Efficient Rendering of Synthetic Images
by
Armando Garcia

B.S., University of New Haven
(June 1979)

S.M., Massachusetts Institute of Technology
(February 1982)

E.E., Massachusetts Institute of Technology
(February 1985)

Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in
ELECTRICAL AND ENGINEERING AND COMPUTER SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1986

© Armando Garcia, 1986
The author hereby grants to M.L.T. permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author __ , .
Department of Electrical Engineering and Computer Science

_ February 1986
Certified by — .

‘Donald E. Troxel, Thesfs Supervisor

Accepted by , o - ~
MAss?}EHr%%mosL%symure Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

APR 11 1986
LIBRARIES

Brahivee

Efficient Rendering of Synthetic Images
by

Armando Garcia

Submitted to the Department of
Electrical Engineenng and Computer Science
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy in
Electrical Engineering and Computer Science

Abstract

Ray tracing is considered to be the most elegant technique for rendering high
quality computer generated images of three-dimensional environments. It combines
the effects of hidden surfaces, shadows, reflection, and refraction, that are difficult or
impossible to achieve by other rendering techniques. The main disadvantage with ray
tracing is that it point-samples the envircnment with infinitesimal rays, which is compu-
tationally expensive and results in aliasing artifacts. The only solution to the aliasing
problem in ray tracing is to oversample the space with additional rays, which further
increases the computational requirements.

This thesis presents a novel image rendering algorithm that simulates the global
illumination effects produced by ray tracing, but at considerable reduction is computa-
tional expense. Computational efficiency is achieved by considering only polygonal
environments and using conventional hidden surface algorithms that can exploit the
coherence properties of these environments. The visible surface algorithm used is
based on an extension of the Newell, Newelil, and Sancha list-priority algorithm and
includes the simulation of planar reflection, and an approximation to pianar refraction,
using a recursive linear mapping technique. This recursive visible surface method is
equivalent to tracing muitiple rays in parallel through an environment to determine
visible surfaces, reflections, and refractions. The new rendering algorithm also includes
shadow generation, using a shadow projection approach, and simulates linear and
non-linear transparency effects. In addition, four different scan comnversion techniques
are presented, which provide anti-aliased scan conversion of faceted, Gouraud, and

Phong type polygons.

Experimental statistics for a variety of polygonal environments, ranging in com-
plexity from 70 polygons to over 24,000 polygons, consistently indicate the efficiency
improvement of this new rendering method over conventional ray tracing. Run-time
statistics for these environments show the new rendering algorithm to be between 75
and 950 times faster than conventional (single ray per pixel) ray tracing, with the
improvement proportional to scene complexity. Furthermore, real-time performance
can be expected for moderately complex environments, provided that the new algo-
rithm is supported with a suitable graphics engine.

Thesis Supervisor: Dr. Donald E. Troxel
Titie: Professor of Electrical Engineering and Computer Science

Acknowiedgemenis

I would first like to thank my thesis supervisor, Professor Donald E. Troxel, for
his guidance and encouragement througnout this research. I would aiso like to thank
my readers, Professors Robert Haistead and David Zeltzer, for their numerous sugges-
tions and comments. Professor Haistead’s careful reading and editing of this docu-
ment, and Professor Zeltzer’s contribution of numerous polygonal objects is especially
appreciated. During the course of this research, I have been a research staff member
at the IBM Thomas J. Watson Research Center, and I am grateful for their financial
support. I especially want to express my sincere appreciation to Dr. Richard Freitas,

for his unlimited assistance throughout my research.

I also wish to acknowledge the assistance that I have received from fellow
members of CIPG and DSPG, especially Mike Isnardi, for his assistance with text pro-
cessing, Dennis Martinez, for his help with the color graphics recorder, and John

Wang, for his contribution of the ray tracing program.

Finally, I would especially like to thank my wife, Lourdes, for her patience, warm

encouragement, and assistance throughout this entire ordeal.

Dedicated

to my wife and parents

Table of Contents

Title Pagecocovvviiiiiiinniininnnans
ADbSLractcooeviiiiiiiiiiiiinnen.n,
Acknowledgements
Table of Contents
List of Figuresc..ccccecueenenee.
List of Tablescccocenenininenin.

Chapter 1: Introduction

--

..

--

..

--

..

--

1.1. Realism in 3-D Computer Graphicsccccoeeiiniiiiiiniininninnanen.

1.1.1. Object Modeling

1.1.2. llluxﬁination Models

1.1.3. Polygon Shading

--

D e R R N R R R R

--

1.2. Conventional Image Rendering Techniques

1.3. Ray Tracing

--

1.4. Motivation for New Researchcooooviiiiiiiiiiiiiiiiiiiiiiaaanannnn.

Chapter 2: Enhanced Ray Tracing Techniquesccoeoviieiiiiiiii.

2.1. Introduction

--

2.2. The Bottleneck in Ray Tracingcooooiiiiiiiiiiiiniiiniaeeaenen.n,

2.3. Anti-Aliasing Difficulties

--

10

14

15

17

17

19

22

25

28

30

33

33

33

36

2.4. Distributed Ray Tracingccccooieiiiiiiiiiiiiiiieieiie e

2.5. Ray Tracing with Conesccoooiiiiiiiiiiiiiiiiiiii e,

2.6. Beam Tracing Polygonal Environmentsoooll

Chapter 3: New Techniques for Efficient Image Rendering

3.1. Introduction

..

3.2. A New Approach to Imagz Synthesisc..cooooiiill.

3.3. Outline of The Algorithm ...,

3.4. Image Generation Processorccceciiiiiiiiiiiiieiiiiiiiiiienanen..

3.4.1. Recursive Visible Surface Processoroooeveeiimieoivenenanaann.

3.4.2. Reflection and Refraction Mappingocoiiiii..

3.4.3. Shadow Generationcooeeiiiienimiei e eaeeaeeaaaannas

3.4.4. Virtual Image Tree Renderingc.coooiiiiiiiiiii.

3.5. Scan Conversion PrOCESSOTScueeuiineiniineieee et eaeaaaananans

3.5.1. Scan Conversion Method 1: Area Coverage

3.5.2. Scan Conversion Method 2: Pixel Maskcoccvvvviiiiiniinnenn....

3.5.3. Scan Conversion Method 3: Hybrid Area/Mask

3.5.4. Scan Conversion Method 4: Multi-Level Pixel Masks

3.6. Implementation and Results bttt et et e e e anaas

3.7. Discussion ...

..

Chapter 4: Image Generation Processorccoeeiiuiiuiiiiniciieinninennanaan.

4.1. Introduction

--

36

38

42

42

43

49

50

54

56

56

58

60

61

63

64

69

76

78

78

T S B 07723 o' =1, AU N 78
4.3. Input Processingcoeeeueeemmmemimminniceuiieiieienierin e, 80
4.4, Virtual Image Creationccoeueimmiiiimiiiiiiiiieieiiinieee e, 84
4.5. General 3-D CHPPING ...couvemmirinniiiiiiiiieieeeiineier e eeaaas 89
4.6. Reflection/Refraction Mappingccocoveimniiiniiniinieiiiinninnnnnn.. 93
4.7. Shadow Generationcc.cececeieuvuienmniiieenrereesoreaeeeireeraeasenens. 101
4.8. Tlumination Model and Shading Options ...l 106
4.9. Non-Linear TranSparencCycceeeeeeemieieimoiineireeneenenaenennencas 111
4.10. Blending Options and Output Polygon Formats 113
Chapter 5: Scan-Conversion Processorsccoeeeueiiiiiiiiiiiiiiiinnn. 120
5.1. INtrOQUCHIONeuvmniniininieeeceaeieeenien it eereis s et e saeaenaas 120
5.2. OVEIVIEW ..ueuiiiiniinrienireeeeetteatatteaenenrensaeaersarnenasnasasnsanenns 120
5.3. Anti-Aliasing Techniquescooooiiiiiiiiiii e 123
5.4. Hidden-Surface Algorithmoooiiiiiiii 126
5.5. Gouraud/Phong Polygon Tilers ..., 127
5.6. Scan Conversion Method 1: Area Coveragecccceeviueeninnnnns 133
5.7. Scan Conversion Method 2: Pixel Maskll 141
5.8. Scan Conversion Method 3: Hybrid Area/Mask 149
5.9. Scan Conversion Method 4: Multi-Level Pixel Masks 151
5.10. Virtual Frame Bufferccooieiimiiiiiiiiieee 162
Chapter 6: Results, Conclusions, and Extensionsc...co..cooeien. 164

-8-

6.1. Implementation GVEIVIEWccooiiiiimiiiiiiiiiiiiiiiiiee e 164

6.2. Comparison with Ray Tracingcccoeeiiiiiiiiiinn, 165
6.3. Analysis of the New Rendering Method 185
6.4. Conclusions and Suggestions for Further Research 188
6.4.1. Hierarchical Visible Surface Processorooooiii, 190
6.4.2. Improved Shadow Generationc.ccoceeiininiiiiiiinnin., 192
6.4.2. Improved Modeling of Refractionc.cccoeiiiiiiiiiiinn.. 193
Appendix: Implementation OVervieWccccooeuiiniiuiinininiiiniininnnnee. 154
A.1. Image Generation Processorccccoooiiiimuiiiiiiiiiiiiiniiinn., 194
A.2. Scan Conversion Processorsc.cccociiiiiiiiiiiiiiiiiiiiiiiiniin.. 198
A.3. User Manual Pages for all Programsl 201
BibHOZIanhy ..ot 221

List of Figures

1.1 Polygonal Champagne Glasscccoeniiiiiiiiiiiiiiinniaen,
1.2(a) Faceted Shaded Champagne Glasscccoceiiiiiiiii.ee
1.2(b) Gouraud Shaded Champagne Glassc...cco.ooe.ie

1.3 Geometry of Ray Tracingccccoovuiiniiiiiiiiniiiiiiiinn,

..................

..................

2.1 Geometry of Amanatides” COnec.ocoeiiiiiiiiiiiiiiiiiiiie e

3.1(a) Example of New Algorithm ...
3.1(b) Example of Ray Tracingccccoceveriririunniinaeiininnnnnn.
3.2 Block Diagram of the New Image Rendering Process
3.3 Recursive Visible Surface Algorithm ...
3.4(a) Cube on a MiITOTcceuiiniiniiiniiiiiieiierene e
3.4(b) Virtual Image Treecooeimmiiiiiiiiiiiiieieeeeenae
3.5 Reflection Mapping Exampleoooil
3.6 Summary of Scan-Conversion Techniques
3.7 Subpixel Polygon Fragment and its Pixel Mask
3.8 Pixel-Structure and Pixel-Fragment Definitions
3.9 Complex Pixel Examplecc.ooemmimiiiiiiiiiiiiiiiiais
3.10(a) Method 1: (512 x 512, VAX-11/785 Time = 14s + 63s)

3.10(b) Method 3: (512 x 512, VAX-11/785 Time = 14s + 155s)

3.11(a) Method 2: (512 x 512, VAX-11/785 Time = 10s + 100s)

-10-

..................

eesasesncioecccccs

..................

oooooooooooooooooo

................

................

18

23

23

38

45

45

47

51

53

53

59

62

65

68

70

71

72

3.11(b) Method 4: (512 x 512, VAX-11/785 Time = 10s + 108s) 73

3.12 Method 3: (512 x 512, VAX-11/785 Time = 12s + 1558}cceeerennnnnn. 74
3.13 Method 4: (512 x 512, VAX-11/785 Time = 3s + 555) ..ccevnnrininnnnnn.n. 75
4.1 Image Generation Processor Block Diagramc...cooiiin. 79
4.2(a) Scene Descriptor File Examplecocoooiiiiiiiii, 81
4.2(b) Resulting Image e 81
4.3 Virtual Image TIeecoiiuiiiiiiiiiiiiiii e 85
4.4(a) Simple Depth Sorting Examplecoooo 88
4.4(b) Newell, Neweli, & Sancha Sorting Examplec....cc..oiiiiin. 88
4.5 Truncated Viewing Pyramid in The Eye Coordinate System 89
4.6 General Clipping VOIUMEcoouiimniiiiiiiiii e 91
4.7 Geometry of Planar Reflection & Refractionooiin. 9%
4.8(a) Refractior. by a Plane Under an Orthographic Projection 97
4.8(b) Geometry of Refraction Under an Orthographic Projection 97
4.9 View of an Underwater Checkerboard From Airoooini. 99
4.10(a) Refracted Paraxial Rays by a Plane ...l 100
4.10(b) Geometry of a Refracted Paraxial Raycoccoueveccieiueicereicanennes 100
4.11 Shadow Volume Between Light Source and a Polygon 102
4.12 Geometry of Shadow Projectioncoooiiimiiiiiiiiiii, 104
4.13 Geometry of Reflection for Shading Calculationsc..ccooiinnii. 167
4.14 Virtual Image Tree Polygon Formatsccoooeiniiiiiiiiiii, 114

-11-

4.15(a) Cube on a MIITOroooiiiiiiiiiiiiniiniiiis PPN 116

4.15(b) Virtual Image TIEeccoeviiiriiiiiiiiii 116
4.16 Parent Shading Interpolation Examplec..ooiiiiii. 118
5.1 Scan Conversion Processor Block DMagramcoeiiiiiiiiiiiiiiiinin, 122
5.2 Establishing Initial Left and Right Edgesccoooiiiiinen. 128
5.3(a) Polygon Edge Structure Defirtitionccooiiiiiiiiiiiiiniiinns. T 129
5.3(b) Highlight Normal Structure Definitionccocoeeeiiiiiiiiiiiinniieenen. 129
5.4 Polygon Example Spanning Four Scan Linescccccocoiiiiiiiiiniennee. 130
5.5 Examples of Typical Scan Line Segments ... 132
5.6 Two Typical Pixel Coverage Situationsccceoiiiuiiiiiniiiinnninennen. 134
5.7 Segment Processor I Block Diagramooooiiiiiiiiiiiin, 135
5.8 Normalized Trapezoidal Scan Segmentccoooiiiiiiiiiiiiniines 136
5.9 Normalized Trapezoidal Scan Segment Examplescc.ooeeiiiiiiiin. 137
5.10 Complex Pixel Example (edge F over background B)ccoceeeee 140
5.11 Subdividing a Pixel into n X m Subpixelscocooii 142
5.12 Scan Line Along Top Edge of a Polygoncooiiiiiiiiiiiiinne. 144
5.13 Typical Polygon Scan Line Segment With Ht = 1ccoociiiiiiiiiniinnnnnn. 145
5.14(a) Cube on a Partly Diffuse Mirrorccccccoiiiiiniii. 154
5.14(b) Virtual Image TTIeoemmrmiiierieiimiiiiiiiiiiiiiiiiee e 154
5.15 Pixel-Struct Definitioncocoeiiiiiiiiiiiiimiiieiree e 156
5.16 Pixel-Fragment Definitionccooumeemiiiiiiiiiiiiiiiiiiiiireneie 156

5.17 Pixel-Status Definitionc.cococeiiiiniiiiiiiiiiiiiii 156

5.18 General Complex Pixel Fragment Listccoooiiiiiiiiininn. 157
6.1(a) Mirror(NS) Scene : (VAX-11/785 Time = 1.4s + 45s)cooeiilil. 168
6.1(b) Mirror(1S) Scene : (VAX-11/785 Time = 3.2s + 558}ccccceeeeeiiiis 169
6.1(c) Mirror(1S) Scene : (Ray Traced; VAX-11/785 Time = 1.75h) 170
6.2(a) Gallery(NS) Scene : (VAX-11/785 Time = 3.2m + 3.6m) 171
6.2(b) Gallery(1S) Scene : (VAX-11/785 Time = 16m + 4.3m) 172
6.2(c) Gallery(4S) Scene : (VAX-11/785 Time = 55m + 6.8m) 173
6.3(a) Officel(NS) Scene : (VAX-11/785 Time = 3m + 3.4m) 174
6.3(b) Office1(1S) Scene : (VAX-11/785 Time = 49m + 5.1m)ccceeenennnee. 175
6.3(c) Office1(2S) Scene : (VAX-11/785 Time = 88m + 6.7m) 176
6.4(a) Office2(NS) Scene : (VAX-11/785 Time = 23m + 5.2m) 177
6.4(b) Office2(1S) Scene : (VAX-11/785 Time = 5.3h + 8.6m) 178
6.4(c) Office2(2S) Scene : (VAX-11/785 Time = 10h + 11.5m) 179
A.1 Image Generation Processor Implementationcooeiiiiiiiiiniinne. 195
A.2 Scan Conversion Processor Implementationccceeeeuiiiniiieiininienini, 199

-13-

List of Tables

3.1 VAX-11/785 Run-time Statistics for Figures 3.10-3.13 76
6.1(a) Environment Statistics for Figures 6.1-6.4cccccoooeeeiiinnn 181
6.1(b) VAX-11/785 Run-time Statistics for Figures 6.1-6.4 181
6.2 Run-time Profile for the Image Generation Processorc.... 186

Chapter 1

Introduction

One of the major goals of computer graphics continues to be the rapid generation
of realistic images from three-dimensional environment descriptions. In some typical
computer graphics applications, such as slide making, animation, and advertising, thie
primary objective is to generate aesthetically pleasing pictures that will attract the
attention of the public, while the amount of time and computational power required to
produce these images is of secondary importance. For interactive applications, such as
computer aided design (CAD) and visual simulation, images have to be created fast
enough (e.g., 30 frames per second) to provide the illusion of continucus motion when
displayed on a video monitor. A change in some environment parameter, such as
viewer position or lighting condition, should result in immediate visual feedback to the

user so as to provide the level of interactiveness required for the given application.

Until recently, systems that could provide the computational power necessary for
high quality interactive computer graphics have been very expensive due to the high
cost of semiconductor memory and the amount of special purpose hardware required
to achieve real-time performance. The advent of VLSI technology has made possible
the implementation of many useful graphics furictions, such as geometrical transforma-
tions, clipping, and perspective projection, directly in silicon [1] at substantial reduction
in cost, area, and power consumption. In addition to these powerful graphics engines,

o}8-

the availability of 16-bit/32-bit microprocessors and 256 K-byte memory chips has given
rise to a number of low cost graphics workstations that are capable of supporting
interactive color display of three dimensional environments [2,3]. These workstations
also implement hidden surface removal and surface shading using a combination of
software, bit-slice microprocessors, and special-purpose hardware.

With the increased value and popularity of computer generated imagery, along
with the availability of affordable graphics workstations, comes an increasing need to
devise efficient algorithms that enhance the realism of the pictures, while maintaining a
balance between the amount of computational power required and the time available
to produce these images. The motivation for this research is to present new algorithms
for realistic image synthesis, as applied to interactive computer graphics applications
under limited computing power constraints. This chapter discusses some of the issues
involved in producing realistic computer images and presents some early research on
image rendering techniques. Chapter 2 discusses recent published work on enchanced
ray tracing techniques. Chapter 3 then presents a new approach to efficient image
rendering and gives an overview of the algorithms explored in this research. Chapter 4
describes the implementation details of a novei image generation processor, while
Chapter 5 describes the implementation of various anti-aliasing scan conversion tech-
niques. Finally, Chapter 6 discusses the results of this research and provides sugges-

tions for further research on efficient image rendering techniques.

-16-

1.1. Realism in 3-D Computer Graphics

A number of factors contribute to the overall quality and realism of computer
generated imagery. Realism here implies some measure of the subjective difference
between an image produced by conventional photo-optical methods and an image gen-
erated from a three-dimensional model of the same scene using computer processing
techniques. Object modeling, illumination models, and surface shading techniques are
of primary importance in trying to synthesize realistic pictures. These models provide
the means of describing the geometric and physical properties of a scene, and then
simulating the distribution of light energy through the environment. In addition, the
simulation of texture, shadows, transparency, reflection, and refraction also enhance
the descriptive power of computer generated images, by adding visual effects that are
evident in real-world scenes. The reduction of aliasing artifacts caused by the limited
resolution of displays also has been shown to be of vital importance in producing supe-

rior quality images [4, 5].

1.1.1. Object Modeling

The simplest and most popular approach to object modeling is to approximate
arbitrary surfaces using a collection of polygons. An example of a polygonal cham-
pagne glass is shown in Figure 1.1. A large body of shading and visible surface algo-
rithms have been developed over the past two decades dealing solely with this surface
primitive. However, because of the shortcomings in representing smooth surfaces with

faceted clusters of polygons, research has extended to algorithms dealing with

-17-

Figure 1.1 Polygonal Champagne Glass

parametric surface descriptions, such as bicubic patches, which allow greater flexibility
in representing surface shapes with pleasing properties of continuity and smoothness.
Problems in both surface shading and in rendering contour edges inherent in polygon-
based algorithms are overcome by this technique, but unfortunately, the mathematics is

no longer linear, making the rendering problem more complex.

Stochastic models, such as fractals {6] and particle systems [7], play an important
role in modeling complex natural objects, such as terrain, trees, stones, and clouds.
Hierarchical representations, which decompose an object space into successively simpler
subspaces [8, 9] are also widely used to efficiently describe complex scenes at various

levels of complexity and detail. In most applications a combination of these various

modeling techniques are needed to effectively describe an arbitrary scene. Each
geometric model type presents certain tradeoffs between simplicity in modeling an

object and later rendering it.

1.1.2. Illumination Meodels

Local illumination models typically consider only point light sources and surface
orientation in computing the amount of light that is perceived by the viewer, while
ignoring the overall environment in which the surface is placed. Simpte lighting
models are based on Lambert’s cosine law, which states that the intensity perceived by
an observer is independent of the observer’s position and varies directly with the cosine
of the angle between the light direction and the normal to the surface. In addition,
some constant value is usually added to the intensity to account for the effects of

ambient light on the surface. The net intensity function is given by
Is
I = Ia + kd Z (NLJ)
ji=1

where
I = perceived intensity,
I, = ambient light intensity,
k, = diffuse coefficient,

N = unit surface normal (N [= 1),
L; = j* light source direction vector (IL; | = 1),

A more realistic illumination mode! was introduced by Bui-Tuong Phong [10],
which takes into consideration that for any real surface the light received by the eye is
provided in part by the diffuse reflection and part by the specular reflection of the
incident light. Thus, for example, if the surface is a perfect mirror, light will only

-1G.

reach the eye if the surface normal, N, points halfway between the light source direc-

tion, L, and the eye direction E. This direction of the surface normal for maximum
highlight is given by

e
For less than perfect mirrors, the amount of specular reflection detected by the eye
decreases as the normal direction moves away from H. Phong measures this separation
by using the cosine of the angle between N and H and sinvulates the degree of sharp-
ness of the highlight by raising this cosine term to some power. The intensity from

Phong’s illumination model is given by

“h‘

l
I =1, + k'S (NL)) + k 3 (N-H;j)»
J=1

j=1

where

k, = specular coefficient,
n = shininess of the surface.

Blinn [11] introduced yet a better model, based on theoretical and experimental
work by Torrance and Sparrow [12, 13], which assumes that surfaces are composed of a
collection of mirror like micro facets oriented in random directions all over the surface.
The specular component of the reflected light is assumed to come from only those
facets oriented in the maximum highlight direction, H. The diffuse component is
assumed to come from multiple reflections between facets and from internal scattering.
This model shows noticeable improvement over Phiong’s model, primarily for non
metallic and edge-lit objects. In addition, Blinn presents an efficient computational

method that results in approximately equal computational expense as if Phong’s model

-20-

were used.

But in addition to diffused and specular reflection, the simulation of shadows,
reflection, transparency, and refraction are some of the more desirable features in the
generation of realistic computer images. To simulate these effects requires that the
illumination model consider the overall environment in which a surface is placed, in
addition to simply taking into account the light source direction and strength, viewer
position, surface orientation, and surface properties. This, of course, introduces seri-
ous problems to most image rendering aigorithms since the information needed by the

illumination model is typically not availabie or difficult to compute.

The first image rendering algorithm capable of simulating the combined effects of
hidden surface removal, shadows, reflection, and refraction was implemented by Whit-
ted [14], which is now referred to as ray tracing. The information needed to compute
the intensity at each pixel is stored in a tree of rays extending from the view point to
the first surface encountered and from there to all light sources and recursively to
other surfaces. A ray tracing visible surface processor creates this ray tree for each
pixel of the display and then passes it to a shader for the final intensity calculation.

Whitted’s global illumination model is given by

Is
I =1, + kg3 (NLj) + kI, + kl,
j=1

where

= reflection coefficieat,

= reflected light intensity,
k, = transmission coefficient,
I, = transmitted light intensity.

k
I,

-21-

At each node in the ray tree, the above model is applied to combine the local intensity
contributions from ambient and diffuse illumination, and recursively adds the contribu-

tions from the reflected and transmitted components.

1.1.3. Polygon Shading

Surface shading plays an important role in the visual appearance of synthetic
objects. The simplest polygen shading technique calculates one intensity value for each
polygon and then uses this value for all interior points (constant shading). This inten-
sity value is usually determined using Lambert’s law, which simulates ideal diffuse

reflection and produces a reasonable approximation to a dull, matte surface.

An improved technique for shading curved obj.cts approximated by collections of
polygons was developed by Henri Gouraud [15]. This shading technique, referred to
as smooth shading, is also based on Lambert’s law but calculates 2 shading value at
each polygon vertex. The shade at any point inside the polygon is determined by two
successive linear interpolations of the shading values of its neighboring vertices. First,
shading values along the left and right polygon edges intersected by a given scan-line
are interpolated from the known shading values at the endpoints of the edges. Shad-
ing values for the interior points of the polygon along the current scan-line are then
determined by linearly interpolating these two edge shading values. This very simple
method of interpolating intensities gives a continuous gradation of shade over the
entire surface, which in most cases restores the smooth appearance of the object. An

example of faceted and Gouraud shading is shown in Figure 1.2.

-22-

Figure 1.2(b) Gouraud Shaded Champagne Glass

-23-

The major drawback to Gouraud shading is that highlights cannot be adequately
represented. For example, if an object should have a highlight at any poiat but a ver-
tex, this shading technique will misplace the highlight, or miss it altogether, since the
shading values at interior points are interpoiated from neighboring vertex values. In
addition, the Mach Band effect is visible where the slope of the shading function
changes across an edge, as a result of our retina performing some kind of two-
dimensional filtering operation on the shading function, which attenuates low spatial
frequencies and amplifies high spatial frequencies. While Gouraud’s linear interpola-
tion technique produces a shading that is continuous in value across an edge, its

derivative is not continuous.

Bui-Toung Phong [10] introduced a more sophisticated shading function model to
better simuiate specular reflection, as part of a technique for improving the appearance
of curved glossy surfaces. Given a collection of polygons describing the surface to be
rendered, surface normals are computed at each vertex. To calculate the shade at any
point inside a polygon, the orientation of the surface at the given point is approxi-
mated by linearly interpolating the normals at the surrounding vertices. This method
requires considerably more computation than Gouraud’s shading technique, since the
three components of the surface normal have to be interpolated and then normalized,

but provides improved depiction of curved, glossy surfaces.

1.2. Conventional Image Rendering Technigues

Sutherland et al. [16] have written a highly informative survey of ten polygoa-
based visible surface aigorithms. Two underlying principles shared by the algorithms is
that they all sort the polygons that are potentially visible in a scene, and all take advan-
tage of the coherence properties of the environment in order to speed up and simplify
the rendering process. The term coherence is used to describe the extent to which the
environment is locally constant. A classification of the various algorithms is performed
according to the order in which they sort the polygons in a scene. Three major classes
are formed; those that perform hidden-surface elimination in object-space; those that
perform calculations in image-space; and those that work partly in each, the list-priority
algorithms. Object-space algorithms perform their calculations at high precision and
aim to compute “exactly” what the image should be. Image-space algorithms usually

perform their calculation at the resolution of display screen.

One of the simplest methods used to create frame buffer images of three-
dimensional scenes described by polygonal objects is the painter’s algorithm [17].
Polygons to be displayed are assigned priorities, based on their image space distance
from the screen, and then sorted. Rendering a scene is then accomplished by scan
converting each polygon in order into a frame buffer, starting with the lowest priority
one (i.e., the one furthest from the eye.) Polygons with higher priority will over-write
those of lower priority, thereby performing hidden surface elimination. Translucency
is simulated by only modifying the intensity values of lower priority polygons in the

buffer rather than completely overwriting them. While there is clearly a considerable

.25.

overhead in writing pixel values into the buffer that may eventually be overwritten,
most graphics workstations provide a polygon filling function in hardware that allows

the painter’s algorithm to work sufficiently fast for many interactive applications.

Another popular class of visible surface algorithms are referred to as scan-line
algorithms, originaily devised by Watkins [18], Bouknight [19,20], and Wylie et al.
[21], for drawing polygonal objects. These three algorithms operate in image space and
solve the visible surface probiem one scan-line at a time. They ail begin by performing
a vertical sort of all polygon edges on the screen according to their uppermost vertices.
Then for each scan-line, the various potentiaily visible polygon segments on that scan-
line are sorted according to their horizontal displacements. Finally, a depth sort is per-
formed at each polygon edge to determine the visible polygon segment for that hor-
izontal span. The three approaches differ only in their use of various image-space
coherence properties to make the calculations incremental rather than absolute. Of the
three methods, Watkins’ is the most economical because it uses scan-line coherence to
optimize the horizontal sort and employs a logarithmic depth search. More recently,
scan-line algorithms have been extended to render objects modeled by parametric sur-
faces [22].

Ancther simple image space rendering algorithm is the Z-buffer algorithm, origi-
nally developed by Catmull [23] to render objects modeled by bivariate parametric sur-
face patches. This algorithm works by recursively subdividing each surface patch into
smaller patches until its projection covers only one picture element (pixel) on the

screen. At this stage, the intensity and visibility calculations are performed for the

\ -

corresponding picture element. The Z-buffer is a large random access memory, equal
in size to the screen resolution, which holds the inteasity of the image and the depth of
the current visible surface at each picture element. Visibility at each pixel is simply
determined by comparing the depth of the given patch fragment with that of the frag-
ment currently occupying the corresponding pixel position. If greater, the new paich
fragment is ignored, otherwise the picture element is updated with the new intensity
and depth. A major problem with the Z-buffer aigorithm is that anti-aliasing cannot
be performed since image fragments arrive in arbitrary order. More recently, Car-
penter [24] introduced the A-buffer hidden surface algorithm, which is basically a des-
cendent of the Z-buffer, capable of producing good quality anti-aliased images at

moderate cost.

Other types of image rendering algorithms include the area-subdivision algorithms
developed originally by Warnock [25] and, more recently, by Weiler and Atherton [26]
to solve the visible surface problem for polygonal objects. These algorithms employ the
"divide-and-conquer” approach to determining the visible surface fragment in each area
of the final image. Areas of the image are examined to decide which polygon or
polygons are visible within the area of interest. If possible to determine, the appropri-
ate polygons are displayed. Otherwise, the area is subdivided into smaller areas and
the decision logic is recursively applied to each of the smaller areas. Subdivision ter-
minates when the resolution of the display has been reached. Wamock’s algorithm
subdivides rectangular areas of the screen into four equal squares, while the Weiler-

Atherton algorithm subdivides the screen area along polygon boundaries. This later

27~

- technique greatly reduces the total number of subdivision steps that have to be per-

formed, but requires more work to perform each subdivision step.

1.3. Ray Tracing

Ray tracing is considered to be the most elegant technique for rendering high
quality computer generated images of three-dimensional environments. As illustrated
in Figure 1.3, the image is generated by back-tracking light rays from the view point
through each pixel on the image plane and into the object space. Each ray traced
through the scene is tested for possible intersection with every object in the scene.
Whenever a ray intersects more than one object, the nearest point of intersection is the
visible one. The intensity at this point is determined by tracing rays to all light |
sources, checking for possible shadowing by another object in the scene, and by recur-

sively tracing the reflected and refracted rays.

Although ray tracing was first suggested by Appel (27] in 1967 and later used by
MAGI [28] to solve the hidden-surface problem, it was not until recently that Kay [29]
and Whitted [14] implemented this technique for general image rendecing purposes.
The ray tracing method combines the effects of hidden surfaces, shadows, reflection,
and refraction, that are difficult or impossible to achieve by other techniques. In addi-
tion, ray tracing algorithms are relatively simple to program as compared to most other
image rendering technigues. Conventional graphics oﬁeran’ons such as clippiﬁg and
perspective projection are automatically encoded into the geometry of the light rays.

A variety of geometric primitives are easily handled since all that is required is a dif-

-28-

Eye

Figure 1.3 Geometry of Ray Tracing

fexent ray-surface intersection processor for each object type. To date, ray tracing has
been applied to planar and quadric surfaces [28, 14, 30], bicubic surface patches

[14, 30, 31], algebraic surfaces [32], procedurally defined objects [33}, and volume den-
sities [34].

Although ray tracing provides a powerful, yet simple metho to create high qual-
ity pictures, the amount of computation time required to generate ar image (in the
order of hours) makes it unsuitable for interactive applications. Intersection calcula-
tions between a ray and a surface are very floating point intensive since, for each ray
traced, all objects in the scene must be checked for possible intersection. It is difficult
to take advantage of spatial coherence, as done in most other image rendering algo-
rithms, because the shapes of reflections and refractions from curved surfaces are very

complex. Of course, this same lack of coherence allows for unbounded (brute force)

T, .

parallelism.

Point sampling in classical ray tracing is also subject to aliasing problems, since
rays are constrained to only sample the point in the center of the pixel. There is not
enough information assoclater! with a ray to calculate what else is visible in the region
surrounding the sample point. The only way to anti-alias with standard ray tracing is
to oversample the image space, but this substantially increases the number of rays that

have to be traced.

1.4. Motivation for New Research

The underlying motivation for new research is the continuing demand to produce
realistic computer generated images, while at the same time, reducing the amount of
computing time needed generate them. Interactive computer aided applications, such
as office design, interior design, and architectural design desire the ability to create an
environment, specify lighting conditions, and then be able to "walk-through" this
environment in "real-time" and see the worid they have created. Of course, the degree
of realism possible will depend mainly on the complexity of the scene, the sophistica-
tion of geometric and lighting models used, the rendering algorithm, and on the com-
putational power available to perform the necessary tasks in the allotted time. This
type of application is quite different from that of producing computer generated
" animated sequences, frame-by-frame in non real-time, using the most sophisticated

image rendering techniques, and then playing it back at 30 frames per second.

-30-

Although computer graphics workstations are available today that can support
real-time image rendering of moderaiely compiex scenes, the pictures produced clearly
look synthetic primarily because of the simple illuminaiion models used for surface
shading calculations. In raost graphics systems, objects are represented with polygons
and shaded either with a constant value or with Couraud’s interpolated shading tech-
nique, with intensity values computed vsing Lambert’s law. The choice of polygonal
objects permits using any one of the existing visible surface algorithms, which when
supported by various geometric engines (e.g., 4 x 4 matrix multiplier, clipping unit,
and scan-conversion processor) provide the necessary processing power for real-time
performance. Unfortunately, many of the visual cues to the shape and appearance of
objects, such as shadows, reflection, and refraction are not simulated because existing
algorithms that are capable of simulating these desirable effects are too computationally

expensive to be incorporated into these graphics workstations.

The purpose of this thesis is to present new image rendering algorithms that can
support interactive computer graphics applications on small scale workstations. Consid-
ering the current state of VLSI technology, and the amount of computational power
required to implement some of the available rendering algorithms, it is inconceivable to
expect that one could generate real-time sequences of ray traced scenes on a desk-top
graphics workstation in the very near future. The goal of this thesis is to produce real-
istic images that approximate the quality of images now synthesized by ray tracing and
other high quality rendering algorithms, but at considerable reduction in computation

expense. Then, coupled with a moderate cost supporting architecture, it is expected

that these new algorithms will provide real-time performance for a wide range of
interactive applications.

In the following chapters, several new image rendering algorithms will be
presented and results demonstrated by way of computer simulation. Results then will

be analyzed and compared with existing ray tracing algorithms.

«32-

Chapter 2

Enhanced Ray Tracing Techniques

2.1. Introduction

This chapter discusses various techniques for improving the performance and capa-
bilities of ray tracing algorithms and presents recent developments in extensions to the

basic ray tracing method.

2.2. The Bottleneck in Ray Tracing

Since the implementation of ray tracing image rendering algorithms, statistical stu-
dies of these programs have shown that most of the execution time involves computa-
tion of ray-surface intersections. Whitted [14] reported this time to be between 75 per-
cent for simple scenes and over 95 percent of the total time for more complicated
scenes. Of course, this is to be expected since each generated ray must be checked for
possible intersection with every object in the scene to determine the visible surface,
and to check for shadowing effects between objects. In fact, Kajiya [35] has demon-
strated that the number of intersection calculations is linear with respect to the product
of the number of rays traced and the number of objects in the scene. For this reason,
most attempts at improving the performance of ray tracing programs have concentrated

on reducing the number of ray-surface intersection calculations that have to be per-

-33-

formed in rendering an image.

Using a hierarchical decomposing technique similar to one described by Clark [8],
Whitted added bounding spheres to cach object (polygon or bicubic patiu) in the cene.
Obviously, the sphere was chosen because it is the simplest geometric shape to intersect
with a ray. Intersection calculations begin by checking the bounding sphere and then
proceeding to the enclosed object only if the ray intersected its bounding volume. Fer
complex scenes, Rubin and Whitted [9] suggest a hierarchical decomposition of the
entire object space into a tree of enclosing volumes, where each volume may contain
other subvolumes or the actual displayable object. The bounding volumes are selected
as parallelepipeds oriented to minimize their size. Ray-surface intersection calculations
are performed by testing the outermost enclosing volume first and testing subvolumes
only if the ray intersects the outer volume. More recently, Weghorst e¢ al. [36]
presented procedures for the selection of the bounding volume as either a sphere, a
rectangular parallelepiped, or a cylinder. The selection process considers such factors
as the cost of testing the bounding vblume for intersection with a ray, and the volume
of the bounding shape. As expected, the computational times for rendering ray traced
images using any one of the methods mentioned above were sigrificantly reduced.
However, it should be emphasized that creating the hierarchical database is a non-
trivial operation.

Another approach to reducing the number of ray-surface intersection calculations '
is to form a cellular decomposition of the entire object space, keeping track of which

surfaces and light sources are within each cefl [37,38,39]. As a ray is traced through

-34-

the environment, only those surfaces within a particuiar cell, which has been pierced
by the ray, need be tested for intersections. If one or more ray-surface intersections
occur within a celi, the clos . one to the eye is chosen as the visible ore. If no inter-
sections are found the ray passes thrqugh that cell, enters its neighboring cell along the
path of the ray, and the search for a visible surface continues. Thus, the ray-surface
intersection problem is reduced from considering all objects in a scene to considering

only those objects within cells along the path of each ray.

Yet another approach, applicable in ray casting rendering algorithms where rays
are only traced to one level for hidden surface elimination, is to enclose each surface
with a two-dimensional bounding box in image space [40]. As the image is rendered in
scan line fashion, éurfaces become a;:ﬁve or inactive depending on whether the current
pixel location is inside or outside the surface’s bounding box. Only those surfaces
which are active at a given raster location need be intersected by the ray to determine

the visible one.

Although considerable computational improvements to ray tracing algorithms has
resulted from these clever attempts to exploit object and image space coherence, the
improvement has not been sufficient to permit real-time performance. In fact, the
motivaticn behind investigating these various techniques was to reduce the execution
time of current ray tracing algorithms, and to provide a manageable way to render
highly complex scenes. Further exploitation of object and image coherence is needed

to further improve the computational expense of ray tracing.

-38-

2.3. Anti-Aliasing Difficulties

A major problem with ray traced images is aliasing artifacts caused by its point
sampling approach. The only way to anti-alias within standard ray tracing is to over-
sample the image space with more rays, thereby increasing the rendering time by the
same oversampling factor. Whitted proposed adaptive oversampiing around areas
where aliasing is most apparent to the viewer, this being along the silhouette of an
object where abrupt changes in intensity occur, at locations where small objects disap-
pear between sampling points, and during texture mapping onto a surface. Problems
with this approach still exist for small objects that fall between sample points and for
rays that are reflected or refracted by other objects. Alternate solutions to the aliasing
problems of ray tracing recently have been investigated and are discussed in the follow-

ing sections.

2.4. Distributed Ray Tracing

Cook, Porter, and Carpenter [41] recently presented a "distributed” ray tracing
technique, which in addition to performing spatial anti-aliasing, simulates the effects of
penumbras, motion blur, depth-of-field, and the entire shading function. The underiy-
ing principle used by the authors is that by distributing the directions of the rays of a
super-sampled ray tracing procedure according to the analytic function they sample,
(i.e., pixel area, lens area, reflectance and transmittance directions, lighf source area,
and time) ray tracing can incorporate fuzzy phenomena, and need not be restricted to

spatial sampling. The key to this technique is that no additional rays are needed

beyond those required to oversample the space, and provides correct and easy solutions
to some previously difficuit and unsolved problems. The types of fuzzy phenomena
that can be simulated with this technique inciude blurred reflection and transparency,
‘in addition to motion blur, depth of field, and penumbras. Some of the most impres-
sive computer generated pictures to date, illustrating these simulated effects, have been

produced by this distributed ray tracing technique.

More recently, Lee, Redner, and Uselton [42] formulated a relationship between
the number of sample rays chosen tc approximate the image function integral in distri-
buted ray tracing, and the quality of this estimate. They show that the number of
samples required do not depend directly on the number of dimensions being sampled,
but only on the variance of the multi-dimensional image function. Thus, sampling an
additional dimension does not imply an increase in the number of samples needed. A
statistical technique is used to reduce sampling by selecting random samples until the
variation between the first samples is below some threshold. Typically, eight samples
per pixel are sufficient to provide good results, but this number may reach as high as
96 (where this was the maximum number of samples allowed in their experiments) in
complicated shading areas. Excellent resuits are shown demonstrating the effects of
variable degrees of surface smoothness, penumbras, and, of course, anti-aliasing. It is
suggested that this technique also can be extended to additional dimensions to model
other effects, such as motion blur, depth of field, wavelength sampling for improved

color modeling, and wavelength dependent effects such as refraction.

-37-

2.5. Ray Tracing with Cones

The work by John Amanatides [43] provides a new approach to the ray tracing
methodology, which attempts to solve some fundamental probiems with conventional
ray tracing. The definition of a ray is extended into a circular pyramid or “cone” by
including the angle of spread and virtual origin of the ray, along with its conventional
origin and direction. Figure 2.1 illustrates this new definition. Note that the virtual
origin is defined as the distance from the apex of the cone to the origin, and is non

zero for reflected or refracted cones.

The advantages of this approach includes a better method of anti-aliasing, a way
of calculating fuzzy shadows and dull reflections, a method of calculating the correct
level of detail in a procedural model and texture map, and finally, a procedure for
reducing the number of intersection calculations. One disadvantage of this approach is
that the intersection calculation between a cone and an object is rather complex. In

fact, intersection calculations are only described for spheres, planes, and polygons.

a = spread angle 4-pixels

N
/‘ virtual / \
Eye ;
a r screen
virtual \ /

origin

Figure 2.1 Geometry of Amanatides’s Cone

Each calculation consists of a fast in/out test and a more complicated area intersection
approximation.

Anti-aliasing is performed using a single cone per pixel and maintaining a sorted
list of the eight closest objects intersected by the ray. The final pixel intensity is com-
puted by blending the contributions from the various object fragments in the list.
Fuzzy shadows are approximated by considering spherical light sources, instead of con-
ventional point sources, sending a cone f;'om each intersection point to the light source
with radii equal to the size of the light source, and calculating how much of the light is
blocked by intervening objects. Fuzzy reflections and translucency are produced by
broadening the reflected and transmitted cones, which results in less detailed reflec-

tions and refractions.

Examples of various images generated using this improved technique are given,
illustrating anti-aliasing, fuzzy shadows, are dull reflections. Each of the simple pic-
tures shown took approximately 50 minutes to compute (at unknown resolution) on a
VAX-11/780. A reduction in the number of intersection calculations required for ray
casting is suggested by recursively firing cohes of various sizes at the screen and per-
forming a Warnock style culling process (25]. Extensions to this approach are neces-

sary before it can be applied to ray tracing in general.

-39-

2.6. Beam Tracing Polygonsal Environments

Heckbert and Hanrahan [44] recently presented an algorithm that traces "beams”
of light through a scene, rather than individual rays as done in standard ray tracing.
The underlying idea behind this technique is that for planar polygonal surfaces, reflec-
tions are linear transformations and refractions are often approximateiy so. Thus, in
rendering a scene composed of polygonal objects, reflections and refractions can be
computed in parailel for an entire surface using linear transformation techniques,
rather than having to trace individual light rays. Exploiting this spatial coherence of
polygonal environments reduces the number of intersection calculations, and permits
using conventional incremental image rendering techniques to draw homogeneous

regions of the image.

To render a scene, a recursive beam tracer is first used to find all visible polygons
within an arbitrary two dimensional region, starting with the viewing pyramid and trac-
ing each planar reflection and/or refraction. For each visible face on the screen, the
beam tracer creates an object space data structure, called a "beam tree”, similar to the
ray tree in standard ray tracing. Each link of the beam tree represents a polygonal
cone of light and tree nodes represent visible surface fragments intersected by these
cones. But unlike a link in a ray tree, which always terminates on a single surface,
each beam link may intersect many surfaces, as detected along the beam axis. Once
the beam tree is createc.i for a given screen space polygon, final intensities are com-
puted by scan converting the polygon and all its associated reflected and retracted frag-

ments. Both faceted and Gouraud shading techniques are supported.

Although the efficiency of beam tracing versus conventional ray tracing increases
linearly with resolution, it is also more complicated and may not always be worth the
extra expense. Intersection caiculations between a beam and a polygon can become
quite complex, since in general, the beam is concave and may contain holes. The

| expected improvement of beam tracing over ray tracing depends more on the intrinsic
coherence of the imaged scene rather than resolution. The greater this coherence the
more rays wiil be traced in parallel. Thus, beam tracing is most efficient for images

having large homogeneous regions.

~41-

Chapter 3

New Techniques for Efficient Image Rendering

3.i. Introduction

As discussed briefly in Chapter 1, the motivation for this thesis was to expiore
new methods of producing realistic synthetic images under limited computing power
constraints. A number of conventional image rendering techniques with different per-
formance and image quality characteristics, have been presented, including various
extensions to the computational efficiency and capabilities of ray tracing. At one
extreme we have the efficient object and image space rendering algorithms. ~nich
when supported with appropriate special purpose hardware, can produce moderate
quality images for many different types of interactive applications. At another extreme
we have the enhanced ray tracing algorithms capzble of generating superior images that
resemble the quality of pictures produced by conventional photographic techniques,
but at considerable computational time and expense. A desirable characteristic for a
new image rendering algorithm would be for it to compromise between these two

extremes and generate realistic images at moderate expense.

The exploitation of both object and image space coherence is essential in the
implementation of an efficient rendering algorithm. This fact is clearly evident by

comparing, for example, the rendering times of a polygonal scene generated by a scan-

-42-

line algorithm and a ray tracing algorithm. The scan-line algorithm wins out by far
because it exploits image space coherence properties of polygons to make all geometric
and intensity calculations inacremental, whereas a standard ray tracer computes each
pixel intensity independently. On the other hand, the simulation of reflection and
refraction effects is relatively straightforward in ray tracing, but typically not con-

sidered in conventional scan-line algorithms.

3.2. A New Approach to Image Synthesis

This thesis presents a new class of image rendering algorithms that combine the
computational advantages of object and image space rendering algorithms with the
benefits of the ray tracing methodology. Computational efficiency is achieved by con-
sidering only polygonal environments and using conventional visible surface algorithms
that can expioit the coherence properties of these environments. Two such algorithms
are the list-priority and scan-line algorithms, which are known to provide real-time per-
formance with moderate hardware support. By considering only polygonal environ-
ments, linear transformation techniques can be used to simulate the effects of planar
reflection and approximate the effects of planar refraction, inherent in conventional
ray tracing algorithms. This linear mapping approach is equivalent to tracing multiple
rays in parallel through the environment to determine reflections and refractions in
planar surfaces. Shadows can be efficiently produced by the method of shadow projec-
tion, whereby entire shadow areas are computed by projecting objects between a light

source and a given surface. Finally, efficient image space rendering techniques can be

-43-

used to scan convert polygonal regions of the image and perform spatial anti-aliasing.

The rendering algorithm explored in this research is based on an extension to the
list-priority algorithm of Newell, Newell, and Sancha [17]. Their algorithm performs
hidden surface removal and simulates linear transparency effects for scenes composed
of polygonal faces. The new aigorithm adds the simulation of non-linear transparency,
reflection, refraction, and shadows, in addition to anti-aliased faceted, Gouraud, or
Phong shaded polygon scan conversion. Whiie this new approach simulates the desir-
able global illumination effects typically found only in ray tracing, it also can provide
real-time performance with only moderate hardware support. In fact, an implementa-
tion of this new algorithm in the C programming language, running on an IBM-PC/XT
provides a surprising level of interactive performance. For example, the image shown
in Figure 3.1(a) took 2.4 minutes to generate at a resolution of 256 x 240 pixels (2
seconds to create a polygon display list for the image, with color and shadow informa-
tion, and 2:20 to scan convert this list using an anti-aliasing Gouraud polygon tiler),
while the second image (Figure 3.1(b)) took 74 minutes to generated with a conven-
tional ray tracer. Furthermore, using a simple graphics display processor on the IBM-
PC/XT to scan convert the senerated polygon display list, the total rendering time for

the new algorithm reduces to 2 seconds.

Real-time performance is expected for moderately complex environments, pro-
vided that the algorithm is supported with a suitable graphics engine, consisting mainly

of a matrix multiplier, general polygon clipper, and polygon tiler. In addition, the

underlying ideas behind this new rendering technique are easily extended to scan-line

Figure 3.1(a) Example cf New Algorithm

Figure 3.1(b) Example of Ray Tracing

~45-

algorithms.

3.3. Outline of The Algerithm

A block diagram of the extended list-priority Aalgorithm is depicted in Figure 3.2,
showing its two major components. The Image Generation Processor accepts a three-
dimensional polygonal scene description and produces a depth sorted polygon list
describing the two-dimensional projection of the image for the specified viewing condi-
tions. Associated with each screen space polygon is a list of shadow polygons that have
been cast onto its surface through shadow projections, and a tree of face fragments
that have been mapped onto the polygon’s surface through multiple reflections and
refractions. Each polygon fragment generated is constrained to be convex, and there-

fore, can be scan converted using any simpie polygon tiler.

Final hidden surface removal and polygon scan conversion is performed by the
Scan Conversion Processor. The simplest rendering method uses a painter’s algorithm,
whereby polygons are individually scan converted into a frame buffer in back-to-front
order, performing hidden surface elimination by its overwriting principle. Several
anti-aliasing polygon tilers are also implemented, which scan convert either faceted,
Gouraud, or Phong type polygons into a frame buffer in front-to-back order, perform-

ing hidden surface removal and intensity blending.

This new rendering algorithm is similar in principle to a technique presented by
Heckbert and Hanrahan [44] for tracing "beams” of light through scenes described by

planar polygonal objects. They noted that unlike the general case of a beam reflecting

Image

Processor

)
[sY)
@

Processor

Figure 3.2 Block Diagram of the New Image Rendering Process

“47-

or refracting from a curved surface, beams formed at planar boundaries can be approx-
imated by pyramidal cones. The main difference between beam tracing and the
rendering algorithm presented in this thesis lies in the method used to perform hidden
surface removal, and in the technique used to render the final image. In beam tracing,
visible surfaces are determined by intersecting a beam with each surface in a front-to-
back sorted polygon list, essentially performing the Weiler-Atherton [26] hidden sur-
face removal algorithm for each beam. After every intersection, the polygon found is
subtracted from the beam before proceeding through the depth ordered list to ensure
that no cther polygon in the list is visible within the area of the current visible
polygon. The main problem with their technique is that the shape of the beams, and
subsequent visible polygon fragments, become very irregular after only a few intersec-
tions. The two-dimensional set operators used in the intersection calculations must be
able to handle concave beams and polygons containing holes. In addition, the polygon
tiler used in rendering the final image also must be capable of supporting these com-
plex shaped polygons, unless these polygons are further processed to eliminate concav-

ity and holes.

These inherent problems with beam tracing are eliminated in the new algorithm
by separating the task of visible surface calculations from that of hidden surface elimi-
nation. The Image Generation Processor computes all potentially visible surfaces
within the field-of-view, including surface shadow polygons and reflected/refracted
components, without checking for possible obstruction between surfaces. Hidden sur-

face elimination is performed during the polygon scan conversion phase using any con-

-48-

ventional image space rendering algorithm. This of course means that in some cases
the Image Generation Processor will compute surfaces that will end up being obscured
in the final image. The main advantage of this two-stage approach is that visible sur-
face calculations are relatively simple, even after a reflection or refraction mapping
operation, since the shape of the polygonal beams are always convex and without
holes. In addition, restricting output polygons to be well formed (i.e., convex and
unfragmented) simplifies the final stage of polygon scan conversion and hidden surface
elimination.

Other advantages of this new rendering algorithm over beam tracing include the
addition of shadow generation and several efficient anti-aliasing scan conversion
methods. The simulation of shadows and anti-aliasing were proposed by Heckbert and
Hanrahan as possible extensions to beam tracing but never reported to have been
implemented. These desirable features are incorporated in the extended list-priority
rendering algorithm, along with the simulation of planar refiection and refraction. The
relative simplicity of this new algorithm permits straight forward implementation on
existing graphics workstations, and suggests future hardware implementarion for real-

time applications.

3.4. Image Generation Processor

The purpose of the image generation process is to create a two-dimensional virtual
image description given a three-dimensional environment composed of polygonal

objects and various light sources. This virtual image description consists of a sorted list

-49-

of screen space polygons representing all potentially visible polygons within the speci-
fied field of view. In addition, each screen space polygon may contain a list of surface
detail polygons specifying shadow areas, and a tree of face fragments representing
reflected and refracted components. This polygon list can be used directly as input to
any graphics display system supporting convex polygon tiling, or further processed by a

polygon scan conversion processor to produce high quality anti-aliased images.

3.4.1. Recursive Visible Surface Processor

The main component of the image generation process is a recursive visible surface
processor responsible for finding all potentially visible polygons within an arbitrary
three-dimensicnal clipping volume. An outline of this polygonal visible surface algo-
rithm is shown in Figure 3.3. The procedure begins with the standard truncated view-
ing pyramid as the initial clipping volume. The visible surface processor transforms all
objects in the scene to this eye coordinate system, clips all objects io the current clip-
ping volume, eliminates back-facing polygons, and depth sorts the remaining polygon
list. The resulting sorted polygon list describes all polygons within the specified field of
view.

To find possible reflected or refracted intensity contributions on a given surface,
an appropriate transformation matrix is computed to map the entire scene into the vir-
tual reflected or refracted coordinate system of the given surface. This matrix is then
combined with the current transformation matrix (CTM) to establish a new composite

transformation matrix, and a new clipping volume is defined by translating the two-

-50-

poly_irace (polygon, depth, ...)

{
Transform (all objects using the CTM);
Clip (polygons in scene to CVV);
Sort (scene_polygon_list); /* BTF or FTB */
For each polygon in scene_polygon_list
{
set_view_volume (scene_poly);
If sorting_BTF
render (scene_poly); /* amb+ dif+ spec */
render_shadow_polygons (scene_poly);
If recurse_further (scene_poly, depth)
{

If reflective (scene_poly)
make_reflection_matrix (scene_poly);
poly_trace (scene_poly, depth+1, ...);

If refractive (scene_poly)

{
make_refraction_matrix (scene_poly);
poly_trace (scene_poly, depth+1, ...);

}
If sorting_FTB

render_shadow_polygons (scene_poly);

render (scene_poly); /* amb+ dif+ spec */

}
}

Figure 3.3 Recursive Visible Surface Algorithm

dimensional projection of the given polygon along the z-axis. (The polygon itself forms
the near clipping plane, while the far clipping plane is taken to be the one defined by
the standard truncated viewing pyramid.) Then, the visible surface processor is again
calied to transform the entire scene to fhis new virtual coordinate system, clip ail

objects to the active clipping volume, and depth sort the remaining polygons. By

-51-

recursively invoking the visible surface processor for each reflective or refractive
polygon, a virtual image tree is created describing the two-dimensional projection of a
scene onto a viewing plane, along with any reflected, refracted, and shadow com-
ponents. A simple example of a cube resting on a reflective surface is illustrated in

Figure 3.4, along with its corresponding virtual image tree.

The virtual image tree associated with any given screen space polygon is somewhat
analogous to multiple ray frees in standard ray tracing. Links in a ray tree correspond
to single light rays traced through the environment, and nodes represent the closest
ray-surface intersection. In a virtual image tree, links correspond to convex polygonal
beams and nodes represent polygonal surface fragments intersected by these beams.
But unlike links in a ray tree which terminate on a single node, the links in a virtual
image tree may terminate on multiple nodes, representing ail the potentially visible sur-
faces found within the volume swept out by the beam. Thus, in effect, tracing a single
polygonal beam through the environment corresponds to tracing multiple rays in paral-
lel. Rather than tracing a single ray and redirecting it after intersection with a reflec-
tive or refractive surface, the visible surface processor transforms the entire scene into
the virtual reflected or refracted coordinate system of the surface, changes the cross
section of the beam appropriately, and proceeds with visible surface calculations from
the same view point. Given that the scene is composed solely of well formed convex
polygons, the resulting polygonal beams and computed reflected, refracted, of shadow

fragments will always be convex and without holes.

-52-

-
-
I

T

-~
-

-———

Level-2

Levei-1

Figure 3.4(a) Cube on a Mirror

Pi3

Pia

Figure 3.4(b) Virtual Image Tree

-53-

3.4.2. Reflection and Refraction Mapping

One of the key operations performed by the recursive visible surface processor
involves calculating a transformation matrix for each reflective or refractive planar sur-
face. Given this matrix, the entire scene is transformed into a new virtual coordinate
system in which visible surface calculations continue from the original viewpoint to
determine the reflected or refractive components for the given surface. The volume
swept out as the surface is translated along the z-axis defines the region in this new
coordinate system where transformed objects must lie to be potentially visible. Figure
3.5 illustrates this mapping operation, and corresponding bounding volume, for the

mirror surface shown in Figure 3.4.

-

\ Current

View-Volume

Figure 3.5 Reflection Mapping Example

-54-

Since reflection in a plane is equivalent to a linear mapping between 2ach point
and its mirror image, it can be represented by a 4 X 4 homogeneous matrix. Refrac-
tion by a plane, in general, is not a linear transformation since the angle of refraction
is a non-linéar function of the incident angle. However, there are two limiting situa-
tions under which planar refraction is linear [44]. The simplest case is under an ortho-
graphic projection, where the eye is located at infinity, resulting in all sight rays strik-
ing a plane at the same incident angle. Refraction in this case corresponds to a trans-
lation parallel to the plane and, therefore, can be expressed as a linear transformation.
Another case where refraction by a plane can be expressed as a linear transformation is
for rays at near perpendicular incidence, known as paraxial rays. For such rays, Snell’s
refraction law is approximately linear and planar refraction can be approximated by a

scaling transformation perpendicular to the plane.

For reasons of implementation simplicity, planar refractions in perspective view
are calculated using the paraxial approximation. In all cases, a linear transformation
matrix is computed assuming that the angle subtended by a refractive surface is small,
and that the incident angle of all sight rays impinging on the surface is also small.
This, of course, implies that for most scenes, refractions will not be physically correct.
However, for many applications, such as architectural design and interior design, the
simulation of correct refraction is of secondary importance, as compared to the simula-
tion of reflections and shadows. In addition, most people are unable to notice errors
resulting from these linear approximations to refraction. A more general treatment of

planar refraction is discussed at the end of Chapter 6.

-58.

3.4.3. Shadow Generztion

In standard ray tracing, shadows are computed by tracing rays from each intersec-
tion point to every light source and checking for possible intersection with any surface
in the scene. In the current algorithm, shadow areas are computed for a given target
polygon by projecting all objects within the volume defined by a light source and the
target surface. This approach is completely opposite from the ray tracing method and
essentially performs shadow calculations once for a given surface, rather than once for
each ray intersected with the surface. These computed surface shadow polygons are
included along with the corresponding target polygon in the virtual image tree, and
later used by the image rendering process to modify the inteasity of the visible surface

arcas.

3.4.4. Virtual Image Tree Rendering

Final rendering of the virtual image tree can be accomplished in a variety of ways.
Given a graphics display system with only a polygon tiling function and no hidden sur-
face removal capability, a painter’s algorithm can be used to render the image. For
this case, the Image Generation Processor outputs the virtual image tree in back-to-
front depth order, starting with the ambient, diffuse, and specular component polygon
of each potentially visible surface, followed by its shadow polygons, and then its
reflected and refracted com‘ponents recursively. The shade of any sublevel (child)
polygon includes the composite sum of all higher level parent polygon shades, and

therefore, represents the total shade for the image area defined by the given polygon.

This pre-blending intensity operation, for either faceted or Gouraud shaded polygons,

is performed by the Image Generation Processor while creating the virtual image tree.

Another rendering approach, which supports anti-aliasing, is to create the virtual
image tree in front-to-back depth order and scan convert polygons into a frame buffer
having coverage information at each image pixel location. For this case, the Image
Generation Processor begins with the deepest reflection or refraction tree branch asso-
ciated with the closest pelygon and recursively works towards the active tree level
before proceeding to the next polygon in the node list. Shadow polygons, and the
ambient, diffuse, and specular component polygon are generaied after all reflected and
refracted components have been scan converted for the given 'surface. As each
polygon is independently scan converted into the frame buffer, the resulting polygon
pixel coverage (area) is computed and used to modify the polygon’s pixel intensity
accordingly (filtering). In addition, this pixel coverage information is saved at the
corresponding frame buffer location and later used to blend several polygon fragments
within the pixel and to prevent 2 hidden surface from mcdifying the pixel. Several
rendering algorithms employing this scan conversion methed are presented in the fol-
lowing section.

Another rendering option is to perform all intensity blending operations during
the scan conversion phase (post-blending), rather than during the image generation
phase (pre-blending). This réndering approach supports intensity blending between
overlapped reflected and refracted components on a given polygon, and supports com-

plex shadow situations involving overlapped shadow regions caused by multiple light

-57-

sources. A novel image rendering technique employing this scan conversion approach

s presented in the following section.

3.5. Scan Conversion Processors

The function of the Scan Conversion Processor is to render an image described by
a depth sorted list of two-dimensional polygons, such as the virtual image tree
described earlier. Since polygons may overlap on the screen, the major task to be per-
formed is hidden surface elimination. In addition, each screen space polygon may
include a list of surface detail polygons defining shadow areas within its surface, and a
multi-level tree of face fragments describing reflections and refractions, which have to
be blended together. While most graphics workstaticns available today provide a
polygon tiling function, very few support smooth (Gouraud) shading or perform anti-
aliasing. In fact, most commercially available graphics systems that implement hidden

surface removal use the Z-buffer technique which cannot support anti-aliasing.

Four different algorithms have been developed and implemented to perform the
tasks of hidden surface elimination and anti-aliased scan conversion of faceted,
Gouraud, or Phong type polygons. Each algorithm is tailored to a specific class of
images and imposes different computational and memory requirements. In all cases,
the possibility of future hardware implementation has been carefully considered in
developing these aigorithms. The basic requirement of all four methods is the availa-
bility of a frame buffer, not necessarily physical, which holds the R-G-B color com-

ponents and coverage information at every pixel location. Polygons are scan converted

independently into this frame buffer in front-to-back fashion, while accumulating the

intensity and coverage at each display pixel.

Figure 3.6 summarizes the characteristics of the four algorithms implemented. In
all cases, an anti-aliasing filtering operation is performed at each pixel independently
by scaling the given polygon fragment intensity by its calculated pixel coverage. This
coverage is either determined by actually computing the fragment area over a given
pixel (defined as having finite area), or by subdividing each pixel into subpixels and
estimating the fragment coverage from the number of subpixels covered by the polygon
fragment. By maintaining this coverage information at each pixel location, a front-to-
back hidden surface removal and intensity blending operation is performed. As
polygons are scan converted into the frame buffer, the area of a given surface fragment
within each pixel is calculated and used to scale the fragment intensity accordingly. If
the current pixel location is empty (coverage = 0), the area-weighted polygon intensity
is simply written into the appropriate frame buffer position, along with the coverage

information. Otherwise, if the pixei is not completely covered (coverage < 1), the

Method | Components | Bits/Pixel Comments
1 r,g,b,a 32 a = area coverage.
Simple anti-aliasing.
2 r,g,b,m 40 m = 4 X 4 pixel mask.
Simple FTB clipping.
3 r,g,b,a,m 48 Combines methods 1 & 2.
4 pixel-struct 64 Muiti-level pixel masks.

Figure 3.6 Summary of Scan-Conversion Techniques

-50.

current fragment intensity and existing pixel intensity are combined according to the

blending formula

where 1,,;, A,y is the existing pixel intensity and coverage, I, , A, is the current
surface fragment intensity and potential pixel coverage, and [, , A, is the resulting

total pixel intensity and coverage.

3.5.1. Scan Conversion Method 1: Area Coverage

For the first scan conversion method, an image pixel is defined as a square region
having finite area with its center located at the corresponding image point. An 8-bit
quantity (a) is maintained at each pixel location in the frame buffer to represent the
pixel’s accumulated coverage status. As polygons are scan converted into the frame
buffer in front-to-back order, the "exact"” polygon pixel coverage is calculated and then
used to compute its contribution to the correspending pixel. Filtering of polygon edges
is accomplished by weighting the polygon’s intensity by its calculated pixel coverage
(area-weighting). Hidden surface elimination is performed simply by accumulating the

coverage at each pixel and preventing modification at any pixel with full coverage.

The main advantage of this scan conversion method is that it produces good qual-

ity anti-aliased images, as compared to non-filtered images, 2t moderate computational

and memory expense. Pixel coverage calculations proceed incrementally, as does the
Gouraud and Phong shading calculations, resulting in efficient operation. A simple
extension of the pixel coverage idea provides a mechanism for simulating both linear
and non-linear transparency, by allowing surfaces behind a previously scan converted
transparent surface to partially modify the corresponding pixel locations. In addition,
the relative simplicity of the algorithm permits easy extension into a hardware impie-
mentation for real-time performance. An example of an image rendered using this
area sampling technique is shown in Figure 3.10, illustrating anti-aliasing, Gouraud

shading, Phong Specular highlights, and non-linear transparency.

The main disadvantage with this simple method is that it cannot handle complex
pixel situations correctly because it lacks subpixel geometry information. The pixel
coverage byte only indicates the accumulated coverage resulting from one or more
polygon edges falling inside the pixel area, but not the specific subpixel regions
covered. Since polygons may overlap on the screen, subpixel hidden surface elimina-
tion may be incorrect, especially along sithouette edges. Thus, without a pre-process
clipping step to eliminate hidden surfaces, this scan conversion method cannot correctly

render virtual image trees containing shadow detail, reflections, or refractions.

3.5.2. Scan Conversion Method 2: Pixel Mask

A simple way of achieving an effective increase in display resolution, without actu-
ally rendering the image at this resolution, is to define each picture element as an array

of subpixels. As a polygon is scan converted, its pixel coverage is determined by find-

-61-

ing which subpixels are covered by the polygon (Figure 3.7). This subpixel informa-
tion then can be used to perform a filtering operation along polygon edges that do not
completely cover a pixel. In addition, by saving the state of each subpixe! in the array
(pixel mask), subsequent polygon fragments falling wifhin the same image pixel can be
clipped out behind regions occupied by previous (visible) fragments. Clipping one
polygon fragment against another corresponds to a simple boolean operation.

For this implementation, an array size of 4 X 4 subpixels was chosen to represent
each image pixel. This increases the effective display resolution by a factor of 16 and
results in a moderate increase in computation and storage requirement. When coupled
with the pre-blending intensity option supported by the Image Generation Processor,
this scan conversion algorithm can render virtual image trees containing shadow detail

polygons from a single light source, and multiple levels of reflections or refractions.

@ = covered
O = empty

/Lo
/oe

O] O} O

O} 0| O O

Figure 3.7 Subpixel Polygon Fragment and its Pixel Mask

62-

Hidden surface elimination and polygon edge filtering is accomplished at the effective
. display resolution, and results in superior quality images, as compared to non-filtered
images. An example of an image rendered using this pixel mask technique is shown in
Figure 3.11, illustrating shadows from a single light source and multiple levels of refiec-

tion.

3.5.3. Scan Conversion Method 3: Hybrid Area/Mask

While the pixel mask rendering technique presented above works well at perform-
ing subpixel polygon clipping, the area sampling method actually works better at filter-
ing edges. This is not surprising since the latter analytic method gives a better estimate
of the actual subpixel area covered by a poiygon edge. The pixel mask rendering tech-
nique still exhibits noticeable aliasing along silnouette edges because of the sharp inten-

sity discontinuity that occurs betw~ the edge and its background.

One simple way of enhancing i..: filtering operation along silhouette edges is to
carry along the actual subpixel area of an edge fragment, as computed in scan conver-
sion method 1, in addition to its pixel mask. As in the previous method, the pixel
mask is used to perform subpixel polygon clipping when more than one polygon frag-
ment falls within a pixel region. However, whenever a background polygon with full
pixel coverage is to be blended with an existing foreground edge fragment, the actual
saved fragment area is used, instead of the pixel mask bit count, to perform the area-

weighted intensity blending operation.

-63-

Maintaining both the pixel mask and pixel coverage information also provides a
mechanism to simulate linear and non-linear transparency, in addition to rendering
shadows, reflections, and refractions. The pixel mask is used to perform subpixel frag-
ment clipping, while the pixel coverage indicates the accumulated intensity coverage
from previously rendered surfaces. Diffuse surfaces affect both the pixel mask and
coverage information, while transparent surfaces affect only the pixel coverage. An
example of an image rendered using this hybrid scheme is shown in Figure 3.12, dep-
icting a transparent champagne glass and diffuse cube resting on a mirror with a check-

erboard background.

3.5.4. Scan Conversion Method 4: Multi-Level Pixel Masks

This last scan conversion method presents a novel approach at rendering complex
images described by virtual image trees. All three rendering techniques presented thus
far simply perform hidden surface elimination and filtering at each image pixel, and
assume that each polygon given for scan conversion contains the composite shading
information for the corresponding region in the final image. These polygonal regions
may correspond to simple diffuse surfaces, shadow detail, or composite regions
representing the accumulation of multiple levels of refiection or reiraction. Unfor-
tunately, a surface with overlapped reflected and refracted components may a0t be
rendered correctly since their corresponding image tree branches are traced indepen-
dently, and therefcre not blended together. A similar problem exists for reflected or

refracted surfaces with shadowed areas, and for overlapped shadow areas caused by

multiple light sources.

The limitations inherent in the previous three rendering techniques are overcome
by performing intensity blending operations during polygon’ scan conversion, rather
than during the image generation phase. This rendering methed handles both hidden
surface elimination at each image tree level and performs inter-ievel intensity blending
as the tree is traversed vertically. Hidden surface elimination and anti-aliasing at each
tree level is performed using the pixel coverage and pixel mask ideas presented earlier,
except that sufficient information is maintained at each pixel to save its coverage state

between tree levels.

The algorithm works with two differeni data types (Figure 3.8): "pixel-structs” and
"pixel-fragments"”. Pixel-structs occupy an array equal in size and shape to the final
image, each occupying 8-bytes of storage, consisting of the accumulated pixel color

(24-bits), a pixel-status byte (8-bits), and a possible pixel-fragment list pointer (32-

pixel-struct pixel-fragment
flist previ
r,g,b pmask
pdepth pcovr
pcomplex pstat
pcovered
64-bits 64-bits

Figure 3.8 Pixel-Structure and Pixel-Fragment Definitions

65-

bits). Pixel-fragments are dynamically allocated and dealiocated as the image is ren-
dered, and serve two purposes. They hold subpixel information when a pixel is par-
tially covered by one or more polygon fragments at a given tree level, and are also used
to save the state of a complex pixel at a higher tree level while polygons at sub-tree lev-

els are blended with the same pixel.

Whenever an attempt is made to modify a compliex pixei tagged with a tree depth
lower than the current polygon tree depth (current-depth > pixel-depth), a new frag-
ment structure is aliocated to represent the pixel at the new level prior to performing
any bit masking or intensity blending operations. Any previous higher level fragment
structures are saved in a linked list. Similarly, whenever a polygon fragment is to be
blended with a complex pixel tagged with a tree depth greater than the current depth
(current-depth < pixel-depth), the pixel information is restored from the fragment list
and the saved fragment structure is deallocated.

As an example, consider the complex pixel situation illustrated in Figure 3.9,
corresponding to a pixel shared by two reflective polygon fragments, F 1q and F g, each
with two reflected components, (F 1, F13) and (Fy, F 22).' Assuming a depth sorting
order

Fig<Fo, F1y <F3, Fy1 < Fp
the corresponding polygon rendering order would then be
(Fu+Fp)+Fiot (Fut Fp) + Fy
Fragments F {; and F 1, are blended together at tree level 2, after which the subpixel

region associated with F ;g is completely covered. To blend F g with its reflected

“66-

fragments at the lower tree level, the existing pixel coverage information is first
restored to its new tree level (in this case, the pixel coverage at level 1 is NULL).
Fragment F 1q is then blended with the existing pixel intensity and its corresponding
pixel coverage (M 11, A1) is made active. To blend F; (followed by F) at tree level
2, the existing pixel coverage information at level 1 is first saved in the pixel’s linked
fragment list, and a new pixel structure is created to represent the pixel at level 2. Fol-
lowing this blending operation, the pixel at tree level 2 is completely covered, thus
preventing any other fragment at or below this level from affecting the pixel. The final
fragment, F 5 at level 1, is then rendered by first restoring the saved pixel coverage
information for level 1 (M 11, A1) and then blending it with the existing pixel inten-
sity.

Blending reflected and refracted intensity components for a given parent polygon
involves rendering their respective image tree branches independently and then com-
bining the results. The procedure used to perform this blending operation is to first
render all reflected components, restore all parent polygon pixels to their original
higher level state, and finally render the refracted components. The Image Generation
Processor outputs a specially tagged copy of the parent polygon after tracing its reflec-
tion branch to invoke this restore operation. For these special polygons, all sub-level
pixels associated with the given parent polygon are restored to their original state

without affecting the existing pixel color or parent level pixel coverage information.

Generally, pixels are fully covered by a single object, and thus the active number

of pixel-fragments at any one time is relatively small. However, as object surfaces are

-67-

Fii F
Fi2 F2
Pixel
Fio Fao
\ \
Fi1 Fis Fa1)

Figure 3.9 Complex Pixel Example

rendered into the frame buffer, most of the pixels along each polygon edge cause
pixel-fragments to be created, while all pixels along internal object edges (those not
along the silhouette of the object) will subsequently be completely covered when all
polygons sharing the edge pixel are rendered. To save memory space, pixel fragments
are deallocated, and the pixel is marked full, whenever a combined pixel mask indi-
cates full coverage at any given level in the tree. For complex scenes, the total number

of pixel-fragment requests are typically orders of magnitude greater than the maximum

-68-

number of active fragments at any given time.

3.6. Implementaticn and Resuits

The Image Generation Processor and Scan Conversion Processors described in this
chapter have been coded in the C programming language to run on various machines.
The current implementation runs either on the DEC-VAX series, DEC PDP-11 series,
or IBM-PC series. In addition, the Image Generation Processor supports interactive
display of virtual image trees on the Silicon Graphics IRIS 1200 Terminal and on an
IBM-PC/XT with a custom graphics display system, both of which support 2D faceted
polygon tiling. When using one of these graphics display terminals, the visible surface
processor outputs the virtual image tree in back-to-front depth order with poiygon
shades at subtree levels pre-blended with their corresponding higher-level parent
polygons. In this mode of operation, the display processor simply scan converts two-
dimensional polygons into a frame buffer, using a painter’s algorithm to eliminate hid-

den surfaces.

Figures 3.10 through 3.13 show images rendered by the four Scan Conversion
Processors described in section 3.5. For each scene, a two dimensional virtual image
description file was created by the Image Generation Processor and then processed by
the corresponding Scan Conversion Processor to render the final image at 512 x 512
resolution, with 24-bits of color. The R-G-B color separations were then converted to
luminance and output on an Autokon Mocdel 8400 laser system, using a 65 dot/irich

halftone screen. Table 3.1 summarizes the VAX-11/785 run-time statistics for each of

-69-

Figure 3.10(a) Method 1: (512 x 512, VAX-11/785 Time = 14s + 63s)

Figure 3.10(b) Method 3: (512 x 512, VAX-11/785 Time = 14s + 1555)

Figure 3.11(a) Method 2: (512 x 512, VAX-11/785 Time = 10s + 100s)

-72-

Figure 3.11(b) Method 4: (512 x 512, VAX-11/785 Time = 10s + 108s)

73

Figure 3.12 Method 3: {512 x 512, VAX-11/785 Time = 12s + 155s)

-74-

= 35 + 553)

Time

(512 x 512, VAX-11/785

13 Method 4:

Figure 3

«78-

these images, including the total number of objects and polygons in the scene descrip-

tion, the number of polygons in the final image, the image generation time, and the

scan conversion time. For comparison purposes, Figure 3.10 was rendered using scan

conversion methods 1 and 3, and Figure 3.11 was rendered using scan conversion

amiethods 2 and 4. Additional images are included in Chapter 6.

3.7. Discussion

The goal of this research was to present new image rendering techniques that

simulate the global illumination effects of ray tracing, without the computational

penalty associated with its algorithm. Since the intent is to incorporate these algo-

rithms into existing graphics workstations, and perhaps influence the architecture of

Figure

3.10a
3.10b
3.11a
3.11b
3.12

3.13

Method
No.

Total Total
Objects | Polygons
e
7 1119
7 1119
g 42
9 42
5 437
3 60

Polygons | Generation | Rendering

In Image ‘Time Time
729 14s 63s
729 14s 155s
525 10s 100s
525 10s 108s
768 12s 155s
142 3s 55s

Table 3.1 VAX-11/785 Run-time Statistics for Figures 3.10-3.13

-76-

future worstations, consideration has been given to such factors as algorithm complex-
ity and efficiency, along with the resulting image quality. In addition, consideration |
has been given to support a progressive image rendering technique, in which the qual-

ity and detail content of the final image improves with time.

Chapters 4 and 5 discuss the implementation details of the Image Generation Pro-
cess and Scan Conversion Process, respectively. Chapter 6 discusses the implementa-
tion results of the various algorithms and presents possible enhancements and exten-

sions to this new image rendering technique.

11-

Chapter 4

Image Generation Processor

4.1. Introduction

This chapter discusses the issues involved in implementing the Image Generation
Processor, including choice of illumination model, visible surface algorithm, reflection

and refraction mapping, shadow generation, and output data formats.

4.2. Overview

The purpose of the image generation process is to create a virtual image descrip-
tion of a three-dimensional environment, given a geometric model of the scene, light-
ing conditions, and viewing specifications. As illustrated in Figure 4.1, input to the
process consists of a scene description file, user commands, and an object data base
containing geometric and color specifications for each available object. The scene
description specifies the placement and surface properties of objects within a scene,
lighting characteristics, and viewing parameters. Since the primary objective is to pro-
vide an interactive graphics environment, the image generation process is under full
control of the user. Output from the process consists of a sorted list of screen space
polygons, including surface shadow polygons and any face fragments that have been

mapped onto a given polygon surface through multiple reflections and refractions.

-78-

Input ' Object

Image
Generation
Processor

Image

Figure 4.1 Image Generation Processor Block Diagram

-79-

This polygon list can be used directly as input to any graphics display system for
immediate display, or can be further processed by a subsequent image rendering pro-

cess for high quality anti-aliased scan conversion.

4.3. Input Processing

Three-dimensional environments are created through a series of commands that
specify position information and characteristics of objects, light sources, and viewing
conditions. These commands are given to the input processor either interactively by
the user from the keyboard, from a pre-constructed scene descriptor file, or both. A
useful repertoire of commands has been implemented to provide a simple and struc-
tured way of describing and positioning objects and light sources within a scene, and to
specify convenient viewing and global scene parameters. Other commands permit con-
trol over various aspects of the image generation process, such as polygon sorting
order, sorting complexity, and type of shading. A compiete description of all available

commands is provided in the Appendix.

An example of a scene descriptor file, along with its resulting image is illustrated
in Figure 4.2. This simple scene depicts a diffuse cut-cube resting on table top,
illuminated by a white point light source positioned away from the eye at (x,y,z) = (-
4.,-2,6) so as to cast a shadow onto the table top surface. A second light source,
defined as diffuse, provides additional illumination but does not cast shadows. A
right-handed coordinate system is assumed for both object definitions and scene

descriptions, and both cbjects are defined with a center a (0,0,0) and a bounding-box

-80-

fname
resolution
perspective
pushmatrix
ident
polarview
translate
light
light
#
defobj
color
scale
translate
endobj
defobj
color
translate
rotate
endobj
popmatrix

test
512 512
45.0 1.0 0.01 1000.0

/* save perspective transformation */

70750 /* dist,azim,inc,twist */
00-1 I* x,y,z */

-4.0 -2.0 6.0 0.8 0.8 0.8 100 Point
0.0 -10.0 10.6 0.5 0.5 0.5 50 Diffuse

cube

111 *rgb?/
5§50.1 *xyz?*
00-1 *xyz*/

cutcube
0i0
0061.05
30z

Figure 4.2 (a) Scene Descriptor File Example

Figure 4.2 (b) Resulting Image

-81-

of -1 to +1 in all dimensions. The perspective ccmmand defines a field-of-view of 45
degrees, 1-to-1 aspect ratip, and near and far Z-clipping planes. Since the eye is
assumed to be located at the origin looking down the negative Z-axis, the polarview
and subsequent translate command specify the required viewing transformations
needed to position the combined objects at the desired viewing angle and distance
away from the eye. Commands within each object definition specify the object’s color

and desired geometric transformations.

Given a scene description, the first step in the image generation process is to con-
struct an internal data structure representation of the entire scene. Associated with
each specified object, a data structure is created containing the object’s three-
dimensional bounding-box description, an array of points specifying the coordinates of
all its vertices, and a list of all polygons making up the object. In addition, various
user specified cbject surface properties, such as color, shininess, and intensity coeffi-
cients are saved along with the object’s geometric description for subsequent shading
calculafions. These surface parameters either can be specified as global for the entire
object, as for example a white transparent champagne glass, or can be specified
independently for each polygon or vertex making up the object, as for a multi-colored

cube. Light source specifications include position, range, color, intensity, and type.

A 16-level deep transformation matrix stack is implemented to support hierarchi-
cal positioning of objects and light sources within a scene. Geometric operations, such
as rotate, translate, and scale affect the current transformation matrix (CTM), which is

applied to all light source coordinates and object points during the scene description

-82-

phase. Thus, to affect the placement of one or more objects in a scene, without affect-
ing the global state of the environment, the CTM can be saved on the matrix stack,
manipulated accordingly, and then restored after the desired object(s) have been
defined. The transformation matrix stack also plays an important role during the vir-
tual image creation phase in saving the state of the CTM prior to a reflection or refrac-
tion mapping operation.

A number of useful pre-processing operations are performed after each object is
defined. First, the object’s vertex points and bounding-box points are transformed
using the CTM, which accounts for the composite sei of geometric transformations
specified to place the object into a world coordinate system, relative to all other objects
in the scene. Next, polygon plane equations are computed and saved in the object’s
data structure, as they are later required to perform shading calculations and to com-
pute reflection and refraction transformation matrices. In addition, if a polygonal
object is defined as representing a curved object, vertex normais are also computed by
averaging the plane equations of each polygon sharing the given vertex. These vertex
normals are later needed to perform vertex shading calculations, for the case of

Gouraud or Phong shading.

Prior to the actual image generation process, another useful pre-processing step is
performed, which later improves the computation of shadows. This step involves
checking to see which polygons are back-facing to any given light source and tagging
them accordingly. By maintaining a simple 16-bit tag along with each polygon, up to

sixteen light sources can be supported. This information is subsequently used to elim-

-83-

inate back-facing polygons of a closed object (i.e., objects entirely enclosed in
polygons) from consideration in shadow polygon projection, since projecting those
poiygons facing ‘he light source completely determines the shadow cast by a closed

object onto another surface.

4.4. Virtual Image Creation

At the heart of the image generation process is a recursive visible surface proces-
sor responsible for finding all potentially visible polygons within an arbitrary three-
dimensional clipping volume. The procedure begins with the standard truncated view-
ing pyramid as the initial clipping volume. All objects in the scene are transformed to
this eye coordinate system by applying the specified viewing and projection transforma-
tions contained on the CTM. The visible surface processor clips all objects to the
current clipping volume, eliminates back-facing polygons, and depth sorts the remain-
ing polygon list. In the process, a virtual image tree is created containing ail poten-
tially visible polygons within the active clipping region. As illustrated in Figure 4.3,
the first level of the virtual image tree contains all polygons within the specified field of
view. Subsequent levels of the tree are created by recursively tracing polygonal reflec-

tions and/or refractions, using linear transformation techniques.

Several methods have been considered, and implemented, for creating the virtual
image tree. The first, and simplest method involves using a two stage hierarchical
approach to find all potentially visible surfaces at each level of the tree. The procedure

begins by first transforming only the object’s bounding box description to the current

Figure 4.3 Virtual Image Tree

-85-

coordinate system, culling out objects completely outside the active clipping volume,
and performing a simple depth sort of the remaining objects. Then, taking each object
in depth order, polygons composing the active object are transformed by the CTM,
clipped, and similarly depth sorted. For each reflective or refractive polygon in this
sorted polygon list, a new clipping volume and composite transformation matrix are
computed and made active, and the visible surface processor is recursively invoked to

compute the reflected and refracted components for the given polygon.

The advantages of this approach are twofold. First, it employs a remarkably sim-
ple and fast sorting mechanism to establish a rendering order for the polygons compos-
ing a given object. Using an insertion sort for simple objects (less than 64 polygons),
and a bucket sort for complicatea objects, the sorting order is simply determined by
either the minimum or maximum vertex Z-coordinate of the polygon, depending on
the sorting order (i.e., front-to-back or back-to-front). The second advantage is that
only a single object is active at each level of the virtual image, thus minimizing storage
requirements for very complicated scenes. The only disadvantage is that correct
object/polygon sorting order cannot be achieved in all cases by this simple sorting tech-
nique, especially for complex environments where objects within close depth proximity
obscure each other. To partially solve this problem, a feature was implemented to
expand all objects within each tree level into a compcsite sorted polygon list, while still
using the simple sorting mechanism to order the polygons for rendering. While this
feature eliminates a large percentage of sorting errors and works well for many

environments, it does not completely solve the sorting problem.

The two simple methods described above were augmented by providing a more
elaborate sorting mechanism to order polygons correctly and split those polygons that
cause problems in the ordering. This sorting technique is essentially an implementation
of the Newell, Newell, and Sancha (NN&S) sorting algorithm [17], with the addition
that polygons are either sorted front-to-back or back-to-front, depending on the
desired order. For the back-to-front case, each polygon, P, at the head of the sorted
list is tested against each other polygon, Q, that could possibly be obscured by P
because of incorrect ordering. Such polygons are those whose min-max vertex Z-
coordinates overlap, which in general, involves only a small percentage of the total
polygons in a scene. For these potentially troublesome polygons, a sequence of tests of
increasing severity are performed to determine proper sorting order, which may result
in moving @ to the top of the list or splitting either polygon P or Q and inserting the
resulting fragments in their corresponding positions in the list. A simple example of
two intersecting polyhedra is shown in Figure 4.4, illustrating the result of incorrect
simple sorting and the more elaborate sorting technique. Notice that face splitting was

required to render the objects correctly.

An extension to the NN&S sorting algorithm was considered, although not actu-
ally implemented, to improve its performance and reduce its storage requirements. As
noted above, all potentially visible objects in the scene within each tree level must be
expanded into a composite sorted polygon list, in order to perform the sorting step. A
more efficient technique would be to use a hierarchical approach, whereby object

bourding boxes at each level are sorted and tested for possible obstruction with each

-87-

Figure 4.4 (a) Simple Depth Sorting Example

Figure 4.4 (b) Newell, Newell, & Sancha Sorting Example

-88-

other. Only those objects whose bounding boxes overlap in depth, and on the screen,
need be expanded into a composite polygon list for more elaborate sorting by the
above NN&S method. This simple extension to the NN&S algorithm would reduce the
total number of polygons that have to be tested against each other, and minimize the

total number of polygons active at any given time.

4.5. General 3-D Clipping

Maost hidden surface elimination techniques involve some form of clipping opera-
tion to cull out objects outside the field of view, and clip those that cross the clipping
volume [45]. Typically, a truncated viewing pyramid , like the one shown in Figure
4.5, is used to define the region in space where objects must lie to be visible on the

screen. By applying a perspective transformation to all points in the scene, this

Figure 4.5 Truncated Viewing Pyramid in the Eye Coordinate System

-89-

truncated viewing pyramid is mapped intc a standard viewbox in the screen coordinate
system, characterized by values of x,, y,, «and z; that lie in the range -1 to +1. The
clipping operation then simply becomes 2 test of the limits

—w=x=+w, w=y=+w, od-w =2z = +w.
where [x,y,z ,w] is the perspective homogeneous coordinate of each polygon vertex.
The clipping algorithm enforces these limits by clipping each polygon edge to the six
limiting planes defined above. After ciipping, a perspective division by w yields the
desired normalized screen coordinates of each vertex point in the range -1 to +1,
which then can be mapped into physical screen coordinates by the following scaling
operation:

- X
Xscreen - ?Vu + ch

= ‘XTVSY + Vg

Y screen
Z =Ly +V
screen w R4 cz

where V.., V., V., define the center of the viewport in the coordinate system of the

output device, and V,,, Vy,, V,, define the respective distances between the center

and the edges of the viewport.

A key operation in creating sublevels of the virtual image tree described earlier is
to perform a general clipping function on the transformed image after every reflection
and refraction transformation. Each screen space polygon, for which a reflection or
refraction mapping function is performed, defines a general clipping volume as thdis

two-dimensional polygon in the x-y plane is translated along the z-axis (Figure 4.6).

The face of the polygon defines the front clipping plane, and the translation of each
polygon edge along the z-axis defines the sides of the clipping volume. For simplicity,
the rear clipping plane is always chosen as the far clipping plane of the truncated view-
ing pyramid.

In order to improve the efficiency of the visible surface algorithm all clipping
operations are performed in two hierarchical steps. First, the object’s bounding box
(8-points) is tested against the active clipping volume and tagged as either completely
outside, completely inside, or partly in both. If the object is outside the active region,
it is simply eliminated from further consideration. Otherwise, the object is added to

the active object list for the current virtual tree level. Later, when an object is

Figure 4.6 General Clipping Volume

-9i-

activated for expansion into a polygon list, its saved clip-tag is examined to determine
if clipping is required at the polygon level. If no clipping is required, the object’s
polygons are simply examined for possible back-face elimination and added 10 the
active polygon list. Otherwise, a two-stage clipping operation is performed to accept,
elimirate, or clip each polygon. First, every object vertex point is tested against each
active clipping plane and a clip —code is computed and saved with each point, indicat-
ing on which side of each plane the point lies. As each polygon is considered, examin-
ing all the clip-codes associated with each of its vertices indicates whether the polygon
is completely inside or outside the clipping volume, or whether it needs to be clipped

to the boundaries.

The actual polygon clipping algorithm used is an extension of the reentrant clip-
ping technique presented by Sutherland and Hodgman [46]. In order to support the
recursive visible surface processor, a clipping volume stack was implemented to save the
state of each active clipping region as branches of the virtual image tree are con-
structed. For each reflective or refractive polygon considered, the active clipping
volume and current transformation matrix are pushed onto their corresponding stacks,
and a new set of plane equations and composite transformation matrix are computed
and made active. Then, the visible surface processor is recursively called to find all
possible reflected and refracted fragments mapped onto the given polygon. The design
of the clipping stack was motivated by the possibility of future hardware implementa-
tion of a general clipping engine, with the capabilities needed to support a multi-level

visible surface processor.

-92-

4.6. Reflection/Refraction Mapping

Ray tracing algorithms typically perform all their calculations in the world coordi-
nate system and redirect rays after each reflection or refraction. The virtual image
processor performs all visible surface calculations in a transformed coordinate system,
initially the viewing coordinate system, called the virtual coordinate system. After
each polygonal reflection or refraction, the entire scene is transformed into a new vir-
tual coordinate system where visible surface calculations continue for the active |
polygon. The transformations for reflection and refraction are specified by a 4 x 4
homogeneous matrix determined from the world space planie equation and surface pro-
perties of the given polygon. The current transformation matrix (CTM), and its associ-
ated matrix stack are used to recursively trace multiple reflections and refractions
through a scene. Assuming that each world space homogeneous coordinate vector
P = [x,y,z,w]is transformed to a new virtual coordinate system by

P =P-CTM,, n =1.2,..

then, in g=neral, the CTM at each level of the virtual image tree is given by

CTM, = M, (,-yM,(n-2) -~ - MM,)M, M,
where M,) specifies the computed reflection or refraction transformation at level £ in
the tree, M, specifies the composite viewing transformations, and M,, specifies the per-
spective transformation. M, and M, are established cn the CTM at tree level 1 dur-
ing the scene description phase, as specified by the user. The state of the CTM at
each tree level is saved on the matrix stack and later restored after sub-levels of the

tree have been determined.

-93-

Figure 4.7 shows the geometry of an incident ray V striking a plane with normal
vector N and generating a reflected ray R and refracted ray T. All four vectors lie in
the same plane and are assumed to be normalized. Since reflection in a planc is a
linear transformatioﬁ between each point P, = [x,,y,,z,,w,] and its mirror image
P = [x,y,z,w]it can be represented by a 4 x 4 homogeneous matrix, M, , and
expressed as

P =PM,
This transformation can be found by noting that the perpendicular distance, 4,
between any point P, and a plane defined by the plane equation L = [A B C DT is

given in vector form by d = P,L. Thus, the virtual point, P, can be found by

N
|4 R
v
By | 60 7
™ . ! planar
N2 N surface
AR
y “virtual
92 %‘p
\
T

Figure 4.7 Geometry of Planar Reflection & Refraction

-94-

translating P, a distance —2d along the perpendicular direction to the plane, as speci-
fied by the plane's uni. ormal vector N = [A B C 0], where A2+ B2+ C2= 1. In
point formula form, this can be expressed as

P =P, —2(PL)N = P.(I - 2LN) = P, M,

where M, is the 4 x 4 homogeneous reflection transformation matrix given by

L2 e T3S D
M, =I-2LN = | _54C -2BC 1-2C2 0
_JAD -2BD —a3¢p 1

and I is a 4 x 4 identity matrix. Thus, given the plane equation coefficients,
(A ,B,C,D), of a reflective polygon in world space, a reflection transformation matrix,
M, , is computed and then post-multiplied by the current transformation matrix to
establish a new virtual coordinate system in which to perform visibie surface calcula-
tions for the given polygon. The resulting matrix

CTM,,,, = M, CTM
contains the composite transformation which maps all objects in the scene to the virtual
reflected coordinate system of the given polygon, along with any previous level reflec-
tion or refraction mapping operations.

Unlike planar reflection, refraction by a plane, in general, is not a linear transfor-
mation since the angle of refraction is a non-linear function of the angle of incidence.
According to Snell’s law, this relationship is given by

M15inf; = m7sind,
where 0, is the angle of incidence, 0, is the angle -f refraction, and the index of

refraction changes from m; to m, at the boundary. However, there are two situations

-95.

under which planar refraction is linear [44]. The simplest case is under an ortho-
graphic projection, where the eye is iocated at infinity, resulting in all incident rays
striking a plane at the same angle 6. As illustrated in Figure 4.8, refraction by a
plane is equivalent to a translation transformation parallel to the given plane and,
therefore, can be expressed as linear transformation between each refracted point, P,,
and its virtual point, P, by

P = P,M,.
This refraction transformation, M, , can be found by noting that —(P,L) gives the per-

pendicular distance of P, from the plane and noting that

—_ ap
tanel = _—_—(P,L)

— a2
tan62 = _—_-(P,L)

where a; and a5 are the horizontal distances between the axis defined by the surface
normal, N, and P, P,, respectively (Figure 4.8(b)). The virtual point, P, can be
found by translating P, a distance (a«; — a3) along the unit vector S parallel to the
surface of the plane. In point formula form, this can be expressed as

P =P, + (a;-ay)S = P, — (tanfy — tan6,)(P,L)S
where

V - (N-VIN _ V - (N-VIN
IS' sinel

§ =

-96-

Eye at Infinity
Vv =[00-10]

N1
N2 05

>
b
/’/
4
4

Figure 4.8(a) Refraction by a Plane Under an Orthographic Projection

m
n2

S =V - (NVN

Figure 4.8(b) Geometry of Refraction Under an Orthographic Projection

-97-

Finally, substituting the normalized vsctor tangent, S, we have

P=pP —aP,L[V-(N-V)N] = P,(1 — aL[V—{N-V)N]) = P,M,

where

tanf; — tanf, 1 n
a = - = —_ ,
sinf, cos04 c0s0,

cosdy = —(NV) = B, m = (m/my), and

cosd, = Vi-n2(1-p2)
When the eye is located at infinity, V = [00 -10], B = - (V) = C, « is a con-

stant, and the refraction transformation is given by

1-aA2C —aABC oA (1-C?2 0
M. = | —@ABC 1-aB’C aB(1-C?%) 0
t -aAC?2 —aBC? 1-aC(1-C? (1)

—aACD -aBCD oD (1-C2)
Thus, for planar refraction under orthographic projections, an exact 4 x 4 linear
transformation matrix is computed, based only on the coefficients of the plane equa-

tion, L = [A B C D], and the relative index of refraction, 7.

Another simple case where refraction by a plane can be expressed as a linear
transformation is for rays at near perpendicular incidence, known as paraxial rays.
This situation corresponds to the center region of Figure 4.9, which shows a view of an
underwater checkerboard from the air [44], as generated by a standard ray tracer. For
paraxial rays, refraction can be approximated by a linear transformation since
sin ~ tan® ~ 0 and Snell’s law becomes

0
2L~ 2 - onstant

8 Mm

The effect of looking across a boundary with relative index of refraction v is that

-98-

Figure 4.9 View of an Underwater Checkerboard From Air [44]

objects seem to appear at m times their actual distance. Thus, as illustrated in Figure
4.10, planar refraction within the paraxial approximation corresponds to a scaling
transformation perpendicular to the plane, and can be expressed as

P = P,+(n—1)(P,L)N = P,(I+\LN) = P,M,

"{23 i 11‘?532 ﬁ’ég 8
M, = I+AN = | \UC "ABC 1+ArC2 0
AAD ABD \NCD 1

and A = 7 - 1. Note that M, = M,(n= —1), which results in a relatively simple
method for computing either a reflection or refraction transformation, given the world
space plane equation of a polygon a:;d its surface properties.

It should be noted, however, that the above treztment of planar refraction

assumes that the incident angle of all sight rays is small. Thus, for a perspective view,

-99.

Eye

virtual

real

Figure 4.10(a) Refracted Paraxial Rays by a Plane (n,>m)

N
vV
84

n planar
2 \?*\\ . surface

92\\\ e

\ip, virtual
\
T

Figure 4.10(b) Geometry of a Refracted Paraxial Ray

-100-

this assumption is only valid for cases where a refractive surface, subtending a small
angle, is nearly perpendicular to the line of sight. A more general treatment of planar
refraction remains to be implemented, and is briefly discussed at the end of Chapter 6

as a possible cxtension to this rendering algorithm.

4.7. Shadow Gencration

In standard ray tracing shadows are determined by sending rays from the visible
point of intersection to each light source and checking for obstruction by other objects
in the scene. In the present algorithm shadows are computed in reverse order by pro-
jecting polygons that lie between each light source and the active target poiygon, caus-
ing cast shadows. This different approach aims at computing shadow areas during each
shadow calculation instead of finding the modified intensity at a single point on the
surface as done in ray tracing. Shadows are determined for each given polygon as the
virtual image tree is created and then used by the image rendering process to modify

the intensity of the visible surface areas.

An important consideration in shadow generation is not so much the actual pro-
jection of shadows (although this is the ultimate goal) as it is the elimination of
unnecessary shadow projection calculations. This is to be expected since the number of
possible shadows cast grows rapidly as the scene complexity increases. For each light
sourc;a in the scene, the shadow generation process begins by creating a shadow
volume, defined by the light scurce and each world space vertex of the target polygon.

As illustrated in Figure 4.11, this volume defines the region in space where a polygon

-101-

x\ Shadow Volume
\\\
NN
Target

A >olygon
63 \\\ N

N

~

Figure 4.11 Shadow Volume Between Light Source and a Polygon

can cast a shadow on the surface of the target polygon. A two stage hierarchical clip-
ping operation, similar to that described earlier in section 4.4, is then performed to cull
out objects and polygons completely outside the shadow volume and to clip those
polygons which cross its boundaries. In addition, polygons that have been tagged as
back-facing to the light source (see section 4.2) are also eliminated from further con-
sideration, since it suffices to project only front-facing polygons to completely define

the shadow silhouette of a closed object.

Shadow polygons are computed by projecting the vertices of one polygon onto the
plane of another. The parametric form of the line between the light source and each
vertex to be projected is used to calculate this projection. As iliustrated in Figure 4.12,
given the two points P, = (x;,y;,2;) and P, = (x,,y,,2,), the set of points,

P = (x,y,z), that lie along the line joining P, and P, is given parametrically by

x(¢) =x + (x, —x)t

-102-

y@®) =y + Oy M

z(8) =2z + (2, — z;)2
As the parameter ¢ is varied between 0 and 1, a line is traced between the two end
points P; and P, , respectively. To compute the projection of vertex P, onto a polygon
with plarie equation Ax + By + Cz + D = 0, we simply intersect the parametric line
with the plane and solve for the value of ¢ at the common intersection point

ACy + xqt) + B(yy + yqt) + C(zy + z4¢) + D =0

where (x4, ¥4, 24) = (x, — X, ¥» — ¥, 2, — z;). Then, solving for ¢ to find the
projected point, P, we have

_ Ax;+By, +Cz;+D
Axd "'B)'d +CZd ’

Py = [x(¢) y(¢) z(0)]
Note that the nurmerator in the eqeation for ¢ is constant throughout the shadow pro-
jection calculation between each light source and the target polygon, and thus need be
computed only once. The denominator, on the other hand, varies with each vertex
that is to be projected. Since each polygon considered for shadow casting has been
clipped to the active shadow volume, there is no need to check if the computed sha-

dow is actually correct or not, as required in other previous shadow algorithms [20].

Following shadow projection, each cast shadow polygon is transformed to the
current virtual coordinate system by the CTM, and then possibly clipped to the active
clipping volume. This second clipping operation is only required if the current target

polygon is tagged as having been clipped by the visible surface processor. Note that no

-103-

Pl =(xl’yl7zl)
P, ®_ Light P, = (xy, ¥, 2)
P, = (x5, Y55 25)

. Shadow Plane

Figure 4.12 Geometry of Shadow Projection

checks are made to see whether a shadow polygon is actually visible in the final image,
or whether two or more world space polygons cast shadows that overlap cn a given
polygon. Although this shadow overlap may result in unnecessary shadow calculations,
the amount of computation needed to detect and eliminate these cases may in fact

outweigh its rewards. In addition, the final image is unaffected by such cases.

Rendering shadow regions can be accomplished in a variety of ways, depending
on the final scan conversion method used. In this implementation, shadow regions are
rendered by scan converting all shadow polygons either before or after the correspond-
ing target polygon, depending on the rendering order. For a back-to-front sorting
order, shadows are rendered by first scan converting the target polygon and then
overwriting it with all of its shadow polygons, while for a front-to-back sorting order,
shadow polygons precede the target polygon. For efficiency, and also for implementa-

tion simplicity, all shadow polygons associated with a given light source carry the ident-

-104-

ical shade, as determined by computing the average target polygon shade without the
given light source. In addition, since shadow polygons are independently scan con-
verted, the shade of overlapped shadow regions caused by two or more light sources
will not be exactly correct. Extensions to this simpie shading scheme are discussed in

Chapter 6.

An interesting variation to the above shadow generation technique would be to
pre-ccmpute ail shadow polygons associated with each world space polygon and include
them with the original polygon as surface detail. The advantages of this approach are
twofold. First, for static scenes where light sources and objects are stationary and only
the eye position is varied between successive frames, shadow polygons also remain sta-
tionary and only need be computed once for the entire sequence. Secondly, for scenes
containing multiple reflection and refraction situations whereby a given object is visible
many times throughout the image, pre-computation of shadows will also eliminate
repeated computations. One disadvantage, however, is that the amount of storage
consumed in describing a scene including shadow polygons may become extremely
large, especially for very complex environments. Even if overlapped shadow polygons
from a given light source are combined, the total number of resulting fragments may

still be quite large.

-105-

4.8. Illumination Model and Shading Options

A number of techniques were considered and implemented for calculating the
ambient, diffuse, and specular intensity contributions of each polygon and then blend-
ing these with possible reflected and refracted components. These various techniques
result in different degrees of realism in the final image, and provide the user with con-
trol over the amount of computation spent in creating the image and its resulting qual-
ity. Depending on the output mode of display, either a single global shading vzlue, or
individual vertex shades are computed for each polygon. For example, if the image is
to be immediately displayed on a graphics workstation having a solid polygon fill func-
tion, then only a single average polygon shade is determined. Otherwise, if the
polyzon list is to be further processed to produce smoothly shaded images, vertex
shades are computed. In both cases, Phong’s illumination model [10] is used to com-
pute the ambient, diffuse, and specular intensity components of each polygon/vertex

(Figure 4.13):

Is Is
I=kyi, + k(j)|ky 21 (N-Lj) + Kk, 21 (N-H ;)"
J-_- l:

where

I = perceived intensity,

= ambient light intensity,

. = ambient coefficient,

k; = diffuse coefficient,

k, = specular coefficient,

[; = number of light sources,

N = unit surface normal,

L; = j* light source unit direction vector,

H; = unit vector halfway between L; and the eye direction, £

o~

-106-

n = measure of shininess of the surface.
The extra term, k (j), was added to the diffuse and specular intensity calculation to
account for the decrease in light energy received by the surface as a function of its

specified range and actual distance traveled. This effect is simulated by

_ 2
k(j) = max“l - i1-,--'--—11)-"—|—], 0]

where

P; = j™ light source position,
P, = vertex position,
Range; = maximum range of light source j.

Specular highlights are represented in a variety of ways. For constant or Gouraud
shading, the specular component is determined by the corresponding term in Phong’s

intensity formula above and simply added to the polygon shade or vertex shade,

Figure 4.13 Geometry of Reflection for Shading Calculations

-107-

respectively. This results in a poor approximation to the actual specular highlight on a
curved surface because the variation of the surface normal across the surface is not
taken into account. A highlight anywhere within a polygon except at its vertices can-
not be accurately depicted since intensity values inside the polygon are simply linearly
interpolated from the values computed at the neighboring vertices. In order to better
represent specular highlights in curved objects modeled by polygonal models, Phong’s
interpolated normai technique is used selectively only in those areas of the image
where a highlight is present. An algorithm similar to the one presented by Phong and
Crow [47] is used during shading calculations to determine which polygons contain
specular highlights, thus requiring the more costly interpolated normal approach. This
method allows using more efficient Gouraud type polygons for most of the image, and

using Phong type polygons only in specific areas of the image.

Phong type polygons may include up to sixteen highlight normal vectors, and asso-
ciated light source intensities, along with each vertex description. Final blending of the
ambient, diffuse, and specular intensity components is performed during polygon scan

conversion using the blending formula
nlis
Itol = Ie + ‘_Zl IL, ki

(K[,)"
ki = (N-H)" = [m]

where
n = shininess of surface,
nlts = number of highlight vectors,

I,,; = total pixel intensity,
I, = current pixel intensity,

-108-

I;, = i*® highlight source intensity,
hitnml[i] = i** highlight normal vector.

The highlight normal vector, hitaml (i], is computed by rotating the vertex normal, ¥,
into a coordinate system having H; aligned with the z-axis. In this space,
H; = [00 1], and

hitaml [i],

N-H; = Thimmi i 1]
During polygon scan conversion, these highlight normal vectors are linearly interpo-
lated between the vertices defining the active left and right polygon edges, and then
interpoiated horizontally along each scan line to determine their approximate value at
each display pixel position. This computation is certainly more costly than Gouraud’s
simple interpolated shading technique, but typically involves only a small percentage of

the total number of polygons composing an image.

All intensity calculations have to be performed in world space, where objects and
light sources are defined relative to the same coordinate system. However, polygon
fragments generated by the recursive visible processor are in a virtual coordinate sys-
tem defined by the composite application of any reflection or refraction transforma-
tions, in addition to viewing and perspective transformations. Therefore, for the case
of Gouraud or Phong shading where vertex shades are required, polygons have to be
transformed back to world space somehow prior to any shading calculations. To solve
this shading problem efficiently, two different approaches are taken to obtain world
space vertex coordinates, given the available screen space polygon information. The

simpiest, and most common case is when a given polygon has simply undergone coordi-

-109-

nate transformations, but not clipped toc any volume. Since, for this case, there is a
one-to-one correspondence between the vertex coordinates of the given polygon and its
original replica in world space, the desired vertex coordinates are simply copied and
then shading calculations performed. Otherwise, if the polygon has undergone any
clipping operation its vertex coordinates are transformed back to world space by an
appropriate inverse transformation matrix. For efficiency purposes, world space vertex
normals are carried along with each polygon that is to be smooth shaded, and are not

affected by coordinate or perspective transformations.

As with the determination of shadows for static environments, shading values also
can be computed as a pre-processing step and saved along with each world space
polygon. For faceted shading, this does not considerably increase storage requirements
since only a single R-G-B triplet is needed per polygon. For Gouraud and Phong
shading, however, the amount of information increases to an R-G-B triplet, and possi-
bly a highlight normal vector and color for each light source, per vertex. Considering
the potential explosion of memory requirements for complex environments, and the
desire to handle such environments on small workstations with limited real and virtual
memory, this shading pre-processing step was abandoned for the more efficient,

compute-as-needed approach.

4.9. Non-Linear Transparency

Refraction by a plane in this implementation involves a linear transformation of ail
objects in the scene followed by a clipping and sorting operation. In many situations,
it is desirable to simulate transparency through glassware modeled by poiygonal meshes
(e.g, the champagne glass shown in Figure 1.1) without the effects of refraction. Since
for transparent material the relative index of refraction is unity, the refraction mapping
approach will result in a transformation matrix, M,, equal to the identity matrix, I.
Rather than having to perform unnecessary linear mapping, clipping, and sorting
operations for every transparent planar surface, a different approach is used for simu-

lating the effects of transparency, as opposed to general refraction.

Transparency is a simple extension to the hidden surface algorithm used in this
implementation. Since surfaces are rendered into a frame buffer independently in
front-to-back or back-to-front order, all that is required to simuiate transparent
material is for the scan conversion processor to blend the intensity contribution of the
current surface with that of any previously rendered surfaces in the frame buffer.
Thus, for simple linear transparency, the intensity at each pixel is determined accord-
ing to the blending formula

Inew = Lowaky + lewr
where
I, = new pixel intensity value,
1,4 = old pixel intensity value,
I.,, = current amb+ dif+ spec intensity value,
ke

= transparency coefficient.

This simple technique was first used by Newell, Newell, and Sancha [17] and later

-111-

improved upon by Kay [29] to simulate the effect of varying transparency through
curved objects. Kay’s non-linear transparency model tries to better simulate the effect

of light passing through different amounts of material by decreasing the transparency

factor near edges.

The technique used here to model non-linear transparency effects for curved
polygonal objects is basically a variation of Kay’s approach. During shading calcula-
tions, a transparency factor is computed at each polygon vertex taking into account
both the eye direction, E, and the vertex surface normal, N, (Figure 4.13). The
cosine of the angle between £ and N gives a measure of the amount of light reaching
the eye from behind a transparent object, as a function of the object’s curvature rela-
tive to the eye position. This function gives a maximum when the eye direction vector
is perpendicular to the surface, and decreases as it moves away from the surface nor-
mal direction. To simulate the transparency of different types of material, this cosine
term is raised to some power, spwr. This non-linear transparency function used is
given by

ki = kyp (E -N)P"

where k,, is the transparency coefficient specified for the given object.

Transparent surfaces are treated just like regular diffuse surfaces by the visible sur-
face processor, except tagged accordingly, and carry along a transmission coefficient
with each vertex. During the subsequent hidden surface removal and polygon tiling
process, the scan conversion processor treats the vertex transmission coefficient as an

additional color component and performs Gouraud type linear interpolation along

-112-

edges and scan lines to compute the R-G-B-T values at each display pixel location.

The method used to biend final pixel intensities depends on the rendering order
(front-to-back or back-to-front) and is discussed in the subsequent chapter dealing with
the Scan Conversion Processor. An example of an image rendered using this non-
linear transparency technique, including specular reflections, is demonstrated in Figure

3.10.

4.10. Blending Options and Output Polygon Formats

A variety of intensity blending options and output polygon formats are supported
by the image generation process to allow different post-processing techniques on the
sorted polygon list. For example, the polygon list can be sorted in front-to-back or
back-to-front fashion, polygon shades may be specified by a single value (faceted shad-
ing) or with multiple values (Gouraud or Phong shading), and the blending of
reflected and transmitted fragments may be encoded into the specified polygon shades
or left to be performed by the post-process. A summary of the possible output polygon

formats is provided in Figure 4.14.

Associated with each screen space polygon is a tree of fragments which have been
mapped onto its surface by recursive reflection and refraction transformations. In
addition, a list of shadow polygons also may accompany the polygon and each of its
associated fragments. These various iniensity components and shadow detail have to
be blended together to form the final composite image for each area on the screen. In

principie, the final intensity at each picture element is computed by recursively blend-

-113-

Type Parameters

Special <'0> <level> <nvtx>

<x,y vertex coords> /* per vertex */

Faceted <'1’> <level> <nvtx> <r gb>

<x,y vertex coords> /* per vertex */

Gouraud | <'2’> <level> <nvtx>

<x,y vertex coords> <r g b> /* per vertex */

Phong <'3> <level> <nvtx> <hilite> <nlts> <hltclrs>

<x,y vertex coords> <r g b t> <hltnmis> /* per vertex */

where
Parameter Data Type Value
level unsigned short | 1...31
nvitx unsigned short | number of vertices
nits unsigned short | number of highlights
hilite double shininess of surface
X,y floats Oto1l
r,g,b,t unsigned chars | 0 to 255
hitclrs unsigned chars | (Ir,lg,Ib)
hitnmls floats (nx,ny,nz)

Figure 4.14 Virtual Image Tree Polygon Formats

ing the various illumination components according to the formula

I = koI, + kyly + koI, + lf,l, + k1,
which blends the'ambient, diffuse, specular, reflected, and transmitted' intensity contri-
butions according to their respective coefficients. The actual method used to perform

this blending operation depends entirely on the final mode of display and the tech-

-114-

nique used for performing hidden surface removal. Two techniques, with different

computational requirements and resulting image quality, are now presented.

Typically, when a user is working with an image interactively on a graphics works-
tation having a fast polygon fill function but no hidden surface removal capability,
polygons are shaded with a constant value and output to the screen as generated in
back-to-front order. This rendering order simply performs hidden surface removal by
overwriting pixels that are behind a visible surface. To render reflections or refrac-
tions, the image generation process recursively blends each parent polygon shade (i.e.,
its ambient, diffuse, and specular terms) with each of its children fragments at lower
levels in the virtual image tree as the tree is constructed and traversed from top to bot-
tom. Shadows are depicted simply by overwriting each parent polygon with all of its

shadow polygons.

An example of this rendering procedure is illustrated in Figure 4.15, which depicts
a cube resting on mirror along with its associated two-level virtual image tree. The
first level contains all visibie polygons within the initial viewing pyramid, consisting of
the mirror surface, Py, and the three front-facing polygons of the cube, P13, P 3, P 4.
The second level of the tree contains polygons mapped onto the mirror by reflection,
consisting of Py, P, P23, which are visible surfaces of the cube’s reflection. For a
back-to-front rendering order, the image generation process outputs polygons in the
following sequence:.

Py, Py, Py, Py, Pz, P13, Ppa

-115-

Screen
1 1 e [» ;
| P P2 L P13 Pia_|;
R

Figure 4.15(b) Virtual Image Tree

-116-

where the polygon shades of fragments Py, Py, and P 3 are given by
Iy = kp (koo + kalyzy + koIs1) + 1Ty,
Iy = k (ko + kalgm + koi;2n) + Iy,
I3 = kp(kalazs + kalyzs + koIs23) + Iy,
where

Iy, = kol + kalgnn + kslsqy-

This technique also has been extended to Gouraud shading by recursively blend-
ing vertex shades of each child polygon with the shade of the parent polygon evaluated
at the appropriate points. These parent shades are determined by a double linear
interpolation procedure, first along the two edges intersected by the given child vertex
Y-coordinate (in screen space), and then horizontally to the desired X-coordinate.

This procedure is illustrated in Figure 4.16 for fragment P of the example presented

above.

-117-

e found by interpolating between a & b
f found by interpolating between ¢ & d
g found by interpolating between e & f

Figure 4.16 Parent Shading Interpolation Example

Without additional processing, this simple image rendering technique has several
limitations. First, it cannot correctly blend both reflected and refracted components on
a given polygon since each branch of the image tree is processed independently and
fragments in both the reflected and refracted branches may overlap on the screen.
Second, it cannot combine shadows with either reflections or refractions, again because
these fragments are treated independently and, therefore, not blended. Note however,
that no probiem arises for perfect mirrors or perfectly transparent objects, since sha-
dows cannot be cast on these surfaces anyway. Lastly, complex shadow situations
involving overlapped shadow regions caused by multiple light sources are not depicted

correctly because of the overwriting nature of the algorithm. But, aside from these

-118-

special limitations, this simple rendering algorithm produces moderate quality images
relatively quickly with shadows, reflections, and refractions.

A second technique for producing the final image, which solves the limitations of
the simple method, involves a new rendering algorithm to be discussed in the following
chapter. This new algorithm accepts a front-to-back sorted polygon list, along with any
cast shadow polygons and multi-level reflected and refracted fragments associated with
each polygon, and produces smooth shaded anti-aliased images with hidden surfaces
removed. For this mode of operation, the image generation process simply cutputs
polygons in the desired front-to-back order, with vertex shades given by the computed
sum of ambient, diffuse, and specular intensity components. Thus, for the exampie
illustrated in Figure 4.15, the output sequence of polygon fragments is given by

Py, P13, P, P2, Pn, P23, Py
Final blending of these components with any reflected or refracted fragments is per-
formed during polygon scan conversion by the subsequent image rendering process.
Note that for the case of reflection (or refraction), fragments at sub-levels of the tree
are output before their corresponding parent polygon. As discussed in the following
chapter, this rendering order is required to allow correct biending of intensity frag-

ments, while at the same time supporting hidden surface elimination with anti-aliasing.

-119-

Chapter 5

Scan Conversion Processors

5.1. Introduction

This chapter discusses the issues involved in implementing the Scan Conversion
Processors, including hidden surface elimination, blending of diffuse, refiection, and
refraction components, and various approaches to anti-aliasing. Four different imple-

mented scan conversion techniques are presented.

5.2. Overview

The purpose of the Scan Conversion Processor is to render an image given a
sorted list of two-dimensicnal convex polygons describing the scene. This image
description consists of a polygon for each potentially visible surface on the screen,
along with a list of surface detail polygons defining shadow areas within its surface. In
addition, each screen space polygon may contain a tree of face fragments that have
been mapped onto its surface by multiple reflections and refractions. The tasks to be
performed by the scan conversion process include hidden surface elimination, polygon
tiling, cdmbim’ng shadow detail polygons cast by various light sources, and blending of
reflected and refracted components with the surface shading information. A number

of different methods have been considered and implemented for performing these

-120-

tasks, which result in varying levels of computational expense and image quality. In all
cases, the elimination of aliasing artifacts has been incorporated into the algorithms,

and the possibility of future hardware implementation has been carefully considered.

A block diagram of the scan conversion process is shown in Figure 5.1. Input to
the process is a screen-space virtual image description of a scene, such as the virtual
image tree produced by the Image Generation Processor discussed in the previous
chapter. This image description is assumed to be composed of two-dimensional convex
polygons, which may overlap on the screen, with vertex coordinates specified in nor-
malized screen-space (i.e'., X,Y in the range -1 to +1). Thus, given the same image
description, the final picture can be rendered at various display resolutions. A variety
of data formats are supported to allow specification of faceted, Gouraud, or Phong
polygon types. Faceted polygons are specified with a single R-G-B shading value,
whereas Gouraud and Phong polygons include an R-G-B triplet for each vertex. In
addition, Phong polygons may include up to sixteen highlight vectors, and associated
light colors, along with each vertex specification to allow the simulation of well-defined
specular highlights. Polygons are processed independently ip. front-to-back order by
one of two separate anti-aliasing tilers, depending on their type. Each tiler slices a
given polygon into horizontal strips in scan-line fashion and passes these scan segments
to its corresponding segment processor, which performs hidden surface removal and

anti-aliased scan conversion into a frame buffer.

Providing a dual path for processing mixed polygon types permits using simpler

Gouraud type polygons for most of the image and only using expensive Phong polygons

-121-

S |

Gouraud Phong
Anti-Aliasing Anti-Aliasing
Tiler Tiler
Gouraud Phong
Segment Segment
Processor Processor

Frame Buffer
Image

Figure 5.1 Scan Conversion Processor Block Diagrarma

-122-

to render specuiar highlights in specific regions of the image. As indicated above,
Phong type polygons may include highlight vectors with each vertex, which have to be
interpolated along edges and then along each scan line, and also normalized at each
pixel position. To avoid unnecessary computation, Phong type polygons are orly used
when absolutely needed to represent a specular highlight in a specific area of the

image, which typically corresponds to a small number of polygons.

Four different algorithms have been developed and implemented to perform the
tasks of hidden surface elimination and anti-aliased blending of polygon fragments.
Each algorithm is tailored to a specific class of images and imposes different computa-
tional and memory requirements. The basic requirement of all four methods is the
availability of a frame buffer, not necessarily physical, which holds the R-G-B color
information at every pixel location, along with an additional component to be used for
hidden surface elimination and pixel blending operations. Depending on the algorithm
used, this extra component imposes additional memory costs anywhere from one byte

(8-bits) to five bytes per pixel.

5.3. Anti-Aliasing Techniques

Without doubt, the importance of anti-aliasing in the production of realistic com-
puter generated imagery has been demonstrated over the past few years by the superior
quality of images displayed. Furthermore, a survey of the computer graphics literature
reveals that the same anti-aliasing technique probably has never been implemented

more than once. Each new rendering algorithm presented seems to include a unique

-123.

approach to solving the aliasing problems inherent in synthetic images. Therefore, 1t
should not be surprising to the reader to see yet anoiher approach to anti-aliasing in
the context of this thesis. In fact, several different methods were considered and

implemented as part of the hidden surface algorithm.

Aliasing in computer generated images is caused by the limited resolution of
displays, resulting in undersampling. The problem is most evident along edges of
objects (as jagged edges), in areas of complicated detail (as Moire patterns), and in
small objects, which appear and disappear between the sample points. As Crow points
out [4, 5] there are basically two techniques for solving these problems. The least pain-
ful method is to increase the effective resolution at which the image is generated and
then filter prior to resampling at the display resolution. In practice, however, effective
resolutions of four to eight times the display resolution are required to produce images
without noticeable aliasing artifacts, thereby increasing the cost of producing these
images. For most rendering algorithms, this cost is proportional to the square of the
resolution. A different approach is to make each sample point represent a finite area
on the display screen, instead of an infinitesimal spot, and essentially perform a filter-
ing operation at each pixel during the scan-conversion phase. This area sampling tech-
nique has the effect of applying a convolution filter prior to sampling the image at the

dispiay resolution.

One of .the earliest image rendering algorithms to perform anti-aliasing by area
sampling was Catmull’s scan line algorithm [48]. The image plane is divided into abut-

ting sample squares of equal size, with centers at each image point. Catmull’s algo-

-124-~

rithm produces visible polygon segments along each scan line and includes a pixel clip-
ping mechanism for finding visible portions of polygon fragments within each sample
sgriare. The intensity at each pixel is computed as a weighted sum of each visible sur-

face fragment within the corresponding sample square

Tpizet = 2 Tpoty (i Apoly i)
where I, ;) is the intensity contribution of polygon i, and Ay ;) is the visible area
of the polygon within the given sample square. While this algorithm correctly accounts

for every visible polygon sliver at each pixel it is so computationally expensive that its
primary use has been in simple two-dimensional animation with a small number of
large polygons.

More recently, bit-masks have been used to approximate the visible coverage of
each polygon fragment within a given sampie square [49,24], resulting in good quality
images at considerable reduction in rendering time. Other recent algorithms,

[50, 51, 52], have expanded the region under the filter kernel to include the area sur-
rounding each sample square. This allows using different weighting functions for the
filter kernel, instead of the unweighted filter approach used in area sampling, produc-

ing excellent results, but at considerable computational expense.

The aﬁproach taken here to perform anti-aliased scan conversion is essentially an
extension of the area sampling technique discussed above. While other filtering
methods are known to produce better results, they are considered too expensive for the
desired application. Area sampling is found to be a good compromise between these

enhanced filtering techniques and no filtering at all.

-§2§-

5.4. Hidden-Surface Algorithm

The method used to perform hidden surface elimination centers around a frame
buffer containing color and coverage information for each picture element. Convex
polygons are delivered to the scan conversion process, one-by-one, in front-to-back
depth order by the Image Generation Process and scan-converted into a frame buffer.
Since polygons may overiap on the screen, sufficient information is maintained at each
pixel location to provide a mechanism for performing hidden surface removal. For the
case of simple polygon tiling without anti-aliasing considerations, this simply amounts
to a flag (e.g., one of the possible intensity values) indicating whether the given pixel
had been covered by a previously rendered surface. Of course, a back-to-front render-
ing order performs essentially the same operation without the need for any coverage
information. But, for the stated purpose of performing a filtering operation, additional
information is needed at each pixel to indicate the extent of coverage caused by a pre-
viously rendered polygon. This coverage information is then used to prevent a hidden
polygon fragment from affecting the pixe! intensity of a previously rendered visible
polygon, and to blend contributions from several visible polygon fragments within a
given pixel.

Four different methods are considered, implemented, and compared for perform-
ing hidden surface removal, anti-aliasing, and blending of polygon intensity contribu-
tions from (ambient + diffuse + specular) shading information with its reflected and
refracted components. Common to all methods is a pair of polygon tilers (one to han-

dle Gouraud polygons and one to handie Phong polygons) that divide each polygon

considered into horizontal segments for processing by the appropriate scan conversion
processor. A discussion of these polygon tilers is given below, followed by a descrip-

tion of each scan conversion method.

5.5. Gouraud/Phong Polygon Tilers

Each polygon delivered to the scan conversion process is tiled independently from
top to bottom by either a Gouraud or Phong tiler, depending on its type. The func-
tion of these tilers is to divide each polygon into horizontal scan segments, determine
the position and color at the end ppints of each segment, and pass thcm to the
corresponding scan line segment processor, which computes the final intensity a‘ each
pixel along the given scan line. Since polygons are restricted to be convex and without
holes, each scan line intercepts the polygon in at most two points, defining a single
horizontal segment. For each polygon considered, the tiler first examines all the ver-
tices making up the polygon to establish the topmost vertex and computes a screen
space bounding box, which is used to eliminate tiny polygons. Given that polygon ver-
tices are stored in clockwise order, two edges are defined between the top vertex and
the preceding (left-edge) and succeeding (right-edge) vertices, as illustrated in Figure
5.2. Subsequent left and right edges are similarly defined by the simple vertex for-
mula:

NewEdge = (OldEdge + NumVix + Vixinc) mod Numvtx
where

NumVix = number of vertices in polygon, and

-127-

VixIne = -1 for left edge, +1 for right edge.

For each active left and right polygon edge, the tiler constructs a structure to hold
attributes for the edge. As shown in Figure 5.3 (a), the edge attributes include the
present X-position and color, along with their corresponding increments to establish
the position and color at the next scan line. Thus, rather than recomputing the posi-
tion and color information at each scan line, these increments are simply used to
update the present state of the edge to determine its subsequent state. The edge struc-
ture also includes the vertex number asscziated with the terminating vertex of the
current edge and a count specifying the number of scan lines remaining until the ter-
minating vertex Y-position is reached. In addition, the edge structure contains an

optional pointer to an array of edge-normal structures, which is used by the Phong tiier

Top Vertex
1
Left | | Right
Edge ! ; Edge
0 |
: b2
' Bounding-Box

Figure 5.2 Estabiishing Initial Left and Right Edges

-128-

to store attributes for each specified highlight normal and its associated increments
(Figure 5.3 (b)). When a terminating vertex is reached, the appropriate edge structure
is recalculated to reflect the attributes for the new edge below the current one. The
tiling process terminates when all polygon vertices have been exhausted.

Unlike simple polygon tilers, which do not perform anti-aliasing, the filtering tilers
described above cannot ignore edges with vertical spans of less than one scan line, and

must properly handle the transition from one edge to another. Figure 5.4 illustrates a

simple example o, a polygon spanning four scan lines, with left edges Ly, L, and L3,

typedef struct

{
double x,dx; /* Horiz positicn & increment */
double r,g,b; /* Edge Color */
double dr,dg,db; /* Color increments */
double t,dt; /* Transparency & increment */
double ht; /* Vertical height */
int vixno; /* Terminating vertex number */
int Inth; /* Number of lines remaining */

edge_normal *amliptr; /* Optional highlight normals */
} edge_position;

Figure 5.3 (a) Polygon Edge Structure Definition

typedef struct
{
double xn,yn,zn; /* Highlight normal vector */
double dxn,dyn,dzn; /* Normal vector increments */
} edge_normal;

Figure 5.3 (b) Highlight Normal Structure Definition

-129-

4 /_,//Ll———/f """ height (Ht)
Ly

1 \/‘R// Scan-line
2

Figure 5.4 Polygon Exampie Spanning Four Scan Lines

and right edges R, and R,. Along with each active edge structure is an attribute (ht)
that specifies the vertical height of the current edge position from the bottom of the
active scan line. ‘Normally, the height associated with the active left and right edge
positions is equal to one corresponding to the usual case of a polygon segment having
full height coverage along a given scan line (e.g., scan line 2 in Figure 5.4). However,
at the start or end of an edge (scan lines 4, 3, and 1), this height may be less than one
and must be properly interpreted to determine the actual coverage of a polygon edge
along the scan line, as needed by the anti-aliasing scan line segment processor. In
addition, note that along scan lines containing a transition between t§v0 edges, there
may be more than two edges active with potentially significant horizontal extent, which

have to be properly accounted for. While the possible number of active left and right

-130-

edges for one polygon may exceed a total of four along any given scan line, this

number is rarely exceeded in most typical images.

In order to support proper filtering along the troublesome edges discussed above,
each tiler maintains two edge structures per side containing the top and bottom attri-
butes of each edge defining a scan line segment. Normally, as each polygon is tiled
from top to bottom, the attributes specifying the current left and right bottom edge
position and color are copied to the top =dge structures, and the new bottom edge
positions and color information are calculated by updating the current attributes with
their corresponding increments. These four edge positions define a trapezoid with
sloping sides and top and bottom edges aligned with the current scan line. This is illus-
trated in Figure 5.5 (a) for the case of scan line 2 in the example of Figure 5.4. How-
ever. at the two extremes of any polygon edge, the active edges within the scan line
containing the given end vertex may define an arbitrary polygon segment with up to six
sides (e.g., scan line 3 in Figure 5.4), assuming we limit the number of active edges
within a given scan line to four. In order to simplify the subsequent process of polygon
shading interpolation and filtering, the tiler always divides these polygons into two
polygonal sections and invokes the segment processor twice for the given scan line.
This is illustrated in Figure 5.5 (b) for the case of scan line 3 in the example of Figure

5.4.

Given any convex polygon, the Gouraud or Phong tiler will generate polygonal
scan line segments defined by four vertices (left-top, left-bot, right-top, right-bot),

which are to be scan converted into a frame buffer. Each vertex is defined by its

-13%-

left-top right-top

left-bot right-bot

(a) Scan-Line Segment with Full Height Coverage

-
-~ -
-

(c) Section 1 of Scan-line Segment (b)

LzN

(d) Section 2 of Scan-line Segment (b)

Figure 5.5 Examples of Typical Scan-line Segments

-132-

corresponding edge structure, which specifies its X-position, vertical height, and color
information. In addition, Phong polygons also contain up to sixteen highlight normals
with each vertex definition. The exact method used to scan convert these polygonal
scan segments into a frame buffer, while performing anti-aliasing, hidden surface remo-
val, and intensity biending depends on the choice of scan conversion processor. Four

different implemented techniques for performing these functions are presented below.

5.6. Scan Conversion Method 1: Area Coverage

One of the simplest methods of performing anti-aliased scan conversion, while ai
the same time removing hidden surfaces, is to render surfaces in front-to-back order,
keeping track of the accumulated area coverage at each pixel. Here, a pixel is defined
as a square region having finite area with its center located at the corresponding image
point. As surfaces are scan converted into a frame buffer, the area of a given surface
fragment within each pixel is calculated and used to scale the fragment intensity
accordingly. If the current pixel position is empty, then the fragment’s area-weighted
intensity is stored at the corresponding frame buffer location along with its area cover-
age. Whenever an attempt is made to modify a pixel location that has been previously
written by a visible surface fragment, the existing pixel coverage information is used to
blend together the new fragment intensity with the current pixel intensity. Thus, after
all polygons have been scan converted into the frame buffer, the final intensity at each

pixel is the weighted sum of the intensity contribution of the closest polygon fragments.

-133-

This rendering technique is somewhat analogous to Catmull’s anti-aliasing scan-
line algorithm [48), except that no front-to-back polygon clipping operation is pex-
formed at each pixel. The present technique takes advantage of the likely distribution
of polygons in a scene to avoid this expensive clipping operation. For example, in typi-
cal scenes most of the edges are shared between polygons making up the same object.
The pixels affected by such edges will be completely covered by these polygons, thereby
preventing any other hidden surface behind these polygons from contributing to the
pixel.' Furthermore, along the silhouette edges of objects, the visible polygon fragment
within a pixel behind the silhouette edge usually comes from a single surface. These

two typical pixel situations are illustrated below in Figure 5.6.

The implementation of this scan conversion processor consists of a scan line seg-

ment pre-processor, followed by a shader-interpolator, and finally, a pixel integrator

Edge shared Silhouette Edge (F)
by two polygons and back surface (B)
7
Py | Py F B
(a) (b)

Figure 5.6 Two Typical Pixel Coverage Situations

-134-

Gouraud
or Phong
Polygon Tiler

I

5 Polygonal
5 Scan-Line

Segment
Pre-Processor

Segment
Shader/
Interpolator

Pixel
Integrator

Frame Buffer
Image
(r,g,b,a)

Figure 5.7 Segment Processor I Block Diagram

-135-

(Figure 5.7). Polygonal scan line segments are passed to the scan conversion processor
by the preceding Gouraud (or Phong) polygon tiler. Since these segments can be of
arbitrary shape, and since in this case, we are only concerned with the percentage of
area coverage within each pixel affected by these segments, the scan line segment pre-
processor takes each polygonal segment given and converts it into normalized tra-
pezoidal spans. These spans are characterized by having their bottom edge aligned
with the active scan line, possibly sloping top edge, and sides perpendicular to the bot-
tom edge, as shown below in Figure 5.8. Given that each polygonal segment contains
four vertices, the segment pre-processor produces at most three such trapezoidal spans
for each scan line segment given. In most cases, these three regions take the form
shown in Figure 5.9 (a), corresponding to the typical case of a horizontal polygon band
generated by the tiler as it slices the polygon from top to bottom in scan line fashion.
Another example of this pre-processing step is shown in Figure 5.9 (b), which

corresponds to the polygonal segment depicted in Figure 5.5 (b).

| Active
Ht=1 !)
Lh h’// l Rh Scan-Line

|
Lx Rx

Figure 5.8 Normalized Trapezoidal Scan Segment

A - ———— -

7 \

Vi left middle right V4

(a) Horizontal Segment Divided Into Three Spans

Rh
Lh

- - ~ -~
e e . =

Vl V4

(c) Section 1 of Scan-line Segment (b)

Va

' Lh

Vi . Vi=Vy

(d) Section 2 of Scan-line Segment (b)

Figure 5.9 Normalized Trapezoidal Scan Segment Examples

-137-

Each trapezoidal region is then passed to the shader-interpolator, which further
subdivides each trapezoidal region irto horizontal sections to determine the coverage
and shading of the polygon fragment along each pixel location. Each region is
described by its end points, consisting of an X-position, vertical height (0 to 1) above
the active scan line, color shading information, and optional highlight normal vectors.
All shading and pixel coverage calculations are performed incrementally along the scan
line by first computing the corresponding color, optional highlight normal, and height
increments, given the values at the two ends of the span, and then using these to

update the current values at each pixel as the scan line is traversed from left to right.

Final pixel blending is performed by the pixel integrator, which is given the inter-
polated polygon shade and optional highlight normal vectors, along with the actual
area coverage of the polygon fragment for the given pixel. The pixel integrator first
checks the current pixel coverage information to determine whether to perform a write
or read-modify-write operation at the corresponding pixel location in the frame buffer.
If the pixel is empty (coverage = 0), it simply scales the total polygon intensity by its
area and writes the result into the appropriate frame buffer position, along with the
coverage information. Otherwise, if the pixel is not completely covered (coverage <
1), it blends the current fragment intensity with the existing pixel intensity and calcu-
lates a new total pixel coverage according to the blending formula

Inew = Toa + Acovlcur

Anew = min(Agy + Acyr, 1)

A - Acyr s Acr + Agy = 1
cov 1 - Ay, A + Ay > 1

where I3, Ayy is the existing pixel intensity and coverage, I, , A, is the current
surface fragment intensity and potential pixel coverage, and I, , A, is the resulting

total pixel intensity and coverage.

This simple technique of blending polygon fragments at each pixel by accumulat-
ing their respective coverage areas performs the needed task of hidden surface remo-
val, while at the same time, providing a mechanism for performing an anti-aliasing
filtering operation. By the nature of the rendering order of polygons, a large percen-
tage of pixels will be correctly rendered, since consecutive updates at a given pixel most
likely come from adjoining polygons, which completely cover the pixel. Its main
advantage is that it produces good quality images, as compared to non-filtered images,
at moderate computational cost and memory requirements. The coverage information
at each pixel is currently stored at 8-bits of precision, which is more than enough to
support anti-aliased scan conversion, and actually could be reduced to fewer bits if
necessary for a given implemzntation. The relative simplicity of the algorithm permits

easy extension into a hardware implementation for real-time performance.

The main disadvantage with this simple area coverage technique is that it does not
handle complex pixel situations correctly, due to the lack of geometry information
available at each pixel. Figure 5.10 demonstrates a compiex pixel consisting of a fore-
ground silhouette edge, F, partly obscuring a background surface, B. Given that frag-
ment F is rendered first, followed by fragment B, the final pixel intensivty will be
approximately shared by the two fragments (i.e, /,5y = 0.5/ + 0.515) and the pixel

will be marked fully covered, which of course is incorrect. To correctly render such a

-139-

Figure 5.10 Complex Pixel Example {edge F over background B)

complex pixel requires additional information about the actual pixel region covered by
a given polygon fragment, or a front-to-back clipping operation (as done by Catmull

[48]) to determine the actual visible polygon fragments within each pixel.

As a result of this lack of sub-pixel geometric information, the simple area cover-
age technique is also unsuitable for rendering a virtual image tree containing sub-levels
(i.e., reflection or refraction components.) The fundamental problem is that not
enough infosmation is available within each pixel to correctly eliminate hidden sur-
faces, while simultaneously blending multiple reflected and refra;:'ted fragments. How-
ever, even with its deficiencies, this rendering technique can correctly render many dif-
ferent images with simpie reflections, refractions, and shadows at low computational

expense and minimal memory requirements.

A simple extension of the pixel coverage idea provides a mechanism for simulating
non-linear transparency, which allows the simulation of light scattering through translu-

cent materials. During vertex shading calculations, the Image Generation: Processor

-140-

computes a non-linear transparency factor, T, (see section 3.7) and includes it along
with the vertex color information (R-G-B-T) passed to the scan conversion processor.
The pixel integrator uses this transparency factor to modify the pixel coverage value,
which allows a ~ubsequent surface rendered behind the current transparent surface to
contribute to the pixel’s intensity. Thus, for transparent surfaces, the new pixel inten-
sity and coverage information are computed by
Inew = Tog + Acovlcur
Apew = min{(Ayy + Agyr, 1)

where

Acyr = Agyy(1 — T)

A - A-cur’ écur + Agg =1
cov - Aold» Acr Y Aoy > 1

where T is the current surface transparency factor, /4, A,y is the existing pixel inten-
sity and coverage, /.., , A.. is the current surface fragment intensity and potential

pixel coverage, and /., , A, is the resulting total pixel intensity and coverage. Thus,
while a transparent surface may have full area coverage over a given pixel, its resulting

pixel coverage may allow subsequent surfaces to modify the pixel information.

5.7. Scan Conversion Method 2: Pixel Mask

Increasing the effective resolution at which an image is rendered is known to be a
simple technique for performing a filtering operation prior to resampling at the display
resolution. A simple way of achieving this effective increase in resolution, without
actually rendering the image at this resolution, is to change the definition of a picture

-i41-

element from a single infinitesimal dot to an array of points. In effect, each display
pixel is subdivided into an array of n X m pixels covering a finite area, as shown
below in Figure 5.11. To compute the coverage of a given polygon fragment within a
display pixel, all that is required is a mechanism for counting the number of subpixels
covered by the fragment. This subpixel count then can be used tc scale the intensity of
the given polygon fragment to determine its approximate contribution to the display
pixel. In addition, by saving the state of each subpixel in the a}ray (pixel mask), sub-
sequent polygon fragments falling within the same display pixel area can be clipped out
behind regions occupied by previous fragments. Thus, clipping one polygon fragment

against another becomes a simple boolean operation.

n @ = covered
O = empty
! l
e e ® -} OO /L ®
® o ® @ O O e ®
m

-] ® ® @ O O o ®
® ®)) O (7/ ® e

(a) (b)

Figure 5.11 Subdividing a Pixel Into n X m Subpixels

-142-

The number of subpixels used in the array will significantly influence the quality
of the final image, and the resuiting storage requirements. It also may be desirable to
have the size of the array be a power of 2 for efficient computation and storage rea-
sons. Two array sizes previously used by other researchers have been 8 x 8 [49] and
8 x 4 [24]. The subpixel size chosen here is 4 x 4, considering that it increases the
effective display resolution by a factor of 16 and results in a moderate increase in
storage requirement at each pixel. Thus, assuming 24-bits of color, a totai of 40-bits
(or 5 bytes) are needed per pixel (as opposed to 88-bits or 56-bits), which corresponds
to a 1.25 Mega-byte frame buffer memory requirement at 512 x 512 display resolu-

tion.

The implementation of this scan conversion processor is similar in principle to the
one presented in the previous section and depicted in Figure 5.7. It consists of a scan
line segment pre-processor, followed by a shader-interpolator, and finally, a pixel
integrator. Polygonal scan line segments passed to the scan conversion processor by the
preceding Gouraud (or Phong) tiler are characterized by four edges defined by their
corresponding vertex X-coordinate and vertical height above the active scan line. Fig-
ure 5.12 shows a possible polygonal segment corresponding to the scan line along the
top edge of a polygon. Since vectors, and since any given edge can span a considerable
distance, the segment pre-processor subdivides each polygonal scan line segment into
three (possibly zero-length) regions. Each sui)-segment is then passed to the shader-
interpolator, which further subdivides each segment span into pieces covering a single

pixel region, and interpolates the the color/normals as it traverses the scan line. Final

-143-

Lb Rb

Figure 5.12 Scan Line Along Top Edge of a Polygon

pixel intensities are computed by the pixel integrator, which calculates the visible cov-
erage of each polygon fragment within the pixei using pixel mask operations and blends

the resulting weighted intensity with the current pixel intensity.

An underlying computation in this scan conversion method is finding the pixel
mask corresponding to the subpixels covered by a given polygon fragment. This calcu-
lation is required at every display pixel location and, unlike the previous area-weighted
method where the coverage area was computed incrementaily along a scan line, cannot
easily take advantage of scan line coherence, except in some special cases. Although
various lookup table techniques have been previously implemented by others [49,24] to
compute this pixel mask, the approach taken here is a simple technique based on a
two-dimensional clipping operation. Given the four vertices defining the polygonal
scan line segment to be rendered, the segment pre-processor constructs a clipping
region bounded by the four edges connecting the given vertices. This clipping region
remains active for the entire scan line and used at each display pixel position to com-

pute the pixel mask defining which subpixels are within the active segment boundary.

-144-

‘Since the majority of display pixels are completely covered by a single polygon
fragment, the segment pre-processor attempts to establish a bounding box within each
scan line in which pixel masks are trivially determined. Consider, for example, the
polygon scan line fragment shown in Figure 5.13, which corresponds to a typical hor-
izontal slice of a polygon with full height coverage. For cases like these (which are the
most common), the segment pre-processor establishes the two scan line limits, cp_xmin
and cp_xmax , within which the given polygon segment has full pixel coverage,
corresponding to a pixel mask of all ones (M p,,). While rendering, the pixel integra-
tor simply tests the current display pixel position against these limits to check whether
a pixel mask has to be computed or simply deduced. If the current display pixel posi-
tion is outside these limits, then a pixel mask constructor is called which tests the
center point of each subpixel region against the active clipping region. If inside, the

subpixel bit is turned on, otherwise it is turned off.

Lt Rt
f L\
. PN
1 1 \
Lb cp_xmin cp_xmax RbD

Figure 5.13 Typical Polygon Scan Line Segment With Ht = 1

-145-

Clipping polygon fragments behind a previously rendered fragment is a trivial
boolean operation. At each display pixel, the pixel integrator checks the state of the
existing pixel mask, M,;,;, to determine whether the current polygon fragment can pos-
sibly contribute to the intensity of the pixel. If the pixel is completely covered, as indi-
cated by M,y = M ., then no attempt is made to compute a pixel mask for the
current fragment or to modify the existing pixel location. Otherwise, a pixel mask is
determined for the current polygon fragment, M_,.. To compute the visible portion
of this fragment behind any previously rendered fragments in the pixel, a simple
boolean AND operation is performed

Mgy = Moy Moy
where M_,, is the resulting visible mack for the given polygon fragment, and M,
represents the one’s complement of the existing pixel mask. Assuming that M, is not
null, a new pixel mask is calculated using a simple boolean OR operation
M., =M, + My,
which represents the composite coverage of all polygon fragments rendered at the
pixel.

Given the pixel mask representing the visible polygon fragment within a pixel, the
next step is to compute its corresponding area coverage. This amounts to a simple bit
counting procedure to determing the number of subpixels affected. For efficiency rea-
sons, the .method used is to strip off four bits at a time and use this code as an index
into a look-up table, which contains the actual bit count. The total bit sum is then

converted into a normalized area coverage (0 to 1) and used to perform area-weighted

-146-

intensity blending at the pixel. The final pixel intensity is then found by the blending
formula

hoew = Towg + f Moy eur
where f (M,,,) represents the visible coverage of the current polygon fragment, and

I.,, is the fragments intensity.

This scan conversion method provides a relatively uncomplicated and fast anti-
aliasing hidden surface mechanism. Within the accuracy provided by the bit mask size,
it computes the exact contribution of all polygon fragments falling within each pixel,
which allows computing a weighted sum of their intensity contributions. But above all,
this scan conversion method provides the necessary support to render & wide range of
virtual image trees with multiple levels of reflections and refractions, along with surface
shadow polygons. The underlying motivation behind implementing this rendering
technique was to provide a relatively fast and simple mechanism to render anti-aliased
images described by virtval image trees. In addition, the goal was to make the render-
ing algorithm suitable for a moderate cost hardware implementation. Clearly, time-
critical parts of the algorithm, such as the pixel integrator and pixel mask constructor
are prime candidates for hardware implementation, resulting in considerable perfor-
marce improvements.

The method used to render a virtual image tree using this scan conversion method
is closely coupled with the fragment blending option supported by the Image Genera-
tion Processor discussed in the previous chapter. With this blending option, every

sub-level polygon fragment in the virtual image tree, representing a reflected or

-147-

refracted component, is specified with all previous-level intensity components accumu-
lated with its own intensity contribution. Thus, for example, a polygon fragment
corresponding to a first level reflection would include its parent ambient, diffuse, and
specular intensity components, (I, + Iy + Iy)parens » along with its own intensity coniri-
bution, (I, + I + I;)pot , attenuated by its associated reflection coefficient, k.. The
total intensity specified with this polygon would then be

Loy = (g + Ig + I)papens + ke(Ia + Iz + Ii)poyy
Surface shadow polygons at sub-leveis of the image tree are similarly encoded and are
specified immediately preceding their target polygon. Since the image generation pro-
cess outputs polygon fragments in front-to-back depth order, starting with the deepest
level in the tree, all that is needed to render the final image is for the scan conversion
processor to tile polygons and perform hidden surface elimination. Pixel blending need
only occur within complex pixels receiving contributions from multiple polygon frag-

ments.

However, as mentioned in the previous chapter, this rendering technique does
have its limitations without introducing additional pre-processing. First, it cannot
correctly render overlapped regions in the image resulting from both reflected and
refracted comporients on a single polygon. Since each branch of the tree is rendered
independently, there is no way for the scan conversion processor to decide when to
perform hidden surface elimination or when to blend. The decision is to always elim-
inate hidden surfaces, and thus, only the first branch of the tree rendered will be visi-

ble, except for those coincidental cases where the components between the two sub

-148-

branches do not overlap on the screen. Second, it cannot correctly combine shadow
polygons with either a reflective or refractive surface. This would require that such a
surface be divided into shadowed and non-shadowed regions and then traced
separately. Lastly, complex shadow situations involving overlapped shadow regions
caused by multiple light sources are not depicted correctly because of the overwriting

nature of the algorithm.

It should be noted, however, that such limitations are not severe enough to con-
sider implementing a relatively fast and simple image rendering technique that works
well for most images. Several examples of images produced by this method are shown
in the following chapter, demonstrating anti-alasing, shadows, refiections, and refrac-
tions. Both faceted and Gouraud interpolated shadiing are supported, in addition to
limited Phong specular highlights. This Phong limitation is simply due to the fact that
only sixteen highlight vectors per vertex are currently supported. Since each sub-level
polygon fragment in the virtual image tree must include all previous level shading
information, there can be at most a total of sixteen higiilights falling on a given
polygon at any level of the tree. (I personally have not run up to this limitation!}. A
more elaborate image rendering technique is presented in section 5.8, which eliminates

the biending limitations discussed earlier.

5.8. Scan Conversion Method 3: Hybrid Area/Pixel Mask

Although the pixel mask rendering technique presented above works well at per-

forming subpixel polygon clipping and calculating approximate pixel coverage, the area

-149.

sampling technique discussed in section 5.5 actually works better at filtering edges.
This is not surprising, since the latter analytic technique gives a better estimate to the
amount of pixel area covered by a given polygon fragment. Images rendered by the
pixel mask technique still exhibit substantial intensity quantization along the silhouette
of objects, caused by the limited resolution of the pixel mask. The silhouette edges of
objects are the most severely affected because of the sharp intensity discontinuity that
occurs between the edge and its background. Increasing the subpixel array size wouid,
of course, improve the rendition of edges, but also demands a substantial increase in

computation and memory requirements.

A simple way of enhancing the filtering operation along silhouette edges is to
carry along the actual area of a subpixel-sized edge fragment, as computed in method
1, in addition to its pixel mask. Then, whenever possible, the actual area is used
instead of the bit count in the mask to compute the area-weighted intensity contribu-
tion to the pixel. For this implementation, this results in an additional 8-bits of storage
per display pixel, raising the total storage requirement to 48-bits (or 6-bytes) per pic-
ture element.

Another advantage of saving both a pixel mask and pixel coverage value at each
display pixel is to provide a mechanism to render surfaces behind transparent objects,
as discussed in Scan Conversion Method 1. For this case, the pixel mask is used to
perform efficient subpixel fragment clipping, while the pixel coverage indicates the
accumulated intensity coverage from previously rendered surfaces. Thus, for example,

a diffuse surface covering 50 percent of the pixel area would result in a pixel mask hav-

~150-

ing half of the subpixels covered and a pixel coverage of 0.5 (in the range 0 to 1).

However, a transparent surface affects only the pixel coverage and intensity values and

not the pixel mask.

5.9, Scan Conversion Method 4: Multi-Level Pixel Masks

All three rendering methods presented thus far simply perform hidden surface
elimination and subpixel filtering operations to reduce aliasing artifacts in the final
image. In all cases, it is assumed that each polygon given to be rendered contains the
composite shading information for that region in the final image occupied by the
polygon. For mahy scenes, it is relatively simple for a visible surface processor to pro-
duce polygonal patches representing homogenegous régions in the final image, which
simply can be scan converted independently. These patches may correspond to simple
visible diffuse surfaces, or composite regions representing the accumulation of multiple
levels of reflection or refraction. Given that each surface patch contains a blend of all
previous level intensity contributions, then all that is required to render the final image

is to scan convert each patch and eliminate hidden surfaces.

As discussed earlier in this chapter, this rendering technique works well for many
scenes but has several limitations. Since it performs no intensity blending operation
between two different surface patches, except within a display pixel to blend subpixel
fragments, it cannot add contributions from overlapped regions in the image
corresponding to, for example, a reflection component and a refraction component visi-

ble at a given surface. To render such cases correctly requires a mechanism for decid-

-151-

ing when to perform hidden surface elimination and when to perform intensity biend-
ing operations. The only other way is to perform all hidden surface elimination calcu-
lations prior to the rendering phase, and then always biend overlapping polygons as
tliey are scan converted into a frame buffer. Of course, this requires an extremely
complicated recursive visible surface processor [44] that can trace fragmented polygonal
beams of light through a scene with multiple reflective and refractive surfaces to deter-

mine exactly what surfaces are visible in the final image.

The decision made here was to develop a novel image rendering technique that
could render complex environment situations specified by a virtual image tree. This
rendering method would have to handle both hidden surface elimination at each level
of the image tree, since polygons in the tree may overlap on the screen, and also per-
form intensity blending as the tree is traversed vertically. With this rendering concept,
an image generation processor simply finds all potentially visibie surfaces within any
region in the image, while recursively tracing reflections and refractions, and builds a
virtual image tree representation of the entire image. Each serface polygon in the
image tree contains its own intensity contribution to the final image, along with any
shadow polygons that have been projected onto its surface. To compute the final
intensity within any given region in the image, the rendering process has to traverse
the tree and add up all contributions from the multiple reflected and refracted com-
ponents in sublevels of the tree. At the same time, it has to eliminate hidden surface

fragments and perform anti-aliasing at each tree level.

-152-

The approach taken to implement this rendering technique was to extend the con-
cepts developed in the previous three methods to support a multi-level, anti-aliasing,
hidden surface algorithm. Scenes are assumed to be described by virtual image trees,
with surfaces at each tree level sorted in front-to-back order. In addition, since
polygons are rendered independently, it is further assumed that the image tree is
traversed sequentially starting with the deepest branch associated with the closest
polygon, and recursively working upwards towards the top level. This corresponds to
the order in which the Image Generation Processor presented in the preceding chapter
creates an image description. Each polygon in the tree is specified with its ambient,
diffuse, and specular intensity contributions, pcssibly attenuated by any higher-level
reflection or refraction coefficients. Shadow detail polygons are specified by including
them prior to their target polygon specification. The exampie shown in Figure 5.14,
illustrating a diffuse cube resting on a partly diffuse mirror, summarizes this image
rendering procedure. For this case, the rendering order is

Py, P13, P14, P21, P, P23, 51, 52,53, Py
where S, S5, S5 correspond to shadow polygons cast onto the mirror by the diffuse

cube.

The underlying idea behind this new rendering technique is to maintain sufficient
information at every pixel to allow multi-level hidden surface elimination and anti-
aliasing, in addition to inter-level intensity blending. The algorithm works with two
different data types: “pixel-structs” (Figure 5.15) and "pixel-fragments” (Figure 5.16).

Pixel-structs occupy an array cqual in size and shape to the final image, whereas pixel-

-153-

e

£P

Level-2

Levei-1

Figure 5.14(a) Cube on a Partly Diffuse Mirror

Screen

P13

P12

S
S

<

P et e ittty |

Lev-2

Py3

Py

Figure 5.14(h) Virtual Image Tree

-154-

fragments are dynamic in nature and exist temporarily throughout the image as it is
being rendered. Each pixel-struct occupies 8-bytes of storage, consisting of the accu-
muiated pixel color (24-bits), a pixel-status byte (8-bits), and a possible fragment list
pointer (32-bits). The pixel-status (Figure 5.17) contains a 5-bit field indicating the
virtual image tree depth (1 - - - 31) of the current polygon occupying the pixel, along
with two flags specifying whether the pixel is fully covered or fragmented (i.e., com-
plex). A current depth of zero indicates that the pixel is empty. A pixel is said to be
"simple" if empty or completely covered, otherwise it is "complex”. If a pixel is com-
pletely covered, the associated status flag is set and the current depth field (> 0)
reflects the image tree depth at which the coverage occurred. Otherwise, if the pixel is
complex at any tree level, the fragment list pointer (flisz) points to a structure contain-

ing the accumulated pixel mask (pmask) and associated pixel coverage (pcovr).

Pixel-fragments are dynamically allocated .and deallocated as needed, and serve
two purposes. As indicated above, they are used to hold subpixel information when a
given pixel is only partly covered by one or more polygon fragments. But in addition,
these fragment structures are used to save the state of a complex pixel at a higher tree
level while polygon fragments at lower tree levels are being rendered and blended with
the same pixel. Whenever an atiempt is made to modify a complex pixel tagged with a
tree depth lower than the current polygon tree depth (cur-depth > pix-depth), a new
fragment structure is allocated to represent the pixel at the new depth, prior to per-
forming any bit masking or intensity blending operations. Any previous lower depth

fragment structures, corresponding to complex pixels active at higher levels in the vir-

-1558-

typedef struct /* 64-bits */

{
fragment *flist; /* fragment list ptr */
byte r,g,b; /* accum. pixel color */
pixelstat pixscat; /* pixel status */

} pixelstruct;

Figure 5.15 Pixel-Struct Definition

typedef struct /* 64-bits */

{
fragment *prevf; /* previous level ptr */
pixelmask pmask; /* 4 x 4 bits */
pixelstat pstat; /* saved pixel status */
byte pcovr; /* pixel coverage */

} fragment;

Figure 5.16 Pixel-Fragment Definition

typedef struct /* 8-bits */

{
unsigned pdepth : §; /* pixel tree depth */
unsigned covered : 1; /* pixel covered flag */
unsigned complyx : 1; /* pixel complex flag */
} pixelstat; ‘

Figure 5.17 Pixel-Status Definition

tual image tree, are saved in a linked list. In general, the fragment list for a complex
pixel at depth n in the tree is as illustrated in Figure 5.18, where any pixel-fragment at
depth < n may be missing as a result of the image tree reﬁdering order. Whenever a
polygon fragment is to be blended with a complex pixel having a tree depth higher

than the current depth (cur-depth < pix-depth}), the active pixel fragment at the head

-156-

pixel-struct - pixel-fragments

flist prevf prevf nuli
r,g,b pmask pmask pmask
depth=n pstat pstat pstat
complex=1 pcovr peovr pcovr
depth=n depth=n-1 depth=1

Figure 5.18 General Complex Pixel Fragment List

of the list is deallocated, and the pixel status information is retrieved from the saved

fragment structure.

Generally, pixels are fully covered by a single object, and thus the active number
of pixel-fragments at any one time is relatively small. However, as object surfaces are
rendered into the frame buffer, most of the pixels along each polygon edge cause
pixel-fragments to be created, while all pixeis along internal object edges (those not
along the silhouette of the object) will subsequently be completely covered when all
polygons sharing the edge pixel are rendered. To save memory space, pixel fragments
are deallocated, and the pixel is marked full, whenever a combined pixel mask indi-
cates full coverage at any given level in the tree. For complex scenes, the total number
of pixel-fragment requests are typically orders of magnitude greater than the maximum

number of active fragments at any given time.

The implementation of this multi-level hidden surface algorithm follows directly
from the pixel-mask rendering method oatlined in section 5.6. In fact, the Gouraud

and Phong polygons tilers, along with their associated scan line segment processors and

-157-

segment shader-interpolators are identical in both methods. The main difference

involves the final pixel integrator algorithm, which implements the multi-level pixel

fragment idea. The pixel integrator algorithm is powerful, yet relatively simple to

implement. An outline of all possible pixel cases is given below. It is assumed that the

frame buffer is initialized with all pixel-struct fields set to NULL:

Case 1: Pixel empty (pixel-depth = 0)
This is one of the most common cases. If the given polygon fragment com-
pletely covers the pixel, the fragment color and tree depth are written at the
corresponding pixel location, and the pixel is marked full. Otherwise, if the
fragment’s computed pixel mask is non-zero, a pixel-fragment structure is
allocated to hold the new pixel mask (pmask) and coverage (pcovr), and the
pixel is tagged complex. In addition, the area-weighted fragment intensity is
computed and stored at the pixel along with its tree depth.

Case 2: Pixel full (current-depth = pixel-depth)
This is another common case. Once a pixel is marked fully covered at any
depth n, then no polygon fragment at a tree depth m = n is allowed to
modify the pixel since it must be hidden. This assumes that polygons within
any tree level are rendered in front-to-back order, and that sub-branches
associated with any given polygon are traversed in reverse depth order (i.e.,
deepest branch first).

Case 3: Complex pixel (current-depth = pixel-depth)

In this case, a polygon fragment is to be clipped and blended with a complex

~158-

pixel at the same tree depth. The clipping operation is performed by AND-
ing together the bit mask computed for the given polygon fragment, M, ,
with the ONE’s complement of the current pixel mask, M,;, .
Mey = Moy - Mpy
The resulting pixel mask, M_,, , indicates the amount of visible subpixel area
covered by the given polygon fragment, which is used to blend together the
new fragment color, I, , with the existing pixel color, /,;, ,
lige = Ipjx + S (Mo Mewr
where f (M,) gives the resulting normalized fragment area (0 to 1). A
new pixel mask is simply determined by a boolean OR operation
My = Mpie + M,
Should this new pixel mask indicate that the pixel is fully covered
(M, = M 2y, the current pixel-fragment structure is deallocated and the
pixel is marked covered.
Case 4: Complex pixel (current-depth > pixel-depth)
This is the case when a sub-level polygon fragment is to be blended with a
partly covered pixel at a higher tree level. The first step is to check if the
fragment is visible within the pixei by performing a bit-mask clipping opera-
tion as described above. If the resulting coverage mask indicates non-zero
coverage, the current pixel status i)yte, pixstat , is saved in the pixel-fragment
structure and the current pixel depth is set to the new active tree depth.

Then, the fragment’s weighted color is blended with the current pixel color

-159-

and a new pixel coverage mask is determined. If this mask indicates full
coverage, the pixe! is simply tagged covered. Otherwise, a new pixel-
fragment structure is allocated to hold the new pixel coverage information,
and added to the head of the pixel-fragment list. This linked list contains
the original higher level pixel information, along with any other higher level
pixel-fragments.

Case 5: Blend at pixel (current-depth < pixel-depth)
This case provides .the mechanism for blending a parent polygon at a higher
level in the virtual image tree with all of its previously rendered children at
lower leveis. This involves first restdring the pixel information to the parent
level before clipping and biending. If the current level pixel is complex, its
fragment structure is deallocated and the pixci-siiucture is updated with the
next fragment structure in the list (if any). The resulting restored pixel
either can be empty, complex and at the same tree level with the parent, or
complex and at a higher level that the current parent level. Depending on
the state of the restored pixel, a procedure similar to that described above
for case 1, 3, or 4 is followed to compute the fragment’s coverage mask,
M., , and new pixel masi: Y, , and possibly allocate a new fragment struc-
ture. In all cases, the current fragment color is attenuated by its visible cov-
erage, f (M.,), and blended with the existing pixel color.

Case 6: Restore pixel (current-depth < pixel-depth)

This last case provides the mechanism for blending both reflected and

-160-

refracted fragments associated with a given parent polygon (i.e., a polygon
that has both reflection and refraction virtual image tree branches). The
procedure used to perform this blending operation is to first render all
reflected components, restore all parent polygon pixels to their originai
higher level state, and finally render the refracted components. The Image
Generation Process outputs a specially tagged copy of the parent polygon
between tracing its reflection and refraction branches to permit this restore
operation. For these special polygons, a procedure similar to case 5 above is
followed to restore all sub-level pixels associated with the given parent
polygon to their original statc without affecting the existing pixel color or

coverage information.

Following the rendering of any virtual image tree, a number of first level pixel-

fragments typically remain active as a result of any partially covered pixels along the

silhouettes of objects. The current procedure is to perform a final pass through the

entire image painting a background color. The final intensity at the remaining com-

plex pixels is computed by blending the visible background color with the existing pixel

color (using the pixel mask to determine the visible background coverage factor). In

addition, the remaining pixel-fragment structure at each complex pixel is deallocated.

An alternative procedure would be to save the state of the final image in a file

without painting the background color. This would allow rendering very complex

scenes by subdiving the 3-D environment into manageable pieces [53] and creating a

virtual image tree for each subsection independently. It also provides a mechanism for

-161-

rendering a scene composed of different object types (e.g., polygons, bicubic patches,
fr#ctals, etc..), where each object type is handled by its corresponding visible surface
processor and then merged together by the same image rendering algorithm. The only
requirement is that each visible surface processor produce image descriptions in the |

form of polygenal virtual image trees.

5.10. Virtual Frame Buffer

A common requirement of all rendering methods presented in this chapter is the
availability of a frame buffer to hold the color and coverage information at each image
point. Assuming that we allow 8-bits of resolution for each R-G-B color component,
the amount of storage required per picture element ranges from four bytes (32-bits) for
Method 1 to eight bytes for Method 4, corresponding to a frame buffer memory capa-
city 1 Mega byte and 2 Mega bytes, respectively, for a 512 x 512 image display resoiu-
tion. While these memory requirements are not unreasonable to expect for either a
dedicated frame buffer or as available user memory (real or virtual) on a moderate-
sized computer, it was decided to implement a virtual frame buffer capable of support-

ing these demands, even on a small personal computer with limited memory.

Unlike scan line algorithms, which render the entire image in a single top-to-
bottom pass through ALL polygons composing the scene, the rendering algorithms
presented here treat each polygon independently and access sections of the image in
arbitrary order. The frame buffer interface implemented provides the scan conversion

process access to a single image scan line at a time, and maintains as many active scan

-162-

lines in physical memory as allowed by the particular host system. The entire frame
buffer image is stored on disk and paged in and out of physical memory as needed.
Thus, as far as the scan conversion processor is concerned, the entire frame buffer

image is available for read/write access in arbitrary scan line order.

The virtual frame buffer design is flexible in tailoring different image size require-
ments on various host systems. It handles very large images (e.g., 2048 x 2048, or
larger) on limited mem;)ry environments (e.g., DEC PDP-11’s, or IBM-PC’s), and
minimizes the amount of virtual memory consumed on large main-frames. The max-
imum number of active scan lines held in physical memory is specified at run time and

can range anywhere from one line to the number of lines in the final image.

-163-

Chapter 6

Results, Conclusions, and Extensions

6.1. Implementation Overview

The Image Generation Processor (plytrace) and Scan Conversion Processors
(rfth 1, rftb 2, rftb3, and rfib 4) described in this thesis have been coded in the C pro-
gramming language to run on various machines. The current implementation runs
either on the DEC VAX series, DEC PDP-11 series, or IBM-PC series, and can be
easily ported to other systems that support C. For the most part, the implementation
is device independent and requires no special purpose hardware to operate, although
future hardware implementation has been considered in partitioning the rendering pro-
cess. The Image Generation Processor does, however, provide interfacing to several
graphics display terminals to allow real-time display of the virtual image tree creation

process.

Throughout the implementation process, the goal has been to provide a user
friendly and flexibie environment in which to experiment with different aspects of the
rendering process. Flexibility has been favored over optimization, and thus, one
should expect considerable improvements to the run time statistics quoted in this
thesis. The hierarchical scene description language provided to the user is powerful

enough to describe complex scenes, and allows direct control over the entire scene

-164-

definition and image creation process. The user is given full control of the image
rendering order, sorting algorithm, type of shading function (faceted, Gouraud,
Phong), intensity blending option, shadow generation, and many other process func-

tions. User manual pages for all programs implemented are included in the Appendix.

Examples of images created by the Image Generation Processor, and rendered by
each of the Scan Conversion Processors described in the preceding chapter, are
included at the end of Chapter 3. Consiéering that the difference in performance
between the various scan conversion methods is relatively small (roughly a factor of 2
between methods 1 and 4), and since the total rendering time for complex images is
dominated by the virtual image creation process, only Scan Conversion Processor 4 will
we considered in analyzing the performance of the new rendering algorithm and in

comparing its results with conventional ray tracing.

6.2. Comparison with Ray Tracing

Since the intent of this thesis was to present efficient rendenng algorithms that
simulate the global illumination effects produced by ray tracing, a standard ray tracer
was chosen to compare the run-time statistics, and resulting image quality, for various
polygonal environments. The ray tracer used was initially written by a graduate stu-
dent (John Wang) working in our group and then modified to accept the same scene
description format used by the Image Generation Processor, and to use similar illumi-
nation models. For the most part, the ray tracer is patterned closely after Whitted’s

classical ray tracing algorithm [14], except that bounding boxes are used to enclose

-165-

complex objects, instead of spheres. In addition, the adaptive subdivision process dis-
cussed in Whitted’s paper to reduce aliasing artifacts is not implemented, thus, only a
single ray is traced per display pixel. Although various techniques could have been
used to improve the efficiency of this ray tracer, such as the hierarchical or cellular
decomposition techniques described in Chapter 2, these were not considered since

similar enhancements also could be employed by the Image Generation Processor.

Figures 6.1 through 6.4 show images generated by the new rendering algorithm
presented in this thesis, illustrating Gouraud shading, anti-aliasing, shadows, and
planar reflections. The corresponding three-dimensional environments differ greatly in
complexity, ranging from 68 polygons to over 24,000 polygons, and containing various
object shapes and numbers of light sources. For each scene, a two-dimensional virtual
image description file was created by the Image Generation Processor and then pro-
cessed by Scan Conversion Processor 4 to render the final image at 512 x 512 display
resolution, with 24-bits of color. For all images shown, the R-G-B separations were
converted to luminance and output on an Autokon Model 8400 laser system, using a
65 dot/inch halftone screen. Because of the complexity of the scenes chosen, and the
time needed to ray trace these environments using a classical ray tracing algorithm,
only the mirror scene was generated at a resolution of 512 x 512 and is shown in Fig-
ure 6.1(c). All other test scenes were ray traced at an image resolution of 64 x 64

pixels and, therefore, are not illustrated.

Figure 6.1 depicts two polygonal objects resting on a partly diffused mirror sur-

face, illuminated with a single point source from the right. The image illustrates reflec-

-166-

tion, shadows (Figure 6.1(b)), and overlapped shadowed-reflected regions. Figure 6.2
presents a gallery scene with mirrors at the front and rear wails, containing a reflective
centerpicce, various diffuse objects, and four light sources. Reflections were traced to
a maximum of 14 levels, and shadows were computed from the left rear light source
(Figure 6.2(b)) and from all four light sources (Figure 6.2(c)). Note that the current
implementation of the scan conversion processor does not correctly render overlapped
shadow areas from multiple light sources, which results in uniform shading of all sha-
dow regions on a given target surface. This is simply an implementation simplification

and does not imply a theoretical limitation with the overall rendering approach.

Figures 6.3 and 6.4 depict an office scene with a mirror in the facing wall, includ-
ing a bookcase with a mirrored back, two light sources, and an assortment of polygonal
objects. The bookcase is composed of 98 objects and 2691 polygons, consisting of
several dozen books, two soccer balls, a champagne glass, a large egg, a jet fighter, a
butterfly, two plants, and several other objects. Figure 6.4 also includes a human
skeleton (referred to as George by David Zeltzer), composed of 20 objects and 21045
polygons. For both images, reflections were traced to 3 levels, and shadows were com-
puted from the foreground light source (Figure 6.3(b) and 6.4(b)) and from both light

sources (Figure 6.3(c) and 6.4(c)).

-167-

Figure 6.1(a) Mirror(NS) Scene : (VAX-11/785 Time = 1.4s + 45s)

-168-

Figure 6.1(b) Mirror(1S) Scene : (VAX-11/785 Time = 3.2s + 55s)

-169-

VAX-11/785 Time = 1.75h)

(Ray-Traced;

.
.

Figure 6.1(c) Mirror(1S) Scene

-17¢-

(VAX-11/785 Time = 3.2m + 3.6m)

Figure 6.2(a) Gallery(NS) Scene

-171-

(VAX-11/785 Time = 16m + 4.3m)

Figure 6.2(b) Gallery(1S) Scene

«172-

: (VAX-11/785 Time = 55m + 6.8m)

Figure 6.2(c) Gallery(4S) Scene

-173-

(VAX-11/785 Time = 3m + 3.4m)

Figure 6.3(a) Officel(NS) Scene

-174-

: (VAX-11/785 Time = 49m + 5.1m)

Figure 6.3(b) Office1(1S) Scene

-175-

Figure 6.3(c) Office1(2S) Scene : (VAX-11/785 Time = 88m + 6.7m)

-176-

Figure 6.4(a) Office2(NS) Scene : (VAX-11/785 Time = 23m + 5.2m)

-177-

N SN e A SAN AT o AN & 3 ; o Y SERN

3

Rt X N
SRR : : 3 N

= 5.3h + 8.6m)

1me

: (VAX-11/785 Ti

Figure 6.4(b) Office2(1S) Scene

-178-

: (VAX-11/785 Time = 10h + 11.5m)

Figure 6.4(c) Office2(2S) Scene

-179-

A summary of the DE‘.C VAX-11/785 run-time statistics for all images is given in
Table 6.1, including the number of objects and polygons in the scene description, the
maximum recursion depth allowed, the resulting number of polygons in the virtual
image description, the average ray tree depth, and the total processing times for the
new algorithm and the standard ray tracer. For comparison purposes, the images were
generated without shadows and with shadows from various light sources (NS indicates
no shadows; 1S, 2S, 45, indicates shadows computed from 1, 2, and 4 light sources,
respectively). G-Time indicates the time taken by tlie Image Generation Processor to
construct the two-dimensional virtual image description from the specified three-
dimensionai environment. R-time indicates the time taken by Scan Conversion Proces-
sor 4 to scan convert the virtual image description at 512 X 512 display resolution.
The total image rendering time for the new algorithm is given by the sum of G-Time
and R-Time. For run-time comparison purposes, the same environment descriptions
for these images were processed by the standard ray tracer at a resolution of 64 x 64
. pixels. The ray tracing time at this sub-resolution is indicated by RT-Time, and the
corresponding rendering time for each image at 512 X 512 display resolution would be
approximately 64 x RT-Time. Also included for each image is the average ray tree

depth, ATRD.

For the polygonal environments tested, the new rendering algorithm is clearly
superior to standard ray tracing in terms of both computational expense and resulting
image quality. The relative run-time efficiency improvement of the new algorithm

over ray tracing, as computed by

-180-

Figure | Scene Total
Objects
6.1 Mirror 8
6.2 Gallery 68
6.3 Officel 194
6.4 Office2 214

Total Maximum
Polygons Depth
68 2
629 14
3329 3
24374 3

Table 6.1(a) Environment Statistics for Figures 6.1-6.4

Polygons

Scene Tiled G-Time | R-Time | ARTD RT-Time RI
Mirror(NS) 64 1.4s 4Ss 1.3 1.37h 106
Mirror(1S) 152 3.2s 55s 1.3 1.75h 108
Gallery(NS) 5627 3.2m 3.6m 1.4 17.3m x 64 | 163
Gallery(1S) 9426 16m 4.3m 1.4 32.1m x 64 | 101
Galiery(4S) 21179 55m 6.8m 1.4 74.1m X 64 | 77
Office1(NS) 6007 3m 3.4m 1.1 1.2h x 64 | 720
Office1(1S) 16513 49m 5.1m 1.1 2.2h X 64 | 156
Office1(2S) 26200 8§8m 6.7m 1.1 3.4h x 64 | 138
Office2(NS) 19500 23m 5.2m 1.1 7.0h x 64 | 953
Office2(1S) 44979 5.3h 8.6m 1.1 14.3h x 64 | 168
Office2(2S) 69720 10h 11.5m 1.1 20.5h x 64 | 127

G-Time = Image Generation Time, R-Time = Scan Conversion Time
at 512 x 512 Image Resolution, and RT-Time = Ray Tracing Time.
NS = No shadows; 1S, 2S, 4S = Shadows from 1, 2, and 4 sources.

ARTD = Average ray tree depth, RI = Relative Improvement.

Table 6.1(b) VAX-11/785 Run-time Statistics for Figures 6.1-6.4

-181-

R Time + G Time
RT_Time

Relative Improvement =

is summarized in Table 6.1 for all four images at 512 X 512 image resolution. As indi-
cated, this relative improvement ranges from 75, for the Gallery(4S) image shown in
Figure 6.2(c), to 950, for the Office2(NS) image shown in Figure 6.4(a), and increases
with greater scene complexity. In addition, it should be noted that the ray tracing
times quoted are for tracing 2 single ray through each display pixel, which leads to
aliasing artifacts in the final image, as shown in Figure 6.1(c). To achieve the same
effective image quality produced by the new rendering algorithm, the ray tracer would
have to trace 16 rays per display pixel, corresponding to the 4 x 4 pixel mask used in
Scan Conversion Processor 4, at least within complex pixels containing polygon edges.

This would, of course, drastically increase the ray tracing times accordingly.

The overall efficiency improvement of the new rendering method over ray tracing
depends on a number of factors, including image resolution, image coherence, scene
complexity, and shadow generation. For example, the total time spent ray tracing an
image is equal to the product of the time needed to compute the closest ray-surface
intersection, the average ray tree size, and the image resolution. Thus, for example,
doubling the horizontal and vertical image resolution increases the ray tracing time by
a factor of 4. In coatrast, the time taken by the Image Generation Processor to create
a virtual image tree is resolution independent, which resulis in a linear increase in effi-
.ciency over ray tracing as a function of resolution. While the Scan Conversion Proces-
sor time is resolution dependent, its effect on the total image rendering time is minimal

for complex scenes, as evident from the run-time statistics shown in Table 6.1. In

-182-

addition, the polygon tiling process can easily be offloaded to a special purpose proces-

sor, which would considerably reduce the total image rendering time for scenes of low

to moderate compiexity.

Image coherence and scene complexity, rather than resolution, determines the
overall efficiency improvement of the new readering method over ray tracing. For all
test cases shown, the images contain large homogeneous regions which are effectively
ray traced in parallel by the new rendering algorithm, as opposed to being sampled by
many individual light rays using conventional ray tracing. Obviously, the effective
number of rays traced in parallel increases with greater image coherence. One interest-
ing observation, however, is that the relative improvement factor (RI in Table 6.1) for
the scenes tested increased with greater scene complexity. Although, intuitively, one
expects the resulting image coherence to decrease with increased scene complexity, it
will generally be possible to find many homogeneous regions in the image that can be
effectively ray traced in parallel. For the ray tracing case, increasing the number of
polygons in the scene description implies that more ray-surface intersection calculations
will have to be made, assuming that each ray traced is tested against all polygons in the
environment. Thus, for example, the ray tracing times for the Gallery(NS) and
Office1(NS) images increased linearly with the number of polygons in the scenes, tak-
ing into account the average ray tree depth in both cases. In contrast, for the new
method, the rendering times and the total number of polygons tiled for both images

remained about same.

-183-

Another important observation made from the run-time statistics is that the cost
of calculating shadows is much higher for the new rendering algorithm than for ray
tracing, although the overall efficiency improvement over ray tracing is still quite high.
For the ray tracing case, the cost of computing shadows is proportional to the number
of sight rays intersected by objects and the number of light sources considered in sha-
dow testing. Thus, assuming all sight rays intersect objects, as was the case for the
Gallery, Officel, and Office2 scenes, the computational time approximately doubles for
each light source considered in shadow testing, since for each ray-surface intersection
another ray is sent up to each light source to determine the total illumination at the
intersection point. For the new method, how=ver, the cost of computing shadows is
proportional to the complexity of the scene, in addition to the number of light sources
considered for shadow casting. As outlined in Chapter 4, shadow polygons are com-
puted for each target polygon by casting all scene polygons that are contained in the
shadow volume defined by the given light source and the target polygon. Clearly, the
potential number of scene polygons found within any shadow voiume increases with
greater scene complexity. Thus, for example, the cost of computing shadows in the
Gallery scene from each light source is approximately 5 times the iinage generation
time without shadow generation. In contrast, this shadow cost factor is approximately
16 for the Officel scene, and 13 for the Office2 scene. Note that, for both office
scenes, most of the shadow calculation time is consumed in the bookcase region, where

many surfaces obstruct each other.

-184-

6.3. Analysis of the New Rendering Method

In order to better understand where the computationally intensive operations are
in the new rendering method, a run-time profile of the Image Generation Processor
was taken for each image and summarized in Table 6.2. The entries in the table indi-
cate the percentage of the total image generation time (G-Time} consumed by the
corresponding function. The first category lists the major functions of the Image Gen-
eration Processor and includes the following: the percentage of time required to build
the virtual image tree object list (Addobj); the percentage of time used to expand
objects into a list of potentially visible polygons (Expobj); the percentage of time spent
depth sorting the active polygon list (Sortply); the percentage of time requir=d to com-
pute shadow polygons (Shadows); the percentage of time used to calculate vertex shad-
ing according to the illumination model (Shading); and the total miscellaneous time,
which includes reading the scene description and outputting the virtual image descrip-
tion to a file. The second category corresponds to computationally intensive operations
used by higher level functicns and include the following: the percentage of time
required to check object bounding boxes against the active clipping volume or shadow
volume (CrhkBBOX); the percentage of time spent checking polygons against the active
shadow volume (ChkPLY); the percentage of time spent actually clipping polygons to
the active clipping volume or shadow volume (Clipping); and the percentage of time
spent transforming object coordinates (Transform). ChkBBOX and Clipping are used
by Addobj and Shadows , ChkPLY is used by Shadows , and Transform is used by

Addobj and Expobj .

-185-

Scene GNS | GIS | G4S | OINS | O11S | ©O128 | O2NS | O21S | 0228
Addobj 395 52| 1.4 2.5 0.1 0.0 0.5 0.0 0.0
Expobj 247 | 40| 1.2 6.0 0.4 0.2 2.2 0.2 0.1
Sortply 65 12| 04 55.5 3.0 1.8 83.3 7.5 4.9
Shadows 0] 833|951 00| 944 | 96.6 00| 90.7 | 939
Shading 204 | 38| 1.2 23.4 1.2 0.8 8.3 0.8 0.5
Misc 89| 25| 07 12.6 0.9 0.3 5.7 0.8 0.6
ChkBBOX | 27.3 | 51.6 | 54.3 20 (487 523 0.2 | 274) 302
ChkPLY 0215|254 0.0 | 338 | 322 0.0 { 505 | 46.3
Clipping 31| 61} 75 0.0 53 5.9 0.2 2.0 2.4
Transform | 12.9 | 3.2 | 2.0 1.5 0.4 0.4 0.5 0.2 0.2

GNS = Gallery(NS), G1S = Gallery(1S), G4S = Gallery(4S).
OINS = Cfficel(NS), O11S = Office1(1S), 012S = Office1(2S).
O2NS = Office2(NS), 021S = Officc2(1S), 022S = Office2/25).

Table 6.2 Run-time Profile for the Image Generation Processor

For the Gallery(NS) scene, about 40 percent of the total image generation time is
taken up transformirnig object bounding boxes to the current virtual coordinate system
(after each reflection), and checking these bounding boxes against the active clipping
volume. Expanding the remaining objects into a polygon list, which includes
transforming all object points and clipping polygons to the active clipping volume, con-
sumes another 25 percent of the total time. The remaining time is taken up computing
polygon vertex shades, sorting the active polygon list, and in other miscellaneous func-
tions. For the Office1(NS) and Office2(NS) scenes, 55 to 85 percent of the total
image generation time is required to depth sost the active polygon list, while the
remaining time is mostly taken up by shading calculations. This to be expected for

complex scenes, since the worst case Newell, Newell, and Sancha sorting time is

-186-

proportional to n2, where n equals the number of polygons to be sorted. Note, how-
ever, that the ratio between the image generation times for Office1(NS) and
Office2(NS) is equal to the ratio of the total polygon count in their respective scene

descriptions (Table 6.1).

With shadow generation enabled, a large percentage of the total image generation
time is consumed by the shadow processor, ranging from 83 to 97 percent. In addi-
tion, for each light source considered in shadow casting, the total image generation
time increased by a factor of 5, 16, and 13, for the Gallery, Officel, and Office2
scenes, respectively. For the Gallery and Officel scenes, 60 percent of the shadow cal-
culation time is used to check object bounding boxes against the active shadow volume,
to determine whether a given object can potentially cast a shadow onto the active tar-
get polygon. Another 25 percent is used to test polygons from the remaining objects
against the shadow volume, and the remaining 15 percent is taken up clipping those
polygons that cross the shacow volume. However, for the Office2 scene, most of the
shadow calculation time is consumed by the polygon/shadow volume testing procedure

(ChkPLY), as a result of George’s (the skeleton) shadow at the far office corner.

In general, for scenes containing a large number of reflective or refracted surfaces,
most of the image generation time will be spent transforming objects to the current vir-
tual coordinate system and testing objects/polygons against the active clipping volume.
The percentage of time spent sorting polygons will increase with greater environment
complexity, especially when there is a high concentration of polygons within a given

region in the scene. Such was the case in the Officel and Office2 scenes, where most

-187-

of the polygon density was concentrated in the bookcase and in George. Finally, for
most scenes, shadow generation will dominate the total image generation time, espe-

cially for multiple light source situations.

6.4. Conclusions and Suggestions for Further Research

This thesis has presented a novel rendering algorithm that simulates the gicbal
illui_ination effects produced by ray tracing, but at considerable reduction in computa-
tional expense. Computational efficiency is achieved by considering only polygonal
environments and using conventional hidden surface techniques that can exploit the
coherence properties of these environments. The visible surface processor used is
based on an extension of the Newell, Newell, and Sancha list-priority algorithm [17]
and includes the simulation of planar reflection, and an approximation to pianar refrac-
tion, using a recursive linear transformation technique. This recursive visible surface
method is equivalent to tracing multiple rays in parallel through an environment to
determine visible surfaces, reflections, and refractions, and results in considerable effi-
ciency improvement over conventional ray tracing for a wide class of environments.
The new rendering algorithm also includes shadow generation, using a shadow projec-
tion approach, and simulates non-linear transparescy effects. To support this new
Image Generation Processor, four different Scan Conversion Processors were imple-

mented, which provide anti-aliased scan conversion of faceted, Gouraud, and Phong

type polygons.

The results presented in the previous section clearly demonstrate the overall effi-
ciency improvement of this new rendering method over conveational ray tracing for a
wide variety of polygonal environments. The advantages of this new rendering
approach include a more efficient visible surface method, including reflections, refrac-
tions, and shadows, and a better method of anti-aliasing. Experimental results have
shown that, even for complex environments, a great deal of coherence can be exploited
to render the image more efficiently than by conventional ray tracing techniques. In
addition, the relative simplicity of the visible surface algorithm, as compared to beém
tracing [44], permits handling very complex environraents without the overhead associ-
ated with the Weiier-Atherton hidden surface removal method [26]. Furihermore,
real-time performance can be expected for moderately complex environments, provided
that the algorithm is supported with a suitable graphics engine, consisting maialy of a

matrix multiplier, general polygon clipper, and a polygon tiler.

There are, however, some limitations to the rendering method presented here.
First, only polygonal objects are supported. Second, object space coherence is
exploited by assuming that reflections and refractions form virtual images within a
polygonal window and that these virtual images can be obtained using linear transfor-
mation techniques. While this assumption is valid for planar reflections, refractions in
general will not be physically correct. Furthermore, this linear mapping approach is
also not correct for curved surfaces that are modeled by polygonal meshes since, in
reality, the surface orientation varies from point to point across each facet. Thus,

while the faceted structure can be eliminated using Gouraud or Phong shading tech-

-189-

niques, reflections and refractions remain faceted. One way of overcoming these limi-
tations would be to implement a hybrid scheme, combining the linear mapping tech-
nique with conventional ray tracing, to handle the non-linear situations. This would
result in an efficient rendering method for most images and provide support for han-
dling non-polygonal objects and simulating refractions in general using the ray tracing

approach.

The remaining sections of this chapter discuss several possible enhancements and

extensions to the rendering techniques presented in this thesis.

6.4.1. Hierarchical Visible Surface Processor

The current implementation of the recursive visible surface processor uses a two
stage hierarchical approach to find all potentially visible polygons within each active
clipping volurue (Section 4.4). For each reflection or refraction mapping operation,
the visible surface processor begins by checking each transformed object bounding box
against the active clipping volume and builds a depth sorted list of all objects that are
not completely culled out. Following this operation, all remaining objects are
expanded into a linked list of polygons, which are possibly clipped to the active clip-
ping volume, and depth sorted. The percentage of the total image generation time
taken up by these three major steps are indicated in Table 6.2 for each test scene, and

labeled as Addobj , Expobj, and Sortply , respectively.

For complex scenes composed of groups of many small objects, a great deal of

time is consumed transforming individual object bounding boxes to the current virtual

coordinate system and then checking them against the active clipping volume. One
way of improving the efficiency of the visible surface processor is to hierarchically
decompose the entire scene into a tree of enclosing volumes (bounding boxes) [9],
whereby groups of adjacent objects are bounded together by a single volume. This
grouping process could be specified by the user in the environment description and
used by the scene input processor to build the hierarchical data base. Visible surface
calculations would then start at the outermost bounding volume, and proceed to subvo-
lumes only if the outer volume is within the active clipping region. Furthermore, once
an outer volume is found to lie completely within the clipping region, there is no need

to check subvolumes, thus eliminating unnecessary computation.

Sorting complexity also can be reduced considerably with a hierarchical scene
description. In the current implementation, all potentially visible objects at a given vir-
tual image tree node are expanded into a composite polygon list prior to the sorting
process. As evident from the run-time profiles for the Officel and Office2 scenes
(Table 6.2), the total time spent sorting can dominate the overall rendering time 'for
complex environments. Using a procedure similar to that used in the Newell, Newell,
and Sancha sorting algorithm, bounding volumes could be used to test which objects,
or group of objects, need to be considered together in order to resolve the visibility
problem for a given image region. For example, in the Office2 scene, there would be
no need to check polygons in the bookcase against those composing George, and simi-

larly for objects in different regions of the bookcase.

-191-

6.4.2. Improved Shadow Generation

Clearly, shadow generation dominates the overall rendering time for most scenes
of moderate to high complexity. One of the major bottlenecks involves testing object
bounding boxes against ..c si. 'ow volume, defined by each light source and the active
target polygon, to determine if any part of the object can cast a shadow onto the target
polygon. For this case, the hierarchical scene decomposition technique discussed in the
previous section can potentially reduce the object/shadow volume checking time by

quickly eliminating groups of objects outside the shadow volume.

Another computationally expensive operation involves clipping all object polygons
to the shadow volume, for those cases when the object bounding box crosses the sha-
dow volume. Rather than checking each polygon individually, as currently done, a
potentially better approach might be to compute a silhouette polygon of the entire
object from the light’s point of view. This single polygon, having fewer edges to test,
would then be clipped to the active shadow volume and projected onto the target
polygon. It should be pointed out, however, that computing a silhouette polygon may

be more time consuming than the current fragmented approach.

For aesthetic purposes, it may be desirable to enhance the shading of shadow
polygons and to correcily render overlapped shadow regions caused by muitiple light
sources. For reasons of implementation simplic%ty, all shadow polygons are treated -just
like reguiar object polygons, except shaded with a constant value. In fact, all shadow
polygons for a given target surface receive the same shading vaiue. In addition, since

the scan conversion processors tile polygons independently, overlapped shadow

-192-

polygons from different light sources do not produce a darker shade, as expected. To
simulate these effects correctly requires a more ¢laborate tiling processor, coupled with

more accurate shading caiculation.

6.4.3. Improved Modeling of Refraction

As previously stated in Chapter 4, the treatment of planar refraction is only valid
for orthographic projections and when the incident rays are nearly perpendicular tc the
refractive surface. For some specific computer graphics applications this simplified
approach to planar refraction may be inappropriate, since in general, the results will
not be physically correct. Halstead [54] has suggested the possibility of improving the
simulation of planar refraction by caiculating é linear transformation matrix exactly for
the ray impinging on the center of the surface, taking into account its incident angle
and the relative index of refraction at the boundary. Then, assuming that the angle
subtended by the surface is small, this matrix will produce a better approximation to
the virtual refracted image formed on the surface. In effect, this refraction approach
linearizes about a given incident angle to approximate Snell’s law, rather than always
assuming that the incident angle is small. In fact, the paraxial approximation used in

this thesis is simply a special case of this general linearization approach.

-193-

Appendix A

Implementation Overview

A.l. Image Generation Processor

Figure A.1 illustrates the implementation structure of the Image Generation Pro-
cessor (plytrace) discussed in Chapter 4, where each block corresponds to a C-module
consisting of 2 set of functions implementing a specific section of the algorithm. The
division of tasks was chosen to provide possible future extension of critical parts of the
algorithm into hardware without major changes to the code. A brief discussion of each

C-module block is given below:

pmain implements the command interpreter for describing three dimensional scenes
and providing user control of the entire image generation process. This n:odule is
responsible for setting up all global parameters, initializing all process modules, and
managing the active scene object list. A suminary of the commands supported by the
image generation process is provided in Appendix-B. These commands either can be
specified interactively by the user, from a Scene Descriptor File invoked by the "get

file-name" command, or both.

prepobj includes a number of useful functions for defining and configuring objects in a
scene. For every object defined, a structure is allocated to hold its geometric descrip-

tion (bounding box, vertex coordinates, and polygon list), color description (object

-194-

. Scene e
. Description ! readdata — Objects
pshadow { pmain prepobj
doshades |- — ptutil
clipper ptrace nns_sort
....... T
irise | | Virtual ' :
. Image | pglib
' Tree E '
ictm -
IRIS
P2ops =
IBM-PC
NULL

Figure A.1 Image Generation Processor Implementation

-198-

color, polygon color, or vertex colors), and various other object attributes, such as sur-
face properties and object type. Object attributes may be defined global or local, and

objects may be defined hierarchically.

readdata reads object geometric and color information from specified files, or from
pre-defined object descriptions, and builds an internal data structure describing the
object. Polygonal objects are described geometrically by a linear list of all x-y-z vertex
coordinate pairs, followed by a list polygons, each defined by a list of indexes into this
vertex list. Color and surface properties may be specified global for the entire object,

or individually for each polygon or vertex.

ptrace implements the recursive visible surface algorithm described in section 4.3.
Given a list of all objects in the scene, it finds all potentially visible surfaces in the
specified viewing volume, along with surface shadow polygons, and recursively traces
planar reflections and refractions. The final image description is provided as a
virtual image tree , which can be immediately displayed on any one of the supported

graphics displays and optionally output to a file for further processing.

ptutil provides useful utility functions for creating and mairtaining a sorted list of all

potentially visible objects/polygons at each level of the virtual image tree.

nns_sort implements the Newell, Newell, and Sancha sorting and face splitting algo-
rithm, which is optionally called by the visible surface processor to handle complicated

environments. This module is passed a depth sorted polygon list, in front-to-back or

-196-

back-to-front order, and returns the list with the top-most polygon (or fragment) ready

for display.

pshadow implements the shadow generation process discussed in section 4.6. Given
the active screen space polygon, it computes all surface shadow polygons by projecting
objects between each light source and the target polygon. All shadow polygons are

clipped to the boundary of the target polygon in screen space.

doshades computes polygon or vertex shades for the active polygon, and optionally
determines highlight vectors for all scene light sources. For vertex shading, it assumes

that each vertex contains a color and a normal vector.

clipper implements the general three-dimensional clipping unit described in section
4.4. Given the active screen space polygon, it establishes a new 3-D clipping volume to
be used in reflection/refraction tracing, and saves the current active clipping volume in
a multi-level clipper stack. The actual polygon clipping algorithm used is an extension

of the reentrant clipping technique presented by Sutherland and Hodgman.

irise emulates a subset of the Silicon Graphics IRIS transformation matrix operations,
and implements a multi-level Current Transformation Matrix (CTM) stack. In princi-
ple, it should be possible to re-compile the image generation process C-code on an
IRIS Workstation witkout this emulation module and make use of the Geometxjc

Engine inherent in the IRIS architecture.

ictm implements the Inverse Transformation Matrix, and associated matrix stack,

-197-

needed to transform screen space polygons back to world space for shading calcula-

tions.

pgops consists of various useful geometric functions needec throughont the image gen-

eration process.

pglib provides the device-dependent interface to various graphics displays that support
polygon scan conversion. A NULL device is aiso supported to allow operating in
stand-alone mode, where only the virtual image tree is created and output to a file for

subsequent hidden surface removal and anti-aliased polygon scan conversion.

A.2. Scan Conversion Processors

Figure A.2 shows the implementation structure for all four scan conversion algo-
rithms described in Chapter 5, where each block corresponds to a C-module consisting
of a set of functions implementing a specific section of the algorithm. Any block
whose name ends with an asterisk represents one of the four possible scan conversion

methods presented in Chapter 5. A brief discussion of each block is given below:

rpmain accepts polygonal virtual image tree scene descriptions, and prepares each
polygon for processing by either the Gouraud tiler or Phong tiler, depending on its
type. This C-module is common to all scan conversion algorithms and handles all ini-

tialization and user interface.

g_tiler* implements the Gouraud polygon tiler, including its associated scan line seg-

ment processor, segment shader-interpolator, and pixel integrator. [t accepts one

-198-

gt
2%
@

g _tiler* abuf* p_tiler*

vbuf*

Frame Buffer
Imiage

Figure A.2 Scan Conversion Processor Implementation

-199-

convex polygon description at a time with colors specified at each vertex and scan con-

verts it into the frame buffer.

p_tiler* implements the Phong polygon tiler, including its associated scan line segment
processor, segment shader-interpolator, and pixel integrator. It accepts one convex
polygon description at a time with colors and up to sixteen highlight vectors specified

at each vertex and scan converts it into the frame buffer.

abuf* implements the pixel mask constructor and area coverage bit counting routines
for methods 2, 3, and 4. In addition, it supports the pixel-fragment pool for the
multi-level pixel mask method (4), which provides dynamic allocation and deallocation

of nixel-fragment structures.

vbuf * implements the virtual frame buffer. For scan conversion methods 1, 2, and 3,
the final image is specified as separate files for each R-G-B color component, pixel cov-
erage, and pixe! mask. However, for method 4, the final image is specified by a com-
posite file containing pixel-structures, which must be passed through a filter program to

extract its separate components (see user manual page getrgb in Appendix-B).

PLYTRACE (L) UNLA Prrograier s rmanual L Lid L AN&RNvdd \ 3dg

NAME

plytrace - image rendering processor for 3-D environments
SYNOPSIS

plytrace [-flags]
DESCRIPTION

Plytrace produces color shaded image descriptions of three-
dimensional polygonal environments, including the simulation
of shadows, linear and non-linear transparency, reflection,
and refraction. Both faceted and Gouraud shading of
polygons are supported, in addition to the simulation of
Phong specular highlights. Output from the image generation
processor is in the form of an ordered sequence of two-
dimensional polygons, which can be immediately displayed on
any graphics workstation having a polygon tiling function,
and optionally saved in a file for further processing. The
current implementation supports the Silicon Graphics IRIS
Terminal and the IBM-PC Graphics Display System.

Scene descriptions and graphics commands either can be
specified by the user interactively, from a scene descrip-
tion file, or both. Typically, a scene description file is
created specifying the placement and characteristics of
objects, light sources, and viewing position in an environ-
ment, and then invoked by the user using the get <des-file>
command. Polygonal object definitions include surface color
and surface properties, which can be specified global for
the entire object, or individually for each polygon or ver-
tex composing the object. Geometric and optional
polygon/vertex color information for each object are speci-
fied through separate files (*.det, *.pcl, *.vcl), which are
described in "man mkbin".

Output from the image generation processor consists of an
ordered sequence of two-dimensional convex polygons that
describe the resulting projection of the given three-
dimensional scene description onto the specified viewing
plane. This output image description takes the form of a
tree, referred to as a zirtual image tree , where polygons
at the top level (Level-1l) correspond to potentially visible
surfaces in the specified field of view, and sub-level
polygons correspond to surfaces visible through multiple
planar reflections and refractions. In addition, each
polygon in the virtual image tree may have a number of sur-
face shadow polygons that have been projected onto its sur-
face by shadow casting.

Output from the image generation processor is available in
several different formats, as selected by the user. First,
polygons may be generated in either front-to-back or back-
to-front depth order, as required to perform the final

~201-

PLYTRACE (L) UN1X Programmer's manuait FLLllDoavD \ L)

process of hidden surface elimination and polygon scan
conversion. Second, polygons may be specified with a single
shade (faceted shading) or with shades at each vertex
(Gouraud shading), in addition to specular highlight vectors
(up to 16) at each polygon vertex (Phong specular shading) .
When polygons are to be displayed immediately on a graphics
workstation having only a polygon tiling function, the
faceted shading option and a back-to-front rendering order
is selected, which performs hidden surface elimination by
its overwritting principle. If the output polygon list is
to be further processed to produce high-quality, anti-
aliased, shaded images (see, for example, "man rftb"), ver-
tex shades and optional highlight vectors are included with
each polygon and the list is generated in front—-to-back
order. 1In addition, the user can specify that
reflected/refracted polygon intensity components be blended
with their corresponding parent polygon intensity components
during the image generation phase (pre-blending), or during
the scan conversion phase (post-blending).

Plytrace is usually operated in interactive mode by simply
typing "plytrace <cr>" and then issuing appropriate commrands
to its command line interface. A simple example of a scCene
description file is given below, along with a sample IBM-PC

session to render the image. The command "get
ccube.des" causes plytrace to read and interpret commands in
the scene descriptor file, ccube.des, as if they had been
typed in by the user directly. PRlytrace responds with the
total number of objects, vertex points, and polygons compos-—
ing the scene, along with timing information. The next com-
mand typed by the user, "run y", causes plytrace to render
and display the image on the graphics display, according to
the viewing and projection transformations specified in the
scene descriptor file. Argument "y" in the "run y" command
indicates that shadow polygons are to be computed and
displayed. At the completion of the rendering process,
plytrace prints out statistics indicating the total number
of polygons tiled, maximum recursion level, and the elapsed
time. The final command, "quit", terminates plytrace.

Plytrace also can be operated in immediate mode, without
user interaction, by including all appropriate flags on the
invocation command line to invoke a scene description file.
For the example above, the equivalent immediate-mode invoca-
tion of plytrace would be

plytrace -i -f ccube.des <cr>

which causes plytrace to read, interpret, and render the
image described in the scene descriptor file, ccube.des, and
then exit. The command line flags supported by plytrace are
summarized below and are equivalent to the setmode command

-202-

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

parameters.

The following commands are reccgnized by plytrace. Note that
all input characters are converted to lower case before pro-
cessing and that commands are recognized by the first
sequence of unigue characters:

This is a comment
Rest of line is a comment and ignored.

ambient <red, green, blue>
Defines the ambient illumination color for the scene.
vValues should range between 0.0 and 1.0 (default is
1.0). The ambient coefficient, Ka, for a given
polygon/vertex is determined as max(0, 1 - (Kd + Kr +
Kt)), where Kd, Kr, Kt are the specified diffuse,
reflection and transmission coefficients, respectively.

background <red, green, blue>
Defines the background color for the scene. Values
should range between 0.0 and 1.0 (default is 0.0).

call <file-name>
Reads and interprets commands contained in the speci-
fied file, but unlike the get command, causes NO ini-
tialization operation. This command is typically used
to hierarchically compose complex scenes, by defining
subsets of the scene in various files and then combin-
ing them through multiple c¢all commands.

callobj <obj-number>
This command is used to copy geometric and color data
information (polygon or vertex colors) from an existing
object definition, instead of scanning their
corresponding data files as normally done. If found
inside an active object definition block, the specified
source object's data is copied to the active destina-
tion object. Otherwise, if no active object exists, a
new object is created, initialized with the active glo-
bal parameters, and the specified source object data is
copied into the new object's data structure. Thus,
when invoked ocutside an active object definition block,
it essentially corresponds to a defobj- callobj- endobl
command sequence. obj-numper should range between 0
and 255.

clear
Clears the current viewport area to the background

=203 -

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

cclor.

color <red, green, blue>
' Specifies the global color or active object color.
Values should range between 0.0 and 1.0. The default
global object color is (1.0, 1.0, 1.0).

defobj <obj-name, [obj-number]>
This command begins an active object definition. It
causes an object data structure to be allocated and
initialized with the active global parameters. Qbj-
name specifies the object's name, which when prefixed
by the current detail directory path name (normally
"det/" under UNIX and "det\" under PC-DOS) and appended
with ".det", gives the full path name for the object's
geometric data file. An optional unique object number
between 0 and 255 may be specified, otherwise, the next
available number is automatically chosen. The current
transformation matrix (CTM) is automatically pushed on
the CTM stack to prevent any subsequent modeling
transformations from affecting the global state of the
CTM. All subsequent modeling, color, and surface
attribute commands only affect the active object.

delobj <obj-number-list>
Deletes one or more objects. The object number list
should be separated by white space or commas and should
reference previously defined objects.

depth <int>
Specifies the maximum recursion depth (1 to 14) for
multiple reflection or refraction tracing. The default
depth is 1.

det_dir <directory-path>
Specifies the detail directory path where an object's
geometric data file (*.det), and optional polygon
(*.pcl) or vertex (*.vcl) color file, is located. The
default path is "det/" under UNIX and "det\" under PC-
DOS, and can be changed as needed anywhere within the
scene descriptor file.

diffuse <float>
Specifies the global or active object diffuse coeffi-
cient in the range 0.0 to 1.0 (default is 0.6).

disp <[{(on), off]>
Display virtual image tree on attached device (when
on). Default value is on.

endobj
Terminates the active object definition, transforms the

-204-

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

object's bounding-box and vertex points using the CTM,
and restores the original CTM from the matrix stack.
Unless a c¢allobj command was issued within the current
active object definition, the object's geometric and
color data are extracted from their corresponding
files. The object's geometric data file (obj-
name.det), and optional polygon/vertex color data
files, must exist in the active detail directory (see
the det dir command).

fname <file-name>
Specifies the output file name (file-name.out) for sav-
ing the optional virtual image tree description.

get <file-name>
Causes a global initialize operation (see the init com-
mand), then reads and interprets commands in the speci-
fied scene descriptor file. Note when issuing succes-
sive get commands, the user should first clear the
active viewport area (see the g¢lear command) before
reading in a new scene descriptor file to prevent
unwanted "debris" on the display screen.

getobj <obj-name>
This command is equivalent to a defobj - endobj command
sequence, and is typically used to define objects whose
color and surface properties are specified by the
active global attributes.

ident
Sets the CTM to the identity matrix.

index <fioat>
Specifies the global or active object index of refrac-
tion (default value is 1.0).

init
Initializes all global parameters to their default
values, deletes all object and light source defini-
tions, and sets up a default viewport and perspective
transformation matrix. The default viewport and per-
spective matrix depend on the display device being
used. For the IBM-PC graphics display, viewport = <0,
639, 0, 479> and perspective = <45, 1.33, 0.01,
10000.0>; for the IRIS display, viewport = <0, 1023,
128, 767> and perspective = <45, 1.60, 0.01, 10000.0>;
and for the NULL display, viewport = <0, 1023, 0, 1023>
and perspective = <45, 1.00, 0.01, 10000.0>.

light <x, y, 2z, £, g, b, range, [(P),D]>

Defines a light source at the specified position
(x,y,2), with color (r,g,b), and maximum range. The

=208 =

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

optional attribute, P, indicates that the light source
is a "Point" source, and therefore should cast shadows.
Light attribute, D, indicates a "Diffuse" light source,
which should not cast shadows. The current implementa-
tion supports eight light sources, which can be easily
upgraded as needed (see MAXLTS in rdefs.h).

lookat (vx, vy, vz, px, py, Pz, twist)
Specifies a viewpoint (vx,vy,vz) and a reference point
(px,py,Pz) on the line of sight in world coordinates.
Twist provides right-handed rotation about the z-axis
in the eye coordinate system.

nolight
Deletes all light source definitions.

ortho <left, right, bot, top, near, far>
Loads a three-dimensional orthographic projection on
the CTM. It defines a box-shaped 3D bounding volume in
the eye coordinate system with (x,y,z) clipping planes
defined by the specified parameters.

ortho2 <left, right, bot, top>
Loads a two-dimensional orthographic projection on the
CTM. It defines a box-shaped 2D bounding rectangle in
the eye coordinate system with (x,y) clipping planes
defined by the specified parameters. For 3-D coordi-
nates, the z values are unaffected by this transforma-
tion.

outmode <mode>
Specifies the output mode of display when using one of
the supported graphics displays. The supported modes
are given below, with mode ¢ being the default.

pcolors <file-name>
Specifies a file containing color data information
describing the color, diffuse, reflection, and
transmission coefficients of each polygon composing the
active object. The file must exist in the current
detail directory as file-name.pcl (see the det dir com-
mang) .

perspective <fovy, aspect-ratio, near, far>
Loads a perspective projection matrix on the CTM defin-
ing a truncated viewing pyramid in the eye coordinate
system. The field-of-view angle in the y direction is
given by fovy (in degrees), aspect-ratio determines the
field-of-view in the x direction, and the locations of
the near and far z-clipping planes are defined by near
and far. The aspect ratio is defined as the ratio of x
to y, and in general, should match with the aspect

=204

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

ratio of the active viewport. Arguments near and far
indicate distances from the eye position at (0,0,0) to
the near and far clipping planes along the negative z-
axis, and are always positive. A default perspective
projection matrix is defined at the start of plytrace
and after an ipnit command.

polarview <z-dist, azim, inc, twist>
Specifies a position and direction of view in polar
coordinates. The origin of the eye coordinate system
is placed at the point of view, with the negative z-
axis aligned with the line of sight. 2Z-dist specifies
the distance from the viewpoint to the world space ori-
gin, and essentially transforms all objects and light
sources away from the viewpoint along the negative z-
axis. Azim is the azimuthal angle in the x-y plane,
and is equivalent to a right-handed rotation of -azim
degrees about the positive z-axis. 1Inc is the incident
angle in x-z plane, and is equivalent to a right-handed
rotation of -inc degrees about the positive x-axis.
Twist rotates the viewport around the negative z-axis
using the right-hand rule. All angles are specified in
degrees.

popmatrix
Pops the CTM from the matrix stack.

pushmatrix
Pushes the CTM on matrix stack, duplicating the current
matrix.

quit
Terminates the plytrace program.

reflectance <float>
Specifies the global or active object reflection coef -
ficient in the range 0.0 to 1.0 (default value is 0.0).
This affects the intensity of all surfaces mapped by a
reflection mapping operation for this object.

resolution <hres, vres>
Specifies a viewport region centered on the screen to
display the image, and loads a perspective transforma-
tion matrix with fovy = 45, aspect-ratio = hres/vres,
and pear and far z-clipping planes at -0.01 and
-10000.0, respectively. The equivalent viewport com-
mand is given by left = (MAX_HRES - hres) / 2, Rhot =
(MAX_VRES - vres) / 2, right = left + hres - 1, and top
= bot + vres - 1, where MAX_HRES x MAX_VRES corresponds
to the maximum viewport resolution of the given display
device (for IBM-PC = 640 x 480, for IRIS = 1024 x 640,
and for NULL = 1024 x 1024).

”~ N ™

PLYTRACE (L) UNIX Programmer's Manual PLY"TRACE (L)

rotate <angle, axis>
Specifies a rotation matrix, Mrot, which pre-multiplies
the CT'M. The angle of rotation is given in degrees
according to the right-hand rule, with the line of
sight coincident with the negative z-axis. The axis of
rotation is specified by its corresponding letter (x,
yr Or z).

run <[y]>
Renders the active scene, with the optional parameter,
y, indicating that shadow polygons are to be computed
and displayed (normally not computed). If the scene
contains any visible reflective or refractive surfaces,
plytrace will recursively trace reflections and refrac-
tions through multiple levels, not exceeding the max-
imum recursion depth specified (see the depth command
above) .

scale <sx, sy, sz>
Specifies a scale matrix, Msca, which pre-multiplies
the CTM.

setmode <mode> [<on, off>]
Allows specification of various run-~time parameters
described below.

shininess <float>
Controls the spread of Phong specular highlights on an
object. Typical values are in the range 100 to 5C0.
Values smaller than 100 tend to spread out the specular
highlight over a large area, whereas values large than
200 make small highlights.

sort <[(btf), £tb]>
Specifies the polygon depth sorting order. The default
mode is to output polygons at each branch of the vir-
tual image tree polygons in back-to-front (btf) order,
starting with the deepest tree branch. For anti-
aliased scan conversion, a virtual image tree descrip-
tion is generated with polygons sorted in front-to-back
(ftb) order, also starting with the deepest tree
branch.

specular <float>
Specifies the global or active object specular reflec-
tion coefficient in the range 0.0 to 1.0 (default value
is 0.0).

threshold <float.
Sets the minimum intensity coefficient considered mean-
ingful in tracing a planar reflection or reflection.
Typical values are in the range 0.0 to 1.0 (default

-208~

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

value is 0.0).

translate <tx, ty, tz>

Specifies a translation matrix, Mtrn, which pre-
multiplies the CTM.

transmittance <float>

Specifies the global or active object transmission
coefficient in the range 0.0 to 1.0 (default value is
0.0). This affects the intensity of all surfaces
mapped by a refraction mapping operation for this
object.

transparency <transp, roll-off>

type

Specifies the global or active object transparency
coefficient. The first number (between 0.0 and 1.0)
indicates the fraction of incident light passing
through the surface, where 0.0 is opaque and 1.0 is
totally transparent. The second value governs how the
transparency changes as a function of the amount of
material the light must pass through to reach the eye.
This makes the edges of a curved transparent object
look less transparent, with larger values of xroll-off
indicating thicker material. The default values for
both parameters is 0.0.

<polygon, [open, curved, concave, hidden, ltsrc]>
Specifies the object surface type and its attributes.
Currently, only polygonal object types are supported.
Open is used to suppress the elimination of back-facinc¢
polygons when an object is rendered. Curved indicates
that a curved object is modeled as a polygonal mesh anc
that vertex normals are to be computed so as to perforr
smooth shading. Concave indicates that the object is
non-convex and may contain holes. Normally, polygons
composing a convex object are ignored from shadow cast-
ing computations on a target polygon of the same
object. For concave objects, however, inter-object
shadowing is possible and must be considered. Hidden
suppresses display of the object. This attribute is
typically used to define an object that is called mul-
tiple times by the callobj command to build a scene
having repeated instances of the same geometric object
Ltsrc indicates that the object represents a light
source. When displayed, its shade is taken to be the
specified object color. The default value for all
attributes is FALSE.

vcolors <file~-name>

Specifies a file containing color data information
describing the color, diffuse, reflection, and
transmigsion coefficients of each vertex composing the

-209~

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

active object. The file must exist in the current
detail directory as file-name.vcl (see the det-dir com-—
mand) .

viewport <left, right, bottom, top>

wait

Specifies the region on the screen to display the
image, and defines the mapping from world coordinates
to screen coordinates. The display screen origin (0,0)
is assumed to be located at the lower left corner, with
all values ranging from 0 to the maximum allowed values
for the given display device. A default viewport is
defined at the start of plytrace and after an init com-
mand.

Waits for <return> before continuing (great for demos).

window <left, right, bot, top, near, far>

Loads a projection transformation matrix on the CTM
specifying the position and size of a rectangular view-
ing frustum in the eye coordinate system. The image
will be projected with perspective onto the screen
located at the pear clipping plane position.

QUTMODE COMMANDS
The following are valid parameters for the gutmode command:

a <bits/color>

Selects an adaptive video look-up table construction
mode for which R-G-B color entries in the table are
dynamically determined during the display process.
Since the IBM-PC graphics display supports only 8-bits
per picture element, and our current IRIS display ter-
minal has only 12 bit-planes, the given polygon R-G-B
color values are first quantized to the specified
number of bhits/coior (between 1 and 8) before a table
search, and possible entry definition is performed.

r,g,b

Specifies that only the Red, Green, or Blue color com-
ponent is to be displayed at 8-bits of resolution.

Specifies that only the luminance component is to be
displayed at 8-bits of resolution.

Specifies that polygon colors are to be displayed with -
R-G-B components encoded as [rrr-ggg-bb] for the 13M-PC
graphics display and [rrrr-gggg-bbbb] for the IRIS
display terminal. In this mode, the video look-up
tables are pre-computed with R-G-B values quantized to

=210~

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

3-3-2 bits per component on the IBM-PC, and 4-4-4 bits
per component on IRIS.

SETMODE COMMANDS
The following are valid parameters for the setmode command,
and as command line flags to plytrace. For all parameters
having an on/off condition, the default value is off:

digit
Specifies a debugging level between 0 and 9 (default is
0).

b <on, off>
If on, indicates that higher tree level parent polygon
intensities are to be blended with each lower level
children polygon for output to the virtual image file
(pre~blending). If off (default), parent/child polygon
intensity blending is performed by the subsequent scan
conversion process (post-blending).

d <float>
Sets the minimum screen detail size for ignoring tiny
polygons (default value is 0.0002).

e <flcat>
Sets value of epsilon used in clipping operations
(default value is 0.0000001).

f <file-name>
Specifies the scene descriptor file name when invoking
plytrace in immediate mode.

h <on, off>
Compute shadow polygon shades explicitly (on), or use
an approximate intensity reduction method (off).

Selects immediate mode of operation, whereby plytrace
is invoked to render a single scene and then ter-
minated. This mode must be specified as a command line
flag to plytrace. The default mode of operation is
interactive.

1 <1-14>
Specifies the maximum recursion level for multiple
reflection or refraction tracing operations (default
value is 1). :

n <on, off>
Selects the method used to sort polygons. When off,
polygons are sorted based on their min/max vertex z-
coordinates only. When on, Newell, Newell, & Sancha's

D]l] =

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

]

sorting and face splitting technique is used.

-<on, off>

If on, plytrace outputs a virtual image tree descrip-
tion to the specified output file.

<on, off>
If on, plytrace displays only object bounding boxes
field-of-view and performs no reflection/refraction
tracing. Note, that while b is set ON during the
object definition phase, only the object's bounding box
is read into its data structure.

<on, off>
On indicates that Phong specular highlights vectors are
to be computed at each polygon vertex for subsequent
normal interpolation within the polygon to depict
well-defined specular highlights. Otherwise, specular
highlights are only computed for each polygon/vertex
and added to the ambient and diffuse intensity com-
ponents.

<on, off>
Oon indicates that polygon vertex shades, and optional
highlight vectors are to be computed. Off indicates
that a single average polygon shade is to be computed.

<on, off>
If on, plytrace expands all potentially visible objects
at each tree branch before sorting the resulting compo-
site polygon list. Otherwise, only a single object is
made active, expanded into a sorted polygon list, and
rendered, before considering the next object.

-212-~

PLYTRACE (L) UNIX Programmer's Manual PLYTRACE (L)

EXAMPLES
Sample scene descriptor file:
f name ccube
resolution 512 480
pushmatrix /* save perspective transformation */
ident
polarview 70750
translate 00 -1
light -4,0 -2.0 6.0 0.8 0.8 0.8 100 Point
light 0.0 -10.0 10.0 0.5 0.5 0.5 50 Diffuse
#
def obj cube
color 1 11

scale 5 5 0.1
translate 0 0 -1
endobj
def obj cutcube
color 0 1 O
translate 0 0 1.05
rotate 30 z
endobj
popmatrix

Sample interactive session:

plytrace <cr>
plytrace - version 2.0 13-Jan-86

Command: get ccube.des

Scanning descriptor file ccube.des
2 objects, 18 points, 13 polygons
Time (HR:MIN:SEC) = 00:00:02
Command: run y

Building image.

5 Polygons tiled, Max depth =1
Time (HR:MIN:SEC) = 00:00:01
Command: quit

FILES
fname.out, plytrace.log

SOURCE
/unips/src/graphics/ptrace/

SEE ALSO .
rftb(1l), mkbin(1)

AUTHOR
A, Garcia

~-213-

RFTB (L) UNIX Programmer's Manual RFTB (L)

NAME
rftbl - anti-aliasing polygon tiler (pixel-coverage)
rftb2 - anti-aliasing polygon tiler (pixel-mask)
rftb3 - anti-aliasing polygon tiler (pixel-coverage/mask)
rftb4 - anti-aliasing polygon tiler (pixel-structs)
SYNOPSIS
rftb <input> [output] [hres] [vres] [act-1lines] [-flags]
DESCRIPTION

Rftb* implements an anti-aliasing scan conversion processor
for convex polygons. It accepts a sequence of polygons in
front-to-back order, performs hidden surface elimination,
and scan converts faceted, Gouraud, or Phong type polygons
into a virtual frame buffer. Faceted polygons are specified
with a single R-G-B shading value, while Gouraud and Phong
type polygons are specified with an R-G-B shading value at
each vertex. 1In addition, Phong type polygons may contain
up to sixteen highlight vectors with each vertex definition,
which allows better depiction of specular highlights on
curved surfaces modeled by polygonal meshes. A two-step
linear interpolation method of the shading values, and
optional highlight vectors is performed to compute the total
shade of any point within a polygon.

The input data source, <input>.out, is a binary file con-
taining an ordered sequence of two-dimensional polygon
descriptions, with format identical to the virtual image
tree file created by plytrace (see "man plytrace”). [Qut-
put | specifies the optional output file name seed for gen-
erating appropriate virtual frame buffer component files
(default seed is the input file name). The other optional
parameters include the output image resolution, [hres X
vres] (default is 256 x 256), the number of active frame
buffer lines (act-lines) to be kept in physical memory dur-
ing the rendering process, and various option flags, which
are described below. The number of frame buffer lines kept
active can range anywhere from a single line to the entire
frame buffer (default is 4 lines).

Each scan conversion processor maintains a LOG file
(rftb[1234].10og) in the working directory, which contains a
history of run-time statistics.

The normal mode of operation between plytrace and the four
scan conversion processors (rftbl, rftb2, rftb3, £fthb4) is
as follows:

| plytrace | ====>] rftbl | ====>1 r,49,b,a
| (single-level) | | mmmmm e | | mmmm

-214-

RFTB(L) UNIX Programmer's Manual RFTB (L)

| plytrace |---=->| rftb2 or rftb3 |[---->| r,g,b,m, ()

| (pre-blending) | | e e e e I | =
| l

| == I | == | | e
| plytrace | ====> rftb4 |-=-->| pixel-struct |
| (post-blending) | | mmm e I | rmmm e

Rftbl performs hidden surface elimination, anti-aliasing,
and simulates linear and non-linear transparency using a
pixel-coverage byte (8-bits) to represent each display
screen sample. This polygon tiler is well suited for scCenes
composed of diffuse, specular, and transparent surfaces, but
should not be used to render scenes containing shadows,
reflections, or refractions. It produces four separate
files (output.r, output.g, output.b, and output.a), contain-
ing the Red, Green, and Blue color separations of the final
image, as well as the resulting pixel-coverage.

Rftb2 performs anti-aliased hidden surface elimination using
a 4 x 4 pixel-mask (l6-bits) to represent subpixel regions
at each display screen sample. This polygon tiler can
render virtual image trees describing scenes containing dif-
fuse, reflected, and refracted surfaces, as well as shadow
detail polygons. It is assumed that the multi-level virtual
image tree was created by plytrace using the pre-blending
mode of output, which means that the total shade of any sub-
level polygon in the tree includes its higher-level parent
polygon shade. Rfth2 produces four separate files
(output.r, output.g, output.b, and output.m), containing the
Red, Green, and Blue color separations of the final image,
as well as the resulting pixel-mask.

Rftb3 performs anti-aliased hidden surface elimination using
both a pixel-coverage byte and a 4 x 4 pixel-mask to
represent each display screen sample. It essentially com-
bines the features of rftbl and rftb2 to render virtual
image trees describing scenes containing diffuse, tran-
sparent, reflected, and refracted surfaces, as well as sha-
dow detail polygons. Rftb3 produces five separate files
(output.r, output.g, output.b, output.a, and output.m), con-
taining the Red, Green, and Blue color separations of the
final image, as well as the resulting pixel-coverage and
pixel-mask.

Rftb4 performs anti-aliased hidden surface elimination and
cpild/parent polygon intensity blending using a multi-level

pixel-coverage byte and 4 x 4 pixel-mask at each image sam-
ple. This tiler can render complex 3-D environments,
described by virtual image trees, containing multiple levels

-215-

RFTB (L) UNIX Programmer's Manual RFTB (L)

of reflection and refraction, as well as shadow detail
polygons. Since Rftb4 performs child/parent intensity
blending, it is assumed that the virtual image tree given
was created by plytrace using the post-blending mode of
operation. This means that reflected or refracted com-
ponents of a given surface are blended with its correspond-
ing parent surface during the scan conversion phase. Rftbd
produces a single composite file containing color and cover-
age information at each display pixel location, which must
be processed by getrgb (see "man getrgb") to extract the R-
G-B color separations.

FLAGS
The following command line flags are supported:

-digit
Specifies a debugging level between 0 and 9.

-B
Indicates that a background polygon, with color speci-
fied in the input data file, is to be painted after the
entire image has been rendered. Normally, the back-
ground is not painted.

The following flags only work with xftb4 when running on an
IBM-PC with the graphics display attachement. For the out-
put display mode flags below (a,r,g,b,y,c), the default mode
is ¢:

-Y
Indicates that the image is to be displayed on the
graphics screen during the rendering process. Nor-
mally, polygons are not displayed.

-a <bits/color>
Selects an adaptive video look-up table construction
mode for which R-G-B color entries in the table are
dynamically determined during the display process.
Since the IBM-PC graphics display supports only 8-bits
per picture element, the given pixel R-G-B color values
are first quantized to the specified number of
bits/color (between 1 and 8) before a table search, and
possible entry definition is performed.

"[frglb]
Specifies that only the Red, Green, or Blue color com-

ponent is to be displayed at 8-bits of resolution.

-y
Specifies that only the luminance component is to be
displayed at 8-bits of resolution.

-216-

RFTB(L) UNIX Programmer's Manual RFTB (L)

-C
Specifies that pixel colors are to be displayed with
R-G-B components encoded as [rrr-ggg-bb]l. 1In this
mode, the video look-up tables are pre-computed with
R-G-B values quantized to 3-3-2 bits per component.
EXAMPLES

To render a virtual image tree file, test.out, using rfiha
at 512 x 512 display resolution and with the background
color painted, the following command is issued:

rftb2 test test2 512 512 -B

where the final virtual frame buffer image is contained in
files test2.r, test2.g, test2.b, and test2.a on the current
directory. Rendering statistics will also be concatenated
to the tail of rftb2.log.

FILES
Rftbl - output.[rgba], rftbl.log
REtb2 output.[rgbm], rftb2.log
Rftb3 - output.[rgbam], rftb3.log

Rftb4 - output, rftb4.log
SQURCE

/unips/src/graphics/aatiler/
SEE ALSO

plytrace(l), getrgb(1l)
AUTHOR

A. Garcia

-217-

GETRGB (L) UNIX Programmer's Manual GETRGB (L)

NAME
getrgb - extract r,g,b components from a pixel-struct file

SYNOPSIS
getrgb [fname]

DESCRIPTION
getrgb reads a pixel-struct file created by rfitb4 and out-
puts the Red, Green, and Blue color components to separate
files. The output file name seed is taken as the specified
input file name.

A pixel-struct file is assumed to contain a linear list of
64-bit data structures with the following format:

typedef struct

f ragment *flist; /* fragment list ptr */
byte r, g9, b: /* pixel color */
byte pixstat; /* pixel status */

} pixelstruct;

where each byte field is 8-bits wide, and the fragment list
pointer (flist) is 32-bits wide.

FILES
fname.r, fname.g, fname.b

SOU RCE
/unips/src/graphics/util/

SEE ALSO
rftb(1)

AUTHOR
A, Garcia

-218-

MKBIN(L) UNIX Programmer's Manual MKBIN(L)

NAME
mkdet - convert ASCII object geometric files to binary form
mkpci - convert ASCII polygon color files to binary form
mkvcl - convert ASCII vertex color files to binary form
SYNOPSIS
mkdet <input_file> <output_file>
mkpcl <input_file> <output_file>
mkvcl <input_file> <output_file>
DESCRIPTION

Mkdet scans an ASCII object geometric description file con-
taining vertex and polygon specifications and converts it to
a binary detail shape file. The input file is scanned for
the keyword "data", followed by a line specifying the number
of vertices and polygons in the object. These two lines
should be followed by the (x,y,z) coordinates of each ver-
tex, and then a list of polygons making up the object. Each
polygon entry should have the format:

<$ of vertices in polygon> <vertex-index list>

where the vertex-index list specifies indices (1 to num_vtx)
into the array of vertices given, listed in clock-wise order
when viewed from outside the object (right-handed coordinate
system assumed).

The format for the output geometric binary file is as fol-

lows:

char "DET"; /* File identification tag */
short num_vtx, num_polys; /* $-vertices, #-polygons */
float xmin, ymin, zmin; /* Bounding box min-coord */
float Xxmax, ymax, zmax; /* Bounding box max-coord */
float vertex[num_vtx] [3]; /* List of vertices */

short nvtx, index[nvtx]; /* For each polygon */

Mkpcl, Mkvcl takes a color file in a format similar to the
ASCII object geometric description and converts it to a
binary polygon and vertex color file, respectively. How-
ever, a single number is expected after the "data" keyword,
indicating the number of color entries to follow, and each
line thereafter is expected to have the following format:

<red, green, blue, dif-coeff, ref-coeff, trn-coeff>
which specifies the red, green, and blue color components,
along with the diffuse, reflection, and transmission coeffi-

cients for each polygon (or vertex). All values range from
0.0 to 1.0.

-219-

MKBIN(L) UNIX Programmer's Manual MKBIN(L)

The format for the output color binary file is as follows:

char "PCL" (or "VCL"):; /* File identification tag */
short num_clrs; /* Number of colors in file */
byte t,g9,b,dif, ref,trn; /* For each color (0 to 255) */
EXAMPLES
Typical input files for the above:
title gecmetric data file for an x-y square
data
4 1
0. 0. 0.
0. 1. O.
1. 1. 0.
1. 0. 0.
4 1 2 3 4
title polygon color file for a square
data 1
.9 .8 .2 .0 .0 .0
title vertex color file for a square
data 4
.9 .8 .2 .0 .0 .0
.8 .9 .2 .0 .0 .0
.2 .8 .9 .0 .0 .0
.9 .2 .8 .0 .0 .0
SOURCE

/unips/src/graphics/util/

SEE ALSO
plytrace(1l)

D)=

10.

11.

12.

13.

14.

15.

16.

Bibliography

J.H. Clark, “The Geometry Engine: A VLSI Geometry System for Graphics,”
Computer Graphics, 16, no. 3, SIGGRAPH-82 (Jul. 1982), pp. 127-133.

J.H Clark and T. Davis, “Work station unites real-time graphics with UNIX, Eth-
emet,” Electronics (Oct. 1983), pp. 113-119.

C. Panasuk, “Focus on Graphics Workstations,” Electronic Design (Aug. 1985),
pp- 157-164.

F.C. Crow, “The Aliasing Problem in Computer-Generated Shaded Images,”
CACM, 20, no. 11 (Nov. 1977), pp. 799-805.

F.C. Crow, “A Comparison of Antialiasing Techniques,”” /IEEE Computer Graph-
ics and Appiications, 1, no. 11 (Jan. 1981), pp. 40-48.

B.B. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, 1977).

W.T. Reeves, “Particle Systems-A Technique for Modeling a Class of Fuzzy
Objects,” Computer Graphics, 17, no. 3, SSIGGRAPH-83 (Jul. 1983), pp. 359-376.

J.H. Clark, “Hierarchical Geometric Models for Visible Surface Algorithms,”
CACM, 19, no. 10 (Oct. 1976), pp. 547-554.

S.M. Rubin and T. Whitted, “A 3-Dimensional Representation for Fast Render-
ing of Complex Scenes,” Computer Graphics, 14, no. 3, SSIGGRAPH-80 (Jul.
1980), pp. 110-116.

B.T. Phong, “Dlumination for Computer Generated Pictures,” CACM, 18, no. 6
(Jun. 1975), pp. 311-317.

J.F. Blinn, “Models of Light Reflection for Computer Synthesized Pictures,”
Computer Graphics, 11, no. 2, SIGGRAPH-77 (1977), pp. 192-198.

K.E. Torrance and S.M. Sparrow, ‘““Polarization, Directional Distribution, and
Off-Specular Peak Phencmena in Light Reflected from Roughened Surfaces,” J.
Opt. Soc. Am., 56, no. 7 (Jul. 1966), pp. 916-925.

K.E. Torrance and S.M. Sparrow, ‘“Theory for Off-Specular Reflection from
Roughened Surfaces,” J. Opt. Soc. Am., 57, no. 9 (Sep. 1967), pp. 1105-1114.
T. Whitted, “An Improved Ilumination Model for Shaded Display,” CACM, 23,
no. 6 (Jun. 1980), pp. 343-349.

H. Gouraud, “Continuous Shading of Curved Surfaces,” IEEE Transactions on
Computers, C-20, no. 6 (Jun. 1971), pp. 623-629.

L.E. Sutherland, R.F. Sproull, and R.A. Schumacker, “A Characterization Of
Ten Hidden Surface Algorithms,” ACM Co:mputing Surveys, 6, no. 1 (Mar. 1974),
pp- 1-55.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M.E. Newell, R.G. Newell, and T.L. Sancha, “A Solution to the Hidden Surface
Problem,” Proc. ACM National Conference (1972), pp. 443-450.

G. Romney, G. Watkins, and D. Evans, “Real Time Display of Computer Gen-
erated Half-Tone Perspective Pictures,” Proc. IFIP Congress (1968), pp. 973-978.

W.J. Bouknight, “A Procedure for Generation of Three-Dimensional Half-Toned
Computer Graphics Representations,” CACM, 13, no. 9 (Sep. 1970), pp. 527-536.

W.J. Bouknight and X.C. Kelley, “An Algorithm for Producing Hali-Tone Com-
puter Graphics Presentations with Shadows and Movabie Light Sources,” SJCC,
AFIPS, 36 (1970), pp. 1-10.

C. Wylie, R.S. Romney, D.C. Evans, and A. Erdahl, “Half-Tone Perspective
Drawings by Computer,” Proc. AFIPS FJCC, 31 (1967), pp. 49-58.

J.M. Lane, L.C. Carpenter, T. Whitted, and J.F. Blinn, “Scan Line Methods for
Displaying Parametrically Defined Surfaces,” CACM, 23, no. 1 (Jan. 1980), pp.
23-34.

E. Catmull, “Comouter Display of Curved Surfaces,” IEEE Computer Graphics,
Pattern Recognition, & Data Structures (May. 1975), pp. 11-17.

L. Carpenter, “The A-buffer, an Antialiased Hidden Surface Method,” Computer
Graphics, 18, no. 3, SIGGRAPH-84 (Jul. 1984), pp. 103-108.

J. Warnock, “A Hidden-Surface Algorithm for Computer Generated Half-Tone
Pictures,” University of Utah Computer Science Department, TR 4-15 (Jun. 1969).

K. Weiler and P. Atherton, “Hidden Surface Removal Using Polygon Area Sort-
ing,”” Computer Graphics, 11, SIGGRAPH-77 (1977), pp. 214-222.

A. Appel, “The Notion of Quantitative Invisibility and The Machine Rendering
of Solids,” Proc. ACM National Conference, 14 (1967), pp. 387-393.

E. Goldstein and R. Nagel, ‘3D Visual Simulation,” Simulation, 16, no. 1 (1971
), Pp- 25-31.

D.S. Kay and D. Greenberg, “Transparency for Computer Synthesized Images,”
Computer Graphics, 13, no. 2, SSIGGRAPH-79 (Aug. 1979), pp. 158-164.

M. Potmesil and I. Chakravarty, “A Lens and Aperture Camera Model for Syn-
thetic Image Formation,”” Computer Graphics, 15, no. 3, SIGGRAPH-81 (Aug.
1981), pp. 297-305.

J.T. Kajiya, “Ray Tracing Parametric Patches,”” Computer Graphics, 16, no. 3,
SIGGRAPH-82 (Jul. 1982), pp. 245-254.

P. Hanrahan, “Ray Tracing Algebraic Surfaces,” Computer Graphics, 17, no. 3,
SIGGRAPH-83 (Jul. 1983), pp. 83-90. '

J.T. Kajiya, “New Techniques for Ray Tracing Procedurally Defined Objects,”
Computer Graphics, 17, no. 3, SIGGRAPH-33 (Jul. 1983), pp. 91-102.

J.T. Kajiya and B.P. Von Herzen, “Ray Tracing Volume Densities,” Computer
Graphics, 18, no. 3, SIGGRAPH-84 (Jul. 1984), pp. 165-174.

35.

36.

37.

38.

39.

41.

42.

43,

45.

47.

48.

49.

50.

51.

J.T. Kajiya, “SIGGRAPH-83 Tutorial cn Ray Tracing,” SIGGRAPH Course 10
Notes (1983).

H. Weghorst, G. Hooper, and D. Greenberg, “Improved Computational Method
for Ray Tracing,” ACM Transactions on Graphics, 3, no. 1 (Jan. 1984), pp. 52-6
C.B. Jones, “A New Approach to the Hidden Line Problem,” Computer Journal,
14, no. 3 {Aug. 1971), op. 232-237.

M. Dippe and J. Swensen, “An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis,” Computer Graphics, 18, no. 3,
SIGGRAPH-84 (Jul. 1984), pp. 149-158.

A.S. Glassner, “Space Subdivision for Fast Ray Tracing,” IEEE Computer Graph-
ics and Applications, 4, no. 10 (Gcet. 1984), pp. 15-22.

S.D. Roth, “Ray Casting for Modeling Solids,”” Computer Graphics and Image
Processing, no. 18 (1982), pp. 109-144.

R.L. Cook, T. Porter, and L. Carpenter, “Distributed Ray Tracing,” Computer
Graphics, 18, no. 3, SIGGRAPH-84 (Jul. 1984), pp. 137-145.

M.E. Lee, R.A. Redner, and S.P. Uselton, *‘Statistically Optimized Sampling for
Distributed Ray Tracing,” Computer Graphics, 19, no. 3, SIGGRAPH-85 (Jul.
1985), pp. 61-68.

J. Amanatides, “Ray Tracing With Cones,” Computer Graphics, 18, no. 3,
SIGGRAPH-84 (Jul. 1984), pp. 129-135.

P.S. Heckbert and P. Hanrahan, “Beam Tracing Polygonal Objects,” Computer
Graphics, 18, no. 3, SIGGRAPH-84 (Jul. 1984), pp. 119-127.

W.M. Newman and R.F. Sproull, Principles of Interactive Computer Graphics
(McGraw-Hill, 1979).

1.E. Sutherland and G.W. Hodgman, “Reentrant Polygon Clipping,” CACM, 17
no. 1 (Jan. 1974), pp. 32-42.

F.C. Crow and B.T. Phong, “Improved Rendition of Polygonal Models for
Curved Surfaces,” Proceedings Second USA-Japan Computer Conference (Aug.
1975), pp. 475-480.

E. Catmull, “A Hidden-Surface Algorithm With Anti-Aliasing,” Computer Grap
ics, 12, no. 3, SSIGGRAPH-78 (Aug. 1978), pp. 6-11.

E. Fiume, A. Fournier, and L. Rudolph, “A Parallel Scan Conversion Algorithn

with Anti-Aliasing for a General-Purpose Ultracomputer,” Computer Graphics,
17, no. 3, SSIGGRAPH-83 (Jul. 1983), pp. 141-149.

E. Feibush, M. Levoy, and R. Cook, “Synthetic Texturing Using Digital Filters,
Computer Graphics, 14, no. 3, SIGGRAPH-80 (Jul. 1980), pp. 294-301.

E. Catmull, “An Analytic Visible Surface Algorithm for Indepeadent Pixel Pro-
cessing,” Computer Graphics, 18, no. 3, SIGGRAPH-84 (Jul. 1984), pp. 109-115

=223

52. G. Abram, L. Westover, and T. Whitted, “Efficient Alias-free Rendering using
Bit-masks and Loop-up Tables,” Computer Graphics, 19, no. 3, SIGGRAPH-85
(Jul. 1985), pp. 53-59.

53. F.C. Crow, “A More Flexible Image Generation Environment,” Computer Graph-
ics, 16, no. 3, SIGGRAPH-82 (Jul. 1982), pp. 9-18.

54. R.H. Halstead, Private Communication (Dec. 1985).

-224-

