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ABSTRACT

The generalized Boltzmann equation derived by G.F.
Mazenko is used to study the spectrum of density fluc-
tuations in a dilute monoatomic gas of hard spheres.

The method of Kinetic modelling is used to generate
numerical solutions to the initial value problem based
on the Fourier and Laplace transformed kinetic equation.
A set of Hermite polynomial functions, in contrast to the
set of Sonine polynomial functions, is used as the basis
in formulating the Kinetic modelling. This choice is
motivated by the fact that at finite wave number one
loses the rotational symmetry in the collision kernel,
Kinetic models of different orders were formulated and
their convergence properties were examined. It is found
that a Kinetic model of order around 40 is sufficient to
ensure numerical convergence of the solution.

The effects of the wave number dependence of the
collision kernel are explicitly investigated. It is shown
that deviations in the spectrum of density fluctuations
from the the results of the linearized Boltzmann equation
can be as much as 10-20%. Such differences appear to be
within the resolutions of a careful inelastic neutron
scattering experiment.

Qur results also show that the two calculations
should not be significantly different for kT &amp; 0,005
where k is the wave number of the density fluctuations
and r, the hard sphere diameter,

It is shown that the self-correlation spectrum is no
different from that calculated with the neutron transport
equation, &lt;This is due to the fact that in the case of
the self-correlation there is essentiallly no difference
between the kernels of the two equations.

Thesis Suprevisor: Sidney Yip

Title: Associate Professor of Nuclear Engineering
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CHAPTER 1

Introduction

1-1 Background

It is now generally acknowledged that time correlat-

ion functions are the fundamental quantities in the desc-

ription of transport processes and scattering phenomena(20).

The Fluctuation-Dissipation theorem has shown that the

linear response of a system to an external disturbance

can be expressed in terms of time dependent correlations

in the equilibrium ensemble (6). In other words the fluct-

uation phenomena of a system in equilibrium can be rela-

ted to the behaviour of the system under an external

driving force. Actually, what is normally computed is the

space-time Fourier transform of these correlation functi-

ons, This is because the Fourier spectrum of certain of

these functions can be related to the results of scatter-

ing experiments on gases and the following discussion

applies primarily to this category of phenomena although

the results may also be applied to include other kinds of

experiments, We consider only classical correlation

functions.

5

The first such spectrum to be used was the spectrum

the density-density correlation function G(r,t) (1),

TCr-~4x)- 1 2 o(r - Rk) 9 (x Ry) 7
n v.

(1-1)
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where n is the uniform number density and £ 7 denotes an

average of the particle phase co-ordinates over an equil-

ibrium distribution usually taken to be a canonical ensem-

bie

By invoking the Fluctuation-Dissipation theorem, the

correlation function G(r, t) can be calculated from the

density response, This approach implies that the equat-

ions describing the behaviour of the system's density

are known,

When the long wavelength and small frequency region

of the density correlation function is to be examined, the

hydrodynamic equations can be used to study G(r,t) (13).

But when the wavelengths become comparable to the molecu-

lar mean free path and the frequency becomes comparable

to the molecular collision frequency, Kinetic equations

have to be used because the continuum description is no

longer valid. The Boltzmann equation and the neutron

transport equation are such equations and they have been

used to compute the spectrums of G(r, t) and the self corr-

elation function G{r,t) (15,51).
However even these equations break down when the

wavelengths are comparable to the particle dimensions and

the times are comparable to the collision duration, Math-

ematically this is due to the fact that the kernels in

the collision integrals of those equations are frequency
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and wavelength independent.

The problem then, is to formulate generalized Kinetic

equations which are valid for all wavelengths and all

frequencies. This has been done using projection operator

techniques (9,11). By applying such techniques to the

phase space of the system, the more fundamental complex

fluctuation function

-~ / s'(k IY ow)&gt;(k, ¥%,2) = JdeTSta
(1-2)

can be shown to satisfy an equation of the form

(2-k FV) SC, 1/2) = JIM Ck, 37,2) Sch,T7/2)
- SCR ,1¢N (1-3)

0 /

The transformed initial condition S(k,¥1) is given by

a.

J ( k ,1V dam] $ (1) $CT-I)+ TU) nHAlk) 3(1) |
(1-4)

where we have used

variables

the following non-dimensional momentum

-—, 3 en Vo wd
2.

Vo = (may ( -5)

The function

&amp; (3) = (am)
&gt;

17

(1-6)

myappason8

*¥G(r,t) can be obtained from this by carrying out
the appropriate transform inversions, limiting process
and various momentum integrals.
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is the Maxwellian velocity distribution, h(k) is the
4

transformed total correlation function andM(k, ¥ 1,2) is

the memory function for the one particle distribution

function. Before further discussion of equation (1-3),

it should be noted that we can relate S(k,3 1, z) to a

correlation function as

vl -

SU(k,3T wi): flex vn) fol (4-2) S Cox IT, tt)
 Re (r-xD+ Lo (1)

(1-7)
oe

oe

3 (T-r P PLE) LC ( frp)- CH (xr pt) 7eq
( (Cup th) - CFP E02) Peq, (1-8)

is the equilibrium fluctuation function of the phase

space density operator

Fer p= 2 S(x-v2) § Cp - pc)
x (1-9)

Equation (1-3) has the form of the desired generali-

zed equation, and the problem is now to find a tractable

form for M(x, T % z). There are basically two approaches

to surmount this obstacle. The first is to postulate

phenomenological models (16) and the other is to evaluate

the memory function exactly for special systems.

The second approach is what concerns us in this

thesis, Upto the present, only two useful approximations

to the memory function have been derived. The first is a
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weak coupling expansion to obtain the memory function to

second order in the interaction potential (4,11). This

approximation is only good in the case of weakly coupled

fluids. Unfortunately weak coupling excludes hard core

interactions. So this method cannot be applied to real

fluids.

The other procedure, derived by Mazenko, involves an

expansion to the lowest order in the density but it is

valid for all interactions. It can therefore be applied

to real dilute gases. Mazenko has shown that his low

density memory function reduces to the linearized Boltzm-

ann collision kernel in the low frequency and long wave-

length limit. It also satisfies certain sum rules and

is consistent with the conservation laws. In the present

work we will be concerned only with the Mazenko equation.

Present Research

In this thesis we apply the Mazenko equation to the

analysis of neutron scattering in gases. To obtain the

spectrum of the scattered neutron beam we have to calcul-

ate the generalized structure factor S(k,w) which is the

space-time transform of the two body correlation function

of the gas (1). This is the G(r,t) mentioned earlier,

When the complex fluctuation function is expanded in

terms of a modified Hermite polynomial basis, one of the



I

co-efficients of expansion turns out to be S(k,w)., We

therefore expanded equation (1-3) in terms of that basis.

This equation was then approximated for computational

analysis. The approximation method used was that of Kine-

tic modelling (3%). The linear system of algebraic equat-

ions obtained through this approximation was then solved

numerically on the computer to yield the desired spectrum

S(k,n).

Our results should be good for all values of the

wavelength and frequency since Mazenko's memory function

is the correct wavelength and frequency dependent genera-

lization of the linearized Boltzmann collision operator.

In the case of the hard sphere gas it brings in an addit-

ional parameter kr which is a measure of the wavelength

in terms of the particle dimensions. In the limit where

the wavelength is long compared to the particle dimensi-

ons our results reduce to those obtained using the

Boltzmann equation as they should. But at finite kr,

where the Boltzmann equation is no longer valid, our resu-

lts do show significant deviations from Sugawara's results

(1%). Thus within the restriction of low density, we are

able to delineate the region of validity for the Boltzmann

equation and obtain quantitative corrections for wave-

lengths outside this region,

Besides the spectrum of the density correlation
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function, we have also obtained the spectrum for the Van-

Hove self-correlation. This function appears in the the-

ory of incoherent neutron scattering and it is related to

the phenomenon of diffusion in the fluid (20). The cal-

culation is a by-product of the density correlation cal-

culation since the memory function for the self-correla-

tion turns out to be the kr —=e0limit of the homogeneous

part of the memory function for the density correlation.

Both correlation functions therefore can be obtained from

a single calculation.

In the following chapter a classical derivation is

given of Magzenko's result for the memory function valid

for a general two-body potential. We then discuss the

reduction of this memory function to the Boltzmann colli-

sion operator in the appropriate limit. The final sec-

tion of the chapter is devoted to the hydrodynamical

description of the continuum region. Certain transport

co~efficients are tied in with the solution of the hydro-

dynamic equations and are specialized to the case of the

hard core gas. For eventual comparision purposes the gen-

eral analytic expressions for S(k,«) in the hydrodynami-

cal region is given. Once again we specialize it to the

hard core case.

Chapter three sets up in detail the calculations

for S(k,w) and the self-correlation spectrum S(k,W).
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The Kinetic model is also discussed in this chapter and

particular attention is paid to the fact that our basis

is not the conventional Sonine Polynomial, We have chos-

en to work with a modified version of the Hermite polyno-

mials, thus bringing in questions of convergence to be

examined later. The problem of ordering such a truncated

basis is touched upon and reasons are given for our vari-

ous schemes. The last section of this chapter examines

the connection and consequences of the different transfo-

rm definitions used by Mazenko and Sugawara. This is

important as we intend to use Sugawara's results as a

means of checking our computations,

In chapter four we reduce the general operator deri-

ved in chapter two to our special case of the hard core

gas. The matrix elements needed for the Kinetic model

calculation are slso presented in this chapter with an

explanatory note on their computation. We also discuss

properties of these elements such as the variation with

the parameter kr.

The numerical results we have obtained are presented

and discussed in chapter five. Finally, chapter six

summarizes possible experimental work based on our resu-

1ts and also indicates our general plans for future work

along these lines.
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CHAPTER 2

The Generalized Kinetic equation of Mazenko

2-1 Introduction
We begin this chapter by presenting a derivation of

Mazenko's low density memory function §(k,pp,z) in

section 2-2, We will show that it can be written as a

sum of two parts

/ (s\ , (c) ,

ECR, ppiad- £ (k,priz) + E(k, PPL) (2-1)
Gs)

E (k,pp, 7) can be thought of as the mean field on

one particle due to all the others and is known as the
©)

static part of the memory function. E (k,pp, 2) is the

collision part. We will show that this part in its turn

can be written as a sum of two parts.

= Ue,rpta) = E (hprpla)+ESLhopes®) (2-2)
£2 20,2) is what Mazenko (2) calls the inhomogene-

ous term wnile E(k, pp,2) is the homogeneous term.
With the analytic form of &amp;(X,pp,2z) in hand, we then

show, in section 2-3, that it can be reduced to the line-

arized Boltzmann collision operator in the long time and

long distance limit, This means that our calculations

for the density spectrum using Mazenko's generalized Kin-

etic equation should, in the long time and long distance

limit, give the same results as those using the Boltzmann

equation.
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Finally we conclude the chapter by briefly discussing

the hydrodynamic regime”.

gz2 Derivation of the low density Memoryfunction
Instead of discussing Mazenko's quantum mechanical

derivation.of his memory function we will follow Boley (8)

and give a classical derivation of the low density result.

The classical correlation function S(z-r’pp, t-1)

obeys equation (%-1a). If we Fourier and Laplace tran-

sform this equation using

~Jer
SCR,PP 6) = dre S(y, pp! +) (2.3)

 0 vat
SC, pp',2) 2 afdate § Ck, pi’ 4)

we obtain

(2-4;

(2- P- ey Stl, pp2d + sk, pp tse)

[dpE(kppb2) sik, pp 2)wh (2-5)

Boley's idea was to expand S(k,pp,2z) and

in a fugacity series

T(k,pp,2)

S(k, PP, 2) = 9
y Li&gt;,=

hl

3 J

 (mr, pp 2) = Stu + 0(vY) (2-6)
Pr

im  CE TEE CHE TS Ri AE wh AE Yo Ee

"The reader should consult Appendix A if he desires
the detailed mathematical steps behind the results quoted
in this chapter.
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, where y is the fugacity, and use equation (2-5) to rel-

ate the coefficients of expansion in the two series,

This method leads to the following equations for

S, and S,

(z- RP fm) 5, + 37 = {dip 2. &lt;

(2=7a)

(2-7b)

whe re S| and 5, are the respective initial conditions, For

convenience we do not write out the arguments of 3s s,

and g:, i=1, 2, The relationship between fugacity and

density is (26)

(P25) nil ald fen x oingf
Zim

(z-rpim) Sot 8 = Sod 2.8

(2-8a)

(2-8D)

Thus &amp;, should also be the memory function to first

order in the density.

Now we are left with the problem of calculating the

terms 5, and Sg We use the grand canonical ensemble to

evaluate these terms.

eb "
I- = SNpsy) 5 2F » (di. apt

aM Cle.NJ
fn Feo. nN) (2-9)

where 1= (5,8), Hy is the Hamiltonian of the N particle

system, h is Flanck's constant, P is the grand partition

function and the limit ¥3 #@has to be taken to complete
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the averaging process, The grand canonical ensemble

thus leads logically to a fugacity expansion and we find,

SVC, PREY SCT &lt; pth) Bip) § (pop (2710)
4 To. -@YiTr en)

S, (x, PP, = 4 joi de Tp) ¢p) \@ .
ti &lt;. 3 - 2 ’ }

ot {ey 2 $ {x Y) g* s (a=) - s [ etthoti
L3 S13 t=

b(A-A)7 §exixpf = d(pd Pp (2-11)
the two-body Liouville operatorLU ia

boli?) = BV fm + BV, Im (2-12)

{i2) = -V VY (gov, 0b 40, = 2p, | (2-13)

dL) = aly 4 Ll?) (2-14)

The form of S, and equation (2-7a) tells us that 5,

evolves: by free streaming. Thus Z,is ZETO,

If we substitute for S, in equation (2-7b) we find
; NW

vu BT
&gt; w WU

5 (0 pplz) Pp) 2 ~Lz-Kp/ml] (2 -k Pim)
S.C, pph2) + 52Ck,PEAY

(2-15)
To reduce equation (2-13) further we make use of the

fact that

(pt + 2m} (3s F¥m) 50x, 1004)
 fdida tp) $6) oTBY(T ITT Lito)

: =~ 2

aL (12) 2 (=a; ) | il, 1) 3 §{x’-2)
ii =i

»

% Lo=16)
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where

3 fdi d2 $(p) ¢ (p,) g FV Ni-v) [ -tl, (12)

£8 (5) + 5 SGA) Pl ufen TL HCY
iL on z § (x=) | (2-17)

Rois the difference vetweon our equation (2-16) and Boley's

equation (16). However the transform of Rgturns out to

be zero,

Using the result proved in equation (2-15), it can

be shown that the transform of equation (2-13) is

4 (hE Ck, p02): [e(0ht+ i Pm) 5, Ck, PRI],

Cat et (ary LRHS of (2-16)]
(2-18)

It is clear that the first term on the right hand side of

(2-18) forms the static part of the memory function. I%

can be shown that this sort? ve dues to

2? nE(k, Pd) = —Pkgn Ck) Per) (2-19)
G

The ‘collisional part £%¢ the memory function is

given by the transform of the right hand side of equation

(2-16).

if we use the following transformation

P\ + Fr, = &lt; z

Pr - KA = 2 kr

 ov TI, = oz R

Tn = 7T

i

 D.- 30)
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we can reduce bo the following form

2k, Pi, 2) t( ey = 94F ofB)[d34A*Pof3F
(gy eT TT gy woven [et Gp 3)

EIA Sp wy FYI] 2m Bk pn =i (25-94

-V= V(¥)- 245% y]™ V, ¢ vv) ¢ ‘EA §(p-at=P) (2-21a)
whe re 9 (v) = e Vv (xX) (2-21D)

When we take into account the variable n in the

—

expansion we can see that equation (2-21a) agrees with

Mazenko's expression (2).

2-5 Reduction to the linearized Boltzmann Collision Opera-
tor

The linearized Boltzmann equation is

(2% t PE W/m) f(x, pt)= TJ( flr p,4))
[ Pe2

where J is the collision operator (27),

T(fex,t,t)) = 4, fd (ol 9109,6) [ f(x, pl)
(x, Pl +)- £(x - p+ )FOr, 04) = £0x, 0,4) 0x, p,4)] PE),

whe re

mg = lp-I1= \P—~ PI

1(9,0)- b dbd V /dJL is the differential

scattering cross-section

b = impact parameter

dL = sm d0dW is a solid angle
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© = the scattering angle

(2-24)

The momentum variables obey the following conservat-

ion laws,

p+ = ‘By - BD
. 2p= pt

pl

pe®
(2-25)

(2=26)

We now write the following defining equation for the

kernel L(p,2")

2LaCp BY Faeet)=T (40[FFL lpr tnt = Tien 0)
The explicit analytic form of (2,2) is then

P@iLg (PLE) = 4 Jd®R [dw TCE-P, 8)B-Filfn

PVE [4p p18 (PER) = 5G Lpy=§ (- 51]
We would like to show that our memory operator

i o Ff Anns ; . //
&amp; (z,pp ,t)¥ derived in section (2-2) reduces to L(p,p”)

for long times and long distances? In transform language,

the proposition becomes one of proving

Lim 90 7 L. (7 &amp;y
, 2, PP, 2) = 3 £4
Rao, Ry rt

3

(2-29a)

We will prove the equivalent statement
CP ,

vim $(p" E (Rh, pra) = PUPIL (REY)
lk -3 SO a : at ) (2-29b)

“mne following derivation parallels that of Mazenko( 28)
. &lt;)

*We have dropped the subscript 1 from &amp;, and will
from now on use the symbol s¥M4 0 represent our low density
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The k=0 limit is easy to take, We just set k=0.

After some algebraic manipulations we find

&lt;&gt; (7 &amp; 2 3 3 -—
Co, PPT) PP) 2 ~n* (Frm) [d3&amp;ArLF

~B (%*+ PY) ~ -

° Lolx=2%+Py+5(a-“31] (2+ Lo(x,PY)
. 0 v2 t —~ — )

1g [12§dtegp-a-Fuy+s(P-a-F)lf .
(2-30)

As a digression, it is gratifying to note that the

static term vanishes in this limit as it should. Going

-~.back to equation (2-30), using mathematical identities

proved in appendix A we can write

£70,2PU =) SO) _t (P hrm) [ddIv AF
Mal Cot PIM LsCa~-p/ 4 PY4 Sco ~p7 Fo ]

rpm Lger 8-2 Fy (5 p-u-P&gt;- 5 (2-2 8))]f
(2-31)

The step function® (=2+1) has been introduced to

take account of the fact that there will be a collision

only if r-p&lt;0. Now, for the purposes of the spatial

integration, we use the polar co-ordinates bdbdzd¥ and

set DP along the z-axis. b andPV are as defined in equat-

ion (2-24), The step function enables us to restrict

rur attention to the z= - 8 surface and we find that

A

*memory function,
Sep Shit rm

*Phe interested reader should consult chapter 4 for
further details,
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am

. _p Ca¥ Py
“Ue py dp”) = in (Bm) (dad Fe ”

21 mL Sc — P74 Py + (2 -PY-F)|
0 2 - -

("bdb{ A¥TScp-x-F)=~§ (P-«-1)]

-25

(2-32)

Using the definition of the differential scattering

cross-section I{(g,®) and integrating over Awe are left

with

"9 (pp Frm —in&gt; (Blam) (da d’F 21F 4
_pP? 2e I(p gy) e RLM

B (7-1 m / 1 6 {Pp
} etp-r -§” +P) + orm (27EDT

5(p-2p 27) en (E-EDY %- = (CED gp Be-pr oT]

(2-33)

a

We now use the following transformation

2p = DP =DB (2-34)

This transformation in combination with equations

(2-24), (2-25) and (2-26) allows us to write
2 (C) ‘or : 3

Epp) (py = iv (8 ) fda Ap \ BE =fil/m
= 2 Tm

~p(E-AVFA -&amp; (PHPTA
T(r.prem "le beg. SCR-ENESE-PN
(LAR RR Am Log CRESRV Rm ~py cppin® 3 7

Ze EHAREENE LG (prpye (2-35)
This can be shown to reduce to

£7 pp") ¢ Cp) = 1 ® (p) {dr dw 1P-P l/m, T(p-p 6) +(p,)

6 (p= Py + 5 (PTL pO-5F-R) -S(B"- 1 ) | (5-26)
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When equation (2-36) is compared with equation (2-28),

we see that asides from a factor of 1+ the two expressions

are identical.

2-4TheHydrodynamiclimit
To provide a sense of completeness, we present a

discussion of the hydrodynamic equations in this section.

Historically these were the first equations to be used +o

calculate S(k,®). They provide a macroscopic viewpoint

and the spectrum so calculated is good only for times and

distances long compared with the intercollision time and

the mean free path. These equations are stated below

with a brief word about their derivation, The derivation

enables us to connect the thermal conductivityland the

shear viscosity | with the microscopic properties of the
fluid, We then formulate an analytic expression for

S(k,W) using these equations, This allows us to identify

prominent features of the spectrum with certain macrosco-

pic processes, [Finally we specialize our expressions to

the hard sphere case.

The Chapman-Enskog procedure enables us to derive

a set of hydrodynamic equations from the Boltzmann equat-

ion, These equations consist of the conservation laws for

mass, momentum and energy flux and equations for the heat

flux vector and stress tensor. The Chapman-Enskog proce-
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dure. first makes use of the fact that the Boltzmann colli-

sion operator Q(f(r,v,t)) satisfies the following equation

for a set of functions § ¥,(v)f (12,25),

fd3v $v) Q (f(x,y, th) = 0
i=l. 3 (2-37)

This set i¥: (nis known as the set of collisional

invariants and consists of § u, bv,cv*{ where a and c are

scalar constants where as b is a constant vector. Equat-

ion (2-37) enables us to derive the set of conservation

equations for it implies that

jdt (vy (ht + viv) Fex,vi4)=o
(2-38)

If the integration in equation (2-38) is carried out for

each of the t. we obtain the macroscopic laws for the

conservation of number density @ (r,t), momentum density

e (r,t)v; and energy density p (r,t) (3vre )

2nele) | Vx, (EV) = 0

2/4 (8) + 23/55, (CVV; +P). 0

a 39)

(2-40)

2 fot Le Chien] +34 Cov (L.2
Fev; +9;] =o ee

2-41)

where the summation convention is used

- 2= (d3v FCT, vt)?

(ev)= [dv f(x ,v,tY v
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3Pos fd¥v cig F(x,vl)
is the stress tensor

VY. = /2 [dave ct {Cr v/ +)
is the heat flux vector

pe = Ya Jd ctf CX vot)
is the energy density due to the peculiar velocity c.

(2-42)

We have dropped the functional dependence on (r,t) to

simplify the notation, Temperature is normally used inst-

ead of energy density in equation (2-41). To do so here

we would have to use thermodynamic relations and as it is

not our intention to get involved with such issues we

shall side step the point.

If equations (2-39) - (2-41) are examined carefully

it will be seen that we have three equations with five

unknowns. Apart from our conserved variables we also have

the heat flux vector and the stress tensor. The Chapman-

Enskog method allows us to derive equations directly from

the Boltzmann equation relating the heat flux vector to

the temperature gradient and the pressure tensor to the

rate of strain tensor (12). In the process of doing so

expressions are obtained relating the thermal conductiv-

ity and shear viscosity to the molecular properties of

the fluid.
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The second order Chapman-Enskog approximation gives

3 8

2=AV T(t)
(2-43)

SD (AY) (2-40)
whe re

OD; - Wh ( QU, + dU lox) is the rate of strain

tensor

(2-45)

| = the shear viscosity
S

A = thermal conductivity

(2-46)

(2-47)

The equations Lox q and A in terms of the molecular

properties of the fluid will not be given here as it wou-

1d lead us into an extensive discussion of the Chapman-

Enskog approximation scheme, As we have no intentions of

getting involved in such a discussion we will proceed to

the calculation of the hydrodynamic density spectrum.

Now that we have all of the hydrodynamic equations it is

a simple matter to obtain an analytic expression for

S(k,W). Our discussion follows Clark's derivation (24).

For long times and long distances G(r,t) becomes

G(r) = Im &lt; eco) e(x,1)7?
(2-48)

For small deviations from equilibrium equations (2-39) =
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(2-41) can be linearized to give (13),

20 /5t + Co A = 0)

(2-49)
2

0 At + CoA VO + CoB VT/5— 44 V(V-¥)zp
(2-50)‘Navier-Stokes equation)

o,c. NA - A/a (F-12844 —X9™T, = 0

(2-51)

whe re m= mass per particle

T= T, + I, is the tempersture

T= equilibrium temperature

Co = equilibrium density

¥ = Cpr,

8B = thermal expansion coefficient

C = adiabatic sound velocity

(2-52)

We have made use of equations (2-43) and (2-44) and

assumed that local thermodynamic equilibrium holds.

The external force is taken to be zero. The initial

condition to be used in conjunction with equations (2-48)-

(2-50) to calculate S(k,W)is

Le (Yr,0) P(o,0)&gt;= 60) + C,H (x) 2-53)

These equations are solved for n(k,s) the Fourier-

uaplace transform of the density fluctuation

 Nn (R,SY= (d3r (“dt @xp (RT) wp (&lt;5) @, (x,t)
(2-54)
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1f we subtract out the equilibrium contribution”

to the spectrum S(k,®w) we can relate the resulting spect-

rum Se (k,®) to n(k,s). Using this relationship it can
be shown that (24)

Se (R, w) 228 (fy) Met 20 wily = I. Cw wi) (i
P¥ 4 wr (t=ZY+ (200 Mg V°

(2-55)
wnere

Ko = isothermal compressibility
=|

Ky = (eg, Re TD isothermal

compressibility of an ideal gas

2
17. = rk Ze. Cp

2
ho Loan, + a-'Hx [k

3 me, CoC.

kWy = Ly

(2-56a)

(2-56D)

2-57)

(2-58)

(2-59)

1t must be noted that equation (2-55) is an approximation

to the exact result. When [7 Me &lt;&lt; Q,, equation (2-55)
can be further simplified to the familiar three component

spectrum

5 ckowy= K3 (1-020 + By a + A
(2-60)

i.a A Sp S42 Spits E—— a)

"The equilibrium contribution leads to a $(k) term
in the spectrum. This term is of no physical interest.
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Physically, the Brillouin components of this spectrum

centred at W= + W are due to propagating density fluctuat-

ion modes whichrare simply thermally driven acoustic

waves, The central peak is due to the non-propagating

thermal diffusion mode.

For a dilute gas of hard spheres of diameter 6 (17)

We find

7 /% 4 2

5/4

2)Ss1% ce 9. 7 J

T /w

i
[ke "

: Ta“ : vm |” 5 Ry
L

1s
c, ot

(2-61)

Nith these values the widths Peand I are
ira

 = (15 k* Aap, 5?) [ Re T Arm]
(2-62)

: 2-63)] (2Sm"6 sc) Lkce,2/9k5(3ms

Ww, = k L 5keT 2m |
/

 £L

(2-64)

So for the hard sphere gas equation (2-60) becomes

Sn (RR, ) = 3 4 1. 30 | LLA. 2 + cK " +
Seon P00) Pe + (L~c))

1] {PECTIN)
“A

lL ~ -r5)
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This equation can be used to check our numerical

calculations in the long wavelength limit for the hydro-

dynamical region in the Boltzmann limit.

In closing this chapter we would like to clarify

point of notation. S(k,w) is the space-time transform

5f G (1-1 t-t) where

3

(2-66)

It therefore differs from S(k,mn) by a constant term.

We, however shall use the terms S(k,a) and (kw) as

though they were synonymous. The reader should be

Tv-vot=1) = Q(y-y {-t') — mW

mentally prepared to use the terms interchangably.
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CHAPTER 3

Calculation of the Density Fluctuation Spectrum

3-1Formulation
The classical correlation function S(r-r,p p,t-t),

defined in chapter 1, satisfies a Boltzmann-like equation

of the form (4),

(o%t + PUA) SCT, PP) = A (35 A2T

£ (x-%, PE, t-4) S (7,79. %)
fF: 3-42)

with the transformed initial condition,

Sie.pp) = Bp) 5(p-p) + h(x) $(p) P(p)
(%3-1D)

 vv ho

ig

le
Io wd

~ 2m

Pp) = wm (2Tmp) "FF

the Maxwellian velocity distribution and

B= ( 1/mv))

r
\ 2-1¢)

(3-14)

What is experimentally measured is the spectrum of

density fluctuations, S(k,®W) which is defined as the space
!

time Fourier transform of the correlation function, G(r, t)
/

- : :

G(r,t) = 7 CES (Te s(r—T (+) 7 —n (3-2)

n = uniform number density

_ ~iky # 12t
S(ku= Lim [dive | die Gor,t)

£30 a (3-3)
2 = w+ LE €
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Owing to a slight difference in the definitions of

the transforms used in Mazenko's thesis (2) and those used

in Sugawara's thesis (3), transforms using Mazenko's

convention will be denoted by a presubscript M while the

ones obtained by using Sugawara's convention will be deno-

ted by a presubscript S. In a later section these two

approaches will be reconciled.

From equations (1-8) and (3-2) it can be seen that

az, t) = {4p f Ap Scr, er’) (3-4)
Thus the solution to equation (3-1) and the density

fluctuation spectrum are related by:-

Stes Lim (ofr 75 [Tate (dd
fd Scr, P,t)

(3.5)

Using various symmetry properties this can be further

simplified:-

wl,oY

. —~tkey (© zt

Ske)=Lim 2 Re fdr = at es (x1)
(3-6)

fw

_y 3_; k pp)ov 2m (Sp Jol S (ke, pp,
20 =

(3-7)

wt Jor 0 zt

SCk,pp/a)= i [dr € 57[te SC, pel 4)
(3-8)
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Equation (3-1) is now Fourier-Laplace transformed

to yield

(z ~k Pl) SC, pp, 2) (IP E(k,PE,2YS(kPP/2)
“Ng

S. Ck ,PP") 2.G)

where:-

 (le Coon 3 (3 ty 1% zt(ke, pp, 2)= 1 fre fate E(x, PP, t)
(3-10)

Now integrate over all p°’

Sw(k,P,2)= [d3 Sk, pplz) (3-11)

(Z2-R EM) Sn CREZ)=(dF XE (k,7P,2)S,(kP2)
3 ¢(p) + A(k) (2) Wm I

7)

Introduce the non-dimensional variables

T= Flmy
Suk T2) = WS (kP2) mwVP

IA. er itr
E(R3I52)= MCx,172) [my

(3-13)

The k-direction is now choosen parallel to the §raxis.

Thenthe dimensionless equation that has to be solved is,

(2- kv) sCkiz) = J TM (R732) Shik T 2)
SBD ame) (3-142)

LOR) = Hm 2 Tm (d’3 sik Tz)
 =&gt; 0 (Z3-14D)
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To conclude this section it seems worthwhile to point

out the fact that the self-correlation function

O5¢x ,p P/,¢) = z SCr-v (0) 98R(1) 25) 5 (Futon?
also satisfies a Boltzmann-like equation similar to

equation (3-1) but with a different memory kernel &amp; and

a different initial condition. Es is essentially a port-

ion of &amp; and more will be said about this relation in

chapter 4.

If we go through the same formalism as we did with

S(r, pp, t) we find that
/ 3 &gt; 2) S.(k,PP, 2)(2-k-psm) Sg (k, pp, 2)— [dp E(k, PP,2) S(R PPZ

S Ck ,pp’)SEE

16}

N.. -0 Ba"0

S, Ck, BP = Pp SPP) (3-17)

/ ~key o® dat

S. CR PP 2): fdr” Ff,dt Sa s.(x,pe;T)
(3-18)

ky 0% 26

For, pete)di€7[atFECr,ppt)
(3-19)

Integrating over all p and non-dimensionalizing as

oe fore, we arrive at,

(2-kVy 5) Sh (k 32) — JLT Mk, 1T,2) 5)(k Tz)
- 8 (7)

ce)= Lim 2 Im [8] S$; (R12)So

(3-21)
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To extract the information that we desire, equations

(3-14) and (3-20) will have to be approximated by a form

more amenable to numerical solution. The approximation

technique that we decided to use is the method of Kinetic

modelling. The method and its application to this case

is discussed in more detail in the next section.

 5-2 Kinetic modelling - Formulation

Bvery bounded linear operator may be represented by

a matrix and the matrix representation of the memory oper-

ator in equation (3-1) has an infinite number of elements.

The method of Kinetic modelling to discussed in this

section gives us one means for approximating this infinite

matrix (22,23).

We shall discuss this technique by applying it to

equation (3-14),

Let § VY; (3){ be a complete orthonormal set of functions

with the weighting function ®(I}, We then expand both M(k,37
/

2) and S(k{ z) in terms of this set.
7 , LX © i

Mik F302): Z, 2 WZ) X(T) F(T) MG)
- = L= 3°

{ 3-22}
of

SL(k 12): ZY (3) BOD S (k2)
= =7%)

where by orthonormality,

Sik 2)z (37 $Y (3) 5, (kIz)
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M1)=[83857WYMk1T2)(3)HT)
(3-24)

These expansions are then substituted into (3-14)
&lt; 0 ob _

(2-k%E) Z| SRD ED BM 22 JLTH(T)
~ yo 0 (=1 i=

FGVMGH) YD ED L043) 5, (kz)
= =F) L tank] (3-25)

This reduces to
&lt; oo _.

(2- kv, Tp) 2 (3) BO Ska) -5 = 4 (1) ET)=\ Ty y=

MGT)S(kz)=—Z(Di+nh(k)](3-26)

Upto this point the equation is still exact but in

order to proceed further the infinite sums will now have

to be truncated. The method of Kinetic modelling however

leaves the free-streaming operator unaltered. Thus one

of the advantages of the approximation is that it will

give the exact answer in the free-particle limit,

The memory term is truncated by the approximation

a(i])) = M( N+1/N+1) 6; , for 1 oY | &gt; N

= Stay Gg,
where »=1 M (N+\ / N+ 1k)

5-28)

The Kinetic model is said to of order N.

With this approximation equation (3-26) can be written as:
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,

. x N N

(2-kYT +0) &amp; Y (DBD S(k2) -2%Y3)
= (=) J

TD) 5 Ck2IMAL) + 1x6.)
=) LI+ nB(k)7]

(3-29)

By using the orthonormality of the set 1% (1){ equation

(3-29) can be shown to reduce to the form

N N ~ CL

Sek) —y 2 Zz stk) (kz) (MGI)
- Vy A

u A (2) (1+ nh(k))
(3-30a)

[ff our basis is chosen such that Vik, then using

(
\ Ho 147)

s(k, w) = Li 2 Im (dF &lt; ®(3) (3) S; (k 2)

i |.MM 2Twm 5, (kz)
"0

( J Z0b)

where,

C2) = fT 30K) (2-36) 5s.)
~, ph ? X &gt; —_
Ao): 6, @): (KTH DEO/ (2-55) |

~ BE /TkY, (3-31c)

y ce. An Nz kV,
z= KX +

(3-314)

(3=~31e)

One of the above parameters, y¥*, can be related to
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an experimentally measurable quantity, the shear viscos-

ity N.. 1t has been shown that,

1. = Yr vt Vo VW

where 2,= t M(Cafa)

1f we introduce the parameter

y= 2a 3 kY,
we see that from (3-32a) that

Ns = mmnV, /Gk

and as Vv = Mn/ Ng

(3-32a)

(3-320)

 3=32¢)

(3-324)

(3-33)
we have a means of relating our parameter y* to experimen-

tal conditions.

A more detailed discussion regarding the number of

independent parameters and their relation to experimenta-

lly measurable quantities is given in chapter 5.

Equation (3-21) for the self-correlation function can

also be reduced to a form similar to that of equation

(3-30a) if we repeat the above procedure,

S rss a 1
sp kz) —y Zz Ss) (k2) Ci (2) (M113) A

hal

5) = — yf Ap (k2)

WA
- Ay Ak jw) - Lim 2 Tm 5S, (k2)

5D 0
 3-34D)

3-% Kinetic modelling - Accuracy

As has been noted in section 3-2 the method will
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certainly give us the correct spectrum in the free part-

icle limit regardless of the order of the model, but one

is still left with the question concerning the error over

the other regimes,

1f equation (3-3%30a)} is written in matrix form it can

be seen that the method has essentially replaced the

infinite matrix form of the memory operator with a matrix
-

lo

A.

0

A J
Ma

whe re

_

A. \ B
py

C I)

is

a iN ~~

the exact representation. Thus the approximate solution

should converge to the exact solution for all regimes when

the order of the model N approaches infinity. Thus ques-

tions about the accuracy of the situation become ones

about the convergence behaviour of the solution. On the

basis of this result, Sugawara has examined the accuracy

of the Kinetic modelling method when a Sonine polynomial

basis is used, by numerically studying the convergence

behaviour of the solution as N is varied (3). As will be

seen in chapter five our work with the modified Hermite

polynomials as the basis is also based on this result and

in this section we will attempt to present a general

discussion of the convergence problem,

Given that N is finite one has to resort to physical

reasoning to improve the convergence behaviour with resp-

ect to rate and smoothness. 1t appeals to the physical
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intuition to think of the set Y.{as relaxation modes as

ve know that the eigenvalues of the collision operator in

the linearized Boltzmann equation are indeed the decay

constants for the spatially uniform initial problem.

We know that the elements corresponding to the cons-

ervation laws will have to be present in A if the correct

hydrodynamic behaviour is to be obtained. By including

these elements we have essentially incorporated the

hydrodynamical relaxation modes into our equation. So we

expect that our results in the hydrodynamical region will

be those obtained by making direct use of the hydrodynam-

ical equations.

If the set}, fare the eigenvectors of the memory

operator then the off-diagonal elements are. indeed zero

and the approximation will be more accurate but even in

this case the decay modes are still coupled together by

the streaming term.

The approximation on the other hand decouples the

higher modes from the relaxation processes influencing the

density function spectrum. It does however leave the

lower modes coupled. The ordering of the set

should therefore be expected to play an important role in

the convergence behaviour of the solution,
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3-4 Relation between S(k,w) andy,S(k,w):-
As we intend to compare the results of the present

work in the Boltzmann equation with those obtained by

Sugawara it would be appropriate at this stage to indicate

the connection be tween S(k, w) and mS (k,w).

From Sugawara's thesis,

0 dey - ot)
(k,w) = (Ut for eX G (r,t)

(3-35)

the?

Comparing this with equation (3-2) we see triat

Skye) = oS (-k,-0a)
(3-36)

Since the definitions of x and y used in Sugawara's thesis

and ours are identical we have

x,y) = LS(x5y) 7)
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CHAF¥TER 4

The Memory Cperator

4-1ReductiontoHardSpherecase:-
In this chapter we will devote our attention to the

evaluation of the matrix elements M(i/j) used.in equations

(3-30a) and (3-3%34a). As can be seen from equation (2-21a)

the general form of the memory operator requires a knowle -

dge of the interatomic potential V(r)’. For this work we

restrict our attention to the hard sphere potential

V(r) 1 ix &gt; To
oG IT &amp;

whe re Tr, = hard sphere diameter

(4-1)
(4-2)

The memory function can be written as a sum of a
cs) Cc) ‘

static part Z (le Pland a collision part &amp;(k,P P,2)and to

simplify the algebra we shall make use of that fact and

treat the two parts separately
¢) ©) ‘

E(kpF2)zE(kPILE (kPR2) (43)
Non-dimensionalizing we obtain

MC kpPPPz) - MT )
(RRT) + MO ¢ k ,33.,22)

(4-4

From equation (2-19) it can be seen that
45)

M(kIY= —kV,I,Clk)Bn

a

In this chapter position variables are all relative,
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-

— kV, Tn Ak) € (3)

(4-5)

The collision part of the memory function is more

difficult to evaluate as it depends upon the dynamical

behaviour ofi the system.

The non-dimensional form of equation (2-21a) is

evidently

MOC,3RON:omvie[aLrol0s | (7) !

TG TIVO Tee Ga+T)
- _ —_—
‘bY hg (2-1-3) 2- kv+Lex,3)]

¢ ~ik 7

Povivy eT (3aa- TF)

NY ~ Ie
~gVi)

gtx) = © P

L(x,pr= —2 P'Vy fon +2 EVE) - VR (4-7b)

(4-6)

(4-72)

To reduce equation (4-6) to a more manageable form

we have to carry out a number of algebraic manipulations,

In this section we will restrict ourselves to certain

important steps of the reduction. The necessary algebraic

identities are quoted below but the mathematical proof

is left to Appendix B.

To simplify the notation we define (28),
- —tkx 7 =

e.(F)= e 2680p x=)
2» Ry / _kr/ _

A

(4-8)

(rPe
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This allows us to write &amp; (k,pp,z) as

“Uke pp, 2) (PD = =v ( Fm) [Ax ddr °F
240° o a

emf ("HF 20% 0 tr) (L(y, Prepanl2-ka mn

Fol,By37Lp(x,B)Bu(BY (4-10)

If we integrate by parts over p and use the ident-

ities (B- 1 ) and (B- 4 ) we can show that,

ce) ; =“ pope 2) (4 p)©) ‘y ~ PP, 2+ 0
Z (upp!) HP) EL Ck of " (4-11)

whe re )

2 ck, pp, 2) (rp) = “n= (BAim) (h3x d% AF 2% (7)
- 24 Pp) Im _

Lz- kes hm +Lo(y, Fh | 19M 2 ~k: 4 pm
oo _ }

+ Lr, P)] L(Y, BV @. (Fy §
(4-12)

2% k, PP,2) Plo=Mm ( Pm) fd’ dix od*F ©4, (F)
1, ot —

G(r) e Pi lk L. CrP)

(4-13)
&lt;)

Let us consider the 2(k,pp,2) part first. We use

the identity (B-2) and integrate by parts over the spat-

ial co-ordinates to obtain
3» 3Cc 3 2 =

£00, pp, 2) FO = n (Frm) E fd d PAY

Whe

0 {v) pu

Lg (oH PE) (mM - _7_ (el (F195 Cu(P))
(4-14)

Nn J.is interchanged with -V, and the integrations
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are carried out we find

S.(k,pp YP kp lk) Pep) Pp)
(4-15)

Now we shall consider the other vart of the memory

function.

Using (B-8) in (4-12) we see that

£9 Chopra) $(p)s - vt (ffm) [dx Sr dP]

CET ca payee A pg] ETA
Tz- kama 1 (r,F)] 190 [8(2— KP hn) (Vd
FEE) sir®a Spas THY)

(h'Y A $ (F-o “7 1} ”

(4-5)

3
We will concentrate our attention on

: Lv) WZ2-KRA ANE _ihv (Fk) -
- Fm REM) {dt e e TT §(P-a-BM)

 RD i(z-kgm) 14-17]
[Ate 'F G(P-2a-PH))[2- kX fin

dI AC
(4-18)

Equation (4-18) when integrated by parts gives us

9= -S(p-a-Fre TT {die

2i(2-R 2m) §Cp-a ~p it)
d+ - ~ = (4-19)

This result enables us to get rid of the free part-

icle part in
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Q = Q 4

00

ec

’ ~ikYyLoon2 Ce
ot
=; _oox /m yt

dasl p’~d - F r+ ))

(4-20)

To proceed any further we have to analyse the coll-

ision dynamics. If we use the results proved in Appendix

B we find that

RY.
(2- k tT _ kx (t),

[Cdt et? 2X 0) e —_ = * 0 (vr LT)

6_(FFYSH-D LS (p-u~7")-5(P -2-p)]
WZ -R afm)T (kd, ” .

© © vk er / 0 (v2 LY) G (3. FP)

FSCp/e a py-6 (plan - 7%]
hen this is used in equation (4-16) it can be shown
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Appendix B shows that
- ’ ~ kA -

C2 ke pt, (2, Fy TL gE (BT EET]
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"CTL (x, P

/ 1=273)

we then have
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(4-24)

Now we do the spatial integration. Equation (B-2) allows

us to restrict our attention to the surface of the sphere

r=r_. We find,
©)

E(k pez)Pe, (
: P= in? (p/w :$ (ok rm) dix of?Pp) Ley nerd

PBld%y 7 ~ ‘ P2) im | " !2 3 ree
PX | )

~~ wr S(¥=-%) 6_ (¥ Bh“P)

| &gt;(pt=ot =F Y= § (Pua 3%) ]

' A -n*(flim) {dz du AF 2 Py™)
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(4-25)
where dS%r = infinitesimal solid angle

Note that we have performed the transformation r% -r,
 ~-iR TY

p+ -p in the term proportional to € ~ =°

On non-dimensionalizine equations (4-25) and (4-15)

we find

¢ CC rot

MS Ck, TID F392 16iny2y, ((d3 BT doe 50 )
(nw)

6. T)7. 3 6ca-1+ TLC a -1=§ (Tx -T)
SI thax] y ~§ ( LSt ~ += - Lat V{] (4-26)

M RL, TID @(IH=-4Tn% VY Jk) kT eV 32
 ores

(2M) 4-07)

This is as far as we will carry the analytic approach,

Equations (4-26) and (4-27) are in a form more amenable to

numerical analysis. In the next section we will calculate

the matrix elements M(i/j) using the equations.

=  aSEi A

;, krlis the first order Spherical Bessel function -—
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4-2 Matrix Elementcalculation

The orthonormal basis we decided to use is essent-

ially the Hermite polynomials,

\\ H NeJv(R'mWl3H (3D H,,(3,)(3) = 2= TemnVo Th)=NL

where A (Dz Ho (1/5) 75)
He (9)is the Hermite polynomial as defined in Morse and

Feshbach (29). As a matter of nomenclature we shall call

our basis the modified Hermite polynomials,

To facilitate the mathematical analysis it is desi-

rable to consider separately the static part, the inhomo-

geneous collision part and the homogeneous collision part.

(4-28)

(4-29)

Using equations (4-5), (4-26), (4-27) and (3-24) we

see that:-

1] )1] y) = 4 Ti ’o v, 1CRY) S04” Som’ Con! 950 Som Sin

b *V( Lynn [2m nt)
"

3 ))

© -—
MZ Cl) = =2n VT) (RD S008, 08. 16,0 5. Son

ME Cm [£m 2 (4-31)
z ~(3-T ~F°

Maly ) = Bauman, (d*7 A*T Ais e &gt;
x (27

 I... Tu m—  iolfl eo pepkerEAMC SA YEAS

LtHandbook of Mathematical functions' U.S. Commerce Depa-
rtment.
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25 (#3) ] (4-32)
Equations (4-30) and (4-31) are in a form that can be

directly programmed, but equation (4-32) has to be

simplified further.

The computer program 'Matrix'’ calculates M3) 3) /2

which is relatively more complicated than either equation

(4-30) or equation (4-31). These expressions for 1/3) fa

and (1/3),are directly incorporated into the program

'Dispersion’,

To check 'Matrix' some of the lower order elements

were worked out by hand and compared with the program

output for various values of the parameter kr,

As a final touch, a number of the lower order elem-

ents for kr =0,0 were linearly combined to form the equ-

ivalent elements for a Sonine polynomial basis”, These

were checked against Sugawara's (3) and Mott-Smith's ma-

trix elements (7). As was noted in an earlier chapter

Hamoperoi  Bm TTH—— aC——

for a more comprehensive description of the various
computer programs used, see appendix D.

Phe interested reader will find analytic express-
ions for these in Mazenko's thesis.

A general transformation between the Hermite basis
and the Sonine basis is given in appendix C.
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the kr =0.0 limit of the generalized equation-is the lin-

earized Boltzmann equation and thus we would expect that

our test would yield identical values for the three sets

of matrix elements.

What we do find is that they are off by constant fac-

tors. This was expected in the case of Mott-Smith's num-

bers as his matrix elements are derived in terms of a

certain bracket integral. This was however not expected

of Sugawara's matrix elements, On closer examination it

was discovered that a factor of 833% had been dropped in

his program for calculating the matrix elements,

Taking into account the factor that Sugawara dropped

the factor of 8 YW the two sets of numbers are, within

roundoff error, identical,

It should be noted that constant factors in the exp-

ressions for the matrix elements have no effect on the

spectrum calculations as we are only concerned with the

ratios of these elements,

Finally with the basis we have chosen it can be sho-

wn that the elements with odd 1 or m index do not enter

into our spectrum calculations so we only need to compute

the elements with even 1 and even m indices,

4-3Self-Correlationoperator(Memory)
The memory function (37 )for the self-correlation
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function is obtained by simply ignoring the dynamic cor-

relations between different particles in the collision

part of the total memory function 2 (k, 38,2). That is
to say we drop the terms involving the exponential gE

in equation (4-26), One also drops the static part.

After going through the same manipulative procedures

of section (4-1) we arrive at the result that:

MCk,TT7)BUI)21610V0(fyofTFobitsCa (1)
0TeTID Lined) 1] 6 (Thu

~ $C T-%-3)] Sra-F4 1) (4-33)
This is the wavelength and frequency dependent gene-

ralization of the neutron transport kernel (15),

Thus it can be seen that the self-correlation memory

function is just part of the two-body memory function

and the 'Matrix®* program is easily modified to seperate

out that part. This part does not depend upon kr_ at all

and in fact for the hard sphere case

«)
FE(II=Lm oe (k, 33)

RY, ~ 00
0 ~hvy

This can be seen by expanding &amp; in terms of spherical

Bessel functions. One could speculate that this is true
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in the general case.

4-4 rropertiesofthematrixElements
The matrix elements of the homogeneous collision

memory function have a number of general properties which

are very useful in reducing the amount of computation

required. They are useful also in checking the "Matrix:

program.

(a) If 1+1° or m+m’ are odd, then the matrix element

18 Zero.

(b) If (n+n’) is odd, then the matrix element is real

and approaches zero as k goes to zero.

(c) If (n+n') is even then the matrix element is

pure imaginary and approaches a constant as k

goes to zero,

(d) The matrix element is symmetric under the trans-

formation 122m and =m!

(e) The diagonal matrix elements are purely imaginary

and their imaginary part is negative,

(f) The off-diagonal elements are small in magnitude

compared to the diagonal matrix elements,

Properties (a) and (d) cut down tremendously the num-

ber of elements that have to be computed while property

(f) ensures that Kinetic modelling can be used.

The matrix elements of the self memory function, on
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the other hand obey rules (a), (4), (e) and (f). In add-

ition to those properties they have the property that

(g) 1f (n+n’) is odd the element is zero.

Table 4-1 is a list of some of the diagonal elements

for the two-particle memory function. These are the imp-

ortant elements as we need them to arrange the modes in

theA-ordering scheme”. Table 4-2 is a list of the cor-

responding numbers for the self-correlation memory func-

tion.

Ne also show the variation of element M(011/011) with

the parameter kr, in Figure 4-1. This gives a general

illustration of how the diagonal elements vary with kr,.

The M(011/011) element is important because it is the ele-

ment related to the shear viscosity through equation

(3=-32¢c).

What is more interesting is the behaviour of the so-

called 'conservation' elements. These are M(1lmn/000),

M{1mn/001) and the linear combination (M(1mn/002)+M(1lmn/

020) +M(1lmn/200)}.

In the Boltzmann equation region namely kr,=0 these

elements are zero, implying the conservation of number

density, momentum in the direction and energy. We exp-

ect this as the Boltzmann collision operator is known to

conserve these quantities. However for non-zero values
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No 1mn 0,0 O.1 0.3 0,7 1.0 oq

+ o00 0.0 0.0 0.0 0.0 0.0 0.0
001 0.0 0,007 0.06% 0,33 0,66 2.36
002 1.89 1.896 1.93% 2.13 2.%6 3.30
020 1.89 1.89 1.90 1.94 1.99 3.31

200 1.89 1,89 1.90 1.94 1.99 3,31
00% 2.8% 2.84 2.87 3,04 3.24 3.97

004 3.53 3.54 3,56 3,72 3.90 4.51

040 3.53 3:53 3.5% 3.55 3.57 4,51
9 400 3.5% 3.53 3.53 3.55 5.57 4.51
10 021 3.78 3.78 3.79 3,84 3.89 4,46

11 201 3.78 3.78 3,79 3.84 3.89 4,46

12 005 4,10 4.11 4.14 4,28 4.45 4,98

2 022 4.55 4,56 4.57 4,61 4,67 5.06

“4 202 4.55 4.55 4,57 4.61 4,67 5.06

'g 220 4,55 4,56 4,55 4,56 4,58 5,06
16 006 4,60 4,61 4,63 4,76 4,92 5.41

qT 060 4,60 4,61 4,60, 4,61 4,61 5.41

'8 600 4,60 4,61 4,60 4,61 4,61 5.41

19 041 4,95 4.95 4,95 4,95 4,95 5.41
20 401 4,95 4,95 4,95 4.95 4.95 5.41

21 007 5.05 5.05 5.08 5.20 5.95 5.79

22 023 5.12 5.12 5.13 5,17 5,23 5,54

27% 20% 5.12 5.12 5.173% 5.17 5.23% 5.54
24 008 5.45 5.46 5.48 5.60 5,74 6.15
25 080 5.45 5.45 5.45 5.46 5.45 6.15
26 800 5.45 5.45 5.45 5.46 5.45 6.15

27 221 5.48 5.49 5.48 5.48 5.48 5.73
28 024 5.58 5.59 5.60 5.64 5.69 5.95
29 042 5.58 5.59 5.58 5,58 5,58 5.95

30 204 5.58 5.59 5.60 5,64 5.69 5.95

(Cont.)

nl
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No lmn
——KT,

0.0 0.1
tilinglagiplatkl

oG

5.58 5.59 3+ 59 5.59 5.59 5.95
5.58 5.59 5.58 5,58 5.58 5.95
5.58 5.59 5.59 5.59 5.59 ol
5.81 5.81 5.81 5.81 5,81 6,21
5.81 5.81 5.81 5.81 5,81 6.21
5.99 5.99 5.99 5,99 5.99 6.18

0.3% 0.7 1.0

34 240

32 402

33 420

34 061

35 601
36 202

fm

‘TABLE, 4.1  i: Cron

TABLE, 4.2 THE SELF CORRELATION DIAGONAL ELEMENTS

(See Table, 4.1 kr, = column)

kr, 10.0 0.3 0.7 1.0 2.0 4.0
2 M(1lmn/000) 0.0 0.0 0.0 0.0 0,0 0.0

% M(001/001) 0,0 0.06% 0.3% 0.66 2.2 4,11

3{M(002/002) 0.0 0.063 0,34 0.67 2.2 4,12

+ M(002/020)

#(002/200)}
FDABLE. 4.3 VARIATION OF SOME "CONSERVATION" ELEMENTS

 bn re

WITH kr,

+ 2
units of MY, VY,
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of kr, only the nl BOD pt still remains zero.

The deviation from zero of the other elements gets lar-

ger as kr, is increased. One possible physical interpr-

etation of this behaviour is that with constant diameter of

the particles increase in kr, corresponds to an increase

in the wave number k. This means that we are looking at

a smaller and smaller volume of space. Eventually the

volume we are looking at becomes smaller than the inter-

action volume, in fact even smaller than the dimensions

of the particles themselves. In this case we cannot exp-

ect momentum and energy to be conserved as we cannot keep

track of both colliding particles. In fact the equation

can only keep track of one particle or in other words we

have gone over to the self-correlation case where only

number density is conserved. As was mentioned earlier

£3 Tis indeed the large kr limit of Z(k, 312). Table
4-3 illustrates this behaviour for the diagonal 'conser-

vation' elements.

Finally we show groups of diagonal elements as a fun-

ction of the index n in Figure 4-2. This is useful for

extrapolation purposes as the 'Matrix' program computes

elements along lines of constant 1 and constant m but var-

ying n, This turned out to be more efficient in our case

than computing by blocks,

The matrix elements corresponding to the truncated
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basis of Table 4-1 are available in A -~ordering for kr, =0.

For other values of kr, they are available but have not

been organized into any particular order.
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CHAPTER 5

Discussion of Numerical Results

5z1 Introduction

The relaxation process in a structureless monoatomic

fluid is essentially characterized by two basic lengths

and two basic times. This is said of course under the

assumption that the mean energy is not high enough for

electronic excitation to occur. The two basic lengths

are the mean free path and a length characterizing the

interatomic potential, In the case of a hard sphere

gas this characteristic length would be the dimensions

of the sphere, Corresponding to this length there is

the time characterizing the duration of the collision

and corresponding to the mean free path there is the

intercollision time. The hard sphere gas, however, is

a pathological case. Its collision duration is zero.

The linearized Boltzmann equation, as has been

stated before, is only good for times and distances long

compared to the collision duration and the particle size

(18), his limitation is incorporated into the collision

kernel as it describes the fluid in terms of point

masses and instantaneous collisions.

So when this Kinetic equation is used to calculate

S(k,W) for gases only two parameters are needed to cha-

racterize the solution. The two parameters we choose
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to base this part of the discussion on, have a simple

physical interpretation. One of these is, what we call

the collision parameter y¥., This relates the wavelength

to the mean free path of the medium. The other parameter

is y/x* and it measures the time in terms of the intercoll-

ision time, Other combinations of these parameters could

be used. In fact Sugawara uses x and y (3).

Mazenko's equation, on the other hand, with its

wavelength and frequency dependent generalized collision

kernel is good for all times and distances and it descri-

bes the behaviour of the fluid in terms of all four char-

acteristic lengths and times,

When the Fourier-Laplace transformed equation (%-30a)

is examined for the hard sphere gas, it will be noticed

that we have only three parameters x, y and kr, We are

however, missing a parameter related to the collision

duration. As has been mentioned before the hard sphere

is a pathological case. The collision duration is zero

and the fourth parameter is a constant, It is either

zero or infinite depending on how we define the parameter,

5-2 ComparisonwithSugawara’
Sugawara's spectrum calculations used the linearized

¥ and x are defined in chapter
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Boltzmann equation (3). To compare Mazenko's equation

in the Boltzmann region with Sugawara's results we have

to take kr =0. This test will not only enable us to

check our computation but it will also demonstrate that

the generalized equation has the correct limiting behavi-

our. In the process of checking the computation we have

also calculated the spectrum using the Wang Chang and

Uhlenbeck method of polynomial expansion.

The major difficulty that the test ran into was the

problem of convergence. As noted in section 3-3 there is

the problem of truncating the basis, It is not at all

certain that the convergence properties will be the same

using the Sonine polynomial basis and the Hermite polyno-

mial basis, There is no one to one correspondence, But

it is certain that if the two truncated matrix represent-

ations of the collision operator contain the same inform-

ation then we should obtain the same values for the

spectrum. This is what was done and the results are tab-

ulated in Table 5-1. On the basis of this comparison

we confirm that the two approaches are indeed equivalent,

Going back to the question of convergence the elemen=

ts were ordered according to two different schemes, poly-

 a  ——

Sugawara uses the dimensionless quantity R(x,y)= kv,
S(x,y) Matin his graphs. The R(x,y) used in our plots
igs identical to his.
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y=1.2275

-

2R(x,y)
Our Calculation | Sugawara

N=14 N=9
Cm wrt =

0.0

on |
0.8

1.0710

0.8437

0, 7775

1.068

0.844

0.775

TABLE. 5.1 COMPARISCN OF SUGAWARA'S CALCULATION WITH

OUR CALCULATION- POLYNOMIAL ORDERING SCHEME -

EQUIVALENT KINETIC MODEL ORDER

LX M(001/001)

Xr, | Parabolic fit | Analytic result
0.01] 0.0000707 0.00007
0.03] 0.000623 0.000637

0.06, 0.00269 0.0025
0.3 . 0.0617 0,0634

0.5 0.1714 0.1746

1.0 0.6854 0.67

wETrTror
a -

1.0

2.2

5. 5

2.7

2.4

2.25

I ——————————————

TABLE. 5.2 MATRIX ELEMENT M(001/001) - ERROR

INCURRED USING A PARABCLIC FIT THROUGH

THE POINTS kx =0,0,0,1 AND O,7
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nomial order andA-order.Inthepolyonomialordersche-

me, as the name implies, one orders the set {¥.{according

to the order of the polynomial Y., that is according to

the sum of the three indices. Within each closed shell

of polynomials of the same order one tries to arrange

the basis functions such that inherent rotational symme-

try groups are not broken, The idea behind the polynom-

ial ordering lies in the empirical observation that the

zeroth order polynomial corresponds to number conservat-

ion, the first order polynomial to momentum conservation,

the next orders include the energy conservation, the heat

flux vector and so on. Heuristically, as the order

increases one seems to add in more physical processes of

decreasing importance on the microscopic scale.

 \ ~ordering on the other hand is the ordering of the

elements according to the magnitude of the corresponding

diagonal elements. As noted in section 3-3 the reasoning

behing this ordering is quite quantitative as the diagon-

al elements are indeed related to the decay constants of

the eigen modes. Thus A\-ordering systematically brings

in the transient modes on the basis of promptness of

relaxation and would therefore gradually improve the

microscopic description.

However we did not have a simple analytic expression

for the magnitudes of the diagonal elements, so what we
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finally ended up doing was to compute all the diagonal

elements upto and including a certain polynomial order

and then reorder the basis according to the A-ordering

scheme, The success of this procedure is based upon

the assumption that the diagonal element distribution is

sufficiently monotonic in the indices that we leave out

very few gaps. Figure 4-2 tends to substantiate our

position.

The Kinetic model approximation, as we have noted

in section (3-2), should be very good near the free part-

icle limit, and from the argument above it should also

be quite good in the hydrodynamical limit. This is

because the hydrodynamical region is essentially that of

long times and distances. This leaves us with the region

between these two extrema of behaviour, which we would

expect to be not so well described by our approximation.

Given the restriction of limited computer time this is

the region we should investigate with regard to the con-

vergence and accuracy of our approximation. The y-value

of 1.2275 which we finally used to examine the convergence

properties of the approximation is slightly biased towar-

ds the hydrodynamical region. We chose that value

hecause experimental data is available for that particular

condition. The x-value was chosen to be 0.0 because from

Sugawara's calculations it looked as though the approx-

imation would be worst at this value.
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Figure 5-1 shows the convergence behaviour for the

two ordering schemes. As was expected the A -order.conver-

gence is much smoother and more rapid. This behavior was

also noted by Sugawara. In both his work and in ours it

cannot be said that the polynomial scheme has converged.

The orders of the respective Kinetic models used were

simply not high enough for this scheme to converge.

On the other hand, his A-ordering calculations conv-

erged around a Kinetic model order of 23 while ours

converged around an order of 40, Our asymptotic value is

of the order of a percent off from his. There are a

number of possible reasons for this difference. One of

them is the possibility that our A-ordering has skipped

a few elements. This was discussed above, More import-

ant is the possibility of computational round-off error

as the Hermite polynomials basis in a certain sense is

not a very efficient basis as it, unlike the Sonine

polynomials, does not make direct use of the azimuthal

symmetry in our system. For the same amount of informat-

ion, the matrix obtained by using the Sonine polynomial

representation is smaller than the one obtained by using

the Hermite polynomials. The computer had to, essentia-

lly, compress this data and in the numerical inversion

of matrices the larger the inverted matrix the larger the

round-off error. For a 60x60 matrix this error could
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Possibly be of the order of a percent.

The main emphasis of our work is on the effect of

finite kr on the spectrum, This will enable us to deline-

ate the region of validity for the Boltzmann equation and

obtain quantitative corrections for wavelengths outside

this region. From Mazenko's preliminary computations we

know that the effects we will be examining will lead to

differences of around thirty percent between Sugawara's

analysis and our calculations for finite values of kr,

With this in mind we decided that a Kinetic model of order

35 would be sufficiently accurate for all our subsequent

NOoTK.

5=3_The spectrum of density fluctuationsatfinitekr,
If we integrate the {two particle spectrum over all

 1) we find that

k)wx S(k) = +nHK4 Sk, wy =Lf Du
(5-1)

With this result in hand we can immediately obtain

an estimate of the range of validity of our equation by

noting that WSK), on physical grounds, can never be neg-

ative. Thus

NN.ne =

pu i(k) Ca7)
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Sk) fe TLgem-1)
(5-3)

For our low density approximation h(k) reduces to

1) = - 4Tvg3 J, (ky
RY, (5-4)

If we approximate the spherical Bessel function J (kr, )

by the leading term of its expansion in kr, , (5-2)

leads to

\ 4 Tn,
3

(5-5)

This bound is definitly not the least upper bound as

significant error in our first order approximation for

y(r) already sets in at densities much lower than the

limit given by equation (5-5), This can be shown by usi-

ng the solution of the Percus-Yevick equation for hard

spheres (20), This FPercus-Yevick results also enables us

to put a quantitative value on the error involved as the

density increases, Egelstaff (20) has shown that the

Percus-Yevick equation is quite good for nr’, 0.25. If

that equation is used to obtain an equation of state we

find

Po } ~~ lh ( Tow) 4 tooe
_ 2
Ton’) +-.
hg

PkT

, B-2)
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So the error, £&amp; , we are interested in is of the

San

S
Sell ~~ 0. TT .

G4 4 @
N '

(5-7)

For nr =0,01 this is around 0.5%. 1t would be more

realistic to say that the error is of the order a per-

cent.

Figure 5-% provides a graphic illustration of the

region we are restricted to. From our experience with

the Boltzmann equation we use the parameter y to roughly

divide the figure into hydrodynamic and free particle

regions, A word of caution is necessary here as in the

case of finite kr the terms hydrodynamic and free part-

icle may convey physical interpretations quite different

from those associated with the Boltzmann equation. How-

ever we do expect that for kr small enough we wiil obt-

ain the same qualitative behaviour, It should be remem-

bered that the limits taken (kr,—O and kr» oy) to obt-

ain the Boltzmann equation and the equation for the

self correlation are only taken for the collision opera-

tor. They are not taken for the entire spectrum equat-

ion, or there would be questions regarding the continui-

ty of the solution at those limits.

If we examine our calculation again we see that it

differs from Sugawara's calculation (3) in three respects.
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Mazenko's equation has a static term which the Boltzmann

equation does not have. The collision matrix elements

now have a kr dependence. Aside from these major diffe-

rences, there is the matter of the initial condition.

Sugawara's initial condition does not contain the term

involving the direct correlation as ours does.

Before we move on to discuss our results it must be

noted that we have used a three point parabolic fit to

calculate our matrix elements for a general kr,. As most

of our points of interest fell in the region 04 kr, 1.0,

we calculated explicitly the elements at the points kr=0,

0.1, 0.3%, 0.7. The kr, =0, 0.1 and 0,7 results were then

used to obtain the co-efficients of the parabola, To

check the goodness of fit we compared our parabolic fit

numbers with the analytic results for the element M(001/

001). As can be seen from Table 5-2, the accuracy is qui-

te good, As a final check, the sensitivity of the spec-—

trum calculation to variation in the values of the matrix

elements was examined, The elements have been observed

to exhibit two general characteristics. They are either

almost constant in kr or they start from zero and incre-

ase somewhat parabolically in our region of interest,

We first calculated the spectrum using a linear int-

erpolation for the matrix elements, Then we changed the

parabolically increasing elements by 10% and recalculated
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M (i/j) :- kr,=0.068 Matrix elements obtained by linear

interpolation between krz0.0 and kr, =0.3%
Case I :—= M (i/j) used without any change

Case II:- All M (i/001) elements and all purely imaginary

elements multiplied by factor of 0.9

Case III:- All the elements multiplied by factor of 0.9

y=1,17
Xx Case 1 Case 11 Case 111

0.0 0.90286 0.90629 0.90453

1.0 0.477844 0.47612 0.46372

TABLE. 5.3% SENSITIVITY OF 2R(x,y) TO VARIATION IN THE

VALUE OF THE MATRIX ELEMENTS

ny
“5

0.00997 0,00997

eei

0.04 |

Our Calcul- Ytsugawara's
ation

1,06476

0.976679
0.843499

0, 700791

0.547915
0.393627

0,26%125
0.166173
0.0976929

0,05282%8
0.0269757

0.5
Our Calcul- Sugawara's
ation

1.00421

0.910398

8.7999%5
0.718141

0.605648
0.439335
0.278856
0,161009
0.085265
0.,0429029

0,0217578

0.0

0,2

0.4

0.6.
0.8+
1.0

1.2

1.4

1.6

1.8

2.0

Twe have used the Free

comparison

particle result ¢  ) Jhiw1

S

TABLE. 5.4 2R(x,y) = COMPARISON OF OUR RESULTS WITH

SUGAWARA's (cont.)
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TABLE. 5.4 (cont.)

py

—

0.0

0.2

0.4

0.6

0.8

1.0

' 2

1.4

1.6

8

2.0

0.01

a 7

Our Calcul- Sugawara's

ation

0.974874

0,866804

0.752976
0.707924

0,671646

0.524565
0,2983%14

0.141506
0,0661308

0.0%26984
0.0174123%

0.01

3.0

Our Calcul- Sugawara's

ERR

ation

1.21195
0.810106

0.549495
0.558026
0.811539
0,78959%
0.273169

0.950314
0.041%453%
0,0212016

0.0121779

1.3347

0.90579
0.61051
0.637390
1.0067

0.82178

0.213573
0.06646
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the spectrum. Finally, we computed the spectrum for a

change of 10% in all the matrix elements. The y and kr,

values were of course fixed throughout this calculation.

The results are presented in Table 5-%, They show that

at the most a 1/2% change in the spectrum value will

result from a 10% change in the matrix elements.

Figures (5-4) to (5-7) are comparisions of our resu-

lts with Sugawara's (3). In our work we first fix the

density nr? and examine the spectrum for various values

of y and the corresponding values of kr, . We then vary

the density for a fixed y.

What is noticed immediately is that the central

peak has been lowered. This can be attributed to the

difference in initial conditions discussed above.

Aside from the lowering of the central peak there is

a difference in shape. For y=0.0 we still obtain the

Gaussian as we should, but as we increase the value of y

the fall off is linear (for x less than 1.0) though we

are still in the so-called free particle region.

At a y-value of around 0.133 we begin t6 move into

a transition region as 8 shoulder starts appearing. In

Sugawara's calculation even at y=0.,5 the spectrum shape

is still roughly Gaussian. It is almost as though our

value of y has been somehow transformed to a higher value

Mathematically this can probably be explained by the fact
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that our final equation (3-3%0a) has a term involving the

product of y and the matrix elements M(i/j). Since these

elements are increasing with kr, in the region we are

examining the effect is similar to increasing the value

of y. There is this competition between y and kr ’

This is of course an oversimplified picture as an increa-

se in kr destroys two of the three conservation laws

and we could never obtain the familiar 3-peak hydrodyna-

mic spectrum just by increasing kr .

Figure (5-7) shows that the sound peak moves out as

we increase the kr value. On the whole the spectrum

shape is definitely broader than Sugawara's. To see this

from the graphs one has to examine the width to peak rat-

io as we do have this difference in initial condition.

At y=%.0 we still obtain the familiar three peak

spectrum. This is not suprising as we have fixed the den-

sity at nr. =0, 01 and at this value the corresponding kr,

value is just 0.0134. Apparently this deviation in kr,

from the zero value is not enough to produce startling

changes in the line shape. However, numerically absolute

deviations of around 10-20% can be found. This is true

even for kr, as small as 0.013%4, It would seem that the

Boltzmann equation would be valid for kr, around 0.005,

This rough estimate is arrived at by using the results

presented in Table §-3 and Figure 4-3,
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If we examine the ratio of the central peak to the

spectrum value at x=0.8, differences of around 15% can be

found between our calculation and Sugawara's, This indi-

cates that if line shapes are measured experimentally it

should be possible to detect the deviations between the

Boltzmann equation and Mazenko's equation.

As to thedirect effect of kr,, that is keeping y

fixed and varying kr,we only have limited data. Figure

(5-8) shows that at y=0.067, aside from the lowering of

the spectrum, there is no noticeable change. The shapes

are essentially identical. Apparently a 60% change in

kr, has very little effect on the shape at this low value

of v.

The above results seem to suggest that the general

behaviour of the spectrum can basically be characterized

by the two parameters kr, and y. Working along these lin-

es we note that we can think of the neutron beam in terms

of a probing volume of dimensions characterized by the

wave number transfer. For a rough physical idea of the

processes taking place consider Figure (5-10) for a fixed

Za

In region I, we would expect somthing similar to

the Gaussian spectrum as the particle radius is small eno-

ugh so that the region examined by the probe can contain

at most a single particle. Region III would give us a



wR

¥y=0.067
nr’ bh 0.01 0,0167

oe oS. vo
0.0 1,0568 1.0178
0,2 0,963981 0.9087

0.4 0.8314 0.7741

0,6 0.69722" 0.6479

0.8 0.5504 0,5164
1.0 0.3954 0.3783

1.2 0,2637 0.2587
1.4 0.1668 0, 1689

1.6 0.09816 0.05802

1.8 | 0.05281 0.05802
 2.0 _ _0,02688 0.03097

Y For the Free particle result see Table, 5.4

TABLE, 5.5 TWO PARTICLE DENSITY SPECTRUM - 2R(x,y)

DEPENDENCE ON kr at y=0,067
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y=0, 13%

nr =0, 00995

kr, =0,3% |
ee

XxX

0,0

0.2

0.4

0.6

0.8

1,0

1.2

1.4

1.6

1.8

2.0

2R(x,v)

1.04898

0.951719
0.821489

0, 700551
0.561560
0.402143

0.265259
0.166675
0,0970209
0.0513%484
0.025898

EEEIA

TABLE. 5.6 TWO PARTICLE DENSITY SPECTRUM

y=0,1 33, nr] =0, 00995, kr, =0, 3



-

hl La TTSR——"
~90-

 reerTe

Are - 00095

{}

M = 0-Y33

kv, = ©3
i"

op

D- +)
ry

w

0: Z

0-5

4

S06 0Y) = kV,§

0h

0 3  N\

“

02 Fi¢., 5.9 Two PARTICLE

DENSITY SPECTRUM
\

~,
on7

3 a

a End

i

Ol 0-6 0% ’ | Z f=O



 LL
spectrum characteristic of a continuum of particles. As

the probe's wavelength is still large compared to the

dimensions of the particles, a spectrum similar to the

familiar 3-particle spectrum would be expected. Region 11

would be the transition between region I and region III.

This is a spectrum with a protruding shoulder. Specula-

ting further, we note that in region VII the parameter

kr, is such that the probing volume is completely taken

up by a particle. As far as the probe is concerned there

is no structure at all, It is Just one rigid continuum.

So the effect would be like probing a vacuum. The spec-

trum would therefore be a constant close to zero. In a

sense it is a very broad curve.

The probing volume for region IX on the other hand,

aside from the behaviour described for region VII, can

also contain a small number of particles simultaneously.

We would therefore expect a spectrum composed of a mix-

ture of the spectra associated with regions II and VII;

a lower broader spectrum with a central peak and a shoul-

der. As the speed of sound does increase to a certain

extent with density, we would expect the shoulder to have

moved out as region IV is the range of quite high densit-

ies, The spectrum of the other regions would be expect-

ed to be transitions between their adjoining extremes.

This is of course a very crude picture and it is
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even cruder than it appears at first glance as some of the

regions may be physically unreal. For example with rigid

spheres there is a limiting density and it is questionable

at least, whether or not region IX is physically attain-

able,

5-4 Self-Correlation Spectrum
As can be seen from the discussions presented in

chapters 3 and 4 the calculation of the self-correlation

function for the hard sphere gas involves a generalized

Kinetic equation which is not essentially different from

the Boltzmann equation. Thus the results presented in

this section could also be obtained by solving the Boltz-

mann equation. Work has been done along these lines for

hydrogen gas using the single relaxation time approxima-

tion proposed by Nelkin and Ghatak (15,30). This approx-

imation corresponds to a Kinetic model of the lowest ord-

er, Our calculations are for a converged Kinetic model

and so our results are more accurate. However it is exp-

ected that the two calculations will give comparable res-

ults in the free particle and hydrodynamic regimes. 1t

is in the transition region between these two extreme

regions that we expect significant differences to occur.

of

Figures (5-11) and (5-12) illustrate the dependence

the self-correlation function on the value of y. As



0.0

0.2

0.4

0.6

0.8

1,0

|,2

|.4
Ry

eternaare—

0.0

0.2

0.4

0.6

0.8

1,0

1.2

1.4

Converged Kinetic

Model, y=2,62
3,0469

1.7231

0.73518
0.36529
0.20717

0,12842

0.0846

00,0582
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| Self Diffusion limit

Analytic Result
3.0469

1.736%

0.7581
0.391

0,23%%

0.153%
0.108

0,080

Converged Kinetic

Model,y=0.247
Free particle limit

Analytic Result
1.2624

1,1716

0.9805
0.7716

0.5555
0.3609
00,2210

0.1318

1.2624

1.2129

1.0757
0.8807

0.6656
0.4644

0.299

0,1778

TABLE, 5.7 VSELF CORRELATION SPECTRUM - VALUES OF.2R(x,y)

IN THE FREE PARTICLE AND SELF DIFFUSION

LIMITS

tre must be noted that the analytic curves have been
inormalized so that their peaks match those of the kinetic
model curves
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 y Nelkin - Ghatak Model ] y Converged Kinetic
Model

0.1735
0.342

0.%48

0.685
1,02

1.73

1,85
2,2

2,62

30

PA

1 45

1.27

1,28

0.247
0.487

{0,975
11.46

0 62

1.45
1.27

0.95
0.74

0.46
1:0

0.82

0.72

0.57
0.482

0.436
0. 39

Self Diffusion Limit

Analytic Result

ar——

0,608

0,487

0.405

Free Particle Limit

Analytic Result .

0,0 1.66

TABLE. 5.8 FWHM OF THE SELF CORRELATION DENSITY

SPECTRUM
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is expected the line shape goes from a Gaussian in the

free particle limit to a narrower Lorenztian in the hydro-

dynamic limit, The central peak increase in height with

VA

What is more interesting is the variation of the full

width at half maximum (FWHM) with y. This is plotted in

Figure (5-13). The FWHM obtained for hydrogen gas using

the single relaxation time model is also plotted on the

same graph. It can be seen that our calculations defini-

tely lead to a broader curve. As was expected the numer-

ical difference between the two calculations is smallest

at the two extremes, 1t is this behaviour which, at lea-

st qualitatively, brings the theoretical calculations

into closer agreement with the experimental results of

Lefreve et al (30)
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CHAPTER 6

Conclusion

We have shown that the generaliged Kinetic equation

derived by Mazenko leads to results which are significa-

ntly different from those of the linearized Boltzmann

equation for the spectrum of density fluctuations. For

kr, even as small as 0.0134, absolute differences of aro-

und 20% have been obtained for y=3.0., In terms of diff-

erencesof ratios of intensities our work shows that

differences of around 15% can occur. It seems that it

should be possible to experimentally detect such differ-

ences, The one difficulty that may be encountered is

that kr, around 0.1 may lie in the region between those

covered by light scattering and neutron scattering. For

larger kr, one will have to go to lower y as we do have

the restriction of low density. As of now the largest

value of kr, we have gone to is 1.0, but results for hig-

her values of kr, can be obtained.

Experiments for the self-correlation spectrum have

been done using hydrogen gas and our calculations for

the self-correlation spectrum are in general agreement

with the experimental results.

It may be interesting to redo Sugawara's calculation

with the direct correlation term in the initial condition

and adding the static term to the Boltzmann equation.
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This would allow us to numerically evaluate the contribu-

tion of these terms to the spectrum of the density fluc-

tuations, It would also help us to isolate the effect

of the rk dependence of the homogeneous matrix elements.

However, 1t would be very hard to obtain a clear physical

idea of the relative contribution of the various physical

processes with this approach as dealing with thirty five

different modes is inherentiy very complex. It would

perhaps be more valuable to restrict ourselves to a gene-

ralized B.G.K model based on the Mazenko equation. In

terms of the Kinetic model it would mean investigating

a Kinetic model of order three with a k-dependent mode.

This would lead to a better physical understanding of the

importance of the various parameters such as y and kr,.

We intend to see if it is possible to calculate

other correlation functions, such as the current-current

correlation, as a by-product of our calculation for the

density correlation.

We will then go on to calculate the density spectrum

1sing square well potential in Mazenko's equation.
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AFrPENDICES

AFPENDIX A

Mathematical derivation of results
quoted in Chapter 2

(i) Equation{(2-16):-

To prove this equation we write

(2 * ry (+ gv) S,(x,p ep, t)=
| -— viv ~-")
Zt fdid2 *(p) Pipye “ (2 + PV)

tL (v2)
3 tev ygle’ 5 §Cx-%)|
It ™ t=)

2 x )
5 $ (7-2) - z L e tho 02 $ eof
}=) t

Sn

wo

— vir-")

ig fdid2 %(p,) $ (p,) = ¢ I, - 1, |
(A-1)

Ne now examine 4 and 1,separately
2 tL (12)

= (2 7 2 ‘¢ VE [er -1, = (2+ £Z) (2 = prey l ¢ (x xX
 atu)
Le Lilo2) 4 PV | Liz) +p'7] 20%), 2
i= -

rr

where we have used

tL 2) iL. (12)1 o

° L, 12) = Lo(12) © (A=3)

Using the property of delta functions we interchange V

with v , for particle 1 and VY withV, for particle 2.
Then,



= 0x -

T, = [iL, 02) + Pi Viv] LPY =P 9 T § (x-ac,)
m m

FLL) + Om] prYa- PW] $a)
- m ~~ mM

0 A-4)

Now for I

( Ye + PY4m) (st + P'V/m)Le
- 2

£5) Zs onlox)
i=\ j=

12)

y
] p 5)xan

By using Commutative properties
2 tL (1) :

5. (x-xp)) Ee (irony t+ PA) Lika)
1=t 2

ty PT HALO] 2 gaa)
(= (A-6)

Using the technique applied in the case of I,, we see
2 EL)

( Z (x-%;)) e (LOD+Pf)
2

LL 02) 2 6 (a-2)
A=

—
=

(
2

5g (x-x)) (iL= : (2) + Pp wea
 L 2 ean © |

LL Ci) £4 (x-x)
\ 21 +

A ( &gt; (f= ]SL GLO)+PCVm)Zsa))J=
LL a2) % :

[ * L12) Z § (xa) | + [¢iLG2)t pe Ven |
El)

. vtLae) 2

[26 x-%) e 1 La) £ 40x)] (1-5)
Now we take advantage of the fact that I is actually int-

egrated and drop out those terms in (A-8) evaluated at the
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limits, This leaves us with

. = JEL (12) "Ee .

T= - Lila &amp; sea] Loe LL (1) 4 Ss (=x) |
;tL(12) 2 t=

t@ eV [Z salape iL) E56 (xox)|
- om HE (= (A-9)

We are really interested in the integral

0 _- V{%-%)2 fdrde +p) Per, © FER 1

- OW, Rx
(A-10)

Ne re

WN, = Boley's result

SNC

) :
S Sera t 5 Ch) ®(e,) g Fre

(L022 $¢xi= x)

(A=11)

However final result is the same as Boley's as

~ikx
FT (Rg) = (ols et Re = S11 foie Pp) Tp)

: &gt; / 2 2 (ey
[iL &amp; §G/-2)+ RPM E (x/xN]L &amp;

 ¢ OE ™ - )=1 J P=
LTP, RA Th 4

Te S(p-p)]
(A-12a)

Integrating the L,term by parts and using the prop-

erties of the delta function we see

2 .
/TR) = 4 (di da PeeaP lg § xy) ilar ik]

, kr tp k iL
Lo b = i Nm 3 ‘ . 2 &gt; ot 4 Cp -p:) |

a)
£ = 12D)
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(ii) Static Part:-
2k,pe(0[i(240+3BkAn)SiC,
pri) |, |
=) ne beer bipy te tT (d3r oe
[othzy + LP k fm) S $ (ss) | z CLE

2 (do EYL) aya ipo fon S x=; | (ex)
ok [nn F(p) P (pd (27) §(k) (A=173)

Note ot since ~

Coys wp L— pV 1 -
(A-14)

No lve

{
_rex

RY) = §A3r ee ap [-pv]— @ay 6(k)

(p-15)

Equation (A-13) can be simplified to

$k, pe 2) $( Pp) = Pk gn Cp) Ppt) (27) §(k)
- V(v-%)

L (3, A3y, A 3p d¥p, Pp) Pp) e F (v 2

“ky 2 &gt;
Tal) (d3ve ~ 7 2 Sx -a | 2 Sx)

Lo 3%

(A-16)

For notational convenience denote the integral term by

A., If we perform the change of co-ordinates on A.

y,- VT, =
~~.

—

r 1—

|
* - 2 KR

/ " oe

Fa 1
8 7)
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integrate overRfirstandthenoverTby parts we can

show that

~{  rR Y
(A-18)

This gives us

rr

(Rk Py= —Pk,. $k) Pp)
5)

(A=19)

(1ii) Collision Part:-
. ] oa . = Ck

£7 k, pp ; 2 Pp) = 1 J, At elt { Lr o (RY 0

(10) fdid2 Pep) $ Cp) eT EVOITYD ttl
2 o

LL (122 z ¢ (x=)] 4 L022 Zz, § (0) |
(A-20)

Asides from the transformation (A-17) we also apply

the transformation

I Y. = 2«

P=PF=27
(A=21)

o iC)

We then carry out the integration in turn to obtain

Chopra)dp)=~i[dxLRATAIR)FOF)
~pV(¥Y | 2

e F (rlLi02) &amp; S&amp;'-2;))
«} co d=

Lat G01 [43s oY 1) £6 Ge)l= :

—

Aer!2)
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where the differential operators are

, L, (12) = AY, [yn + 2r.9c fon
(A-23)

Lav: py VIR) PAF (A=24)

Let us consider the r-integration first,

= (dy eT TAL (1) 6 (x2)
{12

—(kY —

3 Vo V(T) [dveTTT L-6(pdBY5
JP

Y
r

 —— FEE) os (podPS(1oc2rY))
(A-25)

Ne then transform P— -F
Fs ~1 (A-26)

in the second product in (A-25)

This gives _iR( F+2R)
i 2 —-

2. VoV (¥) 2¢ $5CP-~x~PF)
(A=2T)

Now consider the,R-integration ’
(d°R hf Z 5 (Ape

}=1 _ CRY _ -tb%

So LS (pa Be TS (pape

rH

¢
-) ar 3)

Using (A=27) and (A-28) in (A-22) we find

cc) _

 CLE 2) R00 = 2p 2p (li dF dF Pw)



“EE. i \
~~

1 4}wn

 oo —evV(» 5 ~ kv
$(p) e Vo V(FY LS(p-a2-Fre 72

~ —tk¥y :

SC Mox t+ PYE *1fz + vv) OF — dk jm
- lL, =(kY 3

55 fm TE VE eR S (pan =F)

( 4=29)

(iv) The Limit z io"
To reduce the collision memory operator to the lin-

earized Boltzmann operator we have to take the limit

z3i0"
Employing Boltzmann's idea of an action sphere, we

assume that the relative momentum of the interacting par-

ticles, after some large time T , approaches arbitrarily

close to some asymptotic value. This limits us to 'short

range! potentials.

With this assumption we

PLE) —

have

far +t rT,

(A=30)

Therefore

CPD) = £01) for &lt; 7? T.

(A-31)

30
YG at : T %

LM az deel {pan =m UE Lis [dE
25; 0 ’ - 2310 el

 rh wy)
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wm

-—

oy.

Te zt
Lm oz | dt eT cp) Pepe
2 (oF T=

Cog et TET pe EP|(P*) + LIM Ja ( Ad zt2 S07 ° - ‘Ae pee) )- {ph )
(4-32)

x

Since  (f(p(t)) - £(p)) is bounded,

T. 2 tT
LM L 2 { dt e' CECPeB) = 47%(P")) = 5
25: 0t ~

( 4=73)

50 we have

LM 17 * 2
2510% ly ote FOP) £7 *= P )

(A-34)
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APPENDIX B

Mathematical derivations of results

quoted in Chapter 4

This Appendix is devoted to derivations of some of

the analytic results used in Chapter 4. To be more speci-

fic they pertain to the reduction of the general Memory

operator to the Hard Sphere case,

- a v_ Viv

P PAs
Ye Vo (FVD \)

For the hard sphere (B-1) becomes

ST Vy = ba Ve (1-e FH

(1)

(B~1)

 Vv

“fo Uy C1 = B (x)

Notation used:

~~

—r % S (r -Y
[o) ) (B=?)

%(x) =Delta function
6_ x) = (— © (x)

A signifies unit vector

(ii)
To simplify matters slightly let us write

A - Z2 ~ ke A Lvn
3

-

- 2)



then we have that:-
om?4um

0
. —thky/, p

(TL dpp)s WYO) Voge ~~ S(F-«-F)
(A+ LOY, Fy)

ol -Lp 1 ]A-kr
Ar A+), "

Rx (a =

X/ ((P-ot~F)

j

{ B=4)

Buit

NY. {

9 (NT
—t = —i [dee

(At)
{av Im (2)YS 0

(B=~5)

HX pn) S(f-o-F)gSYFE VACc
/
be

(B=-6)

Jsing the results (B-5) and (B-6) in our equation (B-4)

we see that

A (
_ 9) (AHO) © v (

" PT): ( At 5 _ 1 ( Flo) £5

(ke Yo ~
(d= RF rm) § (p= =3))

0 3

(A-key NI Ate tt
m v

1 * { 2. —

uk [i ig. |

~~

'

[%  = 7)
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00 TA “kext
(A= R(PL-2) An) J, At e le 5 (7

key so ~—
Be) teTTTgr-a -p- ib

TL, TR)

(iii) Collision dynamics:- \ D
4.

*
Nomar .

=)\ Lo

It can be seen that there will only be a collision

if rp &lt;0 and 2b

p = momentum initially

p= momentum after collision
— AA =

=p-2¢(€-p)
ziven that there will be a collision it occurs time

C lgter
A I

T= |x: Pl - Lara?"
 rn r-

-

¥e now obtain an expression for @ in terms of the initial

values.

NoHod Fe,

0

, AQ
 arr) — (rv PY P

 yy
2 * PY?

h = ¥ ~ (x. P:

(B-10)

{ Be 11)

Combinine all these results we have



a 11 2 -»

$ (P-ot ~P(D)= 6 (37-L7) og(vp) [0CT-1) S (fo ~P)
+O (E-T)SCP -2~P)]

Co (LYE) (3.30 0 (9.5) S(A-2-F)
(B=12)

where G(x) is the unit step function. We therefore have

L B8-1%)

(iv) In this part we will examine the effect of &amp;,
(-ke)T ik .¢%4

operating on 5 9 (ND 2 ) e Cheha B (vo LY)

bo (HEY DL SCR 2-PY —5(p/- «-£5 1
We first note that for any function f,

Po F(R=2 FB) PLT =o
ob -

This means that

LCE,7)0(RH-47)=

(B-14)

{(B-15)

Ne also have
—_ 4[2LCL, PD) EY, = 0 (B-16)

(B=-17)L(Y, PY P =

Then we note that

0

A

1, (YF) = §(3-P) 'B-18)

This gives 118

b= Nt

Thus the condition 8( 121) becomes @(x-17 However
~8V¥(v) ,

Iv) — P ¢ 0] Y,
y Fad i'd



wn
4
 os L IF

@(v-v,)
(B-19)

So therefore we only have to worry about the L(rp)
L(2-Rat zd °°"

g(r) e! TT } part of the derivative,

Since we have the O_(¥ ‘P) factor,

Lo(YBOT = =t2 VCD (Yop )m -
m Fr L

These results enable us to write
- (2~k XT

[2-KamAlaCr,fd)Lome?+%
1(2 - kd An) ~

LoCy,PYgOrd +(2=k 2 4) gv) (
1(2-RX 4n)T i 2 (2-RA pn) T

" )+ 1 90x) (2-k 4/n)e 4 dom “

L, (Xx FDOT) Te fee A &lt; -~

a 10 R-Ly/mlt Lox p) gy (7).
Thus

2" (k Pr 2) $ (¢') = ~-w" (Prrm)’ {dw Aird’ p

Sera SCx~FC+P) + ETA § Cot- £~%) |

5 PCP an (2m Red an)T tke p (vue)

5 (+P) L £0-a-P)~ S(r'- A =P)]Lyx, PYg(¥)
(B-22)
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APPENDIX C

Transformation from Sonine polynomials
to modified Hermite polynomials

As has been mentioned earlier the modified Hermite

polynomial tends to be a less efficient basis as far as

numerical computation goes as it does not take direct

advantage, as the Sonine polynomial does, of azimuthal

symmetry. A reduction in the size of the inversion matrix

would decrease the round off error. It was with this in

mind that a transformation between the two bases was

soucht.

Vor (3Y = fe M5)HG(3)R(T)
(e=1)

This is ‘our orthonormal modified Hermite polvonomial

basis with the weighting factor |

~1%, Ya(1) = ce / (27)
The orthonormal Sonine polynomial basis as

 TN /

generally

ased is:-—

&gt; Tr {lh 2$(1)= C 1 YL, (3A)LY any 1 7, (0, TLE (A) (c-3)
wt uv

where L (37,)are the Laguerre polynomials and Y (0, Rare
the spherical harmonics as used in Wang Chang and Uhllen-

beck, By using azimuthal symmetry, as in Sugawara, we

reduce the number of free indices by one and the basis

now becomes

a X | .

2 (1) = ® (1) = C, 2 T° f (cos B) ON I)
(c-4)
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P (cost)is the Legendre polynomial, The normalization
factors are:-

Vv, 4 Y

I p! (24 +1) T a22% (a ppt)

Let us naively expand
oC ~A

2d) = 2. B(€mwvl xp) Ye, LT)
mnzo

Using orthonormality we then have

Ros =
a \/ceoolminly'® (e=5)

(c=6)

(c=-7)

B(0mlug)= [d°7 Z, (3) $ (3) R(T)
[37 A, Cy 1) P, (cos) B05)

€mn rR 2 2/7 1 evo

AlTB)ALT)&amp;3S21)(c-8)
We now use the polynomial expansion of our modified Herm-

Tee
i

ite polynomials to put equation (c-8) in the form of three

sums. =

L m hn

B(mnlaxp)=Ag, Cx ( Ss 5 5.— BP £ tmtn Tou (zo le—
(2m) 2° TF ) 0

1, xt Ati +y+k ~1
CRAG ICTR [dT I'L (5)7 eT |

g WA
) T iH ke _© Td st) Gos $7][ST8(sm0S™ st) Test 0-2)

whe Te ©

SE 3
 ry (4) = 2* 20 Wri) Li (0 0]

 TO 51-31) &gt;
(c=10)

After carrying out the various integration one arrives

at the following formula
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gm nm .

Bdmn lop) = App Cap [2 2 £ FE) Fm)
(2my%a | Jmo ize kee

wn) Lents) Cit pl1 Tet) T+
(57) Cr rid

- 2 2) 4)

R ( 2vple~t, 2riky ;
2 = * = Xe) ow
Zo P-o

¥

2

2vy k-2p (2441)

Atit)¥
2 (2 ) (2 |

Yr R-2p)

re
\

Ct! P(otle RED)
\ (t-p! © {pt

13 for est CJ

» 0
4 O ¥ 2 % \

(e=-11)

wh re

N . . eo.

rr = binomial co-efficient

 2 vale) , 27k ) = the integer is used

n

W,,,= Cm +1) 27) ( len yim) |

(Ln lym)! (nrml)

(c—-12)

The mathematics also gives the following rules for the

indices (1,m,n)

(i) 1 and m must be even

(ii) 1 +m + n = 28 +o

As we never had to resort to the transformation



GR

there is unfortunately no computer program for the

co-efficient [B(1lmn/«p ).
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APPENDIX D

Description of the Programs

The three major programs used in the course of this

work are Matrix, Dispersion and Polynomial. Versions of

each with slight variations were also written but in this

Appendix we will only describe the version most frequently

used, However one point has to be stressed. One version

of Matrix punches out the diagonal elements as positive

numbers. This version has to be used with those versions

of Dispersion and Polynomial which reads these elements

into core with the signs reversed, The other version of

Matrix punches out the diagonal elements as negative

numbers, This version has to be used with the correspond-

ing versions of Dispersion and Polynomial which read the

elements back into core without changing the signs,

Li) MATRIX, -
Matrix, as is implied by its name, computes the

matrix elements given by equation (4-32) that is the elem-

ents of the homogeneous collision operator. As a

by-product it also computes the matrix elements for the

self-collision operator.

The homogeneous collision matrix element given by

equation (4-32) can be reduced to a series of finite sums.
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Mu (bmn | Limin) = 2 NTT (20 hI

(zy teh |
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1 ir. 2, | A (k) | 2 {&gt; |
ml

(D-1)

where {; is short hand for (lmn)

 | A Jo) [10&gt; &gt;t = 5 $2)z. 2” PN
2: a: CVA

0) 2 )ReC7

(D-2)

&amp; £:)h (kd) 1Q15 Min (5,4) e. = rs
&lt; ¢ v t= Zz (2) 7 £&amp;.~&amp; [A (k) | 5-2.

i= 0 zg.)

&gt;
~

{ 2A) (2% ) L a
GU. 2 eT gy)

\ { Lizo tz Y

R GARD LQ 201i | A, 121-20
(D-4)

( 1- /

*
—

CALAIS
3 / i; yer
s (5) CR=yy(4

¢:=0 &lt;i (L7-2.

 0 +0) Lv0AED 4%/
l
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—
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\ TUM?Nurw, To jo\

706 ) ves)ee rd A

ame Se Cem)CALL | IC odo ( mimi)

hd

Fig. D.1 FLOW CHART FOR MATRIX (It must be noted that

this is only intended to give a very rough idea of the

basic logic of the program)
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ECD) = (24540) 2"
UT 2

CR) = (-nt¢ EYED

(D-11)

(D-12)

(D-13)

(D-14)AT. = ( 2 ¥io % m0 Fo )
Rs oo fal ef -

F = [0 0f) te) =(1-¢f[arowvector (2-15)
Matrix calculates each of the sums (D4) through (D-6)

in a Do-loop, stores it temporarily (or in the case of

(D-2) permanently) in an array and passes it on to the

next do-loop for the next summation, The self-correlat-

ion matrix element proportional +o the CUR(0) 25 term

and is punched out along with two-particle matrix elemen-

ts. This term is common to the calculations for any

value of kr, and is stored during the kr,=0 run for further

use.

To save core space the elements are calculated along

lines instead of by blocks, that is in the do-loops only

the n-index is allowed to vary. One tries to group the

2lements together so that the dimensions (1 m n indices)

are about the same. The order subrountine brings in the

ket vector Tub | in the order desired to form the dot

product and by varying n and n‘ all the desired matrix

slements are obtained, Once we have the desired grouping

of the basis, all the possible combinations of (1lmn) and
{ . .

(1m) have to be run, It is ‘basically a combinational
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vroblem.

Language used:- FortranlV

Precision:- Single as it was(din this program)numerically

proved that double precision had a negligible effect on

the spectrum calculation.

Main Program:&lt;+ Main

Subroutines used:- ORDER RW

ol RF

~h SF

RAT

Jimensions:-

The array S3(JJ1, JJ2, JJ3, JJ4+1, 1J3+1, 1J6) used

is a six-dimensional one. To arrive at the minimum dimen-

sions use the formula

Ji = Maximum (I 1+ 1)
1Ji = Maximum (1+ 1)

where (1, 1,1) is used interchangeably with (lmn) and 1 is

synonymous with the program variable ll.

InputData

Card # Data Format
Ntimes = number of runs with 15

different values of (MAXL, MAXM

MAXN) for these values of

IND 1 =

IND 2 =

itJ

I=
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Card# Data Format

The subroutine ORDER compresses
i

the indices ( 1mm’) into one index (i). (i)

is varied in increments of unity between

IND1 and 1IND2 (inclusive) to give the

desired values of (nin).

rma

MAXL =) Correspond to the indices

(lmn) with n being the

15

MAXM =

MAXN =

|

)

15

maximum value for the 15

given line

NURK: the number of varying kr,

runs to be made with the prece-

LF

ding values on cards 1 and 2.

RK =~ this is the parameter kr,

The first RK value must be 0.0.

The self-correlation cards will be every second card.

T
wr

The 1BM 082 sorter can be used to sort the cards.

(ii) DISFERSION:-
DISPERSION is the program which uses the matrix

elements from MATRIX to calculate the spectrum by the me t-

hod of Kinetic modelling described in chapter 3. It

——— orASCAt,liEI

Fi) Ntimes sets of data

“(ii) NURK sets of data
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essentially solves the sets of equation (3-30a), (3~30b),

(3-34b). One important point to remember is that it

calculates 2R(xy) directly and mot S(x,y).

Language used:- Fortran IV

Precision:- Double Precision

Main Program:- MAIN

Subroutines:- SKW

BETAM
SFHB1

HN

CROSS

1

BETA

W

ORDER

The subroutine W is the subroutine W used by Sugawara to

calculate the krlasma dispersion integral. ORDER as in

MATRIX orders the basis and essentially compresses the

three indices (lmn) into one index(i}). The matrix

inversion has been incorporated into SKW,

Dimensions: Before running the program check the follow-

ing variables for possible dimensional incompatibility

with the data variable NMAX. The minimum requirements are

(a)

LD)

Subroutine

MAIN

SKW

Variables

BHDSPH, GAMMA both NMAX by

NMAX matrices

A. GAMMA, BHDSFH, C, B. D

GAMMA, BHDSFH as in (a)

A =2KMX by 2KMX matrix B =2KMX dimensional vector

D =KMX by KMX matrix C =KMX dimensional vector

(c)BRTAM BHDSPH as in (a)
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input Data: =

Data Sequence: Data

NMAX = number of MATRIX

cards read in for each kr,

spectrum calculation

RK = the parameter kr,

KMDUMX = number of differ-

ent KMX runs with the

Format

3

E16.5

15

preceding values of RK and

NMAX

N.B for the self-correlation input RK

(I11213I41516)
BMAX

-

=0.0

615
2F16.5

the MATRIX element Aof2

(that is the one related to

lh

-

~

the shear viscosity).

\ set of matrix cards froml

| veo for one kr, value |
TITLE - comments

KMX = order of Kinetic model

MAXY = number of different nr.

runs with the preceding info-

mation

(I1121%141516)

RBM~ = N

615

2E16.5

18A4

15

2E16.5

”~
mi {3

2E16.5



Data Sequence:
KMDIUMX_}

sets

2

MAXY_
Sets

 Be-

Dara Format
the matrix element corr-

esponding toi X,of the

_Kinetic model
XMIN The spectrum is

a calculated for x betw-

DX een XMIN and XMAX(inclus-

3D16.,6

ive) in increments of DX

the parameter J D16.6

(iii) POLYNOMIAL: -
POLYNOMIAL performs the same functions as DISPERSION

except that the calculation is performed by, essentially,

the Wang Chang Uhlenbeck method as explained in 5,2

This program was not in any sense intended to be a

production program, It was merely used to check the

results of DISPERSION and so it will not be discussed any

further,
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