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Abstract

Spherical Functions On GL,, Over p-Adic Fields
Eugene M. Luks

Submitted to the Department of Mathematics on September 18,
1965, in partial fulfillment of the requirement for the
degree of Doctor of Philosophy.

Let k be a p-adic number field, © its valuation ring,
G = GL(n,k), U = GL(n,0). A complex-valued function, constant
on the double cosets UgU, g€ G, is called a spherical function
(s. f.). It is known that the algebra of s. f.'s with compact
support can be mapped isomorphically, by a Fourier transform,
onto the algebra of symmetric Fourler polynomials in

iqtzj}]bﬁ Ve B (q=%residue class field of k)). This paper

determines (I) the explicit form of the inverse transforma-
tion., This leads to the other main results: (II) the Plan-
cherel measure is computed; (III) the zonal s, f.'s (which
identify the maximal ideals of L(G,U)) are also given

explicitly, they are symmetric rational functions in iqzjs
(IV) the bounded zonal s. f.'s are then determined (these
correspond to the maximal ideals of the algebra of integrable
spherical functions),

Thesis supervisor: Prof, K. Iwasawa, Professor of Mathematics
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Introduction

In the past few years, the theory of spherical functlons
(i,e., functions constant on the double cosets modulo a max-
imal compact subgroup) has been extended to some p-adie
algebraic groups, Initially, Mautner [4] considered the
case of PGLZ. By the method of Fourler transformation, he
determined, in particular, (I) the structure of the algebra
of spherical functions with compact support, (II) the precise
form of the zonal spherical functions, and (III) the Plancherel
measure, (I) has since been studied for the case of GLn by
Tamagawa [7], for some other classical groups by Bruhat [2],
and for a wider class of reductive algebraic groups by Satake
[5]. The authors also investigated the set of zonal spherical
functions, showing that it may be identified with a quotient
space of the form (c*)n/w, where W corresponds to the Weyl
group of the algebraic group. However, (II) and (III) are
still unknown in the general case, In this paper, we deter-
mine these for the case GLn. It is expected that similar
calculations can be made for other classical groups.

To be specific, let k be a p-adic number field (that is,
a finite extention of Qp) s U its valuation ring, G = GL(n,k),
U = GL(n,0).

Definition., A complex-valued function, f, on G, is called a

spherical function if it satisfies

(%) f(ugul) = f'(g) for all g€ G; u,u., € U,

4



We shall consider the following sets

1. L(G,U) the algebra of spherical functions with
compact support (multiplication by convolution),

25 Lp(G,U), p = 1,2, the spaces of spherical functions
with Lebesgue integrable (with respect to Haar-measure on
G) p-th powers,

3., The set of zonal spherical functions (z. s, f.)

i.e, the spherical functions, w, Such that the mapping

o . 2(e) wie™)ag
is a homomorphism of L(G,U) onto C. (dg denoting the Haar-

measure on G),

It is known (see [5], Chapter III, or section 4, this
papefL that L(G,U) is mapped isomorphically by a Fourier
transformation to the algebra of functlons on c¢® which are

X

L2
given by the symmetric polynomials in g 1,...,q = (@ =

the number of elements in the residue class field of k).
In section 5, we determine the inverse transformation
explicitly, This ylelds easily the remaining results:

We see that the transformation may be extended to a
unitary mapping onto a Hilbert space of functions on a
region in R" and the dual measure, Mn(yl,...,yn)dyl,...,dyn,
is given explicitly (Theorem 1 of section 6). It is inter-

esting that the function Mn(yl,...,ynxn> 2, 1s, up to a

constant multiple, a product of the functions Mz(yi,yj), 1< 3.



This result is analogous to that obtained for complex

classical groups (see [3]).

In section 7, we discuss the z, s. f., whlich are also
given explicitly (Theorem 2). As expected they correspond
to points (zl,...,zn)e Cn; they are, indeed, symmetric

Z Z

rational functions in q 1,...,q n‘

As an application of the last result, we determine
in section 8 the set of bounded z, s. f. (which corresponds
to the set of maximal ideas of the algebra Ll(G,U)), The
result is analogous to the complex case,

To obtain information about the Fourier transformationﬁ“—%?,
we first discuss, as usual, an intermediste mapping f — ?,
felL(G,U)., (see equation 3,3)), f is a function on the

group of diagonal matrices in G, f will be identified with

a function on Z" by letting

?(ml,...,mn) = ?(dias(ﬁml,..-,ﬂmn))
where m is a fixed prime element of ¢, With this convention
the mapping f — T is a bijection of L(G,U) to the set of
symmetric functions on z" which vanish except on a finite
set., (Proposition 3.2)., Now to know precisely the inverse
of f — ?, 1t is necessary to know the inverse of f — F:
Most of section 4 is devoted to determining the latter, The
result, Proposition 3.1, may be considered the key result of
this paper.

Section 2 is devoted to the introduction of a certain



class of operators on the complex=-valued functions on Zn.
By elementary divisors and the same identification as
above, f, too, is regarded as a function on Al is,
then, by means of these operators that we are able to
express compactly the aforementioned inverse mapping.
They also simplify the statements and proofs leading to
Proposition 1,

As one further remark, we note that some of the results
herein (viz, Lemma 3.1, Proposition 3.2, and Theorem 0) are
not really new (see, for example,[5]). The author thus
feels some Jjustificatlion should be made for the inclusion
of thelir proofs. In the case of Lemma 3.1, 1t 1s felt that
the argument helps clarify ideas to be used later in section
, The proof of Proposition 3.2 (i.e. the part remaining
to be proved at that point) requires, essentially, facts
from section 2, It seems an interesting reapplication of
the latter which were established to prove Proposition 3,1.
Finally, the statement of Theorem O is necessary for that
which follows and the only non-trivial point in the proof

ls Proposition 3.2,



1, Notations and Preliminaries

k will denote a fixed p-adic number field, ¢ its
valuation ring, P = (m) the unique maximal 1deal of ¢ (with
generator mw), The symbol I+ will be used for the normalized
valuation of k, If

q = the number of elements in G/P < oo

one has
-ord
ix|=q o (X)'

where ord(x) is the P-order of x, In particular,
-1
m=qa"".

Z will denote the set of rational integers, R the real
field, and C the complex field. If (m) = (ml,...,mn)ézn, we
let

Km) = my+«ee+mn.
(There will be no confusion with I|x|I above), Two subsets
of z" will be of interest:

Vn=={(m)ezn| mlamze---amn}

Wn = i(m)ezn| mjy = O or 1, léiin}.
IF (t) = (ty,+essty) 18 an n-tuple (in'z?, B, ¢°, or &™)
and o € S, the group of permutations of {1,...,n},we let
(to) = (tg(1)sesesta(n)).
Gp = GL (n, k), n22, will denote the group of non-
singular nxn matrices in k., It is a locally compact group

n

with respect to the p-adic topology. We are concerned with
the following subgroups of Gp

l. Uy = GL(n,¥), the matrices of G, with coefficiéents
in @, determinant £ P,

2% An the diagonal matrices of Gp.

3. B, the lower unipotent matrices (i.e. the
matrices b = (xij) where X34 = 1, Xx1j = O for i<j). When there
is no ambiguity, we write simply G, U, A, B. Note U is an open,
compact subgroup of G.

AB = BA 1s the subgroup of non-singular lower triangular

matrices, Then we have easily
(1e1) G = ABU
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The symbol diag (aj,...,8,) Will represent the diag-
onal matrix [a; 0

®
.

an| o
Then, if (m) = (ml,..,mn)EZn, we let n(m) = diag (nml,...,nmn).
by means of elementary divisions, we see, if g¢G
g = ulﬂ(m)ug, uj,uz eV
where (m) € Vy is determined uniquely.
Then
(1.2) g TA{HF(m)U’ (disjoint union).

If f is a spherical function (see introduction), it is
constant on the double coset Un(m)U, (m)GZn. f may then be
identified with a function on Zn, by f({(m)) = f(n(m)
we have at once f((m)) = f((mg)), 0€Sn. If, moreover, f€L(G,U),
it is non zero on only a finite number of the double cosets,

We conclude that f((m)) is a symmetric function of finilte
support (i.e. it vanishes off a finite set).

), and

Haar measures
Denoting by u, respéctively u*, Haar measure on the
additive, respectively multiplicative, group of k., Then
du(x+c) = du(x)
du(ex) = |c|du(x)
du* (ex) = du™(x).
These measures may be normalized so that
(1.3%  Ygan(e)i=ax

(1.4) fg pat(x) =1
It follows from (1.3) that
-
(1.5) JorgxardH(x) = q r€z,
It is well known that Gisa unimodular topological
group.([GL page 389), We normalize its Haar-measure, written
dg, so that

(1.6) ‘Udg =1,

Now A is topologically isomorphic to (k* )™, hence a
two-sided invariant Haar measure, da, is given by

(1.2) da = du*(al)...du*(ah) where the elements of A
are written a = diag(aj,e..sya,). By (1.4)
(1.8)  fynpda = 1.

Finally, if b€B is of the form



1lq

1 0
B 5211 .

» a
M

Xnl Xp2 =+ 1

then rT‘

(1.9) db = ;gagagdu(xiy)

is easily seen to be a two-sided invariant measure on B,
Also, by (1.3)

(1.10)  fppdb =1

Note that A normalizes B and one has

(1.11)  d(a~tba) = y(a)db

where y is a continuous homomorphism of A to the multipli-
cative group of the positive reals, One calculates easily,
for (m)GZn

(m)y _ g% (20-n-1)m;

L

(1.12) y(m

Now dl(ab) = dadb is a left invariant Haar measure on
AB and by (1.1), if ¥ is an integrable function on G,
{, wedas = [,5 [, vwlabu)dud)(ab) .

Then, formally, U

(1.13) dg = dl(ab)du = dadbdu .

Recall, if ¢ and wl are measurable functions on G,
the convolution ¥ ¥y 1s defined by

(114)  yx¥y(s,) = st(gosml(g'l)dg
when the integral is defined for almost all goec}.

Note, in particular, that if v, ¥y are in L(G,U)



12,

(respectively Ll(G,U)) then & 72Y is in L(G,U) (respectively
Ll(G,U). Thus L(G,U), respectively Ll(G,U), is an associa-

tive algebra with identity equal to the characteristic
function of U, (Using 1.6 and 1,14)

As usual, we define, for any function, ¥, on G

(1.15) ™ (g) = y(g™h).

The bar —denotes complex conjugation., Agaln | € L(G,U)
(resp. L,(G,U) ), implies v € L(G,U)(resp. L, (G,U) ).
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2, The operators A,, Dy j(r), Tyj.

Let F be the set of complex-valued functions on Ze,
To simplify several formulae and calculations in section 3,
it is useful to introduce a class of operators on F,

1onF‘by

We define first the 2n operators All,...,k
letting
(2.1) (M) ((m)) = n(eee,mio1,m £1,mi41,..)
for heF, (m)e z®, With products defined by composition,
linear combinations as usual, and including I (identity
operator) we have a commutative algebra, C[Ai‘,...,k;‘}, of
operators on F isomorphic to C[X1 ,...,Xt‘]
Of particular interest among these operators is the set

'{Dij(r)}l‘i j4n? 82, given by

-1
And we let
-1

(2.2b) Dij = D13j(0) = I = A kj i
By direct application of (2,2) one has, for (s)e-zn,
(2.3)  Dyg()[a‘®) ®In((m))] = ¢ (SHB)(Dy j(res1-55))n((m))

where the bracketed expression is conslidered as a single
function on ZP. (s)+(m) denotes ordinary dot product, i.e.
gsvmv. Alns_?, for (r)G_Z _tw)
() T Dt (ry) = E:( ‘(wﬁ(r)ll lznzl J(W“
L (W)EWn =y

Now let Fgo be the collection of members of F which are
bounded on each set Zg = a(m) Vi ‘\(m)\ = r\ r€Zs If h€Fgq,
then  Plhyseesghy )N €Fo  FOr Blkysesesdy) €000 0002} T.

(XS‘---s“h((m)) = h((n)), where (m)€Zz% if and only if

(m) € Zr+l(SN )e Fo clearly contains the functions with
finite support.

We define on F,, the additional operators {Tijl,,, .
, 34
by

(2.5)  Tyjh((m) = Zq“"x‘i’x;"hccmn,
for (m) €z", h eF,,
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Since h is bounded on an the sum is absolutely convergent,

also, if supln((m))| € ¥, then sup 1y sh((m)) < £ M(1+q~1)71
(mye 2 ez

¢ hence
P v
Tijh.eFo. With products again defined by composition, the

operators Tij commute with one another (this corresponds to
reversing the order of summation) and with the operators

P(*l!---,l )e C[kl yesash tl] For heFOl
(T-a"Taga ey 5(h) ((m) = F a™ 2y A7 (h) ()
V=0

Z Yl V+1-V1

(h)((m))

h((m))

Thus

{2.6) Dyj (=1) = Ty
Observe also, if h € Fg is a function such that h((m)) =

for m, > a, respectively for mn-<b, then if 1l4i<j=#n, A,A lh has

iy 1™
the respective property, hence so do Dlj(r)h and Tj jh.

I.

We prove here three easy Lemmas involving these operators,
which are needed for both Propositions 3.1 and 3.2,

For the first two Lemmas, let h €F, be a symmetric func-
tion (i.e. h((m')) = h((m)),c:GS and let h, be given by

(%) hy () = a T 118 TTprstes(n) ((m)).

nZs>r=y

Lemma 2,1, h,hl as above, Suppose (m)e:zn satisfleszmj+l =

m; + 1 for some jén-1, Then with o = (J,J+1) €8S, hy((m))
hy ((mg_)).

]

Proof, By (%), (2.2) and (2.5), for (m)é€ z"

oo
hy (@) = qz‘i'l)mivzq“'x; Ay71(I-a,71) DrsTrs(h) ((E)) .
=0

Define hgy by
ho((m)) *WDrsTrsh((m)) .

v
<S> EL, )Y

for (m)e z",

Then -
Exony (@) = o =1mY o4 Y3 Y 1o ) (o) ((m))
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Now since h is a symmetric function and J and Jj+1 enter

the product ll_symmetrically one has for all (m)
<S> F#L5,D

(a) ho((m)) = ho((Fg)) .

But m 4+ 1 implies

3#1 T My
(b) ho((mq,)) == )\JA-J_'_]_ ho ((m))o
By (a) and (b)
(I = AjA35p) (o) ((m)) =

Thus the summand in (%) is zero for V= 0, (M) = (m), With
(f) = (m) in (%%) we then make the substitution V= v-1,
= m + 1 implies

Z(i l)m, -V =§(i-1)mq‘(i) -V

and using (a) and (b)

g )
)

(T = A3 (he)((m) = M (T = AAGh ) (hod((mg)).
Hence ao
hy((m)) = q& (1-1)mo(1) Z‘-g“";\‘;xj‘:lcl = AA351)(Bo) ((mg))
O

Lemma 2,2, h,h, as above, Suppose h, €F is a symmetric
function and hll Vp = hy | Vp then h |(vn+wn) = h l(vn+wn)
(Vp+Wy denotes vector sum)

Proof, For (m) € Zn, we define

p{(m)) = the number of 1 such that mi< My q°
Let (m) € V,+W,. Then m, = ®,+w,, 1€ién where (M) € Vp,
w, = Oor1l, If p((m)) = O then (m) € Vn and by hypothesis
hy((m)) = hy((m)).

Suppose pg = p((m)) > O and hl((ﬁ)) = hz((ﬁ)) for all
() € Vy+Wy with p((H))< pge Let j(*1) be the smallest

=T
integer such that mj< mj+1. Since mj"mj+1, e must have

W, = mj+1, WJ =10, wj+1 = 1 and so Mypq = My & A saThen
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by Lemma 2,1.
hl(.."mj,mj'f'l,‘..) = hl(ooo’mj+1’mj,-oo) °

If now m 2 mj-l we repeat this process, continuing

J+1
until we get

hl((m)) == hl(.l.’mi’mj+l’mi+1’0..mj"l)
= hl((mc))9 g = (393"’1'1""19---’3'1)
where mi?- mj+1a m1+l?-°'-*mj, i=0,
But now (mg) = (W)+(Wg) € Vn+Wn and p(mg) = po-l. By the
induction hypothesis
hy ((mg)) = hy((my))
h,((m))

since h2 is a symmetric function, The proof is complete

by mathematical induction, 0
Finally, we shall use

Lemma 2,3, Let h€ F satisfy
(1) There is an M € Z, such that h((m)) = 0 if m, £ M,
(i1) h((m)) = h((mc)) 4 Myyy = m‘j +1, 0 = (J,J+1)€ s
for 1l4j<n=-2,

(11i) For some (r) € gh-1

Nl
[TJ;Dm(ri)J h|v,=o0.
0.

-

Then h an

Proof. By (i) h((m)) = O for mné M. Suppose h((m)) = 0

for (m) € Vy, mné M+j. Let (m) € V, be such that En = M+j+1.
By (2.4) and (iii)

h((@)) = -wgg;ﬁrlﬂ(wn q(r)*w)h(ﬁl+wl,...,ﬁn_l+wn_l,ﬁn- Iw)l ).
1w >0

Fix a summand on the right, If m, + w, < m

JEE MRS Ty ¥ 14 nep)

we may "transpose"” these two entrees as in the proof of Lemma
2,2, using (ii)., We repeat this until we get, in this summand
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B(EG 1)+ Wo(1) 2 285 (n-1)"¥a(n-1) B0~ (W) ).

for some o € Sp.] where the argument is in V,. Since
m, = Kw)l 2 m, =1 =M+ j, the value of the summand is
zero, Thus h((m)) = O, The conclusion follows by induction,

O
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3. The mapping f-)‘f.r.

Throughout this section f will be in L(G,U).
Let & be the quasli-character of A given by

{3:2) 6(a) = ﬁ[aﬂ n=1  yhere a = diag(al,...,an).
For (m) € A ’

(3.2) s(n(B)) = g~ (n-i)my

We introduce a function, T, on A by letting

(3.3)  Fa) = sta) § £(varan .

Since T(au) = f(a) for ueAaU, T is characterized by its
(m)

values on{n }(m)ezn .

As in the case of f, we shall at times consider T also as

a function on Z" with F((m)) = F( n(m)). The meaning will

be clear in context,

1 0

Now, b B Lo db = ﬂd il b = .
W’ y ( 9) h'j u(yij) 3-‘,-12 1 i |
. T3

Then, if x;, = yijnmj, s(n{mydp =T[du(xij). With this,

(3.3) yields )
r ~
' L 0
X5q T2
7 - - L - m
(3.4) f((m)) = E £l |Xqy Xgp T Hdu(xij)
k - . . ’)
N’ ~
n-.&-\'l-t\ [ L]
l \h . * L o‘

Lemma 3,1, ?((m)) is a symmetric function on Z™ with finite
support,

Proof, Since f(g) is of compact support, there exist D,M € R
such that f = 0 if d(det ?
(g) ord(de (gij)) D or 1f15ﬂfﬁn(°rd(gij))<m
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where g = (e;ij). Then the integrand in (3.4) in non-zero
b
only if |(m)] 4D and,min m, *M, Since there are only a

finite number of n-tuples, (m), satisfying these conditions,
T is of finite support,

To prove the symmetry, assume first n=2 and f €L(G,,U,).
Then with o = (1,2), one has

e Ree ™1 o 02
f((m)) - f((mg)) = Skf et = g L

Since the two matrices always have the same elementary

divisors, the integrand is identically zero and ‘f'((m)) ;((mg)).
It suffices to show 'xx((m)) =
Fix

(0]
nmlJ du(x) .

Suppose now n is arbitrary,.
‘f"((mo)), for o equal to an inversion: (p,p+l), l4p<n,

(ml""’mp-l’mp+2""’mn) € z""2, e define a function, £
on G2 by
- oj
w
- - - & x L2 .'.x -
(%) f£,(8) = Sk gf xpl e 1 [gJ ”du(xijJ
Sk L TP+l T p+lp-1 3
“S.‘lil‘ - ® . IRV S Qu,p)
~ ‘J

where the integrand is that of (3,4) with 2X2 matrix

b
ua 0 1 replaced by g. Suppose ué€ U2, Then
x et
p+l,p
. ; . rf N )
5 xpsl s Xpsp"l _ 1% 4 | L

"~

where a and B are p-lxn and n-p-lxn matrices respectively,

xp-!-l, i

and [xpi

xp+1'1 a0 e xp“l‘]{)-

B

/
U- Ipl

‘fls

x'p+l. i

9 1"-'1':'-p"1-

:;’p'l L] xP,p"'l
“p+L,1 ... *ptlp-1
l B

~

But then du(x:pi

g

Yau(xp g 4)
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’ 7 -
= d“(xpi)d“(xp+1,i) and so comparing with (%) fl(ug) = fl(g).
Similarly, f,(gu) = f,(g). f, is then a spherical function.
As in the proof of the other part fl(mp,mp+1) is non-zero

only on a finite set, hence fl(g) € I&Gz,Uz). Finally we
note by (%) and (3.4)

fl(mp’mp+1) = f(oocgmp_limp!mp+1!mp+2!"-)0

Therefore, if (m) = (...,mp_l,mp,mp+1,mp+2,...)

T((m) = Fylmpomq) = Fplmpp.mp) = T((my)),

Remark, As noted in the introduction this result is not new,
The symmetry of T((m)) is equivalent to the invariance of

f(a) under the operation of the Weyl group of G relative to A.
The latter follows from a result of Satake [5, page 22] which
is proved by a different method and in a more general setting.

Using now the notatlion of section 3 the inverse of the
mapping f—)?‘is given in-

Proposition 3.1, For (m)e V,, f€ L(G,U)

% (i=1)mj

(3.5) £((m)) = q paesral DrsTrs T ((m)) .

Before this proposition, we shall prove two additional
lemmas,

Lemma 3,2, Let (m)(:Vn, (x) Gkn-l and suppose ord(xl)ﬁmn,
then
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& 3
[ - °
(3.6) ) (-1l 5 S L =5
weW,, 0 * "
‘3*:; xjﬁjwb),u**s X i=1? “mn+1-(W{

n-i
where we have let, for convenience, w(Jj) fi;;vﬁ” (The entrees

are non-zero only on the diagonal and nth row where they are
as indicated).

Proof, The proof is by induction on n., If n=2, the sum
in (3.6) is

s S o B

f m2 +1 o f m2 .
Xl m xl m

But if Ord(X1)£1n2$]m1 both of these matrices are in

U,-diag((1/%) nm1+m2+1, x,)*U2 . Hence the above difference i

Zero,

Now fix n>2, and assume the corresponding version of
(3.6) holds for all f € L(Gp-1sUn-1). Let (m), (x) be as
given,

Suppose first ord(x1)> ord(x2)>--~>ord(xn_1J.
Then for (w) € Wp.1

I, 1= Kwﬁléord(xl)-ﬁtl)iord(x ~W(2)>+e-2ord(x

2) n—l)’
and

m, 19, 4 B m 3 ord(xl) 2 ord(xn_l) .

We then transform the matrices in (3.6) by subtraction of
integral multiples of the (n-1)st column from the others
and then one of row n from row(n-1l) (these elementary oper-
ations correspond of course to multiplication by elementary
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matrices which are in U) obtalning in the last two rows

row
- X3 =W(J)+wp-) . fn=1tmn-wltwna1| 4
ey oy o ge00 0y xl’l-l, ? Xl
O.’ 0 ,0..0, 0 ,Xn-l, O J n

Now, for 1 £ j £n=3

SRR ¥y = T

and

Hw) + w

n-l = —Wl— e * --an2 4
It follows that the transformed matrices are independent of

"wn_l” . But then each summand enters twlce, with opposite

signs corresponding to (_l)Wn-l = 41 or -1, Hence, the sum
is zero,
One may assume then

ord(xj) < ord(x for some J, 1< j<en=2,

j+1)'
For (w) € Wn=-1

ord(xj) - W(j) ¢ ord(xj+1) =

Teking note of this inequality and m, 2 myuy We can by

elementary operations eliminate the row n - column Jj+1
entrees in the (3.6) matrices, (This time subtract an
appropriate integral multiple of column j from column
j+1, then one of row j+l1 from row j), With this in mind
we define on Gp.j the functions

| o]
B S NS B SHICAY
fi(g) = f 200000 nplq-i-]ﬁ- Qes00e0C where &= e =
o il 8y g | 8y
(0] Sl
J

i=0,1. Clearly f, € L(Gpn-1,Un-1).

Since the last transformation the sum in (3.6) has
become
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(A) Z <-1J“J+1Z< UL AL R

(w')é Wn.g_

n-1X n=1 submatrices of those in (3.6) obtained by the
deletion of row- and column- (Jj+1). For fixed Wil (=0 or 1)

in the inner summation of (A) let x; = xin'wj+1, 1e4s 5.

[

Xy = X499 j+121i€n -1, and m,= By = Wi Then

(m) = (MyyeeusmysByoseoesly qom) €V, 5

and ord(xi) € Me. The inner sum on(A) is now gf the type
in (3.6) with respect to (x')ek™ ", (m’)ez™ . By the
induction hypothesis, this sum is zero. Therefore the

whole sum is zero and by induction the proof 1is complete,

H

For each fé€ L(G,U), we define a function f° on Z" by

0
(3.7) £°((m)) -—&--S,kf g o du(xy)esedu(x, )
‘B‘:’ ilisxjyll#’xn_l nn
Lemma 3,3, Let (m)€ Vn, then
(3.8) T_Inin(-i+1)(f )((m)) =

g~ (n=1) (mn+1), ﬂnin(n-i 1)(f)((m)) .

Proof, By (2,4), with ry = -(i=1), 1¢4i ¢n-1, the left hand
side of (3.8) becomes:

-

X A n""

Z(-l)l(wxq"(r)'(w)i"'gf o mITWI, ﬂdu(yj
% =\

(W1 W, .

BRI ﬁmn+1-KW
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In the integrand in each summand, we make the substitutions

yj = xjﬁﬁ(J) (w(j) as in Lemma 3.2) and so du(yl)n~du(yn_1)

2l w)
= q du(xl) du(Xn_z.
The last expression becomes

O R PN R T RETCAREE O
(whe Wiy

where [X(W)] is the matrix in the corresponding summand in
equation (3.6).

By Lemma 3.2 the integral =0 over:ord(xl)emn.
Restricting the integration in (a) to the range: ord(xl)

amhjl, we note for such (Xl), and (W)e'wn-l’

ord(xl) - wW(l) 2m + 1 - Kw) .

Then the row n- column 1 entree of [X(w)] is eliminated
by sultable subtraction of a column n multiple from

column 1,
If n*3, we continue and define, for fixed w1(=0 or 1),

the function fwl on Gn_1 by

1‘_Trn:|_+W1 00

- )
fwl(g) = f g ’ g € Gl’l-l .
io
Trivially, le( L(Gn-l’Un-l)'

Now, by the last transformation the integrand in (a) may
be rewrltten
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1
‘N‘I"-'(> (W‘\éw“.]_ l

where (W) = (Wopeoesw ). [Xl(wqj €Gp-1 is the lower sight w-ixo-\
submatrix of an [X(W)] and is therefore of a similar

form with respect to (m,yese,my _q,m,~W;) € Vp.] and

(XE""’xnul) € kn-z' Then agalin the integral is zero

< -
over ord(xz) € m =W,

Clearly this process may be continued, i.e. at each
step for 14£j4n-2 and wl,...,wJ fixed the integrand 1is zero
over

{ord(xi) > m Hl-wg- =Wy 1¢1¢)
< . - 2y =

ord(xj+1) £ m -wy W

We are left finally, for each (w), with the integration

over

a I Li4na
ord(xi) 2 mn+1 Wy Wiq 14i¢n-1,

Furthermore, at this stage we may assume the n® row matrix

entrees (except the last) are zero in each summand,

By (1.5) (a) equals

=\

q—(n-l)(mn+1)25:(_l)Kquﬁ(n-i—l)wl £(my+Wypeen,m J+W, o m +1= (W) )
W eW,, ’

= r, h,.8., of (3.8)"y by (2.,4),

We are now prepared for the=-

Proof of Proposition 3.1. For f€ L(G,U), let fl, a function
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on Zn, be given by

(3.9) 1((m) = q p(t-Dmy || Dy Trs(F) ((m)).

LR S5 oY
Clearly, for Proposition 3.1, one must show fll Vp = flvn.

We note first some immediate consequences of (3.9)

(a) ?,fl, respectively, satisfy the conditions on h, hl

respectively, in Lemmas 2.1, 2.2. (by Lemma 3.1 and (3.9))
(B) fl satisfies condition (1) of Lemma 2,3. (since T
has that property; see remark after equation (2.6)).
(v) £l satisfies condition (11) of Lemma 2.3 (by appli-
cation of Lemma 2,1).
With these facts in mind, the proof is by induction on n.

Suppose first n>2 and wlvn_l = wllvn_l for | € L(Gn_l,Un_l).
n-i
Applying the product .] Din (n-i-1) to both sides of
1=\

(3.9) and recalling (2.3) one has

Yy
T Togp(nmt-1)(£1) ((a))

At B e 8 & Sl
(3.10)  =q2{i=1)my 11| Din | | Dpgleo(®)((m)) (using (2.6)).
N-12§ )0
Now, for p& Z, we define a function fp on Gn-l
o
g :
[
o f =] - f
e ol i e e = e | e IR
e —
0=\

It is easy to see (as 1n the case of the function fl in
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the proof of Lemma 3.1) that fpé L(Gn_l,Un_l). Comparing
(3.11) with equations (3.4) and (3.7), one has

(3.12&) fp(mlgoocgmn_l) = fo(mliloi’mn_llp)

(3.12b) T (myseeesmy ) ?(ml,...,mn_l.p)-

By the induction hypothesis, fl

pIVn_laf v

p n-1
Then by (a) and Lemma 2,2

(3.13) fllj [ (Vpoy + Wn-1) = fp'(vn_]_ + Wp-1).

Starting with (3.10) we get, for (m)€ Vy,

T_lnin(n-i-1>(f1>< (m))
=

5 2.(1i-1)my Zﬂ' )‘(W)l WDI‘STI'S?(m1+Wl’ consll _qHW, 4,0 = (w) )

{w) EWn-\ NA25HT 3y

(by 2.3)

}:(i 1)m1X( 1)I(W)T—|-DrsTrs my, |(w)|(m1+wl""'mn 1t¥n-1!
N2 S2T 2

(by 3.12b)

_ n-

_ o Tli-1imy Z(_l)l(w)lq— T(1-1) (my 4wy )emn_ (1 +w1,...,mn_1+wn_1)
(by 3.13 and 3.9)

= q n-l)mn 7 ( 1)'("“’)l E(i l)wie (mq+Wygeeesmy 40, 5ym = |(W t))

A=\ (by 3.12a)

. q{n-l)mn| |Din(-1+1)f°((m)J
L=l

-\

=.ﬁ1-D1n(n 1-1)(f)((m))

by Lemma3app11ed to (ml,....,mn 190y, 1)€V . Then by (B) and
—i

(y) Lemma 3.3 may be applied to (f- f:r) vielding (f- f ) L =0,

(by 2.3)
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It remains to prove flV2 = £l |V2 for f € L(GZ’Uz)'
For such f (3.4) and (3.7) imply T =r° ILet (ml,mz)é'vz,

then fl(ml,mz) = qszlzfo(ml,mz), by (3.9)

= f(my,m,) by Lemma (3.3)
applied to (ml,mz-l). This completes the proof,

U

Proposition 3.2, The mapping f =% is an isomorphism of
the vector space L(G,U) onto the space of complex-valued

symmetric functions on z? with finite support, (in a sense,
then, an automorphism of the latter space).

Proof, The mapping is clearly linear by (3.3). Let T be
in the latter space, and let f be defined by (3.5) for
(m) €V, and by f((m)) =$O(mc)) otherwise, f is zero for

ml large or m_ small since T has this property (ef, remark

n
after equation (2,6)) so f vanishes off a finite subset of
Vn and is therefore of finite support. Therefore f(g)€ L(Gu,U,)
and there is a well-defined inverse mapping. It remains only
to prove that f—-}? is surjective or the equivalent that the
inverse is one-one,

Thus, we prove: If h is a complex valued symmetric
function on Z" (p21l), with finite support and

(3¢) q):(i-l)mi—ﬂ— DrgTrsh((m)) = O

N2$yTY

holds for (m) €V, , then hsO, The proof is by induction on n,
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If n=1, (%) reads h(m;) = O. But V,=z'

1 and so if (%)

holds for my &Vl, e N=0,

Suppose now n22 and the assertion true for functions on
« Let h satisfy the hypothesis., 8Since h is of finite
support

Zn--l

(6) h((m)) = 0O ifimin my ¢M, for some M€ Z,

If (%) holds for (m)€ V,, then by Lemma 3.2 (with h2.=-0),
(X) holds for (m)€ V, + Wn. Then if (m) € Vpy

0|

0= qzl‘(i-l)mi Z (_1)\(WJHZW1§"—[ DrsTrs*

CW)G w“n‘ LRSS e

for the part in the braces is always zero, It follows,

for (m) €V

o n-
0 = qi.(i‘l)miﬁ Din(=-1) TTDrsTrsh( (m))

: 02T (by 2.4)
“-
- qI(i-l)miﬁﬁ’in]_[DrsTrsh((m))
o ig _0-AzSe (by 2.6)
(111) =TTD1n(n-i) kqg(i"l)mi UDrsTrsh((m))S
i N2y (by 2.3)

Call the function within the braces in (1ii), h,((m)). By (8)

(1) hl((m)) = 0 for m, 4 M.

n

For fixed m , h is a symmetric function on Zn"l, then by

Lemma 2,1, hl satisfies
(11) h((m)) = h((mo)) if Myyq = Wy + 1, 0 = (J,J+1), Jj4n=2,

By (i), (ii), (iii) and Lemma 2.3, ,
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{**) 0 = TT DrSTrsh( (TII.))
NAzg0
holds for (m)€ V,. (Note that Lemma 2.3 holds trivially

for n-1=1),

Assume now h¥0, By (8) there must exist an My maximal
with respect to

(€) hitm}), =.0 LT m%n mi éMl.

Pix B, = M. + 1, and let (ml""’mn-l) €Vynye If m >m

il n-1 - n?

(ml,...,mn)e V, and (%x%) holds., If m,_y4m,~-1 =M, by (€)

and the remark after equation (2.6.), hl((m)) is zero and

(%¥X) again holds. Hence (*¥) holds for m o= My o+ 1 and all

(Myseeesm ;) €Vp_1. By the induction hypothesis

h(myyeessmy _qsMf + 1) = O for all (ml,...,mn_l)ez“

Comparing with (€), by the symmetry of h,

h((m)) = 0 if min mié=M1 + 1 contradicting the
\
maximality of Ml‘ Therefore h= 0, The proof is complete
by induction. []

X
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A
L, The transform f,

Let (z) €C™. We denote by o the quasi-character

z)

of A given by
(4.1) o.(z)(urr(m)) = qmH2)+ B Imy ror y e una.

( (m}z) = myZq +e=e +mnzn). For f ¢ L(G,U) we define then a
function T on Cn. by
(v2) ) = § Fa) o, (a)as.

The transformation has the propertles

(5.3)  Fwiy((z)) = T((2)%((2)),

(b.4)  TR((2)) = T(=~(2))

(see (1.14), (1.15) ),

where =(z) = (-Zl,...,-zn), (z) = (El,...,_z'n). Hence,

Proof of (4.3). By (1l.14), (3.3), and (1l.13)

fxf,(a)) = 6(ao)ghgagsf‘(boaoab)fl(b-la"l) db dbda

S?(aoa)Fl(a'l)da
A

Lo |
*x
o]
=
—
——
N
—~—
—
I

‘ﬂ SA?(aoa)Fl(a-l)a(Z ) (a,)dada

= P;?l(a-l)a(Z)(a-l)% gf(aoa)a(z)(aoa)da‘:saa

= P((z))E; ((z)) &



32
Proof of (4.4). By (1.5), (3.3) and (1,11)

;:(a)

a(a)ga Fa~ v~ 1)ap

s2(a) y(a~1)Fa"l),

Then, by (1.12), (3.2) and (4,1)

62(a)~r(a'1)a(zjta) = a_(z)(a'l) = a_(-z)(a'l)

*((2))

]
NN
h’)
o
=
—
o)
|
—
o
-
[« N
o

i
Hy
-
]
-~
N|
il
S

L

Now, using (4.2), (1.7) and (1,8)

Bz)) = 2 Flm)a gy (n®))
(e 2"

(4,5) = ZF( (m))qq&‘.'zqu(zlml+ soe +ann)

me 7"
By proposition 3.2, T varies over all symmetric functions on
Zn,non-zero only on a finite set. Then (4.5) implies that
?((z)) varles over all symmetric polynomials 1niqizk...,qlzai
Furthermore, the mapping f-ef% is clearly linear and is a

homomorphism by (4.3). We have then

Theorem O, (i) The transformation f =7 1s an isomorphism
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of the algebra L(G,U) onto the algebra of symmetric

+
polynomials in iqtzl,...,qrznk .

(11) The homomorphisms of L(G,U) onto C are then of
the form f-—}?{(c)), (c) € ¢®, Two such homomorphisms,

£f—=f((c)), £ =F((c’")) are identical if and only if

TF| 271 Vi
3 = Cu(a) mOd(__log q)’ 1<§ £n, for some o € Sy,

Proof, (1) follows from previous remarks, (ii) is a
consequence of (i) and the corresponding fact about the

algebra of these polynomials, []

Remarks. Theorem O is a known result(cf. introduction)

Note also that (4.5) and Proposition 1 easily provide

another known result, (Seel[5, p.45] and [T, p.395])

Thus -
T
T P
(mo)=(-l,........,,—l)

and suppose f(m")’ O ¢14n, is the member of L(G,U)
mapping into

“ _ (mT)(zg)

Tty = 2.0 ’

ces
Note that S

Ty T (mny = 1
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These n+l symmetric polynomials clearly generate the

algebra of all the symmetric polynomials in iqtzj}l <jen°

Now (4.5) implies

|

= _l'\-\
(o) f(m'r)((m)) = q T (m") if (m) = (m;).

Thus for 141&n

=~

(8)  Tpyry((m))

0 5L m1>1 or O)mn.

As remarked in section 2, (3.5) implies that (B8) holds with

respect to f‘(m';)((m)), for (m) €V,. Moreover, 1T f(m-r)((m)) # 0,

(o) and (3.4) imply |[(m™) = Km) . It follows at once that,
bonstant}‘f(m-r) = ks
(m™)
= characteristic function of Um Ue

We reobtalin -

Theorem O, (iii) L(G’,U) is isomorphlic to C[X]_g---sxn_lsxil:l!

K(mr) - Xr for r21, determining the isomorphism,
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5. The inverse transformation

In (4-5J let Zj = iyj (1 = ‘\/-1)! :YJ € R! 1"_—3‘:11, and

let 1(y) = (1y1’ooogiyn)o Then

1) = Y F(my)q T (mlgt(yHm)

myel”
By Fourler series

(5.1) F((m)) = g~ % (@) (log qyn (%}

Let YSR® be the region

(502) Yzi(y) Oéylé."éyné‘rg‘;—qg .
Since T(i(y)) is symmetric in iyl,...,yn}s

_n9

(5.3) T((m)) = q a-‘(m)\(log q /2m® n ng(i(y))z:q.i(yo’(m)ﬂay .
€D

With

h((m)) = q= THm=1(yXm)

by (2.2) and (2.5)

1(y-v,)
Dpsh((m)) = (1 -q 5 F") n((m))
Treh((m) = 3 q Vg2V Is=T) p((m))
VeO
h((m))
T ST A

Then from (5,3) and Proposition 3,1, for (m)&\i’n
(5.4a) £((m)) = |-~{B(a(y) BM),(¥)) ayq...ay

\(’ n

with
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(3-2Lm
(5.4b) H((m),(y)) = qZ K (17%"&’ n’%/ %
a3 qi(yo(s)-yo(r))
§ q-i(YoYUn)’ l
fesn L q-1+i(yﬂ(s)-y0(r))

OCne has easily

q-in - q-iyr ‘
1) :
(5.5) H((o...0),(y) = nt @ ’ 3 -1+1(.wys--yr>|ﬁ‘L &

S»T 9
Xzsign(o)l (qi.vo(s) - qiyo(l‘) ‘1>
: T
in which l Ia.denotes ordinary absolute value, and, as

usual, sign = +1 if o € alternating group
= -1 1f © f alternating group.

We wish to evaluate the sum in (5.5).
Consider the polynomial in C[Xl,...,Xn] given by,
(3¢) P(Xl,...,Xn) = zz;sign(c)l l (XO(S) - °xo(r)),°e B
N257T2)\

If X, = X e T % B8, then if v = (qs)é-sn

T—T(Xo(s) - cxo(r)) i (xcf(s) - cIor(r)) *

But these terms enter (%) with opposite signs, and
so P((x)) = 0. Then P((X)) is divisible by(Xg - X .

We have

P(xls---'xn) bt p(c)l;[(xs . Xr) °

To calculate p(c) we let Xy = c_j, then

T_T(c-o(s) - cl'c(r)) =0 unless o = (1).
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So

P((x)) =|—[(c's g p<c>ﬂ<c-s -c7F

e Evdy
which yields

LB
il
p(c) = W (22-)
3=
Applying this result to(5.5) we obtain

(5.6) H((o...),(¥))
N 3 !1 = qi(ys-yr) \

= n! (lggilflT"T(liﬂzI) ]—Tll i q-1+1(ys-Yr)J

;\‘:1 1“q

2" ns g2 [ ()

A=) ol
: : o Ys=Yr
' sin®( —2— 1log q)
X ;
syp | 1-29 “cos( log q)+q /.

With these and (5.4b) in mind, we define the functions
M((z)) and w((m),(z)) ( (m)& 2" fixed) on C?, by

(5.7) M((z))

SET
(5.8) w((m),(z))
4 n+l -1
. '“z’JT )y arteeNe) = +20<r})
I_(hZU(S)-qzc(rJ
i=) GQS!\ e

One has then, for (y)€ R%, (m) € Vy
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(5.9a) M(1(y)) = H((0...0),(¥))

H((m),(y))
(5.90)  wl(m),1(¥)) = 5775, .. 0), (y)) °

Note, by (5.6),

n -J T
(5.10) 0 £ H(i(y)) & 2n(n=Dlny 108 q, [l(ll'-q":ﬂ (1-q~1y-0(n-1)
’ =q
J

W
(constant)

We see also that w((m),(z)) is an entire function,

x "
For, considering the polynomials in C[Xll,...,XnI]Z

<~ oy my :
P(m)((X)) = {}Jxo(l)...xo(n) sign Ol;L(XO(S)-CXO(r)) s

Then (cf. proof for P(X)) this polynomial is divisible

(in C[Xllgoan,%lj) by ﬂ(xs = XI‘)'
ErAY

But

2 ((X)) m m 0.6 - ¢Xg(r))
(m) 3 1 n o(s) (r)
‘rT(XS - Xr) 1) EE:X0(1)°"Xo(n) (Xo(s) - Xo(r))

S

(i1
Comparing this with (5.8), we see that for all (m), w((m),(z))

y 2
is actually a polynomial in iq j}l‘-j"n'

We can make w a function on G by letting



(5.11) w( uﬂ(m)ul s (2) ) = w((m),(z)) for (m) €V, .

Then (5.4) and (5.9) yield

(5.12) £(g) = §+f Fa(y)) wle, 1) M1(x)) dyy..uay,

which is an inverse of the transformation f——» ?.

39.
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6., The Plancherel measure

By (5.9) and (5.11)
(6.1)  w( I, (2)) = wl((o...0),(z)) =1
(I = identity of G). Then (5.12) ylelds for f € L(G,U).
(6.2)  £(I) = SYS B(1(y)) M(L(5))ayy...dyy

Now by (1.14) and (1.15)
2
et (1) = lr(s ) as.
G

But fxf* € L(G,U) and by (4.3) and (4.4)

A
e (1(3)) = R

Then (6.2) applied to f*f*yields

i : A
(6.3) g,f(s)l,. dg = Smﬂ?(i(Y)L M(1(y)) dyp...dy,
G b

It is known that L(G,U) is dense in L,(G,U) in the
square norm, By Theorem O, , as f ranges over L(G,U),

?(1(y) ranges over the symmetric Fourler polynomials in

idtiyjklf:j -

But these functions (restricted to Y) are dense in the
Hilbert space of functions which are square integrable on

Y with respect to the measure M(i(y)) dAyqe..dy, . (ef. 5,10},

Then, with (6.3) we conclude
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Theorem 1, The mapping f-§? may be extended uniquely
to a unitary mapping of LE(G,U) onto the Hilbert space of

(equivalence classes of) functions which are square

M(1(y)) dyq...dy, ~ integrable over Y,
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7. The zonal spherical functions

A spherical function, w, on G is called a zonal

spherical function if the mapping
f — B(f) = SGf(g) w(e;'l) dg

is a homomorphism of the algebra L(G,U) onto C. It is
known that every homomorphism of L(G,U) onto C is equiv-
lent to'Q for a uniquely determined spherical function w,
(see [6, p.366] where this is proved in a more general

context).

Consider again the functions w(g,(z)),g € G. (section 5).

We have noted already that w(g,(z)) is, for fixed g, a poly=-

. xZ
nomial in iq jklé:jﬁrf By direct observation of (5.8)

one has at once that it is actually a symmetric polynomial

in these,

2 L B N ] n
( 1

Now let T be the permutation e I

For (m) ¢ Zn, one has

N \
1 1
(@) ) - E%—ﬁ(-mT(j,>==§ii(J - ("2%)) m,
¥ =

(8)  (zg)e=(m.) = =(Zg,)*(m)



/q‘zor(s) _

-1=-z

ot(r)

( =
Y) T#Wk q-ZOT(S) ]

sy

“Zor(sg)

S
Noting also that / = /  , and applying (a)y (B)y (¥),

Sesn 6t € Sn
we see from (5.8)

w(=(m_),y(2)) = w((m),-(2)) .

Now if (m)evn, -—(mT) €V,  so by (5adl)

-1
o((r®)) 7, (2)) = w(=(n_), (2)).

Thus
(7.1) (g™, (2)) = w(g, -(2)).
It follows from (5.8) that

w—(gp(z)) = w(g,(Z)).

In particular by (7.1)

(7.2) Be,1(y)) = wle™t,1(y))

43,
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For f € L(G,U), (5.12) and (6.3) yleld for (y)€R".

P(1(y))

It

SGf(g) w(g,1(y)) dg

(7.3)

1l

ng(s) w(e™ti(y)) de.

Note also, by section 6, (7.3) holds also for

fe LZ(G,U) (up to equivalence in the norm).

-1 \ 21y
Since w(g ~,i(y)), & fixed, is a polynomial in Jq ’
so is the right hand side of (7.3) for f € L(G,U). Then

(7.3) implies
(7.4) P(z)) = ggf(g) w(g™t,(z)) de
for all (z) €c®, Comparing (7.4) with Theorem 0., (il),

one concludes -

Theorem 2, The set of zonal spherical functions on G 1s
exactly the set im(g,(z)ﬂ
(5:11) ).

(z)e (see equations (5.8) and

In (7.4), let now f = f(m)’ the characteristic function

of Un(m)U. We obtain for (m) € Vp

A -1
(7.5) fomy ((2)) teas(Unt™u) w((n™) "(2))

= Meas(Un(m)U) w((m), =(z)).
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We know that

w((m),=(2)) = ) Kep¢ta) =X,
(mﬂe?‘
for someiF(mS(ﬁ)ﬁCCL Then letting (z) = i(y), by

Fourier series

(1og q) SM?“

K (1)) o( (m),-1(3))a " M May gy

o)
X

n
1
( :i q) (Meas(un{®ly)) ]1{.( 5@@3(i(y))q 1(y)(m)dy'“

osNie 3 o

Comparing this with (5.1)

(7.6)  Kpf() _ g FEN (geag(unt™uy)Tt F g @),

Remark, The only use we shall make of these last compu-
tations will be in the next section where we need the fact
that K(mshﬁ))é.o. (This can be proved directly from (5.8)
although not so easily). However, it is expected that (7.5),
together with the explicit form of w (5.8), may yield further
knowledge of the algebra L(G,U)., Note that (iii) of Theorem O
follows easily from (5.8) and (7.5).
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8. The bounded z. s. f,

Since L(G,U) is dense in Ll(G,U), the latter is also
a commutative algebra. Now it is easily seen([6), pp. 376-7)
that homomorphisms of this normed algebra are of the form
f — O(f) = S f(g)w(g™t) dg
(S

where w 1s a zonal spherical function, bounded on G, We wish

then to determine the set of points, (z) (€ C") for which

w(g,(z)) is bounded,
By (7.6) the coefficients, K(mS(m')), of the monomials,

q-(ﬁ)(z)’ in w((m),(z)) are all positive, It follows that

(8.1) | (m), (2))]|_ £ w((n),Re(z))
where Re(z) = (Re Zl,...,Re zn)f:Rn.
Let
n+l ik 84
3 =g - = Js 1=£J%=n
(t) == (tl""’tl’l) .
t -1+t
Since g ugl o] j, the product
t =1+%
]*T(q o(s) _ 4 o(r))’ e

T
is non-zero if and only if o = (1). Thus by (5.8)

N -1 t -1+t
- ) t t
= 1_q J 4 = a &

EYAY

w(g,(t))

=1
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Since w(g,(z)) is symmetric in (z) =
(8.2 w(g,(to)) = ] for c €8y .

Let H be the convex hull of the set i(tg)&

GéSn

By a theorem of complex variables ([1], p.109)

mex |o(g, (z))| = max |u(g,(z)),
Re(2) € e Rcu)qm“
Therefore, with (8.1), one concludes
(8.3)  |ule,(z))|_ €1  for Re(z)em.

H contains the points (x) satisfylng the conditions

(a) X5(1) t Xgezy Peeet Egip) .4_3(_2.:?.2 s 1€p2n=-1 ,Gésn

(8) S P xn=o.

This is clear since all the points (to) satisfy these,
Assume now (z) ¢€c” and Re(z) does not satisfy (a) or

(B). We shall see that w(g,(z)) is then unbounded,

Suppose first (o) is not satisfied by Re(z). Let

(m) = (M,M,...,M), M€ Z,

Then by (5.8)
Wadiy (23 =aaplllAltestin)

This is clearly unbounded if Re(zl)+...+He(zn) # O,

With Re(z) = (x) suppose now for some o €8,y 14p%n-1,
p(n=-p)
-+ Teosoe .
Xo(l) xc(z) + + xc(p) X > By the symmetry of



w((m),(z)) in (z) one may assume
Xl 2 xai---éxn
It follows that
(3%) Xq + Xy heelt X, S pln- N

We may further suppose

Z = =
Xp + Xy beeet X 9 £ (D l)én p+l)
h e - -1)(n=-p+l) = n+l=2 .
Then x> p(? p) (p )%, p+l) __%rﬁﬂ
If now X, = Xpgp = eee T Xp;> X el (%) and the last

inequality imply

Xl i X2 +.'.+X}.f > ﬁ__(rzl':é_) .

Hence we may assume that (%) holds for some p such that

(% %) Xq2 x5 ...?.xp>xp+1é...ixn.
Let Sp = ic:esn !oil,z,...dﬁ - {1,2,...;&8
S5 = S, - S .
'
With (m) = (ﬁ???ﬁ,o...o), we consider the function

w((m),-(z)). Separate the expression (cf.(5.8)) for
w((m),-(z)) into two parts, wy, W,, corresponding to
ik

summation over S, Sg, respectively.

zo(r) -1+20(s)

-Mp(n-p)  M(Z9+. .o +2Zp) TTE - 4 -
wy = ¢ q 2 Z‘q 4 H qzc(r) - qZU(S)

§ 63vn D0
erlide e ISR

L8,



49,

where the constant ¢ includes the non-zero and well defined

(by ¥* ) product
Z.. _ -l+zS

2
| o} a
Z i
I s
vs)? q = q
P<p
Then
-Mp(n=-p M(Z1+. .. +2p)
wy =¢q ) q ] iuas aboves
€Sy, '

Note ¢, 1is again non-zero, since the last sum is (up to a

positive constant ) a product w'((o...),(z)) @ (e wai0) 402 )]

=13 o', w’ being the z, s. f. defined for Gp, Gp-p Trespec-

1
tively. (cf. section 5; observe that S, corresponds naturally

to SpX sn-—p) s

The final equality implies, by (%), that wy is unbounded
as M =+

It is not difficult to see, by virtue of (%¥) that

w 2
) as M —+4e
U)l

One concludes that w(g,-(z)) = wy + w, is unbounded ;

so by (7.1) w(g,(z)) is unbounded.
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Let TH pe the complex tube of H, i,e., the set of (z)E€ Cn,
such that Re(z)e€ H, Then Ty is the set of (z) such that
Re zjl + Re 232 +...+ Re sz £ p(g-p) for
1£j1<32<---<3p5-.n, l¢p<n=-1
Re Zl_ 8 .H.e Zz +o.-+‘ Re zn = 0
We have
lo(g,(z))|,¢1 if (z)€e Ty
w(g,(z)) 1is unbounded if (z) ¢ Ty .
Thus -

Theorem 3., For f€L(G,U), f, given by,

2(z)) =§Gf(g> wle™L,(2)) dg

is a symmetric, continuous function on Ty .
The homomorphisms of the Banach algebra Ll(G,U) to the

complex field are of the form

£ = T((e))

~
for (c)€ Ty . Two such homomorphisms f — f((c¢)),

f —%((c')) are identical if and only if

2mi
o = £ £
j = co(j) Toz q) 1€ j4£n, for some cesn.



ol

Proof, The last statement follows from properties of

w(gﬁz)). The rest has been proved,

Remark, The identification of the homomorphisms of
Ll(G,U) to C with the above region TH appears quite
similar to results obtained by Gelfand and Neumark([3],
pp. 266-9) for complex groups.
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Isl,= ordinary absolute of complex number s.

(u)(v) = u1v1+u2v2+ ey +unvn

Pe
P
P.
Pe
P

DP.

P.
P

P.

P
P
Pe

joi

p.
Do
P.
Pe
P

P.

for fu) = (ul,uz,...,un)
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37

35

13

a7
39

il
12
18
3L

(v) = (vlsv290° °9vn).

h|V function h restricted to V.

Other notation is either standard or clear in context.
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