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Abstract

Propagating uncertainties in kinetic models through combustion simulations can pro-
vide important metrics on the reliability and accuracy of a model, but remains a
challenging and numerically expensive problem especially for large kinetic mecha-
nisms and expensive turbulent combustion simulations. Various surrogate model and
dimension reduction techniques have previously been applied in order to reduce the
cost of forward uncertainty propagation in combustion simulations, but these are
often limited to low-dimensional, simple combustion cases with scalar solution tar-
gets. In the current work, a neural network-accelerated framework for identifying
a low-dimensional active kinetic subspace was developed that applies to the entire
temperature solution space of a flamelet table and can capture the mixture fraction
and strain rate dependent effects of the kinetic uncertainty. The computational sav-
ings enabled by this novel framework were demonstrated through a proof-of-concept,
flamelet-based application in a Reynolds-averaged Sandia Flame D simulation using
a chemical mechanism for methane combustion with 217 reactions. By leveraging the
large dimensional compression and low-cost scaling of the active subspace method, of-
floading the initial dimension reduction gradient sampling onto the laminar flamelet
simulations, and accelerating the gradient sampling process with a specifically de-
signed neural network, it was possible to estimate the temperature uncertainty pro-
files across the solution space of the turbulent flame with strong accuracy of 70−85%
using just seven perturbed solutions. Additionally, as it occurs entirely within the
flamelet table, the cost of identifying the reduced subspace does not scale with the
cost of the turbulent combustion model, which is a promising feature of this frame-
work for future application to larger-scale and more complex turbulent combustion
applications.

Thesis Supervisor: Sili Deng
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Uncertainty in Turbulent Combustion Modelling

Turbulent combustion modelling is an important tool for design and optimization

in many engineering fields. Traditional modelling approaches in gas turbines, inter-

nal combustion engines, and jet engines [1, 2, 3] can enable optimized designs with

increased fuel efficiency and reduced emissions. Turbulent combustion is a major

component in other processes as well, such as flame spray pyrolysis [4, 5] and lithium-

ion battery thermal runaway [6, 7]. High-accuracy models in these applications can

accelerate the development of advanced micro and nano-scale materials, and improve

the thermal safety of increasingly prevalent lithium-ion batteries.

The multiscale and multiphysics complexities of the chemically reacting flow in

turbulent combustion make it a difficult phenomenon to model accurately. Reynolds

numbers in practical burners are often greater than 104 and in some cases exceed

106 [8], which itself presents a complex, multiscale, turbulent flow problem. Coupled

to these flows are high-dimensional chemical kinetic mechanisms, detailed versions of

which can contain hundreds to thousands of species and thousands to tens of thou-

sands of reactions [9]. The two-way interaction of turbulent transport and strongly

exothermic chemistry makes the coupling of these models expensive. Multimode

phenomena are additionally present in many practical applications, from transient

ignition to stable combustion and extinction [10]. Solid particle formation as soot or
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material synthesis products [4, 11, 12] further complicates many models. A result of

these coupled complexities is large computational expense for detailed simulations.

State-of-the-art direct numerical simulation of turbulent combustion, for example, has

costs in the millions of CPU hours [13, 14], even for domains on the sub-millimeter

and sub-millisecond scales [15]. Large eddy simulations (LES) are cheaper thanks to

the modelling approach for smaller turbulence scales, but still cost in the range of tens

to hundreds of thousands of CPU hours for an entire combustor domain [12, 16, 17].

Another effect of the large number of coupled models and the model form sim-

plifications that are needed to make these simulations tractable is a large amount of

uncertainty. There are uncertainties tied to the various assumptions present in each

of the component models of a simulation, such as those made when applying LES

models to simplify turbulent flow [18, 19]. There are additionally uncertainties at-

tached to the parameters used in each model. Turbulence model parameters [20, 21]

and soot model parameters [21], even within a fixed model form, can have significant

effects on simulation results. Kinetic model parameters are another key source of

turbulent combustion simulation uncertainty, and are the focus of the remainder of

this work.

The chemical model is an integral part of turbulent combustion simulations.

Whether utilizing detailed or reduced chemistry, uncertain parameters in these mod-

els propagate forward through combustion simulations and can result in substantial

uncertainties in the output profiles [16, 22, 23]. These output uncertainties and their

sensitivities to model parameters are a key component in evaluating model results

[24, 25, 26] and are often found to be large enough to account for nearly the entire

discrepancy between the simulations and the experimental data [16, 27]. While quan-

tifying the effects of kinetic uncertainties on the accuracy and precision of combustion

simulations is important, such efforts are often expensive to carry out on a meaningful

scale due to the high computational cost of turbulent combustion simulations as well

as the previously discussed high dimensionality of detailed kinetic models [9].
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1.2 Approaches for Efficient Uncertainty Quantifica-

tion

Brute force Monte Carlo sampling is the most straightforward method for evaluat-

ing the effects of model parameter uncertainty on simulation results. With enough

random samples within the uncertainty space of a high-dimensional kinetic model,

statistics for the simulation results will converge to useful uncertainty ranges. Such

sampling scales highly with the domain of the input uncertainty space, however, and

is often too expensive to consider. To fully converge the statistics of a methane

flamelet table, for example, which is the case investigated in this thesis, it was found

in [16] that 50,000 samples had to be drawn and propagated forward. While possible

in an inexpensive, laminar, one-dimensional flamelet, such propagation is infeasible

or impossible for any multi-dimensional turbulent combustion simulation.

Many techniques have been proposed to alleviate the high cost of forward kinetic

uncertainty propagation. In the remainder of this section, the current state of the art

is discussed, and then a novel framework is proposed for forward kinetic uncertainty

propagation that expands on these methods by considering a more general simulation

target space, and by combining chemical reactions into vectors to provide further

reduction in dimension and computational cost.

1.2.1 Surrogate Modelling and Sensitivity Analysis

A major challenge for uncertainty quantification in practical turbulent combustion

simulations is the high computational cost associated with the simulations, which

makes the forward problem expensive. Two main categories of methodology have been

commonly applied in combustion research to alleviate the computational expense of

repeated sampling. The first involves building low-cost surrogate models to replace

the physical simulation. Polynomial chaos expansions (PCE) and high-dimensional

model representations (HDMR), for example, are often used to leverage a relatively

small number of expensive simulations in the construction of surrogate models, which
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can be efficiently sampled in the forward uncertainty problem [27, 28]. However, these

methodologies suffer from the “curse of dimensionality”, making their construction

inefficient in problems with a large kinetic mechanism [29, 30, 31]. A standard Hermite

polynomial chaos expansion formulation [32], for example, may look like the following,

𝜃(x) ≈
𝑃∑︁

𝑘=0

𝜃𝑘Ψ𝑘(x), x = {𝑥1, ...𝑥𝑑}, (1.1)

where 𝜃 is the approximated function, x is the 𝑑-dimensional uncertain input, Ψ

are the random polynomials fit to the simulation or experimental data using the

coefficients 𝜃𝑘, and 𝑃 is the basis dimension. In this case, the number of polynomials

scales as

𝑃 + 1 =
(𝑝+ 𝑑)!

𝑝!𝑑!
, (1.2)

where 𝑝 is the order of the polynomial chaos expansion. It is here that an exponential

scaling of the number of terms in Eq. 1.1 with the input dimension 𝑑 is observed

[30], giving rise to the curse of dimensionality. Experiments performed to evaluate

this dimensional scaling [32] have found a rapid deterioration of convergence rates

in these expansions as the dimension 𝑑 increases, and it was hypothesized that there

exists some value 𝑑𝑚𝑎𝑥 in the range of 𝑑𝑚𝑎𝑥 = 10 ∼ 20 above which sensitivity analysis

is cheaper and more effective than response surface construction when using standard

Monte Carlo methods.

Local sensitivity analyses and screening methods [33, 34, 35, 36] as well as newer

artificial neural network-based surrogate methods [31, 37] are often used either to

reduce the input space for the response surface algorithms or accelerate their com-

putation. There exist many approaches to sensitivity analysis [38], with the end goal

typically to identify which uncertain reactions have the greatest impact on simulation

results. Many of these sensitivity analyses reveal that, especially in detailed kinetic

mechanisms, a few uncertain reactions have outsized effects on simulation results.

Responses surfaces can then be constructed using these reduced sets of key reactions,

mitigating the problem of high dimensionality. Due to the substantial amount of
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training data required from the physical solver, however, even with such accelera-

tions these response surface-based methodologies are typically used only in cheaper,

low-dimensional combustion cases such as ignition delay [27, 28], laminar flame speed

[39, 40], or flow reactor [39] simulations, rather than complex flow fields.

The second general category of efficient uncertainty quantification involves meth-

ods that solve the forward problem directly in the physical solver, but leverage various

techniques to reduce the total number of high-cost simulations needed. These are es-

pecially useful in expensive turbulent simulations where response surfaces cannot be

feasibly constructed. The simplest approach might leverage the previously discussed

local sensitivity analysis to deduce a reduced set of highly sensitive uncertain param-

eters for forward propagation with fewer samples required than the full set. The cost

associated with this can still become large, however, since the identification of the

reduced still suffers from the high dimensionality of the kinetic parameter space and

the high cost of the turbulent simulation. Additionally, the reduced set itself may still

contain on the order of ten or more sensitive reactions that must be sampled. In the

following subsections, two newer techniques are detailed that allow for highly efficient

forward uncertainty propagation in turbulent combustion simulations. These tech-

niques leverage information from cheaper combustion problems and compress kinetic

uncertainty further than standard sensivitity analysis into low-dimensional vectors,

providing a roadmap for accurate and efficient uncertainty quantification in certain

turbulent combustion simulations with very few samples.

1.2.2 Flamelet Model Reduction

The first of these techniques involves identifying key assumptions in the turbulent

combustion model being used for the full-scale, complex simulation, and then lever-

aging those assumptions to offload the computational expense of dimension reduction

to a cheaper surrogate. Mueller et al. [16], for example, proposed a physics-informed

dimension reduction based on the laminar flamelet concept [41]. This model takes ad-

vantage of the fact that, in the low Karlovitz number regime [42], or when the reaction

zone of the flame is much smaller than the Kolmogorov turbulence length scale, there
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is little interaction between the smallest scale of eddies and the flame sheet. This lack

of interaction means that the turbulent flame can be modeled efficiently as an ensem-

ble of laminar flamelets. The coupling between the non-equilibrium chemistry and

turbulence can thus be simplified to the two parameters that define the flamelet’s

phase space: the mixture fraction and scalar dissipation rate. A flamelet look-up

table can be precomputed based on cheap, one-dimensional laminar flamelets using

the chemical kinetic model and turbulent simulation boundary conditions to provide

the relationship between these two variables and the thermophysical state. Once con-

structed, the chemical kinetics used in the turbulent simulation are entirely contained

within this mapping, and there is no further application of the high-dimensional ki-

netic model in the turbulent combustion simulation.

Mueller et al. [16] proposed that, as the chemical kinetics affect the turbulent sim-

ulation uniquely through the flamelet look-up table when using the flamelet model,

instead of trying to fit surrogate models or perform sensitivity analysis on the target

three-dimensional turbulent jet flame to reduce the 200+ dimensional kinetic uncer-

tainty into something more tractable, it would be both cheaper and more meaningful

to instead directly project the full kinetic uncertainty from the chemical model into

the flamelet solution space for later propagation in the turbulent simulation. Do-

ing so would reduce the high-dimensional uncertainty of the kinetic parameters into

the low-dimensional space of flamelet solution variables such as temperature, species

mass fractions, density, and viscosity. This reduction importantly does not involve

any additional loss of information as is often the case with dimension-reducing tech-

niques, as it leverages a simplification that is already assumed in the deterministic

model. It additionally requires zero runs of the full-scale, three-dimensional turbu-

lent jet flame, and is instead carried out fully within the orders of magnitude cheaper

one-dimensional laminar flamelets. After reducing the kinetics, the authors of [16]

narrowed the list of uncertain variables down to just three quantities that are neces-

sary to evolve the LES equations: density, molecular viscosity, and molecular diffu-

sivity. Then, to reduce the computational expense, they discarded the uncertainty in

the latter two and investigated the uncertainty in the density only, allowing them to
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use just seven samples of a single uncertain parameter in the full-scale simulation to

quantify its uncertainty.

Leveraging the projection that was already present in the computational model led

to a powerful estimate of the effect of kinetic uncertainty on the expensive turbulent

simulation investigated in [16] with just seven samples (compared to the hundreds

of reactions in the full kinetic parameter space). It also highlighted a need for such

physics-informed uncertainty quantification methods in expensive turbulent combus-

tion simulations. The investigated flame was reported to take 10,000 cpu hours per

simulation, making surrogate modelling or sensivitity analysis efforts infeasible, even

for a reduced mechanism. However, the application of the flamelet-based reduction

here left open certain questions about the accuracy and kinetic interpretability of such

a reduction. The elimination of uncertainty in the molecular viscosity and molecular

diffusivity was reasonable given the computational expense of the simulation being

investigated, but also leads to the possibility that certain uncertain physics were not

accurately represented in the density-only results. Additionally, the abstraction of

kinetic perturbations and density perturbations using the flamelet model leads to un-

certainty results that, while informative, cannot be traced back or analyzed in terms of

the uncertain reactions themselves, limiting the scope of application. Similar works

investigating physics-informed dimension reduction regimes similar to the flamelet

model have followed, such as applying ignition delay time kinetic reductions for the

prediction of liftoff height in turbulent flames [22, 43]. The next section involves dis-

cussion of a tool that allows for dimensional compression in the original input kinetic

space down to spaces of similarly low dimension as those investigated in [16], which

could enable such physics-informed dimension reduction while also providing kinetic

interpretability and reasonable error estimates.

1.2.3 Active Subspaces

The active subspace method [22, 29, 44] is another approach for identifying reduced

kinetic spaces for efficient sampling. Unlike traditional kinetic sensitivity methods

that identify an active subset of important reactions, this algorithm identifies active
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linear combinations of important reactions (active subspaces) that most impact the

quantity of interest. This is similar conceptually to principal component analysis,

though it identifies directions in the gradient space and thus in the input kinetic

parameters rather than the output state vectors [45], and performs such a reduc-

tion globally across the entire uncertainty space rather than locally at the nominal

values [46]. The coupled information contained in each of these subspace directions

allows for greater reduction than typical sensitivity analyses or response surface-based

methods, often down to even a single subspace direction [22, 29, 43, 21], and thus

greater computational savings in the forward propagation step. If ten reactions are all

highly sensitive, for example, then traditional sensitivity-based methods would call

for a ten-dimensional sampling and forward propagation. In the referenced works,

however, it was often found that even with multiple dominant reactions, the active

subspace method is able to find linear combinations of the key reactions that com-

press the output response to their uncertainties into just one direction within the

high-dimensional uncertainty space, leading to a more efficient one-dimensional sam-

pling and forward propagation. The active subspace method is particularly useful in

problems with high input dimension, as is often the case with chemical kinetic un-

certainty, since it partially avoids the curse of dimensionality thanks to its relatively

low dependence on input dimension size [47, 48]. This is especially true for problems

with low-dimensional active subspaces, which have an even smaller cost dependence

on problem size.

Previous combustion applications of the active subspace algorithm have typically

investigated only a single quantity of interest at a time such as liftoff height [22, 43],

ignition delay time [22, 43, 49], combustor exit pressure [50], or scalar soot metrics

[21]. These results all indicated the powerful dimension reduction capability of the

algorithm through their often one-dimensional final subspaces, but were limited by

the original active subspace formulation to investigating these single quantities only.

Ji et al. [29] expanded on this concept by investigating shared low-dimensional sub-

spaces that were capable of representing the kinetic uncertainty across multiple target

quantities. There, active subspaces were computed for each scalar output quantity,
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and then in a second processing step these scalar subspaces were combined to create

shared subspaces that could represent the physics of various simple combustion phe-

nomena, such as ignition delay time and laminar flame speed, for a range of fuels.

Various active subspace works have also leveraged and validated physics-informed

simplifications of kinetic uncertainty, similar to the flamelet approach discussed in

Section 1.2.2, in various configurations, such as ignition delay time as a predictor of

liftoff height [22, 43]. Such applications benefit in two substantial ways from this com-

bination of physics-informed active subspace reduction. By leveraging the theoretical

connection between ignition delay time and turbulent flame liftoff height, the authors

were able to sample repeatedly in the much cheaper ignitition delay time simulations

to constuct their reduced uncertainty spaces, before applying them efficiently in the

turbulent flames. Additionally, by choosing the active subspace algorithm for the

identification of these reduced uncertainty spaces, the authors in both cases were able

to find a single active subspace direction along which to efficiently sample in the tur-

bulent flame, minimizing the cost needed to quantify the uncertainty in these cases.

The liftoff height quantity of interest in the turbulent flame notably remains a scalar

quantity, however, and it can be presumed that such a subspace derived using ignition

delay results only is not applicable to other targets within the turbulent simulation

profile. The combination of multi-target active subspaces and a physics-informed

kinetic uncertainty simplification was proposed in Koenig et al. [51], where a low-

dimensional subspace was found to accurately represent the kinetic uncertainty across

the entire temperature profile of a laminar flamelet. An interesting result here was

that while one-dimensional subspaces were prevalent at each individual mixture frac-

tion location in the flamelet, the combined uncertainty response of the entire flamelet

required at least two subspace directions to capture with high accuracy. This result

was similar to that of [29], where shared subspaces of low yet greater than one di-

mension were found when combining various one-dimensional subspaces at different

conditions. While meaningful, the result of [51] was limited to a single flamelet and

did not investigate the full flamelet table required to apply the subspace to a turbu-

lent simulation, inspiring further work in this area of multi-target, physics-informed
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kinetic subspace identification.

1.3 Research Objectives

In this work, a complete forward kinetic uncertainty propagation framework for tur-

bulent combustion in the flamelet regime is proposed and demonstrated, starting

from an uncertain mechanism and ending with turbulent simulation uncertainty pro-

files. An artificial neural network surrogate model is created to accelerate the active

subspace reduction process, which was performed here on the full two-dimensional

phase space of a flamelet table. The inexpensive gradients sampled from this neural

network were used to reduce the high-dimensional kinetic uncertainty of the entire

flamelet table into a low-dimensional active subspace. The effects of kinetic uncer-

tainty on the simulation of Sandia Flame D were then quantified, and comparisons

were drawn between output uncertainty profiles obtained via efficient sampling in

the active subspace and via brute force Monte Carlo sampling in the full kinetic

space. This framework operates efficiently on both ends of the problem at hand - it

identifies a remarkably low dimension kinetic uncertainty space that applies across a

much broader input space than what is typically investigated in combustion uncer-

tainty research. This scale of reduction, demonstrated through the two-dimensional,

Reynolds-averaged turbulent combustion simulation shown here, has the potential to

be scaled up to facilitate forward uncertainty propagation in more expensive cases,

such as large eddy simulations in the flamelet regime.
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Chapter 2

Methods

This work expands on the kinetic subspace investigation method proposed in [51]

and applies it to the full temperature solution space of a nonpremixed flamelet table.

The kinetic uncertainty across the entire two-dimensional input of a flamelet table

is reduced in an artificial neural network-powered, two-stage subspace identification

process to a single global active subspace. By virtue of the steady laminar flamelet

model, this active subspace is in theory directly applicable to a larger-scale turbulent

combustion simulation. Its performance is this context is evaluated in the forward

kinetic uncertainty propagation of a nonpremixed turbulent flame simulation. An

overview of this entire framework, which leverages the kinetic similarity among the

flamelets representing the thermochemical states of the turbulent flame, is presented

in Fig. 2-1 along with a general comparison of its key advantages compared to stan-

dard sensitivity-based forward propagation. The following subsections describe each

step in detail.

2.1 Kinetic Subspace Discovery

The framework begins with the active subspace algorithm, specific details of which

motivate construction of a neural network surrogate model (described later in this

section). The generic algorithm, methodology, proofs, and kinetic discussion for the

active subspace method are presented in [44] and [51]. Below are a handful of key
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Figure 2-1: Overview of the methodology used to efficiently propagate kinetic un-
certainty in this work. The 217-dimensional kinetic uncertainty is reduced across
the entire flamelet table to a three-dimensional active subspace within which efficient
sampling for forward propagation is performed. Accuracy benchmarking is then done
against a much larger sample (2,000 samples) of fully perturbed mechanisms. High-
lighted here are key advantages of the proposed framework including large dimensional
compression and kinetic reductions that are applicable to the entire turbulent flame
profile.

variable definitions, after which an overview of the active subspace algorithm, adapted

from [44], is presented.

All flamelet data used for subspace discovery was generated in Cantera [52] using

a tailored form of the GRI-Mech 3.0 mechanism [53] with 217 reactions neglecting

NOx chemistry. All uncertain kinetic parameters are perturbed within the ranges

given in the literature [54],
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𝑥ℓ =
ln 𝑘ℓ/𝑘ℓ,0
1
3
ln𝑢ℓ

∼ 𝑁(0, 1), (2.1)

where 𝑥ℓ is the ℓth index of the normalized rate constant perturbation vector x, 𝑘ℓ is

the perturbed value of the ℓth rate constant, 𝑘ℓ,0 is the nominal value of the ℓth rate

constant, 𝑢ℓ is the uncertainty factor corresponding to 𝑘ℓ,0 as reported in [54], and

𝑁(0, 1) denotes the standard normal distribution with zero mean and unit variance.

The following mean strain rate formulation was used throughout discussion of the

flamelets for consistency,

𝑎 = (𝑄𝑓𝑢𝑒𝑙 +𝑄𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟)/2𝐷, (2.2)

where 𝑄 is the volumetric flow rate on either the fuel or oxidizer side, and 𝐷 is the

width of the counterflow domain. Finally, the hydrogen mixture fraction 𝑍 is defined

identically to [51] as

𝑍 =
𝑊mix −𝑊ox

𝑊fuel −𝑊ox
, (2.3)

where 𝑍 is the mixture fraction at a given location, and 𝑊mix, 𝑊ox, and 𝑊fuel rep-

resent the hydrogen mass fractions of the mixture, oxidizer stream, and fuel stream,

respectively.

The aim of the kinetic subspace discovery process is to identify an 𝑟𝑢-dimensional

subspace in the 𝑑-dimensional kinetic rate constant space (with 𝑟𝑢 << 𝑑) that de-

scribes the bulk of the temperature variation across an arbitrarily strained flamelet,

at any given mixture fraction. That is, at any strain rate 𝑎 and mixture fraction 𝑍,

the goal of the subspace is to accurately approximate the temperature response 𝑇 𝑎
𝑍

to any kinetic perturbation,

𝑇 𝑎
𝑍(x𝑑) ≈ 𝑇 𝑎

𝑍(x𝑟𝑢), (2.4)

where x𝑑 is a full-rank vector of rate constant perturbations for the 𝑑 reactions in the

kinetic model, while x𝑟𝑢 is the same vector expressed with only the 𝑟𝑢 basis directions
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present in the subspace. Such a reduction allows for forward sampling in just 𝑟𝑢

dimensions, which given 𝑟𝑢 << 𝑑 indicates large savings for forward uncertainty

propagation.

2.1.1 Reduction at a Single Location in the Flamelet Table

In order to identify the subspace that applies globally in Eq. 2.4, the first step is

a traditional single-target subspace. For a fixed strain rate 𝑎𝑖 and a fixed mixture

fraction 𝑍𝑗, the quantity of interest is the scalar flamelet temperature 𝑇 𝑎𝑖
𝑍𝑗
(x), which

for Eqs. 2.6 and 2.7 is denoted as

𝑇 ≡ 𝑇 𝑎𝑖
𝑍𝑗
(x). (2.5)

The matrix C is defined as the expected value of the outer product of the gradi-

ent of this temperature evaluation with respect to the kinetic parameters across the

uncertainty range defined in Eq. 2.1, and its eigendecomposition is evaluated as

C = E[(∇x𝑇 )(∇x𝑇 )
′] = WΛW′. (2.6)

Here Λ and W contain the eigenvalues 𝜆𝑖 and eigenvectors w𝑖 of C, respectively, in

order of largest to smallest eigenvalue. Through manipulation of Eq. 2.6, the identity

𝜆𝑖 = w′
𝑖Cw𝑖 for any index 𝑖, and the symmetry of the gradient outer product, it can

be shown that

𝜆𝑖 = w′
𝑖Cw𝑖 = w′

𝑖(E[(∇x𝑇 )(∇x𝑇 )
′])w𝑖 = E[((∇x𝑇 )

′w𝑖)
2]. (2.7)

This result shows that the mean squared directional derivative of the temperature T

with respect to a given eigenvector w𝑖 equals the eigenvalue 𝜆𝑖. In other words, across

the uncertainty space defined by x, it is expected that the directions in the kinetic

space described by the eigenvectors corresponding to the highest eigenvalues carry the

largest directional derivatives and thus have the largest impact on the uncertainty of

the temperature 𝑇 . On the other hand, this result also indicates that 𝑇 does not
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respond significantly to kinetic perturbations that align with the eigenvectors corre-

sponding to near-zero or relatively small eigenvalues. It can additionally be asserted

based on the symmetry of the gradient outer product that the eigendecomposition

forms an orthogonal basis of eigenvectors, or a rotation of the original 𝑑-dimensional

basis vectors. By selecting the eigenvectors corresponding to the largest eigenvalues

only, this basis can be truncated to include only the most information-dense directions

in the kinetic parameter space for forward uncertainty propagation. This reduced set

of directions is labeled the active subspace. Deeper analysis of this algorithm is

available in [44].

In practice, the expected value of Eq. 2.6 can be approximated by sampling

repeatedly throughout the kinetic uncertainty space, as per

C ≈ 1

𝑀

𝑀∑︁
𝑘=1

∇𝑥𝑇
𝑎𝑖
𝑍𝑗
(x𝑘)(∇𝑥𝑇

𝑎𝑖
𝑍𝑗
(x𝑘))

𝑇 = WΛW𝑇 . (2.8)

Here, 𝑀 is the total number of rate constant samples 𝑘 that are generated from the

full uncertainty space in x, with the gradient ∇𝑥𝑇
𝑎𝑖
𝑍𝑗
(x𝑘) evaluated once per iteration

𝑘. As per the analysis of Eq. 2.7, the eigenvalues of this decomposition at a given

(𝑎𝑖, 𝑍𝑗) pairing represent the mean squared directional derivatives of the temperature

with respect to each eigenvector, providing a measure of relative importance. By

selecting the first index 𝑚 where 𝜆𝑚 >> 𝜆𝑚+1 and recalling that the eigenvalue list is

ordered by magnitude, a reduced subspace of dimension 𝑚 can be found that captures

the bulk of the variance in the temperature gradients ∇𝑥𝑇
𝑎𝑖
𝑍𝑗

across the uncertainty

range. In the remainder of this work, it is assumed that 𝑚 = 1, based on the result

of [51] and on heuristics presented later in Section 3.2.2. w𝑙𝑜𝑐𝑎𝑙
1,(𝑖,𝑗), the first eigenvector

truncated from W, is therefore defined as the one-dimensional subspace that applies

to the point (𝑎𝑖, 𝑍𝑗) in the flamelet table. By virtue of the 𝑀 samples in Eq. 2.8 across

the entire uncertainty space, this single-target subspace is itself a global sensitivity

measure. The superscript "local" here is used to emphasize that this subspace was

discovered at (and is applicable to) a single (𝑎𝑖, 𝑍𝑗) location in the flamelet table.

Carrying out the reduction of Eq. 2.8 from the full kinetic uncertainty space down
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to a single eigenvector direction at some flamelet table location (𝑎𝑖, 𝑍𝑗) provides a one-

dimensional subspace that captures, with strong accuracy, the global uncertainty at

that point in the flamelet table. However, it is not a given that this one-dimensional

subspace applies at other locations in the flamelet table as well. In fact, it was found in

[51] that even at a fixed strain rate, the dominant kinetic subspace direction (as well as

the set of highly sensitive reactions) changed substantially enough across the mixture

fraction domain of the flamelet such that any one (𝑎𝑖, 𝑍𝑗)-specific subspace would fail

to sufficiently represent the temperature response at other locations in the flamelet.

In that case, a second stage of reduction was proposed across the mixture fraction

space of the target flamelet, which searched for similarity across these single-target

subspaces and led to a high accuracy, low-dimensional subspace that was applicable to

the full mixture fraction domain of the target flamelet. The current work investigates

the scaling up of such a reduction from a single scalar target to not just to an entire

flamelet, but an entire flamelet table including flamelets at strain rates in a wide range

of four orders of magnitude. The second stage of reduction, which begins with the

set of (𝑛𝑖 · 𝑛𝑗) one-dimensional, single-target subspaces at each each location (𝑎𝑖, 𝑍𝑗)

in the flamelet table, is detailed in the following subsection.

2.1.2 Reduction Across the Entire Flamelet Table

After performing the single-target reduction of Eq. 2.8 at each location (𝑎𝑖, 𝑍𝑗) in

the flamelet table, the matrix A is constructed as the (𝑛𝑖 · 𝑛𝑗) × 𝑑 matrix of all 1-

D local subspaces w𝑙𝑜𝑐𝑎𝑙
1,(𝑖,𝑗), where 𝑛𝑖 and 𝑛𝑗 are the total number of strain rate and

mixture fraction locations, respectively, and each row of A is the corresponding 1× 𝑑

local subspace vector from Eq. 2.8. A therefore has a very large aspect ratio, where

each column represents a specific chemical reaction and each row is that reaction’s

contribution to a single local subspace. Depending on the results of Eq. 2.8 it

is also possible to use multi-dimensional local subspaces in the construction of A,

though in this work only one-dimensional local subspaces are considered based on

the highly one-dimensional results of [51] as well as discussion in Section 3.2.2 of the

performance of such an assumption. It is rather obvious based on the aspect ratio of
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A (or identically from the fact that (𝑛𝑖 ·𝑛𝑗) > 𝑑) that some degree of correlation exists

across the (𝑛𝑖 · 𝑛𝑗) local subspace vectors. It can be further expected, however, that

this correlation is large due to the nature of the similar outputs being investigated,

and that a second stage of reduction will be capable of discovering a more general,

low-dimensional subspace that applies to the entire flamelet table. As in [51], though

here with 𝑛𝑖 times more rows, the singular value decomposition (SVD) of A is taken

as,

A = USV𝑇 , (2.9)

where S is an (𝑛𝑖 ·𝑛𝑗)×𝑑 diagonal matrix with 𝑑 singular values 𝜎 that correspond to

the relative importance of the principal directions contained in V. This is analogous

to a second application of the principal component analysis of Eq. 2.8, though the

covariance matrix is now defined using the local subspaces instead of the temperature

gradients. Additionally, while Eq. 2.8 reduced at fixed flamelet locations across the

full uncertainty space to a series of local subspaces, Eq. 2.9 now reduces that set of

local subspaces across the entire flamelet phase space to a final universal subspace.

Based on this mathematical similarity, the interpretation of the singular value de-

composition of A is similar to the eigendecomposition of C. The squared singular

values 𝜎2 relate to the eigenvalues of the matrix AA𝑇 , and are used to decide 𝑟𝑢,

the dimension of the final subspace. In this case, a clear dropoff in magnitude did

not exist in the low-𝑟𝑢 space, so instead the selection is based on the percentage of

variance captured by a given 𝑟𝑢, that is, how much of the total sum of all 𝜎2 is rep-

resented by the sum of those 𝜎2 from indices 1 to 𝑟𝑢. After selecting 𝑟𝑢, a reduced

space w𝑚 is extracted from V with 𝑚 ranging from 1 to 𝑟𝑢. The key generalization

of this work is in the (𝑛𝑖 · 𝑛𝑗) sized A matrix that includes both the mixture fraction

and strain rate input spaces of the flamelets. Thus, the final 𝑟𝑢-dimensional subspace

discovered here describes the kinetic uncertainty of the entire two-dimensional input

space of a flamelet table, in contrast to the one-dimensional mixture fraction space

investigated in [51] (or the zero-dimensional quantities of interest typically examined
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with the generic active subspace method).

2.2 Surrogate Model Neural Network

The active subspace method partially avoids the curse of dimensionality thanks to

its low dependence on input dimension size [29]. The use of one-dimensional local

subspaces further decreases the subspace generation cost in Eq. 2.8 [47, 48]. However,

due to the two-dimensional flamelet input space investigated, ∼ 104 local subspaces

are required to construct A in Eq. 2.9. The absolute lowest possible number of

gradient evaluations per local subspace is 22 as per the generic dimensional scaling

proposed in [48]. A more reasonable number based on the same scaling laws with

mid-range parameters is 100, while the scaling rules typically used in combustion

applications [22, 21] would call for over 1,000 based on the large dimensionality of the

kinetic problem investigated here. The expected grand total of gradient evaluations

is therefore on the order of 106 ∼ 107.

2.2.1 Neural Network Architecture

To reduce the computational cost associated with gradient computation, a neural net-

work surrogate model was developed with a physics-based structure inspired by Non-

linear Independent Dual Systems [55] and Deep Operator Networks (DeepONet) [56].

Artificial neural networks have been found to be more efficient than PCE and HDMR

response surfaces for a kinetic uncertainty problem of similarly large dimension as

the methane mechanism investigated here [57], and are also well-suited to efficient

gradient evaluation by virtue of the backpropagation algorithm [58], as argued and

demonstrated in [51]. DeepONet-type networks have also seen use in various recent

combustion applications [51, 59, 60]. The network structure used here, shown in Fig.

2-2, is similar to that used in [51]. Key features include grid independence, where

the inclusion of mixture fraction and strain rate as input nodes allows for training on

data with arbitrarily refined grids and then downstream application on a single grid

for consistency; and inductive bias, where the splitting of the two fundamentally dif-
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ferent inputs (kinetics and boundary conditions vs. flame sampling location) encodes

existing physical knowledge of the problem’s structure into the network, potentially

easing the burden of learning the remaining physics and thus the cost of training.

Here grid independence is the major advantage of this specific network structure, as

it allows for the use of Cantera training data solved on actively refined grids (which

vary throughout the kinetic uncertainty space) without interpolation. Similarly, they

allow for user-specified grids for subspace sampling in the downstream step, further

enabling flexibility and efficiency without the need for error-prone interpolation. The

key difference here when compared to the network of [51] is the strain rate parameter

input node, which allows the network to learn (and compute gradients for) the entire

flamelet table, rather than just a single flamelet.

Figure 2-2: Neural network surrogate model for flamelet simulations to accelerate
sensitivity computations. The parameter and coordinate branches are independent
until the last layer in which their results are combined via inner product to arrive at
a final temperature prediction. Residual skip connections every two layers are not
shown to maintain clarity. Training occurs independently of discretization, and the
network can be evaluated on any inputs 𝑍 and 𝑎 in an arbitrary grid.

The hyperparameters of this network were selected using the Ray Tune pack-

age [61], which as implemented here performed a grid search throughout reasonable

ranges of hyperparameters to identify the network that performed best during initial
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epochs. The highest-performing hyperparameter set identified using this package was

implemented for the single network used in downstream training until convergence.

This final network comprised 13 parameter layers and 6 coordinate layers of 128 nodes

each. The learning rate and batch size were 1.1 · 10−4 and 256, respectively. Residual

skip connections [62] every two layers were used in both sub-networks to reduce any

impacts of depth-based performance degradation. Sigmoid-weighted linear units [63]

were used as activation functions, and the ADAM optimizer [64] with a weight decay

of 1 · 10−4 was used to update the network parameters.

2.2.2 Training Data Generation

Flamelet solution training data was generated using the GRI-Mech 3.0 detailed ki-

netic mechanism [53], in a truncated form neglecting NOx chemistry with 217 reac-

tions. This widely referenced and applied mechanism is the result of optimization

across extensive experimental datasets, though due to the inherent complexity in

these chemical reaction kinetics its parameters still contain significant uncertainty.

These uncertainty ranges were adapted from a separate work [54], and as detailed

in Eq. 2.1 define the range of x in which the kinetic parameters are sampled. With

this mechanism and the corresponding uncertainty ranges, the flamelet computations

were carried out in Cantera [52] in the counterflow configuration using fuel composi-

tion and temperature boundary conditions that match the turbulent case (discussed

in Section 2.3) to facilitate later application directly in the turbulent flamelet model.

Datasets were computed across a large range of strain rates (defined here using the

formulation in Eq. 2.2) from 3 ·10−2 1/s to near extinction at 3 ·102 1/s. Scaling rules

for rapid convergence across the strain rate coordinate were taken from [65], leading

to a variably sized physical domain width 𝐷 and mass fluxes on the fuel and oxidizer

side 𝑚̇𝑓/𝑜 as the strain rate was increased toward extinction over iterations 𝑖,

𝐷𝑖+1 = 𝐷𝑖(
𝑎𝑖+1

𝑎𝑖
)−1/2,

𝑚̇𝑓/𝑜,𝑖+1 = 𝑚̇𝑓/𝑜,𝑖(
𝑎𝑖+1

𝑎𝑖
)1/2.

(2.10)
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Finally, with gradients evaluated in a trained neural network surrogate model and

the active subspace algorithm as described in Eqs. 2.8 and 2.9, the 𝑟𝑢-dimensional

subspace that is applied to propagate kinetic uncertainty forward through the turbu-

lent nonpremixed combustion simulation described in Section 2.3 can be computed.

2.3 Benchmark Turbulent Flame Simulation Details

Under the conditions outlined in Section 1.2.2, the interaction between the turbu-

lence and chemistry in a turbulent flame can be modeled using the steady laminar

flamelet approach. This enables direct application of the kinetic uncertainty infor-

mation discovered in Section 2.1 to a turbulent case without the need to repeat the

initial reduction process. The initial reduction process samples flamelets in the full,

217-dimensional space, while forward propagation of the turbulent flame within the

subspace requires only sampling in the 𝑟𝑢 << 217-dimensional space, indicating the

computational savings attached to this physics-based abstraction of uncertainty. This

section details the flamelet-based turbulent combustion simulation used in this work

to first evaluate the multi-target performance of the methodology in Section 2.1, and

then apply it for extremely efficient uncertainty quantification.

A two-dimensional axisymmetric model of the piloted Sandia Flame D [66], a com-

monly referenced nonpremixed turbulent combustion benchmark, was used to evalu-

ate the applicability of the flamelet-derived subspace to a multidimensional turbulent

simulation. This configuration involves a 7.2 · 10−3 m diameter partially premixed

fuel jet of 25% methane and 75% dry air (by volume) surrounded by an 18.4 · 10−3 m

pilot of hot combustion products (taken as Z=0.27 as per [67]), with an outer co-flow

of cold air. The velocities of these three flows are 49.6 m/s, 11.4 m/s, and 0.9 m/s,

respectively. The inlet temperatures are 294 K, 1880 K, and 291 K, respectively. The

final mesh used to investigate the forward problem, as well as a general description

of the computational domain, is shown in Fig. 2-3.

A standard, straightforward, and relatively inexpensive model was developed for

application in forward uncertainty propagation leveraging various previously exam-
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ined and verified methods for the Sandia Flame D [68, 69, 70]. A stretched grid of

24,180 cells (Fig. 2-3) is used to discretize the 1.2 m × 0.3 m computational do-

main. The flame is simulated using the realizable 𝑘 − 𝜖 model. The realizable model

differs from the standard 𝑘 − 𝜖 model in its formulation of the dissipation rate and

eddy viscosity equations, and was originally proposed and later applied to the Sandia

Flame D [68, 71] for its improved spreading rate performance in axisymmetric jet

flame simulations. Following the flamelet-based uncertainty method (and similarly to

[69]), the steady laminar diffusion flamelet model with unity lewis numbers is used for

the turbulence-chemistry interaction, along with the GRI-Mech 3.0 mechanism [53].

This model parameterizes flamelets uniquely using the mixture fraction and scalar

dissipation rate at the stoichiometric mixture fraction. The latter is linearly related

to the characteristic strain rate formulation defined in Eq. 2.2 through the following

equation,

𝜒𝑠𝑡 =
𝑎

𝜋
𝑒𝑥𝑝(−2[𝑒𝑟𝑓−1(1− 2𝑍𝑠𝑡)]

2), (2.11)

where 𝜒𝑠𝑡 is the instantaneous scalar dissipation rate at the stoichiometric mixture

fraction 𝑍𝑠𝑡 and 𝑎 is the strain rate defined identically as in Eq. 2.2. This direct

relationship between the kinetically investigated flamelet phase space and the tur-

bulent simulation’s flamelet table coordinates allows for uncertain solutions that are

theoretically directly coupled to information contained in the subspaces discovered

from the (𝑎, 𝑍) flamelet table used in Section 2.1. Detailed discussion of the model

formulations are available in [72], while validation of the current simulation results is

provided in Section 3.3.
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Figure 2-3: Stretched axisymmetric computational mesh used for Sandia Flame D
simluations, with nominal temperature profile overlaid in red for visualization. Green
arrows in mesh show profile sampling locations used for forward propagation visual-
ization and metrics in Figs. 3-11, 3-12, and 3-13.
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Chapter 3

Results

This section begins with a presentation of the training results of the neural network

surrogate model. Then, the active subspace reduction process is demonstrated on a

methane flamelet table. This is accompanied by discussion of the dependence of not

only the subspace directions but also the key sensitive reactions on the location in

the flamelet table phase space, necessitating the extended multi-target approach used

in this work. Next, validation is shown for the turbulent simulation used for forward

uncertainty propagation, both in mesh refinement consistency and in consistency

with experimental and computational results from the literature. Following this is

a presentation of the turbulent simulation uncertainty’s dependence on the various

subspace directions, specifically in its substantial variation when evaluated at different

locations in the turbulent combustion simulation domain. Discussion here highlights

the versatility of the multi-target subspace generation process in capturing these

variations in kinetic uncertainty response. Finally, the results of the subspace-enabled

efficient forward uncertainty propagation in the turbulent simulation are presented,

and the accuracy of these results is compared against the estimated ground truth.
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3.1 Active Subspace Methodology

3.1.1 Neural Network Training Results

Recalling that a neural network surrogate model trained on perturbed flamelet so-

lutions in Cantera is used to accelerate the kinetic reduction, the trained network’s

performance is reported in Fig. 3-1 through a comparison between the network-

generated solutions and Cantera solutions for out-of-sample testing cases at various

strain rates spanning three orders of magnitude. The agreement is very strong over-

all, with the highest observable error occurring near the fuel inlet for the low strain

case, and near the peak temperature region for the highly strained case. These results

were deemed sufficient to proceed with the active subspace discovery process in the

following section.

Figure 3-1: Network temperature evaluation on the out-of-sample testing data at the
end of the training, shown for a broad range of strain rates across three orders of
magnitude: (a) 0.088 𝑠−1, (b) 3.3 𝑠−1, and (c) 93 𝑠−1.
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3.1.2 Active Subspace Computation

Local Subspaces in Flamelet Table

Figure 3-2: Eigenvalues from the first subspace reduction of Eq. 2.8, plotted at
various strain rates spaced roughly uniformly in log space from (a) low to (d) near
extinction. Each subplot has three scatter colors corresponding to three locations in
the flame at fuel, oxidizer, and stoichiometric locations. 1-D behavior is seen across
all mixture fractions at the higher strain rates, but not at the lower strain rates.

The inexpensive gradient evaluations provided by the trained neural network are

used to implement the kinetic subspace discovery algorithm outlined in Section 2.1.

Eq. 2.8 is first evaluated once at each mixture fraction and strain rate pair (𝑎, 𝑍) using

500 kinetically perturbed gradient samples. The eigenvalues of these single-target

reductions can be plotted to identify the drop-off point, from which the dimension

of the reduced subspace can be determined. Fig. 3-2 includes plots showing the

eigenvalues at various (𝑎, 𝑍) locations in the flamelet table, where each subplot is at a

fixed strain rate and includes eigenvalues at fuel side, oxidizer side, and stoichiometric

39



mixture fractions. Figs. 3-2c and 3-2d were taken from higher strain rates and have

behavior similar to that of [51], where strong 1-D behavior can be inferred from the

sharp dropoff of greater than an order of magnitude at all mixture fractions between

the first and second eigenvalues. Figs. 3-2a and 3-2b, however, at the lower strain

rates which were not investigated in [51], do not indicate one-dimensional behavior as

strongly. In certain cases, such as on the oxidizer side of Fig. 3-2b, there is a nearly

indistinguishable difference in magnitude between the first and second eigenvalues,

and a more convincing dropoff between the second and third.

As discussed in Section 2.1, the multidimensional behavior of certain (𝑎, 𝑍)-local

subspaces is neglected in the remainder of this work. A strong majority of subspaces

appear to indicate one-dimensional behavior (as will be shown later in Fig. 3-6),

and it was found in heuristic testing that the uniformly applied one-dimensional

assumption provides the most accurate final subspaces. This may be an area for

further optimization and refinement in future applications of the methodology, but is

not considered in this work for the initial development and demonstration.

Global subspace across Flamelet Table

Figure 3-3: Percentage of variance across all local subspaces captured by global sub-
spaces with variable dimension 𝑟𝑢, computed through the percentage of all squares
of singular values of A contained in the sum up to a given index. Here, 𝑟𝑢 = 3 is
selected for 88% accuracy to the local subspaces.

After having found the series of (𝑎, 𝑍)-local subspaces using Eq. 2.8, the SVD in

Eq. 2.9 is used to reduce this set globally across the entire flamelet table. The singular
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value magnitude analysis is similar to the analysis attached to Eq. 2.8, though is now

carried out more carefully in order to select the best low-dimensional subspace for

downstream application in the turbulent combustion simulation. The percentage of

local subspace information captured by various sizes of global subspace, computed

using the square of the singular values, is reported in Fig. 3-3. A percentage of 100

at 𝑟𝑢 would indicate that subspace variation across A could be represented entirely

by the set of directions up to 𝑟𝑢. Here, 𝑟𝑢 = 3 was chosen for the remainder of this

work to compromise between more directions for high accuracy and fewer directions

for efficient forward propagation. This selection can be tailored in future applications

based on the needs of the user. For example, in a high-cost turbulent simulation,

one may want to reduce even further to two dimensions, sacrificing minor accuracy

for even more efficient large-scale sampling. In contrast, in a lower-cost simulation

where such a compact representation is not as important and perhaps high accuracy

is more desirable, the number of dimensions could be brought up closer to 𝑟𝑢 = 10,

where the accuracy begins to converge above 99%.

3.1.3 Global Subspace Directions and Metrics

At this point, the multi-target, low-dimensional subspace to be used in the forward

propagation of kinetic uncertainty through the turbulent combustion simulation of

Section 3.5 has been identified. The remainder of the current subsection involves a

detailed report of the kinetic composition of the identified three-dimensional global

subspace, as well as a verification of its performance in efficiently predicting the

uncertainty response of the flamelet table, which can serve as an indicator of accuracy

in the full-scale turbulent simulation.

In Fig. 3-4, the kinetic components of the final three subspace directions are

plotted, as well as the activity scores based on the SVD of Eq. 2.9. These activity

scores were computed using the following equation adapted from [38],

𝛼ℓ =
𝑑∑︁

𝑚=1

𝜎2
𝑚𝑤

2
𝑚,ℓ, (3.1)
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where the activity score 𝛼 for each reaction ℓ is the sum of the square of the non-

truncated subspace components w𝑚,ℓ, weighted by the corresponding squared singular

value 𝜎2
𝑚. Fairly rigorous mathematical and simulation-based verification in [38] sup-

ports the use of activity scores as a global sensitivity metric. This concept is leveraged

in Section 3.2 to emphasize a major advantage of the active subspace approach when

compared to traditional sensitivity analysis-based reaction perturbations.

Figure 3-4: Kinetic analysis based on the first three global subspace directions and
activity scores. (a) w1, (b) w2, (c) w3, and (d) activity scores. The top six reactions
in each direction are labeled in subspace direction plots, and the top ten overall
sensitive reactions are labeled in the activity score plot. (e): Reactions corresponding
to each index labeled in (a-d), in order of activity score. Dominant subspaces are
reported according to the labeled reactions in (a-c). Only four reactions appear in
these rankings for more than one subspace and none appear in all three, indicating the
relatively large set of sensitive reactions spread over these three subspace directions.

Next, the accuracy of this three-dimensional subspace in predicting the temper-

ature uncertainty in the flamelets is investigated. The same methodology as is used

in [51] is applied to compare perturbed flamelet solution profiles in the subspace

against those in the full kinetic parameter spaces, using the percent error between
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the temperature uncertainty profiles to gauge the accuracy of the subspace. At each

subspace location, 500 kinetic uncertainty samples b𝑑,𝑗 are drawn from the full kinetic

uncertainty space, with 𝑗 ranging from 1 to 500. These samples are solved forward in

Cantera for uncertainty ranges on the temperature profiles. Then, they are projected

into the subspace directions w as per

b𝑟𝑢,𝑗 =
𝑟𝑢∑︁
𝑘=1

[(b𝑑,𝑗 · v𝑘)v𝑘], (3.2)

where b𝑟𝑢,𝑗 contains the same perturbation information as b𝑑,𝑗, expressed in reduced

rank using the 𝑟𝑢 = 3 basis vectors w𝑘. This operation reduces each vector b𝑑,𝑗 to a

linear combination of the three basis directions wk. From this linear combination it

reconstructs parameter vectors of length 𝑑 but rank 𝑟𝑢 = 3 to test in Cantera. This

enables comparison of temperature profiles based separately on the sets of vectors

b𝑟𝑢,𝑗 and b𝑑,𝑗, to evaluate how much of the original information is captured by the

𝑟𝑢-rank sample. This step, performed in Cantera as opposed to the neural network

surrogate model, also serves to verify that the surrogate model results were accurate

and suitable for use in the subspace reduction.

The accuracies of these temperature profiles are plotted locally at each mixture

fraction and strain rate in Fig. 3-5. At lower strains the three-dimensional subspace

is not able to predict the temperature uncertainty as well as at higher strains. The

overall accuracy here defined by mean absolute error is 85%, which corresponds fairly

well to the 88% accuracy to the local subspaces that was predicted from Fig. 3-

3, with a slight decrease likely due to the truncation to a single direction in the

first reduction step at fixed (𝑎, 𝑍) values. These three subspace directions are thus

sufficient to largely capture the temperature uncertainty in the flamelet table. Before

moving onto the next step and applying this subspace in the scaled-up turbulent

simulation, the following subsection first discusses irregularities in the uncertainty

response across the flamelet table, which include certain unexpected dependences on

strain rate, and the current method’s advantage over traditional methods in handling

such discrepancies.
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Figure 3-5: Accuracy of the three-dimensional global subspace at each local (𝑎, 𝑍) in
the flamelet space, measured by agreement in uncertainty quantiles when compared
to full-dimensional uncertainty ranges.

3.2 Necessity of a Multi-Target Subspace Approach

This section specifically details two key advantages of the multi-target subspace re-

duction detailed here, when compared first against traditional methods of sensitivity-

based dimension reduction, and secondly against simpler zero or one-dimensional

active subspace approaches.

3.2.1 Greater Dimension Compression

According to the activity scores of Fig. 3-4, R37 is the most important reaction for

the forward propagation of uncertainty. However, it fails to capture even half of the

global temperature variance as defined by the activity score. The next four reactions

each contain between four and six percent of the total variance, with a further seven

capturing between one and three percent each. In fact, it takes the set of the thirteen

most sensitive reactions to even capture 75% of the total variance present across the

flamelet table. In contrast, the active subspace method’s exploration of sensitivity
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directions instead of sensitivity indices allows for greater compression of information.

It is seen that the first active subspace direction w1 is largely dominated by the

key R37, but that the second and third directions w2 and w3 contain perturbations

of many of the remaining key reactions compressed into fewer sensitivity directions.

While perturbing these sensitive reactions themselves would require the exploration

of a kinetic space of dimension greater than ten in order to achieve fair accuracy, with

just three active subspace directions it is possible to very efficiently explore the same

uncertainty space with fewer required turbulent simulations.

A similar conclusion can alternatively be drawn from closer inspection of the key

sensitive reactions across the local subspaces. The shifts there in kinetic sensitivity

direction do not simply amount to a reshuffling of a fixed group of key reactions,

but instead indicate both a change in direction and a change in key reaction indices.

A detailed visualization of this phenomenon is provided in the appendices. Fig.

B-1 indicates five sampling locations in the flamelet table, precise coordinates of

which are given in Table A.1. Table A.2 and Fig. B-2 show the high dissimilarity of

kinetic sensitivity across these five locations both in sensitivity direction and in highly

sensitive reactions. It can thus be inferred both from the global subspace across the

entire flamelet table as well as from the local subspaces within the flamelet table that

there are substantially more sensitive reactions than there are sensitive directions of

reactions, a phenomenon that the active subspace algorithm takes advantage of in its

greatly compressed yet still highly accurate vector-based representation of the kinetic

uncertainty.

3.2.2 Dependence of Kinetic Sensitivity on Flamelet Parame-

ters

Next, the strain dependence of the local kinetic subspaces is investigated, now entirely

within the frame of kinetic directions (in contrast to the direction vs. index discus-

sion in Section 3.2.1). It was found in [51] that these local subspaces varied strongly

across the mixture fraction space of a single flamelet, which originally motivated the
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Figure 3-6: (a) Percent of sum of all eigenvalues represented by the first eigenvalue
from Eq. 2.8, describing the variation in gradient information that can be captured
by a single subspace direction at each (𝑎, 𝑍) coordinate in the flamelet table. (b)
Strain dependence of the cosine similarity of local kinetic subspaces at three sampled
mixture fractions when compared to the near-extinction strain rate. Values near
unity are observed in the high-strain region, while as the strain is further reduced the
kinetic similarities decrease substantially.

SVD from Eq. 2.9 for the construction of a global subspace. The authors of that

work cited the result of [73], which showed that kinetic sensitivity directions did not

change with strain rate, and proposed that their subspace constructed from a flamelet

at a highly strained condition might apply across the entire flamelet table. Reported

here are various strain rate-dependent local subspace quantities in Fig. 3-6 to test

this hypothesis. In Fig. 3-6a, as the strain rate moves away from the extinction

value, it is seen to become more and more difficult to capture a significant portion

of the local sensitivity information in a single subspace direction. The difference in

the exact shape of this result and that of Fig. 3-5 is likely due to shared information

or a lack thereof across subsets of the (𝑎, 𝑍) domain - that is, the existence of local

one-dimensional subspaces across a swath of the domain does not imply similarity

across such one-dimensional subspaces, and conversely a swath of the domain with

poor one-dimensional behavior does not necessarily imply the dissimilarity of these
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multidimensional subspaces. Such discrepancies are evident in Fig. 3-6b when com-

paring the fuel-rich slice against the stoichiometric and lean slices at mid-range strain

rates. Further analysis of Fig. 3-6b confirms certain strain-dependent phenomena.

There, the kinetic similarity is seen to be preserved fairly well in the highly strained

𝑎 ∼ 30− 300𝑠−1 range leading up to extinction, corroborating the conclusion of [73]

that for near-extinction flamelets the kinetic sensitivity does not depend on the strain

rate. Below this point, however, as samples are taken toward the lower strain rates

that were not considered in [73], the similarity in kinetic sensitivity is seen to break

down at all three sampled mixture fractions - stoichiometric, fuel side, and oxidizer

side. Thus the similarity result of [73] and the corresponding discussion in [51] appear

to remain valid in the high strain rate regimes investigated in those works, and break

down as the target is moved into significantly lower strain rates. It is this breakdown

of similarity that calls for the two-dimensional reduction step detailed in Section 2.1.2,

as opposed to the one-dimensional reduction of [51] (or the zero-dimensional process

typically used in the literature).

Separate from the strain dependence of the subspace directions is the question

of locally one-dimensional behavior. In Fig. 3-6a, the percentage of the full sum of

eigenvalues captured by the first index drops to nearly as low as 40%. This result,

combined with the lack of convincing one-dimensional behavior seen in certain corre-

sponding cases in Fig. 3-2, indicate that there likely does not exist a one-dimensional

local subspace at certain (𝑎, 𝑍) locations in the flamelet table. The choice of uniformly

one-dimensional subspaces was justified fairly rigorously in the high-strain case of [51],

though in the transition to include all strained cases in this work, this justification

no longer holds. Regardless, heuristic accuracy testing using various combinations of

one and two-dimensional subspaces found that the one-dimensional assumption, even

in the updated, strain-dependent case, provides the highest accuracy when applied

in the turbulent simulation. Based on this, higher dimensional local subspaces were

not considered in this work, though further optimization in this area may be a useful

target for future development.
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3.3 Turbulent Simulation Validation

Figure 3-7: Validation of the current Sandia Flame D simulation. (a-b) Grid con-
vergence results of temperature slices at 𝑥/𝐷 = 7.5 and 𝑥/𝐷 = 30 on top and
bottom, respectively. 24,180 cells used henceforth. (c-h) Validation against com-
putational [69] and experimental [74] results in the literature for (c-d) temperature,
(e-f) methane mass fractions, and (g-h) oxygen mass fractions.
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This section presents validation of the turbulent combustion simulation used in

this work for forward uncertainty propagation and subspace performance evaluation.

The mesh size is evaluated through the refinement test in Fig. 3-7a-b, where strong

consistency in the temperature values is observed as the mesh is refined at two slices

in the simulation domain. These results motivate the selection of 24,180 cells for

use in downstream validation and testing. After having selected the final mesh size,

converged results were then verified against the model results of [69] and the experi-

mental data of [74], in Figs. 3-7c through 3-7h. The goal of the validation in this case

is not to outperform the existing computational model of [69], as this work does not

present any novel developments in turbulent combustion simulation. Instead, the goal

is simply to create a model that reasonably replicates prior computational studies as

well as real-world experimental data. The comparisons in Fig. 3-7 show this well,

with the current result largely matching up well to the previous computational study,

the experimental data, or both. At this point, with the simulation demonstrated

to be consistent with itself and with the literature, the three-dimensional subspace’s

performance can be examined through its scaling up from the flamelet table to the

more complex turbulent flame.

3.4 Spatial Dependence of Kinetic Sensitivity in Tur-

bulent Flame

With a finalized three-dimensional kinetic subspace and a verified turbulent model,

the next step involves analysis of the spatial variation of kinetic sensitivity directions

in the turbulent flame. This section serves to confirm key results of Section 3.1, and

the proposed highly efficient forward propagation is not discussed until Section 3.5.

To begin, a baseline result is established by sampling the full-scale uncertain kinetics

and generating solution profiles for 2,000 kinetic perturbations. The statistics have

not yet fully converged with 2,000 samples, though to save on computational effort

the result found in [16] is referenced, where 2,000 flamelet samples was reported as
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a lower bound for good performance in the same physical problem with a similar

flamelet model and an identical chemical reaction mechanism. These samples are not

required for the proposed subspace-powered forward uncertainty quantification in the

turbulent simulation. They instead serve to help visualize how the uncertainty in the

full kinetic space reacts to each subspace, and propose accuracy values for the efficient

subspace-driven forward uncertainty solutions shown later in Section 3.5. Thus, the

general value of 2,000 samples is taken at face value here without rigorous testing.

The type of detailed spatial analysis and accuracy prediction presented here was not

possible in [16] due to the more accurate and more expensive large eddy simulations

used, as well as the previously discussed difference in approach to kinetic reduction.

The summary plots in Fig. 3-8 show how the maximum temperature at the cen-

terline and maximum temperature at the near-nozzle 𝑥/𝐷 = 30 slice in the turbulent

simulation change with motion along the three subspace directions. A perfect one-to-

one functional mapping of temperatures to motion along a subspace direction would

indicate that such a one-dimensional subspace is able to fully explain all of the tar-

get temperature variation, regardless of motion along the other 216 kinetic directions

contained in each sample. This is the expected result for a perfect one-dimensional

subspace. Conversely, an uncorrelated, cloud-like shape in such a mapping indicates

that those other 216 kinetic directions substantially affect the temperature response,

and thus the investigated subspace direction is not able to unilaterally predict the

temperature response well or even at all. Inspection of the two-dimensional summary

plots, moving from the top toward the bottom, reveals that the centerline maximum

temperature is not correlated with movement in direction w1, which is fairly surpris-

ing given the relative dominance of that subspace direction from Fig. 3-3. Conversely,

the response of the maximum temperature of the near-nozzle slice responds extremely

well to w1. Both temperatures respond fairly well to w2, though the centerline tem-

perature has a tighter spread and can thus be said to more closely align with motion

in the w2 direction. The centerline temperature responds fairly strongly to w3, while

the near-nozzle slice has a much weaker and interestingly inverse relationship with

w3. Finally, when the strongest pair of subspaces is chosen for the bottom set of Fig.
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Figure 3-8: Summary plots showing the response of (a-c) the near-nozzle (𝑥/𝐷 = 30)
maximum temperature and (e-g) the centerline maximum temperature to motion
along the w1, w2, and w3 subspace directions, respectively. (d) and (h) show coupled
responses of the same temperature values to motion along two subspace directions.
Based on the substantial shifts in the dominant subspace directions seen across each
pair in the top six subplots, the axes in (d) and (h) are w2 vs. w1 and w3 vs. w2,
respectively.

3-8 plots showing temperature responses to coupled inputs, two-dimensional behavior

is observed in both cases. Notably, the meaningful two-dimensional behavior is ob-

served in w2 and w3 for the centerline maximum temperature and conversely w1 and
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w2 for the near-nozzle maximum temperature, following from the above discussion,

and the two-dimensional trend appears to be more consistent in the near-nozzle case

of Fig. 3-8d.

Figure 3-9: Summary plots showing the response of (a-c) the near-nozzle (𝑥/𝐷 = 30)
maximum temperature and (e-g) the centerline maximum temperature to motion
along the w4, w5, and w6 subspace directions, respectively. (d) and (h) show coupled
responses of the same temperature values to motion along w4 and w5.

In addition to Fig. 3-8, which shows the summary plot responses of maximum

temperatures to the three kinetic subspace directions selected for downstream forward
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propagation, it is additionally interesting to investigate the summary plots of the next

three kinetic subspace directions, w4 through w6. Based on the truncation in Fig.

3-3, these are the most important directions not included in the selected w1 through

w3, and thus are in theory most indicative of the information lost in that truncation.

In the left hand side column of Fig. 3-9, only weak correlations can be seen between

the near-nozzle maximum temperature and w4 or w5, while w6 indicates no visible

dependence at all. When plotting the temperature responses in two dimensions to

the two most important of these directions, w4 and w5, it is similarly difficult to

decipher any global trends. In contrast, the centerline maximum temperatures in the

right hand side column of Fig. 3-9 appear to respond more substantially to these

three directions. w4 and w6 in this case both have weakly visible trends, while w5

shows a more noticeable dependence. As expected, none of them show trends as

tight and linear as that of w2. Overall, the contrasting results of Fig. 3-9, when

compared against those of Fig. 3-8, demonstrate the dimension reduction capability

and remarkably low-dimensional uncertainty representation enabled by the active

subspace technique, even when applied in such a generalized manner.

The key takeaway from these summary plots is that the kinetic dissimilarity noted

in the flamelet mixture fraction space in [51] as well as in the strain rate space in

Fig. 3-6 appears to substantially propagate forward to the turbulent combustion

simulation. When sampling near the nozzle, the maximum temperature’s responses

are strongly coupled to w1, which based on Fig. 3-4 is dominated by R37. Further

downstream, however, this dependence appears to become nearly negligible, and the

maximum temperature response is instead tied strongly to w2 and w3, which are

made up of linear combinations of a much more diverse set of reactions. This spa-

tially dependent result further highlights a drawback of the traditional, single-target

combustion applications of the active subspace algorithm when the uncertainty target

is a continuous profile and not simply a scalar value. Notable as well from the activ-

ity scores (in Fig. 3-4) is that there is no substantial overlap in key reactions across

these three subspace directions. It is thus not simply a shifting dependence in a small

set of key reactions that is observed, but instead a shift in the list of key reactions
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themselves across the turbulent flame. This makes sensitivity index-based forward

propagation more expensive due to the inflated number of sensitive reactions when

considering the entire solution domain, an issue that is not observed here thanks to

the greater dimensional compression offered by the active subspace.

3.5 Efficient Uncertainty Quantification of Turbu-

lent Flame using Subspace

In this section, the accuracies of kinetic perturbations within the three-dimensional

subspace are investigated when applied to the forward problem in the Sandia Flame

D simulation. In the previous section, the need for greater than 2,000 samples in

the full kinetic space in order to converge the statistics of the turbulent simulation

was discussed. Here, samples are taken directly from the uncertainty space defined

by the three-dimensional subspace (as opposed to the 217-dimensional full kinetic

space). Special care is taken to preserve the literature-informed uncertainty ranges in

this case. In the full uncertainty space, the distributions for each kinetic parameter

are simply taken from [54], as per Eq. 2.1. In order to ensure that the subspace

samples correspond to the information from [54], their normal distributions are in-

formed by projections from the full space into the subspace. That is, similarly to how

each reaction in the full space has its own uncertainty range as per Eq. 2.1, each

subspace direction has its own unique uncertainty range defined by the projection of

the collection of distributions in Eq. 2.1 into the three-dimensional subspace. The

standard deviations of the three subspace directions vary up to 27% due to the vari-

ance in uncertainty across the detailed kinetic mechanism, and this additional step

ensures that the subspace samples correspond both to the flamelet-informed kinetic

uncertainty directions, as well as the literature-informed upper and lower bounds of

such directions. These projections are visualized in Fig. 3-10, a histogram-based

comparison between 2000 full kinetic samples projected into the subspace and 100

subspace-informed kinetic samples (drawn here solely to illustrate this point).
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Figure 3-10: Histograms showing movement along each of the three subspace direc-
tions w1, w2, and w3 in (a), (b), and (c), respectively. Blue bins show full kinetic
uncertainty samples projected into the subspace directions, while red bins show sam-
ples directly taken from the subspace using uncertainty ranges projected from the
literature-informed values of Eq. 2.1. The tighter distribution in w1 and wider dis-
tribution in w3 align in both sets of bins, indicating correct implementation.

With these subspace-informed samples, it was found that with computational sav-

ings of multiple orders of magnitude it is possible to reconstruct the full uncertainty

profiles with strong accuracy. In Fig. 3-11a-b, the three sigma temperature uncer-

tainty ranges of the centerline profile and near-nozzle profile are compared when using
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just seven subspace-informed Latin Hypercube samples [75] against those with the full

2,000 samples, and accuracies of 70.4% and 82.3% were observed, respectively. The

discrepancy in accuracy between these locations can be traced back to the results of

Figs. 3-5 and 3-8 where general trends indicated stronger subspace performance in the

high-strain flamelets and in the axial maximum temperature, and weaker subspace

performance in the lower-strain flamelets and in the centerline maximum temperature.

(a) (b)

(c) (d)

Figure 3-11: Uncertainty ranges for temperature and CO mass fractions at represen-
tative slices in the 2-D domain. The estimated ground truths are from 2,000 samples
in the full kinetic uncertainty space. The subspace results are computed using just
seven samples in the three-dimensional subspace. (a) Temperature uncertainty along
the centerline. (b) Temperature uncertainty across the 𝑥/𝐷 = 30 near-nozzle slice.
(c) CO mass fraction uncertainty along the centerline. (d) CO mass fraction uncer-
tainty across the 𝑥/𝐷 = 30 near-nozzle slice.

The CO mass fraction uncertainty ranges are additionally plotted in Fig. 3-

11c-d based on both the full 2,000-sample run as well as the subspace-reduced 7-

sample run. The accuracies here were found to be 68.7% and 69.7%, respectively, for

the centerline profile and near-nozzle profile. CO was not tracked in the surrogate
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modelling and subspace reduction process, however, thus all agreement here is due to

the strong coupling between the temperature profile and species evolution profiles. If

higher-accuracy species uncertainty profiles are desired, users can either (1) replace

the temperature prediction network with a species prediction network and otherwise

retain an identical methodology for a subspace that is tailored to a single species

profile, or (2) increase the size of the network output layer to facilitate the learning of

temperature and/or multiple species profiles, and simply add the additional species-

based local kinetic subspaces into the A matrix as was done in this work for the

strain-dependent temperature profiles. Such generalizations are not considered here,

and instead extrapolation capabilities of the temperature subspace to the CO species

profiles are presented to highlight promise for such future applications.

Due to the relatively inexpensive turbulence model used in this work, it was possi-

ble to repeat this subspace-informed forward uncertainty propagation multiple times

to confirm the reliability of this result. Between 7 and 50 subspace-informed per-

turbations were independently sampled for each trial. In Fig. 3-12, the accuracies

of the uncertainty ranges of each of these runs are compared against the full-space

2,000 sample case. Greater than 70% and greater than 80% accuracy for the cen-

terline and near-nozzle temperature uncertainty ranges, respectively, are observable

at all sample numbers. In the samples leading up to 20, there is a noisy yet over-

all substantial trend of increasing accuracy. Past 20, the accuracy values tend to

fairly stable quantities in the 80− 90%+ range for temperatures and the 85− 95%+

range for CO mass fractions. There is one noticeable outlier in the axial near-nozzle

temperature agreement in the 40 sample case, which despite this still achieves 82.6%

and 83.9% accuracy in the near-nozzle and centerline profiles, respectively. General

trends indicate a continuation of the pattern of near-nozzle slices performing better

than centerline slices, which is again unsurprising given the trends of Figs. 3-5 and

3-8. This discrepancy in accuracy combined with the stronger relative performance

of subspace directions w4 through w6 in predicting the centerline maximum tempera-

tures (as shown in Fig. 3-9) perhaps suggests that a five-dimensional subspace might

substantially improve the centerline temperature uncertainty ranges thanks to the
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noticeable trend of Fig. 3-9f, while the axial predictions would not improve as much.

Regardless of these details, the uncertainty reductions shown here represent a large

amount of computational savings in all cases. When compared against the greater

than 2,000 samples needed to fully converge the uncertainty of the full kinetic space,

the current subspace enables 300x fewer runs to achieve strong accuracy using just 7

samples. For cheaper simulations where the user is able to sample the subspace 30-50

times, the uncertainty ranges appear to converge with upwards of 80−90% accuracy,

depending on the sampling location. Large computational savings are similarly to

be expected when compared against comparable or even larger chemical models than

methane.

Figure 3-12: Percent accuracy of small-sample subspace uncertainty ranges against
the set of 2,000 full model runs, calculated across various slices in the turbulent
simulation domain. Temperature profile accuracies follow the pattern discussed in
Fig. 3-8 of stronger performance closer to the nozzle. CO profiles were not included in
the set of subspace targets but see fairly strong agreement nonetheless. The accuracy
was strong in all cases, indicating that with as low as seven samples the reduced three-
dimensional subspace provides useful uncertainty ranges, and that with upwards of
20 these uncertainty ranges become remarkably accurate.

For visualization of the case that is most likely to represent the converged un-

certainty quantification result of the three-dimensional subspace, Fig. 3-13 is ad-

ditionally provided. The plots in this figure contain the same information as Fig.
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3-11, though using statistics from the run of 50 subspace-informed latin hypercube

samples. As follows from Fig. 3-12, the agreement here is excellent overall, and rep-

resents a convincing improvement over the already strong results of Fig. 3-11. The

selection of number of samples used in the final forward uncertainty propgation is

thus another opportunity for users to tailor the method to their specific needs, with

options available for good accuracy and extremely reduced computational cost, or low

computational cost and remarkably high accuracy.

(a) (b)

(c) (d)

Figure 3-13: Uncertainty ranges for temperature and CO mass fractions at represen-
tative slices in the 2-D domain. The estimated ground truths are from 2,000 samples
in the full kinetic uncertainty space. The subspace results are computed using just
fifty samples in the three-dimensional subspace. (a) Temperature uncertainty along
the centerline. (b) Temperature uncertainty across the 𝑥/𝐷 = 30 near-nozzle slice.
(c) CO mass fraction uncertainty along the centerline. (d) CO mass fraction uncer-
tainty across the 𝑥/𝐷 = 30 near-nozzle slice.

In addition to the cost savings when compared to full-scale forward uncertainty

propagation, a more nuanced analysis of the computational savings can be made
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around the sensitivity analysis results of Fig. 3-4. There, the benefit of the active

subspace method in terms of more compact dimensional representations of the key

kinetic parameters was discussed. The sensitivity analysis revealed more than ten

highly sensitive reactions, individual perturbations of which would not even be pos-

sible with the seven samples used as a low-end benchmark here. Thus, even in the

more realistic case where the computational savings of the current method are com-

pared against a reduced mechanism or perturbations of highly sensitive reactions only

(as opposed to the fully detailed mechanism), the proposed framework still offers a

cheaper and more substantially reduced space within which users must sample. The

proposed framework appears to require no fewer samples than [16] in order to charac-

terize the same Sandia Flame D temperature uncertainties, indicating no increase in

savings compared to that work (and perhaps even a decrease in savings if using a more

conservative number of samples, such as 20 or 50). Due to the computational cost

of the forward problem in [16], however, the ground truth was not reported there.

Without this information, it is impossible to evaluate the accuracy of the ranges

presented in [16], making detailed comparison of accuracy between these methods

impossible. Apart from accuracy comparisons, the differing reduction methodology

performed here allows for a handful of key performance metrics and analyses that are

not possible with the methodology of [16]. Firstly, it enables accuracy estimation in

the flamelet table, which based on Figs. 3-5 and 3-12 is seen to be a good indicator

of the subspace’s global accuracy in the larger turbulent simulation, especially in the

more realistic case where 2,000 samples are not available for direct comparison. Next,

the preceding discussion in this subsection also shows how the global subspace’s accu-

racy metrics across the flamelet table can predict the spatial dependence of accuracy

in the turbulent simulation, enabling local accuracy predictions in the turbulent case

based on flow regime comparison against the cheap surrogate samples. Finally, this

methodology allows for the direct relation of uncertainty responses to kinetic param-

eters, as was shown in Fig. 3-4. This tradeoff between computational cost, accuracy

predictions, and kinetic interpretability is a decision that can be made based on the

needs of the case at hand, though the turbulent simulation shown here highlights the
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promise of this novel methodology in handling all three.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this work, a complete framework for flamelet-based kinetic sensitivity reduction

in a two-dimensional turbulent combustion simulation was demonstrated. Using a

multi-target, neural network-accelerated active subspace reduction in the flamelet ta-

ble, a three-dimensional kinetic subspace was discovered that was able to reconstruct

the full temperature uncertainty profile of the Sandia Flame D with strong accuracy.

The accuracy of this reconstruction corresponded fairly well both globally and lo-

cally to the accuracy observed in the much cheaper flamelet simulations, allowing for

meaningful a priori error estimates across the turbulent flame profile even in the real-

istic case where expensive convergence testing cannot be carried out in the full-scale

turbulent simulation.

In addition to the strong uncertainty quantification results, the behavior of the

subspaces across both the flamelet table input parameters and the turbulent sim-

ulation spatial domain revealed notable insights into the shifting kinetic sensitivity

directions across these various input domains, which would not be possible to capture

using a standard, scalar quantity of interest sensitivity method. While the kinetic sen-

sitivities are more complex and strain rate-dependent than expected in the literature,

the multi-target methodology proposed here is robust and maintained high accuracy

and significant dimension reduction. The temperature-based subspace is also shown
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to have good species profile predictive capabilities, with stronger species uncertainty

results expected when the network and subspace portions of the methodology are

adjusted to include species targets.

4.2 Future Work

The flexibility, multi-target applicability, predictable error ranges, low computational

cost, and kinetic interpretability of this method make it a promising tool for efficient

uncertainty quantification in similar small-scale turbulent combustion simulations as

well as in more expensive large eddy simulations in the flamelet regime. In short,

offloading the kinetic reduction cost to the cheap laminar flamelets allows for a re-

duction procedure that is entirely decoupled from and does not scale with the cost of

a given turbulent combustion simulation, yet can still predict its uncertainty behavior

well and with good a priori estimates of accuracy. These advantages open the door

to a broad range of future research questions.

Only the Sandia Flame D was investigated in this work as a turbulent simula-

tion in which to apply the novel methodology, but other flames at higher or lower

Reynolds numbers or with different fuels or geometries may prove interesting as ad-

ditional testing cases. The use of a flamelet-based approach is required due to the

physics-informed kinetic argument, yet the Reynolds-averaged turbulence model used

here represents a simple approach to treatment of the turbulence present in the flame.

Thanks to the extremely efficient dimensional compression, future application in large

eddy simulations is feasible and may provide insightful results. The flamelet table

investigated here was additionally defined by the two-dimensional mixture fraction

and strain rate phase space, though in certain unsteady or variable pressure cases

higher-dimensional flamelet tables may be required. The use of an artificial neural

network and the two-stage subspace reduction process were designed to enable effi-

cient generalization, though such larger flamelet tables were not explicitly tested in

this work. The two-stage subspace reduction process here also assumed uniformly

one-dimensional subspaces across the phase space of the flamelet table, which was

64



based solely on heuristic testing and in this case performed very well. Additional

optimization and treatment of these locally higher-dimension subspaces may further

enhance results, especially as larger input spaces and more complex mechanisms are

investigated.
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Appendix A

Additional Tables

Table A.1: Coordinates of the five labelled points in Fig. B-1.
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Table A.2: Index-ordered list of all unique reactions (18 total) present in the top 6
sensitivity indices of the five sampling locations of Fig. B-1. Little overlap in highly
sensitive reactions across these five directions indicates strain and mixture fraction
dependence of not only the kinetic sensitivity directions, as could be inferred from
Fig. 3-6b, but also the highly sensitive kinetic indices, further demonstrating the
efficient compression enabled by the active subspace methodology.
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Appendix B

Additional Figures
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Figure B-1: Copy of Fig. 3-6a, with five points labelled.
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Figure B-2: Activity scores of the (𝑎, 𝑍)-local subspaces at the locations specified in
Fig. B-1 and Table A.1 in (a-e), respectively.
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