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Abstract
Ship motion software has been a critical tool for designers to study the extreme
responses of ships in irregular waves. These studies and simulations often take thou-
sands of hours to predict and analyze the ship’s motion. Simulation results are often
imperative to ensure the development of accurate operational guidance, typically in
the form of plots, advising the crew on safe course and speed combinations to avoid
dangerous roll and pitch motions. Two programs in use by the Navy to fill this need
are the fast, lower-fidelity SimpleCode program and the slower, higher-fidelity Large
Amplitude Motion Program (LAMP). Previous efforts have developed a framework
to leverage machine learning through a Long Short-Term Memory (LSTM) network
architecture to augment the SimpleCode program by mapping its ship motion output
to the more accurate LAMP output without adding significant computational over-
head. This process of using an LSTM neural network to improve the SimpleCode
output provides the opportunity to supply predictions and guidance to the crew in
real-time. However, the limits of this mapping across various sea domains still need
to be discovered. By investigating these limits, a more generalized LSTM can be
realized through inductive transfer learning and a model agnostic meta-learning ap-
proach, one that leverages the training of previous networks to augment SimpleCode
across a broader range of seas or produce more accurate results on a narrow set of
sea conditions after very few training samples.

Thesis Supervisor: Themistoklis Sapsis
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

The safe operation of a ship in heavy weather or on high seas has long been a sig-

nificant concern for the maritime industry and navies worldwide. These operating

conditions can lead to excessive ship motions resulting in a range of hazardous condi-

tions such as loss of stability or surf-riding. Therefore, the ability to predict a ship’s

behavior in these conditions is of great importance.

One facet of ensuring the safe operation of a ship in these conditions is through

the development of ship-specific operational guidance regarding the ship’s heading

and speed for a given set of wave conditions that will minimize the risk of the ship

experiencing a catastrophic event. A developed product of this guidance is often

provided in the form of a polar plot, which is a two-dimensional plot of the ship’s

heading and speed and depicts the points at which ship motion becomes unsafe for a

given speed and heading combination in the present seas. However, the development

of these tools dictates the need for a dependable analysis of the hull’s seakeeping,

behavior, and performance qualities. This is often achieved through the numerical

modeling of the ship’s motion in waves [9].

One tool developed by the U.S. Navy Defense Advanced Research Projects Agency

(DARPA) in 1988 and still in use today for the numerical modeling of ship motions
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is the Large Amplitude Motion Program (LAMP). LAMP employs a time-stepping

approach using a three-dimensional potential flow panel method to compute all forces

acting on the ship at each time step [11]. Furthermore, LAMP comes in four ascending

solution "levels" of fidelity ranging from LAMP-1, the body linear solution, to LAMP-

4, the body nonlinear solution. In essence, LAMP can produce high-fidelity results

of ship motion but at a high cost computationally [8]. However, the high fidelity

and high computation cost result in long computation times, hindering operational

guidance development. It is infeasible to provide updated guidance in real-time, nor

is it reasonable to provide guidance for every possible set of conditions [9].

Similarly, SimpleCode provides a computationally cheaper option than LAMP but

with reduced fidelity. SimpleCode simplifies the local variations of wave pressure,

thereby allowing the surface integral in hydrostatic and Froud-Krylov forces equa-

tions to be treated as a volume integral, allowing the forces acting on the submerged

volume to be evaluated instantaneously and only at the geometric center of the vol-

ume while added mass and damping terms are handled via coefficients. Ultimately,

the SimpleCode approach has been found to be a "suitable candidate" for reproducing

the most important nonlinear ship motions [9].

In the case of extreme ship motions in random waves, it has been shown that the

nonlinear ship dynamics that drive large amplitude motions require modeling via

Monte Carlo simulation when in the time domain. The rarity of these extreme events

dictates that a large quantity of data is needed to study these extreme events, often

making a direct Monte Carlo simulation impractical due to the sheer quantity of sim-

ulation data [2]. This led to the development of computationally low-cost models

such as SimpleCode, and SimpleCode is approximately two orders of magnitude faster

than LAMP [8]. In fact, this reduced computation time utilizing SimpleCode is suffi-

cient to employ in real-time scenarios. It would take SimpleCode approximately five

minutes to generate a polar plot from real-time satellite weather data. In contrast,

LAMP would take approximately ten hours to generate the same, albeit a more ac-

curate plot, in the same scenario [8]. However, this reduced computation time comes
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at the cost of reduced accuracy, thereby reducing the usability of SimpleCode. This

created an opportunity to leverage machine learning to improve the accuracy of Sim-

pleCode while maintaining the reduced computation time by mapping SimpleCode

ship motion output to LAMP ship motion output.

This opportunity has been explored in previous work and serves as the foundation

for this thesis. Specifically, it has been demonstrated that a long-short term memory

(LSTM) neural network can produce low error mappings between SimpleCode output

and LAMP outputs across a range of conditions with little additional computational

overhead [8]. These previous efforts are discussed further in chapter 2. While the pre-

vious work demonstrated multiple successful applications using LSTM in conjunction

with SimpleCode and LAMP, it was primarily limited to mapping unimodal seas and

small-scale experiments [8]. This thesis expands upon the previous efforts by focusing

on the potential of transfer learning techniques to expand both the training domain

and the testing domain covered by a single LSTM through replication and alteration

on an ad hoc basis.
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Chapter 2

Background and Previous Work

Previous efforts utilized LSTM neural networks to map the fast, low-fidelity Simple-

Code output and the slower, high-fidelity LAMP output for ship motion prediction

across various conditions. His work demonstrated the initial capabilities and chal-

lenges surrounding using an LSTM model to supplement the SimpleCode model.

Specifically, and in relation to this thesis, previous work has demonstrated that [8]:

1. The LSTM can produce a low error map between SimpleCode and LAMP at a

very low computational overhead.

2. The LSTM approach is successful in multiple applications, including ship motion

and polar plot generation

3. Improving performance across large domains can be accomplished through the

proper selection of training domain points as opposed to simply increasing the

number of training points.

4. The limits of a single LSTM’s ability to cover a large domain were not encoun-

tered.

5. Hyperparameters selected were robust across the many problems and scenarios.
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Ultimately, this thesis endeavors to use the same LSTM networks and structures

to find the limit of an LSTM’s ability to cover a larger domain and uses inductive

transfer learning to push that limit further. However, a brief overview of the previous

work serves as the foundation for this thesis.

2.1 Neural Network Structure

2.1.1 Full Connected Neural Network

The foundation of a neural network is the "neuron" or "node", and it is a non-linear

activation function that receives an input vector, 𝑥 ∈ R, parameterized by a weight

vector, (𝑤1, . . . , 𝑤𝑚) ∈ R and offset, 𝑤0, and produces a single output vector [4]. The

non-linear activation functions are necessary to change the representational capacity

of the neuron. Any bounded piecewise of a continuous and non-constant function

can serve as an activation function. However, common activation functions are step

function, rectified linear unit (ReLU) function, sigmoid function, hyperbolic tangent

function, or softmax function [5]. Figure 2-1 shows a schematic of a single node in a

neural network.

Figure 2-1: Schematic of a single node in a neural network.

Mathematically, the output of a node is given by:

𝑎 = 𝑓(𝑧) = 𝑓((
𝑚∑︁

𝑗=1
𝑥𝑗𝑤𝑗) + 𝑤0) = 𝑓(𝑤𝑇 𝑥 + 𝑤0) (2.1)
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We can then organize multiple neurons into hidden layers and a neural network.

A layer consists of multiple neurons that are not connected to each other. Each

layer consists of, and is considered fully connected, neurons that all receive the same

input from a vector, either initial or from a previous layer [4]. These layers are then

connected to form a neural network consisting of an input layer, hidden layers, and a

final output layer where the previous layer’s outputs are fed as inputs into the next

layer. Figure 2-2 shows the schematic of a neural network with a single hidden layer.

In figure 2-2, 𝐴𝑙 is the activation vector, thus 𝐴0 is the input vector, 𝑍 𝑙 is the pre-

activation layer, 𝑓 𝑙 is the activation function, 𝑊 𝑙 is the weight vector, and 𝑊 𝑙
0 is the

bias of layer 𝑙. Mathematically, the pre-activation and activation layers are defined

by 2.2 and 2.3.

Figure 2-2: Schematic of a neural network.

𝑍 𝑙 = 𝑊 𝑙𝐴𝑙−1 + 𝑊 𝑙 (2.2)

𝐴𝑙 = 𝑓 𝑙(𝑍 𝑙) (2.3)

Ultimately, the objective of any given network when given input is to find the right

combination of weights and biases needed to produce the correct output or as close as

possible to it. Finding these right combinations of weights and biases is often accom-

plished through a process used during network training called error back-propagation.
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First, weights and biases are initialized as a random number, and the outputs are cal-

culated for a given set of inputs (often referred to as a "forward pass"). The loss,

broadly speaking, is the error associated with the difference between the neural net-

work output and the correct output is determined. Finally, error back-propagation is

performed by calculating the gradient of the loss function with respect to the weights

and biases of the network at the output and then updating the weights and biases

back towards the offsets. This process is repeated until the loss is minimized. In

summary, weights and biases are randomly initialized, an output is generated given

some input, the loss is computed, the gradient of the loss with respect to the weights

and biases is calculated, and the weights and biases are updated [4]. Figure 2-3 shows

an overview of this process.

Figure 2-3: Overview of the error back-propagation process.

This cycle of forward and backward passes to find the proper weights and biases is

repeated on a data set designated as the "training data". The training data is a set

of input-output pairs used to teach the network what combination of weights and

biases produce the correct output. However, care must be taken to avoid overfitting

the network to the training data; that is, the network must be able to generalize to

new data.

Overfitting, in essence, is when the network effectively memorizes the training set,

making it ineffective at predicting the correct outcomes with new datasets. To avoid

overfitting, the training data is split into training and validation sets. The training

set is used to train the network, as previously discussed, and the validation set is

used to evaluate the network’s performance. This network performance evaluation

occurs after each training epoch, but no error back-propagation occurs. Training can
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continue so long as the validation errors continue to trend down. If the validation

errors begin to increase or stop changing, then training is halted to avoid overfitting

the training data. The network is then tested on a set of data not used in training

or validation, the test set, to determine the network’s performance on new data. The

results from the test set serve as a good measure of the generality of the network

since they are derived separately from the training and validation sets [4].

2.1.2 Long-Short Term Memory

One shortcoming of a fully connected neural network identified in previous work for

our use case is that it relies on instantaneously supplied input data. However, our

extreme events tend to take the form of a rare transition occurring many standard

deviations away from the mean [18] [8]. A fully connected neural network is not well

suited to capture the causal relationships from our time-series input data. Thus, a

unique recurrent neural network (RNN) architecture referred to as long-short term

memory (LSTM) is introduced. An RNN differs in that it includes connections to

nodes in previous time steps, but this makes error back-propagation difficult because

the gradients tend to vanish, making it very difficult to train [4]. LSTM architecture

addresses this through its ability to learn long-term dependencies and alter the error

through three gating networks: the input gate, the forget gate, and the output gate [7].

The general architecture of an LSTM network is shown in 2-4 and governed by

equations 2.4 through 2.9.

𝑔𝑡 = tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) (2.4)

𝑖𝑡 = 𝜎(𝑊𝑙𝑥𝑡 + 𝑈𝑙ℎ𝑡−1 + 𝑏𝑙) (2.5)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (2.6)
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Figure 2-4: Schematic of a LSTM network.

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (2.7)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (2.8)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (2.9)

Where the elements above are summarized as follows [7]:

• 𝑥 is the input vector.

• 𝑖 is the input gate.
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• 𝑊 and 𝑈 are the weight matrices.

• 𝑏 is the bias vector.

• 𝑔 is the cell gate.

• 𝑐 is the cell state.

• 𝜎 is the sigmoid function.

• ⊙ is hadamard product.

All networks used in the previous work this thesis is based on are LSTMs, and they

consist of an input layer, two LSTM hidden layers consisting of 30 neurons each, a

linear layer, and an output layer [8]. The input layer accepts inputs of wave height and

SimpleCode predictions for heave, roll, pitch, and vertical bending moments (VBM).

This is provided to the first LSTM layer, which then generates and outputs a hidden

state vector, ℎ1
𝑡 , that will serve as the input to the second LSTM hidden layer. The

output of the second LSTM hidden layer, ℎ2
𝑡 , is then passed to the linear layer, which

generates a vector of predictions, 𝑦𝑡, containing predictions for heave, roll, pitch, and

VBM. This process is repeated at each time step, 𝑡, and a schematic of this process

is shown in Figure 2-5 [8].

2.2 Input and Output Data

SimpleCode predictions for heave, roll, pitch, and VBM at each time step, along with

wave surface elevation and the ship’s center of gravity, served as the input vector for

the LSTM network in all experiments. The wave elevation was calculated based on the

Longuet-Higgins model, which was used in SimpleCode and LAMP calculations [9].

The output vector consisted of predictions for heave, roll, pitch, and VBM. The

outputs are compared to a LAMP record of the same conditions as the SimpleCode

input.

Normalizing all input and output data is necessary due to the sheer scale of the data.
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Figure 2-5: LSTM architecture used in this thesis and previous work [8].
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Data with such an inherently large magnitude may have a dominating effect over

smaller magnitude inputs, thereby hampering the neural network’s performance and

convergence. The input and output data were normalized using equation 2.10 [8].

𝑥𝑛𝑜𝑟𝑚 = 𝑥 − 𝜇

𝜎
(2.10)

Where 𝑥𝑛𝑜𝑟𝑚 is the normalized data variable (e.g., SimpleCode heave), 𝑥 is the data,

𝜇 is the mean of the data, and 𝜎 is the standard deviation of the data. Afterward,

the standardized output data is reverted to the original scale using equation 2.11 [8].

𝑥 = 𝑥𝑛𝑜𝑟𝑚𝜎 + 𝜇 (2.11)

2.3 Ship Description

For all simulations of this thesis and those in previous work, the ship used was the

flared variant of the Office of Naval Research (ONR) Topside series [3]. The Topsides

series was developed to research the effects of geometry on ship motions and stabili-

ties, and the flared variant has a similar topside flare to that of modern, large surface

combatants [15]. The hull is shown in Figure 2-6 and its characteristics are listed in

Table 2.1 [8].

Parameter Value
Length 157 m
Beam 22 m
Draft 5.5 m

Displacement 8,730 t

Table 2.1: Hull characteristics of the ONR Topside flared variant [8].
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Figure 2-6: Hull geometry of the ONR Topside flared variant [15].

2.4 Hyperparameters

Hyperparameters consist of many arbitrary model parameters that are determined by

the user when constructing a network and impact model performance. Some examples

of hyperparameters available are the learning rate or the number of training epochs,

and they are used to tune the LSTM networks. This thesis used previous work for

all hyperparameter tuning except for briefly exploring additional hidden layers and a

larger layer size. Expressly, the following hyperparameters were set based on previous

work in reference [8]:

1. Time Resolution of the data was set at 0.1-second intervals.

2. Training Data Sequence Length was set to 1,800 seconds resulting in 18,000

points when sampled at 0.1-second intervals.

3. Number of Layers and Hidden State Size were set at 2 and 30 respectively.

4. Learning Rate was set at 0.01.
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Due to the infeasibility of tuning hyperparameters for every test case, only two simple

cases were used to tune the hyperparameters and used throughout this thesis: a test

case of head-on seas and a test case of beam seas. In summary, the hyperparameter

values were initialized at random values, used to train a model and record the models’

performance on the test case. This process was repeated for 1,000 iterations, and

the hyperparameters that resulted in the best performance were used for the rest of

the experiments and throughout this thesis. A full description of hyperparameter

performance can be found in reference [8].

2.5 Objective Functions

The objective function is used to determine the performance of the LSTM network and

is a measure of the difference between the predicted and actual outputs of the LSTM

network. In essence, one aims to minimize the objective function, thereby minimizing

loss. Three separate objective functions were used in this thesis and previous work

to determine how effective an LSTM network is at predicting ship motions: mean

squared error (MSE) was particularly useful for training, amplitude magnified MSE

(AMMSE), which emphasizes points with greater magnitude, and peak MSE which

only points of local peaks are summed [8].

MSE: 𝐿 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (2.12)

AMMSE: 𝐿 = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 · (𝜀1 + 𝜀2𝑦
2
𝑖 ) (2.13)

Peak MSE: 𝐿 = 1
𝑁

𝑁∑︁
𝑖=𝑝𝑒𝑎𝑘

(𝑦𝑖 − 𝑦𝑖)2 (2.14)

where 𝑦𝑖 is the actual output, 𝑦𝑖 is the predicted output, 𝑁 is the number of points,

and 𝜀1 and 𝜀2 are constants. Ultimately, MSE was used as the objective function
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in most experiments. A full description of the objective functions can be found in

reference [8].

2.6 Model Performance

Apart from the objective function mentioned in the previous section, the Single Sig-

nificant Amplitude (SSA) was used to determine the usefulness and performance of

the LSTM network. The SSA was used heavily in previous work and this thesis

to compare the performance between different networks, or an LSTM network and

LAMP. It serves as an alternative to the absolute maximum value observed and is an

estimate of the "largest one-third of observed amplitudes of motion " [9]. The SSA is

calculated using the following equation:

SSA = 2
√︁

𝑉 𝑥 (2.15)

Where 𝑉 𝑥 is a variance estimate of the amplitude observed calculated from the col-

lection of peaks and troughs of the motion under investigation [9]. More information

for the metrics for model performance can be found in reference [8].
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Chapter 3

Unimodal LSTM’s in Bimodal Seas

Previous work by Howard briefly explored the effects and merit of expanding the

training domain range by a small amount. This was accomplished by creating three

separate LSTM networks denoted “Narrow”, “Medium”, and “Wide” LSTM, where

each name describes the relative range of the training domain compared to the others.

All three LSTMs were trained exclusively on unimodal seas using evenly spaced train-

ing domain points centered around a midpoint for each dimension of the unimodal

seas, four dimensions: significant wave height, modal period, sea heading angle (rela-

tive to the ship), and ship speed. Note that the sea heading angle is always relative to

ship heading, which is established at 0∘. The significant wave height and modal pe-

riod are of the Bretschneider wave spectrum. The values for the training data points

are listed in Table 3.1. The Medium and Wide training data sets were constructed of

all possible combinations of their respective training points, 81 simulations in total.

The Narrow training set was constructed of 81 simulations focused on the domain

midpoint values [8].

The three LSTMs mentioned above were tested against a set of unimodal seas to

determine the impact of increasing the training domain range across the four domain

parameters. The unimodal test set consisted of varying two parameters from a mini-
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Parameter Narrow Medium Wide
Significant Wave Height (m) 7.5 7.0, 7.5, 8.0 6.5, 7.0, 8.5
Modal Period (sec) 15 14, 15, 16 13, 15, 17
Sea Heading Angle (∘) 135 125, 135, 145 115, 135, 155
Ship Speed (knots) 8 6, 8, 10 4, 8, 12

Table 3.1: Training points for Narrow, Medium, and Wide LSTM’s [8].

mum to a maximum value at a set increment size. The other two domain parameters

were fixed at the midpoints. Table 3.2 describes the unimodal test set for the Narrow,

Medium, and Wide LSTMs. 2-dimensional SSA error heatmaps of pitch and roll were

created for each pair of variables and each LSTM. The specific results for all three

LSTMs in the test case can be found in reference [8].

Parameter Min Max Midpoint Increment
Significant Wave Height (m) 5.5 9.5 7.5 0.5
Modal Period (sec) 11 19 15 1
Sea Heading Angle (∘) 95 175 135 10
Ship Speed (knots) 0 16 8 2

Table 3.2: Unimodal test set for Narrow, Medium, and Wide LSTM’s [8].

The results demonstrated that increasing the range of the training domain, even

slightly, can significantly impact an LSTM network’s ability to extrapolate to regions

outside the training domain [8]. The Medium LSTM performed much better than

the Narrow LSTM across the test set, and the Wide LSTM performed better than

the Medium LSTM in the test set. Although, the most considerable performance

improvements were demonstrated in the former comparison.

Thus, new test sets were created to explore the performance of the LSTMs on bimodal

seas test sets. Bimodal sea states are sea states with both primary and secondary

seas present. Thus, the parameter domain was expanded from four variables to seven

by including secondary significant wave height, secondary wave modal period, and

secondary wave heading angle. The new test set of bimodal seas fixed primary seas

at the midpoints mentioned in Table 3.2 and fixed secondary significant wave height
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and secondary modal period at 3 meters and 20 seconds, respectively. The secondary

wave heading angle was varied from 0 to 360 degrees in increments of 10 degrees.

Results of the three unimodal LSTMs testing on the bimodal test showed that the

LSTMs could provide valuable corrections in the presence of secondary seas, but the

results were inconsistent [8]. Thus, bimodal training may be warranted.

For comparison, a fourth LSTM was created, one trained on bimodal seas. The

primary seas of the Medium LSTM training set were duplicated and converted to

bimodal seas by randomly adding secondary seas to 72 of the 81 training records,

each with a secondary significant wave height of 3 meters and secondary modal period

of 20 seconds, while the remaining nine records remained unimodal. This "Bimodal

LSTM" was then tested on both test sets. The average roll and pitch SSA error for

SimpleCode and all LSTMs across both test sets are shown in Table 3.3 [8].

Model Roll Pitch
Unimodal Bimodal Unimodal Bimodal

Simple Code 2.49 3.18 0.88 0.88
Narrow 1.77 0.36 0.40 0.23
Medium 0.71 0.64 0.10 0.03
Wide 0.45 0.72 0.07 0.05
Bimodal 0.71 0.26 0.05 0.04

Table 3.3: Average SSA errors in unimodal and bimodal test sets [8].

These tests serve as the bridge point to the work conducted in this thesis. The

tests conducted by Howard [8] demonstrate that the LSTMs can provide valuable

corrections to the SimpleCode model in the presence of secondary seas, especially with

bimodal training. Additionally, the LSTMs can extrapolate to regions outside the

training domain. The efforts of this thesis will build upon the work of Howard et al. [8]

by exploring the LSTM’s performance on a greater test domain and investigating

the merits of leveraging transfer learning to improve the performance of a unimodal

trained LSTM versus training exclusively on bimodal seas.

27



3.1 Testing Domain Expansion

The first step was to expand the test domain to include a greater range of potential

secondary seas. This was accomplished in a manner similar to the process outlined

previously and referenced in Table 3.2. The test domain was expanded to seven pa-

rameters: primary and secondary wave system significant wave height, modal period,

sea heading angle, and ship speed. Two of the seven parameters varied from a min-

imum to a maximum value at a set increment size. The other five parameters were

fixed at a specific point based on LSTM model training or the observed midpoint of

the parameter range. For all but primary and secondary sea headings, the fixed point

also corresponds with the midpoint of the parameter when varied. A fixed secondary

sea heading angle far from the primary sea heading angle used for training was chosen

as previous work indicated it was the poorest performing area. Table 3.4 describes

the test set.

Parameter Min Max Fixed Point Increment

Primary System

Significant Wave Height (m) 5.5 9.5 7.5 0.5
Modal Period (sec) 11 19 15 1
Sea Heading Angle (∘) 0 360 90 15
Ship Speed (knots) 0 16 8 2

Secondary System
Significant Wave Height (m) 1.5 5.5 3.5 0.5
Modal Period (sec) 16 24 20 1
Sea Heading Angle (∘) 0 360 270 15

Table 3.4: Bimodal test set for Medium and Wide LSTMs.

3.2 Measuring Performance

Only the Medium LSTM and Wide LSTM were tested due to their superior perfor-

mance compared to the Narrow LSTM. The training was identical to that described

above and in Table 3.1. Two-dimensional heatmaps of model error were generated

for each possible pair of variables and each LSTM. This results in 21 pairs and 84

heatmaps of LSTM models, one for pitch and one for roll. While heave error was
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also explored, it was always on the magnitude of centimeters, whereas roll and pitch

errors exhibited significantly more error. Thus, the focus remained on the roll and

pitch errors. Model error was defined as the absolute value of the difference between

the model SSA and the LAMP SSA as seen in Equation 3.1. This established a metric

for comparing different models.

Model Error = |𝑆𝑆𝐴𝐿𝑆𝑇 𝑀 − 𝑆𝑆𝐴𝐿𝐴𝑀𝑃 | (3.1)

Additionally, these heatmaps were displayed with a similar heatmap depicting the

model error of SimpleCode for the same test set. Finally, a third heatmap was gener-

ated, dubbed the “delta heatmap”, based on the difference between the SimpleCode

model error and the respective LSTM model error. In other words, the third heatmap

is the difference in model error between two separate models. This is shown math-

ematically by Equation 3.2 and allows us to quickly, visually compare the relative

performance of the two models directly.

Δ𝑆𝑆𝐴 = (Model Error)𝑆𝑖𝑚𝑝𝑙𝑒𝐶𝑜𝑑𝑒 − (Model Error)𝐿𝑆𝑇 𝑀 (3.2)

This was performed for both roll error and pitch error, bringing the total to 210

heatmaps used to compare the performance of the Medium and Wide LSTM in bi-

modal seas over that of SimpleCode. The delta heatmaps were color-coded, and a

new scale was established to improve their readability. These practices were reused

throughout this thesis. In the delta heatmaps, green indicates better performance by

the LSTM, while red indicates a better performance by SimpleCode. The color scale

is centered on zero, such that a white color indicates a zero difference between the

two models.

For the sake of brevity, only heatmaps exploring combinations of primary and sec-

ondary sea heading angles and ship speed will be displayed and discussed here. The
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reason for choosing these parameters is that they are the only parameters in the do-

main that change in real time aboard a ship. All other parameters can be pretrained

by a network based on location and the time of year due to the availability of large

historical datasets and current weather reports. Wave heading angles and ship speed

are the only parameters changed frequently and rapidly by the ship. In other words,

these are the only three parameters of the domain the ship has control over and are

rapidly changing. This is discussed further in Section 4.1.

Additionally, both the Medium and Wide LSTMs performed nearly identically. Thus,

only Medium LSTM heatmaps will be included in the written report moving forward.

All heatmaps will be stored in the repository listed in Appendix C. All heatmaps in

the written thesis, in larger print, can be found in Appendix A and Appendix ??.

3.3 Results: Medium LSTM

These results on the expanded bimodal domain served as a baseline measure of per-

formance for later work. For the reasons mentioned earlier, only heatmaps exploring

combinations of primary and secondary sea heading angles and ship speed will be dis-

played and discussed here. In general, variation of the primary seas had a much more

significant impact on the performance of the LSTM compared to SimpleCode than

the variation of secondary seas parameters. Specifically for the parameters discussed

in this section, the expansion of the primary seas heading domain coupled with the

addition of bimodal seas increased the roll error dramatically in some areas, often to

the point of performing worse than SimpleCode. At the same time, the pitch stayed

relatively small but still significant. However, varying secondary wave heading angles

had a much less profound effect than varying primary wave headings. The unimodal

LSTMs show some capacity to extrapolate to seas beyond their training, but addi-

tional bimodal training is warranted. A summary of the absolute maximum SSA

model error, the location of the maximum, and the mean model error for each exper-

iment in both roll error and pitch error are shown in Table 3.5 and Table 3.6. Here,

it is easy to see that the maximum error in both roll and pitch is often equal to or
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much greater than that of SimpleCode, while the mean remains comparable in cases

of expanded primary wave headings. This demonstrates how the LSTM struggles to

extrapolate in this much larger domain so far from its training point. Meanwhile, the

secondary seas heading angle seems to have little impact on the performance of the

LSTM.

Varied Parameters SimpleCode LSTM
Max Mean Max Mean

Primary Heading vs Speed 6.67 2.60 9.78 3.12
Secondary Heading vs Speed 6.82 4.18 2.25 0.49
Primary vs Secondary Heading 6.67 2.62 11.07 3.05

Table 3.5: Maximum and mean SSA roll error in bimodal seas.

Varied Parameters SimpleCode LSTM
Max Mean Max Mean

Primary Heading vs Speed 1.67 0.71 1.98 0.52
Secondary Heading vs Speed 1.70 1.23 0.51 0.17
Primary vs Secondary Heading 1.37 0.65 1.35 0.38

Table 3.6: Maximum and mean SSA pitch error in bimodal seas.

3.3.1 Primary Wave Heading Angle vs Ship Speed

Consistent with previous results on the smaller bimodal set, the Medium LSTM

performed better than SimpleCode within and near the realm of its training domain

(i.e., the LSTM performed will near the speeds and heading it was trained on) and

performed worse when wave angles were near the beam. In the case of roll error, the

LSTM performed best near its training headings and the mirror of those headings.

Performance dropped the farther the heading was from the training domain, especially

with following seas but also in bow seas at particularly low speeds. There is also a

degradation in performance when seas are near the beams for both roll and pitch.
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Figure 3-1: Primary wave heading angle vs ship speed roll error.
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Figure 3-2: Primary wave heading vs ship speed pitch error.

3.3.2 Secondary Wave Heading Angle vs Ship Speed

Figure 3-3 and Figure 3-4 show the performance of the Medium LSTM when the

secondary wave heading angle is varied. The results demonstrate that the variation

of the secondary wave heading angle and speed has a much smaller impact on the

performance of the LSTM compared to SimpleCode. Furthermore, the addition of

speed variation to secondary wave heading variation had very little influence over
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LSTM performance as these results for both roll and pitch are very similar to previous

work varying secondary wave heading alone [8].

Figure 3-3: Secondary wave heading vs ship speed roll error.
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Figure 3-4: Secondary wave heading vs ship speed roll error.

3.3.3 Primary vs Secondary Wave Heading Angle

Figure 3-5 and Figure 3-6 show the performance of the Medium LSTM when both

the primary and the secondary wave heading angles are varied. However, the primary

wave heading angle is limited to 180∘ to increase the legibility of the graph. While

it is not true that the LSTM performance is symmetric about 180∘, the results are

similar enough to warrant the simplification. Again, the LSTM performs the poorest
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with following seas or beam seas.

Figure 3-5: Primary wave heading vs secondary wave heading roll error.
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Figure 3-6: Primary wave heading vs secondary wave heading roll error.
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Chapter 4

Improving LSTM performance in

the Bimodal Domain

With a baseline performance in an expanded, varying bimodal domain established,

the next step is to investigate opportunities to improve the performance of the LSTM

in the bimodal domain. The evident approach is the development of bimodal-trained

LSTMs, and this approach was briefly investigated in previous work and discussed

in Section 3. The conclusion was that the bimodal-trained LSTM generally outper-

formed the unimodal-trained LSTM in bimodal cases and performed comparably to

unimodal LSTMs in unimodal seas, albeit inconsistently [8]. The less obvious ap-

proach is to investigate the potential to use elements of transfer learning to improve

the performance of a unimodal trained LSTM in the bimodal domain.

4.1 Transfer Learning

Broadly speaking, transfer learning is a set of techniques that aim to extract knowl-

edge from a source domain and leverage that knowledge to improve the learning of

a model on a target domain [12]. Transfer learning is particularly useful when the

problems are different but very similar, as is this use case [14]. While training a
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neural network for every possible set of seas is impossible, using a robust unimodal

LSTM and training it from real-time weather data is feasible. The secondary wave

systems may be described as a small swell from a distant storm; thus, a ship may use

a unimodal LSTM most of the time and leverage transfer learning from the available

data, perhaps even onboard sensors, to update the LSTM as needed.

To give a more formal definition of transfer learning from Pan et al., “Given a source

domain 𝒟𝑆 and learning task 𝒯𝑆, a target domain 𝒟𝑇 and learning task 𝒯𝑇 , transfer

learning aims to help improve the learning of the target predictive function 𝑓𝑇 in 𝒟𝑇

by using the knowledge in 𝒟𝑆 and 𝒯𝑆, where 𝒟𝑆 ̸= 𝒟𝑇 and 𝒯𝑆 ̸= 𝒯𝑇 . [12]”

Regarding the use case investigated in this thesis, the source domain would be

considered the unimodal seas training set, while the target domain is the bimodal

seas training set. Similarly, the source and target learning tasks are the unimodal

seas test sets and bimodal seas test sets corrections, respectively. To help demon-

strate this, we can think of the source domain data in the form of label data pairs,

𝒟𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖 ), . . . , (𝑥𝑆
𝑛, 𝑦𝑆

𝑛 )} [16]. Here, 𝑥𝑆
𝑖 is the instance of the input vector from

SimpleCode discussed in Section 2.1.1 with specific unimodal waves, and 𝑦𝑆
𝑖 is the

instance of the desired output from the LSTM, corresponding with the ship motion

determined by LAMP using the same unimodal wave system inputs as the Simple-

Code record. Likewise, the target domain data can also be written as data pairs,

𝒟𝑇 = {(𝑥𝑇
𝑖 , 𝑦𝑇

𝑖 ), . . . , (𝑥𝑇
𝑛 , 𝑦𝑇

𝑛 )} [16] where 𝑥𝑇
𝑖 is again the instance of the input vector

from SimpleCode, but in from a bimodal wave system training set. Again, 𝑦𝑇
𝑖 is the

instance of the desired output from the LSTM, corresponding with the ship motion

determined by LAMP using the same wave system inputs as the SimpleCode record,

bimodal in this case. We are applying knowledge from the unimodal seas to the

LSTM model in the bimodal seas by initializing the model with weights and biases

already learned from the unimodal training set.

This specific case can be further described as inductive transfer learning. Inductive

transfer learning is a subset of transfer learning in which the target task differs from
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the source task while the source and target domains may or may not be the same.

The labeled data pairs in the target domain are required to “induce” the correct

predictive model function [12].

Transfer learning has become a standard for neural networks in image processing,

but it is still relatively young in applications involving time series. Some reasons for

this are due to data scarcity driven by the high cost of labeling time-series data and

the lack of transfer learning portability because data format changes between target

domains [10]. However, neither of these challenges is present in this use case. The

source and target domains are similar, with nearly identical data formats. However,

for real-world applications, we want fast model adaptation. Thus, the aim was to in-

vestigate the limits of the transfer learning process so that as few samples as practical

are taken when investigating the new domain and task.

4.2 Model Agnostic Meta-Learning

Model agnostic meta-learning (MAML) provides a framework for inductive transfer

learning problems that will help adapt a model to a new problem domain with very

few data samples [14]. Put plainly, the objective of MAML is to learn a set of suitable

initialization parameters for a network such that the network can be quickly adapted

to a new task after only a few task-specific samples to learn, often referred to as

few-shot problems [1]. In other words, we want to develop a base model that can

be easily fine-tuned and adapted to perform well on a new domain and task. The

complete MAML algorithm and its development is detailed in [6].

To fully describe the MAML, some new but similar terms must be introduced. First,

in this meta-learning scenario, we have a collection of learning tasks, 𝜏𝑖, drawn from

a distribution over tasks 𝑝(𝜏). Using met-training, the model learns a new task 𝜏𝑖

drawn from 𝑝(𝜏) by using K labeled samples and updated via feedback from loss, ℒ𝜏𝑖
.

Finally, the model is tested on new samples from 𝜏𝑖, and the model is updated [6].

Each learning task consists of a training dataset to update the model and a testing
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dataset, sometimes called query and support datasets, respectively, to evaluate the

performance. Each dataset is again comprised of (𝑥𝑖, 𝑦𝑖) data pairs as before. It works

via an inner loop that initializes a base network with parameters 𝜃 and updates the

parameters using the gradient descent of each task for each step. This results in

parameters adapted to each task that then update 𝜃 based on the performance with

the test samples. This is repeated until convergence is reached [13].

In the problem outlined in this thesis, the initial base model is the Medium unimodal

LSTM discussed previously. This starting point was repeated for every pair of varied

parameters. It was assumed that this gives a starting point focused on the most

influential input parameters in determining the ship’s motion. The task distribution

is all the combinations of varied parameters within a bimodal test set. The learning

tasks are each of the individual combinations of the varied parameters, while the

others are held stagnant. The objective was to establish a baseline LSTM model well

suited to handle changing seas with only a few training samples.

4.3 Unimodal and Transfer Learning Results

4.3.1 Random Samples

As discussed earlier, only a few samples were taken in each iteration. Initially, five

random samples were taken from a given learning task. Unsurprisingly, this leads to

inconsistent results. Heatmaps were plotted to compare the performance of the base

unimodal LSTM without additional bimodal training and the LSTM after training

on five random samples of bimodal seas. A third heatmap was created as before,

using Equation 3.2, except the SimpleCode model error is replaced with the base

LSTM model error. Thus, a positive, green number indicates that the LSTM model

that underwent the transfer learning process performed better. In contrast, a red,

negative number indicates the base model performs better in those conditions. The

five random samples selected for additional training are highlighted in yellow boxes.
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Figure 4-1 through Figure 4-12 display the heatmap results of roll and pitch SSA error

across the primary and secondary wave heading domains. Generally, pitch prediction

was improved through this method. Pitch either retained a similar value to the base

model or improved by a large amount. This was true for both primary and secondary

wave heading angles. Roll, on the other hand, shows improvement near new training

samples and worsening predictions in other areas. Specifically, areas of the domain

that were not covered by the new bimodal training nor the original unimodal training,

at least in the case of varying primary seas heading angle. Although, this was observed

in the case of a varying secondary wave heading angle too.

This may occur due to the unprincipled sampling method. In other words, by leaving

the new domain samples up to chance, we may be hurting the process instead of

helping it. This is explored in the next section by controlling the sampling process

on a very rudimentary level.
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Figure 4-1: Primary wave heading angle vs ship speed roll error: Unimodal Training

and Random Transfer Learning.
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Figure 4-2: Primary wave heading angle vs ship speed pitch error: Unimodal Training

and Random Transfer Learning.
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Figure 4-3: Secondary wave heading angle vs ship speed roll error: Unimodal Training

and Random Transfer Learning.
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Figure 4-4: Secondary wave heading angle vs ship speed pitch error: Unimodal Train-

ing and Random Transfer Learning.
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Figure 4-5: Primary vs Secondary wave heading angle roll error: Unimodal Training

and Random Transfer Learning.
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Figure 4-6: Primary vs Secondary wave heading angle pitch error: Unimodal Training

and Random Transfer Learning.

4.3.2 Controlled Samples

To achieve better performance on the meta-learning model after transfer learning,

the sampling process was controlled by ensuring that the samples were drawn from

an even spacing throughout the domain. Furthermore, the sample size was increased

to eight to sample the entire domain better. The eight samples are highlighted in
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yellow boxes. The samples were spaced every 90∘ at 12 and 14 knots to cover the

whole domain. Figure 4-7 through Figure 4-12 display the results.

Pitch error experienced nearly identical improvements to random sampling. How-

ever, roll SSA error was improved slightly in the case of a primary wave heading

angle variation and worsened in secondary wave heading angle variation. In the case

of a primary wave heading angle variation, the roll error improved throughout the

domain, and in slightly greater magnitude, except for the area where the original uni-

modal LSTM trained and its approximate mirror, roughly centered around 135∘, 10

knots and 260∘ and 10 knots. Additionally, roll error generally worsens over varying

secondary heading angles and speeds.

Both of these results may be indicative of “negative transfer” where we are failing to

adequately answer the question of “what to transfer” [12]. In other words, we transfer

information that harms and hinders the process rather than improve it. There may be

several solutions to this issue, such as further training on more records of the chosen

sample point, smarter sampling, better source domain selection, or a combination of

all three [17]. A full investigation will be left to future work, but the source domain

selection will be explored in the next section.

While there were some improvements, particularly with the primary wave heading

angle, the results are still inconsistent. There is also the remaining question of how

well this approach performs compared to an LSTM model trained on bimodal seas

from its inception.
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Figure 4-7: Primary wave heading angle vs ship speed roll error: Unimodal Training

and Controlled Transfer Learning.
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Figure 4-8: Primary wave heading angle vs ship speed pitch error: Unimodal Training

and Controlled Transfer Learning.
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Figure 4-9: Secondary wave heading angle vs ship speed roll error: Unimodal Training

and Controlled Transfer Learning.
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Figure 4-10: Secondary wave heading angle vs ship speed pitch error: Unimodal

Training and Controlled Transfer Learning.
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Figure 4-11: Primary vs Secondary wave heading angle roll error: Unimodal Training

and Controlled Transfer Learning.
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Figure 4-12: Primary vs Secondary wave heading angle pitch error: Unimodal Train-

ing and Controlled Transfer Learning.

4.4 Bimodal LSTM Comparison

In this chapter, the source domain serving as the initial base network is revisited and

compared to an LSTM trained exclusively on bimodal wave sets. Random sampling

was briefly explored but consistently showed little difference in performance between a

bimodal LSTM and a unimodal LSTM that experienced additional bimodal training.
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Therefore, the results of this chapter will focus on the controlled sampling approach

in all comparisons with eight samples.

4.4.1 Initial Training Domain Expansion

In an attempt to further investigate the driving factors behind the results shown

previously, the Medium LSTM training domain at its creation was revisited. To

recap the relevant portions of Section 3, the Medium LSTM was initially trained

on 81 records of unimodal seas. The 81 records stem from enumerating all possible

combination pairs of variable values listed in Table 3.1 [8]. This ultimately represents

a tiny portion of the primary seas experienced in both the expanded unimodal and

bimodal domains described in Table 3.4 and may have contributed to the inconsistent

results. I.e., the assumption that the unimodal LSTM would be a quality starting

point for the base network is invalid when the initial training domain is so small

compared to the testing domain. The primary wave heading angle vs. ship speed

domain alone comprised 216 different record sets of input parameters.

Thus, the testing domain for primary and secondary wave heading angles was re-

duced to accommodate a larger training domain. This facilitated the recreation of a

baseline Medium LSTM familiar with the entire unimodal domain before any transfer

learning occurs. The testing domain removed all ship speeds deemed unrealistic for

the scenario: anything less than six knots. Simultaneously, the training domain was

expanded to include all possible combinations of the primary wave heading angles

and ship speed.

4.4.2 Bimodal LSTM Comparison

A traditional LSTM initialized with random parameters and trained on the identical

eight records was created to serve as the new and final baseline comparison. Bimodal

LSTMs consistently outperformed the Narrow, Medium, and Wide LSTMs in bimodal

seas as detailed by Howard [8] and in Section 3.
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4.4.3 Results

The expansion of the initial training domain had a noticeable effect on the results.

The most significant effect is seen in the roll error, particularly in varying primary

wave headings, which also corresponds with the largest errors seen previously. The

pitch error for varying primary wave heading also largely improved. Neither of these

results is surprising as so much additional unimodal training was provided to the base

LSTM. Figure 4-13 and Figure 4-14 show the results of the primary roll and pitch

error.
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Figure 4-13: Primary wave heading angel vs ship speed roll error: Bimodal Training

and Controlled Transfer Learning.
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Figure 4-14: Primary wave heading angel vs ship speed pitch error: Bimodal Training

and Controlled Transfer Learning.

While the primary wave headings test case errors were consistent and predictable,

the secondary ones were far more interesting. The results were inconsistent, with the

bimodal LSTM outperforming the unimodal LSTM with transfer learning in some

records and equally performing or underperforming in others. Through multiple

reperformances of the tests, the results were consistently varying. One explanation

may be that the results were ultimately driven by the random initialization of the bi-
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modal LSTM, meaning the unimodal LSTM and transfer learning process would not

be a great replacement for a quality bimodal network without further investigation.

Figure 4-15 and Figure 4-16 show results corresponding to the same test as Figures 4-

13 and 4-14. Additional figures are included in Appendix B and demonstrate a test

where the bimodal LSTM underperformed compared to the unimodal LSTM with

transfer learning on the secondary wave heading test case.

Figure 4-15: Secondary wave heading angle vs ship speed roll error: Bimodal Training

and Controlled Transfer Learning Run 1.
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Figure 4-16: Secondary wave heading angle vs ship speed pitch error: Bimodal Train-

ing and Controlled Transfer Learning Run 1.

4.4.4 Shifted Sampling

A final effort was made to “expand” the bimodal training domain by shifting the

bimodal and transfer learning sampling points to cover the full spread of the domain

better. While this was not investigated in detail, it did provide promising results.

One set of speeds was chosen to shift by approximately 45∘ rather than 90∘ to cover
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better the entire domain of primary wave headings, including the beams seas the

LSTM often performs poorly on. This resulted in a noticeable improvement in both

the bimodal LSTM and the Medium LSTM. Figures 4-17 and 4-18 show the results

of the primary wave heading test case roll and pitch error.

While the magnitude of the error correction difference between the two decreased,

the overall performance of the Medium LSTM improved substantially. Figure 4-

13 shows the highest SSA roll error occurring around the beams with an error of

approximately 6∘. Figure 4-17 a reduction in the error in the beam seas case to

approximately 2.5∘, likely due to the bimodal training the LSTM received on the

beam. Similarly, one sample near the beam drastically improved some of the bimodal

LSTM’s worst-performing conditions. This demonstrates that smarter sampling may

significantly improve the performance of both LSTMs.

In this case, the pitch error for the Medium LSTM performed very comparably to or

slightly worse than the bimodal LSTM. However, it again greatly outperformed the

bimodal LSTM in the set of conditions where the bimodal LSTM performs the worst

without having any set of conditions where the Medium LSTM performed extremely

poorly compared to the bimodal LSTM. In other words, the Medium LSTM with

transfer learning did not experience the worst pitch errors shown by the bimodal

LSTM while having little to no poorly performing areas.

Varying secondary wave headings again had a more mixed result. While the Medium

LSTM with transfer learning outperformed the bimodal LSTM in the case of pitch

error, the same cannot be said for roll error. This may still indicate too much bias of

the Medium model toward the primary wave conditions. Figures 4-19 and 4-20 show

the results of the primary wave heading test case roll and pitch error.
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Figure 4-17: Primary wave heading angel vs ship speed roll error: Shifted sample.
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Figure 4-18: Primary wave heading angel vs ship speed pitch error: Shifted sample.
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Figure 4-19: Secondary wave heading angle vs ship speed roll error: Shifted sample.
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Figure 4-20: Secondary wave heading angle vs ship speed pitch error: Shifted sample.

4.4.5 Training Time

The computation training time for each experiment was also tracked, both bimodal

and Medium LSTMs, for the eight controlled samples. Figure 4-21 shows these results,

and Table 4.1 maps the results to the varied parameter pairs. The training time

required to fine-tune the Medium LSTM was always less than that of training the

bimodal LSTM, and it was often half or one-third as long. This shows the potential
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speed with which the transfer learning approach can leverage while still performing

on par or better than the bimodal LSTM.

Figure 4-21: Training Time for Bimodal LSTM and Medium LSTM
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Experiment ID Parameters Varied
0 Sec Heading and Ship Speed
1 Pri Heading and Sec Heading
2 Pri Heading and Sec Height
3 Pri Heading and Sec Period
4 Pri Heading and Ship Speed
5 Sec Height and Sec Heading
6 Pri Height and Sec Period
7 Sec Height and Ship Speed
8 Pri Height and Pri Heading
9 Pri Height and Sec Heading
10 Pri Height and Sec Height
11 Pri Height and Pri Period
12 Pri Height and Sec Period
13 Pri Height and Ship Speed
14 Sec Period and Sec Heading
15 Sec Period and Ship Speed

Table 4.1: Experiement ID to parameter pairs mapping.
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Chapter 5

Conclusions and Recommendations

This thesis expanded upon previous work using an LSTM model to predict ship

motion statistics with a focus on bimodal seas and transfer learning. The conclusion

of this thesis is:

• The LSTM model is a viable method for producing a low error map between

SimpleCode and LAMP ship motion statistics in a range of bimodal seas.

• Inductive transfer learning through a model agnostic meta-learning framework

using LSTMs trained on unimodal seas as base initialization models can be

used to cover a wider test domain but still requires investigation to produce

consistent results.

• Only a few samples are needed to alter the base model’s predictions to cover a

specific set of wave parameters.

• The training time to produce and fine-tune a base model to a specific set of

conditions is much less than the time required to initialize and train a new

model from scratch.

• There is great value in expanding the initial training domain of the base model,

thereby improving the model’s ability to generalize to new wave conditions.
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• Training record selection for fine-tuning the base model has a noticeable effect

on model performance.

There are many avenues to explore for future work. The following discusses potential

routes in no particular order of importance:

• While the transfer learning process described generally improved a given model’s

performance against a baseline case, the results were not always consistent.

Determination of the driving factors behind this inconsistency could open the

opportunity to improve the model’s trustworthiness.

• Improve the MAML framework used in this thesis to allow for better general-

ization of the base model. This may be done using new techniques, such as

Reference [1] or [13], or by exploring the effects of changing the framework

itself by redefining the base model initialization, task distribution, and learning

tasks.

• Explore other models, such as convolutional neural networks.

• Improve the wave input, which is treated as a single point centered on the

hull for this thesis. The framework for a wave grid is in place and may have

promising results for generality, but it was not explored to maintain a focus on

comparison to past results.

• Conduct a hyperparameter search for the LSTM model and transfer learning

process. This thesis used fixed hyperparameters from previous work. The net-

works were expanded briefly to 3 layers of 50 units and showed promising results,

but this was not explored in depth to stay consistent with the parameters of

this and previous work.

• Improve the sampling method. The methods used in this thesis were straight-

forward. Even a modicum of thought put into the sampling process improved

results greatly.
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Appendix A

Bimodal Seas Expanded Domain

Resultant Heatmaps
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Figure A-1: Secondary wave heading vs Ship Speed absolute SSA roll error.

72



Figure A-2: Secondary wave heading vs ship speed absolute SSA pitch error.
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Figure A-3: Primary wave heading vs secondary wave heading absolute SSA roll error.
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Figure A-4: Primary wave heading vs secondary wave heading absolute SSA pitch error.
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Figure A-5: Primary wave heading vs secondary wave height absolute SSA roll error.
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Figure A-6: Primary wave heading vs secondary wave height absolute SSA pitch error.
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Figure A-7: Primary wave heading vs secondary wave period absolute SSA roll error.
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Figure A-8: Primary wave heading vs secondary wave period absolute SSA pitch error.
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Figure A-9: Primary wave heading vs ship speed absolute SSA roll error.
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Figure A-10: Primary wave heading vs ship speed absolute SSA pitch error.
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Figure A-11: Secondary wave height vs secondary wave heading absolute SSA roll error.
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Figure A-12: Secondary wave height vs secondary wave heading absolute SSA pitch error.
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Figure A-13: Secondary wave height vs secondary wave period absolute SSA roll error.

84



Figure A-14: Secondary wave height vs secondary wave period absolute SSA pitch error.
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Figure A-15: Secondary wave height vs ship speed absolute SSA roll error.
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Figure A-16: Secondary wave height vs ship speed absolute SSA pitch error.

87



Figure A-17: Primary wave period vs secondary wave heading absolute SSA roll error.
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Figure A-18: Primary wave period vs secondary wave heading absolute SSA pitch error.
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Figure A-19: Primary wave height vs secondary wave height absolute SSA roll error.
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Figure A-20: Primary wave height vs secondary wave height absolute SSA pitch error.
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Figure A-21: Primary wave height vs secondary wave height absolute SSA roll error.
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Figure A-22: Primary wave height vs secondary wave period absolute SSA pitch error.

93



Figure A-23: Primary wave height vs ship speed absolute SSA roll error.
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Figure A-24: Primary wave height vs ship speed absolute SSA pitch error.
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Figure A-25: Secondary wave period wave height vs secondary wave heading absolute SSA roll error.
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Figure A-26: Secondary wave period wave height vs secondary wave heading absolute SSA pitch error.
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Figure A-27: Secondary wave period wave height vs ship speed absolute SSA roll error.
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Figure A-28: Secondary wave period wave height vs ship speed absolute SSA pitch error.
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Figure A-29: Secondary wave period wave height vs secondary wave heading absolute SSA roll error.
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Figure A-30: Secondary wave period wave height vs secondary wave heading absolute SSA pitch error.
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Figure A-31: Primary wave period wave height vs secondary wave height absolute SSA roll error.
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Figure A-32: Primary wave period wave height vs secondary wave height absolute SSA pitch error.
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Figure A-33: Primary wave period wave height vs secondary wave period absolute SSA roll error.
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Figure A-34: Primary wave period wave height vs secondary wave period absolute SSA pitch error.
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Figure A-35: Primary wave period wave height vs ship speed absolute SSA roll error.
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Figure A-36: Primary wave period wave height vs ship speed absolute SSA pitch error.
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Appendix B

Bimodal Training vs Transfer

Learning Heatmaps

B.1 Additional Secondary Heading Testing Exam-

ples
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Figure B-1: Secondary wave heading vs Ship Speed absolute SSA roll error with a controlled sample.

109



Figure B-2: Secondary wave heading vs ship speed absolute SSA pitch error with a controlled sample.
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Appendix C

Repository

The code used to produce the results in this thesis is available on GitHub: https:

//github.com/jrkbvb/SimpleCode_to_LAMP_LSTM.
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