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Abstract

In the United States (U.S.), exposure to ambient 𝑃𝑀2.5 – fine particulate matter
smaller than 2.5 micrometers in diameter– is responsible for the largest share of
premature deaths associated with air pollution. Despite declines in average annual
concentrations, significant disparities in 𝑃𝑀2.5 exposure between racial and ethnic
groups continue to persist. Existing research characterize 𝑃𝑀2.5 exposure disparities
across a range of different indicators, but few studies compare these metrics against
one another nor do these studies explore these metrics at different geographic scales
and demographic shifts over time. As policy makers begin to prioritize environmental
justice concerns through the identification of disproportionately impacted communi-
ties, careful selection of indicators and metrics will be vital for ensuring that inequities
are properly captured in decision making processes.

Using population demographics from the U.S. Census and land-use regression
𝑃𝑀2.5 concentration estimates from the Center for Air, Climate, and Energy Solutions
(CACES), we compare the calculations of absolute and relative exposure disparities at
different geographic scales and changing demographic shifts. Further, we discuss the
policy implications of our findings and provide recommendations for both regulatory
and community centered measures to address existing racial/ethnic disparities.
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Chapter 1

Introduction

In the United States (U.S.), exposure to ambient 𝑃𝑀2.5 – fine particulate matter

smaller than 2.5 micrometers in diameter– is responsible for the largest share of pre-

mature deaths associated with air pollution [29]. Researchers attributed 4.2 million

premature deaths globally to in 2015, ranking it as the 5𝑡ℎ highest mortality risk

factor [12]. Average concentrations 𝑃𝑀2.5 across the U.S. have declined considerably

( 70 percent) since 1981 due to a variety of policies and actions [13]. These policies

include the Clean Air Act (CAA), which has –through the National Ambient Air

Quality Standards (NAAQs)– set limits for maximum allowable concentrations for

6 criteria air pollutants: ground-level ozone, particulate matter (including 𝑃𝑀2.5),

carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. Despite these improve-

ments, significant disparities in 𝑃𝑀2.5 exposure between racial and ethnic groups

continue to persist due to regulatory and systemic forces that have sited pollution

sources near disadvantaged communities [13] [24] [34].

Existing research characterizes these pollution disparities across different indi-

cators, such as calculating absolute and percent differences in population weighted

𝑃𝑀2.5 averages and utilizing metrics of inequality [20] [24][28]. Nonetheless, few

studies have compared these metrics against one another, nor have many studies ex-

tensively explored these metrics at different geographic scales and demographic shifts

over time. These questions are particularly relevant as policy makers prioritize envi-

ronmental justice concerns by identifying disadvantaged communities most impacted
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by environmental hazards. Depending on which metrics are used to define pollution

exposure disparities, different conclusions can be made on the status of the gap in pol-

lution exposure across racial/ethnic groups [13] [20]. Further, understanding the how

these metrics represent disparities at different geographic scales can help determine

which levels of governance (city, state, national) can be most effective at addressing

gaps in pollution exposure. Finally, community demographics are not static. As

people move and change residences over time, exploring changing demographics and

pollution levels over time can serve as additional metrics for identifying regions that

are showing improvements (or lack thereof) in pollution disparities.

Given these factors, this thesis explores the following questions:

1. Exploration of 𝑃𝑀2.5 Disparities at Different Geographic Scales: Do

National pollution disparities exist at different geographic scales?

2. Disparity Metrics Comparison: How do absolute and relative disparity met-

rics differ in identifying the communities that experience the highest disparities

in pollution exposure?

3. Temporal Trends in Changing Demographics and Pollution Levels:

What conclusions regarding pollution disparities can be drawn when explor-

ing the relationship between changing demographics (as a proxy for relative

mobility) and changing pollution levels over time?

The following sections further elaborates on the significance of each of these ques-

tions, summarizes existing research on 𝑃𝑀2.5 pollution disparities and highlights the

ways this paper provides additional perspectives to current literature.

1.1 Question 1: Disparities at Different Geographic

Scales

A majority of existing studies exploring gaps in racial/ethnic pollution exposures

calculate disparities at a national aggregation [13] [20] [24]. Few studies explore
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intra-urban disparities, and do so only for particular metropolitan area of interest [9]

[10]. For example, Chambliss et. al. use localized monitoring data in four counties

in San Francisco to conclude that differences pollution exposure across racial/ethnic

groups are driven by regional variability rather than intra-urban differences. It is

unclear whether the conclusions for the city of San Francisco can be applied to other

regions in across the U.S.

Further, understanding whether disparities exist at lower geographic scales is im-

portant for two reasons. First, this question can help to determine what levels of

policy governance will be influential in addressing these pollution disparities. For

example, local governing bodies have influence in siting and permitting of pollution

sources as well as zoning of residential areas. Second, this question can serve as a

method to compare the differences between various disparity metrics, explored in the

next section.

1.2 Question 2: Comparison of Relative and Abso-

lute Disparity Metrics

There are two main types of disparity metrics used in characterizing gaps in pollution

exposure between racial/ethnic groups: (1) absolute disparities (2) relative disparities.

Absolute disparities are assessed as absolute differences between groups, while relative

disparities are scale invariant.

Different papers have calculated variations of the absolute disparity metric to tailor

the index to their specific research questions– e.g. taking the normalized difference

[24], percent difference [24], or changing the two units of comparison (e.g. difference

between highest and lowest concentration exposures vs. difference between exposures

of two target ethnic groups) [14]. Nonetheless, the overall mathematical definition of

an absolute disparity across these papers is consistent and follows that of taking the

absolute difference between two measurements.

The relative disparity metric on the other hand is not consistently defined across
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air quality literature and has been quantified and characterized differently across var-

ious papers. For example, Colmer et. al. found that while differences in 𝑃𝑀2.5

between more or less polluted areas declined substantially in the last two decades

(declines in absolute disparity), the most polluted areas remained the most polluted

and the least polluted areas remained the least polluted (relative disparities persist)

[13]. Colmer et al. does not provide a quantification of relative disparity, but rather

demonstrates relative disparity as a relational concept through which ranks of pollu-

tion concentrations have not changed over time. Jbaily et al. expands on this research

by attaching a numeric metric to relative disparities using the coefficient of variance

(CoV), a statistical method that calculates the variability of a given data set [20].

Finally, Pisoni et al. defines and quantifies relative disparities using an inequality

indicator based on the Gini coefficient, usually applied in the field of economics to

identify income inequality [28].

Few studies compare the range of disparity metrics that exist across absolute and

relative pollution metrics. More commonly, a singular metric is identified to capture

an author’s specific definition of disparity given their research question. Further, the

author is not aware of any studies that use disparity metrics to spatially identify

areas in the U.S. that show the highest racial/ethnic pollution exposure disparities.

The usefulness of such an analysis would be two-fold: (1) comparison of disparity

metrics can help researchers and policymakers identify which metric may be most

suitable for their application proposes, (2) identification of communities experiencing

high pollution disparities across racial/ethnic groups can help policy makers pin point

areas requiring targeted policy measures.

This study compares two metrics of absolute and relative disparities: absolute

difference in population weighted average (PWA) 𝑃𝑀2.5 concentrations and relative

disparities as represented by the coefficient of variance. We choose these two met-

rics because (1) both have a numeric value attached to it, which allows for ease of

comparison and (2) these metrics are easily interpretable and (for the case of PWA

𝑃𝑀2.5 concentrations) are commonly used in the literature.

While numeric disparity metrics offer the benefit of interpretability and compara-
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bility, inequality/disparity is a relational concept that contains both qualitative and

quantitative elements [30]. Reducing definition of "disparity" to a metric may have

the unintended consequence of removing important nuances in air pollution trends.

As such, our final research question utilizes the characterization of relative dispari-

ties presented in Colmer et al. in order to explore the relationship between changing

demographics and pollution levels over time.

1.3 Question 3: Temporal Trends in Changing De-

mographics and Pollution Levels

The combined force of various political and systemic processes have concentrated

people of color in neighborhoods that are often racially segregated, socioeconomically

disadvantaged, and disproportionately exposed to a variety of environmental hazards

[34]. These disparities in part reflect systematic environmental racism, including

long-lasting consequences of discriminatory practices such as redlining where racially-

biased mortgage appraisals favored white people and resulting in people of color living

in more polluted neighborhoods [23].

However, recently scholars have found that after the turn of the 21st century,

trends show a shift in non-Hispanic White population shares towards urban neigh-

borhoods with higher pollution levels [24] [14]. While this shift in demographics is not

significant enough to overturn trends in air pollution disparities (i.e. non-Hispanic

Whites on average are still experiencing pollution levels lower than racial and ethnic

minorities despite movement of white populations to more urban locations), these

trends signal to more nuanced story lines in trends in pollution exposure overtime.

Specifically we note that these studies do not explore what the rate of improvement is

in these urban locations that white populations are moving to. It is possible that these

areas, while relatively more polluted, are improving faster than previous residences.

These questions have important policy implications in that they may influence the

ways policy makers identify environmental justice communities. For example, in 2022,
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the New York state-appointed Climate Justice Working Group, identified Williams-

burg, a predominately white neighborhood where the average household income is

$166,600, as a "disadvantaged environmental justice community" given its high pol-

lution levels and legacy as an industrial area with a large minority population [18].

As policy makers determine which communities to identify as locations of most con-

cern, it is important that we explore not only current pollution and demographic

data, but also how mobility of different racial/ethnic groups relate to changes in air

quality.

To do so, we implement methods used by Colmer et. al. to explore relative

disparities by conducting rank-rank analysis of pollution levels. For this paper, we

employ a similar rank-rank analysis by exploring demographic changes across the

top and bottom percentile of pollution exposures. We apply the same analysis on

changes in pollution concentrations across the top and bottom percentile of

demographic shifts. In doing so, we aim to quantify and explore demographic changes

within census county and track regions.

1.4 Organization of Key Research Questions

To summarize, this paper explores three aspects of air pollution disparities in the

U.S.:

1. Exploration of 𝑃𝑀2.5 Disparities at Different Geographic Scales: When

considering disparities at various geographic scales, do the observed gaps resem-

ble those present at the national level?

2. Disparity Metrics Comparison: How do absolute and relative disparity met-

rics differ in identifying the communities that experience the highest disparities

in pollution exposure?

3. Temporal Trends in Changing Demographics and Pollution Levels:

What conclusions regarding pollution disparities can be made when exploring
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the relationship between changing demographics (as a proxy for relative mobil-

ity) and changing pollution levels overtime?

This paper is organized as follows: Chapter 2 introduces data sources and methods

for the three questions presented. Chapter 3 explores research question (1) on dispar-

ities at different geographic scales and (2) comparison of disparity metrics. Chapter

4 explores research question (3) on temporal trends in demographics and pollution

levels. Finally, Chapter 5 includes key conclusions and discussion on policy relevance.

19



20



Chapter 2

Methods and Data Sources

This paper uses two sources of data: (1) population demographics from the 2000, 2010

2020 U.S. Census and (2) estimates of 𝑃𝑀2.5 concentrations between years 2000-2015

from the Center for Air, Climate, and Energy Solutions (CACES) land use regression

model in order to explore the trends in air quality exposure across four racial and

ethnic groups: non-Hispanic Whites, non-Hispanic Blacks, non-Hispanic Asians, and

Hispanics. Non-Hispanic racial groups will simply be referred to as White, Black or

Asian respectively in this paper. These two sources of data are merged at the census

block-group level using the methods described in Section 2.2.2 in order to calculate

population weighted 𝑃𝑀2.5 exposures and explore (4) different definitions of pollution

disparities (Section 2.3)

2.1 Air Pollution Data

The U.S. Environmental Protection Agency (EPA) has identified six air pollutants

known as "criteria" pollutants, which are specifically regulated due to their significant

harm to human health and the environment. In the United States, these criteria air

pollutants, which include 𝑃𝑀2.5, are measured at fixed regulatory monitoring stations

within the National Ambient Air Quality Standards (NAAQS) network (Solomon et

al., 2014). However, these regulatory monitors provide air pollution measurements

that are limited in both space and time, as they are constrained by the location

21



of monitoring stations and year in which a monitor is established. Given that air

pollution can exhibit spatial variability due to land-use characteristics such as street

canyons effects, complex terrain, and urban heat island effects, land-use regression

(LUR) models provide improved exposure estimates by combining monitoring data

with land-use variables. These LUR model predictions are also commonly used to

assess the health effects of pollution [16] and exposure disparities [11] [23].

As such, for this project, we characterize 𝑃𝑀2.5 concentrations using empirical

land-use regression (LUR) models developed by the Center for Air, Climate and

Energy Solutions (CACES) [1]. These models estimate ambient concentrations for six

criteria pollutants (carbon monoxide, lead, nitrogen oxides, ground-level ozone, sulfur

oxides, and particle pollution, including 𝑃𝑀2.5) using U.S. EPA regulatory monitors,

satellite-derived estimates of air pollution for locations without measurements, and

roughly 350 geographic characteristics, including locations of major and minor roads,

measures of traffic, elevation, and land type (urban or rural) [22]. LUR models

make use of actual pollution estimates from regulatory monitors and satellite derived

estimates as variables for its "training data set" or set of inputs and outputs used

to fit/train a model. Each monitoring site is characterized by a set of potential

predictors such as the geographic characteristics listed above (population density,

land use and various traffic-related variables). In the case of this model, our inputs

are these potential predictors and our outputs are the measured/satellite estimates

of 𝑃𝑀2.5 concentrations. Statistical modeling is used to determine which predictors

best explain the pollution concentrations observed in the training data set. [1]

LUR models for this study derive their estimates using a statistical method known

as the universal kriging framework, which partitions annual average concentrations

into two components: variance and mean. Components are estimated by partial

least squares (PLS) of geographic variables. Together with these components, PLS

predictors offer a unique characteristics in that they not only incorporate various

geographic characteristics, they also help to avoid the issue of over fitting to the

training data by regularizing the model such that it is able to better predict on new

data sets. The best performing models were then selected to generate annual ambient
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concentration estimates for all residential census block-groups in the contiguous US.

The selection of "best" performing models are tested using cross validation, or out-

of-sample testing. This method assesses how well the model is able to predict new

data that was not used to in the training dataset (data that was used to create the

model, aka. satellite derived estimates). The cross-validated R-squared value, which

represents how well model predicts new data, for 𝑃𝑀2.5 was 0.85. Generally, an

R-squared value of 0.7 or higher is considered a good fit [22].

We select this data set for a number of reasons in addition to the ones previously

noted. First, LUR models can provide estimates of air pollution concentrations for

many locations simultaneously and at a much finer spatial resolution than traditional

monitoring stations. This data set in particular predicts pollution concentrations at

census block centroids.

Additionally, compared to traditional monitoring data sources which may move

or change over time, LUR models are particularly useful for analysis that explore

pollution across time periods, as is done in this analysis. Finally, the interoperability

and transparency of land use regression models allow for easier interpretation of re-

sults. Further, this data is freely available online, which can allow for reproduction

of results and as such build trust and confidence in in both model development and

research findings derived from these pollution predictions.

2.2 Census Demographics Data

Population data is sourced from the IPUMS National Historical Geographic Infor-

mation System (NHGIS), a database that provides access to summary statistics and

GIS files for the U.S. Census and other nation wide surveys [27]. We utilize data

from the 2000, 2010 and 2020 U.S. census. As census block codes and geographies

have changed between each Census report, NHGIS provides standardized data across

various time series. For the purposes of this project, census demographics for years

2000 and 2020 are standardized for the 2010 census geographies.

NHGIS standardizes the 2000 and 2020 data in these time series tables to 2010

23



census geography in two steps, first allocating census counts from 2000/2020 census

blocks to 2010 census blocks and then summing the reallocated 2000/2020 counts

for all 2010 blocks that lie within each target 2010 unit. Where a 2000/2020 block

intersects multiple 2010 blocks, NHGIS applies areal interpolation to estimate how the

2000/2020 block characteristics are distributed among the intersecting 2010 blocks.

[27]

Demographics are reported to the Census at a ten year interval. NHGIS provides

annual census demographics data at the census tract level only for years 2000-2019.

In order to match census block-group level 𝑃𝑀2.5 estimates sourced from the CACES,

which are provided for years 2000-2015, this study utilises census block-group demo-

graphics for years 2000, 2010, and 2020 and interpolates demographics between years

2010 and 2020 to arrive at estimates for 2015 block-group demographics. We do so

using piece wise linear interpolation from NumPy Python library. The findings of

this report are subject to the robustness of the interpolation methods. Once 2015

demographics are determined, census demographics for years 2000, 2010 and 2015 are

merged with 𝑃𝑀2.5 estimates. This merge is described in Section 2.2.1.

In addition to interpolation sensitivities, we note that there are a number of eq-

uity concerns surrounding census data usage, particularly the limitations in capturing

unrepresented minorities, neighborhoods with limited English proficiency, people ex-

periencing homelessness, and other marginalized communities. As such, the findings

of this report are subject to data limitations in capturing a complete understanding

of disparities across all populations in the country. We explore these equity and diver-

sity concerns, along with recommendations for improving between year interpolation

estimates further in Chapter 4.

2.2.1 Estimating Exposures to Pollutants using Population

Weighted Average

This paper estimates annual 𝑃𝑀2.5 exposures for years 2000, 2010, and 2015 based

on population-weighted averages (PWA) for each demographic group. To to do, we
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merge 𝑃𝑀2.5 concentration estimates from the CACES data-set (described in Section

X) with census demographics (described in Section X) using GeoPandas spatial join.

Spatial join uses binary predicates such as intersects and crosses to combine two Geo-

DataFrames based on the spatial relationship between their geometries. In this case,

the intersection between census block centroids in the CACES pollution estimates

and the census block group shape files are identified in order to merge the two data

sets. This process is replicated for years 2000, 2010, and 2015 across all census block

groups in the contiguous United States.

Next, the population weighted average 𝑃𝑀2.5 of for each a given racial/ethnic

group in a geographic region of interest is computed as:

𝑃𝑊𝐴 =

∑︀
𝑗
(𝑃𝑖𝐶)∑︀
(𝑃 )

Where 𝑃𝑖, 𝑗 is the population of racial/ethnic group i within a census block group

j, P is the total population of in census block group j, C is the predicted 𝑃𝑀2.5

concentration in a census block group j and N is the number of census block groups

in the geographic region of interest. Population weighted averages for 𝑃𝑀2.5 are

computed for the following geographic regions: county, state, regional and national

levels.

Population-weighted average 𝑃𝑀2.5 is a commonly used metric of exposure in air

pollution literature given that the metric proportionally assigns a greater weight to

pollution located where there is a larger number of people living. Population weighted

pollution exposure provides a more accurate estimate of the average exposure to air

pollution for a population as opposed to simply accessing pollution over a geographic

region. [25]

Population weighted 𝑃𝑀2.5 averages as a representation of pollution exposures

will be used as the basis for calculating exposure disparities as described in the next

section.

25



2.3 Defining Disparities

Exposure disparities are defined a number of different ways in existing literature. This

paper employs the following definitions of disparities:

1. Absolute Disparities based on Racial/Ethnic groups [24]

2. Relative Disparities across all racial ethnic groups as defined by the Coefficient

of Variance [20]

3. Relative Disparities across geographic regions using Rank-Rank comparison [13]

As described in the introduction, absolute disparity metrics (1) are often con-

nected to pollutant-specific health impacts (Harper et al. 2013). In the case of this

paper, absolute disparity is defined as the difference between population weighted

𝑃𝑀2.5 exposure of the racial/ethnic group with the highest mean exposure ("most-

exposed group") and the PWA 𝑃𝑀2.5 exposure of the racial/ethnic group with the

lowest mean exposure ("least exposed group"). We define absolute disparity based on

differences between most- and least-exposed racial/ ethnic groups to avoid preselect-

ing two specific groups for comparison. Further, this accounts for exposure disparities

across multiple racial/ethnic groups [24].

As described in the introduction, there exist many variations in calculating ab-

solute differences in pollution exposure. Researchers have also calculated percent

differences and normalized absolute differences (where the difference is divided by the

national mean exposure).

An important limitation of using absolute disparities is that they represent the

differences in exposure across racial/ethnic groups but do not include information

about disparities across the full exposure distributions. For example, absolute dis-

parity measures the differences in mean exposures (PWA 𝑃𝑀2.5). However, two

populations may have the same population weighted average (absolute disparities is

zero) but one population may have a much wider range in exposures than the other.

In this case, an disparity metric that focuses on a difference between two groups
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would not capture the differences in exposure distribution and would underestimate

the true disparities in exposure burden.

To address this limitation, we also employ two additional definitions of relative

exposure disparities.

In definition (2), we employ the definition of relative disparities as described by

Jbaily et.al., where the coefficient of variation (CoV) is used to measure the variability

of population weighted average 𝑃𝑀2.5 exposures across all racial/ethnic groups. Using

the CoV, we explore the variability across the percent of each racial/ethnic group

that is exposed to 𝑃𝑀2.5 above a certain threshold [20]. This metrics provide a more

nuanced and comprehensive measure of exposure inequality by capturing differences in

the distribution of exposures across different populations or subgroups, rather than

just focusing on differences in mean exposure levels. Calculation of this disparity

metric, along each of the other metrics, are defined in the sections below.

In definition (3) we employ the definition of relative disparity as described by

Colmer et al., where relative disparity is represented by change in pollution exposure

rank over the years relative to other regions, e.g. "Rank-Rank" comparison [13].

As such, even if the absolute disparity or normalized disparity has decreased, if the

rank of a census tract has not changed over time, "relative" disparities persist. This

definition captures the distribution of pollution exposures in that we are provided

with the pollution rank of a region and can understand that regions pollution levels

in relationship to the rest of the sample size (exploration across exposure percentiles).

Further details on the calculation of definition (3) is provided in the sections below.

2.3.1 Relative Disparities calculated using the Coefficient of

Variation

The coefficient of variation (CoV) is a statistical measure used to measure the relative

variability or dispersion in a data set and is commonly used in measures of income

inequality. It is calculated as the ratio of the standard deviation (SD) to the mean of

the data set, expressed as a percentage.
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A lower CoV indicates lower variability or dispersion in the data set, while a higher

CoV indicates greater variability or dispersion. The coefficient of variation is a useful

measure when comparing variability between data sets with different units or scales.

We apply the coefficient of variation to measure the relative variability of the per-

cent of a population group that is exposed to pollution levels higher than a threshold

of interest. [20]. In this case, this study selects the annual threshold that represents

the 90𝑡ℎ percentile in PWA 𝑃𝑀2.5 exposure levels across the U.S. for each year. As

such, the thresholds for each year are as follows: (2000: 16 𝜇𝑔/𝑚3, 2010: 12 𝜇𝑔/𝑚3,

2015: 10 𝜇𝑔/𝑚3). As a metric of comparison, the current National Ambient Air

Quality Standard (NAAQ) for 𝑃𝑀2.5 is 12𝜇𝑔/𝑚3 [32].

The steps to calculate the CoV are as followed: (1) First, we define a variable q,

which represents the percentage of a population exposed to 𝑃𝑀2.5 above a certain

threshold, in this case 12𝜇𝑔/𝑚3. This variable is calculated for each racial and ethnic

population. (2) Next, the the CoV for each geographic region can be computed as:

𝐶𝑜𝑉 =

√
𝑉 𝑎𝑟(𝑞)

𝜇(𝑞)

where Var is the variance of 𝑞 across the geographic region of interest and 𝜇 is the

mean of 𝑞.

In employing the coefficient of variation in the following manner, we would define

relative disparity as the variation in exposure among all racial/ethnic groups relative

to the mean exposure levels. CoV provides several unique attributes: (1) CoV is

independent of ordered social groups and avoids pre-selecting two specific groups for

comparison (2) CoV does not require an "inequality aversion parameter," which may

introduce a subjective element to the analyses. Inequality aversion parameters are

used in income inequality metrics to represent a society’s aversion to inequality and

there is not an universally agreed upon value for this parameter. 1 (3) CoV is sensitive

to large differences from the average .

1These parameters are chosen under the discretion of the researcher and the particular case that
this index is being used, as such, the resulting indices will be sensitive to magnitude of the parameter.
There are cases where such a parameter can be useful for reflecting inequities.
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2.3.2 Relative Disparities across geographic regions using Rank-

Rank comparison

As stated in the introduction, Colmer et al. expands on existing air pollution dispar-

ity literature by providing a new perspective on exploring gaps in exposure: exploring

relative disparities by ranking census tracts based on a percentile distribution [13].

The study explores the correlation between 𝑃𝑀2.5 percentile ranks in 1981 and av-

erage corresponding 𝑃𝑀2.5 percentile rank in 2016. Rank-rank comparisons have

statistical advantages and have been used for analyzing distributional changes over

time, specifically for studies that explore inter-generational mobility (Chetty, 2014).

Colmer et al. found that on average, the least polluted census tracts in 1981 remain

the least polluted in 2016 and the most polluted census tracts in 1981, maintaining

relative disparities in pollution [13].

For this paper, we employ a similar rank-rank analysis by exploring demographic

changes across the top and bottom percentile of pollution exposures. First, we identi-

fied the counties with the largest increase in each racial and ethnic group. We defined

the largest increase as counties experiencing the top 10𝑡ℎ percentile of population in-

crease in one racial/ethnic group and the smallest increase as counties experiencing

the bottom 10𝑡ℎ percentile of increase.

Next, we identified the counties with most and least improvements in 𝑃𝑀2.5 con-

centrations. Similarly as with the previous analysis, counties experiencing the most

improvements in 𝑃𝑀2.5 are identified as those in the top 10𝑡ℎ percentile of air quality

improvements, and vice versa for counties experiencing the least improvements.

Finally, we combined these two analyses to explore the overlap between the coun-

ties identified as the most and least improvements in 𝑃𝑀2.5 and the counties identified

as having the largest increase in each of the four largest racial/ethnic groups.
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Chapter 3

Results- Disparity Metrics

This chapter explores the first two research questions proposed in this study:

1. Exploration of 𝑃𝑀2.5 Disparities at Different Geographic Scales: When

considering disparities at various geographic scales, do the observed gaps resem-

ble those present at the national level?

2. Disparity Metrics Comparison: How do absolute and relative disparity met-

rics differ in identifying the communities that experience the highest disparities

in pollution exposure?

3.1 Geographic Aggregation of 𝑃𝑀2.5 Exposure

First, we explore the calculation of population weighted 𝑃𝑀2.5 at different geographic

aggregation. This question will be important for understanding what geographic lev-

els policy makers should focus on when development plans and policies to address

racial/ethnic disparities. Further, this question will help to identify if our data source

is granular enough to identify pollution disparities. As described in the introduction,

researchers have found that differences in pollution exposures are driven by regional

differences, but only conducted such analyses for four counties in San Francisco [10].

To explore this question at the national scale, we compare the calculation of popula-

tion weighted 𝑃𝑀2.5 at different geographic aggregations (as described in Methods).
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Figure 3-1 on Page 34 plots the mean population-weighted average 𝑃𝑀2.5 at

different geographic scales across all census block groups for years 2000-2015. Panel

(a) plots the National aggregation, where we calculate the population-weighted av-

erage 𝑃𝑀2.5 across all census blocks in the nation for each racial and ethnic group,

and for the total population. Panels (b), (c), and (d) respectively plot the "State",

"County" and "Tract" mean populated-weighted average 𝑃𝑀2.5 across each geo-

graphic scale. For example, in Panel (d) "Tract" level aggregation is derived by

taking the population-weighted average (PWA) 𝑃𝑀2.5 across all census block groups

within each tract for each racial/ethnic group. Once a PWA 𝑃𝑀2.5 value is derived

for each census tract, these PWA 𝑃𝑀2.5 values are averaged across all tracts in the

nation.

We observe a decline in PWA 𝑃𝑀2.5 between years 2000 and 2015 across all

geographic aggregations, which is consistent with existing literature [?]. Average

𝑃𝑀2.5 exposure levels decline from the range of 12-14 𝜇𝑔/𝑚3 to 7-8 𝜇𝑔/𝑚3. Further,

as one decreases the geographic scale of PWA 𝑃𝑀2.5 aggregation from a national

scale to tract-level aggregation, absolute differences between racial/ethnic 𝑃𝑀2.5

exposure levels becomes almost non-existent. Specially in panels (a) and (b), which

show aggregations at the National and State level respectively, White populations are

shown to be exposed to the lowest levels of PWA 𝑃𝑀2.5 concentrations while Black

populations are shown to be exposed to the highest. In panels (c) and (d) for county

and tract level aggregation, there is very little difference in 𝑃𝑀2.5 exposure across

racial/ethnic groups.

Figure 3-2 on Page 35further demonstrates this point by plotting the 𝑃𝑀2.5

absolute disparity gap between minority groups and non-Hispanic Whites for years

2000-2015. Panel (a) plots the absolute difference between non-Hispanic White and

population-weighted average (PWA) 𝑃𝑀2.5 exposure and non-Hispanic Black PWA

𝑃𝑀2.5 across each geographic region (National, State, County and Tract). This is

replicated for non-Hispanic Asian and Hispanic populations in panels (b) and (c)

respectively.

As observed in panel (a) year 2000, the gap between White and Black PWA 𝑃𝑀2.5
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exposure at the national aggregation was roughly 2.0 𝜇𝑔/𝑚3. This means that at

the national average, non-Hispanic Black populations are exposed to pollution levels

that are 2.0 𝜇𝑔/𝑚3 ( 14 percent higher) higher than that of the non-Hispanic White

population. Nonetheless, in the same year, the gap at the tract level is almost zero

(0.03 𝜇𝑔/𝑚3), the average PWA 𝑃𝑀2.5 exposure for Black populations at the tract

level aggregation is only slightly higher than that of White exposure. Trends also

hold when calculating normalized disparity, which (as defined in Chapter 2) divides

the absolute disparity by the national average.

We further note the changes in signs when averaging across different geographic

scales. For example, in Figure 3-2 on Page 35, Panel (a) we observe that the

gap in disparity between White and Black populations is positive for National, State

and County aggregations. This means that on average cross these geographic ranges,

White populations are exposed to 𝑃𝑀2.5 levels that are lower than that of Black

populations. Nonetheless, at the tract level, these gaps are negative, suggesting

the opposite for within-tract differences. What is driving this contrast is the dif-

ference between taking the population weighted average and the mean at different

geographic scales. As a reminder, tract level aggregation is calculated by calculating

the population-weighted average (PWA) 𝑃𝑀2.5 across all census blocks within a tract,

then averaging these PWA 𝑃𝑀2.5 values for all census tracts to arrive at national pol-

lution concentrations. As one increases in geographic aggregation, we see incorporate

population weighting for a larger number of blocks. At National aggregation, popu-

lation weighting is applied to all census blocks. We surmise that as geographic scale

increases, there is a broader range in the demographic composition across regions, as

such, population weighting becomes more important in capturing the differences in

population. Further work can be done to explore these sign changes by exploring the

distribution of tract-level PWA 𝑃𝑀2.5 concentrations.

These findings suggest three things. First, national disparities in air quality

exposure exist at state level scales, but they appear to be minimal at tract level

aggregation–in other words, an individual living in the same tract as another individ-

ual will likely be exposed to the same levels of pollution, regardless of race/ethnicity.
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Figure 3-1: Population Weighted PM2.5 by Different Geographic Aggregation.
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Figure 3-2: Absolute Difference in PM2.5 Exposure by Different Geographic Aggre-
gation.
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Second, as within-tract disparities are close to zero, in order for these national/state

level disparities to exist, racial/ethnic minorities must be exposed to higher levels of

pollution in tracts across the nation/state. In other words, if one were to live in the

same state as another individual, one’s exposure to pollution will be driven by which

tract one lives in. Finally, this comparison across geographic scales suggest that the

data granularity needed to capture disparities in pollution across racial/ethnic groups

would at a minimum need to cover an average census-tract geography. Given that

our data set provides 𝑃𝑀2.5 concentrations at the census block group level, this data

more than granular enough to identify disparities in 𝑃𝑀2.5 exposures.

Overall,these plots highlight the importance of tract level residence in not only

determining pollution exposure but driving trends observed at a national level. Fur-

ther, these results have policy implications in that they point to the influence of state

regulatory bodies in siting pollution sources at the tract level and suggests further

exploration of land-use policies (which influence places of residences) in working to

reduce environmental disparities. These policy implications are further explored in

Chapter 5. While this analysis highlights the differences in geographic aggregation,

it does not identify the areas that are experiencing pollution disparities. As such, in

the next section we explore the identification of within-county pollution disparities

using two different metrics of disparities.

3.2 Comparison of Absolute and Relative Disparities

In this section, we compare two disparity metrics, absolute disparities and relative

disparities using Coefficient of Variance (CoV), to understand how these metrics differ

in their identification of disparities. We do so by calculating the absolute disparity

and relative disparity (CoV) for each county using the formulas identified in the

Methods section. These metrics represent within county disparities in pollution

exposure across racial/ethnic groups. We select counties as the level of geographic

aggregation for two reasons. First, the findings in the previous section suggest that

that tract level residence is important in determining pollution exposure. Conducting
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this analysis at the county level would then help capture disparities that exist across

tracts rather than within tracts. Second, areas deemed in non attainment with the

Federal NAAQ standards are identified at the county level. It would then be helpful

to compare the areas deem as having the highest racial/ethnic exposure disparities

with the areas with pollution levels that exceed federal standards.

To avoid comparing counties that may have low overall pollution levels but high

disparities between racial ethnic groups, we explore these disparities for only the

counties identified as experiencing pollution levels higher than the top 90𝑡ℎ percentile

of 𝑃𝑀2.5 exposures. These 90𝑡ℎ percentile thresholds are 16 𝜇𝑔/𝑚3, 12 𝜇𝑔/𝑚3 and

10 𝜇𝑔/𝑚3 for years 2000, 2010 and 2015 respectively. Note that the current NAAQ

annual standard for 𝑃𝑀2.5 is 12 𝜇𝑔/𝑚3 [32].

Figure 3-3 on Page 38 plots the absolute disparity across all racial ethnic groups

for the most polluted counties in years 2000, 2010 and 2015. Figure 3-4 on Page 38

plots the relative disparity, represented by the CoV, for the most polluted counties

in years 2000, 2010 and 2015.

We point out two key differences in how these two metrics identify the counties ex-

hibiting the highest racial/ethnic disparities. These points are summarized in Table

3.2 on Page 44.

3.3 Changes in Magnitude Over time

First, we see a decline in absolute disparities in Figure 3-3 on Page 38 between years

2000-2015. This is particularly significant in California, where the absolute disparities

have halved by 2015. This is in contrast the calculation of relative disparities in

Figure 3-4 on Page 39, where relative disparities increase between the years 2000-

2015. This is driven by the difference in which each metric captures variation in the

data with respect to magnitude. Absolute disparity is declining over time because the

overall magnitudes of emissions are declining [14]. The CoV metric is able to represent

relative differences in the data independent of changes in magnitude. For example,

consider the hypothetical set of q values (aka. percentages of populations exposed
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Figure 3-3: Absolute Disparity across the Most Polluted Counties in Years 2000-2015
.
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Figure 3-4: Relative Disparity (CoV) across the Most Polluted Counties in Years
2000-2015.
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Year White Q Black Q Asian Q Hisp Q CoV Abs.D.

2000 10 12 14 18 0.226 8
2010 1 1.2 1.4 1.8 0.226 0.8

Table 3.1: Hypothetical Example Comparing CoV and Absolute Disparity (Abs.D.)

to 𝑃𝑀2.5 concentrations above our selected threshold) shown in Table 3.1 on Page

40. The CoV for q values in year 2000 would be 0.226 while the absolute disparity

(Abs.D.) would be 8 (18-10). Given the q values for year 2010, the CoV would not

change (CoV=0.226) while the absolute disparity would decline by a factor of 10

and be 0.8 (1.8-1). This example is provided for illustrative purposes and we note

that absolute disparities in this paper are calculated using the absolute difference

in population weighted average PWA 𝑃𝑀2.5 rather than the percentage of a

population living in concentrations above a certain threshold.

What is driving the increase in relative disparities in California in particular is

the increase in the percentage of Hispanic and non-Hispanic Asian populations being

exposed to concentrations higher than the 90𝑡ℎ percentile of concentrations across

the country. Between years 2000 and 2015, the mean percentage of non-Hispanic

White and non-Hispanic Black populations in California living in regions above the

90𝑡ℎ percentile threshold declined by 52 and 58 percent respectively. On the other

hand, the mean percentage of Hispanic and Asian populations in California living in

pollution levels above the 90𝑡ℎ percentile threshold increased by 17 and 60 percent

respectively. The increase in variation across this exposure is driving the increase in

the CoV metric for California.

This characteristic of the CoV metric is particularly useful for assessing changes in

pollution over time, especially given that 𝑃𝑀2.5 concentrations have declined drasti-

cally in the last several decades. While absolute disparities as measured by population

weighted averages may not capture this nuance, incorporating magnitude into a pol-

lution disparity metric may not necessarily be a negative attribute, depending on the

specific use case. We explore this in our second observation.
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Figure 3-5: Population Weighted PM2.5 Concentrations for Year 2015)

3.3.1 Sensitivity to Larger Groups

The second difference in the ways these metrics identify disparities is influenced by the

size of the ethnic/racial groups. As shown in Figure ?? on Page 39, the CoV metric

emphasizes the disparities in the Rust Belt states (which includes Illinois, Indiana,

Missouri, Ohio, Pennsylvania, and West Virginia) while the absolute disparity metric

in Figure 3-3 on Page 38 de-emphasizes these exposure differences. This is due to

two characteristics of the absolute disparity metric as defined in this report. First, as

observed in Figure 3-5 on Page 41 the average PM2.5 exposure levels are smaller in

the Rust Belt regions than those in California, as such, absolute disparities reflect this

difference. Second, the intermediate metric used to calculate the absolute disparity is

population-weighted PM2.5, through which the differences in size of each racial/ethnic

group is accounted for.

In the case of relative disparities as defined by the CoV metric, relative disparities

in the Rust Belt states are highlighted due to existing bias towards larger racial

groups. As a reminder, the CoV metric is calculated first through the intermediate

variable q, which represents the percent of the population within the county that

is exposed to concentrations above that of the 90th percentile. Then the CoV is
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calculated by taking the ratio of the standard deviation of these q values to the mean

of these q values. If the population in the county of interest is majority White, q

values for White populations will be much higher than q values for other minority

groups, resulting in a larger standard deviation across q values. As such the CoV may

be less reliable for comparing variability between groups with vastly different sample

sizes, such as comparing variability in exposure levels between non-Hispanic Whites

and a minority groups in regions with over-representation of a particular group.

As observed in Figure 3-6 on Page 43, the demographics of these Rust Belt

counties tend to show an over-representation of non-Hispanic Whites and an under-

representation of racial/ethnic minorities. For example, the average percent of non-

Hispanic Whites in these Rust Belt counties is 84 percent, which is above the national

average of 74 percent. On the other hand, the average percentage of non-Hispanic

Blacks in these regions is 4.7 percent, which is just over half of the national average

of 8.6 percent. This bias may not necessarily be a deterrent against using the CoV

metric as a measure of relative disparities.

Table 3.2 on Page 44 summarizes the key differences between these two metrics.

The absolute disparity metric (absolute difference in PWA 𝑃𝑀2.5) is more sensitive

to magnitude of pollution levels while relative disparity as measured by the CoV is

more sensitive to population demographics. These opposing characteristics can both

be useful in analyses depending on the goals and interests of those using these metrics.

For example, the fact that the absolute disparity metric highlights the absolute dif-

ferences in California as opposed to the Rust Belt can be useful for researchers/policy

makers who would like to prioritize addressing overall emissions together with min-

imizing racial/ethnic gaps in exposure. We discuss this further in the conclusion in

Chapter 5. Finally, we note both relative and absolute disparity maps identify re-

gions with high exposure disparities that are not identified as NAAQ non-attainment

counties (see Figure 3-7 on Page 45). This is because many of these regions do not

meet the threshold for non-attainment (which requires an annual arithmetic mean,

averaged over 3 years, of 12 𝜇𝑔/𝑚3). However, given that previous studies [14] at-

tributed declines in pollution disparities to NAAQ standards, these results may serve
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Figure 3-6: Demographics of Rust Belt Counties showing PM2.5 Exposures at the
90th Percentile.
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Absolute Disparity
(PWA)

Relative Disparity (CoV)

Intermediate Met-
ric

Population Weighted 𝑃𝑀2.5

Concentrations
Q, which represents the % of
racial/ethnic population that
lives above a certain thresh-
old (e.g. 12 𝜇𝑔/𝑚3)

Sensitivity to Mag-
nitude of 𝑃𝑀2.5

Concentrations

Highlights the differences in
magnitude of 𝑃𝑀2.5 concen-
trations

Independent of magnitude of
𝑃𝑀2.5 concentrations

Sensitivity to Popu-
lation Size

Population weighting helps
with accounting for large size
differences in racial/ethnic
populations

More sensitive to the differ-
ence in size of racial/ethnic
groups

Cases for Preferred
Uses

Most useful for capturing ab-
solute differences in exposure
for a single time frame

Most useful for capturing
changes in pollution over
time and changes in popula-
tion sizes

Table 3.2: Comparison of Absolute Disparity using differences in PWA 𝑃𝑀2.5 and
Relative Disparity using CoV

as supporting analyses to push for strengthened NAAQ standards as a policy lever for

reducing disparities. We explore these policy implications further in the discussion in

Chapter 5.

In this Chapter, our exploration of these two metrics uncovered the influence of

changing demographics over the years on trends in disparities over time, as observed

in the California case presented in Section 3.3. As such, our final research question

utilizes the characterization of relative disparities presented in Colmer et al. in order

to explore the relationship between changing demographics and pollution levels over

time.
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Figure 3-7: (a) Counties designated for non-attainment of the NAAQ PM2.5 Stan-
dards (1997, 2006 and or 2012 Standards) vs. (b) Counties used in this Disparity
Analysis
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Chapter 4

Results- Changes in Demographics

and Pollution Levels

Racial/ethnic inequities in pollution exposures over time are driven by two main in-

teracting factors: location and magnitude of pollution concentrations and location of

populations (demographics). Both factors are not constant, and have shifted consider-

ably overtime. As such, this chapter explores research question number (3) Temporal

Trends in Changing Demographics and Pollution Levels: What conclusions regarding

pollution disparities can be made when exploring the relationship between changing

demographics (as a proxy for relative mobility) and changing pollution levels over-

time?

4.1 Migration Counterfactual

One method of understanding the relationship between changes in air pollution and

changes in demographic patterns is conducting a counterfactual exercise [24] [14]. In

this exercise, one can fix populations to their 2000 locations but pair these locations

to pollution levels in 2015. This would represent pollution concentrations across

populations assuming that no changes in demographics (e.g. no movement) occurred.

In conducting such an exercise, one would be able to compare pollution exposures

with actual 2015 pollution levels to arrive at an understanding of the relative mobility
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of these populations. In this case, changes in demographics over time serves as a

proxy for “migration”, which can include immigration and other shifts in demographic

patterns. Table 4.1 on Page 49)below summarizes the results of this analysis for

the top four racial and ethnic groups: non-Hispanic Whites, non-Hispanic Blacks,

non-Hispanic Asians and Hispanics.

From these results we find that when comparing the counterfactual 2015 scenario

with actual 2015 population weighted average 𝑃𝑀2.5 exposures using the equation ex-

plained in Chapter 2, all minority racial/ethnic groups show lower actual 2015 𝑃𝑀2.5

exposures than in the counterfactual 2015 scenario. This suggests that if these pop-

ulations did not move, or demographics have not changed between years 2000-2015

(counterfactual 2015), 𝑃𝑀2.5 concentrations are higher. Put a different way, this

counterfactual suggests that these minority groups are moving to cleaner neighbor-

hoods. The opposite trend is found for non-Hispanic Whites–White populations are

moving to dirtier neighborhoods.

Previous studies have conducted this counterfactual exercise for only non-Hispanic

White and Black populations and found counterfactual 𝑃𝑀2.5 concentrations similar

to those reported here in on Page 49 [24] [14]. Our results adds to these previous

studies by including other racial/ethnic minorities, specifically non-Hispanic Asian

and Hispanic populations. Further, these trends are consistent with existing literature

within urban economics that show that urban populations are becoming Whiter and

more college educated after year 2000 and suburbs are becoming more diverse [6].

This shift means that white populations moving to urban centers are experiencing

higher levels of pollution than if they were to remain in suburban locations, which are

often further away from pollution sources. Nonetheless, this exercise does not answer

what the rate of improvement is in the urban locations these white populations are

moving to. This information is useful in that it can help policy makers determine

which regions to prioritize resources to eliminate ethnic/racial pollution disparities.

As such, the next section aims to explore the relationship between the regions

that show increases in non-Hispanic White populations and changes in air pollution

over time.
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Year Total Pop
PWA

White
PWA

Black
PWA

Asian
PWA

Hispanic
PWA

Actual 2000 13.02 12.59 14.45 14.38 13.80
Counterfactual
2015 8.11 7.87 8.80 8.73 8.70

Actual 2015 8.00 7.93 8.56 8.50 8.39

Table 4.1: Counterfactual Migration Analysis.

4.2 Relative Ranks in Pollution and Demographic

Changes

Previous sections found evidence to suggest that white populations are increasing in

relatively more polluted locations, but does not explore what the rate of improvement

in pollution levels has been over these years. To do so, we identify the following regions

based on ranks in pollution and population changes:

(1) the most polluted (top 10𝑡ℎ percentile in 𝑃𝑀2.5 exposure) and the least pol-

luted (bottom 10𝑡ℎ percentile) census tracts, (2) the census tract experiencing the

most improvement (e.g. most negative change) in 𝑃𝑀2.5 exposure between 2000-

2015 (bottom 10𝑡ℎ percentile) and the census tracts experiencing the least improve-

ment (top 10𝑡ℎ percentile) 1. (3) the tracts that experience the highest increase in

a specific demographic population between years 2000 and 2015(top 10𝑡ℎ percentile)

and the smallest increase (bottom 10𝑡ℎ percentile).

Once these regions are identified, we explore temporal trends across all regions.

4.2.1 Regions with Most Improvements in 𝑃𝑀2.5

To begin this analysis, I first explore regions with the most improvements in 𝑃𝑀2.5

exposure to determine if there is a relationship between communities that are showing

increases in non-Hispanic White populations and declines in air pollution in these

areas. To do so, I employed three different explorations of the data. These analyses

1Note, the changes in the top 10𝑡ℎ percentile represent both the tracts with the least improvement
and regions that have experienced increases in pollution levels as well.
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were conducted at both county and census tract level.

As shown in Figure 4-1 on Page 51 below, counties that are seeing the largest

increase in non-Hispanic White and Hispanic populations show larger improvements

(most decline) in air pollution between years 2000-2015 compared to counties that

experience the largest increases in Black populations. These trends are consistent at

a percent and absolute change in population and pollution and consistent with census

tract results.

As seen in Figure 4-2 on Page 52), counties with the most improvement in 𝑃𝑀2.5

are seeing a larger increase in NHL Whites, NHL Asians and Hispanic population

than counties with the least improvement in 𝑃𝑀2.5. Conversely, counties with most

improvement in 𝑃𝑀2.5 are seeing smaller increases in Black population than Counties

that are getting more polluted.

The Venn diagram in Figure 4-3 on Page 53 illustrates how the counties showing

the largest increase in non-Hispanic Whites (purple) are more likely to also be the

counties seeing the largest pollution improvements (green) than the counties showing

the least pollution improvements (red). Specifically, 47 counties are identified as

being in the top 10𝑡ℎ percentile in improvements in 𝑃𝑀2.5 and increases in white

populations. This is in comparison to only 19 counties that are identified as being in

the bottom 10𝑡ℎ percentile of pollution improvements and the top 10𝑡ℎ in increases in

white residents. The opposite trend is observed for non-Hispanic Blacks.

These findings suggest that there is a strong positive correlation between counties

that are cleaning up the most and counties that are showing the largest increase in

non-Hispanic White populations. This may be that non-Hispanic Whites are moving

into communities with the most air quality improvements or that communities that

are becoming Whiter are cleaning up the fastest.

Further, based on previous literature, one would expect that these neighborhoods

showing both improvements in pollution levels and increase in White residents are

originally neighborhoods with a large population of racial and ethnic minorities[20].

As such, additional exploration of the overlaps between the counties experiencing the

largest increase in non-Hispanic White populations and the counties experiencing the
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Figure 4-1: Changes in PWA PM2.5 Grouped by Counties with the Highest Increase
in a Specific Racial/Ethnic Group.
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Figure 4-2: Changes in Percent Population Grouped by Counties with the Most and
Least Improvements in PM2.5.
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Figure 4-3: Overlaps between Counties with the Most and Least Improvements in
PM2.5 Concentrations and Counties with the Largest Increase in a White and Black
Populations
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greatest air quality improvements show that these counties had an over-representation

of non-Hispanic Black residents in years 2000 and 2010. We define over-representation

as any percentage of a racial/ethnic group that is above that of the U.S. mean average

percentage of a specific racial group.

The significance of these results imply that communities observing the most

𝑃𝑀2.5 improvements are experiencing declines in non-Hispanic Black residents and

instead increases non-Hispanic White residents. In the subsequent sections, this study

explores demographic trends of communities observing the least 𝑃𝑀2.5 improve-

ments.

4.2.2 Regions with Least Improvements in 𝑃𝑀2.5

Consistent with previous literature [13], this study finds that counties with the least

pollution in 2000 are generally the same counties with the least pollution in 2015.

This is depicted geographically in Figure 4-4 on Page 55 , where there is signifi-

cant overlap between counties identified as the most polluted across all years. These

overlaps are colored in purple. Additionally, through the years, a majority of these

counties are also counties that rank as the counties showing the least improvements

in 𝑃𝑀2.5 concentrations.

This is demonstrated by the Venn diagrams in Figure 4-5 on on Page 56, which

shows the overlap between the counties identified as having the lowest ("Best") pol-

lution levels in years 2000, 2010, and 2015 respectively (colored in purple), and the

counties that show the most improvement in air pollution (green) and least improve-

ments in air pollution (red). The circles showing the most and least improvements do

not change overtime as they represent the difference between 2015 𝑃𝑀2.5 levels and

2000 𝑃𝑀2.5 levels.

Nonetheless, this is not the case with counties showing the most pollution. While

there is some overlap, the counties experiencing the most pollution in year 2000 are not

necessarily the counties experience the most pollution in year 2020. Figure 4-6 on

Page 57 shows overlap between the counties identified as having the worst pollution

levels in years 2000, 2010, and 2015 respectively (colored in purple), and the counties
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Figure 4-4: Counties Identified as having the bottom 10𝑡ℎ percentile in 𝑃𝑀2.5 Con-
centrations (’Least Pollution’) by year

that show the most improvement in air pollution (green) and least improvements in

air pollution (red). This Figure demonstrates that between years 2000 and 2015, the

counties identified as having the worst pollution have fewer overlaps with the counties

showing the most improvement and instead, begin to show overlaps with counties

showing the least improvements in 𝑃𝑀2.5. In other words, as the dirtiest counties

clean up, new counties are identified as the "dirtiest" and the rate of improvement

slows.

In particular, there are 25 counties that are identified as having the top 10 per-

centile in 𝑃𝑀2.5 levels ("Worst" 𝑃𝑀2.5 exposure) and are showing the least improve-

ments between years 2000-2015. These counties reside south of Texas, parts of Okla-

homa and Idaho. These high pollution levels may be the result of energy production

(e.g. hydraulic fracking) or forest fires [13]. When exploring the racial makeup of

these regions, I find that these regions show an over-representation of Asian and His-

panic populations in 2015. This is demonstrated in Figure 4-7 on Page 59, which

plots the racial/ethnic makeup of these counties based on the difference from the U.S.
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Figure 4-5: Counties identified has having the bottom 10th percentile in PM2.5 con-
centrations ("Best AQ") across all years are consistently overlapping with the counties
identified as showing the least improvement in PM2.5 concentrations between years
2000-2015
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Figure 4-6: Counties identified has having the top 10𝑡ℎ percentile in 𝑃𝑀2.5 concentra-
tions ("Worst AQ") across all years and overlaps with counties identified as having
the most and least improvements in 𝑃𝑀2.5 concentrations between years 2000-2015
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average racial/ethnic percentages. Most notably, 4 of these counties are counties that

show highest increase in Asian populations across the country.

These findings are still consistent with conclusions by Colmer et al., which also

found some local variations in rank changes that serve as exceptions. For example,

California’s Central and Imperial Valleys, southwestern Arizona, southern Texas and

western Arkansas and eastern Oklahoma saw increases in 𝑃𝑀2.5 percentile rank, i.e.

became relatively more polluted [13].

The significance of these findings are two-fold. First, while there exists a general

correlation between regions that have experienced the worst pollution and regions

that are seeing the greatest improvements in pollution, there are notable exceptions

to these trends. In particular, there are regions that are not only identified as having

the top 10𝑡ℎ percentile of 𝑃𝑀2.5 exposure, but are also seeing minimal improvements

in 𝑃𝑀2.5 levels over time. Second, the counties identified as having these character-

istics in this study are showing an over-representation of Asian and Hispanic popu-

lations. This is significant in that several studies exploring air pollution disparities

only focus on gaps in exposure between White and Black populations. In order to

provide nuanced and robust understanding of the disproportionate impacts on com-

munities of color, studies should explore exposure disparities across all racial and

ethnic minorities.
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Figure 4-7: Racial Make up in Counties that are showing the top 10th percentile in
PM2.5 levels ("Worst" PM2.5 exposure) and are showing the least PM2.5 pollution
between years 2000-2015. The x-axis represents the difference between the population
percentage from the U.S. national average for each ethnicity.
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Chapter 5

Conclusion and Discussion

5.1 Key Conclusions

The key conclusions from this study are as follows:

1. Exploration of PWA 𝑃𝑀2.5 Disparities at Different Geographic Scales:

Through calculating PWA 𝑃𝑀2.5 concentrations at different geographic scales,

this study finds that national racial/ethnic disparities in 𝑃𝑀2.5 exposure are

driven by differences in the census tracts where populations live rather than the

within tract differences in exposure. As pollution exposure is driven by (1) where

people live and (2) locations of sources of pollution, this finding suggests that

the residences of racial/ethnic populations and the siting of pollution sources

across tracts is influential and driving pollution disparities.

2. Comparing Disparity Metrics: We find that the absolute disparity metric

(absolute difference in PWA 𝑃𝑀2.5) is more sensitive to magnitude of pollu-

tion levels while relative disparity as measured by the CoV is more sensitive to

population demographics. Specifically, these two metrics differ in (1) the char-

acterisation of changes in pollution magnitudes over time and (2) bias towards

racial/ethnic groups with larger populations. Further, regardless of which met-

ric is used, both relative and absolute disparity metrics identify regions that are

not identified as in non-attainment with the Federal NAAQ standards, despite
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showing pollution levels at the top 90𝑡ℎ percentile of national annual averages.

3. Trends in Changing Demographics: Results show a correlation between

counties/tracts that are experiencing increases in non-Hispanic White popula-

tions and improvements in air quality. Further, there is evidence that coun-

ties/tracts with improvements in air quality are also correlated with decreases

in non-Hispanic Black populations. This study also finds that regions experi-

encing the highest 𝑃𝑀2.5 concentrations but the least improvements in 𝑃𝑀2.5

are showing an over-representation of Asian and Hispanic populations.

In this chapter, I explore the policy implications for each of these main takeaways.

Then, I consider policy levers to address persisting 𝑃𝑀2.5 inequities in exposure.

Lastly, I present areas limitations of this study and areas for future research.

5.2 Policy Implications

5.2.1 Policy Implications for Conclusion (1)

Conclusion (1) as described in the previous Section 4.1 demonstrates that differences

across different census tracts (rather than within census tracts) drive racial/ethnic

disparities observed at the county/state/national level. These results imply that

careful regulation within the tracts where pollution sources are permitted/sited and

the tracts where people live can make substantial impacts in improving (or worsening)

racial/ethnic disparities in 𝑃𝑀2.5 exposure. Currently, the regulations involved with

siting/permitting of pollution sources and the land-use policies that influence where

citizens live are two separate processes. We briefly describe the two regulatory regimes

below, noting that these processes can vary greatly based on local and state regions,

and then offer examples and suggestions for further integration of the two policy

realms.

With the exception of highly regulated states, such as California, most permits

for major sources of air pollution are issued by state/federal agencies rather than lo-

cal governments[33]. Through the federal Environmental Protection Agency’s (EPA)
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New Source Review (NSR) permitting process, new (or modified) sources of pollution

are reviewed for pollution impacts. NSR permits are typically issued by the EPA or

by a state agency, but are sometimes issued by local air pollution control agencies

(such as those in California) (EPA). As these permitting processes are highly tech-

nical, they have served to be relatively inaccessible to public and community input.

Polluting industries are more likely to be located in disenfranchised neighborhoods,

where low-income people of color disproportionately residents, due to lack of access

to the decision making processes that determine where such polluting sources are

located [19]. In December 2022, The EPA released a document for principals for

addressing environmental concerns in air permitting, but the document lacks backing

of an official regulatory document, and does not point to specific requirements that

industries applying for permits must meet [32].

Land-use regulations that address issues such as zoning and land development are

typically guided and enforced by local governments, such as city councils or planning

commissions, but can be strongly influenced by federal guidelines. Zoning regulations

in the U.S. that determine areas where specific housing developments (and other build-

ings) are built, and such processes have often been laced with implicit and explicit

racial biases [26]. An example of such a policy in the residential sector is redlining, a

historic race-based discriminatory mortgage appraisal system from the 1930s. There

are a number of studies that outline the associations between HOLC designations and

determinants of health, rates of emergency visits due to asthma, and, most recently,

with present day pollution levels [?] [?] [23].

While there may be some interaction between these two regulatory processes, the

permitting of pollution sources and the regulatory processes that influence places of

residence are governed by separate laws and regulations. Given the important of these

two factors in driving pollution exposures, this paper argues for further integration

these pollution siting and land use policies as levers to reduce pollution inequities.
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5.2.2 Considering Disparity Metrics as Indicators in Commu-

nity Based Program and to support strengthening of

existing NAAQ Standards

Conclusion (2) finds that the use of one disparity metric (absolute disparity) versus

another (relative disparity using CoV) can result in different conclusions in identifying

communities deemed as experiencing the highest disparities. We believe that these

findings have two policy implications. First, these metrics can be used in support

of strengthening existing NAAQ standards as a policy lever to reduce disparities.

Second, these metrics can be used as indicators of improvement (or lack thereof) in

racial/ethnic pollution disparities in community focused programs.

These metrics identify regions that are not included in the list of counties in non-

attainment with the Federal NAAQ standards, despite being counties with the top

90𝑡ℎ percentile in pollution exposure. This is because many of these regions do not

meet the threshold for non-attainment (which requires an annual arithmetic mean,

averaged over 3 years, of 12 𝜇𝑔/𝑚3). Nonetheless, many of the regions showing high

disparities (both absolute and relative) are in counties showing pollution levels above

10 𝜇𝑔/𝑚3. Further, previous literature has shown that those exposed to 𝑃𝑀2.5 levels

well below 12 𝜇𝑔/𝑚3 have experienced substantial adverse health effect [15]. This may

provide a compelling argument for tightening of existing NAAQ standards to lower

thresholds given the potential for these standards to reduce both pollution levels and

disparities.

Multiple studies have highlighted the effectiveness of command and control poli-

cies, such as the National Ambient Air Quality Standards (NAAQS), in not only

reducing overall 𝑃𝑀2.5 but also reducing absolute inequities among those dispropor-

tionately affected by air pollution [21] [14]. Specifically, Currie et al. highlight that

while this was not the regulation’s intent, the NAAQ standards reduced gap between

black-white exposure disparities by targeting counties with the highest pollution lev-

els, which happened to be areas with the highest non-Hispanic Black populations.

Further tightening of the standards may help include these areas identified as having
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high racial/ethnic pollution disparities as non-attainment zones, thereby allowing for

targeted policy mechanisms to address these pollution concerns [14]. Section 5.3.1

further describes the Federal NAAQ standards and the policies in place to encourage

attainment.

Next, absolute and relative disparity metrics can be used as indicators of progress

made on reducing racial/ethnic disparities in communities already identified as dis-

advantaged communities experiencing disproportional pollution burden. Currently,

community based programs that identify environmental justice communities (or dis-

advantaged communities (DAC)), require these communities to work with local air

quality districts and officials to development plans to reduce overall emissions. The

author is unaware of any plans that explore disparity metrics, such as the ones de-

scribed in this paper, as performance indicators on the effectiveness of programs and

plans in reducing emissions. These programs, which often employ local monitoring

of pollutants, can use localized pollution data to calculate relative and absolute pol-

lution disparities at geographic scales far more granular than the ones explored in

this paper. Doing so can provide these communities with key performance indicators

that mark the progress towards reducing pollution disparities. Section 5.3.2 further

describes these community based programs.

5.2.3 Considering Disparity Metrics and Changes in Pollution

Levels in Identifying Environmental Justice Communi-

ties

Conclusion (3) highlights the nuances that analyzing Changes in pollution levels

brings to understanding trends in air quality disparities. As described in the in-

troduction of this paper, Williamsburg, a predominately white neighborhood where

the average household income is 166,600, was recently identified as a "disadvantaged

environmental justice community" given its high pollution levels and legacy as an

industrial area with a large minority population [18].

As policy makers determine which communities to identify as locations of most
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concern, it is important that we explore not only current pollution and demographic

data, but also how mobility of different racial/ethnic groups relate to changes in air

quality over time. This should be of consideration in screening tools that are used to

identifying communities experiencing disproportionate environmental burden as such

communities are often given state funding resources to improve pollution levels.

There are a number of environmental justice screening tools currently used at the

metropolitan, state and federal level to identify environmental justice communities

[5]. While each tool approaches the definition of an environmental justice community

differently, most screening tools issue a score to a given region (most commonly the

census tract region) based on a number of factors. We note here that as of 2022, the

New York state and metropolitan screening tool does not include an explicit inclusion

of air quality (neither pollution concentrations nor historical pollution levels) in its

tool. Instead, under the New York State Climate Act, disadvantaged communities

are identified based on socioeconomic factors and the discretion of the state’s Climate

Justice Working Group committee [5] [3].

Other tools adopt more methodological approaches to EJ community identifica-

tion. Currently the scores for the EPA’s EJ SCREEN (Environmental Justice Screen-

ing and Mapping Tool) are calculated based on three factors: environmental burden,

sensitive populations, and socioeconomic vulnerability [2]. Each factor is given a

weight, and the scores are calculated by combining the indicators within each factor

using a formula that takes into account the distribution of the indicator values within

a community and how they compare to the distribution of values across all communi-

ties in the U.S. None of the 12 environmental indicators consider the rate of pollution

improvement.

In the case of this analysis, we find that by exploring pollution data holistically,

researchers can uncover nuances in exposure trends over time. As such, by coupling

metric based EJ community identification methods (such as using screening tools)

with additional data analysis (such as the exploration of pollution trends over time)

and finally community engagement, policy makers can better identify and address

pollution disparities within the most disadvantaged communities.

66



5.3 Policy Levers to Reduce Inequities

In this section, we provide some more details on the some of the policies mentioned

previously and detail how they can effectively reduce persisting racial/ethnic in-

equities in 𝑃𝑀2.5 exposure.

5.3.1 Command and Control Policies (NAAQS)

Multiple studies have highlighted the effectiveness of command and control policies

such as the National Ambient Air Quality Standards (NAAQS) in not only reducing

overall 𝑃𝑀2.5 but also reducing absolute inequities among those disproportionately

affected by air pollution [21] [14]. As such, one pathway to mitigate air pollution

disparities is to tighten these air quality standards under the Clean Air Act (CAA).

The CAA amendments of 1970 and the establishment of the EPA increased federal

power to regulate air pollution in order to protect public health and the environment

from harmful air pollutants. As stated in the introduction, the NAAQS specify max-

imum allowable concentrations for 6 criteria air pollutants: ground-level ozone, par-

ticulate matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead. These

standards govern both stationary and mobile sources.

Pollutant-specific NAAQS were initially established for sulfur dioxide, carbon

monoxide, nitrogen dioxide, lead, particulates, and eventually ozone. Each year,

counties that are in violation of these standards are deemed in "non-attainment,"

and state governments are then required to develop pollutant-specific plan, known as

a State Implementation Plan, describing how areas will improve air quality and come

into compliance.

Failure to develop an adequate plan results in severe consequences, such as the

withholding federal funding for the state air pollution control program, highway con-

struction, and the construction of sewage treatment plants. The EPA can also ban

permits for construction of major new and/or modified sources of a pollutant in com-

munities that are out of compliance with NAAQS.

In Janurary of 2023, the EPA announced a proposal to tighten existing annual

67



𝑃𝑀2.5 NAAQS from 12 𝜇𝑔/𝑚3 to between 9-10 𝜇𝑔/𝑚3 [31]. The existing annual

NAAQ standard was set in 2012. Multiple studies have demonstrated the adverse

health effects of 𝑃𝑀2.5 levels well below 12𝜇𝑔/𝑚3, particularly for marginalized

sub-populations disproportionately impacted by pollution [7] [8]. Josey et al found

that more stringent NAAQS standards would not only benefit all populations across

racial/ethnic identities and socioeconomic status, but also result larger reductions in

mortality among older Americans and marginalized minorities [21].

While many have argued that there is no 𝑃𝑀2.5 level that will be low enough to

fully protect public health and mitigate environmental health inequities, strengthened

standards can lead to larger reductions in mortality and, as recently literature has

demonstrated, work to reduce racial/ethnic disparities as well [13] [21].

5.3.2 Community Focused Programs

A popular debate in recent years surrounding the use of cap-and-trade policies as

market mechanisms to reduce carbon emissions is the potential for these policies to

result in increasing local pollution given the opportunities for polluters to "trade"

permits and continue polluting in neighborhoods that are already deemed most dis-

advantaged. This debate was raised in the state of California during the proposal

of Assembly Bill (AB) 32, which among other provisions, would establish a cap-

and-trade program. AB617 was designed to directly address environmental justice

concerns by identifying disadvantaged communities, development emission reduction

programs, and providing funding for pollution mitigation efforts.[17]

Administered by the California Air Resources Board (CARB), the AB617 Com-

munity Reduction Program involves a variety of strategies, including community en-

gagement, air monitoring, emission reduction strategies, and enhanced enforcement of

air quality regulations. One of the unique features of the AB617 program is the devel-

opment of its community reduction plan, which brings together community members,

industry representatives, and local government officials to identify and implement

targeted strategies for reducing air pollution in the area. [17]

After the establishment of California’s AB617 program, other states also adopted
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similar programs. This includes Michigan’s Environmental Justice Public Advocate

Program, established by Governor Gretchen Whitmer in 2019. Similarly in Washing-

ton, the Climate Commitment Act (Senate Bill 5126) was passed in 2021 to establish

a economy-wide "cap-and-invest" policy that also integrates an environmental jus-

tice companion bill, Senate Bill 5141. Under SB 5141, also known as the Health

Environment for All (HEAL) Act, the following initiatives were implemented: (1) 35

percent of investments from the state’s "cap-and-invest" program would be directed

to communities disproportionately affected by air pollution (2) 10 percent of these in-

vestments would be directed to Tribal nations and (3) bi-annual environmental justice

will be held to reassess criteria pollutant standards. [4]

A key shortcoming of these programs is the community identification process,

as highlighted in previous sections. Existing studies have identifying key concerns

with screening tools, many of which include lack of up-to-date data, limited dis-

aggregation of race and ethnicity demographics, and finally, inconsistent calculation

and aggregation of environmental and social indicators. For example, researchers

have found that communities most exposed to PM 2.5 and lead paint score poorly

on the EPA EJScreen’s scoring system because their share of low-income individuals

and/or people of color is below the national average [5].

Additionally, some states develop their definition of an "environmental justice"

community, or a "disadvantaged community" before the creation of their specific

screening tool, while others develop these definitions after. The order in which a

state agency develops these definitions and the creation of these indices can make a

significant impact on the granularity of these definitions and what metrics are used

to calculate thresholds of identification. Despite these shortcomings, screening tools

are an important first step to identifying existing environmental disparities. [5]
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5.4 Limitations of this Study and Suggestions for Fu-

ture Work

This analysis provides valuable insight for understanding the spatial and temporal as-

pects of calculating disparity metrics, setting the stage for future analysis in this area.

Nonetheless, our study can be strengthened by addressing the following limitations:

5.4.1 Scale and Source of Pollution Data

While our study shows that racial and ethnic disparities in exposure are driven by

differences across tracts rather than within, previous literature has shown that

mobile monitoring of 𝑃𝑀2.5 pollution data at the hyper-local scale (<100m) can

help to reduce localized peaks in emissions observed in urban areas [10]. Reducing

localized concentration extremes may be of particular interest to environmental justice

communities such as those within California’s AB617 program. Further work can be

done implement the methods used in this study to explore effectiveness of local policies

and actions on reducing pollution extremes within a specific community.

Further, future studies can explore other sources of pollution data to confirm the

results in this paper. Pollution estimates from land-use regression models (LURs) may

be sensitive to the choice of predictor variables or model parameters. For example,

population demographics are used as a variable in our pollution estimates, but we

also use these estimates to explore demographic trends. As such, this may influence

the result of our analysis. Implementing these calculations of disparity metrics with

different data sources can help to add to the robustness of these analyses.

5.4.2 Equity Concerns with Census Data

There are a number of equity concerns when utilizing census data for ensuring that

under served communities are accounted for and included in data analysis First, with

regards to under-counting, the census may not accurately capture the true population

size, particularly for hard-to-count populations such as immigrants, people experienc-
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ing homelessness, and those living in poverty. This can lead to an misrepresentation

of these populations in the data, which can skew the analysis and limit the ability to

identify and address disparities.

Other limitations include incomplete data and inadequate geographic resolutions.

The census collects a limited set of demographic data, such as race, ethnicity, age,

and gender. However, these categories may not fully capture the diversity and com-

plexity of individuals and communities, particularly for populations that identify as

multiracial or non-binary. This can limit the ability to identify and address equity

issues that are specific to these populations. Additionally, Census data are typically

aggregated at the block, tract, or county level, which may not be granular enough to

capture disparities at the neighborhood or sub-neighborhood level. This can obscure

the existence of pockets of disadvantage or privilege within larger geographic areas.

Further, sampling errors may add to a reduction in accuracy. The census relies on a

sample of the population to collect data, which can introduce sampling errors, which

can particularly problematic for smaller geographic areas or sub-populations, where

the sample size may be too small to provide reliable estimates.

Finally, there is an issue of access. The census is conducted in English and Span-

ish, which may create barriers for non-English or non-Spanish speaking populations.

This can limit the ability of these populations to participate in the census and con-

tribute to inaccuracies in the data. Overall, despite equity limitations, census data

remains an important and useful tool for understanding demographic patterns and

identifying disparities, and is widely used by researchers, policymakers, and commu-

nity organizations alike.

It is important for studies on explore racial/ethnic disparities to highlight and em-

phasize the shortcomings of existing data. Given these limited data on racial/ethnic

groups that do not fall within the four major categories (Non-Hispanic White, Non-

Hispanic Black, Non-Hispanic Asian, Hispanic/Latino), the author wants to empha-

size the importance of collecting data for underrepresented populations, particularly

Native/Pacific Islander populations that do not reside in the 48 contiguous U.S. states.

Further, the groupings of these racial/ethnic categories may obscure trends related to
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the sub-groups within these categories. For example, non-Hispanic Asians represents

a vastly diverse population that covers racial/ethnic groups across different cultures

and languages.

5.4.3 Interpolation Methods

The findings of this report are subject to the robustness of the interpolation methods

that estimate demographics for year 2015 using U.S. Census data for years 2010 and

2020. Linear interpolation assumes a constant rate of change in demographics, which

may not necessarily be true. There are two options for improving the accuracy of

demographic data in years between the decennial census reports. First, future work

can be done to improve inter-year estimates by exploring other interpolation methods

such as cubic spline, monotone cubic interpolants, and interpolations using piece wise

polynomials. Second, future studies can use annual tract level demographics data

from NHGIS, as mentioned in the Methods section, but would need to compromise

on the geographic granularity.

5.4.4 Correlation/Causation Movement and Demographic Trends

This study explores the correlations between demographic changes (as a proxy for

migration) and changes in air pollution levels over time. Future work can be done

to explore the casual mechanisms for this relationship to determine the direction

of causality. For example, are non-Hispanic Whites moving into communities with

improving pollution levels, or are pollution levels improving for communities that

have seen recent increases in non-Hispanic White populations?

5.4.5 Additional Disparity Metrics

This study employs three definitions of pollution disparities: (1) Absolute disparities

using the differences in absolute 𝑃𝑀2.5 exposures [24], (2) Relative disparities using

the coefficient of variance [20], and (3) Relative disparities using rank-by-rank analysis

of pollution concentrations at county and census tract levels [13]. Future work can
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explore inequality metrics such as the Gini Coefficient and the Atkinson’s index,

metrics commonly used to identify income inequality, and employ them for measuring

air quality disparities. Comparisons of the advantages and disadvantages of these

indexes can help to inform the identification of inequities in pollution exposure in

future research and in development of future environmental justice screening tools.

5.5 Conclusions

Capturing the cumulative impacts across a wide range of factors (environmental, so-

cioeconomic, physical and mental health, and climate indicators) is a complex task

given the inherent difficulties of capturing non-quantifiable factors into numeric met-

rics. Quantitative measures of inequality cannot fully represent the multi-faceted

nature of environmental burdens faced by a disadvantaged community, and envi-

ronmental justice screening tools and researchers should be transparent about the

limitations of the indicators used. Nonetheless, inequality measures can provide im-

portant insight into pollution exposure are changing over time and space. Careful

selection of these indicators and use can have consequential impacts to reducing ex-

posure inequities for those most impacted.
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