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Abstract

Learning algorithms are often used in conjunction with expert decision makers in practical
scenarios, however, this fact is largely ignored when designing these algorithms. In this thesis,
we explore how to learn predictors that can either predict or choose to defer the decision to a
downstream expert. Given only samples of the expert’s decisions, we give a procedure based
on learning a classifier and a rejector and analyze it theoretically. Our approach is based on
a novel reduction to cost sensitive learning where we give a consistent surrogate loss for cost
sensitive learning that generalizes the cross entropy loss. We show the effectiveness of our
approach on a variety of experimental tasks.
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Chapter 1

Introduction

1.1 Overview

Machine learning systems are now being deployed in settings to complement human decision

makers such as in healthcare [30, 54], risk assessment [27] and content moderation [39]. These

models are either used as a tool to help the downstream human decision maker: judges

relying on algorithmic risk assessment tools [28] and risk scores being used in the ICU [23],

or instead these learning models are solely used to make the final prediction on a selected

subset of examples [43, 54]. A current application of the latter setting is Facebook’s and

other online platform’s content moderation approach [58, 33]: an algorithm is used to filter

easily detectible inappropriate content and the rest of the examples are screened by a team

of human moderators. Another motivating application arises in health care settings, for

example, deep neural networks can outperform radiologists in detecting pneumonia from chest

X-rays [31], however, many obstacles are limiting complete automation, an intermediate step

to automating this task will be the use of models as triage tools to complement radiologist

expertise. Our focus in this work is to give theoretically sound approaches for machine

learning models that can either predict or defer the decision to a downstream expert to

complement and augment their capabilities.
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The learned model should adapt to the underlying human expert in order to achieve better

performance than deploying the model or expert individually. In situations where we have

limited data or model capacity, the gains from allowing the model to focus on regions where

the expert is less accurate are expected to be more significant. However, even when data or

model capacity are not a concern, the expert may have access to side information unavailable

to the learner due to privacy concerns for example, the hard task is then to identify when

we should defer without having access to this side-information. We will only assume in

this work that we are allowed access to samples of the expert’s decisions or to costs of

deferring, we believe that this is a reasonable assumption that can be achieved in practical

settings. Inspired by the literature on rejection learning [13], our approach will be to learn

two functions: a classifier that can predict the target and a rejector that decides whether the

classifier or the expert should predict.

We start by formulating a natural loss function for the combined machine-expert system in

section 2 and show a reduction from the expert deferral setting to cost sensitive learning.

With this reduction in hand, we are able to give a novel convex surrogate loss that upper

bounds our system loss and that is furthermore consistent in section 3. This surrogate loss

settles the open problem posed by [50] for finding a consistent loss for multiclass rejection

learning. Our proposed surrogate loss and approach requires only adding an additional output

layer to existing model architectures and changing the loss function, hence it necessitates

minimal to no added computational costs. In section 4, we show the limitations of approaches

in the literature from a consistency point-of-view and then provide generalization bounds for

minimizing the empirical loss. To show the efficacy of our approach, we give experimental

evidence on image classification datasets CIFAR-10 and CIFAR-100 using synthetic and

human experts based on CIFAR10H [53], on a hate speech and offensive language detection task

[15], and on classification of chest X-rays with synthetic experts in section 5. To summarize,

the contributions of this thesis are the following:

• We formalize the expert deferral setup and analyze it theoretically giving a generalization

bound for solving the empirical problem.
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• We propose a novel convex consistent surrogate loss LCE (3.4) for expert deferral easily

integrated into current learning pipelines.

• We provide a detailed experimental evaluation of our method and baselines from the

literature on image and text classification tasks.

Note that this thesis is based on the ICML 2020 paper I published in the first year of my

PhD [49]. It is part of a series of work I have built on during my PhD which I mention briefly

in the related work, my PhD thesis will bridge these work together in the next year.

1.2 Related Work

Learning with a reject option, rejection learning, has long been studied starting with [11]

who investigated the trade-off between accuracy and the rejection rate. The framework of

rejection learning assumes a constant cost c of deferring and hence the problem becomes

to predict only if one is 1 − c confident. Numerous works have proposed surrogate losses

and uncertainty estimation methods to solve the problem [4, 56, 50, 34]. [13, 12] proposed

a different approach by learning two functions: a classifier and a rejection function, and

analyzed the approach by giving a kernel-based algorithm in the binary setting. [50] tried to

extend their approach to the multiclass setting but failed to give a consistent surrogate loss

and hence resorted to confidence based methods.

Recent work has started to explore models that defer to downstream experts, [43] considers

an identical framework to the one considered here however their approach does not allow the

model to adapt to the underlying expert and the loss used is not consistent and requires an

uncertainty estimate of the expert decisions. On the other hand, [16] gives an approximate

procedure to learn a linear model that picks a subset of the training data on which to defer

and uses a nearest neighbor algorithm to defer on new examples, the approach used is only

feasible for small dataset sizes and does not generalize beyond ridge regression. [54] considers
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binary classification with expert deferral, their approach is to learn a classifier ignoring the

expert and obtain uncertainty estimates for both the expert and classifier and then defer

based on which is higher, we detail the limitations of this approach in section 4. Concurrent

work [59] learns a model with the mixtures of expert loss first introduced in [43] and defers

based on estimated model and expert confidence as in [54]. Work on AI-assisted decision

making has focused on the reverse setting considered here: the expert chooses to accept

or reject the decision of the classifier instead of a learned rejector [2, 1]. Additionally, the

fairness in machine learning community has started to consider the fairness impact of having

downstream decision makers [43, 8, 27, 20] but in slightly different frameworks than the ones

considered here and work has started to consider deferring in reinforcement learning [44].

A related framework to our setting is selective classification [21] where instead of setting a

cost for rejecting to predict one sets a constraint on the probability of rejection; here is no

assumed downstream expert. Approaches range from deferring based on confidence scores

[25], learning a deep network with two heads, one for predicting and the other for deferring

[26], and learning with portfolio theory inspired loss functions [62]. Finally, our work bears a

resemblance to active learning with weak (the expert) and strong labelers (the ground truth)

[61].

In follow-up work to this thesis with collaborator Mohammad-Amin Charusaie, we showed

how one can derive a family of surrogate losses for cost-sensitive learning using a construction

from surrogate losses for multi-class learning [9]. We also show a theoretical worst case

bound between joint learning and separate learning, this makes the motivation in section 4.1

concrete. However, in [47], we show that the surrogate loss presented in this thesis fails to

learn complementary predictions in simple linear data settings. This is partially due to the

fact that learning a classifier-rejector pair jointly is computationally hard, and thus we build

non-convex approaches that can exactly minimize the error of the human-AI system. The

notion of deferring has been very fruitful in other parts of my work where a human can choose

to defer to the classifier instead of an AI rejector deciding who should predict [19, 48, 46].
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Chapter 2

Problem Formulation

We are interested in predicting a target Y ∈ Y = {1, · · · , K} based on covariates X ∈ X

where X, Y ∼ P. We assume that we have query access to an expert M that has access to a

domain Z that may contain additional information than X to classify instances according

to the target Y. Querying the expert implies deferring the decision which incurs a cost

lexp(x, y,m) that depends on the target y, covariate x, and the expert’s prediction m. On

the other hand, predicting without querying the expert implies that a classifier makes the

final decision and incurs a cost l(x, y, ŷ) where ŷ is the prediction of the classifier. Our goal

is to build a predictor Ŷ : X → Y ∪ {⊥} that can either predict or defer the decision to the

expert denoted by ⊥. We can now formulate a natural system loss function L for the system

consisting of the classifier in conjunction with the expert:

L(Ŷ ) = E(x,y)∼P,m∼M |(x,y) [ l(x, y, Ŷ (x))︸ ︷︷ ︸
classifier cost

predict︷ ︸︸ ︷
IŶ (x)̸=⊥+ lexp(x, y,m)︸ ︷︷ ︸

expert cost

defer︷ ︸︸ ︷
IŶ (x)=⊥ ] (2.1)

Our strategy for learning the predictor Ŷ will be to learn two separate functions h : X → Y

15



(classifier) and r : X → {0, 1} (rejector) and hence we write our loss as:

L(h, r) = E(x,y)∼P,m∼M |(x,y) [ l(x, y, h(x))Ir(X)=0 + lexp(x, y,m)Ir(x)=1 ] (2.2)

Figure 2-1 illustrates our expert deferral setting with its different components. The above

Figure 2-1: The expert deferral pipeline, the rejector first r(x) decides who between the
classifier h(x) and expert M(z) should predict and then whoever makes the final prediction
incurs a specific cost.

formulation is a generalization of the learning with rejection framework studied by [13] as

by setting lexp(x, y,m) = c for a constant c > 0 the two objectives coincide. In [43], the loss

proposed assumes that the classifier and expert costs are the logistic loss between the target

and their predictions in the binary target setting.

While our treatment extends to general forms of expert and classifier costs, we will pay

particular attention in our theoretical analysis when the costs are the misclassification error

with the target. Formally, we define a 0−1 loss version of our system loss:

L0−1(h, r) = E(x,y)∼P,m∼M |(x,y) [ Ih(x)̸=yIr(x)=0 + Im̸=yIr(x)=1 ] (2.3)

One may also assume a constant additive cost function c(x) for querying the expert depending

on the instance x making lexp(x, y,m) = Im ̸=y + c(x); such additive costs can be easily

integrated into our analysis.

Our approach will be to cast this problem as a cost sensitive learning problem over an

augmented label space that includes the action of deferral. Let the random costs c ∈ RK+1
+
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where for i ∈ [K], c(i) is the i′th component of c represents the cost of predicting i ∈ Y while

c[K + 1] represents the cost of deferring to the expert. The goal of this setup is to learn a

predictor h : X → [K +1] minimizing the cost sensitive loss L̃(h) := E[c(h(x))]. For example,

giving an instance (x, y), our loss (2.2) is obtained by setting c(i) = l(x, y, i) for i ∈ [K] and

c(K + 1) = lexp(x, y,m).

For the majority of this thesis we assume access to samples S = {(xi, yi,mi)}ni=1 where

{(xi, yi)}ni=1 are drawn i.i.d. from the unknown distribution P and mi is drawn from the

distribution of the random variable M |(X = xi, Y = yi) and access to the realizations of lexp

and l when required.
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Chapter 3

Proposed Surrogate Loss

It is clear that the system loss function (2.2) is not only non-convex but also computationally

hard to optimize. The usual approach in machine learning is to formulate upper bounding

convex surrogate loss functions and optimize them in hopes of approximating the minimizers

of the original loss [3]. Work from rejection learning [13, 50] suggested learning two separate

functions h and r and provided consistent convex surrogate loss functions only for the binary

setting. We extend their proposed surrogates for our expert deferral setting for binary labels

with slight modifications in appendix A.3. Consistency is used to prove that a proposed

surrogate loss is a good candidate and is often treated as a necessary condition. The issue

with the proposed surrogates in [13] for rejection learning is that when extended to the

multiclass setting, it is impossible for them to be consistent as was shown by [50]. Aside

the consistency issue, [50] found that simple baselines can outperform the proposed losses in

practice.

The construction of our proposed surrogate loss for the multiclass expert deferral setting will

be motivated in two ways, the first is through a novel reduction to cost sensitive learning, and

the second is inspired by the Bayes minimizer for the 0−1 system loss (2.3). Let gi : X → R

for i ∈ [K + 1] and define h(x) = argmaxi∈[K+1] gi, motivated by the success of the cross
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entropy loss, our proposed surrogate for cost-sensitive learning L̃CE takes the following form:

L̃CE(g1, · · · , gK+1, x, c(1), · · · , c(K + 1)) = −
K+1∑
i=1

( max
j∈[K+1]

c(j)− c(i)) log
(

exp(gi(x))∑
k exp(gk(x))

)
(3.1)

The loss L̃CE is a novel surrogate loss for cost sensitive learning that generalizes the cross

entropy loss when the costs correspond to multiclass misclassification. The following proposi-

tion shows that the loss is consistent, meaning its minimizer over all measurable functions

agrees with the Bayes solution.

Proposition 1. L̃CE is convex in g and is a consistent loss function for L̃:

let g̃ = arg infg E
[
L̃CE(g, c)|X = x

]
, then: argmaxi∈[K+1] g̃i = argmini∈[K+1] E[c(i)|X = x]

Proof of Proposition 1 can be found in Appendix A.3; L̃CE is a simpler consistent alternative

to the surrogates derived in [10] for cost sensitive learning.

Now we consider when the system loss function is L0−1 (2.3), our approach is to treat deferral

as a new class and construct a new label space Y⊥ = Y ∪⊥ and a corresponding distribution

P(Y ⊥|X = x) such that minimizing the misclassification loss on this new space will be

equivalent to minimizing our system loss L0−1. The Bayes optimal classifier on Y⊥ is clearly

h⊥ = argmaxy⊥∈Y⊥ P(Y⊥ = y⊥|X = x), and we need it to match the decision of the Bayes

solution hB, rB of L0−1 (2.3):

hB, rB = arg inf
h,r
L0−1(h, r) (3.2)

where the infimum is over all measurable functions. Denote by ηy(x) = P(Y = y|X = x),

it is clear that for x ∈ X the best classifier is the same as the Bayes solution for standard

classification since if we don’t defer we have to do our best. Now we only reject the classifier

if its expected error is higher than the expected error of the expert which we formalize in the

below proposition:
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Proposition 2. The minimizers of the loss L0−1 (2.3) are defined point-wise for all x ∈ X

as:

hB(x) = argmax
y∈Y

ηy(x)

rB(x) = Imaxy∈Y ηy(x)≤P(Y=M |X=x) (3.3)

Proof of the above proposition can be found in Appendix A.3 and equation (3.3) give us

sufficient conditions for consistency to check our proposed loss. Let gy : X → R for y ∈ Y

and define h(x) = argmaxy∈Y gy, similarly let g⊥ : X → R and define r(x) = Imaxy∈Y gy(x)≤g⊥

the proposed surrogate loss for L0−1 (2.2) in the multiclass setting is then:

LCE(h, r, x, y,m) = − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(3.4)

The proposed surrogate LCE is in fact consistent and upper bounds L0−1 as the following

theorem demonstrates.

Theorem 1. The loss LCE is convex in g, upper bounds L0−1 and is consistent:

inf
h,r

Ex,y,m[LCE(h, r, x, y,m)]

is attained at (h∗CE, r∗CE) such that hB(x) = h∗CE(x) and rB(x) = r∗CE(x) for all x ∈ X .

Proof Sketch. Please refer to appendix A.3 for the detailed proof. First the infimum over

functions h, r can be replaced by a point-wise infimum as:

inf
h,r

Ex,y,m[LCE(h, r, x, y,m)] = Ex inf
h(x),r(x)

Ey|xEm|x,y[LCE(h(x), r(x), x, y,m)]
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Now let us expand the inner expectation:

Ey|xEm|x,y[LSH(h(x), r(x), x, y,m)] = −
∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(3.5)

− P(Y =M |X = x) log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

For ease of notation denote the RHS of equation (3.5) as LCE(g1, · · · , g|Y|, g⊥), note that it is

a a convex function, hence we will take the partial derivatives with respect to each argument

and set them to 0. For any g⊥ and i ∈ Y we have :

exp(g∗i (x))∑
y′∈Ỹ exp(gy′(x))

=
ηi(x)

1 + P(Y =M |X = x)
(3.6)

The optimal h∗ for any g⊥ should satisfy equation (3.6) for every i ∈ Y. Plugging h∗ and

taking the derivative with respect to g⊥ we get:

exp(g∗⊥(x))∑
y′∈Y exp(g∗y′(x))

=
P(Y =M |X = x)

1 + P(Y =M |X = x)

since exponential is an increasing function we get that the optimal h∗ and r∗ in fact agrees

with the Bayes solution.

When the costs c(1), · · · , c(K + 1) are in accordance with our expert deferral setting the loss

L̃CE reduces to LCE. Now stepping back and looking more closely at our loss LCE, we can

see that the loss on examples where the expert makes a mistake becomes the cross entropy

loss with the target. On the other hand, when the expert agrees with the target, the learner

faces two opposing decisions whether to defer or predict the target. We can encourage or

hinder the action of deferral by modifying the loss with an additional parameter α ∈ R+ as
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LαCE(h, r, x, y,m):

LαCE(h, r, x, y,m) =− (α · Im=y + Im̸=y) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(3.7)

Note that L1
CE = LCE. The effect of α is to re-weight examples where the expert is correct

to discourage the learner from fitting them and instead focus on examples where the expert

makes a mistake. In practice, one would treat α as an additional hyperparameter to optimize

for.
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Chapter 4

Theoretical analysis

In this chapter we focus on the zero-one system loss function L0−1 and try to understand

previous proposed solutions in the literature in comparison with our method from a theoretical

perspective.

4.1 Failure of Confidence Scores Method

Let us first remind ourselves of the Bayes solution for the system loss:

hB(x) = argmax
y∈Y

ηy(x), rB(x) = Imaxy∈Y ηy(x)≤P(Y=M |X=x)

The form of the Bayes solution above suggests a very natural approach: 1) learn a classifier

minimizing the misclassification loss with the target and obtain confidence scores for pre-

dictions, 2) obtain confidence scores for expert agreement with the target, this can be done

by learning a model where the target is whether the expert agrees with the task label and

extracting confidence scores from this model [55], and finally 3) compare who between the

classifier and the expert is more confident and accordingly defer. We refer to this as the
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confidence score method (Confidence), this approach leads to a consistent estimator for both

the rejector and classifier and was proposed by [54].

In fact this is the standard approach in rejection learning [4, 56, 50], a host of different

methods exist for estimating a classifier’s confidence on new examples including trust scores

[34], Monte-Carlo dropout for neural networks [24] among many others. However, the key

pitfall of this method in the expert deferral setup it that it does not allow h to adapt to the

expert’s strengths and weaknesses. When we restrict our search space to a limited class of

functions H and R this approach can easily fail. We now give a toy example where learning

the classifier independently fails which motivates the need to jointly learn both the classifier

and rejector.

Figure 4-1: Setting of two groups, red and blue, the task is binary classification with labels
{o,+}, the expert fits the red majority group, hence the classifier should attempt to fit the
blue group with the rejector (black line) separating the groups.

Assume that there exists two sub-populations in the data denoted A = 1 and A = 0 where

P(A = 1) ≥ P(A = 0) from which X ∈ Rd is generated from and conditional on the target

and population, X|(Y = y, A = 0) is normally distributed according to N (µy,0,Σ) and
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X|(Y = y, A = 1) consists of two clusters: cluster (1) is normally distributed but the means

are not well separated and cluster (2) is only separable by a complex non-linear boundary; the

data is illustrated in Figure 4-1. Finally we assume the expert to be able to perfectly classify

group A = 1, on cluster (1) the expert is able to compute the complex nonlinear boundary

and on cluster (2) the expert has side-information Z that allows him to separate the classes

which is not possible from only X. Our hypothesis spaces H and G will be the set of all

d−dimensional hyperplanes. If we start by learning h, then the resulting hyperplane will try

to minimize the average error across both groups, this will likely result into a hyperplane that

separates neither group as the data is not linearly separable, especially on group A = 1. If

we assume that the boundary between the groups is linear as shown, then we can achieve the

error of the Bayes solution within our hypothesis space: the optimal behavior in this setting

is clearly to have h fit group A = 0, note here the Bayes solution corresponds to a hyperplane

via linear discriminant analysis for 2 classes on A = 0, and the rejector r separating the

groups as illustrated in Figure 4-1. This example illustrates the complexities of this setting,

due to model capacity there are significant gains to be achieved from adapting to the expert

by focusing only group A = 0. Setting aside model capacity, the nonlinear boundary of

cluster (1) is sample intensive to learn as we only have access to finite data. Finally, cluster

(2) cannot be separated even with infinite data, the side information of the expert is needed,

and so the hard task is to identify the region of cluster (2). This serves to illustrates the

complexities of the setup and the importance of learning the classifier and rejector jointly.

4.2 Inconsistency of mixtures of experts loss and Realizable-

consistency

So far we have focused on classification consistency to verify the soundness of proposed

approaches, however, we usually have specific hypothesis classes H,R in mind, and if the

Bayes predictor is not in our class then consistency might not guarantee much [5]. For
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example, for binary classification with half-spaces, any predictor learned with a convex

surrogate loss can have arbitrarily high error if the best half-space has non-zero error [5].

The previous example illustrated in Figure 4-1 shows an the mode of failure that exists in the

expert deferral setup even in the realizable setting. Therefore, a more relevant requirement

to our example is that the minimizers of a proposed surrogate loss and the original loss agree

for given hypothesis classes in the realizable setting; this is formally defined with the below

notion.

Definition 1 (realizable (H,R)-consistency). A surrogate loss Lsurr is realizable (H,R)-

consistent if for all distributions P and experts M for which there exists h∗, r∗ ∈ H×R that

have zero error L(h∗, r∗) = 0, we have ∀ϵ > 0, ∃δ > 0 such that if (ĥ, r̂) satisfies

∣∣∣Lsurr(ĥ, r̂)− infh∈H,r∈R Lsurr(h, r)
∣∣∣ ≤ δ, then: L(ĥ, r̂) ≤ ϵ

A similar notion was introduced for classification by [40] and by [13] for rejection learning,

however here we have the the added dimension of the expert.

Note that the expert deferral setting considered here can be thought of as a hard mixture of

two experts problem where one of the experts is fixed [35, 57, 43]. This observation motivates

a natural mixture of experts type loss, let gy : X → R for y ∈ Y, h(x) = argmaxy∈Y gy,

ri : X → R for i ∈ {0, 1} and r(x) = argmaxi∈{0,1} ri(x), the mixture of experts loss is defined

as:

Lmix(g, r, x, y,m) = − log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)
exp(r0(x))∑

i∈{0,1} exp(ri(x))
+ Im̸=y

exp(r1(x))∑
i∈{0,1} exp(ri(x))

(4.1)

The above loss extends [43] approach to the multiclass setting. As the next proposition

demonstrates, Lmix is in general not classification consistent, however, it is realizable (H,R)-

consistent for classes closed under scaling which include linear models and neural networks.
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Proposition 3. Lmix is realizable (H,R)-consistent for classes closed under scaling but is

not classification consistent.

Proof of proposition 3 can be found in Appendix A.3. Note that integrating more information

about M in Lmix would not make the loss consistent, the inconsistency arises from the

parameterization in g, setting the classifier loss to simply be Ih(x)̸=y would make Lmix

consistent at the cost of losing the convexity and differentiability in g. While Lmix is indeed

realizable consistent however it is not convex in both g and r, hence it is not clear how to

efficiently optimize it. Setting aside computational feasibilities, it is also not immediately

clear which between consistency and realizable (H,R)-consistency will be more practically

relevant. In our experimental chapter we show how the mismatch between the model and

expert loss and their actual errors causes this method to learn the incorrect behavior which

hints that classification consistency is crucial.

4.3 Generalization Bound For Joint Learning

In this subsection we analyze the sample complexity to jointly learn a rejector and classifier.

The goal is to find the minimizer of the empirical version of our system loss when our

hypothesis space for h and r are H,R respectively:

ĥ∗, r̂∗ = arg min
h∈H,r∈G

LS0−1(h, r) :=
1

n

n∑
i=1

Ih(xi )̸=yiIr(xi)=0 + Imi ̸=yiIr(xi)=1 (4.2)

By going after the system loss directly, we can approximate the population minimizers h∗, r∗

over H×R of L0−1 (2.3). The optimum h∗ may not necessarily coincide with the optimal

minimizer of the misclassification loss with the target which is why learning jointly is critical.

We now give a generalization bound for our empirical minimization procedure for a binary

target.

Theorem 2. For any expert M and data distribution P over X × Y, let 0 < δ < 1
2
, then
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with probability at least 1− δ, the following holds for the empirical minimizers (ĥ∗, r̂∗):

L0−1(ĥ
∗, r̂∗) ≤ L0−1(h

∗, r∗) +Rn(H) +Rn(R) +RnP(M ̸=Y )/2(R)

+ 2

√
log 2

δ

2n
+

P(M ̸= Y )

2
exp

(
−nP(M ̸= Y )

8

)
(4.3)

Proof of the above theorem can be found in Appendix A.3. We can see that the performance

of our empirical minimizer is controlled by the Rademacher complexity Rn(R) and Rn(H) of

both the classifier and rejector model classes and the error of the expert. Note that when

P(M ̸= Y ) = 0 we recover the bound proved in Theorem 1 [13] for rejection learning when

c = 0; this gives evidence that deferring to an expert is a more sample intensive problem then

rejection learning. Both our loss LCE and the confidence scores approach lead to consistent

estimators, however, as we will later show in our experiments, one differentiating factor

will be that of sample complexity. We can already see in the bound (4.3), that we pay the

complexity of the rejector and classifier model classes, however, our approach combines the

rejector and classifier in one model to avoid these added costs.
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Chapter 5

Experiments

We provide code to reproduce our experiments 1, we have built an extended code base after

this thesis in 2. In Appendix A.1 we give a detailed guide on implementing our method.

Additional experimental details and results are left to Appendix A.2.

5.1 Synthetic Data

As a first toy example to showcase that our proposed loss LαCE is able to adapt to the

underlying expert behavior, we perform experiments in a Gaussian mixture setup akin to

the example in chapter 4. The covariate space is X = Rd and target Y = {0, 1}, we assume

that there exists two sub-populations in the data denoted A = 1 and A = 0. Furthermore,

X|(Y = y, A = a) is normally distributed according to N (µy,a,Σy,a). The expert follows the

Bayes solution for group A = 1 which here corresponds to a hyperplane. Our hypothesis

spaces H and R will be the set of all d−dimensional hyperplanes.

Setup: We perform 200 trials where on each trial we generate: random group proportions

P(A = 1) ∼ U(0, 1) fixing P(Y = 1|A = a) = 0.5, random means and variances for each
1https://github.com/clinicalml/learn-to-defer
2https://github.com/clinicalml/human_ai_deferral
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Gaussian component X|Y = y, A = a ∼ N (µy,a,Σy,a) where µy,a ∼ U(0, 10)d and similarly

for the diagonal components of Σy,a(i, i) ∼ U(0, 10) keeping non-diagonal components 0 with

dimension d = 10; we generate in total 1000 samples each for training and testing. We

compare against oracle behavior and two baselines: 1) An oracle baseline (Oracle) that trains

only on A = 0 data and trains the rejector to separate the groups with knowledge of group

labels and 2) the confidence score baseline (Confidence) that trains a linear model on all the

data and then trains a different linear model on all the data where labels are the expert’s

agreement with the target and finally compares which of the two is more confident according

to the probabilities assigned by the corresponding models and 3) our implementation of the

approach in [43] (MixOfExp).

Results: We train a multiclass logistic regression model with our loss LαCE with α ∈ {0, 0.5, 1}

and record in table 5.1 the difference in accuracy between our method and baselines for the

best performing α. We can see that our method with α = 0 outperforms the confidence

baseline by 6.39 on average in classification accuracy and matches the oracle method with

0.22 positive difference which shows the success of our method. When trained with loss L1
CE

or L.5CE the model matches the confidence baseline, the reason being is that with α ̸= 0 the

model will still try to fit the target Y but the model class here is not rich enough to allow

the model to reasonably fit the target and adapt to the expert.

Table 5.1: Comparison of our methods with the confidence score baseline, oracle baseline and
our implementation of [43] method. We compute a 95% confidence interval for the average
difference between the baselines and our method.

Difference in system accuracy Average 95% interval

L0
CE-Confidence [54] 6.39 [3.71,9.06]

L0
CE-Oracle 0.22 [-1.71,2.15]

L0
CE- MixOfExp [43] 2.01 [0.14,4.06]
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5.2 CIFAR-10

As our first real data experimental evaluation we conduct experiments on the celebrated

CIFAR-10 image classification dataset [38] consisting of 32× 32 color images drawn from 10

classes split into 50,000 train and 10,000 test images.

Synthetic Expert. We simulate multiple synthetic experts of varying competence in the

following way: let k ∈ [10], then if the image belongs to the first k classes the expert predicts

perfectly, otherwise the expert predicts uniformly over all classes. The classifier and expert

costs are assumed to be the misclassification costs.

Base Network. Our base network for classification will be the Wide Residual Networks

(WideResNets) [60] which with data augmentation and hyperparameter tuning can achieve

a 96.2% test accuracy. Since our goal is not to achieve better accuracies but to show the

merit of our approach for a given fixed model, we disadvantage the model by not using

data augmentation and a smaller network size. The WideResNet with 28 layers minimizing

the cross-entropy loss achieves 90.47% test accuracy with training until fitting the data in

200 epochs; this will be our benchmark model. We use SGD with momentum and a cosine

annealing learning rate schedule.

Proposed Approach: Following chapter 4, we parameterize h and r (specifically g⊥) by a

WideResNet with 11 output units where the first 10 units represent h and the 11′th unit is

g⊥ and minimize the proposed surrogate LαCE (3.4). We also experimented with having h be

a WideResNet with 10 output units and g⊥ a WideResNet with a single output unit and

observed identical results. We show results for α ∈ {0.5, 1}.

Baselines: We compare against three baselines. The first baseline trains the rejector to

recognize if the image is in the first k classes and accordingly defers, we call this baseline

"LearnedOracle"; this rejector is a learned implementation of what the optimal rejector

should do. The second baseline is the confidence score method [54] and the third is the

mixture-of-experts loss of [43], details of the implementation of this final baseline are left to
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Figure 5-1: Left figure shows overall system accuracy of our method and baselines (k is the
number of classes the expert can predict) and right figure compares the accuracy on the
non-deferred examples versus the coverage for every k

Appendix A.2.5.

Results. In figure 5-5a we plot the accuracy of the combined algorithm and expert system

versus k, the number of classes the expert can predict perfectly. We can see that the model

trained with L0.5
CE and L1

CE outperforms the baselines by 1.01% on average for the confidence

score baseline and by 1.94 on average for LearnedOracle. To look more closely at the behavior

of our method, we plot in figure 5-1b the accuracy on the non-deferred examples versus the

coverage, the fraction of the examples non-deferred, for each k. We can see that that the

model trained with L1
CE dominates all other baselines giving better coverage and accuracy

for the classifier’s predictions. This gives evidence that our loss allows the model to only

predict when it is highly confident.

Why do we outperform the baselines?

1) Sample complexity : The Confidence baseline [54] requires training two networks while

ours only requires one, when data is limited our approach gives significant improvements

in comparison. We experiment with increasing training set sizes while keeping the test set
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fixed and training our model with L1
CE and the Confidence baseline. Figure 5-2 plots system

accuracy versus training set size when training with expert k = 5. We can see when data

is limited our approach massively improves on the baseline, for example with 2000 training

points, Confidence achieves 62.33% accuracy while our method achieves 70.12%, a 7.89 point

increase.

2) Taking into consideration both expert and model confidence: the LearnedOracle baseline

ignores model confidence entirely and only focuses on the region where the expert is correct.

While this is the behavior of the Bayes classifier in this setup, when dealing with a limited

model class and limited data, this no longer is the correct behavior. For this reason, our

model outperforms the LearnedOracle baseline.

3) Consistency : the mixtures of experts loss of [43] fails in this setup and learns never to

defer. The reason is that when training, the loss of the classifier will converge to zero and

validation classifier accuracy will still improve in the mean-time, however the loss of the

expert remains constant, thus we never defer.
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Figure 5-2: Varying training set size when training with expert k = 5 for Confidence baseline
and our method L1

CE.

35



5.3 CIFAR-100

We repeat the experiments described above on the CIFAR-100 dataset [38]. A 28 layer

WideResNet achieves a 79.28 % test accuracy when training with data augmentation

(random crops and flips). The simulated experts also operate in a similar fashion, for

k ∈ {10, 20, · · · , 100}, if the image is in the first k classes, the expert predicts the correct

label with probability 0.94 to simulate SOTA performance on CIFAR-100 with 93.8% test

accuracy [37], otherwise the expert predicts uniformly at random.

Compared against the confidence score baseline, the model trained with L1
CE outperforms it

by a 1.60 difference in test accuracy for 30 ≤ k ≤ 90 on average and otherwise performs on

par. This gives again gives evidence for the efficacy of our method, full experimental results

are available in appendix A.2.3.

5.4 CIFAR10H and limited expert data

Obtaining expert labels for entire datasets may in fact be prohibitively expensive as standard

dataset sizes have grown into million of points [17]. Therefore it is more realistic to expect

that the expert has labeled only a fraction of the data. In the following experiments we

assume access to fully labeled data Sl = {(xi, yi,mi)}mi=1 and data without expert labels

Su = {(xi, yi)}ni=m+1. The goal again is to learn a classifier h and rejector r from the two

datasets Sl and Su.

Data: To experiment in settings where we have limited expert data, we use the dataset

CIFAR10H [53] initially developed to improve model robustness. CIFAR10H contains for each

data point in the CIFAR-10 test set fifty crowdworker annotations recorded as counts for each

of the 10 classes. The training set of CIFAR-10 will constitute Su, and we randomly split the

test set in half where one half constitutes Sl and the other is for testing; we randomize the

splitting over 10 trials.
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Expert: We simulate the behavior of an average human annotator by sampling from

the class counts for each data point. The performance of our simulated expert has an

average classification accuracy of 95.22 with a standard deviation of 0.18 over 100 runs. The

performance of the expert is non uniform over the classes, for example on the class cat the

expert has 91.0% accuracy while on horse a 97.8% accuracy.

Proposed Approach: Our method will be to learn fm : X → {0, 1} to predict whether the

expert errs from data S̃l = {(xi, Iyi ̸=mi
)}mi=1, using fm we label Su with the expert disagreement

labels to use in our loss function an obtain Ŝu. Note since our loss function does not care

which label the expert predicts but whether he errs or not, our task simplifies to binary

classification instead of classification over the target Y . Finally we train using our loss LCE

on Ŝu ∪ Sl; we refer to our method as "LCE impute"

Table 5.2: Comparing our proposed methods on CIFAR10H and a baseline based on confidence
scores recording system accuracy, coverage and classifier accuracy on non-deferred examples.

Method System Coverage Classifier

LCE impute 96.29±0.25 51.67±1.46 99.2 ± 0.08
LCE 2-step 96.03±0.21 60.81±0.87 98.11 ± 0.22
Confidence [54] 95.09±0.40 79.48±5.93 96.09 ± 0.42

Results. We compare against a confidence score baseline where we train a classifier on Su and

then model the expert on Sl. Results are shown in table 5.2 and we can see that our method

outperforms the confidence method by 1.2 points on system accuracy and an impressive 3.1

on data points where the classifier has to predict. To show the effect of imputing expert

labels on Su, we train first our model using LCE on Su and then fine tune to learn deferral

on Sl, we refer to this as "LCE 2-step". It is possible that further approaches inspired by

SOTA methods in semi supervised learning methods give further improvements [51, 6].
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5.5 Hate Speech and Offensive Language Detection

We conduct experiments on the dataset created by [15] consisting of 24,783 tweets annotated

as hate speech, offensive language or neither. We create a synthetic expert that has differing

error rates according to the demographic of the tweet’s author as described in what follows.

Expert. [7] developed a probabilistic language model that can identify if a tweet is in

African-American English (AAE), this model was used by [14] to audit for racial bias in

classifiers. We use the same model and predict that a tweet is in AAE if the probability

predicted is higher than 0.5. Our expert model is as follows: if the tweet is in AAE then

with probability p we predict the correct label and otherwise predict uniformly at random.

On the other hand if the tweet is not in AAE, we predict with probability q the correct

label. We experiment with 3 different expert probabilities for p and q: 1) a fair expert with

{p = 0.9, q = 0.9}, 2) a biased expert towards AAE tweets {p = 0.75, q = 0.9} and 3) a

biased expert towards non AAE tweets {p = 0.9, q = 0.75}.

Our Approach. For our model we use the CNN developed in [36] for text classification

with 100 dimensional Glove embeddings [52] and 300 filters of sizes {3, 4, 5} using dropout.

This CNN achieves a 89.5% average accuracy on the classification task, comparable to the

91% achieved by [15] with a feature heavy linear model. We randomly split the dataset

with a 60, 10, 30% split into a training, validation and test set respectively; we repeat the

experiments for 5 random splits. We used a grid search over the validation set to find α.

Results. We compare against two baselines: the first is Confidence, the second is an oracle

baseline that trains first a model on the classification task and then implements the Bayes

rejector rB(x) equipped with the knowledge of p, q and the tweet’s demographic group. Both

our model trained with L1
CE and the confidence score baseline achieve similar accuracy and

coverage with the oracle baseline performing only slightly better across the three experts. For

the AAE biased expert, our model trained with L1
CE achieves 92.91±0.17 system accuracy,

Confidence 92.42±0.40 and Oracle 93.22±0.11. This suggests that both approaches are
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performing optimally in this setting.

Racial Bias. A major concern in this setting is whether the end to end system consisting of

the classifier and expert is discriminatory. We define the discrimination of a predictor as the

difference in the false positive rates of AAE tweets versus non AAE tweets where false positives

indicate tweets that were flagged as hate speech or offensive when they were not. Surprisingly,

the confidence score baseline with the fair expert doubles the discrimination of the overall

system compared to the classifier acting on it’s own: the classifier has a discrimination of 0.226

on all the test data, the fair expert a discrimination of 0.03 while the confidence score baseline

has a discrimination of 0.449. This again reiterates the established fact that fairness does not

compose [20]. In fact, the end-to-end system can be less discriminatory even if the individual

components are more discriminatory, for the second expert that has higher error rates on non

AAE tweets with discrimination of 0.084, the discrimination of the confidence score method

reduces to 0.151. While our method does not achieve significantly lower discrimination than

the baseline, however integrating fairness constraints for the end-to-end system becomes

easier as we can adapt the classifier. Complete experimental results can be found in Appendix

A.2.4.

5.6 Synthetic Experts on CheXpert

Task. CheXpert is a large chest radiograph dataset that contains over 224 thousand images

of 65,240 patients automatically labeled for the presence of 14 observations using radiology

reports [31]. In addition to the automatically labeled training set, [31] make publicly accessible

a validation set of 200 patients labeled by a consensus of 3 radiologists and hide a further

testing set of 500 patients labeled by 8 radiologists. We focus here on the detection of only

the 5 observations that make up the "competition tasks" [31]: Atelectasis, Cardiomegaly,

Consolidation, Edema, and Pleural Effusion. This is a multi-task problem, we have 5 separate

binary tasks, we will learn to defer on an individual task basis.
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Expert. We create a simulated expert as follows: if the chest X-ray contains support devices

(the presence of support devices is part of the label) then the expert is correct with probability

p on all tasks independently and if the X-ray does not contain support devices, then the

expert is correct with probability q. We vary q ∈ {0.5, 0.7} and p ∈ {0.7, 0.8, 0.9, 1} to obtain

different experts, we let p ≥ q as one can think that a patient that has support devices might

have a previous medical history that the expert is aware of and can use as side-information.

Data. We use the downsampled resolution version of CheXpert [31] and split the training data

set with an 80-10-10 split on a patient basis for training, validation and testing respectively,

no patients are shared among the splits. Images are normalized and resized to be compatible

with pre-trained ImageNet models, we use data augmentation in the form of random resized

crops, horizontal flips and random rotations of up to 15 degrees while training. Note that a

small subset of the training data has an uncertainty label "U" instead of a binary label that

implies that the automatic annotator is uncertain, we ignore these points on a task basis

while training and testing.

Baselines. We implement two baselines: a threshold confidence baseline that learns a

threshold to maximize system AU-ROC on just the confidence of the classifier model to defer

(ModelConfidence), this is the post-hoc thresholding method in [43], and the Confidence

baseline [54]. We use temperature scaling [29] to ensure calibration of all baselines on the

validation set.

Model. Following [31], we use the DenseNet121 architecture for our model with pre-trained

weights on ImageNet, the loss for the baseline models is the average of the binary cross

entropy for each of the tasks. We train the baseline models using Adam for 4 epochs. For our

approach we train for 3 epochs using the cross entropy loss and then train for one epoch using

LαCE with α chosen to maximize the area under the receiver operating characteristic curve

(AU-ROC) of the combined system on the validation set for each of the 5 tasks (each task is

treated separately). We also observe similar results if we train for the first three epochs with

L1
CE and then train for one epoch with a validated choice of α.
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Experimental setup. In a clinical setting there might be a cost associated to querying a

radiologist, this then imposes a constraint on how often we can query the radiologist i.e. our

model’s coverage (fraction of examples where algorithm predicts). We constrain our method

and the baselines to achieve c% coverage for c ∈ [100] to simulate the spectrum between

complete automation and none.

We achieve this for our method by first sorting the test set based on g⊥(x)−max(g0(x), g1(x)) :=

q(x) across all patients x in the test set, then to achieve coverage c, we define τ = q(xc) where

q(xc) is the c’th percentile of the outputs q(x), then we let r(x) = 1 ⇐⇒ q(x) ≥ τ . The

definition of τ ensures that we obtain exactly c% coverage.

For ModelConfidence we achieve this by letting q(x) = 1−max(g0(x), g1(x)) (g is the result

of a separate trained model than the one for our method), this is the natural classifier’s

probability of error from the softmax output, and for the Confidence we let q(x) be the

difference between the radiologists confidence and the classifier’s confidence.

Results. In Figure 5-3a we plot the overall system (expert and algorithm combined) AU-ROC

for each desired coverage for the methods and in Figure 5-3b we plot the overall system area

under the precision-recall curve (AU-PR) versus the coverage; this is for the expert with

q = 0.7 and p = 1. We can see that the curve for our method dominates the baselines over

the entire coverage range for both AU-ROC and AU-PR, moreover the curves are concave

and we can achieve higher performance by combining expert and algorithm than using both

separately. Our method is able to achieve a higher maximum AU-ROC and AU-PR than

both baselines: the difference between the maximum attainable AU-ROC of our method and

Confidence is 0.043, 0.029, 0.016, 0.022 and 0.025 respectively for each of the five tasks. There

is a clear hierarchy between the 3 compared methods: our method dominates Confidence

and Confidence in turn dominates ModelConfidence, in fact ModelConfidence is a special

case of the Confidence baseline, since the expert does not have uniform performance over the

domain there are clear gains in modeling the expert.

This hierarchy continues to hold as we change the expert behavior as we vary the probabilities
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p and q, in Table 5.3 we show for each of the 5 tasks the difference between the average

AU-ROC across all coverages (average value of the curves shown in Figure 5-3a) for our

method and the Confidence baseline for different expert probabilities and the difference

between the maximum achievable AU-ROC. A positive average difference serves to show the

degree of dominance of our method over the Confidence baseline, note that the difference

alone cannot imply dominance of the curves however dominance is still observed. Our method

improves on the baselines as the difference between q and p increases, this difference encodes

the non-uniformity of the expert behavior over the domain.
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(a) AU-ROC vs coverage for expert q = 0.7, p = 1, maximum AU-ROC is noted.
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(b) AU-PR vs coverage for expert q = 0.7, p = 1, maximum AU-PR is noted.

Figure 5-3: Plot of AU-ROC of the ROC curve (a) for each level of coverage (0 coverage means
only the expert predicting and 1 coverage is only the classifier predicting) and of the area
under the precision-recall curve (AU-PR) (b) for each of the 5 tasks comparing our method
with the baselines on the training derived test set for the toy expert with q = 0.7, p = 1. We
report the maximum AU-ROC and AU-PR achieved on each task, error bars are standard
deviations derived from 10 runs (averaging over the expert’s randomness).
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Table 5.3: Average difference in AU-ROC across all coverage and difference between maximum
achievable AU-ROC between our method and the Confidence baseline for each of the 5
tasks and different toy expert probabilities p and q; each entry is (average difference ±
standard deviation; difference of maximums). The difference between our method and the
ModelConfidence is roughly twice the values noted in table 5.3, only at Expert (0.7, 0.7) does
Confidence and ModelConfidence achieve the same performance since the expert has uniform
error over the domain.

Expert (p, q) Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion

(0.5,0.7) 0.032±0.024; 0.002 0.015±0.012; 0.007 0.015±0.008; 0.007 0.017±0.009; 0.007 0.007±0.003 ;0.007
(0.5,0.9) 0.032±0.017; 0.014 0.026±0.016; 0.024 0.010±0.005; 0.015 0.016±0.008; 0.026 0.012±0.010; 0.004
(0.5,1) 0.022±0.012; 0.029 0.013±0.009; 0.019 0.007±0.008; 0.012 0.013±0.006; 0.020 0.010±0.008; 0.012
(0.7,0.7) 0.024±0.018; 0.005 0.011±0.009; 0.010 0.011±0.010; 0.009 0.006±0.006; 0.008 0.001±0.001; 0.003
(0.7,0.9) 0.032±0.020; 0.024 0.010±0.007; 0.010 0.007±0.007; 0.017 0.014±0.008; 0.017 0.010±0.006; 0.006
(0.7,1) 0.027±0.014; 0.042 0.016±0.010; 0.027 0.007±0.007; 0.019 0.013±0.007; 0.022 0.014±0.010; 0.027
(0.8,1) 0.017±0.009; 0.023 0.011±0.008; 0.012 0.001±0.004; 0.007 0.012±0.006; 0.009 0.010±0.006; 0.018

Sample Complexity Training data for chest X-rays is a valuable resource that may not

be abundantly available when trying to deploy a machine learning model in a new clinical

setting where for example the imaging mechanism may differ. It is important to see the

effectiveness of the proposed approaches when training data size is limited, this furthermore

helps us understand the comparative sample complexity of our method versus the baselines.

Experimental details. We restrict the training data size for our model and baselines while

keeping the same validation and testing data as previously; the validation data is used only

for calibration of models and optimizing over choice of α. We train using the same procedure

as before and report the maximum achievable AU-PR and AU-ROC. The expert we defer to

is the synthetic expert described above with q = 0.7 and p = 1.

Results. In Figure 5-4 we plot the average of the maximum achievable AU-ROC 5-4a and

AU-PR 5-4b across the 5 tasks for the different methods as we vary the the training set size.

We observe that our method consistently outperforms the baselines and continues to take

advantage of further data as the baselines performance starts to saturate. If we look at the

AU-ROC and AU-PR of the expert on deferred examples, we observe negligible differences as

the training set size increases for each method, however if we look at classifier performance

on the non-deferred examples, we start to observe a significant difference in AU-ROC and
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Figure 5-4: Left figure shows the average of the maximum achievable AU-ROC for the 5
tasks (average over the tasks) when the changing the size of the training data (as a % of the
original set) and right figure shows the same for AU-PR

AU-PR for our method while the baselines lag behind. In Figure A-2 (found in Appendix

A.2.6) we plot the classifier AU-ROC on non-deferred examples versus the coverage for each

of the 5 tasks, we can see for example on Cardiomegaly, our method at full training data

obtains an AU-ROC that is at least 0.2 points greater than that of ModelConfidence at

coverage levels less than 50%. One expects ModelConfidence to achieve the best performance

when looking at non-deferred examples, and this in fact is true when we look at accuracy,

however for AU-ROC, what happens is that the ModelConfidence baseline never defers on

negative predicted examples due to the class imbalance which makes the model very confident

in it’s negative predictions. Thus, any positive labeled example that the model mistakenly

labels as negative with high confidence will cause the AU-ROC to be reduced at low coverage

levels. This also allows us to see that our method, and to an extent the Confidence baseline,

make very different deferral decisions that factor in the expert.

Impact of input noise In our previous experimental setup, the input domain of the

classifier X , the chest X-ray, is assumed to be sufficient to perfectly predict the label Y as
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(a) Original X-ray (b) X-ray with hidden left part

Figure 5-5: Left figure (a) shows the chest X-ray of a patient with Cardiomegaly, the right
figure (b) shows that same X-ray but now with the left part hidden which is used as input to
the models.

our golden standard is the prediction of expert radiologists from just looking at the X-ray.

Therefore, given enough training data and a sufficiently rich model class, a learned classifier

from X will be able to perfectly predict the target and won’t need to defer to any expert to

achieve better performance. In this set of experiments, we perform two studies: the first we

hide the left part of the chest X-ray on both training and testing examples to obtain a new

input domain X̃ . This now limits the power of any learned classifier even in the infinite data

regime as the left part of the X-ray may hide crucial parts of the input. Figure 5-5 shows

this noise applied to a patient’s X-ray, the size of the rectangular region was chosen to cover

one side of the chest area, we later experiment with varying the scale of the noise. In the

second experiment, we train with the original chest X-rays but evaluate with noisy X-rays

with noise in the form of erasing a randomly placed rectangular region of the X-ray. This

second experiment is meant to the illustrate the robustness of the different methods to input

noise.

Experimental details. The noise in the second set of experiments consists of a 2:1

(height:width) randomly located rectangular region of scale (area) that we vary from 0.1 to

0.66. The expert is the synthetic expert model with q = 0.7 and p = 1.
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Results. In Figure 5-7 we plot the AU-ROC and AU-PR of the different methods as we vary

coverage when training and testing while hiding the left section of the X-rays. We can first

observe that the maximum achievable performance for the different methods is significantly

reduced, however the gap between the different methods is still observed. In Figure 5-6 we

plot the average maximum AU-ROC and AU-PR across the 5 tasks as we vary the area of

the rectangular region. While the performance of all the methods degrade with the scale of

the noise, the gap between the methods remains constant in terms of AU-PR but diminishes

in terms of AU-ROC as the performance of the baselines remains steady.
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Figure 5-6: Left figure shows the average of the maximum achievable AU-ROC for the 5
tasks (average over the tasks) when the changing the scale of the noise (size of rectangular
region) and right figure shows the same for AU-PR.
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(a) AU-ROC vs coverage when hiding left part of X-ray.
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(b) AU-PR vs coverage when hiding left part of X-ray.

Figure 5-7: Plots of AU-ROC and AU-PR as we vary coverage when training and testing
with chest X-rays that have their left section hidden. The expert model is q = 0.7 and p = 1.
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Chapter 6

Conclusion

In this thesis, we explored a framework where the learning model can choose to defer to an

expert or predict. We analyzed the framework theoretically and proposed a novel surrogate

loss via a reduction to multiclass cost sensitive learning. Through experiments on image and

text classification tasks, we showcased that our approach not only achieves better accuracy

than confidence score baselines but does so with better sample complexity and computational

cost. We hope that our method will inspire machine learning practitioners to integrate

downstream decision makers into their learning algorithms. Future work will explore how to

defer in settings where we have limited expert data, learning from biased expert data and

learning to defer to multiple experts simultaneously.
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Appendix A

Appendix

A.1 Practitioner’s guide to our approach

A.1.1 General implementation

Given a dataset of tuples S = {(xi, yi,mi)}ni=1 where xi represents the covariates, yi is the

target and mi are the expert labels, we want to construct a classifier h : X → Y and rejector

function r : X → {−1, 1}. Our method for predicting on a new example x ∈ X given expert

context z ∈ Z that only the expert can observe, a function class H where h ∈ H : X → R|Y|+1

(an example would be the set of deep networks with |Y|+ 1 output units) , and an expert

M : Z → Y is summarized below in Algorithm 1.
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Algorithm 1: Our proposed method for prediction on a new example x ∈ X with

expert input z ∈ Z
Input: training data S = {(xi, yi,mi)}ni=1, function class H, example x, Expert M

and expert input z

g1, · · · , g|Y|, g⊥ ← argming∈H
∑

i∈S L
α
CE(g, xi, yi,mi)

prediction = 0

r(x)← sign(−maxy∈Y gy(x) + g⊥(x))

if r(x) = 0 then
h(x)← argmaxy∈Y gy(x)

prediction ← h(x)

else
m←M(z) (expert query)

prediction ← m

end

Return: prediction

Where the loss LαCE used in algorithm is the following:

LαCE(h, r, x, y,m) =− (α · Im=y + Im̸=y) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

Practically, integrating an expert decision maker into a machine learning model amounts to

two modifications in training: increasing the output size of the function class in consideration

by an additional output unit representing deferral and training with the loss LαCE instead of

the cross entropy loss. We show how to implement LαCE in PyTorch below:

def deferral_loss_L_CE ( outputs , target , expert , k_classes , alpha ) :

’ ’ ’

ou tpu t s : model ou tpu t s

t a r g e t : t a r g e t l a b e l s
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expe r t : e xpe r t agreement l a b e l s f o r batch

k_c lasses : c a r d i n a l i t y o f t a r g e t Y

’ ’ ’

batch_size = outputs . s i z e ( ) [ 0 ]

d e f e r_pos i t i on =

outputs = torch . nn . f un c t i o n a l . softmax ( outputs , dim=1)

l o s s = −expert ∗ torch . log2 ( outputs [ range ( batch_size ) , k_c las se s ] )

− ( alpha ∗ expert + (1− expert ) ) ∗

torch . log2 ( outputs [ range ( batch_size ) , l a b e l s ] )

return torch .sum( l o s s )/ batch_size

A.1.2 Choice of α

The choice of the hyperparameter α has sizable influence on system performance. Naive

validation over α requires re-training on the entire training set from scratch over the search

space. We find that a simple validation strategy often works as well as re-training from

scratch especially in scenarios where there is little gain in adapting to the expert but there

are major gains in being able to defer correctly.

The strategy first requires splitting the training set into two sets ST1 and ST2 where ST1

is larger than ST2 (e.g. an 80-20 split), access to a validation set SV and a set of possible

values A for α (an evenly spaced grid over [0, 10] is more than sufficient). The strategy then

proceeds in two steps:

• Step 1:Train on ST1 with L1
CE (i.e. setting α = 1) to maximize system performance

on SV . One may find more success instead training on ST1 with the cross-entropy loss

(however with the model having an extra output) to maximize classifier performance

on SV rather than system performance. Call the resulting model of this first step M1
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• Step 2: For each α ∈ A, fine-tune on ST2 starting from model M1 to maximize system

performance on SV measuring it with the rejector r(x) = I{−maxy∈Y gy(x)+g⊥(x) ≥ τ}

where the threshold τ is chosen to maximize performance on SV post-hoc. The resulting

model M ′
1 and τ ∗ that obtains best system performance across all choices of α and

choices of τ is the final model.

• Inference time: Use the rejector defined by r(x) = I{−maxy∈Y gy(x) + g⊥(x) ≥ τ ∗}

and proceed as in Algorithm 1.

Note that system performance here refers to metrics measured with respect to the ma-

chine+expert system with deferral while classifier performance refers to metrics measured as

if the system never deferred.

A.2 Experimental Details and Results

All experiments were run on a Linux system with an NVIDIA T4 GPU on PyTorch 1.4.0.

A.2.1 CIFAR-10

Implementation Details. We employ the implementation in https://github.com/

xternalz/WideResNet-pytorch for the Wide Residual Networks. To train, we run SGD

with an initial learning rate of 0.1, Nesterov momentum at 0.9 and weight decay of 5e-4

with a cosine annealing learning rate schedule [41]. We train for a total of 200 epochs for

all experiments, at this point the network has perfectly fit the training set, we found that

early stopping based on a validation set did not make any difference and similarly training

for more than 200 epochs also did not hurt test accuracy.
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Expert Accuracy. In Table A.1 we show the accuracy of the expert on the deferred examples

versus the classes the expert can predict k. We can see that our method L.5CE has higher

expert accuracy than all other baselines except at k = 1, 2 where coverage is very high. This

contrasts with Figure 5-1b that shows the classifier accuracy on non-deferred accuracy where

L.5CE had lower accuracy for each expert level compared to Confidence and L1
CE. Hence there

is a clear trade-off between choosing the hyper-parameter α < 1 and α = 1. For α < 1, the

model will prefer to always defer to the expert if it is correct, this is advantageous in this

setup as the expert is perfect on a subset of the data and uniformly random on the other.

However, for α = 1, the model will compare the confidence of the expert and the model

essentially performing the computation of the Bayes rejector rB as shown by the consistency

of the loss L1
CE; note that for α ̸= 1 the loss LCE is no longer consistent.

Table A.1: Accuracy of the expert on deferred examples shown for the methods and baselines
proposed with varying expert competence (k) on CIFAR-10.

Method / Expert (k) 1 2 3 4 5 6 7 8 9 10

L1
CE 73.65 86.01 73.66 87.41 88.81 94.7 96.67 98.72 98.65 100

L.5CE 86.44 90.96 92.65 91.67 93.71 96.32 97.61 98.77 99.24 100

Confidence 87.5 92.74 88.88 88.3 92.8 94.56 96.76 98.89 98.89 100

OracleReject 85.3 90.49 88.23 91.13 89.33 93.61 95.45 96.82 98.45 100

Increasing data size. In table A.2 we show the accuracy of the classifier and the coverage

of the system for our method compared to the baseline Confidence for expert k = 5. We

can see that when data is limited, our method retains high classification accuracy for the

classifier versus the baseline. This is due in fact to the low coverage of our method compared

to Confidence, as data size grows the coverage our method increases as now the classifier’s

performance improves and the system can now safely defer to it more often. On the other

hand, the baseline remains at almost constant coverage, not adapting to growing data sizes.
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Table A.2: Accuracy of the classifier on non-deferred examples shown for our method L1
CE

and baseline Confidence with varying training set size for expert k = 5 on CIFAR-10.

Method / Data size (thousands) 1 2 3 5 8 10 20 50

L1
CE (classifier) 62.84 71.51 72.63 75.03 80.1 82.11 86.44 95.42

Confidence (classifier) 50.31 59 66.3 70.12 80.33 78.67 87.01 92.45

L1
CE (coverage) 25.7 35.87 40.42 49.62 46.38 46.51 50 71.35

Confidence (coverage) 69.32 72.93 71.99 75.05 73.09 65.9 74.16 72.12

A.2.2 CIFAR-10H

Class-wise Accuracy of Expert. Table A.3 shows the average accuracy of the synthetic

CIFAR10H [53] expert on each of the 10 classes. We can see that the expert has very different

accuracies for the classes which gives an opportunity for an improvement.

Results. Table A.4 shows full experimental results for the CIFAR-10H results.

Table A.3: Accuracy of the CIFAR10H [53] expert on each of the 10 classes

Class 1 2 3 4 5 6 7 8 9 10

Accuracy 95.15 97.23 94.75 91.58 90.51 94.90 96.22 97.91 97.33 96.74

Table A.4: Complete results of table 5.2 comparing our proposed approaches and baseline.

Method System Accuracy Coverage Classifier Accuracy Expert Accuracy

LCE impute 96.29±0.25 51.67±1.46 99.2 ± 0.08 93.18 ± 0.48

LCE 2-step 96.03±0.21 60.81±0.87 98.11 ± 0.22 92.77 ± 0.58

Confidence 95.09±0.40 79.48±5.93 96.09 ± 0.42 90.94 ± 1.34
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A.2.3 CIFAR-100

Results. In figure A-1 we plot the accuracy of the combined algorithm and expert system

versus k, the number of classes the expert can predict. We can see that our method dominates

the baseline over all k. In table A.5 we show expert, classifier and system accuracy along

with coverage of both methods. Our approach L1
CE obtains both better expert and classifier

accuracy however gets lower coverage than Confidence.
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Figure A-1: Comparison of the developed method L1
CE on CIFAR-100 versus the confidence

baseline. k is the number of classes the expert can predict
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Table A.5: Accuracy of the expert on deferred examples shown for the methods and baselines
proposed with varying expert competence (k) on CIFAR-100.

Method / Expert (k) 10 20 30 40 50 60 70 80 90 100

L1
CE (system) 78.67 79.43 81.02 82.09 83.8 85.15 87.58 90.23 91.81 94.59

Confidence (system) 78.48 79.37 79.67 80.75 81.92 83.67 85.15 88.63 90.31 94.74

L1
CE (coverage) 89.19 82.44 84.79 71.66 74.52 65.72 62.23 59.37 52.15 49.07

Confidence (coverage) 99.17 95.47 93.96 86.64 86.71 80.67 79.56 75.36 72.39 63.32

L1
CE (classifier) 82.35 84.03 84.07 85.29 86.44 87.78 90.13 91.89 92.4 94.59

Confidence (classifier) 78.99 80.66 81.79 84.75 84.62 87.30 88.75 90.97 92.07 94.97

L1
CE (expert) 47.36 57.8 68.87 73.99 76.06 79.65 83.37 87.79 91.16 94.57

Confidence (expert) 18.07 52.09 51.49 54.79 64.4 68.55 71.13 82.11 85.70 94.30

A.2.4 Hate Speech experiments

Implementation details. We train all models with Adam for 15 epochs and select the best

performing model on the validation set.

Results. Table A.6 shows complete results of our method, baselines, expert and classifier.

The performance of our method and the baselines all achieve comparable results.
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Table A.6: Detailed results for our method and baselines on the hate speech detection task
[15]. sys: system accuracy, class: classifier accuracy, disc: system discrimination, AAE-biased:
Expert 2 that has higher error rate for AAE group, non-AAE biased: Expert 3 that has
higher error for non AAE tweets

Method/Expert Fair AAE-biased

sys class disc sys class disc

L1
CE (ours) 93.36 ± 0.16 95.60 ± 0.44 0.294 ±0.03 92.91 ± 0.17 94.67 ± 0.61 0.37 ± 0.06

Confidence 93.22 ±0.11 94.49 ± 0.12 0.45 ± 0.02 92.42 ± 0.40 94.56 ± 0.40 0.41 ± 0.02

Oracle 93.57 ±0.11 94.87 ±0.22 0.32 ±0.02 93.22 ±0.11 94.49 ±0.12 0.449 ±0.024

Expert 89.76 – 0.031 84.28 – 0.071

Classifier 88.26 88.26 0.226 88.26 88.26 0.226

Method/Expert non-AAE biased

sys class disc

L1
CE (ours) 90.42 ± 0.38 94.04 ±0.81 0.231 ±0.04

Confidence 90.60 ±0.13 93.68 v0.24 0.15 ±0.03

Oracle 91.09 ± 0.12 92.57 ±0.15 0.15 ±0.02

Expert 80.4 – 0.084

Classifier 88.26 88.26 0.226

A.2.5 Baseline Implementation

Description of [43] approach. A different approach to our method, is to try directly to

approximate the system loss (2.1), this was the road taken by [43] in their differentiable

model method. Let us introduce the loss used in [43]:

L(h, r,M) = E(x,y)∼P,m∼M |(x,y) [(1− r(x, h(x)))l(y, h(x)) + r(x, h(x))l(y,m)] (A.1)

where h : X → ∆|Y|−1 (classifier), r : X × ∆|Y|−1 → {0, 1} (rejector) and the expert

M : Z → ∆|Y|−1. [43] considers only binary labels and uses the logistic loss for l(., .) and
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thus requires the expert to produce uncertainty estimates for it’s predictions instead of

only a label; we can extend this to the multiclass setting by using the cross entropy loss

for l. It is clear that the loss (A.1) is non-convex in r, hence to optimize it [43] estimates

the gradient through the Concrete relaxation [42, 32]. However, in the code of [43] found

at https://github.com/dmadras/predict-responsibly, the authors replace r(x) by it’s

estimated probability from it’s model. [43] considers an additional parameter γdefer found in

the code, however it is not clear what effect this parameter has as we found it’s description in

the paper did not match the code. In detail, let r0, r1 : X → R and r(x) = argmaxi∈{0,1} ri,

the loss [43] considers is:

L̃(h, r,M) = E(x,y)∼P,m∼M |(x,y)

[
exp(r0(x))

exp(r0(x))+exp(r1(x))
l(y, h(x)) + exp(r1(x))

exp(r0(x))+exp(r1(x))
l(y,m)

]
(A.2)

All terms in loss (A.2) are on the same scale which is crucial for the model to train well. We

explicitly have two functions r0 and r1 defining r even though r is binary; this is for ease of

implementation.

Another key detail of [43] approach, is that the classifier is independently trained of the

rejector by stopping the gradient from r to backpropagate through h. This no longer allows

h to adapt to the expert, h is trained with the cross entropy loss on it’s own concurrently

with r.

CIFAR-10 details. In our CIFAR-10 setup, the dataset S contains only the final prediction

m of the expert M , thus to compute l(y,m) we set l(y,m) = − log(1 − ϵ) if y = m and

l(y,m) = − log( 1
|Y|) if y ̸= m (simulating a uniform prediction in accordance with our expert

behavior) with ϵ = 10−12. One could instead train a network to model the expert’s prediction,

we found this approach to fail as there is a big amount of noise in the labels caused by the

expert’s random behavior.

Results on CIFAR-10. For expert k < 8, we found that the [43] baseline to almost never

defer to the expert and when k = 8, 9 at the end of training (200 epochs) the rejector never

defers but the optimal system is found in the middle of training (∼100 epochs). The optimal
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systems achieve 46.27 and 40.22 coverage, 98.81 and 98.89 expert accuracy on deferred

examples and 89.38 and 89.40 classifier accuracy on non-deferred examples respectively for

k = 8, 9. The classifier alone for the optimal systems achieve ∼86 classification accuracy on

all of the validation set for both experts, notice that there is not much difference between

the classification accuracy on all the data and non-deferred examples, while for our method

and other baselines there is a considerable increase. This indicates that the rejector is only

looking at the expert loss and ignoring the classifier

What is causing this behavior is that as the classifier h trains, it’s loss l(y, h(x)) eventually

goes to 0, however the loss of the expert l(y,m) is either 0 or equal to − log(0.1), hence the

rejector will make the easier decision to never defer. At initial epochs, we have a non-trivial

rejector as the classifier h is still learning, and the coverage progressively grows till 100%

over training. Essentially, what [43] approach is trying to do is choosing between the lower

cost between expert and classifier: a cost-sensitive learning problem at it’s heart. Therefore,

one can use the losses developed here to tackle the problem better; we leave this to future

investigations. Another potential fix is to learn the classifier and rejector on two different

data sets.

Table A.7: System accuracy of our implementation of [43] and our method and baselines
with varying expert competence (k) on CIFAR-10.

Method / System accuracy (k) 1 2 3 4 5 6 7 8 9 10

L.5CE 90.92 91.01 91.94 92.69 93.66 96.03 97.11 98.25 99 100
L1
CE 90.41 91.00 91.47 92.42 93.4 95.06 96.49 97.30 97.70 100

Confidence 90.47 90.56 90.71 91.41 92.52 94.15 95.5 97.35 98.05 100
OracleReject 89.54 89.51 89.48 90.75 90.64 93.25 95.28 96.52 98.16 100
[43] 90.40 90.40 90.40 90.40 90.40 90.40 90.40 94.48 95.09 100
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A.2.6 CheXpert Experiments
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(a) classifier AU-ROC on non-deferred examples vs coverage for expert q = 0.7, p = 1 with
100% of training data.
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(b) classifier AU-ROC on non-deferred examples vs coverage for expert q = 0.7, p = 1 with
10% of training data.

Figure A-2: Plot of classifier AU-ROC on non-deferred examples versus coverage for (a) for
systems learned with 100% of training data (b) and learned with 10% of training data. Noise
at low coverage is due to reduced data size.
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A.3 Deferred Proofs and Derivations

A.3.1 Section 3

Binary Setting

As we eluded to in the body of the paper, we can extend the losses introduced by [13] to our

setting for binary labels. Let Y = {−1,+1} and r, h : X → R where we defer if r(x) ≤ 0, for

generality we assume lexp(x, y,m) = max(c, Im̸=y) as this allows to treat rejection learning as

an immediate special case. Following the derivation in [13], let u→ ϕ(−u) and u→ ψ(−u)

be two convex function upper bounding Iu≤0 and let α, β > 0, then:

Lc(h, r, x, y,m) = Ih(x)y≤0Ir(x)>0 +max(c, Im̸=y)Ir(x)≤0

≤ max
{
Imax{h(x)y,−r(x)}≤0,max(c, Im̸=y)Ir(x)≤0

}
(a)

≤ max
{
Iα

2
(h(x)y−r(x))≤0,max(c, Im ̸=y)Iβr(x)≤0

}
(b)

≤ max{ϕ
(
−α
2

(h(x)y − r(x))
)
,max(c, Im ̸=y)ψ (−βr(x))} (A.3)

≤ ϕ

(
−α
2

(h(x)y − r(x))
)
+max(c, Im ̸=y)ψ (−βr(x)) (A.4)

step (a) is by noting that max(a, b) ≥ a+b
2

, step (b) since ϕ(u) and ψ(u) upper bound

Iu≤0. Both the right hand sides of equations (A.3) and (A.4) are convex functions of both

h and r. When ϕ and ψ are both the exponential loss we obtain the following loss with

β(x, y,m) : X × Y2 → R+:

LSH(h, r, x, y,m) := exp
(α
2
(r(x)− h(x)y)

)
+ (c+ Im ̸=y) exp (−β(x, y,m)r(x))

we will see that it will be necessary that β is no longer constant for the loss to be consistent

while in the standard case it sufficed to have β constant [13]. The following proposition shows

that for an appropriate choice of β and α we can make LSH consistent.
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Proposition 4. Let c(x) = c − cP(Y ≠ M |X = x) + P(Y ̸= M |X = x), for α = 1 and

β =
√

1−c(x)
c(x)

, infh,r Ex,y,m[LSH(h, r, x, y,m)] is attained at (h∗SH , r∗SH) such that sign(hB) =

sign(h∗SH) and sign(rB) = sign(r∗SH).

Proof. Denote η(x) = P(Y = 1|X = x) and q(x, y) = P(M = 1|X = x, Y = y), we have:

inf
h,r

Ex,y,m[LSH(h, r, x, y,m)] = inf
h,r

ExEy|xEm|x,y[LSH(h, r, x, y,m)]

= Ex inf
h(x),r(x)

Ey|xEm|x,y[LSH(h(x), r(x), x, y,m)]

Now we will expand the inner expectation:

Ey|xEm|x,y[LSH(h(x), r(x), x, y,m)] (A.5)

= η(x)q(x, 1)(exp
(α
2
(r(x)− h(x))

)
+ c exp (−βr(x)))

+ (1− η(x))q(x,−1)(exp
(α
2
(r(x) + h(x))

)
+ (1) exp (−βr(x)))

+ η(x)(1− q(x, 1))(exp
(α
2
(r(x)− h(x))

)
+ (1) exp (−βr(x)))

+ (1− η(x))(1− q(x,−1))(exp
(α
2
(r(x) + h(x))

)
+ c exp (−βr(x)))

The Bayes optimal solution for our original loss in the binary setting is:

hB(x) = η(x)− 1

2

rB(x) = |η(x)− 1

2
| − (

1

2
− c− P(M ̸= Y |X = x))

Case 1: if η(x) = 0, writing v = r(x), u = h(x) then term (A.5) becomes:

q(x,−1)(exp
(α
2
(v + u)

)
+ 1 exp (−βv)) + (1− q(x,−1))(exp

(α
2
(v + u)

)
+ c exp (−βv))

then to minimize the above it is necessary that the optimal solutions are such that u∗ <

0, v∗ > 0 which agree with the sign of the original Bayes solution.
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Case 2: if η(x) = 1, then term (A.5) becomes:

q(x, 1)(exp
(α
2
(v − u)

)
+ c exp (−βv)) + (1− q(x, 1))(exp

(α
2
(v − u)

)
+ (1) exp (−βv))

then to minimize the above it is necessary that the optimal solutions are such that u∗ >

0, v∗ > 0 which agree with the sign of the original Bayes solution.

Case 3: η(x) ∈ (0, 1), for ease of notation denote the RHS of equation (A.5) as Lψ(u, v),

note that Lψ(u, v) is a convex function of both u and v and therefore to find the optimal

solution it suffices to take the partial derivatives with respect to each and set them to 0.

For u:

∂ψ(u, v)

∂u
= 0

⇐⇒ −η(x)α
2
exp

(α
2
(v − u∗)

)
+ (1− η(x)) exp

(α
2
(v + u∗)

)
= 0

⇐⇒ −η(x)α
2
exp

(
−α
2
u∗
)
+ (1− η(x))α

2
exp

(α
2
u∗
)
= 0

⇐⇒ u∗ =
1

α
log(

η(x)

1− η(x)
)

we note that u∗ has the same sign as the minimizer of the exponential loss and hence has the

same sign as hB(x).

Plugging u∗ and taking the derivative with respect to v:
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∂ψ(u
∗, v)

∂v
= 0

⇐⇒ η(x)
α

2
exp

(α
2
(v∗ − u∗)

)
+ (1− η(x)) exp

(α
2
(v∗ + u∗)

)
− βc(η(x)q(x, 1) + (1− η(x))(1− q(x,−1)) exp(−βv∗)

− (1− η(x))q(x,−1)β exp(−βv∗)− η(x)(1− q(x, 1))β exp(−βv∗) = 0

⇐⇒ η(x)
α

2
exp

(α
2
(v∗ − u∗)

)
+ (1− η(x)) exp

(α
2
(v∗ + u∗)

)
− β(c− cP(M ̸= Y |X = x) + P(M ̸= Y |X = x)) exp(−βv∗) = 0

Appealing to the proof of Theorem 1 in [12] we obtain that:

v∗ =
1

α/2 + β
log

(
c(x)β

α

√
1

η(x)(1− η(x))

)

Furthermore by the proof of Theorem 1 in [12], the sign of v∗ matches that of rB(x) if and

only if:
β

α
=

√
1− c(x)
c(x)

Multiclass setting

Proposition 1. L̃CE is convex and is a consistent loss function for L̃:

let g̃ = arg infg E
[
L̃CE(g, c)|X = x

]
, then: argmaxi∈[K+1] g̃i = argmini∈[K+1] E[c(i)|X = x]

Proof. Writing the expected loss:

inf
g
Ex,c[L̃CE(g, x, c)] = inf

g
ExEc|x[L̃CE(g, x, c)] = Ex inf

g(x)
Ec|x[L̃CE(g(x), x, c)]
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Now we will expand the inner expectation:

Ec|x[L̃CE(g(x), x, c)] = −
∑

y∈[K+1]

E[max
j
c(j)− c(y)|X = x] log

(
exp(gy(x))∑
k exp(gk(x))

)

The loss L̃CE is convex in the predictor, so it suffices to differentiate with respect to each gy

for y ∈ Y⊥ and set to 0.

∂LCE
∂g∗y

= 0

⇐⇒ E[max
j
c(j)− c(y)|X = x]−

exp(g∗y(x))∑
k exp(gk(x))

∑
i∈[K+1]

E[max
j
c(j)− c(i)|X = x] = 0

⇐⇒
exp(g∗y(x))∑
k exp(gk(x))

=
E[maxj c(j)− c(y)|X = x]∑

i∈[K+1] E[maxj c(j)− c(i)|X = x]

From this we can deduce:

h(x) = arg max
y∈[K+1]

g∗y(x) = arg max
y∈[K+1]

exp(g∗y(x))∑
y∈[K+1] exp(g

∗
y(x))

= arg max
y∈[K+1]

E[maxj c(j)|X = x]− E[c(y)|X = x]∑
i∈[K+1] E[maxj c(j)− c(i)|X = x]

= arg min
y∈[K+1]

E[c(y)|X = x] = h̃B(x)

Proposition 2. The minimizers of the loss L0−1 (2.3) are defined point-wise for all x ∈ X

as:

hB(x) = argmax
y∈Y

ηy(x)

rB(x) = Imaxy∈Y ηy(x)≤P(Y=M |X=x) (A.6)

Proof. When we don’t defer, the loss incurred by the model is the misclassification loss in the
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standard multiclass setting and hence by standard arguments [22] we can define hB point-wise

regardless of r:

hB(x) = arg inf
h
Ey[Ih̸=y] = argmax

y∈Y
ηy(x)

Now for the rejector, we should only defer if the expected loss of having the expert predict is

less than the error of the classifier hB defined above, define rB : X → {0,+1} as:

rB(x) = IE[IM ̸=Y |X=x]≤E[I
hB(x)̸=Y

|X=x]

= IP(Y ̸=M)≤(1−maxy∈Y ηy(x))

= IP(Y=M)≥maxy∈Y ηy(x)

Theorem 2. The loss LCE is a convex upper bound of L0−1 and is consistent:

infh,r Ex,y,m[LCE(h, r, x, y,m)] is attained at (h∗CE, r
∗
CE) such that hB(x) = h∗CE(x) and

rB(x) = r∗CE(x) for all x ∈ X .

Proof. The fact that LCE is convex is immediate as Im=y ≥ 0 and the cross entropy loss is

convex.

Now we show that LCE is an upper bound of L0−1:

L0−1(h, r, x, y,m) = Ih(x)̸=yIr(x)=0 + Im ̸=yIr(x)=1

(a)

≤ − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
− Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(A.7)

To justify inequality (a), consider first if r(x) = 0, then if Ih(x)̸=y = 1 we know that
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′ (x))
≤ 1

2
giving − log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′ (x))

)
≥ 1, moreover all the terms in the RHS

of (a) are always positive.
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On the other hand if r(x) = 1, then again exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 1
2

as we decided to reject and

since also giving − log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
≥ 1. Finally note that L0−1(h, r, x, y,m) ≤ 1.

We will now show that the optimal rejector minimizing the upper bound (A.7) is in fact

consistent.

Denote qm(x, y) = P(M = m|X = x, Y = y) and ηy(x) = P(Y = y|X = x), we have:

inf
h,r

Ex,y,m[LCE(h, r, x, y,m)] = inf
h,r

ExEy|xEm|x,y[LCE(h, r, x, y,m)]

= Ex inf
h(x),r(x)

Ey|xEm|x,y[LCE(h(x), r(x), x, y,m)]

Let us expand the inner expectation:

Ey|xEm|x,y[LCE(h(x), r(x), x, y,m)]

= Ey|x

[
− log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
−
∑
m∈Y

Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)]

= −
∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

−
∑
y∈Y

ηy(x)
∑
m∈Y

qm(x, y)Im=y log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(a)
= −

∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
−
∑
y∈Y

ηy(x)qy(m, y) log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(b)
= −

∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

− P(Y =M |X = x) log

(
exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(A.8)

In step (a) all terms that differed on y and m disappear, in step (b) we have:

∑
y∈Y

ηy(x)qy(m, y) =
∑
y∈Y

P(M = y, Y = y|X = x) = P(Y =M |X = x)
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For ease of notation denote the RHS of equation (A.8) as LCE(g1, · · · , g|Y|, g⊥), note that it is

a a convex function, hence we will take the partial derivatives with respect to each argument

and set them to 0.

For any g⊥, and for i ∈ Y we have :

∂LCE(g
∗
1, · · · , g|Y|∗ , g⊥)

∂g∗i
= 0

⇐⇒ exp(g∗i (x))∑
y′∈Ỹ exp(g∗y′(x))

=
ηi(x)

1 + P(Y =M |X = x)
(A.9)

The optimal h∗ for any g⊥ should satisfy equation (A.9) for every i ∈ Y, however since

exponential is an increasing function we get that the optimal h∗ in fact agrees with the Bayes

solution as:

argmax
y∈Y

g∗y(X) = argmax
y∈Y

exp(g∗y(x))∑
y∈Y exp(g∗y(x)) + exp(g⊥(x))

= argmax
y∈Y

ηy(x)

1 + P(Y =M |X = x)
= hB(x)

Plugging h∗ and taking the derivative with respect to the optimal g∗⊥:

∂LCE(g
∗
1, · · · , g∗|Y|, g

∗
⊥)

∂g∗⊥
= 0

⇐⇒ exp(g∗⊥(x))∑
y′∈Y exp(g∗y′(x))

=
P(Y =M |X = x)

1 + P(Y =M |X = x)

Note note that r∗(x) = 1 only if P(Y = M |X = x) ≥ maxy∈Y ηy(x) which agrees with

rB(x)
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A.3.2 Section 4

Proposition 3. Lmix is realizable (H,R)-consistent for classes closed under scaling but is

not classification consistent.

Proof. We first prove that Lmix is realizable (H,R)-consistent. Let P and M be such that

there exists h∗, r∗ ∈ H ×R that have zero error L(h∗, r∗) = 0. Assume that (ĥ, r̂) satisfy∣∣∣∣E[Lmix(ĥ, r̂, x, y,m)]− inf
h∈H,r∈R

E[Lmix(h, r, x, y,m)]

∣∣∣∣ ≤ δ

Let u > 0, we have:

E[L(ĥ, r̂, x, y,m)]

≤ 2E[Lmix(ĥ, r̂, x, y,m)] (factor of 2 is upper bound)

≤ 2E[Lmix(uh∗, ur∗, x, y,m)] + 2δ (by assumption and closed under scaling)

= 2E[Lmix(uh∗, ur∗, x, y,m)|r∗ = 1]P(r∗ = 1) + 2E[Lmix(uh∗, ur∗, x, y,m)|r∗ = 0]P(r∗ = 0)

+ 2δ

= 2E[− log

(
exp(ugy(x))∑

y′∈Y exp(ugy′(x))

)
exp(ur0(x))∑

i∈{0,1} exp(uri(x))

+ Im̸=y
exp(ur1(x))∑

i∈{0,1} exp(uri(x))
|r∗ = 0]P(r∗ = 0) (A.10)

+ 2E[− log

(
exp(ugy(x))∑

y′∈Y exp(ugy′(x))

)
exp(ur0(x))∑

i∈{0,1} exp(uri(x))

+ Im ̸=y
exp(ur1(x))∑

i∈{0,1} exp(uri(x))
|r∗ = 1]P(r∗ = 1) + 2δ (A.11)

Let us examine each term in the RHS of (A.11), when r∗ = 1 we have r1(x) > r0(x) hence:

lim
u→∞

exp(ur0(x))∑
i∈{0,1} exp(uri(x))

= 0
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Furthermore it most be that Im ̸=y = 0 as we decided to defer.

When r∗ = 0, we have r0(x) ≥ r1(x) hence:

lim
u→∞

exp(ur1(x))∑
i∈{0,1} exp(uri(x))

= 0

moreover we have h∗(x) = y by optimality of (h∗, r∗) (as we did not defer) and realizability

thus:

lim
u→∞

log

(
exp(ugy(x))∑

y′∈Y exp(ugy′(x))

)
= 0

We can conclude that taking the limit as u → ∞ on the RHS of (A.11) and applying the

monotone convergence theorem (swap of expectation and limit) we get:

E[L(ĥ, r̂, x, y,m)] ≤ 2δ

taking δ = ϵ/2 completes the proof.

We now move to looking at the Bayes solution of Lmix, denote qm(x, y) = P(M = m|X =

x, Y = y), we have:

inf
h,r

Ex,y,m[Lmix(h, r, x, y,m)] = Ex inf
h(x),r(x)

Ey|xEm|x,y[Lmix(h(x), r(x), x, y,m)]

Let us expand the inner expectation:

Ey|xEm|x,y[Lmix(h(x), r(x), x, y,m)] = (A.12)

−
∑
y∈Y

ηy(x) log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)
exp(r0(x))∑

i∈{0,1} exp(ri(x))

+ P(Y ̸=M |X = x)
exp(r1(x))∑

i∈{0,1} exp(ri(x))

Denote the RHS of (A.12) by Lmix(g1, · · · , g|Y|, r0, r1), it is a convex function in gi for all
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i ∈ Y , consider any r0, r1, we have :

∂Lmix(g
∗
1, · · · , g|Y|∗ , r0, r1)

∂g∗i
= 0 ⇐⇒ exp(g∗i (x))∑

y′∈Y exp(g∗y′(x))
= ηi(x) (A.13)

Since the optimal h∗ for any r0, r1 does not depend on the form of r0 and r1 we conclude that

(A.13) gives the optimal choice of h. We now need to find the optimal choice of r0(x) and

r1(x) to minimize Lmix(g∗1, · · · , g|Y|∗ , r0, r1) which takes the following form:

Lmix(g
∗
1, · · · , g|Y|∗ , r0, r1) = H(hB(x)) exp(r0(x))∑

i∈{0,1} exp(ri(x))
+ P(Y ̸=M |X = x) exp(r1(x))∑

i∈{0,1} exp(ri(x))

where H(X) is the Shannon entropy of the random variable X, here by H(hB(x)) we refer to

the entropy of the probabilistic form of hB(x) according to (A.13) . Clearly the optimal r∗0
and r∗1 have the following behavior for a given x ∈ X :

r0(x) =∞, r1(x) = −∞ if H(hB(x)) < P(Y ̸=M |X = x)

r0(x) = −∞, r1(x) =∞ if H(hB(x)) ≥ P(Y ̸=M |X = x)

This does not have the form of rB(x), as this rejector compares the entropy of hB(x) instead

of it’s confidence to the probability of error of the expert which will not always be in

accordance.

Theorem 2. For any expert M and data distribution P over X × Y, let 0 < δ < 1
2
, then

with probability at least 1− δ, the following holds for the empirical minimizers (ĥ∗, r̂∗):

L0−1(ĥ
∗, r̂∗) ≤ L0−1(h

∗, r∗) +Rn(H) +Rn(R) +RnP(M ̸=Y )/2(R)

+ 2

√
log (2

δ
)

2n
+

P(M ̸= Y )

2
exp

(
−nP(M ̸= Y )

8

)

Proof. Let LH,R be the family of functions defined as LH,R = {(x, y,m)→ L(h, r, x, y,m);h ∈
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H, r ∈ R} with L(h, r, x, y,m) := Ih(x) ̸=yIr(x)=−1 + Im̸=yIr(x)=1. Let Rn(LH,R) be the

Rademacher complexity of LH,R, then since L(h, r, x, y,m) ∈ [0, 1], by the standard Rademacher

complexity bound (Theorem 3.3 in [45]), with probability at least 1− δ/2 we have:

L0−1(ĥ
∗, r̂∗) ≤ LS0−1(ĥ

∗, r̂∗) + 2Rn(LH,R) +

√
log (2

δ
)

2n

We will now relate the complexity of LH,R to the individual classes:

Rn(LH,R) = Eϵ[ sup
(h,r)∈H×R

1

m

m∑
i=1

ϵiIh(xi )̸=yiIr(xi)=−1 + ϵiImi ̸=yiIr(xi)=1]

(a)

≤ Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiIh(xi )̸=yiIr(xi)=−1

]

+ Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiImi ̸=yiIr(xi)=1

]
(b)

≤ Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiIh(xi )̸=yi

]
+ Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiIr(xi)=−1

]

+ Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiImi ̸=yiIr(xi)=1

]

≤ 1

2
Rn(H) +

1

2
Rn(R) + Eϵ

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiImi ̸=yiIr(xi)=1

]
(A.14)

step (a) follows as the supremum is a subadditive function , step (b) is the application of Lemma

2 in [18] to Eϵ

[
sup(h,r)∈H×R

1
m

∑m
i=1 ϵiIh(xi) ̸=yiIr(xi)=−1

]
which says that the Rademacher

complexity of a product of two indicators functions is upper bounded by the sum of the

complexities of each class, now we will take a closer look at the last term in the RHS of

inequality (A.14). Denote nSm =
∑

j∈S Iyj ̸=mj
and define the random variable Sm = {i : yi ≠
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mi}, we have that nSm ∼ Binomial(n,P(M ̸= Y )) and E[nSm|Sm] = nP(M ̸= Y ), hence:

E

[
sup

(h,r)∈H×R

1

m

m∑
i=1

ϵiImi ̸=yiIr(xi)=1

]

= E

[
sup

(h,r)∈H×R

1

m

m∑
i=1 s.t. yi ̸=mi

ϵiIr(xi)=1

]

= E

nSm
m

sup
(h,r)∈H×R

1

nSm

nS
m∑

i=1

ϵiIr(xi)=1

 (by relabeling)

(a)
= E

Eϵ

nSm
m

sup
(h,r)∈H×R

1

nSm

nS
m∑

i=1

ϵiIr(xi)=1|Sm


(b)
= E

[
nSm
m

R̂Sm(R)
]

(c)
= P(nSm <

nP(A)
2

)E
[
nSm
m

R̂Sm(R)|nSm <
nP(A)

2

]
+ P(nSm ≥

nP(A)
2

)E
[
nSm
m

R̂Sm(R)|nSm ≥
nP(A)

2

]
(d)

≤ P(M ̸= Y )

2
exp

(
−nP(M ̸= Y )

8

)
+RnP(M ̸=Y )/2(R)

In step (a) we conditioned on the dataset Sm, in step (b) we used the definition of the empirical

Rademacher complexity R̂Sm(R) on Sm, step (c) we introduce the event A = {M ̸= Y }, step

(d) follows from a Chernoff bound on nSm and since the Rademacher complexity is bounded

by 1 and is non-increasing with respect to sample size.

We can now proceed with inequality (A.14):

Rn(LH,R)
(a)

≤ 1

2
Rn(H) +

1

2
Rn(R) +

P(M ̸= Y )

2
exp

(
−nP(M ̸= Y )

8

)
+RnP(M ̸=Y )/2(R)

step (a) follows as the Rademacher complexity of indicator functions based on a certain class

is equal to half the Rademacher complexity of the class [45].
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The final step is to note by Hoeffding’s inequality we have with probability at least 1− δ/2:

LS(h∗, r∗) ≤ L(h∗, r∗) +

√
log (2

δ
)

2n

Now since (ĥ∗, ĥ∗) are the empirical minimizers we have that LS(ĥ∗, r̂∗) ≤ LS(h∗, r∗), collecting

all the inequalities we obtain the following generalization bound with probability at least

1− δ:

L(ĥ∗, r̂∗) ≤ L(h∗, r∗) +Rn(H) +Rn(R) + 2

√
log (2

δ
)

2n

+
P(M ̸= Y )

2
exp

(
−nP(M ̸= Y )

8

)
+RnP(M ̸=Y )/2(R)
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