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Abstract

High-level planning for hybrid-dynamic, legged systems can be challenging due to a
need to simultaneously satisfy kinematic and dynamic constraints. Previously devel-
oped sampling-based approaches can rapidly generate plans that satisfy kinematic
constraints, but often lead to dynamically infeasible trajectories. On the other hand,
traditional optimization-based approaches can reliably produce feasible trajectories,
but are computationally inefficient. In this work, we leverage the strengths of these
popular techniques to develop an advantageous novel motion planning formulation.
Our methodology decouples kinematic and dynamic constraints to quickly generate
emergent, feasible trajectories for legged systems across complex terrains. We de-
couple constraints into two separate processes. First, we rapidly sample footstep
positions across a given terrain using an RRT-like search algorithm. This allows us
to satisfy kinematic constraints without committing to a full state trajectory which
could be dynamically infeasible, as is a common failure of other sampling-based ap-
proaches. Then, we can solve an optimization problem to generate a dynamically
feasible trajectory using these contact positions. Since contact locations have already
been determined, our optimization problem has a reduced decision space and does
not require inconvenient complementarity constraints. As a result, this optimization
can be solved more efficiently than traditional trajectory optimization formulations.
Implemented in simulation for a 2D quadruped robot, our novel formulation is shown
to generate trajectories in less than 15% of the computation time needed for tradi-
tional, coupled planning methods. Furthermore, experiments demonstrate that our
method maintains a consistent average solve time across sets of randomly generated
terrains, regardless of their complexity.
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Title: Professor
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Chapter 1

Introduction

Humans and animals can smoothly traverse complex environments, while rarely paus-
ing to make a decision. We seek to replicate this behavior in robots. To achieve
complete autonomy, robots must be able to quickly generate practical paths across
all kinds of terrain, just as an animal would. If we could accomplish this task in
real-time, a robot would be capable of navigating throughout the world on its own
and intelligently reacting to dynamic environment changes.

We aim to develop better planning frameworks that could enable the fast decision-
making we observe in animals. While extensive research has been dedicated to devel-
oping robust planning systems for robot locomotion, high-level planning frameworks
remain computationally expensive over challenging terrain. Solving these kinody-
namic planning problems requires us to consider the kinematics and dynamics of the
system simultaneously. These two factors are deeply intertwined and perpetuate the
difficulty of the problem.

This thesis seeks to provide a new methodology for planning high-level robotic
motion that offers advantages over the current state-of-the-art solutions. This is
done in an effort to move toward faster planning frameworks. Most crucially, we
present a new approach that decouples kinematic and dynamic constraints on the
legged planning problem. For the purposes of this work, we will limit our scope and
focus exclusively on high-level planning for legged locomotion, specifically walking
over non-flat terrain. This is mode of locomotion is necessary for traversing complex,
discrete environments, but it poses challenges in planning because it is inherently
hybrid-dynamic.
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1.1 Motivation

Autonomous mobile robots have the potential to greatly benefit our society through
a variety of applications. One of the most significant advantages they could provide
is their capacity to perform monotonous or arduous tasks that people may find un-
pleasant. But, more importantly, robots could operate in hazardous environments
that are unsafe for humans. In particular, legged robots offer increased ability to
navigate rugged, and potentially dangerous, terrain. We see legged animals, like the
mountain goat in Figure 1-1, demonstrate this ability all the time. Unlike wheeled
robots, legged robots would not be limited to smooth landscapes, making them espe-
cially useful in emergency situations. Legged robots could be designed to traverse and
perform tasks on unstable buildings, challenging elevated locations with inadequate
footing, as well as radioactive or chemically dangerous areas.

Figure 1-1: A mountain goat stands atop a cliff, demonstrating its ability to navigate
challenging terrain using its legs. The rugged and rocky landscape could not be
traversed on wheels.

Further developments in robotic navigation are needed to enable these sorts of
applications. Legged robots require more sophisticated planning architectures than
simple wheeled robots. Legged systems have more degrees of freedom, but they
must also consider the hybrid-dynamics of making and breaking contact with the
ground. Discrete decisions like contact placement can be challenging for planning
frameworks that must also consider the continuous dynamics of the system. The
computational tools suited for these distinct types of decision making often conflict.
This is an inherent problem with legged planning, but the advantage of these systems
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is that discrete footsteps allow for the traversal of rough terrain. Planning frameworks
must overcome this challenge and be capable of rapidly generating hybrid-dynamic
trajectories. This is essential for an autonomous legged robot to respond promptly
to unforeseen events or dynamic changes in its surroundings.

1.2 Related work

Most high-level planning frameworks fit within two categories: sampling-based and
trajectory optimization-based. This section provides brief overviews of existing ap-
proaches in both of these categories, and details their relative advantages and short-
comings.

1.2.1 Optimization-based approaches

Optimization presents a great way to solve problems with continuous variables subject
to constraints, especially when these constraints are complex [2]. Optimization can
be utilized to generate reliable high-level robotic plans. We can develop a model of
our system’s dynamics and solve for a trajectory that is constrained to obey these
dynamics [11]. However, for a robotic system with numerous degrees of freedom, like
a quadruped, the decision space of these optimizations problems can grow quite large.
This means that solve times are relatively inefficient. Furthermore, since kinodynamic
trajectory optimization problems tend to be nonlinear, generated solutions are not
guaranteed to be optimal.

Optimization can be leveraged to handle discrete events like contact using comple-
mentarity constraints [37, 36]. These constraints are necessary for optimizing a hybrid
trajectory such as walking, but are problematic for solvers. They have discontinu-
ous gradients and violate the linear independence constraint qualification assumed
by conventional solvers [34]. This fact, in combination with the large decision space
of walking problems, significantly restrains the efficiency of optimization-based ap-
proaches to high-level planning.

The computational efficiency of optimization-based approaches can be improved
by considering a reduced order model of the robot. This strategy restricts the decision
space of the problem to decrease solving time. One way to achieve this is by only
considering dynamics about the robot’s center body position [9]. Although reduced
order models neglect some of the robot’s dynamics, simplified trajectories can still
be successfully executed by implementing a stabilizing whole-body controller [27, 24].
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Still, our reduced model is less accurate, so resulting trajectories are not guaranteed
to be trackable, even with a stabilizing controller. This loss of accuracy is a direct
tradeoff for increased solving efficiency. Even with partially improved efficiency, kine-
matic contact constraints must still be imposed on the problem. These constraints
must consider the robot’s full body state and are often nonlinear, making the problem
non-convex [14]. Consequently, solutions are not guaranteed to be optimal and may
take longer to reach [4].

Mixed-integer approaches to optimization have been used to make the footstep
planning problem convex. By relaxing nonlinear kinematic constraints, this method-
ology can be used to guarantee an optimal solution is found for the approximated
problem [10, 26]. This technique requires creating more constraints that are switched
on and off. Thus, in order to solve the problem, many optimizations must be solved
along the combinatorial decision tree of possible constraint sets. Despite the guaran-
tee of an optimal trajectory, this drastically increases the relative time needed to solve
for that trajectory. Similarly, a mixed-integer style approach can be implemented to
relax the centroidal dynamics of a robot, making the whole planning problem convex
[35]. Nonetheless, this demonstrates the same shortcomings associated with other
mixed-integer planning methods.

Many optimization-based approaches to legged planning rely on a pre-scheduled
gait. This helps reduce the decision space of the problem by constraining when each
foot should be in contact with the ground. However, efforts have been made to
eliminate this assumption and create more general forms of trajectory optimization
that generate emergent gaits. For instance, optimizations have been formulated where
decision variables form splines of stepping motions [42]. This approach gives an
expressive path with implicit gait. Switched system optimal control approaches have
also been employed to solve for emergent gaits by changing control with contact [15].
Additionally, new methods of contact-invariant optimization can be used to smooth
discrete contact events into continuous trajectories with emergent gaits [32].

Model-based predictive control (MPC) can be used to control complex robotic
systems with nonlinear dynamics and constraints. This approach works by predicting
the future behavior of a system through a model and determining the optimal control
input to achieve a desired performance. However, it is computationally intensive,
requiring repeated online optimization, and it relies heavily on the accuracy of the
system model used for prediction [33, 18, 6, 11].

In general, trajectory optimization based approaches to robotic path planning
trade off slow solution time for dynamic feasibility. Hierarchical frameworks are used
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to mitigate the limitations presented by this [43, 30, 12, 19]. Under a hierarchical
architecture, long-term plans can be generated at a lower frequency with complex
modeling, while short-term plans are generated at a high frequency with reduced
modeling. Similar frameworks have been developed to generate low-fidelity, geomet-
ric paths that can later be refined into high-fidelity, dynamically feasible paths [7].
These are strong methodologies to create operative planning frameworks given the
limitations of optimization-based approaches.

1.2.2 Sampling-based approaches

Sampling-based approaches are commonly used to efficiently generate high-level plans
for legged robotic systems. One such methodology is the Rapidly-exploring Random
Tree (RRT) algorithm, which has shown to be effective at sampling paths in a variety
of problem spaces [25, 29, 21, 13]. RRT is a probabilistically complete search algo-
rithm. So, it is guaranteed to find a path if one exists, but it is not guaranteed to
find an optimal path [40]. In our application, this is admissible because we only re-
quire a feasible traversal path, not necessarily an optimal one. RRT gives the benefit
of making discrete decisions over a large, high-dimensional space of possible robotic
states at a computationally efficient speed. Moreover, it allows for free and expressive
movement through the environment. It does not restrict the robot’s path to some
prescribed gait, since all chosen states are randomly sampled. Poses generated from
this type of search are typically fed into an optimization problem to stabilize them
into a continuous, feasible trajectory.

Although sampling-based methods have the benefit of efficiency, they face difficul-
ties in reliably producing feasible plans for hybrid-dynamic systems, such as walking
robots. The search process often yields pose sequences that lead to dynamically in-
feasible trajectories. A crucial part of RRT is determining the nearest neighbors of
a state [8, 25]. In a planning application, these neighbors are analyzed to determine
connectable states which the robot could move between. Traditionally, neighboring
states are found using a simple Euclidean distance metric. However, this is not the
most accurate way to calculate the ability to move between full robotic position states.
Thus, it is difficult to create contact-rich, dynamic maneuvers through this type of
approach [31, 5].

Variants of RRT have been developed in attempt to improve the effectiveness of
the approach for kinodynamic systems. Instead of determining neighbors using simple
Euclidean distance, reachability guided methods (RG-RRT) consider the feasibility of
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transitioning between neighboring states to enable a more accurate and effective near-
est neighbors query [38, 39]. This yields a stronger framework for planning dynamic
motions. This type of approach has been extended into an alternative form called
environment-guided RRT (EG-RRT) that biases towards promising parts of the state
space [20]. And, a more formal method has been developed in [44]. Despite the im-
provement shown by these methods, they do not solve the problem. They attempt to
bias sampling towards more states that are more likely dynamically feasible [3]. But,
this bias towards certain states is not a strict constraint. As a result, these methods
are not very effective at planning for highly dynamic legged systems in practice.

Alternative sampling-based approaches have been explored to create acyclic con-
tact plans that approximately satisfy static equilibrium by checking a reachability
condition [41]. This criterion can be used to assess the practicality of a potential
state and facilitate more effective sampling. While this method does not directly
utilize RRT, it still experiences similar pitfalls. It is susceptible to producing dynam-
ically infeasible pose sequences because its constraints are solely kinematic.

As demonstrated by the above summarized works, sampling-based approaches
give the advantage of computation speed but do not reliably lead to dynamically
feasible solutions. Furthermore, they are predicated on random sampling and have
no notion of optimality or cost. Meanwhile, optimization-based approaches allow us
to easily quantify and compare trajectories through a cost function, sampling-based
approaches do not possess this feature.

1.2.3 Contributions

Both classes of approaches provide their own characteristic successes and failures.
Sampling-based techniques excel in handling discrete planning decisions. They are
typically more computationally efficient, but scale poorly as constraints are added.
Optimization-based methods are better suited to make continuous decisions. They
produce reliably feasible trajectories, but are often time-consuming to execute. We
would like to explore how to strike a balance between these methodologies. The
remainder of this thesis is dedicated investigated how to draw from the relative ad-
vantages of both approaches to develop a new planning methodology.

In this thesis, a novel approach to path planning for hybrid-dynamic, legged
systems will be presented. This approach effectively decouples the kinematic and
dynamic constraints of a robotic system in attempt to rapidly produce feasible tra-
jectories across complex terrains. Sampling-based methods will be used to quickly
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search for kinematically feasible contact positions. The resulting sequence of contact
positions can be fed into a dynamic optimization to find a dynamically feasible cen-
troidal trajectory. This optimization problem can be solved quicker than traditional
optimization methods because foot contact positions have already been found, so the
decision space of the planning problem is greatly reduced and problematic comple-
mentarity constraints are not needed. Overall, this novel implementation facilitates
the rapid calculation of dynamically viable trajectories, obtaining solutions in less
than 15% of the time required by comparable popular implementations.
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Chapter 2

Background

Traditional forms of high-level robotic planning often couple kinematic and dynamic
constraints into one planning problem. This is done in attempt to find a trajectory
through an environment that is both kinematically and dynamically feasible. There
are a number of approaches to this problem. The two most popular are sampling-
based methods and direct trajectory optimization. This chapter aims to provide
background information on these common approaches, which is necessary to under-
stand the novel concepts presented later in the thesis.

2.1 Rigid body dynamics

Rigid body dynamics is a fundamental concept in robotics that plays a critical role
in the design and control of legged robots. Rigid bodies are defined as objects that
maintain their shape and size regardless of external forces acting on them. In the
context of legged robots, rigid body dynamics deals with the motion of the robot’s
body and limbs, and how they interact with the environment. Understanding the
principles of rigid body dynamics is essential for developing control algorithms that
enable legged robots to perform complex tasks such as walking, running, and jumping.
In this section, we will provide a brief introduction to rigid body dynamics and its
relevance to legged robot motion planning, and present the dynamic model for our
quadruped robot.

In the case of our 2D quadruped robot, the system can be abstracted to a set of
5 linkages. There is one central body linkage, a front thigh link, front shank link,
rear thigh link, and rear shank link. Legs are comprised of thigh and shank linkages.
The rear leg is identical to the front leg. On both legs, hip and knee angles are
directly actuated. The pose of the body is regulated through this leg actuation and
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Figure 2-1: Full robot position state is described through linkage lengths and the
angles between them. The Cartesian location of the center body position is described
by (𝑞1, 𝑞2), with an angular pitch of 𝑞3. Elements of the robot state 𝑞 describe the
position of the body and angles between linkages. The lengths of the front and rear
leg linkages are equivalent.

consequent interaction with the ground. To plan the motion of the robot, we find
a trajectory for the centroidal body position and each of these joint angles. These
values are expressed as the full state of the robot 𝑞. This state is defined by (2.1)
and the corresponding robot geometry is illustrated in Figure 2-1.

𝑞 =
[︁
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7

]︁
(2.1)

Equations of motion for the robot can be derived through Lagrangian Mechanics
and take on the form shown in (2.2). This equation can be used to model the behavior
of every rigid link in the robot body.

𝐻𝑞 +𝐶 = 𝜏 + 𝐽𝑇𝐹 (2.2)

To solve a planning problem, we compute the forward dynamics of the system
through our equation of motion. This entails finding the acceleration of the system
𝑞 from a given state 𝑞 and joint torques 𝜏 . Joint torque 𝜏 is our control input.
The forward dynamics tell us how this input impacts the motion of our robot, where
output is the robot’s state 𝑞 and its derivatives. The forward dynamic computation
is executed repeatedly in attempt to satisfy constraints and choose optimal torque 𝜏

inputs that facilitate desired behavior of our system.
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To simplify system dynamics, we can project the dynamics of each linkage onto the
center position of the system. Then, we only need one equation of motion for the entire
system, instead of independent dynamic equations for each linkage. This reduced
order model is called the centroidal dynamics of the system. Our now simplified
differential equation can be efficiently solved using recursive algorithms documented
in [16].

2.2 Rapidly-exploring Random Tree (RRT)

Rapidly-exploring Random Tree (RRT) is a randomized search algorithm that can be
used to efficiently explore paths across a high-dimensional state space [28]. Beginning
at a starting node 𝑞start, new nodes 𝑞rand are randomly sampled in the state space and
added to a graph of visited states. The nearest neighbors 𝑞near to this new node 𝑞rand

can be computed over the existing graph [8]. If there is a feasible connection between
these neighboring states and the new node, the pair can be connected by an edge in
the graph. This is done repeatedly until the new node is connected and satisfies some
goal condition. Once complete, we have a graph 𝐺 of connected states through our
environment. From this graph, we can trace a path from our final node which satisfies
the goal condition back to our initial node 𝑞start. A diagram of the graph of states is
provided in Figure 2-2. Pseudocode for the algorithm is provided in Algorithm 1.

Figure 2-2: An example image illustrating the process of an RRT search. Beginning
at 𝑞start, we sample new positions 𝑞rand. During each iteration, we check whether this
new position can be connected to any of its nearest neighbors 𝑞near. We continue this
process, and expand our undirected graph, until we reach the goal condition within
tolerance of state 𝑞goal.

RRT is a probabilistically complete search algorithm [40]. This means that it is
guaranteed to find a path between designated initial and final states if one exists.
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Algorithm 1: Rapidly-Exploring Random Tree (RRT)
Input: Starting state 𝑞start, Goal state 𝑞goal, Maximum iterations 𝑁max

Output: Graph of connected states 𝐺
1 Initialize tree with root: 𝐺← 𝑞start

2 for 𝑖← 1 to 𝑁𝑚𝑎𝑥 do
3 𝑞rand ← Randomly sample configuration
4 𝑞near ← NEAREST_NEIGHBOR(𝑞rand, G)
5 𝑞new ← EXTEND(𝑞near, 𝑞new, ∆𝑞)
6 if 𝑞new is collision-free then
7 G.add_vertex(𝑞new)
8 G.add_edge(𝑞new)
9 if 𝑞new is sufficiently close to 𝑞goal then

10 return 𝐺
11 end if
12 end if
13 end for

However, the optimality of a path found cannot be guaranteed because the search
method is sampling-based and randomized. We do not have a cost function to quan-
tify optimality or bias certain regions of the state space. Sampled states are only
constrained to be collision-free. Additionally, the algorithm cannot confirm whether
a path between the two points exists or not; it simply continues searching until one
is found or until a maximum iteration limit 𝑁max is reached. If the goal condition
cannot be satisfied in less than 𝑁max iterations, we should prematurely terminate the
algorithm and assume a path cannot be found.

Although the RRT algorithm is not guaranteed to find an optimal solution, it is
a widely used and efficient method for path planning in high-dimensional spaces. In
a robotic planning application, each node in the graph would be a state of the robot.
The initial node would be where the robot is. And, the final node would be where
we want the robot to be. Robotic motion planning is an innately a high-dimensional
search problem. Robots have large state spaces and the environments they are meant
to explore can be quite vast and cluttered with obstacles. Therefore, RRT is great way
to find a possible path between two robot positions due to its incredible computational
efficiency.

Furthermore, the aforementioned drawbacks of RRT are inconsequential in most
robotic planning applications. If we’re planning motion in a vast environment, we can
assume that a feasible path is possible, so we don’t have to worry about the algorithm
getting stuck. Plus, we don’t necessarily care if a path through in our environment is
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optimal or not, we just want to make sure the robot can feasibly move from one point
to another. For these reasons, RRT is a strong approach to the problem of robotic
planning.

2.3 Trajectory optimization

Optimization is a great way to find a solution to a continuous problem subject to some
constraints [2]. The problem requires a set of decision variables, input parameters,
constraints, and a cost function. A very simple example optimization formulation is
provided in (2.3). In optimization, decision variables are what we hope to determine
the value of. Here, our decision variables comprise some vector 𝑥. The relative
optimality of these variables is determined by a cost function 𝐽(𝑥). We would like
to find the values of our decision variables to minimize this cost function. Input
parameters can also be used in our optimization. Parameters are known variables
that can be used to construct constraints on what values the decision variables are
allowed to maintain. Constraints are functions of decision variables and parameters.
Overall, we minimize our cost function subject to these constraints.

min
𝑥

𝐽(𝑥)

s.t. 𝑓(𝑥) = 0

𝑔(𝑥) ≤ 0

(2.3)

Trajectory optimization refers to the process of finding a trajectory or path for
a robot to follow through the use of a carefully formulated optimization problem.
In robotics, we define a state 𝑞𝑖 that represents a configuration of our robot in the
environment. Planning requires finding a feasible sequence of states for our robot. In
the real world, this sequence would be a continuous trajectory. However, to formulate
an optimization problem, we must break this continuity into a finite number of discrete
points 𝑁 . This process is called transcription. Each discrete point will have a timestep
between them of duration ℎ. We can then construct our discrete trajectory as a
vector of states 𝑞 with length 𝑁 , following (2.4). A continuous trajectory can later
be extracted as the spline between these points.

𝑞 =
[︁
𝑞0 𝑞1 𝑞2 ... 𝑞𝑁−1

]︁
(2.4)

At a given state 𝑞𝑖, we have the decision to take an action 𝑢𝑖. This action is a
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member of our control space 𝒰 of possible actions, as given by (2.5).

𝑢𝑖 ∈ 𝒰 (2.5)

We require a discrete trajectory of control inputs, or actions, to coincide with our
trajectory of states 𝑞. This trajectory 𝑢 should be of the same length 𝑁 , as defined
in (2.6).

𝑢 =
[︁
𝑢0 𝑢1 𝑢2 ... 𝑢𝑁−1

]︁
(2.6)

Actions and states are deeply intertwined. A chosen action 𝑢𝑖 will affect future
states. Conversely, a state 𝑞𝑘 is a function of previous actions 𝑢𝑖 where 𝑖 ∈ (0, 𝑘− 1)

and the robot’s initial configuration 𝑞0. Considering these facts, there are a couple
of ways we can approach formulating our optimization problem. We know that we
need to find a sequence of states 𝑞 and control inputs 𝑢. A "direct collocation"
approach uses both trajectories 𝑞 and 𝑢 decision variables of the optimization [23].
We would search potential values of both of these vectors in attempt to minimize our
cost function. In this thesis, the chosen optimization form is direct collocation.

Another approach, called "direct shooting", uses only control inputs 𝑢 as decision
variables. Here, the state trajectory 𝑞 is determined in response to control inputs and
the robot’s initial configuration 𝑞0 [23]. This approach will not be used. It obfuscates
the ability to impose simple kinematic constraints on the path of our robot, since
intermediate robot states are no longer part of our decision variables [2].

With our decision variables chosen, we can set a minimal list of constraints and
form an optimization problem. First, we should bound the decision variables with
upper and lower limits. Additionally, we must constrain the system to follow it’s
dynamics. This can be formulated using a function 𝑓 such that 𝑞𝑖 = 𝑓(𝑞𝑖,𝑢𝑖). This
tells us that the motion of our system at point 𝑖 depends on our state 𝑞𝑖 and what
action we take at that state 𝑢𝑖. We can use Euler integration to constrain future
states based on the timestep ∆𝑡 between indices 𝑖 and 𝑖 + 1. By converging on a
solution to this problem, we find a set of decision variables that satisfies our list of
constraints. This should also satisfy a local or absolute minima of our cost function
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𝐽 . Cost function and constraints are fully formulated into (2.7).

min
𝑞,𝑢

𝐽(𝑞,𝑢)

s.t. 𝑞min ≤ 𝑞 ≤ 𝑞max

𝑢min ≤ 𝑢 ≤ 𝑢max

�̇� = 𝑓(𝑞,𝑢)

𝑞𝑖+1 = 𝑞𝑖 + 𝑞𝑖∆𝑡

(2.7)

More constraints could be added to the problem formulation. Constraints can be
functions of control inputs, states, or any other input parameters. Moreover, they
can be constructed to satisfy inequalities or equalities. Inequality constraints 𝑔𝑖 and
equality constraints 𝑔𝑒 should maintain the same form as (2.8). The exact constraints
we choose to add depends on the problem we are trying to solve. In path planning,
these could be terrain dependent or more complex.

𝑔𝑖(𝑞𝑖,𝑢𝑖) ≤ 0

𝑔𝑒(𝑞𝑖,𝑢𝑖) = 0
(2.8)

We have developed a cost function 𝐽 , but we are not guaranteed to find optimal
𝑞 and 𝑢 that satisfy the global minimum of this function. Optimization problems
can be either convex or non-convex. A convex optimization problem has a single
optimal solution with absolute minimum cost 𝐽 that can be easily found using a
gradient-based solver [4]. On the other hand, a non-convex problem will have many
local optima. Thus, a gradient-based solver may be prone to getting stuck these local
optima and return sub-optimal solutions. Convexity depends on imposed constraints
and the chosen cost function. If constraints are nonlinear in the decision variables,
the problem becomes non-convex. Similarly, if the cost function is not quadratic,
the problem may become non-convex. So, if we impose only linear constraints and
make our cost function quadratic, we can guarantee an optimal solution is found.
Typically, kinodynamic problems of robotic path planning require nonlinear kinematic
constraints. Therefore, corresponding optimization problems are non-convex. We
must solve these problems using some nonlinear solver like IPOPT or SNOPT [45, 17].

Trajectory optimization is great for motion planning because it allows us to encode
the dynamics of a complex robot into the planning process. Furthermore, it allows to
search for an optimal path according to our cost function. Sampling-based methods
don’t have this notion of optimality because they do not have a cost function.

29



When applied to a legged system at high-level, our state 𝑞𝑖 is as described by (2.1)
at each index 𝑖. So, we get a trajectory of robot states at every timestep. To enable
planning, we likely need to constrain our first state to be at some starting position,
and the final state to be around some final goal position. Our control variable 𝑢𝑖 could
be the force of contact between the robot and the ground at discrete point 𝑖. These
forces are bounded based on the capabilities of our robot’s actuators. Combining
states and actions, we can get a full trajectory of positions and necessary ground
reaction forces to move the robot across some environment from its initial state to
some goal.
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Chapter 3

Decoupled Planning

Trajectory optimization is often used to generate dynamically feasible trajectories, but
this approach can be time-consuming when applied to complex problems like planning
for legged systems. Alternatively, sampling-based approaches can efficiently find a full
sequence of robotic poses, but the resulting path may be dynamically infeasible. To
strike a better balance between these two approaches, we aim to investigate a method
that leverages the strengths of each, rather than relying heavily on one technique
alone. By developing a hybrid approach that combines the benefits of both trajectory
optimization and sampling-based methods, we aim to efficiently generate solutions
that are dynamically feasible, avoiding the limitations that each method experiences
in isolation.

3.1 Framework

A novel framework will be developed to investigate integration between rigorous dy-
namic optimization and efficient kinematic sampling. A summary of this framework
is described in this section. Further details are explained in later sections of this
chapter.

To start, we sample foot contact positions for our robot across a terrain. This
enables us to generate a sequence of feasible footstep positions that satisfy kinematic
constraints, such as enforcing no collisions. However, it does not confine us to a set
of full states that may be dynamically infeasible, as is a common failure of other
sampling-based approaches to planning. Full state positions can be extracted from
these contact positions through inverse kinematics. Then, the resulting sequence
of poses can be used to help fit a centroidal trajectory through a dynamics-based
trajectory optimization. This optimization will find a dynamically feasible path for
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the robot given the sampled contact positions. Since we have already chosen our
foot contact positions through sampling, this optimization problem has a reduced
decision space and does not require nonlinear complementarity constraints. This
leads to increased solving efficiency.

Through this approach, kinodynamic constraints are effectively decoupled. The
sampling process handles kinematic constraints on the terrain and robot system. Once
these are satisfied, the optimization problem only has to worry about the dynamics
of the system. These processes work with each other to efficiently find a high quality
path across the given terrain. Each works to account for the lapses that are charac-
teristic to the other approach. Dynamic optimization ensures that sampled positions
can be turned into a feasible path. It is granted the freedom to do so because we are
not sampling full robotic states. We only sample foot positions, and have degrees of
freedom to choose the corresponding body positions. Moreover, by sampling contact
positions, we reduce the number of decision variables and constraints needed for the
optimization, thereby decreasing the time needed for the solver to find a feasible so-
lution. Since we have already determined a gait and exact footstep locations through
our sampling algorithm, we only need to focus on contact forces and centroidal posi-
tioning in our optimization.

In the following, a decoupled planning approach to high-level planning is detailed
for a 2D abstraction of quadruped. Our approach is not confined to this system alone.
An analogous approach could be developed for any legged robotic system.

3.2 Contact sequence sampling

We would like to rapidly generate a sequence of kinematically feasible poses 𝑞 for our
robot across a given terrain. This sequence can later be used to optimize a dynamically
feasible trajectory. We start by finding the places where the robot should make
contact with the ground. In other words, we find a sequence of footstep positions
for the robot 𝑝. This is an advantageous approach because it allows us to satisfy
kinematic constraints without restricting ourselves to a full state trajectory that may
be dynamically infeasible.

In this implementation, we are planning for a 2D quadruped system. This system
effectively has two feet. To fully describe how the robot makes contact with the
ground, we must sample the position of both the front foot 𝑝front,𝑖 and rear foot
𝑝rear,𝑖, as they are defined in (3.1). The full contact state 𝑝𝑖 of the robot concatenates
these vectors, following (3.2). In a general implementation, the size of 𝑝𝑖 would grow
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Figure 3-1: Sampled contact positions for the front and rear limbs of the robot are
highlighted across the terrain, denoted by 𝑝front and 𝑝rear respectively. These posi-
tions are specified by Cartesian coordinates (𝑥, 𝑧). Additionally, the angle 𝜃 at which
each limb makes contact with the terrain is specified.

linearly with number of feet. Contact positions should include the Cartesian location
of the foot and the angle which the shank linkage makes contact with the ground
𝜃. This gives us a full picture of how the robot interacts with the ground. Contact
positions relative to the full 2D robot are displayed in Figure 3-1.

𝑝front,𝑖 =

⎡⎢⎣𝑥front,𝑖

𝑧front,𝑖

𝜃front,𝑖

⎤⎥⎦ , 𝑝rear,𝑖 =

⎡⎢⎣𝑥rear,𝑖

𝑧rear,𝑖

𝜃rear,𝑖

⎤⎥⎦ (3.1)

𝑝𝑖 = [ 𝑝front,𝑖 𝑝rear,𝑖 ] (3.2)

We use an RRT-based search algorithm to sample contact positions across the
terrain. Beginning at some starting set of contact positions 𝑝0, we randomly sample
new contact positions 𝑝𝑖 until a goal position is reached. For a given terrain, this goal
condition lies at the end of the terrain, opposite to the starting position of the robot.
Throughout the sampling process, we construct an undirected graph 𝐺 of feasible
contact states. Edges on this graph represent movement between contact positions.
When sampling is complete, this connected graph enables us to extract a connected
path of contact poses 𝑝 that allow us to traverse the terrain from start to finish. The
sequence is outlined by (3.3). Since footstep positions are randomly sampled, this
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sequence defines a gait with emergent footstep order, locations, and overall pattern.

𝑝 =
[︁
𝑝0 𝑝1 𝑝2 ... 𝑝𝑁sampled

]︁
(3.3)

3.2.1 Kinematic feasibility

Primarily, we want to make sure that all of the contact states we sample are kine-
matically feasible. That way, we can limit the number of kinematic constraints in
our optimization problem. For a robot pose to be considered kinematically feasible,
a few conditions must be met:

1. Contact poses must not collide with the terrain.

2. The robot must be able to configure itself with feet at sampled contact positions.

3. The robot must be able to move from one contact position to the next.

Beginning with randomly sampled positions for each robot foot, we evaluate a series
of ordered conditions based on the above statements to examine whether or not foot
positions enable a kinematically feasible robot state. If any of these checks fail, the
state is deemed infeasible and we go back to sampling. The process of sampling new
contact states is documented in section 3.2.3. Every kinematic conditional checks
is designed to be computed efficiently. They are ordered with decreasing efficiency
to make sure infeasible states can be dispelled as fast as possible. The process of
ensuring a new state is kinematically feasible for our implementation is documented
below.

First, we can easily make sure that sampled foot positions do not collide with the
terrain. We directly sample contact position 𝑥𝑖 along the 2D terrain. Given a map
of the terrain, we can determine the corresponding ground height 𝑧𝑖. At this height,
the foot contacts the ground but does not penetrate into it. We calculate this using
a function of ground height like (3.4).

𝑧𝑗,𝑖 = terrain(𝑥𝑗,𝑖) ∀ 𝑗 ∈ {front, rear} (3.4)

Besides sampling foot position (𝑥𝑖, 𝑧𝑖), we sample an angle of contact 𝜃𝑖. Sampling
this angle allows to understand how the robot’s legs interact with the terrain. We can
use this information to prevent collisions between the robot’s legs and the terrain.
The shank extends from the contact point to a knee joint. By defining this angle, we
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Figure 3-2: To validate the sampled contact angle and prevent collision between the
shank and terrain, the slope of the shank link is compared to the discrete terrain
corners at position 𝑝foot along the terrain. The left sample is kinematically feasible
because |𝑚1| > |𝑚corner|. The right sample is kinematically infeasible because |𝑚2| <
|𝑚corner|.

calculate the position of that knee joint 𝑝knee,𝑗,𝑖 via (3.6).

𝑝foot,j,i =

[︃
𝑥𝑗,𝑖

𝑧𝑗,𝑖

]︃
∀ 𝑗 ∈ {front, rear} (3.5)

𝑝knee,j,i = 𝑝foot,j,i + 𝑙shank

[︃
−cos(𝜃𝑗,𝑖)
sin(𝜃𝑗,𝑖)

]︃
∀ 𝑗 ∈ {front, rear} (3.6)

With chosen angle of contact 𝜃𝑖, we make sure the shank linkage does not collide
with the terrain. This can be done in 𝑂(1) time by comparing the slope of the shank
link against the slope from the contact point to the nearest corner of terrain. If the
slope to the terrain corner is steeper, we have a collision across the shank and must
sample a new contact position or angle. This conditional is convenient to solve over
a discretized terrain where terrain corners are know. Figure 3-2 illustrates this no
collision constraint evaluated at different contact angles.

Once we know the contact state will not cause collisions with the terrain, we must
check that the robot can configure itself to stand at the sampled contact positions 𝑝𝑖.
From sampled contact positions and angles, we know where the feet and knees of our
robot must be. We can solve inverse kinematic to decide where the rest of the robot’s
body should configure itself to satisfy these positions. However, this problem would
be too time consuming to solve in each RRT loop. As an efficient proxy for the inverse
kinematics, we can investigate the space between knees to ensure body linkages could
connect them. Search spaces for each body angle are displayed in Figure 3-3.
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Figure 3-3: Possible body position angles for 2D quadruped given fixed knee positions.
The space of possible body angles must expand from the edge of possible rear thigh
angles. If the edges of the body and front thigh angle spaces intersect, it is guaranteed
that the robot can maintain the knee positions chosen through sampling.

To do run this proxy, a small set of possible rear thigh angles 𝜃thigh are explored
around the back knee 𝑝knee,rear,𝑖. At each of these possible angles, the distance between
the back hip and the front knee 𝑝knee,front,𝑖 is measured. If this distance is greater than
the difference between the body link length 𝑙body and front thigh link length 𝑙thigh,
then we can ensure that the space of possible body and front thigh angles will overlap.
This guarantees our inverse kinematics optimization will be able find a solution for
this contact state. We can execute this process in linear time relative to the size of
possible rear thigh angles 𝜃thigh using (3.7). By choosing a small, low resolution set of
possible rear thigh angles, this can be computed very efficiently. This is a sufficient,
but not necessary, condition for inverse kinematic solvability. A similarly efficient
feasibility check could be obtained for other robotic systems.

max
𝜃thigh,𝑖

|| 𝑝knee,rear,𝑖 + 𝑙thigh

[︃
cos(𝜃thigh,𝑖)

sin(𝜃thigh,𝑖)

]︃
− 𝑝knee,front,𝑖|| ≥ 𝑙body − 𝑙thigh (3.7)

If any of the above documented kinematic feasibility conditions are not met, the
values of contact position 𝑝𝑖 must be resampled until a feasible state is found. Re-
sampling follows the same procedure documented in section 3.2.3 and depends on the
value of the last feasible state.
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3.2.2 Connecting contact states

If all feasibility checks have been passed, we know the sampled contact state 𝑝𝑖 is
kinematically feasible and thus we can add it as a node on our graph 𝐺. Once added,
we must try to connect this new node to previously sampled contact states. Edges on
our graph represent movement between contact states. If a step can be made from
one state to the other, we should connect the corresponding graph vertices with an
undirected edge. For a step to be taken between two states, only one contact position
can change. We can only step one foot at a time, either the front or the rear. This is
a consequence of abstracting the problem into 2D. Therefore, states can be connected
on our graph when they have only one differing contact point position.

When the contact state 𝑝𝑖 is added to our graph, Euclidean nearest neighbors
is ran to find nearby, previously-sampled states 𝑝near. For each of these neighbor
states, we investigate if a step could be taken to the current state 𝑝𝑖. As noted above,
states can be stepped between if only one contact positions changes. We evaluate this
condition using (3.8).

(𝑥rear,𝑖 = 𝑥rear,near) ∨ (𝑥front = 𝑥front,near) (3.8)

If this condition is satisfied, the states are connected with an unweighted, undirected
edge on our graph 𝐺. We do not need to do any further checks because we know that
each of the individual contact states are independently feasible.

3.2.3 Sampling candidate contact states

After evaluating a feasible contact state 𝑝𝑖, we would like to sample a new candidate
contact state 𝑝𝑖+1 that is incrementally closer to our desired goal state. We do this
on each iteration of the sampling process. The new state is chosen at random across
the terrain along the �̂� axis. However, we can employ heuristics to guarantee certain
facts about all of the states we sample. By doing this, we improve the efficiency of our
algorithm by not wasting time investigating states which are unlikely to be feasible.

We sample a new position 𝑝𝑖+1 based on our most recent feasible contact state 𝑝𝑖.
We sample this new position such that our robot could move between these states.
This heuristic works to maximize the number of connectable contact states in our
graph and ensures we can generate a path from the start to end of the terrain as
quickly as possible. Given that we have a 2D system with only two contact points,
we require that only one contact position moves between states for them to be con-
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nectable. In simplest terms: only one foot can move at a time. Therefore, we sample
new contact positions considering constraint (3.9). This way, we know that any sam-
pled contact state could connect to at least one existing contact state. We randomly
choose which contact position changes between states, either front or rear, with equal
probability.

(𝑥rear,𝑖 = 𝑥rear,𝑖+1) ∨ (𝑥front = 𝑥front,𝑖+1) (3.9)

Additionally, we should constrain that the robot’s front foot remains ahead of its
rear foot in every considered contact state with condition (3.10). This ensures that
legs never cross over each other in-between states.

𝑥rear,𝑖 < 𝑥front,𝑖 (3.10)

Furthermore, the distance between the robot’s feet should be within some desired
range in all states. This heuristic works to increase the stability of poses. If feet
are too close, the robot’s contact polygon will be small and poses are less stable.
Conversely, if the feet are too far apart, the robot may be overstretched. This could
lead to complex or unsolvable inverse kinematics. For these reasons, we constrain the
distance between foot positions into within a range using a condition like (3.11).

𝑑min ≤ 𝑥front,𝑖 − 𝑥rear,𝑖 ≤ 𝑑max (3.11)

We would like our new state to be significantly different than the previous state.
It would be wasteful to investigate a state which is approximately the same as the
previous state. Thus, we impose a tolerance 𝛿t between states and require that (3.12)
must be satisfied. We choose 𝛿𝑡 to be very small, such that movement between states
with difference less than 𝛿𝑡 would require only a tiny, insignificant footstep. In our
implementaton, 𝛿𝑡 is defined equal to 0.03 meters.

|𝑥front,𝑖 − 𝑥front,𝑖+1| + |𝑥rear,𝑖 − 𝑥rear,𝑖+1| > 𝛿t (3.12)

All of these heuristics considered, we define closed form equations that can be
used to sample new candidate positions 𝑥front,𝑖+1 and 𝑥rear,𝑖+1. We randomly choose
whether to change the front or rear foot position with equal probability. If we choose
to move the robot’s front foot, we can calculate new contact positions with (3.13).
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This calculation depends on a randomly sampled value 𝑟 from a uniform distribution.

𝑥front,𝑖+1 = 𝑥front,𝑖 + 𝛿t + 𝑟(𝑑max − (𝑥front,𝑖 − 𝑥rear,𝑖)− 𝛿t) 𝑟 ∼ 𝑈 [0, 1] (3.13)

𝑥rear,𝑖+1 = 𝑥rear,𝑖

If instead we choose to increment the robot’s rear foot, we instead calculate new
candidate contact positions with (3.14).

𝑥front,𝑖+1 = 𝑥front,𝑖

𝑥rear,𝑖+1 = 𝑥rear,𝑖 + 𝛿t + 𝑟(𝑥front,𝑖 − 𝑥rear,𝑖 − 2𝛿t) 𝑟 ∼ 𝑈 [0, 1] (3.14)

Both (3.13) and (3.14) work to satisfy all aforementioned heuristic conditions.
Once new proposed �̂� positions have been calculated using these equations, we can find
the corresponding 𝑧 position given our map of the terrain. With these coordinates,
we can fully describe candidate contact state 𝑝𝑖+1.

Every time we sample a new contact state, a random contact angle 𝜃𝑖+1 is chosen
for each foot. This enables the robot’s legs to pivot while its foot remains in place.
Angles are chosen within a range of values that make sense considering the joint limits
of our robot. This works to ensure that we can have a better chance of solving inverse
kinematics later. For our implementation, we choose new contact angles 𝜃𝑖+1 within
the range given by (3.15).

𝜋

8
≤ 𝜃 ≤ 𝜋

2
(3.15)

3.2.4 Extracting a path

The sampling process is finished once a feasible contact position is sampled near 𝑥goal,
where 𝑥goal is located at the end of the given terrain we’d like to cross. Once this
condition is met, a path 𝑝 can be traced across the graph of contact states 𝐺 from this
final state to the initial state 𝑝0. This search can be conducted through breadth-first
search or other simple methods. This gives us a full sequence of the footstep locations
that can be used to cross the given terrain.

After the path 𝑝 is determined, we can run inverse kinematics on each contact state
to extract a sequence of full poses 𝑞 for the robot system. This pose sequence is fed
into our dynamic optimization as a discrete skeleton trajectory to follow. Calculating
a full robot state 𝑞𝑖 for every contact state 𝑝𝑖 gives us a pose sequence of length
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𝑁sampled, as represented in (3.16).

𝑞 =
[︁
𝑞0 𝑞1 𝑞2 ... 𝑞𝑁sampled

]︁
(3.16)

We run a short kinematic optimization problem, formulated in (3.17), to find full
states of the robot 𝑞𝑖 from contact positions 𝑝𝑖. States are constrained such that the
foot and knee positions of the quadruped’s configuration must match sampled values.
A cost function is designed to find a full state that is as close to statically stable as
possible. To do so, we square the difference between the centroidal body position
𝑞𝑥,𝑖 and the mean foot position. We also attempt to minimize centroidal pitch of the
robot 𝜑. These terms are weighted such that 𝛼𝑥 > 𝛼𝜑.

min
𝑞𝑖

𝛼𝑥(𝑞𝑥,𝑖 −
𝑥front,𝑖 − 𝑥rear,𝑖

2
)2 + 𝛼𝜑𝑞

2
𝜑,𝑖

s.t. foot_positions(𝑞) = [𝑝foot,front,𝑖, 𝑝foot,rear,𝑖]

knee_positions(𝑞) = [𝑝knee,front,𝑖, 𝑝knee,rear,𝑖]

(3.17)

Pseudocode for the full sampling-based footstep planning algorithm is provided
in Algorithm 2. This gives a fundamental overview of how the algorithm can be
implemented.
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Algorithm 2: Generate Kinematically Feasible Path
Input: Starting contact positions 𝑝0, Terrain map terrain(𝑥), Maximum

iterations 𝑁max

Output: Footstep sequence 𝑝, Pose sequence 𝑞
1 Initialize tree with root: 𝐺← 𝑝0

2 𝑝current ← 𝑝0

3 while 𝑝current is not at the end of the terrain do
4 𝑝𝑖 ← SAMPLE_NEW_POSITION(𝑝current, terrain)
5 if KINEMATICALLY_FEASIBLE(𝑝𝑖, terrain) then
6 𝑝near ← NEAREST_NEIGHBOR(𝑝near, G)
7 if STEPPABLE(𝑝near, 𝑝𝑖) then
8 G.add_vertex(𝑝𝑖)
9 G.add_edge(𝑝near, 𝑝𝑖)

10 𝑝current ← 𝑝𝑖

11 end if
12 end if
13 if 𝑖 > 𝑁𝑚𝑎𝑥 then
14 break
15 end if
16 end while
17 𝑝← BFS(𝑝current, 𝑝0)
18 𝑞 ← INVERSE_KINEMATICS(𝑝)

3.3 Dynamic optimization

After a sequence of contact positions is sampled through our RRT-based algorithm,
an optimization problem can be ran to ensure rigorous dynamic feasibility of this
proposed trajectory. The Cartesian coordinates of sampled contact positions 𝑝foot,𝑖, as
defined in (3.18), act as a guiding basis for the optimization problem. These determine
the gait and foot positions that the decision variables must optimize over. Using
this, contact forces and a continuous centroidal trajectory are found in accordance
with sampled contact positions to assess dynamic feasibility. We follow a centroidal
approach to our optimization, following what is documented in [9].

𝑝foot,𝑖 =

[︃
𝑥front 𝑥rear

𝑧front 𝑧rear

]︃
∀ 𝑖 ∈ [0, 𝑁sampled − 1] (3.18)

We scale our problem with respect to the number of sampled poses. The total
number of timesteps 𝑁 is calculated to be some constant integer 𝑘 times the number
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of sampled poses from RRT 𝑁sampled.

𝑁 = 𝑘(𝑁sampled − 1) + 1 , 𝑘 ≥ 1 ∈ Z (3.19)

From a high-level view, our decision variables are simply the robot’s center body
position and pitch 𝑐𝑖, the centroidal velocity 𝑣𝑖, and the contact forces on each foot
𝐹 𝑖 at each timestep 𝑖.

𝑐𝑖 =

⎡⎢⎣𝑐𝑥𝑐𝑧
𝑐𝜑

⎤⎥⎦ , 𝑣𝑖 =

⎡⎢⎣𝑣𝑥𝑣𝑧
𝑣𝜑

⎤⎥⎦ ∀ 𝑖 ∈ [0, 𝑁 − 1] (3.20)

𝐹 𝑖 =

[︃
𝐹𝑥,front 𝐹𝑥,rear

𝐹𝑧,front 𝐹𝑧,rear

]︃
∀ 𝑖 ∈ [0, 𝑁 − 1] (3.21)

The duration of time between discrete points 𝑖 and 𝑖+ 1 is optimized as ℎ𝑖. This
timestep is an element within a full decision vector ℎ outlined by (3.22).

ℎ =
[︁
ℎ0 ℎ1 ℎ2 ... ℎ𝑁−2

]︁
(3.22)

Solving optimization with these decision variables gives a continuous centroidal
trajectory for the robot to follow, and required forces at contact. The optimization is
nonlinear and can be solved with popular solvers such as IPOPT or SNOPT [45, 17].
Due to its non-linearity, it is not guaranteed to return an optimal solution with respect
to our cost function. At best, it can return a feasible solution that is guaranteed to
be at least locally optimal. In practice, we observe such convergence is both frequent
and sufficiently fast. If convergence is reached, the trajectory can then be sent to a
whole-body controller to control a robot across physical terrain.

3.3.1 Kinematic constraints

First, we impose kinematic constraints on our optimization. By pre-sampling kine-
matically feasible poses, we have reduced the number of required kinematic con-
straints. Notably, we have eliminated the need for nonlinear complementarity con-
straints on foot position. These constraints typically require the use of a highly
nonlinear forward kinematics function to ensure that robot feet make proper contact
with the ground. We have used our sampling-based algorithm to eliminate the need
for this problematic kind of constraint.

However, we still need to impose some simple kinematic constraints on the robot’s
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center body position. We would like optimize across the terrain between start and
goal positions. The first centroidal position 𝑐0 is constrained at a chosen starting
position 𝑐start by condition (3.23).

𝑐0 = 𝑐start (3.23)

The final centroidal position 𝑐𝑁 is constrained to be within a small bounding box
of user-chosen size 𝜖goal around a chosen end position 𝑐goal by condition (3.24).

𝑐goal −

⎡⎢⎣𝜖goal

𝜖goal

𝜖goal

⎤⎥⎦ ≤ 𝑐𝑁 ≤ 𝑐goal +

⎡⎢⎣𝜖goal

𝜖goal

𝜖goal

⎤⎥⎦ (3.24)

We also constrain that start and end robot positions are statically stable. That
is, the robot’s center body position must be between the position of foot contacts at
the first and final timesteps. This is formulated into condition (3.25).

𝑥rear,0 ≤ 𝑐𝑥,0 ≤ 𝑥front,0 (3.25)

𝑥rear,𝑁 ≤ 𝑐𝑥,𝑁 ≤ 𝑥front,𝑁

Over the entire trajectory, we constrain that the height of body position 𝑐𝑧,𝑖 must
remain at least some fixed amount above the terrain with (3.26). This ensures we
maintain a practical body height throughout the trajectory. Like all previous kine-
matic constraints, this is a linear constraint.

𝑐𝑧,𝑖 ≥ terrain(𝑐𝑥,𝑖) + 𝜖 (3.26)

As previously noted, there are more optimization timesteps than sampled poses
𝑁 > 𝑁sampled. That is because we must allow legs time to swing between each sampled
standing pose. We have 𝑘 timesteps between each set of poses, as calculated in (3.19).
Over this duration, feet can swing across free space and remain out of contact with
the ground. We do not directly model leg swing in our optimization, but it could
be extracted later using a spline generator between contact locations. The leg that
swings is determined based on the difference between sequential sampled poses and
our stepping condition from section 3.2.2. If the position of the back foot moves but
not the front, then the back leg swings and vice versa. In this way, sampled positions
dictate the gait pattern of our robot trajectory.
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3.3.2 Dynamic constraints

Most importantly, we impose dynamic constraints on our optimization. These con-
straints help us ensure resulting trajectories are dynamically feasible. The most sim-
ple dynamic constraint is to ensure that the change in our decision variables between
timesteps equals their derivative, as outlined in (3.27). This and other integration
constraints are nonlinear because timesteps ℎ𝑖 are decision variables.

𝑐𝑖+1 = 𝑐𝑖 + ℎ𝑖𝑣𝑖 ∀ 𝑖 ∈ [0, 𝑁 − 2] (3.27)

Timesteps ℎ𝑖 are also constrained to be within a small specified range, following
(3.28).

ℎmin ≤ ℎ𝑖 ≤ ℎmax ∀ 𝑖 ∈ [0, 𝑁 − 2] (3.28)

Through kinematic constraints, we have imposed that feet must be in contact with
the ground as dictated by the sampled pose sequence. Forces can only be imposed
on contact positions when feet are on the ground. We can use constraints like (3.29)
and (3.30) to enforce this. If the foot is on the ground, vertical force can be non-
zero. Otherwise, there must be no force on the foot. This constraint is still linear
with respect to decision variables because foot locations are a pre-determined input
parameter to the optimization. In a traditional approach, contact locations would
be decision variables. Therefore, this constraint would need to be a nonlinear com-
plementarity constraint, which are notoriously problematic for conventional solvers
due to their discontinuous gradients. We have eliminated this need by pre-sampling
contact locations.

(𝑧front,𝑖 − terrain(𝑥front,𝑖))𝐹𝑧,front,𝑖 = 0 ∀ 𝑖 ∈ [0, 𝑁 − 1] (3.29)

(𝑧rear,𝑖 − terrain(𝑥rear,𝑖))𝐹𝑧,rear,𝑖 = 0 ∀ 𝑖 ∈ [0, 𝑁 − 1] (3.30)

Forces on the robot’s feet must obey friction. We can ensure this is true by
enforcing a friction cone constraint (3.31) that limits the magnitude of force in the �̂�

direction with respect to vertical force in the 𝑧 direction. Moreover, this constraint
ensures that horizontal force is zero wherever vertical force is zero.

−𝜇𝐹 𝑧,𝑗 ≤ 𝐹 𝑥,𝑗 ≤ 𝜇𝐹 𝑧,𝑗 ∀ 𝑗 ∈ {front, rear} (3.31)

Additionally, a physical system cannot apply infinite force on the ground. So, we
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must constrain the amount of force that can be generated between the ground and
our system to be within a realistic range. This is done by constraint (3.32). In our
implementation, we set 𝐹max to be 300N. Also, the ground can only supply vertical
force on the robot, so 𝐹 𝑧 cannot be negative.

0 ≤ 𝐹 𝑧,𝑗 ≤ 𝐹max ∀ 𝑗 ∈ {front, rear} (3.32)

Contact forces dictate the acceleration of the robotic system. A free-body diagram
about the robot’s centroidal position is drawn to extract equations of motion. This
diagram is provided in Figure 3-4.

Figure 3-4: Centroidal free-body diagram for the robotic system. Contact forces
𝐹𝑥,rear, 𝐹𝑧,rear are applied at 𝑝rear. And, contact forces 𝐹𝑥,front, 𝐹𝑧,front are applied at
𝑝front. Gravity acts in the −𝑧 direction from the centroidal position (𝑐𝑥, 𝑐𝑧).

From this free body diagram, we sum the forces in each direction to determine the
net acceleration of the system. This gives our planar equation of motion as (3.33).[︃

𝑚𝑎𝑥,𝑖

𝑚𝑎𝑧,𝑖

]︃
=

[︃
𝐹𝑥,rear,𝑖

𝐹𝑧,rear,𝑖

]︃
+

[︃
𝐹𝑥,front,𝑖

𝐹𝑧,front,𝑖

]︃
+

[︃
0

−𝑚𝑔

]︃
∀ 𝑖 ∈ [0, 𝑁 − 1] (3.33)

After constraining acceleration through force balance, we constrain the change in
velocity in each direction with discrete integration in (3.34).[︃

𝑣𝑥,𝑖+1

𝑣𝑧,𝑖+1

]︃
=

[︃
𝑣𝑥,𝑖

𝑣𝑧,𝑖

]︃
+ ℎ𝑖

[︃
𝑎𝑥,𝑖

𝑎𝑧,𝑖

]︃
∀ 𝑖 ∈ [0, 𝑁 − 2] (3.34)
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We must consider rotational dynamics too. We can calculate the moments about
the center of the robot’s body by considering contact locations and forces. This is
formalized by (3.35). This constraint is nonlinear because it requires multiplying
decision variables 𝑐𝑖 and 𝐹 𝑖.

𝐼�̇�𝑖 = (𝑥front,𝑖 − 𝑐𝑥,𝑖)𝐹𝑧,front,𝑖 − (𝑧front,𝑖 − 𝑐𝑧,𝑖)𝐹𝑥,front,𝑖 + (3.35)

+ (𝑥rear,𝑖 − 𝑐𝑥,𝑖)𝐹𝑧,rear,𝑖 − (𝑧rear,𝑖 − 𝑐𝑧,𝑖)𝐹𝑥,rear,𝑖 ∀ 𝑖 ∈ [0, 𝑁 − 1]

Contact forces can induce changes in robot body pitch 𝑐𝜑 over time. We constrain
the integration of rotational motion with (3.36).

𝑣𝜑,𝑖+1 = 𝑣𝜑,𝑖 + ℎ𝑖�̇�𝑖 ∀ 𝑖 ∈ [0, 𝑁 − 2] (3.36)

3.3.3 Cost function

We would like our resulting trajectory to be dynamically feasible and high quality.
Imposed constraints guarantee that our resulting trajectory obeys the modeled dy-
namics. We designate a cost function (3.37) that works to ensure the trajectory is
high quality. Our trajectory should match sampled poses as closely as possible. So,
we minimize the difference between sampled centroidal positions 𝑐sampled,𝑖 and 𝑐𝑖.
Sampled centroidal positions are found through the inverse kinematics optimization
(3.17) ran for each set of footstep positions. Additionally, we minimize the difference
between 𝑣𝑖 and some reference velocity 𝑣ref. This encourages the velocity of the robot
to be nearly uniform. Lastly, we minimize the squared norm of contact forces to en-
courage energy efficiency. Each of these elements is summed and scaled by preference
in the cost function. Exact values of coefficient weights for our implementation are
detailed in section 4.1.

min
𝑁∑︁
𝑖=1

(𝑐𝑖 − 𝑐sampled,𝑖)
𝑇𝑄𝑐(𝑐𝑖 − 𝑐sampled,𝑖)+ (3.37)

+ (𝑣𝑖 − 𝑣ref)
𝑇𝑄𝑣(𝑣𝑖 − 𝑣ref) + 𝐹𝑖

𝑇𝑄𝐹𝐹𝑖
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Chapter 4

Results

We have developed a decoupled planning methodology for a 2D quadruped robotic
system. We would like to evaluate the effectiveness of this novel approach. To do
so, we implemented the approach in a simulated environment. Once implemented,
we tested it in comparison to traditional trajectory optimization approaches. In
this chapter, we will provide a detailed explanation of how the methodology was
implemented and share results to showcase its relative performance.

4.1 Setup

The described approach to decoupled planning is implemented in Matlab code using
the Casadi optimization package [1]. Given a discretized map of a terrain, a sequence
of contact positions can be found using our sampling-based algorithm. Then, our
dynamic optimization considers these contact positions and determines a centroidal
trajectory, using the Casadi package to solve the nonlinear program.

Terrains are represented as 2D discrete maps. All terrains have a constant length
𝐿 in the �̂� direction. Along this length, they are broken into 5 distinct sections. The
initial, middle, and final sections are designated to have a constant height of 0 in the
𝑧 direction. The 2nd and 4th sections have a randomized height and width. These
sections are meant to represent obstacles. These obstacles can either have a positive
height, acting as a step in the terrain. Or, they can have a negative height and act
as a valley. Terrain generation parameters are illustrated in Figure 4-1. The range
of possible heights is determined based on the size of the robot itself. Increasing this
range directly increases the difficulty of crossing the terrain. Flat ground is, of course,
the least complex and easiest to plan across.

We plan across terrains for a 2D quadruped system that emulates the MIT Mini-
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Figure 4-1: Example of a generated terrain. The terrain has a fixed length 𝐿 in the �̂�
direction. The initial, middle, and final sections have a constant height of 0 in the 𝑧
direction. The 2nd and 4th sections are designated as obstacles. These sections have
randomized heights and widths within a specified possible range.

Cheetah [22]. The simplified robotic system is depicted in Figure 2-1. It acts as a
5-link system with angle limits between each joint. The lengths of body linkages and
joint limits specific to our implementation are tabulated in Table 4.1.

Table 4.1: Robot System Parameters

Variable Value
Body length 0.380 m
Thigh length 0.209 m
Shank length 0.195 m

𝑞4 limits (0, 𝜋)
𝑞5 limits (0, 𝜋)
𝑞6 limits (0, 𝜋)
𝑞7 limits (0, 𝜋)

In our dynamic optimization cost function (3.37), each term is assigned a weighting
through coefficient matrices. We are most concerned with the centroidal position of
the robot relative to sampled poses, thus the corresponding coefficient 𝑄𝑐 should
have the largest weighting in the cost function. Furthermore, we care more about
tracking the 𝑧 position of the robot than the �̂� centroidal component. This is because
the �̂� position component depends on the traversal speed of the robot, which is not
guaranteed to remain consistent across the trajectory. Considering this fact, we should
make the 𝑧 component of 𝑄𝑐 largest. All implemented weights are defined in Table
4.2.
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Table 4.2: Cost Function Weights

Variable Value
𝑄𝑐 diag(2, 6, 4)
𝑄𝑣 diag(1, 2, 2)
𝑄𝐹 0.1𝐼

4.1.1 Example trajectory generation

Trajectories are planned for a 2D quadruped system over generated terrains. Given
a map of the terrain, contact positions are sampled from the beginning to the end
of the terrain. A starting position is designated such that each shank makes contact
at an angle of 𝜃 = 𝜋/4 with the rear foot at the beginning of the terrain. New
contact positions 𝑝𝑖 are sampled until the front foot reaches the end of the terrain.
If the search algorithm fails to reach the end condition within the maximum number
of iterations, it will be terminated. However, assuming that the end condition is
reached, a sequence of contact positions can be sampled from start to finish, and
inverse kinematics can be used to find a full state of the robot 𝑞𝑖 for each of these
contact positions. This process follows that which is documented in the previous
chapter. Figure 4-2 shows an example sequence of poses that were found over a
generated terrain.

Once sampled poses have been determined, we have a discrete sequence of cen-
troidal positions. These positions are input into the cost function of the dynamic
optimization, allowing the optimized, continuous centroidal trajectory to be fit along
these discrete, sampled points. The cost function for the dynamic optimization is de-
tailed in (3.37). Optimized and sampled centroidal trajectories are plotted in Figure
4-3. The sampled position in this graph are the same from Figure 4-2. As expected,
the optimized trajectory approximately follows the sampled positions. Some devia-
tion is observed but this is likely necessary to satisfy the dynamic constraints of the
system.

In our dynamic optimization, we seek to minimize the robot’s body angle, or
pitch 𝜑. By doing so, we can enhance the stability of our trajectory and increase the
likelihood of successfully executing it on a physical system. Body angle minimization
is encoded in our optimization cost function (3.37). The pitch 𝜑 across our example
trajectory is plotted in Figure 4-4. As seen in this graph, the robot’s pitch is very
small throughout the optimized trajectory.
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Figure 4-2: A sequence of robotic poses over a generated terrain with obstacle heights
of 0.2m and 0.1m. Foot and knee positions are found through our RRT-based sam-
pling algorithm. The corresponding full robotic states are then obtained through
inverse kinematics. To reduce clutter in the image, only a few sampled poses from
the discrete trajectory are displayed. The color of plotted robot positions change
from red to blue as they move from the initial to the final state.
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Figure 4-3: The planned centroidal trajectory of the robot’s body is plotted over a
generated terrain at both stages of the planning process. Discrete centroidal body
positions are extracted from sampled contact positions through inverse kinematics.
These positions are then used in cost function of dynamic optimization. The contin-
uous, optimized trajectory is displayed in relation to these sampled points.
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Figure 4-4: The angle about the center of the robot’s main body linkage is shown
over the duration of the same trajectory shown in previous graphs. This pitch angle
𝜑 is shown to be nearly zero across the trajectory.

4.2 Benchmark against coupled approach

We hypothesize that our decoupled approach can be used to generate dynamically
feasible trajectories faster than a traditional approach where kinodynamic constraints
are coupled into one optimization problem. That is because a decoupled optimization
uses RRT to quickly find contact positions, instead of including them as decision
variables in a large optimization problem. To test our hypothesis and compare the
two approaches, a coupled approach was implemented in Matlab using Casadi. This
benchmarking code was developed to follow previously documented implementations
[9].

Traditional trajectory optimization formulations have a difficult time choosing
footstep positions over a discrete terrain. So, for our benchmark coupled approach,
we modeled terrain as a continuous function of ground height such that 𝑧 = terrain(𝑥).
To approximate a discrete step, this function took on the form 𝑧 = 𝑎tanh(𝑏𝑥 + 𝑐).
This allowed us to directly encode a map of the ground height into constraints without
the need for tedious conditional statements. We needed this continuous terrain map
to generate solutions because of the coupled approach’s nonlinear complementarity
constraints.

A centroidal approach is taken to the coupled optimization problem. Most of the
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Figure 4-5: The trajectory obtained from the benchmark coupled optimization is
plotted over a step terrain that increases in height from 0 to 0.2 meters. The terrain
is fully described by (4.1). The continuous centroidal trajectory is displayed along
with a selected subset of full robot poses sampled along the trajectory. The robot
positions transition from red to blue as they move from the initial to the final state.

constraints directly follow from our decoupled dynamic optimization. However, foot
placements along the trajectory must now be chosen through optimization, which
necessitates the inclusion of contact-based complementarity constraints. These prob-
lematic constraints are avoided in our decoupled implementation by pre-sampling
contact locations. In this case, complementarity constraints are nonlinear because
footstep locations are decision variables. To simplify the coupled optimization, a
gait schedule is provided to ensure the robot steps one foot at a time, though the
locations of these steps still need to be determined. Without this gait schedule, the
optimization did not reliably converge to feasible solutions. Figure 4-5 displays an
optimized trajectory over a 0.2m high step, with the terrain in this example described
by (4.1). Here, we see that the coupled approach is capable of finding a feasible full
state trajectory over the continuous terrain. Some select poses are plotted to show
the movement of the robot from initial to final state.

𝑧 = terrain(𝑥) = 0.1tanh(100(𝑥− 0.6)) + 0.1 (4.1)

With a coupled implementation working, we can compare the speed it takes to
find a feasible trajectory against that of our decoupled implementation. We compare
average solve times over a completely flat terrain and a continuous step terrain that
is identical to that shown in Figure 4-5. These terrains are chosen because they are
convenient for the benchmark coupled approach to generate solutions across.

As expected, we observe that the decoupled approach can generate feasible tra-
jectories much faster than the coupled approach. This decrease in solve time is due
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Figure 4-6: Average solve times are presented with standard error bounds for the
coupled and decoupled approaches over 100 trials on both flat and non-flat terrains.
The length of each terrain is 1.2m, and the non-flat terrain features approximates a
discrete step up as defined by (3.4).

to the reduction of our dynamic optimization problem. By using the decoupled ap-
proach, we do not have footstep locations as decision variables and thus eliminate the
need for nonlinear complementarity constraints. Removing these decision variables
and constraints allows the solver to find a solution much faster, as demonstrated by
Figure 4-6.

The difference in speed between approaches changes with complexity of terrain.
In the case of flat ground, the decoupled approach can compute a trajectory more
than twice as fast. But, in the non-flat case, the decoupled approach is more than
6 times as fast. This discrepancy can be attributed to the fact that hybrid-dynamic
optimization problems become more difficult over a complex discrete terrain. With
discrete obstacles, the gradient of ground height can assume very large values or be
undefined at points. This makes evaluating complementarity constraints on contact
positions more challenging. Thus, coupled approaches need more optimization it-
erations to consider possibilities within the decision space of contact positions. In
contrast, sampling-based approaches are not affected by discrete obstacles, due to
their stochasticity. Regardless of whether the terrain is flat or more complex, posi-
tions are sampled across its length. Once we have these positions, the optimization is
a lot simpler. We have leveraged these facts to find a dynamically feasible trajectory
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Table 4.3: Terrain Difficulty

Difficulty Level Relative Height Obstacle Height Limits
0 0 (0, 0) m
1 ±(1/5)(Body length) (-0.076, 0.076) m
2 ±(2/5)(Body length) (-0.152, 0.152) m
3 ±(3/5)(Body length) (-0.228, 0.228) m
4 ±(4/5)(Body length) (-0.304, 0.304) m
5 ±(Body length) (-0.380, 0.380) m

over complex terrain in less than 15% of the traditionally required time.

It is worth noting that the size of coupled and decoupled optimization problems
scale differently. The number of decision variables in the implemented coupled ap-
proach is directly proportional to a user chosen variable 𝑁coupled. By increasing this
value, the number of poses across the terrain is increased. In the decoupled approach,
the number of decision variables is directly proportional to the number of poses sam-
pled in RRT. The optimization must account for how the robot’s legs can swing
between each static sampled pose. So, our optimization size is proportional to the
number of sampled poses 𝑁sampled, as documented in (3.19). The user cannot control
the size of the decoupled optimization problem because poses are sampled randomly
through RRT. We can expect that with increasing terrain length, more poses will
be sampled and solve time may increase. However, we can also expect that a longer
terrain would analogously require a higher 𝑁coupled in the coupled approach.

4.3 Performance analysis

We want to ensure that the decoupled approach is robust and scalable over a wide
variety of terrains. To test this, we run our implementation over sets of generated
terrains with increasing difficulty. Difficulty is defined to increase with the maximum
possible size of obstacles. We assume that terrains with larger obstacles are harder to
traverse and plan across. Levels of terrain difficulty are defined relative to the body
length of our 2D robotic system, as detailed in Table 4.3. These levels of difficulty
do not exceed the body length of the robot because sampling kinematically feasible
poses would become more challenging if obstacles were taller than the robot. In a
real-world scenario, the robot may traverse taller obstacles by jumping onto them
rather than stepping onto them.
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Having defined tiers of terrain difficulty, we proceeded to evaluate our implemen-
tation in each of these tiers. Across 100 trials in each difficulty tier, we found that the
performance remained consistent. Solve times and success rates are plotted in Figure
4-7. Notably, the implementation required approximately 8 seconds to identify a fea-
sible solution, regardless of terrain difficulty. This proves that our novel methodology
is robust to many kinds of terrains. Considering previous results, this implies we can
generate trajectories much faster than traditional approaches in any of these cases.

Figure 4-7: Our decoupled implementation was ran over a set of terrains with varying
degrees of complexity. The average time needed to find a path across each of these
generated terrain sets is plotted with standard error bounds. Bars are divided based
on the time consumed by each subprocess involved in the planning approach, namely
RRT-based contact sampling and dynamic optimization. The success rate of our
overall implementation across these terrains is plotted as well. All generated terrains
had a constant total length of 2.25m.

Additionally, we see that the decoupled implementation achieved a success rate of
nearly 100% across all levels of difficulty. This success rate slightly decreased as we
approached the most challenging sets of terrains, where kinematically feasible poses
become more difficult to sample. In a real world implementation, the decoupled
architecture should be ran on a loop. If a feasible path cannot be identified, the
process should be rerun. Given that RRT is a randomized algorithm, the likelihood
of identifying a feasible path in subsequent executions is equally high. This proposed
architecture should alleviate any concerns regarding the inability to identify a feasible
solution.
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Chapter 5

Conclusion

In this thesis, a novel approach to robotic path planning has been introduced. This
approach leverages advantages from established sampling-based and optimization-
based planning methods to effectively decouple kinodynamic constraints and provide
dynamically feasible trajectories at increased efficiency. An RRT-based approach
is used to identify a sequence of kinematically feasible contact positions, or simply
footsteps, across the terrain. These contact positions are then fed into a dynamic
optimization problem which determines a dynamically feasible centroidal trajectory
and necessary contact forces. A solution to this optimization can be obtained in less
time than required by traditional, coupled optimization methods that must include
contact positions in their decision space. Both traditional and decoupled approaches
are compared across terrains in a 2D environment. Tests show that the novel decou-
pled approach can generate a kinodynamically feasible trajectory in less than 15% of
the time needed for a traditional, coupled approach. We can attribute this increase
in speed to a reduction in our optimization problem. By sampling contact positions
ahead of time, we can remove them as decision variables and no longer need to impose
problematic complementarity constraints. This directly impacts solving efficiency.

Our decoupled approach has the additional advantage of generating emergent gait
patterns. We are restricted to a bounding gait in the sense that the front legs are
treated as a pair that must move together and the rear legs as a separate pair. This
is consequence of abstracting the problem to 2D. However, the location, order, and
timing of how these pairs move is emergent. All footstep locations are found through
sampling, and thus the order or size of steps are purely random. Traditional, coupled
approaches often require a prescribed gait schedule to speed the optimization process.
This can limit the ability of the planner.

To verify the feasibility of the decoupled approach over a diverse range of terrains,
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we conducted additional tests on sets of randomly generated terrains with varying
levels of complexity. Our results indicate that the novel decoupled approach performs
consistently, regardless of what terrain provided. Specifically, a viable trajectory was
successfully determined for almost every generated terrain, and the solving time re-
mained comparable across all tested terrains. This outcome demonstrates the robust-
ness of the decoupled method and quality of trajectories generated. This behavior
can be attributed to the effectiveness of our heuristics and the stochastic nature of
our footstep sampling method. By randomly sampling footsteps, we have the ability
to adjust our gait to the terrain as required and our heuristics allow us to do so
intelligently.

Beside its successful performance, the decoupled approach is remarkably easy
to implement, as demonstrated through the simple problem formulations utilized
throughout this paper. Our approach employs a basic version of the widely-used RRT
algorithm to sample contact positions. Moreover, our dynamic optimization problem
is reduced in size compared to conventional trajectory optimization methods, making
it even easier to implement than these classical formulations.

5.1 Future work

Although the novel decoupled method for path planning has exhibited strong perfor-
mance in a simulated 2D environment, its robustness in a real-world setting remains
untested. In future work, we plan to utilize our decoupled implementation to generate
centroidal trajectories across actual terrains. These trajectories can then be fed into
a whole-body controller, that can transform them into an executable, continuous tra-
jectory. This experiment would allow us to validate the practicality of the decoupled
technique and confirm that its performance effectively translates outside of simulated
environments.

Furthermore, the described formulation assumes a 2D simplification of the quadruped
system. This inhibits the range of trajectories that can be generated. Most notably, it
requires that we move the front feet together and the rear feet together in a bounding-
style gait. To address this limitation, we could modify the problem formulation to
include the complete 3D version of the system. That way, we will have full expressive-
ness of the system in our planning approach. Additionally, this modification would
allow us to model and account for real-world terrains that may not be flat in the 𝑦

direction.
If these developments go well, the decoupled methodology could even be applied
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to generate plans for other hybrid-dynamic systems, such as a two-legged humanoid
robot. Exact constraints and system dynamics would have to change for this to work,
but the fundamental approach would remain largely consistent.
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