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Abstract

Spherical Functions On GL, Over p-Adic Fields

Eugene M. Luks

Submitted to the Department of Mathematics on September 18,
1965, in partial fulfillment of the requirement for the
degree of Doctor of Philosophy.

Let k be a p-adic number field, UO its valuation ring,

G = GL(n,k), U = GL(n,¢). A complex-valued function, constant

on the double cosets UgU, g€G, is called a spherical function

(s. f.)e. It is known that the algebra of s. f,.,'s with compact

support can be mapped isomorphically, by a Fourier transform,

onto the algebra of symmetric Fourier polynomials in

"23, , yop (a=s(residue class field of k)). This paper

determines (I) the explicit form of the inverse transforma-

tion. This leads to the other main results: (II) the Plan-

cherel measure is computed; (III) the zonal s. f.'s (which

identify the maximal ideals of L(G,U)) are also given

explicitly, they are symmetric rational functions in 123;

(IV) the bounded zonal s. f.'s are then determined (these

correspond to the maximal ideals of the algebra of integrable

spherical functions).

Thesis supervisor: Prof, K. Iwasawa, Professor of Mathematics
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Introduction

In the past few years, the theory of spherical functions

(i.e. functions constant on the double cosets modulo a max-

imal compact subgroup) has been extended to some p-adic

algebraic groups. Initially, Mautner [4] considered the

case of PGL,. By the method of Fourler transformation, he

determined, in particular, (I) the structure of the algebra

of spherical functions with compact support, (II) the precise

form of the zonal spherical functions, and (III) the Plancherel

measure, (I) has since been studied for the case of GL, by

Tamagawa [7], for some other classical groups by Bruhat [2],

and for a wider class of reductive algebraic groups by Satake

[5]. The authors also investigated the set of zonal spherical

functions, showing that it may be identified with a quotient

space of the form (o* yu, where W corresponds to the Weyl

group of the algebraic group. However, (II) and (III) are

still unknown in the general case, In this paper, we deter-

mine these for the case GL, It 1s expected that similar

calculations can be made for other classical groups.

To be specific, let k be a p-adic number field (that is,

a finite extention of Q) sy U0 its valuation ring, G = GL(n,k),

U = GL(n, 0).

Definition, A complex-valued function, ft, on G sy 1s called a

spherical function if it satisfies

(3%) f(ugu,) = f(g) for all g &amp; Gj u,u, €U,



We shall consider the following sets

l. L(G,U) the algebra of spherical functions with

compact support (multiplication by convolution).

2.4 L,(G,U), p = 1,2, the spaces of spherical functions

with Lebesgue integrable (with respect to Haar-measure on

3) p-th powers,

3, The set of zonal spherical functions (z. s. f.)

i,e, the spherical functions, w, Such that the mapping

-1be f(g) w(g ~)ds
ls a homomorphism of L(G,U) onto C. (dg denoting the Haar-

measure on G).

It is known (see [5], Chapter III, or section 4, this

paper), that L(G,U) is mapped isomorphically by a Fourier

transformation to the algebra of functions on c? which are

tz tz
given by the symmetric polynomials in q 1... . (q =

the number of elements in the residue class field of k).

In section 5, we determine the inverse transformation

explicitly, This ylelds easily the remaining results:

We see that the transformation may be extended to =

unitary mapping onto a Hilbert space of functions on a

region in RT and the dual measure, Mp (Yqseeesy )dVyseee,dy

is given explicitly (Theorem 1 of section 6). It is inter-

esting that the function Mo (Yqseee,¥, n&gt; 2, is, up to a

constant multiple, a product of the functions Mo(¥s 97a) 1
7
~~ j &amp;



This result is analogous to that obtained for complex

classical groups (see {3]).

In section 7, we discuss the z, s. f., which are also

given explicitly (Theorem 2). As expected they correspond

to points (Zgse00s2,)€ cs, they are, indeed, symmetric

Zq Z
rational functions in q see0esQd n

As an application of the last result, we determine

in section 8 the set of bounded z, s. f. (which corresponds

to the set of maximal ideas of the algebra L,(G,U)). The

result is analogous to the complex case,

To obtain information about the Fourier transformation,f-

we flrst discuss, as usual, an intermediate mapping f -

felL(G,U), (see equation 3.3)). f is a function on the

group of dlagonal matrices in G. t will be identified with

&gt;

~

» function on zZ° by letting

4 m
f tT mh)f(myyeee,m,) = f(diag(m ,...,

where mm is a fixed prime element of ¢, With this convention

the mapping f = T is a bijection of L(G,U) to the set of

symmetric functions on Zz? which vanish except on a finite

set, (Proposition 3.2). Now to know precisely the inverse

of f —&gt; ft, it 1s necessary to know the inverse of f - =

Most of section 4 is devoted to determining the latter. The

result, Proposition 3.1, may be considered the key result of

this paver.

Section 2 is devoted to the introduction of a certain



class of operators on the complex-valued functions on zn,

By elementary divisors and the same identification as

above, f, too, is regarded as a function on zh, It is,

then, by means of these operators that we are able to

express compactly the aforementioned inverse mapping,

They also simplify the statements and proofs leading to

Proposition 1.

As one further remark, we note that some of the results

herein (viz, Lemma 3.1, Proposition 3.2, and Theorem O) are

not really new (see, for example,[5]). The author thus

feels some justification should be made for the inclusion

of their proofs, In the case of Lemma 3.1, it 1s felt that

the argument helps clarify ideas to be used later in section

4, The proof of Proposition 3.2 (i.e. the part remaining

to be proved at that point) requires, essentially, facts

from section 2, It seems an interesting reapplication of

the latter which were established to prove Proposition 3.1.

Finally, the statement of Theorem O 1s necessary for that

which follows and the only non-trivial point in the proof

ls Proposition 3.2.



Ll. Notations and Preliminaries

k will denote a fixed p-adic number fleld, OC its

valuation ring, P = (nm) the unique maximal ideal of ¢ (with

generator mw). The symbolI+]willbe used for the normalized

valuation of k, If

q = the number of elements in

one has

| = q~oTd(x)

where ord(x) is the P-order of x. In particular,

m= at.
Z will denote the set of rational integers, R the real

field, and C the complex field. If (m) = (DM]yee.,my)€Z, we

let

m)]=my+ee-+mp.
(There will be no confusion with Ix|I above), Two subsets

of Zz will be of interest:

Vn = { (m)ez?] my2mp eee dmpd

wn = {(m)ez®] m1 = 0 or 1, 1eisni.

If (t) = (t14...,t,) 1s an n-tuple (in 2", BR", C°, or kx")
and 0 € S, the group of permutations of f1,...,n}, we let

(to) = (to(1)seessto(n))e
Gp = GL (n, k), n22, will denote the group of non-

singular nxn matrices in k, It is a locally compact group

with respect to the p-adic topology. We are concerned with

the following subgroups of Gp

l. Up = GL(n,¥), the matrices of G, with coefficilénts

9, determinant €P.

2. A, the diagonal matrices of Gp.

3. B, the lower unipotent matrices (i.e. the

matrices b = (xij) where x34 = 1, xij = O for i&lt;j). When there

is no ambiguity, we write simply G, U, A, B. Note U is an open,

compact subgroup of G.

AB = BA 1s the subgroup of non-singular lower triangular

matrices, Then we have easily

(1.1) G = ABU

a
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The symbol dic~

onal matrix [=
(2]y¢009ay) Will represent the diag-

"ap
Then, if (m) = wo en, we let nm) = diag (ml,..., 70),

by means of elementary divisions, we see, if g¢G

Z= uyni®u,, uj,uz eV
where (m)€Vp,isdetermineduniquely.
Then

(1.2) G =Uyni®ly, (disjoint union).
If f is a spherical function (see introduction), it is

constant on the double coset ung, (m)ez™, f may then be

identified with a function on zh, by f((m)) = p(mim)y, and

we have at once f((m)) = f((mg)), 0€Sp. If, moreover, FeL(G,U),

it is non zero on only a finite number of the double cosets,

We conclude that f((m)) is a symmetric function of finite

support (i.e. it vanishes off a finite set).

Haar measures

Denoting by un, respectively u*, Haar measure on the

additive, respectively multiplicative, group of k. Then

du(x+c) = du(x)

du(ex) = |c|du(x)
du* (ex) = du (x).

| 5

These measures may be normalized so that

(1.3) fg au(x) = 1
(1.4) fopdu*(x) = 1
It follows from (1.3) that

-r(1.5) fopas p3u(x) = 4
It is well known that Gisa unimodular topological

group, ([6], page 389), We normalize its Haar-measure,

dg, so that

(1.6) f ae = 1,

written

Now A is topologically isomorphic to (k*)7, hence a

two-sided invariant Haar measure, da, 1s given by

(1.7) da = au (a1)... du* (ap) where the elements of A
are written a = diag(aj,..eyapn). BY (1.4)

(1.8) fynada = 1.
Finally, if b€RB is of
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x21 1

»

o

nl X12

then IT
(1.9) db = naisga1d8(xiy)

is easily seen to be a two-sided invariant measure on B,

Also, by (1.3)

Note that A normalizes B and one has

(1.11) dla" la) = y(a)db
where y is a continuous homomorphism of A to the multipli-

sative group of the positive reals. One calculates easily,

for (m)ez™

(1.12) (mm) _ oF (21-n-1)my
Now d, (ab) = dadb is a left invariant Haar measure on

AB and by (1.1), if ¥ is an integrable function on G,

{ y(g)dg = [us (4 y(abu)dud, (ab) .
Then, formally, U

(1.13) dg = d, (ab)dn = Jadbdu

Recall, if ¢ and Vy are measurable functions on G,

the convolution ¥* Yq 1s defined by

(1.14) yxuq(e,) = RCN CLE

when the integral is defined for almost all 8, % G.

NocCe, in parvicular, that Lf Ve We are in L(G,U)
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(respectively L,(G,U)) then Yq is in L(G,U) (respectively

L,(G,U). Thus L(G,U), respectively L,(G,U), is an associa-

tive algebra with identity equal to the characteristic

function of U, (Using 1.6 and 1,14)

As usual, we define, for any function, V,

(1.15) ¥*(g) = w(&amp;™h),

on m
J

The bar —denotes complex conjugation. Again |€L(G,U)

(resp. L,(G,U) ), implies ¥*€ L(G,U) (resp. L,(G,U) )e



2  «. The operators Ai Di Jr ),  tr 1]

Let F be the set of complex-valued functions on zh,

To simplify several formulae and calculations in section 3,

it is useful to introduce a class of operators on F,
“+ +

We define first the 2n operators Ap Tseeeshot on F by

letting
x

(2.1) (A;Th)((m)) = h(...,miz1,mi t1,mi41,...)
for he F, (m)e zZ%, With products defined by composition,
linear combinations as usual, and including I (identity

operator) we have a commutative algebra, 0002 genenhit dy of
operators on F isomorphic to ClXy 'yeuerX Ie

Of particular interest among these operators is the set

1013000} 124 gems r€7Z, given by
(2.22) Dj 3(r) =I = a™ a3"
And we let

(2.2b) Diy = D1j(0) = I = AT

By direct application of (2.2) one has, for (s)€ 2",

(2.3) Dyy(r)[a!3) ®In((m))1 = oSM®)(pyy(res1-53))n((n)]
where the bracketed expression 1s considered as a single

function on zB, (s)e(m) denotes ordinary dot product, i.e.

sym. Also, For ep e 2, oon-i w
(2.4) Topi(ry) = Ten HORE), wn med, A)

1=\ 1 n-1 n
 MWe Wa-

Now let Fo be the collection of members of F which are

bounded on each set Zon m= { (un) ¢ zh | Km) = A, ré€zZ, If h €F,,
1

then P(Ayyeeesr )h € Fo for P(Ayseeeshr,) € CIA seeeshy ].

(AD+--Xth((m)) = n((x)), where (m)€z? if and only if

(m) € 200 (sh ). Fo clearly contains the functions with
finite support.

We define on Fy, the adlitional operators Talis, yen

v (

F °



Since h is bounded on Zym) the sum 1s absolutely convergent.
also, if suplh((m))| £€M, then sup |T3 yh((m)) £ M(1+q~ 1)"1, hence

ime 0 (myeZn,
Ty jh€Fo.Withproducts again defined by composition, the
operators Tq 3 commute with one another (this corresponds to
reversing the order of summation) and with the operators

P(Ayseeeshy) € CIA seuusAst]. For heFo,

_-1,, -1 ©(-q"hag a Them y(n) ((m)) = Fa a) A (h(a)
 V1, Vl, -V-

Za” Hh VT wm) (m)
a.

—

-

. r )¥

Thus
(2.6) Dij (1) Tyy = 1.

Observe also, if h€ Fy is a function such that h((m)) = 0

for my &gt; a, respectively for m, &lt;b, then if 14i&lt;j=n, MATH has
the respective property, hence so do Dj 3(r)h and Tj jh.

We prove here three easy Lemmas involving these operators,

which are needed for both Propositions 3.1 and 3.2.

For the first two Lemmas, let h €F, be a symmetric func-

tion (i.e. h((m)) = h((m)), c€S, and let h, be given by

() ny (mM) = a "1% Torsten) (a).
LESSof1

Lemma 2.1. h,hy as above, Suppose (m) € 7? satisfies: mig =

my + 1 for some Jj¢n-=-1l, Then with g = (J,Jj+1) € Ss hy ((m)) _

hy ((m )).

Proof, By (¥), (2.2) and (2.5), for (m)&lt; 71

7 oo- _ (1-133; -V_V -V _ -1 _—

hy ((@)) = q q Aj Mpg (I FLIP DrsTrs(h)((@))
V=0

Define hg, by

ho((m)) | orstesnt (m))
&gt;

4S. ELI,YD
for (m)€ 71,

Then T x vy
_ (1=1)m &gt; " =v -1(x%)h. ((m)) = a 1 a Ay Aypq (I-24447)(ho)((m))

y=



-

Now since h is a symmetric function and j and Jj+1 enter

the product J symmetrically one has for all (m)
&lt;5, #4530,

(2) ho((@m)) = ho((Fg))

But M341 = my + 1 implies

(b) ho((mg)) = AjA33; ho ((m}).

By (a) and (b)

(I = A311) (Bo) ((m)) = ©

Thus the summand in (¥¥) is zero for V= 0, (mW) = (m). With

(fi) = (m) in (%%) we then make the substitution Y'= V-1,

0341 = ms + 1 implies

J (1-1)m, -y = 2(1-1)m yy,
and using (a) and (Db)

 Vv _-V - vt -v! -

hgh ger (I = AjA3i1) (Bo) ((m)) = NyA jen (I = AyA341) (ho) (mg).
Hence -

ay ((m)) = q&amp; (1-1Imol) 2d" MA Ti (T = A275)(ho)(mg)
= hn ((ng)) .

ly

8
Lemma 2,2, h,hy as above, Suppose h, € F is a symmetric

function and hy|Vy = h,|Vn then hyl(Vp+in) = hy| (Vp+iiy).
(V,+Wn denotes vector sum).

Proof. For (m)€ Zz", we define

p((m)) = the number of 1 such that m, &lt; My qe

Let (m) € V,+W,. Then my = Mm;+w;, 1€14n where (i)€Vy,
Wy, = Corl, If p((m)) = O then (m) € Vn and by hypothesis

hy ((m)) = hy((m)).

Suppose po = p((m))&gt; 0 and hy ((&amp;)) = h, ((H)) for all
(0)€Vy+Wywithp((T))&lt;pg.Let j(*1) be the smallest

integer such that my &lt; mye Since my Wy, Wo Tat Tavs

mg = Ti, w, = Q, Wii = 1 and so Myyq = My + 1. Then



hy Lemma 2.1.

By(eeesmysly ggeae) = Ry(eeosly gsMysens)
If now my, 2 my_q we repeat this process, continuing
until we get

hy ((m)) = By Cooesmy oly golly qseeeliyes)
= hy (mg) ), oc = (Jyed+lei+lyeeeyd=-1)

&gt; 2 Deve 2where my; = my41 My q yy i=0C.

But now (mg) = (W)+(Wg)€Vp+Wnandp(mg)
induction hypothesis

By the

»
-

hy ((ng)) = hy((mg))

= h,((m))

since h, is a symmetric function, The proof is complete
by mathematical induction,

Finally, we shall use

Lemma 2,3. Let h€ F satisfy

(1) There is an M € Z, such that h((m)) = 0 if m, &lt; NM,

(11) h((m)) = h((mg)) if My =Wy +1, 0=(J,J+1)€Sp
for l4j&lt;n-2,

(111i) For some (r)e zt!

0-1

Then h | va = 0.

 rf

Proof, By (i) h((m)) = O for m £ M. Suppose h((m)) = ©

for (m) €V,, m £ M+j. Let (m) € V,, be such that m, = M+j+1.
By (2.4) and (iii)

h((m)) = - 2(ly TR nm wy Ege (wl).
WIS0

Fix a summand on the right. If m, + Wy &lt;Typ1 + V4, 34 ne2,

we may "transpose" these two entrees as in the proof of Lemma

2.2, using (ii), We repeat this until we get, in this summand



 —_—

(Bg 1)tWo(1)oe e985 (n=1) ¥g(n-1)*"n" (w) )e

for some 0 € Sp.j] where the argument is in V,. Since

m= (w)] 2 m -1 = M+ j, the value of the summand is
zero, Thus h((m)) = O, The conclusion follows by induction,

[]



" ~~

Jo The mapping f =»

Throughout this section f will be in L(G,U).

Let 8 be the quasi-character of A given by

(3.1) 65(a) ot TT fay n-i where a = diag(a)yeessa, je
124

For (m) € Z™, "

(3.2) s(n(®)y = q=&amp;(n=tim

We introduce a function, T, on A by letting

(3.3) f(a) = &amp;(a) { f(ba)db .

Since T(au) = f(a) for u€AaU, f is charscterized by its

(m)values on in Faye zn .

As in the case of f, we shall at times consider f also as

a function on Z% with T((m)) = Fialm)y, The meaning will

be clear in context.

b =f) 1Iau,db = i&gt;9)(1.byNow,
1
Es

AA

Then, if x 4
(3.3) yields

yim (am) yap = TT an(x Je With this,
by Ha

(m1
nq il
K 4

L

-

(3.4) T((m)) = | T m- aux, ,)
“|Bd

OO)

Lemma 3,1. T((m)) is a symmetric function on Z7 with finite

support,

Proof, Since f(g) is of compact support, there exist D,M€R

such that f(g) = O if ord(det(g; 4)) &gt; D or 1f min, (ord(g, 4) &lt;M



~~

where g = (854). Then the integrand in (3.4) in non-zero

only if l(m)| £D and min m, 2M, Since there are only a

finite number of n-tuples, (m), satisfying these conditions,
f is of finite support,

To prove the symmetry, assume first n=2 and f 2L(G,,U,).
Then with o = (1,2), one has

~ ~ (Fl 0 [m2 0

Hm)-Fm)=Vemg]fh du(x)

Since the two matrices always have the same elementary

divisors, the integrand is identically zero and T((m)) 5 T((mg)).
Suppose now n is arbitrary. It suffices to show t((m)) =

T((mg)), for o equal to an inversion: (p,p+l), l4p4n. Fix

(My genes 1M oseeesm ) € ZP72, We define a function, f,,
on G2 by

reXp oe E
~e11  Fp+1p-1 |

)
(x, 3 ;"a IANani

-

»

where the integrand is that of (3.4) with 2X2 matrix

[Pp 0
p+1Xo+1,p mT

replaced by g. Suppose u€ U2, Then

 eo 00

p+l,1 ¢ 00 +1pp

1 eee ©

1.1 . So
eo n+1n- J

 2%

where a and B &amp;e p-lxn and n-p-lxn matrices respectively,
/ &gt; .

nd [Spi | = us |¥pt | » 1¢1¢p-1. But then du(x,,)du(x_,;,.
p+,1 | p+11



~ py

= u(x; )dulxpy q 45) and so comparing with (¥) fy (ug) = £108).

Similarly, £, (gu) = f1(g). f, is then a spherical function,

As in the proof of the other part £q(myemy iq) is non-zero
only on a finite set, hence f,(g)€L(G,,U,). Finally we
note by (%) and (3.4)

fmm iq) = f( -~00 M1 MyM y 9 Bpto eee

— \

Therefore, if (m) = (ooosly q9MpsMy gel neces)

F((m)) = Fylmpmy0)= Tym qm) = Tm). -

Remark, As noted in the introduction this result is not new,

The symmetry of T((m)) is equivalent to the invariance of

f(a) under the operation of the Weyl group of G relative to A,

The latter follows from a result of Satake [5, page 22] which

is proved by a different method and in a more general setting.

Using now the notation of section 3 the

mapping rT is given in-

inverse of the

Proposition 3.1. For (m)e€ Vy, fe L(G,U)

2 (1i=-1)my | |
(3.5) £((m)} = q? pakspay DrsTrs © ((m))

Before this Crom td ooion, we ©
me

OV“ th “ional

lemmas.

Lemma 3,2, Let (m)¢CV., (x) « kP"1 and suppose ord(x,) £m,
then



3

(3.6) )_(-1)o")
wreW,,., 0

a]

AIHW]

W ntl- (w,WL, Xe? us

ia

n=

where we have let, r convenience, w(J) = Zui. (The entrees
are non-zero only on the diagonal and nth row where they are

as indicated).

Proof, The proof

in (3.6) is

13 oy lnauctlion onIn i 11

mo fl HL
8 2 a - f xq 20

[a

r

Yl=r Che sum

But if ord(x) £m, £m, both of these matrices are in

U,-diag((1/x) pRltE2+l x,)'Uz2 . Hence the above .

Zero,

Now fix n*2, and assume the corresponding version of

(3.6) holds for all f € L(Gp-1sUn-1). Let (m), (x) be as

glven,

" “~a~rence i$

Suppose first ord(x,) &gt; ord(x,)&gt; ered ord(x 4).

Then for (w) € W,.1

m +1= (w)l 2 ord(x,)-W(1)2ord(x,)-W(2)2-+-2ord(x,_,),
2nd

&gt; p &gt;m,_q+W, dm, 2 ord(x) ord(x,_-) .

We then transform the matrices in (3.6) by subtraction of

integral multiples of the (n-1l)st column from the others

and then one of row n from row(n-l) (these elementary oper-

ations correspond of course to multiplication by elementary



matrices which are in U) obtaining in the last two rows

7 -]= w)+wn-1+mp=|= n=Lv ———————————— T=Ix

ne=1

0O.,

Now, for 1 :=j &lt;¢n=3

-W(j) + Woy = "Weoo -W
n-2

I'owW

Nn=1

and

Hw) + Wy = =Wam + + + =W_,

It follows that the transformed matrices are independent of

Wo” . But then each summand enters twice, with opposite

signs corresponding to (-1)¥n=1 - 41 or -1, Hence, the sum

is zero,

One may assume then

ord(x) &lt; ord(x 4,4), for some
For (w) € Wn-1

- 0 ¢ - W

ord(x,) w(]) ¢&amp; ord(x,,) w( j+1)

Taking note of this inequality and m4 3 D341 we can by

elementary operations eliminate the row n «= column Jj+1

entrees in the (3.6) matrices, (This time subtract an

appropriate integral multiple of column J from column

j+1, then one of row j+l1 from row Jj). With this in mind

we define on Gp.g the functions

f.(g) =f

SE

 | ¢ | 5
ceo P+ Ooeeeef
 0 &amp;

“A J : 0 | “

where g =  oa | 2h
5|

 IL = C1 . Clearly f, € L(Gpn-1,Un-1).

Since the last transformation the sum in (3.6) has

hecome



—-—

‘A; J (11) (1) oe) fuser (Ew)
Win ° (w')¢ Waa

where w'= (ovustysWy sees) and the matrices g are the
n-1X n-1 submatrices of those in (3.6) obtained by the

deletion of row~- and column- (Jj+1), For fixed Wil (=0 or 1)

in the inner summation of (A) let xy = x,m It, 1&lt;1izs],

CF Kyaqe JF lin -1, and m= m, = Wip1® Then

(m’ ) = (Dg geeesMysly ogeneslly 79m) € Vin-1

and ord(x7) € me. The inner sum of (4) is now of the type
in (3.6) with respect to (x')ek™ , (m’)ez™ . By the

induction hypothesis, this sum is zero. Therefore the

whole sum is zero and by induction the proof is Pee

ror cach £3 L(G,7,, we aef'ine a function £° on zZM by

uf

(3.7) £°((m)) = L-

=

TR .

- nAq TO
Ui(xq)eeedulx 4h

Lemma 3.3, Let (m)€ V,, then
N-{

(3.8) A | | Din(-1+1)(£°)((n)) on
b= = a= (mn*), Tp (net-13 (8) ((m))

1=1

Proof, By (2.4), with r, = -(1-1), 1
side of (3.8) becomes:

J (=nlmlg=textm dg
(wie W,,_,

v

As  0 3HW

‘n=1, the left hand

J
D-\

mM du(y.,)
i=

an+l-w



y

In the integrand in each summand, we make the substitutlons

y. = X (Jd) (W(3j) as in Lemma 3.2) and so du(y,)---du(y )
J 1 1 n-1

_ (Tw) .
= J du(x,)- du(x,)

The last expression becomes

(a) ( . | &gt; (&lt;1 erx1)aulxeedutxy
(we Way

where [Xi is the matrix in the corresponding summand in

equation (3.6).

By Lemma 3.2 the integral =O over: ord(x,)em,.

Restricting the integration in (a) to the range: ord(x,)

&gt;m +1, we note for such (x,), and (W)eW, _q9

ord(x,) - w(l) dm + 1 - Kw) «

Then the row n- column 1 entree of [Xd is eliminated
by suitable subtraction of a column n multiple from

column 1,

If n¥3, we continue and d:fine, for fixed w,(=0 or 1;,

the function fr on Goo1 by

fa. Cr

_mAa dr

0

~

~

g g € G1

Now, by the last transformation the integrand in (a) may

be rewritten



wv]

1

W,=0 WIE Way, 1

where (w) = (WogeoesWy 9) (xt (w)] €Gp-] 1s the lower right wixo-\

submatrix of an (Xin? and is therefore of a similar

form with respect to (mygeeesm, sm =Wy) € Vp-1 and

(X5900esX 7) € KZ, Then again the integral 1s zero
&amp; -over ord(x,) £m -w;.

Clearly this process may be continued, i.e. at each

step for 14j4n-2 and WiseoosWy fixed the integrand is zero
over

Sa 2 mp +l-Wo = ees W,
ord(x, 4) £m ~wWy--

3

We are left finally, for each (w), with the

wer

1  - 1

integration

2 oT - sto wm

ord(x,) = m +l-w, Wi _q

Furthermore, at this stage we may assume the nth row matrix

entrees (except the last) are zero in each summand.

By (1.5) (a) equals

w=)

'n=-1) (ntl) ) -1 yw, n-i-1)wy £m +Wyacoogm +0, Mm +1- Kw)
WEW,. ’

9 Soe  (2.8) by (2.4).
1]

Ne are now prepared for the=

Proof of Prope-ition 3.1. For f€ L(G,U), let £, a function



~ ”

on Zz, be given by

(3.9) £1((m) = q pC t-1)my . | Dp Trs(T) ((m)).
NIC

Clearly, for Proposition 3.1, one must show rt| Vy = £ | Vn.

We note first some immediate consequences of (3.9)

(a) TF, rl, respectively, satisfy the conditions on h, nt
respectively,inLemmas 2,1, 2.2. (by Lemma 3.1 and (3.9)!

(8) fl satisfies condition (1) of Lemma 2,3. (since T

has that property; see remark after equation (2.6)).

(vy) rl satisfies condition (11) of Lemma 2.3 (by appli-

cation of Lemma 2.1).

With these facts in mind, the proof is by induction on n.

1Suppose first n&gt;2 and ¢ [pea = | Vp-1 for ¥€ L(G,_7+Un-1).
n-\

Applying the product [1 Din (n=-3-1) to both sides of
$3

(3.9) and recalling (2.3) one has

n-

TTountn-1-1)eh)(a)
Zn TT Din(-1) | | DrsTrs(¥)((m))

(3.10) =q2(1-1)ms |.| Din [i Dro Tre (F)((m)) (using (2.6)).
n-ixsHv

Now, for pe Z, we define a function fy on Gq

s

(5,11) £08) or Joo
Mem}

i

&gt;

~ Ln~~ “du(x, 4) ¢
1% =}

It is easy to see (as in the case of the function fq in



the proof of Lemma 3.1) that f5¢ L(G, _1sUn-1)-

(3.11) with equations (3.4) and (3.7), one has

(3.122) fo(myseeesiy q) = £O(myyeeesm _qsP)

Comparing

.12b) T “re cy
(3 1 ) (mq M1) - f(myyeeesly _59P)e

1 —

By the induction hypothesis, fo | Viol = fs | Vpe1
Then by (a) and Lemma 2.2

(3.13) ft | y3) p (Vieq + Wn-1) = "Ap + Wn-1. L

Starting with (3.10) we get, for (m)€ Vy,
0-\

[Tosntn-t-13¢e2 ccm)
“=

2. i-1)my &gt;a yw)! | | DrsTrsf (my+w,, soe oI, 1 W128" Ww)
WEWne  AZSTER

3 2 i=1 my(oa jon] ors Trsly K wy BT
AZ S772)

(by 2.3)

ely 9 tW og)

(by 3.12b)
N-

S(1=1)my Y ~1 yw - LZ 1-1) (mg +wi { (or) HW o eoeyly ]+Wna1)
(by 3.13 and 3.9)

coal HWqm=Iw)
(by 3.12a)

; 0

qo (n=1)my ) (=1 Ww = L=1)wtfe0 (por.
0N-\

1080|[pyp(-142)£%((m))
- L=

= H sypretetitr sie] 3

by Lemmadapplied to (mys eeesmy yom) € Ve Then by (8) and
(vy) Lemma 3.3 may be applied to (f-f~) yielding (f-f |v, =o.



[t remains to prove £|v, = rl | v, for £€ L(G,,U,).,

For such f (3.4) and (3.7) imply T = f°, Let (my,m,)€V,.
1 0

then f~(mq,m,) = q 2D ,f (my,m,), by (3.9)

= f(m,,m,) by Lemma (3.3)

applied to (m,,m,-1). This completes the proof,

[1

Proposition 3.2, The mapping f -  fis an isomorphism of

the vector space L(G,U) onto the space of complex-valued

symmetric functions on 7? with finite support. (in a sense,

then, an automorphism of the latter space).

Proof, The mapping is clearly linear by (3.3). Let T be

in the latter space, and let f be defined by (3.5) for

(m) €V, and by f((m)) =t((m,)) otherwise, f is zero for

m4 large or m, small since fT has this property (cf. remark

after equation (2.,6)) so f vanishes off a finite subset of

Vy and is therefore of finite support, Therefore f(g)€ L(Gp, Uy.

and there is a well-defined inverse mapping. It remains only

to prove that f—7T is subjective or the equivalent that the

inverse 1s one-one,

Thus, we prove: If h is a complex valued

function on zZ% (n2l), with finite support and

%) a F108TTppgmrgh((m))= ©
N2SITHY

holds for (m) € V, , then hs0, The proof is by induction on n.

symmetric
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If n=1, (¥%) reads h(m,) = 0, But Vi=Z" and so if (XX)

holds for my KV, swe. N=0,

Suppose now n22 and the assertion true for functions on

Zn-1 Let h satisfy the hypothesis. Since h is of finite

support

(8) h((m)) = © ifymin my ¢£M, for some M&lt;Z.

If (%) holds for (m)€ Vp, then by Lemma 3.2 (with h, = 0),

(%¥) holds for (m)€ V, + Wy. Then if (m)€Vp

0
ev DrsTrs- »wil, SE - La yTi-1m &gt; (-1 Ww geeegll, 4 nSt w)é Wim n(n, rn,

for the part in the braces is 21weys

for (m) € Vy

&gt; Tl TT0 = qs (1-1)my[] Din(=-1) DpgTrsh((m))
! NEHA

N-y

co 201m [Tp [ Toperpgnt(m))
i = 2S

TT % (1-1) I'T(111) =| |Dy(n-1) Ja ¥ 17121 || DpgTrgh((m))
\ N-12S yp (by 2.3)

(by 2.4)

(by 2.6)

Call the function within the braces in (iii) hy ((m)). By (8)

(1) hy ((m)) = 0 for m, 4M,

For fixed m , h is a symmetric function on 721 then

Lemma 2,1, hy satisfies

OY

(11)  h((m)) = h((m_)) if m,;=m, J = lusuTl, Jén=2.,

By (1), (ii), (iii) and Lemma 2e30



(%%) 0 = || DrsTrsh((m))
DA 2g&gt;0

holds for (m)€ V,. (Note that Lemma 2.3 holds trivially

for n-1=1),

Assume now h¥ 0, By (

with respect to

\ the Lr eed
—  Mm SU vist an Mq maximal

£(€) h((m') = 0 iF mn mi #M,.

Fix m. = My + 1s and let (Dygeeesm 5) € Vy If Ee | &gt; ms

(mygeee,m )€ V, and (x%) holds, If m,_q4m,~1 = M,, bY (€)

and the remark after equation (2.6.), hy ((m)) is zero and

(¥*X) again holds. Hence (%¥) holds for m= My + 1 and all

(my cool 1) EVn-=-1 . By the induction hypothesis

 (ma yees,my5M;+1)= 0 for ell (m. veostt, 1) E20

Comparing with (€), by the symmetrv of h,

h((m)) = 0 if min my€My+1
i

contradicting the

maximality of My. Therefore h= 0, The proof is complete

by induction, [
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t. The transform f.

Let (z) ec”, We denote by Tz) the quasli-character

of A glven by

(4,1) aggy(unt®)) = glmMz)+ Fm for uz JNA,

( (mz) = myz, +e=+ +mz).For

function T on ct by

£ = L(G, 1) we define then a

(4.2) T(z) = |, ¥(a) ayy (a)da.
The transformation has the properties

(4,3) T(z) = Tz) (=),

Lk) TRz)) = T(=(2))

(see (1.14), (1.15) ),

where -(z) = (=Z90c-5=2.) (z) = (ZyseeesZy). Hence,

Proof of (4.3). By (1.14), (3.3), and (1.13)

~~

f (ag) = slag)y | § £(vaap)r, (071a™) ab dabaa

|) Flaga)F) (ahaa
A

Hence,

Fx Fy ((z)) = , (, Flag@)fy aha, (aj)dada
- 4 =1 rr =)| F(a Joa" od| F(aga)a(,)(aga)da da

F(z)2,((z))
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Proof of (4.4), By (1.5), (3.3) and (1.11)

f*(a) = (a) Talo 1yan

2201) y(a™h)T(a™1).

Then, by (1.12), (3.2) and (4,1)

5 “(a)y(a™ a, (a) = a_(zy(a™) = a_(z)(a™)

2) ( -1 -1
£*((z)) = {Te Ja_(zy(a )da

f(=(Z)) []

Now, using (4.2), (1.7) and (1.8)

(4,5);

(20) = ) Flay, (nim)
ye”

= &gt; F(m))a &gt; LRiqlzamt
ene 7"

te +2Znly, :

By proposition 3.2, T varies over all symmetric functions on

z" non-zero only on a finite set. Then (4.5) implies that

a 2 2 tz,f((z)) varies over all symmetric polynomials in{g “yeee,q I

Furthermore, the mapping f 7 is clearly linear and is a

homomorphism by (4.3). We have then

Theorem 0. (3) The transformation f F ls an isomorphism
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of the algebra L(G,U) onto the algebra of symmetric
+ +

polynomials in 12,,..,a°%n} .

(11) The homomorphisms of L(G,U) onto C are then of

the form f = f((e)), (c) € c¢®, Two such homomorphisms,

fF f((c)), £f =&gt;F((c’)) are identical if and only if

&gt;, = (2) mod (502=), 1€3 £n, for some 0 € Sy.

Proof, (i) follows from previous remarks. (ii) is a

consequence of (i) and the corresponding fact about the

algebra of these polynomials, |

Remarks. Theorem O is a known result(cf. introduction)

Note also that (4,5) and Proposition 1 easily provide

another known result, (Seel[5, p.45] and [T, p.395])

Thus =

. ee,
let (m") = (1,000514050..,0)

(m®) = (= - a» a

and suppose fut) 0 ¢1 &lt;n,

napping into

A vt IT

£ (nT) = oo m')(zg.

Note that ¢

FoF =:
(of) ” (mB) — =

18s the member of

1  =~ 7T

L(G,U)

 &lt;= Nn



These n+l symmetric polynomials clearly generate the

algebra of all the symmetric polynomials in La), ¢ jen

Now (4.5) implies

@ Fey (m) =a” KE ar ny =m),

Thus for 14 1%n

(3) Fipry((m) = 0 if my 1 or d&gt;my.

As remarked in section 2, (3.5) implies that (B) holds with

respect to fmry((m)), for (m) € V,. Moreover, if £inTy((m)) # 0.

(a) and (3.4) imply (m%) = Km) . It follows at once that,

constant (mT) -

hil

T
snar-~+*~ristic function of unm )u.

Ne reobtain =-

+

Theorem O, (iii) L(G,U) is isomorphic to ClqyenesXy 10%, 0].

(mT) —&gt; XT for
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5 The inverse transformation

In (4.5) let zy = 1; (1 = /=1), ¥. £ BR, 1 £3%n, and

let 1(y) = (1Yq9e00sly,)e Then

Nir) = Y F(m))g2Kmdgi(yXm)
anye2°

By Fourier series

~ - ln) 1 Be (2
(5.1) Fm) = a” =F dg ayn (S120 (r)a May, La,

Let YSR® be the region

(5.2) Y =v) 0 £3 4 ney, ¢ 20 *

Since T(i(y)) is symmetric in Ppreeesv
ga A " - Yo

(5.3) Fm) = a” = Nog q /2m® nif (Fray)aHHay.
(Vs SEVn )

Ni th

h((m)) = q~ THm=1(y)Xn)

oy (2,2) and (2.5)

i(y =v.)
Dpsh((m)) = (1 =a ° ©) n((m))

Trh((n)) = » a qtV¥s=Vr) n(n)
Vso

h((m))
oq 1-1 (¥ =v)

Then from (5.3) and Proposition &gt;,1, for (m)€ Vv,

(5.42) £((m)) = \-| Bay) B((m),5) dyAYqeee n

J +h



2 (3-2
(5.4Db) H((m),(y)) = 0 2 J (19 a,” nd ( /

{fom

i

\
 7 (yo Mm)
\sess

1 _ As) V(r)!
-] -

“ell = a 121555) Vo(r)

One has easily

log gq.
( 21 !

4 1¥s - qr
iene nn

“144 (ye-yr)]1 = 3 oo i

{5.5} H((0.0e0)y.7) = n}

y i. sign(o) | | (at¥ots) - ql¥o(T) -1\

in which | |e denotes ordinary absolute value,
usual, sign = +1 if 0 € alternating group

= «1 if © ¢ alternating group.

We wish to evaluate the sum in (5.5).

and, as

Jonsider the polynomial in ClXypeeesX | given by,

: ; = - \(3%) P(Xq90005X)) ) sten(o)] | (X5(s) X51) ce C,
§ n2SIT2)

If X_ = X., rs £-. then if 7 = (ns) €s,

I Ttxg(sy = o%g(py) =T Ttxgr(s) = CXii(r)

But these terms enter (%) with opposite signs, and

so P((x)) = O, Then P((X)) is divisible by(Xs - X)

We have

P(iagaaes™) = ple) || (xg - X-
339°

lo calculate p(c) we let x, = = then

| -o(s) _ _1-o(r[ [e c )) = 0 unless o = (1,



~

~ Is

P((x)) =| Jes - ty = plc) | | (c™5 - co” 1)
ov »r

which yields
n

Jio) = |[des
3=\

Applying this result to(5.5) we obtain

(5.6 ) H((o...),(e)s(¥))

ow(A350)"TT (=TeTT“&lt;) ve =
: TT qt (sv )ii 1 - q Lt rYs=Yr.

“Teg

2 TeHn ho

he

he|

5 1 +

2 Yg=Vr
sin“( 77 log q)

~.=1 Ys~Jr
2a “cos(T5 log q)+q

With these and (5.4b) in mind, we define the functions

M((z)) and w((m),(z)) ( (m)€ 2" fixed) on CB, by

(5.7) M((=))

n B 1 qd z Zz

, (log a | | — | | S = qfn! (= ) (1 wo ron
y= eld 7 Td

(5.8) w((m),(z))

 * (3-2, OD503 TT/1-q" : j

| (=) oF H TT o(s)q 1+zo(x)l

One has then, for (y)€ BR, (m)- Vn



~

(5.9a) M(1i(y)) = H((o0...0),(¥))

H((m),(y))
(5.90) wl(m)2(¥)) = 57(5...0).(v))

Note, by (5.7%).

n(n- 5 1-q"Y -1,-n{n-1)
5.10) 0 £mM(1(y)) &amp; 2(n"py (dE9, T= (1-71)1-9

{ acnstant)

Ne see also that w((m),(z)) 1s an entire function,

1 17 .For, considering the polynomials in clXy yeeesX,L

-
&lt;~ mq np .

my LH (XD) = £_%o(1)"**¥o(n) sign o [TX ()=cXo(n
ST

Then (cf, proof for P(X)) this polynomial is éivisible

(in CLR genes Xt) by TT (xg - Xr).
SST

it

Pim) ((X)) Co my m, Xo(s) - cXo(r))
TT (Xg — X.) = 2 ¥o(1)++ Fon) [Ta a Xg(r))

comparing this with (5.8), we see that for all (m), w((m),(z))

Nye iey ql inpolynomialy atualis ac

Ne can make w a function on G by letting



to wy

(5.11) wl un™u, , £2) ) = w((n),(2)) for (m)€Vy

Then (5.4) and (5,2) yi 1
cul 3

(5.12) f(g) = {| Far) wei) ME) ayy.e..ay,

which 1s an inverse of the transformation fe"
x

 ~~
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0 . The Plancherel measure

By (5.9) and (5.11)

(6.1) w( I, (2)) = w((o...0),(2z)) = 1

(I = identity of G). Then (5.12) ylelds for f ££ L(G,U).

6.2)  £(I) = I) P(1(y)) M(L(¥))ayy...ay,

Now by (1.14) and (1.15)

Q
 Pxf* (I) = ( lee) as.

G

3uc fxf*€L(G,U) and by (4.3) and (/ *

A
ext (103) = [Pam

Then (6.2) applied to f¥f¥yields

(6.3) \ [eee dg = \-{l2cml, M(1(y)) dyq...dy,
Gq ~

It is known that L(G,U) is dense in L,(G,U) in the

square norm, By Theorem O., ,

F(ily) ranges over the symmetric Fourier polynomials in

+ila Ei jén*

But these functions (restricted to Y) are dense in the

Hilbert space of functions which are square integrable on

Y with respect to the measure M(i(y)) Ayqee.dy, (cf. 5.10).

Then, with (6,3) we conclude
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Theorem 1, The mapping f =» f may be extended uniquely

to a unitary mapping of L,(G,U) onto the Hilbert space of

(equivalence classes of) functions which are square

M(1(y)) dyq...4dy, integrable over J
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The zonal spherical functions

A spherical function, w, on G is called a zonal

spherical function if the mapping

— B(f) = | cto) w(g™t) cg

ls a homomorphism of the algebra L(G,U) onto C. It is

known that every homomorphism of L(G,U) onto C 1s equiv=-

lent to © for a uniquely determined spherical function w.

(see [6, p.366] where this is proved in a more general

context).

Consider again the functions w(g,(z)),2 €G. (section 5).

Je have noted already that w(g,(z)) is, for fixed g, a poly-

\ tz.

nomial in Ya Nye jn By direct observation of (5,8)

one has at once that it is actually a symmetric polynomial

in these,

Now let Tt bn A Tr my
o”*

1 2 LI A 2permutation ( 7; "°° 4

For (m) € 7B, one has

0 \
1 1 +1CD = TE my) -3 - (2) m,

i=l i=

y
/

»  (2)e-(m,) = =(Z__)+(m)



-( o(s) of | T ] oT(sz + r) oO (r) 1
oF \ o(s) Zo(r | T %
55e \d - a ) sye 4 -

| ot(r) q © (r) ,

[Forts _ TH or(n))
| o ot(s) _ Fors) /
mee \

ST wv
Noting also that /_ = / , and applying (a), (8B), (v),

we see from (5.8)

p(=(m_),(z)) = w((m}.~{-" \
J

Now if (m) €V,, -(m,.) €V, so by (5.11)

-1
w((7$2Y TL (2) = wi-(n_), / —

v

1

»4 a

Thus

(7.1) w(s  (2) = w(g, =( ..

It follows from (5.8) that

wig, (z)) = w(g,(Z)).

In particular by (7.1)

(7,2) B(e,i(y)) = wleg™t,i(y))



For f € L(G,U), (5.12) and (6.3) yield for (vy)€RB".

(7.3)

utr) = § 208) Besitr) as

22) wg iy) de.

Note also, bv section 6, (7.3) holds also for

ad L,(G,U) (up to equivalence in the norm),

Since olg™t,1(¥)), g fixed, is a polynomial in 1a

so is the right hand side of (7.3) for f€ L(G,U). Then

(7.3) implies

(7,4) F(z) = ) fle) w(g™t,(
3

2g

for all (z) € &gt;. Comparing (7.!) witn Theorem O.,, (il),

me concludes =

Theorem2,The set of zonal spherical functions on G is

exactly the set lle, (2) 8 (z)e Cc” (see equations (5.8) and

(5.11)).

In (7.4), let now f = fim) the characteristic function

of unl™y, We obtain for (m)€Vy

-1
(7.73) Tim) ((z)) = Meas (un{™)vu) w((n®)) (z))

eas (Un®)y) w((m), =-(z)).



-

Ne know that

w(m),=(2)) =) Kita) al#Hm,
ne”

for some |K ({ (x) Ae C. Then letting (z) = i(), by

Fourler series

x. 3s
) log q n iy [lo or Nol

Cn (1) = (F) \ “ot, -1na HHifayay,

log q (m),.\\ [a i

(57) (Meas(Um ~‘U)) [fr ayaa) ay,...ay,
OEE Weg

Comparing this with (5.7)

(7.93) K (m2) == q T ng (Meas(un{®ly))~1 Tin (m)).

Remark, The only use we shall make of these last compu-

tations will be in the next section where we need the fact

that Kg (m)) &gt; 0, (This can be proved directly from (5.8)

although not so easily). However, it is expected that (7.5),

together with the explicit form of w (5.8), may yield further

knowledge of the algebra L(G,U). Note that (iii) of Theorem O

follows easily from (5.8) and (7.5).
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~The bounded z. ©

Since L(G,U) is dense in L,(G,U), the latter is also

a commutative algebra, Now it 1s easily seen (6), pp. 376-7)

that homomorphisms of this normed algebra are of the form

C=80) = | re)u(e™) ae
G

where w 1s a zonal spherical function, bounded on G., We wish

then to determine the set of points, (z) (€ ¢™) for which

w(g,(z)) is bounded,

Ry (7.6) the coefficients, Kem (m')), of *“e monomials

3 (mf) (2) in w((m),(z)) are all positive, It follows that

(8.1) lw((m), (2) % w((m),Re(z)

where Re(~) «

$
~ ~~

-  ~~ ar Re z._) €R"

fat

~r

 5
— E

A
-

(t) = (+... "i

E -1+t
Since aq Jl a J, the product

t -1+t
(a o(s) _ a o(rly,

DT

non-zero if and only if o = (1). Thus by (5.8)

ge

l S

| | -q | | 3
oy 1=q q' 8 «qf
3-1 PC

u(es



3ince w(g,(z)) is symmetric in (z)

(8.2) wig, (t.)) = 1 for J 7 Sy

Let H be the convex hull of the set Ut),gq

2 theorem of complex variables (C13, p.109)3y

max |w(g,(z))| = max we, (2)
Rel) eH = Re@) e Jt)

Therefore, with (8.1), one concludes

(8.3) we, (2))] £q for Re(z)€H,

i contains the points (x) satisfying the conditions

(a) X5(1) + X5(2) I X5(p) ¢ P(n-p) , 1 €pen=-1 . T&lt; dn

and

(8) Xg + ¥. 4. 2

This is clear since all the points (t,) satisfy these,

Assume now (z) ¢c” and Re(z) does not satisfy (a) or

(8). We shall see that w(g,(z)) is then unbounded,

Suppose first (a) is not satisfied by Re(z).

(m) = (MyMyeuoo lM), Me Z.

Let

Then by (5.2)

w((m),(z)) = o~M(Z1+..o42Zn)

This is clearly unbounded if Re(z,)+...+he(z ) # 0,

With Re(z) = (x) suppose now for some o£8,, 1 £p &amp;n-1,

p(n-p)} "a - eo o reree 8£501) Xo (~) ER X5(p) S By the symmetry of



Lh

w((m),(z)) in (2) one may assume

a

It follows that

%) X, * SN

Je may further suppose

xX,
hh

r

NN pig-p)

Ky + Xp Feeot Xog¢ (p-1)(n-p+l)
2

-p) - (p=1)(n-p+l) = n+l-2pThen X05 p(n ( 1){n p+l) =n

If now xX, Ll X41 = ew

inequality imply

+ X |.  ~-

iad
* +

ny X47 (%X) and the last

gin-1"

Hence we may assume that (3%) holds for some p such that

¥ / xy A a a &gt; XxX. 2 X &gt;No p+1= °° ”~

Let sp = 19€8y |ot1.20... pk = 11,2,...,0
S&amp; = S, - Si

ith (m) = Fo. ..0), we consider the function

w((m),-(z)). Separate the expression (cf.(5.8)) for

w((m),-(z)) into two parts, wys Wy, cOrresponding to

summation over st, s2, respectively.

 Zo¢T) rots)-Mp(n-p) CC M(Z9te.etZy)) Tm2
: 2 ) a ’ 1 70x) og ols)

§e. OF

jase so or 15.7809
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where the constant ¢ includes the non-zero and well defined

{by %* | product
Zn _ -1+z

0] 1

A E
\

Then

“lpople M(Zq+...+Zp) T T { as above]cq 2 a |
€&lt;3

“
I.

(Zy4,. .+2n ~ p(n-p))

Note cq is again non-zero, since the last sum is (up to =a

positive constant ) a product w ((0...),(2)) w’((0es.0),(2Z )

= 1: w', oo” being the z, s. f. defined for G,, Gyn_p respec-

1
tively. (cf. section 5; observe that Sy, corresponds naturally

to Sp X Sn-p) .

The final equality implies, by (x), that wy is unbounded

NS M edie

It is not &amp;:ffizuat -

si

W
2. -—&gt; 0
wy

as  on

J
4

he ne oy virtue of (+x) that

One concludes that w(g,=(z)) = wy + w, is unbounded

so by (7.1) w(g,(z)) is unbounded,



rt ~

Let Ty be the complex tube of H, i.e. the set of (z)¢€ c=,

such that Re(z)e€ H, Then Ty is the set of (z) such that

Re

1S
3

Ne nave

74 4

rd
2

-

BR»

 aS
-

"A +.

Te=- FT

Re z. &lt;¢ p(n-p) for
Jp —

 eset)2on, 1¢p%n~-l

He 2.

w(g,(7V)]| ed if (7) &gt; Ty

p(g, (")) is unbounded if (2) ¢ Tg

Thus =

Theorem 3, For f&lt;L(G,U), f, given by

(2) =| tee) wig™L, (2) dg
Ls a symmetric, continuous function on Ty

The homomorphisms of the Banach algebra L-. (G,U) to the

complex field are of the form

Tre)

for (c)€ Ty » Two such homomorphisms f — T((e)),
” $((c')) are identical if and only 2 f

J

—

nod ( 2mi Z
(0) Toa 3) 1£Jj%n, for some 0 €S5,



i|

Proof, The last statement follows from properties of

v(g(z)). The rest has been proved,

[

Remark, The identification of the homomorphisms of

L,(G,U) to C with the above region Ty appears quite
similar to results obtained by Gelfand and Neumark ([3],
pp. 266=9) for complex groups.
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Index of Special Symbols

Dijs, T1J «-

Gy Gps Ay By U a.-.

L(G,U)y Li(GyU)y L(G) wuunr
M((z)) .-

Vn Wn
r

du, da, db, ag

ee Po 13

--~~+e0 Po C

D. 5

“200 Poe 37

Tr eee Pe. 9

“sae Po 35

eeDo.10

reee Po
~

~y

*@® dr

&gt; e Pe. nz

o((m), (=)

n(g,(z))

1X].

|(m)]..
af

.

70 Pe.

-e Pe 37

-e De 39

» D.

ee Poe 9

“ % eo @0 Pe 11

~~ so 00 Poe 12

G

g

as 0 00 Pe 18

-cePe31

lsl,= ordinary absolute of complex number s.

(uv) = Ug Va HU, Vat wee HUV for (u) = (Ug susyeee,u)
(v) = (VysVoseeesV.))

n|v funcit’on h restricted LL. V7

Other notation . a

Law 2ither standard or clear in context,
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