3.3.2 both first and second sets in (3.6) could be broken up into

unions of Ys (since any insertion into a Young tableaux produces a Young tableaux). But

since S, cannot be written as a nontrivial linear expression of S,’s the set theoretical

difference above is well defined.

Thus we can conclude:

R =Ruw-( UU Yom Vm) RoC UU Vimy Vom,)
(mi,...,mi)EM4 (mi,...,mg)EM_

Using Corollary 3.3.6 we can immediately see that the set theoretic difference is well-defined

in the above formula. On the other hand, this formula and Lemma 3.3.2 shows that R can

be written in the form (3.5), since by Lemma 3.3.2 each Ry - Vo, Vu, is a union J, Ra.

This finishes the proof of the Theorem 3.3.1.

3.4 Technical details in the proof of Littlewood-Richardson

rule

Proof. (of Lemma 3.3.2) The proof of this Lemma will just be a combination of Monk’s

rule and Lemma 3.2.2. We have already mentioned that a more general case of this Lemma

was conjectured in [1], but no proof was provided there, since Lemma 3.2.2 does not hold

for the general algorithm.

Let Y = (1 &lt;a; &lt;a &lt;..&lt;am &lt;n) be a filling of the Young diagram v,,,. We can

easily see from the insertion algorithm that

WR«V = WR«ay...am — Scm.dm-Se1.di WR

where ¢; &gt; 02&gt; d;, dy &gt; dy &gt;... &gt; d,, and U(Scom dm -+-Scy,dy WR) = (wg) + m.

Conversely. assume we are given an RC-graph R’ with wg = s.,, 4,.---S¢;dyWRWith

cg &gt;02&gt;d;, dy &gt;dy &gt;... &gt; dy and (se, 4 ...S¢,a;WR)=(wr)+m.Then we can go

through the inverse insertion algorithm and delete one by one intersections of strands c;

t)e.



and d;. We will get m numbers a1, ..., ap,.

Moreover, by Lemma 3.2.2, a; &lt; a; (otherwise we would not have d; &lt; d;;1). Thus

we have even proved a slightly better version of the Lemma:

wdqSeq,yo Sse dmSurSu,,

where ¢; &gt; 02&gt; d;, dy &gt; dy &gt;... &gt; d,,, and U(S¢om dm --Sc1,di WR) = (wg) +m.

Proof. (of Lemma 3.3.4) Let us define a lexicographical ordering on Young diagrams. We

say that pu = (p1,..., ux) &gt; fo = (fia,..., fig) if either £ &gt; kork =k, ug = fig, Pic1 = flit1,

but pu; &gt; fi; for some 1.

We will prove that every Schur polynomial S, can be written in the form (3.4) by

induction. As the base of the induction, we use the case k = 1, then u is just v,, and there

is nothing to prove.

Let’s assume that we can prove (3.4) for every ji, which is smaller than pu = (u1, ..., tk)-

Let p' = (p1,..., k—1) be the partition with the last row of u deleted. The product S;Sy,,

can be written as a sum of Schur polynomials by Lemma 3.3.2 and since insertion into a

Young tableaux produces a Young tableaux. Moreover, each of those Schur polynomials

will correspond to a Young diagram, which is less than or equal to pu. This can be easily

deduced by looking at how insertion algorithm works: an insertion into a Young tableau

adds exactly one box to the corresponding Young diagram. So

’

— S !uw ) 0 7)SiS, Cow . (3.7)
u'

where every pu’ is smaller than or equal to pu with respect to the lexicographical ordering.

To finish the proof we will show that cj; ,, = 1. If we fill the ith row of fi with i+ 1, and

we fill v,,, with ones, then the result Yj of the insertion will have the shape of yi. On the other

hand, this is a unique way of getting Young tableaux Yj using this kind of insertion. So

Chip, = 1. Hence using (3.7) we can express S, as a sum of products of Schur polynomials

Sy, such that each pu’ is smaller than x. Thus by induction assumption S,, can be written

in the form (3.4).

The rest of this Section will be concerned with the proof of Lemma 3.3.5.

Recall that the first part of Lemma 3.3.5 followed from Lemma 3.2.2. So, we just have



0 prove the second part of it:

R«—z2y=R+zzxyforanyRand0&lt;z&lt;y&lt;z&lt;n (3.8)

The path of z in R «+ zz is weakly to the left of the path of z. If it is strictly to the left

of the path of z (in other words the right path r(x) of z has no common parts with the left

path £(2)), then clearly R + zz = R + zz and (3.8) holds. An example for this situation

would be z = 1, y = 2, z = 3 and R = R3 (the third RC-graph from Figure 9).

Hence we just have to look at the case when right path of z partially coincides with

the left path of z. Let’s assume that the top row where this happens is k. Then by above

argument, R «— zzy = R + zzy for all rows, which are above the row k.

Assume that during the insertion of z into R an intersection (i;(z), k;(z)) was inserted

into R, such that k;(z) &lt; k but k;11(z) &gt; k. Denote by s; and sz the two pieces of strands,

which connect (i;(z), k;(z)) with (£;41(x), kj+1(z)). Set a = aj(z) &gt; 0 &gt; b= bj(z). So that

during the insertion of x into R, the labeling of s; changed from a to b, while the labeling

of so changed from b to a.

Assume that during the insertion of z into R + z we insert an intersection of strands

at the place (i,k) = (i;/(2), k;:(2)). Then we know that one of the strands at (¢,k) is so.

Denote by s5 the piece of this strand, which connects (i, k) with (£;141(2), kj +1(2)). (s2 and

s4 have a common piece between the rows k and k;1(z).) Take the other strand coming out

of (i,k) and denote the piece of this strand, which connects (7, k) with (i;,41(2), kj 41(2)).

by s3. Clearly, a;/(z) = a and we set bj(2) = c.

Since the paths of y have to sit between the right path of z and the left path of 2

above row k, the strand sy has to become a part of the left path of the insertion of y into

R + zz. Assume it happened at some place (i1,k1) = (i;#(y),k;#(y)). We claim that

(4,k) = (¢jn4+1(y), kjn41(y)). In other words, the strands, which pass through (i;,%;) in R

have to pass through (i,k) in R. If this claim does not hold, then the strand labeled by

¢ &lt; 0 has to pass between the left and right paths of y, which is impossible. Denote by sj

the right path, which connects (i1,k1) with (i,k), so that s; and s3 are two pieces of the

same strand in RA.

Thus during the insertion algorithm of y into R + zz we had to remove intersection

(i,k) and find an open space to the left of it. call it (7,k) = (4.021 (y), kin 11(v)).
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We have two cases:

Case 1. (i,k) is to the left of the strand s;.

Case 2. (i,k) is to the right of the strand s;.

Before going through the proofs for both cases, let us give two examples. Case 1 happens

when we take z = y = 2, z = 3 and R = R3 from Figure 9. For Case 2 take n = 2 and

R={(2,2)} then z = y = 1 and z = 2 will produce Case 2.

Proof of Case 1. First of all let us note that (,k) is to the left of s; if and only if

the stand s; passes exactly to the left of strand sy in the row k, that is there are no other

strands between s; and ss in the row k. Indeed, if we had other strands between them they

had to be positive in R (since they lie between right and left paths of x), but then (i — 1, k)

would be an open space, so that 7 = 1 — 1, which contradicts the fact that (z,k) is to the

left of the strand s;. This argument also proves that (i,k) is to the right of s; if and only

if 7 = ¢ — 1, which will be used in the proof of the second case.

Denote by p? the path of the insertion of = into R below the row k, by pf the path of

the insertion of z into R + z below the row k and by pj the path of the insertion of y into

R + zz below the row k. Notice that since (7, k) is to the left of s; we can conclude that

p? is weakly to the right of p?, while p¥ is weakly to the left of pf.

Let us think how R « zzy looks in this case. When we insert z into R, the open space

(ij:(2), kj (z)) in the row k is no longer (i,k), but it is now (i — 1,k). Indeed, s; is labeled

by a &gt; 0 while s; is labeled by b &lt; 0 in R, moreover, s; passes through the space (i — 1,k)

and together with sy creates an open space. So we insert (i — 1, k) into R and denote by pj

the path of z in R below the row k. Notice that the paths pj and p{ are identical. When

we insert z into R «+ z, at the row k we have to remove (: — 1,k) = ({j41(z), kjy1(z))-

since s; and so intersect at (i — 1,k) in R « 2. So, we remove (i — 1,k) and insert

(i,k) = (ij4+1(x), kj+1(z)) into R + z. Denote by pj the path of z in R «+ z below row k.

Notice that pg is identical with py. At the same time, the path pj of the insertion of y into

R + zz below the row k will be identical with pf.

To summarize, we have R + zzy = R + zxzy above the row k. Below the row k we first

insert into R along the path pZ = p¥ in both cases. Then we insert along pj and along pY

for R + zzy and along p% and along p3 for R « zzy. But since pf = py is weakly to the

right of p3 = p% while p% = pY is weakly to the left of pf = p{, we can apply Lemma 3.2.2

to show that paths p? = p¥ and p% = p¥ are separated by pj = p7 and hence it does not

0)



matter along which path below the row k we insert first. This proves R + zzy = R + zzy

below the row k and finishes the proof of Case 1.

Proof of Case 2. The situation in case 2 is just slightly more difficult than in Case 1.

Denote by k the row where the path of the insertion of z into R «+ z moves to the left

of s; (this has to happen below the row k, but above the row k;,1). As in Case 1 in the

row k the strand s; has to pass directly to the left of so. And we can define paths p?, p?

and p? for + = 1,2, which lie below the row k, the same way we have done it in the first

case.

Then we can apply the same argument to these paths to show that R + zzy = R + zxy

below the row k and above the row k. It is just left to check that R + zzy = R + zzy

between the rows k and k. But for R « zzy when we insert z or z no intersections are

inserted between the rows k and k, denote by p the path of the insertion of y between

the rows k and k. At the same time, nothing is inserted between the rows k and k for

= R + zxy, when we insert = or y and the path for z between the rows k and k is identical

with p. This finishes the proof of Lemma 3.3.5 in the second case.
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Appendix A

Equivariant Cohomology and

Currents

Let G be a compact Lie group and M a compact oriented manifold equipped with a G action.

Let Q(M) be the space of smooth forms on M and S(g*) be the space of polynomials on

the Lie algebra g. We define the differential dg on Qg(M) = (Q(M)®S(g*))¢ as follows. If

¢ € g and X; is the infinitesimal vector field on M generated by &amp;, then for a ® f € Qg(M)

dala® f)(§) =da® f(&amp;) —i(Xe)a® f(&amp;).

Qc (M) together with dg produces a chain complex, which defines the equivariant cohomol-

ogy Hg(M) (for detailed exposition of the subject see [14]).

Let £(M) denote the space of currents on M. We will recall a few facts about currents.

All the definitions and details can be found in [6]. A current T of degree k acts on forms

of degree dim M — k (sometimes we say that this current also has dimension dim M — k).

Moreover, we can define the boundary operation 0 which decreases the dimension of a

current by one and satisfies

OT(a) = (—1)48TT(da)

for every form a € Qq(M).

0 is called the boundary operator, since it has the following important property. Let

N C M be a smooth oriented compact submanifold with possibly nontrivial boundary ON.
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[ntegrations over N and ON are then currents on M denoted by {N} and {ON} and

31 Nl={ON

If N has no boundary, it defines a cohomology class denoted by [N]. Moreover, if N has

singularities of codimension at least 2, they do not change {NN} or [N]

We can also define the contraction operation by a vector field X as

(XT (a) = (—1)%ETT(E(X)a).

The equivariant cohomology Hi (M) is defined using Eq(M) = (£(M) ® S(g*))¢ and

the equivariant boundary operator Og which is given by

Io(T ® f)(&amp;) =0T ® f(&amp;) —i(Xe)T ® f(&amp;)

for TQ f € Eq(M).

Notice that if N C M is an invariant oriented compact submanifold then {N} = {N} ®

Le (E(M)® S(g*))¢. Moreover i(Xe){N} =0 for any £ € g. Hence

Ar{N}={ON}

and if ON is empty, N defines an equivariant cohomology class denoted by [NV] (again.

singularities of codimension at least 2 do not change anything).

If f: M — N is an invariant map between two G-manifolds. Then we can define the

pullback map f*: Qg(N) = Qg(M). It descends to the pullback map on the equivariant

cohomology f* : Hg(N) — Hg(M), moreover, it is a ring homomorphism. We can also

define by duality a pushforward map f. : E5(M) — giyam N-dim MN). This map defines

fo: HSH (M) — Hrdim N—dim M (nr) which is a S(g*)-module homomorphism.
We will need one more definition. Let # : M — N be a smooth fibration with pos-

sibly noncompact fibers. Then we can define the pushforward map: =, : QM). —

QutdimN-dim M(N) by integrating along the fibers (where c¢ stands compactly supported

forms). We can also define the pullback 7* : £*(N) = £*(M), by 7*T(a) = T(m.(«)) for a

compactly supported form a.
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Theorem A.0.1 HE(M) is isomorphic to HE (M)

Proof. We will construct a map p: E5(M) — QF (M) together with a homotopy operator

Q: ESTH(M) = Q5(M), which satisfies

Pp — (d+ Q0g + da@

This will be enough to prove the theorem.

It is well known that M can be invariantly embedded into R™ (see [20]), which is equipped

with a linear G action. Let ¢ : M — R™ be this embedding. Let U C R" be a small invariant

tubular neighborhood of ¢(M) with the projection 7 : U — M. Choose a small invariant

open ball B around the origin of R", such that if z € {(M) and b € B, then z +4(b) € U

Let p; and ps be the projections of M x B onto M and B respectively, and let «

M x B — U be the map s(z,b) = i(z) — b. Let 7 € Q(B) be the compactly supported

Mathai-Quillen form, which satisfies:

for the map p : B —point.

exposition see [14]).

For pu € Eg(M), define

nD. = 1 and dgT = )

This form was explicitly constructed in [21] (for another

o(p) = (pr) (K*7* (1) A p5(7))

(note that both x and 7 are fibrations, so k*7* is well-defined on currents.) Morally speak-

ing, p(w) is a convolution of yu and 7. So, it is easy to conclude that p(n) is a smooth form

on M

7k is equivariantly homotopic to p; via w(ki(z,b)) = w(i(z) — tb). So we can find

Q : ETH M) — £X(M x B) with

&lt;&gt; TT" p* = 00: + 0-0.

(p¥ is well-defined on currents. since it is also a smooth fibration.)
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[hyus

p(i) = (p1)« (Pip A p37) + (1) (QO) A ps7 + (Oc Qu) A PST)

=u+ Qogp + dagQu

where Qu = (p1)«(Qu A p57). Notice that we have used both properties of Mathai-Quillen

form 7 in the above equation. 1
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