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ABSTRACT

The global impact of the information and communications technology (ICT) sector is both growing and
changing as computing technologies continue to develop and industry leaders make more efforts
towards emissions reductions. Recent work highlights the increasing importance of manufacturing
emissions in regards to the total impact of computing systems, but the tradeoff space in which decisions
made to reduce emissions or energy in one part of a device lifecycle might increase emissions or energy
demand in another remains largely unexplored. We evaluate several options for global impact reduction
within the ICT sector, namely within data center (server) and smartphone footprints, focusing both on
the maximal potential impact of each intervention and highlighting associated tradeoffs and limitations.
We find that the ICT sector’s 2030 target of a 45% emissions reduction from 2020 levels is potentially
achievable through the mechanisms proposed, including: renewable energy for operation, low-carbon
electricity for manufacturing, extended device lifetimes, and the harnessing of energy efficiency
improvements for impact reduction. In addition, we propose a method for evaluating the total carbon
footprint benefits of a new computing technology through a detailed case study of a prototypical analog
accelerator device. We provide an example of underspecified estimation of scaled device manufacturing
impacts obtained through a reorganization of existing process emissions data. We then demonstrate the
use of that estimate to evaluate the benefits of adoption of the new technology from the perspective of
total footprint reduction under varying device usage conditions. Both our framework for estimating
global ICT sector impact reduction strategies and our framework for assessing tradeoffs associated with
new computing technology adoption are intended to serve as starting points for continued discussion
and to align different, often siloed, stakeholders within the computing industry towards effectively
“bending the curve” of ICT sector emissions growth.
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Introduction
Projections of information and communication technology (ICT) growth indicate that the sector could

account for as much as 20% of global electricity demand by 2030, with networks and data centers

highlighted as significant contributors to this growth.1 In addition, recent research suggests embodied

emissions (emissions arising from the manufacturing of a computing device) are increasingly important

compared to use phase emissions across both consumer device and data center lifecycles, especially as

computing technologies are optimized for energy efficiency and run on cleaner energy sources.2 While

the importance of embodied carbon in computing devices is gaining attention, the tradeoff space in

which decisions made to reduce emissions or energy in one part of a device lifecycle might increase

emissions or energy demand in another remains largely unexplored.

Existing literature provides “business as usual” estimates of current and future energy and emissions

impacts of the ICT sector. Leading examples of assessments of global ICT impact in recent work include

Belkhir and Elmeligi (2018)3, Malmodin and Lundén (2018)4, and Andrae and Edler (2015)5 which was

subsequently updated by Andrae (2020)6. Belkhir and Elmeligi (2018) estimate the global ICT footprint,

including operational and embodied emissions, stemming from data centers, consumer devices, and

networks and derive ICT impact predictions to 2040 from models fitted to total aggregated global ICT

footprint across previous years. Because of this, they do not explicitly include assumptions of growth in

computing efficiency or greening of global electrical grids into their future estimates. While the authors

define several recommendations to reduce ICT impacts, including running data centers on 100%

renewable energy, manufacturing smartphones with renewable energy, and extending device lifetimes,

the potential impacts of these recommendations are not quantitatively defined within this work.

Malmodin and Lundén (2018) similarly include the embodied and use phase impacts of data centers,

consumer devices, and networks in their assessment, but only provide predictions to 2020. Unlike

Belkhir and Elmeligi (2018) their study predicts a leveling off or decline in sector emissions in future

years. This study does not provide recommendations on ways to reduce ICT sector impacts, perhaps as a

result of that predicted decline. Andrae and Edler (2015) focus on operational and production-based

electricity usage (and the emissions resulting from that electricity usage) of data centers, consumer

devices, and networks and explicitly incorporate assumptions of increasing data center efficiency each

year and global electricity emissions intensity into predictions of sector impacts to 2030. The authors

mention the potential to power data centers with renewable energy in order to reduce future emissions,

a perspective that is reiterated in Andrae (2020) with the caveat that there are geospatial limitations on

the availability of renewable energy that may limit adoption. However, neither Andrae and Edler (2015)

nor Andrae (2020) provide further quantitative exploration of the potential for future impact reduction.

While these three bodies of work provide estimates of future ICT sector impacts under “business as

usual” scenarios, they do not attempt to quantitatively demonstrate the impact of interventions to

reduce future impacts, even when interventions like renewable energy development and device lifetime

extension are discussed.

Separately from the literature focused on estimating global ICT impacts, there are examples of literature

that does attempt to quantify the impacts of strategies to reduce emissions from computing devices.
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Acun et al. (2023)7 provide a method for minimizing both the operational and embodied footprint of

data center systems through renewable energy deployment, in combination with battery storage and

additional server capacity development to enable flexibility in data center energy use. They apply this

method to a case study of Meta’s datacenters and highlight differences in total footprint reduction across

different US locations. Gupta et al. (2020)2 offers a quantification of the potential emissions benefits that

could come from powering wafer fabrication facilities with renewable energy in terms of a percentage

decrease in emissions from a wafer fabrication facility. While both Acun et al. (2023) and Gupta et al.

(2020) offer methods for quantifying the impacts of renewable energy interventions on ICT sector

emissions, they do not attempt to estimate the potential global impacts of these strategies. Bashroush

(2018) provides a method to evaluate the total footprint benefits of refreshing server hardware including

embodied and operational emissions trade-offs and finds results generally in favor of frequent hardware

updates. However, the author does not evaluate how future renewable energy incorporation or grid

greening could alter trade-offs in upgrading systems. Jattke et al. (2020)8 quantifies the environmental

implications of service life extension of mobile devices by modeling the total footprint impact of a repair

scenario on a single smartphone device, but does not extend that analysis beyond the single device

level. Finally, Freitag et al. (2021)9 proposes a global carbon constraint as a way to control the rebound

effect of efficiency increases, and models a scenario in which ICT emissions are held at 2020 levels

through 2050, but does not directly compare the benefits of that alternative scenario as compared to a

baseline 2050 prediction of ICT emissions or evaluate the benefits of that intervention in comparison to

others. While methods exist to quantitatively evaluate the impacts of various interventions to reduce

future emissions of the ICT sector, including renewable energy for operation and fabrication of

computing devices, extending computing device lifetimes, and limiting sector growth to efficiency gains,

we do not find evidence of these interventions being modeled simultaneously at a global scale within

previous work.

Novel computing technologies may also prove a tool for future ICT sector impact reduction, but we need

a way to evaluate any embodied versus operational emissions tradeoffs associated with their adoption.

Existing literature to estimate the embodied footprint of computing devices, specifically integrated

circuits, focuses on current and future impacts of iterations upon existing computing technologies. Boyd

(2012)10, for example, provides an in depth life cycle assessment of computational logic and memory

technologies manufactured between 1995 and 2010. Bardon et al. (2020)11 provides updated estimates

of embodied energy and emissions for more recent logic technology nodes, and predicts the impacts of

future nodes based on Design Technology CoOptimization methodologies. However, Bardon et al. (2020)

only projects future computing technology impacts according to Moore’s law evolution of existing

technologies, leaving a gap in terms of predictions of the embodied impacts of future computing

technologies that do not fall into that existing technology evolution paradigm. For example, the impacts

of computing device specialization, coined as “More than Moore” technology evolution by the ITRS 12, on

the embodied carbon of computing devices is notably unexplored to date.13 While there is an emerging

body of literature around prospective life cycle analysis techniques which focus on estimating the

embodied and operational impacts of emerging technologies14, we do not find evidence of prospective

LCA methods applied towards future integrated circuit technologies. A method for estimating the future,
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scaled impacts of prototypical computing technologies under development today is needed in order to

ensure that new technology adoption is aligned with larger ICT sector emissions reduction efforts.

Given the rich body of existing literature surrounding these topics, we keep this initial review brief, but

contextualize our approach and results within relevant literature throughout this thesis document. We

seek to address these gaps within existing literature through a two-pronged approach. First, we perform

a high-level sectoral accounting of the primary levers for carbon emissions reduction within the lifecycle

of computing devices that highlights both where embodied versus operational emissions trade-offs

might matter and where the greatest opportunities for overall impact reductions lie. Secondly, we

provide an in-depth exploration of one of the levers for impact reduction noted in the first section -

adoption of emerging energy efficient computing technologies. We conduct a detailed case study

exploration where we estimate the embodied impact of a prototypical analog accelerator device through

a manufacturing process model, and use that estimate to demonstrate the circumstances under which

operational impact benefits can outweigh the embodied impacts of manufacturing that specialized

hardware.

Using this approach, we identify opportunities and limits to achieving 2030 ICT sector global climate

goals. In addition, we evaluate the operational versus embodied carbon tradeoffs associated with

interventions aimed at reducing overall emissions and new technology adoption. We hope that this work

can begin to provide a common framework for decision makers at all levels of computing device

development and operation to evaluate their decisions in terms of total lifecycle impact benefits and

encourage further data collection, sharing, and model refinement across different components of the

computing sector.

Reducing ICT sector emissions: Opportunities to reduce

2030 operational and embodied impacts, along with their

challenges and limitations
We begin with a high-level sectoral impact accounting of a few of the most promising strategies for
reducing the projected global impact of the ICT sector in 2030. Our analysis includes both options to
reduce the operational footprint of computing systems (that can also impact embodied carbon) such as
investing in renewable energy systems to provide low carbon operational energy or increasing the
energy efficiency of a system through new technology adoption, and options to reduce the embodied
carbon footprint of computing systems such as through manufacturing devices using low-carbon energy,
increasing device lifetimes, or other “green fabrication” strategies. In addition, we consider “new
learning” opportunities in which artificial intelligence could reduce overall growth in data center energy
demand. However, neither “green fabrication” interventions nor “new learning” impacts are modeled
explicitly within this work, unlike the other interventions, due to a lack of data availability for modeling.
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Figure 1. Mapping the relationships between different interventions to reduce the impact of the ICT sector.

In this analysis, we focus on the impacts of smartphones (as a subcategory of user devices) and servers

(as the main ICT component of data centers) as two significant contributors to ICT sector impact with

differing challenges and opportunities for impact reduction. Note that this excludes other important

contributors to ICT sector impact, including networks and other connected devices, for the purpose of

limiting the scope of this study. Future work could replicate the trend exploration in this study for other

ICT segments that we now omit. The impact of networks in particular may be of interest, given that the

scale of data transmission network energy usage in 2021 rivaled that of data centers.15 In order to more

effectively estimate the potential for different interventions to decrease the overall footprint of these

two ICT device segments, we decided to build our own estimates of embodied and operational impact

for these segments in order to 1) have estimates of current and future impacts using the most up-to-date

data available, 2) be exceedingly transparent around the assumptions going into each estimate, and 3)

enable a zeroing in on those elements relevant to the lever for impact reduction that we wish to explore.

While we offer an analysis of the impact of these different levels on a global level, the methodology we

propose for estimating the limitations and opportunities behind different sectoral impact reduction

levers can be repurposed and built on for prioritizing and evaluating interventions within the supply

chain of a given individual firm or product of interest.

Global footprint estimates, 2021

We begin by estimating the baseline footprint of global data center (server) and smartphone production

based on the most recent year that existing data was available for across the majority of our data

sources, 2021.
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Estimating operational footprints, 2021

As an approximation of global data center operational energy footprints, we utilize a recent estimate

from the IEA, which reports non-crypto data center energy usage at 220-320 TWh in 2021.15 For the

purposes of this assessment, we consider all data center operational energy as relevant to server

operation since this value includes auxiliary services like cooling and other facility operations that are

required for server operation. However, for smartphones, only the energy use of the actual smartphone

is considered.

In order to build an estimate of smartphone operational energy usage in 2021, we combine a range of

estimates of the total number of smartphones subscriptions worldwide in 2021 (2.916-6.217 billion

smartphones) with average yearly energy consumption estimates reported by Google for Pixel 3-6

generation devices released between 2018 and 202118 (~7.5 kWh per year expected per device). With

these two estimates, we estimate global smartphone yearly operational energy consumption at ~36

TWh.

In order to estimate the carbon emissions footprint of that operational energy usage, we use an estimate

of average global carbon intensity of electricity, similar to the method employed by previous sector wide

carbon footprint estimates.4 Using a 2021 estimate of 459 gCO2e/kWh average carbon intensity reported

by the IEA,19 we estimate the operational carbon footprints of data center and smartphone ICT

components to be ~124 Mt CO2e and ~16 Mt CO2e, respectively.

We acknowledge that the ICT sector has made significant efforts towards the purchase and use of

renewable energy,15 in particular to power data centers, so our estimate provides an upper bound on

emissions for data centers rather than a more realistic estimate that takes those investments into

account. For example, in 2021, Google reported an average carbon intensity of 0.1006 tCO2e/MWh

(100.6 gCO2e/kWh) across their operations,20 nearly a quarter of the emissions intensity that we consider

using the global average.

Estimating embodied footprints, 2021

In order to generate a baseline estimate of the embodied footprint for smartphone and server devices,

we combine estimates of server and smartphone shipments in recent years with published product

carbon footprint data. IDC statistics indicate that 1660 million new smartphones shipped in 202121 and

9.53 million new servers shipped in 202022. In order to estimate a “typical” production footprint per

device, we average across reported manufacturing emissions of 48 server products included within a

dataset of product carbon footprints compiled by Boavizta, including servers from HP and Dell, to obtain

a general server manufacturing footprint estimate of ~1230 kg CO2e per device.18 For smartphones, we

similarly average across reported manufacturing footprints of multiple device generations and

manufacturers in the Boavizta dataset18 including recent generations of iPhones, Google Pixel, Samsung

Galaxy, and Fairphones to obtain a general smartphone manufacturing footprint estimate of ~52 kg CO2e

per device.
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Combining those numbers, we estimate the global yearly server manufacturing footprint to be ~12 Mt

CO2e and global yearly smartphone manufacturing footprint to be ~87 Mt CO2e.

Combined baseline footprint estimates, 2021

To incorporate parameter uncertainty into our analysis, we assign uncertainty distributions to each

parameter in our analysis (see Appendix) and sample from those distributions to generate a range of

potential outcome estimates.

Figure 2. Estimate of global datacenter (server) and smartphone global footprints in 2021, inclusive of operational

and embodied carbon emissions

Our baseline footprint estimate is consistent with previous estimates of data center and consumer

devices footprints in that the footprint of data centers tends to be dominated by use phase impacts,

while consumer device impacts tend to be dominated by embodied impacts prior to significant

impact-limiting interventions.4,2

Global footprint estimates, 2030

Next, we estimate the future global footprints of data center (servers) and smartphones by building off

of existing 2030 parameter projections.

Estimating operational footprints, 2030

To estimate the operational energy usage of global data centers in 2030, we replicate the method used

to estimate growth in data center energy usage to 2030 implemented in Andrae (2020)6 and Andrae and

Edler (2015).5 We use estimates of 2021 total datacenter traffic (EB) and the estimated compound

annual growth rate (CAGR) of total datacenter traffic between 2016 and 2021 from Cisco’s Global Cloud

index report23 to predict 2030 total datacenter traffic, assuming that datacenter traffic continues to grow
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at the same constant rate between 2021 and 2030. In order to estimate total electricity demand from

data centers in 2030, we combine that estimate of 2030 total datacenter traffic (EB) with expectations of

yearly increases in the energy efficiency of global server stocks, which we allow to vary between 5 and

15% per year. This method resulted in a range of estimated global data center energy consumption in

2030 of between ~450 and 1250 TWh, consistent with the lower range of predictions proposed in

previous work (500 TWh to 3,000 TWh).24

To estimate the operational energy usage of smartphones in 2030, we assume that the energy usage per

device per year does not change from our 2021 estimate (remains ~7.5 kWh per year expected per

device) based on the stability of total energy consumption by Google Pixel phones over recent

generations (see energy efficiency section). Estimates of total smartphones in operation in 2030 range

from 5 billion 25 - 7.861 billion (estimate is for 2028 rather than 2030)17.

We combine those estimates of 2030 energy demand with IEA predictions of global average emissions

intensity of electricity in 2030, ranging from 165-330g CO2/kWh in 2030 across the modeled scenarios.19

Taken together, we estimate the 2030 operational carbon footprints of data center and smartphone ICT

components to be ~195 Mt CO2 and ~12 Mt CO2, respectively.

Estimating embodied footprints, 2030

For both servers and smartphones, we utilize the same base estimates of manufacturing emissions per

device as in the 2021 scenario to predict 2030 impacts, but allow the manufacturing emissions from

energy usage to decrease in accordance with expected lowering of average global emissions per unit of

electricity generated to 2030.

To isolate the portion of device embodied carbon stemming from fabrication electricity, we make several

assumptions using previously reported data. First, we isolate the proportion of manufacturing emissions

of servers and smartphones that are attributable to integrated circuit fabrication (including logic and

memory production). For servers, we utilize a Dell 2019 life cycle analysis26, which attributes ~78% of

total manufacturing impact of a server to SSD and large IC production. For smartphones, reported life

cycle analysis data for Fairphones 327 and 428 indicate that 66-69% (for the purposes of having one

number, we use 67.5% on average) of their manufacturing impact stems from integrated circuit

production. Other embodied impact contributors that are not included in the integrated circuit

manufacturing impact include the impact of device transportation, displays, batteries, etc.27

Next, we estimate the portion of the integrated circuit manufacturing impact that can be attributed to

electricity as opposed to process emissions. In 2021, TSMC29, SK Hynix30, and Micron31 reported between

45% and 54% of their total emissions as Scope 2 impacts, defined within the Greenhouse Gas Protocol as

indirect emissions stemming from the purchase of electricity.

Finally, we convert the resulting emissions value from electricity into a quantity of electricity demanded

in order to be able to estimate the value of reducing the emissions factor of that electricity. To obtain an
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estimate of global electricity use for production of each device type, we use an estimate of Taiwan’s grid

emissions factor for 2021 reported by the Bureau of Energy of 0.509 kg CO2e/kWh32 to back-calculate

total yearly electricity needs. We utilize Taiwan’s grid emissions factor for this estimate because over 60%

of the world’s semiconductors (and over 90% of the world’s advanced semiconductors) are produced

there.33

Once we have the quantity of electricity required for production of each device, we calculate the

estimated reduction in device embodied emissions by subtracting the original per device emissions from

fabrication electricity from a 2030 per device emissions from fabrication electricity calculated by

multiplying the expected global average carbon intensity of electricity in 2030 (165-330 g CO2/kWh19) by

the quantity of electricity required for device production.

We combine those lowered per device manufacturing emissions estimates with projections of the

number of server and smartphone devices expected to be produced in 2030: ~60 million servers6 and

~1.7 billion smartphones.6,34 Taken together, we estimate the global embodied emissions impact of

servers and smartphones in 2030 to be ~59 Mt CO2e and ~74 Mt CO2e, respectively.

Combined baseline footprint estimates, 2030

As for the 2021 baseline estimates, we assign uncertainty distributions to each parameter in our analysis

(see Appendix) and sample from those distributions to generate a range of potential outcome estimates

for 2030 impacts.

Figure 3. Prediction of global datacenter (server) and smartphone global footprints in 2030, inclusive of operational

and embodied carbon emissions

We can now visualize the expected changes in impacts between 2021 and 2030 for both the smartphone

and datacenter (server) impact segments. Notably, our estimates indicate no significant change in global
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smartphone embodied and operational impacts between 2021 and 2030 (note that we do not include

the energy associated with network and data center activity here, just direct energy consumption by

smartphones and emissions from their production) and an increase in the global datacenter (server)

footprint between 2021 and 2030. In a subsequent section of this thesis, we evaluate the sources of

uncertainty in these baseline estimates. We identify the operational footprint parameters as the largest

contributors to uncertainty for our estimates of both smartphones and data centers (servers).

Meanwhile within embodied emissions estimates for both smartphones and data centers (servers) the

uncertainty in estimates derives primarily from uncertainty over the manufacturing emissions associated

with an individual device.

Figure 4. Comparison of 2021 and 2030 estimates of global data center (server) and smartphone carbon footprints

In the following sections, we evaluate several strategies for reduction of these global footprints in 2030.

This exercise is especially relevant in the context of ICT industry science-based targets which set a sector

wide goal of achieving 45% emissions reductions between 2020 and 2030.15 Our analysis provides

context on the feasibility of achieving those reductions and the combination of interventions that will be

required to do so. We construct 2030 “targets” for the portions of datacenter (server) and smartphone

global footprints that we have outlined as a 45% reduction from our 2021 baseline values for each

component, or ~74 Mt for data centers (servers) and ~57 Mt for smartphones.

Renewable energy for operational footprint reduction

First, we evaluate the potential impact renewable energy integration could have on reducing operational

footprints in 2030, including the additional embodied emissions that would result from the intervention.

The operational footprint impacts of both smartphones and data centers (servers) derive from use-phase

electricity consumption. Given the significant global energy demand of the ICT sector, a shift towards

cleaner energy has the potential to reduce sector operational emissions. However, since consumer
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devices like smartphones are used decentrally and subject to the emissions intensity of a user’s electrical

grid connection,9 powering consumer device operation with renewable energy requires continued

grid-level investments that are the focus of governmental organizations and the utility sector. Data

centers, on the other hand, are centralized and amenable to renewable energy integration. Given that

data center computing footprints are historically dominated by use-phase impacts,4 decarbonizing their

electrical supply is an important lever for impact reduction within the sector. While one study notes that

the business case for investing in renewable energy to power data centers is less clear than investments

in energy efficiency (which can directly cut costs),35 today large datacenter operators are making

significant investments in renewable energy.3 The ICT sector is currently responsible for over half of

global renewable energy power purchase agreements in terms of capacity, with firms Amazon,

Microsoft, Meta and Google listed as the top four corporate purchasers of power purchase agreements

worldwide.15 In an effort to further reduce their impacts beyond matching renewable energy purchases

with their energy consumption, Google and Microsoft have both recently set 2030 goals of running their

data centers entirely on 24/7 carbon free energy.36,37

While renewable energy deployment can reduce data center impacts, renewable energy incorporation

for data center operations is only a partial solution to reducing the sector’s carbon footprint. Firstly, not

every data center is located in a geography that features suitable renewable energy resources and this

resource availability will limit the extent to which renewable energy can replace existing power sources.7

In addition, taking full advantage of clean energy resources may require changes to how compute

resources in a data center are utilized. For example, Google’s Carbon-Intelligent Compute Management

capitalizes on flexible workloads within their enterprise to deploy those non-time sensitive workloads

when more clean energy is available.38 While this strategy is effective at taking advantage of clean energy

availability to reduce data center use phase impacts, it also has an impact on hardware utilization and

requires additional server capacities for the same amount of compute in order to allow for flexibility in

workload deployment.7 Even if a datacenter is operated on 100% renewable energy, there are embodied

carbon costs associated with the renewable energy infrastructure, excess server capacities, and batteries

that enable use of that clean energy7 - meaning that the use phase electricity impact of data centers will

never be fully eliminated, but may shift towards embodied impacts. This embodied versus use phase

energy tradeoff (more hardware is needed to allow for lower use-phase impacts) might be negligible at

lower levels of renewable energy incorporation, where use phase impacts dominate over the embodied

impacts of data center systems. However, as more clean energy is incorporated into a data center, the

embodied impact of the system becomes an increasingly large portion of the remaining impact and

continued renewable energy integration may no longer optimally reduce the overall footprint of the data

center system.

“Best case” estimation of global impact reduction

To develop a “best case” estimate of the potential for data centers to reduce their operational impacts

through dedicated renewable resources, we utilize Facebook Research’s Carbon Explorer tool which aims

to minimize the total footprint of a data center system inclusive of the embodied carbon tradeoffs of

additional renewable energy, battery, or server capacities.39 We input our expected 2030 data center
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energy demand, estimates of server embodied carbon in 2030, and 2030 global average carbon

emissions from electricity to explore an optimistic 24/7 renewable global data centers scenario. We use

renewable energy profile data from Utah, which Acun et al.7 found was a good location for minimizing

total carbon footprint out of the locations surveyed, and obtain a carbon optimal scenario for a five day

sample (using the default date range of May 10-15, 2021 within the Carbon Explorer tool39) of global

data center operation in order to demonstrate the potential opportunities and tradeoffs associated with

high levels of renewable energy incorporation.

The lowest carbon scenario found utilizes both renewables and carbon aware scheduling to reduce the

operational footprint of the datacenters to ~2 Mt CO2e. Those operational gains are offset to some

extent by an increase in system embodied footprint by ~25 Mt CO2e to account for ~500 GW of wind

capacity, and ~26% additional server capacity. In addition, we note that the optimal percentage of

renewable energy coverage the model finds is consistently below 100% (~99% on average across

sampled iterations), with the remaining electricity sourced from the grid to meet our hypothetical global

data center demand. While some amount of dedicated renewable resources can reduce data center

operational impacts, achieving 24/7 renewable energy coverage for data centers may not be

carbon-optimal once embodied emissions impacts and the limits of workload flexibility are taken into

account.

Figure 5 below demonstrates the change in data center impacts following “best case” renewable energy

integration for operational footprint reduction:

Figure 5. Best case impact estimate of providing renewable energy for data center operation on global data center

(server) footprint in 2030

This “best case” scenario is likely unattainable for global data centers for multiple reasons: many data

center locations may not have access to reliable renewable energy resources to take advantage of, the

required renewable capacity is significant (the 500 GW of wind capacity selected in this analysis would

require significant wind energy expansion given that 830 GW of wind energy capacity was installed

worldwide in 202140), and we make assumptions about the degree of workload flexibility available across

global data centers (assuming 50% of workloads can by flexibly deployed). However, while unrealistic to
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some extent, this exercise demonstrates the limitations of operational renewable energy integration to

reduce overall impacts. In this best case scenario, on average, a ~98% reduction in data center

operational footprint from the 2030 baseline is accompanied by a 42% increase in data center embodied

footprint, shifting the impact towards embodied footprint dominance. Taking this embodied footprint

increase into account, in this scenario total emissions of the data center subsector are on average

maximally reduced by ~66%. Additional levers for impact reduction are needed to address the remaining

embodied footprint impacts of data centers and to potentially further reduce the operational footprint

of data centers beyond what is achievable by renewable energy integration alone. As noted in Gupta et

al. 20202, once data center operators like Facebook and Google successfully reduce their Scope 2

emissions through strategies like purchasing renewable energy, the emissions of their supply chains

emerge as the dominant contributor to remaining footprints. While we may be able to achieve the 2030

sector emissions reduction targets by this lever alone (the 2030 emissions reduction target lies within

range of the error bars for our post-intervention estimate), on average the estimated impacts after this

intervention exceed the 2030 targeted emissions even in this “best case” scenario. In order to ensure

that the 2030 emissions reduction targets are met, other interventions to reduce total emissions are

needed.

Renewable energy for embodied footprint reduction

Next, we examine the extent to which the impact of both server and smartphone life cycles could be

reduced through renewable or cleaner electricity development for fabrication facilities. This intervention

would act upon the portion of the embodied footprints of the devices attributable to fabrication

electricity.

To isolate the portion of device embodied carbon stemming from fabrication electricity, we utilize the

same impact attribution strategy reported above to obtain the quantity of electricity required for

smartphone and server device production (see Estimating embodied footprints, 2030).

“Best case” estimation of global impact reduction

Unlike the previous example of renewable energy for datacenter operation, load flexibility is less salient

for fabs, as they are typically operated at near max capacity41 around the clock42 and thus redundancy in

equipment is a less viable option as compared to the server operation scenario in Lever 1. Because of

this, it does not make as much sense to invest in dedicated renewable resources for fabs, as significant

additional battery capacity would be required to compensate for the lack of load flexibility and provide

the constant power supply needed, implying significant additional embodied carbon costs. This may help

explain why, in general, fabs tend to rely on grid resources for their electricity supply, while sometimes

supplementing those supplies with fab-owned fossil fuel power plants43 that are oriented more towards

concerns about electrical supply reliability than emissions reductions. As in the operational energy

context, some manufacturing firms, like Intel, are increasing purchasing of renewable energy certificates

and credits in order to offset their Scope 2 emissions, providing investments for local grid greening.44
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However, it is important to note that 1:1 purchasing of renewable energy for energy consumed does not

mean that green electricity is being used at all times by the specific manufacturing plant.44

For a best case impact reduction scenario, we consider the potential reduction in global device impacts

observed if all fabrication facilities were located in a grid system with a low carbon emissions factor (we

use Sweden as an example of a “best case” low carbon grid, with a reported grid emissions factor of

0.028 kg CO2e/kWh in 202045). This could be realized either through strategic siting of fabrication plants

in areas with low grid emissions factors, or through large-scale greening the grid systems of areas where

fabs are currently located.

Figure 6. Best case impact estimate of manufacturing server integrated circuits with low-carbon electricity on global

data center (server) footprint in 2030

Figure 7. Best case impact estimate of manufacturing smartphone integrated circuits with low-carbon electricity on

global data center (server) footprint in 2030

In simulating global fabrication of server and smartphone devices in Sweden rather than Taiwan, we see

a ~12% decrease in global server embodied footprints and a ~17% decrease in global smartphone

embodied footprints. For smartphones, this results in ~15% decrease in the total global footprint on
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average. The impact on total global datacenter (server) footprints is much lower, at ~4.8% on average

across our simulations due to the dominance of the operational footprint contributions to the total

footprint for the datacenter segment.

It is important to note that this scenario is a simplification that likely overestimates the carbon footprint

benefits of transferring production to a new grid system or greening an existing grid system by failing to

account for additional grid infrastructure investments (and therefore additional embodied carbon costs)

that could be considered attributable to the fabrication facility’s energy demand. While it may be

difficult to estimate the portion of the embodied impact of a grid energy system that is attributable to a

specific fabrication facility, it is important to consider how the external embodied costs of grid

infrastructure should factor into device footprints. Accounting for those external embodied costs would

turn our “best case” impact reduction estimate for this lever into strictly an upper bound. For example,

Intel’s plans to construct a new manufacturing facility in Ohio are related to ongoing large-scale solar

farm developments in the area - and some portion of the embodied costs associated with that

investment in additional renewable resources should likely be attributed to the carbon footprint of the

firms, including Intel, that plan to utilize energy from those renewable resources.46

Unlike the operation of servers and smartphones, the fabrication of integrated circuits for electronic

devices is highly concentrated within certain regions of the world. The geographic and geopolitical

context of semiconductor manufacturing complicates the realization of the proposed “best case”

scenario for impact reduction. For example, much of the logic manufacturing market is concentrated in

Taiwan, characterized by a small electricity grid that the semiconductor sector has a large impact on. In

2022, TSMC accounted for around 6% of total electricity demand in Taiwan - and that proportion is

expected to continue to increase in the near future.47 By 2030, TSMC is aiming for 25% renewable energy

to power their fabrication facilities.48 Meanwhile, Taiwan has set a nationwide goal of 27-30% renewable

energy by 2030.49 These 2030 targets would fall short of achieving the best case electricity emissions

factor presented in this analysis, given the much higher penetration of renewables in Sweden (~54%),

whose grid emissions factor we utilize in the “best case” calculations.50

Further, the size of Taiwan’s grid and the renewable energy resources available locally may complicate

the realization of lower-carbon electricity for fabrication facilities in the future. While TSMC has

announced an ambitious goal of sourcing its electricity from 100% renewable energy by 2050, Taiwan

recently reduced their 2025 renewable energy target from a goal of sourcing 20% of total electricity

generation from renewables51 to 15% in light of the challenges in quickly scaling up renewable capacity

beyond the existing 6.3% on the grid system,47,52 underlining the difficulty of achieving that goal. These

challenges are motivating development of new fab facilities in areas with more renewable energy

resource availability, such as Arizona and Japan,47 but geopolitical interests may complicate ideal fab

siting locations from the perspective of renewable energy availability.
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Increased lifetime for embodied footprint reduction

Thirdly, we estimate the potential for increasing the lifetime of computing devices as a way to reduce

embodied impacts, while highlighting the operational emissions tradeoffs associated with this

intervention. In general, the lifetimes of servers and computing hardware within a data center or HPC are

determined by business decisions rather than the technical lifetime limits of a device. This is evident in

recent trends, as slowdowns in generational efficiency changes, supply chain issues, and algorithmic

efficiency gains have altered the business optimal lifetime of data center hardware and resulted in firms

using hardware longer.53 Since 2020, Amazon, Microsoft, and Alphabet have all announced increases in

their expected useful lifetimes of servers by as much as 1-2 years, with expected monetary savings in the

billions.54,55 The extendable nature of hardware refresh cycles demonstrates that data center hardware is

generally replaced before it reaches the end of its useful life. Unlike for smartphone devices, where

multiple studies have emphasized the benefits of lifetime extension9 and second-life refurbishment8 for

device lifecycle impact reductions (with one study even suggesting that a smartphones lifetime is much

more important to overall impact than use patterns56), the impacts of lifetime extension of datacenter

hardware on a systems overall footprint are less explored and more controllable from the standpoint of

ICT operators (smartphones lifecycles are in the end determined by individual consumer decisions).

Given the level of previous work around lifetime extension of consumer devices and smartphones and

that the decision of lifetime extension for smartphones lies in the hands of individual consumers rather

than ICT companies, we do not include an estimate for this lever for smartphones in this work, but rather

focus on the data center (server) impact segment.

“Best case” estimation of global impact reduction

Because the operational efficiency of servers generally increases over time, extending the lifetime of

datacenter hardware will result in some loss in operational efficiency as compared to more frequent

device refresh cycles. To begin to estimate what the potential embodied emissions reduction and

operational energy trade off might be from server lifetime extension within a data center, we assume

that server lifetime extension is practically limited to a few years of extension based on current

consumption patterns and that the intervention applies only to reduce server production for servers

intended to replace existing stock, rather than servers produced to satisfy new demand.

Using year on year server shipment growth to estimate the portion of manufacturing impact attributable

to new device production, we simulate an extension to 6 year average refresh cycles (from a 4 year

baseline, mimicking the lifetime assumption in the Dell server LCA26) for data center hardware to see the

potential overall footprint reduction that lifetime extension can have in a given year.

In order to estimate interventions on the lifetime of servers, we first need a way to estimate server

shipments in the years leading up to 2030. We fit a second order polynomial equation to bridge the

historic data on IDC server shipments22 with the 2030 projection of 60 million servers shipped.6 Then, we

use the fitted model to predict server shipments in the years leading up to 2030.
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Figure 8. Trend in yearly server shipments, historical and predicted

Future years Model predicted server production

2026 36.42

2027 41.56

2028 47.14

2029 53.15

2030 59.59

Table 1. Model predicted server production in the years leading up to 2030, baseline scenario

Assuming a 4 year server lifetime, the established server stock going into 2030 would be:
server_stock_baseline = servers_2029 + servers_2028 + servers_2027 + servers_2026 = 178 million servers

To maintain the same amount of server stock, a 6 year replacement cycle would allow for fewer servers

to be replaced in any given year than a 4 year replacements cycle, at the cost of less efficient, older

servers remaining in operation.

To estimate the server shipments required to maintain the same server stock with a 6-year refresh cycle,

we calculate the excess server stock from adding up servers shipped between 2024 and 2029 as

compared to the 4 -year baseline:
server_stock_6year = servers_2029 + servers_2028 + servers_2027 + servers_2026 + servers_2025 + servers_2024 = 237 million

servers

excess_stock = server_stock_6year - server_stock_baseline = 59 million
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Then, we adjust the intercept on the equation to estimate yearly server shipments to eliminate the

excess stock in a 6-year refresh scenario:
intercept_adjustment = excess_stock/6= 9.8

6-year refresh adjusted server shipment equation: 0.2166094765*(year**2) - 872.775611*year +

879168.0953-intercept_adjustment

Using this new equation, we re-estimate yearly server shipments under the extended, 6 year, lifetime

scenario:

Future years 6-year refresh scenario shipment predictions

2024 17.58

2025 21.86

2026 26.57

2027 31.71

2028 37.29

2029 43.29

2030 49.74

Table 2. Model predicted server production in the years leading up to 2030, extended server lifetime scenario

This results in an estimate of 49.74 million servers to be produced in 2030. We now use data on the

increases in Dell server efficiency since 201557 to estimate an year on year average efficiency

improvement for servers of ~18% per year).

Next, in order to estimate the operational footprint cost of the delayed server refresh, we use the below

equation to solve for a baseline energy use under the baseline 4-year replacement scenario, assuming

yearly server efficiency improvements of 18%:

datacenter_op_eng = servers_2029*base_energy*0.82**3 + servers_2028*base_energy*0.82**2 +

servers_2027*base_energy*0.82 + servers_2026*base_energy

We then use that base_energy value to calculate the total energy demand for the same amount of work

in the 6-year refresh scenario (where some of the servers in the stock are operating less efficiently).
datacenter_op_eng_6year = estimate_server_shiptments_6year(2029)*base_energy*0.82**3 +

estimate_server_shiptments_6year(2028)*base_energy*0.82**2 +

estimate_server_shiptments_6year(2027)*base_energy*0.82 + estimate_server_shiptments_6year(2026)*base_energy+

estimate_server_shiptments_6year(2025)*base_energy*0.82**-1 +

estimate_server_shiptments_6year(2024)*base_energy*0.82**-2
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Figure 9. Best case impact estimate of extending server lifetime on global data center (server) footprint in 2030

By these estimations, the server lifetime intervention (from 4-year to 6-year retirement age) results in an

4.4% decrease in the overall global datacenter (server) footprint due to a 76% decrease in embodied

carbon and 17% increase in operational carbon emissions. While lifetime extension may not be as

effective of a strategy for reducing the global impact of data centers (servers) in isolation, as use-phase

interventions like renewable energy powered data centers come into play, we expect that extending the

lifetime of devices will prove more valuable as a way to achieve lower embodied emissions and entail

more limited rebounds in operational carbon.

Energy efficiency for operational impact reduction

Lastly, we explore the potential benefits of harnessing energy efficiency gains in computing devices for

operational footprint reduction. Increasing the energy efficiency of computing devices has the potential

to limit the operational footprint of the ICT sector by requiring less energy for the same amount of

computing power. We highlight three integrated circuit hardware-related modalities for energy efficiency

improvement within computing systems: continued energy efficiency improvements through Moore’s

law transistor scaling, energy efficiency improvement through hardware specialization, and energy

efficiency improvements through new technologies (new memories, new transistors, etc.).

Moore’s law

Moore’s law has traditionally operated to reduce operational emissions through additional computation

per unit energy afforded by continued transistor scaling. In general, previous work shows that Moore’s

law scaling acts to reduce the embodied impacts of devices alongside increases in device operational

efficiency- while the per wafer impacts of more scaled technology generations increase owing to

additional manufacturing steps and complexity, area scaling trends allow for an overall decrease in

manufacturing impact when normalized by cell area, even for highly scaled nodes.10,11 Despite the

embodied footprint reduction benefits of area scaling, over time the embodied impact of a given

computing system tends to rise alongside progressive node scaling as computational demand on a given
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system increases along with increased device efficiency, requiring additional cell area and thus additional

manufacturing impacts.10

Specialization

In recent years, efficiency gains in the computing sector have been driven not only by continued CMOS

device scaling according to Moore’s law, but through device specialization with functionalities not

necessarily in line with larger, general device trends (coined as “More than Moore” development by ITRS

in 200512). Specialized devices, like GPUs and domain-specific accelerators provide more efficient

operations on specific workflows that the device is optimized for (such as neural network training and

inference) than general purpose hardware like CPUs.58 Specialized hardware designs have the potential

to reduce operational emissions across both data centers and consumer devices. It is important to note

that specialization, like the other levers associated with efficiency gains, can fail to reduce overall

impacts in response to increased computing demands with increased specialization. An OpenAI article

from 201859 notes that, since 2012, the doubling time for compute requirements of AI algorithms has

been around 3.4 months, far outpacing Moore’s law technology scaling (which has a 2 year doubling

time). This trend is supported to some extent by efficiency gains from specialized hardware utilization

which have allowed an acceleration in model growth since 2012, when GPUs began to be utilized more

commonly for acceleration.59 Google’s analysis of their datacenter systems reports energy efficiency

benefits from specialized hardware use alone of 2-5x performance per watt.60 Meanwhile, Facebook

reported a 10.1x energy efficiency improvement on their ML workloads from specialized hardware

utilization.61 Differences in the magnitudes of energy efficiency improvement from specialized hardware

utilization may depend on the workload - the 2-5x improvement reported by Google refers to

improvements on machine learning workloads generally,60 while the 10.1x improvement reported by

Facebook was referring to improvements seen on specific LM (transformer based language model)

tasks.61

Unlike with Moore’s law scaling, the efficiency gains from hardware specialization are only applicable to

a portion of a computing system’s total workloads (those specific functions that an accelerator is

designed to perform) - this lever does not increase the efficiency of computing performed by general

purpose hardware (eg. CPUs). While it is difficult to estimate the proportion of global computing

workloads eligible for hardware acceleration, we can use recent data on hardware acceleration and AI

workloads published by Google to get an idea of the upper bounds for what hardware acceleration could

accomplish on a global scale. Based off of surveys of its datacenter workloads in 2019, 2020, and 2021,

Google reported between 70 and 80% of total FLOPs as attributable to ML workloads, but that a variety

of efficiency optimizations (algorithmic and hardware-based) have enabled ML-related operations to

consume only 10-15% of total data center energy during those surveys.60 The embodied emissions

implication of shifts towards specialized hardware is underexplored,13 with more research needed to

evaluate how specialization impacts both operational and embodied emissions within data center

environments.

In terms of the operational footprint of accelerator workloads for smartphone devices, another estimate

by Google, this time describing the energy usage of the TPU in the Google Pixel 6 gives us some notion of
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the potential for operational impact reductions. Google reported that the Edge TPU within the Pixel 6

made up less than 1% of device energy consumption, with ~8% of device energy consumption attributed

to device CPU and GPU.60 From this they estimate an upper bound for consumer device ML operational

energy consumption of 5%.60 While the inclusion of specialized hardware in consumer devices can lead

to more efficient operation, Gupta et al (2022)2 notes the additional embodied emissions cost of

including the additional hardware within a mobile device, using the Google Pixel 3 as an example.

Depending on the utilization of a specific device, the operational efficiency benefits of additional

specialized hardware inclusion within a consumer device may not exceed the embodied carbon costs of

producing the additional integrated circuit area.

New technologies

New technologies could allow additional efficiency gains for integrated circuit devices beyond those

provided by specialization and Moore’s law efficiency improvement trends. For example, new memories,

such as RRAM, STT-MRAM, and PCM have the potential to replace existing memory technologies or

allow new computing paradigms (such as in memory computation) that could increase the efficiency of

operational workloads. Similarly to trends around specialization, more research is needed to evaluate

the potential tradeoffs that could be associated with the fabrication of those new devices as compared

to the use phase benefits they could offer across different computing contexts.

Limitations of energy efficiency as a means for global impact reduction

While computing technologies are continuously increasing in efficiency, in practice, this lever for ICT

sector footprint reduction is practically limited by Jevons Paradox, a paradigm in which increases in

computing efficiency are in turn met with increasing computing demand. A 2015 study explored the

causal relationship between energy efficiency gains and energy consumption in the ICT sector and

estimated rebound effects between 115-161%, indicating that increases in consumption effectively

outweighed efficiency gains.62

Using IEA estimates of data center energy growth and total workloads capacity installed in 2015 versus

2021 (displayed in the Table 3 below),15 we see that increases in total data center energy consumption

reported are more or less consistent with the rebound effects estimated in Galvin (2015).62 Between

2015 and 2021, the number of installed workloads per unit of energy increased from 0.9 to between

2.03 and 2.95 installed workloads per kWh based on the IEA data. A 100% rebound effect on the per

workload efficiency gain would have resulted in the same level of energy use as in 2015 with comparably

more installed workloads (between 406 and 590 million). However, the number of installed workloads

reported for 2021 exceeds this range, pointing towards a potential rebound effect somewhere above

100%. Thus, while these data indicate substantial increases in datacenter efficiency, the overall energy

demand from the sector continues to increase in line with what we might expect from Jevons paradox.

IEA Data Center Workload & Energy Estimates 2015 2021

Data centre workloads** 180 million 650 million
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Data centre energy use

(excluding crypto) 200 TWh 220-320 TWh

Table 3. IEA Data Center Workload & Energy Estimates.15

**Here, workloads refers to the unit defined within the Cisco Global Cloud Index: “A server workload and compute

instance is defined as a virtual or physical set of computer resources, including storage, that are assigned to run a

specific application or provide computing services for one to many users. A workload and compute instance is a

general measurement used to describe many different applications, from a small lightweight SaaS application to a

large computational private cloud database application. For the purposes of quantification, we consider each

workload and compute instance being equal to a virtual machine or a container.”23

Looking at technology development trends for servers alone, operational efficiency in terms of

operations per watt of energy increased steadily with server generations over the last decade (Figure

10). This trend goes hand in hand with increasing computational power per individual chip within a

server - over time servers are able to do more, more efficiently (Figure 11). However, increased

computational demand beyond what server technology development can offer in terms of increased

computational capacity per server results in increasing yearly server shipments over the same time

period.22
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Figure 10. Increasing Dell server operational efficiency over time

Figure 11. Increasing Dell chip computational capacity over time (in terms of operations per chip @ 100%)

Looking at smartphones, the operational footprint benefits of energy efficiency increases across

technology generations are less clear. Recent Apple iPhone and Google Pixel generations demonstrate

inconsistent trends in operational impact across subsequent device generations (see Figures 12 and 13

below). Also notable is the trend of increasing embodied to operational emissions impact of Apple

devices, likely driven in part by increasing hardware capacities across generations that are perhaps

enabled by increasing integrated circuit efficiency (see Table 4).
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Figure 12. Google Pixel yearly energy consumption over device generations

Figure 13. iPhone operational and embodied footprint changes over device generations

Device Chip CPU GPU Neural engine

8 A11 Bionic Chip 6-core 3-core 2-core
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X A11 Bionic Chip 6-core 3-core 2-core

11 A13 Bionic Chip 6-core 4-core 8-core

12 A14 Bionic Chip 6-core 4-core 16-core

13 A15 Bionic Chip 6-core 4-core 16-core

14 A15 Bionic Chip 6-core 5-core 16-core

Table 4. Increases in CPU, GPU and neural engine cores across iPhone device generations

Overall, with new technology generations comes consolidation and declining overall emissions on a per

compute basis, but increasing demand can negate that emissions benefit and lead to higher operational

and embodied carbon impacts if the increase in computing demand (whether across data centers or

within a single smartphone device) erases the benefits that efficiency increases offer.

“Best case” estimation of global impact reduction

To demonstrate the potential benefits of escaping Jevons Paradox and capping computational growth to

a rate that matches efficiency gains, we present an alternative 2030 data center scenario, in which the

energy-use rebound effect on efficiency gains is limited to 100%, keeping 2030 data center energy usage

at the same level as in 2021. This comes at the cost of limiting total data center computational work to a

value below those that might otherwise be executed in 2030. Based on our initial assumptions of data

center operational efficiency increases ranging between 5-15% annually (see Estimating operational

footprints, 2030), we can estimate the cost of limited data center growth in terms of total datacenter

traffic (EB). Under this restricted growth scenario, data center traffic (EB) is limited to between 21 and

59% of our baseline estimated data center traffic in 2030. We do not attempt to estimate the potential

impact of this lever on smartphone emissions because of the non-linearity in smartphone energy

consumption per device trends noted above.

By limiting the rebound effect of data center energy efficiency gains between 2021 and 2030 to 100%,

we see a 28% decrease in total global data center footprints. This is likely an underestimate, representing

a lower bound for total footprint benefits, as we are not considering the additional embodied carbon

benefits that would come from decreased server demand with more limited computational demand

growth.
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Figure 14. Best case impact estimate of limiting data center growth to efficiency gains on global data center (server)

footprint in 2030

While this strategy appears to provide valuable reduction potential for data center operational

emissions, in practice this kind of limitation on growth is difficult to achieve. Other work on this topic

notes that rebound effects within the ICT sector are unlikely to end without significant intervention or

changes in efficiency growth trends,9 and that sustainability strategies oriented towards efficiency

improvement are then liable to ‘backfire’.63 Rebound effects and Jevons Paradox could potentially be

mitigated through public policy interventions within the ICT sector, such as carbon-taxes, cap and trade

systems, or other regulations that aim to limit emissions growth.64 However the effectiveness of these

mechanisms at limiting rebound effects at a global scale remains to be seen.64

Additional opportunities for footprint reduction

The four strategies for ICT sector footprint reduction to 2030 presented in the previous sections are not

meant to represent a comprehensive evaluation of all of the opportunities that exist to reduce sector

impacts. Rather they represent interventions that are both widely discussed and that were practically

modelable within this work given data availability. In order to represent some additional opportunities

for reducing ICT sector impacts, here we discuss the potential for limiting direct emissions from

fabrication and reducing overall computing demand via new learning technologies. We encourage

further exploration of additional impact reduction strategies in future work.

Limiting direct emissions from fabrication

Direct emissions from the fabrication of integrated circuits for electronic devices are another important

contributor to smartphone and server embodied footprints that both fabrication companies and the

retail companies that they supply are interested in reducing. In 2021, SK Hynix reported that 23% of their

total emissions were attributable to Scope 1 (encompassing direct emissions from their facilities),30 while

TSMC reported that direct emissions composed 13% of their corporate emissions.29 While direct

emissions of fabs may be lower than the emissions stemming from purchased electricity, they still
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comprise a sizeable portion of the sector’s emissions and thus merit consideration of interventions to

reduce those emissions as well. Among fab direct emissions, a recent McKinsey report cites that ~80%

are attributable to process emissions.43 Previously, the World Semiconductor Council (WSC) has set

voluntary goals for reducing the process emissions intensity of semiconductor fabrication.65 The latest

goal was to achieve a Normalized Emissions Rate of 0.22 kg CO2e/cm2 over the decade leading up to

2020 - representing a 30% reduction in emissions per cm2 from a 2010 baseline.66 While a new PFC

reduction goal was set to be announced by the end of 2021, we were unable to find any public

communication of the new target.67 In a recent communication with the US government, the

Semiconductor Industry Association noted that there are technical challenges limiting progress in further

reducing process emissions.65 Reductions fab process emissions are generally achieved through process

improvement, the use of alternative chemistries, gas abatement, and gas recycling.43 However, the use of

these strategies to reduce emissions can be constrained by the availability of floorspace in fabs for

abatement equipment, difficulties in separating and purifying process-gas outflows, and the lack of

known substitutes for some of the process gases.65 Given that further reduction of direct emissions from

fabs is an issue of technical feasibility, we do not attempt to estimate a best case for this lever in this

study, but highlight this as an area of ongoing effort to reduce emissions by the industry. More data on

the current status of global process emissions rates and reasonable medium-term reduction targets

would be needed to generate an estimate of this lever at a similar level of detail to the others in this

study.

The impacts of “new learning” on data center demand

As previously noted, the computational requirements for training state of the art artificial intelligence

models have increased dramatically in recent years.59 These large computational requirements in turn

result in large carbon footprints associated with both ML training and inference.61 While the technology

to enable autonomous learning is not fully developed to date, this new machine learning paradigm could

enable a significant reduction in the energy and computational costs of training artificial intelligence

models.68 Given that growth in AI computational needs is driving growth in data center infrastructure,69 a

fundamental change to the computational requirements for AI models through “new learning” could

potentially reduce 2030 datacenter traffic demands and therefore total emissions. This topic should

continue to be explored in the future as autonomous technologies develop to evaluate potential changes

to the global footprint of AI technologies and data centers in general, and the extent to which the

increase in efficiency provided though more energy efficient model training would be mitigated by

increases in demand for AI according to Jevons paradox.

Pathways to achieve 2030 emission reduction targets

Finally, we evaluate the results of the four interventions proposed in the context of the 2030 proposed

emissions reduction targets for both data centers (servers) and smartphones. Taken separately, none of

the interventions that we present within this work, on average, achieve the desired ICT sector wide

reduction targets for 2030 based on the assumptions of this model. However, the 2030 emissions

reduction target for data centers (servers) does become achievable when we combine strategies.
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When we combine renewable energy for datacenter (server) operation with low-carbon electricity for

device fabrication and increased device lifetimes, we achieve an estimated total impact well below the

2030 emissions target. Notably, device lifetime extension is effective at reducing the total footprint of

data centers (servers) in this scenario, as the negative operational energy backlash of using older servers

longer is largely mitigated by the reduction in emissions per unit of operational electricity offered by

developing renewable energy to power data center operations. Further, the embodied carbon savings

from lifetime extension effectively mitigate the embodied carbon costs associated with developing that

renewable energy and additional server capacity to enable low operational emissions. While these

results demonstrate that the desired 2030 emissions reduction target could conceivably be met by

exercising just these three interventions for impact reduction, actually achieving these results may not

be feasible. For one, as mentioned previously in the discussion of using renewable energy to power

datacenter operations, this would require a sizable scale-up in existing wind energy capacity to provide

operational energy for the data centers,~500 MW. Further, as noted in the discussion of low carbon

fabrication, the geopolitical feasibility of relocating fabrication facilities to areas with lower grid emission

factors is of concern for fully realizing that reduction potential.

The requirements to achieve the 2030 emissions reduction target become more flexible when we are

able to also harness energy efficiency increases for emissions reductions. We demonstrate an extreme

example, where growth is limited to efficiency gains from 2021 to 2030 and therefore global data center

energy demand remains constant over that time period. By exercising each intervention in combination,

we achieve 2030 impacts that are again well below the 2030 emissions reduction target. Importantly,

Including this restriction on data center growth reduces the infrastructure cost, and likely monetary

costs, of achieving the 2030 targets. For example, the excess server capacity required to support the

interventions is reduced from 32.1% to 7.8% when the energy efficiency intervention is present on top of

the other strategies. However, as previously discussed, there is no established pathway for how we might

exercise this lever within the sector.
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Figure 15. Comparison of “best case” estimates of interventions individually and in combination for data center

(sever) global impact reduction

For smartphones, our results emphasize the need for more clear pathways for impact reduction of

consumer devices. While utilizing low carbon electricity for smartphone production does improve overall

emissions from smartphones, it is not enough to move the average impact across our simulations below

the 2030 emissions reduction target for total smartphone impacts.

Figure 16. Result of modeled “best case” intervention for smartphones, low-carbon electricity for integrated circuit

fabrication

Policy options for achieving ICT sector emissions reductions

In order to tie our proposed interventions back to a real world context, we include a discussion of

existing policy levers that could help achieve the ICT sector’s 2030 emission reduction targets. The

review article Freitag et al. (2021)9 provides a robust overview of policies oriented towards reducing ICT

sector emissions. The authors highlight both governmental policies in Europe, including a commitment

by the European Commission to carbon neutral data centers by 2030 and the New Circular Economy

Action Plan “Circular Electronics Initiative” oriented towards improving device lifetimes, and

self-regulation policies within the ICT industry, including corporate pledges to be carbon neutral, net

zero, or carbon negative. The authors note the limitations of these existing policies, including the   limited

enforcement and incentives for industry compliance with targets for carbon neutral data centers as part

of the European Green Deal, the varying degrees of supply chain coverage as part of corporate carbon

neutrality goals, and differences in the additionality of different corporate renewable energy

procurement strategies. In response to these limitations, the authors call for additional policy

mechanisms that would allow achievement of ICT sector emissions targets, suggesting that this could

take the form of a global carbon constraint implemented via a carbon tax or a cap on emissions.

To build upon the policy discussion in Freitag et al. (2021), we highlight additional corporate and

European policies focused on the embodied emissions of computing devices. ICT sector companies are

increasingly focused on quantifying and addressing the embodied emissions footprints associated with
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their products. Microsoft, for example, acknowledged the significance of its scope 3 emissions within its

2030 net-negative emissions pledge and set intermediate targets that included scope 3 emissions

reductions goals.70 One way that manufacturing emissions are accounted for on an ICT product level is

through product carbon footprint evaluation and reporting. For example, Apple publishes product

environmental reports of their products on their website that include carbon footprint numbers and

comparisons to the previous device model71 and Logitech recently began printing carbon footprint labels

directly onto their device packaging.72 Firms may be motivated to track the embodied carbon impacts of

their products in order to comply with eco-labels, such as those from EPEAT73 and the Carbon Trust,74 or

in order to self-report product carbon footprint data to customers. Discussions with ICT sector

sustainability leaders indicate that customer requests for product carbon footprint information are

increasing, and that customers are using this information to guide their purchase decisions.75 Other

motivations for product carbon footprint reduction may include progress towards announced climate

goals, supply chain risk reduction, and marketing.76 Carbon footprinting can also help a firm to identify

solutions that increase product manufacturing efficiency which both save the firm money and reduce

environmental impact.76 Lastly, the expectation of future regulatory requirements is likely a large part of

the motivating force behind product carbon footprinting efforts.76

To that end, two emerging European policies have particular relevance to the issue of device embodied

carbon emissions: the EU digital product passport and the EU Carbon Border Adjustment Mechanism.

The European Commission's digital product passport program will focus on tracking products across their

supply chains with the idea that increased knowledge of the components and materials within a product

can promote end of life recycling and reuse in accordance with circular economy principles.77 The

passport will “serve as an inventory of all materials, components and raw materials used in a product”78

with information on each individual product and component, including their carbon footprints,79 stored

within a blockchain structure. In this way, the digital product passport system could enable consistent

and comparable reporting of carbon footprints across products beyond what exists today. The digital

product passport will be applied to many sectors, including ICT.78 The European Commission announced

that the passport would be introduced in early 2022,77 however, implementation will likely take several

years.79 The EU Carbon Border Adjustment Mechanism (CBAM) is another emerging policy aimed at

minimizing carbon leakage through imports of embodied product carbon emissions to the EU by

applying EU carbon pricing to equalize the price of imported goods.80 Importers will be required to

purchase carbon certificates that correspond to the level of carbon tax that they would have paid if a

product had been produced in the EU under carbon-pricing rules.80 Determination of embodied carbon

levels will require product carbon footprinting by all importers according to guidelines set by the

European Commission.81 While initial implementation (through 2026) will focus on select basic

materials,80 the mechanism will have impacts for industries using the products that are covered:

including the high-tech goods and consumer appliances sectors.82 Therefore the mechanism is relevant

to ICT even in its current form, and could be expanded to directly apply fees to imported ICT product

embodied carbon in the future. Although it is not yet clear when or to what extent these policies will

impact ICT product footprinting and supply chain emissions reductions, taken together, the proposed

programs offer potentially beneficial policy frameworks for standardization of product supply chain
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emissions tracking and embodied carbon disclosures, as well as an imported carbon pricing mechanism

that could encourage ICT product footprint reductions.

Lastly, we touch upon opportunities for the development of US policies around sustainable ICT product

manufacturing in the context of renewed investment in US semiconductor manufacturing as a result of

the CHIPS and Science Act.83 While the Act itself does not explicitly comment on or set goals for

environmental sustainability within new investments in semiconductor manufacturing, this renewed

cycle of investment and manufacturing capacity building is seen as an opportunity to reduce the

negative impacts of manufacturing semiconductor devices.84,85 The state of New York, in particular, is

capitalizing on this opportunity with the passage of Green CHIPS Legislation that complements the goals

of the federal CHIPS and Science Bill while making clean energy and carbon emissions mitigation

programs a central part of the strategy for industry development.86 Given the extent of interventions

needed to achieve 2030 ICT sector emissions reduction goals, as outlined in this work, it is important

that the rest of the US pursues similar sustainability oriented strategies when it comes to new

investments in semiconductor fabrication, and that additional policies are developed to regulate and

encourage reduction of emissions in other portions of the ICT sector supply chain, including data center

operation.

In summation, while there are existing examples of policies aimed at reducing both embodied and

operational impacts of the ICT sector, these policies are not consistent across geographies, and many

policies are still undergoing implementation or represent voluntary commitments, which may complicate

achievement of future emissions reduction goals.

Analysis limitations and takeaways

While the above analyses rely on numerous assumptions in order to estimate the relative impacts and

limitations of different strategies for reducing the global carbon footprint of a few exemplary ICT devices,

it is our hope that the overall framework we offer for the consideration of tradeoffs between operational

and embodied carbon in regards to different interventions and approach for ordering interventions by

potential impact can be reapplied to more specific use cases in order to orient ICT sector company

strategies along different portions of their supply chains.

While each individual assumption in our analysis may be liable to impact over or underestimation, we

believe there is some value in the overall ordering of magnitude of interventions into ICT device supply

chains as presented in these results. For data centers (servers), we reported the largest potential

decrease in overall footprint as stemming from interventions on the operational emissions component of

the total footprint. Notably, we demonstrate that if we were able to harness renewable energy for data

center operations and/or energy efficiency for impact reduction, global data center impacts could be

greatly reduced. Lowered grid emissions factors for embodied footprint reduction offered comparably

lower benefits in terms of carbon footprint reduction as compared to either of the operational energy

interventions. Finally, we show that the effectiveness of server lifetime extension as a means for data

center (server) segment impact reduction depends on the operational interventions that have already
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taken place - this intervention was much more effective at reducing the overall footprint of the data

center (server) segment once operational energy emissions were already successfully reduced by cleaner

energy sources (as in the combined intervention scenarios).

For smartphones, we only model one intervention - renewable energy for embodied emissions

reduction, because the smartphone lifecycle is fundamentally different from the lifecycle of a server in a

datacenter, limiting utilization of the same strategies for impact reduction. For example, we do not

include renewable energy for operation as a viable lever for smartphone impact reduction, as where

consumer devices are used and charged is outside of ICT sector control. Interventions on the lifetime of

smartphone use are also determined by individual consumers and ICT firms may be motivated, from a

business perspective, to reduce smartphone lifetimes rather than extend them in order to sell more

products. Finally, energy efficiency could be used as a lever for smartphone impact reduction, but the

impact of smartphone operation is already much smaller than the emissions associated with making the

device, and the trend towards less energy usage per smartphone is not present as it is with servers,

indicating that again business decisions by designers to increase usefulness of a device may fall contrary

to the use of increased integrated circuit efficiency for overall reductions in energy use. It would be

interesting to explore the potential to harness device energy efficiency trends for impact reduction

further in the future with input from smartphone manufacturers. The intervention we do model - the

use of lower carbon grid emissions energy to power smartphone fabrication effectively decreases

smartphone emissions, reducing smartphone overall emissions further than data center (server)

emissions are reduced with the same lever.

Evaluating sources of baseline model uncertainty

There is a large amount of uncertainty associated with our baseline estimates of global smartphone and

datacenter (server) impacts for 2021 and 2030. We conduct an analysis of variance in order to determine

the parameters contributing most to this uncertainty and identify where additional data collection and

refinement could reduce uncertainty in the future.

2021 estimates

By calculating the first-order sobol indices for each parameter relating to our baseline model outputs, we

can see that the variation in our estimate for the 2021 operational footprint of data centers (servers)

results from the variance of both input variables. When we look at the variation in the server embodied

carbon footprint estimate for 2021, the variance is dominated by uncertainty around the manufacturing

emissions per server parameter. Finally, when we look at the variability of the total footprint for

datacenter (servers) in 2021, the two operational impact variables, 2021 data center energy usage and

2021 global electricity emissions intensity, are the primary sources of variability in that final estimate.

Parameters contributing to
2021 data center (server)

baseline estimates

First order Sobol index values

Operational carbon variance Embodied carbon variance Total footprint
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contributors contributors

2021 global data center
energy use

0.53 0.51

2021 global electricity
emissions intensity

0.45 0.43

2021 global new servers
shipped

0.12 0.0

2021 estimate of server
manufacturing emissions

0.82 0.0

Table 5. Decomposition of variance in 2021 data center (server) global footprint estimate using first order Sobol

indices

For smartphones, the uncertainty in our 2021 operational footprint estimate results firstly from

uncertainty around the number of global active smartphones, with sizable uncertainty contributions

stemming from variability in the smartphone energy usage and 2021 global electricity emissions

intensity parameters as well. When we look at the variation in the smartphone embodied carbon

footprint estimate for 2021, the variance is dominated by uncertainty around the manufacturing

emissions per smartphone parameter. Finally, when we look at the variability of the total footprint for

smartphones in 2021, the three operational impact variables, 2021 global active smartphones, 2021

smartphone energy usage, and 2021 global electricity emissions intensity, are the primary sources of

variability in that final estimate.

Parameters contributing to
2021 smartphone baseline

estimates

First order Sobol index values

Operational carbon variance
contributors

Embodied carbon variance
contributors

Total footprint

2021 global active
smartphones

0.53 0.53

2021 smartphone energy
usage

0.33 0.33

2021 global electricity
emissions intensity

0.15 0.15

2021 smartphone
manufacturing emissions
estimate

0.98 0.0

2021 new smartphones
shipped

0.02 0.0
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Table 6. Decomposition of variance in 2021 smartphone global footprint estimate using first order Sobol indices

2030 estimates

We perform the same Sobol first-order index calculations for our input parameters and baseline

estimates for 2030. We find that our 2030 estimate of the global datacenter (server) operational

footprint is dominated by uncertainty surrounding the expected yearly data center energy efficiency

improvements parameter (followed by uncertainty around the 2030 grid emissions intensity), while the

global datacenter (server) embodied footprint estimate for 2030 is dominated by uncertainty

surrounding the 2021 server manufacturing emissions parameter. Our estimate of the total 2030

datacenter (server) global footprint can be primarily attributed to the expected yearly data center energy

efficiency improvements parameter, with additional contributions to variability stemming from the 2030

average grid emissions factor parameter and, to a lesser extent, 2021 data center energy demand.

Parameters contributing to
2030 data center (server)

baseline estimates

First order Sobol index values

Operational carbon variance
contributors

Embodied carbon variance
contributors

Total footprint

2030 global electricity
emissions intensity

0.28 0.25

2021 datacenter traffic (EB) 0.0 0.0

Expected yearly data center
efficiency improvements

0.88 0.79

Data center energy demand
2021

0.08 0.07

New servers shipped 2030 0.11 0.0

2021 estimate of server
manufacturing emissions

0.88 0.0

% of server emissions from
manufacturing

0.02 0.0

% of manufacturing
emissions from electricity

0.0 0.0

Grid emissions factor of
production location

0.0 0.0

2030 average grid emissions
factor

0.01 0.0

Table 7. Decomposition of variance in 2030 data center (server) global footprint estimate using first order Sobol

indices

Our 2030 estimate of the global smartphone operational footprint is composed of uncertainty deriving

from all three input parameters, while our 2030 estimate of the global smartphone embodied footprint
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is mainly attributed to two input parameters, 2021 smartphone manufacturing emissions, primarily, and

the number of new smartphones shipped in 2030, secondarily. Our total 2030 footprint estimate for

smartphones again derives uncertainty primarily from the three operational footprint input parameters:

2030 global active smartphones, 2021 estimate of smartphone yearly energy usage, and 2030 global

electricity emissions intensity.

Parameters contributing to
2030 smartphone baseline

estimates

First order Sobol index values

Operational carbon variance
contributors

Embodied carbon variance
contributors

Total footprint

2030 global active
smartphones

0.28 0.27

2021 smartphone energy
usage

0.17 0.17

2030 global electricity
emissions intensity

0.29 0.29

New smartphones shipped
2030

0.29 0.0

Smartphone manufacturing
emissions, 2021 est

0.56 0.0

Proportion of smartphone
emissions from IC
manufacturing

0.0 0.0

% of manufacturing
emissions from electricity

0.0 0.0

Grid emissions factor of
production location

0.0 0.0

2030 average grid emissions
factor

0.0 0.0

Table 8. Decomposition of variance in 2030 smartphone global footprint estimate using first order Sobol indices

In summation, we see larger contributions to the uncertainty to our total global footprint estimates for

both smartphones and data centers (servers) stemming from uncertainty associated with the operational

footprint input parameters than the embodied footprint input parameters. Within our embodied

footprint estimates for both datacenters (servers) and smartphones in 2021 and 2030, the uncertainty in

the per device manufacturing emissions parameters stands out as the largest contributor to estimate

variability. Efforts to reduce the uncertainty surrounding these parameters would aid in future global

impact modeling efforts as well as further refinement of the model presented in the following sections.
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A case study exploration of device specialization as a

means for emissions reductions
In this next section, we utilize a detailed case study of a prototypical analog accelerator device to explore

the emissions reduction potential and tradeoffs associated with adoption of emerging computing

technologies. Within the prior discussion around energy efficiency, we highlight the trend of device

specialization as a mode for achieving higher levels of energy efficiency with new technology adoption.

While the operational efficiency benefits of specialized devices are increasingly well documented,58 the

impact of device specialization on the embodied carbon impacts of computing systems requires further

exploration.

Life cycle analyses of computing technologies are often performed after a technology achieves

widespread adoption - which may limit the design options available to reduce the impact of a device.

Prospective life cycle analyses, or life cycle analyses performed on emerging technologies, are useful

both as an input to inform the evolution of a design,14 and as a way to assess potential future system

benefits of new technology adoption.87 ICT sector interest in the Interuniversity Microelectronics

Centre’s (imec) Sustainable semiconductor technologies and systems (SSTS) project demonstrates a

growing recognition of the value of prospective sustainability assessments for new computing

technologies.88 While that effort is making great strides towards assessing the embodied impacts of

computing technologies at more scaled technology nodes,11 its focus is primarily on CMOS technology

scaling with Moore’s law rather than new technologies that diverge from that paradigm, as with the

trend of device specialization. Therefore, the goal of this analysis is twofold: 1) to develop a framework

for assessing the embodied versus operational emissions tradeoffs that are associated with specialized

device adoption, and 2) to provide an example of how the embodied impact of a prototypical computing

device can be estimated prior to technology maturation & industrial-scale fabrication.

Developing a process model of a prototypical analog accelerator device

We select an experimental analog accelerator device recently fabricated by researchers at MIT as the

basis for our analysis. We obtain information on fabrication processes for the device prototype from

their published work89 and patent filing90, with additional fabrication details supplied through

communications with the researchers. Table 9 below provides an overview of the main process steps

required.

Reported fabrication steps + additional notes from researchers Process type

1 (diesaw + spincoat + wafer clean step) + Atomic Layer Deposition (ALD) of 10/40 nm HfO2/Al2O3 on 1x1 cm2 SiO2/Si pieces. Deposition

2

(wafer clean step) + Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for channel layer lift-off. +

(development of resist + SEM inspection) Lithography

3 Reactive sputtering of WO3 layer from metallic target at room temperature in O2/Ar RF plasma using AJA sputtering system. + (liftoff) Deposition

4 Annealing of the WO3 layer in 8:2 N2:O2 environment at 400 °C for 1 hour following a liftoff step. Annealing
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5

(wafer clean step + spin coating) Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for source/drain

contact layer lift-off. Lithography

6 Electron-beam evaporation of 35/5 nm of Au/Cr layer using AJA evaporation system, followed by lift-off step. + (liftoff + SEM inspection) Deposition

7

Plasma-Enhanced Chemical Vapor Deposition (PECVD) of PSG layer using 1420 sccm N2O, 12 sccm SiH4, and 12 sccm PH3 (2% in H2) at

100°C, with a RF plasma power of 60 W at 380 kHz. Deposition

8

(wafer clean step + spin coating) + Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for gate contact

layer lift-off. Lithography

9 Electron-beam evaporation of 10 nm of Pd layer using AJA evaporation system, followed by lift-off step.+ (liftoff + SEM inspection) Deposition

10 Reactive Ion Etching (RIE) of the PSG layer using Pd layer as the hard mask, under CF4 plasma at 100W. Etch

11

(SEM inspection + cleaning + spincoat) Patterning the bilayer of poly (methylglutarimide) and Microposit S1813 positive tone

photoresist, using Heidelberg-MLA 150 for pad layer lift-off. Lithography

12

Electron-beam evaporation of 150/15 nm of Au/Cr layer using AJA evaporation system, followed by lift-off step. + (liftoff + SEM

inspection) Deposition

Table 9. Process steps required for lab-scale analog accelerator device fabrication on top of a finished CMOS wafer

One challenge with modeling a prototypical device is that the processes used to manufacture the device

at a laboratory scale are not necessarily the same as those that would be used in large-scale production.

In order to estimate an at-scale embodiment of production of the device, we make several assumptions

on modifications to the published process flow based on conversations with the researchers, including

that: 1) liftoff steps would be replaced by etch steps and followed by a stripping of the photoresist and

clean step, 2) e-beam lithography would be replaced by photolithography.

Table 10 provides an overview of the estimated at-scale process steps, along with the general process

category that each step falls into.

Step Process Step Category Description

1 Wafer Cleaning Cleaning pieces: acetone sonication (5m), IPA sonication (5m)

2 Deposition Atomic Layer Deposition (ALD) of 10/40 nm HfO2/Al2O3 on 1x1 cm2 SiO2/Si pieces.

3 Wafer Cleaning Cleaning with Acetone+Methanol+IPA and Spincoating PMMA

4 Photolithography Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for channel layer lift-off.

5 Deposition

Reactive sputtering of WO3 layer from metallic target at room temperature in O2/Ar RF plasma using AJA sputtering

system.

6 Etch Liftoff

7 Strip Stripping of photoresist following etch step

8 Wafer Cleaning Cleaning step

9 Oxidation and Annealing Annealing of the WO3 layer in 8:2 N2:O2 environment at 400 °C for 1 hour following a liftoff step.

10 Wafer Cleaning Cleaning with Acetone+Methanol+IPA and Spincoating PMMA

11 Photolithography Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for source/drain contact layer lift-off.

12 Deposition Electron-beam evaporation of 35/5 nm of Au/Cr layer using AJA evaporation system, followed by lift-off step.

13 Etch Liftoff
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14 Strip PR Strip

15 Wafer Cleaning Cleaning step

16 Deposition

Plasma-Enhanced Chemical Vapor Deposition (PECVD) of PSG layer using 1420 sccm N2O, 12 sccm SiH4, and 12 sccm PH3

(2% in H2) at 100°C, with a RF plasma power of 60 W at 380 kHz.

17 Wafer Cleaning Cleaning with Acetone+Methanol+IPA and Spincoating PMMA

18 Photolithography Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix FLS-125 for gate contact layer lift-off.

19 Deposition Electron-beam evaporation of 10 nm of Pd layer using AJA evaporation system, followed by lift-off step.

20 Etch Liftoff

21 Strip PR Strip

22 Wafer Cleaning Cleaning step

23 Etch Reactive Ion Etching (RIE) of the PSG layer using Pd layer as the hard mask, under CF4 plasma at 100W.

24 Wafer Cleaning Cleaning with Acetone+Methanol+IPA and Spincoating PMGI/S1813

25 Photolithography

Patterning the bilayer of poly (methylglutarimide) and Microposit S1813 positive tone photoresist, using Heidelberg-MLA

150 for pad layer lift-off.

26 Deposition Electron-beam evaporation of 150/15 nm of Au/Cr layer using AJA evaporation system, followed by lift-off step.

27 Etch Liftoff

28 Strip Strip photoresist

29 Wafer Cleaning Cleaning step

Table 10. Approximate process steps required for analog accelerator device fabrication on top of a finished CMOS

wafer at scale

To estimate a fully functional version of the analog accelerator with electrical connections to the

underlying CMOS transistors, we include additional process steps beyond initial device fabrication for via

formation and filling. The accelerator device patent described an additional proton barrier layer that can

be deposited over the finished device, into which vias may be etched to allow for electrical connection to

the device contacts.90 Using this information, a via etch and fill process described in the patent of a

similar RRAM device91 and the process flow for interconnect formation reported in Krishnan et al.

(2008)92 we estimate the additional required steps for electrical interconnection of the device (Table 11).

30 Deposition Deposit proton barrier layer

31 Photolithography Pattern a contact via in proton barrier layer

32 Etch Etch contact via

33 Strip PR Strip

34 Wafer Cleaning Wafer clean

35 Deposition Ti Liner

36 Deposition TiN Barrier

37 Deposition Deposit Cu seed layer

38 Electro-chemical plating Cu ECP

39 Oxidation and Annealing Cu Anneal

40 Chemical Mechanical Cu CMP and Clean
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Planarization (CMP)

Table 11. Additional process steps required for electrical interconnection of the analog accelerator device

Because of the lack of high quality LCA data for many specific fabrication processes and the remaining

uncertainty over the exact future embodiment of this analog accelerator device at-scale (specific

processes used and materials are subject to change to some degree), we use an underspecified approach

to estimating the manufacturing impact of this device based on the general process category for each

step.

Using the process inventory tables for various fabrication steps reported in Krishnan et al. (2008), we

assign each individual process recorded within that work to a more general process step category: Wafer

Cleaning, Deposition, Photolithography, Etch, Strip, Chemical Mechanical Planarization (CMP),

Electro-chemical plating, and Oxidation and Annealing. Then, we estimate the global warming impact (g

CO2 eq) of each individual inventory step using emissions factors reported in Boyd (2012).10 By

aggregating the individual steps by their general process category, we obtain a distribution that we can

sample from to obtain an underspecified impact estimation based on the process flow for the analog

accelerator device.
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Figure 17. Carbon footprint distribution of aggregated wafer fabrication process categories

To simulate a range of potential impacts for the analog accelerator device, we run 100 trials, sampling

from log normal distributions based on the mean and standard deviations of each aggregated process

step category. The result is a range of estimated total impacts for the device at the wafer level.

Figure 18. Simulated impact of additional impact per wafer on top of CMOS production required for analog

accelerator fabrication
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Figure 19. Simulated impact of additional impact per wafer on top of CMOS production required for analog

accelerator fabrication broken down by process category

As shown in Figure 19, the deposition steps are responsible both for the highest greenhouse gas impacts

from device fabrication and are a significant contributor to the overall variance of the impact estimate.

The simulations result in an average impact of 151.051 kg CO2e/wafer with a standard deviation of

29.574 kg CO2e/wafer.

Evaluating tradeoffs in device adoption

Now that we have an estimate of the additional manufacturing impact required for analog accelerator

device fabrication on top of CMOS processes, we can use that estimate, along with various other

parameters, to specify the operational efficiency benefits that the analog accelerator device would need

to have over a comparable digital accelerator device in order to have a lower life cycle impact. For this

analysis we assume an embodiment of the analog accelerator device with identical fabrication impacts

to a digital accelerator apart from the additional process steps as outlined in the above section. The

lifecycle benefits of analog accelerator adoption will depend on contextual information like the degree of

utilization of the device, the expected device lifetime, the operational electricity emissions factor, any

area scaling benefits of the new device as compared to what it is replacing (for this example, a digital

accelerator device), and any change in die yield resulting from the additional fabrication steps. We can

use these variables to construct a tradeoff space that will address the question of when the additional

46



manufacturing impact required to produce an analog accelerator device is outweighed by use-phase

efficiency benefits.

We propose the following formula to determine the minimum workload operational efficiency gain

required for lifecycle emissions to be reduced by adoption of this new accelerator device in place of

digital accelerator capacity:

digital_operational = digital_active_power*exp_lifetime*activity_ratio*elec_impact

digital_embodied = wafer_impact/dies_per_wafer_digital

analog_embodied = (wafer_impact+additional_acc_embodied)/

(dies_per_wafer_analog*analog_specific_die_yield)

analog_op_required for breakeven = digital_operational + digital_embodied - analog_embodied

Where:

- additional_acc_embodied refers to additional manufacturing impact required to

manufacture the analog accelerator device as compared to a digital accelerator, which

we have estimated above

- wafer_impact refers to the manufacturing impact of a CMOS wafer, derived from

previous estimate of impact at 32nm: GWP of 84 kg CO2e/die * 347 chips/wafer = 29148

kg CO2e/wafer10

- dies_per_wafer_analog is intended to capture any area scaling cost or benefit that the

analog accelerator device might have over a digital accelerator

- analog_specific_die_yield refers to the change in the proportion of viable finished dies

out of all dies fabricated attributable to the additional process steps required for analog

accelerator fabrication as opposed to digital accelerator fabrication

- digital_active_power refers to the average power usage by the digital accelerator device

when in use

- activity_ratio refers to the proportion of time that the accelerator is actively in use

- elec_impact refers to the emissions factor of the electricity used to power the device

- exp_lifetime refers to the expected operating lifetime of the device, assumed to be the

same for both the analog and digital accelerator

Using our estimate of the additional analog accelerator embodied impact from the above section

(~151.051 kg CO2eq/wafer), we utilize this formula to explore how an operator’s decision to adopt an

analog accelerator technology as a way to lower the carbon footprint of a system might change

depending on the circumstances of device use.

We utilize characteristics of the Google TPU v1 digital accelerator93 as a baseline for comparison with

reported characteristics of two leading hypothetical analog accelerator chip designs (Newton94 and

ISAAC95).
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Chip

Accelerator

Types

Density

(TOPS/mm2)

Efficiency

(TOPS/W)

Process

Technology Precision Die area Power

Newton

Analog (NVM

based) 0.68 0.92 32 nm 16-bit Not specified

ISAAC

Analog (NVM

based) 0.47895 0.6275 32 nm 16-bit 85.4 mm2

Google

TPU v1 Digital 0.07 0.51 28 nm

16-bit

(scaled from

8-bit) 330 mm2 45 W

Table 12. Characteristics of proposed analog accelerator chip designs in comparison to a digital accelerator.

First, we look at how a decision to adopt a new analog accelerator device might change based on the

emissions factor of the electrical grid where the device is used.

When the electricity emissions factor is lower (as in the case of Arizona below), we see that the the

decision boundary is more strict in terms of the area penalty that an analog accelerator device could

have over a digital accelerator device, and is more forgiving towards operational efficiency penalties

when there is an area benefit of the analog accelerator over a digital one.

Overall, the Newton and ISAAC analog accelerator designs, based on the parameters reported, are well

outside of the decision boundary for preferring an analog accelerator to a digital accelerator for all

electricity grid emissions factors and utilization rates we simulate.
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Figure 20. Plot of breakeven boundaries to determine total carbon footprint preference for an analog accelerator

device over a digital accelerator, taking embodied and operational impacts into account under varying grid

emissions factors

When we look at how the decision boundary changes with different device utilization rates, we see

similar trends, with lower utilization rates having more strict area requirements and more lenient

requirements for energy efficiency improvements, while the opposite holds true for higher utilization

rates.

Figure 21. Plot of breakeven boundaries to determine total carbon footprint preference for an analog accelerator

device over a digital accelerator, taking embodied and operational impacts into account under utilization rates

While the Newton and ISAAC analog accelerator designs make the case for analog accelerator devices

being clearly better in terms of total carbon footprint impacts over digital accelerator devices, it is

important to note the performance gap between these modeled designs and the characteristics of

non-volatile memory analog accelerator devices that have been successfully fabricated. A recent review

of analog non-volatile memory accelerator designs notes that both the energy efficiency and compute

densities of fabricated eNVM-based IMCs (similar to the analog device we model) tend to be lower than

comparable digital accelerators.96

Given this gap between realized and hypothetical area and energy efficiency benefits of analog

accelerator devices as compared to digital accelerators, the tradeoff space that we construct here will be

useful in framing ongoing evaluations of the benefits of emerging analog accelerator devices as their

designs continue to evolve.
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In addition, our analysis allows us to highlight when different decisions might be made in terms of

deciding whether an analog accelerator device is more or less carbon intensive over its lifetime as

compared to a digital accelerator device. In the Figure 22 below, we demonstrate this with a more

zoomed in look at the difference in the tradeoff boundaries when the additional manufacturing

processes are taken into account versus when they aren’t (with 80% utilization and CA grid emissions

intensity).

Figure 22. Change in breakeven boundary for total carbon footprint preference for analog accelerator over digital

accelerator resulting from inclusion of additional embodied carbon emissions estimate in decision making

Having an estimate of the additional manufacturing impact of a new analog accelerator device matters

most when you are close to the decision boundary, or more generally, when the computational density

of the analog accelerator is lower in comparison to the digital accelerator it is replacing (more area =

more additional cost), the energy efficiency of the analog accelerator is very close to the digital

accelerator (eg <1% apart) or when one of the variables improves upon digital accelerators

(computational density or energy efficiency) but the other does not. Likewise, the additional embodied

energy required is less important for decision making when the energy efficiency benefits of the analog

accelerator exceed 1% and the analog accelerator device features a similar computational density (area

scaling =1), or neither computational density nor energy efficiency of the analog accelerator is an

improvement over the digital accelerator you are comparing to. Further, while not visually apparent in

this chart, the additional manufacturing impacts of the analog accelerator device matter more (i.e. the

lines below are further apart) when the area efficiency of the device is lower (i.e. more area is required

to match the throughput of a digital accelerator) as compared to when the analog accelerator device is

more area efficient.
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Future work should more closely examine some of the variables we have included here but not explored,

including the impact of additional processing steps on yield. In addition, this framework should continue

to be updated as analog accelerator technologies continue to advance in order to help technology

adopters to understand when total footprint “carbon parity” between fabricated analog and digital

accelerators is reached and re-implemented to aid in decision making around other emerging computing

technologies.

Summary of contributions
In the first portion of this work, we highlight and attempt to quantify some of the existing opportunities

to reduce the impact of the ICT sector with a primary focus on strategies to reduce the impacts of large

scale data centers. We find that 2030 ICT sector emissions reduction goals for data centers (servers) are

achievable through a combination of interventions, including renewable energy for operation,

low-carbon electricity for fabrication facilities, and server lifetime extension. For smartphones, we find

that low-carbon electricity for fabrication facilities alone will not achieve 2030 emissions reduction

targets, and therefore call for additional solutions to reduce the impacts of that consumer device

segment. For data centers (servers) we find that interventions focused on operational emissions

(renewable energy for operation and limiting growth in operational energy usage) were more effective in

terms of overall emissions reductions than the interventions focused on embodied emissions reductions

(low-carbon electricity for fabrication and lifetime extension). Importantly, we note the “missed

opportunity” associated with efficiency improvements in computing devices and data center operations

as a lever for emissions impact reduction as well as the limitations of interventions focused solely on

reducing the emissions associated with energy use in different portions of server device lifecycles. While

we find that the 2030 emissions reduction targets for data centers (servers) were achieved without

harnessing efficiency improvements for impact reduction, we also find that the infrastructure costs of

achieving those targets were reduced when a limit on sector growth to match efficiency improvements

was also employed. Emissions reduction solutions such as 24/7 renewable energy for datacenters are

necessarily limited in their impact reduction potential once the additional embodied impacts, including

from dedicated renewable generation infrastructure and any additional server capacity, are taken into

account. In addition, this strategy is limited by spatial and temporal availability of renewable energy

resources and the degree of temporal flexibility of a data center’s workloads. Efficiency gains of

computing devices, on the other hand, offer a clear reduction in use-phase energy by reducing the

energy required for the same amount of work, and, as long as area scaling benefits continue to reduce

the overall manufacturing impacts per chip in conjunction with that increased operational efficiency,11

those gains come without a similar backlash in embodied carbon - making this the only lever that we

propose that might be considered something of a “free lunch”. Future work should continue to explore

how we might motivate the use of achieved computational efficiency gains for sectoral impact reduction

and effectively reign in excessive growth in computational demand in accordance with Jevons Paradox.

In addition, as the ICT sector continues to pursue efficiency gains, it will be important to continue to

assess whether embodied cost tradeoffs for those operational efficiency gains do become relevant with
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future technologies (i.e. the lunch is no longer “free”). In this vein, the second half of this work proposes

a way to estimate the potential scaled impacts of future computing devices through an underspecified

sampling approach based on fabrication process steps. We then demonstrate how one might construct a

tradeoff space to allow comparison to an existing technology, accounting for both embodied emissions

costs and operational emissions benefits to determine when new technology adoption would be

beneficial from a total carbon footprint perspective. Further, we highlight how decisions around a new

technology might change depending on use conditions, such as the grid emissions factor of a use

location or a device’s utilization rate by allowing for shifting decision boundaries within the constructed

tradeoff space. In our case study of a prototypical analog accelerator device, we find that incorporating

the additional embodied carbon costs into the tradeoff space did not change decisions in terms of total

carbon footprint benefits of device adoption under a variety of use scenarios if that analog accelerator

was able to obtain the operational characteristics of a two published hypothetical analog accelerator

chip designs. However, given the disparity between characteristics of hypothetical and fabricated analog

accelerator devices, the tradeoff space we present can help to track the progression of the technology

and determine when analog accelerators reach total footprint parity with comparative existing devices.

We note that incorporating the additional embodied carbon estimate into decision making is more

important when device characteristics are near to the decision boundary, or when the analog accelerator

device may exceed performance of a digital accelerator device on one metric (eg. energy efficiency) but

perform worse on another (eg. area efficiency), or vice versa.

Lastly, we make note of the continued uncertainty and difficulty in estimating impact parameters within

the ICT sector owing to a lack of up to date and transparent reporting of data within the sector and no

one central authority/standardized reporting methodology. If we want to truly reduce the global impact

of this sector going forward, we will need better data to feed into models such as the one we have

proposed in order to assess the best solutions for achieving that impact reduction moving forward.

Areas of future research
There are many opportunities for future research work within this space. Here we highlight additional

topics that arose in discussions of this work that remain, to our knowledge, unaddressed.

Firstly, the methods and approach formed within this work could be extended to new areas of the ICT

sector and other emerging technologies. The 2030 global footprint reduction analysis could be extended

to also apply to other consumer devices (such as desktop computers, tablets, etc.) and communication

networks. Communication networks in particular might prove important for future work as they have a

similar operational energy footprint to data centers.15 Previous work notes the relative difficulty of

addressing communication network emissions as compared to data centers, given the non-centralized

and diverse technological nature of communication network systems as well as a lack of data on

renewable energy incorporation.3 In terms of applying this methodology to other consumer devices, this

would become more impactful if other interventions that could reduce the impact of consumer devices

52



were considered (for smartphones, we only model an intervention on the emissions intensity of

fabrication electricity). Expanding this analysis in either of these directions would likely benefit from

engagement with industry partners in order to generate additional intervention ideas and obtain

additional data on the current state of systems and emissions reduction strategies already in place.

There are additional large-scale trends within the ICT industry that we do not touch upon within this

work, but that would make interesting areas for future inquiry, including the rise of the internet of things

(IoT) and a shifting of computing burdens from data centers to edge devices. Previous work suggests that

the potential future implications of IoT in terms of embodied and operational emissions of the ICT sector

are underexplored.9,4,3 In addition, as artificial intelligence continues to become pervasive within

computing technologies, there is a trend towards moving away from centralized AI inference in data

centers towards inference that happens on individual edge devices to benefit user privacy, the speed of

an application, and allow access to AI models without internet connectivity.97,98 While some initial work

on this topic indicates that edge computing may be preferable from a carbon emissions perspective,99

this topic merits further research, especially in light of the increasingly low operational emissions

footprints of data centers with increases in renewable energy procurement.

Our method for new computing technology impact estimation could be extended to model operational

versus embodied tradeoffs associated with other emerging technologies. In particular, new memory

technologies, including non-volatile memory technologies like resistive random access memory or phase

change memory,100 are of interest given that memories are a significant user of energy within a

computing system,101 and these new memory technologies offer potentially significant operational

energy reduction opportunities.102 It would also be interesting to evaluate the embodied and operational

emissions tradeoffs of newer high-bandgap semiconductor technologies, such as those based on SiC

rather than Si wafers. This would likely require engagement with an industry partner involved in SiC

semiconductor manufacturing in order to fill in the relevant data gaps that have been identified by

previous work103 as necessary to perform a life cycle analysis assessment on this technology. In addition,

there is an opportunity to improve upon our estimates in this analysis. More updated data on the

emissions associated with different fabrication processes, as well as the emissions associated with newer

process technologies would help to increase the accuracy of our estimates. In addition, it would be

interesting to obtain additional data on variables that we were unable to fully explore within this

analysis, such as the effect of additional processing steps on device yields.

Eventually, we hope that this and future work can manifest itself as a tool for optimizing sustainability

within computing system designs, from the level of an integrated circuit to the operation of a completed

device. The concepts we explore within this work, such as device lifetimes or specialization, could be

thought of as design parameters to be optimized for minimizing the total emissions impact of a system

and our estimates of the scaled carbon footprint of an emerging computing device could be used to

reduce a device’s footprint before a device is scaled. However, additional research, discussion with ICT

industry experts, and data collection will be required before this kind of tool can be achieved.
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Appendix
Parameter estimates and uncertainty assignments for global data center and smartphone footprints

Parameter Estimate Source Link Uncertainty
distribution
assigned

Global data center
energy usage, 2021

220-320 TWh IEA Link Uniform

Global number of active
smartphones, 2021

2.967 billion,
6.262 billion

IEA Electronic Devices
& Networks Annex
(EDNA) Total Energy
Model, Ericsson

Link
Link

Uniform

Yearly energy
consumption of a
smartphone

7.75 kWh average
& 1.24 std dev

Google Pixel published
TEC data

Link Normal
distribution

Global average carbon
intensity of electricity,
2021

459 gCO2/kWh IEA World Energy
Outlook 2022

Link Data quality index

Yearly new server
shipments, 2020

9.53 million IDC Link Data quality index

Yearly new smartphone
shipments, 2021

1660 million IDC Link Data quality index

Server manufacturing
carbon emissions

mean 1230 std
dev 374 kg CO2e

Boavizta Environmental
Footprint Dataset
(filtered by
Subcategory = “Server”
& to remove entries
without
gwp_manufacturing_ra
tio - 7 removed, all
Lenovo)

Link Normal
distribution

Smartphone
manufacturing carbon
emissions

mean 52.7,
standard deviation
18.3 kg CO2e

Boavizta Environmental
Footprint Dataset
(filtered by
Subcategory =
“Smartphone” & to
remove entries
without GWP total - 3

Link Normal
distribution
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https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea-4e.org/edna/tem/
https://www-ericsson-com.libproxy.mit.edu/en/reports-and-papers/mobility-report/mobility-visualizer?f=1&ft=1&r=1&t=8&s=1&u=1&y=2016,2021&c=1
https://github.com/Boavizta/environmental-footprint-data/blob/main/boavizta-data-us.csv
https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf
https://www-statista-com.libproxy.mit.edu/statistics/287005/global-server-shipments/
https://www-statista-com.libproxy.mit.edu/statistics/272696/mobile-phone-shipments-worldwide-by-quarter/
https://github.com/Boavizta/environmental-footprint-data/blob/main/boavizta-data-us.csv
https://github.com/Boavizta/environmental-footprint-data/blob/main/boavizta-data-us.csv


removed)

Proportion of
manufacturing emissions
of servers that are
attributable to integrated
circuit fabrication
(including logic and
memory production)

~78% 2019 Dell Server LCA Link Data quality index

Proportion of
manufacturing emissions
of smartphones that are
attributable to integrated
circuit fabrication
(including logic and
memory production)

66 & 69% Fairphone 3 & 4 LCAs Link
Link

Uniform

Portion of the integrated
circuit manufacturing
impact can be attributed
to electricity as opposed
to process emissions

In 2021, 50% of
TSMC’s emissions
came from Scope
2 impacts, SK
Hynix attributing
45% of their total
emissions to
Scope 2 in 2021,
and Micron
reporting 54% of
their emissions as
stemming from
purchased energy
in 2021 (but note
that Micron did
not estimate
Scope 3, so Scope
2 may be
overrepresented)

TSMC reporting, SK
Hyinx, Micron

Link
Link
Link

Uniform

Grid emissions factor of
Taiwan, 2021

0.509 kg
CO2e/kWh

Taiwan Bureau of
Energy

Link Data quality index

“Best case” low carbon
grid emissions estimate -
Sweden

0.02881 kg
CO2e/kWh in 2020

Carbon Footprint Ltd. Link Data quality index

2030 average grid
intensity

165-330g
CO2/kWh

IEA World Energy
Outlook 2022

Link Uniform
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https://www.delltechnologies.com/asset/en-us/products/servers/technical-support/Full_LCA_Dell_R740.pdf
https://www.fairphone.com/wp-content/uploads/2020/07/Fairphone_3_LCA.pdf
https://www.fairphone.com/wp-content/uploads/2022/07/Fairphone-4-Life-Cycle-Assessment-22.pdf
https://esg.tsmc.com/download/file/2021_sustainabilityReport/english/e-all.pdf
https://www.skhynix.com/sustainability/UI-FR-SA1601/
https://media-www.micron.com/-/media/Client/Global/Documents/General/About/2022/2022_Micron_Sustainability-Report.pdf
https://www.moeaboe.gov.tw/ECW/english/content/Content.aspx?menu_id=20721
https://www.carbonfootprint.com/docs/2022_03_emissions_factors_sources_for_2021_electricity_v11.pdf
https://www.iea.org/reports/world-energy-outlook-2022/outlook-for-electricity


2030 new servers
shipped

60 million New perspectives on
internet electricity use
in 2030 (2020)

Link Data quality index

2030 active smartphones 5 billion - 7.861
billion (in 2028)

Half the World Owns a
Smartphone by
Strategy Analytics,
Ericsson Mobility
Visualizer

Link
Link

Uniform

2030 smartphone
shipments

1.7 billion units,
1774 million

Global Smartphones
Industry report, New
perspectives on
internet electricity use
in 2030

Link
Link

Data quality index

Data center traffic (EB),
2021

20,555 EB Cisco Annual Internet
Report (2018–2023)
White Paper

Link Data quality index

CAGR of total datacenter
traffic (EB) 2021-2030

24.70% CAGR
between 2016 and
2021

Cisco Global Cloud
Index

Link No uncertainty
assigned, taken as
an assumption

Yearly data center energy
efficiency improvements

5-15% N/A N/A Uniform
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https://pisrt.org/psr-press/journals/easl-vol-3-issue-2-2020/new-perspectives-on-internet-electricity-use-in-2030/
https://www.businesswire.com/news/home/20210624005926/en/Strategy-Analytics-Half-the-World-Owns-a-Smartphone
https://www.ericsson.com/en/reports-and-papers/mobility-report/mobility-visualizer?f=1&ft=1&r=1&t=8&s=1&u=1&y=2016,2028&c=1
https://www.yahoo.com/entertainment/global-smartphones-market-reach-1-173600593.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAG6ldYivx781pcBPruRaUNX0Ekvw6UNn4FlupTtuKXAUQotazkxv4vK24scxIzjtUGy2em8_oYS_-Gd0btwa2P4StuLzN36X0DiwcfGRxWCxSgR85s1XOMssXBGUUzc_S27--yQ6lVwsNv_Z0VMB6p1DyinlzeE6KIu9FO6qgrQh#:~:text=Global%20Smartphones%20Market%20to%20Reach%201.7%20Billion%20Units%20by%202030
https://pisrt.org/psr-press/journals/easl-vol-3-issue-2-2020/new-perspectives-on-internet-electricity-use-in-2030/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf

