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ABSTRACT

The generalized Boltzmann equation derivedby G.F.
Mazenko is used to study the spectrum of demnsity fluc-
tuations in a dilute monoatomic gas of hard spheres.

The method of Kinetic modeliling is used to generate
numerical solutions to the initial wvalue problem based
on the Fourier and Laplace transformed kinetic equation.
A set of Hermite polynomial functions, in contrast to the
set of Sonine polynomial functions, is used as the basis
in formulating the Kinetic modelling. This choice is
motivated by the fact that at finite wave number one
loses the rotational symmetry in the collision kernel.
Kinetic models of different orders were formulated and
their convergence properties were examined., It is found
that a Kinetic model of order around 40 is sufficient to
ensure numerical convergence of the solution.

The effects of the wave number dependence of the
collision kernel are explicitly investigated. It is shown
that deviations in the spectrum of density fluctuations
from the the results of the linearized Boltzmann equation
can be as much as 10-20%, Such differences appear to be
within the resolutions of a careful inelastic neutron
scattering experiment.

Qur results also show that the two calculations
should not be significantly different for kqﬁ:0.00S
where k is the wave number of the density fluctuations
and r,the hard sphere diameter,

It is shown that the self-correiation spectrum is no
different f;om that calculated with the neutron transport
equation, ZThis is due to the fact that in the case of
the self-correlation there is essentiallly no difference
between the kernels of the two equations.

Thesis Suprevisor: Sidney Yip

Title: Associate Professor of Nuclear Engineering
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CHAPTER 1

Introduction

1-1 Background

It is now generally acknowledged that time correlat-
ion functions are the fundamental quantities in the desc-
ription of transport processes and scattering phenomena(20).
The Fluctuation-Dissipation theorem has shown that the
linear response of a system to an external disturbance
can be expressed in terms of time dependent correlations
in the equilibrium ensemble(6). In other words the fluct-
uation phenomena of a system in equilibrium can be rela-
ted to the behaviour of the system under an external
driving force. Actually, what is normally computed is the
space-time Fourier transform of these correlation functi-
ons., This is because the Fourier spectrum of certain of
these functions can be related to the results of scatter-
ing experiments on gases and the following discussion
applies primarily to this category of phenomena although
the results may also be applied to include other kinds of
experiments, We consider only classical correlation
functions.

The first such spectrum to be used was the spectrum

of the density-density correlation function G(r,t) (1),

Glr-vi4x )z L 2 S -Rw) $r'- Ry 7
! %]
(1-1)
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where n is the uniform number density and £ 7 denotes an

average of the particle phase co-ordinates over an equil-
ibrium distribution usually taken to be a canonical ensem-
ble,

By invoking the Fluctuation-Dissipation theorem, the
correlation function G(r,t) can be calculated from the
density response, This approach implies that the equat-
ions describing the behaviour of the system's density
are known,

When the long wavelength and small frequency region
of the density correlation function is to be examined, the
hydrodynamic equations can be used to study G(xr,t) (13).
But when the wavelengths become comparable to the molecu-
tar mean free path and the frequency becomes comparable
to the molecular collision frequency, Kinetic equations
have to be used because the continuum description is no
longer valid. The Boltzmann equation and the neutron
transport equation are such equations and they have been
used to compute the spectrums of G(r,t) and the self corr-
elation function Qég,t) (15,5},

However even these equations break down when the
wavelengths are comparable to the particle dimensions and
the times are comparable to the collision duration. Math-
ematically this is due to the fact that the kernels in

the collision integrals of those equations are frequency
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and wavelength independent.

The problem then, is to formulate generalized Kinetic
equations which are valid for all wavelengths and all
frequencies, This has been done using projection operator
techniques (9,11). By applying such techniques to the
phase space of the system, the more fundamental* complex

fluectuation function

SCk,¥¥,2)= [do s;(l_e.,ggzg)m
L) -~
(1-2)

can be shown to satisfy an equation of the form

(2-R-Tv) S(l,7T/2) = fTM (K, TT,2)Sck, T 12
. _SO(B‘JEI[) (1"3)

[
The transformed initial condition S(k,¥ 1) is given by

S, 15 )am [ () $T-1)+ F(D) R0 F(TY ]

(1-4)

where we have used the following non-dimensional momentum

variables
2z P /mvo and VQL: (M[SS-‘ (1=5)
The function N
=3 =T/
2 (1) = (2m) @ (1-6)

*G(r,t) can be obtained from this by carrying out
the appropriate transform inversions, limiting process
and various momentum integrals.
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is the Maxwellian velocity distribution, h(k) is the

transformed total correlation function andﬁ1ig,§‘g,z) is
the memory function for the one particle distribution
function. Before further discussion of equation (1-3),
it should be noted that we can relate S(E,}!f,z) to a

correlation function as

Sk, 3T )= [LCrah [d (A0S (r-vs 1T, 440
-tk (r-x)+ '\.ou(-(-v)]
< (1-7)

TRRLE) L (flrpt) - <Forpt)Yeg
(fex'pr e = CREPEDZ) Dpq (1-8)
is the equilibrium fluctuation function of the phase
space density operator
fer pty= % $(x-1 (1) §Cpo p¥n)
(1-9)
Equation (1-%) has the form of the desired generali-
zed equation, and the problem is now to find a tractable
form forPf(g,glziz). There are basically two approaches
to surmount this obstacle. The first is to postulate
phenomenological models (16) and the other is to evaluate
the memory function exactly for special systems,
The second approach is what concerns us in this
thesis, Upto the present, only two useful approximations

to the memory function have been derived., The first is a



] B
weak coupling expansion to obtain the memory function to

second order in the interaction potential (4,11). This
approximation is only good in the case of weakly coupled
fluids. Unfortunately weak coupling excludes hard core
interactions. So this method cannot be applied to real
fluids.

The other procedure, derived by Mazenko, involves an
expansion to the lowest order in the density but it is
valid for all interactions. It can therefore be applied
to real dilute gases. Mazenko has shown that his low
density memory function reduces to the linearized Boltzm-
ann collision kernel in the low frequency and long wave-
length limit., It also satisfies certain sum rules and
is consistent with the conservation laws. In the present

work we will be concerned only with the Mazenko eguation.

Present Research

In this thesis we apply the Mazenko equation to the
analysis of neutron scattering in gases. To obtain the
spectrum of the scattered neutron beam we have to calcul-
ate the generalized structure factor S(k,w) which is the
space-~time transform of the two body correlation function
of the gas (1). This is the G(r,t) mentioned earlier.

When the complex fluctuation function is expanded in

terms of a modified Hermite polynomial basis, one of the
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co~efficients of expansion turns out to be S(k,w). We

therefore expanded equation (1-3%)} in terms of that basis.
This equation was then approximated for computational
analysis. The approximation method used was that of Kine-
tic modelling (%). The linear system of algebraic equat-
ions obtained through this approximation was then solved
numerically on the computer to yield the desired spectrum
S(k,08).

Our results should be good for all values of the
wavelength and frequency since Mazenko's memory function
is the correct wavelength and frequency dependent genera-
lization of the linearized Boltzmann collision operator.
In the case of the hard sphere gas it brings in an addit-
ional parameter kr which is a measure of the wavelength
in terms of the particle dimensions. In the 1limit where
the wavelength is long compared to the particle dimensi-
ons our results reduce to those obtained using the
Boltzmann equation as they should. But at finite krj
where the Boltzmann eguation is no longer valid, our resu-
1ts do show significant deviations from Sugawara's results
(13). Thus within the restriction of low density, we are
able to delineate the region of validity for the Boltzmann
equation and obtain quantitative corrections for wave-
lengths outside this region.

Besides the spectrum of the density correlation
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function, we have also obtained the spectrum for the Van-

Hove self~correlation. This function appears in the the-
ory of incoherent neutron scattering and it is related to
the phenomenon of diffusion in the fluid (20). The cal-
culation is a by-product of the density correlation cal-
culation since the memory function for the self-correla-
tion turns out to be the kzb—adylimit of the homogeneous
part of the memory function for the density correlation.
Both correlation functions therefore can be obtained from
a single calculation.

In the following chapter a classical derivation is
given of Mazenko's result for the memory function wvalid
for a general two-body potential. We then discuss the
reduction of this memory function to the Boltzmann colli-
sion operator in the appropriate limit. The final sec-
tion of the chapter is devoted to the hydrodynamical
description of the continuum region. Certain transport
co-efficients are tied in with the solution of the hydro-
dynamic equations and are specialized to the case of the
hard core gas, For eventual comparision purposes the gen-
eral analytic expressions for S(k,») in the hydrodynami-
cal region is given. Once again we specialize it to the
hard core case,.

Chapter three sets up in detail the calculations

for S(k,w) and the self-correlation spectrum S(k,w),
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The Kinetic model is also discussed in this chapter and

particular attention is paid to the fact that our basis
is not the conventional Sonine Polynomial. We have chos-
en to work with a modified version of the Hermite polyno-
mials, thus bringing in questions of convergence to be
examined later. The problem of ordering such a truncated
basis is touched upon and reasons are given for our vari-
ous schemes. The last section of this chapter examines
the connection and consequences of the different transfo-
rm definitions used by Mazenko and Sugawara. This is
important as we intend to use Sugawara's results as a
means of checking our computations,

In chapter four we reduce the general operator deri-
ved in chapter two to our special case of the hard core
gas., The matrix elements needed for the Kinetic model
calculation are also presented in this chapter with an
explanatory note on their computation, We also discuss
properties of these elements such as the wvariation with
the parameter kr;.

The numerical results we have obtained are presented
and discussed in chapter five. Finally, chapter six
summarizes possible experimental work based on our resu-
1ts and also indicates our general plans for future work

along these lines.
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CHAPTER 2

The Generalized Kinetic equation of Mazenko

2-1 Introduction

We begin this chapter by presenting a derivation of
Mazenko's low density memory function & (k,pp,z) in
section 2-2, We will show that it can be written as a
sum of two parts

(s (<)
ECR,ppi2): E (e, priz) + E e, ppl2) (2-1)
Ewik,pp, z) can be thought of as the mean field on
one particle due to all the others and is known as the
static part of the memory function, ZGEE,EE, z) is the

collision part. We will show that this part in its turn

can be written as a sum of two parts.

) p ) p ) 5
E Ck,pph2) = Eg(Ropple) t E (kPP ) (2-2)

‘Ziig,gg,z) is what Mazenko (2) calls the inhomogene-
ous term while E:Eg,pg,z) is the homogeneous term.

With' the analytic form of E(E,EE,Z) in hand, we then
show, in section 2-3%, that it can be reduced to the line-
arized Boltzmann collision operator in the long time and
long distance limit. This means that our calculations
for the density spectrum using Mazenko's generaliged Kin-
etic equation should, in the long time and long distance

limit, give the same results as those using the Boltzmann

equation.
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Finally we conclude the chapter by briefly discussing

the hydrodynamic regime+,

2-2 Derivation of the low density Memory function
Instead of discussing Mazenko's quantum mechanical
derivation,of his memory function we will follow Boley (8)
and give a classical derivation of the low density result.
The classical correlation function S(;—zﬂgg, t—{)
obeys equation (% 1a). If we Fourier and Laplaée tran-

sform this equation using

—Je
S(ls,gf’,e)=Jo"rf"‘?5(x,gt’,{) [2-5)

. ot
SCh, pp,2) - 2 dte® S e, pi/ 4y (2-4)

we obtain

(2- p-ly sk, pplad+ sk pp/ s 0)

Boley's idea was to expand S(k,pp,z) and ¥(k,pp,z)

in a fugacity series

SCk, Pp,2) = Y5ty S+ 0. ..

E (kP 2) 2 Sy + 0y (2-6)

Phe reader should consuit Appendix A if he desires
the detailed mathematical steps behind the results quoted
in this chapter,
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s where y is the fugacity, and use equation (2-5) to rel-
ate the coefficients of expansion in the two series,

This method leads to the following equations for

Sland Sz
(z- lﬁf/m\) Ss"‘ Sa; = 591?7; 2 S '
| (2=7a)
- k. S, 80 - Jd¥p T s
ci rs E/m} 1* * - j F i (2-=7b)

where S:and Szare the respective initial conditions, For
convenience we do not write out the arguments of %, %?
and Ei, i=1, 2, %he relationship between fugacity and
density is (26)

(Pﬁz)mﬁ s mit= fdrfm v on? ]

2hm (2-8a)

~pviv
whe re fte3= & - ,, (2-8b)

Thus E|should also be the memory function to first
order in the density.

Now we are left with the problem of'calculating the
terms 5 and Si We use the grand canonical ensemble to

evaluate these terms,

el
Fy_ Pplw Z 1" fli o ot

—aMy Cieo. N
e N Foio.n ) (2-9)

where 1= (3,2), Hiiis the Hamiltonian of the N particle
system, h is Flanck's constant, F is the grand partition

function and the limit V9 @has to be taken to complete
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the averaging process., The grand canonical ensemblé

thus leads logically to a fugacity expansion and we find,

S,C"r,f R, 1) - 50X <2t /m) Py S (P—?’) (2-10)

- YCY—H\
S, (, PP, = 2\.‘ foida ‘HP, 4’(?) ie L
t
aum i%éu‘-’fﬁf_ 5{3":‘)_ 2 [

‘X—-‘ﬂ ;j"g(?ﬁfx); - #(P) ‘#{P) (2-11)

L is the two-body Liouville operator

d.i.@uﬂ

W0y 2 P9 /m t P9, /m (2-12)

Loz =9 Vgl 245 - % oors

A Lbw) o a0 4 L) (2-14)
The form of S, and equation (2-7a) tells us that §,
evolves: by free streaming. Thus E;is Zero.
1f we substitute for S, in equation (2-7b) we find
that :
g (k, ppl2) ¢p) = ~L2- iﬁ'_l"/m]i (2 -5k Plm)
Sk, pph2) + 5% ¢ 33._?1”3}
(2-15)
To reduce equation (2-1%J) further we make use of the
fact that .
(3¢ + PV/m ) (34t+ P/V/m) S, Cx, T8, 1)
- _.__l gdidl ¢(¢°3 ‘?Q’) e pwr, -r.t) E vtiiz)

iLaw £ s x-agy ]k {u}i § (x’-;)

l-‘.i

+ Ry (2-16)
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where

(v-1.) .
Re= 31 Jdidz pd P ep)y e il G
z

vt L)
Jz:lg(x :{)+2 sw/x)F V/m 1] e

il (\z)Z 3 (-2 | (2=17)
L=
i

gls the difference between our equation (2-16) and Boley's

equation (16). However the transform of R_turns out to

B
be zero.

Using the result proved in equation (2-15), it can

be shown that the transform of equation (2-13%) is

0P E k202 [ e( e+ 2 Rllm) 5, (k, Ppi0)],

zt -tk
Edb S L LEHS of (2-14)]

(2-18)
it is clear that the first term on the right hand side of

(2-18) forms the static part of the memory function.

)
can be shown that this partff reduces to

It

E (k,P) - =Pk o f k) "’(E) (2-19)
(i
The ‘collisional palﬁzzf%f the memory function is

given by the transform of the right hand side of equation
(2-16).

1lf we use the following transformation

El.+ fz g 28 (2~20}
ﬂ - JH = < f
N+ = 2R
T~ = T
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(o)
we can reduce \Z\ to the following form

E0k, P2 20y = 94k 24 (AP A3
— BoAtfm— B P - _ k¥ =
(&) "7 " 9iy vo v [ et (o w )

- =l Sy o TRTA 3
~v5 V(3 - 43)] Vi VE) e *5(p-2-P) (2-21a)
where 30ﬁ = e-FV{!) (2-21Dp)
When we take into account the variable n in the

expansion we can see that equation (2-21a) agrees with

Mazenko's expression (2).

?2-3% Reduction to the linearized Boltzmann Collision Opera-

tor

———

The linearized Boltzmann equation is

(%t B Wim ) §(r,e )= T( f0x,p,4))
(2-22)

where J is the collision operator (27),

T(fex,t,t)) =4 [d% (A 91(9,6) [ f(x,p5%)

T EOC, B 4) - £0x, 8,40 = §0x,p,4)] +cf;(32_23)

where
mg = \p-B 1 = \p ~ ff\
T(5,8)- b dbd V /dJL  is the differential
scattering cross-section

b = impact parameter

smB A0 dY is a solid angle

L
P
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@ = the scattering angle
(2-24)

The momentum variables obey the following conservat-

ion laws,
2+ p = 2+ p{ (2-25)
Yo o= 2t oper (2-26)

We now write the following defining equation for the

kernel Iég,g”)

d¥F Lo (P B0t t) = T (4
Ja¥F Lyl ‘i‘ P feoptd
The explicit analytic form of %ép,y”) is then
PEg 2LEY) = L JATH [dwe T(E-P, 83B-Filfn

P Pery [ 6pt ?nacf/’ B - Py - a(?fzg 28)53

We would ilike to show that our memory operator
L s .
b3 (;r_,;gg",t)* derived in section (2-2.) reduces to L(E»E”)
for long times and long distances! In transform language,

the proposition becomes one of proving

Lim & C%)F?”’ 2} = Lﬁ(f,wgf/)

(2-29a)
We will prove the equivalent statement
Lim ¢ (p ")E “",f?"?“ #“ﬂjlmﬂ s £ 3
PR-%@ ':r.;z@ (2-29Db

5

*The following derivation parallels that of Mazenko(28)

{c)
¥ie have dropped the subscript 1 from ‘€, and will
from now on use the symbol €¥’to represent our low density
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The k=0 limit is easy to take. We Jjust set k=0.

After some algebraic manipulations we find

2 f, 3 _
E Co, )R -0 (Brrm) fd3x A% L3P
~£ (%24 P?) . T -
¢ » Lot -2+ Py + (2~ 0B ] (24 Lo, P)

< 0 szt —
Jq00 [i2 §dt e* 5 p-a-Fay+ s(P-a-7)1f
(2-30)7

As a digression, it is gratifying to note that the
static term vanishes in this limit as it should. Going
- ——~back to equation (2-30), using mathematical identities
proved in appendix A we can write

E%0, 2 P9 2) O -t (P )Y [y F
_ﬂtdl-‘-Pl)/mESCfi't”‘* E)*\‘SCQ_‘ “—P-(f"‘E> ]
2 P % sn S [6(=3Fy( s(p-a-F>- 5(E-2-B) )Yf
(2-31)

The step functione(-.-_f_"i) has been introduced to
take account of the fact that there will be a collision
only if §s§<20. Now, for the purposes of the spatial
integration, we use the polar co-ordinates bdbdzd¥ and
set P along the z-axis. b and ¥ are as defined in equat-
ion (2-24), The step function enables us to restrict

our attention to the z= - & surface and we find that

*memory function.

*The interested reader should consult chapter 4 for
further details,



_25, i
e . 1 _ =Py
20 0 d(r”) = ~in* (F/am) fdixd’p e "

21 L SCak —P/+ Py 4 5(%-PY-F) ]

2% -
(b oAb AYLScp-a-Fr- 8 (P--F)]

(2-32)
Using the definition of the differential scattering

cross-section 1I(g,B) and integrating over Xwe are left
with

. 3 -
£ 77y F(prr= ~inm (Blm) [dwolfF 21F 4
) -pP’ = - ~ B
i I(p,e)[eﬁft'— Mg (ppr)
- B (P~F'/m %(f‘_zl “_EU“'?P) + e-—ﬁ/m(E E)

€
Py
C -P) e*E-(f'f)

5

F~2

10

§(p-Pr-p7-7)]
(2-33)

We now use the following transformation

20 = D - D, (2-34)
This transformation in combination with equations

(2-24), (2-25) and (2-26) allows us to write
4y .
‘g chrr/) cP(Fl/) ‘11_1 (-ﬁ-f]o“-ﬂhd?r \f"_ﬂ\/m
3 ™ !

-g(E-fVA -6 CPtPY /A
T(p.perem 7 1w

~(PABRB A m - (-4 (ERV B
s

SCP-2+ 5Ce-p"
~ SCRTPLAN-PNE

~(p-t (B-PNE 7 T
- 9(p/-P4C (2-35)

This can be shown to reduce to
2 pery P o 3 dp) (B de 19-P L4, Tep-£,0) )

[ 5cer-p v 5t pomseeRr-se=r) ], o
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When equation (2-36) is compared with equation (2-28),

we see that asides from a factor of 1 the two expressions

are identical.

2=-4 The Hydrodynamic limit

To provide a sense of completeness, we present a
discussion of the hydrodynamic equations in this section.
Historically these were the first equations to be used to
calculate S(k,Wd. They provide a macroscopic viewpoint
and the spectrum so calculated is good only for times and
distances long compared with the intercollision time and
the mean free path. These equations are stated below
with a brief word about their derivation, The derivation
enables us to connect the thermal conductivitydand the
shear viscosity?\yith the microscopic properties of the
fluid. We then formulate an analytic expression for
S(k,W) using these equations, This allows us to identify
prominent features of the spectrum with certain macrosco-
pic processes., Finally we specialize our expressions to
the hard sphere case,.

The Chapman-Enskog procedure enables us to derive
a set of hydrodynamic equations from the Boltzmann equat-
ion, These equations consist of the conservation laws for
mass, momentum and energy flux and equations for the heat

flux vector and stress tensor, The Chapman-Enskog proce-



.
dure . first makes use of the fact that the Boltzmann colli-

sion operator Q(f(r,v,t)) satisfies the following equation
for a set of functionsiq’i(y)f(m,%),

(d3v % vy Q (FCx,v, 1)) = 0
T (2-37)

This setiq’;(yﬁis known as the set of collisional
invariants and consists ofiu,bz,cv"j where a and c are
scalar constants where as b is a'constant vector. ZEquat-
ion (2-37) enables us to derive the set of conservation

equations for it implies that

Jiv et vy (kb +viw) fox,vi4) - o
(2-38)

If the integration in equation (2-38) is carried out for
each of the q’l we obtain the macroscopic laws for the
conservation of number densitye(ggt), momentum density

€ (r,t)v; and energy density g (r,t)(3vie)
9/;;{: ((’VJ) + 9/33(" ( fVLVj + PH): O (2_40)

26t Le Clhvired] 424 Cev: (Luire)
¥ Pi_;"j +%;] =0 (2-41)
where the summation convention is used

g = fo(%'f(’r)\_/’,'t)

(ev)s [PV f(x,v,tY v’



is the stress tensor

q .- /2 j'd%’ciczf(?, vi+)

-

is the heat flux vector
e = £ JJSV’ c?‘f (x,v4t)

is the energy density due to the peculiar velocity c.

(2-42)
We have dropped the functional dependence on (r,t) to
simplify the notation, Temperature is normally used inst-
ead of energy density in equation (2-41). To do so here
we would have to use thermodynamic relations and as it is
not our intention to get involved with such issues we
shall side step the point.

If equations (2-39) - (2-41) are examined carefully
it will be seen that we have three equations with five
unknowns., Apart from our conserved variables we also have
the heat flux vector and the stress tensor. The Chapman-
Enskog method allows us to derive equations directly from
the Boltzmann equation relating the heat flux vector to
the temperature gradient and the pressure tensor to the
rate of strain tensor (12)., 1In the process of doing so
expressions are obtained relating the thermal conductiv-
ity and shear viscosity to the molecular properties of

the fluid.
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The second order Chapman-Enskog approximation gives

us
= 2P TR (2-43)
Pg)' = @, Rg Ty, 1§, - v, ( b Dy (T 1) T
=D, y) (240
where

_Di,j A auk/ax‘, + Y, lax; )

is the rate of strain

tensor
(2-45)
nsz the shear viscosity {9 48)
X = thermal conductivity (2-47)

The equations for‘qsand A in terms of the molecular

properties of the fluid will not be given here as it wou-
1d lead us into an extensive discussion of the Chapman-
Enskog approximation scheme, As we have no intentions of
getting involved in such a discussion we will proceed to
the calculation of the hydrodynamic density spectrum,
Now that we have all of the hydrodynamic equations it is
a simple matter to obtain an analytic expression for
S(k,W). Our discussion follows Clark's derivation (24).

For long times and long distances G(r,t) becomes

-
G(x,t) = M <o) @Y, t) 7 -

For small deviations from equilibrium equations (2-3%9) -
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(2-41) can be linearized to give (13),

€t t C VY = o0

(2-49)
e VAL + Coz/}’ Ve, + CZ'F-?oV-'T/—g- %Yls/mV( V-Vi=o
(Navier-Stokes equation) (2~50)
e,c, N4t — pﬁ;r&')gﬂét"kolﬂf 0
(2-51)
where m= mass per particle
T= T, + T'is the tempersture
Tz equilibrium temperature
Co = equilibrium density
¥ = Cpr/c,
B = thermal expansion coefficient
C%:: adiabatic sound velocity
(2-52)

We have made use of equations (2-43) and (2-44) and
assumed that local thermodynamic equilibrium holds.

The external force is taken to be zero. The initial
condition to be used in conjunction with equations (2-48)-
(2-50) to calculate S(k,W)is

<@ (Y01 P (0,08 + p A(x) (2-5%)

These equations are solved for n(g,s) the TFourier-
Laplace transform of the density fluctuation

(kLY [dr { dtenp (kT ) ewp (-3%) p, (x, %)
0 (2-54)
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If we subtract out the eguilibrium contribution’

to the spectrum S(k,®) we can relate the resulting spect-
rum Se(k,w) to n(k,s). Using this relationship it can
be shown that (24)

Se (R, w) = 2_}’575_ (1=1/%) r’,_ 4 3 r;sw:/‘ﬁ' — T (= k) Cl-'/b"\I

1
rE 4w (=i + (200 Mg Y
(2-55)
where
Ko = isothermal compressibility (2-56a)
=1
X; = (g kegT) isothermal (2-56b)
compressibility of an ideal gas
2
I7c = 2k /eo Cp (2-57)
Pe = % 1 4an (i-1Hx {k?
B = 2 -l + 6c
CEaS o 4 (2-58)
6\)0': kcb (2_59)

1t must be noted that equation (2-55) is an approximation
to the exact' result. When’l, PE << &,, equation (2-55)

can be further simplified to the familiar three component

I

spectrum

~ g y2ml K
SGC‘Q'W‘:‘ET{'(| —_/P..}-—; "'%E‘. “{'L'“"' 1_+ P 4 ( wf-
w2 P%+(w_wu\ ol

= (2-60)

*fhe equilibrium contribution leads to a 9(k) term
in the spectrum. This term is of no physical interest.
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Physically, the Brillouin components of this spectrum

centred at W= + W are due to propagating density fluctuat-
ion modes whichrare simply thermally driven acoustic
waves, The central peak is due to the non-propagating

thermal diffusion mode.

For a dilute gas of hard spheres of diameter & (17)

we find
Fep /K1 2\
- 7
¥ = S5 v
N = 254, [kBT/ﬂM] (¢ /s?)
i/
Mg = (5/4cerY Lomker /7 ]""

¥4
Cc - [ gk’BT /3m] ‘
(2-61)
With these values the widths Vsand rl_are
iy
o« (15k* Zag, 62 [ ReT /firm] e
2-62
t/.’_
Mo~ (35k*/4¢p 6%) [keT fim]
2 ° (2-63)
I
(2-64)

So for the hard sphere gas equation (2-60) becomes

— P
Se(h/ﬂ\)) = i &__C " + %P‘S[ ;.l_.l_-— o
ety D) g + (W=t
+ D 1'] E
\"é—\-(wfm,)

(2-65)
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This equation can be used to check our numerical
calculations in the long wavelength limit for the hydro-
dynamical region in the Boltzmann limit,

In closing this chapter we would like to clarify
a point of notation.S(k,») is the space-time transform
of GI(I‘-I'/,‘t-'t') whe re

Gv-v5t-1) = G-y, 44 — (2-66)
It therefore differs from S(k,wn) by a constant term,
We,however shall use the terms S(k,a) and %ﬁk;m) as
though they were synonymous. The reader should be

mentally prepared to use the terms interchangably.
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CHAPTER 3

Calculation of the Density Fluctuation Spectrum

3-1 Formulation

The classical correlation function S(r-r,p p,t-t),
defined in chapter 1, satisfies a Boltzmann-like eguation

of the form (4),

r+

(3t + B AX) SCr,pPR) = [ o% [d3F A2F
g (x-%, PE,e-t) S(F, 7P )
i (3-1a)
with the transformed initial condition,
(k,pp) = ¥(p) 8(p-p) + h(k) #(p) P()
(3-1b)
wherg 3 .
Po) = (2ammp) et P (3-1c)
is the Maxwellian velocity distribution and
B= ( 1/mv;) (3-14)

What is experimentally measured is the spectrum of
density fluctuations, S(k,®) which is defined as the space
]
time Fourier transform of the correlation function, G(r,t)

7
G(zr,t) “»1'1'(?‘,5(?&‘” sy~ (7 = (3-2)

n = uniform number density

| 3 _tk" Ai
uSChde Lom fdbe e | < GQ'“(B—B)

2= w+ i€ )E?O
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Owing to a slight difference in the definitions of

the transforms used in Mazenko's thesis (2) and those used
in Sugawara's thesis (3), transforms using Mazenko's
convention will be denoted by a presubscript M while the
ones obtained by using Sugawara's convention will be deno-
ted by a presubscript S. In a later section these two
approaches will be reconciled.

From equations (1-8) and (3-2) it can be seen that

6(z,t) = [£p [P Scr 27/, 1) (3-4)

Thus the solgkion to equation (3-1) and the density

fluctuation spectrum are related by:-
. —ky W 12t
= L 3 R 3
MS(huﬂ e?ﬁ fdv-e I dte §J|3
A Scx, FrAY

( 5=-5]
Using various symmetry properties this can be further
simplified: -
—iRey
> (ko) = Lin QREH (Ut €5 0x 1)
G20 2 =g
(3-6)
= o 2 [dp [op' S (R pp/a)
(3-T7)
where

.t.
S(hPPzY-z ﬁﬁ ey f Jte SCx,ppr 1)
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Equation (3-1) is now Fourier-Laplace transformed

to yield

(z ~RPlm) SC L 2) - (PP E (kPR 2YS (k PP/2)

(3-9)
c 3 —lky ® Lt
SCk,ppa)= e T [ ate Sex, PR, t)

(3-10)
Now integrate over all p’

Sw(k,P,2) = [d3p¢ Sk pp!2) (3-11)

(Z-k-Lhm) So CRE2) = (d°F £ (k,77,2)5,(kE2)

=T &)+ 8PP M T
(3-12)

Introduce the non-dimensional variables
T= Flwmy,
Sk T2 7\5‘,:(’3.22‘) /Cmvﬂg
I . e/
Z(R352)= M'Ce,3702) /Cmy, )

i

(3=1%)

The k-direction is now choosen parallel to the'ﬁgaxis,

Thenthe dimensionless equation that has to be solved is,
(2-k%T) s/ (kiz) = JA*TM/(k3T2) Snik T 2)

=~ L1 An A 00T e

bﬁ(hw)~~ﬁm Qwayﬁfsgfk:3£3

€5 0 (_3'14]3)
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To conclude this section it seems worthwhile to point

out the fact that the self-correlation function

S50, P2 CZ s cx-x @) §G-R (1) 5 (1 (o)) %(1;') P (o7

also satisfies a Boltzmann-like equation similar to
equation (3-1) but with a different memory kernel Esand
a different initial condition. Esjs essentially a port-
ion of & and more will be said about this relation in
chapter 4.

If we go through the same formalism as we did with
S(r,pp>t) we find that

(- Bl/m)S(k’ff
= -5 cw, re’)

~ (d% E,(k,pF,2) Ss(k.FR2)

. (3-16)
where
T d ’ _p!
S, Cle, BE Y= PCp> SCp) (5t 13
ik =

ssch,ff;a)wfo@re j;ol’ce s (xr,pe,t)
. (3-18)

/ 3 -l__lg"!' © 12 f )
o (R, ppl2) - fd¥r € foo(te E. (T, PPt |

(3-19

Integrating over all p and non-dimensionalizing as

before, we arrive at,

(2-kv,3) S (k32> ~ [T M) (k,17,2) 5] (kT2

WO (R0 = Lim 2Im (43 S L (RI2)

=0
(3-21)
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To extract the information that we desire, equations

(3-14) and (3-20) will have to be approximated by a form
more amenable to numerical solution. The approximation
technique that we decided to use is the method of Kinetic
modelling. The method and its application to this case

is discussed in more detail in the next section.

3-2 Kinetic modelling - Formulation

EBvery bounded linear operator may be represented by
a matrix and the matrix representation of the memory oper-
ator in equation (3-1) has an infinite number of elements.
The method of Kinetic modelling to discussed in this
section gives us one means for approximating this infinite
matrix (22,23%).

We shall discuss this technigue by applying it to
equation (3-14).

Let fqﬁﬁﬁzbe a complete orthonormal set of functions
with the weighting function £(I. We then expand both M(k,TI

/
2) and S?gl_g's: z) in terms of this set.

&L 4
Mk ¥1'2)- Z i“: Y (3 B () M)
L= 33
(3-22)

ol
S;(B},‘E)Z (Z_.-‘ \h(gli(l) SL(‘EZ\
- (3-23)

where by orthonormality,

Sk o)z [d3F ¥ (1) 5% (kTz)
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MGl = 3T 5T W) M (k1T Een B ()
(3-24)

The se expansions are then substituted into (3-14)

(Z- RVI\Z S(kz)‘h?)g(})—iilu T¥(7)
f*tj-'

Emmm,) “P(u?fm i ¥ (3) 5, (kz)
C EE [ ] (3-25)

This reduces to

(2- kv, T,) z ¢ (1) 2D S(kz\—i z: Y (1) (3)

l"‘l itz

MCil)) §;(k2) = ~F(DL1+nh(k) ]
(3-26)

Upto this point the equation is still exact but in
order to proceed further the infinite sums will now have
to be truncated. The method of Kinetic modelling however
leaves the free-streaming operator unaltered. Thus one
of the advantages of the approximation is that it will
give the exact answer in the free-particle limit.

The memory term is truncated by the approximation

M(i]y) = M( N+1/M41) %

Il

I for  or) ? N

= -l Ny ‘31‘3 (%3-28)
where ». = 1 M (N+l /N¥I)

The Kinetic model is said to of order N.

With this approximation equation (3-26) can be written as:
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N N
(2-RV T, +10y 32 Y () B S(k2) -2 £ ,‘U?)
=V )=
(D SJ(kz)(MCxl,) +AN6)

== L1+ nB (k)] ¢ Bl

By using the orthonormality of the set {qlﬁjfequation
(3-29) can be shown to reduce to the form

N N ~ .
Sk(k?)—\f‘g' 32“ s;(k2) G (ka)( M_}\_{w/))
N

-~

2 *
+i60) = _% ALz (1 + nh(k))
oN (3-30a)
1f our basis is chosen such that V¥ZF1, then using
(3-14D)

WSUe W) = Lim 2T (d*% i D YIS (k?)

= LM 2Tm 5 (kz) (3-30b)
=20

EL@ = (LT @z @) /(2-1m)
Ao(2): 6,0 (LT (D B /(2% 43)

where,

(3-%1a)

(3-31b)

# = B faiki (3-31c)
*

lj = >\N /‘J"i*kvb (3—31@)

2= =+13 (3-31e)

One of the above parameters, y*, can be related to
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an experimentally measurable quantity, the shear viscos-

ity .. 1t has been shown that,

My = mmVe /N (3-32a)
where Rg= ¢ M(a/a) (3-32b)
1f we introduce the parameter

y = da AT kY, (3-32¢)
we see that from (3-3%2a) that

Ny = mnVe Gk Y (3-324)

and as  y¥ =3 Mn/ng (3-3%)
we have a means of relating our parameter y* to experimen-
tal conditions.

A more detailed discussion regarding the number of
independent parameters and their relation to experimenta-
lly measurable quantities is given in chapter 5,

Equation (3-21) for the self-correlation function can

also be reduced to a form similar to that of eguation

(3-30a) if we repeat the above procedure,

th(lgz) - A g ‘i 2 Sy (k2) Ctk“)(“‘ (1)) A

i=)

s ) - Ay (k2)
%N ) (3-34a)

Mss(k,w)

Lim 2 Tm S, (k2)

e (3-34D)

3-% Kinetic modelling - Accuracy

As has been noted in section 3%3-2 the method will
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certainly give us the correct spectrum in the free part-

icle 1limit regardless of the order of the model, but one
is still left with the question concerning the error over
the other regimes,

1f equation (3-%0a) is written in matrix form it can
be seen that the method has essentially replaced the

infinite matrix form of the memory operator with a matrix

h {
HN g 0 whe re RN L B ) is
. D

the exact representation. Thus the approximate solution

0 e, C

should converge to the exact solution for all regimes when
the order of the model N approaches infinity. Thus ques-
tions about the accuracy of the situation become ones
about the convergence behaviour of the solution, On the
basis of this result, Sugawara has examined the accuracy
of the Kinetic modelling method when a Sonine polynomial
basis is used, by numerically studying the convergence
behaviour of the solution as N is varied (3). A4s will be
seen in chapter five our work with the modified Hermite
polynomials as the basis is also based on this result and
in this section we will attempt to present a general
discussion of the convergence problem.

Given that N is finite one has to resort to physical
reasoning to improve the convergence behaviour with resp-

ect to rate and smoothness. 1t appeals to the physical
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intuition to think of the seti‘ﬂfas relaxation modes as

we know that the eigenvalues of the collision operator in
the linearized Boltzmann equation are indeed the decay
constants for the spatially uniform initial problem.

We know that the elements corresponding to the cons-
ervation laws will have to be present in A if the correct
hydrodynamic behaviour is to be obtained., By including
these elements we have essentially incorporated the
hydrodynamical relaxation modes into our eguation. So we
expect that our results in the hydrodynamical region will
be those obtained by making direct use of the hydrodynam-
ical equations.

If the set iklf.tjare the eigenvectors of the memory
operator then the off-diagonal elements are.indeed zero
and the approximation will be more accurate but even in
this case the decay modes are still coupled together by
the streaming term.

The approximation on the other hand decouples the
higher modes from the relaxation processes influencing the
density function spectrum. It does however leave the
lower modes coupled. The ordering of the set
should therefore be expected to play an important role in

the convergence behaviour of the solution.
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3-4 Relation between S(k,w) and,S(k,w):-

As we intend to compare the results of the present
work in the Boltzmann equation with those obtained by
Sugawara it would be appropriate at this stage to indicate
the connection betweenss(k,w) and MS(k,w).

From Sugawara's thesis,

0 ey — wit)
S (k,wd= ot b e
S - ?
(3-35)
Comparing this with equation (3-2} we see that
;;(k,uﬂ ey NS("k,'ﬁﬂ\
(3-36)

Since the definitions of x and y used in Sugawara's thesis
and ours are identical we have

SS(x,y) = MS(Xry) (3-37)
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CHA¥TER 4

The Memory Cperator

4-1 Reduction to Hard Sphere case:-

In this chapter we will devote our attention to the
evaluation of the matrix elements M(i/j) used.in equations
(3-30a) and (3-3%4a). As can be seen from equation (2-21a)
the general form of the memory operator requires a knowle -
dge of the interatomic potential V(£)+. For this work we

restrict our attention to the hard sphere potential

V(_]:) =,[O ix ¥ Ty
oG vt &€ (4-1)
where r = hard sphere diameter (4-2)

The memory function can be written as a sum of a
static part E(k Pland a collision part £(k,PP2Yand to

simplify the algebra we shall make use of that fact and

treat the two parts separately

b) G) F§
E(R,pP2)= S (kpdt S (kpP2) (4)

—) - -

Non-dimensionalizing we obtain

a4s) ¢
M’(P_&,-_F_P:z): M (RT)+ M ‘)CIS’}:_S"E)
(4-4)
From equation (2-19) it can be seen that

{5}

MACkIy= kv, T Clk) B(NIn

+ln this chapter position variables are all relative,
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= —kV, T Ak 2()
| (4-5)
The collision part of the memory function is more
difficult to evaluate as it depends upon the dynamical
behaviour of the system.

The non-dimensional form of equation (2-21a) is

evidently —
MO(k,33 D R(ID n v v fadx Ly LT
o . @?* 37
T L2 o . —
e e ! qur) VI vin [ e""t’lgfé—};’-%'}_)
s o M
—e T G a-1 Y[ Z2- kY + L(x,T)]
¢ ik =~ -
A N A R A

(4-6)

_,pV(.‘Y)
where gex) = e (4-7a)
Lex,prz =2 PV fon + 2TV ) - V3 (4-7b)

To reduce equation (4-6) to a more manageable form
we have to carry out a number of algebraic manipulations,
In this section we will restrict ourselves to certain
important steps of the reduction. The necessary algebraic
identities are quoted below but the mathematical proof
is left to Appendix B.

To simplify the notation we define (28),

0. ()= e T2 Sip u-F)
2 Ry /4 ey / (4-8)

LTI TS P "st‘i‘&%’)"}")



This allows us to wr-ﬁ:iz_ ELC)(_}E,EP,Z) as
2k, 22, (P = (Fam) (A dy P
eP (47 ':'I)Mcjm (Li0x, PreLanl2-k g dn
FLon, By b, B) B (B (1-10}
If we integrate by parts over p and use the ident-

ities (B- 1 ) and (B- 4 ) we can show that,

C C (<)
5% ppt 2 TES (k0 B o )b
(4-11)

where

3 » -
g5k, P, 2P () = —n® (Fim) (i« dir ob*F o 4 (F)
~F (4% PP Im -
e " L2— kst +l,0y,50] 1901 2 ~le: 4 pm
= 7! 5 -
+ L, B L, BV R (P f
; (4-12)
(c
ELCk, 22,2 Pl = m* ( Pam) [d% d¥r &¥F e, (F)
B Y -
G(ry e Bl P2 fm L'!.‘ f'\q”)
(4-13)
<)
Let us consider the fi(g,gp,z) part first. We use
the identity (B-2) and integrate by parts over the spat-

ial eco-ordinates to obtain
'3‘ i S 3
20, pr, ) FE0 = 0t (P ) [ d?5 dr

_ B P OM = _
Biv) € v, (el (P15 Cel(P)) s

When V?is interchanged with —Vb and the integrations
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are carried out we find

AN IO I PNCIE YK S0
S (4-15)

Now we shall consider the other part of the memory
function.
Using (B-8) in (4-12) we see that
G) ' b (1 3 3 013‘.0(3?[
9k, ppt ) P s - vt (fAmY [dix

e('.lﬂ'!'/?. "“3.'!'/;_ -(3(0( +? )/m

SC2-pP+rid+e seot-P-7)]e
Jz-%&m+ L (r,5)] 190 icz- k?m)fdt
2 m-t o ‘\“ 2

ec&' k% Am) e‘k )~ SCf o E(H) +

e~ WA (r-2 ‘E’]}

(4-16)
We will concentrate our aE}ention on
. 0 WUZ-52 40F (ko (8) -
Q = 1(z-REm) (Ut e T g (pan-B@)
(4-117)
o0 i (2-k X T
= At et FTEETG(p A= P [2- Kk /i
. —tlr ()
Sidgyq ] e M4
(4-18)

Equation (4-18) when integrated by parts gives us

ks e, -kx®a
Q= —§(p-a-Tre *_ f,,wa‘te e

» o ‘d _‘
oH' = (4-19)
This result enables us to get rid of the free part-

<)
icle part in ?5(
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~ikyx

Ql= Q+ € “ §CP-2 —F)
0 kTR v (2-RAm)t
= -{d'te e %t%(f‘(_i(_.fﬂ})
(4-20)

To proceed any further we have to analyse the coll-

ision dynamics. If we use the results proved in Appendix

B we find that .
Qe - [Tt ' k)t - BTOA G o
6_(FFYSH-TYLS (P -u~p")=5(F -2 P ]
e;(.i‘ -kamy T E_“&'é\‘-o /2

-
-

Qﬁf-ﬁ)ﬁ_(¢gﬁ)
DSCpm s By=6tp'- - P ] (4-21)

When this is used in equation (4-16) it can be shown

that
4 3 p
VR, ppie) P(PIz vt ( BAm ) [dP oy AP
e - ~ihYy
[ e 5Ta ¢ (ap 47y 2 ¥% (laopp)]

- 8 (L2 PP Im
e La- kidsnar e, 7)1
2Ry T ik Evy ]
3. glvy € € S0 - b 0.3 F)

Cseron-t) =5 Cpe s ~E) 7]

(4-22)
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Appendix B shows that
. 1V (z2- R4 /m)T
[‘2—13_-5/”,,-]-1..0(3,?)][9(!')? ]

(B- k& )T
. e'a. m) o () p) 3(’?)

(4-23)

we then have
£k, £ R, TR = (B fm ) [k dird’p

e ey
[T G- P1—P)+€“‘ S{a-p - P)]

~p &+ P /m (2R 2 /m)T -lk.e"rl

0. (PGl aF1=6(pr x=F%)]
L (T)P) 3(.7)

!'-u

(4~-24)
Now we do the spatial integration, Equation (B-2) allows
us to restrict our attention to the surface of the sphere

r=T, . We find,

e (B,PT”EE‘#’CP’), In? (P/"m] foeg o[ro”'"

[ Scpi~at ~F)= § (Pmat -3) ]

= W (pam) fde dxdF2pP,,
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(4-25)
where dStr = infinitesimal solid angle
Note that we have performed the trans?orfation ry -r,
p-+ -p in the term proportional to e*tB'IYo
On non-dimensionalizing equations (4-25) and (4-15)

we find

M7 <O, (% F ")
(2.:1,)3
6_(<—‘.'§)f?. N f\fS(l(- d—-T1)-$ (E—ﬂrr)

I
£ e L5010 ) -8 (3 a v THE]
- C = T s (4-26)
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LT3 3352 - 4TnEY, ) (kn) kP TFT R
(2”(4 27)

This is as far as we will carry the analytic approach.
Bquations (4-26) and (4-27) are in a form more amenable to
numerical analysis., In the next section we will calculate

the matrix elements M(i/j) using the equations,

fh(ka)is the first order Spherical Bessel function -
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4~2 Matrix Element calculation

The orthonormal bhasis we decided to use is essent-

ially the Hermite polynomials,
- - = V.
Y, ()= \!JCMHLE) = M (3D R, (3,) K 13) /(Q!m Int)y ™

- (4-28)
where ;\Q(z): Hq(3/52-) /(2.{’(1') (4-29)
H{(,D is the Hermite polynomial as defined in Morse and
Feshbach (29). As a matter of nomenclature we shall call
our basis the modified Hermite polynomials,

To facilitate the mathematical analysis it is desi-
rable to consider separately the static part, the inhomo-
geneous collision part and the homogeneous collision part.

Using equations (4-5), (4-26), (4-27) and (3-24) we
see that:-

) )y SCIVR
M= L)) = 4Tnn % NG 50{’gom’gon‘sa£ Som Sin

) /
= Mm@ (4-30)

< . . —_
ﬂICIl)) = _ZMY}VD“ ‘)l(k‘yb‘) Soug"somls

in’ gui som S“Y\
2

_ (> £t i
. : = 5TV
Mi)ﬁ-lj ) = SuavY, fotgf A*7 AL, e (3= e *
(z7)°

N

1Handbook of Mathematical functions' U.S, Commerce Depa-
rtment.
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F10) w T (Y 32 D)o g (1-20 8
2_?(_?_?))} (4-32)

Equations (4:30) and (4-31) are in a form that can be
directly programmed, but equation (4-32) has to be
simplified further.

The computer program 'Matrix'® calculates l\ﬁ(:)( i/j)/z
which is relatively more complicated than either equation
(4=30) or equation (4-31). These expressions for M::ki/j)/h_
and Mﬁki/j}iare directly incorporated into the program
'Dispersion’,

To check 'Matrix' some of the lower order elements
were worked out by hand and compared with the program
output for wvarious wvalues of the parameter k:f.

As a final touch, a number of the lower order elem-—
ents for kr°=0.0 were linearly combined to form the equ-
ivalent elements for a Sonine polynomial basis®, These
were checked against Sugawara's (3) and Mott-Smith's ma-

trix elements (7). As was noted in an earlier chapter

*For a more comprehensive description of the various
computer programs used, see appendix D.

Phe interested reader will find analytic express-
ions for these in Mazenko's thesis,

*A general transformation between the Hermite basis
and the Sonine basis is given in appendix C.
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the kr, =0.0 limit of the generalized equation~is the lin-

earized Boltzmann equation and thus we would expect that
our test would yield identical wvalues for the three sets
of matrix elements.

What we do find is that they are off by constant fac-
tors. This was expected in the case of Mott-Smith's num-
bers as his matrix elements are derived in terms of a
certain bracket integral, This was however not expected
of Sugawara's matrix elements. On closer examination it
was discovered that a factor of 83% had been dropped in
his program for calculating the matrix elements,

Taking into account the factor that Sugawara dropped
the factor of 8 YW the two sets of numbers are, within
roundoff error, identical.

It should be noted that constant factors in the exp-
ressions for the matrix elements have no effect on the
spectrum calculations as we are only concerned with the
ratios of these elements,

Finally with the basis we have chosen it can be sho-
wn that the elements with odd 1 or m index do not enter
into our spectrum calculations so we only need to compute

the elements with even 1 and even m indices,

4-3 Self-Correlation operator (Memory)

The memory function€[(3{)for the self-correlation
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function is obtained by simply ignoring the dynamic cor-
relations between different particles in the collision
part of the total memory function E(_lg,;'g_’_’,z)., That is
to say we drop the terms involving the exponential e..de_vo.w
in equation (4-26), One also drops the static part.

After going through the same manipulative procedures

of section (4-1) we arrive at the result that:

MeCl, TT') 200 o 16imwve (3 o T oy

Ty 3Y) U—Ti)3
IR SR FEN TR Y e (A O\
- 5 C T3] Sre-F4 1) (4-3%)

This is the wavelength and frequency dependent gene-
ralization of the neutron transport kernel (15).

Thus it can be seen that the self-correlation memory
function is Jjust part of the two-body memory function
and the 'Matrix® program is easily modified to seperate
out that part. This part does not depend upon kr,  at all

and in fact for the hard sphere case

«
?;CZE’): LiMm ‘E)

RY,~ o0

(*_hli') (4-3%4)
...;g'ru.-?

This can be seen by expandinge— in terms of spherical

Bessel functions. One could speculate that this is true
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in the general case.

4-4 Properties of the matrix Elements

The

matrix elements of the homogeneous collision

memory function have a number of general properties which

are very
required.
program.
(a)
(b)

(ec)

(d)

(e)

(£)

useful in reducing the amount of computation

They are useful also in checking the 'Matrix'

If 1+1° or m+m’ are odd, then the matrix element

is zero.

1f (n+n’) is odd, then the matrix element is real
and approaches zero as k goes to zero.

1f (n+n’) is even then the matrix element is

pure imaginary and approaches a constant as k
goes to zero.

The matrix element is symmetric under the trans-
formation 122m and f:im:

The diagonal matrix elements are purely imaginary
and their imaginary part is negative.

The off-diagonal elements are small in magnitude

compared to the diagonal matrix elements,

Properties (a) and (d) cut down tremendously the num-

ber of elements that have to be computed while property

(f) ensures that Kinetic modelling can be used.

The

matrix elements of the self memory function, on
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the other hand obey rules (a), (d), (e) and (f). In add-

ition to those properties they have the property that

(g) 1f (n+n’) is odd the elemént is zero,

Table 4-1 is a list of some of the diagonal elements
for the two-particle memory function. These are the imp-
ortant elements as we need them to arrange the modes in
the A -ordering scheme®. Table 4-2 is a 1list of the cor-
responding numbers for the self-correlation memory func-
tion.

We also show the variation of element M(011/011) with
the parameter kgoin Figure 4-1. This gives a general
illustration of how the diagonal elements vary with kg:.
The M(011/011) element is important because it is the ele-~
ment related to the shear viscosity through equation
(3-32¢).

What is more interesting is the behaviour of the so-
called 'conservation' elements., These are M(1mn/000),
M(1lmn/001) and the linear combination (M(1lmn/002)+M(1lmn/
020)+M(1mn/200) ).

In the Boltzmann equation region namely kr, =0 these
elements are zero, implying the conservation of number
density, momentum in the Eédirection and energy. We exp-
ect this as the Boltzmann collision operator is known to

conserve these quantities, However for non-zero values
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wr;

No 1mn 0.0 051 0.5 0.7 1.0 oG

1 000 0,0 0.0 0.0 0.0 0.0 0.0
2 001 0.0 0,007 0.063 0,3%3% 0.66 2.3%6
3 002 1,89 1.896 1,973 2,13 2.36 3,30
4 020 1.89 189 1.90 1,94 1.99 5« 31
5 200 1.89 1,89 1.90 1.94 1.99 e 51
6 003 2.83 2.84 2,87 3,04 3.24 B T
7 004 3.53 3.54 3.56 3,72 %.90 4,51
8 040 3:53 953 5«83 5455 2.5 4,51
g 400 3.53 B T 3.53 3.55 5. 5T 4,51
10 021 5, 78 By TB 3. 79 3.84 3,89 4,46
11 201 3.78 5,78 B 19 3.84 3.89 4,46
12 005 4,10 4,1 4.14 4,28  4.45 4,98
13 022 4.55 4,56 4.57 4,61 4,67 5.06
14 202 4,55 4.55 4,57 4.61 4,67 5,06
15 220 4,55 4,56 4,55 4,56 4,58 5.06
16 006 4,60 4,61 4,63 4,76 4,92 5.41
17 060 4,60 4,61 4,60, 4,61 4,61 .41
18 600 4,60 4,61 4,60 4,61 4,61 5.41
19 041 4,95 4,95 4,95 4,95 4,95 5.41
20 401 4,95 4,95 4,95 4,95 4,95 5.41
21 007 5.05 5.05 5.08 5.20 5.35 B 15
22 023 5,12 5,12 5.13  5.17 5.23% 5.54
2% 20% 5,12 5.12 5«13 5.17 5.23 5.54
24 008 5.45 5.46 5.48 5.60 5.74 6.15 |
25 080 5.45 5.45 5.45 5.46 5.45 6.15
26 800 5.45 5.45 5.45 5.46 5,45 6.15
e 224 5.48 5.49 5.48 5.48 5.48 GeT3
28 024 5.58 5.59 5.60 5,64 5,69 5+95
29 042 5.58 5.59 5.58 5.58 5.58 5+.35
30 204 5.58 5+59 5.60 5,64 5,69 5.95

TABLE. 4.1 DEPENIENCE OF % M(i/1) ON kr - \-ORIER

(Cont,)




, — kr, -
No lmn 0.0 0.1 0.3 0.7 1.0 oG
%9 240 5.58 5.59 5,59 5.59 5.59 5,95
32 402 5.58 5.59 5.58 5.58 5,58 5,95
33 420 5.58 5.59 5.59 5.59 5,59 595
34 061 5.81 5.81 5.81 5.81 5,81 6.21 |
135 601 5. 81 5.81 5.81 5.81 5.81 6.21
36 222 5:99 5.99 5.99 5«99 5.99 6.18

ToABLE. 4.1 (Cont.)

TABLE. 4.2 THE SELF CORRELATION DIAGONAL ELEMENTS

(See Table. 4.1 kr, =« column)

kr, 0.0 03 0.7 1.0 2.0 4,0

% M(1lmn/000) | 0.0 0.0 0.0 0.0 0,0 0.0

3 M(001/001) | 0.0  0.063 0.35 0.66 2.2  4.11
£4M(002/002) | 0.0 0.063 0,34 0,67 2.2 4,12
+ M(002/020)
+ (002/200)}

T-TABLE. 4.,% VARIATION OF SOME "CONSERVATION" ELEMENTS
W1TH kr,

umts  of wmmly,
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of kr, only the M(1mn/000) element still remains zero.

The deviation from zero of the other elements gets lar-
ger as kr, is increased. One possible physical interpr-
etation of this behaviour is that with constant diameter of
the particles increase in kr, corresponds to an increase
in the wave number k. This means that we are looking at:
a smaller and smaller volume of space., Eventually the
volume we are looking at becomes smaller than the inter-
action volume, in fact even smaller than the dimensions

of the particles themselves. In this case we cannot exp-
ect momentum and energy to be conserved as we cannot keep
track of both colliding particles., In fact the equation
can only keep track of one particle or in other words we
have gone over to the self-correlation case where only
number density is conserved. As was mentioned earlier

2 (II)is indeed the large kr, limit of Z(k,¥1',z). Table
4-3% ‘illustrates this behaviour for the diagonal 'conser-
vation' elements.

Finaily we - show groups of diagonal elements as a fun-
ction of the index mn in Figure 4-2., This is useful for
extrapolation purposes as the 'Matrix' program computes
elements along lines of constant 1 and constant m but var-
ying n, This turned out to be more efficient in our case
than computing by blocks,

The matrix elements corresponding to the truncated
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basis of Table 4-1 are available in A-ordering for kr, =0.

For other values of kr, they are available but have not

been organized into any particular order,
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CHAPIER 5

Discussion of Numerical Results

5-1 Introduction

The relaxation process in a structureless monocatomic
fluid is essentially characterized by two basic lengths
and two basic times. This is said of course under the
assumption that the mean energy is not high enough for
electronic excitation to occur. The two basic lengths
are the mean free path and a length characterizing the
interatomic potential. In the case of a hard sphere
gas this characteristic length would be the dimensions
of the sphere. Corresponding to this length there is
the time characterizing the duration of the collision
and corresponding to the mean free path there is the
intercollision time., The hard sphere gas, however, is
a pathological case., 1Its collision duration is zero.

The linearized Boltzmann equation, as has been
stated before, is only good for times and distances long
compared to the collision duration and the particle size
(18). fThis limitation is incorporated into the collision
kernel as it describes the fluid in terms of point
masses and instantaneous collisions,

So when this Kinetic equation is used to calculate
S{k,®W) for gases only two parameters are needed to cha-

racterize the solution. The two parameters we choose
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Yo base this part of the discussion on, have a simple

physical interpretation. One of these is, what we call

the collision parameter y*¥. This relates the wavelength

to the mean free path of the medium, The other parameter
is y/x* and it measures the time in terms of the intercoll-
ision time. Other combinations of these parameters could
be used. In fact Sugawara uses x and y (3).

Mazenko's equation, on the other hend, with its
wavelength and frequency dependent generalized collision
kernel is good for all times and distances and it descri-
bes the behaviour of the fluid in terms of all four char-
acteristic lengths and times,

When the Fourier-Laplace transformed equation (3-3%0a)
is examined for the hard sphere gas, it will be noticed
that we have only three parameters x, y and kr, We are
however, missing a parameter related to the collision
duration. As has been mentioned before the hard sphere
is a pathological case. The collision duration is zero
and the fourth parameter is a constant, It is either
Zzero or infinite depending on how we define the parameter.

#

5-2 Comparison with Sugawara

Sugawara's spectrum calculations used the linearized

¥y and x are defined in chapter 3
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Boltzmann equation (3). To compare Mazenko's equation

in the Boltzmann region with Sugawara's results we have
to take kr,=0. This test will not only enable us to
check our computation but it will also demonstrate that
the generalized equation has the correct limiting behavi-
our. In the process of checking the computation we have
also calculated the spectrum using the Wang Chang and
Uhlenbeck method of polynomial expansion.

The major difficulty that the test ran into was the
problem of convergence., As noted in section 3-3 there is
the problem of truncating the basis, It is net at all
certain that the convergence properties will be the same
using the Sonine polynomial basis and the Hermite polyno-
mial basis. There is no one to one correspondence. But
it is certain that if the two truncated matrix represent-
ations of the collision operator contain the same inform-
ation then we should obtain the same values for the
spectrum. This is what was done and the results are tab-
ulated in Table 5-1. On the basis of this comparison
we confirm that the two approaches are indeed equivalent.

Going back to the guestion of convergence the elemen=

ts were ordered according to two different schemes, poly-

#Sugawara uses the dimensionless guantity R(x,y)= kv,
S(x,y) /i TWin his graphs. The R(x,y) used in our plots
is identical to his.
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y=1.2275
2R(x,y)

- d Our Calculation Sugawara

=14 N=9
0.0 1.0710 1.068
0.4 0.8437 0.844
0.8 0.7775 0.775
TABLE.

5.1 COMPARISCN OF SUGAWARA'S CALCULATION WITH

OUR CALCULATION- FPOLYNOMIAL ORDERING

EQUIVALENT KINETIC MODEL ORDER

% M(001/001)

kr, |Farabolic fit Analytic result | 4%Error
0.01 0, 0000707 0,00007 1.0
0:03% 0,000623% 0.,00063%7 2.2
0.06f 0.00269 0.0025 5.5
0.3 0.0617 0,0634 2.7
0.5 0.1714 0.1746 2.4
1.0 0.6854 0,67 20273

TABLE. 5.2 MATRIX ELEMENT M(001/001) - ERRCR

SCHEME -

INCURRED USING A FPARABCLIC FIT THROUGH

THE FPOINTS k§’=0.0,0.1 AND 0.7
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nomial order and A —order. In the polyonomial order sche-

me, as the name implies, one orders the setiﬂifaccording
to the order of the polynomial Wﬁ, that is according to
the sum of the three indices. Within each closed shell
of polynomials of the same order one tries to arrange

the basis functions such that inherent rotational symme-
try groups are not broken, The idea behind the polynom-
ial ordering lies in the empirical observation that the
zeroth order polynomial corresponds to number conservat-
ion, the first order polynomial to momentum conservation,
the next orders include the energy conservation, the heat
flux vector and so on. Heuristically, as the order
increases one seems to add in more physical processes of
decreasing importance on the microscopic scale,

A\ ~ordering on the other hand is the ordering of the
elements according to the magnitude of the corresponding
diagonal elements. As noted in section 3-3 the reasoning
behind this ordering is quite quantitative as the diagon-
al elements are indeed related to the decay constants of
the eigen modes. Thus A-ordering systematically brings
in the transient modes on the basis of promptness of
relaxation and would therefore gradually improve the
microscopic description.

However we did not have a simple analytic expression

for the magnitudes of the diagonal elements, so what we
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finally ended up doing was to compute all the diagonal

elements upto and including a certain polynomial order
and then reorder the basis according to the A\-ordering
scheme, The success of this procedure is based upon
the assumption that the diagonal element distribution is
sufficiently monotonic in the indices that we leave out
very few gaps. Figure 4-2 tends to substantiate our
position.

The Kinetic model approximation, as we have noted
in section (3-2), should be very good near the free part-
icle limit, and from the argument above it should also
be guite good in the hydrodynamical limit. This is
because the hydrodynamical region is essentially that of
long times and distances. This leaves us with the region
between these two extrema of behaviour, which we would
expect to be not so well described by our approximation.
Given the restriction of limited computer time this is
the region we should investigate with regard to the con-
vergence and accuracy of our approximation. The y-value
of 1.2275 which we finally used to examine the convergence
properties of the approximation is slightly biased towar-
ds the hydrodynamical region. We chose that value
because experimental data is available for that particular
condition. The x-value was chosen to be 0.0 because from
Sugawara's calculations it looked as though the approx-

imation would be worst at this wvalue.
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Figure 5-1 shows the convergence behaviour for the

two ordering schemes. As was expected the A-order:conver-
gence is much smoother and more rapid. This behavior was
also noted by Sugawara. In both his work and in ours it
cannot be said that the polynomial scheme has converged.
The orders of the respective Kinetic models used were
simply not high enough for this scheme to converge.

On the other hand, his A-ordering calculations conv-
erged around a Kinetic model order of 23 while ours
converged around an order of 40, Our asymptotic value is
of the order of a percent off from his. There are a
number of possible reasons for this difference., One of
them is the possibility that our A-ordering has skipped
a few elements, This was discussed above., More import-
ant is the possibility of computational round-off error
as the Hermite polynomials basis in a certain sense is
not a very efficient basis as it, unlike the Sonine
polynomials, does not make direct use of the azimuthal
symmetry in our system. For the same amount of informat-
ion, the matrix obtained by using the Sonine polynomial
representation is smaller than the one obtained by using
the Hermite polynomials, The computer had to, essentia-
lly, compress this data and in the numerical inversion
of matrices the larger the inverted matrix the larger the

round-off error. TFor a 60x60 matrix this error could
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Possibly be of the order of a percent.

The main emphasis of our work is on the effect of
finite kr on the spectrum, This will enable us to deline-
ate the region of validity for the Boltzmann equation and
obtain gquantitative corrections for wavelengths outside
this region. From Mazenko's preliminary computations we
know that the effects we will be examining will lead to
differences of around thirty percent between Sugawara's
analysis and our calculations for finite values of kr,
With this in mind we decided that a Kinetic model of order
35 would be sufficiently accurate for all our subseguent

work,

5-3_The spectrum of density fluctuations at finite kx
If we integrate the two particle spectrum over all

@ we find that

L fdoo S = (S) = T+ k) s

With this result in hand we can immediately obtain
an estimate of the range of validity of our equation by
noting that MlS(k), on physical grounds, can never be neg-

ative. Thus,

| > A (k) (5-2)

where
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For our low density approximation h(k) reduces to

HAky = — 4Ty ) (kv,)
R, (5-4)
If we approximate the spherical Bessel function ji(kro)
by the leading term of its expansion in kr,, (5-2)

leads +to

3
\ > %ﬂ“To (5-5)

This bound is definitly not the least upper bound as
significant error in our first order approximation for
y{r} already sets in at densities much lower than the
limit given by equation (5-5). This can be shown by usi-
ng the solution of the Percus-Yevick equation for hard
spheres (20), This Fercus-Yevick results also enables us
to put a quantitative value on the error involved as the
density increases, Egelstaff (20) has shown that the
Percus-Yevick equation is quite good for nﬁ?ﬁO,ZS. If
that equation is used to obtain an equation of state we
find

P v+ 4 (11 “Tf) 4 10 T ﬂ*2)+_,,
ek T &8

(5-6)
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So the error, £ , we are interested in is of the

order

€~ 10.T .M
& bl (5-17)

For nr =0,01 this is around 0.5%. 1t would be more
realistic to say that the error is of the order a per-
cent,

Figure 5-% provides a graphic illustration of the
region we are restricted to. From our experience with
the Boltzmann equation we use the parameter y to roughly
divide the figure into hydrodynamic and free particle
regions, A word of caution is necessary here as in the
case of finite kr_  the terms hydrodynamic and free part-
icle may convey physical interpretations quite different
from those associated with the Boltzmann equation. How-
ever we do expect that for kr small enough we will obt-
ain the same qualitative behaviour. It should be remem-
bered that the limits taken (kr_,— O and kq;éoo) to obt-
ain the Boltzmann equation and the equation for the
self correlation are only taken for the collision opera-
tor. They are not taken for the entire spectrum equat-
ion. or there would be questions regarding the continui-
ty of the solution at those limits.

If we examine our calculation again we see that it

differs from Sugawara's calculation (%) in three respects.
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Mazenko's equation has a static term which the Boltzmann

equation does not have, The collision matrix elements
now have a kr  dependence. Aside from these major diffe-
rences, there is the matter of the initial condition.
Sugawara's initial condition does not contain the term
involving the direct correlation as ours does.

Before we move on to discuss our results it must be
noted that we have used a three point parabolic fit to
calculate our matrix elements for a general kr,. As most
of our points of interest fell in the region 04 kr £1.0,
we calculated explicitly the elements at the points kr=0,
0.1, 0.3, 0.7. The kr,=0, 0.1 and 0.7 results were then
used to obtain the co-efficients of the parabola. To
check the goodness of fit we compared our parabolic fit
numbers with the analytic results for the element M(001/
001). As can be seen from Table 5-2, the accuracy is qui-
te good. As a final check, the sensitivity of the spec-
trum calculation to variation in the wvalues of the matrix
elements was examined, The elements have been observed
to exhibit two general characteristics., They are either
almost constant in kr  or they start from zero and incre-
ase somewhat parabolically in our region of interest,

We first calculated the spectrum using a linear int-
erpolation for the matrix elements, Then we changed the

parabolically increasing elements by 10% and recalculated
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M (i/j) := kre=0.068 Matrix elements obtained by linear
interpolation between krgz0.0 and kr, =0.3
Case I := M (i/3j) used without any change
Case II:- All M (i/001) elements and all purely imaginary
elements multiplied by factor of 0.9
Case I1I:- All the elements multiplied by factor of 0.9

it 1T

X | Case 1 Case 11 Case II1
00 0.90286 0.90629 0,90453
1.0 0.47844 0.47612 0.46372

TABLE. 5.3% SENSITIVITY OF 2R(x,y) TO VARIATION IN THE

VALUE OF THE MATRIX ELEMENTS

nr2 0.00997 0,00997

v 0.04 0.5 _

, & Our Calcul- *Sugawara's Our Calcul~- Sugawara's
ation ation

0,0 ] 1.06476 1.1286 1,00421 11,0487

0,2 0.,976679 1.,0844 0.910398 1.0103%

0.4 0.843499 0.96178 0. 7199935 0.93811

0,6 0,700791 0.7874 0.718141 0.84143

0.8 0.547915 Q.5951 0.605648 0.67183

1,80 0,.39%627 0.4153 0.4%9335 0, 45964

1.2 0.26%125 0,2674 0.278856 0, 275599

1.4 0.166173 0,15898 0,161009 0.,14663

1.6 0.0976929 0,0872 0.085265

1.8 | 0,0528238 0.0442 0.0429029

250 0.0269757 0,0207 0,0217578

Twe nave used the Free particle result for this.

comparison

TABLB. 5.4 2R(x,y) -~ COMPARISON CF OUR RESULTS WITH
SUGAWARA's (cont.)
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TABLE. 5.4 (cont.)

nre 0.01 0.01

v 1.17 3.0

X Qur Calcul- Sugawara's Qur Calcul- Sugawara's
ation ation

0.0 0.974874 1.0%26 1.21195 1.3347

0.2 0.866804 0,9673%1 0.810106 0,90579

0.4 0.752976 0.86968 0.549495 0.61051

.6 0.707924 0,82529 0.558026 0.63790

0.8 0,671646 0.77015 0.811539 1.0067

1.0 0.524565 0.55586 0,78959% 0.82118

142 0.2983%14 0.27820 0.27%169 0.21353

1.4 0.141506 By 19825 0.950314 0.06646

1.6 0.0661308 0.0413453%

1.8 0.0326984 0.0212016

2.0 0.0174123 0.0121779




B

the spectrum. Finally, we computed the spectrum for a
change of 10% in all the matrix elements. The y and kr,
values were of course fixed throughout this calculation.
The results are presented in Table 5-3. They show that
at the most a 1/2% change in the spectrum value will
result from a 10% change in the matrix elements.

Figures (5-4) to (5-7) are comparisions of our resu-
lts with Sugawara's (3). In our work we first fix the

density nrs

5 and examine the spectrum for various values

of y and the corresponding values of kr° . We then wvary
the density for a fixed y.

What is noticed immediately is that the central
reak has been lowered. This can be attributed to the
difference in initial conditions discussed above.

Aside from the lowering of the central peak there is
a difference in shape. For y=0.0 we still obtain the
Gaussian as we should, but as we increase the value of y
the fall off is linear (for x less than 1.0) though we
are still in the so-called free particle region.

At a y-value of around 0.133 we pegin té move into
a transition region as & shoulder starts appearing. In
Sugawara's calculation even at y=6.5 the spectrum shape
is still roughly Gaussian. It is almost as though our
value of y has been somehow transformed to a higher value,

Mathematically this can probably be explained by the fact
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that our final eguation (3-3%0a) has a term involving the
product of y and the matrix elements M(i/j). Since these
elements are increasing with kr  in the region we are
examining the effect is similar to increasing the value
of y. There is this competition between y and krb .

This is of course an oversimplified picture as an increa-
se in kr, destroys two of the three conservation laws

and we could never obtain the familiar 3-peak hydrodyna-
mic spectrum just by increasing kﬁl.

Figure (5-7) shows that the sound peak moves out as
we increase %the kro value. On the whole the spectrum
shape is definitely broader than Sugawara's. To see this
from the graphs one has to examine the width to peak rat-
io as we do have this difference in initial condition.

At y=3.0 we still obtain the familiar three peak
spectrum, This is not suprising as we have fixed the den-
sity at n:3=0.01 and at this wvalue the corresponding kih
value is just 0.013%4., Apparently this deviation in ke
from the zero value is not enough to produce startling
changes in the line shape, However, numerically absolute
deviations of around 10-20% can be found. This is true
even for kr, as small as 0.0134, It would seem that the
Boltzmann equation would be valid for kr, around 0.005,
This rough estimate is arrived at by using the results

presented in Table 5-% and Figure 4-3,
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If we examine the ratio of the central peak to the
spectrum value at x=0,8, differences of around 15% can be
found between our caiculation and Sugawara's, This indi-
cates that if line shapes are measured experimentally it
should be possible to detect the deviations between the
Boltzmann equation and Mazenko's equation.

As to thedirect effeect of kr,, that is keeping y
fixed and varying klb, we only have limited data. Figure
(5-8) shows that at y=0.067, aside from the lowering of
the spectrum, there is no noticeable change. The shapes
are essentially identical. Apparently a 60% change in
kr, has very little effect on the shape at this low value
of y.

The above results seem to suggest that the general
behaviour of the spectrum can basically be characterized
by the two parameters kr, and y. Working along these lin-
es we note that we can think of the neutron beam in terms
of a probing volume of dimensions characterized by the
wave number transfer, For a rough physical idea of the
processes taking place consider Figure (5-10) for a fixed
B 4

In region I, we would expect something similar to
the Gaussian spectrum as the particle radius is small eno-

ugh so that the region examined by the probe can contain

at most a single particle. Region III would give us a
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y=0.067
{_nr 0.01 0.0167
g 0.6 1.0
| 0.0 1.0568 1.0178
| 0.2 0,963981 0.9087
| 0.4 0.8314 0. 7741
lo.6 0.69722" 0.6479
1 0.8 0.5504 0,5164
11.0 0.3954 0.3783
11,2 0.2637 0.2587
1 1.4 0.1668 0.1689
1.6 0.09816 0,05802
1.8 0.05281 0.05802
2.0 0.02688 0.03097

fFor the Free particle result see Table. 5.4

TABLE, 5.5 TWO PARTICLE IENSITY SPECTRUM - 2R(x,y)
DEPENDENCE ON kr at y=0.067
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TABLE. 5.6 TWO PARTICLE DENSITY SPECTRUM
y=0.133,nr =0,00995, kr, =0, 3
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spectrum characteristic of a continuum of particles. As
the probe's wavelength is still large compared to the
dimensions of the particles, a spectrum similar to the
familiar %-particle spectrum would be expected. Region II
would be the transition between region I and region III.
This is a spectrum with a protruding shoulder. Specula-
ting further, we note that in region VII the parameter
kr, is such that the probing volume is completely taken
up by a particle. As far as the probe is concerned there
is no structure at all., It is just one rigid continuum.
So the effect would be like probing a vacuum. The spec-
trum would therefore be a constant close to zero. In a
sense it is a very broad curve.

The probing volume for region IX on the other hand,
aside from the behaviour described for region VII, can
also contain a small number of particles simultaneously.
We would therefore expect a spectrum composed of a mix~
ture of the spectra associated with regions II and VII;

a lower broéder spectrum with a central peak and a shoul-
der. As the speed of sound does increase to a certain
extent with density, we would expect the shoulder to have
moved out as region IV is the range of quite high densit-
ies, The spectrum of the other regions would be expect-
ed to be transitions between their adjoining extremes.

This is of course a very crude picture and it is
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even cruder than it appears at first glance as some of the
regions may be physically unreal. For example with rigid
spheres there is a limiting density and it is questionable
at least, whether or not region IX is physically attain-

able,

5-4 Self-Correlation Spectrum

As can be seen from the discussions presented in
chapters 3 and 4 the calculation of the self-correlation
function for the hard sphere gas involves a generalized
Kinetic equation which is not essentially different from
the Boltzmann equation. Thus the results presented in
this section could also be obtained by solving the Boltz-
mann equation. Work has been done along these lines for
hydrogen gas using the single relaxation time approxima-
tion proposed by Nelkin and Ghatak (15,30). This approx-
imation corresponds to a Kinetic model of the lowest ord-
er, Our calculations are for a converged Kinetic model
and so our results are more accurate. However it is exp-
ected that the two calculations will give comparable res-
ults in the free particle and hydrodynamic regimes. 1t
is in the transition region between these two extreme
regions that we expect significant differences to occur.

Figures (5-11) and (5-12) illustrate the dependence

of the self-correlation function on the value of y. As
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X Converged Kinetic Self Diffusion limit
Model,y=2,62 Analytic Result

0.0 | 3.0469 3,0469 R

0u 1w T3 1.73%63%

0.4 0.73%518 0.7581

0.6 0.36529 0. %91

0.8 0,20717 0.23%3

1.0 0,12842 0.15%3

1:2 0.0846 0.108

1.4 0,0582 0.080

Converged Kinetic
Model, y=0.247

Free particlé limit
Analytic Result

0.9 1.2624
0.2 1.1716
0.4 0.9805
0.6 0,7716
0.8 0.5555
1.0 0. %609
1.2 0.2210
1.4 0,13%18

h
3

1.2624
1.2129
1.0757
0, 8807
0, 6656
00,4644
0.299

0,178

TABLE, 5.7 +SELF CORRELATION SPECTRUM ~ VALUES OF.2R(x,y)
IN THE FREE PARTICLE AND SELF DIFFUSION

LIMITS

*it must be noted that the analytic curves have been
snormalized so that their peaks match those of the kinetic

model curves
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s 1

v Nelkin - Ghatak Model| ¥y Converged Kinetic
Model

0,11735 1.45 0.247 1.45

0,342 1,27 0.487 1.27

0,348 1+28  0.975 0.95

0.685 1.0 1.46 0,74

1.02 0.82 [ 2.62 0.46

1.5 0.72 Self Diffusion Limit

1.85 0.57 Analytic Result

2 i 0.482

2,62 0,436 2.0 0,608

3.0 0.39 : 2.5 0,487

3.0 0. 405

Free Particle Limit
Analytic Result

0,0 1.66

TABLE. 5.8 FWHM OF THE SELF CORRELATION DENSITY
SPECTRUM
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is expected the line shape goes from a Gaussian in the
free particle 1limit to a narrower Lorenztian in the hydro-
dynamic limit, The central peak increase in height with
y.

What is more interesting is the wvariation of the full
width at half maximum (FWHM) with y. This is plotted in
Figure (5-1%). The FWHM obtained for hydrogen gas using
the single relaxation time model is also plotted on the
same graph. It can be seen that our calculations defini-
tely lead to a broader curve. As was expected the numer-
ical difference between the two calculations is smallest
at the two extremes., 1t is this behaviour which, at lea-
st qualitatively, brings the theoretical calculations
into closer agreement with the experimental results of

Lefreve et al (30).
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CHAPTER 6

Conclusion
We have shown that the generalized Kinetic equation
derived by Mazenko leads to results which are significa-
ntly different from those of the linearized Boltzmann
equation for the spectrum of density fluectuations. For

kr, even as small as 0,0134, absolute differences of aro-

)
und 20% have been obtained for y=3.0, In terms of diff-
erencesof ratios of intensities our work shows that
differences of around 15% can occur. 1t seems that it
should be possible to experimentally detect such differ-
ences, The one difficulty that may be encountered is
that kr, around 0.1 may lie in the region between those
covered by light scattering and neutron scattering. For
larger kr, one will have to go to lower y as we do have
the restriction of low density. As of now the largest
value of kr, we have gone to is 1.0, but results for hig-
her values of kr, can be obtained.

Experiments for the self-correlation spectrum have
been done using hydrogen gas and our calculations for
the self-correlation spectrum are in general agreement
with the experimental results.

It may be interesting to redo Sugawara's calculation
with the direct correlation term in the initial condition

and adding the static term to the Boltzmann equation.
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This would allow us to numerically evaluate the contribu-
tion of these terms to the spectrum of the density fluc-
tuations. 1t would also help us to isolate the effect
of the ?F dependence of the homogeneous matrix elements.
However, it would be very hard to obtain a clear physical
idea of the relative contribution of the various physical
processes with this approach as dealing with thirty five
different modes is inherentiy very complex. It would
perhaps be more valuable to restrict ourselves to a gene-
ralized B.G.K model based on the Mazenko equation., In
terms of the Kinetic model it would mean investigating
a Kinetic model of order three with a k-dependent mode.
This would lead to a better physical understanding of the
importance of the various parameters such as y and kr,.

We intend to see if it is possible to calculate
other correlation functions, such as the current-current
correlation, as a by-product of our calculation for the
density correlation.

We will then go on to calculate the density spectrum

using square well potential in Mazenko's equation.



-102-
ArPENDICES

AFPENDIX A

Mathematical derivation of results
quoted in Chapter 2

(i) Equation{2-16):-

To prove this equation we write

(2, + PYY (3 + [9) s,0x,pe, 1)

et PV
tL (1) =2
2 ‘v Le!l —aC
(2, +09)] 2 - |
& Ly, 022
‘2_ S C:r’-a{J) - ?:'[ € th 0 $ (~2¢ )‘iz
) ﬁVCﬁ )
o fdidz ki) P p) e £1,-1, 1
(A-1)
We now examine I and I separately
L, 2)
1,2 (34 F£Z) (2 4 )f [e § G-y ]
2 gt uz)
- & " [ik.u2)+4 Pv/m] LiLa2)+ply 1 60e%)
=1 (A"‘Z)
where we have used
it ) viL (12)
e L, (12) = L,(12) € (A=3)

Using the property of delta functions we interchange V

withV\, for particle 1 andeitthfor particle 2
Then,



BB

E{.Lo Gzl f'{v,\‘ﬂj [fV_Yl" P ,'El ] % (x-:(‘)
m m

+ L0V + (]l prYa- B¥ ] $G-)
- ™ - m
- O N (A"'d‘)

Now for I
vt LO2)

( Yo + P Vém) (4t + P'9/m) e

3 1
£ ¢ ) ) TSl
= = (A-5)

By using Commutative properties

L (1) :
T, = ( i S(z X )) e’ Girony t Pavg,) [Tk.2)

4 v + 24,02 ] 'i_ § (2-3(; )
it 2 (=) (A-6)

Using the technique applied in the case of I,» we see
2 (tLO)
( £ ¢ (x-%)e (L0 + PV )
J =
. 2
LL02) 2 6 (w-2y) (A-17)
k=) )
2 . e Lae
(£ §5-x))(iLtz)+ P V/m) @
=1

o~

4

2
L Giz) £ % (x-x)

\:l

~L G TP Vim) 2 5 (xl-x) ]
L ‘ehﬂ"cm L(lz) Z S(I-vz( )] + [¢aLG2) T pY V/m\]

2 Wt
).’E- 5():-9(5) e Lua)'l.[-(n-) E—_|€>CZ DC )] (A—B)

Now we take advantage of the fact that I is actually int-

L}

egrated and drop out those terms in (A-8) evaluated at the
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limits, This leaves us with

IL ()
_[tL(n)‘E. g(qq)—_\[f LL(IL)E 5(1(:()]

L

*r(f’ ][z g(x’x)t’ a ;LCll)‘iS(I x\]

I t=

(A-9)
We are really interested in the integral
\ —-AVI(%-7)
7y fdtdz ey Pepy et T,
= W,+ R
5" T8 (4-10)
where
WB = Boley's result
and

R@: b folnolz crhﬁ)‘%(pz ROy [—u.{nz)

Jz_s(xqw i SG) Plug, | [\‘3 ILICIZ)%—.?Q-D(Q]
(A-11)
However final result is the same as Boley's as
TRy )= [otg TR = Ly fdid2 $p) $ep)

2 ey,
[ -0l 012} Z G-+ ¢ RPm _f $(x/-xy] L £ e

—L{'P hm 1 Li
e f S(?ﬂrk)]
(A=-12a)

Integrating the L term by parts and using the prop-

erties of the delta function we see
J(Re) = £, (di o2 4>c.=><l°cr23[i § (aleat) CiLgh iRy ]
2 —k"' ~-ttp. k
[ L e Pl. /ﬂ"l l'tLl % (F "'P ‘]

e
(A-12D)

™

(=1

i
o
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(ii) Static Part:-

‘E(f)( k

k, PP
EeL |,

-—

Vin-%) —ik'Y
A ;dndz #(P)ﬁl"(?s{ﬁ'p A

- e
[ thOz)y 4 lE k/zm\ $ S (- \] ‘5— 6 (x! =)
=4

PYPED = [i(94¢ + 31 Bk /mn) S, (K,

- i fdgTﬁ ""f(aL (2) + ip k/m\%(x x]g(x-x})]
- ka fen T(p) (e (21)° S (k) (4=13)
Note that since
o= £*P[~pV00]"l

(A-14)
we have

~thoy
fR)= fd3re L"Y,m\p [-rvm ] — @3y S(k).

| (4-15)
Equation (A-13) can be simplified to

20k, 01 2) BP0 = Bk P PG (TSR

- v(M-7m).
+ Lﬁ 5}13n c£3ra 0(3 d?r ¢>(ﬁ) 4’(f;) e B VO

l@ = g3
[ilo (¥re’ ™" 2 SG-xn] & §G-x))
L= J;\

(A-16)
For notational convenience denote the integral term by
A\, If we perform the change of co-ordinates on A‘

(A-17)
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integrate over R first and then over T by parts we can

show that
- —pv(¥™ _k.¥
- —kep Ppy P(py (L3F T -
A= — kP PP R(p) [d e ot
This gives us
)
ERRE. NP O RS SOV 13
(A-19)

(iii) Collision Part:-

—thy

. , Cew o et
Sk pr Pl dE €T [ e
(.__1_2‘) Iohd?- CF(ﬁ) Ci)(fz_) e‘ﬁV('Yr’Y?) [_ e{,fL(lZ)

. 2 1
L2 i% 6 (x-2)] 4 L, 022 }21 6 (/=) ]

(A-20)
Asides from the transformation (A-17) we also apply

the transformation

Il"' _T’L:th

Fp— F. =~ 2P
=t ot - (A=21)

We then carry out the integration in turn to obtain
) . 3 - 3= ~
g,f‘.‘)ft’,z)#(r’)z—ﬂd“cx FART 3R P ) P(F)

~pv(¥Y .
e P C(iL02) & o&'- A5y)
J=

N\ *
$ Lz+t )] | d3r e Y L G2) .%25("""‘{\]

—] (=

(A-22)
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where the differential operators are
i L, 0%) = Q\‘VR /m '+2F-VT. /m
’ - (4-23)
L) = _V(F)Y PAT
\ _ - ( /3 P (A-24)
Let us consider the r-integration first,

~tky . =
B, = fong e =% L, (1) {2;‘ S (x~2())

2 V. VI(F) pﬂve”hq[—%(fé-i)sc

I

2P
v (%4 31))_3(,?__‘&4.?)5 (1“(25“?))]
- R

(A-25)

We then transform
(A-26)

<41 =gl
|4 ol

__3 —
in the second product in (A=-25)

This gives _iRCF+2R)

6= 2 ViV (7)?2e T scp-x-F)

1)

(A-27)

Now consider ‘the_‘_ R-integration

—ike
[0R %p 2§ (e |
=1 e ¥ -k
LS (plat ~Fe" =<8 (pmsapde X]
= =94 P-4 - F = o (p~a4p)

(A-28)

Using (A-27) and (A-28) in (A-22) we find
€c)
£ ¥ = %5 %y (T T B0
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B —eV(®Y _y - kY
$(py e VVEY [§(pa-Pr et A
~ k¥,
~ SCp-x tEre 2][2“"'-\/(*) 2/oF — & E /m
“2iFV% An T Vi V) % S (p-%-TF)

(iv) The Limit z Sio™
To reduce the collision memory operator to the lin-

earized Boltzmann operator we have to take the 1limit
z-5107,

Employing Boltzmann's idea of an action sphere, we
assume that the relative momentum of the interacting par-
ticles, after some large time T , approaches arbitrarily
close to some asymptotic value, This limits us to 'short
range' potentials.

With this assumption we have

Py - p¥ for * > T,

—

(A-30)

Therefore

£ pwn= £ for t 7T,

¥

(A=31)

So
N 3ab
LM 1zl dte’” ]fcp(m =um 12 ] f + f ]oH:
230" ° 2ot -
et {r (+))
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Y]

T, 2t
LM Lz [L dt ¢'® fepw)= fiep o
2> (0F )
2t
(T dt e Y |
S .~ 2t
—f(f)-yuﬂ+1aiadieta({YE&)%~{VE“)

Z D0

¥

(a-32)

Since  (f(p(t)) - f?ﬁ)) is bounded,

. Te 12t ¥, 3
Lm i [ dt e CRepem) - 4*(P)) = o

(A=-33)

So we have
. o 126 »
LM 2z At e £ (P = —~f (")
2451 0 -
(A-34)
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APPENDIX B
Mathematical derivations of results
quoted in Chapter 4
This Appendix is devoted to derivations of some of
the analytic results used in Chapter 4. To be more speci-
fic they pertain to the reduction of the general Memory

operator to the Hard Sphere case.

(1)
_FV(Y)
e VTVlY)

_5\'(‘/)

gm VTV(Y) 5
% ""/p v.e
v
| By
= - VeV (e ~1) (B~1)
For the hard sphere (B-1) becomes

-z V(¥)
3(‘:’)(7\,\/(7‘: - l/ﬁ Vi (1-¢ ¢ )

Ve %y (1 =8 (7))

¥}

1}

- % S0Or-%) (3-2)

Notation used:
%(x) =Delta function

O.x) = | — 0(x)
A signifies unit vector
(ii)

To simplify matters slightly let us write

A= 2 ~RA /i
(B=-3)
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then we have that:-

~ ~chkyy -
AC?,‘*)_P?): v\.V{Y) V-E i %(—E_p—&—f)
(A + LCx,Fy)
AN RN VS T
At AL, m
-t RY /s é(_}f~ok- ?)
(B-4)
% - t
e R (e dt \=.°‘(J\"J“'> for Im(2)>0
(Ate)
9 (B~5)
ana e TN P W FY L (1 a Ty eI ERIA
(B-6)

Using the results (B-5) and (B-6) in our equation (B-4)

we see that
- ] '(-A-*'L)b "‘L(’JLf-L,)t
Alx &, PPz | oft L€’ - e (

(@—ik'r/z (_ﬂ_" B.F/mysct_é __‘E'))

(T"S ))f o{i‘el'ﬂ'tf

R 2 pt -
R Rl /m} g(f"’e‘*bj
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A § e-i'S'"rHV,_

L (h R(2-A) An) et e S'Cp

ey _
k)] e g paa -F) _
B-8

(iii) Collision dynamics:-

It can be seen that there will only be a collision

if r+p <0 and r,2b
P = momentum initially
i*= momentum after collision
=3-2¢(2-D)
Given that there will be a collision it occurs time
T later

< 2
T= |x- Pl" [.sz_‘lpz] (B-9)
We now obtain an expression for‘é‘in terms of the initial

values,
A

v, A A
'Y;,é‘ A B A A N D (B-10)

>

where A
=N
b s >~ (Y- P) (B=11)

Combining all these results we have
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6 (Pom~FO)7 B (P-) (P [OTE) S (L-s =)
+ O k-TISCP -2 -]

4 Lo (LEYE)e (532110 ($.5)] S(A-2-F)
(B~12)

where G(x) is the unit step function. We therefore have

od 0 (+t3T) =2 4 ¢(£-T) (B-13)
at

(iv) In this part we will examine the effect of &
% ; -—k‘ 'C' --l,'f * 4?

operating on 1 3(v) e!(? e e LR & (V2 1)

b (P ErV L SR &x-P) -5~ 5‘—?’;')]}

We first note that for any function f,

P £ = %L‘f(u) P l=o (B-14)
This means that
02, PO (R = (3-15)
We also have
L.OC"!,,E‘JéYo s B (B-16)
Lo(¥,EY P = O (B-17)
Then we note that
LB PPy = 503 E\ (B-18)

This gives us

Thus the condition G(I:—bl) becomes@(r}r’*}. However

~p¥iy)
g0+ = € =i° Y <,
| \-vvb



~114=

- G(Nuﬂro)

(B-19)
So therefore we only have to worry about the Lo(;_'ﬁ)
(2R pmit
(g(r) e } part of the derivative.

Since we have the O_(¥ 'E) factor,

L (Y

T

YT = =2 N D (Y P )m - i
mo T %1‘ 1 (B-20)
te

These results enable us to wri
[2- K& s tla(x,P)) [ gom e

1‘(‘2 - k.ot An)T -
S Lo €Y, BYG0D) +(2= K 2 ) 90) (

{(a-k%)r]

+v 90 (2~ E‘é/m)“?—l (E—k:d/m)t(

Lo (XEOT)
o eI rEy yir).  (B-21)
Thus
)
Z, (kPP 2) ) = v (Parm)® [ udid’F

ey, ~ ke
[ 775 SCu-t+Fy +e”' ¥ ngru-p-8)1

W P A (2R )T -k
o P (d"% P77 4m elfz R 2/ mdT e t2-eMna GCY:'-L?')

b (% B) L §C0-2-Fy~5(r- - 21 ] Lo (2, ) g()
(B-22)
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APPENDIX C

Transformation from Sonine polynomials
to modified Hermite polynomials

As has been mentioned earlier the modified Hermite
polynomial tends to be a less efficient basis as far as
numerical computation goes as it does not take direct
advantage, as the Sonine polynomial does, of azimuthal
symmetry. A reduction in the size of the inversion matrix
would decrease the round off error. It was with this in
mind that a transformation between the two bases was
sought.

Yo (3Y = fep, M 5 M () W (D), o)

This is '‘our orthonormal modified Hermite polyonomial
basis with the weighting factor |

R(5 = e ' /i)™ (c-2)

The orthonormal Sonine polynomial basis as generally

used is:-

1 $4ly g
%ﬁy Gupr T Vg (o, LT (P2,

e
whereLvtﬁhjare the Laguerre polynomials and 'y:YB,Q)are

(e-3)

the spherical harmonics as used in Wang Chang and Uhllen-
beck, By using azimuthal symmetry, as in Sugawara, we
reduce the number of free indices by one and the basis

now becomes

TN F () = T R lest) I IR

ol
g . (c-4)
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) . _
‘d&°¢)ls the Legendre polynomial. The normalization
factors are:-

!
gy = /«e'm ! (c-5)

'L
Cup = [ pl o=y T ] (0-6)
2%% P e pi36)

Let us naively expand

%, 4)=. QZ BCemnl xp) Yo, () L5
mnzo
Using orthonormality we then have

B(mn[xg)= [ d°7 Edﬂ(:i") ({ffmh(‘f) R(T)
Vs -
[T A, Cup I“*Lf(z‘@ Py (cos8) Ry(3)

. — - 51 3
Al a3 € 8% /)" (c-8)
We now use the polynomial expansion of our modified Herm--©

ite polynomials to put equation (c-8) in the form of three

sums: -
"
6L&ﬂ“‘“P)" ﬂ€mncmﬁ (—J%M) ; S 5
o L ) S T i
4k
¥ () T (m,i)wnk) L [d 3’"10‘*1 2)7"""’0" <]
Za;_i,z}_& r
21 N ) T ok ]( ~9)
L § dd (sm®) (COJ ‘f’\))J[Low(smB) ( Casb) f:{(cuﬁ) c-9
where °
ey = 2t @) D 7]
T—" * 2.

("™ 51 -3

(e-10)
After carrying out the various integration one arrives

at the following formula
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: g~ m M .
B mn|dp) = Agpy Can [ 2 £ £ B FOm0)

(2-1.‘,)?/1 J:o [}
> (0, k) L’gw"ﬂ] Crt (1) ] TPectig) D (5+4)
{4yt .
L61)-f+m+n+l ) 2 M ( :%)4‘|).

) ( 2rpk~t . 27tk
( i“i,‘ - 7 L
%

Z

) (*)éc (_07 W)f‘rﬂ? ey
Zo P=o ¥

2y k-2p (2‘;“_]3

2 +it+)rk
5 (rve - 26y ) (2 )

’tl. P(a-"“/'z. +t+) ) C_')rg Jfo'Y' rSf:'t :(
(t-p! TN
p for g2t
(c=-11)
where
NCy = binomial co-efficient
(Zﬁ—k" , 27k ) = the integer is used (e=12)
z o
Wor = @y 27y kmalyam) |

(In-Ym)yl (namer) )
The mathematics also gives the following rules for the
indices (1,m,n)
(i) 1 and m must be even
(ii) L + m + n = 2p +d

As we never had to resort to the transformation
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there is unfortunately no computer program for the

co-efficient [3(lmn/wp ).
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APPENDIX D
Description of the Programs

The three major programs used in the course of this
work are WMatrix, Dispersion and Polynomial. Versions of
each with slight variations were also written but in this
Appendix we will only describe the version most frequently
used. However one pcint has to be stressed. One version
of Matrix punches out the diagonal elements as positive
numbers., This version has to be used with those versions
of Dispersion and Polynomial which reads these elements
into core with the signs reversed, The other version of
Matrix punches out the diagonal elements as negative
numbers. This version has to be used with the correspond-
ing versions of Dispersion and Polynomial which read the

elements back into core without changing the signs,

(i) MATRIX. -

Matrix, as is implied by its name, computes the
matrix elements given by equation (4-32) that is the elem-
ents of the homogeneous collision operator. As a
by-product it also computes the matrix elements for the
self-collision operator.

The homogeneous collision matrix element given by

equation (4-32) can be reduced to a series of finite sums.
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(D-1)

where £:is short hand for (1lmn)

<~Q;If-\0(0)l—€';> e @_Z (-~2?

— 1
=0 —
(D-2)
L) (010> EmE e ¢ )
< AR, 7= Z (2) 7 £ R~ |A (k) L &(-4;>
Ri=0 z.)
€.
(D-3)
(&ay (i) /

: / W L S
AT S WU CLAR N T

L;:o L‘::Q

R (L(() é\Q‘wZ L. lﬁ’?_ ]»Q\'(-'ZL"‘)
(D-4)

-

2 N
LU AL s 2 (1)) (k=R (@7
£:=0 < (~€‘:‘~,Qi).l

— l e — -
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Fig. D.1 FLOW CHART FOR MATRIX (It must be noted that
this is only intended to give a very rough idea of the

basic logic of the program)
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- AL : - .
¥ (f;,L()-(ig—zL;)-~ E£‘1)/élﬁt = R (L) (51 1)

E() = I o(2h41) 2

N & (D-12)
) = (DY ety {13
dz{ = ( §ﬁo %%DSEO—- ]\ (D-14)
o R4l b
¢ (V= [‘(*I)EIICH'(—\)‘,) (0 1(l*-("l)(:jézl. row vector (D-15)

Matrix calculates each of the sums (D4) through (D-6)
in @ Do-loop, stores it temporarily (or in the case of
(D-2) permanently) in an array and passes it on to the
next do-loop for the next summation. The self-correlat-
ion matrix element proportional to the <Y;lﬂﬁb)igﬁ>term
and is punched out along with two-particle matrix elemen-
ts. This term is common to the calculations for any
value of kr,and is stored during the kr,=0 run for further
use.

To save core space the elements are calculated along
lines instead of by blocks, that is in the do-loops only
the n-index is allowed to vary. One tries to group the
elements together so that the dimensions (1 m n indices)
are about the same. The order subrountine brings in the
ket vector (ifm%flin the order desired to form the dot
product and by varying n and nlall the desired matrix
elements are obtained., Once we have the desired grouping
of the basis, all the possible combinations of (1lmn) and

i
(1mn) have to be run. 1t is basically a combinational
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vroblem. )

Language used:- FortranlIV

Precision:~- Single as it was(din this program)numerically
proved that double precision had a negligible effect on

the spectrum calculation.

Main Program:+ Main

Subroutines used:- ORIER RW RAT
oW RF
CF SF

Dimensions: -

The array S3(JJ1, JJ2, JJ3, JJ4+1, 1J3+1, 1J6) used
is a six-dimensional one. To arrive-at the minimum dimen-
sions use the formula

JJi = Maximum (1 y} 1)
1Ji = Maximum (%} 1)

where (1,1.1) is used interchangeably with (lmn) and Y is
] 2 3

synonymous with the program variable 1.

Input Data
Card # Data Format
1 Ntimes = number of runs with Is

different values of (MAXL, MAXM

MAXN) for these values of

IND 1 15
15

i

IND 2
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Card 7 Data
The subroutine ORIDER compresses
the indices (fﬁhﬁ into one index (i). (i)
is varied in increments of unity between
IND1 and IND2 (inclusive) to give the

. 5 17 ¢
degired values of (lmm).

= 2 MAXL = Correspond to the indices
MAXM = (lmn) with n being the
MAXN = maximum value for the

given line

+ 1 3 NURK: the number of varying kr,
runs to be made with the prece-

ding values on cards 1 and 2.

L 4 RK - this is the parameter k%,

The first RK wvalue must be 0.0,

The self-correlation cards will be every second card.

The 1BM 082 sorter can be used to sort the cards.

(ii) DISYERSION: -

DISFERSICN is the program which uses the matrix

elements from MATRIX to calculate the spectrum by the met-

hod of Kinetic modelling described in chapter 3.

(i) Ntimes sets of data

*(ii) NURK sets of data

It

Format

15
15
15

15

15
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essentially solves the sets of equation (3%-30a), (3~30Db),

(3-3%4b)}., One important point to remember is that it

calculates ZRGgg),directiy and mot MS(x,y).

Language used:~ Fortran IV
FPrecision:- Double Precision

Main Program:- MAIN

Subroutines:- SKW HN BETA
BETAM CROSS W
SFHBA1 i ORDER

The subroutine W is the subroutine W used by Sugawara to
calculate the Flasma dispersion integral. ORDER as in
MATRIX orders the basis and essentially cbmpresses the
three indices (lmn)} into one index(i}., The matrix
inversion has been incorporated into SKW,
Dimensions:- Before running the program check the follow-
ing variables for possible dimensional incompatibility
with the data variable NMAX. The minimum requirements are
Subroutine - Variables
(a) MAIN BHDSPYH, GAMMA both NMAX by
NMAX matrices
(b) SKwW A, GAMMA, BHDSPH, C, B, D
GAMMA, BHDSFH as in (a)
A =2KMX by 2KMX matrix B =2KMX dimensional vector
D =KMX by KMX matrix C =KMX dimensional vector
(c)BRETAM BHDSFH as in (a)



Input Data:=

Data Sequence:

1
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Data
NMAX = number of MATRIX
cards read in for each kr,
spectrum calculation

RK = the parameter krb
KMDUMX = number of differ-
ent KMX runs with the
preceding values of RK and

NMAX

Format

15

E16.5
Is5

N.B for the self-correlation input RK =0.0

(I11213141516)
BMAX1 1

the MATRIX element A./2
(that is the one related to
the shear viscosity).

\ set of matrix cards froﬁ}
{MATRIX for one kr,value ,‘

TITLE - comments

KMX = order of Kinetic model
MAXY = number of different nr.

runs with the preceding info-

mation
(I11213141I516)
BMAXN

615
2E16.5

615
2E16.5
1844
15
2E16.5

615
2E16,5
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Data Sequence: Data Format
} u 3
<£:}f)s MX— the matrix element corr-

esponding 'to-‘iknof the

Kinetic model

8 XMIN 7 The spectrum is 3D16.6

XMAX calculated for x betw-
MAX

MAXY X een XMIN and XMAX(inclus-
Sets
ive) in increments of DX

Y - the parameter y D16.6

(iii) POLYNOMIAL: -

POLYNOMIAL performs the same functions as DISPERSION
except that the calculation is performed by, essentially,
the Wang Chang Uhlenbeck method as explained in 5.2

This program was not in any sense intended to be a
production program. 1t was merely used to check the
results of DISFERSION and so it will not be discussed any

further.
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