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Abstract

With the emergence of Artificial Intelligence (A.I.), our lives and economy are under-
going a profound transformation. While there are huge benefits to be realized by the
technology, we must also prepare for shifting circumstances, including changes in mar-
ket dynamics and the labor market. Thus, to inform policy, we need to understand
and forecast the implementation of A.I.

Previous forecasts of A.I. proliferation have focused on the technical feasibility
of replacing human labor in existing tasks. However, since the decision to deploy a
technology is ultimately an economic one, I develop a framework that compares the
cost of A.I. to the cost of worker compensation. As such, this approach considers not
only technical feasibility, but also the economic advantage of A.I. over human labor.

Using the framework, I examine the case of Computer Vision in the U.S. non-
farm economy, drawing on previous work on the cost of Computer Vision, as well
as government data on wages, tasks, and the size of firms. The results suggest that
while Computer Vision can replace human labor across sectors and industries, it will
only have an economic advantage over human labor in the very largest enterprises. In
smaller companies, the sum of task-specific employee compensation does not exceed
system development costs. Data is identified as the main driver of total Computer
Vision development costs, placing incumbent firms at an advantage in the race to
realize the economies of scale that Computer Vision, and A.I. in general, enable.

Based on my findings and related work on labor markets, I argue that automation
is not the only way in which the introduction of A.I. could harm workers. Increased
market concentration, stemming from access to data being restricted to firms with
existing operations as well as enhanced production efficiency, might cause a systemic
power shift from workers to firms. I point to the facilitation of industry data-sharing
as a tool for policy-makers to mitigate these effects by lowering the barriers to entry
into A.I.-centric markets.

Thesis Supervisor: Neil Thompson
Title: Research Scientist and Director, MIT FutureTech
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Chapter 1

Introduction

"Machines will steal our jobs" is a sentiment frequently echoed during times of rapid

technological change. It even dates back to Keynes [39], who noted that technological

change can outpace job creation. Modern economists, including Autor [8], Bishop

[16], and Bessen et al. [14] [13], mostly agree that the aggregate amount of labor

demanded relative to the population will not change over time, i.e., we are unlikely to

have a jobless future. However, new developments can still be disruptive to individuals

and worsen economic inequality. The Luddite movement of the early 18th and 19th

centuries in the UK organized violent riots in response to the effect of automation on

the quality of life of workers, as recounted by Mueller [46]. Michaels [44] found that

digital technology aggravated inequality by increasing demand for high-income labor

at the expense of middle-income labor. Autor et al. [9] and Krueger [41] report that

computerization, in particular, increases the returns to education, favoring those who

already have the resources to invest in their careers over those who do not. Therefore,

to inform social and industrial policy to combat these inequality-increasing effects,

we need to forecast the scale and nature of future technological advances.

The technology at the root of our current collective labor market-anxiety is Ar-

tificial Intelligence (A.I.). Fleming [32] sees the technology as an enabler of a fourth

industrial revolution, and Brynjolfsson and McAfee [21] believe digitalization will un-

derpin most, if not all, of the economy. Fleming et al. [33] and Acemoglu et al. [1]

present evidence that A.I. is already changing the job market. Recent advances, in-
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cluding tools such as ChatGPT [59], are driven by increased computing power, which

allows us to build large neural networks trained on vast amounts of data, so-called

Foundation Models, a term coined by Bommasani et al. [18]. These generalist models

can be fine-tuned for specialized downstream use cases using Transfer Learning, a

technique that leverages relatively small amounts of additional data and computing

power. In the case of ChatGPT, it was created by fine-tuning the foundation model

GPT-3 [59]. The launch of ChatGPT reignited worries about technology changing

the way we live and work, bringing the issue of studying the impact of A.I. on the

economy to the forefront of public discourse.

The timeline and scope of A.I. proliferation are incredibly hard to predict, as

discussed by Armstrong and Sotala [5], yet many researchers have created methods to

predict the suitability of A.I. to replace or augment work currently done by humans.

Frey et al. [34] were the first to make headlines when they stated that 47% of

occupations are at high risk of automation. Subsequent studies have contested their

findings, including work by Brynjolfsson et al. [22], Felten et al. [30], and Webb

[72]. However, a limitation these studies have in common is that they focus solely

on technical feasibility as a proxy for whether human labor is exposed to A.I. While

technical feasibility is a necessary prerequisite for deployment, we also need to consider

whether A.I. is actually more cost effective than human labor. With the computing-

and data-intensive nature of neural networks, it is not obvious that it always is.

The economic advantage of A.I. over human labor matters. Agrawal et al. [4] and

Acemoglu and Restrepo [2] emphasize financial viability as a determinant of techno-

logical improvements. Similarly, Habakukk [36] discusses the relative cost of machines

and people when deploying labor-saving technologies. When automating existing hu-

man tasks, it is therefore clear that not all tasks in the economy are done at a scale

that is sufficient to offset the development costs of an A.I. system. Borge [19] refers

to this as the minimum viable scale. A task that could easily be done by a sufficiently

sophisticated A.I. system might only be performed by a handful of people in a com-

pany. Hence, that company is unlikely to invest in its development and deployment.

Therefore, in Chapter 2, my first contribution is to develop a framework for com-
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paring the relative costs of A.I. and human labor at different scales of deployment.

I use cost data for fine-tuning Computer Vision systems, developed by Thompson

et al. [69, 68], as well as government data on wages and tasks, to implement this

framework. I aggregate these costs across firms, industry groups, subsectors, and sec-

tors, to determine where we find this minimum viable scale and, hence, the economic

advantage of machines over human labor.

In Chapter 3, I present my findings. While Computer Vision has an economic

advantage over human labor across the economy, that advantage is rare on the firm

level because of the large development costs. When the advantage exists, it is only

found in the largest enterprises. The largest cost item is data, suggesting that re-

ducing the cost of data could help Computer Vision proliferate across more firms

and thereby accelerate the replacement of human labor. Alternatively, data-sharing

within industries can enable platform businesses to form, selling inferences across

industry groups, subsectors, and sectors. I close the chapter by discussing to what

extent we can generalize my results to other A.I. domains, including language models.

Chapter 4 summarizes my method, results, and claims, and concludes the thesis.
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Chapter 2

Comparing Humans to Machines

This chapter describes my framework for determining when A.I. has an economic

advantage relative to human labor. I take a task-based approach to my comparison,

drawing on a predictive model for the cost of developing a Computer Vision system, as

well as official data on wages, industries, firms, and employment in the U.S. non-farm

economy.

In the spirit of Autor et al. [10], Autor [7], and Acemoglu and Restrepo [3],

my model assumes that the output of an economic process can be broken down

into discrete tasks. Some of these tasks have the potential to be performed by a

sufficiently sophisticated Computer Vision system, i.e., they are technically feasible,

as explored by Brynjolfsson et al. [22], Felten et al. [30], and Webb [72] among

others. However, these approaches do not take the economically motivated choice of

deploying a technology into account.

Technology does not only progress from impossible to possible but also from ex-

pensive and rare to cheap and abundant (Agrawal et al. [4]). To understand to what

extent human labor is exposed to A.I. replacement, we must therefore consider the

current state of the markets and business decisions that control the deployment of the

technology. If a technology offsets fewer costs than it takes to acquire it, no rational

actor would choose the technology. There are, of course, many potential dimensions

for comparative advantages between humans and machines (according to a McKinsey

Report [24], the advantages of machines include speed and consistency), but consider-
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Figure 2-1: Relative Returns to Scale of Artificial Intelligence
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ing the economic advantage will advance our understanding one step beyond technical

feasibility.

Where I make a contribution is, therefore, that I consider for which tasks Com-

puter Vision systems have an economic advantage over human labor, i.e., when the

cost to develop and run those systems is smaller than the cost of employing humans

to perform the same tasks. Due to the economies of scale of A.I., there exists a

minimum viable scale, a concept identified by Borge [19], for A.I. to be profitable, a

trend shown in Figure 2-1. I explore where we can find this minimum viable scale for

Computer Vision within the economy of existing tasks, i.e., do the economics of re-

placing humans for a specific task make sense on the firm, industry group, subsector,

or sector levels?

2.1 Defining Economic Advantage

I say that Computer Vision has an economic advantage over human labor for a given

task 𝑗 and section 𝑠 of the economy (i.e., a firm, industry group, subsector, or sector)

when it not only has technical feasibility 𝑇𝑗, but also when the cost of Computer

18



Figure 2-2: Breakdown of Cost of Computer Vision

Vision , 𝐶𝑀
𝑗 , where 𝑀 is for Machine, is less than the cost of labor, 𝐶𝐻

𝑗,𝑠, where 𝐻 is

for Human, as expressed by:

𝑇𝑗 ∧ (𝐶𝑀
𝑗 < 𝐶𝐻

𝑗,𝑠)

Figures 2-2 and 2-3 break down 𝐶𝑀
𝑗 and 𝐶𝐻

𝑗,𝑠 and into their main components.

The rest of this chapter will go into detail about each of the components of 𝑇𝑗, 𝐶𝑀
𝑗 ,

and 𝐶𝐻
𝑗,𝑠, as well as explain my approach to data gathering.

2.2 Technical Feasibility

Many tasks currently performed by humans could be carried out by a sufficiently

sophisticated Computer Vision system. For example, the system could check products

for quality at the end of a factory assembly line or scan medical imagery for anomalies.

However, other tasks have little use for vision technologies, e.g., negotiating the salary

of subordinates. To find the technical suitability, 𝑇𝑗, we need to identify which tasks

in the economy are suitable vision tasks and which are not.

While prior work on technical feasibility inspired my approach to this paper,

they do not provide the data needed for my use case. Felten et al. [30] base their

19



Figure 2-3: Breakdown of Cost of Human Labor

method on linking A.I. progress to abilities, which does not translate to my task-

based model of replacement. Webb [72] uses a task-based model but does not allow

us to easily distinguish between Computer Vision and other A.I. domains. Eloundou

et al. [29] only cover language tasks. Brynjolfsson et al. [22] did produce task-

level data with an indicator for vision tasks, but when filtering their results for highly

scoring image-based tasks, the output contained many tasks for which I, upon manual

inspection, could not see an obvious Computer Vision use case for, e.g., "Analyze

market conditions or trends" or "Dispose of biomedical waste in accordance with

standards." Therefore, I create my own data on technical feasibility.

I take a manual approach to identifying 𝑇𝑗. Like Webb [72], Eloundou et al.

[29], and Brynjolfsson et al. [22] I choose to rely on the O*NET Database 27.1

[50]. O*NET contains standardized characteristics of work and workers in the United

States. By doing so, I assume that those tasks are an appropriate unit of replacement

and that technological change does not otherwise change the overall processes and

task breakdowns. The U.S. Department of Labor collects the data through survey

instruments. It contains descriptions of the nature of 1016 occupations with 19,265

unique associated tasks, which are in turn mapped to 2087 different Direct Work

Activities (DWAs) through a many-to-many relationship. Although the word "task"

is a category in the O*NET schema, I find that the descriptions of the O*NET-

20



Table 2.1: Examples of Tasks and Technical Feasibility

𝑗 O*NET-task DWA Suitable
Vision
Task?

1 Operate diagnostic equipment, such as
radiographic or ultrasound equipment,
and interpret the resulting images.

Analyze test data or
images to inform diag-
nosis or treatment.

Yes

2 Operate diagnostic equipment, such as
radiographic or ultrasound equipment,
and interpret the resulting images.

Operate diagnostic
imaging equipment.

No

3 Examine trays to ensure that they con-
tain required items.

– Yes

Each row is a distinct task. Note that rows 1 and 2 are associated with the same
O*NET-Task. However, as the DWAs refer to different aspects of the O*NET-Task, only

one of the rows is deemed suitable for Computer Vision.

Tasks are too broad and include too many different capabilities. Therefore, I define

a task for the purposes of a unit of A.I. system capabilities as the combination of an

O*NET-Task and DWA, as shown in Table 2.1. When O*NET-Tasks do not have

any associated DWAs, I treat them as one DWA.

There are slight differences in occupational taxonomies that need to be rectified.

Because O*NET includes more granularity than the Standard Occupational Classi-

fication (SOC) [51], which is used for data on wages, I truncate the O*NET-SOC

Codes by removing the decimal points to match the SOC (see Appendix A).

The large number of O*NET-Tasks makes manual identification of vision tasks

challenging, but because of the lack of prior art, it was still my preferred approach. To

classify the combinations of almost 20,000 tasks and 2,000 DWAs, I first identify 190

DWAs that suggest the possibility of being replaceable by Computer Vision in any

way. These include DWAs like ”Assess skin or hair conditions”, ”Examine patients to

assess general physical condition”, ”Inspect items for damage or defects”, and ”Monitor

facilities or operational systems”. Filtering on these 190 DWAs yields 1922 possible

O*NET-Task-DWA combinations.

Naturally, there are instances where tasks are ambiguous, or where I lack context
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or knowledge to determine their suitability. To aid my decision-making process, I

employ the following heuristics:

• When an O*NET-Task has multiple DWA components but only one of the

DWAs refers to something visual, I only label one of the DWAs as a vision task.

For example, for the O*NET-Task "Diagnose fractures using X-rays" consisting

of the DWAs "Diagnose conditions" and "Analyze medical data", I only consider

the latter DWA suitable. I assume the healthcare professional will still make

the official diagnosis based on the output of the Computer Vision system.

• Even if I do not take into account the frequency at which the task is performed,

I require repeatability. If a task needs new criteria each time it is performed,

e.g., if a costume attendant "check[ing] the appearance of costumes on stage or

under lights to determine whether desired effects are being achieved" only does

so once per production, I do not consider it a suitable vision task.

• If something can be done with Computer Vision but there is simpler way to do

it, it is not suitable. For example, I do not consider a Computer Vision system

suitable to read gauges if they instead could be directly digitally encoded.

• If a task refers to a different technology, such as GIS, I do not consider it suitable

even if it could be done by Computer Vision.

• If the vision part of the task comes for free when a human carries out all other

components, it is not suitable. As an example, the DWA "Locate suspicious

objects or vehicles" in the context of "Search prisoners and vehicles and conduct

shakedowns of cells for valuables and contraband, such as weapons or drugs."

is not suitable, although in other contexts, it is, e.g., "Locate suspicious bags

pictured in printouts sent from remote monitoring areas, and set these bags

aside for inspection."

• If a task requires prohibitively complex supplementary systems, e.g., "Piloting

aircraft" or "Driving ground vehicles", I do not consider it suitable even if it

can be done with Computer Vision.
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• When evaluating a task’s suitability, I do not consider the ethics of replacement,

nor the ethics of the camera surveillance that is implicit in many applications.

I ask whether something could be replaced, not whether it should be.

By applying these heuristics and my subjective judgement, I identified a total of

420 suitable vision tasks.

2.3 Cost of Computer Vision

To estimate the cost of a Computer Vision system, I rely on the prior work of Thomp-

son et al. [68, 69], which breaks down and calculates individual cost components. In

general, the cost of fine-tuning and deploying a Computer Vision system to perform

a task 𝑗 can be divided into three categories:

• Fixed Costs, or Engineering Costs1, which include implementation costs, 𝐶𝑒𝑛𝑔/𝑖𝑚𝑝,

and maintenance cost, 𝐶𝑒𝑛𝑔/𝑚𝑎𝑖𝑛.

• Performance Dependent Costs, which include the cost of data, 𝐶Δ
𝑗 , and the

compute cost per training round, 𝐶𝜏
𝑗 .

• Scale Dependent Costs, i.e., Running Costs, 𝐶𝑅
𝑗 .

To estimate the total cost of replacing human labor for a given task, I calculate

the Net Present Value (NPV) of the cost of a system of a given lifespan. In addition

to the initial round of fine-tuning, changes in the real world can lead to a decline in

accuracy due to data drift, as explained by Moreno-Torres et al. [45]. To address

this accuracy drop, the network must be retrained at regular intervals of 𝐾 times per

year. Denoting the capital discount rate 𝑑, the yearly rate of decrease in computing

costs as 𝑚, and the system lifespan as 𝐿, the total cost of building a Computer Vision

system to perform task 𝑗, 𝐶𝑀
𝑗 , is:

1Although Thompson et al. [68] also include infrastructure cost as a fixed cost, I ignore this since
I assume the use of cloud computing.
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𝐶𝑀
𝑗 = 𝐶𝑒𝑛𝑔/𝑖𝑚𝑝 + 𝐶Δ

𝑗 + 𝐶𝜏
𝑗 +

𝐿−1∑︁
𝑖=0

(
𝐶𝑒𝑛𝑔/𝑚𝑎𝑖𝑛 + 𝐶Δ

𝑗 ×𝐾

(1 + 𝑑)𝑖
+

𝐶𝑅
𝑗 + 𝐶𝜏

𝑗 ×𝐾

((1 + 𝑑)× (1 +𝑚))𝑖
)

Throughout the experiments, I make the following assumptions:

• A flat discount rate of 8% is applied across the economy, i.e., 𝑑 = 0.08, cor-

responding to a conservative expected stock market return based on historical

values [65].

• The yearly rate of decrease in computing costs is 22%, i.e., 𝑚 = 0.22 based on

findings by Hobbhahn and Besiroglu [38].

• The system lifespan is set to 𝐿 = 5 years based on the software depreciation

rate published by the Bureau of Economic Analysis [48].

2.3.1 Fixed Costs

The engineering project for a Computer Vision system involves two phases: imple-

mentation and maintenance. These phases correspond to the variables 𝐶𝑒𝑛𝑔/𝑖𝑚𝑝 and

𝐶𝑒𝑛𝑔/𝑚𝑎𝑖𝑛 in the equation discussed in Section 2.3. For this analysis, I assume that

the implementation and maintenance costs are the same for all tasks, reflecting the

complexity and repeatability of the engineering process rather than the complexity of

individual tasks. To estimate these costs, I refer to the IBM case study presented by

Thompson et al. [67], which describes a Deep Learning time series prediction project.

The study reports an upfront implementation cost of 𝐶𝑒𝑛𝑔/𝑖𝑚𝑝 = $1, 765, 000 for a

6-month project and a yearly maintenance cost of 𝐶𝑒𝑛𝑔/𝑚𝑎𝑖𝑛 = $242, 840. Refer to

Tables 2.2 and 2.3 for a detailed breakdown of these costs.

2.3.2 Performance Dependent Costs

Training a neural network requires significant computing power, making it a resource-

intensive process. For example, Brown et al. [20] report that training the foundation
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Table 2.2: Implementation Team Costs (𝐶𝑒𝑛𝑔/𝑖𝑚𝑝) [67]

Worker Type # Utilization Monthly Cost Per Worker Monthly Cost
IBM Engineers 6 100% $40,000.00 $240,000.00
Client Engineers 4 80% $16,666.00 $53,333.33
Subject Matter Experts 1 5% $16,666.00 $833.33

Monthly Cost Sum: $294,166.66
Total 6 Months Cost: $1,765,000.00

Table 2.3: Maintenance Team Costs (𝐶𝑒𝑛𝑔/𝑚𝑎𝑖𝑛) [67]

Worker Type # Utilization Monthly Cost Per Worker Yearly Cost
IBM Engineers 0 0% $40,000 $0
Client Engineers 4 30% $16,666.66 $240,000.00
Subject Matter Experts 1 1.42% $16,666.66 $2,840.00

Total Yearly Cost: $242,840.00

model GPT-3 took "several thousand petaflop/s-days of compute", which would re-

quire approximately $10,000,0002. My costs will be smaller, but likely not negligible,

since I am assuming that it is possible to leverage existing foundation models and

fine-tuning3.

The cost of the Computer Vision system will depend on the required quality. As

established in Section 2.2, a sufficiently sophisticated Computer Vision system can

perform a suitable vision task. Therefore, the technical feasibility depends on the

system meeting minimum standards. While fairness and other intangible measures

can impact system quality, I focus on two tangible measures, namely accuracy and

entropy. Accuracy is the percentage of correct predictions made by a system, and

entropy is a measure of the complexity of information in the possible outcomes of

the system, as defined by Shannon [61], e.g., how many different categories does the

model need to be able to recognize? Hence, I assume that, for each task 𝑗, there exists

2Assuming a rate of $0.34 per hour, 4k petaflop/s-days corresponds to 96k petaflop/s-hours or
24M hours, which yields a compute cost of approximately $8,160,000.

3Fine-tuning the process of adapting a pre-trained deep learning model to a specific use case to
enhance its performance, also known as transfer learning.

25



minimum levels of accuracy 𝑎𝑗 and entropy 𝑒𝑗 that a human worker must achieve to

be deemed fit for the job. I further assume that a Computer Vision system that meets

those requirements would be technically suitable to replace the human at task 𝑗. In

that sense, 𝑎𝑗 and 𝑒𝑗 are implicit in my definition of technical feasibility 𝑇𝑗.

The cost of training is going to depend heavily on the required accuracy and

entropy. The higher the number of categories a system needs to distinguish between,

the more data it needs to be trained on, in order not to confuse it. Similarly, the less

error-tolerant the system can be, the more examples it needs to have seen. Therefore,

the cost of a Computer Vision system is partially driven by its required performance

and quality.

To determine the minimum required accuracy 𝑎𝑗 for a given task 𝑗, I use the

"Importance of Being Exact or Accurate" variable from the O*NET database, 𝛽𝑜

shown in Figure 2-4a. It rates an occupation’s accuracy on a scale from 1 to 5, where

5 represents the highest level of accuracy. Additionally, I incorporate the "Error

Tolerance" score, 𝑡𝑗, shown in Figure 2-4b, from Brynjolfsson et al.’s [22] study. It

rates the level of error tolerance required for a task on a scale from 1 to 5, where 5

represents the least tolerance for error. Using these scores, I calculate 𝑎𝑗 as follows:

𝑎𝑗 = 𝑚𝑖𝑛(
𝑚𝑎𝑥(6− 𝑡𝑗, 𝛽𝑜)

5
, 0.995)

The value 0.995 accounts for a level of human error. Figure 2-5 shows a histogram

of the required accuracies for any given task.

To find the entropy level, 𝑒𝑗, I assume that the foundation model was trained

on ImageNet [27], and I set a target entropy level that represents the mid-range of

entropy for the Computer Vision deployments included in the tools developed by

Thompson et al. [69], a value roughly corresponding to 20 equally sized classes.

To determine the number of required datapoints and its costs, 𝐶Δ
𝑗 , and thereby

also the computational requirements and costs, 𝐶𝜏
𝑗 , I refer to the work by Thompson

et al. [69], which assumes an exponential relationship between the requirements for

the fine-tuned model and the number of required datapoints. Using the number of
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Figure 2-4: Inputs for Minimum Required Accuracy per Task

datapoints and the size of the foundation model, we can calculate the number of

GPU hours required. I model the total cost of data using 𝑓(𝑎𝑗, 𝑒𝑗), the number of

datapoints required for a given accuracy 𝑎𝑗 and entropy 𝑒𝑗, as follows:

𝐶Δ
𝑗 = 𝑓(𝑎𝑗, 𝑒𝑗)× 𝑝Δ

Here, 𝑝Δ is the cost per datapoint. We assume that 𝑝Δ = $0.05, five times higher

than the smallest possible assignment award on the crowd-sourcing platform Amazon

mTurk4.

To calculate the cost of compute, 𝐶𝜏
𝑗 , we use the same number of datapoints,

𝑓(𝑎𝑗, 𝑒𝑗), and the following equation:

𝐶𝜏
𝑗 =

𝑓(𝑎𝑗, 𝑒𝑗)× 2× # Model Connections × 3× # Epochs
GPU FLOPs/h

× 𝑝𝐺𝑃𝑈ℎ

𝑈

Here, the numerator of the left factor is the number of floating point operations

(FLOPs) required to train the model, based on research by Sevilla et al. [60]. The

denominator is the number of FLOPs a given GPU can perform in one hour at peak
4$0.01 according to https://www.mturk.com/pricing, Accessed: 2023-04-09. We use a higher

than minimum rate to account for the requirement for specialized skills for many tasks, as well as
the cost to collect the images.
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Figure 2-5: Histogram of Minimum Required Accuracy Per Task
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utilization. The right factor is the price per GPU hour 𝑝𝐺𝑃𝑈ℎ over the utilization 𝑈

of that GPU.

I assume the use of a 4 FP-32 TFLOPS GPU, with an hourly rate of 𝑝𝐺𝑃𝑈ℎ =

$0.3405. I also assume a GPU utilization of 𝑈 = 85%, which is consistent with the

utilization when training large Computer Vision models like ResNet50, as reported by

Yeung et al. [74]. Finally, I assume that 50 epochs are used, and that the foundation

model used has the size of VGG-19 [62], i.e., 1.44 × 108 parameters, the largest

configuration studied by Thompson et al. [69].

2.3.3 Scale Dependent Costs

In addition to the fixed and performance dependent costs, there is a marginal cost of

running the model, i.e., making inferences. According to anecdotal data from IBM

practitioners, the cost of making inferences using a Computer Vision system can be

between three to eighteen times as expensive as the training cost. However, these

numbers are based on the total scale of deployment and not the minimum viable

scale. For instance, in a case where a model was trained for $1,000 and then required
5eia2.xlarge pricing in U.S. East region on AWS https://aws.amazon.com/machine-learn

ing/elastic-inference/pricing/, Accessed: 2023-04-09

28

https://aws.amazon.com/machine-learning/elastic-inference/pricing/
https://aws.amazon.com/machine-learning/elastic-inference/pricing/


$18,000 in inference costs, there were 2,500 datapoints for training and 1,300,000

inferences were made. The minimum viable scale might only have required a fraction

of that number of inferences to break even, so we cannot take these numbers at face

value when calculating the running costs for finding the economic advantage.

Instead, to determine the economic advantage between human and machine labor,

we will consider running costs that are proportional to the amount of human labor

being displaced. According to a McKinsey report [24], machines have an advantage

over human labor in terms of speed. It is very conservative to assume that a machine

can perform a task in less time than a human. For instance, a 4 FP-32 TFLOPS

GPU hour is enough to make approximately 50,000,0006 inferences using VGG-19

[62], one of the larger publicly available Computer Vision models. No human could

match the pace of almost 14,000 inferences per second achieved by that machine.

Other A.I. hardware setups can be more powerful and therefore more expensive, like

the NVIDIA DRIVE Orin system of 254 TOPS7, which the company intends to be

the brain of autonomous vehicles. However, even if high-end setups give a cost per

inference that is 1000 times greater than our assumed model, it would still be well

below our upper bound. Therefore, I believe that the upper bound holds for a wide

range of possible setups.

To estimate the yearly running costs, 𝐶𝑅
𝑗 , for a Computer Vision system to perform

task 𝑗 instead of 𝑛 employees, I assume that task 𝑗 takes up 𝑤𝑗 of the employees’

duties. I model the yearly running costs as follows:

𝐶𝑅
𝑗 =

𝑝𝐺𝑃𝑈ℎ

𝑈
× 40× 50× 𝑤𝑗 × 𝑛

40 is the number of hours worked per week, and 50 is the number of weeks worked

per year. Like for training costs, I use a GPU hourly rate of 𝑝𝐺𝑃𝑈ℎ = $0.34 and

assume a GPU utilization of 𝑈 = 85%. My method for finding 𝑤𝑗 and 𝑛 is outlined

in Subsections 2.4.1 and 2.4.2, respectively.

6(4×1012×3600)/(2×1.44×108), where the nominator is FLOPs per hour and the denominator
is FLOPs per inference.

7https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/, Ac-
cessed: 2023-05-08
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Table 2.4: Bare-Bones Implementation Team Costs (𝐶𝐵𝐵/𝑒𝑛𝑔/𝑖𝑚𝑝)

Worker Type # Utilization Monthly Cost Per Worker Monthly Cost
IBM Engineers 0 0% $0.00 $0.00
Client Engineers 2 80% $16,666.00 $26,666.66
Subject Matter Experts 1 5% $16,666.00 $833.33

Monthly Cost Sum: $27,500.00
Total 6 Months Cost: $165,000.00

Table 2.5: Bare-Bones Maintenance Team Costs (𝐶𝐵𝐵/𝑒𝑛𝑔/𝑚𝑎𝑖𝑛)

Worker Type # Utilization Monthly Cost Per Worker Yearly Cost
IBM Engineers 0 0% $40,000 $0
Client Engineers 2 30% $16,666.66 $120,000.00
Subject Matter Experts 1 1.42% $16,666.66 $2,840.00

Total Yearly Cost: $122,840.00

2.3.4 Alternative: Bare-Bones Setup

There are instances where costs can be reduced or eliminated completely. For exam-

ple, a foundation model might already be fit for the task, or sufficiently close to it

that fine-tuning can be done with available data and hardware. Therefore, in addition

to the setup above, I explore the possibility that the only cost of Computer Vision

is that of a small engineering team, with the breakdown of costs shown in Tables 2.4

and 2.5.

Using the same assumption of 𝑑 = 0.08 and 𝐿 = 5 as elsewhere in this thesis, the

total cost 𝐶𝑀
𝑗 of implementing this bare-bones Computer Vision system for task 𝑗

can, hence, be written as

𝐶𝑀
𝑗 = 𝐶𝐵𝐵/𝑒𝑛𝑔/𝑖𝑚𝑝 +

𝐿−1∑︁
𝑖=0

𝐶𝐵𝐵/𝑒𝑛𝑔/𝑚𝑎𝑖𝑛

(1 + 𝑑)𝑖
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2.4 Cost of Human Labor

Unlike the cost of Computer Vision, human labor does not exhibit obvious economies

of scale. In fact, it is not unreasonable to assume that the only cost of human labor

is the marginal cost of compensation per worker. Because of these differences, human

labor has an advantage at smaller scales, as shown in Figure 2-1. It is therefore rele-

vant to consider the different business models that could drive investments into A.I.

deployment; either as a third-party platform (A.I.-as-a-Service) or in-house within

one firm.

To estimate the cost of human labor for a given task, I consider the economy

at different levels of detail, including sectors, subsectors, and industry groups, i.e.,

2-, 3-, and 4-digit North American Industry Classification System codes (NAICS)

[47], as well as individual firms of different sizes. I refer to these different units of

the economy as 𝑠. For a given 𝑠 and task 𝑗, where 𝑗 is technically replaceable by

a Computer Vision system with a lifespan of 𝐿, I define the NPV cost of labor as

follows:

𝐶𝐻
𝑗,𝑠 =

𝐿−1∑︁
𝑖=0

𝑤𝑜,𝑠 × 𝑟 × 𝑤𝑗 × 𝑛𝑜,𝑠

(1 + 𝑑)𝑖

Here, 𝑤𝑜,𝑠 is the mean wage for occupation 𝑜 in 𝑠, 𝑟 is the wage to total com-

pensation ratio, 𝑤𝑗 is the fraction of an occupation’s duties that is task 𝑗, 𝑛𝑜,𝑠 is the

number of workers of a given occupation in 𝑠, and 𝑑 is the capital discount rate. I

assume 𝐿 = 5 and 𝑑 = 0.08.

I explain my approach for calculating 𝑤𝑜,𝑠, 𝑟, and 𝑤𝑗 in Subsection 2.4.1. Subsec-

tion 2.4.2 outlines my method for finding 𝑛𝑜,𝑠 for different scales of companies and

parts of the economy.

2.4.1 Task Costs for Individual Workers

To estimate wage costs 𝑤𝑜,𝑠, I use the 2021 Occupational Employment and Wage

Statistics (OEWS) data tables for the U.S. non-farm economy created by the U.S.
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Department of Labor’s Bureau of Labor Statistics. These tables provide the average

wage and number of employees per NAICS code for each occupation 𝑜 and section 𝑠

of the economy.

There is missing data for smaller occupations and sections in more detailed NAICS

codes (3- and 4-digit), likely for privacy reasons. To impute missing average wage

and employment numbers, I use a bottom-up summation followed by a top-down

distribution of employment numbers, as well as a top-down propagation of average

wage.

To convert employee wages to employer costs, I use the Bureau of Labor Statistics

September 2022 wage to compensation ratio of 𝑟 = 1.4498 [52].

To assign a fraction, 𝑤𝑗, of an employee’s wage to a given task and calculate labor

cost, I weight each task by its score on the O*NET-Task-Importance scale, following

the example of Brynjolfsson et al. [22] and Webb [72]. For O*NET-Tasks that have

multiple DWAs associated with them, I distribute the score of the O*NET-Task

equally among the DWAs, giving me a weight for my definition of tasks described in

Section 2.2. In the made-up example of a Liberal Arts Professor who only has the two

O*NET-Tasks teach and research, with an Importance of 5 and 3 respectively, teach

would account for 5/8 of compensation and research 3/8. If research had two DWAs,

each of them would account for 3/16 each. In general, for an O*NET-Task 𝑌 with

an O*NET-Task-Importance score Φ𝑌 and 𝑞 associated DWAs, we find 𝑞 different

task-weight scores 𝑤𝑗 using the following formula:

𝑤𝑗 =
Φ𝑌∑︀

T∈O*NET-Tasks in Occupation ΦT × 𝑞

2.4.2 Scale of Deployment

Whether a Computer Vision model is deployed to replace the labor of one employee

or one million employees will affect its profitability. The cost of development and

implementation, which may be prohibitively expensive for a single firm, can be offset

by widespread adoption across an industry or even the entire economy. If a system
81/0.69
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costs $5,000,000 to develop and run, it will not make sense for it to replace the tasks

of two nurses in an Urgent Care office, but it would be a great idea to replace that

task for all nurses in America. As such, I analyze two deployment scales for computer

vision: platform deployment and in-house deployment.

Platform Deployment

Platform deployment involves deploying the Computer Vision system as a service

across a segment 𝑠 of the economy. To assess the potential size of these markets, I

first obtain the number of employees 𝑛𝑜,𝑠 for a given occupation 𝑜 within each sector,

subsector, and industry group, using imputed OEWS data as described in Subsection

2.4.1. We want to know 𝑛𝑜,𝑠 across different levels of granularity, since we do not know

how similar a task is across segments. For instance, a startup selling access to a model

that checks the quality of food may find that the model is valuable to replace human

labor across all restaurants, but not in adjacent industries like catering. Performing

the calculations for the different levels allows us to do a sensitivity check on that

assumption.

Internal Deployment

To estimate the number of employees 𝑛𝑔,𝑜,𝑠 for an individual firm 𝑔 in occupation 𝑜

and NAICS code 𝑠, I combine the average occupation distribution of NAICS codes

with publicly available data on firm sizes across those sections, using the following

formula:

𝑛𝑔,𝑜,𝑠 =
𝑛𝑜,𝑠

Total employment in 𝑠
× Size of 𝑔

For example, with 1,028,940 employed 35-2014 Cooks, Restaurant in 7225 Restau-

rants and Other Eating Places across the United States, an industry group with

9,431,910 employees total, a company with 50 employees would have 5 and a half

cooks9. I obtain the employment in an occupation in a given NAICS code using the
9 1,028,940
9,431,910 ×50 ≈ 5.45. This number does not include other food preparation workers, supervisors,

or head chefs.
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OEWS data. To approximate the firm employment size distributions in each NAICS

code, I use the 2019 SUSB Annual Data Tables by Establishment Industry [23], as

detailed in Appendix B.

It is reasonable to assume that many firms will have a different distribution of

occupations than their respective sectors, subsectors, or industry groups, potentially

leading to a high enough concentration to make a Computer Vision deployment viable

for them. However, unless there is a strong correlation between occupation concentra-

tion and firm size close to the minimum deployment size, this should have a minimal

effect on the overall results.

2.5 Limitations

A criticism of my approach is that A.I. would not simply replace human labor, but that

there are other comparative advantages to the technology that makes it both strategic

and attractive to deploy, not to mention A.I. products that do things beyond human

abilities. Bessen et al. [15] find that only 50% of A.I. startups help customers reduce

labor costs, whereas 75% build products to improve product and process quality.

Plotz and Fink [54] and Dranove and Garthwaite [28] discuss the potential value of

A.I. as increased quality of output. Hence, we might see companies deploy A.I. for

applications where it would not make economic sense when comparing only to the

size of their existing payroll. Instead, the technology might increase the company’s

market share. This could, of course, reduce demand for labor in competing firms in

the short-term.

While not strictly a limitation of this method, I caution readers not to interpret

the results of applying my method as a prediction of a net-job loss in the aggregate.

Technological change can be devastating for individuals who cannot adapt, as evi-

denced by the higher likelihood of early retirement in jobs exposed to automation

shown by Yashiro et al. [73]. However, economists, including Autor [8], Bishop [16],

and Bessen et al. [14, 13], largely agree that the aggregate amount of labor demanded

is unlikely to change over time, since freed labor can be absorbed by the freed capital,
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creating new tasks and products.
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Chapter 3

The Economics of Computer Vision

In this chapter, I present the results of applying the method from Chapter 2. The

findings suggest that Computer Vision is generally more cost-effective than labor

when tasks are aggregated across sectors, subsectors, and industry groups, but the

minimum viable scales are too large for most firms. I identify data as the largest

cost item in development, accounting for over 70-90% of total platform-system costs,

and discuss its role in Computer Vision proliferation as well as market competition.

Further, I find that Computer Vision tasks are concentrated in low- to mid-income

occupations as well as occupations requiring a high school degree with some training,

a trend that remains even after economic advantage has been considered. I close the

chapter with a discussion about the extent to which these conclusions apply to other

types of A.I., including language models.

3.1 Market Structure Implications

Although Computer Vision can be more cost-effective than human labor when tasks

are aggregated across sectors, subsectors, and industry groups, the minimum viable

scale is too large for most firms. Figure 3-1a shows that vision tasks comprise 1.6% of

U.S. non-farm compensation. Computer Vision would have an economic advantage

over human labor for 80% of this work (1.3% of compensation) when aggregating the

labor across sectors, subsectors, and industry groups. But only 6% (0.1% of compen-
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Figure 3-1: Economic Advantage Across Sectors, Subsectors, Industry Groups, and
Firms
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(a) Feasibility across the economy using my main method.
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(b) Feasibility across the economy using the minimal setup described in Subsection
2.3.4.

*because the SUSB Annual Data Tables lack firm size data for several NAICS codes, the
denominator only includes the codes for which I do have firm size data.

38



sation) has an economic advantage when deployed at the company level and then,

only in larger companies. When considering only the bare-bones costs of Computer

Vision described in Section 2.3.4, with free data, free compute, and only minimal

engineering effort, the amount of compensation that is exposed on the firm level in-

creases to 25% (0.4% of compensation), as shown in Figure 3-1b, but the implications

for small companies remain.

The impact of the findings is consequential. For widespread adoption of Computer

Vision at its current cost, there needs to be restructuring of the economy. One

possibility is that larger companies with A.I. capabilities will simply outcompete

smaller ones, leading to a higher proportion of the economy being controlled by a

smaller number of firms. Alternatively, third-party platforms could emerge to provide

these services to companies of all sizes, or large companies could sell their systems

to competitors. Most likely, we will observe a combination of these business models

across various markets and use-cases. However, depending on the level of competition

we desire in our markets, and what we want companies to be competing on, these

observations have profound implications for policy. To the extent that access to A.I. is

a barrier to entry into a market, we might want to enable and incentivize the creation

of third-party platforms, and as such democratize access to A.I. to include smaller

players. Enabling these platforms to gain access to data to train the models with will

be crucial.

In order for a platform business model to actually be viable in a market based

only on economic advantage, there needs to be a reasonable margin between the size

of the addressable market, i.e., the total compensation for the task within the defined

scope of the system, and the cost of development. In fact, the market needs to be

many times bigger than the cost of development. Why? Because making enterprise

sales is a complex task. Hannan and Freeman [37] describe how inertia, i.e., resistance

to change, is a powerful force within companies, and Mueller [46] illustrates that this

resistance is especially powerful when it comes to avoiding automation of existing

tasks. Closing rates are as low as 20% in Enterprise IT sales, according to HubSpot

Sales blogger Jay Fuchs [35]. Combining these insights, I say that it is likely that
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Figure 3-2: Ratio of System Cost to Addressable Market Value
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any third-party vendor could only capture a fraction of the total market. In this

context, Figure 3-2 breaks down the addressable market sizes for Computer Vision

platform systems by their ratio to the cost of the minimum viable system for the

given task. It is clear that the majority of the task market value is in markets where

the market size is many times larger than the cost of developing a Computer Vision

system to automate that task. This gives promise to platform business models even

where Computer Vision has no advantage over human labor other than its price tag.

The replacement of tasks is mostly restricted to very large firms, as shown in

Figure 3-3. This figure shows each sector and the percentage of compensation made

up by tasks for which company of a given size (ranging from 166 million employees,

the size of the U.S. civilian workforce, to 100 employees) would be able to profitably

replace its human labor using Computer Vision. No tasks can be profitably replaced

by a company with 100 employees, no matter the sector. In fact, the only sector

where a company with 1000 employees should deploy Computer Vision internally is

Agriculture, Forestry, Fishing and Hunting. This finding is consistent with empirical

evidence on A.I. adoption by U.S. companies by Zolas et al. [76], which reveals that

40



Figure 3-3: Economic Advantage by Firm Sizes and Sector (NAICS 2d)
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*166M is the size of the U.S. civilian workforce. Sectors are sorted by total vision task compensation (high to low).
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only 1 in 16 firms uses any form of A.I.

The business model required to achieve the scale that makes Computer Vision

cheaper than human labor, whether in-house or platform, will have a huge impact on

the scale and pace of Computer Vision proliferation. Although in-house development

is a risky venture where the costs and benefits are hard to estimate upfront, according

to Stamelos et al. [63], and organizations suffer from inertia, the lowered marginal

cost of inference gives increased returns to scale, making it an attractive investment

to individual decision-makers. Therefore, we can consider the firm-level economic

advantage as a proxy for technological change that could happen on a shorter time-

scale, and industry group, subsector, and sector level advantage as a proxy for what

could happen on a longer time-scale.

The platformized Computer Vision business models might indeed take a long time

to proliferate, but the trade-offs are arguably better because of the larger potential

market. However, access to data is a big hurdle for these business models where the

platforms are not already incumbents. There are examples where industry actors

have come together to establish data-sharing agreements where a third party could

not otherwise collect the required data, such as the NVIDIA Drive collaboration

described by Thompson [66], or where regulatory bodies have introduced bills to

facilitate these exchanges, such as the Data Act put forward by the EU in February

2022 [25, 26], but largely, this still remains an obstacle to the platformization of A.I.

Effective government policy could enable more industries to overcome that obstacle.

3.1.1 Business Exposure

Opportunities for platformized Computer Vision replacement of vision tasks exist in

all sectors, but firm-level opportunities are concentrated in only a handful. Figure 3-4

shows the sector-specific (NAICS 2d) aggregates of technically feasible tasks, as well

as the economic advantage of platform and firm deployments. In fact, the fraction

of technically feasible tasks that have an economic advantage as a platform is rather

similar across all sectors, with one of the few noticeable outliers being the Health Care

and Social Assistance sector. The sectors where we do see firm-level tasks exceeding
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Figure 3-4: Economic Advantage by Sector (NAICS 2d)
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the minimum viable scale include Retail and Transportation and Warehousing. An

explanation for this could be that these sectors contain some of our largest enterprises,

including Walmart and Amazon. In contrast, we can imagine that the Agriculture,

Forestry, Fishing and Hunting sector, which has a high percentage of vision tasks yet

no tasks with firm level economic advantage, does not benefit from the same economies

of scale as Retail or Transportation and Warehousing do. Hence, companies in that

sector are not large enough to deploy Computer Vision technologies, at least not at

the current state of technology.

3.2 Labor Market Exposure

When considering the economic benefits of using Computer Vision technology over

human labor, it is important to examine which workers will maintain their eco-

nomic advantage and which will not. While predicting the labor market effects of

a productivity-enhancing technology is challenging (e.g., introducing ATMs counter-

intuitively did not change the number of bank tellers, as noted by Bessen [12]), it will

inevitably have an effect on individual workers. Previous studies by Felten et al. [30]

and Webb [72] suggest that A.I. primarily affects high-skilled tasks and high-income

occupations. However, my findings indicate that Computer Vision does not fit this

pattern.

Instead, Computer Vision tasks are more prevalent in occupations that have lower

incomes and require less training. Figures 3-5 and 3-6 show the aggregate concen-

trations of Computer Vision tasks across income deciles and job preparation levels1

respectively. While these trends are evident when examining the percentage of com-

pensation, the 𝑅2 values for individual occupations are very low: the most extreme

𝑅2 is -0.042. Therefore, while the overall trends are strong, a well-paying job is

not significantly less likely to be exposed to Computer Vision simply because it is

1For Job Preparation, I use the O*NET Job Zones. Job Zones are groupings of occupations
according to preparation, which roughly corresponds to a level of education.

2Comparing Job Zone to Percentage of Platform Economic Advantage per Occupation on the
Sector Level.
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Figure 3-5: Economic Advantage by Income Decile
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Figure 3-6: Economic Advantage by Job Preparation
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well-paying.

The trends observed in the previous paragraph remain consistent when account-

ing for economic advantage, with the exception of occupations requiring extensive

preparation, i.e., a graduate degree or similar. As shown in Figure 3-6, platform-level

economic advantage is found for most of the vision task compensation, except among

occupations that require a graduate degree, where less than half of the vision task

compensation is economically feasible for replacement on the platform level. This eco-

nomic disadvantage mostly consists of healthcare occupations such as Dentists, Physi-

cians, and Nurses, who are likely to maintain their economic advantage because of the

exponential cost of training Computer Vision to levels of accuracy approaching 100%.

It is worth noting that occupations with "Some preparation" have a higher exposure

to Computer Vision compared to both "No preparation" and higher-requirement oc-

cupations, suggesting that Computer Vision systems replace tasks that require some

level of knowledge and training but not those that are increasingly complex.

The macroeconomic implications of technological change, and automation in par-

ticular, are difficult to predict. Even if machines replace human labor, there may

be offsetting effects from increased demand or complementarity, according to Autor

[8]. While some theories suggest that technological progress exacerbates inequality by

favoring capital over labor, such as those presented by Piketty [53] and Ashford and

Hall [6], Stansbury and Summers [64] argue that, historically, workers have shared

some of the benefits of productivity increases. Thus, we should not worry about a

completely jobless future, but we should stay vigilant about how A.I. could worsen

inequality.

The belief that technological change changes the tasks we perform is less contro-

versial. As Bessen [12] points out, while the number of bank tellers did not change

when ATMs were introduced, the tasks they carried out did, which required a new

set of skills. Therefore, in addition to staying cautious about increasing inequality,

the scale, nature, and speed of A.I. proliferation is highly relevant to what re-skilling

policies we need to make sure that humans are able to rise to their new tasks.
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3.3 Breakdown of Costs

The cost of data is a driver of the overall cost of Computer Vision systems. Figure 3-7

shows that between 70% to 90% of the cost of building and running platform systems

consists of data costs. We can infer that the marginally most expensive system has an

even higher data and training cost to engineering ratio, since the latter is fixed for any

accuracy and entropy of the models, but the data costs are not. Given that the cost

per datapoint is not fixed and varies across use cases and acquisition methods, it will

be a significant determinant in the proliferation of Computer Vision models. The cost

of data can range from $0 where the data is already collected and labeled, e.g., pairing

X-ray images with existing medical records, to very high when highly skilled humans

are required for labeling, e.g., when the X-ray images need to be both taken and

labeled by medical professionals. By taking advantage of the former situation, where

it has already been produced as a byproduct of some other business process, costs can

be almost eliminated. Furthermore, by enabling data sharing across industries and

economies, more actors could derive value from that data, pointing to data sharing as

a tool that can drive the possibility, not to mention profitability, of Computer Vision

proliferation.

The running costs compared to paying a human being are vanishingly small. In

my cost breakdown in Figure 3-7, it is almost invisible to the human eye. This is in

contrast to news reports about the exorbitant costs of running large Deep Learning

models, including an article by Koetsier in Forbes [40] stating that ChatGPT costs

OpenAI millions of dollars every day. However, strictly in terms of replacing existing

human tasks, this is reasonable. If we pay a GPU 1.7%3 of what we pay a human per

hour, then the running costs at the minimum viable scale should indeed be close to

1.7% of total system costs. Hence, we have to assume that running cost of ChatGPT

is driven by the fact that it is run at a scale where it could potentially replace hundreds

of millions of human hours, if correctly aligned.

The overall cost structure of Computer Vision is a cause for concerns about in-

3 0.34
$20 . The cost per GPU hour in our method $0.34 and for this example, we assume an hourly

rate for the human of $20.
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Figure 3-7: Breakdown of Average Cost of Computer Vision System with Economic
Advantage on Platform Level
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creased market concentration, and thereby decreased competition. The low running

costs point to significant productivity gains when Computer Vision is deployed at

scale. Viscusi et al. [71] point out that while efficiency is desirable, it comes with a

cost of increased market concentration, which has negative effects for both consumers

and workers. Together with the fact that access to data is tied to market incumbent

status, these effects can be great. For consumers, there is a risk of anti-competitive be-

havior and raised prices. For workers, theory and empirical studies by Robinson [55],

Boal and Ransom [17], Manning [43], and Schubert et al. [57], find that monopsony

power can depress wages. To the extent that A.I. is a general-purpose technology,

this could affect all markets.

3.4 Sensitivity Analysis

My conclusions are robust to changes in assumptions. Although the results are slightly

different when inputs are changed, the fluctuations do not alter my reasoning in a
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Table 3.1: Key Assumptions and Inputs for Sensitivity Analysis

Low Cost Base High Cost
𝐶𝑒𝑛𝑔 Engineering costs 0.2x Base 1x Base 2x Base
𝑝Δ Data costs $0 $0.05 $5
𝑝𝐺𝑃𝑈ℎ Cloud pricing $0.1 $0.34 $1
𝐿 System lifespan 10 years 5 years 2 years
𝐾 Retraining cadence Never 1 year 2 months
𝑎 Accuracy 𝑎2 𝑎

√
𝑎

𝑒 Entropy 5 classes 20 classes 100 classes
Bare-bones See Section 2.3.4.

major way. Table 3.1 provides an overview of the variables I controlled for. I choose

the values based on the assumptions I believe are on the extreme ranges of possible

costs, including the bare-bones setup from Section 2.3.4 where the only cost is a

minimal engineering team. I transform the accuracy using power functions, to ensure

that the range of possible values remains between 0 and 1.

The percentage of compensation made up by vision tasks with an economic ad-

vantage over human labor on the sector and firm levels for our changing assumptions

can be found in Figures 3-8 and 3-9. While different engineering costs, cloud com-

pute costs, and system lifespans barely change the results we obtain compared to our

base assumptions, changes to retraining cadence, accuracy, entropy, and data costs

are more consequential. This makes sense, given that these factors affect the total

spending on data, which, as established in Section 3.3, is already the largest cost

item for Computer Vision. They are also the assumptions that I am least certain of,

which calls for further research on what a reasonable range is. However, despite this

variability, I note that the economic advantage on the firm level for our most generous

assumption, i.e., the bare-bones setup at 0.4%, is only about half as big as the most

conservative assumption on the platform level, i.e., high accuracy at 0.8%. Further,

the gap between sector and firm advantage is large within each assumption. In other

words, for values within the range of assumptions in Table 3.1, we will need to see

platform business models to realize the full potential of Computer Vision.
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Figure 3-8: Economic Advantage with High Cost Assumptions (NAICS 2d)
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Figure 3-9: Economic Advantage with Low Cost Assumptions (NAICS 2d)
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Figure 3-10: Venn Diagram of Artificial Intelligence
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3.5 Beyond Computer Vision

The impact of A.I. extends beyond the scope of Computer Vision, and my findings

raise questions about whether similar trends can be observed in other areas of Machine

Learning. My results are limited to a specific domain of A.I., as illustrated in Figure 3-

10, at the intersection of Computer Vision and Foundation Models/Transfer Learning.

The release of ChatGPT has brought Natural Language Processing (NLP) into the

limelight, and while the impact on the labor market may differ depending on the A.I.

domain and the specific tasks involved, some of the insights gained in this study will

also be applicable to other A.I. systems that rely on foundation models and transfer

learning, such as Large Language Models (LLMs) and NLP.

NLP development, like Computer Vision, often utilizes generalist foundation mod-

els that are then fine-tuned to specific applications. For example, ChatGPT is a

fine-tuned version of GPT-3 [59]. Although both models are proprietary and owned

by OpenAI, other LLMs with similar performance have been released for public use,

including Meta’s OPT [75] and Google’s BLOOM [56] foundation LLMs, and Meta’s

LLaMa [70], a specialized chat model. Therefore, the landscape of open-source foun-

dation models is similar to that found in Computer Vision. However, there are three

key differences between the two that impact economic trade-offs in NLP: (1) the
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amount of labor offset by language versus vision tasks, (2) the cost of acquiring train-

ing data for specific tasks, and (3) the computationally intensive nature of prediction.

NLP tasks make up a bigger portion of worker compensation than those exposed

to Computer Vision. Eloundou et al. [29] confirm this, citing that 15% of tasks are

exposed to NLP, compared to this study’s assessment that only 1.6% of compensation

is exposed to Computer Vision. Although including generative Computer Vision in

this study would have expanded the set of vision tasks, few tasks in the O*NET

database are generative image tasks. On the other hand, generative language tasks

are more common. Due to their generative nature, NLP tasks tend to be more time-

intensive than Computer Vision tasks, contributing to more significant wage savings

for each NLP system compared to Computer Vision systems.

The cost of data acquisition and labeling was the major driver of cost in large

Computer Vision systems, but it might contribute less to the cost of generative NLP.

LeCun and Misra’s observation [42] that NLP can take advantage of self-supervised

learning to a larger extent than Computer Vision has implications for the cost of data

acquisition. Self-supervised learning utilizes unlabeled data that can be obtained

inexpensively, for example, through web-crawling. It remains to be seen whether

these models can be fine-tuned using unlabeled data or reinforcement learning. In

the case of ChatGPT, the model was trained on data created by humans for the

specific purpose of serving as an example of the Q&A format of the chatbot before

reinforcement learning was applied, as explained in early press releases on OpenAI’s

website [58]. However, if an enterprise already has examples of data for the task in

the form of customer support chats, email exchanges, or internal knowledge hubs,

this data may be cheaper than Computer Vision data. I note that even if data for

fine-tuning an NLP system is free, the overall trends compared to Computer Vision

would not be drastically different, as seen in Figure 3-9.

There will be differences in how much computing power is necessary to power

systems in each of these domains. My conclusions about Computer Vision running

costs differ greatly from those one could draw from the Koetsier Forbes article [40],

which reports that ChatGPT costs millions of dollars every day. As mentioned above,
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part of the explanation pertains to scale of deployment. But there are also technical

reasons: generative language models make one prediction per token, or word, whereas

Computer Vision, specifically image recognition, only does one inference per example.

However, given the speed and effort it takes for a human being to write one word,

it is still fair to assume that the marginal cost compared to human labor is almost

nothing.

My demographic analysis of the impact of Computer Vision is based on the distri-

bution of vision tasks among occupations, which we cannot expect to correlate with

language tasks. Studies inspired by ChatGPT, including Felten et al. [31] and Eloun-

dou et al. [29], have found that NLP tasks have a positive correlation with wages,

while my results with Computer Vision show a very weak negative correlation. It is

possible that the trend of having technically feasible but economically unviable tasks

among occupations with graduate degrees could hold true across A.I. domains, but

further research is necessary.

While my results are not limited to Computer Vision and NLP, they are limited

to A.I. that uses foundation models and transfer learning. Bommasani et al. [18]

demonstrate that transfer learning and foundation models are effective not only in

NLP and Computer Vision, but also in robotics and strategic games. Other types of

deep learning, such as developing models from scratch, would face even more extreme

upfront-to-marginal cost ratios. On the other hand, shallow learning, any machine

learning type that is not deep learning, is recognized for being less expensive in terms

of engineering, data, and computation. Therefore, in cases where shallow learning

can achieve the desired inference quality, it may be more economically advantageous.
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Chapter 4

Conclusion

I have highlighted the economic cost of Computer Vision compared to the cost of em-

ploying human labor. Generally, Computer Vision is more cost-effective than labor if

you look across the economy. However, only the largest firms have the minimum viable

scale to profitably replace their existing workforce with it. Under my assumptions,

data is the main driver of the cost of Computer Vision systems. While Computer

Vision is only a small part of the field of A.I., I believe that this cost structure gen-

eralizes to other domains that use foundation models and fine-tuning, including the

language domain.

The combination of data being the driver behind Computer Vision costs, data

being most cheaply collected as a byproduct of existing processes, and only the largest

firms having the minimum viable scale for deployment, could make it much harder for

small and new firms to compete than it is today. It could aggravate the effects of the

increased market concentration stemming from increased efficiency. This would not

only have effects on consumers, but it could also lead to depressed wages because of

increased monopsony power in the labor market. To the extent that A.I. is a general-

purpose technology, this would apply to competition in all markets and industries.

Task replacement could have devastating effects for the individual worker, but

a systemic increased market power of large firms could pose a larger threat to the

returns of human labor in the aggregate. It is hard to argue against a world where

humans do less for more, but when the bounty from productivity is not shared, that
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vision becomes dystopian. Therefore, A.I. policy needs to, in addition to ensuring

algorithmic safety and access to reskilling, also favor market competition. One ap-

proach to doing so could include data-sharing frameworks that break down data as a

barrier to entry into A.I.-enabled markets.

With policy, we can shape the course of technology and its effects on the world.

While we probably should accept an increasingly technological future, we should not

accept an increasingly unequal one. The good news is, we do not have to.
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Appendix A

O*NET-SOC to SOC

O*NET offers a crosswalk from occupations listed in the O*NET-SOC 2019 taxon-

omy to the 2018 SOC [49]. However, due to the vast difference in tasks between

O*NET occupations that are mapped to the same SOC code, e.g., 11-1011.00 Chief

Executive Officer (CEO) and 11-1011.03 Chief Sustainability Officer (CSO), I exclude

occupations with a non ".00" decimal notation for which a corresponding ".00" exists.

This has the effect that the compensation for all 11-1011 Chief Executive Officers in

OEWS is instead allocated to CEO tasks instead of the average of the tasks of the

CEOs and CSOs. Because of this logic, 149 out of 1016 occupations are discarded.

Although this is a large number, we assume that their absence in the 2018 SOC oc-

cupations speaks to their relative small size in the economy. For other cases where

multiple O*NET-SOC occupations map to the same SOC occupation, we aggregate

all tasks into the same occupation.

In addition, when comparing the datasets, I found multiple occupations without

a corresponding SOC-code in the target OEWS dataset, where I created a manual

mapping to an occupation with a similar occupation title (Table A.1).

O*NET O*NET Title SOC SOC Title

13-1021 Buyers and Purchasing Agents,

Farm Products

13-1020 Buyers and Purchasing Agents

57



13-1022 Wholesale and Retail Buyers,

Except Farm Products

13-1020 Buyers and Purchasing Agents

13-1023 Purchasing Agents, Except

Wholesale, Retail, and Farm

Products

13-1020 Buyers and Purchasing Agents

13-2022 Appraisers of Personal and Busi-

ness Property

13-2020 Property Appraisers and Assessors

13-2023 Appraisers and Assessors of Real

Estate

13-2020 Property Appraisers and Assessors

21-1011 Substance Abuse and Behavioral

Disorder Counselors

21-1018 Substance Abuse, Behavioral Disorder,

and Mental Health Counselors

21-1014 Mental Health Counselors 21-1018 Substance Abuse, Behavioral Disorder,

and Mental Health Counselors

25-2055 Special Education Teachers,

Kindergarten

25-2052 Special Education Teachers, Kinder-

garten and Elementary School

25-2056 Special Education Teachers, Ele-

mentary School

25-2052 Special Education Teachers, Kinder-

garten and Elementary School

25-9042 Teaching Assistants, Preschool,

Elementary, Middle, and Sec-

ondary School, Except Special

Education

25-9045 Teaching Assistants, Except Postsec-

ondary

25-9043 Teaching Assistants, Special Ed-

ucation

25-9045 Teaching Assistants, Except Postsec-

ondary

25-9049 Teaching Assistants, All Other 25-9045 Teaching Assistants, Except Postsec-

ondary

29-2011 Medical and Clinical Laboratory

Technologists

29-2010 Clinical Laboratory Technologists and

Technicians

29-2012 Medical and Clinical Laboratory

Technicians

29-2010 Clinical Laboratory Technologists and

Technicians

31-1121 Home Health Aides 31-1120 Home Health and Personal Care Aides

31-1122 Personal Care Aides 31-1120 Home Health and Personal Care Aides
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39-7011 Tour Guides and Escorts 39-7010 Tour and Travel Guides

39-7012 Travel Guides 39-7010 Tour and Travel Guides

45-3031 Fishing and Hunting Workers – Not in OEWS

47-4091 Segmental Pavers 47-4090 Miscellaneous Construction and Re-

lated Workers

47-4099 Construction and Related Work-

ers, All Other

47-4090 Miscellaneous Construction and Re-

lated Workers

51-2022 Electrical and Electronic Equip-

ment Assemblers

51-2028 Electrical, Electronic, and Electrome-

chanical Assemblers, Except Coil

Winders, Tapers, and Finishers

51-2023 Electromechanical Equipment

Assemblers

51-2028 Electrical, Electronic, and Electrome-

chanical Assemblers, Except Coil

Winders, Tapers, and Finishers

51-2092 Team Assemblers 51-2090 Miscellaneous Assemblers and Fabrica-

tors

51-2099 Assemblers and Fabricators, All

Other

51-2090 Miscellaneous Assemblers and Fabrica-

tors

51-1042 First-Line Supervisors of

Helpers, Laborers, and Material

Movers, Hand

53-1047 First-Line Supervisors of Transporta-

tion and Material Moving Workers, Ex-

cept Aircraft Cargo...

51-2043 First-Line Supervisors of

Material-Moving Machine and

Vehicle Operators

53-1047 First-Line Supervisors of Transporta-

tion and Material Moving Workers, Ex-

cept Aircraft Cargo...

51-1044 First-Line Supervisors of Passen-

ger Attendants

53-1047 First-Line Supervisors of Transporta-

tion and Material Moving Workers, Ex-

cept Aircraft Cargo...

51-1049 First-Line Supervisors of Trans-

portation Workers, All Other

53-1047 First-Line Supervisors of Transporta-

tion and Material Moving Workers, Ex-

cept Aircraft Cargo...

Table A.1: O*NET-SOC to SOC Mapping
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Appendix B

Imputing Firm Size Data

I impute the approximate firm size distributions in each NAICS section of the U.S.

economy using the 2019 SUSB Annual Data Tables by Establishment Industry [23].

From the published histogram binned by total cross-section enterprise size, with a

catch-all bin for any enterprise larger than 5,000 employees, I first use a power-law

assumption, based on Axtell’s claim that Zipf’s law approximates firm size distribu-

tions [11], data about the largest enterprises in the U.S. economy by employment, and

a linear regression with custom penalties to estimate the shape of the upper tail of

the number of firms per total enterprise size in each section (see Figure B-1a). I then

use a parabolic estimator to infer the mean section-specific employment by enterprise

size for the inferred bins (see Figure B-1b). The result is a histogram containing

section-specific employment per cross-section employment numbers up to and includ-

ing the size of the largest enterprise by U.S. employment, Walmart, with 1,600,000

employees1. I then consider the mean section-specific employment per enterprise size

bin when calculating 𝑛𝑔,𝑜,𝑠.

The variable of interest to us is the number of people employed by a given firm

within a given NAICS-section. The latter is important because we find higher concen-

trations of individual occupations for smaller sections of the economy, which we use

as an assumption for calculating the minimum firm size to compare to the minimum

deployment size. The 2019 SUSB Annual Data Tables [23] contain data relevant for

1https://corporate.walmart.com/about
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Figure B-1: Imputed Data for NAICS 22 - Utilities

(a) Imputed data for the frequency of firms per total Enterprise Size. The
blue vertical line represents the largest imputed firm size.

(b) Imputed data for the mean number of employees per firm in the given
NAICS code per total Enterprise Size. The blue vertical line represents
the largest imputed firm size, beyond which there is no employment (mean
employment times no firms is always 0).
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(a) The largest of the histogram bins groups
together all enterprises with larger than 5,000
Total Enterprise Employment.

(b) The variable used for the histogram bins,
Total Enterprise Employment, is correlated,
but not the same, as our variable of interest,
the NAICS-section specific Enterprise Em-
ployment. However, the Total Enterprise Em-
ployment is an upper bound for that variable.

Figure B-2: Limitations of the SUSB Annual Data Tables

this purpose, i.e., the number of Firms and amount of Employment for each NAICS-

section of the U.S. economy, in the shape of a histogram on Total Enterprise Size.

Although this is the best publicly available option we could find, the problem is

twofold: (1) the largest bin has a lower bound of 5,000, and since we expect that

the minimum viable deployment size will often be larger than that, we need to split

this into smaller bins (see Figure B-2a), and (2) the histogram bins is based on total

enterprise size, which is correlated with but not the same as our variable of interest,

which is the NAICS-section specific employment (see Figure B-2b). Therefore, I im-

pute the distribution of the number of Enterprises bigger than 5,000 U.S. employees,

as well as their mean employment within each given NAICS code.

The first issue to bridge is that while the Employment and Firms data is specific to

each of the NAICS codes, the histogram bins represent the total U.S. Enterprise Size.

This means that if a company like "Example Products, Inc" has 4000 employees

in the country, it will appear in the "2500-4999" bin of the Manufacturing sector,

Retail sector, and Transportation sector tables even it will only contribute 500, 1200,

and 300 to the Employment column of each of those sectors, respectively (see Figure

B-3 for an illustration). Consequently, we need to estimate not only the number

of Firms within each histogram bin, but also infer the Employment count to avoid
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Figure B-3: Total Enterprise Employment versus NAICS-specific Employment

overestimating the size of each NAICS section.

I first define the range of the histogram and the width of each bin in the catchall

5000+ category. The lower bound of the range is 5,000, which is the upper bound

of the true data, and the upper bound of the range should be large enough to in-

clude the largest private enterprise in America by U.S. employment, Walmart, with

1,600,000 employees2. The SUSB data tables use a quasi-exponential bin size, i.e.,

approximately exponential in size but aligned with base-10 numbers. Therefore, for

my imputed bin sizes, I calculate the mean of the log ratio of the upper bound of each

bin to the lower bound of the same bin from the SUSB tables and use that as the

constant bin-size log ratio for the imputed bins. Because of this quasi-exponential

scale of the smaller bins, I also normalize the number of Firms in each of the bins to

account for this difference in bin-size (see Figure B-4).

In order to impute the number of Firms in each of the larger bins, I use a linear

regression with custom penalties. It has been well-established that firm sizes are

distributed in a way that resembles a power law distribution, including by Axtell

[11]. Figure B-4 shows that this holds true even for our data, and that a linear

regression on the log-log scale presented is not an unreasonable approximation of the

2Largest global U.S. employer: https://en.wikipedia.org/wiki/List_of_largest_United
_States%E2%80%93based_employers_globally, Accessed: 2023-05-08, 1,600,000 U.S. employees
according to https://corporate.walmart.com/about, Accessed: 2023-05-08
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Figure B-4: Normalized Firm Numbers

Normalizing Number of Firms using Mean Log Ratio of Upper to Lower Bound of Bin.

distribution (see Figure B-1a). However, given that we have information about both

the exact number of firms in the 5,000+ bin as well as information about the size

of the biggest employers in the country3, in addition to a sum-of-squared residual

loss from failing to fit the existing small bins, I include additional squared loss for

lines that either poorly estimate the total number of large firms or that claim that

the large bins include more firms than actually exist based on the true data about

the 15 largest firms. I then multiply the additional loss by the number of small bins

available for that NAICS-section as well as a factor of 25 for importance. I use the

optimize.minimize function from the python package scipy to find the optimal line.

The next step is to impute the Employment per bin. When plotting the raw

Employment numbers, I find that there is little pattern in its distribution (see Figure

B-5) but when plotting the mean employment, it is clear (see Figure B-1b). Using

the same approach as for the firms, I devise a loss function as a weighted sum of both

the fit to the true data points in the smaller bins as well as an overall sum equating

3https://en.wikipedia.org/wiki/List_of_largest_United_States%E2%80%93based_empl
oyers_globally, Accessed: 2023-05-08, with https://corporate.walmart.com/about, Accessed:
2023-05-08, and https://www.businessinsider.com/amazon-employees-number-1-of-153-u
s-workers-head-count-2021-7, Accessed: 2023-05-08, giving us the number of U.S. employees for
the two largest employers.
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Figure B-5: Employment by Enterprise Size

to the total number for the large bin and minimize it using scipy. However, instead

of using a linear function, I use a concave parabolic function. An example of the

resulting predictions can be seen in Figure B-1b.
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