
1

Accelerating topology optimization codes using mesh
refinement continuation

by

Austin Chen

B.S. in Civil Engineering

University of California, Berkeley, 2022

Submitted to the Department of Civil and Environmental Engineering in partial fulfillment of the
requirements for the degree of

Master of Engineering in Civil and Environmental Engineering

at the

Massachusetts Institute of Technology

June 2023

© 2023 Austin Chen: The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-
free license to exercise any and all rights under copyright, including to reproduce, preserve, distribute

and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Austin Chen

 Civil and Environmental Engineering

 May 12, 2023

Certified by: Josephine V. Carstensen

 Assistant Professor of Civil and Environmental Engineering

 Thesis Supervisor

Accepted by: Colette L. Heald

 Professor of Civil and Environmental Engineering

 Chair, Graduate Program Committee

2

Accelerating topology optimization codes using mesh
refinement continuation

by

Austin Chen

Submitted to the Department of Civil and Environmental Engineering on May 12, 2023
in partial fulfillment of the requirements for the degree of Master of Engineering in Civil and

Environmental Engineering

Abstract
A new concept for an algorithm accelerating topology optimization programs is introduced and ex-
plained in detail, which involves a continuation of increasing mesh resolutions to achieve low-compli-
ance solutions with largely reduced computation times. Comparisons with examples from relevant lit-
erature show speedups of up to approximately 60% on discretizations up to the order of 106 elements
for common benchmark problems. Improvements in speed can be attributed to taking advantage of
running code on coarse meshes as a faster way to generate smart initial guesses to be reused as inputs
for subsequent runs on finer meshes. A MATLAB script for the new algorithm and associated modifi-
cations to existing topology optimization code is included.

Keywords: Topology Optimization, Mesh Refinement, Computational E!ciency, MATLAB

Thesis Supervisor: Josephine V. Carstensen

Title: Assistant Professor of Civil and Environmental Engineering

3

Acknowledgments
First and foremost, I would like to express huge gratitude to my teacher, supervisor, and advisor, Pro-
fessor Josephine V. Carstensen, for bringing me into the program at MIT, for recognizing and allowing
me to grow academically as a member of her research team (the Carstensen Group), and for patiently
guiding me throughout this rigorous year. She has reignited my passion for structural engineering and
programming, and I owe a large part of my academic success to her education and constant support.

I would also like to recognize the bright minds of the Carstensen Group for opening my eyes to the
fascinating applications and potential of topology optimization. Thank you to Dat and Jackson for
providing me with the resources I needed to perform meaningful research, Zane for his pro bono
tutoring in my early stages of learning topology optimization, and Hajin, Gillian, and all of the team for
their valuable feedback and inspiring work.

Next, I am grateful to Dr. Vittoria Laghi, Dr. Caitlin Mueller, Dr. Tal Cohen, and the rest of the faculty
and sta" within the Department of Civil and Environmental Engineering at MIT for the highest quali-
ty of education, guidance, connections, and snacks.

Thank you to my fellow M.Eng. cohort for all the fun times and for endlessly supporting me, not only
along my academic journey as amazing classmates but also in my other endeavors as amazing friends.

And finally, a thank you to my mom and dad, whom I hope I have made proud.

4

Table of Contents
 Acknowledgments 3

 Table of Contents 4

1 Introduction 5

 1.1 Background and Motivation 5

 1.2 Concept 6

 Fig. 1.2-1: Proximity vs. initial guess illustration 6

 Fig. 1.2-2: Definition of resolution 7

 Fig. 1.2-3: Time vs. resolution relationship introduction 8

2 Method 9

 2.1 Algorithm Overview 9

 Fig. 2.1-1 Illustration of algorithm steps 9

 2.2 Definitions and Details 10

 2.3 Base Code Modifications 11

 2.4 Testing Procedure 12

3 Results 13

 3.1 Using top88 13

 Fig. 3.1.1-1 MBB beam design domain 13

 Fig. 3.1.1-2 MBB beam results 14

 Fig. 3.1.2-1 Short cantilever design domain 15

 Fig. 3.1.2-2 Short cantilever results 15

 3.2 Using top99neo 16

 Fig. 3.2.1-1 MBB beam results without continuation 17

 Fig. 3.2.1-2 MBB beam results with continuation 18

 Fig. 3.2.1-3 MBB beam results across di"erent change cuto"s 19

 Fig. 3.2.2-1 Frame reinforcement design domain 20

 Fig. 3.2.2-2 Frame reinforcement results 20

 3.3 Using top3D125 21

 Fig. 3.3-1 3D cantilever design domain 21

 Fig. 3.3-2 3D cantilever results 22

4 Discussion 24

 Table 4.1 Summary of benchmark problem results 24

5 Conclusion 25

6 References 26

 Appendix 27

5

1 Introduction

1.1 Background and Motivation

Topology optimization is a complex process often used in structural design to determine where it is
most e!cient within a design space to place material for the best performance. This method of design
allows designers to create strong, and often beautiful, structures while maintaining a low volume of
material, reducing environmental impacts and costs. Generally, a design domain is processed through
an optimization algorithm that continuously moves material around until its sti"ness is maximized.
Though topology optimization may seem like the perfect solution for structural design, its advantages
are o"set by many challenges. Each added detail to ensure the physical feasibility of optimized results
abrades the ideal simplicity of the topology optimization problem. Considerations such as adjusting
allowable angles or member sizes for manufacturability or accounting for second-order e"ects as they
would a"ect real structures all astronomically complicate the process, oftentimes pushing existing
technology to its very limit.

The classic problem formulation of structural topology optimization in its simplest form requires min-
imizing the compliance c (inverse of sti"ness) of a design given a volume and equilibrium constraint.
This formulation is mathematically understood as the following set of equations (1.1), reproduced from
Andreassen et al. (2011):

min : c(x) = UTKU = Ee(xe)ue
T

e= 1

N

| k0ue

subject to : V (x)/V0 = f

KU = F
0 # x # 1

where : Ee(xe) = Emin + xe
p(E0 -Emin)

x

where U and F are the global displacement and force vectors; K is the global sti"ness matrix; V mea-
sures the total volume of material, which is divided by a constant design domain volume V0 to match
a prescribed volume fraction f; and x is the set of N design variables, which are each constrained to a
density between 0 and 1. To reduce intermediate densities and encourage values of x close to 0 and 1,
the SIMP (Solid Isotropic Material with Penalization) approach is often incorporated into the problem
formulation by means of an exponential factor p applied to the density of each element e, where E0 is
the sti"ness of the material and Emin is a lower bound on sti"ness to prevent singularity in the sti"ness
matrix. The resulting sti"ness Ee of each element is multiplied by the element displacement vector ue
and element sti"ness matrix k0.
This type of finite element analysis is usually used iteratively within computer programs to achieve an
optimal design. Unfortunately, finite element analysis is a highly computationally expensive proce-
dure with non-linear complexity. As the number of elements increases, the required number of calcu-
lations increases at an even faster rate. For simple problems, existing topology optimization programs
perform adequately; however, research today progresses at a rate where adequacy no longer su!ces.
With each added parameter over time, applied to increasingly finer discretizations, the required com-
putational time and power often exceed the available resources of the average researcher. To increase
the accessibility of topology optimization research, the tools used must constantly be improved.

At the core of all optimization problems is the search for the highest-performing solution at the lowest
expense. When comparing the performance of di"erent optimization algorithms, a common consider-
ation is the degree of e!ciency (Sigmund and Maute 2013). As research continues to increase in com-
plexity, e"orts have also been dedicated to maximizing the speed of topology optimization scripts.

(1.1)

6

One of the most commonly used programs today is top88, an 88-line MATLAB script published by
Andreassen et al. in 2011. top88 follows the original 99-line top code published by Sigmund in 2001.
As stated in the 2011 paper, one of the main motivations for the publication of the 88-line code was
the recognition of several flaws that limit the original 99-line code from reaching its full potential in
speed. This was one of the earliest steps towards improving the e!ciency of topology optimization
programs, with which Andreassen et al. reported a total computation time reduction by a striking fac-
tor of 100 for a given example problem involving 7,500 elements. Nine years later, a new publication
by Ferrari and Sigmund (2020), along with a successor program top99neo, was released which again
focused on improving the e!ciency of its predecessor top88. top99neo was reported to further im-
prove speeds up to 5.5 times for discretizations up to 4.8×105 elements. It is clear that the push toward
creating a perfect computer program to enable analysis for increasingly complex problems is ongoing
and highly valuable.

1.2 Concept

Both top88’s improvements upon top and top99neo’s improvement upon top88 involve a re-
working of the internal algorithms. While there is an evidently drastic improvement from each script
to the next, the relative speedups seem to be reaching a limit. From a positive point of view, this
implies that current codes are close to maximizing computation speeds. On the other hand, further
improvements will become increasingly di!cult, which may require more innovative ideas for im-
proving e!ciency. In this study, a new concept for reducing computation times is explored, involving
an algorithm that performs as a wrapper function, as opposed to a reworking of the internal algo-
rithms of any existing codes. This feature separates this concept from previous scripts by essentially
functioning as an extension to any given base code to improve speeds extrinsically.

The inspiration for the new algorithm is a combination of two ideas. The first assumes that most
methods of optimization, especially for nonlinear problems, are sensitive to an initial guess (Wicklin
2014). Essentially, a topology optimization process can converge or terminate within fewer iterations if
the initial guess resembles the output solution. This assumption e"ectively ensures that close prox-
imity to the solution would provide a head-start to the progression of the optimizer. To illustrate this
claim, the path of an optimizer for a hypothetical single-variable problem can be considered with
di"erent initial guesses (Fig. 1.2-1). Especially with a fixed step size, the optimizer evidently must take
many more steps to reach the same solution if the initial guess is far away from the global minimum.
Additionally, for problems such as in the illustration where multiple local minima exist, a distant ini-
tial guess may even run the risk of leading the optimizer to an undesired minimum.

Fig. 1.2-1 Illustrating the e"ect of the proximity of the initial guess

7

Classically with existing algorithms, a matrix consisting of a uniform distribution of the prescribed
volume fraction is chosen as the arbitrary initial guess. This practice may be adequate for most cases,
as it is a convenient way to initiate the loop independent of any other variables. However, this “blind”
guess may quickly bring consequences with increasing element matrix sizes. Assuming a prescribed
volume fraction f and a desired output of only 0s and 1s, each of n elements must on average move a
distance of:

n
fn(1 - f) + (1 - f)nf

= 2f(1 - f)

If each element is initiated at a point much closer to its endpoint, the number of steps to reach a final
value should decrease, shortening the optimization loop. There are two approaches to solving the
problem of initial guess dependency: either the algorithm can be altered to become independent of
the initial guess (Wang et al. 2007), or the process for finding the initial guess itself can be refined; the
new algorithm discussed in this study focuses on the latter.

The second assumption for the new algorithm references the observation that computation speeds
are much higher at lower resolutions. The resolution of a mesh, for the purposes of this paper, refers
to a multiplier to an arbitrary set of dimensions (number of elements in each direction). The examples
used in this study are extracted from existing literature, in which certain dimensions are used for
demonstration; the mesh discretizations of these past examples will be defined to have a resolution of
1 to normalize them as a point of reference. For example, an original problem from Andreassen’s study
was run with a mesh of 60×20 elements; these dimensions are thus considered to have a resolution of
1. A subsequent run on a 120×40 mesh would thus be defined as a resolution of 2 (Fig. 1.2-2).

Fig. 1.2-2 (1) A solution using the original 60×20 mesh (resolution = 1), and (2) the same solution using a refined 120×40 mesh
(resolution = 2)

While it is obvious that increasing the total number of elements should increase computation time,
especially for such a complex calculation like a finite element analysis, a simple comparison of com-
putation times across di"erent mesh resolutions for a commonly tested problem can easily illustrate
the validity of the claim.

The relationship demonstrated in this plot demonstrates that solutions are obtained in much less time
on coarser meshes and computation times seem to increase exponentially with increasing resolution
(Fig. 1.2-3, top). Additionally, normalizing each runtime to the number of required iterations shows
that each iteration also grows exponentially in computation time with increasing mesh resolution (Fig.
1.2-3, bottom). From these two observations, it is clear that higher speeds at lower resolutions can be
taken advantage of.

(1.2)

8

Fig. 1.2-3 Total computation time vs. resolution plot (top) and computation time per iteration vs. resolution plot (bottom) for a
classic topology optimization problem

9

2 Method

2.1 Algorithm Overview

A simple algorithm that takes advantage of the two previous ideas can thus be developed as follows
(illustrated in Fig. 2.1-1):

1. Begin with a coarse mesh

2. Obtain the solution on the coarse mesh

3. Refine the mesh

4. Project the previous solution onto the finer mesh

5. Reevaluate the solution using the projected solution as the initial guess

6. Repeat steps 3-5 until a target mesh resolution is achieved

Fig. 2.1-1 Illustrated example of the proposed new algorithm

The above illustration is a simplified and idealized version of how the algorithm performs on a classic
topology optimization problem. In step 1, the mesh is initialized with a matrix per usual with a speci-
fied uniform volume fraction across all elements. The matrix undergoes one run of a topology optimi-
zation algorithm, such as top88, to produce the result depicted in step 2, where each element roughly
diverges into either a 0 or 1 density. In step 3, the mesh is refined, splitting each original element into
smaller elements in each direction; the illustration depicts each element splitting into two in each

10

direction, creating roughly 4 times the number of elements as the previous mesh. The densities from
step 2 are preserved and stored in the upper-left corner of the refined mesh, leaving the other new
elements empty to be filled in. Step 4 shows a linear interpolation scheme for populating the emp-
ty elements, creating a “blurred” image of the solution from step 2, and reintroducing intermediate
densities. The matrix created from interpolation is used as the input for the next optimization run,
producing the new solution shown in step 5 that once again filters intermediate values towards 0 and
1 densities. Step 6 shows the next mesh refinement, repeating steps 3-5 until a target mesh resolution
is reached.

The significance of this algorithm mainly lies in step 5 as mentioned above. In theory, the fine-mesh
projection of the solution from a coarse-mesh run should be a highly improved initial guess compared
to a matrix of uniform values. Combined with the assumption that solutions can be obtained much
faster on coarse meshes, the system of reusing outputs as inputs in an iterative manner over increas-
ing resolutions can significantly reduce the total number of calculations required to achieve a solution
at a target resolution.

2.2 Definitions and Details

For consistent terminology, this paper will distinguish between an iteration and a run. An iteration will
refer to a single loop within a topology optimization algorithm like top88; with each iteration, the
density matrix is updated once. A run will then refer to a sequence of multiple iterations; a complete
run allows the optimizer to progress through multiple iterations until a target change or the maximum
iteration limit is reached.

As the new algorithm centers around a mesh refinement continuation scheme, it will be labeled as
MRC to reduce verbosity. MRC is divided into three stages: the initial, intermediate, and final stages. The
initial stage serves to obtain an initial solution at the coarsest resolution defined; there is one initial
run. The final stage serves to find the final solution at the target resolution defined; the final run occurs
once at the end of MRC. The intermediate stage consists of runs where solutions are not significant but
rather only serve as checkpoints on the way to the final stage. The number of intermediate runs can
vary, including 0, depending on the initial and final (target) resolution.

While the overall algorithm is simple in nature, there are a few complexities that must be addressed
to remove the arbitrariness of some aspects of the algorithm. These are studied using placeholder
parameters Pi that are assigned numerical values following a parameter sweep. The first complexity
is determining where to start; it is important to define a robust method of determining the appropri-
ate initial resolution. To account for all possible sets of input parameters, the initial resolution should
in some way inversely relate to the dimensions of the target mesh (X and Y) such that if a high target
resolution is desired, more intermediate runs will happen to take advantage of computation speeds on
coarser meshes. There must also be a limit imposed on the initial resolution so as to avoid unreason-
ably coarse resolutions during the progression of the algorithm. A proposed calculation of the initial
resolution res0 is as follows in Equation (2.2-1). Variables are labeled both originally and in accordance
with conventions within top88; for more details on the specific variables and their definitions, see
Andreassen et al. (2011).

res0 = max min(X,Y)
P1 ,P2c m

where X = resk

nelx andY = resk

nely

In this calculation, P2 is the lower limit on available initial resolutions, while P1 represents a function
for determining the initial resolution based on a limiting dimension.

(2.2-1)

11

The next complexities must be addressed to avoid early convergence to suboptimal solutions during
initial and intermediate runs. If initial and intermediate runs are allowed to run to completion, the
optimizer may risk converging down a local minimum on a coarse mesh that is far from a local min-
imum on the desired mesh. To prevent this potential risk, a continuation scheme must be adopted in
regard to the number of iterations per run. This experiment uses the following continuation scheme in
Equation (2.2-2), allowing P3 iterations in the initial run, followed by increasing the maximum number
of iterations by P4 from the previous run, then allowing the final run to continue to completion to the
prescribed maximum number of total iterations.

Initial run: maxit0 = P3
Intermediate runs: maxitk+1 = maxitk+ P4
Final run: maxitn = maxit

The final complexity accounts for potential errors that may arise during the projection step of each
run. A proposed method of reducing the impact of such errors while remaining independent of the
projection scheme is by multiplying the physical filter radius rmin (scaled by the resolution) by a factor
P5 during the initial and intermediate runs to e"ectively “relax” the mesh. During the final run, the
filter radius should return to the original rmin to produce similar results as the original algorithm. The
blurriness during the initial and intermediate runs, in conjunction with the iteration limits, should
allow for some semblance of a solution to be obtained at the end of each run; however, the solution
should remain unclear enough to provide the optimizer more freedom on subsequent runs.

Initial/intermediate runs: rmin = P5 $ resk $ rmin, phys
Final run: rmin = resk $ rmin, phys

While many other complexities also exist, the five aforementioned parameters are key values in
creating an optimized version of MRC. The remaining major complexity is the choice of a projection
scheme; during initial testing of MRC, it was discovered that the only scheme that runs without failure
is splitting the elements of a coarse mesh into two in both directions and linearly interpolating be-
tween existing values to fill in the missing elements. Other schemes, including tripling the number of
elements in each direction or using cubic interpolation, almost always resulted in failure to converge.
For the five key parameters, a crude parameter sweep was performed to determine a suitable combi-
nation of values. The final set of values is set as P1=4, P2=1/8, P3=10, P4=5, and P5=2.5. More details
on how these values are integrated into the MRC code, as well as a step-by-step documentation of the
full algorithm, are included in the full script attached in the Appendix.

2.3 Base Code Modifications

To enable the iterative nature of MRC, a few minor modifications must be made to any existing topol-
ogy optimization codes. First, the solution matrix (typically assigned as the variable xPhys) must be
added as an output to the function. Second, the initial design variable matrix (typically assigned as the
variable x) must be added as an input to the function. Finally, for codes like top88 that do not have an
existing iteration limit, there must be another added input for breaking the main loop at a desired iter-
ation count. The resulting edits to top88 as an example can also be found in the Appendix. As other
relevant codes like top99neo and top3D125 were developed from top88, the modifications made
to those are very similar and are omitted for redundancy.

(2.2-2)

(2.2-3)

12

2.4 Testing Procedure

For all experiments conducted in this study, the original and new algorithms are tested in parallel on
MATLAB instances on remote computers via Open OnDemand for maximal consistency in process-
ing speed. Each problem is run over a range of resolutions in series, usually beginning at 0.25 and in-
crementing by 0.25, as well as in batches to minimize fluctuations across di"erent sessions. The time
limit for any single set of runs is capped at 12 hours when using this tool, thus data was not attainable
for certain ranges of resolutions.

The internal timer in MATLAB tracks the total amount of time required for each run, and the final
compliance, iteration count, and solution are obtained directly from the base topology optimization
code being tested. To compare the performance of the original and new algorithms, the two sets are
plotted against mesh resolution on the same graph for each metric.

13

3 Results
Problems in this study are evaluated based on three metrics: final compliance, total number of iter-
ations, and total computation time. The main focus is on the computation time, though the iteration
count gives additional insight into the progression of the optimization. Compliance, while it is the ob-
jective function of all problems, is not the focus of this study; however, it is still considered to ensure
that MRC produces reasonable results compared to results using the original codes.

The main codes referenced in detail in this study are top88 by Andreassen et al. (2011) and top-
99neo by Ferrari and Sigmund (2020). A brief additional exploration of top3D125 (Ferrari and
Sigmund 2020) is also included to demonstrate the applicability of the algorithm to a more recent
and specialized code. As MRC is a wrapper function, it is essentially applied to a base code; in terms of
nomenclature, the name of the base code will be appended. For example, MRC applied to top88 will
be referred to as MRC(top88).

3.1 Using top88

Initial tests were performed using the 88-line MATLAB code by Andreassen et al. due to its populari-
ty and relevance in the community. As it is often used or extended upon, the 88-line script is an appro-
priate starting point for proving the concept of the new algorithm. MRC was tested on the two types of
problems explored in the 2011 study, the MBB beam and the short cantilever.

3.1.1 MBB Beam

The classic MBB beam problem is defined with sim-
ply-supported connections and a single point load at
mid-span, often simplified to half the geometry due to
symmetry. Frequently used as a benchmark problem
in topology optimization codes, the MBB beam is an
appropriate initial test case for MRC. The dimensions,
as shown in Fig. 3.1.1-1, are taken from literature as the
reference data point (when the resolution is 1). After
testing this problem up to a resolution of 10, the follow-
ing data were collected and plotted.

It is clear from Fig. 3.1.1-2a that past low resolutions, MRC begins to show a significant improve-
ment in the amount and time of computation as seen with the divergence of the plots of top88 and
MRC(top88), reaching a striking 57.4% reduction in time at a resolution of 10. Note that for the
purpose of this study, the maximum iteration count was capped at 1,000 for the MBB beam problem;
if the original algorithm had been permitted to run indefinitely, the di"erence in computation time
would be even more drastic, as MRC(top88) significantly reduces the required number of iterations.

To confirm the validity of MRC, it is important to compare the final compliances and geometries of the
respective solutions. As seen in Fig. 3.1.1-2a for the MBB beam, there is surprisingly a consistent re-
duction in compliance when using MRC. At a resolution of 10, the compliance improves by a reduction
of 3.2%. Comparing the image outputs at resolutions 1 and 10 (Fig. 3.1.1-2b), however, there is a visible
di"erence in topology between the original and new solutions. This result may be attributed to the
optimizer finding a di"erent path to a solution due to a dilated filter radius during intermediate runs.
Although there is this disparity in topology, the reduction in compliance shows that the solution using
MRC is equally valid and even performs better in this case.

Fig. 3.1.1-1 Illustration of the MBB beam problem

14

Fig. 3.1.2-2a Comparison of the compliance, iteration counts, and computation times vs. resolution for the MBB beam prob-
lem using top88 and MRC(top88)

Fig. 3.1.1-2b Comparison of the geometry for the MBB beam at low and high resolutions using top88 and MRC(top88)

15

3.1.2 Short Cantilever

The short cantilever problem features a fixed edge cantilevering
with a point load at the bottom of the free end with the reference
dimensions as shown in Fig. 3.1.2-1. This problem was also run up to
a resolution of 10.

A very similar trend shows for this problem, with the computation
times diverging increasingly towards higher resolutions, though not
as drastically as the trend from the MBB beam (Fig. 3.1.2-2a). There
is only a 15.6% decrease in computation time at a resolution of 10
for the short cantilever problem because MRC tended to reach the
iteration count limit more frequently this time. A comparison of the
compliances and geometries also shows high similarity and validity of the output of MRC (Fig. 3.1.2-
2b). The solutions generated by top88 and MRC(top88) are nearly identical, which explains the
nearly-equal compliances (0.7% reduction). Thus, with regard to the problems set forth in the original
top88 and its respective paper, MRC is consistently e"ective in reducing computation time while
maintaining roughly equal compliance.

Fig. 3.1.2-2a Comparison of the compliance, iteration counts, and computation times vs. resolution for the short cantilever
beam using top88 and MRC(top88)

Fig. 3.1.2-1 Illustration of the
short cantilever problem

16

Fig. 3.1.2-2b Comparison of the geometry for the short cantilever beam at low and high resolutions using top88 and
MRC(top88)

3.2 Using top99neo

With promising results using top88 as the base code, the next step was to continue experimenting
with the successor algorithm, top99neo by Ferrari and Sigmund (2020). As the study claims a 2.55 to
5.5 times improvement in speed from top88, there was a possibility that MRC may have a less pro-
nounced e"ect using such an intrinsically faster code. top99neo was similarly tested on the prob-
lems included in this study, including the same MBB beam problem as before, followed by a new and
more complex frame reinforcement problem.

3.2.1 MBB Beam

The MBB beam is re-evaluated using top99neo, providing a useful comparison between the per-
formances of the original algorithms published nine years apart, along with the performances of MRC
using these as the base algorithms. Two major changes in top99neo from top88 are the calculation
method for the change threshold (at which point the change in densities between iterations is small
enough to terminate the optimization loop) and the addition of a continuation feature for penalization
and projection parameters. Due to these new features, each MBB beam test was also run with and
without continuation at change cuto"s of 10-6, 10-5, 10-4, and 10-3 to explore the e"ects of these parame-
ters on the e!cacy of MRC. top99neo by default runs without continuation and with a change cuto"
of 10-6; the same compliance, iteration count, and time versus resolution plots are shown in Fig. 3.2.1-
1a for this default set of parameters.

17

Fig. 3.2.1-1a Comparison of the compliance, iteration counts, and computation times vs. resolution for the MBB beam using
top99neo and MRC(top99neo) without continuation and a change cuto" of 10-6

Fig. 3.2.1-1b Comparison of the geometry for the MBB beam at low and high resolutions using top99neo and MRC(top-
99neo) without continuation and a change cuto" of 10-6

18

Immediately there is a noticeable di"erence with this plot (Fig. 3.2.1-1a) compared to the previous
analysis using top88. The divergence in computation time is far less drastic, with only a 12.5% reduc-
tion in time. The solution of top99neo, as seen in Fig. 3.2.1-1b, slightly di"ers from that of top88 in
topology, along with a 3.9% reduction in compliance, implying that top99neo by itself improved in
e!ciency and e"ectiveness from its predecessor code. On the other hand, the solution of MRC(top-
99neo) is almost identical to that of MRC(top88); this confirms the theory that MRC is less advanta-
geous when its base algorithm is intrinsically more e!cient.

Fig. 3.2.1-2a and Fig. 3.2.1-2b show the same trend when continuation is applied using the same
change cuto" of 10-6. Note that discontinuities from invalid data in the plots occasionally arise at low
resolutions due to breakdowns when the number of elements in each dimension is insu!cient for
analysis; however, this issue is negligible as resolutions below 1 are coarser than the intended use for
most topology optimization codes.

Fig. 3.2.1-2a Comparison of the compliance, iteration counts, and computation times vs. resolution for the MBB beam using
top99neo and MRC(top99neo) with continuation and a change cuto" of 10-6

The solutions generated with continuation, aside from the increased image clarity, closely match
those generated without. With continuation, top99neo decreased even further in computation time
by 2.5% and in compliance by 9.9% from running without continuation. MRC(top99neo) with

19

Fig. 3.2.1-2b Comparison of the geometry for the MBB beam at low and high resolutions using top99neo and MRC(top-
99neo) with continuation and a change cuto" of 10-6

continuation, while remaining better in performance, does not have the same level of improvement.
It can be concluded that both top99neo and MRC improve upon top88 to a large degree, but the
di"erence is less significant relative to each other. Although this result may seem to undermine the ef-
fectiveness of MRC, it is important to note that the change cuto" of 10-6 is very strict. While both cases
show a reduced benefit from using MRC, this can be explained by observing that the iteration counts
are reaching the predefined limit for all resolutions past 1. Since the original and new algorithms are
running the same amount of iterations, it follows that the computation times are much more similar,
whereas before with top88 there was a clear di"erence in the number of required iterations. Further-
more, the iteration counts are reaching a maximum due to the small change cuto" in the default set of
parameters. If the change cuto" is relaxed to higher values, the required iterations should decrease.
Figure 3.2.1-3 presents the time reductions between top99neo and MRC(top99neo) at the highest
resolution of 10 for various change cuto"s.

Figure 3.2.1-3 Comparison of the time reduction for the MBB beam using MRC(top99neo) across various change cuto"s,
with and without continuation

It is evident from the large disparity in time reductions between a change cuto" of 10-6 and 10-3 that
the change cuto" is an important factor in determining the speed of convergence. If the cuto" is
relaxed, the optimization terminates earlier in less iterations, with which MRC clearly performs much
better than the base code (up to 88.8% with continuation). This highlights an interesting trade-o"
between the change cuto" and the e!cacy of MRC. Without continuation, MRC performs much faster
with just an increase in the cuto" of a factor of 10.

20

3.2.2 Frame Reinforcement

The frame reinforcement problem from Ferrari and Sigmund
(2020) is a more complex example that involves defining active/
passive and solid/void regions, as well as a distributed load,
which renders it an important benchmark problem for both the
original top99neo script and MRC(top99neo). Featuring a
900×900 discretization in its default case, this super-fine mesh is
also useful in testing the limits of the algorithms and their perfor-
mances with large datasets. Tests with this problem are capped
at a resolution of 3 due to system memory shortages that arose
during runtime and insu!cient MATLAB session durations for
any higher resolutions, which amount to over 7 million elements
and required upwards of 12 hours for each run. Continuation is
not applied per the original example, the change cuto" is fixed at
the original 10-6 due to the low likeliness of it controlling the loop,
and the dimensions are reproduced and illustrated as in Fig. 3.2.2-1.

Fig. 3.2.2-2a Comparison of the compliance, iteration counts, and computation times vs. resolution for the frame reinforce-
ment problem using top99neo and MRC(top99neo)

Fig. 3.2.2-1 Illustration of the frame
reinforcement problem

21

Fig. 3.2.2-2b Comparison of the geometry for the frame reinforcement problem at low and high resolutions using top99neo
and MRC(top99neo)

3.3 Using top3D125

A final exploration of the potential of MRC focuses on the 3D
cantilever problem solved with top3D125, the 3D extension
of top99neo by Ferrari and Sigmund (2020). The dimensions
as listed in the paper are reproduced as shown in Figure 3.3-1.
Tests for this problem were run only up to a resolution of 1.5, past
which MATLAB consistently crashed on both top3D125 and
MRC(top3D125).

With just six data points for each algorithm (Figure 3.3-2a), there
is already a clear divergence in computation time, reaching a
59.5% reduction by a resolution of just 1.5. Although its perfor-
mance past this point is not confirmed in this study, it can be
assumed that MRC would continue to produce significant time savings at higher resolutions.

In Figure 3.3-2b, MRC(top3D125) can be seen to generate quite a di"erent solution from the original
top3D125. The solution of MRC seems to have fewer and larger members and fewer nodes; this may
be attributed to the relatively low resolution compared to previous tests in this study, such that the
continuation of the mesh refinement does not develop enough to escape the e"ects of a large filter ra-
dius. Nevertheless, the compliance is still improved with MRC, reducing from top3D125 by 1.8%. This
result is promising as it shows the potential of MRC for complex problems such as this 3D test case.

Fig. 3.3-1 Illustration of the frame
reinforcement problem

22

Fig. 3.3-2a Comparison of the compliance, iteration counts, and computation times vs. resolution for the 3D cantilever prob-
lem using top3D125 and MRC(top3D125)

23

Fig. 3.3-2b Comparison of the geometry for the 3D cantilever problem at low and high resolutions using top3D125 and
MRC(top3D125)

24

4 Discussion
After exploring the applicability of MRC to the common topology optimization codes, it is evident that
the benefits vary from case to case. While MRC generally shows a significant improvement in compu-
tation speed, depending on the level of complexity desired, the original code may still perform better
or more stably. Table 4.1 summarizes some results of the previously mentioned tests, demonstrating
the large reductions compared to the respective base codes at the highest resolutions tested ranked
from lowest reduction to highest.

Problem Top resolution Equivalent mesh Total number of
elements

Time reduction
using MRC

MBB beam
(top99neo) 10 600×200 1.2×106 12.5%

Short cantilever
(top88) 10 400×250 1.0×106 15.6%

MBB beam
(top88) 10 600×200 1.2×106 57.4%

3D cantilever
(top3D125) 1.5 72×36×36 9.3×104 59.5%

Frame
reinforcement
(top99neo)

3 2700×2700 7.3×106 64.3%

Table 4.1 Summary of time reductions across di"erent benchmark problems

By far, MRC saw the most improvement when applied to top99neo on a high-complexity, fine-mesh
test case like the frame reinforcement problem. On the other hand, MRC saw the least improvement for
the same base code, but on the simple MBB beam problem. One possible explanation is that topology
optimization codes by now are perfected for a classic benchmark problem like the MBB beam, such
that any further improvement in computation speeds is very di!cult to achieve. Whereas for less-test-
ed cases like the frame reinforcement or 3D cantilever problems, there is still wide room for improve-
ment, as these are more specialized cases and originate in relatively more recent publications.

Besides the complexity or discretization of problems, certain parameters also a"ect the performance
of MRC. By far the most influential parameter is the change cuto" by which the optimization loop
references as a breakpoint. For the MBB beam problem run with top99neo and MRC(top99neo)
without continuation, relaxing the change cuto" by a factor of 10 instantly increased time reductions
from 12.5% to 67.3%, as this e"ectively terminates the loop earlier. As the average time per iteration
using MRC is shorter due to a large portion of its iterations being run at low resolutions, MRC also
benefits in cases where no iteration limit is set. Relaxing the change cuto" again by another factor of
100 produces a similar spike in improvement when continuation is applied, from 12.0% to 88.8% in its
time reduction. From these results, there are evidently several main situations in which MRC provides
the most benefit: when problems are complex, when super-fine discretizations are desired, when no
continuation is applied, or when there is no maximum iteration count.

25

5 Conclusion
Presented in this paper is the concept for a new mesh refinement continuation (MRC) algorithm that
enhances the performance of common topology optimization codes, such as the 88-line MATLAB
code by Andreassen et al. (2011) and the 99-line and 125-line 3D code by Ferrari and Sigmund (2020).
By iteratively reusing outputs from coarser meshes as inputs for finer meshes, MRC is able to take ad-
vantage of higher computational speeds at low resolutions to more e!ciently guide the optimization
down a path to a minimum. For benchmark problems as outlined in their respective original papers,
MRC produces reductions in computation times of up to approximately 60% on discretizations on the
order of 106 elements.

The tests conducted in this study are far from comprehensive, and the full range of potential (or
drawbacks) of this approach is yet to be explored. Presented here is only a concept and not a definitive
algorithm by any means; perhaps with further refinement of parameters, MRC can become an even
more e"ective and robust method. The initial success of MRC is a promising step towards fulfilling the
goal of increasing the accessibility of topology optimization by improving the e!ciency of existing
tools in more innovative ways.

26

6 References
Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O. (2010). E!cient topology

optimization in MATLAB using 88 lines of code. In Structural and Multidisciplinary Optimiza-
tion (Vol. 43, Issue 1, pp. 1–16). Springer Science and Business Media LLC. https://doi.org/10.1007/
s00158-010-0594-7

Ferrari, F., & Sigmund, O. (2020). A new generation 99 line Matlab code for compliance topology opti-
mization and its extension to 3D. In Structural and Multidisciplinary Optimization (Vol. 62, Issue
4, pp. 2211–2228). Springer Science and Business Media LLC. https://doi.org/10.1007/s00158-020-
02629-w

Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. In Structural and Multi-
disciplinary Optimization (Vol. 21, Issue 2, pp. 120–127). Springer Science and Business Media LLC.
https://doi.org/10.1007/s001580050176

Sigmund, O., & Maute, K. (2013). Topology optimization approaches. In Structural and Multidisci-
plinary Optimization (Vol. 48, Issue 6, pp. 1031–1055). Springer Science and Business Media LLC.
https://doi.org/10.1007/s00158-013-0978-6

Wicklin, R. (2014, June 11). How to find an initial guess for an optimization. SAS Blogs. https://blogs.sas.
com/content/iml/2014/06/11/initial-guess-for-optimization.html

27

Appendix

Modification to the Base Code

The following edits were made to top88 to be compatible with the MRC code. Similar edits following
the same concepts can be made to top99neo and top3D125.

Line 1

function [out,loop] = top88(nelx,nely,volfrac,penal,rmin,ft,maxit,in)

out (the solution matrix) and loop (iteration count) must be added to an output array, and maxit
(iteration limit) and in (input matrix) must be added as an argument.

Line 46

Line 46 is replaced with the following block:

if isempty(in)

 x = repmat(volfrac,nely,nelx);

else

 x = in;

end

In the MRC algorithm, the initial run initializes the design variable matrix as prescribed by the input
parameters and the setup code unique to each problem. For the initial run, the input is passed as an
empty array to signify that the default operation for matrix assembly should be carried out. For sub-
sequent runs, the design variable matrix is no longer initialized by the default operations but is rather
replaced with an input matrix.

Line 51

while change > 0.01 && loop < maxit

A second condition must be added to break the loop once the count reaches a limit.

Line 88

An optional line of code that renames xPhys as out is added between lines 87 and 88 for clarity.

out = xPhys;

28

MRC Code with Documentation
1 %% Define inputs
2 X = 60; % equivalent of nelx from top88
3 Y = 20; % equivalent of nely from top88
4 volfrac = 0.5;
5 penal = 3;
6 rminphys = 1.5; % equivalent of rmin from top88
7 ft = 2;
8 res = 10; % target resolution
9 maxit = 1000; % iteration limit
10 %% Initialize parameters and looping variables
11 r = max(4/min(X,Y),1/8); % resolution iterator
12 nelx = ceil(r*X); % scale mesh size to the current resolution
13 nely = ceil(r*Y);
14 relax = 2.5;
15 rmin = relax*r*rminphys; % scale filter size to the current resolution
16 split = 2; % split each element in half both ways
17 runs = ceil(log(res/r)/log(split)); % count the total number of runs
18 maxit_interm = 10; % maxit iterator for initial/intermediate runs
19 %% Main loop
20 in = []; % initial input defaults to top88 internal setup
21 [meshx,meshy] = meshgrid(0:Y/(nelx-1):Y,... % defines a map for the initial mesh
 0:X/(nely-1):X);
22 [out,iters_total] = top88(nelx,nely,volfrac,... % initial run
 penal,rmin,ft,maxit_interm,in);
23 for i=1:runs
24 r = min(r*split,res); % ensure resolution is capped at the target
25 nelx = ceil(r*X);
26 nely = ceil(r*Y);
27 [meshxq,meshyq] = meshgrid(0:Y/(nelx-1):Y,... % defines a new map with the refined mesh
 0:X/(nely-1):X);
28 in = interp2(meshx,meshy,out,meshxq,meshyq,... % projects values using the maps
 ‘linear’);
29 meshx = meshxq; % update map for next run
30 meshy = meshyq;
31 maxit_interm = maxit_interm + 5;
32 if (i<runs) && (iters_total+maxit_interm>=... % skips a run if maxit will be exceeded early
 maxit)
33 out = in;
34 continue
35 elseif i==runs % final run
36 rmin = r*rminphys; % rmin returns to original
37 [out,iters] = top88(nelx,nely,volfrac,... % runs with the remaining iterations
 penal,rmin,ft,maxit-iters_total,in);
38 else % intermediate runs
39 rmin = relax*r*rminphys;
40 [out,iters] = top88(nelx,nely,volfrac,...
 penal,rmin,ft,maxit_interm,in);
41 end
42 iters_total = iters_total + iters; % update iteration count
43 end

